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COMBINING SOCIAL AUTHENTICATION AND UNTRUSTED CLOUDS FOR

PRIVATE LOCATION SHARING

Andrew K. Adams, M.S.

University of Pittsburgh, 2015

With the advent of GPS-enabled smartphones, location-sharing services (LSSs) have emerged that

share data collected through those mobile devices. However, research has shown that many users

are uncomfortable with LSS operators managing their location histories, and that the ease with

which contextual data can be shared with unintended audiences can lead to regrets that sometimes

outweigh the benefits of these systems. In an effort to address these issues, we have developed

SLS: a secure location sharing system that combines location-limited channels, multi-channel key

establishment, and untrusted cloud storage to hide user locations from LSS operators while also

limiting unintended audience sharing. In addition to describing the key agreement and location-

sharing protocols used by the architecture, we discuss an iOS implementation of SLS that enables

location sharing at tunable granularity through an intuitive policy interface on the user’s mobile

device.
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1.0 INTRODUCTION

Over the last decade, location- and presence-sharing systems have received considerable attention

from both researchers [6, 8, 21, 22, 28, 29, 35] and in practice [12, 15, 18, 20]. The recent explosion

in mobile computing and social networking has led to deployment of a wide range of location-

sharing systems (LSSs), both stand-alone in nature (e.g., Find My Friends [14], FourSquare [15],

or Glympse [18]) as well as integrated with other social networking platforms (e.g., Facebook

places [12], Google Plus [20], Twitter, or Yelp). These types of systems allow a user to share

her geographic location with her social contacts either as a first-class data object or as support for

other content (e.g., attaching one’s location to restaurant review). This sharing can be done in a

near seamless manner, particularly when the LSS is embedded within a larger social platform.

Despite their popularity, LSSs are not without their own security and privacy problems. By

their very design, these systems have the implicit shortcoming that sharing one’s location with

social contacts requires sharing this location with the LSS operator as well. This can lead to

undesirable profiling of users by third parties, or increase users’ exposure risk in the event of

an LSS compromise. In addition, it is has been shown that social networks in general [36] and

LSSs in particular [29] can sometimes lead to situations in which users experience regrets after

(over)sharing information. This is often the result of the so-called unintended audience problem,

in which data is shared with individuals other than those with whom the subject intended to share.

This may manifest as a result of a location being automatically attached to content posted on a

social network, accidental sharing of a location with a user’s entire set of contacts instead of a

restricted subset, or posting a location that contradicts other statements made by the user [29].

The latter problem is symptomatic of both LSS and access control complexity. For instance,

it is well-known that users’ social networks have many more contacts than they interact with on

a day-to-day basis: a 2011 poll of 1,954 British citizens found that the average person had 476
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Facebook friends, but only 152 contacts in their cellular phone [38]. Furthermore, research studies

have shown that users frequently make mistakes when authoring even basic access control policies

in commodity systems [5,11,30]. As such, it is clear that accidents and misconfigurations can lead

to over-sharing in large social networks. On the other hand, the problem of required sharing with

LSS operators is one of economic incentives: the ability to study user habits and carry out targeted

advertising provides revenue for operators of the systems.

An interesting observation, however, is that current generation smartphones are capable of

helping mitigate both of the above types of concerns. Given the 3G/4G connectivity of these

devices and the open APIs to cloud storage-as-a-service (SaaS) providers like Amazon S3 [2] and

Google Drive [19], it is possible for mobile applications to explicitly manage a user’s published

location history. Furthermore, smartphones store rich information about a users’ close contacts

(e.g., email addresses, phone numbers) and have access to multiple channels of communication

(e.g., WiFi, 3G/4G, Bluetooth, SMS). As a result, it is possible to develop robust key exchange

protocols—e.g., based on multiple distinct avenues of communication and historical context, or

by leveraging location-limited channels—that allow location data to be selectively encrypted prior

to upload, thereby preventing snooping attack by the SaaS provider and limiting incidences of

over-sharing.

In this thesis, we describe Secure Location Sharing (SLS), a decentralized LSS that leverages

the above observations to limit the over-exposure of user location data without relying on trusted

infrastructure. Specifically, SLS allows users to set up secure location sharing with selected con-

tacts by pairing devices in one of two ways. Users who happen to be physically co-located can use

location-limited visual channels to pair devices (similar to [24]). Users who are located apart from

one another can instead leverage multiple communication channels (e.g., email and SMS) along

with contextual question/answer protocols to help prevent man-in-the-middle (MitM) attacks dur-

ing device pairing. Cryptographic keys established during this pairing process are then used to aid

in securely sharing a user’s location at a tunable granularity (e.g., GPS coordinate, city-level, etc.)

via untrusted SaaS services. In exploring SLS, we make the following contributions:

1. We demonstrate the first decentralized LSS that is capable of providing flexible and secure

location sharing over untrusted infrastructure. Unlike existing approaches to securing social

networks (e.g., X-pire! [3]), our work does not involve abuse of existing social network APIs,
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but rather builds secure and flexible sharing into the real-life social networks managed by

users’ smartphones.

2. We propose an alternate economic model for LSSs, in which the users providing their location

to others pay for the storage used to host their data.1 This removes the economic incentives

driving traditional LSS providers to view user location histories, and further reduces the risk

of accidental over-exposure due to LSS compromise.

3. SLS limits the unintended audience sharing problem by requiring explicit device pairing be-

tween providers and consumers of location sharing. By leveraging multiple channels and/or

location limited pairing protocols, this setup procedure is robust against even very strong ad-

versaries with control over large portions of the network environment.

4. We develop an iOS application as a proof-of-concept implementation of SLS. This demon-

strates both the efficiency of my approach, as well as the simplicity of interfaces needed to

manage the secure device pairing aspects of SLS.

The rest of this thesis is organized as follows. In Chapter 2 we discuss related work, and briefly

explain the problems associated with canonical location-sharing or presence system. We discuss

the goals, properties and principals of our system in Chapter 3. In Chapter 4 and 5, we present

our framework and implementation for secure location sharing. Chapter 6 re-examines the design,

evaluates the performance and security of the system, and explores directions for future work. We

present our conclusions in Chapter 7.

1Note, however, that some SaaS providers provide lower-tier service that is sufficient for SLS at little to no cost to
the user (e.g., http://aws.amazon.com/free/).
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2.0 RELATED WORK

2.1 PRIOR WORK

Google Plus [20], FourSquare [15], Facebook Places [12], and Glympse [18] are examples of LSSs

that operate by having users (i.e., providers) upload their location data to the service, such that oth-

ers (i.e., consumers) can access the location data. Current strategies for addressing privacy issues

in LSSs are typically based on obfuscating the location data or anonymizing the provider; the effi-

ciency of these techniques are discussed in, e.g., [33, 34]. In [31], the authors address oversharing

in LSSs by providing users with interactive feedback about the number of users accessing their

location, and the frequency of these accesses. This thesis deviates from prior work by (i) prevent-

ing the LSS from viewing a user’s location data, and (ii) by ensuring that a user has full control

over whom she chooses to share her location data with and how she intends for her location to be

consumed.

The protection and secrecy of a user’s data contained in the cloud is the focus of DataLocker [9],

which is a collection of tools that enable a provider to encrypt data prior to uploading the data to

the cloud. Our model does this precisely with location data, however, it is not tied to any specific

cloud entity. Moreover, we do not generically encrypt location data: policy dictates the precision

with which data is presented to the consumers, and how it is protected in the cloud. Instead of

protecting data, X-Pire! [3] attempts to decay data (ostensibly images, but the technique could be

applied to location data) by associating a key to an image; when the key expires the X-pire! aware

server refuses to serve the data. Similarly, Vanish [16] decays data by altering links to the data

stored within a DHT. Although our model does not address the decaying of data, it could benefit

from techniques like these in the future.

Several papers present advanced key management protocols that make use of smart phone
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technology [7, 13, 23, 24]. McCune et al. describe the protocol, Seeing-is-Believing (SiB) [24],

in which the camera in users’ smart phones capture 2D barcodes—these 2D barcodes are used

as commitments for exchanging public keys. Our key management protocol relies heavily on

the concepts and ideas introduced in this work. SafeSlinger [13] is a protocol and framework

designed to exchange public keys between smart phones; this is precisely one of the tasks that

our key management protocol is designed to accomplish. Similarly, Open Key Chain [27] is an

Android app used to exchange GPG keys, that uses QR codes to exchange commitment hashes.

Our work diverges from both [13] and [27] by (i) using the location-limited channel between

pairing smart phones to fully exchange asymmetric keys, and (ii) by leveraging what I refer to as

a file-store deposit (a pointer to a dropbox in the cloud) to assist in symmetric key management.

Accelerometer data from two smart phones is used in [23] and [7] to aid in authentication for secure

pairing. Mayrhofer et al. [23] employ a strategy of shaking two phone simultaneously to generate

a movement limited channel, while BUMP [7] uses the accelerometer and location data between to

bumping smart phones. Again, our work differs from pairing protocols based on movement limited

channels, by operating over location-limited and multichannel communication channels.

Multichannel security protocols, as surveyed in [37], are ways to mitigate against MitM attacks

by using multiple communication channels, e.g., radio, visual and 1-bit on/off or toggle buttons,

during authentication. The idea is that a malicious eavesdropper cannot eavesdrop on all channels.

We use an instantiation of this idea in the variant of our pairing protocol based on historical,

multiple open-lines of communication.

2.2 LIMITATIONS OF PRIOR WORK

As alluded to previously, LSS have significant privacy issues, and in fact the primary issue was

exposed in [6]. In this study, it was shown that that users are uncomfortable with a service control-

ling access to their location data. Techniques have been introduced to mitigate users’ privacy issue

concerns, e.g., data can be diffused, or aggregated, but all of these reduce the utility of the data.

This is especially troubling if the providers’ intentions are for their data to be consumed at a high

precision by a specific user, or one or more groups of users. A secondary issue that arose in the
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study is that many users are uncomfortable knowing that anyone can see their location information,

i.e., once the location data is uploaded to the LSS the user forfeits control over the data.

Although not novel, the combination of symmetric and asymmetric cryptography can help ad-

dress both of these concerns: i.e., providers encrypt their location data prior to uploading it to a

LSS, and then must distribute the decryption key(s) to enable retrieval by authorized consumers.

However, this key management process can be a heavy burden—the most common form of cryp-

tography between Internet parties relies on a public-key infrastructure (PKI), which in turn relies

on one or more trusted-third parties (e.g., Certificate Authorities or CAs). As of today, other than

the “PGP PKI” (which utilizes a web-of-trust, as opposed to a true CA), or the “Web PKI” (which

relies on a cartel of CAs being included in the predominant web browsers used today), no PKI

exists that mobile devices can tap for the necessary key management that a privacy-enabled LSS

would require.

Interestingly, McCune et al. and Farb et al. [13, 24] observed a decade ago that smart phones

were almost ubiquitous and are exceptionally portable and, as such, are usually available during

vis-a-vis interactions. This makes smartphones an ideal platform for bootstrapping the exchange

of cryptographic keys through the location-limited channels that can exist between two parties.

We further observe that current smart phones possess the technology to perform key management

efficiently and fully over location-limited channels, but only lack the protocols and framework to

achieve this. SafeSlinger [13] is architected to rely on Internet connectivity to/from a server to

aid in the key exchange protocol (i.e., SafeSlinger only uses the location-limited channel between

the pairing smart phones for initializing the key exchange, and then for confirmation). This has

the obvious disadvantages of requiring (i) that the server be available at all times, and (ii) that

the exchange occurs in an environment that possesses network connectivity. If a user is content

to share private data with only principals within their social network, we argue that both of the

above requirements are unnecessary to exchange asymmetric keys in a close, vis-a-vis setting that

leverages location-limited channels, while using current smart phone technology.
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3.0 SYSTEM DESIGN

The SLS system was designed with two main goals in mind: (i) enabling tunable and private

location sharing with limited contacts, and (ii) limiting end-user location over exposure. We now

overview the system architecture and describe the threat model within which we expect SLS to be

used.

Internet

Cloud File Store

Provider

Consumer

Location Data
Upload

Location Data
Fetch

Multi-channel
Trust

Cellular Network

Location-limited
Trust

Figure 1: SLS Architecture Overview.
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3.1 ARCHITECTURE OVERVIEW

Figure 1 presents a high-level view of the SLS system. Users in the system can be divided into two

classes: providers and consumers. Providers share their location with others, while consumers re-

trieve the locations of others; a user can act as both a provider and a consumer. We assume that all

users have smartphones, as well as (perhaps self-signed) asymmetric key pairs. Providers’ smart-

phones must be able to detect their current location, e.g., via GPS or cellular/WiFi localization.

Private location sharing is enabled by shared, symmetric keys. The sharing of these symmetric

keys is facilitated by asymmetric keys exchanged during a device pairing protocol. SLS provides

two pairing protocols to exchange asymmetric keys: one based upon in-person communication

over location-limited channels, and another that leverages multi-channel communication for situa-

tions in which in-person exchange is not possible. To pair devices using location-limited channels,

users’ smartphones must have the ability to read and decode QR codes. To pair devices using mul-

tiple, historical open-lines of communication, users’ smartphones must have both Internet access

(e.g., via WiFi), as well as the ability to send and receive SMS messages over the cellular net-

work. Although the multi-channel based pairing protocol requires that principals have previously

communicated, there is no such restriction within the location-limited pairing protocol. Encrypted

location data is shared through the use of a SaaS service (e.g., Amazon S3 or Google Drive) con-

tracted by the provider. Note, although one can currently find SaaS services that are free, our

model assumes an associated cost to use the service. We require that the SaaS service allow any

user to download data posted to the provider’s account (i.e., world readable option). There is no

requirement that all providers must use the same SaaS service.

3.2 ADVERSARY MODEL

In this thesis, we make the following assumptions. We first assume that user smartphones are free

of malware, as this would immediately make user locations available to the adversary through the

smartphone API. We assume that all network communications are subject to read, replay, reorder,
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and modification by a Dolev-Yao style adversary [10]. 1 Finally, we assume that the SaaS providers

employed are honest-but-curious in nature. That is, we assume that they will correctly execute the

GET and PUT operations provided by their APIs, but may try to derive provider locations by

inspecting the data that they host. In this work, we do not address DoS/DDoS attacks against SaaS

providers as a means of thwarting location sharing.

1We alter this assumption to at most one communication channel when analyzing our pairing protocol based on
multichannel communication.
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4.0 SECURE LOCATION SHARING

We now describe the design of the Secure Location Sharing (SLS) framework. We first describe

how multiple granularities of location data are encrypted and managed by the provider (Sec-

tion 4.1). Then, we describe two protocols for pairing provider and consumer devices to enable

secure retrieval of provider locations from SaaS services (Sections 4.2–4.3). Next, we discuss

the policy controls available to providers within SLS (Section 4.4). Finally, we describe the iOS

implementation of SLS (Chapter 5).

4.1 LOCATION SHARING

In SLS, a provider’s smartphones is responsible for capturing her location data using, e.g., WiFi

or cellular localization or GPS. Each location sample collected by SLS is represented as a four-

tuple containing a location coordinate, an estimate of the provider’s speed of travel, the providers

bearing/heading, and a timestamp indicating when the sample was collected. In total, each location

sample collected by SLS requires approximately 200 bytes to store. Given that a provider may wish

to share her location at multiple granularities, the sample collected by SLS is generalized to each

desired granularity or precision prior to upload: exact, building, neighborhood, city, county, or state

precision. Where exact precision uses all available decimal places within the coordinate degrees;

building uses only four of the available decimal places; neighborhood uses three decimal places;

city uses two; county uses just the first decimal place, and state precision only uses the whole

number in the coordinate degrees [17]. These exact or generalized provider locations are shared

with consumers via an (untrusted) SaaS service contracted by the provider. As such, location data

must be cryptographically protected prior to upload. To accomplish this, the provider generates
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one symmetric key for each granularity level at which her data is to be shared (i.e., exact, building,

state, etc.), and then cipher-block-chaining (CBC) encrypts each sample prior to upload.

Encrypted location samples are thus unreadable to the SaaS service, with whom the user is

under no obligation to share her location (unlike in a traditional LSS). We note, however, that there

is economic incentive for the SaaS service to correctly house the data, regardless what the data’s

contents are, in that users are not bound to a particular SaaS service and can simply migrate their

data should the SaaS service misbehave. Providers also have complete control over the amount of

information shared: they may post only a single “current” location (e.g., by overwriting a single

location sample), or instead maintain a history of location samples (e.g., by storing a sliding win-

dow of n location samples). In SLS, we refer to these two operational modes as update and history,

respectively. Finally, consumers are under no obligation to create or maintain accounts with each

LSS that their providers use, as all data is pulled from SaaS file-stores by SLS using HTTP GET

requests made to world-readable URLs.

Of course, the reliance of SLS on symmetric keys to protect provider location data raises two

issues. First, it must be possible for providers and consumers to securely authenticate one another

and exchange the cryptographic material needed to retrieve location data at the desired level of

granularity. To this end, we present protocols for device pairing based on location-limited and

multi-channel protocols in Sections 4.2 and 4.3, respectively. Second, it must be both possible and

efficient for the provider to alter the list of consumers with whom she shares information and the

granularity at which this information is shared, which are policy challenges that are addressed in

Sections 4.2 and 4.4.

4.2 LOCATION-LIMITED PAIRING

In-person, interactions are an ideal setting for device pairing and key exchange. These intimate

interactions between potential providers and consumers present the users engaging in the pairing

protocol with an opportunity to physically identify the owner of the device with which they are

attempting to establish a secure channel, as well as enable the use of location limited (e.g., vi-

sual [24] or Near Field Communication [26]) channels to exchange data, all the while presenting
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↵
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Legend
Audio/Visual
Visual QR

KD Medium

Figure 2: Communionable Trust Protocol.

a nigh impossible target for eavesdroppers intent on mounting MitM attacks—there simply is not

sufficient area for current technologies to intercept, much less manipulate communications. The

combination of human-to-human authentication and device-to-device communication that is dif-

ficult to intercept results in demonstrative identification [4] of the participants in location-limited

device pairing protocols. SLS utilizes the traits of visual, location-limited channels, and extends

the concepts presented in SiB [24] when pairing devices to aid in symmetric key management.

During the pairing process, asymmetric, or public keys are exchanged, which are then used to

wrap/unwrap the shared symmetric keys during transport.

We define Communionable Trust to be the confidence that an asymmetric key received through

intimate communication is bounded to the principal’s identity at the remote end of the intimate

communication channel. Note, a trusted-third party is not necessary in this definition—the recip-

ient has high confidence that the received key was given to them by the visually identified party.
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Since our location-limited device pairing protocol is based on close, intimate communication chan-

nels, we refer to it as Communionable Trust, or simply CT. Figure 2 illustrates CT.

4.2.1 Pairing Phase

This protocol makes use of human-to-human audio and visual communication, as well as device-to-

device visual communication using on-board cameras and Quick Response (QR) codes. The first

step of this protocol is the real-world identification and authentication of the humans who wish to

pair devices to facilitate location sharing via SLS. After the human participants have agreed to pair

devices, the remainder of the protocol focuses on the exchange of public key information between

provider and consumer, and exchanging metadata that enables the sharing of both symmetric keys

and location data.

In Step 2 of the protocol, the consumer generates a QR code that contains her public key (KC)

as well as a device identity token (IDC) used to associate her device with her real-world identity,

as managed by the provider’s smartphone. The inclusion of an identity token is necessary, because

symmetric key sharing happens out-of-band from device pairing and a consumer, for example,

may choose to use an identifier for a provider which is different than how the provider identifies

themselves, e.g., John Doe vs. Johnny Doe. Thus, exchanging a hash token that represents a prin-

cipal’s identity ensures that all future communication will be associated with the correct identifier.

Figure 3 shows a QR code containing a 2048-bit RSA public key and its associated identity to-

ken.1 The provider scans this code with his phone, and recovers KC and IDC . He then generates

a random challenge nonce,NP , encrypts NP using KC , and generates a QR code containing the

resulting ciphertext (Step 3). The consumer scans this QR code, decrypts the resulting ciphertext,

and verbally communicates the nonce value to the provider (Step 4). After verifying this exchange,

the provider associates KC and IDC with the consumer’s contact information in his smartphone.

This process is then mirrored in Steps 5, 6, and 7 of the communionable trust protocol, which

provides the consumer with the providers public key (KP ) and identity token (IDP ).

In the final step of the Pairing Phase, the consumer QR-encodes their file-store deposit—a de-

scription of an out-of-band channel (e.g., type=sms, phone-number=4125551212) over

1Version 40 QR codes can encode approximately 1500 bytes of data, which is more than sufficient for exchanging
even 2048-bit public keys.
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Figure 3: QR-encoded 2048-bit RSA public key (with associated identity token).

which the consumer wishes to be notified of the provider’s SaaS file-store—and presents it for the

provider to scan. This message is sent unencrypted due to the location-limited nature of the visual

channel used by this protocol. The use of this consumer-specified “drop box” allows the provider

to inform the consumer asynchronously (e.g., via SMS) if they change SaaS providers at a later

date, and thus obviates the need to re-execute the CT protocol.

4.2.2 File-store Deposit Phase

The final message of the communionable trust protocol handles the distribution of metadata that

enables the consumer to retrieve location samples uploaded by the provider. Asymmetric keys only
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enable two parties to communicate securely, the SLS framework is a one-to-many infrastructure.

That is, one provider can have many consumers, and one consumer may have many providers—to

address this, SLS relies on shared or symmetric keys to map one or more consumers to a single

provider. In short, a provider uses policy to dictate which groups, or what we refer to as precision

levels, each of their consumers are assigned to (see Section 4.4).

The File-store Deposit Phase can occur anytime after the provider configures policy for the con-

sumer, i.e., the consumer is assigned a precision level sometime after the pairing phase completes

(see Figure 2). The message comprising the file-store deposit is sent over the channel identified in

Step 8 of the communionable trust protocol, and is a four-tuple of values containing a URL for the

file store at which the provider’s location data will be hosted (FS), a URL at which the consumer

can access her shared key bundle (KB), the provider’s identity token (IDP ) 2, and a timestamp

(TS) to prevent replay attacks. The entire message is then signed by the provider to ensure au-

thenticity. After using TS and KP (which is associated with IDP by the consumer) to validate

the freshness and authenticity of this message, FS and KB provide the consumer with all of the

information that is needed to securely access the provider’s location data.

The key bundle URL, KB, provides the consumer with a pointer to an encrypted key bundle

stored on the provider’s SaaS service. This key bundle is a (key, version, signature) three-tuple

that is encrypted using the consumer’s public key (KC). The key field of this tuple contains the

current symmetric key corresponding to the precision level with which the consumer is permitted to

access the provider’s location, the version field indicates the version of this key, and the signature

field is a hash of the key and version fields signed with the provider’s private key (K−1
P ). Key

versions are used to facilitate location retrieval as keys change in response to changes in provider

access controls (see Section 4.4). The level of indirection added by the key bundle—as opposed to

directly transferring keys as part of the CT protocol—eliminates the need for direct communication

between the provider and consumer upon every policy change. After recovering their key bundle,

the consumer can periodically retrieve provider locations (either the current location data or the

history log, see Section 4.1) from the file store URL, FS, and decrypt this data. Note, the File-

store Deposit Phase only occurs when a consumer is initially assigned policy, or if and when the

2The identity-token is included in the file-store information to provide the consumer with a way of quickly deter-
mining which provider sent the message.

15



provider changes their file-store (e.g., changing their cloud services).

4.3 MULTI-CHANNEL PAIRING

It is unreasonable to assume that users of SLS will always have the ability to physically co-locate

during the device pairing process. As such, we also describe a pairing protocol that can be used by

individuals who are not within close proximity. As such protocols can be vulnerable to MitM at-

tacks, we make use of multiple historical, open-lines of communication associated with principals

on their smart phones (e.g., email address, phone number, or instant messaging account). In this

context, historical refers to pre-existing contacts within the smartphone’s address book, and open-

lines of communication implies that the principals have communicated with the preexisting contact

over those multiple channels. This combination of properties gives providers (resp. consumers)

higher assurance that the identity of the consumer (resp. provider) is correct, since (i) existing con-

tact information is used to bootstrap the communication process and (ii) an active attacker would

need to control multiple communication channels to subvert the protocol.

Wong et al. [37] present protocols that use multiple channels of communication to mitigate

against MitM attacks during authentication or key exchange. Although the need for the multiple

channels in [37] is more to combat the relative low bandwidth of the channels possessing data

origin authenticity—the user of the receiving device knows for sure that the received data was

sent by the intended source device—the premise of the idea is sound. That is, if two distinct

communication channels are used in key exchange, the eavesdropper has a significantly harder

task in controlling the communication.

Note, the historical, open-lines of communication that a user has listed in their address book

do not possess the data origin authenticity property, unfortunately. Thus, a protocol based on his-

torical, open-lines of communication must also have strong authentication assurances, i.e., whom

the user is talking to is indeed whom the user thinks she is talking to. To address the lack of data

origin authenticity, our protocol couples the notion of using multiple communication channels with

“secret questions” to provide both parties with reasonable confidence that the principal at the re-

mote end of the multichannel communication is indeed the owner of the public key exchanged over
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Figure 4: Historical Communication Channels Protocol.

one of those channels. The Historical Communication Channels (HCC) protocol is described in

Figure 4.

HCC is initiated in the first step of the Pairing Phase by the consumer, who sends their public

key (KC) and device identity token (IDC) used to associate her device with her real-world identity

(which is established through previous contact as managed by the provider’s smartphone). This

message is sent to the provider over an existing communication channel (e.g., a known email

address), signified using a solid line in Figure 4.

Upon receiving KC and IDC , the provider generates a random challenge nonce NP , encrypts

NP using KC , and sends {NP}KC
to the consumer via a different historical, open-line of commu-

nication that the provider has previously associated with the consumer in their address book (e.g.,

via SMS), which is denoted by a dashed line in Figure 4.

The consumer decrypts the ciphertext and returns NP back to the provider over HCC Sec-
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ondary (Step 3). At this point in the protocol, the provider is confident that the consumer has

access to the private key associated with the public key received in Step 1.

However, the provider does not yet have a high level of confidence that the consumer is indeed

whom the provider believes they are (e.g., someone other than the consumer could have stolen the

consumer’s smart phone). Hence, similar to the use of secrets in OTR [1], the provider generates

a secret question (QP ) that, within reason, only she and the consumer should know the answer

to; e.g., “Who was the away team at the last hockey game that we attended together?”. QP is

encrypted with KC and is sent to the consumer along with KP and IDP over the primary channel

(Step 4).3

The consumer generates (i) the answer (AP ) to QP , (ii) her own random nonce NC , and (iii)

her own secret question (QC). All three are encrypted with KP and sent to the provider via HCC

Secondary (Step 5). If, after decrypting the resulting ciphertext, AP is correct the provider sends

NC and her answer (AC) encrypted with KC via HCC Secondary (Step 6). After verifying AC ,

the consumer encrypts their file-store deposit (File-Store Deposit), NP and NC with KP and sends

them via HCC Primary (Step 7).

Finally, similar to the CT protocol, the provider assigns the consumer’s precision level and

the File-store Deposit Phase begins (see Section 4.2.2 and 4.4). If either (i) a principal receives a

secret question via SLS without first initiating or receiving a public key from the same principal

over a different channel, or (ii) the response to a participant’s secret question is incorrect, the HCC

protocol must terminate immediately.

4.4 POLICY CONTROL

As alluded to in the Section 4.2, after learning the consumer’s public key and file-store deposit

(either through CT or HCC), the provider must associate the consumer with the precision level at

which they are authorized to view the provider’s data. All consumers that are assigned the same

precision level by a provider are considered to be in the same group and, thus, all have access to a

3Although secret questions are a questionable strategy employed by some services to allow principals to bypass
potentially strong password authentication, employing them in this context—between two principals—fits the socially-
based authentication model well.
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single symmetric key protecting location disclosures made at this precision level. As a result, the

symmetric key associated with a particular precision level may need to be updated as the group of

users who have access to that precision level changes over time.

To provide the highest level of security for the provider’s location data—i.e., preserving for-

ward and backward secrecy—these shared symmetric keys should be changed whenever a con-

sumer is added to a precision group or removed from a precision group. The former case ensures

that new consumers cannot access old data, while the latter ensures that former consumers cannot

access new data. Altering the symmetric key for a particular precision level requires creating a

new symmetric key, encrypting key bundles for each user authorized at this precision level, and

depositing the bundles on the provider’s file store. After asynchronously retrieving these new key

bundles, authorized consumers can again access the providers data. While shared symmetric key

update is non-trivial, our evaluation (Section 6.1) shows that the overheads associated with this

process in practice are minimal. We note that it is not necessary for the provider to re-pair their

device with consumers via CT or HCC, as the asymmetric keys use for key management are not

affected by a consumer’s change in precision level.

We recognize that our LSS model prevents the enforcement of certain policies found in existing

LSSs; e.g., policies that enable location sharing only when two parties are within a certain physical

proximity, or policies that place access count limits on individual users. However, we observe that

LSSs that can implement proximity-based policies are able to do so because they have access to

the location data of all their users, and can thus determine the distance between two users. Since

our goal is to prevent the LSS from acquiring this omniscience, this type of policy can not easily be

enforced in SLS. Enforcing constraints on access frequency is also enabled via LSS intervention,

which is contrary to our assumed sharing model. We do note that the ability to enforce these

types of policies would be worthwhile additions to SLS. That said, we defer the exploration and

development of techniques for achieving these goals to future work.

Finally, the provider also controls how often new location updates are available to all con-

sumers, and as a metaphorical panic button, the provider can always disable future location updates

to everyone; reenabling the location updates when the provider sees fit. This, and the granularity

of precision-levels allows SLS providers to express effective policies tractably.
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5.0 IMPLEMENTATION

SLS was implemented initially as an iOS 6 iPhone application and installed on an iPhone 4s. A

second implementation was developed for iOS 7 and installed on an iPhone 5s. The location-

sharing and CT pairing protocol were evaluated via the IPhone 4s, 5s and the iPhone simulator

(modified to behave as if it could scan the iPhones’ public keys).

5.1 PRECISION LEVELS

Our SLS implementation collects and stores provider locations as GPS coordinates, and provides

six precision levels at which a these locations can be shared. The precision levels supported are

exact, building, neighborhood, town, county, state, and none. Support for the building, neighbor-

hood, town, county and state sharing levels are provided by masking lower-order bits in the exact

GPS coordinates stored within SLS. For example, neighborhood precision equates to three decimal

places of precision, hence, all extra decimals places are overwritten with zeros. The precision none

implies that the consumer does not receive a symmetric key.

5.2 MANAGEMENT INTERFACE

The utility and usability of a security system’s policy interface is crucial to its successful use: the

ability to clearly indicate who can access an individual’s data and at what precision is key. We

approached this in SLS by presenting the provider with a clean, simple display that consists of

a list of principals (i.e., smartphone-managed identities associated with each consumer), and the
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Figure 5: List of Alice’s Consumers in SLS.

precision-level at which each consumer has been authorized (see Figure 5). The precision level

can trivially be changed by the provider by adjusting a slider within this interface. Additionally, a

detail view icon at the end of each row allows the provider to immediately review the consumer’s

information, resend the consumer’s shared key bundle URL, or delete the consumer.

New consumers can easily be added when the provider taps the [+] button in the upper-right

corner of the List of Consumers view (see Figure 5). This presents the provider (or the consumer,

when they navigate into their respective Add Provider screen) with a choice of either the location-

limited, CT-based key pairing protocol, or the HCC pairing protocol to exchange public keys and

the consumer’s file-store deposit.

Figure 6 shows several steps of the CT device pairing process, as executed by the provider
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and consumer. In the first step, the provider (Alice) has entered the consumer’s identity (Bob),

and Bob has done the same for Alice. When both tap the QR-code button, SLS will present both

the provider and consumer with the task list associated with device pairing in CT (Step 2). The

provider and consumer will iterate through the steps, synchronizing when QR images are printed

and scanned, or during challenge/responses—these steps have been omitted from the Figure for

clarity. In Step 7, the provider taps the button to scan the consumer’s file-store deposit as a QR

code, and Step 8 shows the consumer’s screen after displaying their file-store deposit QR code to

the provider.

Step 1 Step 2 Step 7 Step 8...

Figure 6: Screenshots of Communionable Trust protocol implemented in SLS. Steps 1, 2 and 7 are

shown for the provider, and Steps 1, 2, and 8 are shown for the consumer.
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5.3 SAAS SUPPORT

Our current implementation of SLS supports the use of Amazon’s S3 and Google Drive services as

cloud file-stores.1 The period at which SLS updates GPS coordinates and then uploads the location

data is configurable by the provider.2 For simplicity, our implementation used the iOS Core Library

API to serialize the location data that was gathered for the provider, with the resulting serialized

location objects being 1KB in size. Although these objects are larger than those that could be

produced by a custom serializer, the encryption and transmission overheads associated with these

larger objects are not significant even on the older iPhone 4s.

The cloud file-store is also used to store encrypted key bundles for the consumers associated

with a given producer. Whenever a consumer is added or a consumer’s precision level is changed,

the shared keys (for all precision-levels involved) are regenerated, new key bundles are generated

and uploaded to the provider’s file-store, and all future location samples are encrypted using the

new key. Upon detecting a key version mismatch, the consumer’s SLS application automatically

looks to fetch a new key bundle from the provider’s file-store. The new key can then be used to

decrypt more recent location updates, which may be stored in either update or history mode. To

support history mode, updates are stored in a log file referred to as the history log, which contains

an entry for each location data update in the window.3 The entries consist of the location data, time

stamp and a signature over a hash of the two components. Thus, a consumer can check the history

log to fetch any updates they may have missed, as their periodicity can be set differently than the

providers.

1An example file-store URL using Amazon’s S3 service is: https://s3.amazonaws.com/
id-precision-hash/locationdata.b64, where id-precision-hash is a hash of the provider’s
identity token and the precision level assigned to this location data.

2iOS has two settings for location gathering, the first operates using a distance filter to determine when a new
location update should occur, the second is a power-saving mode, in which a location update only occurs during a
“significant” location change. Both modes are supported in our implementation.

3Unfortunately, the current Google Drive SDK for iOS does not support appending, so our implementation was
changed to always upload a sliding window of history in the log.
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Figure 7: Consumer’s view of a provider walking up the street.

5.4 MAP VIEW

The consumer’s initial view displays their providers’ positions on a map (see Figure 7). If the

provider is operating in history mode, in which a log of location data updates is being kept in their

file-store, the consumer can view the provider’s location as a path. Since the location data stored in

the cloud also contains the bearing of the provider (in addition to the location coordinate), SLS can

plot the provider’s location using the entire history that it can obtain. This resulting view is a trail of
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footprints corresponding to the provider’s path along the map. Tapping on a provider’s footprints

displays the provider’s name and a details disclosure button, which leads to that provider’s detailed

information view.

25



6.0 DISCUSSION

We developed a system for enhancing user privacy during location sharing by adopting and extend-

ing previous work in device pairing, and tapping into the ubiquity and availability of cloud services.

Our system was architected to be both scalable and secure, while also preserving providers’ shar-

ing policies and affording utility to consumers. We now discuss both the performance of our SLS

implementation, and assurance provided by our pairing protocols.

6.1 PERFORMANCE EVALUATION

In evaluating the runtime overheads of SLS, we break our analysis into four phases: the device

pairing phase, the file-store deposit phase, location data upload by providers, and location data

download by consumers. To evaluate the communionable trust protocol (Section 4.2), we carried

out 15 pairings using our iOS implementation of SLS and found the average time required for this

process was 110 seconds. 1 Although this pairing process takes longer than, e.g., Bluetooth device

pairing, the overheads are reasonable given the human effort required by this protocol (i.e., scan-

ning QR codes). We did not evaluate the time required by the historical communication channels

protocol (Section 4.3) as this protocol was designed to be run asynchronously over multiple higher

latency channels (e.g., email and SMS).

After devices are paired using either the CT or HCC protocol, in the file-store deposit phase the

provider sends the consumer a digitally signed message that includes URLs that are to be used to

retrieve the consumer’s key bundle and the provider’s location data. This data can only be sent after

1The simulator was faster at several things, e.g., typing in the user’s identity, however, since the protocol was
lock-step, the average times should still be within reason.
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the provider has indicated the precision level with which the consumer may access his information,

and is returned to the consumer over a communication channel identified in the final message of

the pairing phase of the CT or HCC protocol (i.e., the file-store deposit message). The overhead

associated with this phase is linear in the number of consumers, but is only a one time cost, as this

only occurs once per consumer (or in the wake of the rare event of the provider changing cloud

services). In our iOS implementation of SLS, the generation of the signature on this message took

98ms on average over 15 runs.

A consumer that is tracking n providers must execute O(n) operations, as they must retrieve

n encrypted location samples from up to n different SaaS providers. The frequency with which

this process occurs is a parameter that can be set per-provider within my implementation by the

consumer—the linear cost could be applied once per day, or once every five seconds (if they so

choose). We measured the average time required to execute the HTTP GET command required

to obtain a provider’s encrypted location sample and execute the symmetric key decryption of this

sample. When using Amazon S3 as SaaS provider, this process took approximately 40ms per

provider, where the RTT of the fetch was 35ms. Thus, the consumer’s performance is governed by

the choice of cloud service each of its n providers use and if the RTT was dominated by network

latency, the consumer’s current network path to those file-stores. 2

On the other hand, the cost incurred by the provider during uploads is constant: a symmetri-

cally encrypted GPS gathered location sample must be uploaded (e.g., HTTP PUT) at each of the

p precision levels used by the provider’s policy. The provider can choose the periodicity that new

GPS coordinates are produced, so the constant time cost can be applied once per day, or several

times per minute (depending on how fast the smart phone is moving and how fast it can generate

new GPS coordinates). In our iOS implementation, encrypting and uploading location samples at

three precision levels over 15 runs took on average, 3.7s, with a standard deviation of 1.8s. Al-

though we were unable to isolate the poorly behaving components, we suspect that the majority of

time was spent blocking on our cloud provider’s API.

2It is conceivable that the RTT may have been more dependent on the file-store’s API or infrastructure, then network
latency.
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6.2 SECURITY ANALYSIS

The SLS system was designed with two main goals in mind: (i) enabling tunable and private

location sharing with limited contacts, and (ii) minimizing end-user location over exposure. This

is achieved by storing encrypted (AES-256-CBC) location samples on SaaS servers contracted by

the provider, and leveraging location-limited or multi-channel pairing protocols on smartphones to

facilitate the key management required by this approach. We now informally analyze the security

afforded by the protocols developed in this paper.

6.2.1 Location-limited Pairing Protocol

The communionable trust protocol described in Section 4.2 provides principals with high assur-

ance regarding the secure handling of location data. In particular, the face-to-face nature of this

protocol allows the human device owners to authenticate each other in the most natural sense. As

a result, the public keys exchanged and validated using this protocol are intrinsically tied to the

real-world participants in the protocol, since anyone attempting to launch a MitM attack would be

quite conspicuous—we refer the reader to the security analysis in [24] for a thorough examination

of attacks against this type of channel, as well as comparisons against other channels (e.g., audio,

infrared, physical contact, etc.). For this reason, the principal’s public key and identity exchanged

via CT are made available to other applications outside of SLS. 3 Assuming that the consumer

keeps her private key a secret, the public key obtained during this process enables the provider to

safely transmit symmetric keys needed to recover her location to the consumer without exposing

her location to unauthorized individuals (including the SaaS provider).

6.2.2 Multi-Channel Pairing Protocol

In settings where the provider and consumer are not physically located together, obtaining the same

assurance level from the communionable trust protocol is difficult. The protocol in Section 4.3

attempts to overcome the lack of physical proximity in three ways. First, it leverages historical

communication channels managed by each user’s smartphone to increase assurance in the identity

3iOS provides for this by using a shared or public attribute group within its key-chain.
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of the party being communicated with, thereby reducing the likelihood of accidental sharing with

inappropriate parties. Second, the HCC protocol makes use of multiple communication channels

to decrease the likelihood of a successful MitM attack against the protocol. In examining Figure 4,

one can see that an adversary with access to only the e-mail channel has the ability to inject public

keys into the protocol, but cannot complete the validation process for these keys. Likewise, an

adversary with access to only the SMS channel can cause parties in the protocol to reject valid

public keys, but cannot inject their own public keys.

While this protocol cannot protect against a MitM attack when the adversary has access to both

channels used by the protocol, as long as the implementation ensures that both channels are indeed

distinct (e.g., WiFi + SMS, as opposed to 3G/4G + SMS) the cost to mount such an attack would

be prohibitive to most. A more realistic attack vector against cell phones would be a physical

attack, i.e., the attacker steals the smartphone of the consumer (resp. provider). However, the third

protection mechanism in HCC does allow it to protect against this attack. Specifically, each party

is required to answer a contextual “secret question” (i.e., QP and QC in Figure 4) proposed by

the other party prior to finalizing the pairing process and enabling location sharing. Unless the

individual possessing the stolen smartphone has intimate knowledge of the relationship between

the provider and consumer, they would be unable to answer this type of question and, thus, the

protocol would fail.

Although this question-and-answer mechanism is useful, it is not perfect. First, HCC requires

seven messages and the cognitive power to generate and answer two “secret questions”. Upon

closer examination, though, this apparent disadvantage is not that significant; the HCC phase only

occurs once for a provider/consumer pair. Moreover, each message would arrive as an SLS URL,

so the user would only need to click on it, as the app woud do the work and only when necessary,

prompt the user to enter or answer a secret question. Imagine how long it takes to send a total

of seven SMS messages in one conversation—not very long. However, the protocol requires that

the implementation leverage distinct communication channels, the mechanisms used to ensure the

channels are distinct could themselves be attacked, i.e., an attacker could try to trick the imple-

mentation to use multiple channels that he controls. For this reason, we encourage principals to

upgrade their public keys exchanged via HCC with CT, whenever the opportunity presents itself. 4

4SLS accommodates the weaker assurance in HCC by flagging public keys exchanged via HCC and limiting the
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6.2.3 Shared Key Management

The shared or symmetric key management scheme employed by SLS provides three assurances to

its users, including: the assurance that only a provider can upload new key material to the cloud

file-store, the assurance that the location data can not be accessed by anyone without the appro-

priate shared key, and the assurance that exposure of the identities of the provider’s consumers is

mitigated within the cloud file-store. The first assurance is ensured by the act of encrypting the

shared key bundle with the consumer’s public key, while including a version and signature, i.e., an

adversary can not alter the contents of the bundle as it is signed. The adversary could replay (or

overwrite) an older shared key bundle, however, as the version of the key is included in the bundle

the consumer will know that the current shared key bundle is incorrect.

Since the shared key bundles are encrypted with the consumers’ public keys, and the uploaded

location data is encrypted with the shared keys contained within those bundles, the provider is

assured that only those consumers possessing the appropriate shared key will be able to view the

provider’s location data. Granted, a consumer could make the symmetric key accessible to non-

authorized users, however, we note that this is the bane of all shared key security systems, and its

mitigation is outside the scope of this thesis.

Finally, exposure of the consumers’ identities is mitigated through the use of the file-store

deposit. Specifically, the provider can use any unique token to identify a consumer’s shared key

bundle, as the location of the shared key bundle is delivered to the consumer out-of-band via the

file-store deposit. Admittedly, the cloud service will know how many consumer a provider has,

and possibly how many precision levels are in use by the provider (by examining the contents of

the history log, if in use). Thus, in order for the cloud service to uniquely identify a consumer,

they’ll have to rely on properties of the HTTP connection during the fetch (e.g., IP address, HTTP

message headers).

access to those keys by external applications.
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6.3 BEYOND LOCATION SHARING

Interestingly, although our system was designed to share location data, there is no reason that

the protocols and framework constituting SLS could not be adopted for other types of private

data sharing (e.g., documents, pictures, music, or videos). That being said, we do not envision

these SLS-like services replacing forums like Flickr or YouTube, which have proven to be de-

facto file-stores for widely sharing information. However, these SLS-like services could be useful

for providing secure and private hosting for information that is to be shared with a more limited

audience.

6.4 FUTURE WORK

The most pertinent area of future work involves conducting a user study to assess the utility and

ease-of-use of our SLS implementation. Although the focus of this thesis was on the correctness

and feasibility of the system, ensuring that SLS is indeed usable is also quite important. A user

study of our prototype iOS and a yet undeveloped Android implementation could help answer

questions about the usability of the policy interface built into the application, as well as about the

ability of users to manage their privacy using SLS’s management interface. Insights from exit sur-

veys conducted with participants in such a study could also help guide the design of more intuitive

sharing interfaces, and protections that might help further limit unintended audience sharing (e.g.,

short-term sharing settings, etc.).

Another area that we intend to pursue is the development of more advanced and cooperative

policy controls. As previously discussed in Section 4.4, adding some form of cooperative pol-

icy controls could prove invaluable. For example, consider a provider that only feels comfortable

sharing her location data with consumers in the same region. We envision that this could be accom-

plished if the pair had mutual sharing configured between them (i.e., both acted as providers and

consumers), and secure function evaluation or a protocol based on Narayanan et al. private prox-

imity testing [25] was leveraged to decide when the distance between the two principals crossed

some threshold (at which point SLS would operate normally). Although such advanced controls
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are likely possible, making these controls both intuitive for the user and efficient for the device to

execute could prove to be challenging in practice.

Similarly, an intriguing extension of SLS’s key management protocols would be to implement

key escrow support for emergency response. Specifically, the symmetric key used in encrypting

high-precision location data could not only be encrypted with the consumers’ public keys, but

also broken into shares, to be distributed to emergency respondents using a threshold scheme

(e.g., [32]). For example, consider a 2-of-n threshold scheme in which key shares are distributed

to the local police force for the provider’s municipality, the state police, and the security contractor

used by the provider’s employer. In this case, for instance, the provider’s employer could cooperate

with the local authorities in the event that the provider was missing long enough for the employer

to file a missing persons report. Further developing these sorts of policy-based extensions to SLS

could prove to be an interesting area of study.

A mechanism for transitive trust would allow a user’s PKI to grown along its social network—

Safeslinger [13] introduced an interesting feature that resembles a type of a “friend of a friend”

bootstrapping process for its key exchange. Although we would need to be very careful leveraging

any sort of a “friend of a friend” attribute, the notion is compelling. Presumably, any mechanism

to initialize our key management protocol through using this attribute would operate over HCC, so

this utility would be held to the same controlled assurances as HCC.

Moreover, HCC may be further enhanced by pursuing a means to protect the answers to secret

question. This could be realized by employing a zero-knowledge proof; Alexander and Goldberg

[1] introduce the idea of using zero-knowledge proofs in the OTR protocol to see if both parties

agree on a secret, without divulging what that secret is. Although it may prove to be only a marginal

improvement, SLS’s privacy assurances could benefit by adopting a similar approach.

Finally, as alluded to in Section 6.3, SLS’s framework could be modularized to support sharing

any form of private data. Specifically, the code for both pairing protocols should be extracted into

a separate app designed to be used opportunistically by users. Furthermore, the file-deposit phase

and the cloud file-store operations could easily be repackaged as a library. With the key-exchange

pairing app devoted to building a PKI in the smartphone’s key-chain, and the above mentioned

library, any app could leverage the same framework SLS enjoys.
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7.0 CONCLUSIONS

Location-sharing systems (LSSs) have high utility, but research has shown that (i) many users are

wary of sharing detailed trace information with LSS operators and (ii) the large social networks

with which LSSs are often integrated make it all too easy to accidentally share location data with

unintended audiences. In this thesis, we make inroads to the above problems by developing SLS,

a framework for private location sharing that combines the use of social authentication protocols

based upon location-limited or multi-channel protocols, with user-contracted cloud SaaS providers

to facilitate secure data storage and location sharing. In particular, our device pairing protocols

leverage the smaller social networks managed by user smartphones to provide a high degree of

assurance in the identities of the individuals with which sharing is to occur. The asymmetric keys

exchanged during this process can then be used to distributed shared symmetric keys that protect a

location provider’s sensitive location information from unauthorized viewers, including the cloud

service used to host the data. Our iOS prototype implementation of SLS shows that the overheads

associated with this form of key management are reasonable.

Although the information sharing model developed in this thesis was developed to facilitate

secure location sharing based upon an individual’s limited, real-world social contacts, we believe

that my techniques have application beyond location sharing. In particular, the combination of

device pairing with high identity assurance and third-party storage that is used by SLS’s framework

can be used to facilitate the sharing of many types of information currently shared using existing

social networks (e.g., photos, etc.) without requiring implicit trust in the operators of these social

networks.
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