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STATISTICAL APPROACHES IN THE RDOC PARADIGM FOR

POST-MORTEM BRAIN TISSUE STUDIES

Hong Gu, PhD

University of Pittsburgh, 2015

Mental disorders are diagnosed by the way a person perceives and behaves. No neurobiologi-

cal measures are involved in current diagnostic systems such as the Diagnostic and Statistical

Manual of Mental Disorder (DSM), which is the mostly widely used. Because of the lack of

neurobiological etiological information, the DSM diagnosis is ambiguous in two ways: first,

patients within the same diagnosis could be different in both symptoms and neurobiological

measures; second, patients with different DSM diagnoses could be similar in both symptoms

and neurobiological measures. As a result, treatments for mental illnesses have not been

accurate and successful.

In order to better understand and treat mental illnesses, the National Institute of Mental

Health has launched a Strategic Plan for Research in 2008. Part of the plan is the Research

Domain Criteria (RDoC) Initiative, which is a framework to link basic neurobiology with

mental functions. Under the RDoC framework, a study focuses on a particular mental func-

tion, which is called construct, and would ignore the DSM diagnosis of a patient. The RDoC

intends to guide studies to find neurobiological characteristics such as genes that are signif-

icantly associated with a construct of interest and also the mechanism how defects in these

neurobiological characteristics lead to illness in the construct. Although without symptom

measures, existing post-mortem brain tissue databases are still useful to facilitate RDoC

research.

In this dissertation, we develop statistical approaches to utilize existing post-mortem

brain tissue databases following the RDoC spirit. We first propose a method to identify the
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neurobiological characteristics that are significantly associated with a construct of interest.

This is achieved through identifying the neurobiological characteristics that are significantly

associated with all the DSM diagnoses relevant to the construct. We then propose a matched

subject study design to compare the distribution of the identified neurobiological characteris-

tics in the means and the quantiles between the population with dysfunction in the construct

and the healthy population. Finally we develop an algorithm to optimally determine the

sample size for each DSM diagnosis in the matched subject study subject to a sample avail-

ability constraint as well as a budget constraint.

Keywords: RDoC, Post-Mortem Brain Tissue Database, FDR Control, Quantile Regres-

sion, Optimal Design, Mixture Population.
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1.0 INTRODUCTION

As the National Institute of Mental Health (NIMH) is calling for new strategies in mental

health research, new statistical approaches need to be developed accordingly to push forward

the progress. In the mean time, data that were collected previously are still useful and should

not be simply discarded. In this dissertation, we develop several statistical methods that

use the existing post-mortem tissue databases to facilitate future studies in mental health

research.

1.1 BACKGROUND

1.1.1 Definition of Mental Disorders

Mental disorders are abnormalities in one’s perception and behavior that can lead to sig-

nificant disability or emotional instability such that normal daily life is impacted. There

are many different types of mental disorders. For example, anxiety disorder is characterized

by the aberrant anxiety or worry about the future and is severe enough to impact normal

functioning. Mood disorders involve abnormal emotional difficulties such as severe and sus-

tained sadness. The description of mental disorders in human history dates back to ancient

times when people in different regions started to record different disorders. In the past,

mental disorders were considered diseases of the mind, whereas today, due to developments

in modern neuroscience, they are understood as dysfunctions of the physical components in

the brain. In particular, the recent advancements in neuroscience and basic biotechnology

such as molecular biology, genetics and imaging technology, have equipped researchers in
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psychiatry with powerful tools. With these modern techniques, they have been able to not

only gain more accurate knowledge about how the brain works but also seek the fundamental

biological mechanisms of mental disorders. The rapid developments in different aspects of

biomedical research provide valuable new insights to permit rethinking mental disorders.

In general, mental disorders are defined by the way a person perceives and behaves.

Though variations exist in the identification and evaluation of mental heath conditions,

standard guidelines in diagnostics are widely used. One of the most commonly accepted

classification systems is the Diagnostic and Statistical Manual of Mental Disorders (abbre-

viated as DSM) produced by the American Psychiatric Association since 1952.

1.1.2 Problems with the DSM

The DSM provides standardized diagnostic criteria, and is widely used by clinicians, re-

searchers, pharmaceutical companies and regulatory agencies. The latest version is the

DSM-5 issued in May 2013. Even with its prevailing use, the DSM is a source of controversy

and criticism. One of the major concerns about the DSM is its reliance on categorization of

observed symptoms and the use of artificial thresholds to distinguish different disorders and

distinguish abnormal from normal. Two examples, schizophrenia and bipolar disorder, are

used below to illustrate the DSM approach. Schizophrenia is a psychotic disorder marked

by severely impaired cognition, emotions, and behaviors and has a worldwide lifetime preva-

lence of 0.3% - 0.66% (van Os & Kapur (2009)). A person is diagnosed with schizophrenia

under the DSM-5 if the following criteria are all satisfied: 1)two or more characteristic symp-

toms from delusions, hallucinations, disorganized speech, grossly disorganized behavior and

negative symptoms, at least one must be from the first three and each should present for a

significant portion of time during one month period or less if successfully treated; 2)social

or occupational dysfunction; 3)significant duration for at least six months, which includes

at least one month of symptoms that meets Criterion 1); and 4)the disturbance is not at-

tributable to the physiological effects of a substance or another medical condition. Bipolar

disorder is a mood disorder in which a patient suffers mood alterations from mania to depres-

sion. It is estimated to have a lifetime prevalence of 3.9% in the US (Kessler et al. (2005)).
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Most bipolar disorder patients experience alternating episodes of mood swings and the tran-

sition between mania and depression can be very quick. There are more than one sub-type of

bipolar disorders under the DSM-5. People are identified with bipolar disorder I if they show

at least three symptoms of manic episodes during most of the days in at least one week and

the mood disturbance is severe enough to cause marked impairment in social or occupational

functioning and is not due to physiological effects of a substance or other medical conditions.

People are diagnosed to have bipolar disorder II if they have no manic episodes, but at least

one hypomanic episode and at least one major depressive episodes. Symptoms of manic

episodes include inflated self-esteem or grandiosity, decreased need for sleep, more talkative

than usual or pressure to keep talking, flight of ideas or subjective experience that thoughts

are racing, distractibility, increase in goal-directed activity or psychomotor agitation, and ex-

cessive involvement in activities that have a high potential for painful consequences. Patients

with bipolar disorder I are also common to have major depressive episodes, which include

symptoms such as depressed mood most of the day, nearly every day, diminished ability to

think or concentrate, or indecisiveness, nearly every day and recurrent thoughts of death,

recurrent suicidal ideation without a specific plan, or a suicide attempt or a specific plan

for committing suicide. In diagnosing bipolar disorder I, the occurrence of the manic and

major depressive episodes is not better explained by schizoaffective disorder, schizophrenia,

schizophreniform disorder, delusional disorder, or other specified or unspecified schizophre-

nia spectrum and other psychotic disorder. From the above descriptions, we can see that the

DSM definitions of mental disorders are only some typical symptoms. Also the diagnostic

criteria set by the DSM rely on self-reported behaviors from the subject or evaluation of

some functional tasks. If the behavior from a subject is close to the typical symptoms for a

specific disorder, then the subject is categorized to that disorder. The closer one’s behavior

is to the typical symptoms, the more precise and reliable the diagnosis is. However, there

are dramatic variations in people’s behaviors in the real world and those diagnosed with

the bipolar disorder can show similar psychotic symptoms to individuals diagnosed with

schizophrenia, as reported in Khan & Akella (2009). In such cases, the DSM criteria are not

unique to one disorder.

In addition to the ambiguity in symptoms or phenotypes, the explosive developments

3



in neurosciences and basic biotechnology mentioned previously have started to suggest that

mental disorders diagnosed by the DSM, which we call DSM diagnoses in this dissertation,

may not be homogeneous diseases even in terms of genotypes. For instance, schizophrenia

is now viewed as caused by multiple genes whose individual effects were insignificant but

whose collective effects can be substantial (Bray et al. (2010)). Some schizophrenic patients

may have deficits in these genes and other patients may have deficits in other genes. Thus

among the patients with the same DSM diagnosis, there might be sub-groups according to

their genotypes. On the other hand, patients classified into different DSM diagnoses may

share common biological characteristics. For example, quite a few genes have been found

associated with both schizophrenia and bipolar disorder based on multiple studies (Owen,

Craddock & Jablensky (2007)). Lichtenstein et al. (2009) conducted a very large family

study and found that relatives of the study subjects diagnosed with either schizophrenia or

bipolar disorder were at higher risks for both DSM diagnoses. This study suggested that

there might be some underlying biological characteristics that are responsible for both DSM

diagnoses. Even though the exploration of the relationship between the biological character-

istics and clinical features for mental illness is still at the early stage, the molecular findings

reported so far show that the classification using the DSM, which is based mostly on clinical

observations, may not match well with the underlying biology. In other words, the etiology

and psychopathology of mental disorders are not considered in the diagnosis with the DSM.

In light of all these, the DSM might not be the optimal classification guideline given the

exploding information on genes, proteins, neural circuits, etc.

The NIMH launched a project in 2009 called the Research Domain Criteria Initiative

(RDoC) as part of its longterm strategic plan for research. The RDoC’s goal is to move

to an enhanced understanding of the mechanism of mental illness so that new methods to

classify mental illness can be developed. Using the new methods genetic and neurobiological

information such as gene expression levels, neural circuit measurements and brain imaging

data will be integrated with clinical observations. As the RDoC is targeting more on the

underlying dysfunctions in the brain rather than just symptoms in behavior to recruit sub-

jects into research studies, it is hoped that more successful treatments can be obtained. In

addition to the breakthroughs in the biological sciences and technologies, new statistical
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methodology is also required to support the implementation of the RDoC.

1.2 INTRODUCTION TO THE RDOC

The NIMH Strategic Plan for Research is a comprehensive plan which incorporates different

aspects of mental health research to fulfill NIMH’s mission to “transform the understand-

ing and treatment of mental illnesses through basic and clinical research, paving the way

for prevention, recovery, and cure” (NIMH Strategic Plan for Research). As described in

the plan, there are four strategic objectives to be achieved concentrating on the cause, de-

velopment, treatment and public health impact of mental illnesses. The RDoC Initiative,

which was originally part of Strategic Objective 1 in the 2008 NIMH Strategic Plan, has

now evolved to be one of the cross-cutting themes that are relevant to each of the strategic

objectives. The RDoC calls for transforming the diagnostics of mental illness. In particular,

it is “a research framework for new ways of studying mental disorders. It integrates many

levels of information (from genomics to self-report) to better understand basic dimensions of

functioning underlying the full range of human behavior from normal to abnormal ” (NIMH

RDoC).

1.2.1 The RDoC

The RDoC Initiative contributes to the NIMH Strategic Plan towards the new classification

method for mental illness, which will integrate reliable and valid measures from both basic

biological and clinical resources. The RDoC is a framework that directly brings in the infor-

mation from neurobiological studies and sets up the research foundations for new methods.

It can be viewed as a bridge linking the more basic biological components in the brain with

mental functional dimensions such as fear and working memory while ignoring the current

diagnostic structure.

As described in the NIMH RDoC, the essence of the RDoC can be thought of as a matrix

(see Figure 1.1) in which each row is a specific mental functional dimension, for example,
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acute threat and attention. Each row is called a “construct”, which is a concept with in-

tegrated information about the specified mental functional dimension. The constructs are

the basic entities to be studied under the RDoC framework and NIMH suggests that most

RDoC studies should focus on one construct. Related constructs are grouped together into

a bigger concept called “Domain”, which reflects the understanding of major aspects of psy-

chiatry such as emotion or behavior. For the time being, five domains are used in the matrix:

Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Systems for Social

Processes, and Arousal/Regulatory Systems (NIMH RDoC). The columns in the matrix are

defined to be different variables such as genes, molecules and circuits, etc and are called

units of analysis in the RDoC. They can be either dependent or independent variables in

the research study. The goal is to establish the relationship between each row and column,

i.e., to fill in each matrix cell with specific details connecting each row and column. For ex-

ample, to fill the cell in the column “Gene” and the construct “Acute Threat”, it is critical

to identify the individual genes that are potentially significantly associated with the acute

threat function, and also to find out how the structural variations or changes in expression

levels of these genes relate to changes in acute threat function or what types of mutations

in these genes would cause dysfunctions in acute threat. Even more specific constructs have

been developed, which are called “sub-constructs”. For example, the construct “Working

Memory” has sub-constructs “Active Maintenance”, “Flexible Updating”, “Limited Capac-

ity” and so on (NIMH RDoC), because working memory is a large concept including more

than one aspect. So far, some of the cells in the RDoC matrix have been filled with currently

known knowledge. However, the NIMH emphasized that the current RDoC matrix is just a

draft and the rows and columns are not definitive. It is expected that researchers will revise

it as the knowledge about the brain accumulates so that more columns and rows may be

added.

Three basic principles are suggested in implementing the RDoC. The first is that the

RDoC is a dimensional system ranging from normal to abnormal. People have known that

mental disorders under the DSM criteria span more than one dimension, in terms of both

symptoms and neurobiological measures. For example, schizophrenia patients may suffer

from disrupted working memory, hallucination and so on. Each of these symptoms relates
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Figure 1.1: Illustration of the RDoC Matrix (Excerpt from the NIMH RDoC)

to a different construct in the RDoC matrix. Also schizophrenia patients may have anoma-

lies in some gene expression levels or protein structures and thus more than one columns

in the RDoC matrix are involved in schizophrenia. Each row or column can be thought

of as one dimension to describe mental illness. In each dimension, the measurements vary

over the spectrum from normal to abnormal among the general population which consists

of the healthy people, as well as those with mental problems of different degrees. Currently,

the DSM criteria diagnose patients if the symptoms are severe enough. Therefore, typical

research studies comparing the population with a certain DSM diagnosis with the healthy

population include only two types of subjects: those who are already severe in some symp-

toms and those who are unaffected by any mental disorder. However, measurements from

these two types of subjects are usually at the two opposite ends in a spectrum of some di-
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mension of interest. And there is still a large population who are neither healthy nor totally

severe in the symptoms, so that information is missing for this in between population. With

the old research paradigm, it has been very difficult to establish the relationship between

measures on the neurobiological characteristics and measures on the mental functions in a

continuous fashion. For instance, it has been hard to examine how working memory changes

according to variation in a particular gene expression level, because research subjects are

grouped to only two categories, either healthy or severely affected by some mental disor-

ders that may have abnormal working memory as a symptom. Under the RDoC, the entire

spectrum rather than just the extremes is supposed to be studied. This population-wide

research provides us with better insight to understand the mechanism of mental illnesses

and to define what is pathological, and to more accurately classify mental disorders.

The second principle is that in implementing the RDoC, one in theory needs to ignore

the current classification of mental disorders. The goal of the RDoC is not to map the neuro-

biological characteristics onto the currently defined disorders, but onto the mental functional

dimensions, which are the constructs in the RDoC matrix. It can be viewed that the spirit

of the RDoC is to break down the currently defined mental disorders into their more basic

components. For instance, both schizophrenic or schizoaffective patients may have cognitive

problems, so in a study to find out the neural circuits associated with cognition, patients

with both DSM diagnoses can be enrolled. The purpose of such a study would be to focus

on cognition rather than schizophrenia or schizoaffective disorder. If enough research can

be done following this second principle, ultimately patients can be treated more accurately

for the specific construct that is not normally functioning, instead of being given a vaguely

defined diagnosis only.

The last principle is that different units of analysis can be used. As stated in NIMH

RDoC and illustrated in Figure 1.1, units of analysis can include but are not limited to

genes, molecules, cells, neural circuits, physiology, behaviors or self-reports. Researchers can

choose different columns in the RDoC matrix as independent variables, depending on the

study goal. In the NIMH RDoC, an example is given where fear circuitry is studied. The

independent variable in the example study would be the extent of response to fearful stim-

uli using a measure such as amygdala response and the dependent variable could be some
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symptom measures on fear and stress.

1.2.2 The RDoC and the DSM

In summary, even though the RDoC also refers to clinical symptoms as the DSM does, it is

quite different from the DSM. The diagnostic criteria in DSM use symptom clusters and have

been agreed by experts from different fields on a pragmatic perspective, although the subjects

in a DSM study can be very heterogeneous in symptoms. The impact of the DSM is still

substantial as it drives virtually all of the clinical psychiatry. For example, some treatments

have been developed to target on a particular DSM diagnosis. The RDoC, on the other

hand, focuses on a particular mental functional dimension called construct and intends to

cover the gap between neurobiological findings and clinical symptoms around this particular

construct from the etiological point of view. Because the RDoC tries to understand the

mechanisms how brain disruptions lead to illness in a specific construct on a dimensional

basis, the unhealthy subjects in an RDoC study should all have some symptoms relevant

to the construct of interest, regardless of the DSM diagnoses they are categorized into. For

example, if an RDoc study intends to understand the role a protein plays in working memory,

the unhealthy subjects should have varying degrees of working memory problems, no matter

what DSM diagnoses they have. Following the spirit of the RDoC, people with mental illness

will be treated in the future precisely for a particular symptom rather than a DSM diagnosis.

It is to be emphasized that we are still at the very beginning, and RDoC is introduced by

the NIMH at the present time as a framework for research purposes only. The RDoC is not

expected to replace the DSM any time soon.

1.3 MOTIVATION FOR THIS DISSERTATION

In spite of the promising future the RDoC portrays, it is difficult, if not impossible, to

carry out all the research studies in the RDoC spirit for the time being. This is particu-
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larly applicable for post-mortem tissue studies. One of the difficulties is due to the lack

of representativeness of the existing post-mortem tissue databases. Recall that the RDoC

advocates research to examine the underlying biological mechanism for mental illness over

the general population and ignores the current DSM diagnosis. However, in the post-mortem

tissue databases, subjects either are healthy or have symptoms severe enough to manifest a

DSM diagnosis. In other words, subjects in the post-mortem tissue databases are on the two

extremes over the spectrum of some mental function. Subjects from the in between popula-

tion are still missing. Another difficulty of using the post-mortem tissue databases is that

although neurobiological characteristics are measured for the subjects in these databases,

there are no measures of mental functions on these subjects.

The question arises how to use existing post-mortem tissue data to do studies that have

an RDoC flavor. This is what motivates this dissertation. In fact the NIMH provides grant

opportunities that “seeks applications which propose secondary analyses of existing clinical

research datasets to investigate constructs identified in the NIMH’s Research Domain Crite-

ria (RDoC) initiative and to test novel hypotheses using the RDoC framework”. Therefore

using existing post-mortem tissue databases aligns well with what the RDoC Initiative is

looking for.

Post-mortem brain tissues are those brain tissues available for neuroscience studies after

the death of the subject. In each post-mortem tissue database, each subject is determined

either to be healthy or to have a DSM diagnosis based on the behavior when he or she was

still alive. Their brain tissue samples are then studied and provide information about the

mental illness that cannot be studied in living patients. For example, brain lesions can be

inspected to identify the brain regions connected with a certain mental disorder. In partic-

ular, neurobiological characteristics such as gene expression levels and protein levels can be

measured using these tissue samples. Through comparing the post-mortem tissue samples

from healthy people and from subjects with mental disorders, researchers have the opportu-

nities to discover the neurobiological characteristics associated with a mental illness and to

explore the underlying biological mechanism for this mental illness, which is exactly what

the RDoC advocates.

Even though the post-mortem tissue databases have been available to researchers for
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decades and allowed investigation of some biological mechanism of mental illness, they have

not been used in the direction as the RDoC guides. Currently post-mortem tissue studies

are carried out focusing on a particular DSM diagnosis. For example, researchers have been

trying to find out the pathogenic genes for schizophrenia using post-mortem tissues. How-

ever, due to the limitations of the DSM diagnostic system, subjects in current post-mortem

tissue studies are heterogeneous in symptoms. Therefore, it is difficult for current studies to

lead to accurate treatments for all the subjects with this particular DSM diagnosis.

In this dissertation, we use the post-mortem tissue databases from the perspective that

the RDoC expects to achieve the most from these databases. We would like to learn what

and how the neurobiological characteristics function in a particular construct. Therefore,

instead of looking at just one DSM diagnosis, more than one post-mortem tissue database

spanning multiple DSM diagnoses can be used, as long as the DSM diagnosis involves symp-

toms related to the construct of interest. Although these post-mortem tissue databases label

each subject with a DSM diagnosis such as schizophrenia or bipolar disorder, when com-

bined together properly, these databases can be viewed as representing a random sample

from the population with dysfunction in the construct of interest. In other words, in this

dissertation, the original population with dysfunction in the construct of interest is replaced

by the combination of several populations each with a different DSM diagnosis related to

the construct. Subjects from the post-mortem tissue databases for these DSM diagnoses, if

constructed appropriately, form a random sample of the original population. Through com-

bining these post-mortem tissue databases, interesting scientific and statistical questions can

be raised and answered in the RDoC spirit. By using the collective sample, we are able to

draw inferences about the original population. For example, researchers might want to study

some neurobiological characteristics that are possibly involved in psychosis. Here the popu-

lation with psychosis is our original population with dysfunction and the populations with

DSM diagnoses such as schizophrenia and bipolar disorder are used together to represent

it because these DSM diagnoses involve psychotic symptoms. While there are numerous

neurobiological characteristics measured in each subject in this psychosis study, methods are

to be developed on how to select those that are significantly associated with psychosis by

using databases of schizophrenia and bipolar disorder. Furthermore, error rates need to be
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protected in the selection process. After these significant neurobiological characteristics are

identified, researchers might be interested in the mechanism through which these neurobi-

ological characteristics are involved with psychosis and it is natural to ask in what aspects

of the neurobiological characteristics the healthy and the psychotic populations differ from

each other. Also investigators might be interested in how to design an experiment to study

these neurobiological characteristics with limited number of post-mortem subjects and with

limited study budget.

1.4 OVERVIEW OF DISSERTATION

The rest of the dissertation is organized as follows. In Chapter 2, we propose a method to

identify the common significant neurobiological characteristics across DSM diagnoses while

controlling the false discovery rate (FDR). Motivation for the identification problem is elab-

orated in Section 2.1. The identification is formulated statistically as a multiple hypothesis

testing problem in Section 2.2. In the formulation, we first talk about some assumptions

for the problem (Section 2.2.1) and the data structure (Section 2.2.2), and then discuss how

to perform hypothesis testing on each individual neurobiological characteristic across the

multiple DSM diagnoses (Section 2.2.3). Because there are more than one neurobiological

characteristic being tested, multiplicity adjustments must be made and we choose to con-

trol the FDR using the BH procedure introduced in Benjamini & Hochberg (1995) (Section

2.2.4). The BH procedure is shown in Benjamini & Yekutieli (2001) to work for dependent

test statistics if they follow a specific positive dependence structure called PRDS. We give

a brief literature review on positive dependence structures in Section 2.2.5 and state the

proposed method to identify the common significant neurobiological characteristics across

multiple DSM diagnoses in Section 2.2.6. As the m neurobiological characteristics that are

measured on the same subject could be correlated, the dependence structure of the m test

statistics need to be examined to see if PRDS is satisfied. We are able to show that the

test statistics do not follow PRDS. However, a careful examination of Benjamini & Yekutieli

(2001) reveals dependence structure weaker than PRDS can also lead to the protection of
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FDR by the BH procedure. These results are shown in Section 2.3.1. Being unable to prove

the dependence structure of the test statistics leads to FDR protection, we show through

simulation studies in Section 2.3.2 that in our setting, using the proposed method to identify

the common significant neurobiological characteristics, the FDR is protected under different

configuration of parameters. Finally a case study is presented in Section 2.3.3 using the

proposed method and the result is compared with that obtained through another alternative

method.

After the common significant neurobiological characteristics are identified, we would like

to compare them between the population with dysfunction in the construct of interest and

the healthy population. Specifically, we would like to design a study that estimates the

difference in the mean as well as the quantiles of the neurobiological characteristic between

the two populations. In Chapter 3, we propose the comparisons through the mean and the

quantile between the two populations using a matched sample study. The motivation for

the comparisons is discussed in Section 3.1. We talk about the comparison through the

means of the neurobiological characteristics in Section 3.2 and the comparison through the

quantiles in Section 3.3. For the comparison through the means, we first lay out the problem

(Section 3.2.1) and then discuss some assumptions about the study design we are going to

use (Section 3.2.2). We then present the form of the study design which we call triangular

design under our assumptions (Section 3.2.3). Finally we state the model for the comparison

through the means and provide an estimator for the difference in means between the two

populations (Section 3.2.4). For the comparison through the quantiles, we also discuss some

assumptions (Section 3.3.1) and the layout of the problem (Section 3.3.2) and then propose

a model to estimate the difference in quantiles between the population with dysfunction and

the healthy population (Section 3.3.3). A simulation study is run in Section 3.3.4 to show

the performance of the proposed model in quantile estimation. Because the estimator of the

mean difference between the two populations can be derived with a closed form, simulation

studies for the mean estimation are unnecessary. We close the chapter with a summary of

the two comparisons in Section 3.4.

The difference in the means or the quantiles between the population with dysfunction

and the healthy population can be estimated through the modeling in Chapter 3 when the
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sample size for each DSM diagnosis is given. However, the sample size for each DSM di-

agnosis should be determined prior to any experiments. Because the post-mortem tissue

databases are used, there are two constraints in the sample size determination: the num-

ber of available subjects for each DSM diagnosis and the total number of subjects that the

budget allows. In Chapter 4, an algorithm is proposed to determine the optimal sample

size for each DSM diagnosis under the above two constraints in order to compare the means

between the two populations under the triangular design. The criteria we use for optimality

is to have minimum variance of the estimator for the difference in the means between the

two populations. In Section 4.1, the motivation for the optimal design problem is reviewed.

The layout of the optimal design problem is carefully described in Section 4.2. We provide

an illustration of the optimal design problem with a post-mortem database from the Stanley

Brain Consortium (Section 4.2.1). We then define the notation we need (Section 4.2.2) and

give a hypothetical numerical example to explain the optimal design problem and illustrate

the algorithm (Section 4.2.3). Assumptions for the optimal design problem are also discussed

in detail (Section 4.2.4). The triangular design with unknown sample sizes are presented in

Section 4.3 and the variance formula of the estimator for the difference in means under un-

known sample sizes is derived in Section 4.4 based on the model in Section 3.2. In Section

4.5, we elaborate the difficulty of minimizing the variance formula analytically and proposed

a method to do the minimization. We also illustrate the minimization with numerical ex-

amples. In Section 4.6, we state the proposed algorithm to obtain the optimal sample size

for each DSM diagnosis and illustrate it with a numerical example.

In Chapter 5, we summarize the conclusions for this dissertation and discuss some pos-

sible work for future research.

Note that in this dissertation, the appendices for each chapter are provided at the end

of that chapter so that the contents for each chapter are organized together.
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2.0 IDENTIFICATION OF COMMON SIGNIFICANT

NEUROBIOLOGICAL CHARACTERISTICS ACROSS DSM DIAGNOSES

This chapter deals with the identification of common significant neurobiological characteris-

tics across multiple DSM diagnoses.

2.1 MOTIVATION FOR THE IDENTIFICATION

As briefly introduced in Chapter 1, the RDoC calls for research to establish the one to one

correspondence between brain and behavior, i.e., to link the neurobiological characteristics

and a specific psychiatric construct in the RDoC matrix. To advance the research in the

RDoC spirit, a first step would be to identify some neurobiological characteristics that are

significantly associated with the construct of interest. Once identified, they can be studied

further to understand the mechanism of dysfunction in this particular construct and thus

provide targets for more accurate treatment of mental illness. What we would like to do is to

develop a method to identify the significant neurobiological characteristics for a psychiatric

construct.

As discussed in Chapter 1, due to the unavailability of neurobiological measures in liv-

ing people, existing post-mortem tissue databases are used as an alternative to identify the

neurobiological characteristics that are significantly associated with a construct. Because

post-mortem tissue databases label subjects with DSM diagnoses, any DSM diagnosis, as

long as it has symptoms related to the construct of interest, can be included in the study.

And any post-mortem tissue databases for the included DSM diagnoses can be used. For

example, if we would like to identify the genes significantly associated with psychosis, any
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post-mortem tissue database for schizophrenia or bipolar disorder can be used because pa-

tients in both DSM diagnoses may have psychosis. The neurobiological characteristics that

are significant in all the included DSM diagnoses are the ones we want to identify as sig-

nificant in the construct of interest. In other words, these DSM diagnoses are included in

the study because they may share some common symptoms in the construct of interest, and

the shared symptoms are driven by the neurobiological overlaps, which we think are the

neurobiological characteristics significant in the construct. In this dissertation, we call these

neurobiological overlaps “common significant neurobiological characteristics” across multiple

DSM diagnoses.

Actually researchers have already been trying to explore the neurobiological overlaps

underlying the shared clinical symptoms across different DSM diagnoses. And there is al-

ready emerging genetic evidence from various types of studies that some neurobiological

characteristics are shared by more than one DSM diagnosis. Take schizophrenia and bipo-

lar disorder as an example again. In addition to Owen, Craddock & Jablensky (2007) and

Lichtenstein et al. (2009) mentioned in the explanation of the disadvantages of the DSM

in Chapter 1, O’Donovan et al. (2008) identified a single nucleotide polymorphism (SNP)

within ZNF804A, the gene for zinc finger binding protein 804A, associated with schizophrenia

through a genome wide association study. They also found that the evidence of association

increased when they added a group of bipolar disorder subjects into the study. Green et al.

(2010) reported that a SNP within CACNA1C, the gene encoding the α-1C subunit of the

L-type voltage-gated calcium channel, which was found to be associated with bipolar disor-

der, also conferred risk to schizophrenia and recurrent major depression with similar effect

sizes. Numerous other findings have been reported in the literature.

However, these studies were mostly done and analyzed in each DSM diagnosis separately.

The significance was first assessed in one DSM diagnosis, and then examined in another DSM

diagnosis to see if there is anything significant for both. Unlike most current studies, what we

would like to do is to identify the common significant characteristics by considering multiple

DSM diagnoses simultaneously, not step by step. The neurobiological measurements from

the post-mortem subjects with different DSM diagnoses are jointly analyzed to see which

ones significantly differ from the healthy population. From the statistical point of view, we
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consider the simultaneous method easier than the step by step one, because the error rate for

the identification process should be protected and the step by step method needs to address

the partition of error rate in each step.

Similar problems have been considered in other medical fields, for instance, cancer stud-

ies. For example, Rhodes et al. (2004) identified genes that are significant in more than one

cancer type by conducting a large scale meta-analysis using microarray data from 15 different

cancers. Ma, Huang & Moran (2009) applied an integrative analysis to data from 7 tumor

types and analyzed all the genes together with a logistic regression model. They successfully

identified 60 genes that are associated with one or more cancers. However, most of these

cancer studies defined a gene as shared by multiple cancers if it is significantly differentially

expressed in more than one cancer type. This is different from the problem we would like

to address, which is to identify the neurobiological characteristic that is significant in each

of the DSM diagnoses considered. The reason we need the significance in each of the DSM

diagnoses is that the post-mortem tissue databases with different DSM diagnoses are used

collectively to represent the original population with dysfunction in the construct of interest.

In order that all the identified neurobiological characteristics are significant in the original

construct, significance in each DSM diagnosis should be required. If the “more than one”

situation is used here, then it could be that neurobiological characteristic A is significant in

DSM diagnoses 1 and 2, and neurobiological characteristic B is significant in DSM diagnoses

3 and 4 if four DSM diagnoses are considered. In such a case, neither of the neurobiological

characteristics A and B is the original characteristics we would like to identify. Therefore the

identified neurobiological characteristic is required to be significant over all the considered

DSM diagnoses in this dissertation.
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2.2 FORMULATION OF THE IDENTIFICATION STATISTICALLY

2.2.1 Assumptions for the Identification

As described previously, the underlying neurobiological characteristics extend very broadly.

In general, a common significant neurobiological characteristic can be defined as consistently

up-regulated, consistently down-regulated or differentially regulated across multiple DSM di-

agnoses, compared to the healthy population. The consistently up-regulated ones are those

with significantly higher means in each DSM diagnosis compared to the healthy controls.

Similarly, the consistently down-regulated ones are those with significantly lower means in

each DSM diagnosis compared to the healthy controls and the differentially regulated ones

are those with significantly different means from the healthy controls in each DSM diag-

nosis. Within the RDoC framework, it is more reasonable to identify the neurobiological

characteristics that function in the same fashion among all the DSM diagnoses studied. In

other words, the identified neurobiological characteristics should be either consistently up-

regulated or consistently down-regulated. Those that are differentially regulated could have

opposite effects in different DSM diagnoses, and thus it is difficult to interpret their signif-

icance in the construct of interest. Furthermore, from a technical perspective, identifying

the differentially regulated neurobiological characteristics requires using the absolute values

as test statistics due to the two-sided tests. The absolute values bring in more complexity

because the absolute value of a normal random variable is not normally distributed again.

As a result, the “common” here means the consistency of the significance direction of the

neurobiological characteristic across all the considered DSM diagnoses. In this dissertation

we only focus on the consistently up-regulated neurobiological characteristics as the down-

regulated ones can be identified analogously. To simplify the discussion, throughout this

chapter, schizophrenia and bipolar disorder are used to clarify ideas because it is already

known that these two DSM diagnoses share some common neurobiological characteristics.

We note that the method discussed here can be readily extended to more than two DSM

diagnoses.

Most of the time, each post-mortem tissue database features in one DSM diagnosis and
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has its own healthy control group. When we use a schizophrenia database and a bipolar dis-

order database, there are four groups considered in total: schizophrenia subjects (S), bipolar

subjects (B), schizophrenia control subjects (SC) and bipolar control subjects (BC). The

subjects are assumed to be unpaired so there can be different number of subjects in each

group. The number of subjects for the S, B, SC and BC group is denoted as ns, nb, nsc and

nbc respectively. The same set of m neurobiological characteristics are measured on every

subject in each of these four groups. Covariates such as age or baseline measurements are

not considered in the unpaired model here. While measurements of any two characteristics

within the same subject are correlated, it is assumed that subjects are independent of each

other. In cases where the subject with a DSM diagnosis is paired with a healthy control

subject using covariates like age and gender, the measurements on the subjects within each

pair are not independent, and thus a paired test can be used accordingly, as shown in later

sections.

2.2.2 Data Structure for the Identification

Throughout this dissertation Y is used to denote the measurement. Y d
ij means the mea-

surement of neurobiological characteristic i for subject j in group d, i = 1, · · · ,m; j =

1, · · · , nd; d = s, b, sc, bc. The data structure can be laid out as the following:

1

2
...

m

S,ns subjects︷ ︸︸ ︷
Y s

11 · · · Y s
1ns

Y s
21 · · · Y s

2ns
...

...
...

Y s
m1 · · · Y s

mns

SC,nsc subjects︷ ︸︸ ︷
Y sc

11 · · · Y sc
1nsc

Y sc
21 · · · Y sc

2nsc
...

...
...

Y sc
m1 · · · Y sc

mnsc

B,nb subjects︷ ︸︸ ︷
Y b

11 · · · Y b
1nb

Y b
21 · · · Y b

2nb
...

...
...

Y b
m1 · · · Y b

mnb

BC,nbc subjects︷ ︸︸ ︷
Y bc

11 · · · Y bc
1nbc

Y bc
21 · · · Y bc

2nbc
...

...
...

Y bc
m1 · · · Y bc

mnbc

We assume for subject j in group d, the measurements (Y d
1j, Y

d
2j, · · · , Y d

mj) follow a m-

dimensional multivariate normal distribution which is denoted by Nm(µdy,Σ
d
y), where

µdy = (µdy1, µ
d
y2, · · · , µdym).
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Also all the subjects in the same group are assumed to share a common covariance

matrix. Let ρdyih denote the correlation coefficient between Y d
ij and Y d

hj, then the covariance

matrix Σd
y can be written as:

Σd
y =


σdy1

2
σdy1σ

d
y2ρ

d
y12 · · · σdy1σ

d
ymρ

d
y1m

σdy1σ
d
y2ρ

d
y12 σdy2

2 · · · σdy2σ
d
ymρ

d
y2m

...
...

. . .
...

σdy1σ
d
ymρ

d
y1m σdy2σ

d
ymρ

d
y2m · · · σdym

2

 , (2.2.1)

where σdyi(i = 1, · · · ,m; d = s, b, sc, bc) is the standard deviation for Y d
ij .

In a paired study, ns = nsc = nsp, nb = nbc = nbp, Y
s
ij is paired with Y sc

ij and Y b
ij is

paired with Y bc
ij . The difference between Y s

ij and Y sc
ij and that between Y b

ij and Y bc
ij is used

in this case. Let Xs
ij = Y s

ij − Y sc
ij and Xb

ij = Y b
ij − Y bc

ij , so that for f ∈ {s, b}, the vector

(Xf
1j, X

f
2j, · · · , X

f
mj) follows a m-dimensional multivariate normal distribution denoted by

Nm(µfx,Σ
f
x). Here µfx = (µfy1 − µ

fc
y1, µ

f
y2 − µ

fc
y2, · · · , µfym − µfcym) and Σf

x can be written as:

Σf
x =


σfx1

2
σfx1σ

f
x2ρ

f
x12 · · · σfx1σ

f
xmρ

f
x1m

σfx1σ
f
x2ρ

f
x12 σfx2

2 · · · σfx2σ
f
xmρ

f
x2m

...
...

. . .
...

σfx1σ
f
xmρ

f
x1m σfx2σ

f
xmρ

f
x2m · · · σfxm

2

 , (2.2.2)

where σfxi(i = 1, · · · ,m; f = s, b) is the standard deviation for Xf
ij and ρfxih(i = 1, · · · ,m;h =

1, · · · ,m; f = s, b) is the correlation between Xf
ij and Xf

hj.

The process for identifying the neurobiological characteristics significantly up-regulated

in both DSM diagnoses can be viewed as a multiple hypothesis testing problem. For each

individual characteristic, the null hypothesis is: in at least one DSM diagnosis, the mean of

the neurobiological characteristic is less than or equal to that in the corresponding healthy

control group and the alternative hypothesis is: the mean of the neurobiological characteristic

is greater than that in the corresponding healthy control group for both DSM diagnoses.

The decision for a single neurobiological characteristic is based on two test statistics, one for

each DSM diagnosis. Collectively, since there is more than one characteristic being tested,

adjustments must be made for multiplicity.
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2.2.3 Hypothesis Testing for each Single Neurobiological Characteristic

For characteristic i, in both the unpaired and paired cases, the null hypothesis and alternative

hypothesis can be formulated as:

H0i : µsyi − µscyi ≤ 0 or µbyi − µbcyi ≤ 0

Hai : µsyi − µscyi > 0 and µbyi − µbcyi > 0
, i = 1, 2, · · · ,m. (2.2.3)

It’s easy to see that the null hypothesis for each characteristic is the union of two sub-null

hypotheses: Hs
0i : µsyi − µscyi ≤ 0 and Hb

0i : µbyi − µbcyi ≤ 0. The alternative hypothesis is the

intersection of the complements of the two sub-null hypotheses: Hs
ai : µsyi − µscyi > 0 and

Hb
ai : µbyi − µbcyi > 0. Both sub-null hypotheses are one-sided. For the null hypothesis H0i

to be rejected at level α, both sub-null hypotheses need to be rejected at level α. In other

words, characteristic i gets identified if and only if its mean measurements in both DSM

diagnoses are significantly higher than that in the corresponding healthy control groups.

One method that can be applied here directly is the Laska’s min test procedure. Laska

& Meisner (1989) developed the test to detect if a treatment is the best among several

candidates. Applying the method in our setting, when the covariance matrix is assumed

to be known as in (2.2.1) for the unpaired case, we have that the test statistic Wi for

characteristic i is:

Wi = min(Ui, Vi), where Ui =
Ȳ s
i − Ȳ sc

i√
σsyi

2

ns
+

σscyi
2

nsc

, Vi =
Ȳ b
i − Ȳ bc

i√
σbyi

2

nb
+

σbcyi
2

nbc

. (2.2.4)

The Ȳ d
i (d = s, sc, b, bc) in (2.2.4) is the sample mean of Y d

i1, Y
d
i2, · · · , Y d

ind
. In a paired

study, the difference X within a pair is used. Assume the covariance matrix is known as in

(2.2.2) and let X̄f
i (f = s, b) denote the sample mean of Xf

i1, X
f
i2, · · · , X

f
infp

, then the test

statistic of the min test can be written as:

Wi = min(Ui, Vi), where Ui =
X̄s
i√
σsxi

2

nsp

, Vi =
X̄b
i√
σbxi

2

nbp

. (2.2.5)

It is easy to see that Ui and Vi are the test statistics for testing the sub-null hypotheses Hs
0i

and Hb
0i, respectively and they are independent normally distributed random variables. The
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joint distribution of (U1, U2, · · · , Um) and that of (V1, V2, · · · , Vm) are derived in Appendix

2.A.1. In both the unpaired and paired cases, under the null hypothesis, Ui is distributed

as N(0, 1) or Vi is distributed as N(0, 1). The null hypothesis H0i is rejected at level α if

Wi ≥ Φ−1(1 − α), where Φ−1 is the inverse cumulative distribution function for univariate

standard normal distribution. The p-value of the test is Pi = 1−Φ(Wi). Since the min test

uses the minimum of the two test statistics Ui and Vi, it is equivalent as saying both sub-null

hypotheses being rejected is the same as rejecting hypothesis H0i. In the context of iden-

tifying the common significant neurobiological characteristics in schizophrenia and bipolar

disorder, only when the mean of a neurobiological characteristic is significantly higher than

corresponding control in both DSM diagnoses, will it be identified as the desired one.

Even though Laska & Meisner (1989) proved the result only in the case of two treatments,

the min test, as these authors noted, can be used when there are more than two treatments.

In order to identify the common significant neurobiological characteristics across k DSM di-

agnoses where k ≥ 2, the min test still works by taking the minimum over the test statistics

for each of the k sub-null hypotheses. Moreover, even if the DSM diagnoses have a common

control group so that the test statistics for each of the sub-null hypotheses are not indepen-

dent, the min test can still deal with it. For example, in one post-mortem tissue database

there are both schizophrenia patients and bipolar disorder patients and both DSM diagnoses

are compared with the same control group. In such a case, the Ȳ sc
i and Ȳ bc

i in (2.2.4) are the

same random variable and
σsci

2

nsc
and

σbci
2

nbc
are equal, thus Ui and Vi have a common element in

their definitions and become dependent. The min test still works for such cases as shown in

Laska & Meisner (1989) since the test statistics for the sub-null hypotheses do not need to

be independent. Also among all monotone test statisitcs, the min test is the UMP test even

though it has low power sometimes, especially when the effect size is close to the origin.

2.2.4 FDR Control over m Neurobiological Characteristics

As noted previously, more than one characteristic is tested simultaneously, and therefore,

multiplicity adjustments are needed. Usually when studying a number of neurobiological

characteristics like what is described in this dissertation, the goal is to identify as many
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significant ones as possible. Thus, the usual control of familywise error rate (FWER) is

considered to be too conservative, even though it is a standard method for multiplicity ad-

justments. One approach to handle the multiplicity issue that has been used more recently

is to control the false discovery rate (abbreviated as FDR and formally introduced in Ben-

jamini & Hochberg (1995)), which is the expected proportion of falsely rejected hypotheses.

When testing m hypotheses, the results can be summarized as in Table 2.1:

Table 2.1: Results of multiple testing

not rejected rejected total

true null u v m0

false null t s m−m0

m− r r m

Here in the table, m0 is the number of true null hypothesis. u is the number of null

hypothesis that are correctly not rejected, v is the number of false positives, i.e., true null

hypothesis that is rejected, t is the false negatives, i.e., false null hypothesis that should have

been rejected, and s is number of the correctly rejected null hypothesis. r is the sum of v

and s, which is the number of rejections. It’s worth noting that only r and m are observed

when testing these m hypotheses. All the other values in Table 2.1 are unknown.

The FDR is defined as: FDR=E(v/r)Ir>0. From the definition, we can see that con-

trolling FDR does not require v to be small, nor does it require the proportion v/r to be

small. Only the expected value of v/r needs to be controlled at the desired level. This is

very different from the control of FWER, which requires P (v ≥ 1) to be less than or equal to

a certain level. FWER tends to be more stringent as attention is paid to whether any type

I error is made or not, so making one type I error is viewed the same as making several type

I errors. However, in FDR controlling, committing more than one type I error is allowed as

long as the expected value of the false positive proportion is within a certain level. Because

more rejections can be made with less worry about type I errors, FDR controlling tends to

have a larger power than FWER controlling in hypothesis testing. Therefore in our case,

FDR control is preferred since we would like to identify as many significant neurobiological
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characteristics as possible.

There have been a number of FDR controlling procedures developed in the literature. At

first, methods for independent test statistics were developed. Benjamini & Hochberg (1995)

proposed a linear step-up procedure (BH) to control the FDR at level α. Specifically, they

showed the BH procedure controls the FDR at level m0

m
α under independent test statistics,

where m0 and m are defined in Table 2.1. Since m0 ≤ m, the FDR using the BH procedure is

controlled at the α level. Later on, Benjamini & Liu (1999) proposed a step-down procedure

which is shown to control the FDR at the desired level under independent test statistics.

They showed through simulation that the step-down procedure is more powerful than the BH

procedure when the number of tests is small and the effect sizes of the false null hypotheses

are large. Benjamini & Hochberg (2000) improved the BH procedure in an adaptive way by

combining the BH method with estimating the number of true null hypotheses. They showed

that if the test statistics are independent, this adaptive method controls the FDR exactly

at the α level even when the number of true null hypotheses is smaller than the number of

tests, i.e., when m0 ≤ m. Ghosh (2011) generalized the BH procedure by using spacings

of the p-values, which is the distance between neighboring ordered p-values. In what they

termed as generalized BH procedure, a suitably selected monotone function was applied to

the spacings of p-values and a step-up method was implemented on the dimension of the

transformed spacings. He proved that if the p-values are independent, the generalized BH

procedure controls the FDR at level α.

More recently, research has been done for FDR controlling methods for dependent test

statistics. Benjamini & Yekutieli (2001) reexamined the BH procedure proposed in 1995.

They showed if the test statistics follow a specific positive dependence structure termed

PRDS conditioning on the true null hypotheses, then the step-up procedure still controls

FDR at the desired level. Sarkar (2002) strengthened the work of Benjamini & Yekutieli

(2001) and showed the FDR is controlled by a general step-up-step-down procedure of order

r with the same set of critical values as in the BH procedure. He showed if the test statis-

tics are independent or have PRDS conditioning on the true null hypotheses, then FDR

is protected. Yekutieli (2008) modified the BH procedure to control FDR when the test

statistics are not positively dependent. He proposed a seperate subset BH procedure (ssBH)
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and pointed out that ssBH is less powerful than the BH procedure in general, but if the

p-values satisfy a certain condition, then the FDR using the ssBH procedure is controlled

at level m0

m
α. To apply the ssBH procedure, the p-values are divided into S sub-vectors

Ps, s = 1, · · · , S. The special condition required is that for each Pi ∈ P0, where P0 is the set

of p-values corresponding to the true null hypotheses, the union of sub-vectors containing

Pi, i.e., ∪{Ps : Pi ∈ Ps} is PRDS conditioning on Pi.

Furthermore, there are some Bayesian methods to control FDR. For instance, Storey

(2002) studied FDR control from a Bayesian perspective. He introduced the concept of

positive FDR (pFDR). Storey (2003) continued his work on pFDR and provided a Bayesian

interpretation for FDR control. He investigated the advantages and disadvantages of pFDR

and provided Bayesian interpretation of q-values, which are the pFDR analogues of p-values.

Even though there are lots of ways to control the FDR at level α, what is needed in our

setting is a method that works for dependent non-normal test statistics since the minimum

Wi for each single test is not normally distributed and Wi is correlated with Wj due to the

correlation among the original observations within the same subject. The Bayesian methods

are not considered because they fix the rejection region and estimate the FDR and involve

other parameters. Among the frequentist’s methods, BH is a commonly used simple method

and it works for dependent non-normal statistics.

The BH procedure is based on the ordered p-values, p(1) ≤ p(2) ≤ · · · ≤ p(m), from the

individual tests. Let H0(i) be the null hypothesis corresponding to p-value p(i), then the BH

procedure is defined as:

Reject all H0(i), 1 ≤ i ≤ l, where l = max{i : p(i) ≤
i

m
α}. (2.2.6)

For example, if we start from the largest p-value and find p(5) is the first p-value that

satisfies p(i) ≤ i
m
α, then all of H0(1), H0(2), · · · , H0(5) are rejected. If no such l is found, then

no null hypothesis is rejected.
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2.2.5 Positive Dependence Structures

The BH procedure was proved in Benjamini & Yekutieli (2001) to control the FDR at the

α level when the test statistics follow a dependence structure called PRDS conditioning on

the test statistics corresponding to the true null hypotheses. Benjamini & Yekutieli (2001)

defined PRDS as the following.

Definition 2.1 (Increasing set). A set D ∈ Rn is called an increasing set if for any x ∈ D,

y ≥ x implies y ∈ D, where “≥ ” is the usual ordering on Rn.

Definition 2.2 (PRDS). For any increasing set D and each i ∈ I0, where I0 ⊆ {1, 2, · · · , n}

is a sub-index set, the random vector X = (X1, X2, · · · , Xn) is said to follow PRDS condi-

tioning on the test statistics corresponding to I0 if P (X ∈ D|Xi = xi) is a nondecreasing

function of xi.

While PRDS is a special dependence structure used by Benjamini & Yekutieli (2001), in

the literature, there are various notions of positive dependences proposed for random vari-

ables. For bivariate variables, Lehmann (1966) introduced several concepts of dependence.

Among these concepts, PQD, which was defined as the inequality P (X ≤ x, Y ≤ y) ≥

P (X ≤ x)P (Y ≤ y) holding for all x, y, was the weakest condition. A stronger concept

was positively regression dependence (PRD) where a random variable Y was PRD on X

if P (Y ≤ y|X = x) was non-increasing in x for all y. Without formally introducing the

concept of left tail decreasing (LTD), which requires P (Y ≤ y|X ≤ x) to be non-increasing

in x for all y, Lehmann (1966) mentioned that LTD was between PRD and PQD in strength.

In 1972, Esary & Proschan (1972) introduced the concept of right tail increasing (RTI) and

studied the relationships among a number of bivariate dependence concepts. It defined RTI

as P (Y > y|X > x) being non-decreasing in x for all y.

Multivariate dependence is more complicated than the bivariate case. For example, Joe

(1997) gave two multivariate extensions of the bivariate dependence PRD. One is called

positive dependent through stochastic ordering (PDS) and the other is called conditional in-

creasing in sequence (CIS). PDS is satisfied if for any i = 1, 2, · · · , n, the conditional joint dis-

tribution of (X1, · · · , Xi−1, Xi+1, · · · , Xn|Xi = x) is stochastically increasing as x increases.

CIS is satisfied if the conditional distribution of Xi given Xi−1 = xi−1, · · · , X1 = x1, i.e.,
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P (Xi > xi|Xi−1 = xi−1, · · · , X1 = x1) is increasing in xi−1, · · · , x1 for i = 2, 3, · · · , n. Dyk-

stra, Hewett & Thompson (1973) generalized the PQD defined in Lehmann (1966) to the mul-

tivariate case. They defined (X1, X2, · · · , Xn) to be positively orthant dependent if P (Xi ≤

xi, i = 1, 2, · · · , n) ≥
∏n

i=1 P (Xi ≤ xi). Shaked (1982) introduced the concepts of positively

upper orthant dependence (PUOD) and positively lower orthant dependence (PLOD). For

a random vector X = (X1, X2, · · · , Xn), if for every x = (x1, x2, · · · , xn), P (X > x) ≥ (≤

)
∏n

i=1 P (Xi > xi) then X is PUOD (PLOD). The PLOD defined here is the same as the

positively orthant dependent defined in Dykstra, Hewett & Thompson (1973). Alzaid &

Proschan (1994) extended the bivariate notion of LTD and RTI to the multivariate case.

For multivariate random variables, the notions PUOD and PLOD are not equivalent.

However, if n = 2, they are the same and reduce to PQD. Also the notions of CIS, mPRD

and PDS are different but they all reduce to the PRD in Lehmann (1966) when n = 2. The

implications among those dependence concepts differ depending on whether one is looking

at the bivariate case or the general multivariate case. For example, in the multivariate case,

PDS implies both PUOD and PLOD and in the bivariate case, PRD implies LTD and RTI,

both of which imply PQD.

2.2.6 Proposed Method for the Identification

As described previously, our goal is to identify the common significant neurobiological char-

acteristics across several DSM diagnoses. By combining the techniques explained in the

preceding subsections, the proposed method is to apply the BH method at level α on the set

of p-values obtained from the m min tests. That is to say, a p-value is obtained after apply-

ing the min test on each of the m hypotheses and then the BH procedure is implemented on

the m p-values to control the FDR at level α. Decisions (to reject a null hypothesis or not)

are made for each hypothesis.
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2.3 RESULTS

2.3.1 Conditions Needed to Control FDR by BH Procedure on the Min Test

An important issue of the proposed method is to assess whether or not the FDR can be

controlled when applying the BH procedure to the p-values obtained from the min tests.

If all the assumptions for the BH procedure are satisfied, for example, the test statistics

Wi and Wj are independent, Benjamini & Hochberg (1995) proved that the FDR would be

protected automatically. However, due to the correlation among multiple measurements on

the same individual, Ȳ s
i and Ȳ s

h as well as Ȳ sc
i and Ȳ sc

h are correlated in (2.2.1). For the

same reason, in the paired case, X̄s
i and X̄s

h are correlated in (2.2.2). So Ui and Uh are

correlated. Similarly, Vi and Vh are correlated. As a result, the test statistics Wi and Wh

are not independent. It is even unclear what the particulars of the dependence structure for

(W1,W2, · · · ,Wm) is. Because Benjamini & Yekutieli (2001) proved that if the test statistics

follow the PRDS dependence conditioning on the test statistics corresponding to the true null

hypotheses (PRDS on the true nulls), then the BH procedure controls FDR at the desired

level, it is reasonable to first check if (W1,W2, · · · ,Wm) follows PRDS on the true nulls.

2.3.1.1 PRDS and Min Statistics Suppose m hypotheses are tested, among which

m0 are true. Also the FDR needs to be controlled at the q level. Theorem 1.2 in Benjamini

& Yekutieli (2001) states the following.

Result 2.1. If the joint distribution of the test statistics for the m hypotheses follows PRDS

on the true nulls, the FDR using the BH procedure can be controlled at level less than or

equal to m0

m
q.

Let W be the resulting vector for testing m hypotheses using the min test, i.e., W =

(W1,W2, · · · ,Wm), where Wi(i = 1, 2, · · · ,m) is defined in (2.2.4). Replacing the test statis-

tics in Result 2.1 with W, we can see that if W were to satisfy the PRDS on the true nulls

in our setting, then the FDR is protected by the BH procedure. However, we show that the

PRDS dependence is not satisfied by W on the true nulls.

Result 2.2. The test statistics for the min test W does not follow PRDS on the true nulls.
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Proof. If W follows PRDS on the true nulls, it is known from Esary & Proschan (1972) that

it would follow weaker dependence structures LTD and RTI conditioning on the true nulls

when there are only two tests, i.e., m=2. The converse is, if LTD or RTI on the true nulls

is not satisfied for the two tests case, PRDS on the true nulls cannot be satisfied in general.

In order to show that (W1,W2) is not LTD on the true null, the following numerical

example is used. By definition, if (W1,W2) were LTD on the true null, P(W1 ≤ t|W2 ≤ s) is

a non-increasing function of s for any t, where W2 corresponds to the true null hypothesis.

Recall from Section 2.2.3 that in our setting, if the null hypothesis is true, then at least one

of the sub-null hypotheses is true. Using the formulated hypothesis in (2.2.3), it means that

µsy2 − µscy2, which is the mean of U2, is less than or equal to 0 or µby2 − µbcy2 which is the mean

of V2, is less than or equal to 0.

Now suppose (U1, U2) follows a bivariate normal distribution with mean (0, 0, 1, 1, 0.01),

where (0, 0) is the mean vector of (U1, U2), (1, 1) is the variance vector and 0.01 is the

correlation between U1 and U2. Also suppose (V1, V2) follows a bivariate normal distribution

(0, 1, 1, 1, 0.4) and (U1, U2) and (V1, V2) are independent. Because the mean of U2 is 0, the

null hypothesis that W2 is used to test is true. The probability P (W1 ≤ t|W2 ≤ s) is

computed according to the following formula for t = 0.

P (W1 ≤ t|W2 ≤ s) =
P (W1 ≤ t,W2 ≤ s)

P (W2 ≤ s)

=
1− P (W1 > t)− P (W2 > s) + P (W1 > t,W2 > s)

1− P (W2 > s)

= 1− P (U1 > t, V1 > t)− P (U1 > t, V1 > t, U2 > s, V2 > s)

1− P (U2 > s, V2 > s)

= 1− P (U1 > t)P (V1 > t)− P (U1 > t, U2 > s)P (V1 > t, V2 > s)

1− P (U2 > s)P (V2 > s)
.

The values of the probability for selected s’s are computed through the functions “pnorm

” and “pmnorm ” in the R package “mnormt ”. Also double precision is used with the R

package “Rmpfr ”. They are given in Table 2.2 below:

From Table 2.2, we can see that as s increases, the probability P (W1 ≤ 0|W2 ≤ s) first

increases and then decreases, so that it is not a monotone function of s. As double precision

is used in the computation, the observed non-monotonicity of P (W1 ≤ 0|W2 ≤ s) in s is
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Table 2.2: Counter example to show W is not LTD

s P (W1 ≤ 0|W2 ≤ s)

-2.0 0.766058

-1.8 0.767262

-1.6 0.768487

-1.4 0.769653

-1.2 0.770658

-1.0 0.771389

-0.8 0.771733

-0.6 0.771595

-0.4 0.770910

-0.2 0.769665

unlikely due to numerical errors. Therefore, W does not follow PRDS on the true nulls in

general.

2.3.1.2 Condition Weaker than PRDS Even though PRDS is not satisfied by the

test statistic W, FDR may still be controlled since PRDS is a sufficient but not necessary

condition for the BH procedure to control FDR. We carefully examined the proof of Theorem

1.2 in Benjamini & Yekutieli (2001) to understand precisely why PRDS on the true nulls

allows FDR to be controlled. Our goal was to see if other weaker dependence conditions

would achieve the same result and that we would show our situation satisfies these less

stringent conditions. Examination of the proof shows that there is control of FDR due to

two factors:

1. the p-values corresponding to true null are stochastically larger than Uniform(0,1).

2. the p-values follow an LTD-like dependence structure which is actually weaker than the

required PRDS conditioning on p-values from the true null hypotheses.
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We note that PRDS of the test statistic W on the true nulls is sufficient to imply the LTD-like

dependence of the p-values on the true nulls if the p-values are one-sided, as in our setting.

If the above two factors were satisfied by the p-values from the min test, then FDR would

be controlled without the specific need of W being PRDS on the true null. The p-values

being stochastically larger than the Uniform(0,1) is easy to show and stated in Result 2.3.

Result 2.3. The P-value from the min test corresponding to the true null hypothesis is

stochastically larger than the Uniform(0,1).

Proof. Let (U, V ) be the vector for the two test statistics in the min test corresponding to a

true null hypothesis, and assume it follows the following bivariate distribution:

U
V

 ∼ N2(

µU
µV

 ,

1 ρ

ρ 1

), µU ≤ 0 or µV ≤ 0.

Also let Z1 = U −µU , Z2 = V −µV , so that Z1 and Z2 are both standard normal random

variables. And let PU = 1−Φ(U), PV = 1−Φ(V ), where Φ is the cdf of the standard normal

distribution. The p-value of the min test is P = max(PU , PV ).

Pr(P ≤ t) = Pr(PU ≤ t, PV ≤ t)

= Pr(1− Φ(U) ≤ t, 1− Φ(V ) ≤ t)

= Pr(U ≥ Φ−1(1− t), V ≥ Φ−1(1− t))

= Pr(U − µU ≥ Φ−1(1− t)− µU , V − µV ≥ Φ−1(1− t)− µV )

= Pr(Z1 ≥ Φ−1(1− t)− µU , Z2 ≥ Φ−1(1− t)− µV ) (2.3.1)

≤ PrµU=0,µV =∞(U − 0 ≥ Φ−1(1− t), V − µV ≥ −∞) (2.3.2)

= t.

where the inequality (2.3.2) follows because the probability in equation (2.3.1) is an increasing

function of µU and µV .
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The proof of Theorem 1.2 in Benjamini & Yekutieli (2001) says the LTD-like condition of

the p-values conditioning on the true nulls requires a series of (m−1) functions based on the

ordered p-values to be monotone. These conditions can be written as: for k = 1, 2, · · · ,m−1

and any i ∈ I0, where I0 is the index set for the true null hypotheses,

P (D
(i)
k |pi ≤ p) = P (p

(i)
(k) > qk+1, p

(i)
(k+1) > qk+2, · · · , p(i)

(m−1) > qm|pi ≤ p) ↑ p, (2.3.3)

where qk = k
m
q and p

(i)
(1) ≤ · · · ≤ p

(i)
(m−1) are the ordered p-values without considering pi.

We term the above condition in (2.3.3) as a “LTD-like condition” because D
(i)
k is not

required to be any upper set. Instead, it is relaxed to the upper orthant.

The remaining work is to check if this “LTD-like condition” is satisfied by the p-values

after conditioning on the true null hypotheses. Since test statistics are easier to work with,

the “LTD-like condition” on the p-values can be translated as an “RTI-like condition” on

the test statistics for the one-sided p-values from the right tail. Similar to the “LTD-like

condition”, the “RTI-like condition” requires a series of (m-1) functions based on the ordered

test statistics to be monotone, i.e., for k = 1, 2, · · · ,m− 1 and any i ∈ I0,

P (T
(i)
(k) < tk+1, T

(i)
(k+1) > tk+2, · · · , T (i)

(m−1) > tm|Ti ≤ t) ↓ t, (2.3.4)

where T
(i)
(1) ≥ · · · ≥ T

(i)
(m−1) are the ordered test statistics without considering Ti.

To ensure working with test statistics is valid, the following shows that the “LTD-like

condition” on p-values is equivalent to the “RTI-like condition” on test statisics for one-sided

p-values from the right tail.

Result 2.4. If the p-values are one-sided from the right tail, the p-values are “LTD-like” iff

the test statistics are “RTI-like”.

Proof. If the p-value is one-sided from the right tail, then it is a decreasing function of the

test statistic, i.e., Pk = 1 − F (Tk), where Pk is the p-value corresponding to test statistic

Tk and F is the cdf for Tk. Let T
(i)
(1) ≥ · · · ≥ T

(i)
(m−1) be the ordered test statistics without
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considering Ti and tk = F−1(1 − qk) for k = 1, 2, · · · ,m − 1. Also let P denote the vector

for the p-values and T denote the vector for the test statistics, then:

D
(i)
k = {P : P

(i)
(k) > qk+1, P

(i)
(k+1) > qk+2, · · · , P (i)

(m−1) > qm}

= {T : 1− F (T
(i)
(k)) > qk+1, 1− F (T

(i)
(k+1)) > qk+2, · · · , 1− F (T

(i)
(m−1)) > qm}

= {T : F (T
(i)
(k)) < 1− qk+1, F (T

(i)
(k+1)) < 1− qk+2, · · · , F (T

(i)
(m−1)) < 1− qm}

= {T : T
(i)
(k) < F−1(1− qk+1), T

(i)
(k+1) < F−1(1− qk+2), · · · , T (i)

(m−1) < F−1(1− qm)}

= {T : T
(i)
(k) < tk+1, T

(i)
(k+1) < tk+1, · · · , T (i)

(m−1) < tk+1}.

It’s noteworthy that D
(i)
k is an upper set in terms of P but a lower set in terms of T.

Also let t = F−1(1− p), then {Pi ≤ p} = {1− F (Ti) ≤ p} = {Ti ≥ t}. Therefore:

P (P
(i)
(k) > qk+1, P

(i)
(k+1) > qk+2, · · · , P (i)

(m−1) > qm|Pi ≤ p)

=P (T
(i)
(k) < tk+1, T

(i)
(k+1) < tk+2, · · · , T (i)

(m−1) < tm|Ti ≥ t).
(2.3.5)

If the p-values are “LTD-like”, then when p increases, i.e.,t decreases, the above prob-

ability in (2.3.5) increases, so the test statistics are “RTI-like”. On the other hand, if the

test statistics are “RTI-like”, then when t increases, i.e.,p decreases, the above probability

in (2.3.5) decreases, so the p-values are “LTD-like”, thus completing the proof.

Similarly, it can be shown that if the p-values are one-sided from the right tail, the p-

values are “RTI-like” iff the test statistics are “LTD-like”. The relationship of the dependence

structures on the p-values (P) and test statistics (T) when the p-values are one-sided from

the right tail can be summarized as in Figure 2.1:

Because the p-values from the min tests are one-sided from the right tail in our case, by

replacing T with W, Result 2.4 above allows us to restate the weaker condition needed in

Benjamini & Yekutieli (2001) for the FDR to be controlled in terms of W.

Result 2.5. If the min test statistics W follow the “RTI-like condition” on the true nulls,

then the FDR using the proposed method is controlled by the BH procedure.
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Figure 2.1: Relationship of dependence between test statistics and p-values

Note that the “RTI-like condition” of W involves a series of (m − 1) functions to be

non-increasing in t. Replacing the statistic T in function (2.3.4) with W, the “RTI-like

condition” of W can be written as:

k = m− 1 :
P (W

(i)
(k) < tk+1,W

(i)
(k+1) < tk+2, · · · ,W (i)

(m−1) < tm|Wi ≥ t)

=P (W
(i)
(m−1) < tm|Wi ≥ t) ↓ t.

(2.3.6)

k = m− 2 :
P (W

(i)
(k) < tk+1,W

(i)
(k+1) < tk+2, · · · ,W (i)

(m−1) < tm|Wi ≥ t)

=P (W
(i)
(m−2) < tm−1,W

(i)
(m−1) < tm|Wi ≥ t) ↓ t.

· · · : · · ·

k = 1 :
P (W

(i)
(k) < tk+1,W

(i)
(k+1) < tk+2, · · · ,W (i)

(m−1) < tm|Wi ≥ t)

=P (W
(i)
(1) < t2,W

(i)
(2) < t3, · · · ,W (i)

(m−1) < tm|Wi ≥ t) ↓ t.

All of the above (m− 1) sub-conditions need to be satisfied for the “RTI-like condition”

of W to hold so that the resulting FDR to be controlled. However, since more than one

order statistic is involved, it turns out difficult to show all these sub-conditions hold. The

easiest one to show is the k = m− 1 condition in (2.3.6), whose proof is stated next.
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Result 2.6. If U = (U1, U2, · · · , Um),V = (V1, V2, · · · , Vm) are two independent normally

distributed vectors and the correlation coefficients ρUij ≥ 0, ρV ij ≥ 0 for j = 1, 2, · · · ,m, j 6=

i, then the elementwise minimum vector W = min(U,V) satisfies the k = m− 1 condition

P (W
(i)
(m−1) < tm|Wi ≥ t) ↓ t for any i ∈ I0.

Proof. U can be decomposed into two parts, U(i) and Ui, where U(i) is the vector left after

dropping Ui. The mean vector and covariance matrix can be decomposed correspondingly

as

U =

U(i)

Ui

 ∼ Nm

µ(i)

µi

 ,

ΣU
(i) ρU

(i)

ρU
(i)′ 1

 ,

where ρU
(i) = (ρU1i, · · · , ρU(i−1)i, ρU(i+1)i, · · · , ρUmi)′. Let µc = µ(i) + ρU

(i)(u− µi),Σc =

ΣU
(i) − ρU(i)ρU

(i)′, then the conditional distribution of U(i)|Ui = u is:

U(i)|Ui = u ∼ Nm−1(µc,Σc).

If ρUij ≥ 0 for j = 1, 2, · · · ,m, j 6= i, then ρU
(i) ≥ 0, so the conditional mean µc

is a nondecreasing function of u. Let s = (s1, s2, · · · , sm−1)′ and (U(i) ≥ s) = (U
(i)
1 ≥
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s1, · · · , U (i)
m−1 ≥ sm−1), then we have

P (U(i) ≥ s|Ui = u) = P (Σc
−1/2(U(i) − µc) ≥ Σc

−1/2(s− µc))

= P (Σc
−1/2(U(i) − µc) ≥ Σc

−1/2(s− µ(i) − ρU(i)(u− µi)))

↑ u.

P (U(i) ≥ s|Ui ≥ t) =
P (U(i) ≥ s, Ui ≥ t)

P (Ui ≥ t)

=

∫∞
t
P (U(i) ≥ s|Ui = u)fUi(u)du∫∞

t
fUi(u)du

.

∂

∂t
P (U(i) ≥ s|Ui ≥ t) =

1

(
∫∞
t
fUi(u)du)2

∗ [−P (U(i) ≥ s|Ui = t)fUi(t) ∗
∫ ∞
t

fUi(u)du

+

∫ ∞
t

P (U(i) ≥ s|Ui = u)fUi(u)du ∗ fUi(t)]

≥ fUi(t)

(
∫∞
t
fUi(u)du)2

∗ [−P (U(i) ≥ s|Ui = t) ∗
∫ ∞
t

fUi(u)du

+ P (U(i) ≥ s|Ui = t)

∫ ∞
t

fUi(u)du]

= 0.

Therefore, P (U(i) ≥ s|Ui ≥ t) is an increasing function in t, and similarly, we can show

P (V(i) ≥ s|Vi ≥ t) also increases in t. Now let s1 = s2 = · · · = sm−1 = tm, then

P (U(i) ≥ s|Ui ≥ t) = P (U
(i)
1 ≥ tm, · · · , U (i)

m−1 ≥ tm|Ui ≥ t) ↑ t,

P (V(i) ≥ s|Vi ≥ t) = P (V
(i)

1 ≥ tm, · · · , V (i)
m−1 ≥ tm|Vi ≥ t) ↑ t.
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Therefore, we have

P (W
(i)
(m−1) < tm|Wi ≥ t)

=1− P (W
(i)
(m−1) ≥ tm|Wi ≥ t)

=1− P (W
(i)
1 ≥ tm,W

(i)
2 ≥ tm, · · · ,W (i)

m−1 ≥ tm|Wi ≥ t)

=1−
P (W

(i)
1 ≥ tm, · · · ,W (i)

m−1 ≥ tm,Wi ≥ t)

P (Wi ≥ t)

=1−
P (U

(i)
1 ≥ tm, V

(i)
1 ≥ tm, · · · , U (i)

m−1 ≥ tm, V
(i)
m−1 ≥ tm, Ui ≥ t, Vi ≥ t)

P (Ui ≥ t, Vi ≥ t)

=1−
P (U

(i)
1 ≥ tm, · · · , U (i)

m−1 ≥ tm, Ui ≥ t)

P (Ui ≥ t)
∗
P (V

(i)
1 ≥ tm, · · · , V (i)

m−1 ≥ tm, Vi ≥ t)

P (Vi ≥ t)

=1− P (U
(i)
1 ≥ tm, · · · , U (i)

m−1 ≥ tm|Ui ≥ t) ∗ P (V
(i)

1 ≥ tm, · · · , V (i)
m−1 ≥ tm|Vi ≥ t)

↓ t.

While the k = m − 1 case of the RTI-like condition of W conditioning on the true

nulls can be shown, the rest of the conditions require very complex proofs and are hard

to show, because not only is the minimum of two variables involved but also the joint

distribution of the ordered statistics on these minimums needs to be dealt with. We have

been unsuccessful in developing a theoretical approach to show these conditions hold, but

are somewhat optimistic given that the k = m − 1 condition holds. We next undertook a

small simulation study to see if the FDR is controlled using the BH method in our setting.

2.3.2 Simulation Study

As it is hard to show W follows the RTI-like condition after conditioning on the true nulls, a

simulation study is performed to get an idea whether FDR can be controlled at the 0.05 level

using the proposed method to identify common significant neurobiological characteristics

across two DSM diagnoses.
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2.3.2.1 Simulation Method In each simulation 500 neurobiological characteristics were

tested (m = 500). For the ith test, two independent and normally distributed test statistics

Ui and Vi were simulated. Because Ui and Uh were correlated, all the Ui’s were simulated

together through a 500-dimension vector U from a multivariate normal distribution. Simi-

larly, a 500-dimension vector V was simulated. Among the 500 hypotheses, there are four

scenarios regarding to whether the two sub-null hypotheses are true or false. The proportions

of each scenario are summarized in Table 2.3. For instance, p00*100% of the 500 hypotheses

were true in both null hypothese tested by Ui and Vi.

Table 2.3: Proportion of Hypotheses

true null tested by Ui true false null tested by Ui

true null tested by Vi p00 p10

false null tested by Vi p01 1− p00 − p01 − p10

Because the null hypothesis is true when either of the two sub-null hypothesis is true,

collectively, (p00 + p01 + p10)*100% of the 500 null hypotheses were true and (1− p00− p01−

p10)*100% were false. Equal correlation was assumed between any two elements within each

of U and V. The mean vectors and covariance matrices for U and V were as follows:

E



U1

...

U500∗p00

U500∗p00+1

...

U500∗(p00+p01)

U500∗(p00+p01)+1

...

U500∗(p00+p01+p10)

U500∗(p00+p01+p10)+1

...

U500



=



0
...

0

0
...

0

δ
...

δ

δ
...

δ



, E



V1

...

V500∗p00

V500∗p00+1

...

V500∗(p00+p01)

V500∗(p00+p01)+1

...

V500∗(p00+p01+p10)

V500∗(p00+p01+p10)+1

...

V500



=



0
...

0

δ
...

δ

0
...

0

δ
...

δ



;

38



Cov(U) =


1 ρU . . . ρU

ρU 1 . . . ρU
...

...
. . .

...

ρU ρU . . . 1

 , Cov(V) =


1 ρV . . . ρV

ρV 1 . . . ρV
...

...
. . .

...

ρV ρV . . . 1

 .

Here δ was the effect size whenever the sub-null hypothesis corresponding to Ui or Vi was

not true. After the proposed method was applied to the simulated data each time, the total

number of rejections rw and false rejections vw were recorded. Here the subscript w indicates

the min test is applied for each individual hypothesis. The false discovery proportion (FDPw)

was calculated as vw/rw. Powerw was calculated as (rw − vw)/(500 ∗ (1 − p00 − p01 − p10)).

Different effect sizes δ, correlations ρU and ρV and proportions of true nulls p00, p01 and p10

were used. For each parameter configuration, 2000 simulations were run and the average of

the 2000 FDPs and Powers were obtained as the estimated FDR and Power.

The parameters used in the simulation are listed in Table 2.4. The combination of p00, p01

and p10 used satisfied the condition p00 + p01 + p10 ≤ 1.

Table 2.4: Simulation Parameter List

parameter value

m 500

α 0.05

δ 0.5, 1, 2, 4

ρU 0, 0.01, 0.4, 0.8

ρV 0, 0.01, 0.4, 0.8

p00 0.36, 0.49, 0.64

p01 0.16, 0.21, 0.24

p10 0.16, 0.21, 0.24

2.3.2.2 Simulation Result The simulation results are summarized in Tables 2.5 - 2.8

with standard deviations in parentheses. For example, in Table 2.5, if in each simulation
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49% of the 500 hypotheses are true in both sub-nulls (p00 = 0.49), 21% of the hypotheses

are true only in the sub-null tested by Ui (p01 = 0.21), 21% of the hypotheses are true only

in the sub-null tested by Vi (p10 = 0.21), the correlation between Ui and Uh is 0.4 (ρU = 0.4)

and the correlation between Vi and Vh is 0.8 (ρV = 0.8), the calculated FDR of the proposed

method, i.e., BH method being applied to p-values obtained from the min tests, is 0.0004

with a sample standard deviation 0.0169. The calculated power of the proposed method

is 0.0001 with a sample standard deviation 0.0040. The columns of FDRI and PowerI are

explained in later sections.

As can be seen in Tables 2.5 - 2.8, even though we cannot prove the min test statistic

W follows the “RTI-like condition” after conditioning on the true nulls, the FDRs under

all the simulated parameter configurations have been controlled at the 0.05 level using the

proposed method. The FDR and power increases as the effect size increases or the correlation

among elements in U or among those in V decreases. When the proportion of the true null

hypotheses (p00 + p01 + p10) increases so that the actual level the FDR was controlled at,

which is (p00 + p01 + p10) ∗ 0.05, increases, the FDR stayed roughly the same and the power

decreases. Due to the limited space here, not all results are listed, however, similar patterns

are indeed obtained for other parameter configurations.

2.3.2.3 Comparison with the Intersection Method To better understand the power

and FDR control using the proposed method, its simulation result was compared with an

alternative method which is called the intersection method by us. The intersection method

is to mimic the way how the genes were found to be significant in both schizophrenia and

bipolar disorder in some of the genome-wide association studies, i.e., identification in one

DSM diagnosis at one time. It is implemented by testing if the mean of a neurobiological

characteristic is significantly up-regulated in each DSM diagnosis separately, applying the

BH procedure at level α on each set of the p-values and then finding the intersection of the

decisions for each DSM diagnosis. So for characteristic i, there is no overall null hypothesis as

the one in (2.2.3). If there are two DSM diagnoses considered, the two sub-null hypotheses

are tested separately, one based on Ui and the other based on Vi. Two sets of p-values
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Table 2.5: Simulation Results (δ = 0.5)

p00 p01 p10 ρU ρV FDRw FDRI Powerw PowerI

0.36 0.16 0.16

0.00 0.00
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 )

0.00 0.01
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0001 ) ( 0.0001 )

0.01 0.01
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 )

0.40 0.01
0.0000 0.0010 0.0000 0.0000

( 0.0000 ) ( 0.0316 ) ( 0.0000 ) ( 0.0000 )

0.40 0.40
0.0000 0.0013 0.0000 0.0002

( 0.0000 ) ( 0.0292 ) ( 0.0000 ) ( 0.0061 )

0.40 0.80
0.0003 0.0017 0.0002 0.0003

( 0.0127 ) ( 0.0365 ) ( 0.0082 ) ( 0.0096 )

0.80 0.80
0.0003 0.0006 0.0005 0.0009

( 0.0145 ) ( 0.0185 ) ( 0.0224 ) ( 0.0278 )

0.49 0.21 0.21

0.00 0.00
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 )

0.00 0.01
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 )

0.01 0.01
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0000 ) ( 0.0000 )

0.40 0.01
0.0000 0.0005 0.0000 0.0000

( 0.0000 ) ( 0.0224 ) ( 0.0000 ) ( 0.0000 )

0.40 0.40
0.0000 0.0008 0.0000 0.0001

( 0.0000 ) ( 0.0244 ) ( 0.0000 ) ( 0.0045 )

0.40 0.80
0.0004 0.0013 0.0001 0.0002

( 0.0169 ) ( 0.0344 ) ( 0.0040 ) ( 0.0071 )

0.80 0.80
0.0004 0.0008 0.0005 0.0008

( 0.0201 ) ( 0.0265 ) ( 0.0224 ) ( 0.0258 )
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Table 2.6: Simulation Results (δ = 1)

p00 p01 p10 ρU ρV FDRw FDRI Powerw PowerI

0.36 0.16 0.16

0.00 0.00
0.0000 0.0005 0.0000 0.0001

( 0.0000 ) ( 0.0224 ) ( 0.0003 ) ( 0.0007 )

0.00 0.01
0.0000 0.0005 0.0000 0.0001

( 0.0000 ) ( 0.0224 ) ( 0.0002 ) ( 0.0008 )

0.01 0.01
0.0000 0.0000 0.0000 0.0001

( 0.0000 ) ( 0.0000 ) ( 0.0002 ) ( 0.0007 )

0.40 0.01
0.0000 0.0060 0.0000 0.0004

( 0.0000 ) ( 0.0667 ) ( 0.0002 ) ( 0.0027 )

0.40 0.40
0.0003 0.0030 0.0002 0.0019

( 0.0083 ) ( 0.0354 ) ( 0.0073 ) ( 0.0236 )

0.40 0.80
0.0005 0.0034 0.0008 0.0035

( 0.0148 ) ( 0.0379 ) ( 0.0208 ) ( 0.0374 )

0.80 0.80
0.0010 0.0022 0.0026 0.0059

( 0.0204 ) ( 0.0283 ) ( 0.0458 ) ( 0.0669 )

0.49 0.21 0.21

0.00 0.00
0.0000 0.0000 0.0000 0.0000

( 0.0000 ) ( 0.0000 ) ( 0.0005 ) ( 0.0007 )

0.00 0.01
0.0005 0.0005 0.0000 0.0000

( 0.0224 ) ( 0.0224 ) ( 0.0005 ) ( 0.0009 )

0.01 0.01
0.0005 0.0005 0.0000 0.0000

( 0.0224 ) ( 0.0224 ) ( 0.0007 ) ( 0.0009 )

0.40 0.01
0.0000 0.0042 0.0000 0.0002

( 0.0000 ) ( 0.0616 ) ( 0.0000 ) ( 0.0025 )

0.40 0.40
0.0000 0.0051 0.0000 0.0010

( 0.0000 ) ( 0.0621 ) ( 0.0005 ) ( 0.0169 )

0.40 0.80
0.0004 0.0044 0.0004 0.0018

( 0.0185 ) ( 0.0556 ) ( 0.0150 ) ( 0.0261 )

0.80 0.80
0.0008 0.0032 0.0009 0.0033

( 0.0252 ) ( 0.0463 ) ( 0.0283 ) ( 0.0494 )
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Table 2.7: Simulation Results (δ = 2)

p00 p01 p10 ρU ρV FDRw FDRI Powerw PowerI

0.36 0.16 0.16

0.00 0.00
0.0013 0.0246 0.0043 0.1247

( 0.0289 ) ( 0.0348 ) ( 0.0088 ) ( 0.0332 )

0.00 0.01
0.0011 0.0243 0.0040 0.1252

( 0.0194 ) ( 0.0345 ) ( 0.0082 ) ( 0.0402 )

0.01 0.01
0.0002 0.0254 0.0044 0.1248

( 0.0061 ) ( 0.0364 ) ( 0.0093 ) ( 0.0449 )

0.40 0.01
0.0024 0.0205 0.0152 0.1208

( 0.0187 ) ( 0.0505 ) ( 0.0468 ) ( 0.1233 )

0.40 0.40
0.0033 0.0178 0.0330 0.1138

( 0.0177 ) ( 0.0538 ) ( 0.1154 ) ( 0.1910 )

0.40 0.80
0.0044 0.0163 0.0526 0.1197

( 0.0284 ) ( 0.0630 ) ( 0.1695 ) ( 0.2362 )

0.80 0.80
0.0048 0.0104 0.0727 0.1236

( 0.0332 ) ( 0.0481 ) ( 0.2335 ) ( 0.2911 )

0.49 0.21 0.21

0.00 0.00
0.0004 0.0633 0.0025 0.0669

( 0.0134 ) ( 0.1537 ) ( 0.0088 ) ( 0.0420 )

0.00 0.01
0.0009 0.0652 0.0022 0.0678

( 0.0256 ) ( 0.1517 ) ( 0.0080 ) ( 0.0459 )

0.01 0.01
0.0021 0.0626 0.0023 0.0669

( 0.0391 ) ( 0.1578 ) ( 0.0086 ) ( 0.0473 )

0.40 0.01
0.0003 0.0458 0.0034 0.0711

( 0.0066 ) ( 0.1128 ) ( 0.0162 ) ( 0.0934 )

0.40 0.40
0.0023 0.0350 0.0075 0.0722

( 0.0305 ) ( 0.1093 ) ( 0.0487 ) ( 0.1510 )

0.40 0.80
0.0033 0.0303 0.0134 0.0755

( 0.0382 ) ( 0.1172 ) ( 0.0808 ) ( 0.1874 )

0.80 0.80
0.0035 0.0178 0.0200 0.0814

( 0.0437 ) ( 0.0916 ) ( 0.1247 ) ( 0.2368 )
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Table 2.8: Simulation Results (δ = 4)

p00 p01 p10 ρU ρV FDRw FDRI Powerw PowerI

0.36 0.16 0.16

0.00 0.00
0.0161 0.0247 0.9346 0.9576

( 0.0103 ) ( 0.0122 ) ( 0.0199 ) ( 0.0160 )

0.00 0.01
0.0160 0.0248 0.9342 0.9576

( 0.0103 ) ( 0.0125 ) ( 0.0227 ) ( 0.0172 )

0.01 0.01
0.0156 0.0245 0.9339 0.9575

( 0.0105 ) ( 0.0128 ) ( 0.0235 ) ( 0.0179 )

0.40 0.01
0.0154 0.0248 0.9294 0.9538

( 0.0201 ) ( 0.0282 ) ( 0.0911 ) ( 0.0687 )

0.40 0.40
0.0159 0.0257 0.9273 0.9521

( 0.0283 ) ( 0.0392 ) ( 0.1172 ) ( 0.0878 )

0.40 0.80
0.0155 0.0253 0.9177 0.9463

( 0.0418 ) ( 0.0562 ) ( 0.1903 ) ( 0.1498 )

0.80 0.80
0.0149 0.0247 0.9070 0.9379

( 0.0497 ) ( 0.0669 ) ( 0.2458 ) ( 0.2002 )

0.49 0.21 0.21

0.00 0.00
0.0189 0.0688 0.8218 0.9332

( 0.0219 ) ( 0.0357 ) ( 0.0641 ) ( 0.0379 )

0.00 0.01
0.0195 0.0694 0.8212 0.9330

( 0.0232 ) ( 0.0380 ) ( 0.0688 ) ( 0.0390 )

0.01 0.01
0.0188 0.0677 0.8230 0.9330

( 0.0227 ) ( 0.0386 ) ( 0.0684 ) ( 0.0383 )

0.40 0.01
0.0188 0.0665 0.8142 0.9279

( 0.0363 ) ( 0.0750 ) ( 0.1593 ) ( 0.0932 )

0.40 0.40
0.0183 0.0648 0.8054 0.9255

( 0.0478 ) ( 0.1011 ) ( 0.2136 ) ( 0.1188 )

0.40 0.80
0.0169 0.0587 0.7913 0.9147

( 0.0681 ) ( 0.1255 ) ( 0.2951 ) ( 0.1909 )

0.80 0.80
0.0150 0.0509 0.7792 0.9034

( 0.0774 ) ( 0.1427 ) ( 0.3544 ) ( 0.2490 )
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are obtained when using the intersection method, one for each DSM diagnosis. The BH

procedure is then applied to the two sets of p-values, each at level α. Final decisions are

made according to the intersection of the results on the two sets of p-values.

In the simulation, the intersection method was applied to the same dataset used by the

proposed method. In each simulation, the total number of rejections rI and that of false

rejections vI were recorded. Here the subscript I indicates the intersection method is used.

FDPI was calculated as vI/rI. PowerI was calculated as (rI− vI)/(500 ∗ (1− p00− p01− p10)).

The results using the intersection method are compared with that using the proposed method

and are also shown in Tables 2.5 - 2.8. For example, in Table 2.5 again, if in each simulation

49% of the 500 hypotheses are true in both sub-nulls (p00 = 0.49), 21% of the hypotheses are

true only in the sub-null tested by Ui (p01 = 0.21), 21% of the hypotheses are true only in the

sub-null tested by Vi (p10 = 0.21), the correlation between Ui and Uh is 0.4 (ρU = 0.4) and

the correlation between Vi and Vh is 0.8 (ρV = 0.8), the calculated FDR of the intersection

method is 0.0013 with a sample standard deviation 0.0344. The calculated power of the

intersection method is 0.0002 with a sample standard deviation 0.0071.

When the effect size δ is large or the proportion of true null hypothesis is high, FDR using

the intersection method is inflated even though it tends to have larger power. For example as

in Table 2.7, when p00 = 0.49, p01 = 0.21, p10 = 0.21, ρU = 0 and ρV = 0, the calculated FDR

using the intersection method is 0.0633 with sample standard deviation 0.1537. Similar as

using the proposed method, the FDR using the intersection method tends to increase when

the effect size increases or when the proportion of true null hypotheses increases or when the

correlation among elements in U or V decreases. Power of the intersection method increases

when the effect size increases or when the proportion of true null hypotheses decreases or

when the correlation among elements in U or V decreases.

Comparing the calculated FDR values and power values between the proposed method

and the intersection method in Tables 2.5 - 2.8, we can see that when the effect size δ is

small as in Table 2.5, the calculated FDRs and powers from both methods are very low

and are very close to each other, not matter how the proportion of true null hypothesis

(p00 + p01 + p10) or the correlation among elements in U or V changes. When the effect size

δ is large as in Table 2.8, the calculated FDR as well as power with the intersection method
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are always higher than those with the proposed method. However, in this case, the FDR

with the intersection method can be inflated and its variability is larger than that with the

intersection method. If the proportion of true nulls and the correlation among elements in

U or V hold constant, the FDR and power using both methods increase when δ increases

and both FDR and power with the intersection method increase faster than those with the

proposed method.

The proposed method compared favorably to the intersection method in terms of FDR

protection, but at a cost of losing power. The seemingly larger power using the intersection

method might be due to the fact that the BH procedure was applied at level α twice, thus

the overall targeted FDR was already elevated. However, it is still unknown how to partition

the α to the two applications so that the overall FDR can be controlled at the desired level

and what the power would be like in that case.

2.3.3 A Case Study

The proposed method was applied to a dataset obtained from a post-mortem tissue study

about mRNA levels in the brains of schizophrenia patients.

2.3.3.1 Brief Description of the Study and Data Cognitive deficit and dorsolateral

prefrontal cortex (DLPFC) dysfunction are likely to be associated with altered mRNA levels

in schizophrenia patients. In this post-mortem tissue study, brain tissue samples from 42

pairs of subjects were processed and the expression levels of 26 mRNAs were measured on

each subject. Among these 42 pairs, 14 were schizoaffective (SA) patients matched with

healthy controls on gender and as closely as possible on age and PMI, and the other 28 were

schizophrenia (SZ) subjects matched with healthy controls in the same way. 1

1As the mRNA levels from multiple brain regions were assessed, three patients were matched to two
different healthy control subjects for different mRNAs. For each of the three patients, we combined the data
from the two control subjects as if they were from a single control subject because dealing with the effects of
differing controls was complicated, as shown in Wu & Sampson (2012) and there were only three such cases
in our data.
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2.3.3.2 Application Result The proposed method was applied twice to the dataset,

one to identify mRNAs whose levels are significantly up-regulated in both SA and SZ and

the other to identify those that are significantly down-regulated in both DSM diagnoses.

The FDR was controlled at the 0.05 level for both applications. In order to find those that

are significantly down-regulated, the negative values of the measurements were used so that

the p-values were still one-sided from the right tail and the conditions for the proofs in previ-

ous sections hold. The measurements in the data were assumed to be normally distributed.

However, the variances of the distribution were unknown, thus the two test statistics Ui and

Vi followed t distributions. Because the patients and the healthy controls were matched,

paired t tests were applied and the degrees of freedom were 13 and 27 for SA and SZ, respec-

tively. The p-values from the t distribution and those from the standard normal distribution

using the same test statistic value were compared and they were fairly close. Therefore, the

p-values from the t distribution were used even though the preceding results and proofs were

all based on normal distributions.

While controlling the FDR at the 0.05 level, two mRNA levels were found to be signifi-

cantly up-regulated in both SZ and SA using the proposed method and none was found to

be significantly down-regulated in both diagnoses after the multiplicity adjustments. The

p-values based on the t distributions and final conclusion for each mRNA were tabulated in

Tables 2.9 - 2.10. The intersection method was also applied with the same result achieved.
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Table 2.9: mRNA levels significantly elevated in both SA and SZ

Gene SA p-value SZ p-value max(SA p-value, SZ p-value) Reject

CRIP1a 0.93241 0.96485 0.96485 0

DAGLa 0.15061 0.59606 0.59606 0

DAGLb 0.69489 0.39986 0.69489 0

FAAH 0.20300 0.16724 0.20300 0

GABA Receptor 1 0.95428 0.98195 0.98195 0

GAD67 0.91706 0.99929 0.99929 0

GAT1 0.18642 0.34657 0.34657 0

IFITM1 0.05481 0.00018 0.05481 0

IFITM23 0.02390 0.00002 0.02390 0

KCC2 0.39211 0.01201 0.39211 0

LHX6 0.89617 0.97673 0.97673 0

MGL 0.29445 0.33280 0.33280 0

Mu Opioid Receptor 0.08640 0.00004 0.08640 0

NKCC1 0.95251 0.94291 0.95251 0

OXSR1 0.00095 0.00000 0.00095 1

Parvalbumin 0.99887 0.98308 0.99887 0

RGS4 0.99265 1.00000 1.00000 0

STK39 0.67471 0.98696 0.98696 0

Somatostatin 0.93241 0.99937 0.99937 0

TRPV1 0.08923 0.00000 0.08923 0

WNK1 0.44529 0.06957 0.44529 0

WNK3 0.00037 0.00000 0.00037 1

WNK4 0.43069 0.04117 0.43069 0

mGluR1a 0.15880 0.00026 0.15880 0

mGluR5 0.15018 0.01928 0.15018 0

vGAT 0.93579 0.92328 0.93579 0
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Table 2.10: mRNA levels significantly lowered in both SA and SZ

Gene SA p-value SZ p-value max(SA p-value, SZ p-value) Reject

CRIP1a 0.0675857 0.0351521 0.0675857 0

DAGLa 0.8493919 0.4039423 0.8493919 0

DAGLb 0.3051075 0.6001404 0.6001404 0

FAAH 0.7970013 0.8327632 0.8327632 0

GABA Receptor 1 0.0457178 0.018048 0.0457178 0

GAD67 0.0829396 0.0007101 0.0829396 0

GAT1 0.8135795 0.6534292 0.8135795 0

IFITM1 0.9451934 0.9998188 0.9998188 0

IFITM23 0.9760984 0.999981 0.999981 0

KCC2 0.6078946 0.9879924 0.9879924 0

Lhx6 0.1038305 0.0232733 0.1038305 0

MGL 0.705548 0.6672014 0.705548 0

Mu Opioid Receptor 0.9136047 0.9999644 0.9999644 0

NKCC1 0.0474918 0.0570873 0.0570873 0

OXSR1 0.9990466 1 1 0

Parvalbumin 0.0011287 0.0169198 0.0169198 0

RGS4 0.0073523 0.0000019 0.0073523 0

STK39 0.3252933 0.0130381 0.3252933 0

Somatostatin 0.0675898 0.0006275 0.0675898 0

TRPV1 0.9107743 0.9999965 0.9999965 0

WNK1 0.5547129 0.9304279 0.9304279 0

WNK3 0.999633 0.9999997 0.9999997 0

WNK4 0.5693099 0.9588297 0.9588297 0

mGluR1a 0.8411959 0.9997351 0.9997351 0

mGluR5 0.8498222 0.9807218 0.9807218 0

vGAT 0.0642093 0.0767167 0.0767167 0

2.A APPENDIX

2.A.1 Distribution of U and V

Let U = (U1, U2, · · · , Um) and V = (V1, V2, · · · , Vm), where Ui and Vi are the test statistics

defined in (2.2.4) for the unpaired case and in (2.2.5) for the paired case. Based on our
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assumptions, Ui and Vi are independent and thus U and V are independent.

1. In the unpaired case,

U =
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U1
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...
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Ȳ b1 −Ȳ bc1√
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2 − Ȳ bc

2 , · · · , Ȳ b
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where

Cov(U)
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Therefore,
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3.0 COMPARING THE POPULATION WITH DYSFUNCTION AND THE

HEALTHY POPULATION

In this chapter we compare the identified neurobiological characteristics between the popula-

tion with dysfunction in the construct of interest and the healthy population through mean

differences and quantile differences.

3.1 MOTIVATION FOR THE COMPARISON

What has been done in the last chapter is identifying some neurobiological characteristics

that are significantly up-regulated or down-regulated across all the DSM diagnoses relevant

to a psychiatric construct of interest. The goal of the identification is to determine which

neurobiological characteristics are significantly involved in the dysfunction of the construct,

for instance, working memory. These neurobiological characteristics provide great oppor-

tunities to understand the mechanism of the illnesses in the construct. More precise and

effective treatments for mental illness may be developable in the future based on our knowl-

edge about the relationship between these identified neurobiological characteristics and the

construct.

There are various ways to further investigate the neurobiological characteristics to un-

derstand their roles in the mechanism they lead to dysfunction in the construct. Ideally,

if there are behavior measures in those post-mortem tissue databases, an RDoC study can

be used to establish the brain-behavior relationship, which is the relationship between the

neurobiological characteristics and behavior symptoms around the particular construct over

the general population. However, no behavior measures are available for the subjects in the
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post-mortem tissue databases. All we can study are the neurobiological measures themselves.

In spite of the unavailability of behavior measures, we can still carry out some studies

in the RDoC spirit by focusing on a specific construct. The comparisons of the neurobio-

logical characteristics between the healthy population and the population with dysfunction

are worthwhile because they provide information about where and how the two populations

differ. In this dissertation, we compare the means and quantiles in the neurobiological char-

acteristics between the two populations. In these comparisons, as discussed previously, the

random sample for the population with dysfunction is substituted with a mixture of ran-

dom samples from relevant DSM diagnoses. The relative proportion for each DSM diagnosis

among the entire population with dysfunction can be estimated from historical data. If

the construct is about a mental function for which some particular clinic exists, then the

historical composition of patients seen in the clinic can be used to estimate the relative pro-

portions. These patients would all present the dysfunction in this particular construct and

have been later given some DSM diagnosis in the clinic. For example, if researchers want

to estimate the relative proportions of the DSM diagnoses among the psychotic population,

the patients seen in a psychosis clinic can be used because they all have psychosis to some

degree. Suppose among those patients seen in a psychosis clinic, three DSM diagnoses are

later made. Also suppose among these patients, 20% have been later diagnosed with bipolar

disorder, 10% have been diagnosed to have major depressive disorder and 70% have been

diagnosed with schizophrenia, then the relative proportions of bipolar disorder, major de-

pressive disorder and schizophrenia among the population with psychosis are 20%, 10% and

70%, respectively. If no psychiatric clinic exists for some construct, then the relative pro-

portions can be calculated using Bayes theorem based on historical data from epidemiology

studies. The prevalence for each DSM diagnosis and the probability of dysfunction in the

construct of interest within each DSM diagnosis are needed to calculate the relative propor-

tions. For example, there are no working memory clinics, and thus if we want to estimate

the relative proportion of each DSM diagnosis among the population with low working mem-

ory, epidemiology data can be used. Suppose for illustration purpose, low working memory

is reported only in schizophrenia and bipolar disorder. Also suppose the prevalences for

schizophrenia and bipolar disorder are 4% and 6%, respectively. If the probabilities of low
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working memory among schizophrenia patients and bipolar disorder patients are 80% and

90%, respectively, then the relative proportion of schizophrenia among the population with

low working memory is 80% ∗ 4%/(80% ∗ 4% + 90% ∗ 6%) = 37%. Similarly, the relative

proportion for bipolar disorder is 63%. In theory, the relative proportion of DSM diagnosis

among the population with dysfunction in any particular construct can be calculated using

epidemiological data, however, we think it would be easier to use the patients composition

in a clinic if one exists. As noted in Assumption 3.3, we understand variability exists in

estimating the relative proportions. However, they are considered to be known and fixed to

simplify our problem.

3.2 COMPARISON OF THE POPULATIONS THROUGH THE MEANS OF

NEUROBIOLOGICAL CHARACTERISTICS

In Chapter 2, we identify the neurobiological characteristics by doing hypothesis testing

about their means. Although the neurobiological characteristics get identified if they are

significantly up-regulated (or down-regulated) in each individual DSM diagnosis compared

to the healthy population, it is still unknown how different they are collectively in the

population with dysfunction compared to the healthy population. And it is this collective

mean in the population with dysfunction in a construct that the researchers would like to

know in the RDoC spirit. Therefore in this section, we want to estimate the differences

in the means of the neurobiological characteristics between the healthy population and the

population with dysfunction in the construct of interest, with adjustment for confounding

covariates.

3.2.1 Layout of the Comparison through Means

Suppose there are k DSM diagnoses that are related to the construct of interest due to

having symptoms relevant to the construct. As introduced in Chapter 1, the population with

dysfunction in this construct is the original population we want to study and it is substituted
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by the mixture of k DSM diagnoses, each with a different relative proportion. Let Di be the

DSM diagnosis with relative proportion πi among the population with dysfunction, where

π1 < π2 < · · · < πk and
∑k

i=1 πi = 1. In other words, the DSM diagnosis Di is defined by its

relative proportion πi. Among the population with dysfunction in the construct of interest,

D1 is the DSM diagnosis with the smallest relative portion and Dk is the one with the largest

relative proportion. Once the relative proportion among the population with dysfunction is

known, each Di refers to a specific DSM diagnosis. Suppose there are ni subjects in Di and

n0 subjects from the healthy population.

Let ∆ be the true difference in the neurobiological characteristic between the population

with dysfunction in a particular construct and the healthy population. Our goal is to estimate

∆, i.e., obtain ∆̂. Because the population with dysfunction is represented by a mixture of the

k DSM diagnoses, the difference in the neurobiological characteristic between the population

with dysfunction and the healthy population can be written as a linear combination of the

differences between each DSM diagnosis and the healthy population. In other words, if

we use ∆i to denote the true difference in the neurobiological characteristic between DSM

diagnosis Di and the healthy population, then

∆ =
k∑
i=1

πi∆i. (3.2.1)

If ∆̂i is the estimate of ∆i, then
∑k

i=1 πi∆̂i can be used to estimate ∆, and we define

∆̂ =
k∑
i=1

πi∆̂i. (3.2.2)

The notation used in this chapter is summarized in Table 3.1. The notation in Table 3.1

that has not been already introduced is defined later in this chapter.
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Table 3.1: Notations in the Comparison between the population with dysfunction and the

healthy populations

∆ true difference in the neurobiological characteristic between the population

with dysfunction and healthy populations

∆̂ estimated difference in the neurobiological characteristic between the popula-

tion with dysfunction and healthy populations

k number of DSM diagnoses

Di the ith DSM diagnosis defined by the relative proportion

D(i) the DSM diagnosis with sample size n(i)

πi relative proportion of Di in the population with dysfunction

π(i) relative proportion of D(i) in the population with dysfunction

∆i true difference in the neurobiological characteristic between Di and healthy

population

∆̂i estimated difference in the neurobiological characteristic between Di and

healthy population

ni number of subjects used for Di

n(i) ith order statistic of n1, n2, · · · , nk
n0 number of subjects used for healthy control group

y(i)j measurement of the neurobiological characteristic of the subject in D(i) and

the jth match

ε(i)j random error of observation y(i)j

βi diagnosis effect for Di

β(i) diagnosis effect for D(i)

β0 diagnosis effect for the healthy controls

γj match effect for Mj

X design matrix

y vector of all the observations

β vector of parameters

ε vector of all the random errors
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3.2.2 Assumptions for Comparison through Means

Before we are able to work out a formula to estimate ∆, we need some assumptions for the

form of the design we use. Different designs give rise to different formulae. Because we

want to adjust for covariates, a matched sample design is used where subjects are matched

as closely as possible by some of the important covariates. For post-mortem studies, these

covariates could be sex, age, post-mortem interval and so on. Matching not only reduces the

confound effects from this covariates but also reduces the variation introduced by processing

the tissue samples in different batches. In this dissertation some assumptions are needed for

the matching so that a specific form of design can be obtained.

Assumption 3.1. In each match, there is exactly one healthy control subject and at most

one subject in each DSM diagnosis, and it is assumed at least one DSM diagnosis has a

subject.

Matches with no healthy control subject or more than one subject in any DSM diagnosis

or the healthy control group are not considered here, even if the tissue processing capacity is

large enough to process more than one subject in each DSM diagnosis or the control group.

This assumption is to simplify the formulation of the problem. Otherwise, we need some

other parameter for the sample processing capacity. Also we have to deal with differing

controls if more than one healthy subject is allowed in each match, which is shown to be

complicated in Wu & Sampson (2012). Based on this assumption, with k DSM diagnoses,

the number of DSM diagnosed subjects in each match could range from 1 to k. For example

when k = 3, without regard to the specific DSM diagnosis, a match could have one of the

following three possibilities: one healthy control and three DSM diagnosed subjects, one

from each diagnosis; one healthy control and two DSM diagnosed subjects, each from a

different diagnosis; or one healthy control and one DSM diagnosed subject. Therefore in this

example, in one match, at most four subjects and at least two subjects are matched together.

Also according to this assumption, it follows immediately that the number of healthy control

subjects is equal to the number of matches in the design. This means if the total number of

subjects that can be processed is held fixed and we could have as few matches as possible,

the number of healthy control subjects can be kept as small as possible. This is important in
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cases where the budget of a study is limited because we could then spend more resources on

subjects with dysfunction. Actually Assumption 3.2 allows us to have the smallest number

of matches with the sample size for each DSM diagnosis given.

One thing that needs to be mentioned is that for each match, each subject from the DSM

diagnosis could have its own healthy control subject from the post-mortem tissue database it

is sampled from. In cases where there are more than one candidate healthy subject, we can

choose the one that has a closer mean distance in the matching variables from all the subjects

with DSM diagnoses in that match. For example, suppose DSM diagnoses D1 and D2 are

related to the construct of interest and we want to match a subject from a post-mortem

tissue database for D1 (denoted as Sub1) to one from a post-mortem tissue database for

D2 (denoted as Sub2) based on age and PMI. The ages and PMIs for the two subjects are

listed in Table 3.2. Suppose each of Sub 1 and Sub 2 has its own healthy control in its

own database (denoted as Con1 and Con2, respectively) and the age and PMI for the two

healthy subjects are also listed. In order to determine which healthy control subject to use

for this match, we can calculate for each of Con1 and Con2 the distance in age and PMI it

has between each of Sub1 and Sub2. The control subject with a smaller mean distance from

Sub1 and Sub2 would be chosen. For the hypothetical example in Table 3.2, because Con1

has a smaller mean distance, it is included into this match. Here the metric for distance is

Euclidean distance, and clearly other metrics can be used.

Table 3.2: Illustration of how to choose among multiple healthy control subjects

Subject Age PMI Distance to Sub1 Distance to Sub2 Mean Distance

Sub1 42 26.1

Con1 40 29.1 3.61 9.14 6.37

Sub2 46 22.2

Con2 47 15.3 11.90 6.97 9.44

Assumption 3.2. Each match allows as many DSM diagnoses as possible.

This assumption is a very critical one as it says when processing the tissue samples, we

try to include as many DSM diagnosed subjects as possible into each match. In general,
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if nothing is assumed about the number of DSM diagnoses in one match, more than one

type of design can be obtained even with the same configuration of (n1, n2, · · · , nk), just by

varying the number of matches, i.e., number of healthy controls. For example, consider a

simple case where only two DSM diagnoses are involved and we have four subjects in D1

and three subjects in D2, i.e., k = 2, n1 = 4, n2 = 3. All of the four designs listed in Table

3.3 are possible. Here each row is a match.

Table 3.3: Possible designs with k = 2, n1 = 4, n2 = 3

(a) Desirable

D1 D2 Control

× × ×
× × ×
× × ×
× ×

(b) Undesirable

D1 D2 Control

× × ×
× × ×
× ×
× ×

× ×

(c) Undesirable

D1 D2 Control

× × ×
× ×
× ×
× ×

× ×
× ×

(d) Undesirable

D1 D2 Control

× ×
× ×
× ×
× ×

× ×
× ×
× ×

As shown in the above tables, with n1, n2, · · · , nk holding constant, there are various

possible designs. These possible designs are different from each other in the number of

healthy control samples, and thus also different in the number of matches. This is problematic

because there could be a large number of possible designs each with a different design matrix

and thus it is difficult to write down the design matrix without knowing which design is used.

However, according to Assumption 3.2, among all the designs shown in Table 3.3, only the

one in (a) is considered in this dissertation. The ones in (b), (c) and (d) are not considered
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because they all have matches that could have included one more DSM diagnosis, thus

contradicts Assumption 3.2. For instance, sample from D2 in the last row of Table (b) could

have been processed in the third or fourth match. In other words, with Assumption 3.2,

designs represented in Tables (b), (c) and (d) can all be converted to that represented in

Table (a) by combining some of the matches and dropping some healthy control subjects. In

reality, we understand that the combination could possibly make the subjects within a match

have very different covariates. However, it is still justifiable to process tissue samples from

these subjects in one match because we think the batch effect brings in a larger variation

than that introduced by the different covariates. Since in each match we try to include

the most number of DSM diagnoses, Assumption 3.2 improves the efficiency of the tissue

processing.

An immediate result of Assumption 3.2 is that it indicates the number of matches is as

small as possible. Together with Assumption 3.1, the sample size for the healthy population

is as small as possible. Furthermore, we can show that the sample size for the healthy

population is equal to the maximum of the sample sizes in the DSM diagnoses. This result

is stated and proved as the following.

Result 3.1. Under Assumptions 3.1 and 3.2, n0 = max(n1, n2, · · · , nk).

Proof. The form of the design under the assumption can be easily stated if n(1), n(2), · · · , n(k)

are the order statistics of n1, n2, · · · , nk. Let D(i) be the DSM diagnosis with sample size

n(i); π(i) be the relative proportion of D(i) among the population with dysfunction and N(i)

be the number of subjects available for D(i) from all possible post-mortem tissue databases.

Based on Assumption 3.2, we want each match to contain as many DSM diagnoses

as possible. Therefore, because there are at least n(1) subjects in each DSM diagnosis, the

study always has n(1) matches each with k different DSM diagnosed subjects and one healthy

control subject. Each of the k DSM diagnosed subjects within these n(1) matches comes from

a different DSM diagnosis amongD(1), D(2), · · · , D(k). Similarly there are (n(2)−n(1)) matches

each with (k−1) DSM diagnosed subjects and one healthy control. Each of the (k−1) DSM

diagnosed subjects comes from a different DSM diagnosis among D(2), · · · , D(k). There are

(n(3)−n(2)) matches each with (k−2) DSM diagnosed subjects and one healthy control. Each
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of the (k − 2) DSM diagnosed subjects within these matches comes from a different DSM

diagnosis among D(3), · · · , D(k). The list goes on until there are (n(k)−n(k−1)) matches each

with only one DSM diagnosed subject from D(k) and one healthy control subject. So in every

match, there is a healthy control subject and a subject from D(k). It immediately follows

that the number of subjects in the healthy population is equal to n(k), which is the maximum

of the sample sizes in the DSM diagnoses, i.e., n0 = max(n1, n2, · · · , nk) = n(k).

To further simplify the problem, we also make the following assumption about the relative

proportions.

Assumption 3.3. The relative proportion πi’s are assumed to be known.

Thus we assume πi to be known and fixed, even though it is estimated from the patient

composition in a clinic. The inherent variability in estimating πi is not taken into account

in our problem.

3.2.3 Study Design for Comparison through Means

In order that the study can be represented clearly and the design matrix be given in a

general form for any design satisfying the assumptions, the order of the sample sizes for each

DSM diagnosis needs to be known. Therefore, using the notation introduced in the proof of

Result 3.1, the study design under consideration can be represented in a specific form called

“triangular design” by us as illustrated in Table 3.3(a). In general, the triangular design is

shown in Table 3.4.

As we can see in the above table, if the DSM diagnoses are listed with increasing sample

sizes from the left to the right, the representation of the design takes the triangular shape.

And this is where the name of the “triangular” design comes from. Under our assumptions,

if the sample sizes n1, n2, · · · , nk are fixed, then the triangular design is unique. For example,

the desirable case in Table 3.3(a) is in the triangular form if we switch the columns D1 and

D2.
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Table 3.4: Triangular Design Under the Assumptions

D(1) D(2) D(3) · · · D(k) Control

× × × · · · × × n(1) matches

× × · · · × × (n(2) − n(1)) matches

× · · · × × (n(3) − n(2)) matches
...

...
...

...

× × (n(k) − n(k−1)) matches

n(1) n(2) n(3) · · · n(k) n(k) sample size for each group

3.2.4 Modeling for Comparison through Means

In each of the subjects in the study, one or more neurobiological characteristics are mea-

sured and the differences in these neurobiological characteristics ∆ are estimated between

the healthy population and the population with dysfunction in the psychiatric construct of

interest. Our estimate of the difference is obtained from an ANOVA model of the data. The

design matrix and estimator of the difference are specified based on the ANOVA model.

We assume only one neurobiological characteristic is measured and focus on the univari-

ate ANOVA model in this section. The multivariate case is shown in Appendix 3.A.2.

3.2.4.1 ANOVA Model Because the study design is represented using the notation

D(i) and n(i), the ANOVA model is specified in the same way. Let y(i)j and y0j be the

measurements of the neurobiological characteristics in the jth match for the subjects in D(i)

and the healthy control group, respectively. Let β(i) and β0 denote the diagnosis effect for

D(i) and the healthy control respectively. Let γj be the match effect for the jth match. Let

ε(i)j and ε0j be the error terms for observations y(i)j and y0j, respectively. It is assumed that

the distributions of ε(i)j and ε0j are iid N(0, σ2). The ANOVA model can be written as:

y(i)j = β(i) + γj + ε(i)j, i = 1, 2, · · · , k, j = 1, 2, · · · , n(i);

y0j = β0 + γj + ε0j, j = 1, 2, · · · , n(k).
(3.2.3)
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Under the model in (3.2.3), if ∆(i) denotes the true difference of the neurobiological

characteristic between D(i) and the healthy population with adjustment for the γ′js, then

∆(i) = β(i) − β0, i = 1, 2, · · · , k.

Let ̂β(i) − β0 denote the estimate of β(i)− β0, then the estimate of ∆ is ∆̂(i) = ̂β(i) − β0, (i =

1, 2, · · · , k).

By definition, ∆(1),∆(2), · · · ,∆(k) is just a permutation of ∆1,∆2, · · · ,∆k, so the sums∑k
i=1 πi∆i and

∑k
i=1 π(i)∆(i) are equal. For the same reason, the sums

∑k
i=1 πi∆̂i and∑k

i=1 π(i)∆̂(i) are equal. Therefore, the expressions in (3.2.1) and (3.2.2) become:

∆ =
k∑
i=1

π(i)∆(i) =
k∑
i=1

π(i)(β(i) − β0),

∆̂ =
k∑
i=1

π(i)∆̂(i) =
k∑
i=1

π(i)( ̂β(i) − β0).

Otherwise stated, in order to estimate ∆, we only need to sort the DSM diagnoses by their

sample sizes and then derive the estimator for β(i) − β0.

3.2.4.2 Estimator of ∆ In this section, the design matrix X of the ANOVA model

and the estimates ̂β(i) − β0 and ∆̂ in terms of the raw data y(i)j are given. Before express-

ing ̂β(i) − β0 in the raw data, the estimability of β(i) − β0 is proved with detailed proof in

Appendix.
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For the triangular design represented in Table 3.4, the stated ANOVA model in (3.2.3)

can be rewritten in matrix form as:



y(1)1

y(1)2

...

y(1)n(1)

y(2)1

y(2)2

...

y(2)n(2)

...

y(k)1

y(k)2

...

y(k)n(k)

y01

y02

...

y0n(k)


︸ ︷︷ ︸

y

=



1 · · · 0 0 1 0 · · · 0 0 0 · · · 0 · · · 0

1 · · · 0 0 0 1 · · · 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...

1 · · · 0 0 0 0 · · · 1 0 0 · · · 0 · · · 0

0 · · · 0 0 1 0 · · · 0 0 0 · · · 0 · · · 0

0 · · · 0 0 0 1 · · · 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...
...

...

0 · · · 0 0 0 0 · · · 0 0 0 · · · 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 1 0 1 0 · · · 0 0 0 · · · 0 · · · 0

0 · · · 1 0 0 1 · · · 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...

0 · · · 1 0 0 0 · · · 0 0 0 · · · 0 · · · 1

0 · · · 0 1 1 0 · · · 0 0 0 · · · 0 · · · 0

0 · · · 0 1 0 1 · · · 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...

0 · · · 0 1 0 0 · · · 0 0 0 · · · 0 · · · 1


︸ ︷︷ ︸

X



β(1)

...

β(k)

β0

γ1

γ2

...

γn(1)

γn(1)+1

γn(1)+2

...

γn(2)

...

γn(k)


︸ ︷︷ ︸

β

+



ε(1)1

ε(1)2

...

ε(1)n(1)

ε(2)1

ε(2)2

...

ε(2)n(2)

...

ε(k)1

ε(k)2

...

ε(k)n(k)

ε01

ε02

...

ε0n(k)


︸ ︷︷ ︸

ε

.

(3.2.4)

Here y is the data vector for all the observations, X is the design matrix, β is the vector

of parameters and ε is the random error vector for y. Because both ε(i)j(i = 1, 2, · · · , k; j =

1, 2, · · · , n(i)) and ε0j(j = 1, 2, · · · , n(k)) are assumed to follow iid N(0, σ2), the distribution of

y is the multivariate normal distribution with mean Xβ and variance matrix σ2In(k)+
∑k
i=1 n(i)

,

where In(k)+
∑k
i=1 n(i)

is the identity matrix with dimension n(k) +
∑k

i=1 n(i).

Now we can show β(i)−β0 is estimable under the ANOVA model. Let l(i) be the column

vector such that l′(i)β = β(i) − β0(i = 1, 2, · · · , k). Obviously l(i) is a vector with dimension

k+1+n(k) and it has 0 everywhere except that the ith element is 1 and the (k+1)th element
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is -1.

l′(i) = (0 · · · 0 1 0 · · · 0 −1 0 · · · 0)

↑ ↑ ↑
(k + 1 + n(k))× 1 ith (k + 1)th

. (3.2.5)

From linear model theory, we know that if l(i) = X ′X τ(i) holds for some column vector

τ(i) with dimension k + 1 + n(k), then l′(i)β is estimable and ̂β(i) − β0 can be expressed as:

̂β(i) − β0 = l′(i)β̂ = l′(i)(X ′X )−X ′y = τ ′(i)X ′X (X ′X )−X ′y = τ ′(i)X ′y. (3.2.6)

In other words, if we can find a τ(i) such that l(i) = X ′X τ(i) holds, β(i)−β0 is estimable. The

existence of τ(i) is shown in Appendix 3.A.1.

Because β(i) − β0 is estimable, ̂β(i) − β0 can be expressed as τ ′(i)X ′y as shown in (3.2.6).

If vector π′ = (π(1) π(2) · · · π(k)) and matrix T = (τ(1) τ(2) · · · τ(k)), then based on (3.2.2) we

have

∆̂ =
k∑
i=1

π(i)( ̂β(i) − β0)

=
k∑
i=1

π(i)(τ
′
(i)X ′y)

= (π(1) π(2) · · · π(k))


τ ′(1)

τ ′(2)
...

τ ′(k)

X ′y
= π′T ′X ′y. (3.2.7)
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3.3 COMPARISON OF THE POPULATIONS THROUGH THE

QUANTILES OF NEUROBIOLOGICAL CHARACTERISTICS

As discussed previously, the RDoC intends to learn the fundamental biological mechanism

for mental illness and to incorporate the biological measures into a new diagnostic approach.

The neurobiological characteristics identified in Chapter 2 are the potential targets to be

studied in research because we already know they are significantly different in the popula-

tion with dysfunction than those in the healthy population. This is because their means in

each DSM diagnosis are significantly different from those in the healthy population. However,

in order to understand the mechanism why these neurobiological characteristics could lead

to mental illness and to possibly include them in the future diagnosis, research with dimen-

sional approaches needs to be done under the RDoC framework. For example, researchers

may want to compare the distributions of the neurobiological characteristics between the

healthy population and the population with dysfunction so that they can establish the norm

of the neurobiological characteristic and know what values of the measured neurobiological

characteristic indicate illness for a patient.

The comparison through the means described in Section 3.2 would inform researchers

about the difference in the distribution of the neurobiological characteristic only when the

distribution in the population with dysfunction is unimodal and relatively symmetric. The

reason is that what has been compared is just a central location and when the distribu-

tion is multi-modal or highly skewed, the comparison of a central location does not provide

the picture of the full distribution. For example, suppose two DSM diagnoses, D1 and D2,

are relevant to a construct of interest with relative proportions 0.3 and 0.7, respectively,

then the population with dysfunction can be considered as a mixture of these two DSM

diagnoses. If the neurobiological characteristic from D1 follows a normal distribution with

mean −4 and variance 1, i.e., N(−4, 1) and that from D2 follows a normal distribution

N(−1, 1), then the neurobiological characteristic follows a gaussian mixture distribution

0.3 ∗ N(−4, 1) + 0.7 ∗ N(−1, 1) over the population with dysfunction. Also suppose the

neurobiological characteristic from the healthy population follows the standard normal dis-

tribution N(0, 1). As can be shown in Figure 3.1, the mixture distribution is skewed and
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Figure 3.1: Illustration of limitation in the mean comparison

bimodal, and thus just comparing the mean of the mixture to that of the standard normal

distribution does not indicate the bimodal shape of the mixture distribution, and thus does

not give the full insight of how the two populations differ.

For the neurobiological characteristic identified with the proposed method in Chapter

2, there is for certain a significant mean difference in it between the population with dys-

function and the healthy population because a consistent significant mean difference exists

between each DSM diagnosis and the healthy population. However, this significant mean

difference could be driven by a very significant difference between the two populations in the

5% quantile but insignificant difference in the 95% quantile. The 5% quantile of a distribu-

tion is a measure in location such that there is 5% in chance a randomly selected observation

from that distribution is smaller than or equal to it. In such a case of significant 5% quan-

tile and insignificant 95% quantile, it suggests that the distance in the lower extremes of
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the distributions of the neurobiological characteristic between the two populations are more

statistically significant than that in the upper extremes. It is possible that those subjects

within the 5% quantile are from a special subpopulation among the population with dysfunc-

tion. Therefore, it is the subjects whose measured neurobiological characteristics are within

the 5% quantile that deserve more investigation, rather than those with measured neurobi-

ological characteristics above the 95% quantile. For the neurobiological characteristic that

has not been identified as significant with the proposed method in Chapter 2, a significant

difference in some quantile may still exist between the two populations although there is no

universal significance in the mean comparison to the healthy population across all relevant

DSM diagnoses. Therefore, a comparison through quantiles for these neurobiological char-

acteristics between the two populations also makes sense. If only the means are compared,

researchers would have not much of an idea at what quantiles the two populations start to

differ from each other. In other words, in the case of multimodal or skewed mixture distribu-

tion, a comparison of the pth quantile in the distribution of the neurobiological characteristic

rather than the means would be more helpful for researchers to understand where exactly

the neurobiological characteristics differ between the two populations.

In order to compare the pth quantiles of the neurobiological characteristics between the

population with dysfunction and the healthy population, brain tissues need to be collected

from both populations. Again we use the available post-mortem tissue databases for these

brain tissues. Two issues remain to be solved in the quantile comparison. First, as in the

comparison of the means of the neurobiological characteristics, the comparison of the quan-

tiles also needs adjustment for covariates such as age and PMI as well as the batch effect

in tissue processing. The covariates and tissue processing are known to be likely related to

the measurements of neurobiological characteristics. They need to be adjusted, so that a

properly adjusted estimate of the difference in quantiles between the two populations can be

obtained. To solve this problem, a matched subject design study can be used. The second

issue in the quantile comparison comes from sampling from the mixture population. Because

the population with dysfunction is a mixture of several DSM diagnoses, ideally the number

of subjects from each DSM diagnosis in the sample reflects the relative proportion of that

DSM diagnosis in the mixture population. However, in reality, we are limited in the number
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of subjects that are available for each DSM diagnosis because we are using post-mortem

tissue databases. This limitation could lead to the fact that the sample sizes for the DSM

diagnoses in the sample we use are disproportionate to those in the original population with

dysfunction. Therefore, the sample size we use for each DSM diagnosis needs to be corrected

in the comparison to reflect its true proportion. One technique that is available to compare

the quantiles while taking care of the above two issues is weighted quantile regression. In this

section, we will talk about the quantile comparison through this semi-parametric method.

3.3.1 Assumptions for Comparison through Quantiles

As discussed above, a matched subject design study is to be used and thus all the assump-

tions about subject matching in the comparison through the means in Section 3.2 still hold.

The triangular design, which is a matched sample design, is still applicable here. In order

to be matched, the subjects should have the same gender and have ages and PMI’s as close

as possible.

The measurements of the neurobiological characteristics from the subjects in the trian-

gular design are to be used for the quantile comparison. However, unlike the comparison of

the means, no assumptions need to be made about the distribution of the neurobiological

characteristics in the comparison of quantiles thanks to the semi-parametric method we are

using.

3.3.2 Layout of the Comparison through Quantiles

Most of the notation here follows that in the mean comparison. Again let Di be the

DSM diagnosis with relative proportion πi among the population with dysfunction, where

π1 < π2 < · · · < πk and
∑k

i=1 πi = 1. Let ni be the sample size chosen in Di and

n0 be the number of chosen subjects from the healthy population. Based on Result 3.1,

n0 = max(n1, n2, · · · , nk) for the triangular design.

In the mean comparison, because the design matrix is needed in a general form to com-

pute the estimates, we need to know the order of the sample sizes and thus the problem is

specified with ordered notation D(i) and n(i). For quantile comparison, because the design
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matrix is unnecessary, we can simply use Di and ni instead of the ordered notation.

Let Ydij(d = I(i 6= 0); i = 0, 1, · · · , k; j = 1, 2, · · · , ni) be the measurement of the neuro-

biological characteristic for the subject in Di and Match j. The index d indicates whether

a subject is from the mixture population with dysfunction or the healthy population. The

index i tells which DSM diagnosis the subject is from. If i = 0 which means the subject is

from the healthy population, then d = 0. Otherwise the subject is from Di and thus d = 1.

The measurements with d = 1 form a sample from the mixture population with dysfunction

and the measurements with d = 0 form a random sample from the healthy population. A

model is built using the two samples to compare the pth quantile of a neurobiological charac-

teristic in the mixture population with that in the single healthy population. Let ∆p and ∆̂p

be the true and estimated differences in the pth quantile in the distribution of the neurobi-

ological characteristic between the population with dysfunction and the healthy population

after adjustment for covariates, respectively, where p is given. Our goal is to estimate ∆p,

i.e., to obtain ∆̂p. For example, when p = 0.5, the difference of the medians between the

two populations is estimated.

3.3.3 Modeling for Comparison through Quantiles

As introduced previously, a weighted quantile regression of the data collected from the tri-

angular design is used to estimate ∆p. Before stating the model, we provide a brief review

of quantile regression first.

3.3.3.1 Quantile Regression Quantile regression is a regression technique to estimate

the conditional quantiles of a response variable. The idea of quantile regression dates back

to 1951 when Brown & Mood (1951) proposed median regression. After that Hogg (1975)

generalized it to percentile regression. In 1978, Koenker & Bassett (1978) first formally

formulated it and called it regression quantiles. Quantile regression intends to examine the

relationship between the pth quantile of the response variable and some independent vari-

ables. While p can be any value between 0 and 1, the relationship between any quantile of the

response variable and the independent variables can be estimated, and thus the relationship
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Figure 3.2: Illustration of lp(y) for p = 0.25, 0.5, 0.75

between the entire distribution of the response variable and the independent variables can

be described functionally. To formally introduce quantile regression and how to estimate the

parameters in quantile regression, we need to introduce quantiles first. Let Qp
Y be the pth

quantile of a random variable Y , then Qp
Y is defined as:

Qp
Y = F−1

Y (p) = inf{y : F (y) > p},

where F (y) is the cumulative distribution function of Y and 0 ≤ p ≤ 1.

In contrast to the estimation of the mean of a random variable through the least square

loss function, Qp
Y can be obtained by minimizing the expectation of a particular asymmetric

absolute loss function lp(y), where

lp(y) = |(p− I(y < 0))y| = [p− I(y < 0)]y.

The expectation is taken with respect to the distribution of Y , as described in Davino et al.

(2013). Figure 3.2 below illustrates lp(y) for three different p’s. As can be seen from the

figure, lp(y) specifies a different loss cost for y > 0 and y ≤ 0 and hence the name asymmetric

absolute loss function. When y > 0, the loss cost is p and when y ≤ 0, the loss cost is (p−1).

Using the loss function lp(y), Qp
Y , the pth quantile of random variable Y , is just the

solution that minimizes the expected loss function with respect to Y , according to Davino
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et al. (2013). That is to say, if the distribution function of Y is known, Qp
Y can be obtained

through the formula in (3.3.1):

Qp
Y = argmin

c
EY [lp(y − c)]. (3.3.1)

If a random sample of Y is given rather than the distribution function is known, the expec-

tation in (3.3.1) can be taken with respect to the empirical distribution of Y .

What the quantile regression does is to model the conditional quantile of Y given some

independent variables X. It assumes the pth quantile of Y is linearly dependent on X .There-

fore, the pth conditional quantile is parametrized as a linear combination of the elements

in X and then obtained through minimization of the above loss function. Equivalently, if

Qp
Y |X denotes the pth conditional quantile of Y on X and βp is the coefficient for the linear

combination, then

Qp
Y |X = Xβp,

and by Davino et al. (2013) βp can be found by solving the following minimization in (3.3.2)

with respect to the distribution of Y :

β̂p = argmin
βp

EY [lp(y −Xβp)]. (3.3.2)

For a given sample (y1,X1), (y2,X2), · · · , (yn,Xn) where X1,X2, · · · ,Xn are fixed values,

in order to estimate the pth conditional quantile of Y on X, the expectation in (3.3.2) would

be taken with respect to the empirical distribution of Y and the objective function we

minimize in (3.3.2) becomes

β̂
p

= argmin
βp

n∑
i=1

[lp(yi −Xiβ
p)]

= argmin
βp

[
∑

i∈{i:yi≥Xiβ
p}

p(yi −Xiβ
p) +

∑
i∈{i:yi<Xiβ

p}

(1− p)(Xiβ
p − yi)].
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If each sample (yi,Xi) has a weight ωi, then by Koenker (2005) the parameter βp can be

found through a weighted quantile regression by solving the following objective function in

(3.3.3).

β̂p = argmin
βp

n∑
i=1

[ωilp(yi −Xiβ
p)]

= argmin
βp

[
∑

i∈{i:yi≥Xiβ
p}

ωip(yi −Xiβ
p) +

∑
i∈{i:yi<Xiβ

p}

ωi(1− p)(Xiβ
p − yi)]. (3.3.3)

As can be seen from the above discussion, quantile regression is very different from

the usual least square regression because the two regression techniques use different loss

functions and estimate different things. The least square regression estimates how the mean

of Y changes according to X and the quantile regression estimates how the pth quantile of

Y changes according to X.

The parameters in quantile regression are estimated through linear programming and

thus there are no closed form expressions for the estimates. The parameters tell us for one

unit increase in an independent variable while holding other independent variables constant,

how much the expected pth quantile of the response variable changes.

3.3.3.2 Model for Quantile Comparison Recall our goal is to model the data from

the triangular design to estimate the difference in the pth quantile between the mixture pop-

ulation with dysfunction and the healthy population adjusting for covariates. The covariate

adjustment issue can be addressed by adding a matching effect into the model. Now the

question is what effect to use to distinguish subjects from the two different populations. In

the mean comparison, the DSM diagnosis effect is used because the mean of the neurobio-

logical characteristic in each DSM diagnosis can be estimated and then linearly combined to

estimate the mean of the neurobiological characteristic in the population with dysfunction.

However, the linear combination of the pth quantile in each DSM diagnosis is not the pth

quantile of the population with dysfunction. Therefore specifying the DSM diagnosis in the

quantile regression model does not lead to an estimate of the pth quantile of the neurobiolog-

ical characteristic in the population with dysfunction. As a result, in the quantile regression
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model a population effect is used to describe whether a subject is from the healthy popula-

tion or the population with dysfunction. For example, if we are interested in the quantile of

a neurobiological characteristic involved in psychosis, then the population effect would have

two levels, either psychotic or healthy.

If we use βpd to denote the population effect in the pth quantile of the neurobiological

characteristic about whether a person has dysfunction in the construct or not (d = 1 if with

dysfunction and d = 0 if healthy), then the quantile regression model can be written as:

Qp
dj = βpd +Mp

j , d = 1, 0; j = 1, 2, · · · , n0; 0 < p < 1, (3.3.4)

where Qp
dj is pth quantile of the neurobiological characteristic for subjects in Match j and

from population d. Here the index j goes from 1 to n0 in both populations because both

populations have n0 matches. However, the number of subjects from population d = 1 is

larger than that from population d = 0 because the population with d = 1 is a mixture

population and have more than one DSM diagnosis. Together we have n0 + 2 parameters to

estimate, which are (βp0 , β
p
1 ,M

p
1 ,M

p
2 , · · · ,Mp

n0
).

Let εdij be the error term for observation Ydij. We prove in Appendix 3.A.3 that the

above model in terms of the conditional quantile is equivalent to

Ydij = βpd +Mp
j + εdij, d = 1, 0; i = 0, 1, · · · , k; j = 1, · · · , ni; 0 < p < 1, (3.3.5)

provided that the pth quantile of F0, the distribution of the error term in the healthy popu-

lation and that of F1, the distribution of the error term in the population with dysfunction

are both 0. If the pth quantile of F0 or that of F1 is not 0, then the model in (3.3.4) does

not provide an unbiased estimate of the pth conditional quantile of the neurobiological char-

acteristic with given match and population.

The model in (3.3.4) estimates the pth quantile of the distribution of the neurobiological

characteristic in each of the two populations while also adjusting for the matching effect.

If β̂pd is the estimate of βpd , then ∆̂p = β̂p1 − β̂
p
0 is the estimate of the difference in the pth

quantile of the neurobiological characteristic between the population with dysfunction and

the healthy population. Although no DSM diagnosis is involved in the model statement, the
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above model allows the differences in the pth quantile of the distributions of the neurobiolog-

ical characteristic between each DSM diagnosis and the healthy population to be different.

The proof is in Appendix 3.A.4.

One thing that worth mentioning is that in the model the match effect Mp
j takes care of

the variation introduced in the tissue processing as well as in the matching covariates such

as age and PMI. If later on researchers are interested in the effect of some other covariates

that are not used in the matching, such as PH, these covariates can be put into the model.

However, we choose not to do it here in the dissertation because we want to keep the model

for the quantile comparison as close as possible to that for the mean comparison.

3.3.3.3 Weighting the Subjects We have established a model to estimate the pth

quantile of the neurobiological characteristic in the healthy population as well as the mixture

population with dysfunction of interest. However, the problem is that the observed data are

not a random sample from the population with dysfunction. Rather the observed data for

each DSM diagnosis is a random sample from that diagnosis only. As mentioned earlier,

the numbers of subjects in each DSM diagnosis collected in the sample do not necessarily

have the same relative proportion as appeared in the population with dysfunction, i.e.,

n1 : n2 : · · · : nk is not necessarily equal to π1 : π2 : · · · : πk. Thus, if we ignore that the

data are not a random sample from the mixture population and treat it as such, because

the ni’s can be quite different from the πi’s, the assumption of a random sample from the

mixture population could be quite invalid. If no adjustment is made for the sample size in

the data, what we input into the model does not reflect the true composition of the mixture

population and thus we are unable to approach the true distribution of the neurobiological

characteristic in the mixture population.

To obtain a valid estimate of ∆p, the difference in the pth quantile between the two

populations, we develop a heuristic weighted approach to find an estimator and study the

properties of this estimator through simulation.

The weighted approach is to assign each observation ydij a proper weight ωdi. For the

population with dysfunction, i.e., d = 1, all the observations in Di have the same weight ω1i
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in the modeling, where

ω1i = πi ∗ n−1
i ∗

k∑
i=1

ni, i = 1, 2, · · · , k.

Through weighting the subjects, it looks as if Di has sample size ω1i∗ni. Instead of occurring

for only once, the observation y1ij would seem to occur for ω1i times in the data. For the

subjects from the healthy population, because they all come from a single population, no

adjustments need to be made. Therefore, they all get weight 1, i.e., ω00 = 1. The weighting

of the subjects can be taken care of through weighted quantile regression, as described in

Koenker (2005).

If we plug the model in (3.3.4) into the objective function in (3.3.3), the parameters in

the model can be solved through minimization of the following specific objective function,

which is

(β̂p0 , β̂
p
1 , M̂

p
1 , M̂

p
2 , · · · , M̂p

n0
)

= argmin
(βp0 ,β

p
1 ,M

p
1 ,M

p
2 ,··· ,M

p
n0

)

[
∑

(d,i,j)∈{(d,i,j):ydij≥βpd+Mp
j }

ωdip(ydij − βpd −M
p
j )

+
∑

(d,i,j)∈{(d,i,j):ydij<βpd+Mp
j }

ωdi(1− p)(βpd +Mp
j − ydij)].

3.3.4 Simulation Study for Comparison through Quantiles

A simulation study is run to illustrate the quantile regression and contrast the weighted and

unweighted estimates of the quantiles for the mixture population.

3.3.4.1 Simulation Method In each simulation, two DSM diagnoses are used (k = 2),

each with relative proportion πi and sample size ni. According to our assumption, π1 < π2

and π1 + π2 = 1. According to the assumptions made in Section 3.2, the sample size for the

healthy population would be max(n1, n2). Suppose n1, n2 and max(n1, n2) observations are

sampled from normal distributions N(µ1, 1), N(µ2, 1) and N(0, 1), respectively. The observa-

tions from N(µ1, 1) and N(µ2, 1) collectively can be considered as a sample from the mixture

population with dysfunction. This process is the same as what we do in the triangular design
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using the post-mortem tissue databases. Because we assume the identified neurobiological

characteristics are either consistently up-regulated or consistently down-regulated across the

multiple DSM diagnoses, µ1 and µ2 have the same sign. In the simulation we assume they

are both negative.

A quantile regression model is built with the n1+n2+max(n1, n2) observations to estimate

the pth quantiles of the distributions for the mixture population and the healthy population.

Note that because we want to estimate the pth quantile with adjustments for the match

effect, it means that the two estimates are based on the same match effect. Therefore, to

simplify the simulation, we could just assume all the observations have the same covariates

and eliminate the match effect from the model. By doing this, no match effect needs to be

simulated. Therefore, only population effect exists in the model applied to the simulation

data. In each simulation, the pth quantile in the distribution for both the mixture population

and the healthy population are calculated, in both the weighted and unweighted method.

These estimates are compared to the theoretical pth quantiles for both populations. Here

the theoretical value of the quantiles in the mixture distribution π1N(µ1, 1) +π2N(µ2, 1) are

obtained analytically using a greedy search function.To further simplify the simulation, we

fix µ2 = −1 and n2 = 100 because it is the distance between µ1 and µ2 that determines the

shape of the mixture distribution for fixed π1 and π2. Also it is the ratio of n1 to n2 that

determines how far away the sample is from a random sample of the mixture distribution. In

the simulation, n1 and n2 are intentionally kept small because it is known that the number

of subjects for each DSM diagnosis from the post-mortem tissue databases is not large.

By changing the values of µ1, π1, n1 and p, we could see the impact of weighting in the

comparison of quantiles in the different parameter configuration. For each parameter config-

uration, 500 simulations are run. The parameters used in the simulation are listed in Table

3.5. The mean and standard deviation of the estimates over the 500 simulations under each

parameter configuration are presented in Section 3.3.4.2.

3.3.4.2 Simulation Results The simulation results for the different p’s are summarized

in Tables 3.6 - 3.10.

As stated previously, these tables summarize the mean and standard deviation (in paren-
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Table 3.5: Simulation Parameter List for Quantile Regression

parameter value

µ1 −4,−2,−0.25

µ2 −1

π1 0.1, 0.2, 0.3

n1 25, 100, 500

n2 100

p 0.05, 0.25, 0.5, 0.75, 0.95

thesis) of the quantile estimates over the 500 simulations under different simulation parame-

ter configurations. For the mixture population, the theoretical quantile, unweighted estimate

and weighted estimate are presented. For the healthy population, because subjects from the

healthy population all get weight 1, the unweighted and weighted estimates are the same,

and thus only a single column is kept here. For example, in Table 3.6, the 5% quantiles are

estimated for both the mixture population and the healthy population. If in the mixture

population DSM diagnosis D1 accounts for 10%, i.e., π1 = 0.1, and observations from D1

follow a normal distribution N(−4, 1), i.e., µ1 = −4, then the theoretical 5% quantile of

the distribution for the mixture population is -4.028. If 25 subjects are sampled from D1,

i.e., n1 = 25, and the unweighted quantile regression model is used, the average estimate

of the 5% quantile of the distribution for the mixture population is -4.640 with a standard

deviation of 0.281. If the weighted quantile regression model is used, the average estimate

of the 5% quantile of the distribution for the mixture population is -4.020 with a standard

deviation of 0.257. For the healthy population, because we assume all the subjects from it

follow the standard normal distribution N(0, 1), the theoretical 5% quantile is -1.645. The

unweighted and weighted 5% quantile estimates are both -1.684 with a standard deviation

of 0.223.

As can be seen from the tables, the weighted estimate of each quantile of the distribution

for the mixture population is less biased than the unweighted estimate because on average

79



Table 3.6: Simulation Results for Lower 5% Quantile (µ2 = −1, n2 = 100, p = 0.05)

π1 µ1 n1

Mixture Population Healthy Population

theoretical unweighted weighted theoretical=-1.645

0.1

-4

25

-4.028

-4.640 ( 0.281 ) -4.020 ( 0.257 ) -1.684 ( 0.223 )

100 -5.245 ( 0.167 ) -3.997 ( 0.136 ) -1.704 ( 0.209 )

500 -5.544 ( 0.083 ) -4.014 ( 0.077 ) -1.649 ( 0.096 )

-2

25

-2.836

-2.971 ( 0.204 ) -2.834 ( 0.200 ) -1.690 ( 0.207 )

100 -3.308 ( 0.152 ) -2.835 ( 0.170 ) -1.688 ( 0.201 )

500 -3.555 ( 0.090 ) -2.832 ( 0.173 ) -1.656 ( 0.093 )

-0.25

25

-2.603

-2.530 ( 0.184 ) -2.592 ( 0.198 ) -1.689 ( 0.214 )

100 -2.359 ( 0.160 ) -2.593 ( 0.205 ) -1.675 ( 0.213 )

500 -2.092 ( 0.088 ) -2.595 ( 0.198 ) -1.651 ( 0.092 )

0.2

-4

25

-4.676

-4.638 ( 0.272 ) -4.638 ( 0.272 ) -1.680 ( 0.218 )

100 -5.254 ( 0.170 ) -4.658 ( 0.129 ) -1.680 ( 0.209 )

500 -5.542 ( 0.087 ) -4.673 ( 0.062 ) -1.656 ( 0.089 )

-2

25

-2.999

-2.984 ( 0.202 ) -2.984 ( 0.202 ) -1.681 ( 0.217 )

100 -3.311 ( 0.161 ) -2.983 ( 0.149 ) -1.695 ( 0.221 )

500 -3.546 ( 0.089 ) -2.991 ( 0.133 ) -1.648 ( 0.096 )

-0.25

25

-2.556

-2.526 ( 0.193 ) -2.526 ( 0.193 ) -1.694 ( 0.206 )

100 -2.356 ( 0.146 ) -2.541 ( 0.186 ) -1.691 ( 0.212 )

500 -2.087 ( 0.093 ) -2.550 ( 0.170 ) -1.656 ( 0.097 )

0.3

-4

25

-4.968

-4.639 ( 0.259 ) -4.911 ( 0.286 ) -1.671 ( 0.220 )

100 -5.251 ( 0.168 ) -4.974 ( 0.145 ) -1.704 ( 0.225 )

500 -5.548 ( 0.087 ) -4.970 ( 0.066 ) -1.649 ( 0.097 )

-2

25

-3.134

-2.975 ( 0.208 ) -3.122 ( 0.247 ) -1.714 ( 0.225 )

100 -3.303 ( 0.162 ) -3.119 ( 0.144 ) -1.687 ( 0.209 )

500 -3.556 ( 0.085 ) -3.140 ( 0.109 ) -1.654 ( 0.099 )

-0.25

25

-2.504

-2.534 ( 0.192 ) -2.488 ( 0.187 ) -1.677 ( 0.203 )

100 -2.355 ( 0.157 ) -2.497 ( 0.184 ) -1.682 ( 0.224 )

500 -2.085 ( 0.088 ) -2.503 ( 0.196 ) -1.654 ( 0.095 )
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Table 3.7: Simulation Results for Lower 25% Quantile (µ2 = −1, n2 = 100, p = 0.25)

π1 µ1 n1

Mixture Population Healthy Population

theoretical unweighted weighted theoretical=-0.675

0.1

-4

25

-1.958

-2.407 ( 0.166 ) -1.946 ( 0.142 ) -0.683 ( 0.142 )

100 -3.978 ( 0.129 ) -1.965 ( 0.147 ) -0.690 ( 0.142 )

500 -4.520 ( 0.060 ) -1.964 ( 0.137 ) -0.675 ( 0.064 )

-2

25

-1.795

-1.900 ( 0.130 ) -1.785 ( 0.129 ) -0.683 ( 0.141 )

100 -2.256 ( 0.102 ) -1.791 ( 0.117 ) -0.684 ( 0.131 )

500 -2.554 ( 0.058 ) -1.804 ( 0.133 ) -0.677 ( 0.062 )

-0.25

25

-1.618

-1.555 ( 0.116 ) -1.622 ( 0.120 ) -0.690 ( 0.135 )

100 -1.344 ( 0.098 ) -1.622 ( 0.128 ) -0.677 ( 0.131 )

500 -1.067 ( 0.056 ) -1.622 ( 0.131 ) -0.675 ( 0.060 )

0.2

-4

25

-2.426

-2.400 ( 0.154 ) -2.400 ( 0.154 ) -0.691 ( 0.138 )

100 -3.988 ( 0.125 ) -2.412 ( 0.152 ) -0.691 ( 0.138 )

500 -4.524 ( 0.057 ) -2.418 ( 0.152 ) -0.679 ( 0.059 )

-2

25

-1.918

-1.907 ( 0.126 ) -1.907 ( 0.126 ) -0.679 ( 0.137 )

100 -2.244 ( 0.103 ) -1.912 ( 0.115 ) -0.694 ( 0.131 )

500 -2.556 ( 0.059 ) -1.915 ( 0.107 ) -0.678 ( 0.061 )

-0.25

25

-1.557

-1.547 ( 0.120 ) -1.547 ( 0.120 ) -0.688 ( 0.141 )

100 -1.343 ( 0.097 ) -1.559 ( 0.121 ) -0.685 ( 0.141 )

500 -1.068 ( 0.059 ) -1.564 ( 0.121 ) -0.681 ( 0.062 )

0.3

-4

25

-3.166

-2.405 ( 0.174 ) -3.158 ( 0.233 ) -0.675 ( 0.137 )

100 -3.987 ( 0.123 ) -3.162 ( 0.133 ) -0.695 ( 0.141 )

500 -4.520 ( 0.061 ) -3.159 ( 0.090 ) -0.678 ( 0.064 )

-2

25

-2.039

-1.906 ( 0.126 ) -2.036 ( 0.136 ) -0.698 ( 0.138 )

100 -2.256 ( 0.101 ) -2.035 ( 0.105 ) -0.690 ( 0.136 )

500 -2.557 ( 0.054 ) -2.041 ( 0.088 ) -0.680 ( 0.063 )

-0.25

25

-1.492

-1.550 ( 0.124 ) -1.489 ( 0.124 ) -0.686 ( 0.133 )

100 -1.329 ( 0.100 ) -1.479 ( 0.113 ) -0.689 ( 0.141 )

500 -1.067 ( 0.053 ) -1.484 ( 0.107 ) -0.680 ( 0.059 )
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Table 3.8: Simulation Results for Lower 50% Quantile (µ2 = −1, n2 = 100, p = 0.50)

π1 µ1 n1

Mixture Population Healthy Population

theoretical unweighted weighted theoretical=0

0.1

-4

25

-1.139

-1.316 ( 0.123 ) -1.141 ( 0.122 ) -0.010 ( 0.127 )

100 -2.487 ( 0.132 ) -1.145 ( 0.120 ) -0.010 ( 0.130 )

500 -3.747 ( 0.059 ) -1.135 ( 0.122 ) -0.006 ( 0.056 )

-2

25

-1.089

-1.178 ( 0.118 ) -1.083 ( 0.119 ) -0.014 ( 0.122 )

100 -1.487 ( 0.083 ) -1.078 ( 0.114 ) -0.007 ( 0.126 )

500 -1.843 ( 0.052 ) -1.091 ( 0.117 ) 0.000 ( 0.055 )

-0.25

25

-0.930

-0.863 ( 0.110 ) -0.931 ( 0.117 ) -0.020 ( 0.127 )

100 -0.625 ( 0.090 ) -0.933 ( 0.116 ) -0.008 ( 0.125 )

500 -0.362 ( 0.052 ) -0.927 ( 0.115 ) 0.002 ( 0.058 )

0.2

-4

25

-1.316

-1.309 ( 0.128 ) -1.309 ( 0.128 ) -0.016 ( 0.119 )

100 -2.475 ( 0.132 ) -1.317 ( 0.126 ) -0.009 ( 0.119 )

500 -3.750 ( 0.054 ) -1.311 ( 0.126 ) -0.003 ( 0.056 )

-2

25

-1.184

-1.187 ( 0.121 ) -1.187 ( 0.121 ) -0.004 ( 0.125 )

100 -1.493 ( 0.097 ) -1.186 ( 0.117 ) -0.012 ( 0.120 )

500 -1.847 ( 0.053 ) -1.186 ( 0.110 ) -0.001 ( 0.056 )

-0.25

25

-0.857

-0.861 ( 0.112 ) -0.861 ( 0.112 ) -0.012 ( 0.127 )

100 -0.620 ( 0.090 ) -0.854 ( 0.107 ) -0.002 ( 0.132 )

500 -0.366 ( 0.053 ) -0.859 ( 0.107 ) -0.006 ( 0.054 )

0.3

-4

25

-1.557

-1.325 ( 0.124 ) -1.565 ( 0.132 ) -0.004 ( 0.121 )

100 -2.487 ( 0.141 ) -1.546 ( 0.128 ) -0.009 ( 0.135 )

500 -3.744 ( 0.055 ) -1.556 ( 0.120 ) -0.001 ( 0.058 )

-2

25

-1.286

-1.176 ( 0.120 ) -1.275 ( 0.119 ) -0.020 ( 0.127 )

100 -1.497 ( 0.097 ) -1.284 ( 0.103 ) -0.011 ( 0.126 )

500 -1.848 ( 0.050 ) -1.285 ( 0.095 ) -0.004 ( 0.055 )

-0.25

25

-0.781

-0.857 ( 0.111 ) -0.781 ( 0.117 ) 0.000 ( 0.124 )

100 -0.616 ( 0.090 ) -0.775 ( 0.099 ) -0.012 ( 0.126 )

500 -0.366 ( 0.052 ) -0.775 ( 0.094 ) -0.003 ( 0.055 )
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Table 3.9: Simulation Results for Lower 75% Quantile (µ2 = −1, n2 = 100, p = 0.75)

π1 µ1 n1

Mixture Population Healthy Population

theoretical unweighted weighted theoretical=0.675

0.1

-4

25

-0.411

-0.513 ( 0.127 ) -0.398 ( 0.133 ) 0.662 ( 0.129 )

100 -0.987 ( 0.119 ) -0.401 ( 0.129 ) 0.655 ( 0.132 )

500 -2.759 ( 0.071 ) -0.399 ( 0.127 ) 0.666 ( 0.060 )

-2

25

-0.393

-0.470 ( 0.127 ) -0.387 ( 0.132 ) 0.650 ( 0.129 )

100 -0.731 ( 0.102 ) -0.393 ( 0.127 ) 0.658 ( 0.142 )

500 -1.119 ( 0.058 ) -0.402 ( 0.119 ) 0.673 ( 0.059 )

-0.25

25

-0.237

-0.153 ( 0.118 ) -0.233 ( 0.119 ) 0.654 ( 0.137 )

100 0.101 ( 0.101 ) -0.244 ( 0.124 ) 0.664 ( 0.138 )

500 0.332 ( 0.058 ) -0.234 ( 0.117 ) 0.672 ( 0.061 )

0.2

-4

25

-0.511

-0.523 ( 0.130 ) -0.523 ( 0.130 ) 0.658 ( 0.132 )

100 -0.988 ( 0.127 ) -0.522 ( 0.133 ) 0.663 ( 0.135 )

500 -2.763 ( 0.068 ) -0.518 ( 0.128 ) 0.673 ( 0.062 )

-2

25

-0.467

-0.477 ( 0.124 ) -0.477 ( 0.124 ) 0.663 ( 0.127 )

100 -0.736 ( 0.105 ) -0.466 ( 0.125 ) 0.655 ( 0.130 )

500 -1.122 ( 0.060 ) -0.468 ( 0.120 ) 0.675 ( 0.061 )

-0.25

25

-0.149

-0.153 ( 0.125 ) -0.153 ( 0.125 ) 0.651 ( 0.129 )

100 0.099 ( 0.095 ) -0.155 ( 0.109 ) 0.661 ( 0.138 )

500 0.332 ( 0.057 ) -0.151 ( 0.112 ) 0.668 ( 0.062 )

0.3

-4

25

-0.633

-0.521 ( 0.132 ) -0.633 ( 0.132 ) 0.653 ( 0.123 )

100 -0.986 ( 0.122 ) -0.635 ( 0.124 ) 0.662 ( 0.138 )

500 -2.756 ( 0.071 ) -0.625 ( 0.128 ) 0.670 ( 0.060 )

-2

25

-0.548

-0.470 ( 0.130 ) -0.542 ( 0.127 ) 0.653 ( 0.137 )

100 -0.728 ( 0.105 ) -0.543 ( 0.118 ) 0.660 ( 0.137 )

500 -1.118 ( 0.057 ) -0.555 ( 0.113 ) 0.669 ( 0.062 )

-0.25

25

-0.064

-0.153 ( 0.125 ) -0.055 ( 0.138 ) 0.668 ( 0.135 )

100 0.108 ( 0.097 ) -0.065 ( 0.101 ) 0.655 ( 0.130 )

500 0.328 ( 0.056 ) -0.063 ( 0.087 ) 0.672 ( 0.062 )
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Table 3.10: Simulation Results for Lower 95% Quantile (µ2 = −1, n2 = 100, p = 0.95)

π1 µ1 n1

Mixture Population Healthy Population

theoretical unweighted weighted theoretical=1.645

0.1

-4

25

0.593

0.504 ( 0.187 ) 0.590 ( 0.196 ) 1.613 ( 0.203 )

100 0.307 ( 0.172 ) 0.591 ( 0.207 ) 1.587 ( 0.209 )

500 -0.453 ( 0.125 ) 0.596 ( 0.210 ) 1.630 ( 0.094 )

-2

25

0.598

0.526 ( 0.184 ) 0.601 ( 0.190 ) 1.580 ( 0.197 )

100 0.361 ( 0.167 ) 0.587 ( 0.205 ) 1.602 ( 0.219 )

500 -0.050 ( 0.091 ) 0.593 ( 0.198 ) 1.633 ( 0.093 )

-0.25

25

0.769

0.867 ( 0.191 ) 0.776 ( 0.187 ) 1.598 ( 0.199 )

100 1.152 ( 0.145 ) 0.757 ( 0.179 ) 1.597 ( 0.200 )

500 1.330 ( 0.087 ) 0.767 ( 0.166 ) 1.639 ( 0.092 )

0.2

-4

25

0.534

0.498 ( 0.193 ) 0.498 ( 0.193 ) 1.581 ( 0.195 )

100 0.315 ( 0.168 ) 0.510 ( 0.186 ) 1.603 ( 0.208 )

500 -0.459 ( 0.129 ) 0.514 ( 0.187 ) 1.631 ( 0.096 )

-2

25

0.545

0.505 ( 0.189 ) 0.505 ( 0.189 ) 1.587 ( 0.192 )

100 0.351 ( 0.157 ) 0.533 ( 0.188 ) 1.585 ( 0.206 )

500 -0.046 ( 0.089 ) 0.526 ( 0.178 ) 1.640 ( 0.096 )

-0.25

25

0.879

0.848 ( 0.198 ) 0.848 ( 0.198 ) 1.592 ( 0.199 )

100 1.145 ( 0.152 ) 0.879 ( 0.162 ) 1.600 ( 0.202 )

500 1.332 ( 0.086 ) 0.876 ( 0.150 ) 1.638 ( 0.097 )

0.3

-4

25

0.465

0.510 ( 0.196 ) 0.434 ( 0.186 ) 1.590 ( 0.213 )

100 0.303 ( 0.166 ) 0.432 ( 0.182 ) 1.585 ( 0.204 )

500 -0.455 ( 0.131 ) 0.438 ( 0.183 ) 1.631 ( 0.091 )

-2

25

0.486

0.509 ( 0.202 ) 0.450 ( 0.194 ) 1.587 ( 0.205 )

100 0.363 ( 0.157 ) 0.476 ( 0.175 ) 1.603 ( 0.206 )

500 -0.053 ( 0.093 ) 0.485 ( 0.177 ) 1.627 ( 0.096 )

-0.25

25

0.975

0.866 ( 0.195 ) 0.992 ( 0.231 ) 1.578 ( 0.200 )

100 1.148 ( 0.145 ) 0.970 ( 0.138 ) 1.592 ( 0.204 )

500 1.323 ( 0.090 ) 0.977 ( 0.118 ) 1.630 ( 0.091 )
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the weighted estimate is closer to the theoretical quantile than the unweighted one is. For

the unweighted estimate, the bias changes according to the parameter configuration. For

fixed µ1, as the ratio of n1 to n2 becomes farther away from that of π1 to π2, the unweighted

estimate of the quantile of the distribution for the mixture population becomes more biased.

For example, in Table 3.6, when π1 = 0.1 and µ1 = −4, the ratio of π1 to π2 is 1/9. When n1

goes from 25 to 500, the ratio of n1 to n2 goes farther away from 1/9, and thus the expected

value of the unweighted estimate of the 5% quantile of the distribution for the mixture

population goes from -4.640 to -5.544, which is more and more biased. Furthermore, for

fixed π1, n1 and µ1, as p increases, the bias of the unweighted estimate of the quantile for

the mixture population increases first and then decreases. This means the bias is smaller

for the more extreme quantiles. For example, when π1 = 0.1, n1 = 500 and µ1 = −4, the

average unweighted estimate for the 5%, 50% and 95% quantile is -5.544, -3.747 and -0.453,

respectively. The bias of the unweighted estimate for the 5%, 50% and 95% quantile would be

-5.544-(-4.028)=-1.516, -3.747-(-1.139)=-2.608 and -0.453-0.593=-1.046, respectively. Also

when πi, ni and p are fixed, as µ1 gets farther away from µ2, the bias of the unweighted

estimate becomes larger. For example, in Table 3.6, when π1 = 0.1 and n1 = 100, as

µ1 goes from -4 to -2 and then to -0.25, the distance of µ2 to µ1 first decreases and then

increases. And the bias of the unweighted estimate goes from -5.245-(-4.028)=-1.217 to -

3.308-(-2.836)=-0.472 and then to -2.359-(-2.603)=0.244.

Bias also exists in the weighted estimates of the quantiles for the mixture population as

well as in the estimates for the healthy population. This is because the assumption for the

model error term is not satisfied. As discussed in Section 3.3.3, for the quantile regression

model to be stated as in (3.3.4), the pth quantile for the distribution of the error term has

to be 0. However, in the simulation, the error terms for the observations from the mixture

population may not have pth quantile as 0.

One thing that is worthwhile pointing out is that when π1/π2 is equal to n1/n2, the

weights for subjects in D1 and D2 are both 1. Therefore, the weighted and unweighted

estimates of the quantiles for the mixture population are the same in this case. For example,

in Table 3.6, when π1 = 0.2 and n1 = 25, π1/π2 = 0.2/0.8 = 0.25 and n1/n2 = 25/100 = 0.25,

so the weighted and unweighted estimates are the same no matter what µ1 is.

85



3.4 SUMMARY OF COMPARISON

In Chapter 3, we propose the triangular design to implement two comparisons in the neurobi-

ological characteristics between the population with dysfunction and the healthy population

with adjustments for covariates. The design is based on some assumptions about matching

subjects in order to improve efficiency in tissue processing. In order for us to write down

the design matrix in general, the triangular design is laid out with the order statistics of the

sample sizes. The two comparisons provide different insights in terms of the distribution of

the neurobiological characteristics in the two populations and can be used in different situ-

ations. When the distributions of the neurobiological characteristics in the DSM diagnoses

are close to each other and thus make its distribution in the mixture population unimodal

and symmetric, the mean comparison is applicable to inform researchers about the difference

between the two populations. When the distribution of the neurobiological characteristic in

the mixture population is multimodal or skewed, the quantile comparison is suitable.

For both comparisons, adjustment for the disproportionate sample sizes in the sample

need to be made. However, they are done with different methods. In the comparison through

the means, an ANOVA model is employed with a DSM diagnosis effect and a match effect

in the model. The estimate of the mean neurobiological characteristic in the mixture popu-

lation is written as the linear combination of the estimates in each DSM diagnosis, with the

relative proportions as the combination coefficients. In the comparison through the quan-

tiles, the quantile regression model is used with a population effect and a match effect. The

disproportionate sample sizes are corrected heuristically by applying a proper weight for each

DSM diagnosis.

In the comparisons, both models have only two effects. The goal here is to propose a

simple solution or framework to think about using multiple post-mortem tissue databases in

general. In later research, if investigators would want to use more effects in the model, these

effects can be added accordingly.
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3.A APPENDIX

3.A.1 Proof of estimability of β(i) − β0

Result 3.2. β(i) − β0 is estimable under the ANOVA model in (3.2.3) for the triangular

design in Table 3.4.

Proof. Following the discussion in Section 3.2.4.2, if we can find a vector τ(i) with dimension

k + 1 + n(k) such that l(i) = X ′X τ(i) holds, β(i) − β0 is estimable. Based on the model in

(3.2.3), the matrix X ′X is:

X ′X =



n(1) 0 · · · 0 0 1 1 · · · 1 0 0 · · · 0 · · · 0

0 n(2) · · · 0 0 1 1 · · · 1 1 1 · · · 1 · · · 0
...

...
. . .

...
...

...
... · · · ...

...
... · · · ... · · · ...

0 0 · · · n(k) 0 1 1 · · · 1 1 1 · · · 1 · · · 1

0 0 · · · 0 n(k) 1 1 · · · 1 1 1 · · · 1 · · · 1

1 1 · · · 1 1 k + 1 0 · · · 0 0 0 · · · 0 · · · 0

1 1 · · · 1 1 0 k + 1 · · · 0 0 0 · · · 0 · · · 0
...

... · · · ...
...

...
...

. . .
...

...
... · · · ... · · · ...

1 1 · · · 1 1 0 0 · · · k + 1 0 0 · · · 0 · · · 0

0 1 · · · 1 1 0 0 · · · 0 k 0 · · · 0 · · · 0

0 1 · · · 1 1 0 0 · · · 0 0 k · · · 0 · · · 0
...

...
...

...
...

...
... · · · ...

...
...

. . .
... · · · ...

0 1 · · · 1 1 0 0 · · · 0 0 0 · · · k · · · 0
...

...
...

...
...

...
... · · · ...

...
... · · · ...

. . .
...

0 0 · · · 1 1 0 0 · · · 0 0 0 · · · 0 · · · 2



.
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Suppose τ(i) is given in general as

τ(i) =



ai,1

ai,2
...

ai,k

ai,0

bi,1

bi,2
...

bi,n(1)

bi,n(1)+1

bi,n(1)+2

...

bi,n(2)

...

bi,n(k)



,

then

X ′X τ(i) =



n(1)ai,1 +
∑n(1)

j=1 bi,j

n(2)ai,2 +
∑n(2)

j=1 bi,j
...

n(k)ai,k +
∑n(k)

j=1 bi,j

n(k)ai,0 +
∑n(k)

j=1 bi,j∑k
j=1 ai,j + ai,0 + (k + 1)bi,1∑k
j=1 ai,j + ai,0 + (k + 1)bi,2

...∑k
j=1 ai,j + ai,0 + (k + 1)bi,n(1)∑k
j=2 ai,j + ai,0 + (k)bi,n(1)+1∑k
j=2 ai,j + ai,0 + (k)bi,n(1)+2

...∑k
j=2 ai,j + ai,0 + (k)bi,n(2)

...

ai,k + ai,0 + (2)bi,n(k)



= l(i) =



0
...

1
...

−1

0

0
...

0

0

0
...

0
...

0



.

← ith element

(3.A.1)

The remaining work is to solve for τ(i) in the equation set of (3.A.1).
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1. if i = k, β(i) − β0 = β(k) − β0, it’s trivial that

ak,1 = ak,2 = · · · = ak,k−1 = 0, ak,k =
1

n(k)

, ak,0 = − 1

n(k)

, bk,1 = bk,2 = · · · = bk,n(k)
= 0.

2. if 1 ≤ i ≤ k − 1, we have the following equations to solve:

n(1)ai,1+
∑n(1)

j=1 bi,j = 0
...

n(i−1)ai,i−1+
∑n(i−1)

j=1 bi,j = 0

n(i)ai,i+
∑n(i)

j=1 bi,j = 1

n(i+1)ai,i+1+
∑n(i+1)

j=1 bi,j = 0
...

n(k)ai,k+
∑n(k)

j=1 bi,j = 0

n(k)ai,0+
∑n(k)

j=1 bi,j = −1∑k
j=1 ai,j+ ai,0 + (k + 1)bi,1 = 0∑k
j=1 ai,j+ ai,0 + (k + 1)bi,2 = 0

...∑k
j=1 ai,j+ ai,0 + (k + 1)bi,n(1)

= 0∑k
j=2 ai,j+ ai,0 + (k)bi,n(1)+1 = 0∑k
j=2 ai,j+ ai,0 + (k)bi,n(1)+2 = 0

...∑k
j=2 ai,j+ ai,0 + (k)bi,n(2)

= 0
...

ai,k+ ai,0 + (2)bi,n(k)
= 0

The solution to the above set of equations is:

ai,1 = ai,2 = · · · = ai,i−1 = 0,

ai,i =
1

n(i)

,

ai,i+1 =
1

(k − i+ 1)n(i+1)

− 1

(k − i+ 1)n(i)

,

for i+ 2 ≤ g ≤ k,

ai,g =
1

(k − g + 2)n(g)

− 1

(k − i+ 1)n(i)

−
g−1∑
h=i+1

1

(k − h+ 1)(k − h+ 2)n(h)

,

ai,0 = − 1

(k − i+ 1)n(i)

−
k∑

h=i+1

1

(k − h+ 1)(k − h+ 2)n(h)

,
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bi,1 = · · · = bi,n(1)
= bi,n(1)+1 = · · · = bi,n(2)

= · · · = bi,n(i)
= 0,

bi,n(i)+1 = · · · = bi,n(i+1)
=

1

(k − i+ 1)n(i)

,

for i+ 1 ≤ g ≤ k − 1,

bi,n(g)+1 = · · · = bi,n(g+1)
=

1

(k − i+ 1)n(i)

+

g∑
h=i+1

1

(k − h+ 1)(k − h+ 2)n(h)

.

No matter what i is, we can always find a vector τ(i) such that X ′X τ(i) = l(i) holds. Therefore

β(i) − β0 is estimable.
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3.A.2 Multivariate comparison of the means in neurobiological characteristics

Suppose there are M(M ≥ 1) neurobiological characteristics measured in each subject and

we are interested in estimating the differences between the population with dysfunction in

the construct of interest and the healthy population in all the characteristics simultaneously.

Let y(i)jm and ε(i)jm denote the mth characteristic measurement and random error for

the subject in D(i) and the jth match, respectively. We assume the diagnosis effect as well as

the match effect are different for each characteristic, so β(i)m and γjm denote respectively the

diagnosis effect for D(i) and match effect for the jth match on characteristic m. Measure-

ments taken on different subjects are assumed to be independently distributed. The random

error vector (ε(i)j1, ε(i)j2, · · · , ε(i)jM) on a single subject is assumed to follow the multivariate

normal distribution with the following mean vector and covariance matrix.

E


ε(i)j1

ε(i)j2
...

ε(i)jM

 =


0

0
...

0

 , Cov


ε(i)j1

ε(i)j2
...

ε(i)jM

 =


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM

 .

A multivariate ANOVA model can be employed.

y(i)jm = β(i)m + γjm + ε(i)jm, i = 1, 2, · · · , k, j = 1, 2, · · · , n(i), m = 1, 2, · · · ,M ;

y0jm = β0m + γjm + ε0jm, j = 1, 2, · · · , n(k), m = 1, 2, · · · ,M.

(3.A.2)

If we rewrite the model in matrix form, it is easy to see that the design matrix X stays the
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same as in the univariate case. The model in matrix form can be written as:

y(1)11 · · · y(1)1M

y(1)21 · · · y(1)2M

...
...

...

y(1)n(1)1 · · · y(1)n(1)M

y(2)11 · · · y(2)1M

y(2)21 · · · y(2)2M

...
...

...

y(2)n(2)1 · · · y(2)n(2)M

...
...

...

y(k)11 · · · y(k)1M

y(k)21 · · · y(k)2M

...
...

...

y(k)n(k)1 · · · y(k)n(k)M

y011 · · · y01M

y021 · · · y02M

...
...

...

y0n(k)1 · · · y0n(k)M


︸ ︷︷ ︸

y1 · · · yM

= X



β(1)1 · · · β(1)M

β(2)1 · · · β(2)M

...
...

...

β(k)1 · · · β(k)M

β01 · · · β0M

γ11 · · · γ1M

γ21 · · · γ2M

...
...

...

γn(1)1 · · · γn(1)M

...
...

...

γn(2)1 · · · γn(2)M

...
...

...

γn(k)1 · · · γn(k)M


︸ ︷︷ ︸

β1 · · · βM

+



ε(1)11 · · · ε(1)1M

ε(1)21 · · · ε(1)2M

...
...

...

ε(1)n(1)1 · · · ε(1)n(1)M

ε(2)11 · · · ε(2)1M

ε(2)21 · · · ε(2)2M

...
...

...

ε(2)n(2)1 · · · ε(2)n(2)M

...
...

...

ε(k)11 · · · ε(k)1M

ε(k)21 · · · ε(k)2M

...
...

...

ε(k)n(k)1 · · · ε(k)n(k)M

ε011 · · · ε01M

ε021 · · · ε02M

...
...

...

ε0n(k)1 · · · ε0n(k)M


︸ ︷︷ ︸

ε1 · · · εM

.

Here for 1 ≤ m ≤ M,ym represents all the observations on characteristic m, βm is

the vector of parameters on characteristic m and εm is the random error for ym. It is

easy to see that the marginal distribution of each εm is multivariate normal with mean 0

and covariance matrix σmmIn(k)+
∑k
i=1 n(i)

. However, when the M random vectors are stacked

together, the covariance matrix for the joint distribution of (ε1, ε2, · · · , εM ) is not diagonal

as every εm contains the measurements from the same subject. The covariance matrix for

(ε1, ε2, · · · , εM ) is

Cov


ε1

ε2
...

εM

 =


σ11In(k)+

∑k
i=1 n(i)

σ12In(k)+
∑k
i=1 n(i)

· · · σ1MIn(k)+
∑k
i=1 n(i)

σ21In(k)+
∑k
i=1 n(i)

σ22In(k)+
∑k
i=1 n(i)

· · · σ2MIn(k)+
∑k
i=1 n(i)

...
...

. . .
...

σM1In(k)+
∑k
i=1 n(i)

σM2In(k)+
∑k
i=1 n(i)

· · · σMMIn(k)+
∑k
i=1 n(i)

 . (3.A.3)

Note that this covariance matrix is a square matrix with dimension M ∗ (n(k) +
∑k

i=1 n(i)).
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If we use ∆ = (∆1,∆2, · · · ,∆M) to denote the true differences in the M charac-

teristics between the population with dysfunction and the healthy population and ∆̂ =

(∆̂1, ∆̂2, · · · , ∆̂M) to be the estimate of ∆, then based on the ANOVA model in (3.A.2), ∆

is nothing but

∆ =


∆1

∆2

...

∆M

 =


∑k

i=1 π(i)(β(i)1 − β01)∑k
i=1 π(i)(β(i)2 − β02)

...∑k
i=1 π(i)(β(i)M − β0M)

 .

Due to the same reason as in the univariate case, each β(i)m − β0m is estimable and so

each ∆̂m can be expressed in ym as in (3.2.7), i.e.,

∆̂m = π′T ′X ′ym, 1 ≤ m ≤M.

Therefore,

∆̂ =


∆̂1

∆̂2

...

∆̂M

 =


π′T ′X ′y1
π′T ′X ′y2

...

π′T ′X ′yM

 =


π′T ′X ′ 0′ · · · 0′

0′ π′T ′X ′ · · · 0′

...
...

. . .
...

0′ 0′ · · · π′T ′X ′



y1

y2
...

yM

 .

Here 0′ is a row vector with dimension n(k) +
∑k

i=1 n(i) and all the elements equal to 0.
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3.A.3 Proof of Equivalence between Quantile Regression Model Statements

Result 3.3. If the pth quantiles of F0, the distribution of the error term in the healthy

population and of F1, the distribution of the error term in the mixture population are both 0,

the model statement in (3.3.4) and (3.3.5) are the same.

Proof. For F0, the pth quantile is 0 means that

p = F0(0)

= P (ε00j ≤ 0)

= P (Y00j − βp0 −M
p
j ≤ 0)

= P (Y00j ≤ βp0 −M
p
j )

= P (Y00j ≤ Q0j),

which means that the pth quantile of the neurobiological characteristic in the healthy pop-

ulation and jth match Q0j = βp0 +Mp
j .

For F1, it is the distribution of the error term of any observation from the mixture pop-

ulation with dysfunction and the jth match. According to previous discussions, F1 is a

mixture distribution with k components and each component specifies the distribution of

ε1ij.

The pth quantile of F1 is 0 means that

p = F1(0)

=
k∑
i=1

πiP (ε1ij ≤ 0)

=
k∑
i=1

πiP (Y1ij − βp1 −M
p
j ≤ 0)

=
k∑
i=1

πiP (Y1ij ≤ βp1 +Mp
j ). (3.A.4)

Here (3.A.4) means that the pth quantile of the neurobiological characteristic in the mixture

population is βp1 +Mp
j , i.e., Q1j = βp1 +Mp

j .

It is noteworthy that the pth quantile of the neurobiological characteristic in Di and
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Match j is not necessarily βp1 + Mp
j because based on (3.A.4), P (Y1ij ≤ βp1 + Mp

j ) is not

necessarily p. Actually the pth quantile of the neurobiological characteristic in Di and Match

j can be anything. Therefore, although no DSM diagnosis information is involved in the our

model, the model does not indicate the differences in the pth quantile of the neurobiological

characteristic between each Di and the healthy population are the same.
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3.A.4 Proof of Different DSM Diagnosis Effect in Quantile Regression

Result 3.4. Estimation of ∆p does not require the difference in the pth quantile of the

distribution of the neurobiological characteristic between each DSM diagnosis and the healthy

population to be the same.

Proof. Suppose the neurobiological characteristic in the healthy population and in Di(i =

1, 2, · · · , k) are distributed as F0 and F1i, respectively. According to the previous discussions,

the distribution of the neurobiological characteristic in the population with dysfunction, F1,

is a mixture of the F1i’s with relative proportion πi. So

F1 =
k∑
i=1

πiF1i.

Suppose the pth quantiles of the neurobiological characteristic in the population with

dysfunction and the healthy population are xp1 and xp0, respectively. Then

F0(xp0) =p,

F1(xp1) =
k∑
i=1

πiF1i(x
p
1) = p. (3.A.5)

And ∆p = xp1−x
p
0 is the difference we would like to estimate between the two populations.

That is to say, as long as the model can estimate xp1 and xp0, we can obtain ∆̂p. However,

the estimation of xp1 does not require in (3.A.5) that F1i(x
p
1) = p. Actually the pth quantile

of the neurobiological characteristic in each Di can be anything as long as they satisfy the

equation in (3.A.5). Therefore, nothing needs to be assumed for the difference in the pth

quantile of the distribution of the neurobiological characteristic between each DSM diagnosis

and the healthy population in estimating ∆p.
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4.0 OPTIMAL DESIGN WITH CONSTRAINTS

In this chapter, we deal with the optimal design problem which was briefly mentioned in

Chapter 1.

4.1 MOTIVATION FOR THE OPTIMAL DESIGN

In Section 3.2 of Chapter 3, we have already worked out a formula to estimate the difference

in the means of the neurobiological characteristics between the healthy population and the

population with dysfunction in the construct of interest. The formula gives us an estimate

of the difference with known sample sizes n1, n2, · · · , nk under the triangular design shown

in Table 3.4. However, in designing actual trials, theses sample sizes are unknown. They

have to be chosen before a study is designed. A very interesting and practical statistical

question in designing a study to compare the means in the neurobiological characteristic

between the two populations is how to sample from the two populations using the post-

mortem tissue databases. For the healthy population, it is straightforward because subjects

in this population are considered to be homogeneous. For the population with dysfunction

in the construct of interest, as discussed in previous chapters, it is a mixture of several DSM

diagnoses. Thus how to sample from a mixture, i.e., how many subjects are needed for each

DSM diagnosis, remains a question.

Moreover, in actual designs involving post-mortem tissue databases, the number of the

subjects in those databases for each DSM diagnosis is limited. Also we may not be able to

examine every subject that is available to us because the resources for a study are limited.

Therefore there are two constraints in designing a study with post-mortem tissue samples
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where these constraints are described in Section 4.2. The question becomes how to design an

experiment optimally to study the differences in the means of neurobiological characteristics

between the population with dysfunction and healthy populations under the two types of

constraints. Here the criteria we use for the optimality is minimum variance in the estimated

differences of the neurobiological characteristics between the two populations. To calculate

the sample sizes optimally, the same triangular design is used as in Chapter 3.

4.2 LAYOUT OF THE OPTIMAL DESIGN

4.2.1 An illustration of the Optimal Design

Before detailing the notation of the optimal design problem, we first illustrate the problem

with the Stanley Brain Collection (abbreviated as SBC) database. The Stanley Brain Collec-

tion is a widely used resource for researchers who study schizophrenia, bipolar disorder and

major depressive disorder. Currently there are five cohorts available: the Neuropathology

Consortium consisting of 60 brains (15 in each of schizophrenia, bipolar disorder, depression

and control, matched by age, sex, race, postmortem interval, pH, side of brain and mRNA

quality), the Array Collection consisting of 105 cases (35 in each of schizophrenia, bipolar

disorder, and control), the Depression Collection consisting of 36 cases (12 in each of depres-

sion with psychotic features, depression without psychotic features and control), the Inferior

Parietal Collection of 48 cases (fixed inferior parietal sections from 24 schizophrenia and 24

controls) and a New Collection of 57 cases (19 in each of schizophrenia, bipolar disorder and

control). For each of the five cohorts, frozen sections of tissue are available from different

areas of the brain. Neurobiological characteristics such as RNAs or proteins can be measured

in these tissue sections. Researchers can request these tissue samples for further scientific

investigations.

Now if we are interested in investigating the fundamental biological mechanism that leads

to psychosis, some RNA levels from the post-mortem tissue samples could be measured to

compare the psychotic population with the healthy population. If we were to use the Stan-
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ley Brain Collection to conduct a study using the occipital section of a brain, the Inferior

Parietal Collection is not applicable because it only has the parietal region of the brain.

Therefore, there are at most 69 schizophrenic subjects, 69 bipolar disordered subjects, 27

depressed subjects and 81 healthy control subjects we can choose from. Suppose the budget

allows 100 subjects to be processed, then we want to design a matched sample study with

at most 100 subjects in total. We would like to determine the number of subjects needed

from each DSM diagnosis and the healthy population so that the estimated differences in

the RNA levels between the psychotic and healthy population have the smallest variance

among all designs using 100 or fewer subjects.

4.2.2 Notation of Optimal Design

We follow the same notation that has been used in Table 3.1. Let Ni be the known number of

available post-mortem subjects for Di and ni be the unknown sample size chosen for Di. Let

N0 and n0 be, respectively, the known number of available and unknown number of chosen

subjects from the healthy population. Also we use n to denote the total number of subjects

that the budget allows. Obviously ni ≤ Ni for 0 ≤ i ≤ k and
∑k

i=0 ni ≤ n. The goal of this

chapter is to find (n0, n1, · · · , nk) ∈ F s.t. Var(∆̂) is minimized, where

F = {(n0, n1, · · · , nk) : ni ≤ Ni, 0 ≤ i ≤ k and
k∑
i=0

ni ≤ n}. (4.2.1)

4.2.3 Hypothetical Numerical Example of Optimal Design

In order to clearly explain the optimal design problem and how we determine the sample size

for each DSM diagnosis optimally, a hypothetical numerical example is used to illustrate the

ideas. Suppose we are using the SBC database and the population with dysfunction in the

construct of interest involves k = 3 DSM diagnoses which are schizophrenia, bipolar disor-

der and depression. We further assume that schizophrenia patients account for 70%, bipolar

disordered patients account for 20% and depression patients account for 10% among this mix-

ture population. Under the notation above, we know immediately that π1 = 0.1, π2 = 0.2

and π3 = 0.7 because π1 < π2 < π3 has to hold. Therefore schizophrenia is D3, bipolar
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disorder is D2 and depression is D1 under our notation.

Suppose hypothetically that the number of available post-mortem subjects with appro-

priate tissue for each DSM diagnosis is N1 = 4, N2 = 3, N3 = 2 and the number of available

healthy control subjects is N0 = 5. Also assume that the number of subjects our budget

allows us to process is n = 10. Note that n is the total number of subjects that includes both

the subjects with dysfunction and the healthy controls. Now our goal is to determine the sam-

ple size ni for each DSM diagnosis and the healthy population such that (n0, n1, n2, n3) ∈ F

in (4.2.1) and Var(∆̂) is minimized.

4.2.4 Assumptions for Optimal Design

In addition to the assumption we have made in Section 3.2 for the triangular design, some

more assumptions need to be made to determine the optimal sample sizes.

Assumption 4.1. N0 ≥ max(N1, N2, · · · , Nk)

This assumption parallels Result 3.1 so that we don’t have to worry about the constraint

for the healthy population in the sample size determination. In other words, we assume

we are always able to find a healthy control subject for every match. This assumption is

reasonable due to the fact that most post-mortem tissue databases have more healthy control

subjects than any particular DSM diagnosis in this database. In the hypothetical example in

Section 4.2.3, we assume N1 = 4, N2 = 3, N3 = 2, N0 = 5. Obviously N0 ≥ max(N1, N2, N3)

so that this assumption holds.

Result 3.1 and Assumption 4.1 together lead to the following dimensional change in the

definition of the set F in (4.2.1).

Result 4.1. Under Assumption 3.2, the set F in (4.2.1) can be written as Fa:

Fa = {(n1, · · · , nk) : ni ≤ Ni, i = 1, · · · , k and
k∑
i=1

ni + n(k) ≤ n}. (4.2.2)

Proof. Let N(i) be the constraint of sample size for D(i). The condition ni ≤ Ni in set F

can be written equivalently as n(i) ≤ N(i) for 1 ≤ i ≤ k. So we have n(k) ≤ N(k). Note

that N(k) is just the constraint of the sample size in D(k) and thus it has to be smaller
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than or equal to the maximum of all the constraints of the DSM diagnoses, i.e., N(k) ≤

max(N1, N2, · · · , Nk). Then n(k) ≤ N(k) ≤ max(N1, N2, · · · , Nk). Replace n0 by n(k) and

with N0 ≥ max(N1, N2, · · · , Nk), we could have n0 ≤ max(N1, N2, · · · , Nk) ≤ N0. This

means Result 3.1 and Assumption 4.1, together with ni ≤ Ni(1 ≤ i ≤ k) make the condition

n0 ≤ N0 automatically holds in set F . Dropping the index 0 in F and setting n0 to n(k) in

the condition
∑k

i=0 ni ≤ n give us the set Fa in (4.2.2).

Now our goal becomes to find (n1, n2, · · · , nk) ∈ Fa s.t. Var(∆̂) is minimized.

4.3 STUDY DESIGN WITH UNKNOWN SAMPLE SIZES

As described previously, we use the same triangular design as in Section 3.2 for the optimal

design problem. The sample size for each DSM diagnosis is determined optimally as having

the smallest variance of the estimated difference among all the possible triangular designs in

the set Fa in (4.2.2). It is noteworthy that the design is “triangular” only in the sense of the

ordered chosen sample size, i.e., the n(i)’s. This is not an issue in Section 3.2 because there

the sample sizes are known and thus the order of the sample sizes is known also. However,

in this chapter, the sample sizes for the DSM diagnoses are to be determined and thus the

order of them is still unknown when designing a study. Table 3.4 does not indicate how the

ni’s are ordered. Recall D(i) is defined by the ascending chosen sample size n(i) and thus

it is unknown which DSM diagnosis D(i) represents before the sample sizes are determined.

D(i) may not necessarily be Di, which is defined by the ascending relative proportion πi.

Without prior knowledge about how the ni’s are ordered, the triangular design in Table 3.4

is equivalent to one of k! scenarios with different possible orderings of the ni’s. And the

sample size ni is determined by considering all the scenarios. Depending on the ordering of

the sample sizes, set Fa also changes.

In the example of Section 4.2.3 with k = 3, we have 3! = 6 possible orderings of n1, n2 and

n3, and hence 3! = 6 possible (D(1), D(2), D(3)). Ignoring the healthy controls, the triangular

design could be one of the 6 scenarios listed in Table 4.1. Our goal is to find the optimal
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sample size under all of the 6 possible designs in set Fa. Note that Fa changes in the 6

scenarios as n(3) could be one of n1, n2 or n3.

Table 4.1: Possible Triangular Designs for the example in Section 4.2.3

order of n1, n2, n3 design

n1 ≤ n2 ≤ n3

D(1) = D1 D(2) = D2 D(3) = D3

n(1) = n1 n(2) = n2 n(3) = n3

N(1) = 4 N(2) = 3 N(3) = 2

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n3 ≤ 10}

n1 ≤ n3 ≤ n2

D(1) = D1 D(2) = D3 D(3) = D2

n(1) = n1 n(2) = n3 n(3) = n2

N(1) = 4 N(2) = 2 N(3) = 3

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n2 ≤ 10}

n2 ≤ n1 ≤ n3

D(1) = D2 D(2) = D1 D(3) = D3

n(1) = n2 n(2) = n1 n(3) = n3

N(1) = 3 N(2) = 4 N(3) = 2

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n3 ≤ 10}

n2 ≤ n3 ≤ n1

D(1) = D2 D(2) = D3 D(3) = D1

n(1) = n2 n(2) = n3 n(3) = n1

N(1) = 3 N(2) = 2 N(3) = 4

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n1 ≤ 10}

n3 ≤ n1 ≤ n2

D(1) = D3 D(2) = D1 D(3) = D2

n(1) = n3 n(2) = n1 n(3) = n2

N(1) = 2 N(2) = 4 N(3) = 3

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n2 ≤ 10}

n3 ≤ n2 ≤ n1

D(1) = D3 D(2) = D2 D(3) = D1

n(1) = n3 n(2) = n2 n(3) = n1

N(1) = 2 N(2) = 3 N(3) = 4

Fa = {(n1, n2, n3) : n1 ≤ 4, n2 ≤ 3, n3 ≤ 2,
∑3

i=1 ni + n1 ≤ 10}
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4.4 VARIANCE OF ∆̂

As derived in Section 3.2, if X is the design matrix specified in (3.2.4), τ(i) is the vector

such that ̂β(i) − β0 = τ ′(i)X ′y and matrix T = (τ(1) τ(2) · · · τ(k)), then ∆̂ can be expressed as

a linear function of the data vector y as in (3.2.7). Because the covariance matrix of y is

known to be σ2In(k)+
∑k
i=1 n(i)

, the variance of ∆̂ can be written as:

V ar(∆̂) = V ar(π′T ′X ′y)

= π′T ′X ′XTπσ2, (4.4.1)

where π′ = (π(1) π(2) · · · π(k)).

Now we want to derive T ′X ′XT in terms of n(i) so that Var(∆̂) can be expressed with

π(i) and n(i) and thus be minimized. The derivation is shown in Appendix 4.A.1 and Var(∆̂)

is given in (4.A.3) as:

V ar(∆̂) = σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)
.

Note again that the variance formula involves the ordered unknown sample size n(i) and

relative proportion π(i), and thus can not be minimized directly. We need to express the

above formula in terms of ni and πi so that Var(∆̂) can be minimized. Depending on how

the unknown sample sizes are ordered, there are k! possible expressions of the Var(∆̂) formula

in terms of ni and πi. Recall that depending on how the unknown sample sizes are ordered

and which DSM diagnosis has the largest sample size, there are k possible Fa’s. Therefore

each Var(∆̂) expression is minimized in the corresponding set Fa.

In the hypothetical example in Section 4.2.3 where k = 3, the variance of ∆̂ becomes

V ar(∆̂) =
[4π(1)]

2

3 ∗ 4 ∗ n(1)

σ2 +
[π(1) + 3π(2)]

2

2 ∗ 3 ∗ n(2)

σ2 +
[π(1) + π(2) + 2π(3)]

2

1 ∗ 2 ∗ n(3)

σ2.

However, the above formula cannot be minimized directly because we don’t know the order of

the n1, n2 and n3 beforehand, so that we don’t know which DSM diagnosis D(i) corresponds to

and thus we don’t know what π(i) is. As there are 3! = 6 possible ways to order n1, n2 and n3,
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Table 4.2: Expression of Var(∆̂) for the example in Section 4.2.3

order of n1, n2, n3 Var(∆̂)

n1 ≤ n2 ≤ n3
[4π1]2

3∗4∗n1
σ2 + [π1+3π2]2

2∗3∗n2
σ2 + [π1+π2+2π3]2

1∗2∗n3
σ2

n1 ≤ n3 ≤ n2
[4π1]2

3∗4∗n1
σ2 + [π1+3π3]2

2∗3∗n3
σ2 + [π1+π2+2π2]2

1∗2∗n2
σ2

n2 ≤ n1 ≤ n3
[4π2]2

3∗4∗n2
σ2 + [π2+3π1]2

2∗3∗n1
σ2 + [π2+π1+2π3]2

1∗2∗n3
σ2

n2 ≤ n3 ≤ n1
[4π2]2

3∗4∗n2
σ2 + [π2+3π3]2

2∗3∗n3
σ2 + [π2+π3+2π1]2

1∗2∗n1
σ2

n3 ≤ n1 ≤ n2
[4π3]2

3∗4∗n3
σ2 + [π3+3π1]2

2∗3∗n1
σ2 + [π3+π1+2π2]2

1∗2∗n2
σ2

n3 ≤ n2 ≤ n1
[4π3]2

3∗4∗n3
σ2 + [π3+3π2]2

2∗3∗n2
σ2 + [π3+π2+2π1]2

1∗2∗n2
σ2

the variance formula in this example has 6 possible expressions in terms of n1, n2, n3, π1, π2

and π3, which are listed in Table 4.2.

In this example, to minimize Var(∆̂), we need to specify the exact expressions given in

Table 4.2 and minimize each expression in an corresponding set Fa, which is listed in Table

4.1.

4.5 MINIMIZATION OF VAR(∆̂)

The sample size for each DSM diagnosis is determined by minimizing Var(∆̂) in (4.A.3) in

set Fa. In theory, we can enumerate all the possible points in Fa, calculate the variance

of ∆̂ according to (4.A.3) and select the one with the smallest variance. However, simple

enumeration is very computationally expensive, especially when k, n and each of Ni is large.

Another way to achieve the minimization in set Fa is through convex optimization, which

is to minimize the variance formula (4.A.3). In this section, we first introduce the concepts

of convex set and convex function, and show the reason why direct minimization of Var(∆̂)

in Fa is difficult. Then we try to minimize Var(∆̂) in a upper set Fu of Fa and see if the

minimum of Var(∆̂) in Fu is in Fa. If it is, then we are done. If the minimum is outside Fa,

then it means the sample size for at least one DSM diagnosis is beyond the corresponding
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constraint. In this case, we set the sample size for such DSM diagnosis to be its upper bound

and recompute the minimum. In other words, the minimum is recalculated by minimizing

Var(∆̂) on the boundary of Fa. The minimum of Var(∆̂) in the upper set Fu can be shown

to exist in a particular subset F0.

4.5.1 Difficulty in Minimization of Var(∆̂) in Fa

4.5.1.1 Convex Set and Convex Function Convex minimization is done on convex

functions with domains of convex sets. Convex functions and convex sets are defined as

below.

Definition 4.1 (convex set). A set C is convex if the line segment between any two points

in C lies in C, i.e., for any x1, x2 ∈ C and 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ C

Definition 4.2 (convex function). If Df denotes the domain of a function f , then f is

convex if Df is convex and for any x, y ∈ Df and 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (4.5.1)

A function f is strictly convex if strict inequality holds in (4.5.1) for x 6= y and 0 < θ < 1.

To show that the variance formula in (4.A.3) is a convex function on Fa, we show Fa
is a convex set first. Although the set Fa as defined in (4.2.2) contains the order statistic

n(k) and can be expressed as k different sets depending on which sample size n(k) is, in the

proof that it is a convex set, there is no need to specify what n(k) is. Here n(k) can just be

used as a symbol and whether it is n1, n2 or any other ni does not matter. In the proof,

max(n1, · · · , nk) is used to stand for n(k).

Result 4.2. Fa is a convex set.
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Proof. Suppose both (n1a, n2a, · · · , nka) and (n1b, n2b, · · · , nkb) are points in Fa, then by

definition of set Fa,

k∑
i=1

nia + max(n1a, · · · , nka) ≤ n,

k∑
i=1

nib + max(n1b, · · · , nkb) ≤ n,

nia ≤ Ni, i = 1, 2, · · · , k,

nib ≤ Ni, i = 1, 2, · · · , k.

For any 0 ≤ θ ≤ 1, we have

θ
k∑
i=1

nia + (1− θ)
k∑
i=1

nib + max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

≤θ(n−max(n1a, · · · , nka)) + (1− θ)(n−max(n1b, · · · , nkb))

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

=n−max(θn1a, · · · , θnka))−max((1− θ)n1a, · · · , (1− θ)nka))

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

≤n−max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

=n;

also for i = 1, 2, · · · , k,

θnia + (1− θ)nib ≤ θNi + (1− θ)Ni = Ni.

Therefore, (θn1a + (1− θ)n1b, θn2a + (1− θ)n2b, · · · , θnka + (1− θ)nkb) is also in Fa and thus

Fa is a convex set.
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Usually it is not easy to show a function is convex using Definition 4.2. Fortunately,

there is an important property about convex function given in Boyd & Vandenberghe (2004)

which makes it easy to show convexity of a function. The property is stated as a lemma

below and we use this property to show that the variance formula (4.A.3) is convex.

Lemma 4.1 (Boyd & Vandenberghe (2004)). If the Hessian matrix of a function, which is

the second order derivative matrix of the function, exists at each point in its domain, then

the function is convex if and only if the Hessian matrix is positive semidefinite. The function

is strictly convex if and only if the Hessian matrix is positive definite.

Now we show the variance function in (4.A.3) is strictly convex on the set Fa. Although

the function in (4.A.3) is written generally in terms of n(i) and π(i), the actual parameters

are ni and πi as (4.A.3) is a function on the set of Fa. The n(i) can be any ni depending on

the ordering of n1, n2, · · · , nk and thus formula (4.A.3) has k! possible expressions in terms

of ni and πi as discussed previously. To avoid showing convexity for each of the k! possible

expressions, we use n(i) as a symbol as in the proof of Fa being a convex set.

Result 4.3. Var(∆̂) expressed in (4.A.3) is strictly convex on Fa.

Proof. The first derivative of Var(∆̂) with respect to n(i) is

∂V ar(∆̂)

∂n(i)

= −
[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]

2

n2
(i)(k − i+ 1)(k − i+ 2)

σ2.

The Hessian matrix 52V ar(∆̂) is:

52V ar(∆̂) =



2[(k+1)π(1)]
2

n3
(1)
k(k+1)

σ2 0 · · · 0

0
2[π(1)+kπ(2)]

2

n3
(2)

(k−1)k
σ2 · · · 0

...
...

. . .
...

0 0 · · · 2[π(1)+π(2)+···+π(k−1)+2π(k)]
2

n3
(k)

1∗2 σ2

 .

Again although we use n(i) in the Hessian matrix, (n(1), n(2), · · · , n(k)) can be any ordering

of (n1, n2, · · · , nk). It is easy to see that52V ar(∆̂) exists at any point in Fa and is a diagonal

matrix with all the diagonal elements positive, so 52V ar(∆̂) is positive definite according

to Lemma 4.1. Because Fa is a convex set, Var(∆̂) is strictly convex on Fa.
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4.5.1.2 KKT Conditions Optimization of a convex function can be solved using the

Karush-Kuhn-Tucker (KKT) conditions, which involves a set of equations formed with the

Lagrange multiplier. As Boyd & Vandenberghe (2004) pointed out, for a strictly convex

function, the KKT conditions are sufficient and necessary conditions for a solution to be op-

timal, given that some regulatory conditions hold. The KKT conditions allow both equality

and inequality constraints in the optimization, which fits the need in our problem.

In order to minimize V ar(∆̂) expressed in (4.A.3) in the set Fa, consider the Lagrangian

L(n(1), · · · , n(k), λ0, · · · , λk−1, η1, · · · , ηk), where,

L =σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)

+ λ0(n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n)

+ λ1(n(1) − n(2))

+ λ2(n(2) − n(3))

+ · · ·

+ λk−1(n(k−1) − n(k))

+ η1(n(1) −N(1))

+ η2(n(2) −N(2))

+ · · ·

+ ηk(n(k) −N(k)).

Following Boyd & Vandenberghe (2004), we find the KKT conditions form a set of
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equations:



∂L
∂n(1)

= − [(k+1)π(1)]
2

n2
(1)
k(k+1)

σ2 + λ0 + λ1 + η1 = 0

∂L
∂n(2)

= − [π(1)+kπ(2)]
2

n2
(2)

(k−1)k
σ2 + λ0 − λ1 + λ2 + η2 = 0

...
∂L

∂n(k−1)
= − [π(1)+···+π(k−2)+3π(k−1)]

2

n2
(k−1)

2∗3 σ2 + λ0 − λk−2 + λk−1 + ηk = 0

∂L
∂n(k)

= − [π(1)+···+π(k−1)+2π(k)]
2

n2
(k)

1∗2 σ2 + 2λ0 − λk−1 + ηk = 0

λ0 ≥ 0, λ1 ≥ 0, · · · , λk−1 ≥ 0, η1 ≥ 0, · · · , ηk ≥ 0

n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n ≤ 0

n(1) − n(2) ≤ 0
...

n(k−1) − n(k) ≤ 0

n(1) −N(1) ≤ 0
...

n(k) −N(k) ≤ 0

λ0(n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n) = 0

λ1(n(1) − n(2)) = 0
...

λk−1(n(k−1) − n(k)) = 0

η1(n(1) −N(1)) = 0
...

ηk(n(k) −N(k)) = 0

(4.5.2)

Here again to avoid writing the Lagrangian and equation set for each of the k! possible ex-

pressions of formula (4.A.3), the order statistic (n(1), n(2), · · · , n(k)) is used. In the actual pro-

cess of solving the equation set, the order of (n1, n2, · · · , nk) needs to be known. The solution

to the above equation set is the minimum of Var(∆̂) for a given ordering of (n1, n2, · · · , nk)

in the corresponding set Fa. In other words, for each ordering of (n1, n2, · · · , nk), an equa-

tion set in (4.5.2) can be formed and thus there are k! possible equation sets. Intuitively,

we should solve each of the equation sets and obtain k! minima. The minimum of the k!

minima is the optimal point that gives the desired sample sizes. However, on one hand,

as k increases, the number of equation sets increases very quickly and it would be tedious

to consider all the orderings of (n1, n2, · · · , nk). On the other hand, even if the order of
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(n1, n2, · · · , nk) is known and thus π(i) is known, the equation set (4.5.2) is difficult to solve

as shown next.

4.5.1.3 Difficulty with Minimizing Var(∆̂) in Fa As can be seen from equation

set (4.5.2), for a given ordering of (n1, n2, · · · , nk), there are 3k unknown parameters, 3k

equations and 4k inequality constraints. The 3k equations can be used to solve for the 3k

unknowns provided the solution exists. However, to have a solution for the KKT conditions

equation set, we also need to check if the inequalities hold at the solution point. A common

way to solve the equation set is to consider all the scenarios each of which depends on if

each one of the Lagrangian multipliers is positive or zero. Because there are 2k Lagrangian

multipliers, there are in total 22k scenarios to consider. Therefore, even if the order of

(n1, n2, · · · , nk) is known, solving (4.5.2) is very complicated, especially when k is large. We

illustrate that in Appendix 4.A.3 for the simplest case where k = 2, it is not easy to get a

solution.

As can be seen from the illustration, when the order of (n1, n2, · · · , nk) is known, in

addition to a large number of scenarios to consider, there is still a challenge in obtaining

a solution. The challenge is that what the solution is depends on the relationship among

N1, · · · , Nk and n, especially the order of the k upper bounds N1, · · · , Nk. Without knowing

the relationship and order, we are unable to write down a closed form solution.

4.5.2 Set Fu and Fo

As discussed in previous sections, there are two problems we need to solve to get the optimal

sample sizes through convex optimization. The first problem is to solve the equation set

(4.5.2) for a given ordering of (n1, n2, · · · , nk) and obtain a minimum. The second one is

to find the minimum of all the k! minima. One way to get around the first problem is to

remove some of the constraints first. In other words, we first minimize Var(∆̂) in an upper

set of Fa, which we call Fu, and see if the minimum is in Fa. If it is, then the minimum in

Fa is found. Otherwise, it means the calculated sample sizes for some DSM diagnoses are

larger than their corresponding upper bound. In this case we fix the sample sizes for these
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DSM diagnoses at their corresponding upper bounds and recalculate the sample sizes in Fu.

That is, we recalculate the sample size in Fu but also on the boundary of Fa. The definition

of set Fu is:

Fu = {(n1, · · · , nk) :
k∑
i=1

ni + n(k) ≤ n}.

It can be seen from the definition of set Fu that the constraint ni ≤ Ni is removed.

Therefore, it is easier to solve for a minimum in Fu as there are fewer parameters and we

don’t have to worry about the Ni’s. However, similar as Fa, set Fu lacks the ordering

information of (n1, n2, · · · , nk), so that we still don’t know which ni is n(i) and which πi

is π(i) when minimizing (4.A.3) in Fu. Therefore, the second problem in obtaining the

optimal sample size mentioned above is still unsolved by minimizing in the upper set Fu.

Depending on the orderings of (n1, n2, · · · , nk), set Fu can be partitioned into k! mutually

exclusive subsets each with known n(i) and p(i). Minimizing in Fu with a known ordering of

(n1, n2, · · · , nk) is just minimizing in a particular subset of Fu and the global minimum in

Fu is the smallest among the k! minima from each subset. Because k! could be a very large

number, it is unwise to minimize in all of the k! subsets. Our work would be reduced if we

know which subset would give the smallest minimum. Then we can first minimize (4.A.3)

in this subset and see if the minimum is in Fa. It is shown in the next section that the

minimum of Var(∆̂) in Fu exists in the particular subset Fo which is defined as:

Fo = {(n1, · · · , nk) :
k∑
i=1

ni + n(k) ≤ n and n1 ≤ n2 ≤ · · · ≤ nk}.

Here we can see that F0 is a very special subset of Fu in the sense that the sample

sizes have the same order as the relative proportions. When the sample sizes exist in F0,

it is obvious that D(i) = Di, n(i) = ni, π(i) = πi and N(i) = Ni. For instance, among the

population with dysfunction in the construct of interest, D1, the DSM diagnosis with the

smallest proportion would need the fewest subject. Since we want to minimize Var(∆̂) in

Fu and F0 through convex optimization, we need to show both Fu and F0 are convex sets.

The proof is very similar to that of Result 4.2.

Result 4.4. Fu and F0 are both convex sets.
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Proof. Suppose both (n1a, n2a, · · · , nka) and (n1b, n2b, · · · , nkb) are points in Fu, then by

definition,

k∑
i=1

nia + max(n1a, · · · , nka) ≤ n,

k∑
i=1

nib + max(n1b, · · · , nkb) ≤ n.

For any 0 ≤ θ ≤ 1, we have

θ
k∑
i=1

nia + (1− θ)
k∑
i=1

nib + max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

≤θ(n−max(n1a, · · · , nka)) + (1− θ)(n−max(n1b, · · · , nkb))

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

=n−max(θn1a, · · · , θnka))−max((1− θ)n1a, · · · , (1− θ)nka))

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

≤n−max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

+ max(θn1a + (1− θ)n1b, · · · , θnka + (1− θ)nkb)

=n.

Therefore, (θn1a + (1− θ)n1b, θn2a + (1− θ)n2b, · · · , θnka + (1− θ)nkb) is also in Fu and thus

Fu is a convex set.

If we further require that n1a ≤ n2a ≤ · · · ≤ nka and n1b ≤ n2b ≤ · · · ≤ nkb, then both

(n1a, n2a, · · · , nka) and (n1b, n2b, · · · , nkb) are points in F0. It is easy to see that

θn(1a) + (1− θ)n(1b) ≤ θn(2a) + (1− θ)n(2b) ≤ · · · ≤ θn(ka) + (1− θ)n(kb).

So (θn1a+(1−θ)n1b, θn2a+(1−θ)n2b, · · · , θnka+(1−θ)nkb) is also in F0. Then by definition,

F0 is a convex set too.

The relationship of Fu, Fa and Fo can be represented in Figure 4.1. Here, the big circle

stands for Fu and the small circle stands for Fa. The shaded area stands for F0, which is a

particular subset of Fu and also intersects with Fa.
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Figure 4.1: Relationship of Fu, Fa and Fo

4.5.3 Global Minimum of Var(∆̂) in Fu

In this section, we prove the global minimum of Var(∆̂) in Fu is in the particularly ordered

subset F0 and show how to calculate the minimum in F0. If this minimum is not inside

Fa, we show in the next section how to minimize Var(∆̂) in Fu but on the boundary of Fa,

i.e.,with some ni = Ni.

4.5.3.1 Permutation of πi Based on the definition of D(i) and π(i), for any triangular

design with given (n(i)) and πi, permuting the sample sizes is the same as permuting the

relative proportions. For example, consider the simplest case where there are two DSM

diagnoses with (π1, π2) = (0.1, 0.9) and (n(1), n(2)) = (5, 10). There could be two possible

designs, which are n1 = 5, n2 = 10 and n1 = 10, n2 = 5. For each possible design, we can

represent it either using D(i) where the sample sizes are ascending or using Di where the

relative proportions are ascending. As can be shown in Table 4.3, table (a) and table (b) are

two different representations of the design n1 = 5, n2 = 10 and table (c) and table (d) are
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two different ways to represent the design n1 = 10, n2 = 5. Either permuting the relative

proportions in Table 4.3(a) or permuting the sample sizes in Table 4.3(b) converts the design

with n1 = 5, n2 = 10 to the one with n1 = 10, n2 = 5. In order to show that the global

minimum of Var(∆̂) in Fu is in F0, a subset with special ordering of (n1, n2, · · · , nk), we

could permute either the relative proportions or the sample sizes. Here we choose to permute

the relative proportions because the study is represented using D(i) as shown in Table 3.4.

Table 4.3: Illustration of permuting sample sizes and relative proportions

(a) design n1 = 5, n2 = 10

D(1) D(2) Control

5 10 10

0.1 0.9

(b) design n1 = 5, n2 = 10

D1 D2 Control

5 10 10

0.1 0.9

(c) switching π1, π2 in (a)

D(1) D(2) Control

5 10 10

0.9 0.1

(d) switching n1, n2 in (b)

D1 D2 Control

10 5 10

0.1 0.9

As there are a total of k! possible permutations of π1, π2, · · · , πk, there are k! ways the

vector (π(1), π(2), · · · , π(k)) can be realized. Through pairwise switching, different realizations

can be converted to each other. In order to show that the minimum of Var(∆̂) in Fu exists in

Fo, i.e., when π(i) = πi, we first show that every pairwise switch of the values of π(p) and π(q)

enlarges Var(∆̂) if π(p) < π(q) and p < q. We then show π(i) = πi can be achieved through a

few steps of such pairwise switches and each step decreases the variance.

Result 4.5. For given (n(1), n(2), · · · , n(k)) and (π1, π2, · · · , πk), if p < q, Var(∆̂) with π(p) <

π(q) is smaller than the Var(∆̂) after switching the values of π(p) and π(q).

Proof. See Appendix 4.A.4.

This result says Var(∆̂) would be different in the k! subsets each with a different or-

dering of the known (n(1), n(2), · · · , n(k)). It also indicates that if we hold the values of

n(1), n(2), · · · , n(k) fixed, we can always obtain a smaller variance of ∆̂ by switching a pair
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of π(i)’s and finally achieve the minimum. And the switch should go in the direction such

that the DSM diagnosis with the smaller relative proportion would have the smaller sample

size. In other words, the variance reduces if the pairwise switch of π(i)’s makes the order of

the sample sizes and the order of the relative proportions conform. When the sample sizes

from some DSM diagnoses are equal, the pairwise switching of the π(i)’s within these groups

does not change the variance. This implies that if all the sample sizes are equal, it does not

matter how π(i) is defined because the variance stays the same.

To illustrate the above result, consider the hypothetical example in Section 4.2.3. Sup-

pose in the following four designs shown in Table 4.4, n(1) = 1, n(2) = 2, n(3) = 3. The control

group is not included in the tables, but by our assumption, it has 3 subjects. Assume σ = 1,

the variance of ∆̂ in Fu is computed for each case.

Table 4.4: Variance comparison for four designs

(a) Var(∆̂) = 0.996

0.7 0.2 0.1

D(1) D(2) D(3)

1 2 3

(b) Var(∆̂) = 0.977

0.7 0.1 0.2

D(1) D(2) D(3)

1 2 3

(c) Var(∆̂) = 0.657

0.1 0.7 0.2

D(1) D(2) D(3)

1 2 3

(d) Var(∆̂) = 0.536

0.1 0.2 0.7

D(1) D(2) D(3)

1 2 3

In Table 4.4, adjacent tables are different only in the order of one pair of π(i)’s. The

Var(∆̂) in design (a) is larger than that in design (b) because in design (a), π(2) is bigger

than π(3), which means the DSM diagnosis with a larger relative proportion has a smaller

sample size. As shown in Result 4.5, as long as the order of ni’s and that of πi’s conform

after the switch, the Var(∆̂) is reduced.

Result 4.5 only deals with pairwise switch. It still remains unknown which permutation

of (π(1), π(2), · · · , π(k)) has the smallest Var(∆̂) for a given set of (n(1), n(2), · · · , n(k)). The

following result shows that if π(i) = πi for all i, Var(∆̂) is the smallest. That is to say, the

minimum of Var(∆̂) in Fu exists in Fo.

Result 4.6. argmin
Fu

Var(∆̂) ∈ Fo.
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Proof. Represent the design in the triangular form as in Table 3.4 so that the DSM diagnoses

are listed in the ordered sample sizes. For a given set of (n(1), n(2), · · · , n(k)), start from π1,

the smallest relative proportion. Suppose π(i) = π1, then switch π(i) pairwisely with each of

the π(j)’s where π(j) < π1 and 1 ≤ j < i until π(1) = π1. In each step we get a smaller Var(∆̂)

based on Result 4.5 because the switch makes the order of relative proportions and that of

the sample sizes conform. Repeat the process for π2 until π(2) = π2. Again we get a smaller

Var(∆̂) in each step. Repeat the process for π3, · · · , πk until π(k) = πk and we will have the

smallest Var(∆̂). The process is illustrated in Table 4.4, where π1 = 0.1 is switched to π(1)

from (a) to (c) and π2 = 0.2 is switched to π(2) from (c) to (d). Finally πi = π(i) and there

is nothing that can be switched to achieve a smaller Var(∆̂).

Through the above process, we obtain the smallest Var(∆̂) when π(i) = πi for a given set

of (n(1), n(2), · · · , n(k)). By definition πi is the relative proportion for the DSM diagnosis with

sample size ni and π(i) is the relative proportion for the DSM diagnosis with sample size n(i),

thus π(i) = πi means the DSM diagnosis with sample size n(i) is the same DSM diagnosis

with sample size ni. Therefore π(i) = πi is equivalent as n(i) = ni and D(i) = Di. Because

n(1) ≤ n(2) ≤ · · · ≤ n(k), the ni’s are also ordered such that n1 ≤ n2 ≤ · · · ≤ nk. In other

words, for a given set of (n(1), n(2), · · · , n(k)), Var(∆̂) is the smallest when n1 ≤ n2 ≤ · · · ≤ nk,

i.e., the sample size for each DSM diagnosis increases as the relative proportion increases.

Based on the above argument, the point that minimizes Var(∆̂) in Fu must be in Fo.

Otherwise, we can always find a permutation in F0 to have the same (n(1), n(2), · · · , n(k)) but

give a smaller variance. Therefore, argmin
Fu

Var(∆̂) ∈ Fo.

4.5.3.2 Minimization of Var(∆̂) in Fo Since Fo is a convex set, Var(∆̂) can be min-

imized by convex optimization through solving the KKT equation set again. Because the

sample sizes n1, n2, · · · , nk are ordered in Fo, the variance formula (4.A.3) can be written

directly without the order statistic notation as:

V ar(∆̂) = σ2

k∑
i=1

[π1 + π2 + · · ·+ πi−1 + (k − i+ 2)πi]
2

ni(k − i+ 1)(k − i+ 2)
.
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If we use L0(n1, · · · , nk, λ0, · · · , λk−1) to denote the Lagrangian in this case, where

L0(n1, · · · , nk, λ0, · · · , λk−1) =σ2

k∑
i=1

[π1 + π2 + · · ·+ πi−1 + (k − i+ 2)πi]
2

ni(k − i+ 1)(k − i+ 2)

+ λ0(n1 + n2 + · · ·+ nk−1 + 2nk − n)

+ λ1(n1 − n2)

+ · · ·

+ λk−1(nk−1 − nk),

then following Boyd & Vandenberghe (2004), the KKT condition says:



∂L0

∂n1
= − [(k+1)π1]2

n2
1k(k+1)

σ2 + λ0 + λ1 = 0
∂L0

∂n2
= − [π1+kπ2]2

n2
2(k−1)k

σ2 + λ0 − λ1 + λ2 = 0
...
∂L0

∂nk
= − [π1+···+πk−1+2πk]2

n2
k1∗2 σ2 + 2λ0 − λk−1 = 0

λ0 ≥ 0, λ1 ≥ 0, · · · , λk−1 ≥ 0

n1 + n2 + · · ·+ nk−1 + 2nk − n ≤ 0

n1 − n2 ≤ 0
...

nk−1 − nk ≤ 0

λ0(n1 + n2 + · · ·+ nk−1 + 2nk − n) = 0

λ1(n1 − n2) = 0
...

λk−1(nk−1 − nk) = 0

.

In theory, we need to find all the (n∗1, · · · , n∗k) and (λ∗0, · · · , λ∗k−1) that satisfies the above

equation set. However, as Boyd & Vandenberghe (2004) showed any local minimum of a

strictly convex function is a global minimum and there exists at most one global minimum

of a strictly convex function, if we can find one point (n∗1, · · · , n∗k, λ∗0, · · · , λ∗k−1) that solves
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the above equation set, that point is the global minimum. Obviously, λ∗0, λ
∗
1, · · · , λ∗k−1 cannot

all be 0. Now we set λ∗1 = · · · = λ∗k−1 = 0 and λ∗0 > 0, then we have

− [(k+1)π1]2

n∗21 k(k+1)
σ2 + λ∗0 = 0

− [π1+kπ2]2

n∗22 (k−1)k
σ2 + λ∗0 = 0

...

− [π1+···+πk−2+3πk−1]2

n∗2k−12∗3 σ2 + λ∗0 = 0

− [π1+···+πk−1+2πk]2

n∗2k 1∗2 σ2 + 2λ∗0 = 0

n∗1 + n∗2 + · · ·+ n∗k−1 + 2n∗k − n = 0

.

This leads to,

λ∗0 = [ 1
n
(
∑k−1

i=1
π1+···+πi−1+(k−i+2)πi√

(k−i+1)(k−i+2)
+ 1 + πk)]

2 > 0

n∗j =

π1+···+πj−1+(k−j+2)πj√
(k−j+1)(k−j+2)∑k−1

i=1

π1+···+πi−1+(k−i+2)πi√
(k−i+1)(k−i+2)

+1+πk
n (1 ≤ j ≤ k − 1)

n∗k = (1+πk)/2∑k−1
i=1

π1+···+πi−1+(k−i+2)πi√
(k−i+1)(k−i+2)

+1+πk
n

. (4.5.3)

Note that because π1 < π2 < · · · < πk, we have for 1 ≤ j ≤ k − 2,

n∗j
n∗j+1

=
π1 + · · ·+ πj−1 + (k − j + 2)πj

π1 + · · ·+ πj−1 + πj + (k − j + 1)πj+1

√
(k − j)(k − j + 1)

(k − j + 1)(k − j + 2)

=
π1 + · · ·+ πj−1 + πj + (k − j + 1)πj
π1 + · · ·+ πj−1 + πj + (k − j + 1)πj+1

√
k − j

k − j + 2

< 1

and

n∗k−1

n∗k
=

π1 + · · ·+ πk−2 + 3πk−1

π1 + · · ·+ πk−2 + πk−1 + 2πk

2√
2 ∗ 3

=
π1 + · · ·+ πk−2 + πk−1 + 2πk−1

π1 + · · ·+ πk−2 + πk−1 + 2πk

2√
2 ∗ 3

< 1.

This means

n∗1 < n∗2 < · · · < n∗k.

The solution (n∗1, · · · , n∗k, λ∗0, · · · , λ∗k−1) in (4.5.3) satisfies the KKT conditions, so accord-

ing to Boyd & Vandenberghe (2004), this is the global minimum in Fo. By Result 4.6, this

is the global minimum of Var(∆̂) in Fu.
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4.5.3.3 Numerical Example of Minimization in Fo The above section says that if

we want to calculate the sample size optimally for each DSM diagnosis in estimating the

difference between the population with dysfunction and the healthy population using the

triangular design, and if we only have the constraint for the total number of subjects that

we can process, then the number of subjects in each DSM diagnosis can be calculated as in

(4.5.3) in theory. In the numerical example in Section 4.2.3 with π1 = 0.1, π2 = 0.2, π3 = 0.7

and n = 10, the sample size that gives the smallest variance of ∆̂ in Fu is calculated as:

n?1 =

(3−1+2)∗0.1√
(3−1+1)(3−1+2)

(3−1+2)∗0.1√
(3−1+1)(3−1+2)

+ 0.1+(3−2+2)∗0.2√
(3−2+1)(3−2+2)

+ 1 + 0.7
∗ 10 = 0.550,

n?2 =

0.1+(3−2+2)∗0.2√
(3−2+1)(3−2+2)

(3−1+2)∗0.1√
(3−1+1)(3−1+2)

+ 0.1+(3−2+2)∗0.2√
(3−2+1)(3−2+2)

+ 1 + 0.7
∗ 100 = 1.360,

n?3 =
1+0.7

2
(3−1+2)∗0.1√

(3−1+1)(3−1+2)
+ 0.1+(3−2+2)∗0.2√

(3−2+1)(3−2+2)
+ 1 + 0.7

∗ 100 = 4.045.

According to our assumption, the healthy population also has sample size n?3. The numbers

computed with formula in (4.5.3) are not integers, because they give the theoretically smallest

variance in Fu, which is not required to be an integer set. When working with actual study

designs, the integer point “closest” to (n?1, n
?
2, · · · , n?k) should be used.

4.5.4 Minimization of Var(∆̂) in Fu with some ni = Ni

As discussed previously, after the global minimum of Var(∆̂) in Fu is calculated as in (4.5.3),

whether the minimum is inside Fa or not needs to be checked. If it is inside Fa, which cor-

responds to the intersection of Fa and the shaded area in Figure 4.1, then we have also

obtained the global minimum in Fa. Otherwise, if the minimum is inside F0 but outside

Fa, it means the sample sizes for some DSM diagnoses at this global minimum are larger

than the corresponding upper bounds. Thus we need to minimize Var(∆̂) in Fu again but

this time also on the boundary of Fa. To do so we only need to force the sample sizes for

the DSM diagnoses with n?(i) ≥ N(i) to be the corresponding N(i). After a new minimum is

obtained, we need to check if the new minimum is inside Fa or not. If the new minimum
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is inside Fa, then we have found the minimum desired. Otherwise, we repeat the process of

minimizing Var(∆̂) in Fu with some ni = Ni and check if the newly obtained minimum is

inside Fa or not.

When forcing the sample sizes for some DSM diagnoses to be equal to the correspond-

ing constraints, we are still minimizing in Fu, so the convex optimization through solving

the KKT equation set is still applicable. However, as discussed in preceding sections, the

ordering information of the sample sizes is still lacked and which πi is π(i) remains unknown.

Theoretically we need to minimize in each of k! subsets of Fu with some ni = Ni. But prac-

tically not all the k! possible permutations needs to be considered because for those DSM

diagnoses with sample sizes forced at the corresponding upper bounds, their sample size

ordering is known, and for those DSM diagnoses whose sample sizes are to be determined

again, we can still order them according to their relative proportion based on Result 4.5.

Suppose there are s DSM diagnoses with sample sizes forced at the upper bounds, then there

are
(
k
s

)
ways that the k DSM diagnoses can be order such that s of the them have increasing

upper bounds and the remaining k− s have increasing relative proportions. In other words,

there are
(
k
s

)
subsets of Fu to be considered in minimization of Var(∆̂) with some ni = Ni,

which is significantly smaller than k!. In each subset, we know which πi is π(i) and we have

an index S to denote the index whose n(i) = N(i), where the definition of S is as follows:

Definition 4.3. Suppose there are s DSM diagnoses whose sample sizes are forced at the

corresponding upper bounds, we use S = {i1, i2, · · · , is : i1 < i2 < · · · < is} to denote the

index set such that for i ∈ S, n(i) = N(i).

According to the above argument, there is no one step closed form solution for mini-

mization of Var(∆̂) in Fu with some ni = Ni. What we have to do is to consider all the
(
k
s

)
permutations of the sample sizes and see which one has the smallest variance of ∆̂. For each

one of these
(
k
s

)
cases, π(i) is known. However, even with π(i) known, if the KKT conditions

equation set is written down and to be solved, it is easy to see that sometimes there is no

solution for it because the inequalities in the equation set may not all be satisfied. One way

to get around is to ignore the order restriction in the KKT conditions equation set first. If
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I(i ∈ S) denotes the indicator function such that{
I(i ∈ S) = 1 i ∈ S
I(i ∈ S) = 0 i 6∈ S

,

then ignoring the order restriction means Lagrangian LS(n(1), · · · , n(k), λ0, κ1, · · · , κk) is con-

sidered to solve each one of the
(
k
s

)
KKT conditions equation sets, which is

LS =σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)

+ λ0(n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n)

+
k∑
i=1

κiI(i ∈ S)(n(i) −N(i)).

What we do then is to solve the KKT equation set generated by LS and see if the solution

has the increasing order as we have assumed. If it does, then this solution is considered

eligible, Var(∆̂) at this solution is calculated and compared with that from other eligible

solutions. Otherwise this case is not eligible for comparison of the variances.

4.5.4.1 Algorithm to Minimize Var(∆̂) in Fu with some ni = Ni To minimize

Var(∆̂) in Fu with some ni = Ni, we need to solve a KKT conditions equation set for each

one of the
(
k
s

)
permutations of the DSM diagnoses first. The KKT equations generated by

LS are

∂LS
∂n(i)

= − [π(1)+π(2)+···+π(i−1)+(k−i+2)π(i)]
2

n2
(i)

(k−i+1)(k−i+2)
σ2 + λ0 + κiI(i ∈ S) = 0, 1 ≤ i ≤ k − 1

∂L
∂n(k)

= − [π(1)+···+π(k−1)+2π(k)]
2

n2
(k)

1∗2 σ2 + 2λ0 + κkI(k ∈ S) = 0

λ0 ≥ 0

n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n ≤ 0

n(i) −N(i) = 0, i ∈ S
λ0(n(1) + n(2) + · · ·+ n(k−1) + 2n(k) − n) = 0

.

(4.5.4)

Obviously the solution λ?0 6= 0, otherwise the first equation in (4.5.4) does not hold when

i 6∈ S. There are two scenarios that needs to be considered when solving (4.5.4).
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1. I(k ∈ S) = 1

Then we have

n?(k) = N(k)

n?2(i) =
[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]

2

λ?0(k − i+ 1)(k − i+ 2)
σ2, i 6∈ S∑

i 6∈S

n?(i) = n−
∑
j∈S

N(j) −N(k).

This leads to

n?(i) = N(i), i ∈ S

n?(i) =

π(1)+π(2)+···+π(i−1)+(k−i+2)π(i)√
(k−i+1)(k−i+2)∑

g 6∈S
π(1)+π(2)+···+π(g−1)+(k−g+2)π(g)√

(k−g+1)(k−g+2)

(n−
∑

j∈S N(j) −N(k)), i 6∈ S

λ?0 =
(
∑
g 6∈S

π(1)+π(2)+···+π(g−1)+(k−g+2)π(g)√
(k−g+1)(k−g+2)

)2

(n−
∑
j∈S N(j)−N(k))

2 σ2.

(4.5.5)

2. I(k ∈ S) = 0

Under this situation, we have

n?2(i) =
[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]

2

λ?0(k − i+ 1)(k − i+ 2)
σ2, i 6∈ S, i 6= k;

n?2(k) =
[π(1) + π(2) + · · ·+ π(k−1) + 2π(k)]

2

2λ?01 ∗ 2
σ2, k 6∈ S;∑

i 6∈S

n?(i) + n?(k) = n−
∑
j∈S

N(j).

and this leads to

n?(i) = N(i), i ∈ S

n?(i) =

π(1)+π(2)+···+π(i−1)+(k−i+2)π(i)√
(k−i+1)(k−i+2)∑

g 6∈S,g 6=k
π(1)+π(2)+···+π(g−1)+(k−g+2)π(g)√

(k−g+1)(k−g+2)
+1+π(k)

(n−
∑

j∈S N(i)), i 6∈ S, i 6= k

n?(k) =
1+π(k)

2∑
g 6∈S,g 6=k

π(1)+π(2)+···+π(g−1)+(k−g+2)π(g)√
(k−g+1)(k−g+2)

+1+π(k)

(n−
∑

j∈S N(i)), k 6∈ S

λ?0 =
(
∑
g 6∈S,g 6=k

π(1)+π(2)+···+π(g−1)+(k−g+2)π(g)√
(k−g+1)(k−g+2)

+1+π(k))
2

(n−
∑
j∈S N(j))

2 σ2.

(4.5.6)
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Because we ignore n?(1) ≤ n?(2) ≤ · · · ≤ n?(k) in the KKT equations, we have to check

whether the obtained n?(i)’s indeed have this increasing order. If it does, then the n?(i) above

is the solution we want. Otherwise, there is no solution for this particular equation set. After

the solution for each of the
(
k
s

)
KKT equation sets is obtained, the minimum in Fu with the

sample sizes for some DSM diagnoses reaching the upper bounds is the smallest among these

solutions. The algorithm to obtain this minimum can be stated in the following result.

Result 4.7. Suppose there are s DSM diagnoses with sample sizes known to be equal to the

corresponding constraints, then order all the k DSM diagnoses such that the s DSM diagnoses

would have increasing constraints and the other k− s DSM diagnoses would have increasing

relative proportions. There are
(
k
s

)
ways to order the k DSM diagnoses.

For the rth ordering (r = 1, 2, · · · ,
(
k
s

)
), let S(r) be the index set S defined in Definition

4.3 and n
(r)
(i) be the solution obtained from (4.5.5) or (4.5.6), depending on whether k ∈ S(r).

Let R = {r : n
(r)
(1) ≤ n

(r)
(2) ≤ · · · ≤ n

(r)
(k), 1 ≤ r ≤

(
k
s

)
}, then only for r ∈ R, we calculate

Var(r)(∆̂) with formula (4.A.3). The minimum in Fu with some sample sizes equal to the

corresponding constraints is argmin
r∈R

Var(r)(∆̂).

The hypothetical example in Section 4.2.3 is used to illustrate the process stated in

Result 4.7.

4.5.4.2 Numerical Example of Minimization in Fu with some ni = Ni Recall in

Section 4.5.3.3, we have already obtain the global minimum in F0 with n = 10 as n1 =

0.550, n2 = 1.360, n3 = 4.045. Because we have N1 = 4, N2 = 3, N3 = 2, then it immediately

follows that the global minimum is outside Fa because n3 > N3 = 2. Now we need to force

n3 = 2 and minimize Var(∆̂) in Fu again.

The process of minimization in Fu with n3 = N3 = 2 can be shown in Table 4.5.

The number in parenthesis is the relative proportion which could identify the specific DSM

diagnosis. Now there is only s = 1 DSM diagnosis with the sample size known to be equal

to the constraint, so there are
(

3
1

)
= 3 possible orderings of the DSM diagnoses. For each

ordering the solution is obtained and listed in a row. It can be seen in this case for r = 2

and r = 3 the solution has the increasing order assumed and R = {2, 3}. If σ = 1, then the
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variance of ∆̂ is 0.620 for r = 2 and 0.650 for r = 3. Therefore (n1 = 0.702, n2 = 3.649, n3 =

2) is the minimum in Fu with n3 = N3 = 2. Note that n2 = 3.649 > N2 and thus this

minimum with n3 = N3 is again outside Fa. If we want to obtain the optimal sample size in

Fa, we need to minimize again in Fu but with n2 = N2 = 3, n3 = N3 = 2.

Table 4.5: Numerical example for minimization in Fu with n3 = N3 = 2

r n(1)(π(1)) n(2)(π(1)) n(3)(π(1)) S Var(∆̂)

1 1.727(0.1) 4.273(0.2) 2(0.7) {3} ×
2 0.702(0.1) 2(0.7) 3.649(0.2) {2} 0.620

3 2(0.7) 2.031(0.1) 2.985(0.2) {1} 0.650

Based on the argument before and as can be seen from the illustration, there is no one

step closed form solution to the minimization of Var(∆̂) in Fu with some of the sample sizes

equal to the corresponding upper bounds. What specific ordering of the DSM diagnoses the

final minimum has depends on the specific values of the constraints as well as the distances

in the relative proportions between any two of the DSM diagnoses.

4.6 PROPOSED ALGORITHM FOR OPTIMAL DESIGN AND

ILLUSTRATION

With our assumptions described previously and methods to minimize Var(∆̂) in Fu under

the different situations, we are now ready to state the proposed algorithm to find the optimal

sample size for each DSM diagnosis that minimizes Var(∆̂) in Fa under the constraints. The

hypothetical example in Section 4.2.3 is again used to illustrate the algorithm. An R program

is also provided to implement the algorithm in Appendix 4.A.5.

4.6.1 Proposed Algorithm for Optimal Design

The proposed algorithm to obtain the optimal sample size for each DSM diagnosis is stated

in Result 4.8.
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Result 4.8. With the parameters defined as in Table 3.1 and this chapter, in a triangular

design with k DSM diagnoses and one healthy control group, the optimal sample sizes to

estimate the difference in a neurobiological characteristic between the population with dys-

function in the construct of interest and the healthy population can be calculated with the

following algorithm:

0. Assume n
(0)
1 ≤ n

(0)
2 ≤ · · · ≤ n

(0)
k , calculate the global minimum n

(0)
i in Fu using (4.5.3);

Now start with j = 0 and iterate the following two steps:

1. Compare n
(j)
i with Ni for 1 ≤ i ≤ k;

a. if n
(j)
i ≤ Ni for all i, then (n

(j)
1 , n

(j)
2 , · · · , n(j)

k ) ∈ Fa and stop. This is the final sample

size desired;

b. if n
(j)
i > Ni for some index i, then go to step 2.

2. Use the method stated in Result 4.7 to minimize Var(∆̂) in Fu with n
(j+1)
i = Ni for the

index i such that n
(j)
i > Ni. Obtain the minimum (n

(j+1)
1 , n

(j+1)
2 , · · · , n(j+1)

k ) and go to

step 1.

The algorithm says to obtain the optimal sample sizes, we always start from subset F0

to obtain the global minimum in Fu as if there is no constraint on the sample size for each

DSM diagnosis. Then the sample size for each DSM diagnosis keeps being updated after

comparing it with the corresponding constraint until all the sample sizes are no greater than

the corresponding constraints. Note that step 2 might involve multiple minimizations as

illustrated in Table 4.5. Another thing that is worth noting is that the values obtained by

the proposed algorithm are not necessarily integers. Rounding is needed where appropriate.

4.6.2 Illustration of the Proposed Algorithm

We again use the hypothetical example in Section 4.2.3 to illustrate the algorithm. Because in

this example, N1, N2, N3 and n are small enough, all the possible points in Fa are enumerated

and listed in Table 4.7. We compare what is obtained from the proposed algorithm with the

sample sizes obtained by enumeration.

Suppose σ = 1. Table 4.6 below lists each step in determining the sample sizes using

the proposed algorithm. Each row is a separate step with step index in the first column.
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Because the study needs to be a triangular design, the DSM diagnoses in each row are

represented using D(1), D(2), D(3). The three terms in each cell are respectively the relative

proportion, the constraint of sample size and the sample size computed in that step for each

DSM diagnosis. The relative proportion is used to identify the specific DSM diagnosis D(i)

refers to.

Table 4.6: Illustration of the proposed algorithm for the example in Section 4.2.3

Step (π(1), N(1), n(1)) (π(2), N(2), n(2)) (π(3), N(3), n(3)) Var(∆̂)

0 (0.1,4,0.550) (0.2,3,1.360) (0.7,2,4.045) 0.442

1 (0.1,4,0.702) (0.7,2,2) (0.2,3,3.649) 0.620

2 (0.1,4,2) (0.7,2,2) (0.2,3,3) 0.650

As can be seen in Table 4.6, the final sample sizes determined by the proposed algorithm

are 2, 3 and 2 for depression (π1 = 0.1), bipolar disorder (π2 = 0.2) and schizophrenia

(π3 = 0.7), respectively. Based on our assumptions, the healthy population has 3 subjects

also. The enumeration listed in Table 4.7 shows that there are in total 18 possible points in

set Fa and we calculate Var(∆̂) for each point. The point with the smallest variance is the

same as what is obtained with the proposed algorithm.

Comparing Table 4.6 and Table 4.7, we can see that our proposed algorithm needs fewer

steps. However, the proposed algorithm does not necessarily return a solution with integers

because the minimization is not done on an integer set. So at last, we need to decide whether

we should round up or down for each DSM diagnosis. Because the total number of subjects

are constrained, rounding up in one DSM diagnosis means rounding down in another one.

As the number of DSM diagnoses k increases, it becomes more complicated to decide which

DSM diagnoses need rounding up and which ones need rounding down.
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Table 4.7: Enumeration of sample sizes for the example in Section 4.2.3

n1 n2 n3 n(3) Var(∆̂)

1 1 1 1 1.540

1 1 2 2 0.818

1 2 1 2 1.180

1 2 2 2 0.777

1 3 1 3 1.060

1 3 2 3 0.657

2 1 1 2 1.238

2 1 2 2 0.797

2 2 1 2 1.097

2 2 2 2 0.770

2 3 1 3 0.977

2 3 2 3 0.650

3 1 1 3 1.137

3 1 2 3 0.696

3 2 1 3 0.996

3 2 2 3 0.669

3 3 1 3 0.949

4 1 1 4 1.086
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4.A APPENDIX

4.A.1 Derivation of Var(∆̂)

It’s obvious that T ′X ′XT is a symmetric matrix and based on the definition of T ,

T ′X ′XT =


τ ′(1)

τ ′(2)
...

τ ′(k)

X ′X
(
τ ′(1) τ ′(2) · · · τ ′(k)

)

=


τ ′(1)

τ ′(2)
...

τ ′(k)


(
l(1) l(2) · · · l(k).

)

Using the definition of τ(i) and l(g), we have τ ′(i)l(g) = ai,g − ai,0, so

T ′X ′XT =


a1,1 − a1,0 a1,2 − a1,0 · · · a1,k − a1,0

a2,1 − a2,0 a2,2 − a2,0 · · · a2,k − a2,0

...
...

...
...

ak,1 − ak,0 ak,2 − ak,0 · · · ak,k − ak,0

 .

By plugging in the solution of τ(i) from the proof in Appendix 3.A.1, we get

(T ′X ′XT )ii = (1 +
1

k − i+ 1
)

1

n(i)

+
k∑

h=i+1

1

(k − h+ 1)(k − h+ 2)n(h)

(4.A.1)

and for i < g,

(T ′X ′XT )ig =
1

(k − g + 1)n(g)

+
k∑

h=g+1

1

(k − h+ 1)(k − h+ 2)n(h)

. (4.A.2)

Because T ′X ′XT is symmetric, (T ′X ′XT )ig = (T ′X ′XT )gi for i > g.
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V ar(∆̂) is a quadratic form in π and by plugging (4.A.1) and (4.A.2) into (4.4.1) we

have:

V ar(∆̂) =σ2π′T ′X ′XTπ

=σ2

k∑
i=1

k∑
g=1

(T ′X ′XT )igπ(i)π(g)

=σ2[
k∑
i=1

(T ′X ′XT )iiπ
2
(i) + 2

k−1∑
i=1

k∑
g=i+1

(T ′X ′XT )igπ(i)π(g)]

=σ2

k∑
i=1

[(1 +
1

k − i+ 1
)

1

n(i)

+
k∑

h=i+1

1

(k − h+ 1)(k − h+ 2)n(h)

]π2
(i)

+ 2σ2

k−1∑
i=1

k∑
g=i+1

[
1

(k − g + 1)n(g)

+
k∑

h=g+1

1

(k − h+ 1)(k − h+ 2)n(h)

]π(i)π(g)

=σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)
. (4.A.3)
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4.A.2 Multivariate variance of the mean differences

Suppose there are M(M ≥ 1) neurobiological characteristics measured in each subject and

we are interested in estimating the differences between the population with dysfunction in the

construct of interest and the healthy population in all the characteristics simultaneously. Now

the question of interest becomes whether the sample size determination in the multivariate

case remains the same as in the univariate case.

Following Appendix 3.A.2, the joint distribution of (y1,y2, · · · ,yM ) is different from

that of (ε1, ε2, · · · , εM ) only in the mean vector. So Cov(y1,y2, · · · ,yM ) is the same as

Cov(ε1, ε2, · · · , εM ) in (3.A.3). Therefore the covariance matrix of ∆̂ is

Cov(∆̂) =


π′T ′X ′ 0′ · · · 0′

0′ π′T ′X ′ · · · 0′

...
...

. . .
...

0′ 0′ · · · π′T ′X ′



∗


σ11In(k)+

∑k
i=1 n(i)

σ12In(k)+
∑k
i=1 n(i)

· · · σ1MIn(k)+
∑k
i=1 n(i)

σ21In(k)+
∑k
i=1 n(i)

σ22In(k)+
∑k
i=1 n(i)

· · · σ2MIn(k)+
∑k
i=1 n(i)

...
...

. . .
...

σM1In(k)+
∑k
i=1 n(i)

σM2In(k)+
∑k
i=1 n(i)

· · · σMMIn(k)+
∑k
i=1 n(i)



∗


π′T ′X ′ 0′ · · · 0′

0′ π′T ′X ′ · · · 0′

...
...

. . .
...

0′ 0′ · · · π′T ′X ′


′

=


σ11π

′T ′X ′XTπ σ12π
′T ′X ′XTπ · · · σ1Mπ

′T ′X ′XTπ
σ21π

′T ′X ′XTπ σ22π
′T ′X ′XTπ · · · σ2Mπ

′T ′X ′XTπ
...

...
. . .

...

σM1π
′T ′X ′XTπ σM2π

′T ′X ′XTπ · · · σMMπ
′T ′X ′XTπ



=π′T ′X ′XTπ


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM

 .

Comparing the above expression to that for the univariate case in (4.4.1), it immediately

follows that for both cases, we minimize the same quantity π′T ′X ′XTπ. In other words,
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the optimal sample size determination does not depend on the number of neurobiological

characteristics in the study. Therefore, only the univariate case is focused on in the main

text.
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4.A.3 Illustration of solving equation set (4.5.2) with k = 2

When k = 2, i.e., there are only two DSM diagnoses and a healthy population, so that

equation set (4.5.2) becomes the following:



∂L
∂n(1)

= − [3π(1)]
2

n2
(1)

2∗3σ
2 + λ0 + λ1 + η1 = 0

∂L
∂n(2)

= − [π(1)+2π(2)]
2

n2
(2)

1∗2 σ2 + 2λ0 − λ1 + η2 = 0

λ0 ≥ 0, λ1 ≥ 0, η1 ≥ 0, η2 ≥ 0

n(1) + 2n(2) − n ≤ 0

n(1) − n(2) ≤ 0

n(1) −N(1) ≤ 0

n(2) −N(2) ≤ 0

λ0(n(1) + 2n(2) − n) = 0

λ1(n(1) − n(2)) = 0

η1(n(1) −N(1)) = 0

η2(n(2) −N(2)) = 0

. (4.A.4)

If we use n?(1), n
?
(2), λ

?
0, λ

?
1, η

?
1, η

?
2 to denote the solution to (4.A.4), then we could have the

following 16 scenarios depending on if each one of λ?0, λ
?
1, η

?
1, η

?
2 is positive or zero.

1. If λ?0 = 0, λ?1 = 0, η?1 = 0, η?2 = 0

This scenario does not exist because the term involving n(i) in the first two equations in

(4.A.4) cannot be 0.

2. If λ?0 = 0, λ?1 = 0, η?1 = 0, η?2 > 0

This scenario does not exist because the term involving n(1) in the first equation in

(4.A.4) cannot be 0.

3. If λ?0 = 0, λ?1 = 0, η?1 > 0, η?2 = 0

This scenario does not exist because the term involving n(2) in the second equation in

(4.A.4) cannot be 0.
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4. If λ?0 = 0, λ?1 = 0, η?1 > 0, η?2 > 0

Based on the first and last two equations in (4.A.4), we have

n?(1) = N(1),

n?(2) = N(2),

η?1 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2,

η?2 =
[π(1) + 2π(2)]

2

n?2(2)1 ∗ 2
σ2.

Considering the inequality constraints, we still need to require N(1) ≤ N(2) and N(1) +

2N(2) ≤ n for the above n?(1), n
?
(2), η

?
1, η

?
2 to be a solution. Therefore, we actually have

n?(1) = min(N1, N2) and n?(2) = max(N1, N2). This means for each DSM diagnosis the

actual sample size is equal to the number of subjects available and the budget allows us

to process more than what is available. In this case, the definition of D(1) is also clear,

which is just the DSM diagnosis with fewer available post-mortem subjects.

5. If λ?0 = 0, λ?1 > 0, η?1 = 0, η?2 = 0

This scenario does not exist because based on the second equation in (4.A.4), if λ?0 =

0, η?2 = 0, then λ?1 < 0.

6. If λ?0 = 0, λ?1 > 0, η?1 = 0, η?2 > 0

When λ?1 > 0, we have n?(1) = n?(2), which means that the DSM diagnoses and the healthy

population have equal sample sizes. If η?2 > 0, then n?(1) = n?(2) = N(2) ≤ N(1). This

means

n?(1) = n?(2) = min(N1, N2),

λ?1 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2,

η?2 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2 +

[π(1) + 2π(2)]
2

n?2(2)1 ∗ 2
σ2.

Considering other inequality constraints, we still need 3 ∗min(N1, N2) ≤ n for the above

n?(1), n
?
(2), η

?
1, η

?
2 to be a solution. This means the lesser of the number of available subjects

for the two DSM diagnoses should not exceed one third of the total number of subjects
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we can afford. Note in this case that the three groups have the same sample size and it

does not matter which πi is π(i).

7. If λ?0 = 0, λ?1 > 0, η?1 > 0, η?2 = 0

This scenario does not exist because based on the second equation in (4.A.4), if λ?0 =

0, η?2 = 0, then λ?1 < 0.

8. If λ?0 = 0, λ?1 > 0, η?1 > 0, η?2 > 0

Based on the last three equations in (4.A.4), we have

n?(1) = n?(2) = N1 = N2,

λ?1 + η?1 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2,

−λ?1 + η?2 =
[π(1) + 2π(2)]

2

n?2(2)1 ∗ 2
σ2.

There is no unique solution to λ?1, η
?
1 and η?2. Also we still need to have 3∗N1 = 3∗N2 ≤ n.

This means the upper bound for the sample sizes in the DSM diagnoses should be equal

and not exceed one third of the total number of subjects we can afford.

9. If λ?0 > 0, λ?1 = 0, η?1 = 0, η?2 = 0

When λ?0 > 0, we have n?(1) + 2n?(2) = n. With the first two equations in (4.A.4), we have

n?(1) =

√
6

2
π(1)

√
6

2
π(1) + π(1) + 2π(2)

n,

n?(2) =

π(1)+2π(2)
2√

6
2
π(1) + π(1) + 2π(2)

n,

λ?0 =
σ2

n
(

√
6

2
π(1) + π(1) + 2π(2)).

Again, we have to require n?(1) ≤ n?(2), n
?
(1) ≤ N(1) and n?(2) ≤ N(2). Plugging in the solution

of n?(1) and n?(2) from above into the equation π(1) + π(2) = 1, this means π(1) ≤ 2√
6+1

.

In other words, the relative proportions of the DSM diagnoses also need to satisfy some

condition for the solution to exist in this scenario. Note in this case that we have obtained

a closed form solution of n?(i), however, the solution has π(i) in it. We need to know which

one of the πi’s the π(i) corresponds to so that the variance achieves the minimum. In

this example, there are k! = 2 possible ways to permute π1 and π2, so we have to check

which permutation yields a smaller variance.
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10. If λ?0 > 0, λ?1 = 0, η?1 = 0, η?2 > 0

When λ?0 > 0, we have n?(1) + 2n?(2) = n. And η?2 > 0 means n?(2) = N(2). With other

equations in (4.A.4), we have

n?(1) = n− 2N(2),

n?(2) = N(2),

λ?0 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2,

η?2 =
[π(1) + 2π(2)]

2

n?2(2)1 ∗ 2
σ2 − 2

[3π(1)]
2

n?2(1)2 ∗ 3
σ2.

Considering the inequalities, we need

n− 2N(2) ≤ N(2),

n− 2N(2) ≤ N(1),

[π(1) + 2π(2)]
2

n?2(2)1 ∗ 2
σ2−2

[3π(1)]
2

n?2(1)2 ∗ 3
σ2 > 0.

which leads to

N(1) + 2N(2) ≥ n,

n

3
≤ N(2) <

1 + π(2)

2 +
√

6 + (2−
√

6)π(2)

n.

Under this scenario, to get a solution, N(1), N(2) and n have to satisfy some conditions in

terms of their relationship. Also the two permutations of π1, π2 need to be checked and

see which one produces a smaller variance.

11. If λ?0 > 0, λ?1 = 0, η?1 > 0, η?2 = 0

Similar as the previous scenario, we have

n?(1) = N(1),

n?(2) =
n−N(1)

2
,

λ?0 =
1

2

[π(1) + 2π(2)]
2

n?2(2)1 ∗ 2
σ2,

η?1 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2 − 1

2

[π(1) + 2π(2)]
2

n?2(2)1 ∗ 2
σ2.
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Considering the inequalities, we need to have

N(1) + 2N(2) ≥ n,

N(1) ≤
n

3
,

N(1) <

√
6π(1)

4 + (
√

6− 2)π(1)

n.

Again the relationship between N(1), N(2) and n need to satisfy some conditions and the

two permutations of π1, π2 need to be checked.

12. If λ?0 > 0, λ?1 = 0, η?1 > 0, η?2 > 0

It is easy to see in this case that

n?(1) = N(1),

n?(2) = N(2),

N(1) + 2N(2) = n,

λ?0 + η?1 =
[3π(1)]

2

n?2(1)2 ∗ 3
σ2,

2λ?0 + η?2 =
[π(1) + 2π(2)]

2

n?2(2)1 ∗ 2
σ2.

Even though n?(1) and n?(2) can be obtained, there are two equations about the three

unknown λ?0, η
?
1, η

?
2. So there is no unique solution to the above equations. And in this

case because n?(1) ≤ n?(2), it must be that N(1) ≤ N(2). So the solution n?(1) and n?(2) are

actually

n?(1) = min(N1, N2),

n?(2) = max(N1, N2).

and we need to have N1 +N2 + max(N1, N2) = n for a solution to exist in this case.
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13. If λ?0 > 0, λ?1 > 0, η?1 = 0, η?2 = 0

With λ?0 > 0 and λ?1 > 0, we have n?(1) = n?(2) = n
3
. Plugging them into the first two

equations in (4.A.4), we have

λ?0 = 3σ2(
[3π(1)]

2

n22 ∗ 3
+

[π(1) + 2π(2)]
2

n21 ∗ 2
),

λ?1 = 3σ2(
2 ∗ [3π(1)]

2

n22 ∗ 3
−

[π(1) + 2π(2)]
2

n21 ∗ 2
).

Considering the inequalities, we still need to have

n ≤ 3N1,

n ≤ 3N2,

π(1) >
2√

6 + 1
.

In other words, in this case, the upper bound for the sample size in the DSM diagnoses

should at least be one third of the total number of subjects we can afford. And the

relative proportion also need to satisfy some condition.

14. If λ?0 > 0, λ?1 > 0, η?1 = 0, η?2 > 0

As above, we have n?(1) = n?(2) = n
3
. Additionally with η?2 > 0, we have n?(2) = N(2). So

N(1) ≥ N(2) =
n

3
,

λ?0 + λ?1 =
9 ∗ [3π(1)]

2

n22 ∗ 3
σ2,

2λ?0 − λ?1 + η?2 =
9 ∗ [π(1) + 2π(2)]

2

n21 ∗ 2
σ2.

Equivalently, max(N1, N2) ≥ min(N1, N2) = n
3
. Again, there are more unknowns than

the number of equations, and thus there is no unique solution for λ?0, λ
?
1 and η?2.
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15. If λ?0 > 0, λ?1 > 0, η?1 > 0, η?2 = 0

As above, we have n?(1) = n?(2) = n
3
. Additionally with η?1 > 0, we have n?(1) = N(1). So

N(2) ≥ N(1) =
n

3
,

λ?0 + λ?1 + η?1 =
9 ∗ [3π(1)]

2

n22 ∗ 3
σ2,

2λ?0 − λ?1 =
9 ∗ [π(1) + 2π(2)]

2

n21 ∗ 2
σ2.

Equivalently, max(N1, N2) ≥ min(N1, N2) = n
3
. Again, there are more unknowns than

the number of equations, and thus there is no unique solution for λ?0, λ
?
1 and η?1.

16. If λ?0 > 0, λ?1 > 0, η?1 > 0, η?2 > 0

With all of λ?0, λ
?
1, η

?
1, η

?
2 greater than 0, we have

n?(1) = n?(2) = N(1) = N(2) =
n

3
,

λ?0 + λ?1 + η?1 =
9 ∗ [3π(1)]

2

n22 ∗ 3
σ2,

2λ?0 − λ?1 + η?2 =
9 ∗ [π(1) + 2π(2)]

2

n21 ∗ 2
σ2.

Again, there are two equations with four unknowns, so no unique solution of λ?0, λ
?
1, η

?
1, η

?
2

exists. Also the upper bounds of the sample size in both DSM diagnoses have to be

exactly one third of the total number of subjects we can afford.

The above example with k = 2 illustrates the difficulty in minimization of Var∆̂ in Fa
using the KKT conditions even if the order of (n1, n2, · · · , nk) is known. As can be seen, each

of the 16 scenarios require the N1, N2 and n to satisfy some conditions to have a solution.

Because we don’t know the relationship between N1, N2 and n as well as the order of N1 and

N2, it is hard to know which of the 16 scenarios above would give us a solution.
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4.A.4 Proof of Result 4.5

According to the prerequisites stated in Result 4.5 Since n(1), · · · , n(k) are given, we have the

same set of order statistics before and after the pairwise switch. Let V and V ∗ denote the

variance of ∆̂, π(i) and π∗(i) be the relative proportions of D(i) before and after the switch,

respectively. Using the variance formula in (4.A.3), V and V ∗ are:

V =σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)
,

V ∗ =σ2

k∑
i=1

[π∗(1) + π∗(2) + · · ·+ π∗(i−1) + (k − i+ 2)π∗(i)]
2

n(i)(k − i+ 1)(k − i+ 2)
.

The switch can be illustrated as:

π(1) · · · π(p) · · · π(q) · · · π(k)

D(1) · · · D(p) · · · D(q) · · · D(k)

n(1) · · · n(p) · · · n(q) · · · n(k)

switch−−−→
π(1) · · · π(q) · · · π(p) · · · π(k)

D(1) · · · D(p) · · · D(q) · · · D(k)

n(1) · · · n(p) · · · n(q) · · · n(k)

It’s easy to see that only the values of π(p) and π(q) are switched, so the relationship between

π∗(i) and π(i) is

π∗(p) = π(q), π
∗
(q) = π(p) and π∗(i) = π(i) for i 6= p, q. (4.A.5)

Therefore

V − V ∗ =σ2

k∑
i=1

[π(1) + π(2) + · · ·+ π(i−1) + (k − i+ 2)π(i)]
2

n(i)(k − i+ 1)(k − i+ 2)

− σ2

k∑
i=1

[π∗(1) + π∗(2) + · · ·+ π∗(i−1) + (k − i+ 2)π∗(i)]
2

n(i)(k − i+ 1)(k − i+ 2)

=σ2

k∑
i=1

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)
,

where

Sπ(i) =π(1) + · · ·+ π(i−1) + (k − i+ 2)π(i) + π∗(1) + π∗(2) + · · ·+ π∗(i−1) + (k − i+ 2)π∗(i)

Dπ(i) =π(1) + · · ·+ π(i−1) + (k − i+ 2)π(i) − π∗(1) − π∗(2) − · · · − π∗(i−1) − (k − i+ 2)π∗(i).
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Plugging in the relationship between π∗(i) and π(i) in (4.A.5), we have

Sπ(i) =



2(π(1) + · · ·+ π(p−1)) + (k − p+ 2)(π(p) + π(q)) i = p

2(π(1) + · · ·+ π(p−1)) + (π(p) + π(q))
p+ 1 ≤ i ≤ q − 1

+2(π(p+1) + · · ·+ π(i−1)) + 2(k − i+ 2)π(i)

2(π(1) + · · ·+ π(p−1)) + (π(p) + π(q))
i = q

+2(π(p+1) + · · ·+ π(q−1)) + (k − q + 2)(π(p) + π(q))

and

Dπ(i) =



0 i < p

(k − p+ 2)(π(p) − π(q)) i = p

π(p) − π(q) p+ q ≤ i ≤ q − 1

−(k − q + 1)(π(p) − π(q)) i = q

0 i > q

.

Note that Sπ(i) > 0 for all i and we don’t need to compute Sπ(i) for i < p or i > q because

Dπ(i) is 0 so their product Sπ(i) ∗Dπ(i) is 0 when i < p or i > q. Now V − V ∗ becomes

V − V ∗ =σ2

k∑
i=1

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)

=σ2

q∑
i=p

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)
. (4.A.6)

We next show that
∑q

i=p
Sπ(i)∗Dπ(i)

(k−i+1)(k−i+2)
= 0 and V − V ∗ ≤ 0. Plugging in the expression of

Sπ(i) and Dπ(i), we have
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q∑
i=p

Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)
= (π(p) − π(q))∗(

2(π(1) + · · ·+ π(p−1)) + (k − p+ 2)(π(p) + π(q))

k − p+ 1

+

q−1∑
i=p+1

2(π(1) + · · ·+ π(p−1)) + (π(p) + π(q)) + 2(π(p+1) + · · ·+ π(i−1)) + 2(k − i+ 2)π(i)

(k − i+ 1)(k − i+ 2)

−
2(π(1) + · · ·+ π(p−1)) + (π(p) + π(q)) + 2(π(p+1) + · · ·+ π(q−1)) + (k − q + 2)(π(p) + π(q))

k − q + 2

)
= (π(p) − π(q))∗(
[

2

k − p+ 1
+

q−1∑
i=p+1

2

(k − i+ 1)(k − i+ 2)
− 2

k − q + 2
](π(1) + · · ·+ π(p−1))

+ [
k − p+ 2

k − p+ 1
+

q−1∑
i=p+1

1

(k − i+ 1)(k − i+ 2)
− k − q + 3

k − q + 2
](π(p) + π(q))

+

q−2∑
h=p+1

[
2

k − h+ 1
+

q−1∑
i=h+1

2

(k − i+ 1)(k − i+ 2)
− 2

k − q + 2
]π(h)

+ [
2

k − (q − 1) + 1
− 2

k − q + 2
]π(q−1)

)
= (π(p) − π(q))∗(
[

2

k − p+ 1
+

q−1∑
i=p+1

(
2

k − i+ 1
− 2

k − i+ 2
)− 2

k − q + 2
](π(1) + · · ·+ π(p−1))

+ [
k − p+ 2

k − p+ 1
+

q−1∑
i=p+1

(
1

k − i+ 1
− 1

k − i+ 2
)− k − q + 3

k − q + 2
](π(p) + π(q))

+

q−2∑
h=p+1

[
2

k − h+ 1
+

q−1∑
i=h+1

(
2

k − i+ 1
− 2

k − i+ 2
)− 2

k − q + 2
]π(h)

+ [
2

k − (q − 1) + 1
− 2

k − q + 2
]π(q−1)

)

= (π(p) − π(q)) ∗

(
0 ∗ (π(1) + · · ·+ π(p−1)) + 0 ∗ (π(p) + π(q)) +

q−2∑
h=p+1

0 ∗ π(h) + 0 ∗ π(q−1)

)

= 0.
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Dividing the sum into two parts, we have

q∑
i=p

Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)
=

q−1∑
i=p

Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)
+

Sπ(q) ∗Dπ(q)

(k − q + 1)(k − q + 2)
= 0,

so

q−1∑
i=p

Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)
= − Sπ(q) ∗Dπ(q)

(k − q + 1)(k − q + 2)
. (4.A.7)

Now because p < q, by the definition of order statistics, n(p) ≤ n(p+1) ≤ · · · ≤ n(q), we have

1

n(p)

≥ 1

n(p+1)

≥ · · · ≥ 1

n(q)

,

so for p ≤ i ≤ q − 1,

1

n(i)

− 1

n(q)

≥ 0

Dπ(i) < 0 because π(p) < π(q).

Since Sπ(i) > 0, we have

(
1

n(i)

− 1

n(q)

)
Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)
≤ 0, p ≤ i ≤ q − 1.

The equality holds when n(i) = n(q), p ≤ i ≤ q − 1. Summing over i and using (4.A.6) and

(4.A.7), we have

0 ≥
q−1∑
i=p

(
1

n(i)

− 1

n(q)

)
Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)

=

q−1∑
i=p

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)
− 1

n(q)

q−1∑
i=p

Sπ(i) ∗Dπ(i)

(k − i+ 1)(k − i+ 2)

=

q−1∑
i=p

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)
+

1

n(q)

Sπ(q) ∗Dπ(q)

(k − q + 1)(k − q + 2)

=

q∑
i=p

Sπ(i) ∗Dπ(i)

n(i)(k − i+ 1)(k − i+ 2)

= V − V ∗.

The equality holds when n(p) = n(p+1) = · · · = n(q).
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4.A.5 R program to implement the proposed algorithm

#This program is to implement the proposed algorithm and obtain the

optimal sample sizes;

#function samplesizeinF0 calculates the samplesize in set F0 with given

pi and n, and returns the sample sizes in F0 for D1,D2,...,Dk;

#function samplesizeonboundary calculates the sample sizes with some n=N;

#pivec is the vector for relative proportions and sorted increasingly;

#inputn is the obtained sample sizes (n1,n2,...,nk) from the last step;

#Nvec is (N1,N2,...,Nk);

library(gtools)

samplesizeinF0<-function(pivec,ntotal){

k<-length(pivec)

allovec<-rep(0,k)

for (i in seq(1:k-1)){

allovec[i]<-(sum(pivec[0:(i-1)])+(k-i+2)*pivec[i])/

sqrt((k-i+1)*(k-i+2))

}

allovec[k]<-1+pivec[k]

partitionvec<-allovec/sum(allovec)

nstarvec<-c(rep(ntotal,k-1),ntotal/2)*partitionvec

return(nstarvec)

}

samplesizeonboundary<-function(inputn,pivec,Nvec,ntotal){

k<-length(pivec)

boundindexset<-which(inputn>=Nvec)

boundN_ordered<-sort(Nvec[boundindexset])

boundpi_orderedbyN<-pivec[boundindexset]
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[rank(Nvec[boundindexset])]

s<-length(boundindexset)

Comb<-combinations(n=k,r=s)

R<-nrow(Comb)

piMatrix=alloMatrix<-matrix(rep(0,R*k),nrow=R)

varpiMatrix=outputnMatrix<-matrix(rep(0,R*k),nrow=R)

nMatrix<-matrix(rep(0,R*(k+1)),nrow=R)

for (r in 1:R){

piMatrix[r,Comb[r,]]<-boundpi_orderedbyN

piMatrix[r,-Comb[r,]]<-pivec[-boundindexset]

nMatrix[r,Comb[r,]]<-boundN_ordered

nMatrix[r,k+1]<-ntotal-sum(boundN_ordered)-nMatrix[r,k]

}

for (j in 1:k){

if (j==1){

varpiMatrix[,j]=(rep(0,R)+(k-j+2)*piMatrix[,j])

/sqrt((k-j+1)*(k-j+2))

alloMatrix[,j]=(nMatrix[,j]==0)*1*varpiMatrix[,j]

} else if ((k>2)&&(j==2)) {

varpiMatrix[,j]=(piMatrix[,j-1]+(k-j+2)*piMatrix[,j])

/sqrt((k-j+1)*(k-j+2))

alloMatrix[,j]=(nMatrix[,j]==0)*1*varpiMatrix[,j]

} else if (j==k){

varpiMatrix[,j]=(1+piMatrix[,j])/sqrt(2)

alloMatrix[,j]=(nMatrix[,j]==0)*1*(1+piMatrix[,j])/2

} else {

varpiMatrix[,j]=(apply(piMatrix[,seq(1,j-1)],1,sum)+

(k-j+2)*piMatrix[,j])/sqrt((k-j+1)*(k-j+2))

alloMatrix[,j]<-(nMatrix[,j]==0)*1*varpiMatrix[,j]

}
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}

outputnMatrix<-nMatrix[,1:k]+alloMatrix*nMatrix[,k+1]

/(apply(alloMatrix,1,sum)+alloMatrix[,k])

Var<-apply(varpiMatrix^2/outputnMatrix,1,sum)

*apply(outputnMatrix,1,function(x) prod(diff(x)>=0))

rselect<-which(Var==min(Var[Var>0]))

outputn<-outputnMatrix[rselect,][rank(piMatrix[rselect,])]

return(outputn)

}

optimalsamplesize<-function(pi,N,n){

n0<-samplesizeinF0(pivec=pi,ntotal=n)

while(prod(n0<=N)==0){

n0<-samplesizeonboundary(inputn=n0,pivec=pi,Nvec=N,ntotal=n)

}

return(n0)

}
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5.0 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

In this dissertation, we develop some statistical methodologies to utilize the existing post-

mortem tissue databases to facilitate mental health research under the RDoC framework.

Because an RDoC study would focus on a particular psychiatric construct rather than any

specific DSM diagnosis, we approach the population with dysfunction in a construct of inter-

est by suitably considering all the DSM diagnoses related to this construct and their relative

proportions within the construct.

We first propose a method to identify the neurobiological characteristics that are signifi-

cantly associated with a construct of interest. Our method is to first apply the Laska’s Min

test on each neurobiological characteristic over all the involved DSM diagnoses and then

to adjust for multiplicity with the BH procedure to protect the FDR. We show through

simulations that when the neurobiological characteristics within each subject are positively

correlated and each DSM diagnosis has its own healthy control group, the FDR is controlled

at the desired level by our method. We successfully applied our method to a post-mortem

tissue study about schizophrenia and schizoaffective disorder and identified two neurobiolog-

ical characteristics among the 26 examined ones.

After identifying these significant neurobiological characteristics, we compare their means

and quantiles between the population with dysfunction and the healthy population. These

comparisons inform researchers how the two populations differ from each other. The find-

ings in the comparisons can be used in various ways for later studies. For example, they can

be used to define the normal range of the measures in the neurobiological characteristics.

Any subjects outside the normal range for a neurobiological characteristic can be enrolled
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in later research to study why abnormality in this neurobiological characteristic might lead

to the dysfunction of the construct of interest. We propose the triangular design to adjust

for the matching covariates and batch effect in tissue processing for these comparisons as

well as to be more efficient in tissue processing. In the comparison through the means of

the neurobiological characteristics, we provide the formula to estimate the mean difference

between the population with dysfunction and the healthy population. In the comparison of

quantiles, we propose a heuristic approach to adjust for the disproportionate sample sizes in

the estimation of the difference in the quantile of the neurobiological characteristic between

the two populations. We show through simulations that our approach estimates the quan-

tiles quite well.

At last, we develop an algorithm to determine the optimal sample size for each DSM

diagnosis in the triangular design which gives minimum variance of the estimator of the

mean difference between the two populations. The sample sizes are determined under two

constraints: the number of available subjects for each DSM diagnosis from the post-mortem

tissue databases and the total number of subjects the budget allows. We show by comparing

to a simple enumeration method that our algorithm can indeed lead to the correct optimal

sample sizes.

5.2 FUTURE WORK

Our current research follows the RDoC spirit by focusing on a particular construct and

proposing statistical methods to identify and study the neurobiological characteristics that

are significantly associated with this construct. More specifically our current research inves-

tigates what makes the DSM diagnoses similar to each other in symptoms and what makes

the population with dysfunction in a construct of interest different from the healthy popula-

tion in symptoms. In our research we divide the entire general population into two parts, one

with dysfunction in the construct of interest and the other without. And the differences in

the neurobiological characteristics between the population with dysfunction and the healthy

population have to be significant enough to be identified by our proposed method and then
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compared later on. In other words, the assumption of “common significance across DSM

diagnoses” by requiring the mean difference in the neurobiological characteristics between

each DSM diagnosis and the healthy population to be significant might be too strong. Under

this assumption, the current research is unable to study those neurobiological characteristics

without significant mean difference in all the DSM diagnoses from the healthy population.

In the future, we would like to approach the RDoC spirit from a different perspective. It

could be that some neurobiological characteristics are not significant enough to be identified

by our proposed method because only a portion of the subjects in each DSM diagnosis are

significantly different from the healthy population. The other portion of subjects in each

DSM diagnosis are close enough to the healthy population. This portion of subjects close to

the healthy population are dragging the entire DSM diagnosis toward the healthy population

and thus make the neurobiological characteristics unable to be identified by the proposed

method. In other words, there could be several underlying clusters in terms of the distribu-

tion of neurobiological characteristics over the general population, and each DSM diagnosis

and the healthy population has a different combination of these underlying clusters. Through

identifying these underlying clusters in the neurobiological measures, we can divide the gen-

eral population into groups based on neurobiological information and see what results these

differences among clusters could lead to. These clusters would provide an explanation of the

heterogeneity within each DSM diagnosis and the overlaps among different DSM diagnoses.

In order to identify the clusters, we plan to apply a clustering analysis to the neurobi-

ological measures of the subjects from the post-mortem tissue databases. More than one

neurobiological characteristics can be used to define these clusters. Again suppose we have

k DSM diagnoses and we use Di to denote the ith DSM diagnosis with relative proportion

πi among the population with dysfunction, where π1 < π2 < · · · < πk and
∑k

i=1 πi = 1.

Suppose there are ni subjects from Di and n0 subjects from the healthy population. Let

Yij = (Yij1, Yij2, · · · , YijM)(i = 0, 1, · · · , k; j = 1, 2, · · · , ni) be the vector of measurements

of the M neurobiological characteristics in subject j from Di or the healthy population. If

i = 0 it is from the healthy population and if i 6= 0 it is from Di.

Suppose there are G underlying clusters in the distribution of neurobiological charac-

teristics and we use Cg, g = 1, 2, · · · , G to denote the distribution of the neurobiological
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Table 5.1: Clustering Analysis of the Neurobiological Characteristics

D1 D2 D3 · · · Dk Healthy Population

π1(1− Π0) π2(1− Π0) π3(1− Π0) · · · πk(1− Π0) Π0

C1 ω11 ω21 ω31 · · · ωk1 ω01

C2 ω12 ω22 ω32 · · · ωk2 ω02

...
...

...
...

...
...

...

CG ω1G ω2G ω3G · · · ωkG ω0G

characteristics in each cluster. Note that Cg should be an M dimensional distribution. Then

the distribution of Yij can be thought of as a mixture of the G underlying clusters. That is,

Yij ∼
G∑
g=1

ωigCg, i = 0, 1, · · · , k; j = 1, · · · , ni.

Here ωig is the probability of an observation Yij from cluster Cg. Obviously for i =

0, 1, · · · , k,
∑G

g=1 ωig = 1. The clustering analysis of the neurobiological characteristics can

be laid out as in Table 5.1.

If among the general population, Π0 is the proportion of healthy subjects, then each Di

accounts for πi(1 − Π0). As a result, ω0gΠ0 +
∑k

i=1 ωigπi(1 − Π0) of the general population

has the distribution Cg. The goal of the clustering analysis is to estimate ωig and Cg based

on the sample we have from the post-mortem tissue databases. Again we need to address the

issues of covariates adjustment and disproportionate sample sizes in the clustering analysis

as we do in the comparison through quantiles in Section 3.3. For example, if there are only

two DSM diagnoses and Π0 = 0.9, π1 = 0.3, π2 = 0.7, then D1 accounts for only 3% in the

general population and D2 accounts for 7%. However if we have n1 = n2 = n0 = 50, then

the sample sizes in the clustering analysis are disproportionate to the true sample sizes in

the general population. Without any correction of the disproportionateness the estimated

clusters would be invalid.
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