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Diffusion magnetic resonance imaging (dMRI) is an advanced MRI methodology that can be 

used to probe the microstructure of biological tissue. dMRI can provide orientation information 

by modeling the process of water diffusion in white matter. This thesis presents contributions in 

three areas of diffusion imaging technology: diffusion reconstruction, quantification, and 

validation of derived metrics. It presents a novel reconstruction method by combining 

generalized q-sampling imaging, spherical harmonic basis functions and constrained spherical 

deconvolution methods to estimate the fiber orientation distribution function (ODF). This 

method provides improved spatial localization of brain nuclei and fiber tract separation.  A novel 

diffusion anisotropy metric is presented that provides anatomically interpretable measurements 

of tracts that are robust in crossing areas of the brain.  The metric, directional Axonal Volume 

(dAV) provides an estimate of directional water content of the tract based on the (ODF) and 

proton density map. dAV is a directionally sensitive metric and can separate anisotropic water 

content for each fiber population, providing a quantification in milliliters of water. A method is 

provided to map voxel-based dAV onto tracts that is not confounded by crossing areas and 

follows the tract morphology. This work introduces a novel textile based hollow fiber anisotropic 

phantom (TABIP) for validation of reconstruction and quantification methods. This provides a 

ground truth reference for axonal scale water tubular structures arranged in various anatomical 

configurations, crossing and mixing patterns. Analysis shows that: 1) the textile tracts are 
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identifiable with scans used in human imaging and produced tracts and voxel metrics in the 

range of human tissue; 2) the current methods could resolve crossing at 90o and 45o but not 30o; 

3) dAV/NODDI model closely matches (r=0.95) the number of fibers whereas conventional 

metrics poorly match (i.e., FA r=0.32). This work represents a new accurate quantification of 

axonal water content through diffusion imaging. dAV shows promise as a new anatomically 

interpretable metric of axonal connectivity that is not confounded by factors such as axon 

dispersion, crossing and local isotropic water content. This will provide better anatomical 

mapping of white matter and potentially improve the detection of axonal tract pathology. 

 

 



 vi 

TABLE OF CONTENTS 

PREFACE ............................................................................................................................... XVII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 HISTORY OF STUDYING WHITE MATTER ............................................... 2 

1.2 MATHEMATICAL BASIS OF DIFFUSION ................................................... 5 

1.2.1 Mathematical description of Brownian motion ............................................ 6 

1.2.2 Einstein’s Theory ............................................................................................. 7 

1.3 ESTIMATION OF DIFFUSION USING MRI ............................................... 10 

1.3.1 Q-Space Imaging ........................................................................................... 12 

1.4 THE ORIENTED DISTRIBUTION FUNCTION .......................................... 14 

1.5 LIMITATION OF FRACTIONAL ANISOTROPY AND DIFFUSION 
TENSOR IMAGING .................................................................................. 17 

1.6 VALIDATION METHODS .............................................................................. 19 

1.7 CONCLUSIONS ................................................................................................ 19 

2.0 RECONSTRUCTION OF DIFFUSION MRI ......................................................... 21 

2.1 INTRODUCTION ............................................................................................. 22 

2.2 ESTIMATION OF DIFFUSION MAGNITUDE ........................................... 23 

2.3 PARAMETRIC MODELS OF DIFFUSION .................................................. 25 

2.3.1 Diffusion Tensor Imaging ............................................................................. 25 

2.3.2 CHARMED Model of Diffusion ................................................................... 34 



 vii 

2.4 NON-PARAMETRIC MODELS OF DIFFUSION ........................................ 36 

2.4.1 Spherical Harmonics ..................................................................................... 37 

2.4.2 Q-Ball Imaging ............................................................................................... 38 

2.4.3 Diffusion Spectrum Imaging......................................................................... 43 

2.4.4 Generalized Q-Sampling Imaging ................................................................ 45 

2.5 PROPOSED RECONSTRUCTION OF DIFFUSION ................................... 47 

2.6 LIMITATION AND FUTURE DIRECTIONS ............................................... 50 

2.7 CONCLUSION .................................................................................................. 50 

3.0 APPLICATION OF SPHERICAL HARMONIC COEFFICIENTS .................... 52 

3.1 INTRODUCTION ............................................................................................. 52 

3.2 BACKGROUND ................................................................................................ 55 

3.2.1 Constrained Spherical Deconvolution ......................................................... 55 

3.3 PROPOSED RECONSTRUCTION METHOD IN ODF SPACE ................ 57 

3.4 DEMONSTRATION OF PROPOSED RECONSTRUCTION ON 
SIMULATED DATA SET ......................................................................... 59 

3.4.1 Simulated dataset ........................................................................................... 59 

3.4.1.1 Creating simulated data ..................................................................... 59 

3.4.1.2 Results .................................................................................................. 60 

3.5 DEMONSTRATION OF PROPOSED RECONSTRUCTION ON HUMAN 
DATA SET .................................................................................................. 63 

3.5.1 MR Acquisition .............................................................................................. 63 

3.5.2 Diffusion MRI Processing ............................................................................. 64 

3.5.3 Registration and sub-sampling spherical harmonic coefficients of the fiber 
ODF      ................................................................................................ 65 

3.5.4 Results and Discussion .................................................................................. 65 

3.5.4.1 Localization and Visualization of Sub-cortical Nuclei ..................... 65 



 viii 

3.5.4.2 Tracking major fiber pathways using the proposed reconstruction 
method   ...................................................................................... 70 

3.6 CONCLUSION .................................................................................................. 74 

3.7 LIMITATIONS AND FUTURE DIRECTIONS ............................................ 75 

4.0 QUANTIFICATION OF WHITE MATTER IN HUMAN BRAIN ...................... 77 

4.1 INTRODUCTION ............................................................................................. 78 

4.2 DIFFUSION TENSOR BASED ANISOTROPIC METRICS ....................... 79 

4.3 DIRECTIONAL AXONAL VOLUME (DAV) ............................................... 82 

4.3.1 Spin density estimation of total water content ............................................ 84 

4.3.2 Estimation of Isotropic water content ......................................................... 85 

4.3.3 Estimation of Anisotropic water content ..................................................... 86 

4.4 MAPPING AND PROFILING OF DAV ONTO FIBER BUNDLES ........... 87 

4.4.1 Mapping dAV onto fiber tracts .................................................................... 88 

4.4.2 Tract profiling of dAV metric ...................................................................... 89 

4.5 DEMONSTRATION OF DAV METRIC ON SIMULATED AND HUMAN 
DATA SET .................................................................................................. 92 

4.5.1 Simulated data set .......................................................................................... 92 

4.5.2 Creation of simulated data set ...................................................................... 93 

4.5.3 Results and discussion ................................................................................... 95 

4.6 HUMAN DATASET .......................................................................................... 96 

4.6.1 MR Acquisition .............................................................................................. 96 

4.6.2 Directional Axonal Volume processing........................................................ 97 

4.6.3 Mapping dAV on fiber bundle ..................................................................... 97 

4.7 CONCLUSION ................................................................................................ 102 

4.8 LIMITATION AND FUTURE EXTENSIONS ............................................ 103 



 ix 

5.0 PHANTOM BASED VALIDATION ..................................................................... 105 

5.1 INTRODUCTION ........................................................................................... 105 

5.2 BACKGROUND .............................................................................................. 106 

5.2.1 Imaging Phantoms ....................................................................................... 106 

5.2.2 Diffusion Phantoms ..................................................................................... 108 

5.2.3 Modeling and Quantification ...................................................................... 110 

5.2.4 Hypotheses .................................................................................................... 111 

5.3 MATERIAL AND METHODS ...................................................................... 113 

5.3.1 Design of Phantom ....................................................................................... 113 

5.3.1.1 Crossing .............................................................................................. 113 

5.3.1.2 Packing Density ................................................................................. 114 

5.3.2 MR Acquisition ............................................................................................ 116 

5.3.3 Structural Image Processing....................................................................... 119 

5.3.4 Diffusion Reconstruction Methods............................................................. 121 

5.3.4.1 Diffusion Tensor imaging ................................................................. 121 

5.3.4.2 Generalized Q-sampling imaging .................................................... 123 

5.3.4.3 Proposed Reconstruction Algorithm ............................................... 123 

5.3.5 Fiber Tractography ..................................................................................... 124 

5.3.6 Quantification of Taxonal Bundles ............................................................ 125 

5.3.6.1 dAV maps along fiber tracts ............................................................ 125 

5.3.6.2 NODDI based voxel-wise quantification ......................................... 126 

5.4 RESULTS AND DISCUSSION ...................................................................... 127 

5.4.1 Anisotropic reconstruction of fibers .......................................................... 127 

5.4.2 Resolving fiber crossing .............................................................................. 128 



 x 

5.4.3 Quantifying number of taxons of fiber tracts ........................................... 132 

5.5 LIMITATIONS AND EXTENSIONS ........................................................... 138 

5.6 CONCLUSION ................................................................................................ 140 

6.0 CONCLUSION ......................................................................................................... 142 

BIBLIOGRAPHY ..................................................................................................................... 149 



 xi 

LIST OF TABLES 

Table 1. Diffusion weighted images are simulated with two fiber population. Parameters for each 
regions (see Figure 27) involved in simulation..................................................... 94 

Table 2. Percentage of water filled for packing density and crossing pattern. ........................... 114 

Table 3. Fill rate in packing density pattern ............................................................................... 115 

Table 4. Mean values for Fractional Anisotropy (FA), Apparent Diffusion Coefficient (ADC), 
Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD) 
metrics across ROIs for the packing and crossing chambers. ............................. 127 

Table 5. The number of voxels with crossing resolved by three reconstruction algorithms: 
Diffusion Tensor Imaging (DTI), Generalized Q-sampling Imaging (GQI) and 
Proposed Reconstruction Algorithm described in chapter two. Regions of Interest 
are manually drawn at each crossing. A bigger ROI is drawn to make sure that all 
voxels with a crossing are selected. All methods failed to resolve the 30 degree 
crossing in any voxel. DTI failed to resolve any crossings for all voxels. GQI 
resolved less crossings when compared with the proposed reconstruction 
algorithm described in chapter two. The effect is due to the fact that GQI 
estimates diffusion ODFs as opposed to fiber ODFs. ......................................... 132 



 xii 

LIST OF FIGURES 

 

Figure 1. Dissection of the human brain. Figure showing white matter pathways using the 
Klinger dissection technique. (Image is provided by Dr. Juan Fernandez Miranda)
................................................................................................................................. 3 

Figure 2. Whole brain tracts estimated using diffusion spectrum imaging data described in 
section 3.5. Advanced diffusion techniques can be used to probe white matter 
fiber pathways in human brain. ............................................................................... 4 

Figure 3. Histogram of displacement (in mµ ) of free water molecules .......................................... 8 

Figure 4. Volume rendering of the EAP. Four different types of diffusion patterns are used to 
illustrate the corresponding microstructure of tissue type. A) Isotropic diffusion 
with equal probability in all directions. B) Elliptic diffusion with large probability 
values in one direction. C) and D) Complex diffusion patterns due to crossing of 
fiber populations at 60 °  and  90 ° respectively ..................................................... 11 

Figure 5. Surface rendering of an axial slice of human brain illustrating estimation of the 
Orientation Distribution Function (ODF) for each voxel ..................................... 15 

Figure 6. ODF peaks at maxima 1u and 2u  ................................................................................... 16 

Figure 7. Diffusion tensor can be geometrically represented as an ellipsoid. Eigen value 
decomposition of the tensor provides principal diffusion direction 1 2 3( , , )u u u . ... 26 

Figure 8. Visualization of the diffusion tensor in each voxel of an axial slice of a diffusion MRI 
scan. Voxels in areas with densely packed axons show an ellipsoidal tensor 
(corpus callosum) as opposed to spherical in regions of isotropic diffusion 
(cerebro spinal fluid (CSF)). Color in each voxel represents the orientation of the 
fiber (red color shows fiber oriented in a left-right (x-axis) direction, green for 
anterior-posterior (y-axis) and blue for inferior-superior (z-axis). In the case of 
isotropic diffusion i.e., non-determinant fiber orientation the voxel has a random 
color. ..................................................................................................................... 29 



 xiii 

Figure 9. Direction encoded color (DEC) map of an axial slice from a diffusion MRI scan. Red 
color shows fibers oriented in the left-right (x-axis) direction, green for anterior-
posterior (y-axis) and blue for inferior-superior (z-axis). For example, Corpus 
Callosum is colored as red, optic radiation as green and cortico-spinal tracts as 
blue. ....................................................................................................................... 31 

Figure 10. Multi Tensor modeling of a diffusion dataset. The diffusion signal can be modeled as 
a weighted sum of tensors. .................................................................................... 33 

Figure 11. Funk-Radon Transformation (FRT) estimates the orientation distribution function 
(ODF) at u



 by integrating the diffusion signal on a unit 3D circle ⊥ . ............... 39 

Figure 12. Spherical harmonic functions with different degree m and order l. These functions 
form an orthonormal basis for the unit sphere 2 . ................................................ 41 

Figure 13. Orientation distribution functions are scalar valued functions on the unit sphere and 
can be represented as the sum of spherical harmonics (orthonormal basis for unit 
sphere). This expansion provides a continuous representation for the ODF. ....... 47 

Figure 14. ODF reconstruction of a 60 °  angle crossing using DSI, GQI and the proposed 
reconstruction method. A. DSI-based reconstruction uses q-space data to create 
the PDF using a direct Fourier transform. The DSI-based ODF shows more noise 
and false diffusion peaks. B. GQI-based ODF is smoother than DSI. GQI reduces 
high frequency noise by solving the ODF integral analytically. C. Proposed 
reconstruction algorithm combines DSI and the spherical deconvolution method 
to find diffusion peaks. This method shows clear diffusion peaks in the ODF. ... 49 

Figure 15. The diffusion signal can be written as the convolution of the fiber ODF and the 
response function from a single fiber population. The response functions for both 
crossing fiber populations are assumed to be the same. ....................................... 56 

Figure 16. Diffusion orientation distribution function estimated using proposed algorithm 
described in chapter two. A) Voxel containing cerebral spinal fluid. B) Single 
fiber population. C) Crossing fiber population at a 60°  angle D) Crossing fiber 
population at a 90°  angle. ..................................................................................... 61 

Figure 17. Fiber orientation distribution function estimates using constrained spherical 
deconvolution techniques. A) Voxel containing cerebral spinal fluid. B) Single 
fiber population. C) Crossing fiber population at a 60°  angle D) Crossing fiber 
population at a 90°  angle. ..................................................................................... 62 

Figure 18. Raw Diffusion Weighted Images of a coronal slice. A) T1 image B) DWI with b = 0 
Image. (C), (D), (E) and (F) DWI with 21000,3000,5000,7000maxb s mm−= . .... 64 

Figure 19. An axial slice of the DEC map of fiber peaks estimated from low resolution dODF 
(A) and high resolution fODF created by resampling spherical harmonic 



 xiv 

coefficients (see section 3.5.2) (B). Two nuclei of Thalamus (yellow curve), VP 
and VL, can be identified in high resolution. ........................................................ 67 

Figure 20. Three Cerebellar nuclei (yellow circle), dentate emboliform and interposed, can be 
identified in high resolution DEC map estimated from fiber ODF. ..................... 68 

Figure 21. Brainstem regions in an axial slice of DEC Map estimated from low resolution dODF 
(A) and fODF (B). Edges of CST, SCP and ML is clearly visible in high 
resolution. Low resolution dODF show blurry edges. .......................................... 69 

Figure 22. Fornix tract reconstructed on both hemisphere using peaks estimated from low 
resolution dODF (A) and high resolution fODF (B). High resolution fODF-based 
fiber tracking shows inter-hemispheric space and have better fiber termination at 
mammillary body. ................................................................................................. 71 

Figure 23. Arcuate tract reconstructed on left hemisphere using peaks estimated from high 
resolution fODF (A) and low resolution dODF (B). High resolution fODF-based 
fiber tracking shows better fiber termination at GM-WM border. ....................... 72 

Figure 24. Superior Cerebral Peduncle tract reconstructed on both hemisphere using peaks 
estimated from low resolution dODF (A) and high resolution fODF (B). High 
resolution fODF-based fiber tracking shows clear crossing of the tracts and clear 
endpoint of the tracts. Low resolution has noiser crossing. .................................. 74 

Figure 25. Orientation Distribution Function is decomposed into an isotropic and anisotropic 
parts. dAV is related to the anisotropic part of the ODF. ..................................... 83 

Figure 26. Estimation of dAV flux along fiber tracks. A) Voxel-wise dAV values are mapped 
onto the Cingulum Fiber Bundle. B) dAV flux is estimated by cutting the fiber 
bundle by orthogonal planes ................................................................................. 91 

Figure 27. Simulated diffusion weighted imaging data set. Y-pattern shows fiber splitting........ 93 

Figure 28. Simulated diffusion spectrum data of diverging fiber populations. A fiber bundle 
running along the y-axis diverges into two equal parts (splaying) at a 60 degree 
angle from y-axis. ................................................................................................. 95 

Figure 29. Mapping dAV and profiling of Arcuate tract. ............................................................. 99 

Figure 30. Mapping and profiling of Cingulum tract ................................................................. 100 

Figure 31. Tract-based dAV maps of five major fiber bundles in the human brain. The dAV maps 
show a constant value along fiber tracts suggesting that the directional axonal 
volume is constant for a given fiber population .................................................. 101 

Figure 32. Total dAV value of CST versus number of tracts. .................................................... 102 



 xv 

Figure 33. Axial slice of the crossing pattern. (A) T1 images. (B), (C) and (D) show b = 0, 3000 
and 5000 diffusion weighted images. ................................................................. 118 

Figure 34. Axial slice of packing density pattern. (A) T1 images. (B), (C) and (D) show b = 0, 
3000 and 5000 diffusion weighted images. ........................................................ 119 

Figure 35. Volume rendering of textile phantom. It shows internal structures such as the crossing 
pattern and different packing densities. (A) Outer surface of Phantom. (B) 
Vertical cross-section shows different chambers. (C) Horizontal sections at 
crossing pattern. 30 ,45 ,90° ° °  Crossing angle are shown. (D) Five equal volume 
chambers with fiber density of 20%, 40%, 60% , 80%,100% . .......................... 120 

Figure 36. Fractional Anisotropy map and directional color encoding of a horizontal slice of the 
Crossing and Packing density patterns. (A) Fractional anisotropy map shows high 
intensity values for voxels containing textile fibers. (B) Color encoded principal 
diffusion direction. One fiber is running across the phantom and the other bundles 
are crossing it at 30 ,45 ,90° ° °  angle. (C) Fractional anisotropy map of the packing 
densities. (D) Color encoded principal diffusion direction of the packing density 
pattern. Mid sections of the fibers are packed in different chambers. Fiber 
chambers are created with same volume and different ( 20%, 40%, 60% , 
80%,100% ) numbers of fibers. .......................................................................... 122 

Figure 37. Horizontal slice of the crossing pattern with diffusion ODFs reconstructed using GQI.
............................................................................................................................. 123 

Figure 38. Horizontal slice of crossing pattern with fiber-ODF reconstructed using proposed 
reconstruction algorithm described in chapter two and three. ............................ 124 

Figure 39. Fiber tracking is performed using principle diffusion directions calculated using the 
proposed reconstruction method. ........................................................................ 125 

Figure 40. Diffusion Tensor estimated using reconstruction method described in chapter two. 
Upper right corner shows tensors in 90 degree and 45 degree crossing. Lower 
corner shows 30 degree crossing. Color in each voxel represents the orientation of 
the fiber (red color shows fiber oriented in left-right (x-axis) direction, green for 
anterior-posterior (y-axis) and blue for inferior-superior (z-axis). In case of 
isotropic diffusion i.e., non-determinant fiber orientation the voxel has a random 
color. ................................................................................................................... 128 

Figure 41. Diffusion ODF estimated using generalized q-sampling imaging. Upper right corner 
shows dODF in 90 degree and 45 degree crossing. Lower corner shows 30 degree 
crossing. .............................................................................................................. 130 

Figure 42. Fiber ODF estimated using proposed reconstruction method described in chapter 
three. Upper right corner shows fODF in 90 °  and 45 ° crossing. Lower corner 
shows 30 ° crossing.............................................................................................. 131 



 xvi 

Figure 43. Mean FA values is estimated for each taxonal bundle. FA show a 0.33 correlation 
with the actual number of fibers. ........................................................................ 133 

Figure 44. dAV is estimated for each fiber cut based on mean fiber. dAV Mapping and 
quantification framework is described in chapter four. ...................................... 134 

Figure 45. (A) Mean dAV value is estimated for each fiber bundle (20%,40%,60%,80%,100%) . 
Mean dAV maps show a 0.85 correlation with the actual number of fibers. Fiber 
bundles with 0%,80%(6 ,100%)  the number of fibers show a good agreements 
with the known number of fibers. (B) Boxplot of the dAV values for each fiber 
bundle. ................................................................................................................. 135 

Figure 46. dAV along each fiber bundle is estimated for the packing density pattern. Fibers are 
sliced based on the mean fiber from each bundle. The graph shows the profile of 
dAV along the fiber bundles. .............................................................................. 136 

Figure 47. NODDI based intra-cellular volume fraction icν  is estimated for each voxel for each 
fiber bundle. Mean icν  is estimated for each fiber bundle. A correlation of 0.95 is 
estimated between mean ( icν ) and the known number of fibers in each bundle 137 



 xvii 

PREFACE 

 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Walter Schneider for the 

continuous support of my Ph.D study and related research. His guidance helped me in all the 

time of research and writing of this thesis.  

I would like to specially thank Dr. Peter Basser for his detailed comments and guidance. I also 

want to thank rest of my thesis committee: Dr. George Stetten, Dr. Howard Aizenstein, Dr. John 

Galeotti and Dr. Juan Fernandez Miranda, for their insightful comments and encouragement. 

I want to specially thank Catherine Fissell who guided me throughout my thesis. Her keen eye 

for details provided the necessary structure for my defense and editing. I will always be indebted 

to her for this. I would like to thanks my fellow lab member, Deepa Krishnaswamy and Emily 

Cauley Braun who helped me for proofread this thesis. 

My thesis is dedicated to my father, Krishna Kumar Pathak, who taught me to love and enjoy 

mathematics. I have also survived this experience through the blessings and strength of my 

wife’s mother Mrs.  Malathi Anilkumar who has been my biggest well-wisher. I wanted to also 

thank my mother and my family in Kanpur, India for their support and encouragement. 

Last but not the least, I would like to thank my wife Neena and my daughter Sachi for being 

patient and supportive of me throughout this endeavor and my life in general.



 1 

1.0  INTRODUCTION 

Understanding human brain connectivity is one of the important goals of this century. 

There are a number of brain function disorders potentially stemming from white matter 

connectivity disruption [1-14]. For example Traumatic Brain Injury represents a health care 

problem that costs over $100 billion annually, contributes to $1.2 trillion in societal costs, and 

affects the lives of over 13 million people in the United States [15]. Magnetic Resonance 

Imaging (MRI) is a multi-model non-invasive imaging technique to probe the structure of 

internal human tissue organs. One such MR imaging technique, Diffusion Magnetic Resonance 

Imaging (dMRI), probes the diffusion process to provide micro-structural information of human 

tissue. dMRI can be used to study connectivity between different functional regions in the human 

brain. Validated diffusion MRI based methods of measuring connectivity can be applied to 

neurological disorders such as stroke, brain cancer, TBI, epilepsy, autism, dyslexia, psychotic 

disorders, and developmental disorders [2, 16-19]. Furthermore, such methods can facilitate 

patient understanding of these disorders as well as enable better-targeted rehabilitation. To better 

diagnose connection disorders, we need non-invasive techniques that can accurately quantify 

brain connectivity and density of fiber tracts. There are four key steps in processing diffusion 

MR images, diffusion image acquisition schemes (Q-space sampling), diffusion modeling, fiber 

tracking and quantification of axonal volume fraction to quantify structural connectivity between 

functional regions and validation of diffusion models and related quantification metrics. This 
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thesis presents contributions to three areas in diffusion MR Imaging technology. A novel 

diffusion reconstruction method is presented in chapters two and three. A novel mathematical 

formulation of an anisotropic metric is presented in chapter four. A novel textile based 

anisotropic phantom is used to validate reconstruction methods and anisotropic metrics described 

in previous work and in this thesis. 

1.1 HISTORY OF STUDYING WHITE MATTER 

In the 19th and early 20th centuries post-mortem dissection (see Figure 1) was used to 

understand gross white matter anatomy of the human brain [2, 16-19]. Histological studies were 

also used to create detailed maps of connectivity in various regions of the human brain [20, 21]. 

Other studies involving animals have used tracers and viruses to provide a detailed map of white 

matter pathways [22-24]. All of these types of studies provide detailed information of white 

matter pathways in both the human and animal brain ex-vivo (see Figure 1). Results from these 

studies are limited by the subject's unique anatomical variability and specific location of 

functional brain regions. In the late 20th century Magnetic Resonance Imaging (MRI) became 

available as an in-vivo brain imaging technique and has more recently been used to study white 

matter connectivity. 
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Figure 1. Dissection of the human brain. Figure showing white matter pathways using the Klinger 

dissection technique. (Image is provided by Dr. Juan Fernandez Miranda) 

 

Mansfield and Lauterbur initially developed the MRI technique in 1973 [25-27]. It grew 

to be widely implemented in the area of neurological imaging due to its ability to produce images 

of great detail and increased contrast between the soft tissue parts of the body.  Unlike CT it had 

no exposure to radiation, which makes it a noninvasive procedure. One such MR technique is 

diffusion MRI, which can probe the movement of water molecules in the tissue. Imaging the 

diffusion of water molecules in biological tissue allows us to probe geometrical properties of the 

tissue and can be useful in studying structural connectivity of human brain. Diffusion MRI is an 

in-vivo technique to delineate white matter tracts in individual patients (see Figure 2) and healthy 

subjects. Thus dMRI is an ideal candidate for use in clinical studies and specifically those studies 

that deal with diagnosing neuro-degenerative disorders and pre-surgical planning for tumor 
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resection. In neuroscientific research, dMRI provides valuable information about the neural 

circuits involved in various cognitive tasks such as language, motor or vision [28-32]. It can be 

applied to the study of the human brain across the life span. It can also be used to quantify axonal 

degeneration in various brain disorders such as Parkinson's disease, Alzheimer's disease, 

Huntington's disease, ALS, etc. [14, 16, 32-34]. In neuro-surgical applications it can provide 

information to aid in planning the surgical route for resection of a brain tumor [2, 35].  

 

 

Figure 2. Whole brain tracts estimated using diffusion spectrum imaging data described in section 3.5. 

Advanced diffusion techniques can be used to probe white matter fiber pathways in human brain. 

 

Processing of diffusion MRI requires multiple steps: choice of MR image acquisition, 

diffusion modeling, fiber tracking and quantification of anisotropic metrics. All of these steps are 
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dependent on each other and the choice of one step can affect the whole pipeline. This thesis 

work addresses diffusion modeling and quantification of fiber tracks. Chapter one provides the 

background on diffusion and a brief overview of diffusion imaging. Chapter two gives an 

overview of key diffusion models and introduces a novel reconstruction method by combining 

the Generalized Q-sampling Imaging [36] (GQI) and Constrained Spherical Deconvolution [37, 

38] (CSD) methods. Chapter three describes the deconvolution methods in ODF space for 

estimation of the fiber ODF. It also shows applications of this method in fiber tracking and 

visualization of sub-cortical regions in the human brain. Chapter four presents a novel 

framework to estimate anisotropy on fiber tracts, called direction axonal volume (dAV). It uses 

the ODF to map anisotropic metrics along the fiber tracks. Chapter five uses a textile based 

anisotropic phantom to validate diffusion models and anisotropic metrics, dAV and NODDI [39]. 

1.2 MATHEMATICAL BASIS OF DIFFUSION 

“Diffusion” is derived from the Latin word diffundere meaning to spread out (if a 

substance is spreading out). Diffusion is defined as the displacement of particles (in our case 

water molecules) due to physical factors such temperature or pressure from high concentration 

regions to low concentration regions. Diffusion is a mass transport phenomenon that doesn't 

require bulk motion. Other mass transport phenomena such as flow, advection and convection 

utilize the bulk motion of particles. For example, blood flow in the veins and arteries is due to 

bulk motion of blood cells in contrast to the movement/displacement of water molecules in white 

matter tissue, which is due to diffusion. Mathematically diffusion is characterized as the average 

displacement of randomly moving particles also called Brownian motion. There are two ways to 
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derive a formulation for the diffusion of particles: Fick’s law and Einstein’s theory of particles 

described below. We used Einstein’s equation to formulate the probability density function of 

displacement of water molecules in this chapter.  

 

1.2.1 Mathematical description of Brownian motion 

Brownian motion can be described mathematically using Fick's law (phenomenological 

approach). For example, the diffusion of an ink drop in a glass of water can be explained by 

Fick's law. 

According to Fick's Law, the net flux J is proportional to the spatial gradients of the 

concentration C  of the particles (ink for example), 

 CJ D
x

∂
= −

∂
  (1.1) 

where D  is the diffusion coefficient. 

Further, using the continuity equation, net flux J  is equal to the rate of the concentration 

C  of the particles, 

 C J
t x

∂ ∂
= −

∂ ∂
  (1.2) 

By substituting equation 1.1 into 1.2, we can get the equation for the concentration of particles 

over time.  

 
2

2

C CD
t x

∂ ∂
=

∂ ∂
  (1.3) 
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The above equation describes diffusion in one dimension. The solution of equation 1.3 with 

initial concentration 0( ,0) ( )C x x xδ= −  is given by, 

 
2

0
0

( )1( , ) exp ( | , , )
44

x xC x t N x x t D
DtDtπ

 −
= − = 

 
 

where 0x  is the initial position of the particle and 0( | , , )N x x t D  is a Gaussian distribution with 

mean 0x  and variance 2Dt . 

In three dimensions, diffusivity may depend on direction and can be represented as a 

tensor of order 2. A 3 3×  symmetric positive definite matrix is used to represent diffusivity in a 

complex medium. 

 ( )C C
t

∂
= ∇ ∇

∂
D   (1.4) 

where D  is the diffusion tensor. 

Solution of equation 1.4 with initial concentration ( ,0) ( )C δ= − 0x x x  is given by, 

 
1( ) ( )1( , ) exp ( | , , )

24 | |

T

C x t N t
ttπ

− − ⋅ ⋅ −
= − = 

 
0 0

0
x x D x x x x D

D
  (1.5) 

( | , , )N t0x x D  is an anisotropic Gaussian function in 3D. 

1.2.2 Einstein’s Theory 

Another way to describe diffusion is as a probability density function of displacement of 

particles i.e., the proportion of molecules/particles that undergo a displacement d . For example, 

let the total number of molecules, N  start at position 0x  at time 0t =  and after time t τ=  (also 

called diffusion time) let them be displaced to tx . Diffusion can be described as the histogram of 
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the displacement (see Figure 3) of the population of all molecules, i.e., the probability of 

displacement of particles ( n ) that are displaced to the distance d = −t 0x x  by, 

 ( ) ( ), | , np p
N

τ τ= =t 0d x x   (1.6) 

In the case of free diffusion the probability distribution function will be normally 

distributed by the central limit theorem. Einstein, in 1905, [40] proposed that the average 

displacement (root mean squared) or ensemble of displacement of particles (in one dimension) is 

proportional to the diffusion timeτ .  

 T τ〈 ⋅ 〉 ∝d d  

 2T D τ〈 ⋅ 〉 = ⋅ ⋅d d   (1.7) 

The proportionality constant D  is the diffusion coefficient that describes the viscosity of 

the medium. In the case of free water, the diffusion coefficient at temperature 37 C°  is 

approximately equal to 9 2 13.0 10D m s− −≈ ⋅ . 

 

Figure 3. Histogram of displacement (in mµ ) of free water molecules 
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A similar principle can be used to describe the diffusion process in white matter tissue in 

the human brain. In a typical diffusion MRI scan, a diffusion time roughly equal to 40 ms  is 

used, which leads to mean displacement of the water molecules on the order of 10d mµ≈ . 

Therefore, on a diameter scale of 1-10 mµ  of individual axons in a fasciculus, diffusion can be 

probed at the micro-structural level of information of the tissue. It is important to note that when 

average displacement (or corresponding diffusion time) is less than the diameter of fibers it will 

appear as isotropic diffusion. 

The simplest model of white matter tissue can be thought of as a composition of “densely 

packed, coherently oriented, impermeable, and infinitely long cylindrical axons” (Jespersen 

2012). Diffusion (or ensemble of displacement of molecules) in such an intra-cellular 

environment is restricted by the boundaries of the cylinder (axons). 

If the diffusion time τ is long enough such that molecules can collide with surrounding 

boundaries, the diffusion process will no longer be free and hence the diffusion coefficient D  in 

equation 1.7 is dependent on time. This time dependent diffusion coefficient is also known as the 

apparent diffusion coefficient ADC described as, 

 

 6 ( )T D t τ〈 ⋅ 〉 = ⋅ ⋅d d   (1.8) 

 
In reality diffusion in white matter is more complex due to the presence of different cells 

and the complex structure of axons. First, diffusion inside and outside (intra and extra-cellular) 

the axons is modeled separately as multiple compartments [41-43] with corresponding diffusivity 

constants and volume fractions for each compartment. Axons are far from perfect cylinders and 

more complexity can be added by considering complex axonal membrane, myelin sheath 

surrounding axons, inside structure of axons (neurofilament and microtubules). Other 
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possibilities to consider are the water exchange between different compartments due to the 

porous nature of tissue (fast and slow exchange) [44, 45].  

Nevertheless, the principle source of the diffusion anisotropy is due to axonal bundles, 

which can be modulated by the myelin content [5]. All diffusion models described in this thesis 

assume the simplest model of white matter described in the paragraph above. 

1.3 ESTIMATION OF DIFFUSION USING MRI 

Diffusion MRI can be used to estimate complex diffusion patterns in biological tissue 

invivo. These diffusion processes in biological tissue can be mathematically described as a 

probability density function (PDF) of the displacement of water molecules, also known as an 

ensemble average propagator (EAP) [46, 47]. The EAP can be directly estimated using MRI by a 

diffusion sensitive pulse gradient. Diffusion weighted MR images acquired from the scanner 

have a Fourier relationship with the EAP [48, 49]. If ( , )voxelP ∆R


 represents the probability 

density function of the displacement of water molecules in δ  time [50-52] in a voxel, then the 

diffusion signal ( )voxelS q


 is given by, 

 
3

2( ) ( ) ( , ) d
(0)

voxel
voxel voxel

voxel

S E P e
S

π ⋅= = ∆∫ q Rq q R R
 





  

  (1.9) 

or, 

 
3

2( , ) ( ) dvoxel voxelP E e π− ⋅∆ = ∫ q RR q q
 



  

  (1.10) 

where, 
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( )( )
(0)

voxel
voxel

voxel

SE
S

=
qq




 

and 

 2, ( )
2 3

b qγ δ δ
π

= = ∆ −
Gq




 

 

Figure 4. Volume rendering of the EAP. Four different types of diffusion patterns are used to illustrate the 

corresponding microstructure of tissue type. A) Isotropic diffusion with equal probability in all directions. B) 

Elliptic diffusion with large probability values in one direction. C) and D) Complex diffusion patterns due to 

crossing of fiber populations at 60 °  and  90 ° respectively 
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where R


 is the displacement vector inside the voxel, G


 is the diffusion gradient, γ  is the gyro-

magnetic constant for water and δ  and ∆  are duration and separation of the diffusion weighted 

gradient respectively. ( , )voxelP ∆R


 is a three dimensional scalar-valued function within voxel. 

Globally, ( , )voxelP ∆R


 is a function of voxel position and therefore can be considered as a six 

dimensional scalar valued function. To accurately estimate ( , )voxelP ∆R


, different q-space 

sampling techniques are used. 

1.3.1 Q-Space Imaging 

Equation 1.9 describes the relationship between q-space (diffusion weighted images) and 

the probability density function of displacement of water molecules, ( , )voxelP ∆R


 (see Figure 4). 

The accuracy of estimating ( , )voxelP ∆R


 depends upon the q-space sampling scheme and the 

diffusion model used to estimate ( , )voxelP ∆R


. Typically a diffusion model estimates the projection 

of ( , )voxelP ∆R


onto a unit sphere (for details see section 1.4) known as the orientation distribution 

function. 

Many sampling techniques have been suggested in the literature [48, 53, 54]. The most 

commonly used technique is to sample gradient directions uniformly on a sphere with constant b-

value (typically 21000 /b s mm= ) to estimate ODF directly from DWIs. Gradient directions must 

be distributed uniformly to avoid the bias in the estimation of the direction of the underlying 

fiber population [55, 56]. Parametric modeling of ( , )voxelP ∆R


 (or ODF), for example, diffusion 

tensor imaging (see chapter two), requires the same set of diffusion gradients. Typically for such 
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modeling techniques the b-value is fixed to 900- 21500 /s mm  and a minimum of six gradient 

directions are sampled [57].  

Tuch [58, 59], Tournier [37, 38] and others have suggested high angular sampling on the 

unit sphere to model diffusion non-parametrically. High angular resolution diffusion imaging 

(HARDI) uses a large set of uniform gradient directions on a unit sphere with a fixed b-value, 

also called single shell sampling, to estimate the diffusion oriented distribution function (see next 

section for details). Typically 64-256 gradient directions are acquired for these types of schemes. 

Q-ball imaging [58, 60, 61] and constrained spherical deconvolution [37, 38]  are examples of 

non-parametric models that use single shell techniques to model orientation features of diffusion.  

Wedeen et al [48, 49] suggested a lattice sampling of q-space to estimate ( , )voxelP ∆R


 by 

performing the Fourier transform using equation 1.9. This technique samples q-space more 

densely than single-shell sampling to estimate ( , )voxelP ∆R


 but requires longer scan time to 

acquire the samples. Typically 256-515 gradient directions are acquired for this type of scheme. 

Diffusion Spectrum Imaging [48] (DSI) and Generalized Q-sampling Imaging [36] (GQI) are 

used to estimate ( , )voxelP ∆R


 from a lattice of q-space samples 

Another alternative is multi-shell sampling in which multiple single shell schemes with 

different b -values are used to sample q -space [53, 54, 62]. Typically 3  to 5  b -values with 32-

256 gradient directions for each shell are used. These types of sampling techniques can be used 

in DSI, CSD or Q-ball imaging. 
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1.4 THE ORIENTED DISTRIBUTION FUNCTION 

The probability distribution function ( , )voxelP ∆R


 is a three dimensional function in a voxel. 

Volume rendering of ( , )voxelP ∆R


 can reveal the direction of the fiber population of the 

underlying tissue. The primary goal of diffusion MRI is to estimate the anisotropy from the EAP 

which is due to fiber structure and the geometrical properties of the underlying white matter 

tissue. The EAP can be modeled using advanced mathematical diffusion models that can be 

helpful to estimate fiber pathways. These fiber pathways represent the underlying axon bundles. 

Diffusion MRI does not directly image axons, but rather provides a probabilistic model for 

diffusion processes of water molecules in the axon bundle (see Figure 5). 

To extract geometrical information about micro-tissue in the voxel, ( , )voxelP ∆R


 is radially 

projected on a unit sphere and is called the Oriented Distribution Function (ODF). There are 

multiple definitions of ODFs found in the literature, one of the most commonly used is the one 

proposed by Tuch et. al. [58, 59] 

In the Tuch definition the probability distribution function ( , )voxelP ∆R


 is a scalar-valued function 

defined in 3D space: 

 
3:

(R, ) ( , , , )

P

P P x y z

→

∆ = ∆ ∆ ∆ ∆

 


  

ODFs are real scalar-valued functions defined on unit sphere 2 : 

 2ˆ( ) :uψ →  

ODFs are radial projections of the probability distribution function. They can be estimated by 

radially integrating, 
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0

ˆ ˆ( ) ( , ) dvoxel voxelu P Ru Rψ
∞

= ∆∫   (1.11) 

where ˆR R u=


 and 2  is a unit sphere and û  are unit vectors on sphere 2 . 

 

 

Figure 5. Surface rendering of an axial slice of human brain illustrating estimation of the Orientation 

Distribution Function (ODF) for each voxel 

 

This definition of the ODF does not include the determinant of the Jacobian term while 

converting from a Cartesian to a spherical coordinate system. The Jacobian term, 2R , can be 

added into the integral to get an ODF that is a true probability density function [63-65]. 

 2

0
ˆ ˆ( ) ( , ) dvoxel voxelu R P Ru Rψ

∞
= ∆∫   (1.12) 
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Values of an ODF projected onto a sphere represent the anisotropy of diffusion in that particular 

direction. Local maxima of ODFs on a unit sphere are taken to correspond to the underlying fiber 

population. These principal diffusion directions (ODF maxima) are further used in fiber tracking 

to estimate the underlying white matter axonal bundle. 

 

 

Figure 6. ODF peaks at maxima 1u and 2u  

 

The shape of the ODF in a particular voxel can be used to classify tissue types. A 

spherical shaped ODF represents a voxel containing pure CSF or grey matter, and a peanut-

shaped ODF represents a voxel with a single fiber population. More complex ODF shapes with 

multiple peaks represent multiple fiber populations with crossing and kissing etc. (see Figure 6). 
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ODFs estimated from PDFs are also called diffusion ODFs (dODF) as they represent the 

diffusion profile of the tissue as opposed to the fiber profile of the tissue. Descoteaux el al 

proposed relationship between diffusion ODF and fiber ODF using Q-Ball Imaging techniques. 

Further, Tournier et al [37, 38] proposed a relationship between the diffusion ODF and the 

corresponding fiber ODF assuming fiber response function from single fiber population, which is 

taken to align with the underlying fiber population. Diffusion ODFs are the convolution of single 

fiber response with the fiber ODF. The underlying fiber population (fiber ODF) can also be 

represented as a delta (δ ) function of the sphere, called the fiber ODF (fODF). The fODF is 

estimated by solving the deconvolution problem as proposed in [37, 38].  

Chapters two and three will present a detailed description of the estimation of the fiber 

ODF using various diffusion modeling techniques. 

1.5 LIMITATION OF FRACTIONAL ANISOTROPY AND DIFFUSION TENSOR 

IMAGING 

Diffusion MRI is an advanced imaging technique that can be used non-invasively to 

measure the water diffusion processes in the tissue microstructure [50, 52]. By modeling both the 

amount of anisotropic diffusion as well as orientation information, structural connectivity can be 

established between different functional regions in the living human brain [66]. ODFs provide 

geometrical information such as fiber orientation in voxels but it can also be used to derive 

anisotropic volume maps to quantify axonal volume. The goal is a quantitative measurement of 

structural connectivity that is also anatomically interpretable. Currently, the most frequent metric 
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used in the literature to describe anisotropy (and hence structural connectivity) is fractional 

anisotropy (FA) [67-69]. If the goal is to measure the within axon water in order to quantify the 

amount of connection (e.g, summed cross sectional area of the axons making up the tract), FA is 

a confounded metric. This is due to its insensitivity to direction (orientation) and inaccurate 

modeling of diffusion in regions of fiber crossing [60, 61]. FA does not represent any real 

anatomical unit, such as the volume of axons. Edema represents another confounding factor. As 

the isotropic water increases, FA decreases, even when the cross sectional area of the axons is 

preserved. In TBI, edema is often a transient response. One would not want to falsely conclude 

that the fiber tracts are damaged based on an FA measurement when what had actually occurred 

is only a temporary increase in extra-cellular content.   

This thesis proposes a novel diffusion-based structural connectivity metric called 

directional Axonal Volume (dAV) which relies on advanced acquisition techniques such as 

diffusion spectrum imaging (DSI) [48], and a novel method to map this metric on to fiber tracts. 

In contrast to metrics such as FA, dAV attempts to estimate a physical property of tissue; 

anisotropic water content. DAV is a fiber tract based metric, which quantifies the amount of 

anisotropic water content from intra-cellular water in axons, and can be projected along the fiber 

tracts for between-group comparisons. The proposed framework for the quantification of 

anisotropy is theoretically robust to fluctuations in axonal volume due to fiber crossings. Note 

that the three novel techniques proposed in this thesis do not depend on each other: alternate 

reconstruction method such as generalized q-sampling imaging (GQI [36]) can be used to 

compute dAV; and alternate volume metrics such as generalized fractional anisotropy or 

quantitative anisotropy [36] can be mapped to fiber tracts with the mapping methods proposed in 

chapter four. 
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1.6 VALIDATION METHODS 

Various diffusion reconstruction models and derived anisotropic metrics are used to 

analyze diffusion images. Some of these metrics are statistical summaries of anisotropy of 

diffusion in a voxel and others may relate to the physical properties of the underlying tissue. 

Validation of these methods and related anisotropic metrics can establish mathematical accuracy 

and thus enable widespread use in clinical settings. Different types of phantoms are used in MR 

Imaging for quality assurance [70-73]. There are recent developments to create phantoms to test 

diffusion MRI based methods. These phantoms use solid or hollow fibers (to simulate axons) 

with different geometrical configurations [70, 74, 75]. In this thesis we are using a new textile 

based anisotropic phantom provided by an external firm (Psychology Software Tools, Inc) [76]. 

It will provide the ground truth measurement of restricted and hindered water in an empirical 

textile water phantom for diffusion imaging.  Chapter five tests three hypotheses in the phantom 

based validation of the work presented in chapters two, three, and four. 

1.7 CONCLUSIONS 

Processing of diffusion MRI requires multiple steps including the choice of MR image 

acquisition, modeling and remediation of noise and distortion, diffusion modeling, fiber tracking 

and quantification of anisotropic metrics. All of these steps are dependent on each other and the 

choice of one step can affect the whole pipeline. This thesis work addresses diffusion modeling 

and quantification of fiber tracks. Chapter two gives an overview of key diffusion models and 

introduces a novel reconstruction method by combining Generalized Q-sampling Imaging [36] 
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(GQI) and Constrained Spherical Deconvolution [37, 38] (CSD) methods. Chapter three 

describes the deconvolution methods in ODF space for estimation of the fiber ODF. It also 

shows applications of this method in fiber tracking and visualization of sub-cortical regions in 

the human brain. Chapter four presents a framework to estimate diffusion anisotropy on fiber 

tracts, called direction axonal volume (dAV). It uses the ODF to map anisotropic metrics along 

the fiber tracks. Chapter five uses a textile based anisotropic phantom to validated diffusion 

models and the anisotropic metrics, dAV and NODDI [39]. 
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2.0  RECONSTRUCTION OF DIFFUSION MRI 

This chapter will present different diffusion modeling techniques. Diffusion models can 

be broadly categorized into parametric and non-parametric techniques. Section 2.3 describes the 

most popular parametric diffusion imaging technique, diffusion tensor imaging and its 

extensions, multi-tensor and the CHARMED model. Section 2.4 describes non-parametric 

modeling techniques including Q-ball imaging, diffusion spectrum imaging, and generalized q-

sampling imaging (GQI). The use of the constrained spherical deconvolution (CSD) technique in 

Q-ball imaging will be discussed. Further applications of CSD are detailed in chapter three. 

Section 2.5 presents a novel reconstruction technique which combines spherical harmonics 

expansion with GQI to reconstruct the diffusion ODF from the diffusion dataset. This technique 

can thus take advantage of key benefits of both CSD and GQI. This technique can be used on 

diffusion imaging datasets acquired at multiple b-values. The analytical solution is presented for 

estimating the spherical harmonic coefficients of the diffusion ODFs and is demonstrated on 

simulated data.  Use of this technique on human and phantom data is presented in chapters three 

and five. 
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2.1 INTRODUCTION 

Over the past few decades there has been growing research in the area of modeling the diffusion 

of water molecules using diffusion weighted magnetic resonance imaging (diffusion MRI) [77-

79]. Diffusion is a property of populations of water molecules as opposed to the individual 

molecules and is therefore described as an ensemble. The earliest approaches to diffusion 

imaging did not attempt to estimate the direction of diffusion, only the diffusion magnitude was 

estimated. The primary model for this is the apparent diffusion coefficient (ADC) [80-84]. The 

ensemble is modeled by three dimensional probability density functions (PDF) of the 

displacement of water molecules. These functions are also called ensemble diffusion 

propagators. The 3D PDF is radially projected on a unit sphere to create an oriented distribution 

function (ODF) model [58-61, 64, 65]. These models of diffusion are used to estimate the 

anisotropy of water in the underlying tissue and these estimates then delineate white matter 

structure in the tissue. Many of these modeling techniques depend on specific sampling of q -

space during image acquisition [50]. For example Q-Ball imaging uses a constant b-value to 

sample q-space, while diffusion spectrum imaging uses a grid sampling.  

 
The key goal of diffusion based MR imaging in all of these methods is to accurately model the 

diffusion of water in biological tissue. The choice of mathematical model will affect the accuracy 

of the estimates of both anisotropy and fiber orientation [50, 85]. There are two broad categories 

of mathematical models to describe PDFs. If the model has a known mathematical function it 

falls into the category of parametric models. For these models, model parameters must be fit at 

each voxel to characterize diffusion [77]. For example in diffusion tensor imaging (DTI) [68], 

PDFs are assumed to have an anisotropic Gaussian function. Six diffusion parameters are needed 
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to estimate the diffusion tensor [57]. On the other hand, non-parametric models such as diffusion 

spectrum imaging do not assume any analytical function [48, 49].  Instead, they directly estimate 

the PDF on a regular grid within each voxel. Non-parametric models for diffusion can also 

utilize basis functions to decompose a PDF into the linear sum of a known orthogonal basis set 

[85, 86]. For example, Q-ball imaging [58, 59, 87] uses spherical harmonics basis functions to 

represents PDFs. Non-parametric models have the advantage that they do not need to assume an 

analytical  model that may be a poor fit to the data.  But, they tend to capture more features of 

diffusion in a voxel and require more diffusion weighted images and hence more scanning time. 

The reconstruction model proposed below is a non-parametric model and attempts to improve 

upon the accuracy of the GQI [36] model. 

2.2 ESTIMATION OF DIFFUSION MAGNITUDE 

Diffusion in white matter tissue can be sensitized using a Pulsed Gradient Spin Echo 

(PGSE) sequence [88]. Contrast in these diffusion-weighted images (DWI) depends on the 

strength of pulse gradient and direction.  The diffusion signal in a voxel is an average of 

diffusion in both intra- and extra-cellular tissue [41]. The diffusivity of water inside different 

tissue types is used as a contrast mechanism to differentiate tissue. A DWI technique to estimate 

diffusion magnitude, Apparent Diffusion Coefficient (ADC) modeling, was introduced by 

Moseley et al [89]. It uses multiple diffusion weighted images to estimate total diffusion, 

anisotropic and isotropic combined, but no diffusion direction, in the underlying tissue. ADC is 

estimated by solving, 
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π τ= − = −
g q



  (2.1) 

 
The ADC can be estimated with very few diffusion images. Mullins et al [90] shows the 

clinical usefulness of ADC over conventional MR imaging and CT. ADC scans have been 

successfully used in clinical research applications where it is useful to simply identify areas of 

reduced diffusion [91, 92]. For example they are used to distinguish between ischemic and 

healthy tissue in stroke patients.  In 691 patients Mullins et al found that mean ADC has 

substantially better accuracy than T1/T2/T2* images in diagnosing stroke in its early period (less 

than 12 hours) [90, 93]. 

ADC imaging continues to be used in applications that only need to measure total 

diffusion magnitude.  However the use of more sophisticated parametric and non-parametric 

models gives the ability to separate the anisotropic component of diffusion and accurately 

measure diffusion direction [48, 58, 68, 79]. Metrics derived from these models are the basis of 

more advanced applications of diffusion imaging [11, 67, 74, 94, 95]. Modeling the diffusion 

direction in a voxel requires more diffusion-weighted images with different gradient directions 

and gradient strength. Diffusion models can provide a) geometric properties of underlying tissue 

and b) anisotropic/isotropic water content [42, 43, 48, 49]. Peaks of ODFs derived from diffusion 

data set are used to estimate the direction of fiber populations within a voxel. These principal 

diffusion directions can then be used to create white matter fiber bundles in the human brain in 

the process of tractography [96]. 
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2.3 PARAMETRIC MODELS OF DIFFUSION 

2.3.1 Diffusion Tensor Imaging 

Diffusion Tensor Imaging (DTI) is one of the original methods in the literature to model 

the diffusion propagator as proposed by Peter Basser, et al [68]. The key assumption in Diffusion 

Tensor Imaging is that diffusion in microstructure can be modeled as a 3D Gaussian function. 

Gaussian diffusion is captured by a second order tensor (3 3×  positive definite symmetric 

matrix) [77, 97, 98]. The diffusion tensor can be related to Einstein’s equation for diffusivity 

(equation 1.8 from chapter one). It is a generalization of the one dimensional diffusion in 

equation 1.8 to three dimensions: 

 
    

 1
6

xx xy xz
T
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Figure 7. Diffusion tensor can be geometrically represented as an ellipsoid. Eigen value decomposition of 

the tensor provides principal diffusion direction 1 2 3( , , )u u u . 

 

By substituting equation 2.2 for the Einstein equation into equation 1.9, we can represent 

the relationship between diffusion weighted images and the diffusion tensor:  

 ( )
0

( , )( ) exp TS bE b
S

= = − ⋅ ⋅
gq g D g



  (2.3) 

where ( , )S b g  is a diffusion weighted image with b as diffusion weighting factor and g  as 

gradient direction, 
2
γ δ
π

=
Gq




 is the q -vector, G


 is the diffusion gradient, γ  is the gyro-

magnetic constant for water, δ  and ∆  are duration and separation of the diffusion weighted 

gradient respectively, 
224 ( )

3
b δπ= ∆ −q



, 0S  is the diffusion unweighted image and D  is a 

diffusion tensor of second order as described above. The probability density function of net 
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displacement of water molecules ( )P r


 can then be estimated by taking the Fourier transform 

( )  of equation 2.3  

 
1

3

1( ) ( ( )) exp
4(4 ) | |

T

P E
τπτ

− 
 = = −
 
 

r D rr q
D

 

 

   (2.4) 

 
A minimum of seven diffusion images (six diffusion weighted and one un-weighted) are 

needed to estimate the six parameters of diffusion tensor ( , , , , , )xx xy xz yy yz zzD D D D D D=H . Note 

D  is a symmetric positive definite matrix so ,xy yx yz zyD D D D= =  and xz zxD D= . Given N  

diffusion weighted signals 1{ ( , )}i i i NS b =g


, estimation of the diffusion tensor can be written as a 

system of linear equations as follows [77, 97, 98]:  
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Where the thi  row of matrix W  is given by, 

 ( ) ( ), , , , , , , ,T x x x y x z y y y z z z x y z
i i i i i i i i i i i i i i i i i i i i i i ib g g b g g b g g b g g b g g b g g g g g= =W g   (2.6) 

 
In equation 2.5, H can be solved using least a square estimation method [98].   

 1( )T −=H W W W E   (2.7) 

 
Where,    
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This is simplified formulation of the diffusion tensor model. For a full and detailed formulation 

see [68]. 

Once the diffusion tensor has been estimated, eigenvalue decomposition (EVD) (see 

Figure 7) of D  can provide geometric and anisotropic information about the micro-structure of 

tissue [67, 77, 95]. The eigenvector or principal diffusion direction that is estimated using EVD 

(see Figure 8) is then taken to reflect the orientation of white matter tissue in the imaged voxel as 

follows [99].  
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Figure 8. Visualization of the diffusion tensor in each voxel of an axial slice of a diffusion MRI scan. 

Voxels in areas with densely packed axons show an ellipsoidal tensor (corpus callosum) as opposed to spherical in 

regions of isotropic diffusion (cerebro spinal fluid (CSF)). Color in each voxel represents the orientation of the fiber 

(red color shows fiber oriented in a left-right (x-axis) direction, green for anterior-posterior (y-axis) and blue for 

inferior-superior (z-axis). In the case of isotropic diffusion i.e., non-determinant fiber orientation the voxel has a 

random color. 
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The principal eigenvector ( 1e ) corresponding to the maximum eigenvalue ( 1 2 3λ λ λ≥ ≥ ) 

is estimated for each voxel. Various scalar metrics are derived from eigenvalues and used to 

characterize the tissue anisotropy. The most commonly used metric to characterize white matter 

anisotropy is fractional anisotropy (FA) [67, 68, 95]. It is a scalar valued map whose values vary 

from 0.0 to 1.0. FA equal to 0.0 indicates isotropic diffusion (for example CSF) and FA equal to 

1.0 indicates pure anisotropic diffusion (for example Corpus Callosum, see Figure 8). 

 
    

 
( )

( )
2 3 2

1 2 3

2 2 2
1 2 3

3 ( ) ( ) ( )

2

λ λ λ λ λ λ

λ λ λ

− + − + −
=

+ +
FA   (2.10) 

 

where λ  is mean diffusivity i.e., 1 2 3

3
λ λ λλ + +

= . 



 31 

 

Figure 9. Direction encoded color (DEC) map of an axial slice from a diffusion MRI scan. Red color 

shows fibers oriented in the left-right (x-axis) direction, green for anterior-posterior (y-axis) and blue for inferior-

superior (z-axis). For example, Corpus Callosum is colored as red, optic radiation as green and cortico-spinal tracts 

as blue. 
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A number of related metrics can also be derived from the diffusion tensor [67, 95]. 

Standard metrics such as radial and mean diffusivity will be discussed in chapter four. Westin et 

al [100] proposed several metrics based on the diffusion tensor to characterize the type of 

diffusion in different tissue types (see Figure 9). 

DTI based reconstruction of diffusion requires a simple acquisition scheme (a minimum 

of six gradient directions) with a very short scanning time (typically 3-6 minutes). As with the 

ADC map, short scanning time and fast reconstruction method makes DTI very popular in 

clinical applications such neurosurgery [4], epilepsy [101, 102], multiple sclerosis (MS) [103-

105], amyotrophic lateral sclerosis (ALS) [17], and Huntington's disease (HD) [14, 16, 106].  

The diffusion tensor model and its parameter estimation using ordinary least squares 

(OLS) is a simple and computationally inexpensive method.  However, there are three problems 

in this solution.  First, the OLS solution does not guarantee a positive definite matrix. These are 

modified versions of the least squares methods that address this issue. For example, a weighted 

least squares method described ensures positive definiteness of diffusion tensor [68, 107]. 

Second, OLS implicitly models noise as Gaussian.  An improvement is to explicitly choose a 

noise model.  For example, one could model noise as Rician rather than Gaussian, which is a 

more appropriate model for diffusion MRI [108]. Third, in regions with complex geometry like 

fiber crossings a single diffusion tensor model cannot capture both fiber populations [58, 60, 61, 

65, 67, 69]. There are two ways to model multiple fiber populations to address this issue.  First, 

higher rank tensor models which capture multiple peaks and can resolve crossing issues are used 

[109, 110]. Second, multi-tensor based models, which are generalizations of diffusion tensor 

models can be used to address this problem [111-113]. The multi-tensor based reconstruction 

method uses a weighted linear sum of multiple anisotropic Gaussian functions to model multiple 
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fiber populations in each voxel. It can be used to resolve complex fiber structures such as 

crossings. However a limitation is that it requires a prior knowledge of how many fiber 

populations one wants to fit in a voxel [114]. 

For K-fiber populations,   

 ( )
10

( , )( ) exp
K

T
i i

i

S bE w b
S =

= = − ⋅ ⋅∑gq g D g


  (2.11) 

where iw  are weights such that 
1

1
K

i
i

w
=

=∑  and iD  are tensors for the  thi  fiber (see Figure 

10). 

 

Figure 10. Multi Tensor modeling of a diffusion dataset. The diffusion signal can be modeled as a 

weighted sum of tensors. 

 

Unlike DTI, multi-tensor modeling requires non-linear fitting. A minimization problem 

needs to be solved using a fast iterative solver like Levenberg [115] or Marquardt [116] 

minimization.  It has been shown that the minimum of the above equation is ill posed because the 

solution for the iw  terms is conflated with the solution of the iD  terms [77, 97, 107, 117]. 

Adding more constraints on the diffusion tensor permits the minimization problem to be solved 
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[97, 108]. One such method is the Ball and Stick model proposed by Behrens [118, 119]. 

Although this method provides a robust solution to the minimization problem, it does not model 

non-Gaussian diffusion processes in the micro-structure of white matter tissue. 

2.3.2 CHARMED Model of Diffusion 

A significant extension of the diffusion tensor approach is to use a biophysically inspired 

parametric model that separately models intracellular and extracellular diffusion in a voxel.  The 

CHARMED [41, 42] model characterizes diffusion in a voxel with multiple compartments, 

restricted and hindered. Intracellular water that has restricted diffusion (inside axons) does not 

follow Gaussian assumptions. Therefore it is modeled using a closed form analytical solution for 

diffusion inside a cylinder of known radius instead of a Gaussian. Extracellular water, that has 

hindered and isotropic diffusion, is modeled using the diffusion tensor models discussed in the 

previous section. Multiple hindered and restricted compartments are used for each fiber 

population. 

In the CHARMED model each restricted and hindered compartment can be written as a 

product of radial and axial components of diffusion. Diffusion signal, rE  for the hindered 

compartment can be modeled as a product of radial ( ,rE


) and axial ( ,rE ⊥ ) compartment:  

 , ,( , ) ( , ) ( , )h h hE E E ⊥∆ = ∆ ∆q q q


  

  (2.12) 

 
where,   

 
22

, ( , ) exp 4
3hE Dδπ  ∆ = − ∆ −  

  
q q

 

 

  (2.13) 

 
and for restricted compartment also,  



 35 

 , ,( , ) ( , ) ( , )r r rE E E ⊥∆ = ∆ ∆q q q


  

  (2.14) 

where,   
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, ( , ) exp 4
3rE Dδπ  ∆ = − ∆ −  

  
q q

 

 

  (2.15)  
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and, 

 21 (sin( )sin( ) cos( ) cos( ) cos( ))q N q N q Nθ θ φ φ θ θ= − − +q q


 

 

 | sin( )sin( ) cos( ) cos( ) cos( )) |q N q N q Nθ θ φ φ θ θ⊥ = ⋅ − +q q
 

 

where, ( qθ , qφ ) is spherical coordinate of q -vector with azimuthal angle qθ  and polar 

angle qφ . ( Nθ , Nφ ) is spherical coordinate of orientation of underlying microstructure with 

azimuthal angle Nθ  and polar angle Nφ . Nθ  and Nφ  are unknown and estimated by solving 

equation 2.17. 

Using the above equations 2.12 and 2.14, the diffusion signal can be modeled as a 

mixture of hindered and restricted compartments,   

 0
1

( , ) ( ( , )) (1 ) ( , )
K

i
i r h

i
E E Eν ν

=

∆ = ∆ + − ∆∑q q q
  

  (2.17) 

Equation 2.17 can be solved using non-linear optimization methods (e.g. Newton's method 

[120]). The volume fraction iν  of diffusion is estimated for each compartment ( 0ν for hindered 

and , 1..i i Kν = for restricted) along with the radius of the underlying fiber population.  
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The CHARMED model has the advantage that it models the underlying physical diffusion 

process in white matter. This permits it to estimate physical properties such as axon diameter and 

diffusivity.  However, as with the multi-tensor models the number of fiber populations in a voxel 

must be specified.  Another limitation of the CHARMED model is that it assumes that the 

diameters of all fibers within a single voxel are the same. AxCaliber [42] extends the 

CHARMED model to address multi-diameter fiber populations in a voxel. 

2.4 NON-PARAMETRIC MODELS OF DIFFUSION 

Non-parametric diffusion reconstruction techniques do not assume any mathematical 

form of the probability density function of displacement of molecules ( , )voxelP ∆R


. These models 

elucidate underlying fiber populations without any modeling constraints on its form. The 

following sections describe three non-parametric reconstruction methods: Q-Ball Imaging, 

Diffusion Spectrum Imaging, and Generalized Q-Sampling Imaging (GQI). It derives and 

discusses the novel reconstruction model developed in this thesis work.  In non-parametric 

models diffusion is typically described using oriented distribution functions (ODFs) defined on a 

unit sphere. There are two type of ODF, the fiber ODF (fODF) which describes the distribution 

function of fibers and the diffusion ODF (dODF) which describes the distribution function of 

diffusing water molecules in a particular direction. ODFs are distribution function on the unit 

sphere. Any functions defined on a unit sphere can be usefully decomposed into spherical 

harmonics basis functions. Therefore, before describing the non-parametric models, the next 

section will outline the mathematics of spherical harmonic decomposition. 
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2.4.1 Spherical Harmonics 

Spherical harmonic (SH) coefficients are estimated by decomposition of the ODF into a 

linear sum of spherical harmonic functions. Spherical harmonics are a well-known set of basis 

functions on a sphere [121]. Spherical harmonics are solutions of the Laplace equation 2 0u∆ = .  

The Laplace equation in a spherical coordinate system ( ( , , ) ( ) ( , ))u r R r Yθ φ θ φ= can be 

written as:  

 
2

2
2 2 2 2 2

1 1 1sin 0
sin sin

u u u ur
r r r r r

θ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂   + + =   ∂ ∂ ∂ ∂ ∂   
  (2.18) 

Substituting radius 1r =  for a unit sphere, ( , , ) ( , )u r Yθ φ θ φ= , equation 2.18 can be rewritten as:  

 
2

2 2

1 1 1 1sin
sin sin

Y Y
Y Y

θ λ
θ θ θ θ φ

∂ ∂ ∂  + = − ∂ ∂ ∂ 
  (2.19) 

where λ  is a real number and θ  and φ  are polar and azimuthal angles respectively.  

The solution of equation 2.19 can be decomposed into functions of θ and φ  

as, ( , ) ( ) ( )Y θ φ θ φ= Θ Φ . After substituting these into equation 2.19 one gets,  

 2 2

( )
sin d dsin sin m

d d
θλ θ θ
θ θ θ

Θ + = Θ  
  (2.20) 

Above equation λ  can take form ( 1)l l +  for l m> . Solving the above equation for a particular l 

and m gives:  

 2 1 ( )!( , ) (cos )
4 ( )!

m m ım
l l

l l mY P e
l m

φθ φ θ
π
+ −

=
+

  (2.21)  
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Where m
lP  are the associated Legendre polynomials with degree l and order m and [ ]0,θ π∈  and 

[ ]0,2θ π∈ . Spherical harmonics of even order are used to decompose the ODF i.e., l is even for 

the analyses discussed in this thesis. 

The SH framework outlined here will play a role in the Q-Ball and the proposed novel 

reconstruction technique. The use of SH in CSD will be discussed in chapter three. 

2.4.2 Q-Ball Imaging 

The idea behind q-ball imaging is to estimate the ODF directly from spherically sampled 

(with b = constant) diffusion weighted images in q-space. There are multiple definitions of the 

ODF found in the literature, with the most common one proposed by Tuch at el. Tuch [58, 59] 

proposed using the Funk Radon Transformation (FRT) to estimate the ODF 

The FRT estimates the oriented distribution function at u


 by integrating the diffusion 

signal on a unit 3D circle ⊥ . 

The FRT is defined as, for a given function ( )f v


 defined on unit sphere 2 ,  

 2:f →   

Then, 

 ( ) ( ) ( )f f d
⊥∈

  =  ∫vFRT v u v v


   


   

where ⊥  is set of vectors perpendicular to u


. 
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Figure 11. Funk-Radon Transformation (FRT) estimates the orientation distribution function (ODF) at u


 

by integrating the diffusion signal on a unit 3D circle ⊥ . 

 

Tuch et al [58, 59] showed that the relationship between ODF and the normalized signal 

0

( , )( ) S bE
S

=
gq



 using FRT is, 

 1( ) ( ( )( , ))E r
Z

Φ =u FRT q u
  

  (2.22) 

where ( )Z = Φ u


 is the normalization constant and r is the sampling radius.  
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The idea behind the FRT is that to estimate the ODF Φ  at u


, one needs to integrate ( )E q


 

on a unit 3D circle such that the plane of the circle is perpendicular to u


 (see Figure 11). ( )E q


 

is interpolated to estimate the integral along the circle. Numerical schemes have been proposed 

by Tuch et al [58, 59] to estimate the ODF on discrete points on a unit sphere. The estimated 

ODF is then further used to calculate multiple principle diffusion directions in each voxel. 

An analytical solution can be derived for diffusion weighted imaging data on a single 

shell using the FRT to estimate the spherical harmonic coefficients of the diffusion ODF [60, 

61]. Analytical QBI represents the signal ( , )E ∆q


 with a spherical harmonics basis (see Figure 

12 and 13).  
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Figure 12. Spherical harmonic functions with different degree m and order l. These functions form an 

orthonormal basis for the unit sphere 2 . 

 

Therefore,   

 

0
0

( , ) ( ) ( , )
K

i i j j i i
j

E E q c Yθ φ θ φ
=

= =∑u   (2.26) 

Now using the Funk-Hecke theorem, the spherical harmonic coefficients of diffusion ODF can 

be estimated as: 

 

0
0

1( , ) ( ) 2 (0) ( , )
K

i i j j j i i
j

E E q P c Y
Z

θ φ π θ φ
=

= = ∑u   (2.27) 

where ( , )i iθ φΦ  is ODF value at ( ,i iθ φ ) and (0)jP is the Legendre polynomial of degree 

K evaluated at 0. 
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The above equation can be represented in discrete form with N gradient directions and spherical 

harmonics with maximum order L from equation 2.27 as follows: 

 

1 1 1 2 1 1 1 1

1 2 2 2 2 2 2 2

1 2
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 =
 
 
 

B





   



  (2.28) 

The equation in discrete form with relation to signal S is:  

 = ⋅S B C   (2.29) 

where ( , ) ( , )j jc E Y dθ φ θ φ
Ω

= Ω∫  and d sin d dθ θ φΩ = . 

A regularization term is added to improve the estimation of the harmonic coefficients.  

 2( ) ( )bE f f d
Ω

= ∆ Ω∫   (2.30) 

 

where b∆  is the Laplace-Beltrami operator.  

In a spherical coordinate system b∆  can be defined as: 

 
2

2 2

1 1sin
sin sinb θ

θ θ θ θ φ
∂ ∂ ∂ ∆ = + ∂ ∂ ∂ 

  (2.31) 

Spherical harmonic functions are eigenfunctions of the Laplace-Beltrami operator.  

 ( , ) ( 1) ( , )m m
b l lY l l Yθ φ θ φ∆ = − +   (2.32) 

By substituting the function as a sum of spherical harmonic basis functions, the regularization 

factor can be written in discrete form as:    
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Spherical harmonic coefficients can be estimated with regularization using the least squares 

method as, 

 1( )T Tλ −= +C B B L B S   (2.34) 

where λ  is regularization factor and L  is K K×  diagonal matrix with 2 2( 1)j jl l +  as the 

diagonal term.  

Using above equation, coefficients for oriented distribution function are estimated as follows: 

 ' 1( )T Tλ −= +C P B B L B S   (2.35) 

where, 'C  are spherical harmonic coefficients of ODF and P  is a diagonal matrix with 

entries (0)iP . 

Q-ball imaging provides the best estimate of parameters with b-value in range of 2000-

3000. It requires 100 or more gradient direction to resolve multiple fibers consistently [111]. 

Although Q-ball imaging can resolve multiple fiber orientation, it estimates diffusion ODFs 

which essentially capture a Gaussian diffusion process. Further techniques like constrained 

spherical deconvolution can be used to estimate fiber ODFs. 

2.4.3 Diffusion Spectrum Imaging 

A second non-parametric technique, Diffusion Spectrum Imaging (DSI), uses the fact that 

the PDF is related to the diffusion signal by a Fourier relationship. It uses a large number of 

diffusion-weighted images to estimate the probability density function of the displacement of 

water molecules (PDF) using a direct Fourier transform. Practically, a limited number of samples 

is acquired for the estimations. Wedeen et al [48, 49] uses 515 gradient images (q-space samples) 

to estimate the PDF. They use a Cartesian sample lattice to sample q-space. As typical in any 
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discrete signal processing analysis, a window filter is applied to reduce spectral leakage. A 

Hanning window is applied before performing the Fourier transform to smooth the attenuated 

echo signal to prevent truncation error [48, 49, 122]. Diffusion weighted signals ( ( )E q ) are 

inter/extrapolated to do the numerical Fourier transform. 

 
3

2( ) ( ) ( , ) d
(0)

S E P e
S

π ⋅= = ∆∫ q Rq q R R
 





  

  (2.36) 

The PDF estimation is computed by taking the inverse Fourier transform,   
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  (2.37) 

where  

 
22, 4

2 3
bγ δ δπ

π
 = = ∆ − 
 

Gq q


 

   

In DSI reconstruction the PDF is calculated by first by applying an inverse Fourier 

transform [48, 49, 122] equation 2.37. A Hanning filter is applied to reduce higher-frequency 

noise. The ODF is then estimated by solving equation 2.38. The major limitation of DSI 

technique is due to large sampling required to cover q-space to reconstruct the probability 

density function. In a typical DSI protocol, 500 to 1000 images are needed for the Fourier 

transform. In recent studies [123, 124] this limitation is addressed using Multi-band techniques. 

Typically the maximum multi-band factor used in a diffusion scan is three, thus reducing scan 

time up to factor of three (at the cost of reduced SNR). The Fourier relationship to estimate the 

PDF holds for a short gradient pulse. This is an idealistic assumption for typical MR scanner. 
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2.4.4 Generalized Q-Sampling Imaging 

A third non-parametric reconstruction technique, GQI [36], combines diffusion spectrum 

imaging reconstruction and oriented  distribution function estimation to approximate ODF values 

directly from diffusion weighted images. Tuch’s definition of the ODF [58, 59] is used as in Q-

Ball reconstruction [60, 61], but the method of estimating the ODF is different than in Q-ball 

reconstruction. Generalized Q-sampling imaging [36] combines the Fourier and ODF integrals to 

further solve the equation 2.41 and 2.43 analytically 

 

0
ˆ( ) ( , ) du P R R

∞
Ψ = ∆∫ u   (2.38) 

where ˆR u=R


. 

In the above definition the determinant of the Jacobian term is not included while converting 

from a Cartesian to a spherical coordinate system. The Jacobian term that is 2R  can be added 

into the integral to get a true probability density function [64, 65], which leads to a second 

definition of the ODF.   

 

2

0
ˆ( ) ( , ) du R P R R

∞
Ψ = ∆∫ u   (2.39) 

In the above integral, the upper limit will be truncated to L∆  to avoid high frequency noise. Note 

that noise will be greater in the 2R -weighted ODF. Details about the choice of L∆  are described 

in [36]. L∆  can be written in terms of diffusivity of water D and effective diffusion time τ  with is 

dependent on the q-vectors/b-values. According to Einstein's equation,  

 6L Dτ∆ ∝     

 6L Dσ τ∆ =   (2.40) 
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with 2b π τ= q


. σ  is an adjustable factor. Typical value of σ  is 1.1 to 1.25. After 

substituting these terms we can get,   

  2 6L Dbπ σ∆ ⋅ = ⋅q R q u
 

  (2.41) 

where, 

q̂ =
q
q





‖‖
 

Further, the diffusion coefficient of water at 25 C°  is 3 2 12.51 10 mm s− −×  which gives,  

  2 0.01506L bπ σ∆ ⋅ = ⋅ ⋅q R q u
 

   (2.42) 

Note that in the GQI [36] method the diffusion coefficient of water is assumed to be the same for 

each voxel, and this may not be true for brain tissue. Other methods such as  restriction spectrum 

imaging [125] use different values of diffusivity to model different tissue compartments.   
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voxel voxelu L E q f L q u qψ π∆ ∆= ⋅∫



     (2.43) 

where 1f f=  if equation 2.38 is used and 2f f=  if equation 2.39 is used; where:  
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Combining equations 2.37 and 2.38 will smooth the ODF signal and provide a less noisy ODF.  
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The GQI technique uses a similar acquisition for ODF reconstruction and therefore 

requires more scanning time. GQI estimates the values of ODF directly from diffusion weighted 

images as opposed to PDF in case of DSI [36]. It does not provide any fiber orientation 

information. Typically, constrained spherical deconvolution technique is used to estimate the 

fiber ODF from the diffusion ODF. But in order to utilize CSD framework (described in chapter 

three) the diffusion ODF need to be in spherical harmonic form. The next section presents a 

derivation of spherical harmonic coefficients of diffusion ODF using a DSI data set. 

2.5 PROPOSED RECONSTRUCTION OF DIFFUSION 

The proposed algorithm provides a method to directly estimate the coefficients of spherical 

harmonics [60, 61] from a DSI data set.   

 
0

ˆ( ( , )) ( , )
maxL m l

m
voxel lm l

l m l
u c Yψ θ ϕ θ ϕ

=

= =−

= ∑ ∑   (2.46) 

where lmc are spherical harmonic coefficients describing the oriented distribution 

function.  

 

Figure 13. Orientation distribution functions are scalar valued functions on the unit sphere and can be 

represented as the sum of spherical harmonics (orthonormal basis for unit sphere). This expansion provides a 

continuous representation for the ODF. 
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Combining equation 2.46 and 2.43 we get,  
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     (2.47) 

This equation can be solved using the spherical harmonics transform for estimating lmc . 

Analytically, lmc  has a closed form solution,  
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  (2.48) 

By rearranging terms in equation 2.48, we can relate the spherical harmonic coefficients of the 

diffusion ODF to the diffusion spectrum images,  

 3ˆ ˆ( , ( , ), , ) (2 ) ( , ) djg u l m L f L u Yθ φ π θ ϕ∆ ∆Ω
= ⋅ Ω∫q q

 

  (2.49) 

For a given diffusion gradient direction iq


 and spherical harmonic function jY ,  

 3 ˆ(2 ) ( , ) dji jig L f L u Yπ θ ϕ∆ ∆Ω
= ⋅ Ω∫ q



  (2.50) 

where, 

 
2( 2)( , )

2
l lj j l m m+ +

= = +  

Equation 2.49 can be solved in discrete form as:  

 = ⋅C G E   (2.51) 

where the thi  rows of matricesC , G  and E  are given by, 
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11 12 1

21 22 2

1 2

N

N

j j jN

g g g
g g g
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… 
 … =
 
 …  

G
   

   

where [ ]jc=C , [ ]jig=G  and [ ] [ ( ) ]voxel i voxel ie E= =E q


,
2( 2)( , )

2
l lj j l m m+ +

= = +  

with l  and m  as order and degree of spherical harmonic function ( , ) ( , )m
l jY Yθ ϕ θ ϕ= . 

 

 

Figure 14. ODF reconstruction of a 60 °  angle crossing using DSI, GQI and the proposed reconstruction 

method. A. DSI-based reconstruction uses q-space data to create the PDF using a direct Fourier transform. The DSI-

based ODF shows more noise and false diffusion peaks. B. GQI-based ODF is smoother than DSI. GQI reduces high 

frequency noise by solving the ODF integral analytically. C. Proposed reconstruction algorithm combines DSI and 

the spherical deconvolution method to find diffusion peaks. This method shows clear diffusion peaks in the ODF. 

 

Matrix G  is composed of two matrices, the matrix from the generalized q -sampling imaging 

reconstruction method and the matrix relating the spherical harmonic coefficients to the values of 

the ODF.  
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Matrix equation 2.51 can be solved by invertingG . A regularization term is needed to invert G  

as it is a low-rank matrix. A Laplace-Beltrami operator can be used to find a regularized solution 

as described in [60, 61]. This method allows us to directly estimate spherical harmonic 

coefficients from diffusion weighted images (see Figure 14). This method can further be used to 

estimate the fiber ODF by performing constrained spherical deconvolution [38, 126] in ODF 

space (see chapter three). 

2.6 LIMITATION AND FUTURE DIRECTIONS 

Current constrained spherical deconvolution techniques assume a single tissue type model [43, 

125, 127]. Recently, multi-tissue models have been introduced that model the response function 

separately for grey matter, white matter, and cerebro-spinal fluid. The  multi-tissue model in 

[127] uses a multi-shell q-sampling scheme to estimate the volume fraction for each tissue type. 

Similar techniques can be used to extend the proposed reconstruction algorithm. The proposed 

reconstruction method also lacks error analysis to provide numerical accuracy for the method. In 

the future, we will analyze error in the proposed reconstruction method as a function of different 

parameters such as b-values, SNR, and spherical harmonic order. 

2.7 CONCLUSION 

In this chapter, we presented a novel reconstruction algorithm which combines generalized q-

sampling imaging and spherical harmonic expansion to estimate spherical harmonic coefficients 
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of the diffusion orientation distribution function. Other popular techniques, such as constrained 

spherical deconvolution (CSD) use a single shell data-set to estimate the fiber ODF. By 

combining GQI and SH expansion, similar CSD techniques can be used in ODF space to 

estimate the SH coefficients of the fiber ODF for a DSI data set. In chapter three we will present 

a formulation for deconvolution techniques using the proposed reconstruction algorithm and 

constrained spherical deconvolution. 
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3.0  APPLICATION OF SPHERICAL HARMONIC COEFFICIENTS 

This chapter presents constrained spherical deconvolution techniques and their application in 

localization and visualization of sub-cortical nuclei and in fiber tractography. A novel 

reconstruction technique that extends the constrained spherical deconvolution techniques 

introduced by Tournier et al [37, 38] to multiple b-value diffusion acquisitions is presented. The 

proposed technique performs constrained spherical deconvolution (CSD) in oriented distribution 

function (ODF) space (as opposed to diffusion space) to estimate the fiber ODF from the 

diffusion ODF. The technique for generating the spherical harmonic coefficients used in CSD 

was derived in chapter two. In section 3.1 the relationship between the fiber and diffusion ODFs 

is discussed. In section 3.2 the mathematical formulation of CSD is reviewed. In section 3.3 the 

proposed reconstruction technique is derived and discussed. The proposed technique is 

demonstrated on simulated datasets in section 3.4 and on human datasets in section 3.5. In this 

section it is also demonstrated that the estimated fiber ODF created with the proposed technique 

can be resampled to a high resolution space. 

3.1 INTRODUCTION 

Non-parametric diffusion reconstruction techniques compute an oriented distribution 

function on the unit sphere rather than a diffusion tensor for each voxel. This permits the 
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techniques to fully characterize the diffusion in all directions at each voxel. The ODF can 

describe the distribution function of diffusion, the diffusion ODF (dODF) [58-60], or it can 

describe the distribution function of the fiber population, the fiber ODF (fODF) [37, 38, 126]. 

One of the key problems in the diffusion imaging research field is how the dODF is related to the 

fODF. The dODF is estimated from diffusion weighted images using Q-Ball, generalized q-

sampling imaging, or diffusion spectrum imaging reconstruction methods. The dODF is a 

measure of the diffusion in the imaged voxel. It is used to estimate fiber orientation in the voxel 

in applications such as tractography. However, the orientation estimates provided by a dODF are 

blurred. Similar to the effect of the point spread function blurring in MRI k-space acquisition, the 

point spread function in diffusion space is the response of a single direction fiber population to 

the applied gradient. This issue can be addressed by sharpening the diffusion ODF with 

deconvolution techniques. The sharpened dODF more accurately captures the fiber orientations 

and is called the fiber oriented distribution function, or fODF. Tournier et al [37, 38, 126] 

introduced the method of using spherical deconvolution to compute the fODFs. His technique 

uses diffusion weighted images sampled with a constant b-value 

(typically 2 22000 3000b s mm to s mm− −= ) to estimate the fODF in each voxel. His original 

deconvolution formulation was ill posed [38] and he later addressed this by adding a 

regularization term in the constrained spherical deconvolution (CSD) method [37]. Alexander et 

al and Seunarine et al [112, 128] used a maximum entropy spherical deconvolution method to 

estimate fiber ODF. Their method uses a nonlinear optimization technique to sharpen the 

diffusion ODF and thus is computationally very expensive. Other spherical deconvolution 

techniques in [129] and [130] are also for the estimation of fiber orientations. Dell’Acqua et al 

[129] used damped Richardson-Lucy algorithm to spherical deconvolution method. Schultz et al 
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[130] on the other hand, proposed a framework to combine multi-tensor model with spherical 

deconvolution technique. Both methods estimate spherical harmonic coefficients of fiber ODF. 

One of the major limitations of the Tournier’s CSD and related methods [129, 130] is that they 

can only be used for single shell diffusion acquisitions. 

The reconstruction method offered in this chapter addresses this limitation of current 

CSD methods and extends the applications of the SH reconstruction derived in chapter two. The 

representation of the dODF with spherical harmonics from chapter two is now used in a 

constrained spherical deconvolution formulation to estimate the fODFs across multiple b-value 

acquisitions. Spherical harmonic coefficients estimated from diffusion spectrum images allow a 

continuous representation of the fODF and therefore it can be resampled into a high resolution 

space. In this space, nuclei in sub-cortical structures like the thalamus, cerebellum and brain stem 

can be localized and visualized. The high resolution fODFs can then be used in tractography to 

obtain better delineated fiber pathways. 

The SH reconstruction method of chapter two is estimated from diffusion spectrum 

images. This permits the reconstruction method proposed in this chapter to use these spherical 

harmonics in CSD to estimate the fiber ODF from multiple b-value acquisition images; the 

continuous fiber ODF can be resampled to high resolution structural space. This will provide the 

further advantage in anatomical localization and validation of fiber pathways. 
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3.2 BACKGROUND 

3.2.1 Constrained Spherical Deconvolution 

Spherical deconvolution aims to estimate fiber ODF, distribution of fiber population than 

diffusion ODF which is the distribution of diffusing water molecules in underlying white matter 

tissue. The sharpening operation is a linear transformation of spherical harmonics coefficients of 

the diffusion ODF. The key idea behind sharpening is that the diffusion ODF, which is a sum of 

a mixture of fiber populations, can be written as the convolution between the response function, 

which is typically the diffusion profile of single fiber population, with the fiber ODF of interest. 

The fiber ODF can also be represented in terms of spherical harmonic coefficients. These 

coefficients can be estimated using the spherical deconvolution method. Usage of spherical 

deconvolution method in diffusion imaging was originally proposed by Tournier et al [37, 38] 

and modified by others [129-131]. Fiber ODFs can accurately delineate complex micro-structure 

such as fiber crossings which can lead to more accurate fiber tracking results [126].  

Mathematically, for a given diffusion ODF ( , )θ φΨ  with mixture of n  fiber 

populations, let i  represent a rotation operator such that thi  fiber is rotated with the i  

operator in a direction ( , )i iθ φ ,    

 
1

( , ) ( )
n

i i
i

f Rθ φ θ
=

Ψ =∑    (3.1)  

where ( )R θ  represents the response function estimated using the diffusion profile of 

single fiber.  
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Equation 3.1 can also be written as the convolution on a unit sphere of the response function 

( )R θ  with the fODF ( , )f θ φΨ  as,   

 ( , ) ( ) ( , )fRθ φ θ θ φΨ = ⊗Φ   (3.2) 

where ⊗  is convolution operator and ( , )f θ φΦ  is fiber ODF which is sum of n  Dirac 

delta functions corresponding to each fiber direction with volume fraction if  within the voxel.  

Spherical deconvolution is performed by first estimating ( , )R θ φ  from the diffusion data 

or by specifying an analytical form. Typically, the response function is estimated from the data 

by selecting a region with higher anisotropy (high FA value). All of the fiber data is then aligned 

in the z-axis and averaged to estimate the response function of a single fiber population. 

Spherical deconvolution is a linear operation and can be reduced to a least squares estimation 

problem. 

 

 

Figure 15. The diffusion signal can be written as the convolution of the fiber ODF and the response 

function from a single fiber population. The response functions for both crossing fiber populations are assumed to be 

the same. 

 

In discrete form, if lc  and lf  are spherical harmonic coefficients of the diffusion and 

fiber ODF respectively then, 



 57 

 l l lc f= ⋅R   (3.3) 

where lR  is the rotational harmonic coefficient of the convolution kernel ( )R θ . 

Spherical deconvolution is an ill posed problem; Tikhonov regularization is added to find 

a unique solution [37]. Constraints on spherical harmonic coefficients are added to bound the 

solution. Equation 3.1 further reduces into a non-linear minimization problem (see equation 3.4 

that can be solved using a fixed point iteration method, see details in [37]. CSD techniques 

described in [37] are used to numerically estimate lf  using a fixed point iteration method with 

bounded spherical harmonic coefficients of the fiber ODF.  

 ( )2 2min ( )l f b fλ− +R    (3.4) 

where   is regularization operator and λ  regularization parameter. Typically   is the 2L  

norm operator. 

3.3 PROPOSED RECONSTRUCTION METHOD IN ODF SPACE 

Orientation distribution functions are functions defined on the unit sphere 2 . Spherical 

harmonic functions are a well-known orthonormal basis on a sphere. As described in chapter 

two, diffusion ODFs can be estimated using the proposed reconstruction algorithm to directly 

estimate spherical harmonic coefficients of the fiber ODF from a DSI data set. 

  

3

3

0
( ( , )) ( , ) ( ) (2 ) d

K

j j
j

c Y L E f Lθ ϕ θ ϕ π∆ ∆
=

Ψ = = ⋅∑ ∫u q q u q


  

  (3.5) 

Combining equation 3.1 and equation 3.5 we get, 

 

3

3( ) ( , ) ( ) (2 ) dfR L E f Lθ θ φ π∆ ∆⊗Φ = ⋅∫ q q u q


  

  (3.6) 
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Let 
0

( , ) ( , )
K

f l l
l

f Yθ φ θ ϕ
=

Φ =∑  be the spherical harmonic expansion of the fiber ODF 

where the lf  are the spherical harmonic coefficients of the fiber ODF. 

 

3

3

0
( ) ( , ) ( ) (2 ) d

K

l l
l

f R Y L E f Lθ θ ϕ π∆ ∆
=

⊗ = ⋅∑ ∫ q q u q


  

  (3.7) 

Equation 3.7 can be discretized in matrix form, 

 l lf⋅ = ⋅R G E   (3.8) 

where matrixG is a discrete form of the right hand side of equation 3.8 that estimates the 

spherical harmonics coefficients from diffusion weighted images, E  is vector with each element 

as the diffusion weighted signals, and matrix lR  is the discrete form of the left hand side of 

equation 3.8. lR  is a low rank matrix and is non-invertible. Therefore a regularization term is 

needed to estimate a bounded solution for spherical harmonic coefficients lf .  

A fixed point iteration method is used to estimate the bounded solution for lf . This 

method extends the constrained spherical deconvolution technique presented in Tournier’s work 

[37, 38] to diffusion spectrum imaging (multiple b-value) acquisitions. Next section demonstrate 

the proposed CSD technique on a simulated and healthy subject acquired/created using diffusion 

spectrum imaging protocol [48]. 
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3.4 DEMONSTRATION OF PROPOSED RECONSTRUCTION ON SIMULATED 

DATA SET 

The proposed reconstruction method and the constrained spherical deconvolution method are 

tested on a simulated data set with pure water, single fiber and crossing fiber populations. The 

test of this technique on a diffusion spectrum imaging scan of a healthy human subject is detailed 

in section 3.5 

3.4.1 Simulated dataset 

The diffusion signal is created for four different types of tissue: a) Free water (for example 

cerebral spinal fluid) b) Single fiber population (for example the corpus callosum) c) Crossing 

fiber population at 60°  d) Crossing fiber population at 90
°

.  The diffusion signal is used first to 

estimate the spherical harmonic coefficients of the ODF for each tissue type as described in 

Chapter 2. Spherical deconvolution, as describe in this chapter, is performed to estimate the 

spherical harmonic coefficients of fiber ODFs for simulated tissue type.  

3.4.1.1 Creating simulated data 

A diffusion spectrum imaging protocol [48] with 257 gradient directions and 7000maxb =  

is simulated. For a given fiber orientation ( ),i iφ θ , diffusion gradients ig  corresponding to ib  and 

volume fraction iν  of the thi  fiber population in a voxel, diffusion signals can be simulated using 

following equation, 
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 ( )( , ) ( , )
0

( , ) exp
i i i i

T Ti i
i i i i

S b b R D R
S φ θ φ θ= −
g g g   (3.9) 

where, D  is the tensor matrix with the diagonal terms as longitudinal ( D


) and transverse 

diffusivity ( D⊥ ), (0)S  is the proton density map and ( , )i iS g b  is the diffusion weighted signal 

corresponding to gradient direction ig  and b-vector ib .  

This is a general equation for diffusion. For computation simplicity we chose a tensor 

model in the simulation as opposed to restricted diffusion. In this simulation, D


 and D⊥  are 

assumed to be 3 2 11.70 10 mm s− −× and 3 2 10.3 10 mm s− −×  for each fiber population respectively. 

Equal volume fractions are assumed (i.e., iν = 0.5) in the case of crossing fibers. The tensor 

matrix D is rotated using the rotational matrix, ( , )i iR φ θ corresponding to each fiber orientation 

( , )i iφ θ . 

3.4.1.2 Results 

The fiber ODF for pure water, single fiber and crossing fiber orientation with 60° and 

90°crossing angles, are estimated using the deconvolution method described in the previous 

sections. Figure 16 shows the diffusion ODF estimated using the reconstruction algorithm 

described in chapter two. Diffusion ODFs are blurry but smoother. Blurriness of diffusion ODF 

leads to the uncertainty in the underlying fiber orientation. The fiber ODF estimated using the 

spherical deconvolution technique shows a sharper ODF. Sharper fiber ODF reduces uncertainty 

of peak finding see Figure 17. Methods such as those discussed in [132] and [133] models the 

uncertainty in the fiber peaks using Bingham and Watson distribution functions. Like spherical 

harmonic, Watson and Bingham defined on the sphere [134]. These probability distribution 

function is used to estimate expected fiber peaks along with standard deviation. Although 
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spherical deconvolution produces a sharper ODF, ODF in pure isotropic voxel have spurious 

peaks. False ODF peaks are due the choice of response function. Current choice of response only 

consider single fiber population. Method described in [127] uses multiple response function for 

estimation of volume fraction of tissue type in a voxel. 

 

Figure 16. Diffusion orientation distribution function estimated using proposed algorithm described in 

chapter two. A) Voxel containing cerebral spinal fluid. B) Single fiber population. C) Crossing fiber population at a 

60°  angle D) Crossing fiber population at a 90°  angle. 
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Figure 17. Fiber orientation distribution function estimates using constrained spherical deconvolution 

techniques. A) Voxel containing cerebral spinal fluid. B) Single fiber population. C) Crossing fiber population at a 

60°  angle D) Crossing fiber population at a 90°  angle. 
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3.5 DEMONSTRATION OF PROPOSED RECONSTRUCTION ON HUMAN DATA 

SET 

3.5.1 MR Acquisition 

MR images were collected on a 3T Siemens Tim Trio with a 32 channel head coil with a 

whole body gradient 40 /
max

G mT s=  at the Magnetic Resonance Research Center (MRRC), 

University Of Pittsburgh. A diffusion spectrum imaging [48] scan with total of 258 diffusion 

weighted images, 257 gradient directions with 27000maxb s mm−= and one 0b =  with an axial 

echo-planar imaging readout (EPI) are acquired. Total time to acquire diffusion weighted images 

is 45 minutes. A fixed echo time of 92TE ms=  and repetition time of  3000TR ms=  is used for all 

diffusion measurements. A matrix of 96 96×  is used over a field of view (FOV) of 224 224×  for 

an EPI readout, which results in an isotropic voxel size of 32.4 2.4 2.4mm× × . A total of 63 axial 

slices are acquired over the whole brain. A high resolution T1 weighted image (10 minutes) is 

also acquired using an axial magnetization prepared rapid gradient echo (MPRAGE) sequence 

with 2110TR ms= , 2.63TE ms=  and a flip angle of 8° . A total of 176 axial slices were 

acquired to cover the whole brain. 
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Figure 18. Raw Diffusion Weighted Images of a coronal slice. A) T1 image B) DWI with b = 0 Image. (C), 

(D), (E) and (F) DWI with 21000,3000,5000,7000maxb s mm−= . 

3.5.2 Diffusion MRI Processing 

The proposed reconstruction algorithm and spherical deconvolution methods described above are 

developed and implemented in-house using MATLAB [135]. Diffusion ODFs are estimated 

voxel-wise using GQI technique in raw diffusion-space (low resolution space). The proposed 

reconstruction algorithm with the spherical deconvolution technique is applied voxel-wise to 

estimate the spherical harmonic coefficients of the fiber ODFs. Fiber ODFs are then resampled 

into a higher resolution space (1mm isotropic) using a linear interpolation of the spherical 

harmonic coefficient estimated in equation 2.48. MRTrix [136] software is used for ODF 

visualization. Fiber peaks are estimated from the fiber ODF using the peak finding program 

implemented in the MRtrix software [136]. Estimation of peaks provides the fiber orientation 

and the corresponding anisotropic values. These anisotropic values and fiber orientations are 

further used to perform fiber tracking using DSIStudio software [32, 137]. 
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3.5.3 Registration and sub-sampling spherical harmonic coefficients of the fiber ODF 

Spherical harmonic coefficients of the fODF estimated from constrained spherical deconvolution 

can be registered to a high resolution space such as an MPRAGE/T1. First a rigid-body 

transformation matrix is estimated by registering the 0b =  diffusion image to the T1 image. This 

transformation matrix is further used to resample onto higher resolution T1 space and to orient 

fODF in each voxel using the method described in [136]. Note, ODFs are defined on sphere and 

therefore cannot be resampled using typical Euclidean techniques. Resampling of the spherical 

harmonic coefficients of the fiber ODF is also performed to create a detailed map of fiber peaks 

in each voxel. Although we are not creating any new information, we are using neighborhood 

information to create a smooth interpolation of the ODF. For visualization purposes peaks of the 

fiber ODF weighted by the value of the fODF at those peaks are mapped to the RGB color 

channel to create a directional encoded color volume map (DEC). These sub-sampled fiber peaks 

are used to localize sub-cortical nuclei in the thalamus and cerebellum using FSL's fslview 

software [138]. High and resolution fiber peaks are also used in fiber tracking of three major 

white matter pathways using DSIStudio software [137] to demonstrate the accuracy of 

techniques. 

3.5.4 Results and Discussion 

3.5.4.1 Localization and Visualization of Sub-cortical Nuclei 

Three subcortical regions, the thalamus, cerebellum and brain stem, were chosen to 

demonstrate the application of the method described in this chapter. Two DEC maps are 

estimated using a spatially resampled fODF (high resolution) and non-resampled diffusion ODF 
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(low resolution). In high resolution fiber ODF continuous spherical harmonic coefficient are 

spatially resampled using FSL. Low resolution diffusion ODF values are estimated using GQI 

[36] techniques for each voxels. These structures are identified and a directional encoded color 

(DEC) map estimated using high resolution fiber ODFs is compared to a DEC map estimated 

using low resolution diffusion ODFs. High resolution hyper-sampled fiber ODFs show clear 

edges of the nuclei. Low resolution diffusion ODFs blur the edges of these small thalamic nuclei.   

Thalamic nuclei cannot be parcellated using conventional MR imaging on a 1.5T or 3.0T MR 

scanner. Many diffusion MRI based techniques segments thalamic nuclei using various 

clustering technique [59, 139-144]. In this section we are using a directional encoded map 

directly estimated from ODF peaks to localize two ventro-lateral nuclei. Other nuclei such as 

dorsomedial nucleus, interlaminar nuclei, lateral posterior nucleus etc. are not clearly seen using 

this method. Further post processing is needed [141-144] to localize subsets of nuclei.  

 

Thalamic Nuclei play a key role in relaying information to the cerebral cortex [145, 146]. 

Localization of nuclei in the thalamus has clinical application to deep brain stimulation [147, 

148], epilepsy [149], Parkinson's disease [150] and obsessive compulsive disorder (OCD) [151].  

The thalamus (Dorsal Thalamus) is the largest component of the diencephalon. Its primary role is 

to relay sensory information to the cerebral cortex. It is composed of various nuclei which 

primarily project to different functional regions of the cerebral cortex. There are three basic type 

of thalamic nuclei 1) relay nuclei 2) associative nuclei 3) non-specific nuclei [145, 146]. Relay 

nuclei project and receive signals from functionally distinct cortical areas. The ventral 

posterolateral (VPL) and ventral posteromedial (VPM) nuclei relay primary sensory signals to 

the cortex [152]. The Ventrolateral (VL) and Ventroanterior nuclei are involved in feedback 
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signals of the basal ganglia output [153]. Associative nuclei receive signals and project back to 

the cortex in the associative area to regulate activity. Non-specific nuclei (intra-lamina, midline 

thalamic nuclei) are broadly thought to be involved in the general function of alerting [154, 155].  

Different thalamic nuclei connect to different functional regions in the cerebral cortex and 

therefore have a different connectivity pattern. This connectivity pattern can produce different 

colors in a directionally encoded color (DEC) map of fiber orientation. VL and VPL are 

localized in DEC maps of hyper-sampled fiber ODFs. A high resolution T1/MPRAGE image is 

used as underlay to provide anatomical location. Location of the identified nuclei are in good 

agreement from past literature. 

 

Figure 19. An axial slice of the DEC map of fiber peaks estimated from low resolution dODF (A) and high 

resolution fODF created by resampling spherical harmonic coefficients (see section 3.5.2) (B). Two nuclei of 

Thalamus (yellow curve), VP and VL, can be identified in high resolution. 

 

The low resolution map from the diffusion ODFs does not show a clear boundary 

between the nuclei. Due to the large voxel size, edges of the nuclei are blurred in the DEC map 

from the dODFs (see Figure 19). Other methods [59, 139-144] use probabilistic tractography and 

cluster techniques to segment thalamic nuclei, which is computationally expensive. The current 
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method not only provides nuclei location but can also be used to create fiber pathways to identify 

tracts that connect each nucleus to cerebral cortex.  

 

Cerebellar Nuclei The Cerebellar nuclei play an important role in motor function and language 

[156-160]. Identifying nuclei and their connection with the cerebral cortex and other subcortical 

regions could provide insight into their role in information processing between these functional 

regions [157, 161]. The cerebellum has four deep cerebellar nuclei embedded in the white matter 

in its center. Most of the fibers of the cerebellum originate from these nuclei. From lateral to 

medial the four cerebellar nuclei are the dentate, emboliform, globose and fastigii [162-164]. In 

humans, the emboliform and globose fuse to form interposed nucleus [156].  

In a DEC Map estimated from the fiber ODF are shown three regions (yellow circle) which are 

in agreement with the anatomical locations of the three nuclei of cerebellum (see Figure 20). 

 

Figure 20. Three Cerebellar nuclei (yellow circle), dentate emboliform and interposed, can be identified in 

high resolution DEC map estimated from fiber ODF. 

 

Brain Stem structures The brainstem is the posterior part of the human brain that includes the 

medulla oblongata (myelencephalon), pons (part of metencephalon), and midbrain 

(mesencephalon) [139]. Although it is a small region, it contains crucial white matter and grey 
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matter structures [165-170]. It is a challenge to localize and visualize accurately the structures in 

the brain stem due to its size and complexity [171-173]. DEC maps can identify some of the 

white matter structure. Major pathways such as the corticospinal tract (motor) [174], the 

posterior column-medial lemniscus pathway (fine touch, vibration sensation and proprioception) 

[175-177] and the spinothalamic tract (pain, temperature, itch, and crude touch) [178-180] pass 

though the brainstem. It plays an important role in the regulation of cardiac and respiratory 

functions [169, 181]. It also regulates the central nervous system and is pivotal in maintaining 

consciousness and regulating the sleep cycle [167, 170]. 

 

Figure 21. Brainstem regions in an axial slice of DEC Map estimated from low resolution dODF (A) and 

fODF (B). Edges of CST, SCP and ML is clearly visible in high resolution. Low resolution dODF show blurry 

edges. 

 

Three brainstem structures are more clearly seen in the resolution DEC map estimated 

from fiber ODF (See Figure 21 (B)). First, cortico-spinal tracts (CST) connecting motor cortex to 

spinal cord can be clearly identified in higher resolution space (Figure 21 (B)). Although the 

lower resolution imaging shows this structure, the boundary of the CST is not very clear (Figure 
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21 (A)). Second major white matter structure in brain stem, medial lemniscus (ML) (upper blue 

region) oriented parallel to CST  and pontine fossa (cross red region), connects cerebellar 

hemisphere separates CST and ML, are clearly visible with clear edges in high resolution space.  

Resampling of fiber ODFs has a clear advantage over lower resolution diffusion ODF in 

localizing small structures in the human brain. Localization of these white matter structures have 

clinical application such as neurosurgery. Further, fiber peaks can be used in fiber tractography 

to reconstruct white matter pathways. The following section shows the advantage of sub-sampled 

fiber ODFs in fiber tractography over low resolution diffusion ODF based fiber tracking. 

3.5.4.2 Tracking major fiber pathways using the proposed reconstruction method 

Resampled fiber ODFs are used to create three major white matter fiber pathways: the 

fornix, arcuate fasciculus and superior cerebral peduncle (SCP) on a healthy subject. For 

comparison purposes, fiber tracking is performed on lower resolution diffusion ODF space to 

segment three tracts, fornix, arcuate fasciculus and superior cerebral peduncle (SCP). In this 

section the comparison of lower and high resolution data sets highlights features of fiber tracts 

which will be useful to access accuracy. It is important to note that fiber tracts are in continuous 

space for both the lower and higher resolution space, but resampling of the underlying 

information can produce less noisy tracts. The high resolution fiber tracking data set shows 

qualitatively better results than the lower resolution data set. Resampling of fiber ODFs enhances 

the endpoints of fiber tracts which can help identify functional GM regions by WM tract or sub-

tract termination regions and produces fewer noise fibers in crossing regions. 
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Fornix The Fornix is a well-known anatomical C-shaped structure and clearly identified in 

structural images. It connects the hippocampus to the mammillary body. It is part of the limbic 

system. It is involved in recall memory [182, 183]. Damage to the fornix can cause difficulty in 

recalling long term memory [9, 184, 185].  

Both diffusion and fiber ODF based fiber tracking can successfully segment the fornix on 

both hemispheres. The overall structure of the fornix is very similar in both cases, but in low 

resolution imaging the end part abruptly stops in white matter whereas in high resolution it has 

better segmentation on both hemispheres. Another important features is the intra-hemispheric 

gap in the fornix. High resolution clearly shows the anatomically known gap as compared to 

lower resolution. This effect is due to resampling of the fiber ODF. The resampled fiber ODF is 

robust near the edges of white matter structures as show in the previous section for subcortical 

nuclei (see Figure 22). 

 

Figure 22. Fornix tract reconstructed on both hemisphere using peaks estimated from low resolution dODF 

(A) and high resolution fODF (B). High resolution fODF-based fiber tracking shows inter-hemispheric space and 

have better fiber termination at mammillary body. 
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Arcuate fasciculus The arcuate fasciculus is a white matter pathway that is connected to the 

inferior and middle frontal cortex to the temporal cortex [186-188]. Functionally, the arcuate is a 

connection between two important areas in the human brain involved in language processing: 

Broca's area which is part of the inferior frontal gyrus involved in speech production and 

Wernicke's area which is part of the posterior temporal gyrus involved in production of written 

and spoken language [16, 189].  

Both diffusion and fiber ODF based fiber tracking reconstruct the arcuate tract. Endpoints 

of reconstructed tracts are consistent with the known anatomical location [190]. The high 

resolution arcuate tract qualitatively shows less noise and better endpoints terminating at grey-

matter white-matter border (see Figure 23). The endpoints of the arcuate connect to different 

functional regions. These sub-segments of arcuate tracts may provide insight into functional 

regions involved in language processing. 

 

Figure 23. Arcuate tract reconstructed on left hemisphere using peaks estimated from high resolution fODF 

(A) and low resolution dODF (B). High resolution fODF-based fiber tracking shows better fiber termination at GM-

WM border. 
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Superior cerebellar peduncles Tracts The superior cerebral peduncle is a white matter 

structure that connects the cerebellum to the midbrain. It consists of the efferent fibers from the 

cerebellum to the thalamus and the red nucleus. The Superior cerebellar peduncle decussates in 

the midbrain and creates an anatomically known fiber crossing [191-193]. 

To create SCP tracts, a region of interest (ROI) is selected in an axial slice at the position where 

crossing tracts are easily visible and a large region of avoidance is created above the thalamus 

plane. Fiber tracking is preformed using the following parameters in DSI Studio software, step 

size = 0.5, anisotropy threshold = 0.2, number of tracts = 10,000 and smoothing parameters = 

0.2. Further 10% (approx.) of fibers are trimmed to select SCP tracts. This well-known crossing 

region is used to test the accuracy of diffusion and fiber ODFs and corresponding fiber tracking. 

Both methods can successfully resolve crossing and reconstruct the superior cerebral peduncle. 

The high resolution SCP tract shows much less noise in the crossing region as opposed to the 

lower resolution SCP. Endpoints of both SCP segments are easily identified in high resolution 

space. The ipsilateral parts of both segments in low resolution are noisier and thus fail to identify 

endpoint regions (see Figure 24). 
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Figure 24. Superior Cerebral Peduncle tract reconstructed on both hemisphere using peaks estimated from 

low resolution dODF (A) and high resolution fODF (B). High resolution fODF-based fiber tracking shows clear 

crossing of the tracts and clear endpoint of the tracts. Low resolution has noiser crossing. 

3.6 CONCLUSION 

This chapter has successfully showed that fiber ODFs can be estimated using the 

reconstruction algorithm presented in chapter two. A novel mathematical formulation to perform 

constrained spherical deconvolution on the spherical harmonic coefficients of diffusion ODFs to 

estimate fiber ODFs was derived.  It has been shown that CSD can also be applied on datasets 

acquired using a diffusion spectrum imaging protocol. The key difference between proposed 

method and CSD technique presented in [37, 38] is that it can only be applied to single shell 

image acquisition. This technique can be extended to multi-shell image acquisition. Juerisson et 
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al [127] presented CSD formulation by modeling different tissue-type and multi-shell acquisition 

scheme.   

It was demonstrated that spherical harmonic coefficients of fiber ODFs can be resampled 

onto a high resolution space. Further this high resolution fODF can either be directly used or a 

high resolution MPRAGE/T1 image can be registered for visualization. This enables localization 

of small sub-cortical nuclei such as thalamic and cerebellar nuclei feasible. Finally, the 

advantages of resampled fiber ODF in reconstructing fiber pathways were illustrated on three 

major fiber tracts. 

3.7 LIMITATIONS AND FUTURE DIRECTIONS 

The constrained spherical deconvolution technique used in this chapter considered only 

one tissue model (white matter). This CSD technique can be extended to include a multi-tissue 

model to estimate the volume fraction of each tissue (cerebral spinal fluid, grey matter and white 

matter) along with the direction(s) of the fiber populations (as described in [127]). This multi-

tissue method can then be further used in fiber tractography for thresholding and fiber stopping 

criterion.  

Advanced numerical techniques can be used to improve the accuracy and computing 

speed for reconstructing fiber ODFs. Currently, fixed point iteration methods are used to 

numerically solve the constrained spherical deconvolution problem. CSD that is formulated as a 

least squares problem with constraints can be reformulated as a quadratic programming problem. 

The advantage with a quadratic programming model is it is computationally fast and produces 

accurate results. Similar techniques are presented in [194]. Fiber peaks estimated from fiber ODF 
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(or diffusion ODF) have uncertainty in estimated underlying fiber orientation due to noise 

introduce by mathematical model used or MR scanner. Probability distribution techniques such 

[132, 133] can model those uncertainty. 

Three major white matter pathways are selected to demonstrate the techniques. A detailed 

sub-segmenting of these fiber tracts can be analyzed to further show the accuracy of the method. 

Three brain regions are selected to demonstrate the potential of the techniques to localize small 

brain structures. Future work will explore the effect of motion artifacts on the techniques. 
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4.0  QUANTIFICATION OF WHITE MATTER IN HUMAN BRAIN 

Quantifying anisotropy of diffusion in white matter though MRI techniques is an active area of 

research. Various anisotropic metrics that describe underlying tissue type and structural 

connectivity have been proposed in the literature.  The most popular ones, such as fractional 

anisotropy (FA) [67, 68], are derived from the diffusion tensor. These diffusion tensor based 

metrics have limited utility due to their directional insensitivity and inability to model anisotropy 

at multiple directions within a single voxel caused for example by crossing fibers. An anisotropic 

metric that is sensitive to crossing fibers and relates to the physical quantity in each voxel will 

enable a more accurate quantification of white matter structure.  This chapter develops a novel 

metric, directional Axonal Volume (dAV), to quantify diffusion anisotropy in biological tissue. It 

is both directionally sensitive and biophysically interpretable. This chapter focuses on the 

derivation of the theoretical framework for voxel-wise and tract-based dAV.  Its validation is 

addressed in chapter five using a textile based anisotropic phantom. 

 The motivation for the dAV metric is introduced in section 4.1.  The mathematical 

formulation of diffusion tensor based anisotropy metrics is reviewed in Section 4.2.  Section 4.3 

presents the definition, derivation and discussion of the proposed dAV anisotropy metric. Section 

4.4 presents an algorithmic framework to transfer the dAV metric from a volumetric framework 

to a tract profile based framework.  This will permit dAV values to be mapped on to fiber tracts 

without inter mixing the anisotropies of multiple fiber tracts crossing in a voxel.  In section 4.5 
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the dAV metric is demonstrated on simulated and human datasets. Future development and 

limitations of the dAV metric are outlined in section 4.8. 

4.1 INTRODUCTION 

Quantifying anisotropy is one of the most important tasks in diffusion-based MR imaging. Scalar 

metrics derived from the diffusion tensor such as fractional anisotropy (FA, mean diffusivity 

(MD), radial diffusivity (RD), axial diffusivity (AD)) [67, 68] are commonly used to characterize 

anisotropy in white matter tissue. These metrics provide more details of white matter tissue than 

a regular structural MRI or CT scan [90]. These tensor based metrics are successfully used in 

research studies such as amyotrophic lateral sclerosis [8], Multiple sclerosis [104], Schizophrenia 

[195] etc. They are also used in clinical settings to locate areas of stroke damage [12, 196], white 

matter lesions  [197-200], and degeneration in diseases such as Huntington’s disease [14, 106], 

Parkinson’s disease [34], Obsessive Compulsive Disorder [6], Schizophrenia [34, 195, 201]. 

Although useful in these contexts, these metrics have significant drawbacks. One of the key 

limitations of tensor based metrics is in brain regions with fiber crossings. These metrics 

combine anisotropy from multiple fiber populations into a single statistical measure. Typically 

these scalar metrics are descriptive statistics of the eigenvalues of the diffusion tensor estimated 

using DTI [68, 95, 202]. For example, the Fractional Anisotropy (FA) [68, 95] metric is the 

dispersion of eigenvalues.  A second limitation of these scalar metrics is that they do not relate 

directly to a physical property of the tissue. Therefore they can be difficult to interpret and to be 

applied in longitudinal or multi-site studies [111, 203-205]. 
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 The novel directional axonal volume (dAV) metric developed in this chapter presents a 

framework to resolve these direction insensitivity and biological interpretability issues.  The 

dAV metric has three key parts.  First, it estimates the anisotropy in each voxel at multiple 

directions by reconstructing the diffusion ODF [58, 59, 61].  This makes the metric robust to 

fiber crossings. Second, it separates out the isotropic component of diffusion at each direction so 

as to capture characteristics of just the specific tissue of interest, white matter axons. Although 

dAV quantifies anisotropic and isotropy in a voxel, it assumes that anisotropy is due to fiber 

tracts and that isotropy is due to pure water. This is an idealized assumption as white matter 

voxels contain various tissue/cells. And third, it relates the directional anisotropies to a 

biophysical diffusion property by weighting with a proton density map. A T2 weighted MR 

image can be used instead of a proton density map. The T2 weighted image can add bias into 

dAV due to the different T2 constants for different tissue types. The quantized directional 

anisotropies are then calibrated with a reference voxel with known proton density values. This 

relates the quantified directional anisotropies to the molar concentration of anisotropic water 

content for a given voxel and potentially axonal volume of underlying white matter tissue. 

Calibration of dAV has the potential to standardize this metric across scanners and across 

subjects. 

4.2 DIFFUSION TENSOR BASED ANISOTROPIC METRICS 

Among diffusion MRI based imaging techniques, diffusion tensor imaging is a simple way to 

estimate anisotropy non-invasively in biological tissue. The diffusion tensor can be estimated 

using a minimum of six diffusion weighted images and one non-weighted (b = 0) image [68]. 
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Ordinary least squares and other nonlinear techniques are used to estimate six parameters of a 

rank two tensor (a 3x3 positive definite matrix), see chapter two for details. Diffusion tensors 

estimated using ordinary least squares are sometimes symmetric not positive definite matrices. 

Positivity constraints are applied on eigenvalues 1 2 3( , , )λ λ λ  in tensor estimation [97]. 

Almost all anisotropic metrics derived from diffusion tensor imaging are based on statistical 

summaries of eigenvalues of the tensor. The common metrics used in the literature are: mean 

diffusivity (MD), fractional anisotropy (FA), axial diffusivity ( D


) and radial diffusivity ( D⊥ ) 

[68, 95]. 

Mean diffusivity is the mean of the eigenvalues. It is a statistical measure of the central 

tendency of the eigenvalues. It indicates whether if diffusion is free (high value) versus if 

diffusion is restricted or non-free (low value). It can be directly estimated using tensor 

coefficients by calculating the trace of the tensor matrix. The critical property of the mean 

diffusivity is that it is rotationally invariant i.e., it measures feature of diffusion which is 

independent of the laboratory or patient coordinate system [68]. 

 1 2 3( )
3

λ λ λ+ +
=MD   (4.1) 

Fractional anisotropy is the ratio of the standard deviation of the eigenvalues with their 

norm. This is a statistical measure of dispersion of the eigenvalues. If all eigenvalues are equal 

i.e., diffusion in each of the principle directions is equally likely, the FA value is equal to 0.0. 

For example, a voxel fully contained in cerebral spinal fluid (CSF) or tissue with micro-structure 

such that it is restricted equally in all directions has an FA value of 0.0. A voxel containing a 

single fiber population or diffusion that is restricted only in one direction has an FA value of 1.0. 
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FA in crossing regions will have a lower value as two eigenvalues will have similar 

values i.e., 1 2 3λ λ λ=  . In crossing region fractional anisotropy has limited interpretation. As 

lower values of FA due to either crossing or lower anisotropy in a single fiber population [67]. 

 

Axial diffusivity, ( D


, provides anisotropy along the fiber population and Radial 

diffusivity, ( D⊥ ), provides anisotropy across the fiber. In the case of a single fiber population D


 

and D⊥  provide tissue specific micro-structural information. Radial diffusivity D⊥  can be 

sensitive to micro-structural changes like change in myelin content [7, 206, 207]. These metrics 

have limitation in crossing regions. They not only give a weighted average of diffusivity of 

crossing fibers but also cannot provide any information regarding the volume fraction for each 

fiber population [58, 61, 205]. Metric derived from higher order model such as multi tensor 

model [111], q-ball imaging [58], diffusion spectrum imaging [48] etc., can overcome some of 

these issues.  

Other biophysical models like CHARMED [41], AxCaliber [42] etc. can estimate the 

volume fraction of crossing fibers and properties of tissue in terms of diffusion (diffusivity in 

each fiber direction, diameter of fiber(s) etc.). Some advanced diffusion MRI methods employ 

multiple pulsed field gradient MRI sequences to measures features like mean axon diameter and 

axon diameter distribution, as well. These metrics require special pulse sequences for data 

acquisition [42, 208, 209].  

Most of the metrics described above are voxel-based. One of the advantages of voxel 

based metrics is the availability of volumetric based tools. For example, there are a number of 
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volumetric atlases [210-214], tools to create surface models from volume data, [215-217], and 

tools to identify regions of interest [218, 219].  However, volumetric data can be harder to 

interpret than tract based data because the volume data is discretized into a grid of voxels that 

has no relation to the imaged anatomy, whereas the tract based data is at millimeter precision and 

more closely relates to the white matter anatomy. The tract based data, however, provides only 

the geometry and location of white matter tracts; the valuable information about anisotropy 

estimates at each voxel is not incorporated. Mechanisms have been developed to map these voxel 

based anisotropic metrics onto fiber tracks [220-222]. And, methods analogous to volume based 

methods to compare tracts across populations and in longitudinal studies have begun to be 

developed [222]. These methods have only dealt with mapping scalar metrics and would need to 

be adapted to function on tuple based metrics such as dAV. The following section formulates the 

dAV metric, that is derived from the non-parametric diffusion model described in chapter two, 

and provides a mechanism to map it onto fiber bundles. 

4.3 DIRECTIONAL AXONAL VOLUME (DAV) 

DAV measures directional dependent anisotropy and relates it to the water content. DAV offers 

separate anisotropies for crossing fiber and calibrates the estimates thus resolving two major 

limitations of anisotropic scalar metrics. Directional axonal volume (dAV) can be defined as the 

amount of water molecules displaced due to diffusion in a given direction. DAV estimation 

requires two steps: Proton density estimation and ODF (diffusion or fiber) estimation at each 

voxel. 
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Given a direction û  in a voxel, ˆ( )dAV u  is defined as the amount of anisotropic water 

diffused in direction û  for a volume voxelV . 

 
ˆ ˆ( ) ( Total spin in a voxel ) ( fraction of anisotropic water diffused in direction )dAV u u= ×  

 0ˆ ˆ( )dAV u µ= ×   (4.3) 

 

where 0  is the total spin density and µ̂  is the fraction of anisotropic spin diffused in 

direction û  

First, the isotropic part is removed from the ODF to estimate the pure anisotropic water 

content (see Figure 25). Anisotropy can be normalized to create a probability density function. It 

is a vector quantity defined on the sphere of the diffusion or fiber ODF. If the diffusion ODF is 

used in anisotropic estimation, it blurs dAV values in the fiber direction(s). The fiber ODF is 

better choice for dAV estimation. dAV is estimated by weighting the proton density map to the 

anisotropy estimates. 

 

Figure 25. Orientation Distribution Function is decomposed into an isotropic and anisotropic parts. dAV is 

related to the anisotropic part of the ODF. 
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4.3.1 Spin density estimation of total water content 

A proton density [27, 223, 224] map quantifies the water content (more precisely number of 

hydrogen protons 1H) in each voxel. The proton density map is heterogeneous across brain 

voxels. To calibrate water content a reference voxel is used to estimate a map 0  with the 

fraction of water molecules present in a voxel (total spin density map). To estimate 0 , we first 

must pick a reference voxel with a known density of water (or a reference phantom voxel). 

Typical choices are a voxel completely inside CSF or a voxel from a phantom with known water 

content. 

If the density and volume of water in a voxel are refd , refV  and W  is the molar mass of 

water, then the number of moles in the voxel is /ref refd V W .  

Let refM  and voxelM  be the proton density signals from a reference voxel and a voxel of 

interest (VOI) respectively and let voxelV  be the volume of a voxel. Then, 

 Number of Moles in VOI ref ref ref voxel

voxel ref

d V M V
W M V

=  

 0
ref ref

voxel
voxel

d M
V

W M
=   (4.4) 

 
It is important to note that Proton Density (PD) imaging requires extra scanning time. Typically 

we use Echo-Planner Images with multiple TEs (time of echo) to estimate PD by regressing out 

the *2T  effect. [27, 223, 224]. 

 exp( )
2voxel voxel

voxel

TEM PD
T

= −  
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Without regressing out the *2T  effect we will introduce a 5% - 20%  error in dAV estimation 

depending upon the TE used in the diffusion scan and on the tissue type. This calculation was 

performed using a typical T2 constant for CSF, grey matter and white matter. 

4.3.2 Estimation of Isotropic water content 

There are many ways to estimate isotropic water content. This work used the simplest model: the 

minimum of the ODF values. The isotropic part includes contributions from both the hindered 

and free water compartments. Note that the isotropic part is a scalar quantity. The isotropic value 

indicates the fraction of water molecules displaced in all directions. Other methods [10, 225] 

describe separate modeling of free water in diffusion weighted imaging space. DAV performs 

the isotropic estimation in ODF space (after reconstruction step). 

 
ˆ

ˆ( ( ))voxel voxelu
I min uψ=   (4.5) 

This is a simplified model of isotropy and is sensitive to noise. More sophisticated models can be 

used to accurately model isotropic water content [10, 225].  

Combining equations 4.5 and 4.4 provides the isotropic water content in a voxel: 

 0
ref ref

voxel voxel voxel voxel
voxel

d M
Iso I V I

W M
= × =   (4.6) 

It is important to note that dAV values are dependent on the ODF used in the calculation. 

The dAV formulation here was derived using diffusion ODFs. Diffusion ODFs are probability 

distribution functions on a unit sphere. Diffusion ODF values in a particular direction represent 

the fraction of water molecules diffusing in that direction. Due to the non-zero radii of the fibers, 

water molecules move in all directions including perpendicular to the fiber axis. Therefore part 
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of the minimum value of a diffusion ODF is due to movement in a perpendicular direction, from 

within intra-cellular space. A similar diffusion process is happening in extra-cellular space. 

Hence, the isotropic water content estimated above is not just free water but also contains 

contributions from intra and extra cellular space. In the case of fiber ODFs, only the fiber 

population is estimated and therefore the isotropic part will be zero.  Depending upon the study, 

either ODF can be chosen. If characterization of diffusion properties is of interest then the 

diffusion ODF will be used. If only the axonal bundle is of interest then the fiber ODF will be 

used. 

4.3.3 Estimation of Anisotropic water content 

The anisotropic water content can be estimated by subtracting the isotropic part from the ODF. 

The anisotropic part is then normalized to form a probability density function. It is the fraction of 

water molecules displaced due to diffusion in a voxel and is also defined on a unit sphere as 

ODF.  

 ˆ ˆ( ) ( )voxel voxelu u Iµ ψ= −   (4.7) 

 
Combining equations 4.7 and 4.4 will provide dAV in a given direction û . 

 

0 ˆ ˆ(( )) ( ) ( )ref ref
voxel voxel

voxel

d M
dAV u u V u

W M
µ µ= × =   (4.8) 

The anisotropic part includes contributions from both the hindered and restricted 

compartments. It is sensitive to changes in white matter tissue.  
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Other methods [39, 41, 42] also estimate the volume fraction of restricted and hindered 

compartments separately based on tissue property. The dAV framework can be modified to adapt 

volume fraction estimates from these models.   

Voxel-wise dAV estimated by equation 4.8 is used in fiber tracking to map anisotropy 

onto each point in a given fiber bundle. The next section presents an algorithm to map dAV 

along the fiber tracts. Fiber slicing techniques are used to further estimate dAV flux along fiber 

bundles. The key difference between scalar based anisotropy mapping techniques (see [222]) and 

dAV is that the dAV technique is able to discriminate anisotropy in the direction of fibers. 

4.4 MAPPING AND PROFILING OF DAV ONTO FIBER BUNDLES 

Although voxel-wise metrics are an important part of group studies, tract based methods provide 

a better anatomical solution to study structural connectivity and probe axonal change in human 

brain. Methods such as TBSS [138] map anisotropy on a skeleton of FA volume maps. It maps 

FA values from a subject population on a template skeleton FA volume to estimate white matter 

changes. Although this method has the advantage of permitting statistical hypothesis testing, it 

doesn’t provide tract specific metrics and cannot be applied to individual subjects for damage 

detection. This section provides a method to create tract based dAV metrics.  

Tract-based metrics combined with profiling of the tract provide a mechanism to assess 

damage along a fiber bundle in an individual patient. Previous studies [222] have mapped scalar 

anisotropic metrics such as fractional anisotropy onto the tract. This section will first present a 

novel method to map the non-scalar dAV values onto fiber tracts and then will present a novel 

profiling technique to combine and project dAV values from each fiber onto a mean fiber tract. 



 88 

These mean fiber dAV projections can be visually inspected for irregularities indicative of 

potential tract damage. Or, if normative data has been gathered quantitative comparisons can be 

performed [222]. These algorithms are independent of the fiber tracking method used to create 

fiber tracts. All studies in this thesis used the fiber tracking method described in [32]. 

4.4.1 Mapping dAV onto fiber tracts 

dAV values first map onto the fiber points along the tangent direction of the fiber points. Each 

point of each fiber tract in a given fiber bundle has dAV values mapped. Fiber tracts are then 

profiled to estimate dAV flux along the fiber bundle. In order to calculate dAV changes along 

the fiber bundle, first a mean fiber is estimated by selecting and averaging fibers of the same 

length. Cutting planes are created that are orthogonal at each point of the mean fiber. dAV values 

are estimated at the intersection of the plane and fibers.  

Like the diffusion and fiber ODFs, dAV is a function on unit sphere. The dAV values in each 

voxel are represented as a finite set of N directions (points), uniformly distributed on a sphere, 

with the dAV magnitudes discretized across these points. For a given point in a fiber, there are 

thus N possible dAV magnitudes (from the voxel enclosing the fiber point). Fiber points are not 

independent, they are part of a 3D curve and therefore each point has orientation information, the 

tangent. For each fiber point, the tangent is estimated and the dAV magnitude whose direction 

most closely aligns with the tangent direction is chosen. 

In contrast, for mapping of scalar metrics, fiber tracts are not considered as 3D curves.  Instead, 

they are taken as a set of independent points. The scalar metric is interpolated at each point 

without taking advantage of the local fiber orientation.  The key contribution of the dAV metric 

is that is provides a directionally sensitive metric and it also provides a method to use that 
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directional information to guide and enhance the process of mapping from volumetric to tract 

space. 

4.4.2 Tract profiling of dAV metric 

After mapping dAV values onto fiber tracts, dAV of fiber bundle is reduced to a mean fiber tract. 

Mean fiber for a given fiber bundle is estimated by averaging fibers of similar length. Then at 

each points onto mean fiber, a plane perpendicular to the tangent, is selected. Fiber bundle is 

then cut using the selected plane. Here are the detailed steps to map dAV onto fiber bundles.  

Given a Fiber BundleF , a collection of fibers if , i if= ∪F : 

1. Identify mean fiber meanf : The mean fiber is calculated by selecting long fibers with 

similar length. Then a spline filter is used to interpolate all selected fibers such that each 

fiber has an equal number of points. The mean fiber is then calculated by summing these 

points for each of the selected fibers. 

2. Orthogonal Planes ip


: The tangent at each point along the mean fiber ( meanf ) is used to 

calculate a plane such that the normal to the plane is the same as the tangent ( it


) at each 

point ( ip


). In other words, the equation of the plane can be described as ⋅ =i ix t p
  

. 

3. Slicing fiber tracks using orthogonal planes: Each fiber is then cut using the planes 

calculated in step (2). dAV at each point of intersection between the plane and the fibers 

is estimated using interpolation. Then the sum of all dAV values for each plane along the 

mean fiber is calculated. 

Profiled fiber bundle at each point of mean fiber tract have dAV value contribution from each 

fibers. An average value of dAV at each point in mean fiber is mapped.  
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This technique has potential advantage over the technique used in [222]. DAV profiling 

technique uses a plane that is aligned with fiber bundle for individual as opposed to the MR 

scanning plane.  

Other techniques such as Automated Fiber Quantification (AFQ) [222] and Tract-Based Spatial 

Statistics (TBSS) [138] are also used to map anisotropy onto fiber tracts or a common template 

volume. AFQ uses interpolation of the FA metric to map anisotropy onto each fiber point and 

then fibers are profiled using a scanning x-y-z plane. In contrast, dAV uses the whole ODF and 

the proton density map to first map anisotropy in the direction of fiber tract, and then profiling is 

performed along the plane of mean fibers. ODF based anisotropic maps provide a better estimate 

of anisotropy in crossing regions. Profiling can be performed in multiple possible ways. Planes 

perpendicular to a mean fiber are unique at a particular point; this is an advantage over scanning 

x-y-z planes. 

This tract-based mechanism of mapping dAV onto fiber tracts has the potential to provide 

information related to structural connectivity in healthy and diseased brains without mixing the 

anisotropies of multiple fiber populations. This method should not be confused with simple 

interpolation. DAV uses fiber tract information, the ODF, and the proton density map to estimate 

the anisotropic map. Scalar maps like FA were used in [222] to map anisotropy onto fiber tracts. 

Scalar metrics were simply interpolated at each fiber point. In next section, we will demonstrate 

dAV technique on a simulated data set and on a healthy subject. 
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Figure 26. Estimation of dAV flux along fiber tracks. A) Voxel-wise dAV values are mapped onto the 

Cingulum Fiber Bundle. B) dAV flux is estimated by cutting the fiber bundle by orthogonal planes 
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4.5 DEMONSTRATION OF DAV METRIC ON SIMULATED AND HUMAN DATA 

SET 

The proposed directional axonal volume method was tested on a simulated data set with known 

water content and directions of fiber populations. We used a diffusion spectrum imaging protocol 

to simulate diffusion weighted signals for each voxel. The fiber direction for each voxel was 

rotated accordingly. The axial and radial diffusivity constants is assumed to 

be 3 2 11.70 10 mm s− −×  and 3 2 10.30 10 mm s− −×  respectively for each voxel [226]. 

Simulated data was used to illustrate the dAV concept in case of a fiber divergence. We 

also showed mapping and profiling of dAV values on five major fiber bundle in a healthy human 

subject. 

4.5.1 Simulated data set 

A simulated data with known proton density and directional information in each voxel was 

created. This data represents a fiber bundle (100% ) diverging into two fiber bundles equally. 

The original fiber bundle has 100%  proton density in all voxels with the fiber direction pointing 

to the y-axis. Both divergent fiber bundles makes a 60 ° angle with y-axis and have half of the 

proton density. 
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4.5.2 Creation of simulated data set 

Diffusion weighted images of size 12x9 voxel with two slices were simulated using diffusion 

spectrum imaging protocol; diffusion spectrum imaging protocol [48] is used in the simulation 

with 257 gradient directions, 1 2 257( , ,...., )g g g g=
   

 and 7000maxb = .  

A “Y” pattern is created to simulate splitting (splaying) of a fiber bundle into two equal 

parts (see Figure 27). Proton density map reflects the amount of water content in each segments. 

The splitted segments have 50% water content (segment A and B in Figure 27) of the non-

splitted segment (segment C in Figure 27). 

 

Figure 27. Simulated diffusion weighted imaging data set. Y-pattern shows fiber splitting. 
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For each voxel in “Y” pattern a fiber orientation and fiber volume fraction is assumed to 

simulated diffusion signals (see table 1). 

 

Table 1. Diffusion weighted images are simulated with two fiber population. Parameters for each regions 

(see Figure 27) involved in simulation. 

Segments Fiber I Fiber II 

φ  θ  ν  φ  θ  ν  

A 120 0 1.0 0 0 0 

B 60 0 1.0 0 0 0 

C 0 0 1.0 0 0 0 

D 120 0 0.5 60 0 0.5 

 

In a given voxel with fiber orientation ( ,i iφ θ ), diffusion gradients ig  corresponding to ib  and 

volume fraction iν  of thi  fiber population in a voxel, diffusion signals can be created using 

following equation, 

 ( )( , ) ( , )
0

( , ) exp
i i i i

T Ti i
i i i i

S b b R D R
S φ θ φ θ= −
g g g   (4.9) 

where, D  is the tensor matrix with the diagonal terms as longitudinal ( D


) and transverse 

diffusivity ( D⊥ ), 0S  is the proton density map and ( , )i iS g b  is the diffusion weighted signal 

corresponding to gradient direction ig  and b-vector ib . Diffusion tensor model is used to 

demonstrate proton density weighting. In the future, a restricted diffusion model or a simulated 

diffusion model with given geometry can be used. In this simulation, D


 and D⊥  are assumed to 
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be 3 2 11.70 10 mm s− −×  and 3 2 10.30 10 mm s− −×  for each fiber population respectively. The tensor 

matrix, D is rotated using the rotational matrix, ( , )i iR φ θ corresponding to each fiber 

orientation ( , )i iφ θ . 

4.5.3 Results and discussion 

In the simulate data set, the Directional Axonal Volume map in each of the two halves of the 

diverging fiber bundle shows half of the dAV value in the original combined bundle (see Figure 

28 A and C). The estimated sum of the dAV values in the two diverging (green color in Figure 

28) halves is equal to the estimated dAV map of original bundle (red color in Figure 28).  

 

Figure 28. Simulated diffusion spectrum data of diverging fiber populations. A fiber bundle running along 

the y-axis diverges into two equal parts (splaying) at a 60 degree angle from y-axis. 
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The dAV effect will disappear if we normalize the diffusion weighted signal by the b = 0 image 

(see Figure 28 F). The ODF value is the same for each branch (see Figure 28 E). The important 

point to note here is that the geometrical information (direction of the fibers) is not affected in 

both scenarios (see Figure 28 A and D). A similar effect can also be illustrated on complex 

configurations. 

Scalar metrics cannot account for the heterogeneity of water across voxels in the human 

brain. For example, fractional anisotropy (FA) has a value of 1.0 for all voxels except for the two 

crossing fibers (see Figure 28 A and D). It can't separate anisotropy for each fiber population and 

doesn't account for heterogeneity of total water content in each voxel. 

4.6 HUMAN DATASET 

4.6.1 MR Acquisition 

MR images were collected on 3T Siemens Tim Trio with a 32 channel head coil with a whole 

body gradient 40 /
max

G mT s= at the Magnetic Resonance Imaging Center (MRRC), University 

Of Pittsburgh. A diffusion spectrum imaging [48] scan with total of 258 diffusion weighted 

images, 257 gradient directions with 27000maxb s mm−= and one 0b =  with an axial echo-planar 

imaging readout (EPI) are acquired. Total time to acquire diffusion weighted images is 45 

minutes. A fixed echo time of 92TE ms=  and repetition time of  3000TR ms=  is used for all 

diffusion measurements. A matrix of 96 96×  is used over a field of view (FOV) of 224 224×  

mm for an EPI readout, which results in an isotropic voxel size of 32.4 2.4 2.4mm× × . A total of 
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63 axial slices are acquired over the whole brain. A high resolution T1 weighted image (10 

minutes) is also acquired using an axial magnetization prepared rapid gradient echo (MPRAGE) 

sequence with 2110TR ms= , 2.63TE ms=  and a flip angle of8° . A total of 176 axial slices 

were acquired to cover the whole brain (see Figure 18 for raw images T1 and diffusion weighted 

images). 

4.6.2 Directional Axonal Volume processing 

Reconstruction of the fiber and diffusion ODFs was performed using the method specified in 

chapter two and chapter three. Both voxel-wise and tract-wise methods described in section 4.4 

were developed and implemented in-house using MATLAB [135]. First, dAV was estimated for 

each voxel. Fiber peaks were estimated using the fiber ODF using the MRTrix software (MRTrix 

software [227]). These fiber peaks were then used to perform fiber tracking using DSIStudio 

[137] software. Five major tracts, Arcuate, Forcep major, Fornix, Cingulum and Uncinate, were 

segmented and dAV is mapped on to each tract. Arcuate and cingulum tracts was profiled to 

estimate dAV along tracts. DAV is mapped on the mean fiber and coefficient of variation was 

estimated for both arcuate and cingulum tracts. 

4.6.3 Mapping dAV on fiber bundle 

The dAV map was estimated for five major fiber bundles. Arcuate, Forcep major, fornix, 

cingulum and uncinate fiber tracts was reconstructed using DSIStudio [137] software. DAV 

values are then mapped according to the algorithm described in section 4.4 using MATLAB 

code. Fiber tracks are color coded with dAV values and are then visualized in TrackVIS [228] 
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software (see Figure 30 DAV values are constant along the fiber tracts (see orange color in 

Figure 30) suggesting that fiber pathways have same axonal mass. DAV values increase (see 

yellow color near the end of each tract in Figure 30) near the cortex due to the U-fiber bundles 

near cerebral cortex. 

Arcuate and cingulum tracts were reconstructed using the fiber tracking algorithm described in 

[32]. First, a region of interest (ROI) was selected in DSI Studio, approximately located at the 

center of the arcuate tracts. ROI is manually drawn to select voxels in the core of the tract. A 

similar procedure is followed for the cingulum tract. A manually created ROI was then used to 

seed fiber tractography. 50,000 fibers were created for both arcuate and cingulum tracts. 5% - 

10% of the computed fibers were trimmed to select tract of interest. Voxed-based dAV and 

segmented tract is then used to map dAV at each fiber points and profiled. For each profiled slice 

dAV values were estimated and mapped onto mean fiber. 

DAV is estimated along the arcuate and cingulum by profiling both tracts (y-axis) and then 

plotted for each cutting plane (x-axis) see Figure 29 and 30. A coefficient of variation 15.97% 

and 17.53% was estimated using mapped dAV onto mean fiber tracts. Small variation of dAV 

along tracts show it is conserved along tracts. 
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Figure 29. Mapping dAV and profiling of Arcuate tract. 
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Figure 30. Mapping and profiling of Cingulum tract 

 

This is a demonstration of the dAV mapping algorithm applied to the selected tracts. For more 

results and validation of dAV on a textile-based anisotropic phantom see chapter five. 
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Figure 31. Tract-based dAV maps of five major fiber bundles in the human brain. The dAV maps show a 

constant value along fiber tracts suggesting that the directional axonal volume is constant for a given fiber 

population 

 

We have also tested robustness of dAV metric with respect to number of fiber tracts created 

during fiber tractography. Cortico-spinal tracts (CST) was created using a varying number of 

tracts. Segmented tracts were then used to estimate total dAV for each version of CST. We have 

used 10,000 to 100,000 fibers for this test. Plot of dAV w.r.t. number of fiber shows convergence 

of dAV values after 4,000 fibers. 5.2% of coefficient of variation was observed in dAV values 
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(see Figure 32). This shows the robustness of dAV metric w.r.t. number of fiber tracts, which is a 

parameter in fiber tracking algorithms. 

 

 

Figure 32. Total dAV value of CST versus number of tracts. 

 

Although not shown in this chapter, dAV is sensitive to amount of underlying axons in white 

matter structure. In chapter five, we have tested this hypothesis on a textile based anisotropic 

phantom.  

4.7 CONCLUSION 

This chapter presented a novel metric to quantify anisotropy, directional axonal volume (dAV), 

which can resolved some of the limitations of scalar metrics like fractional anisotropy (FA). A 

voxel-based formulation of dAV was derived that accounts for the heterogeneity of water content 

across voxels. All scalar metrics normalize water content by dividing b = 0 in to all diffusion 
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weighted images. dAV solves disentanglement of anisotropy of crossing fibers. This chapter 

derived an algorithmic framework to map anisotropic values onto fiber bundles. In the case of 

crossing fibers, this algorithm only maps anisotropic values in the direction of each fiber. It does 

not mix anisotropy from different fiber populations.  

Tract-based dAV metric is demonstrated on a arcuate and cingulum tracts. Profiling of 

arcuate and cingulum tracts showed robustness of dAV metric. A coefficient of variation 

(approximately 16%) was observed for fiber tracts. We have also shown that dAV is insensitive 

to number of fibers set in fiber tracking. This makes dAV a powerful technique to study 

structural connectivity between functional regions. DAV mapped along the fiber could 

potentially be used to localize fiber damage in pathological brains. Chapter five will show the 

use of a textile based anisotropic phantom for the validation of the dAV metric. 

4.8 LIMITATION AND FUTURE EXTENSIONS 

There are three limitations to the dAV metric proposed in this chapter that will be addressed in 

future extensions. One of the major limitations of the dAV based metric is that it suffers when 

two parallel fiber populations pass through the same location (voxel). DAV successfully 

measures the “volume” of all coherent (same direction) fibers passing through a voxel. This set 

of coherent fibers may not, however, belong to the same functional fiber bundle. For example, 

regions near the cortex have U-fibers parallel to association fibers or projection fibers (e.g. 

cortico-spinal tract) that will both contribute to the dAV components. While the dAV metric 

correctly estimates anisotropy in voxel, it would be more useful to separate anisotropy not only 

by direction but also by functional bundle. A future extension will resolve this by subtracting 
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dAV values from the other sets of the fiber bundles. A second limitation comes from MR in-

homogeneity of signal near the cortex as compared to signal in the deep brain due to the fact that 

the receiver channels are nearer to the cortex. This will overestimate the proton density map and 

thus can be reflected in the dAV estimation near the cortex.  This issue can be resolved by a 

separate scan that maps signal decay as we move away from the head-channel coil. A third 

limitation is related to calibration of water content. A known reliable water content source is 

needed for calibration of the estimated proton density. Regions (voxels) within the scan 

object/tissue, can serve as a reference. In chapter five we will present a textile-based anisotropic 

phantom to overcome some of these issues. 
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5.0  PHANTOM BASED VALIDATION 

 

5.1 INTRODUCTION 

Chapters one through four in this thesis provide a mathematical formulation for diffusion 

processes in white matter tissue. This chapter focuses on the validation of these methods through 

known ground truth in controlled MRI experiments. These diffusion models and validation 

frameworks can be utilized in clinical and neuroscience research. This chapter presents use of a 

novel Textile Anisotropic Brain Imaging Phantom (TABIP) that has a manufactured 

microstructure of textile fibers called TAXONS to address the following hypotheses: 

1. Diffusion imaging techniques can be utilized to visualize anisotropy and orientation of 

microstructure in the phantom. 

2. Diffusion patterns estimated from diffusion MRI in a voxel can resolve underlying 

taxonal crossing. 

3. The diffusion MRI derived anisotropic metric is sensitive to taxon quantity. 

In order to test these hypotheses the TABIP was scanned at two different sites: Children’s 

Hospital in Pittsburgh and Massachusetts General Hospital (MGH) in Boston. The TABIP 

simulates different compartments as free, hindered, and restricted water, which are unique 
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features to test biophysical models like CHARMED [41, 103] NODDI [39], DIAMOND [229], 

AxCaliber [42] etc. The phantom can be configured to different crossing patterns in order to also 

test fiber tracking methods.  

In this study various methods are used to address these hypotheses, namely, three reconstruction 

algorithms: diffusion tensor imaging [68, 202] (DTI), generalized q-sampling imaging [36] 

(GQI), the reconstruction algorithm proposed in chapter two of this thesis, and two quantification 

methods: directional axonal volume (see chapter four), and Neurite Orientation Dispersion and 

Density Imaging (NODDI) [39]. 

5.2 BACKGROUND 

5.2.1 Imaging Phantoms 

Phantoms are used in imaging experiments to provide a ground truth (gold standard) for various 

mathematical imaging models [186, 230-233]. Imaging phantoms are also used to evaluate, 

analyze and test the performance of imaging systems [72, 73, 234-236]. Phantoms can provide a 

manufactured consistency and a non-MR based measurement of diffusion paths that are stable, 

which is impossible to achieve with living or cadaver tissue.  For example, we can control the 

number of taxon tubes, packing density (amount of hindered water), crossing geometry, tube 

diameters, and presence or absence of water inside or outside the tubes. The textiles are stable for 

months, potentially years (studies ongoing), and the phantom may allow for repeated testing 

longitudinally for a single scanner or across scanners, vendors, pulse programs, and post 

processing routines. Also since the phantom has no physiological noise (movement, respiration, 
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heart beats), we can examine measurements without these noise components. It can also be 

scanned for long sessions allowing for comprehensive mapping and testing of acquisition 

parameter spaces. 

There has been a long history of using phantoms in magnetic resonance based imaging 

experiments. MR phantoms are used for evaluation and calibration of multi-modal MR signals 

from various MR sequences. In 1973, Paul Lauterbur (Father of MRI) described the use of an 

MR phantom in his first Nature publication Lauterbur [25]. He demonstrated proof of concept by 

showing 2D images of two micro-tubes of 2H O  in a background of 2D O . Later, he also 

introduced magnetic resonance imaging (also called zeugmatography) and established that it 

could produce three-dimensional MR images. He also showed that isotopic exchange could be 

visualized using MRI. This capability allowed for the imaging and measurement of water 

diffusion. In order to show this, he used the same two-capillary setup as shown in his Nature 

paper [26, 237]. Further, he used a biological example, a parsley stem, to image diffusion. 

Many MR centers use phantoms for testing scanner performance and to validate MR 

derived metrics [238, 239]. A formal testing mechanism and validation framework are needed 

for reproducibly and reliability of the MR metrics [240, 241]. There are two organizations that 

provide phantom and reliability testing for the quantification of MR metrics: The American 

College of Radiology and The Quantitative Imaging Biomarkers Alliance. 

The American College of Radiology (ACR) [73, 238, 242] has an MRI accredited 

program [243] for phantom scanning. This program has seven quantitative tests for the 

measurement of digital data:  

1. Geometric Accuracy 

2. High-contrast spatial resolution 
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3. Slice thickness accuracy 

4. Slice position accuracy 

5. Percent-signal ghosting 

6. Image intensity uniformity 

7. Low contrast object detectability 

Each test provides the quantitative and qualitative assurance of MR images and also gives proper 

guidelines to correct them in case of failure. 

The Quantitative Imaging Biomarkers Alliance (QIBA) [239] on the other hand provides various 

phantom tests and guidelines to develop and insure consistent, reliable, valid, and achievable 

quantitative imaging biomarkers. Their goal is to achieve reproducible quantitative results from 

imaging methods for multi-vendor, multi-site, and test-retest phantom assessments. For details 

see [24, 71, 244]. 

5.2.2 Diffusion Phantoms 

Diffusion phantoms are specially designed to evaluate the performance of diffusion imaging 

sequences and various mathematical models for diffusion as well as the metrics derived from 

these models [74, 94, 245]. Primarily, diffusion phantoms are used to estimate the known 

diffusivity constant of various liquids [246]. These phantoms measure the directionally 

independent (isotropic) diffusion properties of material/tissue and thus fall into category of 

isotropic phantoms.  

Geometrical phantoms on the other hand are used to access the directionally dependent 

(anisotropic) diffusion properties of the underlying material. They are used to access underlying 

geometrical information (fiber direction) and to quantify properties of diffusion along a principle 
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direction(s) (fiber direction). These phantoms can also be used to simulate multiple diffusion 

compartments (free, hindered and restricted) with complex geometrical arrangements. A 

restricted compartment, for example, would depend upon the phantom being constructed from 

solid or hollow tubes. Various materials are used to build fibers with known diffusion properties 

similar to those of living tissue. Both biological materials and synthetic materials are used to 

create fibers. Biological materials such as fibrous vegetables (e.g. bamboo stems) are good 

candidates for building these fibers. To simulate a restricted compartment, glass capillaries with 

10-90 mµ  as the inner diameter have been used [247]. Although glass capillaries have the 

advantage of a restricted diffusion compartment, it is hard to make complex geometric patterns 

with them. Other materials, such as cloth tape [248], silk [249], wood [250], and glass fiber cord 

[251] are also used to create fibers. Glass capillary-based phantoms provide diffusion tubes of a 

known size to estimate the compartment size with a high q-values scan. Komlosh et al [209] 

shows that an angular double PGSE sequence can be used to extract the dimensions of a confined 

geometry, even at low q-values [194, 208, 209]. 

Currently, the field of diffusion MRI lacks a ground truth standard that can be used to 

validate diffusion models for the microstructure of tissue. Many attempts have been made to 

create a phantom simulating diffusion patterns using biological and synthetic fibers as describe 

above.  

In this study, we are utilizing the Taxon Anisotropic Brain Imaging Phantom (TABIP) 

created by Psychology Software Tools [76] that can address some of the shortcomings of current 

diffusion phantoms. This phantom uses hollow fibers with known inner and outer diameters 

made up of textile strands (Taxons). Taxons simulate restricted diffusion compartments with 

configurable volume fractions and orientations. The TABIP can be configured to provide 
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different packing densities with varying crossing angles between taxonal bundles. It has the 

potential to simulate white matter damage and fiber loss and can provide insight into quantifying 

traumatic brain injury and other neuro-degenerative diseases. It can be used as a ground truth 

standard for validating diffusion models in micro-tissue. The TABIP used for this thesis is one of 

the first textile phantoms manufactured by PST; more validation and testing of these phantoms 

are planned in near future. 

5.2.3 Modeling and Quantification 

The implicit assumptions in the construction of a geometrical phantom are:  

1. It should provide a ground truth for connectivity strength, which can be related to 

anisotropic metrics derived from diffusion models. 

2. It should provide a ground truth for complex geometrical patterns, which can be resolved 

through diffusion modeling.  

These characteristics of a geometrical phantom can be achieved by creating complex geometrical 

patterns like crossings at different angles, kissing, merging and diverging of fiber bundles in 

combination with different volume fractions of free, hindered, and restricted compartments.  

Various diffusion reconstruction algorithms and corresponding fiber tracking methods [75] are 

used to describe the underlying diffusion pattern in tissue and phantoms. Each of these methods 

has advantages and disadvantages in terms of complexity and stability of numerical solution. A 

phantom with solid fibers [70, 75] has been used to compare multiple diffusion models to test 

their accuracy in resolving crossings. This phantom was also used in the FiberCup Challenge 

[75] to test these reconstruction methods in fiber tractography. The important difference between 

the FiberCup phantom [75] and the TABIP used in this study is  the presence of restricted 
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compartments in TABIP, which makes it ideal for biophysical diffusion models such as  NODDI 

[39], CHRAMED [41], and AxCaliber [42].  

In this study we are testing two quantification frameworks: dAV and NODDI. DAV 

provides quantification of the anisotropic components along the fiber tracts. NODDI estimates 

isotropic, extra, and intra cellular water content for each voxel. 

Diffusion models are also used to resolve fiber crossings in a voxel. Accurate 

representation of fiber crossings is crucial in delineating fiber bundles in the human brain. All 

diffusion models (or all mathematical models) have variable sensitivity. For example some 

diffusion models can detect 90 °  but not 30 °  crossings.  

In this study we test three reconstruction methods, namely, diffusion tensor imaging [68] 

(DTI), generalized q-sampling imaging [36] (GQI) and the proposed reconstruction algorithm 

discussed in chapter two, and evaluate their sensitivity to resolve three different crossing 

patterns. This will identify the “viable accurate range” for each of the reconstruction methods as 

well as their potential limitations. 

5.2.4 Hypotheses 

The TABIP is scanned at two sites to test the three hypotheses below: 

1. Anisotropy This hypothesis tests that diffusion MRI can image a taxonal bundle of the 

TABIP. Diffusion derived metrics such as fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD), radial diffusivity (RD), and apparent diffusion coefficient 

(ADC) are estimated for each bundle and compared with the same metrics in standard 

human brain scans. 
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2.  Resolving Crossings To correctly resolve the complex geometrical patterns of white 

matter pathways in the human brain, The TABIP provides30 , 45° ° , and 90 °  crossing 

patterns. This hypothesis tests that diffusion reconstruction methods can resolve fiber 

crossing patterns with30 ,45° ° , and 90 °  angles using three reconstruction algorithms: 

DTI, GQI and the proposed reconstruction method in chapter two. 

3. Number of Taxons Another key goal of diffusion MR imaging is to quantify axonal 

bundles volume in the human brain. Quantification of axonal bundles is crucial for 

longitudinal studies in neuro-degenerative diseases such as Huntington’s disease [14], 

Parkinson’s disease [34], and ALS [17]. Even for basic neuroscience, this type of 

quantification can help in identifying axonal changes in the human brain [252, 253]. This 

hypothesis tests that diffusion derived anisotropy metrics can predict tract reduction and 

compression within a given volume. These metrics are compared with the “ground truth” 

phantom, which will have different manipulations of tract size reduction, tract 

compression, and increasing isotropic water volume. 

 

To test this, the TABIP provides five cylindrical tubes with a known number of taxons. The 

volume of each tube is constant. Taxon packing densities of 20%,40%,60%,80%  and 100%  are 

used to simulate axonal loss patterns. Packing density is also changed along the tube by 

compression while keeping the number of taxons in the tube constant. 
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5.3 MATERIAL AND METHODS 

5.3.1 Design of Phantom 

PST created a hollow textile phantom, which can simulate hindered and restricted water 

compartments1. It is made of material used in polypropylene textiles; filling was performed by 

pressure filling each of the bundles and verifying the fill rate via microscope and visual 

inspection of each fiber. Each of the hollow fibers have an outer diameter of 35 micron and an 

inner diameter of 12 micron. Crossing tracts were made of 2.5 mm by 10 mm ribbons of fibers.  

The fibers were filled with distilled water internally and externally. 

5.3.1.1 Crossing 

The crossing fixture was 3D printed out of Visijet M3 Black, and affixed to the disk with 8 32−  

PEEK screws. The crossing fixture was comprised of three different bundles, two straight and 

one crossing bundle. The central straight portion where the crossing bundle weaved through had 

a void size of 7.5 5mm mm× . The void surrounding the crossing bundle was 2.5 5mm mm×  to 

allow for compression. The fill rates and number of fibers of the crossing fixture are outlined in 

this table: 

                                                 

1 I have no financial conflict of interest (COI) issues relating to the phantom.  I note that Dr. Schneider does 

have equity in the company that produces the phantom.  That potential for COI is declared and the management plan 

of any conflict is reviewed annually by the University of Pittsburgh COI office and the Dean of the Kenneth P. 

Dietrich School of Arts and Sciences.  It is also reviewed by the Department Chair of Bioengineering, Dr. Sanjeev 

Govind Das Shroff. 
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Table 2. Percentage of water filled for packing density and crossing pattern. 

Fiber Bundle Number of Fibers Filled Percentage 

Straight 1 14080 80.22 

Straight 2 14080 77.23 

Crossing 14080 78.81 

 

5.3.1.2 Packing Density 

The materials were selected to be non-RF reactive, stable in water, and for ease of 

machining. The outer shell was composed of acrylic, and then solvent glued to the acrylic base. 

An acrylic cap was affixed with nylon "0.25 "20−  screws to the base. Supports were machined 

out of polycarbonate rods and used to position the disks. The supports were threaded into the 

acrylic cap. The disks were machined out of polycarbonate and held to the supports by 

polycarbonate "0.25 "20−  machine screws. The density fixture was 3D printed out of Visijet 

Crystal, and affixed to the disk with 8-32 PEEK screws. The density fixture comprised five 

different sized bundles, which were percentages of the full 5 5×  mm bundle. Each bundle had 

four stages of compression: 1 ,1.5 , 2.5× × ×  and3× . The dimensions and fill rates are outlined in 

table below. 
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Table 3. Fill rate in packing density pattern 

 

Density Fixture 

Fiber Bundle Number of Fibers Fiber Filled Percentage Compression Region Void Side (mm2) 

100% 28160 76.19 

1 5.00 

1.5 7.50 

2 10.00 

3 15.00 

80% 22528 78.39 

1 4.47 

1.5 6.71 

2 8.94 

3 13.42 

60% 16896 78.39 

1 3.87 

1.5 5.81 

2 7.75 

3 11.62 

40% 11264 77.06 

1 3.16 

1.5 4.74 

2 6.33 

3 9.49 

20% 5632 81.49 

1 2.24 

1.5 3.35 

2 4.47 

3 6.71 
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5.3.2 MR Acquisition 

The TABIP was scanned at two different sites, Children’s Hospital in Pittsburgh and 

Massachusetts General Hospital (MGH) in Boston. Children’s Hospital has a 3T Trio MR 

Siemens system with a whole body gradient 40 /
max

G mT s=  and a 32 channel head coil. Three 

shells are acquired using a multi-band spin echo diffusion weighted pulse sequence [124] with an 

axial echo-planer imaging readout (EPI). A multi-band acceleration factor of 3 is used to 

accelerate scanning time. Different b-values, 21000 / 3000 / 5000 /b s mm= , are acquired with a 

fixed echo time 92TE ms=  and repetition time 3000TR ms=  for all measurements. A matrix of 

96 96×  is used over a field of view (FOV) of 224 224×  for an EPI readout, which results in an 

isotropic voxel size of 32.4 2.4 2.4mm× × . A total of 63 axial slices are acquired over the whole 

phantom. For each shell, a non-weighted (b = 0) diffusion image is acquired every tenth b-value 

acquisition. 64 diffusion-weighted images for each shell are acquired with non-collinear gradient 

directions sampled uniformly on a unit sphere. The total time for this acquisition was 16 min (14 

min for b = 1000, 3000 and 5000 shells). A high resolution T1 weighted image is also acquired 

using an axial magnetization prepared rapid gradient echo (MP-RAGE) sequence 

with 2110TR ms= , 2.63TE ms=  and flip angle8 ° . A total of 176 axial slices were acquired to 

cover the whole phantom. 

The second scan was performed on the 3T Connectome scanner [254] at Massachusetts 

General Hospital (MGH) in Boston. This is a unique scanner with custom built gradients, which 

can reach to gradient strength of 300 /
max

G mT s= . A 128-channel head coil is used to scan the 

phantom. High gradients allow scanning with very high b-values and high spatial resolution. Ten 

shells were acquired using a spin echo diffusion weighted pulse sequence with axial echo-planar 
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imaging readout (EPI). Different b-values, 21000,2000, ,10,000 /b s mm=  , are acquired with a 

fixed echo time of TE = 80 ms and a repetition time of 8000TR ms=  for all measurements. A 

matrix of 90 90×  is used over a field of view (FOV) of 180 180× mm for the EPI readout, which 

results in an isotropic voxel size of 32.0 2.0 2.0 mm× × . A total of 68 axial slices are acquired over 

the whole phantom. For each shell a non-weighted (b = 0) diffusion image was acquired every 

tenth b-value acquisition. 128 diffusion-weighted images for each shell are acquired with non-

collinear gradient directions sampled uniformly on a unit sphere. The total time for this 

acquisition was 184 min (18.4 min per 21000,2000, ,10,000 /b s mm=   shells). High resolution 

T1, T2, and Proton density MR images were also acquired. A high resolution T1 weighted image 

was acquired using an axial magnetization prepared rapid gradient echo (MP-RAGE) sequence 

with 2530TR ms= , 1.15TE ms=  and flip angle 7 °  with 176 axial slices, scan time 6.02 

minutes, a T2 weighted image was acquired with 3200TR ms= , 561TE ms=  with 256 axial 

slices, scan time 6.48 minutes, and a proton density image was acquired with 4.3TR ms= , 

1.82TE ms=  and flip angle 5 °  with 256 axial slices, scan time 5.52 minutes. 
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Figure 33. Axial slice of the crossing pattern. (A) T1 images. (B), (C) and (D) show b = 0, 3000 and 5000 

diffusion weighted images. 
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Figure 34. Axial slice of packing density pattern. (A) T1 images. (B), (C) and (D) show b = 0, 3000 and 

5000 diffusion weighted images. 

5.3.3 Structural Image Processing 

The T1 image of the phantom was visualized using the MRICroGL volume rendering software 

[255]. Volume rendered T1 images are sliced axially to visualize different segments (number of 

taxons and crossing patterns) of interest. Axial cuts though these segments clearly show three 
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(30 ,45 ,90° ° ° ) crossing patterns and density patterns with five equal volume chambers with 

varying amount of fiber, 20%, 40%, 60% ,80%,100%  (see Figure 35). Regions of Interest 

(ROIs) were created in T1 image space using FSL’s fslview [138] package. These ROIs were 

then transformed to diffusion space (b0-space) using FSL’s Flirt package [256, 257]. These ROIs 

were used to estimate anisotropic metrics and taxonal crossing angles. 

 

Figure 35. Volume rendering of textile phantom. It shows internal structures such as the crossing pattern 

and different packing densities. (A) Outer surface of Phantom. (B) Vertical cross-section shows different chambers. 

(C) Horizontal sections at crossing pattern. 30 ,45 ,90° ° °  Crossing angle are shown. (D) Five equal volume 

chambers with fiber density of 20%, 40%, 60% , 80%,100% . 
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5.3.4 Diffusion Reconstruction Methods 

Diffusion reconstruction algorithms are used to test hypotheses 1 and 2. The diffusion tensor and 

its derived metrics are used for hypothesis 1, and GQI and the proposed reconstruction algorithm 

in chapter two, and the resulting fiber tractography are used to test hypothesis 2. 

5.3.4.1 Diffusion Tensor imaging 

Diffusion Tensor analysis is performed on both multi-shell diffusion data sets using FSL's dtifit 

package [118, 139] on each shell using a least squares estimation method as described in chapter 

two. Fractional anisotropy, mean diffusivity, and radial and axial diffusivity are estimated for 

each of the ROIs. Three eigenvalues and eigenvectors are estimated by performing eigenvalue 

decomposition using FSL’s dtifit package [118, 139]. The orientation of the taxonal bundle is 

visualized in each voxel by mapping the principle diffusion direction onto the red, green and blue 

color channels. The green fiber bundle is parallel to the y-axis, the red fiber bundle shows a 90 °  

crossing angle and yellow shows a 45 ° crossing angle in Figure 36. 
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Figure 36. Fractional Anisotropy map and directional color encoding of a horizontal slice of the Crossing 

and Packing density patterns. (A) Fractional anisotropy map shows high intensity values for voxels containing 

textile fibers. (B) Color encoded principal diffusion direction. One fiber is running across the phantom and the other 

bundles are crossing it at 30 ,45 ,90° ° °  angle. (C) Fractional anisotropy map of the packing densities. (D) Color 

encoded principal diffusion direction of the packing density pattern. Mid sections of the fibers are packed in 

different chambers. Fiber chambers are created with same volume and different ( 20%, 40%, 60% , 

80%,100% ) numbers of fibers. 
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5.3.4.2 Generalized Q-sampling imaging 

Generalized Q-sampling imaging [36] (GQI) was performed on multi-shell (both data sets) 

diffusion weighted images to create diffusion ODFs for each voxel as described in chapter two. 

Diffusion ODFs are functions on a sphere and were reconstructed at discrete spherical points 

uniformly distributed on a unit sphere. We used 362 discrete spherical points for all ODF 

calculations. A value of 1.2 mean diffusion distance [32, 36] was set for GQI reconstruction in 

the DSI Studio software [137] (see Figure 37). 

 

Figure 37. Horizontal slice of the crossing pattern with diffusion ODFs reconstructed using GQI. 

5.3.4.3 Proposed Reconstruction Algorithm 

Spherical harmonics coefficients of diffusion ODFs were estimated using the proposed 

reconstruction algorithm described in chapter two. After estimation of spherical harmonics 

coefficients of diffusion ODFs, constrained spherical deconvolution is performed to estimate the 

spherical coefficients of fiber ODFs as described in chapter three (see Figure 38). The response 

function for deconvolution is estimated from voxels with a fractional anisotropy greater than 0.7. 



 124 

Peaks of the fiber ODFs are then estimated by finding the maxima on a sphere using MRtrix [37, 

38]. These peaks are further used to compare known crossing patterns and to perform fiber 

tracking. Proposed reconstruction, generalized q-sampling reconstruction and dAV related 

calculations are performed using in-house MATLAB [135] functions. 

 

Figure 38. Horizontal slice of crossing pattern with fiber-ODF reconstructed using proposed reconstruction 

algorithm described in chapter two and three. 

5.3.5 Fiber Tractography 

The effects of the reconstruction algorithm are shown using fiber tracking. The choice of 

reconstruction method can affect peak estimation and hence the fiber tracking. Fiber tracking is 

performed after peak estimation from (fiber and diffusion) ODFs for each voxel. The multi-

FACT algorithm (as described in [32]) is used to create fiber tracts. Fibers in crossing patterns 

are used to evaluate how the tracking algorithm performs. Fiber tracts in the packing density 

chambers are used to map the dAV metric for quantification (see Figure 39). 
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Figure 39. Fiber tracking is performed using principle diffusion directions calculated using the proposed 

reconstruction method. 

5.3.6 Quantification of Taxonal Bundles 

Two quantification methods are used to test hypothesis 3. The dAV and the NODDI models 

provide tract-based and voxel-based quantification of the underlying material.  

5.3.6.1 dAV maps along fiber tracts 

Isotropic and anisotropic water content is estimated using diffusion ODFs as described in 

Chapter 4. The isotropic part of the diffusion ODF was considered as free water content. Peaks 

of anisotropic ODFs were estimated and then used to perform fiber tracking in DSI Studio 

software [137]. A local seeding method is used to calculate fiber tracts in the five packing 

density chambers. The mean fiber is calculated for each chamber by selecting a fiber passing 

through the middle section of the bundle. Each fiber bundle was then sliced along the tangent of 

the mean fiber and the sum of the dAV values over the plane is calculated for each slice. The 
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summed dAV value is then plotted along the fiber bundle for all five tracts with varying number 

of taxons. Mean and standard deviation were also calculated for each bundle and plotted to 

correlate with the known fiber densities. 

5.3.6.2 NODDI based voxel-wise quantification 

The NODDI model [39] is used to model tissue micro-structure by modeling free, hindered, and 

restricted compartments. Unlike dAV, NODDI models isotropic water content separately. dAV 

uses the minimum of each ODF to estimate the isotropic value; this approach over estimates free 

water content in a voxel. There is no multiple fiber population support in the NODDI model yet, 

which makes NODDI under perform in detecting crossing patterns. NODDI models the MR 

signal in a voxel as a weighted linear sum of free, hindered, and restricted water diffusion.  

 ( ) ( ) (1 )( (1 ) )
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where icA  and icν  are the normalized signal and volume fractions of the intra-cellular 

compartment, ecA  is the normalized signal of the extra-cellular compartment, and isoA  and isoν  

are the normalized signal and volume fractions of the free water compartment. See [39] for 

details about the mathematical model used for icA , ecA  and isoA . This model makes the ideal 

assumption that the radii of all taxons are zero. The analysis also fitted a diffusion model, which 

describes diffusion of water in an impermeable cylinder with a single non-zero radius for all 

taxons in a homogeneous medium [41, 42, 203, 204, 258, 259]. The radius of the taxons is 

estimated using this model and found to be 10.5 mµ  diameter with error of 0.5 mµ . 
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5.4 RESULTS AND DISCUSSION 

5.4.1 Anisotropic reconstruction of fibers  

Diffusion tensor imaging shows high anisotropic water diffusion in voxels containing taxons. 

Fractional anisotropy and other related diffusion tensor-based metrics are calculated in five 

packing regions and one crossing region (see Table 4 and Figure 36) An average fractional 

anisotropy value of 0.75 is observed in voxels containing taxons, which is comparable to an FA 

value of (0.7) observed in the corpus callosum in the human brain [260]. 

 

Table 4. Mean values for Fractional Anisotropy (FA), Apparent Diffusion Coefficient (ADC), Mean 

Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD) metrics across ROIs for the packing and 

crossing chambers. 

DTI-based metric 20% 40% 60% 80% 100% Crossing 

FA 0.808 0.800 0.770 0.780 0.850 0.730 

ADC x 10-3 0.150 0.190 0.223 0.160 0.185 0.230 

MD  x 10-3 0.150 0.190 0.223 0.160 0.185 0.230 

RD  x 10-3 0.080 0.110 0.120 0.090 0.080 0.133 

AD  x 10-3 0.330 0.411 0.470 0.344 0.460 0.500 
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5.4.2 Resolving fiber crossing 

The principal diffusion direction derived from the first reconstruction method, DTI (described in 

section 5.3.4.1), is matched with the orientation of the taxonal bundle in voxels with single fiber 

populations. In voxels with fiber crossings, the DTI estimation of the principal diffusion 

direction is the average orientation of the underlying fiber population (see Figure 40). 

 

 

Figure 40. Diffusion Tensor estimated using reconstruction method described in chapter two. Upper right 

corner shows tensors in 90 degree and 45 degree crossing. Lower corner shows 30 degree crossing. Color in each 

voxel represents the orientation of the fiber (red color shows fiber oriented in left-right (x-axis) direction, green for 

anterior-posterior (y-axis) and blue for inferior-superior (z-axis). In case of isotropic diffusion i.e., non-determinant 

fiber orientation the voxel has a random color. 
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The second reconstruction method, Generalized Q-sampling Imaging (GQI), yields 

diffusion ODFs in crossing patterns that show that it can accurately resolve a 90 °  crossing angle 

in most of the voxels. Some voxels with 45 °  crossing angles can be accurately resolved but it 

fails to resolve any 30 °  crossings. GQI based diffusion ODFs have blurred peaks, which merge 

the two fiber populations as in DTI imaging, by smoothing the ridges of two peaks. The resulting 

peaks depend upon the volume fraction of the two-fiber population. More investigation is needed 

to verify these observations.  dODFs are estimated on discrete spherical points, which adds a bias 

in estimation of the principal diffusion direction of the underlying fiber population (see Figure 

41). 
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Figure 41. Diffusion ODF estimated using generalized q-sampling imaging. Upper right corner shows 

dODF in 90 degree and 45 degree crossing. Lower corner shows 30 degree crossing. 

 

Fiber ODFs estimated from the proposed reconstruction algorithm shows that two peaks 

in 45 °  and 90 °  crossing patterns are aligned with the ground truth fiber population. fODFs in 

the 30 °  fiber crossing show only a single peak. It merges the peaks of two-fiber populations 
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crossing at a 30 °  angle. Peaks of the fiber ODFs are sharper than diffusion-ODF based GQI 

methods as shown in Figure 37. Also, the peaks of fODFs are estimated in continuous space as 

compared to the dODF, which is defined on discrete points on a sphere. This suggests that 

spherical deconvolution may reduce bias in the estimation of peaks. 

 

Figure 42. Fiber ODF estimated using proposed reconstruction method described in chapter three. Upper 

right corner shows fODF in 90 °  and 45 ° crossing. Lower corner shows 30 ° crossing. 
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Table 5. The number of voxels with crossing resolved by three reconstruction algorithms: Diffusion Tensor 

Imaging (DTI), Generalized Q-sampling Imaging (GQI) and Proposed Reconstruction Algorithm described in 

chapter two. Regions of Interest are manually drawn at each crossing. A bigger ROI is drawn to make sure that all 

voxels with a crossing are selected. All methods failed to resolve the 30 degree crossing in any voxel. DTI failed to 

resolve any crossings for all voxels. GQI resolved less crossings when compared with the proposed reconstruction 

algorithm described in chapter two. The effect is due to the fact that GQI estimates diffusion ODFs as opposed to 

fiber ODFs. 

Number Of Voxels 30 °  45 °  90 °  

Diffusion Tensor Imaging 0 0 0 

Generalized Q-sampling Imaging 0 3 13 

Proposed Reconstruction Algorithm 0 8 19 

 

5.4.3 Quantifying number of taxons of fiber tracts 

Fractional anisotropy is estimated for each taxon packing density chambers. FA is then plotted 

against the know number of taxons for each chambers. FA curve is expected non-monotonic. A 

correlation coefficient of r = 0.33 is estimated between FA and number of taxons (see Figure 43). 

This shows that FA is poor predictor of underlying taxonal volume but it is sensitive to the 

voxels with anisotropic water content.  
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Figure 43. Mean FA values is estimated for each taxonal bundle. FA show a 0.33 correlation with the 

actual number of fibers. 
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DAV is estimated for the taxon packing density chambers using the framework described 

in chapter four. Estimated dAV values for each fiber bundle are then plotted against the known 

numbers of taxons for each chamber (see Figure 43 and 44). A correlation coefficient of 0.85 is 

computed between the known number of taxons and the dAV values. For the taxon fiber bundles 

with 60% , 80%,  and 100%  density patterns, a linear pattern is observed in the dAV metric. For 

the 20%  and 40%  density patterns, the dAV value dropped to5%  (see Figure 45). One of the 

reasons for this might be the simplified model of isotropic water content. dAV uses a very crude 

model for estimating the isotropic part, the minimum of the diffusion ODF, which is an 

overestimation of free water content. Separate modeling of isotropic water can provide a robust 

estimate for free and restricted water content in a voxel. 

    
Figure 44. dAV is estimated for each fiber cut based on mean fiber. dAV Mapping and quantification 

framework is described in chapter four. 
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Figure 45. (A) Mean dAV value is estimated for each fiber bundle (20%,40%,60%,80%,100%) . 

Mean dAV maps show a 0.85 correlation with the actual number of fibers. Fiber bundles with 

0%,80%(6 ,100%)  the number of fibers show a good agreements with the known number of fibers. (B) Boxplot 

of the dAV values for each fiber bundle. 
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Figure 46. dAV along each fiber bundle is estimated for the packing density pattern. Fibers are sliced 

based on the mean fiber from each bundle. The graph shows the profile of dAV along the fiber bundles. 

 

NODDI addresses this issue by modeling the isotropic part separately. NODDI estimates 

a volume fraction of isotropic, hindered, and restricted compartments in a voxel. The NODDI 

model (and CHAMRED model) can be used with different combinations of hindered and 

restricted compartments. A typical model includes fibers with zero radius. In this study, two 

versions of the NODDI model were used: one with zero diameter fibers and another one with 

unknown non-zero diameter fibers (see Figure 47).   
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Figure 47. NODDI based intra-cellular volume fraction icν  is estimated for each voxel for each fiber 

bundle. Mean icν  is estimated for each fiber bundle. A correlation of 0.95 is estimated between mean ( icν ) and the 

known number of fibers in each bundle 

 

The model with the zero radius is used to estimate the volume fraction of isotropic and 

restricted water content. For each fiber bundle, the volume fraction of intra-cellular water content 
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is plotted against a known number of taxon fiber bundles. A correlation coefficient of 0.95 is 

obtained by correlating the mean of the volume fraction of intra-cellular water content of each 

voxel corresponding to each chamber with a known number of taxon fiber bundles. 

We need to be careful about the limitation of NODDI to just fit single fiber populations, 

which makes it difficult to apply this method in the whole human brain. Also this is a voxel 

based method, in order to calculate structural connectivity between cortical regions we need a 

tract based metric. 

The model with the non-zero diameter of cylinder (taxons) is used estimate the diameter 

of the taxons in each voxel. A mean value of 10.2 mµ is estimated for each chamber, irrespective 

of the number of taxons. The known diameter of taxons used in this study is 12 mµ . 

In previous studies, phantoms with solid fibers were used to test the geometrical 

properties of fiber bundles (crossing pattern) and their effect on the fiber tracking. On the other 

hand, glass capillaries based phantoms are used to test the size of compartments (and underlying 

geometry) on NMR machines with advanced pulse sequences (single and double PGSE) [194, 

208, 209]. In this study, textile based phantoms are used to test both the geometrical information 

and the compartment size on a clinical scanner. Therefore, the results of this study show a good 

agreement between the manufactured dimensions and the estimated configuration of fiber 

bundles. 

5.5 LIMITATIONS AND EXTENSIONS 

The TABIP is the very first version of a hollow fiber fabric phantom, which can be configured to 

different numbers of taxons and crossing patterns. Manufacturing tests are needed to further 
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validate this phantom. In this study, the TABIP is considered as a ground truth for diffusion 

model testing. More investigation is needed to establish further agreement between manufactured 

information and diffusion model information.  

The analysis of crossing taxonal bundles is limited due to the coarse level of inter-

digitation ( 2  and 5 mm ), which is comparable to MR voxel size. High-resolution scans of the 

phantom are not able to capture multiple fiber populations in a voxel.  Future experiments should 

design layers of taxonal bundles such that MR imaging with inter-digitation of the tracts at the 

0.5 mm  scale. 

The TABIP controls hindered water (water between taxons) by controlling the number of 

taxons and their packing density. A true test to extract the contribution of the MR diffusion 

signal from hindered compartments is to mask the restricted compartment completely. This can 

be achieved by filling taxons with 2D O  which is insensitive to 2H O  based imaging. In future 

experiments taxons filled with 2D O  will be utilized to test the effect of hindered and restricted 

compartments on the diffusion MR signal.  

The Directional Axonal Volume along the fiber tracts shows small variation which 

suggest that the amount of water content (dAV) is preserved. We have observed more dAV 

variation for chambers with a greater number of fibers. Future experiments will explore 

conservation of dAV along tracts. 

Effect of susceptibility artifacts due to 80% fill rate on crossing and quantification 

measurement is not addressed in this thesis. In future experiments a detailed MR experiment can 

be designed to further explore the susceptibility artifacts. 

The fiber tracking experiment in this study tested on three basic crossing patterns. A 

more sophisticated design is needed to test fiber-tracking algorithms. In future experiments, 
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complex routing phantoms can be used to test known start and end points with crossing, kissing, 

and merging patterns of taxonal bundles.  

The TABIP is designed to simulate three compartments: free, hindered and restricted 

with taxons of same diameter. In future experiments, taxons with multiple diameters and known 

volume fractions can be used to simulate multiple restricted compartments. AxCaliber [41, 42], 

restricted spectrum imaging [125] etc. can be used to validate such configurations. 

5.6 CONCLUSION 

In this chapter, three hypotheses are tested and confirmed on TABIP. First hypothesis states that 

diffusion MRI can image anisotropy in taxonal bundle. Results show diffusion tensor imaging 

can successfully image the location of the taxonal bundles. Both crossing and packing density 

pattern is seen in fractional anisotropy volume (FA greater than 0.7). Orientation of the taxonal 

bundle is also accurately mapped in the regions with single fiber populations using DTI (see 

Figure 36). 

Second hypothesis, which relates to resolving of fiber crossing, is tested using three 

reconstruction method, DTI, GQI and proposed reconstruction method described in chapter 

three. DTI fails to resolve crossings in all three test regions ( 30 , 45 , 90° ° ° ) as shown in Figure 

37. GQI and the proposed reconstruction method are able to resolve crossings at 45 °  and 90 ° . 

Both methods resolve more voxels at 90 °  than 45 °  crossings. The proposed reconstruction 

method can resolve more voxels with crossings. Spherical deconvolution used in the proposed 

reconstruction method creates sharper ODFs than GQI. Both methods failed to resolve crossings 
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at30 ° . More investigation is needed to determine whether this is a limitation caused by the 

model or a limitation of the current diffusion imaging acquisition technology.   

Third hypothesis is that diffusion MRI based anisotropic metric can be sensitive to 

amount of fibers. FA, dAV and NODDI model is tested if they are sensitive to amount of 

underlying fibers. dAV values vary with the number of taxons accurately with correlation 

coefficient of ( 0.85r = ) whereas the most commonly utilized metric, FA, correlated only at 

0.33r =  and was not monotonically related to the ground truth number of taxons (see Figure 

43). dAV values along the fiber bundles in a number of taxon regions show little variation along 

the fiber bundle. This suggests that fiber-based dAV quantification is robust. There are some 

slices that show large variations due to partial volume effects. Further analysis is required to 

estimate the error in dAV maps and different voxel resolution scans can provide insight into the 

partial volume effect. 

The NODDI model can predict the number of taxons with a correlation coefficient of 

0.98. Such a high correlation coefficient suggests that estimation of free water content plays 

important role in quantifying connectivity. Combining the NODDI method with a dAV-based 

framework can provide a robust quantification of isotropic water content and mapping of 

anisotropic metrics on fiber tracts. Fiber based metrics like dAV combined with NODDI (or 

CHARMED model combined with free water) can provide an accurate structural connectivity 

metric between cortical regions. 

Novel textile phantom used in this chapter is key to evaluate reconstruction methods and 

related anisotropic metrics. It provides ground truth, which is missing in diffusion MRI field. It 

can also be used in further testing of reliability of these metrics. 
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6.0  CONCLUSION 

This thesis work presents contributions in three major areas of diffusion imaging: reconstruction, 

quantification and validation. Chapters two and three present a novel reconstruction method by 

combining generalized q-sampling imaging, spherical harmonic basis functions and constrained 

spherical deconvolution methods to estimate the fiber oriented distribution function. Chapter four 

presents a novel metric, directional Axonal Volume, to estimate directional anisotropy using the 

oriented distribution function (ODF) and proton density map. It also describes a tract based 

mapping algorithm to map the directional Axonal Volume metric onto the fiber tracts. Chapter 

five presents the validation of reconstruction and quantification methods using a textile based 

anisotropic phantom. The reconstruction and quantification algorithms presented in the previous 

chapters are tested on known fiber crossing and density patterns.  

Reconstruction of diffusion in a voxel is the first step in the analysis of diffusion 

weighted imaging. Accuracy of the reconstruction method can affect subsequent processing such 

as fiber tracking. There are two popular non-parametric methods, q-ball imaging [1]) and 

generalized q-sampling imaging [2], used to reconstruct the diffusion ODF. Q-ball imaging is 

used for a single shell (constant b-value) image acquisition. Spherical harmonic coefficients 

estimated from q-ball imaging can further be used to create the fiber ODF using the constrained 

spherical deconvolution method [3].  CSD is becoming a more popular diffusion reconstruction 

method in both the clinical and neuroscience research fields. Generalized q-sampling imaging on 
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the other hand utilizes a better q-space sampling, such as diffusion spectrum imaging, for 

reconstruction of the diffusion ODF. In chapter two, I have combined both methods to derive an 

analytic closed form solution for spherical harmonic coefficients of the diffusion ODF (see 

equation 2.49 in chapter two). This method enables us to apply constrained spherical 

deconvolution techniques for estimation of spherical harmonic coefficient of the fiber ODF.  

In chapter three, I have derived a novel mathematical formation to estimate spherical 

harmonic coefficients of the fiber ODF using the constrained spherical deconvolution (CSD) 

method on a diffusion spectrum imaging dataset. CSD was originally used on a single shell 

diffusion acquisition sampling. This novel formulation of combining CSD and GQI allows one to 

use advantages of CSD and GQI techniques on multiple b-value sampling. I have demonstrated 

the CSD technique on a simulated data set. The CSD technique reconstructs shaper peaks (see 

Figure 17 in chapter three) than the diffusion ODF. Another key advantage of the spherical 

harmonic method is that one can resample the fODF to a high spatial resolution space. I have 

demonstrated, qualitatively, the effect of peak sharpness and resampling on a diffusion spectrum 

scan of a healthy human subject. A directionally encoded color map of the fiber peaks estimated 

using high resolution fODFs shows the anatomical location of thalamic nuclei (VL and VP) and 

cerebellar nuclei that are missing in low resolution diffusion ODF maps (see Figure 19 and 20 in 

chapter three). In the area of the brain stem, boundaries of the white matter structures are clearly 

identified in the high resolution fiber ODF map (see Figure 21 in chapter three). Sharper fiber 

peaks in fiber tractography were demonstrated on the fornix tract, arcuate and superior cerebral 

peduncle in both high resolution fiber ODF and low resolution diffusion ODF. Qualitative 

comparison of the fiber tracts shows a clear advantage of the proposed CSD method and 

resampling of the fiber ODFs in finding interhemispheric space, fiber termination at the grey-
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white matter boundary, and less noise in the fiber crossing region (see Figure 22, 23 and 24 in 

chapter three). 

Quantification of the underlying white matter structure using diffusion MRI based 

metrics is an active research area. Clinicians and researcher are looking for a robust diffusion 

MRI based metric that can relate to axonal volume and is sensitive to white matter changes in 

pathological brains. Previously, scalar metrics such as fractional anisotropy have been used to 

indicate white matter changes. Scalar metrics provide summary statistics of anisotropy from each 

fiber population present in a voxel. In chapter four I derived a mathematical formulation of a 

novel metric, directional axonal volume dAV, to quantify anisotropy in each direction (see 

section 4.3 in chapter four). It uses the full oriented distribution function in a voxel weighted by 

a proton density map to estimate anisotropy of diffusion in each direction. The key feature that 

differentiates directional axonal volume from scalar metrics is that it is direction sensitive and 

thus does not mix the anisotropies of multiple fiber populations. An algorithmic framework that 

maps voxel-wise dAV to tracts and profiles the fiber tracts (see section 4.4 in chapter four) is 

also presented. This method permits voxel-based dAV to become a tract-based metric. The novel 

contribution of tract-based dAV is that it maps only anisotropic values that are aligned with the 

fiber tract, unlike Yeatman et al [4] who map FA onto the fiber tract by interpolating the FA 

volume for each fiber point. Typically, canonical planes that are parallel to the scan axis are used 

for profiling. I have also presented an informative way to profile of the dAV metric along a mean 

fiber. Profiling in this way will potentially be used to identify white matter damage along a fiber 

tract. Profiling of the arcuate and cingulum in a healthy subject shows small variation of dAV 

along tracts (see Figure 29 and 30 in chapter four). This suggests that dAV is conserved along 

the tract (with coefficient of variation of 16%). In contrast, techniques such as Yeatman el al [4], 
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show a bell curve along the tract. In chapter five, I used an anisotropic textile based phantom to 

test if dAV relates to the number of taxons present. A correlation coefficient of 0.85 is estimated 

between number of taxons and total dAV (see Figure 44 in chapter five), which suggest that dAV 

is potentially related to the intra-cellular water content and thus eventually related to underlying 

axonal volume.  

Validation of the diffusion reconstruction methods, the fiber orientations estimated from 

the reconstruction methods, the derived anisotropic metrics is essential for robustness of the 

analyses and in particular longitudinal and multi-site analyses. Validation of the anisotropic 

metric is key in order to use it as a biomarker in neurological studies. For example, a validated 

diffusion metric can provide regions of white matter changes affected in neurodegenerative 

diseases like Huntington’s disease and Parkinson’s disease.  

In chapter five I used a novel textile based anisotropic phantom (TABIP) to validate three 

diffusion reconstruction methods: diffusion tensor imaging, generalized q-sampling imaging and 

proposed reconstruction method described in chapter two, and three anisotropic metrics: 

fractional anisotropy, directional axonal volume and the NODDI model. It is the first textile 

hollow tube phantom that can simulate the complex geometry of curves, crossing, shape 

deformation, and compression that are representative of human tract anatomy.  It provides 

ground truth testing of key variables in MRI such as crossing patterns and intra Taxon water 

content (see Figure 47 in chapter five). I have tested three hypotheses using TABIP, 1) taxons 

can be imaged using diffusion MRI and recorded metrics such as FA can be in the range of 

human tissue, 2) the diffusion MRI based reconstruction method can resolve known crossings, 

and 3) the diffusion MRI based anisotropic metric is sensitive to the number of taxons in a 
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volume and there is reasonable agreement between the electron microscope measurement of the 

diameter and the MRI measurement.  

All reconstruction methods tested can localize anisotropic regions of taxons. I used the 

diffusion tensor imaging method to estimate FA in all regions with taxons. Regions with taxons 

have FA values (max FA = 0.7) that are similar to previously reported FA values in white matter 

areas (in corpus callosm FA = 0.8) in the human brain (see Figure 36 in chapter five). White 

matter tissue in the human brain is very complex due to the combination of various tissues (glial 

cells, CSF, axons with different diameters). In comparison, TABIP used in this study has a 

perfect tube that can be used as a known calibration reference. We were able to do ground truth 

tests such as accuracy of the taxon diameter measurements using NODDI model. Electron 

microscope based measurements estimate 12-13 diameter of taxons and the NODDI based metric 

estimates 10.5 with standard deviation 0.5. 

The second hypothesis, resolving crossing fibers, was tested using a manufactured 

crossing pattern with 90, 45, and 30 degree crossing angles. Three reconstruction methods: 

diffusion tensor imaging, generalized q-sampling and the proposed reconstruction method 

described in chapter two and three were tested. GQI and the proposed method can successfully 

identify 90 and 45 degree but fails to resolve 30 degree crossings. DTI fails to identify all 

crossing fiber populations (see Figure 40). The new reconstruction method produces sharpened 

peaks of the fiber orientation than the GQI techniques (see Figure 41 in chapter five). 

All three reconstruction methods, diffusion tensor imaging, generalized q-sampling and 

the proposed reconstruction method described in chapter two and three fail to resolve the 30 

degree crossing. Further investigation is needed to test whether this limitation of resolving the 30 
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degree crossing is due to diffusion image acquisition or diffusion modeling techniques. This 

limitation also affects further processing such as fiber tracking.   

The third hypothesis, accuracy of fiber count estimation, is tested on a manufactured fiber 

density pattern with varying number of taxons (100%, 80%, 60%, 40% and 20%). Three 

anisotropic metrics, fractional anisotropy, directional axonal volume and NODDI are tested and 

correlated with the number of taxons in density pattern.  

FA shows a correlation coefficient value of r = 0.33 with the number of taxons used in 

the density pattern (see Figure 43 in chapter five). As implicitly used by some investigators, FA 

would be expected to vary linearly with the underlying amount of taxons. The poor correlation 

and the non-monotonic relationship of FA to taxon counts suggest that FA is sensitive to 

identifying anisotropic areas in a diffusion scan but it is a poor predictor of number of fibers.  

dAV on the other hand, shows a correlation value of r = 0.85 with the number of fibers 

used in the density pattern. However, estimated dAV values drop to a small value after a 

reduction of 40% or less of fibers in the density pattern (see Figure 45 in chapter five). This 

effect might be due to a very simplistic isotropic modeling. To address this issue I chose the 

NODDI model for estimation of isotropic and anisotropic volume fractions in each voxel from 

the density pattern. Better isotropic modeling in the NODDI technique improves the correlation 

between the number of taxons and the intra-cellular volume fraction to r = 0.95. This result 

suggests that NODDI and dAV are sensitive to the underlying amount of taxons. With advanced 

isotropic modeling for free water contents the sensitivity to the number of taxons can be 

increased. This hypothesis provides insight into anatomically relevant metrics and their potential 

usefulness in neuro-scientific studies.  
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I have successfully tested that diffusion MRI is sensitive to regions with fibers. Advanced 

diffusion imaging techniques can be used to resolve crossing fiber bundles. I also found that less 

than a 45 degree crossing cannot be resolved using diffusion MRI for the methods tested. 

Advanced biophysical model such as NODDI can be used to probe micro-structure information 

such as amount of fibers and diameter of fiber. 

In future, I will improve constrained spherical deconvolution to include multiple response 

functions from different tissue types. This type of multi-tissue diffusion modeling can not only 

provide fiber orientation but can also estimates the volume fraction of tissue types in a voxel. 

Further, I will use the volume fraction of cerebro-spinal fluid (isotropic) estimated using the 

multi-tissue model in the directional axonal volume metric.   

This work represents a new accurate quantification of axonal water through diffusion 

imaging. dAV show promise as a new anatomically interpretable metric of axonal connectivity 

that is not confounded by factors such as axon dispersion, crossing and local isotropic water 

content.  I believe this will be helpful in better anatomical mapping of white matter and the 

detection of axonal tract pathology. 
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