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Periodontal disease, also known as gum disease, affects an estimated 64 million Americans and is 

the leading cause of tooth loss. Current clinical therapies focus on the removal of invasive oral 

bacteria that initiate the disease through scaling and root planing and administration of antibiotics. 

However, it is now understood that tissue destruction in periodontal disease is carried out by an 

exacerbated inflammatory immune response. Furthermore, recent literature suggests that the 

severe forms of the disease may be characterized by a decrease in the presence of a subset of cells 

responsible for directing immune regulation, Regulatory T cells (Tregs). To address the underlying 

immune dysfunction, we have developed acellular approaches, utilizing translatable bioerodible 

microspheres composed of poly(lactide-co-glycolide) capable releasing factors that can recruit 

endogenous Tregs and induce local Tregs in the periodontium for the treatment of periodontal 

disease. Specifically, we have developed microspheres that release the Treg-associated C-C motif 

chemokine 22 (CCL22) and vasoactive intestinal peptide (VIP) for the local recruitment of 

endogenous Tregs in vivo and prevention of alveolar bone resorption. Furthermore, CCL22 

microspheres led to a reduction in the expression of damaging inflammatory mediators and 

conversely, led to an upregulation of anti-inflammatory molecules that could potentially lead to 

tissue regeneration. Secondly, we demonstrate that CCL22 microspheres are capable of being 
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administered using standard clinical techniques to effectively treat ligature-induced periodontitis 

in beagle dogs.  CCL22 microspheres reduce clinical scores of inflammation including periodontal 

probing depths and bleeding on probing as well as reduced tooth supporting alveolar bone 

resorption in dogs. Finally, we describe an alternative strategy to bolster Treg population in situ, 

through the local expansion of Tregs by PLGA microspheres releasing a combination of 

transforming growth factor beta (TGF-β), rapamycin (Rapa) and interleukin 2 (IL-2).  

Administration of TGF-β, Rapa, IL-2 microspheres in a mouse model for periodontal disease 

significantly reduced the primary outcome of periodontal disease, alveolar bone resorption.  Taken 

together, controlled release formulations that harness the body’s sophisticated immunoregulatory 

cells provide an easy-to-use, off-the-shelf therapeutic modality for treating inflammatory 

periodontal disease and may become the next clinical standard treatment. 
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1.0  INTRODUCTION 

1.1 STRATEGIES TO DIRECT THE ENRICHMENT, EXPANSION, AND 

RECRUITMENT OF ENDOGENOUS REGULATORY CELLS FOR THE TREATMENT 

OF DISEASE 

1.1.1 Loss of tissue homeostasis and regulation leads to disease 

Disease and injury perturb the balance of processes associated with inflammation and tissue 

remodeling, resulting in positive feedback loops, exacerbation of disease and compromised tissue 

repair. Conversely, under homeostatic healthy conditions, these processes are tightly regulated 

through the expansion and/or recruitment of specific cell populations, promoting a balanced steady 

state. Better understanding of these regulatory processes and recent advances in biomaterials and 

biotechnology have prompted strategies to utilize cells for the treatment and prevention of disease 

through regulation of inflammation and promotion of tissue repair. Herein, the text below describes 

how cells that regulate these processes can be increased in prevalence at a site of disease or injury. 

This work also reviews several relevant cell therapy approaches as well as new strategies for 

directing endogenous cells capable of promoting environmental homeostasis and even the 

establishment of a pro-regenerative micro-environment.  Collectively, these examples may 
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provide a blueprint for next-generation “medicine” that spurs the body’s own cells to action and 

replaces conventional drugs. 

1.1.2 Homeostasis and disease 

Biological homeostasis is most commonly referred to as a balance or ‘steady state’ between two 

competing processes such as inflammation and immune regulation and anabolism and catabolism 

in tissue remodeling. In actuality, biological homeostasis is more aptly described as a dynamic 

equilibrium (as opposed to a true “steady state”) involving the sensing of perturbations, and in 

turn, processes that regulate these perturbations. Specifically, a perturbation produces a change in 

outcome that is then detected, inducing a corresponding regulatory activity that leads to negative 

feedback to restore balance. A simple analogy to this mechanism is a thermostat that measures the 

temperature with a sensor and, in response to the sensor’s reading, regulates heating/cooling to 

stabilize the environmental temperature. Notably, in a disease state or following injury, 

perturbations in biological process are not always properly regulated, resulting in an instability 

that can lead to improper healing and even tissue destruction and functional impairment. 

Inflammatory signaling is a key modulator of homeostasis, which is evident, for instance, 

in unbalanced mucosal inflammation of the gut culminating in inflammatory bowel diseases 

(Crohn’s disease, ulcerative colitis)1. Even in sites conventionally thought of as immune privileged 

such as the eye, aberrant, unbalanced inflammation can lead to uveitis, dry eye disease and 

glaucoma2. Moreover, traumatic injury, which starts with tissue damage, can induce abnormal 

signaling pathways3 and an inflammatory response that becomes a major disruptor to homeostasis4, 

leading to tissue degradation5, dysregulation3 and failure to repair. Finally, tissue homeostasis and 

regulated inflammation are key to the survival of transplanted tissues and organs6.  
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Different therapeutic approaches have emerged over the past several decades that attempt 

to address inflammation and homeostatic imbalance. Anti-inflammatory drugs, such as COX-1/2 

inhibitors, resolvins, glucocorticoids, and more recently small molecule anti-proliferative agents 

such as methotrexate, cyclosporine, tacrolimus and rapamycin have been used to inhibit 

inflammation in attempt to suppress inflammation during disease or tissue repair7. However, the 

negative side effects of such treatments that have limited specificity can potentially outweigh any 

benefits (e.g. steroid induced osteoporosis, impaired wound healing, thrombosis and 

cardiovascular disease)7.   

More recently, anti-inflammatory biologics, such as TNF blockers7, have emerged as more 

effective and specific therapies for treating aberrant inflammation. However, biologics are still 

primarily administered systemically in relatively large quantities, leading to complications such as 

increased susceptibility to infection and cancer development7. Furthermore, the clinical efficacy 

of targeting specific cytokines has not yielded the robust results that were expected based on 

animal models, such as in Crohn’s disease where one-third the patients do not respond to TNF 

antagonists, likely because inflammatory perturbations leading to disease are complex processes 

governed by many cytokine and signaling networks, (for example, in Crohn’s disease the IL-12, 

and IL-23 cytokine pathways have a major role in the disease in addition to TNF)8, 9. 

In recent years, several approaches have emerged to deliver or boost the expression of anti-

inflammatory cytokines and molecules, as opposed to blocking inflammatory cytokines. For 

example recombinant IL-10 and IL-11 have been used in phase II clinical trials for inflammatory 

Crohn’s disease (reviewed8), however such treatments had disappointing efficacy compared to 

steroid treated controls possibly due to the overwhelming abundance of inflammatory mediators 

present in disease sites8, 10.  
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In contrast, the mechanisms that cells use to regulate these processes in situ are 

sophisticated and dynamic, which is difficult to reproduce using current technology. One viable 

approach, therefore, is to somehow boost the number of cells that perform these complex 

regulatory functions at the site of a disease or injury. Presumably, these cells would be much more 

effective at naturally regulating the processes and either avoiding a disease state or restoring a 

local environment to a healthy state. Two cell types that hold great promise in regards to treatments 

of disease and the restoration of homeostasis to promote tissue regeneration are mesenchymal stem 

cells (MSCs) and CD4+CD25+FoxpP3+ regulatory T cells (Tregs)11-14. Accordingly, MSCs and 

Tregs have been extensively explored for cell therapies (involving the isolation, ex vivo expansion, 

and re-administration of the cells) for a large number of applications through clinical trials11, 14, 15.  

1.1.3 Other immune regulators, mesenchymal stem cells as mediators of homeostasis  

MSCs are commonly used in tissue engineering and regenerative medicine applications because 

of their well-known capacity to differentiate into multiple cell types. Their key feature of interest 

here, though, is their ability to migrate to a damaged tissue (homing) in response to the locally 

released inflammatory chemokines and, once there, to inhibit the inflammation by modulating 

innate and adaptive immune cells via soluble factors or cell-cell interaction16, 17. The most 

straightforward way to increase the numbers of MSCs in a biological environment would be to 

administer the desired cell type after differentiating or expanding these cells ex vivo (defined as a 

cell therapy). For instance, several clinical trials are ongoing to use MSCs injected in the central 

nervous system as a treatment for ischemic stroke and traumatic brain injury, being used as 

promoters of tissue regeneration, mediated by the MSCs produced factors18. Interestingly, infusion 

of MSCs into the body has been reported in numerous animal experiments and clinical trials to 
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treat a variety of additional conditions such as graft vs. host disease (GvHD), myocardial 

infarction, osteogenesis imperfecta, Type I diabetes, and Crohn’s disease 19, 20, but, although 

functional improvements of tissues were reported, only few engrafted MSCs were detected in vivo 

21, 22. These findings support the concept of MSCs achieving tissue repair not only through their in 

situ differentiation and engraftment but also by their regulatory function, promoting regeneration 

from other cell types and suppressing the immune response19. Moreover, it is reported that 

secretion of heme oxygenase-1 (HO-1) by MSCs can promote the formation of another regulatory 

cell type, Tregs23, which in turn suppress the pro-inflammation reaction of other immune cells as 

described in detail later.  Thus, it is likely that these two key regulators of the body, MSCs and 

Tregs, are, in fact, connected to one another and perhaps even act in a cooperative fashion. 

In addition to immunomodulatory cytokines, MSCs also secrete other factors to support 

survival of cells (trophic factors), and promote regeneration. These factors include, G-CSF, GM-

CSF, SCF, LIF, CSF, IL-11, IL-6, VEGF, HGF, angiopoietin-1, EGF, KGF, and bFGF as 

extensively described elsewhere24 and can enhance cell growth, proliferation, differentiation, 

extracellular matrix production, and favor cell recruitment and vascularization, all processes 

involved in tissue repair and regeneration14. In wound healing, both preclinical and clinical studies 

have shown that MSCs can accelerate wound closure by modulating the inflammatory response, 

promoting effective vascularization and the migration of keratinocytes, and inhibiting apoptosis11. 

Since MSCs are capable of displaying antifibrotic, angiogeneic and regulatory properties, they are 

being explored to treat or prevent ongoing alloreactivity, with the first clinical trials in transplant 

recipients already underway25, 26. 
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1.1.4 Regulatory T cells as mediators of homeostasis 

Regulatory T-cells (or Tregs) are a heterogeneous population of CD4+, CD25+, FoxP3+ T helper 

cells characterized by high levels of secretion of the anti-inflammatory cytokine IL-10, and TGFβ, 

which mediates a part of their suppressor functions12. Given their potent regulatory phenotype, the 

local enrichment of autologous or ex vivo-expanded adoptively transferred Tregs is a very desirable 

therapeutic approach for a multitude of immune-mediated destructive pathologies12, 13, 27.  

Ex vivo produced Treg cells have been already explored in several clinical trials. For 

example, the isolation and ex vivo expansion of Tregs from umbilical cord blood sources was 

shown to reduce the incidence of acute GvHD in phase I trials for bone marrow transplantation28. 

The success of this trial appears to related to the Tregs ability to suppress CD4+ and CD8+ effector 

T cells also present in the hematopoietic cell transfers29. Similarly, it has been reported that the 

combined cell therapy of Tregs and T effector cells infused in phase I clinical trial patients 

receiving Human Leukocyte Antigen (HLA) mismatched bone marrow helped reconstitute the 

patients immune system, while preventing GvHD30. These Treg cell therapies take the place of 

strict systemic immunosuppression protocols that are normally given to patients receiving 

mismatched donor bone marrow transplants, thus greatly alleviating the risk for infection or other 

illness31. Treg cell therapies also have the potential to complement mesenchymal stem cell 

therapies.  In a mouse critical size cranial defect model, the adoptive transfer of both MSCs and 

Tregs yielded robust wound healing and bone regeneration, whereas MSC therapy alone only 

resulted in only modest tissue regeneration32. In this case, it was shown that the addition of Tregs 

greatly diminished levels of inflammatory cytokines IFNγ and TNF that would otherwise inhibit 

bone regeneration likely trough the expression of effector immune cells32. This corroborates the 

notion that Tregs and MSCs do indeed function synergistically to regulate the local 
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microenvironment and promote tissue healing.  While several Treg based cell therapies have 

proven successful in the clinic, utilization of Treg therapies for broader applications of 

autoimmunity and immune suppression still face many obstacles. 

1.1.5 Limitations of cell therapies 

Harnessing the full functional repertoire of cells via cell therapy has led to exciting advances in 

treatment of disease and injury, however there are many challenges yet to overcome. The hurdles 

of cell therapies are well known and have been thoroughly reviewed elsewhere11, 14, 15, 33. These 

can be briefly described as: 1) difficulty in establishment of cell sources capable of generating 

sufficient numbers of cells34, 35, 2) inability to specifically expand and separate target therapeutic 

cells15, 36, 3) difficulty maintaining functional capabilities of re-introduced cells due to T cell 

plasticity37, and 4) possible tumorigenicity38. Furthermore, when taking into account clinical 

therapy needs, the ability to adhere to good manufacturing practice (GMP) at every step of the 

process is non-trivial and poses significant limitations to the widespread use of many cell therapies.  

A very promising therapeutic alternative to cell therapies may be the direct, selective 

recruitment of a patient’s own endogenous antigen-specific tolerogenic DCs or Tregs to the desired 

body compartment. There they could modulate the host response to the introduction of a foreign 

material (bio implantation) or a transplanted organ, or they could help to establish a regenerative 

milieu after tissue damage. 
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1.1.6 Harnessing the potential of the body’s own endogenous regulators 

Recent advances in the understanding of the biological processes that govern inflammation and 

regulation of inflammation have led to development of synthetic strategies aimed at recruiting or 

expanding the body’s own endogenous regulators in order to restore homoeostasis and promote 

regeneration, while avoiding the complications associated with ex vivo cell expansion and re-

administration. A large number of both synthetic and natural biomaterials have been investigated 

for many different applications, reviewed elsewhere39-42.  However, several recent approaches 

have harnessed the endogenous immune regulators in attempt to restore homeostasis and promote 

regeneration.  

One strategy that could be used to increase the prevalence of regulators at a local site is the 

specific recruitment of a patient’s own natural, endogenous Tregs using a recombinant chemokine, 

CCL22.  Although the chemokine receptor for CCL22 (CCR4) is expressed on a variety of 

different lymphocytes, it appears that it is more highly expressed on FoxP3+ Treg43 and CCL22 

seems to be a primary chemokine that directs natural Treg homing in vivo44.  Accordingly, 

controlled release of recombinant CCL22 using degradable PLGA microspheres is an effective 

strategy for direct site-specific recruitment natural Tregs in vivo45, 46.  These recruited endogenous 

Tregs were shown to also effectively reduce the severity of inflammatory periodontal disease in 

both mouse and dog models45.  Additionally, Tregs have also been recruited in order to protect 

pancreatic islets and prevent autoimmune diabetes in mice, however, CCL22 production was 

induced by adenovirus gene delivery (encoding for CCL22) to the islets47. Recently, others have 

developed targeted nanoparticles for the delivery of Treg-inducing factors, specifically, using anti-

CD4 tagged PLGA nanoparticles releasing leukemia inhibitory factor (LIF) capable of inducing 

the expansion of non-human primate Tregs in vitro48.  Furthermore, leukemia inhibitory factor 
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released from PLGA nanoparticles was shown enhance β-islet transplantation to restore insulin 

production in a mouse model for diabetes (presumably through the induction of Tregs)49. Another 

strategy to harness endogenous Tregs for murine diabetes combined the delivery of antisense 

oligonucleotides directed against CD40, CD80 and CD86 from polymeric microspheres50.  These 

combination particles encapsulating antisense oligonucleotides were capable of inducing the 

expansion of endogenous Tregs (potentially mediated by tolerogenic dendritic cells) and 

preventing type 1 diabetes in mice, furthermore, isolated Tregs from treated mice were capable of 

preventing t-cell mediated b-islet destruction in secondary mouse recipients, suggesting that the 

particles led to the induction of stable Treg phenotypes50.  

An alternative strategy to bolster endogenous regulatory T cells is to differentiate a more 

prevalent population of cells (such as naïve CD4+ T cells) in to regulatory T-cells. To this end, it 

was found that the combination of TGFβ, rapamycin and IL-2 were shown to robustly convert both 

mouse and human naïve CD4+ lymphocytes to, FoxP3+ regulatory T cells in vitro51.  If a strategy 

could be developed to apply this technique in vivo, it could represent a promising approach for 

generating far more induced Treg at a local site than is possible by recruiting naturally occurring 

Treg.  

1.1.7 Regulatory T cells as regulators of regeneration 

Although it is well known that the strategic modulation of endogenous immune regulators, such 

as Tregs, can effectively mediate destructive inflammation, it is not as commonly discussed in the 

literature how these cells also appear to promote regeneration45.  One way in which endogenous 

regulators may promote tissue healing and regeneration is through the release of pleotropic 

cytokines such as IL-10 and TGFβ.  For example, IL-10 is known to play an important role in bone 
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metabolism in vivo, accordingly IL-10-deficient mice display both decreased osteoblast generation 

and bone formation52. Similarly, TGFβ has been shown to play a role in promoting cell growth, 

differentiation and extracellular matrix, and therefore is considered an anabolic cytokine53-55. 

Indeed, TGFβ is known to recruit osteoblast precursors, induce their differentiation and up-

regulate the expression of collagen type 1, even in disease conditions56, 57.  The controlled release 

of CCL22 and subsequent recruitment of endogenous Tregs (as shown by local increases in FoxP3) 

not only decreased the severity of disease in mice, but also upregulated both IL-10 and TGFβ 

expression in the tissue45.  In addition, a host of both hard and soft tissue pro-regenerative factors 

such as BMP4, BMP7, RUNX2, ALP, DMP1, COL1A145 were upregulated as well concurrently 

with the downregulation of factors known to be involved with both hard and soft tissue 

destruction45, as shown in Figure 1. Indeed, the addition of Tregs has been an emerging trend in 

regenerative therapies, where Tregs have been utilized for complete repair of critical size defects 

in mouse skulls32, and ischemic kidney repair58. 



 11 

 

Figure 1: Synthetic strategies to recruit and enhance Tregs for the amelioration of disease, restoration 

of homeostasis, and promotion of tissue regeneration59. 

 

1.1.8 Engineering techniques for harnessing endogenous mesenchymal stem cells 

In theory, an analogous approach to what is discussed above could be developed by mimicking the 

natural mechanisms of migration of endogenous mesenchymal stem cells. For instance, MSCs 

migrate to the injured or inflamed site by sensing chemokines gradients and locally regulate 

immune reactions and promote tissue regeneration by cell-cell contact or secretion of cytokines 

Figure 2.  A synthetically driven homing of MSCs would then theoretically promote these same 

functions and benefit broad area of diseases including inflammatory and degenerative diseases.  
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Figure 2: How MSCs migrate to sites of disease or injury and potential modes of regulating immune 

cells59. 

 

One obvious strategy to recruit endogenous MSCs could rely on the creation of a local 

gradient of a chemoattractant molecule of choice to induce cells chemotaxis60. Several chemokines 

have been implicated to induce MSC homing61; one of the most widely used chemoattractant is 

stromal cell-derived growth factor-1 (SDF-1), although it is not specific to MSCs as it can also 

recruit lymphocytes62. Another MSC chemoattractant is platelet-derived growth factor (PDGF)63 

which is also non-specific for MSCs, but PDGF receptors are highly expressed on MSCs. It is 

worth noting that besides chemokine gradients, the surrounding extracellular matrix (ECM) and 

the environmental mechanical forces can recruit MSCs as well64.  

The chemoattractant molecule is generally released from a point source via a carrier that 

can be in the form of micro/nanospheres46, of scaffolds 63 65, especially when aimed at tissue 
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engineering applications66, or, in fact, of any other implantable structure (stents, subcutaneous 

patches, sutures, etc.)65, 67, 68. Other strategies that are utilized in tissue engineering could also be 

helpful, including the patterning of scaffolds to induce and guide cell invasion69. 

Current strategies to recruit endogenous MSCs typically rely on several different 

techniques to delivery the chemoattractant or MSC boosting factor (reviewed70, 71).  For example, 

release of SDF-1 from a poly(lactide ethylene oxide fumarate) (PLEOF) hydrogels or from 

chitosan/poly(γ-glutamic acid) polyelectrolyte complexes have been utilized to recruit MSCs72 73. 

SDF-1 has also been released from poly(lactide-co-glycolide) (PLGA) microspheres to promote 

MSCs recruitment74 or alternatively PDGF to enhance both cell migration and vasculogenesis75. 

Modern degradable carriers can now offer a high degree of tunability of the release behavior for 

any given chemoattractant76, 77. Since a controlled release carrier may also be loaded with 

practically any “instructional” molecules, (e.g. growth factor inducing stem cells differentiation78), 

combining multiple carriers (for instance, different microspheres formulation containing different 

molecules or a scaffold/microspheres combinatorial structure79) allows a more sophisticated 

cellular control.  For instance, this technique could be used for the sequential recruitment of 

different cells as well as the recruitment of a given cell precursor followed by the release of 

instructional molecules to direct cell differentiation or tissue production. For instance the 

sequential delivery of PDGF and vascular endothelial growth factor (VEGF) for sustained 

neovascularization80 or the release of PDGF and simvastatin for dentoalveolar regeneration81.   

In contrast, responsive delivery systems (where the structure of the delivery vehicle is 

actively altered by endogenous cells) are one of the exciting new frontiers of nanomedicine as they 

hold promise for instructional-based biomimetic drug delivery. Generally the polymeric 

components of the carrier incorporate specific sequences that can be cleaved only under the desired 
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environmental conditions (e.g., low pH) or by specific molecules (e.g. inflammatory cytokines, 

MMPs, etc.)82, 83. Such carriers would allow dynamic release of intended molecules in response to 

cellular activity, Figure 3. 

 

 

Figure 3: Synthetic engineering strategies to expand and chemoattract endogenous MSCs and Tregs59. 
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1.1.9 Future vision for engineering treatments for harnessing endogenous regulators for 

disease 

The role of endogenous regulators, such as Tregs or MSCs, is promoting tissue regeneration via 

restoration of homeostasis is a promising strategy to treat a number of diseases where current 

treatments are lacking. Cell therapies utilizing MSCs and Tregs have shown great promise even in 

the clinic, and have revealed the power of cells to promote immunological and regenerative 

homeostasis for the treatment of disease.  Yet newer, fully synthetic approaches to localized 

recruitment, expansion and activation of a patient’s own endogenous cells bypasses many of the 

hurdles of cell therapies. Indeed, these synthetic approaches seem to (at least in some capacity) 

mimic the body’s natural mechanisms to cause cell homing or expansion when necessary. Each of 

these approaches represent potential future medical treatments that harness the body’s innate 

regulatory capacity in a way that is dramatically more sophisticated and complex than what is 

possible in the clinic today. 

1.2 STRATEGIES TO RECRUIT AND EXPAND ENDOGENOUS REGULATORY 

CELLS FOR THE TREATMENT OF PERIODONTAL DISEASE 

Periodontal disease affects over 64 million Americans and is considered one of the most pressing 

oral health concern today84.  Also known as periodontitis, this condition is characterized by 

destructive inflammation of the periodontium, including the gum tissue, supporting bone, and 

ligament (Figure 4, periodontal disease progression). Importantly, this disease affects not only 

tooth loss but also the incidence of cardiovascular disease, kidney disease, respiratory diseases, 
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diabetes, and even premature childbirth85-89. The current standard of care involves debridement of 

calculus (a procedure called scaling and root planing) and can be accompanied by local delivery 

of an antibiotic such as minocycline (Arestin®90). These treatments temporarily kill pathogens but 

do not protect against inevitable future infections or address the susceptibility observed in patients 

disposed to immune dysfunction. In fact, nearly 20% of patients suffering periodontal disease show 

no response (disease recurrence) to current antibacterial-focused treatment regimes and are labeled 

as refractory patients91.  
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Figure 4: Periodontal disease structure and progression. Healthy periodontal tissue is characterized 

by pink gingivae, absence of plaque and high alveolar bone levels.  Gingivitis is characterized by inflammation 

of the gums (gingiva) and the presence of bacterial biofilms or plaques, however tissue destruction has not 

occurred or is mild. Disease is categorized as periodontitis once significant tissue damage has occurred, 

typically displaying periodontal pocket depths of 3 mm or more.  Deep pockets, typically greater than 6 mm 

are categorized as severe or advanced periodontitis.  Cementoenamel junction (CEJ) is static architecture of 

the tooth root often used as a referenced for tissue destruction when preforming clinical attachment loss 

measurements.  The alveolar bone crest (ABC) signifies the peak height of the tooth supporting bone, typically 

clinically measured using dental X-rays.  

 

 

Although invasive bacterial species are protagonists of the disease, tissue destruction is 

mediated by an adverse host inflammatory immune response92, 93. As the disease progresses, 
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several populations of lymphocytes are recruited to the periodontium94-97, guided by local gradients 

of specific lymphocyte-attracting chemokines98, 99. It is the overall cytokine milieu produced by 

these specific populations of lymphocytes that ultimately directs hard and soft tissue destruction100.  

Therefore, it is becoming increasingly clear that future treatments of periodontal disease focus not 

only on invasive bacteria, but also address the underlying immune dysfunction. 

1.3 PERIODONTAL DISEASE 

1.3.1 Prevalence and implications of periodontal disease 

Periodontal disease is strikingly prevalent in the United States, affecting 34% of individuals over 

the age of 30, or an estimated 64 million Americans84, 101. It is the number-one cause of tooth loss 

according to the American Dental Association. Worldwide, periodontal disease is estimated to 

affect up to 20% of the adult population102. Furthermore, the periodontal biofilm hosts a wide 

variety of bacterial species that are notorious for their role in systemic infection and inflammatory 

immune diseases. The most predominant periodontal pathogens, Actinobacillus 

actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium 

nucleatum93 present virulence factors that have been associated with: 1) systemic infections and 

consequent complications103, 104, 2) a 4-fold increase in premature births105, 3) anorexia-cachexia 

syndrome106, 4) atherosclerosis107, 5) myocardial infarction and ischemic stroke108, 109. As the body 

of research linking periodontitis to the incidence of these other conditions continues to grow, 

reducing the prevalence of the disease is of utmost importance. This prevalence is likely 
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perpetuated by a misunderstanding of how disease symptoms develop, as represented by current 

treatments that aim only at removing bacterial species. 

1.3.2 Current clinical treatments for periodontal disease 

The current standard of care for periodontal disease (i.e. scaling and root planing) involves the 

mechanical removal of calculus and bacteria from beneath the gingiva (debridement), and is 

typically performed by a periodontal specialist, Figure 5A. In severe cases, antibiotic treatments 

(Arestin®, PLGA microspheres controllably releasing the antibiotic minocycline for 21 days90) 

may be injected into the periodontal pocket, Figure 5B. Antibiotic treatments, however, only 

temporarily remove bacterial species. Recurrent infections are common, requiring patients to 

repetitively undergo these expensive procedures. As a last resort after scaling and root planning, 

patients with severe or advanced periodontitis may undergo an extremely painful and expensive 

procedure called open flap surgery, Figure 6.  The goal of periodontal flap or open flap surgery is 

to reshape damaged alveolar bone and tightly reattached the gingiva to the tooth root, to eliminate 

periodontal pockets that harbor bacteria, Figure 6. Furthermore, these treatment are completely 

ineffective in 20% of the population (the condition is labeled refractory periodontitis91) and may 

contribute to an ever-increasing resistance to anti-bacterial agents110. Indeed, most recent research 

in the development of new periodontal disease treatments aims to influence the inflammatory 

immune reaction itself, which is ultimately responsible for tissue destruction. 
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Figure 5: Clinical therapies for periodontitis, scaling and root planing and local antibiotics. 

 

 

Figure 6: Clinical treatment, periodontal open flap surgery. 
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1.3.3 Current clinically available host modulators  

Tetracyclines like the minocycline and doxycycline are typically used as antibiotic agents, 

however, a secondary effect of tetracyclines is their ability to inhibit soft tissue destroying 

enzymes, matrix metalloproteinases (MMPs)111. Typically used in low dose formulation (sub 

antibiotic levels) tetracyclines like doxyxcycline (Periostat®) have been used to treat periodontal 

disease by preventing some of the damaging inflammation with greatly altering bacteria levels in 

patients112.  Furthermore, minocycline (used clinically in controlled release antibiotic Arestin®90) 

is known to specifically inhibit MMP-8 and MMP-9 presented in periodontal disease patients111, 

and may be present in sub-antibacterial doses as a result of the controlled release nature of 

Arestin® formulations90.  However, the use of antibiotics, even at sub-lethal levels, appears to aide 

in the selection and development of bacterial resistant strains113.  Bacterial resistance may be 

perpetuated by prior antibacterial use, for periodontal disease or other conditions113, and studies 

are beginning to assess the effect the use of common antibiotics have on conferring resistance to 

other pathogenic microbes, ultimately altering the levels of commensal bacteria114.  Based on 

recent findings about the characteristics of periodontal disease and the role of the host immune 

response in the development of tissue destruction, researchers have begun developing new 

therapies to address damaging inflammation, rather than attempt to halt bacterial growth. 

1.3.4 Immune reaction, chemokines, and the attraction of lymphocytes to the 

periodontium 

Recent literature has elucidated that periodontal disease may largely be perpetuated by the 

inflammatory immune response resulting from initial bacterial insult. Excessive inflammation in 
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periodontitis is driven by large numbers of leukocytes that infiltrate the periodontium.  Early in 

disease progression, large numbers of protective polymorphonuclear leukocytes (PMNs) are 

recruited by the presence of bacteria97, 115, whereas T lymphocytes predominate in established 

chronic periodontal lesions116.  Recruitment of these various leukocyte sub-populations to the 

periodontium is guided by patterns of proteins that direct cellular translocation (i.e. chemokines).  

Chemokines interact with specific lymphocyte populations and in turn, bias immune responses117, 

118.  Recently, Th1-type chemokines (CXCL10 formerly IP-10, and CCL3 formerly MIP-1α) have 

been detected in patients with aggressive periodontitis, along with high levels of the pro-

inflammatory cytokine IFN-γ119. 

The skewed overabundance of Th1-type or Th17 inflammatory reactions disrupts the 

delicate homeostatic equilibrium between pro-regenerative and tissue-destroying responses.  

Inflammatory chemokines and cytokines lead to upregulation of soft tissue destroying matrix 

metalloproteinases (MMPs)119 that degrade periodontal ligament and gingivae.  Further, this 

excessive inflammatory environment leads to the local upregulation of receptor activator of 

nuclear factor-κB ligand (RANKL), a potent activator of bone resorbing osteoclast cells, leading 

to alveolar bone loss119 (and eventually tooth loss)120, 121. 

1.3.5 Complications associated with the inhibition or blocking of inflammation 

The most common approach for addressing aberrant inflammation is through the administration of 

small molecule or protein inflammatory inhibitors7, 122. One recent experimental treatment aimed 

at reducing the host inflammatory response involves the administration of the drug Resolvin. 

Resolvin blocks neutrophil-mediated inflammation and the associated pro-inflammatory cytokine 

milieu123.  However, it has been shown that direct, long-term inhibition of inflammatory cytokines 
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by traditional blocking (i.e. anti-inflammatory) strategies can compromise periodontal tissue 

regeneration124-128. Furthermore, researchers have shown that traditional blocking of the protective 

immune responses can result in increased bacterial burden and acute systemic reaction94, 95, and 

increased alveolar bone loss97. While the use of anti-inflammatory mediators may provide some 

disease relief, a technique to harness the body’s own regulatory immune response could provide a 

more robust solution for periodontitis. 

1.3.6 How the body naturally regulates inflammation 

One possible explanation for the shortcomings of the aforementioned treatment is that our bodies 

do not regulate harmful inflammatory responses by blocking leukocyte infiltration, but rather by 

balancing inflammatory leukocyte recruitment with regulatory lymphocyte recruitment12, 13. 

Regulatory T cells (Tregs) exert their control over other lymphocytes both through secreted factors 

and through direct cell-cell interactions, ultimately leading to targeted inflammatory-immune cell 

arrest12, 13. Although the complete regulatory repertoire possessed by Tregs remains enigmatic, 

progress has been made toward therapeutic use of Tregs for a wide variety of autoimmune and 

inflammatory diseases. Adoptive Treg cell transfer (i.e. cell infusion) therapies have seen the most 

pre-clinical and clinical success, yet clinical translation of the complicated ex vivo cellular 

expansion protocols has proven difficult15. We argue that the greatest impact for periodontal 

disease treatment would come from an off-the-shelf therapeutic — one that harnesses the body’s 

natural mechanisms for immune regulation (recruitment of endogenous Tregs), leading to 

restoration of local immune homeostasis and not immune inhibition. For this reason, we assert that 

the recruitment of endogenous Tregs to the periodontium could provide the immune regulation 
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necessary for abrogation of disease symptoms, while simultaneously maintaining immunity 

against invasive bacterial species.  

1.3.7 A biomimetic, engineered approach to promote immune regulation in periodontal 

disease 

Immune cells are naturally recruited to peripheral sites via chemokines secreted by tissue-resident 

cells. Specifically, biological gradients of chemokines direct immune cells toward the origin of 

secretion (presumably the site of infection or injury). Interestingly, one way in which tumors 

appear to avoid immune surveillance and clearance is through a similar chemokine-based strategy 

leading to the recruitment of regulatory T cells44. Specifically, tumors produce and sustain a 

biological gradient of CCL22, a Treg-associated chemokine129-131 that directs Treg migration. 

Once co-localized with the tumor, Tregs suppress effector immune cells by secreting factors such 

as IL-10 and TGF-β, thereby establishing immunological homeostasis in a milieu that would 

otherwise present itself as highly inflammatory132.  

Interestingly, endogenous Regulatory T cells have been shown to be exclusively recruited 

by to the production of the chemokine CCL22 by some tumors44, resulting in tumor immune 

evasion and exacerbation.  Specifically, it appears that Tregs more highly express the receptor for 

CCL22, CCR4 than other populations of splenocytes43, allowing for specific Treg recruitment via 

CCL22. Furthermore, virally induced CCL22 production in pancreatic islet cells was used 

therapeutically to prevent the rejection of implanted islet cells to reverse murine diabetes47, 

suggesting that endogenous Treg recruitment via CCL22 may provide a strategy for treating 

damaging inflammatory immune responses. Therefore, it is foreseeable that using engineering 

principles, researchers could fabricate controlled release systems that can produce and sustain a 
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concentration gradient of certain molecules (including CCL22) that may potentially recruit Tregs 

to the site of microsphere implantation. Utilizing common fabrication techniques, microspheres 

can be fabricated using a polyester found in a number of FDA-approved systems and will degrade 

in a well-characterized manner in vivo133, 134. We theorized that by mimicking the natural immune-

evasion mechanisms of tumors using rationally-designed, CCL22-releasing, polymeric 

microspheres, Tregs could be recruited to a site of destructive inflammation (e.g. diseased 

periodontium) to slow or stop disease progression.  

Further, as and alternative to direct CCL22 controlled release for Treg recruitment, a 

molecule originally discovered as a vasodilator (vasoactive intestinal peptide, or VIP), has been 

recently found to induce endogenous CCL22 production by dendritic cells135.  Originally, VIP was 

identified as a neuropeptide associated with endothelial cells in the intestinal environment, but 

later was shown to be a potent immunomodulator136, 137.  Additionally, VIP was shown to attenuate 

inflammatory and autoimmune reactions possibly through aiding in the direct induction of 

regulatory T cells138-140. Importantly, VIP was also found to strongly influence bone metabolism 

by way of inhibiting osteoclastogenesis (bone resorbing cells) and promoting osteoblastogensis 

(bone forming cells)137, 141.  Therefore, VIP may be a viable alternative controlled release 

therapeutic peptide for periodontal disease, possibly functioning by inducing the local recruitment 

of Tregs (via inducing CCL22 expression), aiding in the direct induction of Tregs, or even altering 

the damaging inflammatory response leading to alveolar bone resorption135-137, 139, 141-143.  

Another way to enhance the numbers of regulatory T cells in situ may be through the 

induction of local T cells towards Treg pheonotypes (as opposed to T effector cell phenotypes) via 

biological enhancers of Treg populations.  Several different strategies have been utilized to directly 

induce Tregs in vivo, for example: anti-IL-2 monoclonal antibodies144, superagonistic anti-CD28 
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monoclonal antibodies145, and agonistic anti-CD4 monoclonal antibodies146.   However, the 

therapeutic mechanisms of these antibodies are not well understood, especially in the context of 

human trials, where their safety remains a concern.  In fact, phase 1 trials of the superagonistic 

anti-CD28 monoclonal antibodies led to a severe and damaging cytokine storm in all humans who 

received the treatment147.  Aside from these antibodies, other molecules have been identified to 

induce regulatory T cell development, including: IL-2, TGF-β and Rapamycin51.  Specifically, the 

use of these factors has been shown to aide in the development of Tregs in vivo and in vitro, even 

under inflammatory conditions51, 148-150.   

Recently, the controlled release of IL-2, TGF-β and Rapamycin from PLGA microspheres 

(conducted in our laboratory) has been shown to specifically induce regulatory T cells from naïve 

CD4+ T cells in both human and mouse cells in vitro51.  Specifically, the combination of IL-2, 

TGF-β and Rapamycin released from PLGA microspheres led to the robust expansion of a 80% 

pure population of Tregs, as opposed to soluble IL-2 expanded naïve T cells which robustly 

expanded T cells, but only led to 3% of cells expressing Treg marker FoxP351.  Furthermore, Tregs 

induced from IL-2, TGF-β and Rapamycin releasing PLGA microspheres displayed phenotypic 

markers of Tregs and functionally suppressed T effector cells in vitro51.  Ultimately, multiple 

strategies utilizing acellular-engineered approaches may help to increase the local populations of 

regulatory T cells, and have the potential to be used therapeutically in periodontal disease. 
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1.3.8 Hypothesis: increasing the presence of regulatory T cells in the periodontal tissues 

using Treg-recruiting or Treg-expanding microspheres may attenuate periodontal disease 

symptoms and promote tissue regeneration 

The proposed delivery system of PLGA microspheres is inherently biocompatible151, non-

inflammatory151, 152, and highly tunable133, 153.  Furthermore, it represents a biomimetic strategy in 

that takes advantage of the body’s natural mechanisms of regulation and healing during 

inflammation, as shown in Figure 1. The approach to enhance endogenous Tregs via microsphere 

formulations provides a potential solution for the immune imbalance and dysfunction associated 

with periodontal disease, but does not require potentially harmful immune-blocking strategies.  

Tregs have been shown to reestablish immune homeostasis through a wide variety of 

mechanisms, both at the site of inflammation (which for our purposes is the periodontium) and at 

the draining lymph nodes (in this case, the cervical lymph nodes)154. Specifically, Tregs act to 

balance these pro-inflammatory mediators by secreting anti-inflammatory factors such as IL-10 

and TGF-β12, 13. IL-10 has been shown to play a major role in attenuation of periodontal disease 

by upregulating an extracellular RANKL inhibitor, osteoprotegerin (OPG), and promoting 

increased levels of intra-inflammatory-cell ‘suppressors of cytokine signaling’ (SOCS)155, 156. 

Furthermore, IL-10 not only regulates the inflammatory immune response, but also plays a key 

role in bone anabolism, leading to maturation of bone-forming osteoblasts157-159. Indeed, recent 

reports have shown IL-10 levels are substantially diminished in patients with severe 

periodontitis160. Finally, TGF-β has been shown to play an important role in immune regulation 

and tissue regeneration specifically with respect to bone grownth161. The data presented below 

provides evidence that validates our aforementioned approach to use biomimetic microspheres to 

harness endogenous Tregs and iTregs for abrogation of periodontal disease symptoms. 
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2.0  CONTROLLED RELEASE OF CCL22 FOR THE RECRUITMENT OF TREGS 

AND TREATMENT OF PERIODONTAL DISEASE IN A MICE MODEL 

2.1 INTRODUCTION 

A large body of literature now suggests that bacterial species (albeit protagonists) are secondary 

to the host immune response in regard to the etiology of periodontal disease progression100, 120, 162.  

Specifically, various lymphocyte subsets can accumulate in the periodontium, leading to the local 

expression of soft tissue destroying matrix metalloprotinases163 (MMPs) and receptor activator of 

nuclear factor kappa-B51 ligand (RANKL)164 (the primary activation factor for osteoclasts), 

initiating alveolar bone resorption. Several recent reports have also shown that another lymphocyte 

subset called regulatory T cells (Tregs) can accumulate in the gingival tissues during periodontal 

disease both in humans and in experimental models129, 165-167, and helps protect the host from 

harmful inflammation. However, it appears that when Tregs are present in insufficient numbers, 

progression of the disease is accelerated167. 

Accordingly, this study sought to develop a strategy for increasing local numbers of 

regulatory lymphoctyes through the recruitment of endogenous Tregs46 (mimicking a mechanism 

that tumors employ to evade immune responses44). Specifically, a natural gradient of a known 

chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22) 46, 47 could 

be artificially reproduced using controlled release from a local site.  Recently, we developed 

polymer microspheres capable of steadily releasing CCL22 using a model-aided design process 

that specifies the requisite formulation properties (such as porosity) and polymer composition46.  

Importantly, this process permits the tuning of release behavior using degradable polymers such 
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as poly(lactic-co-glycolic) acid (PLGA) that are already known to be safe and biocompatible and 

also exhibit a proven track record of clinical translation134, 168. This CCL22-releasing formulation 

has been shown to be effective at recruiting Treg both in vitro and in vivo46. These recruited Tregs 

have the potential to influence the local immunological milieu, shifting it toward homesotasis46.  

Based on these observations, the hypothesis of this study is that this biodegradable, controlled 

release formulation of CCL22 administered locally in the periodontium, may recruit Tregs, and 

effectively abrogate periodontal disease symptoms without necessarily reducing local bacterial 

numbers.  Furthermore, the presence of Tregs may actually help to balance the pro-inflammatory 

response and generate an environment that is conducive to both periodontal tissue regeneration as 

well as bone regeneration possibly through expression of interleukin 10 (IL-10) and osteocalcin 

(OCN)167. 

Using both Actinobacillus actinomycetemcomitans (Aa)-induced94, 98-100, 115, 156, 167 and 

Porphyromonas gingivalis (Pg)-induced97, 169 mouse models for periodontal disease, this study 

demonstrates that the Treg recruiting formulation significantly halts the progression of 

periodontitis as determined by significant decreases in alveolar bone resorption (primary disease 

outcome). Furthermore, the Treg recruiting formulation leads to a significant decrease in the 

production of proinflammatory cytokines in the periodontal tissues (along with an increase in anti-

inflammatory cytokines) as well as a decrease in markers of soft and hard tissue destruction (along 

with an increase in markers of soft and hard tissue regeneration).  Overall, the Treg-recruiting 

formulations described herein may serve as a tool for the study of the role of Treg in periodontal 

disease, and even suggest a new treatment modality that intends to harness the body’s own 

sophisticated immune regulatory mechanisms through the recruitment of endogenous cells. 
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2.2 METHODS 

2.2.1 Microsphere preparation 

Poly (lactic-co-glycolic) acid (PLGA) microspheres containing recombinant mouse CCL22 (R&D 

systems, Minneapolis, MN) were prepared using a standard water-oil-water double emulsion 

procedure as described46. Blank (unloaded) PLGA microsphere controls were fabricated in the 

same manner with the exception of CCL22 protein encapsulate.  Briefly, the PLGA (RG502H, 

Boehringer Ingelheim, Petersburgh, VA) microspheres were prepared by mixing 200 μL of an 

aqueous solution containing 5 μg of rmCCL22 and 2 mg of BSA and 15 mmol NaCl with 200 mg 

of polymer dissolved in 4 mL of dichloromethane.  The first water-in-oil emulsion was prepared 

by sonicating this solution for 10 seconds.  The second oil-in-water emulsion was prepared by 

homogenizing (Silverson L4RT-A) this solution with 60 mL an aqueous solution of 2% polyvinyl 

alcohol (M.W. ~25,000, 98 mol. % Hydrolyzed, PolySciences, Warrington, PA) for 60 seconds at 

3000 RPM.  This solution was then mixed with 1% polyvinyl alcohol and placed on a stir plate 

agitator for 3 hours to allow the dichloromethane to evaporate.  The microspheres were then 

collected and washed 4 times in deionized (DI) water, to remove residual polyvinyl alcohol, before 

being re-suspended in 5 mL of DI water, frozen, and lyophilized for 72 hours (Virtis Benchtop K 

freeze dryer, Gardiner, NY; operating at 100mTorr).  The overall microsphere fabrication process 

is shown below in Figure 7. 

Additional recombinant mouse CCL22 PLGA microspheres were fabricated in order to 

find the optimal in vitro release characteristics for use in the mouse model of periodontal disease.  

Microspheres composed of varying PLGAs were used and mixed in combination: 4.2 kDA 50:50 

PLGA carboxylic acid capped polymer from Lakeshore Biomaterials (Brimingham, AL), RG502 
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(acetyl end cap) 50:50 PLGA (Boehringer Ingelheim, Petersburgh, VA), RG504 (acetyl end cap) 

50:50 PLGA (Boehringer Ingelheim, Petersburgh, VA).  Briefly, 5 μg of rmCCL22 (R&D 

Systems) was dissolved in 200 μL of deionized water and was added to with 200 mg of polymer 

dissolved in 4 mL of dichloromethane. The first water-in-oil emulsion was prepared by sonicating 

this solution for 10 seconds.  The second oil-in-water emulsion was prepared by homogenizing 

(Silverson L4RT-A) this solution with 60 mL an aqueous solution of 2% polyvinyl alcohol (M.W. 

~25,000, 98 mol. % Hydrolyzed, PolySciences, Warrington, PA) for 60 seconds at 3000 RPM.  

This solution was then mixed with 1% polyvinyl alcohol and placed on a stir plate agitator for 3 

hours to allow the dichloromethane to evaporate.  The microspheres were then collected and 

washed 4 times in deionized (DI) water, to remove residual polyvinyl alcohol, before being re-

suspended in 5 mL of DI water, frozen, and lyophilized for 72 hours (Virtis Benchtop K freeze 

dryer, Gardiner, NY; operating at 100mTorr).  The overall microsphere fabrication process is 

shown below in Figure 7. 

 

Figure 7: Fabrication of PLGA microspheres encapsulating aqueous protein. 
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2.2.2 Microsphere characterization 

Surface characterization of microspheres was conducted using scanning electron microscopy 

(JEOL JSM-6330F, Peabody, MA) and microsphere size distribution was determined by volume 

impedance measurements on a Beckman Coulter Counter (Multisizer-3, Beckman Coulter, 

Fullerton, CA).  CCL22 release from microspheres was determined by suspending 7-10 mg of 

microspheres in 1 mL of phosphate buffered saline (PBS) placed on an end-to-end rotator at 37°C.  

CCL22 release sampling was conducted at various time intervals by centrifuging microspheres 

and removing the supernatant for CCL22 quantification using ELISA (R&D Systems, 

Minneapolis, MN), sampling of releasates is shown in Figure 8 Below.  Microspheres were re-

suspended with 1 mL of fresh PBS and returned to the rotator at 37°C. 

 

Figure 8: In vitro releasate sampling from PLGA microspheres. 
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2.2.3 CCL22 microsphere administration in mice 

For mouse investigations microspheres were administered to 4 sites via 2% carboxy methyl 

cellulose (CMC) in PBS suspension.  Specifically, 2-5 μL of solution containing 25 mg/mL of 

particles were administered to the proximal side of the first molar, each inter-dental site, and distal 

to the third molar of the right maxilla of the mice, shown in Figure 9 below.  Microspheres were 

injected into maxillary gingiva of mice using 27-28.5 gauged insulin syringes. For C57BL/6JJ 

mice inoculated with Actinobacillus actinomycetemcomitans, microspheres were injected on days 

-1, 10 and 20 relative to the first bacterial inoculation, shown in Figure 10 below.  For BALB/cJ 

mice inoculated with Porphyromonas gingivalis, microspheres were injected on days -1, 20, and 

40 relative to the first bacterial inoculation, shown in Figure 11 below. Microspheres were injected 

in mice at a depth of approximately 100-300 microns within the maxillary gingival tissues. All 

microsphere injections in mice were preformed under a stereomicroscope. Small amounts of the 

microsphere solution were observed to overflow into the oral cavity of the mice during injections.   
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Figure 9: CCL22 microsphere administration route in mice. 

 

Figure 10: CCL22 microsphere treatment experimental schedule in Actinobacillus 

actinomycetemcomitans infected Black/6 mice. 
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Figure 11: CCL22 microsphere treatment timeline in Porphyromonas gingivalis infected BALB/cJ 

mice. 

 

2.2.4 Periodontal disease induction in mice 

The mouse model for periodontitis was conducted as described previously97, 167.  Briefly, wild type 

male C57BL/6J mice aged 8-weeks were purchased from Charles River Laboratories International, 

Inc., (Wilmington, MA) or bred and maintained in the animal facilities of the Department of 

Biochemistry and Immunology – FMRP/USP.  Mice were inoculated with Actinobacillus 

actinomycetemcomitans (ATCC 29522) cultured under anaerobic conditions and suspended in 

~100 μL of PBS supplemented with 2% carboxymethlylcellulose (CMC) at 1X109 CFU placed in 

the oral cavity.  At 48 hours and 96 hours the inoculation was repeated, as shown in Figure 10.  

Negative controls received heat-killed-sham bacteria or only PBS supplemented with 2% CMC. 

All protocols were approved by the local Institutional Animal Care and Use Committees at the 

University of Pittsburgh and the FMRP/USP. 

For experiments using Porphyromonas gingivalis as a colonizing periodontopathogen in 

BALB/cJ mice periodontitis was induced as described97. Briefly, male BALB/cJ mice age 6-8 
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weeks were purchased from Jackson Laboratories.  To reduce the commensal oral bacteria, the 

drinking water of mice was modified with 15 mL/L of Sulfatrim Pediatric Suspension 

(sulfamethoxazole and trimethoprim, 2 mg/mL wt/vol and 0.4 mg/mL wt/vol, Henry Schein) for 

10 days. After 10 days of antibiotic water, the mice were given clean drinking water for 5 days to 

prevent any direct microbicidal effects of the antibiotic solution on the colonization of the oral 

pathogen. Mice were then colonized 3 times during the first week at 2 day intervals with 

Porphyromonas gingivalis (Pg, ATCC 33277) grown under anaerobic conditions, as shown in 

Figure 11. Bacteria were plated on brucella blood agar supplemented with hemin and vitamin k1, 

on days of inoculation, Pg was suspended in brain heart infusion (BBL BHI, BD Biosciences, San 

Jose, CA) supplemented with 2% carboxymethlylcellulose at 1x1011 CFU. Mice received 0.5 mL 

of the Pg BHI suspension orally administered with gavage feeding needle.  

2.2.5 Bacteria cultures 

Bacterium, Actinobacillus actinomycetemcomitans (ATCC 29522) were cultured under anaerobic 

conditions.  Briefly, Actinobacillus actinomycetemcomitans cultures were initiated according to 

ATCC instructions and plated on brucella blood agar supplemented with hemin and vitamin k1, 

plates were placed in an anaerobic chamber (Oxoid anaerojar 2.5 L) with an Oxoid anaerogen 2.5 

L anaerobic sachet at 37°C.  After 1 week of growth, bacteria were isolated with loops from the 

brucella agar and seeded in 100mL Brain Heart Infusion (BHI) (Becton, Dickson and company, 

BD) and cultured over night anaerobically (anaerobic jar, Oxoid anaerojar 2.5 L with an Oxoid 

anaerogen 2.5 L anaerobic sachet) at 37°C.  Actinobacillus actinomycetemcomitans cultures were 

isolated from the BHI broth using centrifugation at >6000g, 10 minutes and washed 2 times with 

sterile PBS.  Finally, Actinobacillus actinomycetemcomitans cultures were re-suspended in 
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Phosphate buffered saline (PBS) supplemented with 2% carboxymethlylcellulose (CMC) at 1X109 

CFU. 

Bacterium Porphyromonas gingivalis (Pg, ATCC 33277) were cultured from isolates 

according to ATCC instructions.  Briefly, Porphyromonas gingivalis isolates were suspended in 

tryptic soy broth (TSB) supplemented with hemin, vitamin k1 and L-cystine and cultured 

anaerobically (anaerobic jar, Oxoid anaerojar 2.5 L with an Oxoid anaerogen 2.5 L anaerobic 

sachet) at 37°C.  After 48 hours Porphyromonas gingivalis cultures were isolated from the broth 

with centrifugation at >6000g, 10 minutes.  Cultures were concentrated with TSB and plated on 

brucella blood agar supplemented with hemin and vitamin k1 and cultured anaerobically 

(anaerobic jar, Oxoid anaerojar 2.5 L with an Oxoid anaerogen 2.5 L anaerobic sachet) at 37°C, 

or glycerol was added to TSB based cultures O.D. 660 ~ 0.6 ABS, and cryopreserved for future 

use. After 5-7 days Pg plated on brucella blood agar supplemented with hemin and vitamin k1 

turned black (pigment) and cultures were collected with loop for mouse infection. Pg was 

suspended in brain heart infusion (BBL BHI, BD Biosciences, San Jose, CA) supplemented with 

2% carboxymethlylcellulose at 1x1011 CFU (approximately 1 plate of Pg for every 3 mice to be 

infected). 

2.2.6 Mouse anti-GITR treatment for Treg inhibition 

Anti-GITR (DTA-1) hybridomas were grown i.p. in mineral oil-injected nude mice as described167.  

Briefly, the antibodies were purified from ascites by precipitation using ammonium sulphate (45%, 

w/v), and subsequently purified by a G protein column (Amersham Biosciences, Piscataway, NJ, 

USA), as described previously167.  A bicinchoninic method was used to quantify protein levels.  

The in vivo blockage of GITR molecules was performed by i.p. injection of 500 μg/mouse of 



 38 

purified anti-GITR mAb diluted in phosphate buffered saline (PBS), performed 15 days after 

bacterial inoculation, Figure10. 

 

2.2.7 Assessment of periodontal disease induced bone loss in mice 

To evaluate the extent of alveolar bone destruction, murine maxillary alveolar bone was quantified 

as described previously97, 167.  Briefly, resected maxillae were mechanically defleshed and exposed 

to dispase or 3% hydrogen peroxide overnight to remove all soft tissue.  Palatal and buccal faces 

of the molars were imaged using dissecting microscopes (Lecia, Wetzlar, Germany or Olyumpus 

SZX10 with DP72 camera).  Digitized images were analyzed using ImageJ (NIH) or ImageTool 

2.0 (University of Texas Health Science Center, San Antonio, Texas, USA).  The area between the 

cementoenamel junction (CEJ) and the alveolar bone crest (ABC) was quantified using arbitrary 

units of area (AUA) or square micrometers. 

2.2.8 Assessment of inflammatory cell infiltrate in mice 

Inflammatory cell infiltrate was analyzed from palatal periodontal lesions as described167.  Whole 

buccal and palatal tissues of maxillary molars were collected, weighed and incubated in media 

(RPMI 1640, supplemented with NaHCO3, penicillin/streptomycin/gentamycin and 0.28 Wunsch 

units/mL of liberase blendzyme CI) for 1 hour at 37°C, with the dermal side down.  Cell viability 

was assessed by trypan blue exclusion, and cell count was performed in a Neubauer chamber. 
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2.2.9 mRNA extraction from mouse maxilla 

Total RNA extraction from periodontal tissues was preformed using Trizol reagent following the 

manufacturers instructions (Life Technologies, Rockville, MD, USA) as described previously167.  

Briefly, complementary DNA was synthesized using 3 μg of RNA through a reverse transcription 

reaction (Superescript III, Invitrogen Corporation, Carlsbad, CA, USA).  Real-time polymerase 

chain reaction quantification of mRNA was preformed in a MiniOpticon system (BioRad, 

Hercules, CA, USA) using SYBR-Green PCR mastermix (Applied Biosystems, Warrington, UK).  

For mRNA quantification, relative level of gene expression was calculated using β-actin reference 

expression. The fold change was calculated as 2(-ΔΔCT) - 1.  Quantification of Actinobacillus 

actinomycetemcomitans in the palatal tissues was performed as previously described94.    

2.2.10 DNA extraction from mouse maxilla 

Briefly, DNA was extracted from tissues using a DNA purification system (Promega Biosciences 

Inc., San Luis Obispo, CA, USA) and quantified using a MiniOpticon system, then normalized to 

tissue weight.   

2.2.11 Extraction of gingiva proteins from mice 

Measurement of proteins and cytokines from the periodontal tissues were performed as described 

previously167.  Briefly, protein was extracted from the palatal gingival after tissue homogenization 

in PBS.  Samples were then centrifuged (100 G) and the supernatants were stored for testing (-

70°C).   The concentrations of cytokines IL-10, TGF-β, TNF, CTLA-4, RANKL were determined 
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by ELISA kits (R&D Systems, Minneapolis, MN, USA) and carried out according to 

manufacturers instructions. 

2.2.12 Histological sectioning and immunohistochemical staining of mouse maxilla 

Histological analysis of mouse periodontal tissues after Porphyromonas gingivalis infection were 

performed as follows. All samples from Pg infected mouse model were fixed in 10% formalin, 

and embedded in paraffin.  Sections were made at 6 μm thickness, and stained with hematoxylin 

and eosin.  FOXP3 positive cells were identified by immunohistochemistry using primary antibody 

against mouse FOXP3 (14-5773, eBioscienses, San Diego, CA), and SuperPicture™ 3rd Gen IHC 

Detection Kit (Life Technologies, Grand Island, NY).  Brightfield images were taken under 

microscope (Nikon eclipse TE2000-E: Nikon Instruments, Melville, NY). 

2.2.13 Statistical analyses 

All data was confirmed to portray a normal distribution (determined by Shapiro-Wilk test) and 

further analyzed using one-way ANOVA followed by Bonferroni’s or Tukey-HSD post-hoc test 

to compare differences between multiple groups.  Student’s unpaired t test was used for all other 

statistical analyses.  Differences were considered significant when P < 0.05.  Statistics were 

performed using GraphPad Prism or JMP Pro 10 software. 



 41 

2.3 RESULTS 

The hypothesis of this study is that biodegradable, controlled release formulation of CCL22 

administered locally in the periodontium of mice, may recruit Tregs, and effectively abrogate 

periodontal disease symptoms.  The first step to test this hypothesis was the fabrication and 

characterization of poly(lactic-co-glycolic) acid (PLGA) microspheres capable of releasing 

recombinant mouse CCL22. 

2.3.1 Characterization of rmCCL22 PLGA microspheres 

The initial goal of the project was to develop recombinant mouse CCL22 releasing microspheres 

that portrayed ideal release kinetics for use in the mouse model of periodontal disease. First, the 

fabrication of recombinant mouse CCL22 releasing poly(lactic-co-glycolic) acid (PLGA) was 

done using acetyl end capped polymers with 50:50 ratios of lactic acid to glycolic acid residues in 

three different lengths of PLGAs.  Figure 12, below, shows the surface morphology of the three 

different non-porous, acetyl end capped CCL22 PLGA microspheres using scanning electron 

microscopy.  All three CCL22 microsphere formulations exhibited similar surface morphology, 

however, the 4.2 kDa PLGA CCL22 microspheres appeared to show a slight increase in surface 

porosity, Figure 12.  The slight increase in porosity of the 4.2 kDa may be attributed to a 

combination of the smaller polymer chain and the possibility of undesired contaminants as the 4.2 

kDa was purchased from a different manufacturer than the other two polymers.  Overall, all CCL22 

microspheres exhibited similar surface characterstics as seen under scanning electron microscopy, 

Figure 12.  
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Figure 12: Surface morphology of non-porous rmCCL22 microspheres (scanning electron 

micrographs). 

 

To ensure that three recombinant mouse CCL22 microspheres exhibited similar average 

particle diameters, volume average size distributions of each PLGA microsphere formulation were 

investigated.  All three microspheres were fabricated using the same exact fabrication parameters, 

(described in methods section 2.2.1) namely: 200 mg of PLGA (4.2, 12 or 44 kDa 50:50 PLGA), 

dissolved in 4 mL of dichloromethane, loaded with 5 μg of rmCCL22 dissolved in 200 μL of DI 

water, inner emulsion sonication at 25% power-10 seconds, second emulsion homogenization at 

3000 rpm in 60 mL of 2% poly(vinyl) alcohol (PVA) DI water – 60 seconds, and dichloromethane 

evaporation in 80 mL of 1% PVA for 3 hours stirred at 600 rpm.  Particle diameter is most 

influenced by the ratio of dichloromethane to water in the second emulsion and the overall 

homogenization speed.  Ultimately, it was important for the recombinant mouse CCL22 

microspheres to exhibit average diameters greater than 10 microns to prevent phagocytic removal 

upon injection into tissue170. All three rmCCL22 microspheres exhibited average particle 
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diameters greater than 10 microns, Figure 13 below.  Accordingly, all rmCCL22 microspheres 

exhibited similar volume average size distributions (determined by size impedance Coulter-

counter), Figure 13.  Indeed, the average diameter of microspheres composed of 4.2 kDa PLGA, 

13.5 microns, was slightly smaller than the average diameter of microspheres composed of 12 kDa 

PLGA, 19.5 microns, which was slightly smaller than the average diameter of microspheres 

composed of 44 kDa, 21.4 microns.  The slight observed difference in microsphere diameter may 

be attributed to the inherent viscosity of each polymer, where polymers composed of shorter chains 

exhibit a lower inherent viscosity, ultimately allowing them to form slightly smaller, stable, 

droplets during the double emulsion fabrication process under the same power input (i.e. 

homogenization) for the emulsion process, Figure 7. 

 

 

Figure 13: Volume average size distributions for rmCCL22 microspheres. 

 

To further characterize recombinant mouse CCL22 microspheres composed of PLGAs of 

varying size (4.2 kDa, 12 kDA and 44 kDa), in vitro release of CCL22 from the microspheres was 

assessed.  In vitro release kinetics were observed by sampling rmCCL22 from releasates collected 

over a period of near 80 days, Figure 14.  All three rmCCL22 PLGA microsphere formulations 

displayed similar initial burst magnitudes and duration, roughly 0.5 ng of CCL22 per mg of PLGA 
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microspheres over the course of days 0-7, Figure 14.  As expected, the rmCCL22 microspheres 

composed of 44 kDa PLGA exhibited the lowest amount of initial burst, which is typical behavior 

for microspheres composed of PLGA with longer average polymer chain length171.  The secondary 

burst phase of all three microspheres appeared to occur around day 40 of in vitro release, Figure 

14.  Unexpectedly, the rmCCL22 PLGA microspheres composed of 4.2 kDa polymer displayed 

extended release similar to the 12 kDa and 44 kDa polymers, even though they were expected to 

release a much more accelerated rate if no microsphere-protein interactions are taken into account. 

It was believed that the delayed release (delayed secondary burst) from all three microspheres was 

a result of positively charged CCL22 (isoelectric point of 9.46) interacting with the negatively 

charged polymer through ionic interactions.  Indeed, protein or peptide charge significantly 

retarded the release of such positively charged proteins and peptides from PLGA microspheres, 

(published and discussed172). Ultimately, all three rmCCL22 PLGA microspheres cumulatively 

released approximately 3-5 ng of rmCCL22 per mg of PLGA microspheres over the 80 day period 

of investigation, Figure 14.   

 

 

Figure 14: In vitro cumulative release of recombinant mouse CCL22 from non-porous PLGA 

microspheres. 
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In attempt to fabricate a recombinant mouse CCL22 PLGA microsphere formulation 

capable of sustaining near linear release over (maintaining a constant concentration of CCL22 at 

the site of microsphere injection) this study hypothesized that mixing rmCCL22 microspheres 

composed of 4.2 kDa, 12 kDa and 44 kDa polymer may lead to extended linear release by 

incorporating characteristics of each polymer microsphere.  Utilizing a recently developed 

mathematical model77, 133, 134, 168, a recipe was formulated for mixing the three non-porous 

recombinant mouse CCL22 PLGA microspheres to create one extended release formulation.  

Model aided predictions suggest that we mix 33.6% of the 4.2 kDA microspheres, 27.9% of the 

12 kDa microspheres and 38.5% of the 44 kDa microspheres to create a mixture capable of 

sustaining linear release over a period of roughly 80 days, Figure 15 A.  As expected, mixing the 

three microsphere formulations achieved a volume average size distribution in the middle of the 

range of the three individual formulations, with an average diameter of 15.4 microns, Figure 15 B, 

compared to Figure 12 above. Furthermore, recombinant mouse CCL22 cumulative in vitro release 

from the mixed microsphere formulation exhibited characteristics of all three release profiles of 

the single microsphere formulations alone, Figure 15 C compared to Figure 14 above.  

Interestingly, while each microsphere formulation alone portrayed a significant lag phase of 

between days 7 and 40, Figure 14 above, when combined at model determined ratios the 

microsphere formulation exhibited very little lag and near constant release of CCL22 over nearly 

80 days, Figure 15 C.  Ultimately, it was demonstrated that it was possible to formulate a PLGA 

microsphere system capable of devlivering constant release of recombinant mouse CCL22 over a 

period of 80 days Figure 15. 
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Figure 15: Combination of non-porous rmCCL22 PLGA microsphere formulations for long-lasting 

constant release. 

 

The ultimate goal was to fabricate recombinant mouse CCL22 PLGA microspheres capable 

of releasing over a physiological relevant timeframe for our mouse model of periodontitis.  

Therefore, prior to conducting in vivo murine periodontal disease studies, the CCL22 controlled 

release formulation was further optimized. Specifically, to achieve faster complete release of 

CCL22 that would correspond to the more accelerated (less than 80 days) treatment schedule 

typically used in the mouse model for periodontal disease167 CCL22 microspheres were 

reformulated.  To achieve the desired accelerated release of rmCCL22, PLGA microspheres were 

fabricated with polymer composed of carboxylic acid end-capped, porous, 12 kDA PLGA, Figure 

16.  To achieve surface porosity, 15 mmol NaCl was incorporated into the first emulsion during 

microsphere fabrication (15 mmol NaCl + rmCCL22 in DI water for the inner aqueous phase).  
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Indeed, the surface morphology of the microspheres with the incorporated porogen exhibited 

significantly more pores than the 12 kDA PLGA microspheres composed without the porogen, 

Figure 16.  Next, it was observed that the carboxylic acid end-capped PLGA microspheres 

degraded faster than acetyl end-capped, overall accelerating the release of encapsulated agents172, 

therefore the in vitro release kinetics of porous, 12 kDa acid end capped rmCCL22 microspheres 

were investigated.   

 

 

Figure 16: Comparison of porous, rmCCL22 PLGA microspheres and non-porous rm CCL22 PLGA 

microspheres. 
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Adding porosity by incorporating 15 mmol NaCl into the first emulsion (inner aqueous 

phase) along with the encapsulated rmCCL22 further helped to accelerate the in vitro release of 

CCL22 form the microspheres to conform to a time-scale more appropriate for in vivo therapeutic 

exploration in the mouse model for periodontal disease, Figure 17 B.  A side effect adding a 

porogen to the rmCCL22 PLGA microspheres is a slight increase in the volume average size 

distribution, determined by volume impedance, Figure 17 A.  Indeed, microspheres fabricated with 

the NaCl porogen exhibited an average diameter of 20.82 microns, Figure 17 A, compared to the 

non-porous microspheres that exhibited an average diameter of 19.5 microns, Figure 13 above. 

Ultimately, rmCCL22 microspheres composed of porous, 12 kDa acid end-capped PLGA, released 

the entire CCL22 payload in approximately 30 days, significantly faster than the in vitro release 

of CCL22 from non-porous microspheres composed of PLGA with the same molecular weight, 

Figure 17 B. The porous, acid end-capped rmCCL22 microspheres were chosen for therapeutic 

investigations in the mouse model for periodontal disease described below. 

 

 

Figure 17: Characterization of porous rmCCL22 microspheres, microsphere size distribution and 

cumulative in vitro release46. 
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2.3.2 CCL22 microspheres significantly reduce alveolar bone resorption in mice models 

for periodontitis  

First, the ability of the Treg-recruiting formulation, porous recombinant mouse CCL22 

microspheres46 to reduce alveolar bone resorption in the periodontium of an experimental mouse 

model of periodontal disease were tested.  It was observed that mice receiving CCL22 releasing 

microspheres injected into the gingiva (day -1, prior to infection, and days 10 and 20 post infection, 

based on previous observations that a single treatment was effective in mice for at least 10 days 

46) exhibited less alveolar bone resorption Figure 18 A, as indicated by area quantificaton 

measurements between the cementoenamel junction (CEJ) and the alveolar bone crest (ABC) 

Figure 18 B.  Ultimately, CCL22 microspheres prevented significant alveolar bone resorption in 

the Actinobacillus actinomycetemcomitans induced C57 black/6 mouse model for periodontal 

disease.  However, different bacterial strains are considered to be more prevalent than others based 

on population demographics173-175, and interestingly, different mouse strains appear to have 

different susceptibilities for alveolar bone loss and infection of periodontal pathogens169.  

Therefore, the ability of CCL22 microspheres to prevent alveolar bone resorption the BALB/cJ 

mouse model using periodontal disease pathogen Porphyromonas gingivalis was also tested. 
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Figure 18: CCL22 microspheres prevent alveolar bone loss in Actinobacillus actinomycetemcomitans 

infected C57 black/6 mice45. (A) Representative stereoscope images of defleshed maxilla from C57BL/6J mice 

infected with Actinobacillus actinomycetemcomitans (Aa) 30 days after inoculation. Results of treatment with 

blank (unloaded) PLGA microspheres (top), and CCL22 microspheres (bottom), injected into maxillary 

gingiva on days -1, 10 and 20 relative to the first Aa inoculation, scale bar 0.5 mm. (B) Area measurement 

between the cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the buccal root surface, untreated 

mice were infected but did not receive microspheres, no Aa served as uninfected controls. N = 5-8 mice. **P < 

0.05 determined by One-Way ANOVA followed by Bonferroni’s multiple comparisons test, untreated, CCL22 

and Blank groups were statistically different from no Aa infection. 

 

To confirm the results that suggest rmCCL22 PLGA microspheres prevent alveolar bone 

loss (the primary outcome of murine periodontitis) in mice, the ability of CCL22 microspheres to 

prevent alveolar bone loss in Porphyromonas gingivalis infected BALB/cJ mice, Figure 19, was 

also tested.  Indeed, it was observed that mice receiving CCL22 releasing microspheres injected 

into the gingiva (day -1, prior to infection, and days 20 and 40 post infection) exhibited less 
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alveolar bone resorption Figure 19 A, as indicated by area quantificaton measurements between 

the cementoenamel junction (CEJ) and the alveolar bone crest (ABC) Figure 19 B. Taken together, 

the results suggest that CCL22 microspheres significantly inhibit alveolar bone loss in both mouse 

models for periodontal disease. 

 

 

Figure 19: CCL22 microspheres prevent alveolar bone resorption in Porphyromonas gingivalis 

experimental BALB/cJ mouse model. BALB/cJ mice colonized with Porphyromonas gingivalis treated with 

CCL22 microspheres injected in the maxillary gingiva at days -1, 20, 40 showed significant reduction in alveolar 

bone loss and increased presence of regulatory T cells in the periodontium 60 days after initial colonization.  

Uninfected mice (no Pg) and infected Untreated mice served as controls for CCL22 microsphere treated mice, 

(CCL22). (A) Representative microscope images of defleshed maxilla, scale bar for CCL22 0.5mm, scale bar 

for Untreated and no Pg 1mm.  (B) Quantification of alveolar bone resorption represented by the area between 

the cementoenamel junction (CEJ) and alveolar bone crest (ABC) in square microns. ** P<0.05 determined by 

ANOVA followed by Tukey HSD post hoc multiple comparison test45. 
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2.3.3 CCL22 microspheres reduce the inflammatory infiltrate in mice, without altering 

bacterial levels 

Using the Actinobacillus actinomycetemcomitans induced C57 black/6 mouse model, mice 

receiving CCL22 microspheres displayed a significant decrease in the total number of 

inflammatory cells within in the periodontium, Figure 20 A, suggesting these mice had a 

significant reduction in damaging inflammation.  Furthermore, CCL22 microsphere administration 

did not appear to affect the levels of periodontopathogen Actinobacillus actinomycetemcomitans 

within in the resected gingival tissue of the mice, Figure 20 B.  Additionaly, overall oral bacterial 

levels were not signficatnly altered by CCL22 microsphere treatment, measured by detecting 16s 

bacterial ribosomal DNA in the resected gingiva of mice, Figure 20 C. In attempt to observe if 

CCL22 microspheres had any systemic affect on circulating inflammatory mediators, mouse serum 

was collect and analyzed immediately post-mortem for levels of C-reactive protein (CRP), Figure 

20 D. CCL22 microspheres did not appear to have any effect on the serum levels of CRP in mice, 

Figure 20 D. Taken together, this data suggests that although the invasive bacteria reside within 

the gingiva of the mice, tissue destruction is mitigated by the treatment of CCL22 microspheres, 

possibly by regulation of the host immune response. 
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Figure 20: CCL22 microsphere treatment led to a reduction in total inflammatory cells in the mouse 

gingiva, without affecting the levels of Actinobacillus actinomycetemcomitans bacteria found within the 

periodontium. (A) Inflammatory cell counts in the periodontal tissue following treatments (B) the PCR 

expression of Aa-specific bacterial 16s ribosomal DNA in the periodontal tissue normalized by palatal tissue 

weight following treatment, taken from C57BL/6J mice infected with Actinobacillus actinomycetemcomitans 

(Aa) 30 days after inoculation. N = 5-8 mice. (C) Overall bacterial counts were quantified by measuring the 16s 

ribosomal DNA in the periodontal tissue of mice 30 days after initial inoculation, normalized by palatal tissue 

weight. No statistical differences were detected among the groups.  (D) Serum collected post-mortem 30 days 
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after Aa colonization was analyzed for inflammatory marker C-reactive protein. Untreated, CCL22 and Blank 

treated mice had statistically higher levels of serum CRP than no Aa uninfected controls.  No differences were 

detectable among the infected animals.**P < 0.05 determined by One-Way ANOVA followed by Bonferroni’s 

multiple comparisons test, untreated, CCL22 and Blank groups were statistically different from no Aa 

infection45. 

 

2.3.4 CCL22 microspheres recruit regulatory T cells to the periodontium of mice, gingival 

mRNA expression and protein quantification 

This study hypothesized that the observed reduction in alveolar bone loss was a result of an 

increased presence of Treg in the periodontium.  To test this hypothesis, expression of canonical 

Treg markers and associated molecules (mRNA expression) were measured within the palatal 

gingival tissues 30 days after disease induction.  Mice receiving the CCL22-releasing formulation 

expressed significantly higher mRNA levels of the hallmark Treg markers, Foxp3, Il10 and 

transforming growth factor β (Tgfβ) and cytotoxic T Lymphocyte Antigen 4 (Ctla4), Figure 21 A, 

when compared to untreated or blank (vehicle only) controls. Quantification of IL-10, CTLA-4 

and TGF-β protein levels, extracted from gingival tissue, confirmed the mRNA trends, showing 

that mice receiving the CCL22-releasing formulation produced higher levels of the anti-

inflammatory proteins when compared to the untreated and blank controls Figure 21 B.  Notably, 

the experimental administration of microspheres had no significant effect on T helper type 2 (Th2) 

associated marker interleukin 4 (Il4) expression or endogenous Ccl22 production within the 

periodontium Figure 21 A, suggesting that the local release of CCL22 primarily affected the 

presence of Tregs as opposed to Th2 cells.  Although many activated T-cells will express some 

level of CCR4 (the receptor for CCL22), it has been previously shown that CCR4 expression in 
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Tregs is significantly higher level than other T cell subsets43, possibly accounting for the 

preferential recruitment of Tregs seen here and in our prior studies46. 

 

 

Figure 21: CCL22 microspheres recruited regulatory T cells (Tregs) to the periodontium of mice. 

Periodontal tissues were resected from C57BL/6J mice infected with Actinobacillus actinomycetemcomitans (Aa) 

30 days after inoculation, microspheres were injected into maxillary gingiva on days -1, 10 and 20 relative to 

the first Aa inoculation.  CCL22 microsphere treated mice, blank (unloaded) microsphere and untreated mice 

served as infected experimental and control groups, uninfected no Aa mice served as positive controls. (A) 

mRNA expression of Foxp3, Il10, Tgfβ, Il4, Ccl22 and Ctla4 in periodontal tissue as measured by quantitative 

PCR.  The mRNA expression levels were compared by the value of 2(-ΔCt)-1, as compared to β-actin reference. 
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(B) IL-10, TGF-β, and CTLA-4 protein levels in periodontal tissues as determined by ELISA from digested 

periodontal tissues of mice. N = 5 mice. **P < 0.05 determined by One-Way ANOVA followed by Bonferroni’s 

multiple comparisons test, untreated, CCL22 and Blank groups were statistically different from no Aa45. 

 

2.3.5 Histological assessment of Tregs presence and reduced osteoclast in the 

periodontium of mice treated with CCL22 microspheres 

CCL22 microsphere treatments led to observable FOXP3+ cell (regulatory T cells, Tregs) presence 

in the periodontium of mice as revealed by immunohistochemistry analysis whereas controls 

produced no such observable staining Figure 22.  Figure 22 A and B show hematoxylin and eosin 

(H&E) staining of mouse maxilla, Figure 22 C highlights FOXP3+ Tregs in the periodontium of 

mice. Importantly, there was no observation of residual PLGA microspheres (or remnants of 

particles) in the histological sections 20 days after the last microsphere injection (Figure 22), which 

is to be expected given the relatively low molecular weight distribution of polymer used (12 kDa) 

and microspheres likely completely degraded, as it has been shown that PLGA microspheres 

degrade faster in vivo than in vitro176. 
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Figure 22: Histological evidience of Treg recruitment to CCL22 microspheres in mice. BALB/cJ mice 

colonized with Porphyromonas gingivalis treated with CCL22 microspheres injected in the maxillary gingiva at 

days -1, 20, 40 showed significant reduction in alveolar bone loss and increased presence of regulatory T cells 

in the periodontium 60 days after initial colonization.  Uninfected mice (no Pg) and infected Untreated mice 
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served as controls for CCL22 microsphere treated mice, (CCL22). (A-B) Representative 

immunohistochemistry images of CCL22 microsphere treated mouse maxilla. Sections were stained with H&E 

(A-B), and immunohistochemistry was performed with anti-mouse FOXP3 antibody (C).  FOXP3 positive cells 

were observed in periodontal tissue (arrows), FOXP3+ cells were only detectable in sections from CCL22 

treated mice. Scale bar = A: 1,000µm, B, C: 100µm. T: tooth, G: gingiva, and B: alveolar bone45. 

 

 

Aside from histological evidence of Treg migration to mice treated with CCL22 

microspheres, the periodontium histological slices were analyzed for osteoclast (bone resorbing 

cells) activity.  Utilizing a tartrate-resistant acid phosphatase (TRAP) stain, Figure 23 (Red-pink 

stain), to identify in situ osteoclast activity, we observed marked decrease in all sections stained 

from mice that received CCL22 microspheres compared to untreated, but Porphyromonas 

gingivalis infected mice, Figure 23.  Osteoclasts are potent bone resorbing cells that can be induced 

in bone tissues under inflammatory conditions and show high activity during periodontitis99, 120, 

121. Decreased osteoclast activity (supported by the decreased TRAP staining) supports the 

evidence showing CCL22 microsphere treated mice displayed reduced alveolar bone resorption. 
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Figure 23: Histological TRAP staining, CCL22 microsphere treated mice show reduced expression of 

osteoclast (TRAP) activity. BALB/cJ mice colonized with Porphyromonas gingivalis treated with CCL22 

microspheres injected in the maxillary gingiva at days -1, 20, 40 showed significant reduction TRAP staining. 

Representative images from age match controlled mice, CCL22 microsphere treated mice and untreated , 

infected mice, Scale bar (red), 50 μm. 

 

2.3.6 Anti-GITR inhibition of Tregs reverses the therapeutic effect of CCL22 

microsphere treatments 

To confirm that Tregs are indeed responsible for the decreased disease symptoms and anti-

inflammatory cytokine expression, endogenous Tregs were systemically inhibited using anti-

glucocorticoid-induced tumor necrosis factor receptor (anti-GITR) antibodies during the onset of 

periodontitis in Actinobacillus actinomycetemcomitans infected mice.  Anti-GITR monoclonal 

antibodies bind to the GITR receptor (which is highly expressed on the surface of Tregs) resulting 

in reduced Treg functionality in mice167, 177. Indeed, administration of anti-GITR antibodies along 
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with the application of CCL22 releasing microspheres resulted in dramatically increased levels of 

alveolar bone destruction and a corresponding statistical increase of inflammatory cells into the 

periodontal tissues 30 days after disease initiation, Figure 24 A, B. Furthermore, Treg impaired 

mice exhibited a marked decrease in the protein levels of anti-inflammatory cytokines IL-10 and 

TGF-β found in the periodontal tissues after CCL22 microsphere administration compared to mice 

with unaltered Treg populations, Figure 24 C.  Strikingly, Treg inhibition using anti-GITR appears 

to result in complete reversal (and more so, exacerbated disease symptoms) of the beneficial effects 

seen with CCL22 microspheres.  
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Figure 24: Anti-GITR inhibition of Tregs reverses the therapuetic effect of CCL22 microspheres in 

mice. Systemic blockage of Tregs was performed by i.p. injection of anti-GITR antibodies in C57BL/6J mice 

infected with Actinobacillus actinomycetemcomitans (Aa), disease indicators were measured after 30 days. 

CCL22 microsphere injected mice, CCL22 microsphere + anti-GITR, and untreated mice served as infected 

experimental and control groups, uninfected no Aa mice served as positive controls, microspheres were 

delivered on days -1, 10 and 20 relative to the first Aa inoculation.  (A) Alveolar bone loss as determined by the 

measuring the area between cementoenamel junction (CEJ) to the alveolar bone crest (ABC) of resected, de-

fleshed maxilla. (B) The number of inflammatory cells in the periodontal tissues was determined after digesting 

the periodontal tissues.  (C) IL-10 and TGF-β protein levels in digested palatal tissues determined by ELISA.  
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N = 5 mice. **P < 0.05 determined by One-Way ANOVA followed by Bonferroni’s multiple comparisons test, 

untreated, CCL22 and CCL22 + ant-GITR were statistically different from no Aa45. 

 

2.3.7 Exploratory PCR array to identify the molecular mechanisms of Treg recruiting 

CCL22 microsphere treatments 

In order to explore the underlying molecular mechanisms responsible for disease amelioration after 

CCL22 microsphere administration, changes in the expression of cytokines, chemokines, growth 

factors and osteogenic markers in the periodontal tissues were screened using an exploratory PCR 

array. Results suggest that administration of CCL22 microspheres is associated with upregulation 

of anti-inflammatory cytokine Il10 and Tgfβ and a downregulation of the pro-inflammatory 

cytokines interleukin 1 (Il1), interleukin 2 (Il2), interleukin 12 (Il12), interleukin 17 (Il17), 

interferon-gamma (Ifnγ) and tumor necrosis factor-alpha (Tnfα) compared to untreated infected 

mice Figure 25.  In line with evidence of the recruitment of regulatory T cells seen above, it was 

observed that Ccr4, the receptor for CCL22 (expressed highly by Tregs43) was significantly 

upregulated after CCL22 microsphere treatments Figure 25. 

Interestingly, the CCL22 microsphere formulation not only led to an upregulation of Treg 

recruiting chemokine receptor and associated anti-inflammatory molecules, but also a significant 

and marked upregulation of bone growth factors (bone morphogenic proteins, BMPs) Bmp4, Bmp7 

and Tgfβ Figure 25. Furthermore, significant upregulation of markers of bone formation, including 

runt-related transcription factor 2 (Runx2) (an important transcription factor for bone forming 

osteoblasts), alkaline phosphatase (Alp1) and dentin matrix protein 1 (Dmp1) were observed in the 

CCL22 treated mice Figure 25.  Correspondingly, a significant downregulation of Rank and Rankl, 
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the receptor and ligand important for osteoclastogenesis leading to bone resorption, was observed 

after CCL22 microsphere administration.  In correlation with the downregulation of Rankl, the 

expression of Rankl extracellular inhibitor osteoprotegerin (Opg) was moderately upregulated, 

although not significantly. Moreover, mice receiving the CCL22 formulation exhibited a 

significant upregulation of extracellular matrix protein collagen type 1 (Col1a1, Col1a2) and tissue 

inhibitors of metalloproteinases Timp1 and Timp3, Figure 25.  Again, correspondingly, mice 

receiving the CCL22 formulation showed a downregulation of extra cellular matrix degrading 

enzymes Mmp2, Mmp8, and Mmp9 compared to untreated control mice 30 days after infection 

Figure 25. 
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Figure 25: Exploratory PCR array identifying the molecular mechanisms of Treg recruitment by 

CCL22 microsphere treatment in mice. The Treg-recruiting formulation enhanced the expression of osteogenic, 

regenerative and anti-inflammatory markers in the periodontium. The expression mRNA in the periodontal 

tissue of mice 30 days after Actinobacillus actinomycetemcomitans (Aa) inoculation was analyzed using a 

custom-designed, exploratory PCR array.  Samples were collected from periodontal tissue of C57BL/6J mice 

that were: infected with Aa without treatment (Untreated control, solid bars) and also infected with Aa and 

injected with CCL22 releasing microspheres (CCL22, unfilled bars), microspheres were delivered on days -1, 

10 and 20 relative to the first Aa inoculation.   The threshold for upregulation (more than 5 fold increase) and 

down regulation (less than 0.5 fold decrease) in CCL22 treated group compared to the control untreated group 

was indicated with lines45. 
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2.3.8 Quantitative mRNA analysis of key markers to elucidate the molecular mechanisms 

of Treg recruitment by CCL22 microspheres in a mouse model of periodontitis 

To verify the most important results observed with the exploratory PCR array, traditional 

quantitative PCR assays were utilized and enable the confirmation of statistical significance.  

Consistent with data obtained from the PCR array, marked decreases in pro-inflammatory 

cytokines IL-1, TNF (confirmed at the protein level, Fig. 5B), Ifnγ, and Il17 in the CCL22 

microsphere treated animals compared to blank or untreated controls were observed, Figure 26. 

Furthermore, CCL22 microsphere administration led to statistical increases in pro-regenerative 

factors in extracellular matrix protein collagen type 1 (Col1a1), osteoblast transcription factor 

Runx2, Bmp7, and Dmp1.  Accordingly, a decrease in osteoclast maturing Rankl both at the 

transcription and protein level (Figure 26 A, B) was indeed observed in the CCL22 microsphere 

administered mice.   
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Figure 26: Quantitative PCR analysis of periodontal disease mediators in response to Treg recruiting 

CCL22 microspheres in mice. The Treg recruiting formulation decreased inflammatory cytokine expression 

and increased the expression of pro-regenerative factors.  Periodontal tissues were resected from C57BL/6J 

mice infected with Actinobacillus actinomycetemcomitans (Aa) 30 days after inoculation. CCL22 microsphere 

injected mice, blank (unloaded) microsphere and untreated mice served as infected experimental and control 

groups, uninfected no Aa mice served as positive controls, microspheres were delivered on days -1, 10 and 20 

relative to the first Aa inoculation. (A) mRNA expression of Tnfα, Il1β, Ifnγ, Il17, Rankl, Bmp7, Dmp1, Runx2, 

Col1a1, and Opg in periodontal tissue was analyzed by quantitative PCR.  mRNA expression levels were 

compared by the value of 2(-ΔCt)-1 with reference to β-actin. (B) TNF and RANKL protein levels were measured 

in digested palatal tissues by ELISA. N = 5 mice.  **P < 0.05 determined by One-Way ANOVA followed by 

Bonferroni’s multiple comparisons test, untreated, CCL22 and Blank groups were statistically different from 

no Aa except for the mRNA expression of BMP7, DMP1 and RUNX245. 
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2.4 DISCUSSION 

As an alternate strategy to current antimicrobial treatments for periodontal disease, we sought to 

explore the local enrichment of regulatory T lymphocytes (Tregs) in the periodontal space.  Tregs 

have been known to balance inflammation through a number of mechanisms including: anti-

inflammatory cytokine secretion including, but not limited to, IL-10, TGF-β and CTLA-412, 13, 178, 

the metabolic disruption of inflammatory cells, perforin mediated direct killing of inflammatory 

cells, and inhibiting dendritic cell function (reviewed13). Correlating with the anti-inflammatory 

cytokine IL-10 appears to be associated with less aggressive form of periodontitis both in humans99 

and in mice100.  Furthermore, the anti-inflammatory cytokine TGF-β has been studied as a 

therapeutic in context of periodontal healing and bone regeneration179. Previous attempts to 

harness Tregs in situ involved the use of adenoviral vectors to induce the expression of CCL22 in 

murine autoimmune diabetes47.  Here we describe a strategy to recruit Tregs via engineered release 

of CCL22 protein using biodegradable and biocompatible polymers with an excellent track record 

of approval by the FDA. More specifically, we utilized rationally-designed controlled release 

systems to sustain presentation of CCL22 chemokine from an injectable point source, which as 

previously been shown to successfully localize Tregs in vivo46. 

Indeed, we observe that administration of the CCL22 releasing formulation effectively 

recruits functional Tregs to the periodontium (Figures 21 and 22), leading to a net decrease of the 

local inflammatory response and a reduction in alveolar bone loss in a mouse periodontitis model 

(Figures 18-20).   Interestingly, the Treg recruiting formulation is able to achieve this tissue-

protective effect without a corresponding increase in bacterial load (Aa or total bacterial levels) in 

the gingival tissues (Figure 20) or increase in systemic inflammation to the infection (C-reactive 
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protein, CRP, levels in serum, Figure 20), whereas traditional blocking of immune responses can 

impair the hosts protective defenses94.  

It was also apparent that impairing Treg function (via anti-GITR administration) reverses 

the beneficial effects of the Treg-recruiting formulation (Figure 24).  These results further 

underscore the importance of Treg in periodontal health. It is also clear from our data (Figure 21 

and 25) that Treg recruitment to the periodontium is accompanied by an increase in IL-10, and 

TGF-β expression.  It is well known that these regulatory cytokines are secreted by Tregs, and are 

a mode by which Tregs exert a protective effect13.  For instance, these Treg associated mediators 

are known to diminish the presence of inflammatory cytokines such as IFN-γ and IL-17180, 181.  

Notably, T helper type 1 (Th1) and T helper 17 (Th17) cells, which are associated with a high 

levels of IFN-γ and IL-17 expression, have been previously implicated to exacerbate periodontal 

disease symptoms97, 182, 183. Consistent with the idea that recruited Treg may regulate this process, 

our data (Figures 25 and 26) reveals decreased levels of IFN-γ and IL-17 in treated mice.  In 

addition, Treg secretion of IL-10 and TFGβ are also known to modulate the inflammatory markers 

TNF32 and IL1-β184, which appear to be also down-regulated in CCL22 microsphere treated mice 

(Figure 25 and 26).  Most importantly, it is known that decreased levels of inflammatory cytokines 

such as IFN-γ, IL-17, TNF, and IL-1β are associated with reduced levels of RANK-L (also 

observed in Figure 25 and 26), with decreasing amounts of this maturation factor previously being 

correlated with decreased amounts of bone loss162. Finally, we also observed an increase in CTLA-

4 expression in the periodontal space of CCL22 microsphere treated mice (Figure 21), suggesting 

that Tregs recruited to the periodontium may suppress inflammation via a cell-cell contact 

mechanism, as observed previously185.  
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In conjunction with their ability to regulate inflammation, regulatory T cells are also being 

identified as effective promoters of tissue regeneration32, 58.  For instance, Tregs negatively 

modulate pro-inflammatory cytokines responsible for inhibiting various processes during tissue 

regeneration32. Accordingly, CCL22 microsphere treatments led to decreased levels of 

inflammatory tissue destroying factors, and importantly led to the upregulation of tissue 

regenerative growth factors (Figure 25 and 26).  We also observed that the C-X-C motif chemokine 

12 (Cxcl12, also known as stromal-cell derived factor 1, Sdf1) is upregulated upon CCL22 

microsphere treatment (Supplementary Fig. 4), which may mediate the migration of potentially 

regenerative stem cells into tissues186. This result may be particularly important given that the 

inhibition of Cxcl12 or corresponding C-X-C chemokine receptor type 4 (Cxcr4) was recently 

reported to delay bone fracture repair187. Similarly, the parallel upregulation of the C-X3-C 

chemokine motif ligand 1 (Cx3cl1) observed after CCL22 microsphere treatment (Figure 25) also 

could account for mesenchymal stem cell recruitment188.  However, further studies would need to 

be performed to evaluate whether or not stem cells play a role in the effects observed in this study.  

Regardless, the results described above suggest that recruitment of Tregs may not only halt 

destructive inflammation but also promote an environment amenable to tissue regeneration.  
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3.0  CONTROLLED RELEASE OF CCL22 FROM PLGA MICROSPHERES FOR 

THE TREATMENT OF PERIODONTAL DISEASE IN A DOG MODEL 

3.1 INTRODUCTION 

A multitude of animal models have been used to evaluate the new treatments and to advance the 

understanding of the pathogenesis of periodontal disease189, 190.  Each animal model for periodontal 

disease represents different characteristics of the human condition, and the utility of each model 

can depend on the study’s ultimate goal.  Rodent models of periodontal disease offer cheap and 

timely advantages compared to models conducted in in larger species93.  Furthermore, the use of 

rodents allows investigators to use a wide variety of molecular tools (e.g. antibiodies, gene 

knockout strains etc.) to analyze and differentiate certain characteristics of the disease, and such 

investigations have been crucial to develop the comprehensive understanding of the disease 

etiology93.  However, small animal or rodent models for periodontal disease do not always 

accurately replicate the complex development of periodontal disease seen in the human 

condition189, 190.  Therefore, testing therapeutic agents in larger animal models that more accurately 

represent the human periodontal disease condition is often a key step in the translation therapies 

from the bench-top to the bedside.  

3.1.1 Advantages and disadvantages of rodent models for periodontal disease 

Rodent models for periodontal disease, utilizing various strains of rats or mice, are typically 

initiated by feeding or inoculating rodents with human pathogenic bacteria93. Mouse molars are 
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used for periodontal disease investigations as opposed to the incisors, which exhibit continuous 

tooth eruption (and are degraded by wear).  The most common mouse models for periodontal 

disease utilize the periodontal pathogen Actinobacillus actinomycetemcomitans45, 95, 99, 100, 167, 191 

or the periodontal pathogen Porphyromonas gingivalis45, 97, 169, 192.  Interestingly, Actinobacillus 

actinomycetemcomitans is typically associated with aggressive or juvenile periodontitis, whereas 

Porphyromonas gingivalis is typically associated with adult or chronic periodontitis93.  While these 

are the two most commonly used mouse model bacteria, there is not a lot research on whether or 

not the resulting infection is polymicrobial, or what role commensal or resident bacteria play in 

the development of the disease models.  Furthermore, mouse strain appears to play a role in 

experimental periodontal disease development, and BALB/cJ mice appear to be more susceptible 

to alveolar bone loss initiated by Pg than mice of C57 black/6 backgrounds169.  Regardless, mouse 

models enable researchers to utilize a large number of immunological and cellular reagents that 

are available, along with a long history of background information on mouse molecular 

mechanisms and immune system.   While the human periodontal disease condition can assert itself 

as both a chronic or an acute disease (possibly with periods of both) mouse models are typically 

considered to better represent acute disease conditions.  Some work has utilized aged mice (~2 

year old mice) to better simulate chronic periodontal disease conditions seen clinically183, but such 

models require a lot of resources and are better for investigating molecular mechanisms of disease 

than testing new treatment modalities193.  Others have used lipopolysaccharides derived from 

invasive bacterial species (LPS derived from Actinobacillus actinomycetemcomitans) to initiate 

periodontal immune responses (via toll-like receptor 4, TLR4, signaling) in mice, possibly 

allowing for more controlled inflammatory conditions compared to infection-based mouse 

models194-196. 
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Rat models for periodontal disease typically use infection with Actinobacillus 

actinomycetemcomitans or Porphyromonas gingivalis, with or without molar ligatures93.  

Typically Wistar or Spraque-Dawley rat strains are used for periodontal disease models, and 

ligatures (silk sutures) are typically placed (tied) around the middle molar (middle of 3 molars) of 

the mandible of rats.  Whereas in mice, ligatures are not typically used (although some have 

reported successful use183) because of the limited space and size of mice mandibles, ligature 

placement in mice typically is associated with significant trauma making alveolar bone destruction 

due to periodontal disease conditions difficult to discern from forced trauma.  However, the size 

of rats mandibles and molars easily allows for the use of ligatures to induce periodontal disease.  

Ligatures, with or without additional external bacteria inoculation, allow for the growth of 

endogenous or native bacterial biofilms and are thought to be more representative of acute 

periodontal disease conditions seen clinically93, 189.  Overall, rodent models for periodontal disease 

progress extremely fast compared to humans, however, the ease of use with limited resources and 

a large library of immunological and cellular tools make them ideal model species for basic 

hypothesis testing93, 189, 190. 

Furthermore, some investigators have utilized hamsters, ferrets or minks as species for 

experimental models of periodontal disease189, 190.  While these species are larger than mice, they 

have comparable dimensions to rats, but lack many of the immunological and cellular tools widely 

available for rats and mice.   
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3.1.2 Advantages and disadvantages of non-human primates for experimental 

periodontal disease models 

Generally, non-human primates are the most similar to humans in experimental models for 

periodontal disease189, 190.  While non-human primates share many of the dental features of 

humans, they typically display less depth in disease related periodontal pockets compared to 

humans190.  Periodontal disease conditions have been reproduced in non-human primate models 

by typically by placement of silk sutures (ligatures) around the base of investigated teeth to 

simulate acute periodontitis, or by surgically creating defects by removing alveolar bone and 

ginigiva and observing the healing response, or surgically creating defects accompanied with steel 

bands around the teeth or ligatures to simulate chronic disease197.  The most common non-human 

primate model is the ligature induce acute periodontitis, where silk sutures are placed around the 

base of teeth and disease progression (often with treatment) is monitored using clinical measures 

of periodontal disease over the course of 1-6 months189, 190, 197, 198.  Clinical measures of bleeding 

on probing, probing depth and clinical attachment loss can be assessed in non-human primates just 

as they are done clinically (these measures cannot be preformed on rodents due to the dimensions 

and the nature of rodent experimental periodontitis).  Although non-human primates are ideal 

candidates for experimental periodontitis as they most accurately represent human conditions, they 

are extremely difficult to work with (ferocious), extremely resource intensive and lack many of 

the immunological and cellular tools available for rodents189, 190. 
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3.1.3 Advantages and disadvantages of dog models for periodontitis 

Unlike non-human primates, dogs offer a less resource intensive, and less difficult (dogs are docile 

and obedient compared to non-human primates) experimental model for periodontal disease189, 190.  

Unlike rodents, but similar to non-human primates, dog models for periodontitis allow for the 

measure of clinically relevant disease outcomes such as periodontal probing depth, bleeding on 

probing and clinical attachment loss189, 190, 199.  Similar to non-human primates, periodontal disease 

is induced via ligature induced periodontitis to simulate acute disease or surgically created defects 

to model healing and repair responses189, 190.  Typically, beagle dogs are used for periodontal 

research to help ensure reproducibility and because they have demonstrated natural susceptibility 

periodontal disease199.  However, dogs typically exhibit less of an increase in anaerobic gram 

negative rod-bacteria compared to human conditions, after ligature placement and endogenous or 

native bacterial build-up200.  Overall, dog models for periodontitis are the most widely used large 

animal model due to their ease of experimentation, reproducibility (with beagle research strains 

being readily available) and human disease replication, including clinical measurements of 

disease189, 190. 

3.1.4 CCL22 microspheres for the treatment of periodontitis in the ligature induced dog 

model of periodontitis 

Utilizing one of the most widely accepted preclinical model of periodontitis, ligature induced 

canine periodontitis190, 199, the efficacy of CCL22 microspheres was explored in a this more 

clinically relevant translational experimental model. Treg-recruiting CCL22 microspheres were 

administered into periodontal pockets at multiple time-points (for maximum effect) and measured 
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symptoms using both a common clinical measure (probe of gingival sulcus) as well as quantitative 

CT measurement of alveolar bone loss. 

3.2 METHODS 

3.2.1 Microsphere preparation 

Poly (lactic-co-glycolic) acid (PLGA) microspheres containing recombinant human for canine 

investigations CCL22 (R&D systems, Minneapolis, MN) were prepared using a standard water-

oil-water double emulsion procedure as described46. Mouse and human CCL22 share 63% of 

amino acid identities and score 83% positives using a BLAST analysis.  Canine CCL22 and 

Human CCL22 share 71% of identities and score 84% positives using a BLAST analysis.  Blank 

(unloaded) PLGA microsphere controls were fabricated in the same manner with the exception of 

CCL22 protein encapsulate.  Briefly, the PLGA (RG502H, Boehringer Ingelheim, Petersburgh, 

VA) microspheres were prepared by mixing 200 μL of an aqueous solution containing 25 μg of 

rmCCL22 and 5 mmol NaCl with 200 mg of polymer dissolved in 4 mL of dichloromethane.  The 

first water-in-oil emulsion was prepared by sonicating this solution for 10 seconds.  The second 

oil-in-water emulsion was prepared by homogenizing (Silverson L4RT-A) this solution with 60 

mL an aqueous solution of 2% polyvinyl alcohol (M.W. ~25,000, 98 mol. % Hydrolyzed, 

PolySciences, Warrington, PA) for 60 seconds at 3000 RPM.  This solution was then mixed with 

1% polyvinyl alcohol and placed on a stir plate agitator for 3 hours to allow the dichloromethane 

to evaporate.  The microspheres were then collected and washed 24 times in deionized (DI) water, 

to remove residual polyvinyl alcohol, before being re-suspended in 5 mL of DI water, frozen, and 
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lyophilized for 72 hours (Virtis Benchtop K freeze dryer, Gardiner, NY; operating at 100mTorr).  

The overall microsphere fabrication process is shown in Figure 7, above. 

3.2.2 Microsphere characterization 

Surface characterization of microspheres was conducted using scanning electron microscopy 

(JEOL JSM-6330F, Peabody, MA) and microsphere size distribution was determined by volume 

impedance measurements on a Beckman Coulter Counter (Multisizer-3, Beckman Coulter, 

Fullerton, CA).  CCL22 release from microspheres was determined by suspending 7-10 mg of 

microspheres in 1 mL of phosphate buffered saline (PBS) placed on an end-to-end rotator at 37°C.  

CCL22 release sampling was conducted at various time intervals by centrifuging microspheres 

and removing the supernatant for CCL22 quantification using ELISA (R&D Systems, 

Minneapolis, MN), sampling of releasates is shown in Figure 8 Above.  Microspheres were re-

suspended with 1 mL of fresh PBS and returned to the rotator at 37°C. 

3.2.3 Recombinant human CCL22 microsphere administration in dogs 

Dogs received approximately 2-4 mg of dry particles to the subgingival pockets (periodontal 

pocket) of the 4th premolars and carnassial (first molar) of both mandibles.  Dry microspheres were 

deposited in the subgingival pockets using empty, cleaned, and refilled Arestin® injector tips.  The 

dry microspheres hydrated (in gingival crevicular fluid of the dogs) and swelled immediately, 

retaining them within the periodontal pocket of dogs, and we observed no microsphere leakage 

from the pockets.  Dogs received microspheres the start of the ligature induced periodontitis (week 

0) and at 4 weeks, according to the schedule shown below in Figure 27. 
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Figure 27: rhCCL22 treatment schedule and ligature induced periodontal disease induction in dogs. 

 

3.2.4 Periodontal disease induction in beagle dogs 

Nine ~12 month old female beagle dogs were purchased from Marshall BioResources (North 

America).  Periodontal disease was induced as previously described199.  Briefly, all dogs received 

dental scaling and root planing on mandibular 4th premolar, and carnassial teeth two weeks prior 

to ligature placement as a pretreatment to create a baseline for oral health.  Every dog received 2 

times daily tooth brushing during the two week pretreatment to maintain oral hygiene.  To induce 

periodontitis, 2.0 silk sutures were placed at the cervix of the gingiva of the mandibular 4th 

premolar, and carnassial teeth.  Ligatures were held in place on the proximal and distal sides of 

each tooth by shallow notch made using a round bur.  Ligatures that had fallen off were replaced 

immediately and a small amount of dental composite resin was used to ensure ligature 

maintenance.  Microspheres were administered immediately after ligature placement and again 4 

weeks after ligature placement.  Overall disease induction and treatment schedule can be seen in 

Figure 27 above. 
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3.2.5 Assessment of periodontal disease in dogs, alveolar bone loss and clinical scores 

Pocket depth was measured at six points of each tooth, mesial and distal corner, and middle of 

both buccal and lingual sides.   Bleeding on probing was recorded at each probing site.  All the 

clinical assessment was performed at 0, 4, and 8 weeks after treatment. Gingival pocket depth is 

the distance between the cervixes of gingival to the attachment point of gingival epithelia to the 

tooth. The increase of pocket depth was calculated by subtracting the pocket depth at 0 week from 

4 weeks or 8 weeks using the mean of all the sites.  

To quantify alveolar bone loss, dog mandibles were scanned in 70% ethanol by SCANCO 

vivaCT 40 micro-computed tomography (microCT) system (SCANCO, Bruttisellen, Switzerland).  

3D images were reconstructed with SCANCO software at the same threshold across all the 

samples.  Each scan was reoriented with DataViewer (GE Healthcare, London, ON).  The images 

were reoriented by the planes adjusted to the cementoenamel junction (CEJ), bucco-lingual center 

of the roots, and parallel to the root canal in the center of distal root of 4th premolar and mesial 

root of first molar.   To assess the vertical bone reduction, the distance between CEJ and alveolar 

bone crest (ABC) was measured at the distal face and buccal face of the fourth premolar and the 

first molar after microCT image reorientation.   Along the distal face of the tooth, the ABC-CEJ 

distance was measured at 5 points 0.3 mm apart, along the buccal face of the tooth the ABC-CEJ 

distance was measured at 14-16 sites on premolar 4, and 26-28 sites on the molar spaced 0.6 mm 

apart from mesial to distal. To quantify an overall value of alveolar bone resorption per dog, we 

used a total summation of the linear CEJ-ABC distances over the (averaged left and right) 

premolars (19 sites per tooth) and molars (31 sites per tooth) of each dog.  Bone loss was also 

represented as the average linear CEJ-ABC at the buccal and distal sites of premolar 4 and the 1st 

molar, averaged on a per tooth basis. 
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3.2.6 Statistical analyses  

All data was confirmed to portray a normal distribution (determined by Shapiro-Wilk test) and 

further analyzed using one-way ANOVA followed by Bonferroni’s or Tukey-HSD post-hoc test 

to compare differences between multiple groups.  Student’s unpaired t test was used for all other 

statistical analyses.  Differences were considered significant when P < 0.05.  Statistics were 

performed using GraphPad Prism or JMP Pro 10 software. 

3.3 RESULTS 

3.3.1 Characterization of rhCCL22 PLGA microspheres 

The initial goal of the project was to develop recombinant human CCL22 releasing microspheres 

that portrayed ideal release kinetics for use in the dog model of periodontal disease. rhCCL22 

PLGA microspheres were fabricated and composed of carboxylic acid end-capped 12 kDa 50:50 

(lactic:glycolic) poly(lactic-co-glycolic) acid microspheres, Figure 28.  Surface mapping of the 

microspheres, Figure 28 A, shows that rhCCL22 PLGA microspheres exhibited slightly porous 

morphology as a result of the incorporation of 5 mmol NaCl into the inner aqueous phase (first 

emulsion) of the fabrication procedure, scanning electron micrograph Figure 28 A.  The in vitro 

release of rhCCL22 from PLGA microspheres displayed extended release of the chemokine over 

a period of 30 days, Figure 28 B.  Finally, the rhCCL22 PLGA microspheres volume average size 

distribution revealed that the microspheres had an average diameter of 16.6 microns (very similar 

to the rmCCL22 microspheres used in murine studies), ultimately suggesting that the microspheres 
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would avoid phagocytic clearance (larger than 10 microns170) once placed in the periodontium of 

dogs, Figure 28 C.  

 

 

 

 

Figure 28: Characterization of rhCCL22 PLGA microspheres for treatment of periodontal disease in 

the ligature induced dog model. (A) Scanning electron microscope image of poly(lactic-co-glycolic) acid 

microspheres encapsulating rhCCL22.  (B) Cumulative fraction released from rhCCL22 microspheres 

determined by in vitro in phosphate buffered saline and measured by ELISA.  (C) Volume impedance 
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microsphere size distribution, average particle diameter 16.6 μm represented by red-dashed line, standard 

deviation ±5.8 μm45.   

 

3.3.2 rhCCL22 microspheres reduce the clinical scores of periodontal disease and 

inflammation in ligature induced dog periodontitis 

In order to explore the potential for clinical translatability of Treg-recruiting treatments, a ligature 

induced canine model that tested the ability of the CCL22 releasing formulation to perform under 

severe inflammatory conditions and a diverse periodontopathogen milieu was used93, 201.  

Specifically, disease was induced in nine beagle dogs (3 dogs per group, both left and right 

mandibles) by placement of ligature at the gingival cervix.  The study was terminated eight weeks 

subsequent to ligature placement, and plaque had manifested on the ligatures, and cervical gingiva 

appeared inflamed in all animals (Figure 29).  Whereas the mouse experiments relied upon CCL22 

microspheres encapsulating recombinant mouse CCL2246, for canine experiments a formulation 

that released recombinant human CCL22 (Figure 28 above) deposited in the subgingival pocket at 

time-points 0 and 4 weeks was used, which mirrors the duration of human CCL22 release from 

the treatment.  
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Figure 29: rhCCL22 microspheres reduced observational swelling and plaque build up in ligature 

induced dog periodontitis. Dogs received scaling and root planing followed by ligature placement (untreated), 

or followed by ligature placement and CCL22 microsphere treatment or blank (unloaded) microsphere 

controls, microspheres were deposited into the subgingival pocket at 0 and 4 weeks after ligature placement.  

Representative digital pictures as taken on the date of ligature placement (0 week) and after the 8 weeks of 

treatment (8 weeks, terminal endpoint) of the premolars and carnassial teeth of beagle dogs45. 

 

To assess periodontal health and the degree of inflammation, the gingival pocket probing 

depth and the bleeding on probing sites were measured and recorded at 0, 4, and 8 weeks after the 

ligature placement Figure 30. Recombinant human CCL22 microsphere treatments administered 

during disease induction led to noticeable reduction in probing depths compared to blank and 
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untreated controls at 4 and 8 weeks after disease initiation, Figure 30 A. Additionally, bleeding on 

probing score was lower at 4 and 8 weeks in dogs receiving CCL22 microspheres, compared to 

controls Figure 30 B.   

 

 

Figure 30: rhCCL22 microsphere administration prevents exacerbation of clinical probing depths and 

bleeding upon probing scores in dogs. Beagle dogs receiving periodontal disease inducing ligatures at week 0 

were monitored for pocket depth and bleeding on probing at 6 sites per tooth (3 buccal, 3 lingual) of their 

second, third, fourth premolars as well as their carnassial tooth. (A) Periodontal pocket depth increase as 

measured at 4 weeks – 0 week and 8 week – 0 week after treatment for molar sites.  (B) The percentage of 

bleeding sites on probing of all the probed sites at 0, 4, and 8 weeks. Dogs treated with CCL22 microspheres 

deposited into the periodontal pocket at times 0 and 4 weeks (CCL22) were compared to untreated (Untreated) 

and empty microspheres (Blank) controls. *P<0.05, student t-test45. 
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3.3.3 rhCCL22 microspheres prevent alveolar bone loss in dogs 

CCL22 microsphere administration also appears to significantly reduce alveolar bone resorption 

as compared to controls, Figure 31.  Using X-ray microtomography (microCT) at the termination 

of the study 8 weeks after ligature placement, alveolar bone resorption was quantified in the 9 

beagle dogs.  Figure 31 A-B, shows the buccal face all dog mandibles used in the study,  CCL22 

microsphere treated dogs display reduced alveolar bone resorption. 
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Figure 31: 3D-reconstructed microCT images of the buccal face of dog mandibles. (A) Representative 

3D microCT images from mandibles of each animal on the buccal face of the left mandible post mortem, 8 

weeks of ligature placement, and (B) right mandible, n = 3 animals per group. One dog was missing premolar 

4 on birth (top row, third panel, (B), therefore no ligatures were placed on this tooth and it was excluded from 

the study.  Dogs treated with CCL22 microspheres deposited into the periodontal pocket at times 0 and 4 weeks 

(CCL22) were compared to untreated (Untreated) and empty microspheres (Blank) controls45. 

 

Alveolar bone loss in dogs was measured by taking linear measurements along the buccal 

and distal faces of the fourth premolar and first molar (carnassial) teeth of beagle dogs after 8 

weeks of ligature placement and microsphere treatment, Figure 32.  Figure 32 A, shows a 3D 

reconstructed microCT image highlighting the fourth premolar (P4) and first molar (M1) of the 
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dog mandibles.  Fourteen linear measurements were taken on the buccal face of the cementoenamel 

junction (CEJ) to the alveolar bone crest (ABC) on the P4 tooth, and 26 linear measurements sites 

(CEJ to ABC) were taken on the buccal face of the M1 tooth, Figure 32 A.  Figure 32 B shows an 

example re-oriented 2D microCT X-ray slice, and an example CEJ to ABC measurement is shown.  

Figure 32 C graphs the alveolar bone less trends along the buccal face of the P4 and M1 teeth for 

dogs treated with rhCCL22 microspheres, blank microsphere controls and untreated controls. 

 

 

Figure 32: Quantification of alveolar bone loss in ligature induce dogs. MicroCT quantification of 

alveolar bone loss prevention in dogs treated with CCL22 microspheres. (A) Representative 3D X-ray 

microtomography image of beagle dog fourth premolar (P4) and first molar (M1).  To quantify alveolar bone 

loss, 5 linear measurements of the distance between the cementoenamel junction (CEJ) and alveolar bone crest 

(ABC) were taken at 0.3 mm spacing on the distal face of the P4 and M1 (quantified and shown in Fig. 6).  
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Additionally, the CEJ to ABC distance was measured at sites spaced 0.6 mm apart along the buccal face of the 

P4 (14 sites) and M1 (26 sites).  (B) A representative image showing the measurements of the CEJ to the ABC 

were performed after re-orientation of the microCT slices to align the apical roots and CEJ.  (C) Linear bone 

loss between the CEJ and ABC along the buccal face of the left and right premolars (P4) and molars (M1) 

displaying the trends in alveolar bone resorption.   Dogs treated with CCL22 microspheres deposited into the 

periodontal pocket at times 0 and 4 weeks (CCL22) were compared to untreated (Untreated) and empty 

microspheres (Blank) controls45. 

 

Quantification of the buccal and distal cementoenamel junction to alveolar bone crest (CEJ 

to ABC) showed that rhCCL22 microspheres significantly prevented alveolar bone resorption in 

ligature induced dog periodontitis, Figure 33. Substantial bone loss was apparent on all dogs, 

particularly at the buccal side of 4th premolar and first molar, Figure 33 A.  Quantifying total 

alveolar bone loss (on a per animal basis) as a summation of the linear distance between CEJ and 

ABC, CCL22 treated dogs revealed significantly reduced bone resorption after 8 weeks, Figure 33 

B. More specifically, CCL22 treated dogs displayed on average 0.5-1.0 mm less CEJ-ABC bone 

loss than controls at buccal and distal tooth sites, Figure 33 C, akin to the linear reduction in clinical 

attachment loss reported after clinical periodontal flap surgery202.  
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Figure 33: Administration of CCL22 microspheres significantly prevented alveolar bone resorption 

dog periodontitis. Dogs received scaling and root planing followed by ligature placement (untreated), or 

followed by ligature placement and CCL22 microsphere treatment or blank (unloaded) microsphere controls, 

microspheres were deposited into the subgingival pocket at 0 and 4 weeks after ligature placement. (A) 

Representative 3D images of left mandibular buccal surface of treated and control fourth premolar and 

carnassial teeth taken post-mortem with microCT scans. Red lines illustrate representative CEJ-ABC 

distances, which were measured using 2D slices of the tooth as described in Fig. S8. (B) Quantification of overall 

alveolar bone loss per dog determined as a summation of linear distances between the alveolar bone crest (ABC) 
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and cementoenamel junction (CEJ) on the buccal and distal sites of the fourth premolar (P4) and carnassial 

(first molar, M1). (C) Quantification of the average linear bone loss on the P4 and M1 distal and molar sites, 

calculated on a per tooth basis.. N = 3 dogs per group. **P < 0.05, determined by ANOVA followed by Tukey-

HSD multiple comparisons post test45. 

3.4 DISCUSSION 

To confirm the effects of the Treg recruiting formulation in a model that is more representative of 

human disease, we utilized a widely accepted canine model, where disease is established by 

placement of ligatures followed by a soft diet, encouraging retention of a more diverse microbial 

insult and, correspondingly, more complex disease progression190. CCL22 microspheres were 

administered as a dry powder directly to the periodontal pocket, much in the same way as 

minocycline-loaded particles are delivered as adjunctive treatment to scaling and root planing in 

the clinic today90.  Consistent with the results in our mouse model, we observed slower disease 

progression with reduced clinical measures of probing depth and bleeding on probing in canine 

subjects treated with CCL22 releasing particles (Figure 30 above). Clinical probing depths and 

bleeding on probing scores are typically sufficient to determine the therapeutic efficacy of potential 

treatments in large animal models199.  Interestingly, CCL22 microsphere treated dogs displayed 

reduced amounts of bacterial plaques (seen in Figure 29).  The reduction of bacterial plaques was 

hypothesized to be a result of reduced inflammation leading to a microenvironment less favorable 

for plaque formation, (as CCL22 is not known to have any antibacterial effects alone).  

In addition, we also quantified alveolar bone resorption using microCT image analysis 

(Figures 32 and 33 above), the first time this has been done to our knowledge.  Using these 

methods, we observed that alveolar bone loss was significantly reduced in groups treated with 
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CCL22 microspheres (Figure 31-33 above) by up to 1 mm, even at extremely low doses of active 

protein (less than one microgram of CCL22 per kilogram body weight).  This amount of bone loss 

is significant given that current clinical gold standard periodontal flap surgeries appear to halt 

approximately 0.5 mm of clinical attachment level after one year202.  Furthermore, dogs receiving 

control PLGA microspheres exhibited increased bone loss compared to untreated control animals 

(Figures 31-33), similar to clinical results seen using other PLGA microsphere control vehicles90. 

It is hypothesized that the PLGA microspheres alone may contribute to inflammation during the 

acidic breakdown of the polymer chains203. As possible limitations of this study, one animal in the 

CCL22 treatment group exhibited an abnormality (crookedness) of the 4th premolar that likely 

contributed to the observed statistical variance with the P4 distal sites (Figure 31).  In addition, 

another animal in the CCL22 treatment group arrived with a missing premolar as a congenital 

defect.  In this animal, an analysis was performed to ensure that the plaque burden and bone 

resorption was not reduced at adjacent sites, and in fact, bone resorption was actually the greatest 

at this site compared to other animals.  Overall, future studies using micro-CT analysis should 

prioritize the selection of animals so as to exclude these sources of variance prior to initiation of 

the study. 

The treatment of inflammatory and autoimmune diseases through the use of Tregs is an 

emerging trend with significant potential204. Indeed, several methods are currently being 

investigated in preclinical models47 and clinical trials for autoimmune disease such as type 1 

diabetes and transplant rejection15.  However, these current methods involve complicated ex vivo 

Treg expansion protocols, and have been difficult to replicate in humans15.  Here we describe a 

method to harness endogenous Tregs and recruit them to specific sites of aberrant inflammation in 

a stable, dry powder form that can be stored and easily administered in the clinic.  We also foresee 
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that these Treg recruiting microspheres may be useful for the in situ expansion of Tregs51 for a 

number of other inflammatory and autoimmune diseases where local re-establishment of immune 

hypo-responsiveness or inflammatory homeostasis would be beneficial to halting destructive 

inflammation and even establishing a pro-regenerative milieu. 
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4.0  CONTROLLED RELEASE OF VASOACTIVE INTESTINAL PEPTIDE (VIP) 

FOR THE RECRUITMENT OF TREGS AND TREATMENT OF EXPERIMENTAL 

PERIODONTAL DISEASE IN MICE 

4.1 INTRODUCTION 

4.1.1 Introduction to vasoactive intestinal peptide and periodontal disease 

Vasoactive intestinal peptide (VIP) is a 28-aminoacid neuropeptide originally isolated from the 

intestine that has numerous biological and regulatory functions136. VIP down-regulates a variety 

of pro-inflammatory responses and up-regulates anti-inflammatory responses, and has been used 

with therapeutic success in experimental collagen-induced arthritis, sepsis, Crohn’s disease, and 

experimental autoimmune encephalomyelitis (EAE) in mice138, 205.  Additionally, VIP appears to 

shift the Th1-Th2 balance in the favor of Th2 by promoting Th2-type cytokine production and, at 

the same time, by inhibiting Th1 development and responses143, 205. 

More recently, new mechanisms have been proposed that identify the role of VIP in 

inducing and recruiting regulatory T (Treg) cells (Figure 34), important for maintaining immune 

homeostasis143.  Both natural and inducible regulatory T cells are involved in immune tolerance 

and regulation. Natural Treg cells develop in the thymus as CD4+CD25+FoxP3+ Tregs, and expand 

in the periphery140. So-called inducible Treg cells can be generated from CD4+CD25- and 

CD8+CD25- naïve T cells under certain stimulation patterns.  Treg induction by VIP occurs in two 

primary pathways. First, VIP may directly activate naïve CD4+CD25- T cells to have a regulatory 

phenotype138, 140. Secondly, VIP steers immature dendritic cells (DCs) toward a tolerogenic 
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phenotype. Such tolerogenic DCs can then induce CD4+ and CD8+ naïve T cells toward a 

regulatory phenotype (inducible Tregs)140.  Finally, VIP can induce tolerogenic dendritic cells to 

produce CCL22135. CCL22 is a chemokine important for the recruitment of regulatory T cells138. 

 

 

 

Figure 34: Vasoactive intestinal peptide (VIP) may induce Tregs through multiple pathways. First, 

direct activation of CD4+CD25- naïve T cells to inducible Tregs, and second, activation of tolerogenic dendritic 

cells which then promote inducible Treg generation through activation of CD8+CD25- naïve T cells143. 
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The major difficulty in VIP based therapies is the short half-life of VIP in the body206.  One 

approach to address this challenge is developing VIP analogs which deliver the same therapeutic 

benefits as VIP but are metabolically stable207.  Another approach is to protect the VIP by 

encapsulation into sterically stabled liposomes206. However, VIP analogues only extend the half-

life to 4 hours and the liposomes offer only short-term release, releasing 77-87% of encapsulated 

VIP within the first two hours in vitro206. Microspheres which deliver a longer lasting release 

profile are therefore a more promising approach to a VIP-based therapy.  

4.2 METHODS 

4.2.1 Vasoactive intestinal peptide (VIP) microsphere preparation  

VIP PLGA microspheres were prepared following a model guided fabrication protocol using a 

double emulsion technique133, Figure 7 microsphere fabrication above.  Four batches of 

microspheres were fabricated, and then combined in model specified ratios to obtain complex 

release behaviors. Three batches were comprised of individual PLGA polymer molecular weights 

using 4.2 kDa polymer, RG502H PLGA polymer (12.6 kDa), and RG505 polymer (55 kDa). 

Additionally, a fourth batch was fabricated with the 12.6 kDa polymer which contained 

Poly(ethylene glycol) (PEG) at approximately 4x10-4 mM in the inner aqueous phase. The inner 

aqueous phases of all VIP microspheres consisted of 1250 µg/ml VIP. Unloaded (or “blank”) sets 

of particles were also fabricated for each batch. 

In a separate study, nonporous and porous (with an inner aqueous phase comprised of 7.5 

mm NaCl) VIP microspheres were prepared using RG502H polymer (approximately 12.6 kDa). 
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The inner aqueous phases of the nonporous and porous microspheres consisted of 1250 µg/ml VIP. 

Blank sets of nonporous and porous particles were also fabricated. 

4.2.2 VIP microsphere characterization 

The size distribution of each set of microspheres was determined using a Beckman Coulter Counter 

(Multisizer-3, Beckman Coulter, Fullerton, CA). Additionally, scanning electron microscopy was 

used to analyze the surface morphology microspheres (JEOL JSM-6330F, Peabody, MA). 

4.2.3 VIP microsphere in vitro release assays 

Release samples were collected for each of the batches of microspheres. Release was also 

measured for two sets of microspheres with varying polymer ratios determined by the computer 

model and by estimation to achieve linear and multi-bolus release. For the linear group, the model 

suggested microsphere ratios of 10.6% of the 4.2 kDa polymer, 31.9% of the 12.6 kDa polymer 

(without PEG), and 57.5% of the 100 kDa polymer. For multi-bolus release, 33.3% each of the 4.2 

kDa, 12.6 kDa (with PEG), and 100 kDa polymers were mixed. Release was also measured for the 

porous and nonporous microsphere groups. Additionally, eight sets of blank microspheres for each 

group were also collected at each time-point. Release assays in PBS conducted for each set of 

microspheres. Ten milligrams of particles and 1 mL of PBS were incubated at 37°C.  Vials were 

centrifuged at 2000 rpm, and 800µL of supernatant was removed and saved at -80°C, and replaced 

with fresh PBS for each time point. VIP concentration was determined using a VIP EIA kit 

purchased from Phoenix Pharmaceuticals. Samples were diluted up to 10x.  
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4.2.4 Primary mouse dendritic cell isolation 

Dendritic cells were isolated from murine bone marrow following the DC isolation lab protocol.  

Briefly, mouse hind limbs we harvested immediately post mortem and processed to extract murine 

dendritic cells.  Mouse hind limbs were placed in 10 mL of MACS buffer in a petri dish, flesh and 

muscle was removed from the tibia and femur with scissors and tweezers.  Cleaned leg bones were 

place in another sterile petri dish containing 10 mL of MACS buffer.  Both ends of the leg bones 

(tibia and femur) were cut with scissors.  Using a 27.5 gauge needle and syringe, MACS buffer 

was washed through the center of the bone to elute bone marrow contents, and the process was 

repeated until all reddish tint (bone marrow) was removed from the bones.  The remaining bone 

marrow MACS solution was filtered through 70 μm filters into a 50 mL conical tube using a 5 mL 

syringe.  The filtered bone marrow cells were centrifuged at 500g for 5 minutes at room 

temperature.  Supernatant was aspirated and 1 mL of red blood cell (RBC) lysis buffer was added 

to the pelleted cells and cells were re-suspended and left to sit for 2 minutes, swiftly after 

incubation time 10 mL of dendritic cell complete media was added to the cells in RBC lysis buffer.  

Complete dendritic cell media (same as primary mouse T cell media) was composed of 500 mL of 

RPMI 1640 base media, 5 mL of HEPES buffer (100x), 5 mL of NEAA (100x), 5 mL of sodium 

pyruvate (100x), 0.5 mL of mercaptoethanol (1000x), 50 mL of fetal bovine serum (FBS) 10x, 5 

mL of antibiotic/antimycotic concoction (100x) and 5 mL of L-glutamine (100x).  The bone 

marrow cells in 1 mL of RBC lysis buffer and 10 mL of complete DC media were then centrifuged 

at 500g for 5 minutes at room temperature.  Cells were re-suspended in complete DC media and 

viable cells were counted using trypan blue and a hemocytometer.  Finally, 3 million bone marrow 

precursors were plated per petri dish after counting. 
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Dendritic cells were cultured from primary mouse bone marrow precursors in complete 

DC media supplemented with 2 ng/mL GM-CSF and 1 ng/mL IL-4.  Media changes were 

conducted every 3 days, by tilting the petri dish and removing 5 mL of spent media and replacing 

with 10 mL of fresh complete DC media.  On day 6 DC precursors were isolated from other 

remaining bone marrow cells using a CD11c positive isolation kit (Miltenyi Biotec catalog # 130-

052-001) according to manufacturer instructions.  After DC specific isolation, dendritic cells were 

matured with ipopolysaccharide (E. coli derived, Sigma) 1 μg/mL for 12 hours.  Investigations 

using VIP, VIP was added as specified below. 

4.2.5 Primary mouse dendritic cell cultures with VIP 

Dendritic cell cultures were performed following a modified lab protocol.  For CCL22 production 

studies, GMCSF and IL-4 were added to supernatants of bone marrow cell cultures during media 

changes on Days 0, 3 and 6. On Day 6, CD11c+ DC cells were isolated using Macs cell sorting 

beads and plated into three 24-well plates at 100,000 cells/well. A mature DC control group 

received only LPS. An immature DC control group did not receive LPS. Soluble VIP was added 

in concentrations of 10-6 M, 10-8 M, and10-9 M to both immature DC groups and DCs matured 

with LPS. Twelve different groups were matured with LPS and received different concentrations 

of either blank porous, blank nonporous, VIP porous, or VIP nonporous microspheres (of the 12.6 

kDa polymer). Microspheres were added in concentrations of either 2.77 mg/mL, 1.39 mg/mL, 

and 0.277 mg/mL. In a second DC culture, the low concentration of microspheres was reduced to 

0.0556 mg/mL. At time-points of 7, 24, and 48 hours, 100 µl was removed from each well and 

frozen for ELISA analysis. 100 µl of fresh media was then added to each well after sample removal 

to maintain a total well volume of 600 µl. 
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For chemotaxis studies, in the first two experiments, both GM-CSF and IL-4 were added 

to DC media (modified RPMI 1640) of bone marrow cell cultures during media changes on Days 

0, 3 and 6. In the third experiment, the IL-4 was purposely omitted and GM-CSF was added in 5x 

concentration. On Day 6, CD11c+ DC cells were isolated using MACS cell sorting beads and 

plated in a 24-well plate at 100,000 cells/well. Five different groups of four wells each were 

analyzed and received treatment.  An immature DC control group did not receive LPS. A mature 

DC control group received only LPS. Three different groups were matured with LPS and received 

different concentrations of either soluble VIP or releasates of VIP microspheres or blank 

microspheres (using the 12.6 kDa polymer). Soluble VIP was added to the third group in 

concentration of  2.5x10-8 M. Ten milligrams of microspheres were first incubated for 4-6 hours 

in media and 250 µL of releasates were added to each well. After treatment, the DCs were 

incubated for approximately 18 hours. Prior to the CD4+ T cell chemotaxis study, the 24-well plate 

was centrifuged and the media was removed. The cells were then starved with 600 µL 

PBS+1%BSA and incubated for one hour prior to chemotaxis studies. 

4.2.6 Measuring CCL22 production by VIP treated DCs 

Measuring recombinant mouse CCL22, an ELISA test purchased from R&D Systems was used to 

measure CCL22 production by dendritic cells following modified lab protocol. An alternate 

blocking buffer of 1 mL Tween dissolved in 50 mL PBS was used.  Cell culture media samples 

were diluted up to 500x. 
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4.2.7 Primary mouse CD4+ T cell isolation and chemotaxis 

Murine CD4+ T-cells were isolated from the spleen and lymph nodes of a mouse using Dynal beads 

following the lab protocol.  Briefly, lymph nodes and spleen resected from mice were mechanically 

broken down in complete T cell (DC) media. Complete T cell was composed of 500 mL of RPMI 

1640 base media, 5 mL of HEPES buffer (100x), 5 mL of NEAA (100x), 5 mL of sodium pyruvate 

(100x), 0.5 mL of mercaptoethanol (1000x), 50 mL of fetal bovine serum (FBS) 10x, 5 mL of 

antibiotic/antimycotic concoction (100x) and 5 mL of L-glutamine (100x). Cells were isolated 

from spleen and lymph nodes by using forceps to tear apart the tissue in a petri dish.  Next a 5 mL 

syringe was used to further break down the tissue with repeated filling and excretion.  Finally, cells 

were passed through a 70 μm filter.  Cells were centrifuged at 300g for 5 minutes at 4 °C.  Media 

was aspirated and 1 mL RBC lysis buffer was added to the cells (per spleen).  After a 2 minute 

incubation, 5 mL of complete T cell media was added to the RBC lysis buffer re-suspended cells. 

Cells were centrifuged at 300g, for 5 minutes at 4 °C.  Next, cells were counted by hemocytometer.  

Primary mouse CD4+ T cells were negatively isolated using a Dynal® CD4 Negative Isolation kit 

(Invitrogen) according to manufacturer instructions.  

For T cell chemotaxis, 3 μm Transwells were added to the 24-well plate containing the 

DCs in the bottom chamber and 100 µL of PBS and 1% BSA containing 500,000 CD4+ cells were 

added to each transwell top chamber and incubated for two hours. T Cells that flowed through 

were analyzed for CD4+FoxP3+ expression using flow cytometry. 
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4.2.8 Murine periodontal disease induction 

The mouse model for periodontitis was conducted as described previously97, 167.  Briefly, wild type 

male C57BL/6J mice aged 8-weeks were purchased from Charles River Laboratories International, 

Inc., (Wilmington, MA).  Mice were inoculated with Actinobacillus actinomycetemcomitans 

(ATCC 29522) cultured under anaerobic conditions and suspended in ~100 μL of PBS 

supplemented with 2% carboxymethlylcellulose (CMC) at 1X109 CFU placed in the oral cavity.  

At 48 hours and 96 hours the inoculation was repeated, as shown in Figure 10, above.  Negative 

controls received heat-killed-sham bacteria or only PBS supplemented with 2% CMC. All 

protocols were approved by the local Institutional Animal Care and Use Committees at the 

University of Pittsburgh. 

4.2.9 Bacteria cell culture 

Bacterium, Actinobacillus actinomycetemcomitans (ATCC 29522) were cultured under anaerobic 

conditions.  Briefly, Actinobacillus actinomycetemcomitans cultures were initiated according to 

ATCC instructions and plated on brucella blood agar supplemented with hemin and vitamin k1, 

plates were placed in an anaerobic chamber (Oxoid anaerojar 2.5 L) with an Oxoid anaerogen 2.5 

L anaerobic sachet at 37°C.  After 1 week of growth, bacteria were isolated with loops from the 

brucella agar and seeded in 100mL Brain Heart Infusion (BHI) (Becton, Dickson and company, 

BD) and cultured over night anaerobically (anaerobic jar, Oxoid anaerojar 2.5 L with an Oxoid 

anaerogen 2.5 L anaerobic sachet) at 37°C.  Actinobacillus actinomycetemcomitans cultures were 

isolated from the BHI broth using centrifugation at >6000g, 10 minutes and washed 2 times with 

sterile PBS.  Finally, Actinobacillus actinomycetemcomitans cultures were re-suspended in 



 101 

Phosphate buffered saline (PBS) supplemented with 2% carboxymethlylcellulose (CMC) at 1X109 

CFU. 

4.2.10 Assessment of periodontal disease-induced bone loss in mice 

To evaluate the extent of alveolar bone destruction, murine maxillary alveolar bone was quantified 

as described previously97, 167.  Briefly, resected maxillae were mechanically defleshed and exposed 

to dispase or 3% hydrogen peroxide overnight to remove all soft tissue.  Palatal and buccal faces 

of the molars were imaged using dissecting microscopes (Lecia, Wetzlar, Germany or Olyumpus 

SZX10 with DP72 camera).  Digitized images were analyzed using ImageJ (NIH) or ImageTool 

2.0 (University of Texas Health Science Center, San Antonio, Texas, USA).  The area between the 

cementoenamel junction (CEJ) and the alveolar bone crest (ABC) was quantified using arbitrary 

units of area (AUA) or square micrometers. 

 

4.3 RESULTS 

4.3.1 VIP microsphere characterization 

Vasoactive intestinal peptide (VIP) was encapsulated in poly(lactic-co-glycolic) acid (PLGA) 

microspheres to achieve extended release and maintain bioactivity.  VIP microspheres were 

fabricated using the 12.6 kDa PLGA in both a porous and non-porous formulation in order to find 

the most effective VIP release kinetics.  Figure 35 below, shows the surface morphology of VIP 
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encapsulating PLGA microspheres.  Porous PLGA microspheres, containing 7.5 mmol NaCL 

(porogen) in their inner aqueous phase (first emulsion) showed a slight increase in surface porosity 

as seen by the scanning electron micrograph, Figure 35 right. The PLGA microspheres had mean 

diameters of 16.9 µm and 18.9 µm for nonporous and porous particles, respectively, Figure 35 

bottom.  Importantly, both the non-porous and porous VIP microsphere formulations had average 

particle diameter greater than 10 microns, ensuring that they would avoid phagocytic removal upon 

implantation in vivo170. 
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Figure 35: Vasoactive intestinal peptide loaded PLGA microspheres.  VIP microspheres composed of 

12.6 kDa PLGA (50:50) showed non-porous and porosity on scanning electron micrographs.  Furthermore, size 

distributions of the microspheres revealed that the non-porous microspheres had a mean diameter of 16.9 

microns, and the porous microspheres had a mean diameter of 18.9 microns. 

 

4.3.2 VIP in vitro release from PLGA microspheres  

Prior to in vitro bioactivity assay and in vivo efficacy, VIP microsphere cumulative release was 

measured from both porous and non-porous 12.6 kDa PLGA.  Porous VIP microspheres were 
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fabricated with 7.5 mmol NaCl in the inner aqueous phase (first emulsion), were non-porous 

microspheres did not have any porogen added. The nonporous VIP microspheres experienced a 

slight initial burst and a secondary burst around Day 14, Figure 36. The porous VIP particles 

experienced less of an initial burst and slower release than the nonporous particles, Figure 36.  

Overall, both VIP PLGA microsphere formulations exhibited extended release of VIP over a 

period of 30 days, Figure 36. 

 

 

Figure 36: Controlled release of vasoactive intestinal peptide (VIP) from PLGA microspheres.  Porous 

microspheres were fabricated with 7.5 mmol NaCl in the first emulsion, inner aqueous phase, non-porous 

microspheres received no porogen.  Cumulative release of VIP shown in phosphate buffered saline (PBS). 
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4.3.3 VIP microspheres induce CCL22 production by dendritic cells 

Primary mouse dendritic cell cultures were completed with and without VIP microspheres to 

measure the reported production of CCL22, a chemokine known to recruit regulatory T cells45, 46, 

135.  Dendritic cells were cultured and treated according to the schedule below, Figure 37, and 

CCL22 production was measured from DC cultured media (ELISA). 

 

 

Figure 37: CCL22 production by dendritic cells treated with VIP microspheres experimental schedule. 

 

Primary mouse dendritic cells, cultured with GM-CSF and IL-4 were purified using 

CD11c+ MACS beads to isolate dendritic cells from other bone marrow cells.  Dendritic cells 

(DCs) were matured with lipopolysaccharide (LPS) derived from E. coli, a TLR4 activator of 

dendritic cells.  Dendritic cells matured and treated with soluble vasoactive intestinal peptide (VIP) 

exhibited a slight increase in CCL22 production (Figure 38), however, CCL22 production was 

very comparable to DCs matured without VIP treatment, contrary to published reports135.  

Importantly, both VIP porous and non-porous PLGA microsphere treated DCs exhibited increased 

CCL22 production compared to blank PLGA microsphere controls, Figure 38.  While, VIP porous 

microspheres appeared to induce less CCL22 production from DCs, non-porous VIP microspheres 
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led to comparable amounts of CCL22 from dendritic cells, Figure 38.  Based on these results, VIP 

non-porous microspheres appeared to be releasing more bioactive VIP given similar treatment 

schedules than porous VIP microspheres and therefore the non-porous VIP microspheres were 

used for further in vitro and in vivo testing. 

 

 

Figure 38: CCL22 production from VIP microsphere treated murine dendritic cells.  Primary mouse 

dendritic cells were cultured and matured with LPS, then treated with soluble VIP, or VIP microspheres, blank 

PLGA microspheres served as controls. Media was sampled for CCL22 production (measured by ELISA) 7 

hours after LPS and VIP treatment. 
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4.3.4 VIP microsphere-treated dendritic cells recruit CD4+FoxP3+ regulatory T cells in 

vitro 

Next, to determine how effectively dendritic cells treated with VIP microspheres could recruit 

regulatory T cells (Tregs) an in vitro chemotaxis assay was used.  Utilizing transwell migration 

assay tissue culture filters, VIP microsphere treated dendritic cells were placed as well as 

(separately)control treated DCs in the bottom wells, and primary mouse CD4 positive T cells in 

the top wells.  Natural Tregs that migrated toward the VIP microsphere treated DCs were analyzed 

using flow cytometry for FoxP3 positive expression.  All wells were normalized against immature 

(no LPS) treated dendritic cells.  Mature (LPS treated) DCs, Soluble VIP treated, VIP non-porous 

microsphere treated and Blank PLGA microsphere-treated DCs all exhibited more Treg 

recruitment than immature DC controls, values greater than 1 (normalized against immature DCs, 

Figure 39), suggesting immature DCs do not produce high amounts of Treg recruiting factors. 

Soluble VIP treated mature DCs showed the most Treg specific recruitment, followed by VIP non-

porous PLGA microspheres, suggesting VIP microspheres do release bioactive vasoactive 

intestinal peptide, Figure 39.  Based on these in vitro bioactivity assays, it was decided to test the 

efficacy of the non-porous VIP microspheres in the mouse model for periodontal disease. 
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Figure 39: Mature dendritic cells (DCs) treated with vasoactive intestinal peptide (VIP) released from 

PLGA microspheres recruit more Tregs than mature DCs or blank PLGA microsphere treated DCs.  Transwell 

migration assay using 3 μm transwell filters, primary dendritic cells matured with LPS (or immature, no LPS 

normalized control) were treated with soluble VIP 2.5 x 10-8 M concentration, VIP non-porous PLGA 

microspheres (estimated quantity comparable to 2.5 x 10-8 M VIP) or blank PLGA microspheres were placed 

in the bottom wells.  Primary mouse CD4+ T cells were placed in the top transwell chambers, and left for 2 

hours to migrate to the VIP treated dendritic cells.  Cells from the bottom well were collected and analyzed 

using flow cytometry to quantify the number of CD4+FoxP3+ Regulatory T cells that migrated through the 

transwell filters.  
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4.3.5 Vasoactive intestinal peptide PLGA microspheres reduce alveolar bone loss in 

murine periodontitis 

Utilizing the Actinobacillus actinomycetemcomitans experimental mouse model for periodontal 

disease in C57 black/6 mice, mice received VIP non-porous PLGA microspheres or CCL22 

microspheres on days -1, 10 and 20 relative to disease induction. Figure 40 A shows representative 

dissecting microscope images of resected and defleshed maxilla from mice treated with Blank 

PLGA microsphere controls, CCL22 microspheres and non-porous VIP microspheres.  CCL22 

microsphere treated, and VIP microsphere treated mice exhibited significantly less alveolar bone 

loss 30 days after disease induction, Figure 40 A and B.  Taken together, this data suggest that VIP 

microspheres release bioactive VIP that can recruit Tregs and ameliorate periodontal disease 

symptoms in mice. 
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Figure 40: Vasoactive intestinal peptide microspheres reduce alveolar bone loss in an experimental 

mouse model of periodontal disease. (A) Representative stereoscope images of defleshed maxilla from 

C57BL/6J mice infected with Actinobacillus actinomycetemcomitans (Aa) 30 days after inoculation. Results of 

treatment with blank unloaded PLGA controls, CCL22 microsphere, and VIP microspheres injected into the 

maxillary gingiva at days -1, 10 and 20 relative to first Aa inoculation.   (B) Quantification of the area between 

the cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the buccal tooth surface.  Sham infected 

mice received heat killed Actinobacillus actinomycetemcomitans and served as positive controls. *P < 0.05 

determined by student T test. 

4.4 DISCUSSION 

As and alternative to direct CCL22 controlled release for Treg recruitment (presented earlier), a 

molecule originally discovered as a vasodilator (vasoactive intestinal peptide, or VIP), has been 

found to possibly enhance Treg recruitment and induction of Tregs locally through a variety of 

mechanisms142, 143.  Originally, VIP was identified as a neuropeptide associated with endothelial 
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cells in the intestinal environment, but later was shown to be a potent immunomodulator136, 137.  

Additionally, VIP was shown to attenuate inflammatory and autoimmune reactions possibly 

through aiding in the direct induction of regulatory T cells138-140. Importantly, VIP was also found 

to strongly influence bone metabolism by way of inhibiting osteoclastogenesis (bone resorbing 

cells) and promoting osteoblastogensis (bone forming cells)137, 141.  Therefore, VIP may be a viable 

alternative controlled release therapeutic peptide for periodontal disease, possibly functioning by 

inducing the local recruitment of Tregs (via inducing CCL22 expression), aiding in the direct 

induction of Tregs, or even altering the damaging inflammatory response leading to alveolar bone 

resorption135-137, 139, 141-143.  

Various tactics can be employed to alter the release of encapsulated VIP from PLGA 

microspheres. VIP release was slowed as with the use of non-porous PLGA microspheres, whereas 

the addition of NaCl slightly increased the initial release rate of VIP from PLGA microspheres.  

However, both the porous and non-porous PLGA microspheres released VIP at a very similar rate, 

suggesting that other interactions may be effecting the release of VIP from PLGA.  Indeed, VIP 

has an isoelectric point of 11.8 (~ 3 higher than CCL22 microspheres, which also display charge 

interactions with PLGA microspheres172), meaning VIP is very positively charged at neutral pH 

while PLGA is negatively charged, leading to ionic interactions172.  Regardless, VIP encapsulation 

in PLGA microspheres significantly extended the release of VIP compared to previous attempts to 

controllably release VIP, extending the release from hours to up to 30 days206, Figure 36 above, 

VIP release from PLGA microspheres. 

The data above suggests that VIP released from PLGA microspheres appeared bioactive in 

the in vitro dendritic cell (DC) cultures (Figures 38 and 39 above). The observed CCL22 

production of DCs treated with microspheres was significantly higher than that of the respective 
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blank microspheres and showed significant increase at 7 hours in the nonporous VIP group. The 

effects of the presence of LPS for an extended time period have not been determined but are 

thought to be detrimental for the cells, therefore time-points after 7 hours were not ideal. 

Additionally, the microspheres themselves may negatively impact the cells and cause lower 

CCL22 production by DCs relative to the control and soluble VIP groups.  It is well known that 

PLGA degrades into acidic lactic acid and glycolic acid residues in an aqueous environment151, 

and this could help explain the observed decrease in the bioactivity of blank PLGA unloaded 

control treated DCs. The particle degradation products, such as PLGA fragments or lactic or 

glycolic acid, may disrupt the cells and may cause some cells to die151.  

Additionally, it was expected that the DCs cultured with soluble VIP would show a more 

significant increase in CCL22 production relative to the mature DC control group, as was shown 

in previous studies135.  IL-4 has been proposed to skew DC differentiation to exhibit a regulatory 

phenotype208, so there was a concern that the IL-4 used to culture the DCs diminished the 

difference in CCL22 production between the groups. In future chemotaxis studies that measure 

FoxP3+ T-cell recruitment by DCs treated with VIP microsphere releasate, omission of IL-4 during 

cell culture may increase the distinction between FoxP3+ T cell recruitment. Overall, it appears 

that VIP induction of CCL22 from dendritic cells led to significant FoxP3+ Treg migration in 

vitro. 

After demonstration of the bioactivity of VIP microspheres in vitro, it was shown that the 

VIP microspheres also promote therapeutic effects in vivo. VIP microspheres significantly reduced 

bone loss in mice infected with periodontal disease relative to mice treated with blank 

microspheres. Next steps would be to repeat the mouse model of VIP microsphere treated 

periodontitis and obtain additional data supporting the recruitment or the expansion of Tregs 
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locally in response to VIP microsphere treatments.  QCPR analysis and flow cytometry can be 

conducted in the future to measure the expression of FoxP3+ T cells (Tregs) in draining lymph 

nodes and in the periodontal pocket. A higher expression of FoxP3+ T cells (Tregs) in draining 

lymph nodes is expected to show that VIP microspheres induce the production of Tregs. 

Additionally, an increase in tolerogenic DCs in draining lymph nodes is expected and can be 

evaluated by observing a decrease in CD86 and CD80 and MHCII on the DCs using flow 

cytometry. 
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5.0  ENGINEERING LOCAL TREG-INDUCING MICROSPHERES FOR THE 

TREATMENT OF PERIODONTAL DISEASE IN A MOUSE MODEL 

5.1 INTRODUCTION 

Aside from recruitment (using molecules such as CCL22 or VIP described above), regulatory T 

cells populations are naturally bolstered by the combination of specific anti-inflammatory 

cytokines in the presence of antigen presenting cells (APCs).  Specifically, some tumors have been 

shown to secrete IL-10 and TGF-β ultimately resulting in APC-mediated induction of regulatory 

T cells (iTregs), ultimately aiding in tumor evasion of anti-cancer immune responses209.  This 

strategy can be replicated ex vivo in order to boost and expand Tregs for therapeutic re-

administration15.  Although many groups have reported success in animal models in several disease 

models, translation of the complicated in vitro protocols (often using difficult to maintain and 

culture, genetically modified dendritic cells) to the clinical setting has been difficult, faulting 

reproducibility and reliability15.  For this reason, we hypothesized that formulations could be 

created to accomplish this task in situ, locally in the periodontium rather than having to resort to 

ex vivo expansion of cells 

Another way to enhance the numbers of regulatory T cells in situ may be through the 

induction of local T cells towards Treg pheonotypes (as opposed to T effector cell phenotypes) via 

biological enhancers of Treg populations.  Several different strategies have been utilized to directly 

induce Tregs in vivo, for example: anti-IL-2 monoclonal antibodies144, superagonistic anti-CD28 

monoclonal antibodies145, and agonistic anti-CD4 monoclonal antibodies146.   However, the 

therapeutic mechanisms of these antibodies are not well understood, especially in the context of 
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human trials, where their safety remains a concern.  In fact, phase 1 trials of the superagonistic 

anti-CD28 monoclonal antibodies led to a severe and damaging cytokine storm in all humans who 

received the treatment147.  Aside from these antibodies, other molecules have been identified to 

induce regulatory T cell development, including: IL-2, TGF-β and Rapamycin51.  Specifically, the 

use of these factors has been shown to aide in the development of Tregs in vivo and in vitro, even 

under inflammatory conditions51, 148-150.   

Recently, the controlled release of IL-2, TGF-β and Rapamycin from PLGA microspheres 

(conducted in our laboratory) has been shown to specifically induce regulatory T cells from naïve 

CD4+ T cells in both human and mouse cells in vitro51.  Specifically, the combination of IL-2, 

TGF-β and Rapamycin released from PLGA microspheres led to the robust expansion of a 80% 

pure population of Tregs, as opposed to soluble IL-2 expanded naïve T cells which robustly 

expanded T cells, but only led to 3% of cells expressing Treg marker FoxP351.  Furthermore, Tregs 

induced from IL-2, TGF-β and Rapamycin releasing PLGA microspheres displayed phenotypic 

markers of Tregs and functionally suppressed T effector cells in vitro51.  Ultimately, multiple 

strategies utilizing acellular-engineered approaches may help to increase the local populations of 

regulatory T cells, and have the potential to be used therapeutically in periodontal disease. 

Ultimately, multiple factor-releasing strategies utilizing acellular-engineered approaches may help 

to increase the local populations of regulatory T cells, and have the potential to be used 

therapeutically in periodontal disease. 

Furthermore, in situ expansion of Tregs may be an even more promising strategy to 

increase the local presence of regulatory T cells given the high prevalence of naïve CD4+ cells that 

could be differentiated into Treg167, 210. Additionally, the IL-10 and TGF-β (cytokines secreted 

from Tregs) have been shown to induce both soft and hard tissue regeneration even in disease52, 53, 
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55-57, 211, suggesting Tregs may have a paracrine effect on periodontal regeneration.  Additionally, 

the IL-10 and TGF-β secreted by Tregs may have an autocrine effect and further promote the 

induction and differentiation of Tregs from naïve T cells12, 13.  We hypothesize that the in situ 

induction and recruitment of Tregs using engineered biomimetic microspheres strategies (IL-2, 

TGF-β and rapamycin microspheres) may provide the optimal adjunct therapy for the treatment of 

periodontal disease. 

To test this hypothesis, that Treg inducing formulations, capable of in situ expansion of 

Treg populations from naïve T cell precursors, may provide a more robust adjunct therapy for the 

treatment of periodontal disease, the mouse model for periodontal disease was utilized. Although 

the recruitment of natural endogenous regulatory T cells (nTregs) via CCL22 microspheres is a 

very promising technology for the treatment of periodontitis, it is foreseeable that some patients 

may have insufficient numbers of nTregs or dysfunctional nTregs (in fact, researchers have begun 

exploring disease mechanisms that could be a result of dysfunctional nTregs212, 213).  Therefore, a 

combination of microspheres that release factors capable of inducing and expanding Tregs from 

naïve conventional T cells (generating induced Tregs or iTregs) may provide a potent adjunct 

therapy for periodontal disease. 

5.2 METHODS 

5.2.1 Treg inducing microsphere fabrication  

Poly (lactic-co-glycolic) acid (PLGA) microspheres containing recombinant mouse interleukin 2 

(IL-2, R&D systems, Minneapolis, MN) or recombinant human transforming growth factor beta 1 
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(TGF-B1 Cat.# 101-B1-001, Peprotech, Rocky Hill, NJ) were prepared using a standard water-oil-

water double emulsion procedure as described46, Figure 7. Blank (unloaded) PLGA microsphere 

controls were fabricated in the same manner with the exception of the protein encapsulate.  Briefly, 

the TGF-β PLGA (RG502H, Boehringer Ingelheim, Petersburgh, VA) microspheres were 

prepared by mixing 200 μL of an aqueous solution containing with 10 μg of recombinant human 

TGF-β1 (Peprotech, Rocky Hill, NJ) in deionized water (DI water). For TGF-β microspheres, 170 

mg of RG502H (Boehringer Ingelheim, Petersburgh, VA) were mixed with 30 mg of 20 kDa 

PLGA co-blocked with polyethelyene glycol (PEG) to make up the 200 mg of polymer for 

microsphere fabrication, and was dissolved in 4 mL of dichloromethane. The first water-in-oil 

emulsion was prepared by sonicating this solution for 10 seconds.  The second oil-in-water 

emulsion was prepared by homogenizing (Silverson L4RT-A) this solution with 60 mL an aqueous 

solution of 2% polyvinyl alcohol (M.W. ~25,000, 98 mol. % Hydrolyzed, PolySciences, 

Warrington, PA) for 60 seconds at 3000 RPM.  This solution was then mixed with 1% polyvinyl 

alcohol and placed on a stir plate agitator for 3 hours to allow the dichloromethane to evaporate.  

The microspheres were then collected and washed 4 times in deionized (DI) water, to remove 

residual polyvinyl alcohol, before being re-suspended in 5 mL of DI water, frozen, and lyophilized 

for 72 hours (Virtis Benchtop K freeze dryer, Gardiner, NY; operating at 100mTorr). 

For IL-2 microspheres, 5 μg of recombinant mouse interleukin 2 (IL-2, R&D systems, 

Minneapolis, MN), aliquoted in phosphate buffer saline (PBS) 50 μL, was added to 150 μL of DI 

water, creating an inner aqueous phase with 76.6 mmol osmolality.  200 mg of RG502H PLGA 

polymer (Boehringer Ingelheim, Petersburgh, VA) for microsphere fabrication, and was dissolved 

in 4 mL of dichloromethane. The first water-in-oil emulsion was prepared by sonicating this 

solution for 10 seconds.  The second oil-in-water emulsion was prepared by homogenizing 
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(Silverson L4RT-A) this solution with 60 mL an aqueous solution of 2% polyvinyl alcohol (M.W. 

~25,000, 98 mol. % Hydrolyzed, PolySciences, Warrington, PA), supplemented with 61.6 mmol 

of NaCl, for 60 seconds at 3000 RPM.  This solution was then mixed with 1% polyvinyl alcohol , 

supplemented with 61.6 mmol of NaCl, and placed on a stir plate agitator for 3 hours to allow the 

dichloromethane to evaporate.  The microspheres were then collected and washed 4 times in 

deionized (DI) water, to remove residual polyvinyl alcohol, before being re-suspended in 5 mL of 

DI water, frozen, and lyophilized for 72 hours (Virtis Benchtop K freeze dryer, Gardiner, NY; 

operating at 100mTorr).  A total 10 mmol osmolality was used inside the first emulsion inner 

aqueous phase to generate porous IL-2 microspheres. 

For rapamycin microspheres, a single emulsion fabrication technique was used to 

encapsulate rapamycin in PLGA microspheres, Figure 41.  Briefly, 100 μL aliquots of 10 mg/mL 

rapamycin in DMSO was added to 4 mL of dichloromethane along with 200 mg of polymer for 

microsphere fabrication. The single emulsion microspheres (oil-in-water) was prepared by 

homogenizing (Silverson L4RT-A) this solution with 60 mL an aqueous solution of 2% polyvinyl 

alcohol (M.W. ~25,000, 98 mol. % Hydrolyzed, PolySciences, Warrington, PA) for 60 seconds at 

3000 RPM.  This solution was then mixed with 1% polyvinyl alcohol and placed on a stir plate 

agitator for 3 hours to allow the dichloromethane to evaporate.  The microspheres were then 

collected and washed 4 times in deionized (DI) water, to remove residual polyvinyl alcohol, before 

being re-suspended in 5 mL of DI water, frozen, and lyophilized for 72 hours (Virtis Benchtop K 

freeze dryer, Gardiner, NY; operating at 100mTorr). 
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Figure 41: Single emulsion PLGA microsphere fabrication for rapamycin microspheres. 

 

5.2.2 Characterization of Treg inducing microsphere formulations 

Surface characterization of microspheres was conducted using scanning electron microscopy 

(JEOL JSM-6330F, Peabody, MA) and microsphere size distribution was determined by volume 

impedance measurements on a Beckman Coulter Counter (Multisizer-3, Beckman Coulter, 

Fullerton, CA).  TGF-β1, and IL-2 and Rapamycin release from microspheres was determined by 

suspending 7-10 mg of microspheres in 1 mL of phosphate buffered saline (PBS) placed on an 

end-to-end rotator at 37°C. Release sampling was conducted at various time intervals by 

centrifuging microspheres and removing the supernatant for TGF-β1, and IL-2 quantification using 

ELISA (R&D Systems, Minneapolis, MN), the amount of rapamycin was determined by 
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spectrophotometry absorbance at 278 nm, sampling of releasates is shown in Figure 8 Above.  

Microspheres were re-suspended with 1 mL of fresh PBS and returned to the rotator at 37°C. 

5.2.3 Treg inducing microsphere administration in mice 

For mouse investigations microspheres were administered to 4 sites via 2% carboxy methyl 

cellulose (CMC) in PBS suspension.  Specifically, 2-5 μL of solution containing 25 mg/mL of 

particles were administered to the proximal side of the first molar, each inter-dental site, and distal 

to the third molar of the right maxilla of the mice, shown in Figure 9 below.  Microspheres were 

injected into maxillary gingiva of mice using 27-28.5 gauged insulin syringes. For BALB/cJ mice 

inoculated with Porphyromonas gingivalis, microspheres were injected on days -1, 20, and 40 

relative to the first bacterial inoculation, shown in Figure 11 above. Microspheres were injected in 

mice at a depth of approximately 100-300 microns within the maxillary gingival tissues. All 

microsphere injections in mice were preformed under a stereomicroscope. Small amounts of the 

microsphere solution were observed to overflow into the oral cavity of the mice during injections.   

5.2.4 Periodontal disease induction in mice 

For experiments using Porphyromonas gingivalis as a colonizing periodontopathogen in BALB/cJ 

mice periodontitis was induced as described97. Briefly, male BALB/cJ mice age 6-8 weeks were 

purchased from Jackson Laboratories.  To reduce the commensal oral bacteria, the drinking water 

of mice was modified with 15 mL/L of Sulfatrim Pediatric Suspension (sulfamethoxazole and 

trimethoprim, 2 mg/mL wt/vol and 0.4 mg/mL wt/vol, Henry Schein) for 10 days. After 10 days 

of antibiotic water, the mice were given clean drinking water for 5 days to prevent any direct 
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microbicidal effects of the antibiotic solution on the colonization of the oral pathogen. Mice were 

then colonized 3 times during the first week at 2 day intervals with Porphyromonas gingivalis (Pg, 

ATCC 33277) grown under anaerobic conditions, as shown in Figure 11. Bacteria were plated on 

brucella blood agar supplemented with hemin and vitamin k1, on days of inoculation, Pg was 

suspended in brain heart infusion (BBL BHI, BD Biosciences, San Jose, CA) supplemented with 

2% carboxymethlylcellulose at 1x1011 CFU. Mice received 0.5 mL of the Pg BHI suspension orally 

administered with gavage feeding needle. 

5.2.5 Bacteria cultures 

Bacterium Porphyromonas gingivalis (Pg, ATCC 33277) were cultured from isolates according 

to ATCC instructions.  Briefly, Porphyromonas gingivalis isolates were suspended in tryptic soy 

broth (TSB) supplemented with hemin, vitamin k1 and L-cystine and cultured anaerobically 

(anaerobic jar, Oxoid anaerojar 2.5 L with an Oxoid anaerogen 2.5 L anaerobic sachet) at 37°C.  

After 48 hours Porphyromonas gingivalis cultures were isolated from the broth with centrifugation 

at >6000g, 10 minutes.  Cultures were concentrated with TSB and plated on brucella blood agar 

supplemented with hemin and vitamin k1 and cultured anaerobically (anaerobic jar, Oxoid 

anaerojar 2.5 L with an Oxoid anaerogen 2.5 L anaerobic sachet) at 37°C, or glycerol was added 

to TSB based cultures O.D. 660 ~ 0.6 ABS, and cryopreserved for future use. After 5-7 days Pg 

plated on brucella blood agar supplemented with hemin and vitamin k1 turned black (pigment) 

and cultures were collected with loop for mouse infection. Pg was suspended in brain heart 

infusion (BBL BHI, BD Biosciences, San Jose, CA) supplemented with 2% 

carboxymethlylcellulose at 1x1011 CFU (approximately 1 plate of Pg for every 3 mice to be 

infected). 



 122 

5.2.6 Assessment of periodontal disease induced bone loss in mice 

To evaluate the extent of alveolar bone destruction, murine maxillary alveolar bone was quantified 

as described previously97, 167.  Briefly, resected maxillae were mechanically defleshed and exposed 

to dispase or 3% hydrogen peroxide overnight to remove all soft tissue.  Palatal and buccal faces 

of the molars were imaged using dissecting microscopes (Lecia, Wetzlar, Germany or Olyumpus 

SZX10 with DP72 camera).  Digitized images were analyzed using ImageJ (NIH) or ImageTool 

2.0 (University of Texas Health Science Center, San Antonio, Texas, USA).  The area between the 

cementoenamel junction (CEJ) and the alveolar bone crest (ABC) was quantified using arbitrary 

units of area (AUA) or square micrometers.  Alternatively, mice maxilla were resected and fixed 

with 10% formalin and stored in 70% ethanol (30% water).  Fixed maxilla were scanned by 

SCANCO vivaCT 40 micro-computed tomography ( icroCT) sys    

Switzerland).  3D images were reconstructed with SCANCO software at the same threshold across 

all the samples.  Each scan was reoriented with DataViewer (GE Healthcare, London, ON).  The 

images were reoriented by the planes adjusted to the cementoenamel junction (CEJ), bucco-lingual 

center of the roots, and parallel to the root canal in the center of distal root. To assess the vertical 

bone reduction, the distance between CEJ and alveolar bone crest (ABC) was measured at the 

distal face and buccal face of the fourth premolar and the first molar after microCT image 

reorientation.   Along the buccal face of the tooth, the ABC-CEJ distance was measured at 24 sites 

along the M1 molar, 10 sites along the M2 molar and 4 sites on the M3 molar. 
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5.2.7 Statistical analyses 

All data was confirmed to portray a normal distribution (determined by Shapiro-Wilk test) and 

further analyzed using one-way ANOVA followed by Bonferroni’s or Tukey-HSD post-hoc test 

to compare differences between multiple groups.  Student’s unpaired t test was used for all other 

statistical analyses.  Differences were considered significant when P < 0.05.  Statistics were 

performed using GraphPad Prism or JMP Pro 10 software. 

5.3 RESULTS 

5.3.1 Characterization of Treg inducing PLGA microspheres 

Frist, three sets PLGA microspheres were fabricated for the release of factors, that when combined, 

have been shown too locally induce regulatory T cells in vitro51. Three microsphere systems 

composed of TGF-β, IL-2, and Rapamycin encapsulated in PLGA were fabricated to extend the 

release of Treg inducing factors locally, Figure 42.  All three microsphere formulations showed 

similar surface morphology observed in the scanning electron micrograph, Figure 42.  Notably, 

IL-2 microspheres, fabricated with 10 mmol positive osmolality exhibited a slight increase in 

surface porosity to help accelerate the release of the cytokine from the PLGA microspheres, Figure 

42, left.  Interestingly, incorporation of 5 kDa PEG co-block 20 kDa PLGA with standard 50:50 

12 kDA PLGA resulted in an amorphous surface pattern (as opposed to the smooth surface of 

standard PLGA microspheres) in the formulation encapsulating TGF-β, Figure 42, middle.  The 

abnormal surface morphology of the TGF-β microspheres is thought to be a result of the 
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incorporation of PEG co-block polymer, which is significantly more hydrophilic than PLGA.  

Ultimately, this difference in hydrophobicity likely leads to non-uniform emulsions during the 

fabrication process and DCM evaporation, leading to the amorphous surface appearance, Figure 

42 middle.  However, the addition of PEG-co-block-PLGA polymer is believed to facilitate the 

release of TGF-β, a relatively large and difficult protein to release from PLGA microspheres.  

Rapamycin PLGA microspheres appeared to have a smooth surface morphology in the scanning 

electron micrographs, Figure 42 right, typical of single emulsion fabrication procedures. 

 

Figure 42: Surface morphology of Treg inducing microspheres.  Three batches of microspheres 

encapsulating TGF-β, IL-2, and Rapamycin were fabricated for in situ Treg induction.  Images are 

representative scanning electron micrographs of each microsphere formulation.  Top magnification 300x, scale 

bar 10 μm, bottom magnification 2000x, scale bar 10 μm. 
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5.3.2 Controlled release of TGF-β, IL-2, and Rapamycin from PLGA microspheres 

Three PLGA microspheres were fabricated encapsulating TGF-β, IL-2, and Rapamycin 

respectively, using standard double and single emulsion fabrication processes. All three 

microspheres showed the ability to extend the release of TGF-β, IL-2, and Rapamycin between 30 

and 60 days, Figure 43.  Interestingly, IL-2 microspheres exhibited a significant amount of initial 

burst release, with near 60% of the encapsulated payload releasing in the first 2 days, Figure 43 

Left. IL-2 PLGA microsphere porosity is believed to attribute to the significant amount of burst 

release, as significant PLGA degredation is not required for IL-2 to elute from the PLGA 

microspheres.  Notably, IL-2 release from PLGA microspheres is notoriously difficult214, indeed 

others have resorted to surface adsorption of IL-2 onto PLGA microspheres to bypass controlled 

release via encapsulation all together214. 

TGF-β release from PLGA microspheres was observed over a 60 day period, Figure 43, 

middle.  Interestingly, TGF-β microspheres incorporated 15% of a PLGA-PEG co-block polymer, 

which appears to significantly alter the surface morphology of the microspheres compared to those 

composed of purely of PLGA, Figure 42. While some initial burst was observed in the TGF-β 

microspheres, Figure 43 middle, the overall release of TGF-β was relatively constant (linear 

release profile) over the entire 60 day period.  It can be noted that there appears to be a slight 

increase in release rate of TGF-β around day 35, likely due to the secondary burst phase as the 12 

kDa PLGA degrades to a critical release rate for TGF-β, Figure 43 middle. 

Rapamycin encapsulated in PLGA microspheres was controllably released for a period of 

30 days, Figure 43 right.  Rapamycin is orders of magnitude smaller than TGF-β, and IL-2, with 

rapamycin molecular weight consisiting of 914 Da.  Rapamycin is relatively insoluble in water 

and therefore, PLGA microspheres encapsulating rapamycin were fabricated using a single 
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emulsion technique.  As typical of single emulsion release profiles, rapamycin controlled release 

microspheres displayed very little initial burst.  Single emulsion microsphere fabrication ultimately 

lacks any inner porosity, whereas, double emulsion microsphere fabrication inherently leads to the 

formation of stable inner occlusions that trap water soluble release agents.  Interestingly, the 

release rate of rapamycin from PLGA microspheres increased rapidly at around day 9, as the 

polymer degraded sufficiently for the release of the small molecule, Figure 43 right.  Notably, 

rapamycin being a small molecule, is less likely to have any interactions (ionic) with the negatively 

charged PLGA, therefore release is largely a product of particle degredation, as opposed to 

desorption, which can play a major role in PLGA microsphere release of proteins172.  

 

 

Figure 43: Relase of TGF-β, IL-2, and rapamycin from PLGA microspheres for the local induction of 

Tregs.  T TGF-β, and IL-2 PLGA microspheres fabricated using a double emulsion technique.  Rapamycin 

microspheres fabricated using a single emulsion fabrication protocol.  Cumulative release of TGF-β, IL-2 and 

rapamycin shown as measured in phosphate buffered saline (PBS). 
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5.3.3 Treg inducing microspheres prevent alveolar bone loss in experimental murine 

periodontitis 

Next, the ability of TGF-β, IL-2, and rapamycin Treg inducing microsphere combination was 

tested in its ability to prevent alveolar bone loss in the experimental mouse model for periodontal 

disease.  Mice were infected with Porphyromonas gingivalis and treated with microspheres 

according to the schedule shown in Figure 11.  Mice were treated with the combination of Treg-

inducing factors TGF-β, IL-2, and rapamycin from PLGA microspheres, or IL-2 microspheres 

alone, rapamycin microspheres alone and TGF-β microspheres alone, Blank unloaded PLGA 

microspheres and infected, but Untreated mice served as negative controls, age matched mice 

served as positive controls.  Alveolar bone loss was quantified in resected mouse maxilla 60 days 

after initial bacteria inoculation using microCT.  The linear distance between the alveolar bone 

crest (ABC) and cementoenamel junction (CEJ) was measured at 38 sites along each mouse 

maxilla.  The summation of each linear CEJ-ABC measurement for a given maxilla represented a 

single overall value of bone loss for each mouse.  The mice receiving all three factors, TGF-β, IL-

2, and rapamycin microspheres displayed statistically significant reductions in alveolar bone loss 

compared to blank microsphere treated and untreated mice, Figure 44.  Furthermore, mice 

receiving all three TGF-β, IL-2, and rapamycin microspheres showed alveolar bone loss 

comparable to age matched controls, Figure 44, and age matched control mice also showed 

significantly reduced bone loss compared to blank microsphere treated controls and untreated 

mice, Figure 44.  The only other treatment group to show any significant reduction in bone loss 

were the mice receiving IL-2 microspheres alone, which showed a statistically significant 

reduction in bone loss compared to untreated control mice.  Neither rapamycin nor TGF-β 

microsphere treatments alone resulted in significant alveolar bone loss reductions. 
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Figure 44: TGF-β, IL-2, and rapamycin Treg inducing microspheres prevent alveolar bone loss in an 

experimental model for periodontal disease. BALB/cJ mice colonized with Porphyromonas gingivalis treated 

with Treg inducing microspheres injected in the maxillary gingiva at days -1, 20, 40 showed significant 

reduction in alveolar bone loss 60 days after initial colonization.  Uninfected mice age matched control mice, 

infected Untreated, and blank microsphere treated mice served as controls.  Alveolar bone loss was quantified 

by the summation of 38 linear cementoenamel junction (CEJ) to alveolar bone crest (ABC) measurements using 

microCT scans of resected maxilla. **P<0.05 determined by ANOVA followed by Tukey HSD post hoc multiple 

comparison test. 
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5.4 DISCUSSION 

Microspheres capable of locally inducing regulatory T cells at the site of injection were fabricated 

using three PLGA microspheres formulations releasing TGF-β, IL-2, and rapamycin, respectively.  

The microspheres exhibited similar surface morphology and overall particle size, as seen by 

scanning electron micrograph, Figure 42.  Furthermore, the three PLGA microsphere formulations 

were capable of extending the release of the TGF-β, IL-2, and rapamycin for over a period of 30 

days in vitro, Figure 43. Aside from recruitment (as seen with CCL22 microspheres), regulatory T 

cells populations are naturally bolstered by the combination TGF-β, IL-2, and rapamycin secreted 

from PLGA microspheres51.  In fact, we previously showed that only the combination of all three 

factors, TGF-β, IL-2, and rapamycin, was capable of robustly converting naïve T cells into 

regulatory T cells51.  Therefore, we set out to see if local induction of Tregs in the periodontium 

may prevent alveolar bone loss in mice, as opposed to our previous work that showed Treg 

recruitment reduced alveolar bone resorption45. 

Indeed, the combination of the three Treg inducing microspheres formulations releasing 

TGF-β, IL-2, and rapamycin significantly reduced alveolar bone loss in mice, Figure 44. The 

microsphere-based combination therapy of TGF-β, rapamycin and IL-2 is indeed more complex 

than the single factor delivery of CCL22 from microspheres.  Therefore, to elucidate the 

therapeutic mechanism of the Treg inducing microspheres, we will need to investigate the role that 

each microsphere-released factor (separately) plays in periodontal disease amelioration in mice 

independently (according the time schedule shown Figure 11).  Alone, TFG-β microspheres may 

lead to some disease amelioration given that TGF-β is a well-known anabolic anti-inflammatory 

cytokine that can promote bone regeneration215. However, it is possible that the presence of TGF-

β alone, in inflammatory environments, may actually induce the expansion of inflammatory TH17 
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cells216, potentially leading to increased inflammatory bone resorption.  In fact our data suggests 

this may be the case, as TGF-β alone microspheres showed the most amount of bone loss of all 

our therapeutic treatment groups, Figure 44. Rapamycin is small chemical species that functions 

as and intracellular mTOR inhibitor that ultimately blocks the receptor signal transduction 

mechanisms of inflammatory cytokines, suppressing the activation of conventional T and B cells 

while promoting regulatory T cell proliferation217. Furthermore, we have shown that rapamycin 

releasing microspheres, alone, are capable of generating suppressive or tolerogenic dendritic cells 

that may direct anti-inflammatory immune responses218.  Therefore, it is possible that mice 

receiving only rapamycin releasing microspheres may exhibit an increase in the presence of Tregs 

and amelioration of periodontal disease outcomes. However, we did not expect them to perform 

as well as the microsphere combination given that: 1) the rapamycin dose delivered from the 

microspheres is significantly lower than typical immunosuppressive doses, and 2) in our hands we 

only observed robust Treg induction with all three factors in vitro51. And indeed the rapamycin 

alone microspheres displayed the second most bone loss of mice receiving therapeutic 

microspheres, Figure 44. IL-2 is a cytokine that originally has found clinical use as inflammatory 

mediator to treat cancers219, 220, however, IL-2 also plays an important role in the induction of 

regulatory T cells leading to immune tolerance221.  Therefore, in the context of periodontal disease, 

we speculated that IL-2 releasing microspheres, alone, may actually promote inflammation and 

tissue destruction. However, IL-2 alone microspheres led to a statistically significant reduction in 

alveolar bone loss compared to untreated controls, Figure 44.  This data suggest that IL-2 may be 

helping to promote immune tolerance at the given dose and delivery system, which has been 

supported by recent reports using IL-2 alone for the treatment of graft versus host disease222.  
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Regardless, future studies will be necessary to elucidate the full mechanism of TGF-β, IL-

2, and rapamycin combination microsphere treatments.  Our current data suggests that this 

combination Treg inducing therapy may provide a robust alternative to the recruitment of Tregs 

(CCL22 microspheres) and may be particularly effective in patients that have impaired natural 

Treg populations.  Therefore, we believe that these combination microspheres, although harder to 

translate (3 factors vs 1) may provide the most robust adjunct therapy for periodontal disease by 

harnessing endogenous regulators of damaging inflammation. 
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6.0  FUTURE WORK 

6.1 DEVELOPING CCL22 RELEASING MICROSPHERES FOR CLINICAL USE 

With the ultimate goal of developing a novel approach to treat the exacerbated inflammatory 

conditions seen in periodontal disease, as opposed to preventing the build-up of ever-present 

bacterial plaques, Treg-recruiting CCL22 microspheres offer an attractive alternative therapeutic 

strategy.  In summary, administration of CCL22 releasing microspheres generated reduced 

alveolar bone loss both in mice and in the most clinically relevant dog model for periodontal 

disease.  Furthermore, CCL22 microspheres were shown to function by preferentially recruiting 

endogenous anti-inflammatory regulatory T cells to the placement site, where they reduced the 

levels of inflammatory mediators responsible for tissue destruction in periodontal disease.  While 

the data presented within this document provides very strong evidence toward the mechanism of 

action and efficacy of CCL22 microspheres in both rodent and large animal models for 

periodontitis, the Food and Drug Administration (FDA) tightly regulates any therapeutic prior to 

clinical use and an overview of the required testing is described below. 

6.1.1 Navigating FDA regulation for the development of CCL22 microspheres 

CCL22 microspheres will likely be regulated by the FDA, categorizing the product as a therapeutic 

biologic (CCL22 being a protein agent) regulated within the FDA’s Center for Drug Evaluation 

(CDER).  Because the therapeutic is designed for treatment of periodontal disease the FDA’s 

Division of Dermatology and Dental Products (DDDP) under CDER will oversee the development 
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of the Investigational New Drug (IND) Biologic License Application (BLA) for CCL22 releasing 

microspheres. Ultimately, a FDA IND application will need to be prepared and approved by the 

FDA prior to clinical trials of CCL22 release PLGA microspheres.  The major components and 

activities required to complete an IND for CCL22 releasing microspheres are listed below. 

6.1.1.1 IND Chemistry, Manufacturing and Control for CCL22 releasing microspheres 

One of the major components of the FDA application for new drug applications (NDA) is the 

Chemistry, Manufacturing and Control (CMC), which is a major component of the IND 

application.  Within the CMC component the manufacturing of recombinant human CCL22 

requires the most documentation and planning.  Recombinant human CCL22 has to be 

manufactured using methods that both provide economically feasible yields (like E. coli based 

expression systems) and prevent the addition of trace toxic components (like bacteriophages).  The 

manufacturing of human CCL22 will need to be conducted using suitable E. coli strains and 

CCL22 expression vectors.  CCL22 protein produced by such recombinant techniques will need 

to be highly purified and characterized with each production batch to show consistency.  

Ultimately, characterization of the encapsulation and release of active rhCCL22 from PLGA 

microspheres will require further in depth characterization.  Ideally, these manufacturing 

procedures will need to be conducted using Good Manufacturing Practice (GMP), however, 

University run investigator clinical trials may be able to utilize non-GMP products with 

appropriate guidance and approval. 

6.1.1.2 IND Toxicology and Pharmacology of CCL22 releasing microspheres 

Once manufacturing of rhCCL22 microspheres is complete, the FDA IND application requires 

extensive pharmacology and toxicology studies typically preformed in at least two relevant animal 
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models.  Generally, these studies are preformed by Contract Research Organizations (CROs) 

following Good Laboratory Practices (GLP).  These studies would investigate the effects of 

CCL22 microspheres administered by several routes on common metabolic markers in the blood 

and tissues of animals. Ultimately, pharmacology and toxicology studies are designed to elucidate 

the safety parameters and dosing associated with CCL22 microspheres and help guide initial dose 

testing in human clinical trials. 

6.1.1.3 IND Clinical Protocol design for CCL22 releasing microspheres 

The final major component of the FDA IND application is comprised of a clinical protocol that 

will be followed for testing the CCL22 microspheres in humans.  This section of the IND focuses 

on defining the testing parameters for clinical trials, such as: dosing, number of patients, dose 

escalation studies, administration route, clinical monitoring program, and patient entrance criteria 

(indication).  Ultimately, the clinical protocol portion of an IND application defines all aspects of 

the clinical trial and must be approved prior to human use of CCL22 releasing microspheres. 

6.2 FUTURE INVESTIGATIONS USING TREG-INDUCING MICROPARTICLE 

FORMULATIONS  

As alternative strategy to recruiting endogenous regulatory T cells (CCL22 microspheres), several 

microparticle formulations were developed and described within capable of inducing the 

generation of regulatory T cells from naïve precursors at the site of microsphere placement. Above, 

the data suggested that Treg-inducing formulations (both VIP and IL-2, TFG-β and rapamycin 

microsphere formulations) were able to prevent alveolar bone loss in mice (the primary disease 
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outcome), however, the cellular and molecular mechanisms of the Treg-inducing formulations was 

not fully characterized. 

6.2.1 Future work for Vasoactive Intestinal Peptide (VIP) releasing microspheres  

Chapter 4 shows that microspheres can encapsulate and release VIP, a factor known to both recruit 

and induce regulatory T cells, ultimately led to a reduction in alveolar bone loss in a mouse model 

for periodontal disease.  Interestingly, VIP has been shown to contribute therapeutic benefit 

harnessing Tregs both by inducing the local expression of CCL22 (leading to Treg recruitment) 

and directly inducing the differentiation of naïve T cells into FOXP3+ regulatory T cells135, 136, 142.  

To understand how the VIP microspheres are reducing periodontal disease symptoms in mice, 

further investigations will need to investigate populations of regulatory T cells within the 

periodontium of treated mice.  Similar to the work described in the CCL22 microsphere 

mechanistic studies (Chapter 2), investigations into the cytokine, chemokine and growth factor 

profiles in the periodontium of mice may help to elucidate their therapeutic mechanisms after VIP 

microsphere treatment.  Specifically, understanding how important VIP is for the induction of 

regulatory T cells may help to determine which mechanism of VIP is working to reduce alveolar 

bone loss in mice.  In vitro testing of VIP effects T cells under activating media may help suggest 

how robust VIP Treg induction is with respect to previous work showing Treg induction using IL-

2, TFG-β and rapamycin microsphere formulations51. 
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6.2.2 Future work for TFG-β and rapamycin microsphere formulations 

Chapter 5 shows that Treg-inducing formulations composed of IL-2, TFG-β and rapamycin 

releasing microspheres greatly reduced the primary outcome of murine periodontitis, by reducing 

alveolar bone resorption.  However, the mechanism by which IL-2, TFG-β and rapamycin 

microspheres ameliorate disease symptoms is not fully characterized.  Future investigations will 

need to monitor Treg presence in the periodontium after treatment with Treg-inducing IL-2, TFG-

β and rapamycin microspheres.  The microparticle-based combination therapy of TGF-β, 

rapamycin and IL-2 is indeed more complex than the single factor delivery of CCL22 from 

microparticles (Chapters 2-3).  Therefore, to elucidate the therapeutic mechanism of the Treg 

inducing microparticles, it will be crucial to investigate the role that each microparticle-released 

factor (separately) plays in periodontal disease amelioration in mice independently.  Alone, TFG-

β microparticles may lead to some disease amelioration given that TGF-β is a well-known anabolic 

anti-inflammatory cytokine that can promote bone regeneration215. However, it is possible that the 

presence of TGF-β alone, in inflammatory environments, may actually induce the expansion of 

inflammatory TH17 cells216, potentially leading to increased inflammatory bone resorption.  

Rapamycin is small chemical species that functions as and intracellular mTOR inhibitor that 

ultimately blocks the receptor signal transduction mechanisms of inflammatory cytokines, 

suppressing the activation of conventional T and B cells while promoting regulatory T cell 

proliferation217. Furthermore, we have shown that rapamycin releasing microparticles, alone, are 

capable of generating suppressive or tolerogenic dendritic cells that may direct anti-inflammatory 

immune responses218.  Therefore, it is possible that mice receiving only rapamycin releasing 

microparticles may exhibit an increase in the presence of Tregs and amelioration of periodontal 

disease outcomes. However, rapamycin microparticles alone are not expected to perform as well 
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as the microparticle combination given that: 1) the rapamycin dose delivered from the 

microparticles is significantly lower than typical immunosuppressive doses, and 2) in our hands 

we only observed robust Treg induction with all three factors in vitro51.  IL-2 is a cytokine that 

originally has found clinical use as inflammatory mediator to treat cancers219, 220, however, IL-2 

also plays an important role in the induction of regulatory T cells leading to immune tolerance221.  

Therefore, in the context of periodontal disease, we speculate that IL-2 releasing microparticles, 

alone, may actually promote inflammation and tissue destruction.  Regardless, exploration of the 

outcomes of each microparticle formulation alone, and in dual combinations (e.g. IL-2 + 

Rapamycin) may provide insights into the mechanisms of the combination therapy. 
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