

University of Pittsburgh

Information Technology

COMPUTING SERVICES AND SYSTEMS DEVELOPMENT

Campus Cyberinfrastructure – the Science DMZ Role of Research and Education Networks Brian Stengel, Computing Services and Systems Development March 5th, 2015

Agenda

- Campus Cyberinfrastructure
- Recent NSF Award ScienceDMZ
- Research and Education Networks (RENs)
- National Cyberinfrastructure
- Statewide REN PennREN

technology.pitt.edu

Information Technology Services

- Enterprise Services
 - Accounts/Identity Services
 - Enterprise Web Infrastructure
 - Data/Voice/Wireless Networking
 - Information Security Services
 - Data Center/NOC Services
 - Server hosting, VMs, managed services
- Student Computing
 - Labs, Services, Consulting
 - LMS, Learning, Training
 - Software
- Enterprise Systems
 - Email
 - my.pitt.edu
 - Business systems

- Operations
 - 24x7 NOC
 - Network, Voice, Systems Engineering
- Support Services
 - 24x7 Help Desk
 - Consulting Services
- Security
 - Security engineers and response
- Business Intelligence
 - Data Warehouse
 - Analytics
- Research Support
 - HPC hosting, HPC engineers
 - FISMA compliant environment
 - RENs
 - Proposal support
 - Collaboration opportunities

University of Pittsburgh

Information Technology

COMPUTING SERVICES AND SYSTEMS DEVELOPMENT

CYBERINFRASTRUCTURE VISION FOR 21ST CENTURY DISCOVERY

National Science Found Cyberinfrastructure Co March

National	Science Foundation	Cyberinfrastructure Vision for 21st Century Discovery	March 2007
	TABLE OF CONT LETTER FROM THE DIREC PREFACE ACKNOWLEDGEMENTS EXECUTIVE SUMMARY	ENTS	
CAL			
I. C II. V III. G IV. Pr	yberinfrastructure Drive ision, Mission and Princip oals and Strategies lanning for Cyberinfrastr	RS AND OPPORTUNITIES	· · · · · · · · · · · · · · · · · · ·
HIG	H PERFORMANCE COMPL	JTING (2006-2010)	13
I. W II. T FC	7hat Does High Performan he Next Five Years: Creati dr Petascale Science and E	ICE COMPUTING OFFER SCIENCE NG A HIGH PERFORMANCE COMPUNITION	and Engineering? 13 uting Environment
DAT	A, DATA ANALYSIS, AND	VISUALIZATION (2006-2010)	
I. A II. D III. D IV. T	Wealth of Scientific Oppo efinitions	ortunities Afforded by Digita <mark>a Cyberinfrastructure</mark> in a Co dos a National Digital Data Fra	l Data
VIRT	UAL ORGANIZATIONS FO	R DISTRIBUTED COMMUNITIE	ES (2006-2010)
I. N V: II. T	ew Frontiers in Science an irtual Organizations he Next Five Years: <mark>Establ</mark> i	ND Engineering Through Netv 	worked Resources and
F	ramework for Virtual Org	ANIZATIONS	
LEAF	RNING AND WORKFORC	E DEVELOPMENT (2006-2010))
I. C II. B III. U IV. T	yberinfrastructure and Li uilding <mark>Capacity for Crea:</mark> sing Cyberinfrastructure he Next Five Years: Learni	earning	

- In 2009, a joint workshop of Educause ACTI-CCI and the Coalition for Academic Scientific Computation (CASC) issued a report and recommendations that addressed the challenges and strategies for developing a coherent cyberinfrastructure from local campuses to national facilities.
- The joint report observed that extremely large computing clusters, such as those at federally funded centers, will provide and support excellent scalability for only a very few software applications. The report then noted the proliferation of 1,000–2,000 core clusters on many campuses. The report concluded that it is not only practical but also *optimal* to solve a large number of computational problems at the campus level

National Science Foundation Advisory Committee for Cyb

Task Force on Campus Bridg Final Report, March 2011

Campus

Bridging

Recommendations/Conclusions from the Task Force

Excerpts:

- Campus cyberinfrastructure cannot be ignored when planning and developing the national cyberinfrastructure
- ...enable the seamless integration of the scientist's campus cyberinfrastructure; the cyberinfrastructure at other campuses; and regional, national, or international cyberinfrastructure
- Create a new program funding high-speed connections from campuses to the nearest landing point for a national network backbone...
- Encourage the use of InCommon global federated ID system...
- Institutions of higher education should lead efforts to fund and invest in university-specific, state-centric, and regional cyberinfrastructure

Cyberinfrastructure in action

http://www.nsf.gov/news/special_reports/cyber/

Common Components of Cyberinfrastructure

- Scientific instruments microscopes, telescopes, NGS units, observatories, distributed cyberinfrastructure
- Computing high performance computing clusters, supercomputers, private/public/hybrid compute clouds etc...
- Published data sets repositories, data banks, publicly available, fee based, journals, publications
- Advanced networking high speed, broadband, optical, software defined, ScienceDMZ
- Software/Middleware hubs, collaboration tools, identity management, trust solutions, synchronization, transfer tools
- Data management/storage/archival disk, NAS, cloud, hybrid
- Collaborators scientists, scholars, professionals, clinicians, systems administrators, librarians
- Colleagues professors, post-docs, grad assistants, data scientists

Cyberinfrastructure - Discovery and innovation

In scientific usage, cyberinfrastructure is a technological and sociological solution to the problem of efficiently connecting laboratories, data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge. (Source: Wikipedia)

Cyberinfrastructure - Federal funders

United States federal research funders use the term cyberinfrastructure to describe research environments that support advanced data acquisition, data storage, data management, data integration, data mining, data visualization and other computing and information processing services distributed over the Internet beyond the scope of a single institution. (Source: Wikipedia)

Cyberinfrastructure – In Practice

IT + more

ADVANCED NETWORKING

EXCHANGES

CLOUD,

New services, tools, techniques, skills

TRUST SOLUTIONS

COMMUNICATIONS AND COLLABORATION TOOLS

HIGH PERFORMANCE COMPUTING

OPERATIONS, CYBERSECURITY

Campus Cyberinfrastructure – in the .EDU *enterprise*

Campus Cyberinfrastructure – in the .EDU *enterprise*

Strategic Recommendation to NSF#3

... NSF should create a new program funding high-speed connections from campuses to the nearest landing point for a national network backbone. The design of these connections must include support for dynamic network provisioning services and must be engineered to support rapid movement of large scientific data sets – *pg.6, National Science Foundation Advisory Committee for Cyberinfrastructure Task Force on Campus Bridging, Final Report, March 2011*

Campus Cyberinfrastructure Programs

- 2013 CC*<u>N</u>etwork, <u>Infrastructure and Engineering</u>
 - Campus upgrades, new networking technologies development, upgrades to campus cyberinfrastructure
- 2014 CC*Infrastructure, Innovation and Engineering
 - Emphasis on integration, innovation and demonstrated support for science projects, developing campus CI expertise (human)
- 2015 CC*Data, Networking, and Innovation
 - Emphasis on data infrastructure building blocks, collaboration, communities engagement

NSF CC*IIE Program

 The NSF's "Campus Cyberinfrastructure - Infrastructure, Innovation and Engineering (CC*IIE)" program invests in improvements and reengineering at the campus level to support a range of <u>data transfers</u> <u>supporting computational science and computer networks and systems</u> <u>research</u>. The program also supports network integration activities tied to achieving higher levels of performance, reliability and predictability for science applications and <u>distributed research projects</u>.

Award Details

- **Our project** Accelerating Science, Translational Research, and Collaboration at the University of Pittsburgh Through the Implementation of Network Upgrades
- Award amount \$499K
- Period Sept 2015 completion
- PI Brian Stengel. Co-PI's Chris Keslar, Dr. Michael Barmada (Human Genetics, SaM), Dr. Patrick Pisciuneri (Givi Group, SaM)
- Pitt research projects supported PGRR (Pittsburgh Genome Resource Repository), LCTP (Laboratory for Computational Transport Phenomena – Givi Group), Physics/Astronomy – ATLAS
- Other orgs and groups we are engaged with 3Rox/PSC, ESnet, Internet2, GRNOC, CTSC, US ATLAS

The Science DMZ in 1 Slide

Consists of four key components, all required:

- "Friction free" network path
 - Highly capable network devices (wire-speed, deep queues)
 - Virtual circuit connectivity option
 - Security policy and enforcement specific to science workflows
 - Located at or near site perimeter if possible
- Dedicated, high-performance Data Transfer Nodes (DTNs)
 - Hardware, operating system, libraries all optimized for transfer
 - Includes optimized data transfer tools such as Globus Online and GridFTP
- Performance measurement/test node
 - perfSONAR
- Engagement with end users

sers perfSONAR Details at <u>http://fasterdata.es.net/science-dmz/</u>

University of Pittsburgh

Information Technology

NYSERNet New York's Networking Future

IMPUTING SERVICES AND SYSTEMS DEVELOPMEN

Regional/Statewide RENs

National CI

Extreme Science and Engineering Discovery Environment

ADVANCING XSEDE @ 100G

CloudLab

Chameleon

New NSF Funded Cyberinfrastructure

9.6M award to PSC

- Bringing supercomputing to nontraditional users and research communities
- It's data-intensive architecture (3 tiers of large, coherent sharedmemory nodes) will allow HPC computing applied to big data
- Will bridge supercomputing to university campuses to ease access and provide burst capability

\$6.6M award to IU, TACC

- NSF's first cloud environment for science and engineering research
- "easy button" for simple access to supercomputing tools and data sets
- User-friendly cloud environment designed to give researchers access to computing and data analysis resources on demand
- Menus of "virtual machines" designed to support discipline specific computation

\$20M for new testbeds to support cloud computing applications and experiments

- Flexible, scientific
 infrastructure for research
 on cloud computing
- Researchers can build their own clouds, experiment with new architectures

٠

- Distributed clusters providing compute, storage, software defined networking
- Federated with existing research infrastructure (GENI, USIgnite, others)

Why RENs?

- Why special networks? Why not use the ISPs?
- Reasons are both technical and social
- RENs serve scholarly purposes; ISPs serve commercial purposes
 - Enabling data intensive science (ScienceDMZ, etc..)
- The environment of RENs is collegial; for ISPs it is proprietary
 - Abundant bandwidth enables innovation (100G between campuses and users)
- RENs are collaborative; ISPs are competitive
 - Enabling innovation through open standards (SDN, Openflow, etc..)
- Internet2 and its communities are leading the way in developing the technologies to fully integrate as a user-and-application controllable, virtualized cyberinfrastructure

NYSERNet New York's Networking Future

IMPUTING SERVICES AND SYSTEMS DEVELOPMEN

Regional/Statewide RENs

Pennsylvania's Research & Education Network

- A non-profit MEMBER ORGANIZATION that provides a variety of BROADBAND CONNECTIVITY solutions
- Fosters COLLABORATION

- Promotes INNOVATIVE use of DIGITAL TECHNOLOGIES AND SERVICES
- Brings resources to the EDUCATIONAL, HEALTHCARE, LIBRARIES, MEDIA, GOVERNMENT and NON-PROFIT communities in Pennsylvania

m. College

COMPLITING SERVICES AND SYSTEMS DEVELOPMENT

Keystone Initiative for Network Based Education and Research Customer and Route Map for the Pennsylvania Research & Education Network Penn State Behrend Pitt uses today: versity of Pittst Pitt's regional campuses Pitt's Genomics Research Core and • University of Futsburg Geisinger Health System are arion University of PA Penn State exchanging files via KMEX Shenango Slippery Rock University Advertising our "routes" for shortest itler County Community College hops to/from other members Community Colleg of Beaver County Investigating opportunities for • Indiana University collaboration, connections... Untversity of Pittsburg stmoreland County Pennsylvania Highlands ntty Colle Comm. College of Philadelph Franktin & Marshall College Penn State Fayette University of Pennsylvania Drexel Millersville Universit University

Customer and Route Map for the Pennsylvania Research & Education Network

PennR

Opportunities:

PINSE, IUP, Lehigh

ersity of

Penn State Fayette

Westmoreland County

Community College

- Port of Pittsburgh Commission's ۲ Wireless Waterways Network (Interoperability Test Bed)
- **Energy Innovation Center** ۲

lic Media

Greensburg

University of Pittsburgh

Community College

of Beaver County

Carnegie University

California

University

University of Pittsburgh

Summary

- Campus Cyberinfrastructure *can we talk?*
- Regional, National CI we can make the connections
- Data Movement/Mobility *help us understand*
- Trust, Trustworthiness, Fed/Funder Compliance is important
- Collaboration, Contracts, Proposals we can help
- RENs will continue to lead the way in access to national CI

COMPUTING SERVICES AND SYSTEMS DEVELOPMENT

Information Technology

Thank you!

Brian Stengel bstengel@pitt.edu 412-624-8688

COMPUTING SERVICES AND SYSTEMS DEVELOPMENT

Don't Miss the Next **VORP** Lunch & Learn! April 2, 2015 102 Benedum Hall 12:00-1:00pm **BUILDING A PROFESSIONAL BRAND** WITH SOCIAL MEDIA WITH: **Andrew Stephen** Katz School of Business