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Even with years of practice, adult learners have trouble perceiving and producing sounds in a 

second language (L2). Adults tend to need more focused and targeted input to achieve native-like 

perception and production of L2 sounds than children. The present study aims to clarify the 

mechanisms through which L2 perception is influenced by first language (L1) sounds, the neural 

basis of this perception, how learner differences influence learning, and how different training 

paradigms modulate both the neural and behavioral basis of L2 sound perception. Native English 

and native Spanish speakers participated in a five-day training paradigm during which they 

learned to discriminate Hindi sounds that do not belong to their L1 sound categories. Participants 

underwent electroencephalogram (EEG) recordings from the scalp, baseline discrimination tasks, 

training, and several memory and attention individual measures. We expected that the L1 would 

modulate the EEG waveform known as the mismatch negativity (MMN) at approximately 150-

200ms after sound onset. This measure indexes early phonetic learning and previous research has 

shown that the waveform’s amplitude can change or shift with new phonetic learning, indicating 

a reorganization of early acoustic and phonetic processing with new input. Furthermore, we 

examined how the L1 and different training and feedback paradigms influence this MMN 

change. Results demonstrate that both learner groups showed a modulation in the MMN 

waveform after training, but the change was eclipsed by the native contrast that was tested as a 

control, depending on how well they performed during training. Furthermore, participants in the 

feedback condition performed better on the training than those in the no-feedback condition but 

Nonnative Phonetic Perception in Adult L2 Learners 

Alba Tuninetti, PhD 

University of Pittsburgh, 2015

 



 v 

this was not related to the ERP results, suggesting that feedback may be useful for overt 

behavioral responses, but not necessary for pre-attentive neural responses. These results are 

examined in light of the Perceptual Assimilation Model (PAM; Best, 1991, 1995), the Speech 

Learning Model (SLM; Flege, 1995), the Native Language Magnet model (NLM; Kuhl & 

Riviera-Gaxiola, 2008), and the Unified Competition Model (UCM; MacWhinney, 2005), 

examining similarity between L1s, neural hardwiring in the brain, and competition between 

phonetic contrasts.  
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1.0  INTRODUCTION 

It is well documented that successful second language (L2) acquisition differs widely during 

childhood vs. adulthood; children seem to acquire an L2 seemingly without problems as long as 

they begin and continue the L2 acquisition fairly early in life (DeKeyser, 2000; Flege, Yeni-

Komshian, & Liu, 1999; Johnson & Newport, 1989; Lenneberg, 1967; Newport, 1990). The 

most prominent or apparent advantages to beginning L2 acquisition from a young age appears in 

speech perception and production; children who have learned an L2 from a young age have 

excellent perception and production of the L2 phonetics, accent, prosody, etc., which seem to 

diminish as the age of L2 acquisition increases (Oyama, 1975; Pallier, Bosch, & Sebastian-

Gallés, 1997; Piske, MacKay, & Flege, 2001; Seliger, Krashen, & Ladefoged, 1975, Tahta, 

Wood, & Loewenthal, 1981).  

Extensive research with infants and children has shown that language-specific phonetic 

perception is learned in the first six months of life, and children retain the ability to perceive 

phonetic differences relevant to all languages for variable amounts of time, depending on 

cognitive individual differences and environmental linguistic influences (see Werker & Tees, 

1999, for a review of the infant literature). However, adult L2 speech acquisition is different than 

that of children’s in crucial ways because, unlike children, adult learners need more time and 

intensive, focused input to achieve native-like speech production and perception in an L2 (Best 

& Tyler, 2007; Bradlow, Pisoni, Akahane-Yamada, & Tohkura, 1999). 
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 The goal of the present study was to examine what factors influence speech perception in 

adult L2 learners using event-related potentials (ERPs) derived from EEG recordings to examine 

how nonnative contrasts are perceived in naïve listeners over the course of a training paradigm; 

importantly, this study addressed how cross-linguistic similarity across two different L1 speaker 

groups influenced perception and acquisition of the same nonnative phonetic contrast. 

Furthermore, the effects of feedback and training type were manipulated to examine how 

behavioral input would influence neural responses to the same stimuli. With this study, we hope 

to clarify how the L1 can help in perceiving nonnative contrasts through transfer or competition 

between the L1 and the nonnative language, as well as how feedback and training can influence 

both the behavioral and neural responses as participants learn to perceive nonnative sounds.  

It is well established that adult speakers who have little experience with an L2 have 

difficulty discriminating and categorizing nonnative phonetic contrasts (e.g., Best, McRoberts, & 

Goodell, 2001; Flanagan, 1972; Kuhl et al., 1992; Werker & Logan, 1985; Werker & Tees, 1984; 

see Best & Tyler, 2007, for a comprehensive review). However, the relative level of performance 

also varies with the specific contrast (e.g., Best & Strange, 1992; Best et al. 2003) and with 

different L1s (e.g., Best & Strange, 1992; Best, Traill, Carter, Harrison & Faber, 2003; Flege, 

1989). Specifically, if a speech sound does not occur in the native language contrastively with 

another speech sound, listeners have trouble perceiving it as a separate phonetic category. For 

example, native Japanese speakers have trouble distinguishing the English liquids /r/ and /l/ 

because these sounds do not occur contrastively as phonemes in their native language; that is, 

they do not occur in Japanese as two different linguistically relevant sounds, as they do in 

English. These language-specific speech contrasts hinder perception and production during 
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learning because the perceptual categorization of nonnative listeners is not organized to 

distinguish between these two phonemes as meaningful linguistic contrasts.   

 One of the main factors influencing how people perceive and acquire these contrasts is 

similarity to the first language, as evidenced by extensive behavioral data and models (Best & 

Tyler, 2007; Flege, 1995). However, the level at which this occurs, acoustic or perceptual, has 

yet to be fully detailed because behavioral results cannot provide as fine-grained measures of 

sensitivity from overt responses. To address this lack of sensitivity, work examining the neural 

bases of speech perception and production has attempted to clarify how the brain uses incoming 

information to categorize and identify novel phonetic contrasts.  

 Current research has examined data from neuroimaging methodologies ranging from 

functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and 

electroencephalography (EEG) in an effort to capture the neural mechanisms of speech 

perception and acquisition. The present study built on previous work in this field to examine how 

the factors of cross-language similarity, training, and feedback affect both behavioral and neural 

responses to speech contrasts not present in the L1.   

 Participants in our study underwent two different training conditions with three feedback 

conditions to investigate the benefit of feedback during nonnative phonetic perception and 

acquisition. In general, previous work has demonstrated that performance feedback is beneficial 

during phonetic training paradigms, for both fixed and adaptive training (see McCandliss et al., 

2002; Tricomi et al., 2006); here, the influence of feedback on both behavioral and neural 

responses was examined to further elucidate how feedback aids in speech perception and 

acquisition. Therefore, by combining two different language groups learning to perceive the 

same nonnative contrast with different training paradigms and feedback, this study addresses 
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how perception of nonnative speech contrasts can be influenced by overt behavioral tasks, both 

at the behavioral level and the neural level with the added factor of cross-linguistic similarity. 

The results were examined in light of four current models of L2 speech perception, detailed 

below.  

1.1 MODELS OF L2 SPEECH PERCEPTION 

Examining the underlying structures and mechanisms by which L2 speech perception occurs can 

provide more information regarding the development and the state of the speech perception 

system generally, as well as answer questions regarding its plasticity and adaptation to novel 

stimuli. Here, we will review four relevant models of L2 speech perception and acquisition: the 

Perceptual Assimilation Model (PAM; Best, 1991, 1995; Best & Tyler, 2007), the Speech 

Learning Model (SLM; Flege, 1995), the Native Language Magnet (NLM) model (Kuhl & 

Riveria-, 2008), and the Unified Competition Model (UCM; MacWhinney, 2005). The 

mechanisms underlying these models will be addressed with respect to the present study.  

Earlier models, such as the Perceptual Assimilation Model (PAM; Best, 1991, 1995; Best 

& Tyler, 2007) and the Speech Learning Model (SLM; Flege, 1995), addressed nonnative speech 

perception using the available research at the time, which, due to methodological constraints, 

concentrated primarily on behavioral methodologies and linguistic theories. The PAM proposes 

that speakers use their L1 system to perceive L2 input, assimilating the L2 phones into the L1 

phones that are the most similar to the L2. The SLM posits that how well a speaker will perceive 

and produce nonnative speech is a function of the amount of L2 input. The amount and quality of 

input is measured as the age of arrival of the speaker to a country and how often the speaker 
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relies on or is exposed to the native or nonnative language system. For both models, similarity 

between the L1 and L2 is one of their main tenets, although the SLM also highlights experience 

and exposure.  

The PAM proposes that L1 speakers use their L1 speech system to perceive L2 input, 

assimilating the L2 phones into the L1 phones that are the most similar to the L2. Nonnative 

speech is assimilated either as an exemplar of a native phonemic segment (categorized), as an 

exemplar of a nonnative language phoneme (uncategorized; that is, not in the native phoneme 

category), or, more rarely, as a nonlinguistic sound (non-assimilated; that is, not incorporated 

into a phonemic category). Within the categorized exemplars, a good or poor exemplar of a 

native phonological segment corresponds to better or worse "goodness of fit". To measure 

goodness of fit, researchers have listeners categorize L2 input as pertaining to a native category, 

and then rate them on how "well" they fit the prototypical L1 category (e.g., Schmidt, 1996). 

Thus far, evidence has demonstrated that when listeners rate two speech contrasts as more 

similar to an L1 category, those contrasts receive lower discrimination scores because they were 

rated as more similar (Best, 1990; Polka, 1995). It is important to note that this reasoning is 

circular – those contrasts that are rated as similar to an L1 are then harder to discriminate 

because of the fact that they are similar.  

The SLM has been compared frequently to the PAM, but the SLM critically different in 

that it addresses not only perception, but production and learning as well. The SLM posits that 

speakers extract information from acoustic-phonetic information directly, and use the statistical 

regularities in this information to build up information for a speech sound repertoire, more in line 

with the general approach to speech perception. Secondly, how well a speaker will perceive and 

produce nonnative speech is a function of the age of arrival of the speaker to a country and how 
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often the speaker relies on or is exposed to the native or nonnative language system. A study 

examining native Italian speakers who spoke English as an L2 showed that there is a linear 

relationship between the age at which the speaker learned English and the perceived degree of 

foreign accent, such that the earlier the speaker learned their L2, the more "native-like" they were 

rated (Flege, Munro, & MacKay, 1995). Critically, the SLM states that the mechanisms used for 

learning a new speech system stay intact over the lifespan, such that new nonnative 

representations can form, but they depend strongly on the similarity to the already entrenched 

speech representations. Behavioral training studies have demonstrated that with enough exposure 

to a new speech contrast, subjects can gradually learn to correctly categorize nonnative contrasts 

that they were not able to categorize previously (Logan, Lively, & Pisoni, 1991; Strange & 

Dittmann, 1984). The PAM and the SLM focus primarily on adult nonnative speech perception 

and production, but with naïve listeners (the PAM) or with experienced listeners (the SLM). 

The NLM model (Kuhl & Rivera-Gaxiola, 2008) and the Unified Competition Model 

(UCM; MacWhinney, 2005, 2012), began expanding on the ideas of competition, hardwiring, 

and neural encoding. The NLM (Kuhl, 1993; Kuhl & Rivera-Gaxiola, 2008) focuses primarily on 

nonnative speech perception during childhood - that is, how assimilation of a nonnative speech 

system occurs during early exposure to more than one language - and addresses how this 

assimilation develops over the lifespan as well. The perceptual space that is occupied by the 

language system can be reshaped with early language experience such that the representational 

structure changes as a function of the statistical distribution of the input. Native language-

specific perception in infants begins around 6 months of age; by 11 months, there is a decline in 

foreign language phonetic perception (Kuhl & Rivera-Gaxiola, 2008). Infants’ neural networks 

are still malleable enough to change with early exposure to a new speech system, but these 
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stabilize over time such that adults' networks are relatively unaffected by change and exposure to 

new stimuli. Given this, adult learners will have more difficulty achieving high proficiency when 

presented with L2 speech contrasts that require discrimination because their increased experience 

with their L1 speech system will block new phonetic learning and their perceptual space has 

been neurally committed to the L1 system. 

Finally, the UCM (MacWhinney, 2005, 2012) is a data-driven connectionist model that 

uses cues as a basis for language comprehension. For L2 learners, the cues that adults use to 

process their L2 are obtained from their L1; this means that successful L2 processing depends on 

whether the L1 and the L2 are similar enough that the same cues can be applied from the L1 to 

the L2. These cues, which are present in the language and which listeners use inherently, form 

the crux of the UCM—they vary in strength based on their availability (how often they are 

present) and reliability (how often they lead to a successful interpretation). The UCM has mainly 

concentrated on learning grammar and syntax with this framework of cues and similarity, but it 

also touches on learning the phonetics and phonology of an L2. Cue strength can be objectively 

quantified from corpus data, and the UCM has used corpus data to show support for cue strength 

and similarity hypotheses (e.g., MacWhinney & Pleh, 1988). Huge corpora of language can be 

mined for different cues in phonetics and phonology and applied to learning an L2.  

The UCM measures similarity in a relatively more objective way rather than depending 

on participant ratings. The UCM posits that similarity between the L1 and L2 will result in 

positive transfer between items (such as morphosyntactic endings, syntactic constructions) 

because they can transfer directly; differences between the L1 and L2 result in negative transfer 

and cause competition between the L1 and L2; finally, the learning of unique constructions in the 

L2 depends on cue strength. With respect to speech perception and processing, reliable and 
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available cues may come from the natural environment or from laboratory training experiments, 

as used here.  

In brief, models of L2 speech perception have attempted to explain the basis for speech 

perception in terms of L1-L2 similarity, plasticity, and neural commitment. Later models, such 

as the UCM and NLM, combine theories and mechanisms from earlier models, such as the PAM 

and SLM, to address how similarity to the L1 can influence the neural responses or cue 

weightings when responding to an L2. The current study seeks to clarify underlying assumptions 

in models of L2 speech perception, such as the level at which perception occurs, how native 

speaker and learner groups show differential responses to the same stimuli, and how 

manipulation of these stimuli affect both behavioral and neural responses. Theoretically, the 

UCM, with the competition mechanism, and the NLM, with neural hardwiring as a major 

component, are the most relevant with respect to the current experiment. Prior phonetic 

categorizations can provide competition when attempting to learn new phonetic categories, but 

previous research has shown that it is possible to have native-like responses to nonnative 

phonetic categories and this may challenge the NLM’s construct of neurally-committed 

perceptual space.  

1.2 CURRENT STUDY 

Behavioral measures of speech perception have examined how individuals categorize phonetic 

stimuli with overt responses in an effort to quantify how factors such as cross-language similarity 

influence categorical discrimination and identification. However, to clarify the perceptual level 

at which categorization occurs, researchers turned to neural measures of speech perception and 
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phonetic processing in an attempt to understand how linguistic factors can influence acoustic and 

phonetic perception.  

 Specifically, the mismatch negativity (MMN) response has been examined as the neural 

signature indicating sensitivity to phonetic contrasts. The MMN is a negative-going response 

seen particularly at the frontocentral and central electrodes that indexes a change in frequent 

stimuli. For nonnative speech perception, the MMN captures pre-attentional perception of 

infrequent stimuli and is used to test whether subjects can perceive the difference between two 

stimuli that differ either acoustically or phonetically. It is obtained by subtracting the ERP 

response to a frequent, or standard, stimulus from the ERP response to an infrequent, or deviant, 

stimulus and occurs between 150-250 ms after the change in stimuli. The MMN response is 

helpful to study because it indexes an involuntary pre-attentive response to changes in incoming 

auditory stimuli (Näätänen, 2001). Therefore, it is essential to note that the MMN is a difference 

waveform yielded by comparing waveforms elicited by different incoming sensory stimuli. 

Importantly, the MMN can be elicited only after the auditory system has been habituated (or has 

been able to form a representation of a standard stimulus) before hearing the deviant stimulus. 

That is, the MMN indexes the change in stimuli because the standard forms a short-term memory 

trace due to its repetition; upon hearing the deviant stimulus, the change in input causes the 

perceptual system to recalibrate the response. The change from the standard to the deviant 

stimulus is responsible for the MMN response (Näätänen, 2001; Näätänen & Winkler, 1999; 

Sams, Alho, & Näätänen, 1984). Finally, the MMN is elicited independent of attentional 

processes, so behavioral tasks are not needed to detect this waveform. In fact, many studies that 

investigate MMNs during auditory processing use behavioral tasks to direct subjects’ attention 

away from the MMN-eliciting stimulus to dissociate attention-dependent ERP responses that 
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may overlap the MMN, usually in the form of watching a silent movie while listening to the 

stimuli (for a review, see Näätänen, Paavilainen, Rinne, & Alho, 2007). 

Because the MMN is sensitive to changes in stimuli (from standard to deviant), it lends 

itself to study how sensitive individuals are to either acoustic or phonetic changes in stimuli. 

Investigating the timecourse of neural responses to native and nonnative speech contrasts in both 

children and adults was facilitated by the use of the MMN response to quantify differences in 

perception (Mueller, 2005; see Näätänen, 2001, for a review of the MMN in speech perception). 

For example, if examining the perceptual categorization of voice onset times (VOTs) of stop 

consonants in English, a 50ms VOT stimulus and a 90ms VOT stimulus would both be 

categorized as /p/ because the perceptual category of /p/ in English ranges in VOT from 20ms 

VOT to 120ms VOT (Lisker & Abramson, 1964). If the 50ms VOT were the standard stimulus, 

the 90ms VOT would be considered the within-category deviant. A between-category deviant 

would have a VOT outside of the range of English VOTs. Crucially, the within-category and 

between-category deviants are controlled such that the physical acoustic difference between 

them and the standard is equal, so the response is solely based on perceptual phonetic differences 

and not acoustic differences. Conversely, the difference between 50ms VOT and 90ms VOT is 

40ms. That same difference of 40ms would have to be applied to the between-category deviant, 

resulting in a VOT of 10ms (50ms – 40ms). Hence, the standard 50ms VOT would have a 

between-category deviant of 10ms VOT, which also fulfills the requirement of being outside the 

range of English VOTs for /p/. This is done to ensure that the perceptual categorization of the /p/ 

continuum is not due solely to noticing a physical difference in the stimuli, but to linguistically 

and perceptually relevant differences.  
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Dehaene-Lambertz (1997) showed that there is a larger-amplitude MMN in response to 

an acoustic change that corresponds to a phonemic boundary in subjects’ native language. 

Subjects heard two contrasts: one native to their language (French /ba/-/da/) and one not native to 

their language (Hindi dental /da/- retroflex /Da/) and were instructed to press a button in 

response to a perceived change. Importantly, the acoustic distance between the two sets of 

contrasts was controlled to be the same. This was done to ensure that brain responses to the 

stimuli were elicited by the phonetic contrast and not the acoustic difference. There was a larger 

MMN response for the native contrasts, suggesting that subjects could perceive only the 

difference in stimuli for contrasts that were native to their L1, but not for nonnative contrasts. 

The authors concluded that native language speech characteristics are encoded in memory and 

are used to compare incoming stimuli to stored representations during the task (Dehaene-

Lambertz, 1997). Importantly, the researchers did not control for attentional influence in this 

study by making participants make overt responses to changes they heard. The MMN can be 

influenced by attention to the stimuli, leading to a heightened response (Pisoni, 1973).  

 Näätänen and colleagues (1997) controlled for attentional influence by having particpants 

direct their attention away from the incoming auditory stimuli. They had native Finnish and 

native Estonian speakers listen to vowels that were prototypical in Estonian and Finnish with 

deviant vowels that existed in both languages (a between-category contrast) or a vowel that only 

existed in Estonian (no category for native Finnish speakers). The vowels only varied in the 

second formant (F2) and all other frequencies were kept constants. The participants showed 

MMN responses only when the deviant stimulus was a native language phoneme prototype. For 

example, native Finnish speakers only showed an MMN response when the deviant stimulus was 

a Finnish /ö/, but not when it was an Estonian /õ/ (the standard stimulus was a Finnish /e/), 
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suggesting that the MMN response was language-specific (Näätänen et al., 1997; see also Peltola 

et al., 2003; Sharma & Dorman, 2000). The authors also concluded that language-specific 

memory traces of phonemic representations are activated during the tasks to judge incoming 

stimuli, much like Dehaene-Lambertz (1997; see also Cheour et al., 1998). 

 These canonical MMN studies showed the MMN response within a language group; 

across language groups, Sharma and Dorman (2000) had native English speakers discriminate 

between two stimuli that differed in VOT, /baar/ and /paar/, a speech contrast native to Hindi 

speakers. Their stimuli were produced by a native Hindi speaker and then edited at zero 

crossings to create stimuli with pre-voicing from 0 ms VOT to 90 ms VOT. Their native Hindi 

control group showed an MMN response to the contrasts but the native English speakers did not, 

demonstrating that the MMN is, in fact, language-specific. In late L2 learners, Winkler and 

colleagues (1999) showed that native Hungarian speakers who had been living in Finland and 

were fluent in Finnish (learned after age 13) had comparable MMN responses to native Finnish 

speakers to two Finnish speech contrasts. Native Hungarian speakers with no prior experience in 

Finnish did not show this neural response. These results suggest that learning a foreign language 

can generate long-term changes in the brain, such that the perceptual system of L2 learners 

shows the same sensitivity to L2 speech contrasts as native speakers.  

 However, there may still be differences between proficient L2 learners and native 

speakers in the quality of their neural responses. Nenonen et al. (2003, 2005) showed that L2 

speakers did not have the same “fine-tuning” as native speakers because their L2 speaker group 

showed an MMN with smaller amplitude compared to the native speakers for a phonetic 

contrast. They had native Russian and native Finnish participants listen to vowel duration 

differences, keeping all other acoustic measures (formant frequency, pitch) constant across 
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deviant and standard stimuli. Standard stimuli were presented with a 200 ms vowel duration and 

deviants were presented with a 150 ms vowel duration. Cross-linguistic influence was controlled 

in a later study that examined how similarity between languages could influence the responses. 

Highly-proficient Russian-Finnish bilinguals showed a greater-amplitude MMN for a dissimilar 

speech contrast than a similar speech contrast (confirmed by norming) suggesting that similarity 

to the L1 and mediation through L1 speech systems could influence neural brain responses to L2 

contrasts. However, this study was done with children; examining this effect with late or naïve 

L2 learners could elucidate on the neural mechanisms behind perceiving and learning new 

nonnative phonetic contrasts.  

 More recently, Brandmeyer et al. (2012) showed that highly proficient adult L2 speakers 

(Dutch-English) still show L1 influence in perceiving differences between L1 and L2 speech 

contrasts when presented with a /pa/ and /ba/ VOT contrasts. The authors manipulated one token 

of an aspirated /pa/ to create additional stimuli by removing 11 ms sections of aspiration to create 

a continuum that sounded like /b/-/p/ for native English speakers. Behaviorally, native English 

speakers show an earlier shift in the category boundary than L2 speakers, suggesting that the L2 

influenced the perception of the boundary, and neurally, larger amplitude MMNs corresponded 

to the respective perceived category boundary of each language group, such that native speakers 

had larger MMNs at an earlier category boundary than L2 speakers. This suggests that native 

language experience affects how acoustic features of speech are weighted within a language to 

provide salient information within the perceptual speech representations of the native language. 

Training studies have used the MMN to examine how brain responses change from pre- 

to post-exposure to nonnative phonetic contrasts. Kraus et al. (1995) trained adults to 

discriminate between synthesized variants of /da/ varying in the formant frequencies for F2 and 
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F3, but keeping all other acoustic features equal (duration, amplitude, fundamental frequency, 

steady-state vowel, and consonant portion). They found that the MMN showed longer duration 

and larger magnitude after training than before training, coinciding with an improvement in 

behavioral performance for most subjects. Furthermore, Tremblay and colleagues (1997) also 

showed that behavioral improvement in speech contrast discrimination transferred to novel 

nonnative speech discrimination tasks. Participants were tested on synthesized labial (/ba/-/pa/) 

and alveolar (/da/-/ta/) speech sounds in a continuum from -50 ms VOT to 50 ms VOT in 10 ms 

steps. These contrasts constituted a difference only in place of articulation; participants were 

trained on the labial contrast and were tested on discrimination for the alveolar contrasts. 

Participants showed showed enhanced MMN responses for novel stimuli (Kraus, McGee, 

Carrell, King, Tremblay, & Nicol, 1995; Tremblay, Kraus, Carrell, & McGee, 1997; see also 

Tremblay, Kraus, & McGee, 1998). Studies with non-speech stimuli have shown that the same 

type of MMN responses can be elicited after extensive training, suggesting that the formation of 

meaningful auditory categories is not a phenomenon special to human language, but can be done 

through exposure and statistical regularities (Liu & Holt, 2011).  

To date, studies examining behavioral training and MMN ERP responses have failed to 

clarify how the L1 influences this perceptual adaptation and learning and how training and 

feedback could interact with L1 similarity to play a role in the behavioral and neural changes 

during learning. Specifically, the present study investigated how L1 speech categories influence 

acquisition of L2 speech categories with behavioral discrimination accuracy judgments and pre-

attentive neural responses (i.e., the MMN). Native English and native Spanish speakers were 

tested on their discrimination of Hindi pre-voiced contrasts that do not exist as contrastive 

linguistic distinctions in English or Spanish. Furthermore, both native speaker groups learned the 



 15 

same pairs of contrasts, but those contrasts are categorized differently in English and Spanish. 

This manipulation will help elucidate the influence of L1 similarity on perceiving and learning 

new phonetic categories in an unknown language. Previous work has shown that similarity 

between the L1 and L2 can influence MMN responses in children and adults, such that more 

dissimilar sounds show a larger amplitude MMN response, and more similar sounds show a 

smaller MMN response (Dehaene-Lambertz, 1997; Díaz, Baus, Escera, Costa, & Sebastián-

Gallés, 2008; Näätänen et al., 1997; Nenonen et al., 2005; Sharma & Dorman, 2000). However, 

most studies have only looked at two languages in contrast with each other (i.e., one language 

group learning to perceive an L2 or nonnative contrast), and have not examined behavioral and 

neural responses co-occurring in an experimental design with more than one language group 

learning to perceive similar nonnative contrasts.  

Furthermore, our study also examines the effect of feedback on speech perception 

learning. Previous research has shown that consciously attending to auditory stimuli improves 

perceptual discrimination (Francis & Nusbaum, 2002), but explicitly drawing attention to the 

beginning of each sound (instead of allowing participants to do it on their own) may “speed up” 

the process of successfully discriminating between nonnative contrasts. Therefore, the present 

study examined if and how feedback influences the individuals’ capacity to perceive and learn 

new nonnative contrasts with three feedback groups: no feedback, standard feedback, and 

attentional feedback. Standard feedback was defined as receiving a “correct” or “incorrect” 

response to their answer, whereas attentional feedback provided participants with information 

regarding the point at which to listen to the differences between the sounds (e.g., “Please pay 

attention to the beginning of the sound”). We hypothesized that participants in the attentional 

feedback condition would improve their discrimination earlier in training than those who 
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received standard feedback because they would be better able to notice differences between the 

speech sounds (Schmidt, 1990, 1993). 

Native English and native Spanish speakers were trained on the same Hindi phonetic 

contrasts: /b/-/p/ and /p/-/ph/. Importantly, the first contrast, /b/-/p/, is native to both English and 

Spanish, and will act as a control to ensure that the MMN response is elicited by across-category 

phonetic stimuli. The contrast of interest is /p/-/ph/ because these phonemes are categorized 

differently by native English and native Spanish speakers (see Figure 1 for categorization 

continuums for language groups). Native English speakers have a much wider category for the 

/p/ phoneme which encompasses both unaspirated and aspirated /p/ tokens. Although the 

aspiration is used systematically in English in certain phonemic contexts, it does not constitute a 

meaningful distinction from that of an unaspirated /p/, as it is in Hindi (i.e., they do not form a 

minimal pair distinction). For example, aspiration in /p/ regularly occurs at initial locations in 

English words and unaspirated /p/ occurs after /s/; an aspirated /p/ after /s/ cannot occur in 

English (Lisker, 1985). This predictable variation occurs in English, but because this variation 

can occur within the same semantic and lexical environment and not signal a minimal distinction 

(e.g., aspirated and unaspirated instances of /p/ within the same semantic and lexical context: 

‘ra/ph/id’ vs. ‘ra/p/idity’), it is considered part of the same phonetic category. However, native 

Spanish speakers only have a very restricted range of aspiration when pronouncing /p/, from 0 

ms VOT to approximately 15 ms VOT (Lisker & Abramson, 1964).  
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Figure 1. /b/ - /p/ continuum for three language groups. 

Therefore, the current study investigated whether a prior existing representation, albeit 

organized differently, would make it easier (or harder) to learn a new categorization compared to 

having no categorization for the novel stimulus. Prior representations may make it easier to 

categorize the novel stimulus because no new representation needs to be formed within the 

phonemic repertoire; conversely, native English speakers may experience competition from the 

already-established /ph/ that does not allow for re-categorization. Native Spanish speakers, who 

do not have an aspirated /p/ in their phonemic repertoire, may find it easy to form a new phonetic 

category for the novel stimulus and therefore show an earlier MMN response to the Hindi 

phonemes; conversely, it is unknown how perceptual representations of new phonetic stimuli are 

effectively formed so native Spanish speakers may not show the same benefit as native English 

speakers. The UCM predicts that similar constructions will engender positive transfer between 

languages, dissimilar constructions will cause competition, and learning of unique constructions 

depend on the cue validity; here, native English speakers should show positive transfer from the 
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already-existing phonetic representation /ph/ and be able to easily separate it from the larger /p/ 

category to make a new one. Alternatively, even though it already exists in English, it may 

provide competition because it is instantiated in the L1 differently than how it is expected in the 

L2. For this study, we hypothesize that competition between prior phonemic representations and 

the nonnative phonetic contrast would be a more powerful force than similarity between the 

speech sounds. Specifically, it would be more difficult for native English speakers to break apart 

an existing phonemic category into two phonetic categories. For native Spanish speakers, the 

aspirated /ph/ would be a unique construction, such that the successful perception and acquisition 

of the phone depends on the type of cues available throughout training. In this case, because they 

were exposed to the phonetic contrasts everyday, the cue was available 100% of the time. 

However, due to the fact that they were in an English-speaking environment (i.e., the native 

Spanish speakers were living in the United States), the reliability of the cue was mixed: during 

training, it was reliably presented as separate from the unaspirated /p/, but in the environment 

outside the laboratory, they received input in which it was categorized within the larger English 

/p/ category.  

The L1 of participants could influence the acquisition of nonnative contrasts in different 

ways depending on how the L1 phonetic categorization modulates the L2 speech contrast 

acquisition. Specifically, the present study could show a higher-amplitude MMN response to 

those phonetic speech pairs that are easier to learn because they would be instantiated more 

natively in the perceptual system and a correlation between behavioral responses and neural 

responses that could expand on the similarities and differences between the overt behavioral 

responses and underlying neural data; although it may be expected that a fairly close relationship 

would result, previous studies have shown that dissociation between behavioral and neural 
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responses occurs in phonetic discrimination tasks (Kraus et al., 1995) and higher-level language 

tasks (e.g., Tokowicz & MacWhinney, 2005). This is the first training study, as far as we know, 

that has examined the statistical relationship between these two types of responses as a way to 

more fully understand the developmental timecourse of adult nonnative perception. This study 

also sought a clearer understanding of how nonnative phonetic perception develops over the 

course of adult L2 acquisition; three ERP sessions were done to test naïve perception, perception 

after half the training had been completed, and perception after the full training. Finally, how 

explicit metalinguistic feedback influences acquisition of nonnative speech contrasts and how 

effective this type of feedback can be in real-world applications was investigated.  

The training paradigm consisted of an AXB phonetic discrimination task wherein 

participants are asked to choose which of two sounds are more similar to each other (decide if 

sound A is more similar to sound X or if sound B is more similar to sound X). Specifically, 

participants heard three sounds in a row and were asked to decide if the first sound they heard or 

the third sound they heard was more similar to the second sound they heard. For example, 

participants heard two very similar /p/ tokens (one with more aspiration, e.g., 10 ms VOT) and a 

fully aspirated /p/ (e.g., 80 ms VOT) and were asked to choose which of the /p/ sounds was most 

similar to the aspirated /ph/ sound. Their response was correct if they answered that the /p/ token 

with more aspiration was more similar to the fully aspirated /p/, in order to shift their 

categorization to consider aspiration as a relevant feature for discrimination. The AXB task is 

used more often to ensure that listeners are using phonemic memory to correctly categorize the 

stimuli as opposed to being biased to answer same or different in an AX task (Gerrits & 

Schouten, 2005). The task forces listeners to compare each of two sounds to a third one, and 

although the three tokens are acoustically different, two belong to the same category. In this way, 
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the AXB task examines the similarity between categories and not between acoustic stimuli. 

Importantly, this also addresses the problem of having variation within a phonemic category; that 

is, there is inherent variation in categories because it encompasses a range of acoustic 

dimensions that when perceived, all lead to perception of the same phonetic category.  

Therefore, the acoustic differences within a category do not provide a meaningful 

difference between each one. When those acoustic differences cross a category boundary, and 

they become between category differences, they index a meaningful distinction. Therefore, when 

asked to discriminate between sounds, listeners are assumed to make a meaningful distinction; 

however, when examined with a simple AB task, it is unclear if listeners are making a 

meaningful distinction or just listening for acoustic differences. In this case, a task like the AXB 

task provides better evidence for the categorical discrimination. Out of the three sounds, two are 

in the same category though they may vary acoustically within the same category—therefore, 

listeners are making a responding based on categorical evidence, not acoustic. Here, we 

attempted to actively shift participants’ categorization of the sounds to construct a new phonetic 

category of aspirated /p/ as separate from /b/ and unaspirated /p/, like native Hindi speakers.  

Participants had exposure to two different oddball paradigms to test the reliability of the 

MMN response to more variation within a phonetic category. Two blocks of the oddball 

paradigm had the traditional MMN design such that there was one standard stimulus repeated 

with a within-category deviant and between-category deviant pseudo-randomly distributed 

throughout the block. In addition to these blocks, there were two blocks in which the standard 

stimulus was varied within the category; for example, instead of having the same /pha/ phone 

with 40 ms VOT repeated throughout the standard stimulus, the standard stimulus varied from 0 

to 30 ms VOT to examine if the normal VOT variation captured in natural speech would elicit 
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the same MMN response to within and between-category deviants. Varying standard 

presentation has been done with non-speech stimuli (sinusoidal tones), changing the frequency 

and intensity of the deviant stimuli; the same response was found to intensity and frequency 

changes although the amplitude of the MMN decreased with increasing variability (Winkler, 

Paavilainen, Alho, Reinikainen, Sams, & Naatanen, 1990). However, due to the natural variation 

inherent in speech (e.g., production of an aspirated /p/ is not the exactly the same from one 

instance to another), it would behoove us to know if the MMN can capture the phonetic status of 

the new phone within more variable presentation. This would add to evidence regarding how the 

MMN captures phonetic, and not acoustic, information about the stimuli if it can also be elicited 

within a more natural variable speech environment. To our knowledge, the current study was the 

first one to examine how natural speech variation within the standard presentation could elicit the 

same type of MMN response.  

Specifically, the present experiment builds on existing literature by examining multiple 

language groups acquiring the same nonnative phonetic contrasts; these contrasts are instantiated 

differently in the L1 or do not exist in the L1, allowing us to examine how L1 similarity affects 

phonetic perception behaviorally and neurally. For the traditional oddball paradigm designed to 

elicit the MMN response, native English and native Spanish speakers were expected to show an 

MMN response to the between category contrast, /ba/-/pa/, but not to the second deviant pair, 

/pa/-/pha/, because it was a within-category change in English and because it does not exist as a 

native contrast in Spanish. By the end of training, they should show more comparable MMN 

responses to both contrasts if they have learned to perceive the /pa/-/pha/ difference as a 

meaningful distinction. For the manipulated oddball paradigm with varying standard 

presentation, we expected the same type of MMN response, but with a lower MMN amplitude 
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for the /pa/-/pha/ change because there was more variability within the presentation, as seen in 

previous research varying the standard presentation (Winkler et al., 1990). 

All participants who underwent training also completed various individual difference 

measures to ensure that variables exogenous to the study, such as cognitive differences between 

groups, would not account for differences in training performance or perceptual acquisition. 

Previous research has found that individual differences such as working memory and measures 

of non-spatial intelligence correlate with the ability to produce L2 speech more fluently, with 

fewer hesitations and pauses (Mota, 2003; Weissheimer & Mota, 2009) due to the enhanced 

ability of those with higher working memory to manipulate items and plan speech. Although we 

did not test speech production here, the effects of higher working memory might be seen in 

training performance, for example, which required participants to choose between three stimuli, 

keeping them in mind and actively comparing them. Jakoby, Goldstein, and Faust (2011) divided 

participants into two groups depending on well they performed on an L2 standardized test, to 

distinguish between “better” and “worse” learners; better learners had shorter MMN and P3a 

latencies, which the authors suggest may reflect a more efficient language learning mechanism. 

Ortiz-Mantilla, Choudhury, Alvarez, and Benasich (2012) showed that early exposure to another 

language may modulate acoustic abilities, as evidenced by performance on a nonspeech task, 

contributing to better language learning later in life. However, controlling for other types of 

individual differences has not yet been done, and it is possible that these may interact with 

perceptual learning. 

Having two language groups learning the same nonnative phonetic contrast with 

behavioral and neural responses will better clarify the underlying bases of L1 cross-language 

influence for models of L2 speech perception, providing an additional measure of cross-language 
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influence (MMN) that has yet to be incorporated into models of nonnative speech processing. 

Furthermore, we expected that differences between feedback types would inform theories and 

practices of foreign language teaching and learning in real-world classrooms and instruction, 

allowing for more efficient and effective language learning experiences among adults. Explicitly 

drawing attention to dissimilar constructions between the L1 and L2 has been shown to be 

helpful in learning grammatical constructions (Norris & Ortega, 2000; Tolentino & Tokowicz, 

2014); this same type of explicit attention could aid in perceiving other types of L2 input, such as 

phonetics.  
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2.0  METHODS 

2.1.1 Participants 

 Participants were 25 native English, 17 native Spanish, and 16 native Hindi speakers 

from the University of Pittsburgh, Carnegie Mellon University, and the surrounding community. 

All participants had normal or corrected vision, no self-reported hearing problems, and had no 

implanted brain devices. Native English and native Spanish speakers had no knowledge of Hindi 

or any other South Asian language.  

Native English speakers and native Spanish speakers came in for five days of testing. 

Native English speakers were recruited through the University of Pittsburgh Introduction to 

Psychology subject pool, wherein undergraduate students are required to participate in 

experimental research for credit. All participants were paid $7/hour for tasks completed on the 

computer and $10/hour for time spent in the EEG setup, except when they were part of the 

University of Pittsburgh undergraduate psychology subject pool; those participants received 1 

credit per hour for the first four hours of their participation, and were paid for additional time 

with the same rates as the other participants. Native Hindi speakers came in for one day of 

testing and were paid $7 per hour for behavioral tasks and $10 per hour for time spent in the 

EEG setup. 



 25 

The data from two native Hindi speakers were not analyzed due to malfunctioning EEG 

caps during the testing and from another two due to being left-handed. Therefore, a total of 12 

native Hindi speakers were analyzed as the control group. Three native English speakers did not 

complete the entire protocol; two were due to cap malfunctions and lack of EEG signal, one was 

due to drop-out after the first two days. They received credit for their time. Additionally, three 

native English speakers were left-handed; therefore, the data included a final set of 19 native 

English speakers. Two native Spanish speakers dropped out during testing and one was left-

handed, for a total of 14 native Spanish participants.  

Table 1. Participant LHQ Data. 

 

 

 Native English 
speakers 

Native Spanish 
speakers 

Native Hindi 
speakers 

Gender M F M F M F 
N 9 10 9 5 10 2 

Age (years) 19.45 (2.36) 27.83 (4.09) 25.90 (5.52) 
Time in USA 

(months) 
233.40 (28.32) 48 (64.20) 22.32 (66.36) 

  Self-rated proficiency  
L1 Reading 9.86 (0.35) 9.80 (0.54) 8.29 (2.40) 
L1 Writing 9.59 (0.66) 9.40 (1.02) 7.86 (2.60) 
L1 Speaking 9.73 (0.63) 9.87 (0.34) 9.54 (0.78) 
L1 Listening 9.82 (0.50) 10.00 (0) 9.71 (0.61) 
L2 Reading 4.65 (2.41) 9.33 (0.87) 8.57 (2.06) 
L2 Writing 4.15 (2.50) 8.80 (0.91) 8.64 (1.86) 
L2 Speaking 4.60 (2.16) 9.07 (0.99) 8.79 (0.89) 
L2 Listening 5.30 (2.45) 9.20 (0.75) 9.29 (0.61) 
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2.1.2 Design 

The study used a 2 training type (within-category training, between-category training) x 3 

feedback type (no feedback, standard feedback, attentional feedback) x 3 testing day (pre-

training, middle of training, post-training) mixed design.  

2.1.3 Stimuli. 

Stimuli consisted of the first syllable of a nonword conforming to Hindi phonotactics (confirmed 

by two native Hindi speakers): paka, phaka, baka, and bhaka. A native Hindi speaker was 

recorded pronouncing the nonwords into a Marantz PMD670 solid-state recorder in an 

electrically-shielded and sound-attenuated booth (International Acoustics, Inc.). He recorded the 

nonwords with a lead-in sentence, such as “Please say paka now”, and as isolated words. All the 

words and sentences were spoken in Hindi. Analysis in Praat software (Boersma & Weenink, 

2013) confirmed that there were no significant differences between the frequency, pitch, or 

amplitude of the words pronounced in isolation or in the sentences. Therefore, the isolated words 

were used for ease of manipulation. Each word was isolated in Praat and the first syllable of each 

word (pa, pha, ba, bha) was cut from the nonword. The syllable pha was selected to construct the 

range of syllables that participants would hear in both the training and the MMN protocol to 

ensure parity across the stimuli in terms of frequency, pitch, and volume. Furthermore, the 

syllable pha can be manipulated to cover the range of phonetic stimuli to which participants were 

exposed; that is, with full aspiration (20 to 80 ms VOT), the syllable is perceived as /pha/; with 

minimal aspiration (-10 to 10 ms VOT), it is perceived as /pa/ and with no aspiration and 

prevoicing (-20 to -80 ms VOT), it is perceived as /ba/ for native Hindi speakers. The /pha/ token 
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had 10 ms of aspiration removed at zero crossings to form a new stimulus for a total of 10 

exemplars of /pha/, ranging from 100 ms of aspiration to 0 ms of aspiration. Each subsequent 

removal of 10 ms of aspiration was balanced with an added 10 ms of silence to the beginning of 

the syllable to ensure that the length of each syllable would be comparable. To form the /ba/ 

syllables, voicing was added to the beginning of each subsequent stimulus in 10 ms sections, 

such that it began with the voiceless /pa/ sound and gradually increased to a reliable /ba/ sound 

with 100 ms of voicing onset. This was confirmed with norming done with native English and 

native Spanish speakers (different from those who participated in current experiment) in a simple 

identification task; they were asked to label a sound presented to them as beginning with a “p” or 

“b” sound (see Appendix A for details on the norming study). The native English and native 

Spanish speakers who participated in this training study also had the appropriate distributions for 

categorizing /p/ and /b/ according to their native language. This was confirmed with a second 

norming task done with a simple identification task; native English and native Spanish speakers 

in the current study were asked to label a sound presented to them as beginning with a “p” or “b” 

sound (see Figures 1-3 for continuum categorizations).  

2.1.4 Procedure 

Native English-speaking and native Spanish-speaking participants came in for five consecutive 

days to complete the experiment. Please refer to Table 2 for the order of tasks completed by each 

native language group.  

Table 2. Summary and order of tasks for all language groups. 

Language 
Group 

Day 1 Day 2 Day 3 Day 4 Day 5 
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On the first day, native English-speaking and native Spanish-speaking participants completed the 

first EEG session to capture their baseline response to the native Hindi sounds. They also 

completed an identification task, during which they simply listened to the speech sounds 

presented and responded if they believed the stimuli began with a /p/ or /b/ sound. These sounds 

were the same stimuli heard during the EEG tasks. They also filled out a language history 

questionnaire (Tokowicz, Michael, & Kroll, 2004) in an online survey format. On the second 

day, participants completed the first session of training, an operation span task (LaPointe & 

Engle, 1990) to measure working memory, and a Stroop task (Stroop, 1935) in their native 

language. On the third day, they completed the second EEG session and the second training 

session. On the fourth day, they did the last training session, the Raven’s Matrices test (Raven, 

1981), and the Flankers inhibitory control task (Eriksen & Eriksen, 1974). On their final day, 

they completed the final EEG session, the same identification task they completed on the first 

day, received payment, and were debriefed. Native Hindi speakers completed only a single EEG 

session, the identification task, and the language history questionnaire. 

English ERP 
ID Task 
LHQ  

Training Day 1 
Operation 
Span Task 
Stroop Task 

ERP 
Training Day 2 
 

Training Day 3 
Flankers 
Raven’s 
Matrices 

ERP 
ID Task 
Payment 

Spanish ERP 
ID Task 
LHQ  

Training Day 1 
Operation 
Span Task 
Stroop Task 

ERP 
Training Day 2 
 

Training Day 3 
Flankers 
Raven’s 
Matrices 

ERP 
ID Task 
Payment 

 Day 1     
Hindi ERP 

Identification (ID) Task  
Language History Questionnaire (LHQ) 
Payment 
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2.1.4.1 Training.  

The training had two conditions; participants were trained either on discrimination between /p/ 

and /ph/ in the AXB training task, or between /b/ and /p/ to see if training on different phonemes 

from the same continuum range would transfer to the /p/-/ph/ contrast. Furthermore, the training 

conditions had three separate feedback conditions: no feedback, standard feedback, and 

attentional feedback. Native English and native Spanish speakers completed three days of 

training. Each day of training was successively more difficult than the previous day by 

manipulating the stimuli to be closer together phonetically. That is, on the first day, stimuli in the 

AXB task were selected from the extreme ends of each training continuum. Participants in 

Training condition A heard stimuli from the /p/-/ph/ continuum (/p/ with 0 ms VOT to /p/ with 90 

ms VOT) and participants in Training condition B heard stimuli from the /b/-/p/ continuum (/p/ 

with 0 ms VOT to /b/ with -90 ms VOT). The second day included stimuli selected from the 

middle of the two spectrums, and the third day included stimuli selected from the center of the 

spectrum, so the stimuli were the most phonetically similar. This allowed for gradual adaptation 

to the phonemes in the continuum as they became more difficult to perceptually discriminate. 

Previous research has shown that increasing difficulty of the training task during the training 

procedure leads to more gains in discrimination of speech sounds due to exaggerating and 

highlighting the relevant features of the sounds to be learned, in this case, aspiration (McCandliss 

et al., 2002; McClelland et al., 2002; but see Iverson et al., 2005 for contradictory evidence).  

Participants heard three sounds in a row and were asked to judge whether the second 

sound was more similar to the first sound or to the third sound. They made their response using a 

response box. The three feedback conditions were implemented during the training: participants 

in the standard and attentional feedback conditions received a “correct” or “incorrect” 
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assessment when they did the AXB task depending on their answer. The correct or incorrect 

statements were in line with training the participants to perceive the /p/ - /ph/ distinction as 

meaningful. For example, when asked to determine which stimulus was more similar to a non-

aspirated /pa/, /ba/ at 10 ms VOT or /pa/ at + 30 ms VOT, the correct answer is /ba/ at 10 ms 

VOT, even though it crosses the category boundary. This was manipulated to ensure that the 

aspirated /pa/ was considered a separate phoneme from the unaspirated /pa/ so that participants 

would learn to categorize aspirated /pa/ as a separate phoneme. Blocks had 60 triplets of 

phonemes and there were four blocks for a total of 240 trials per participant. 

2.1.4.2 Operation span task.  

The operation span task (LaPointe & Engle, 1990) is a standard measure of working memory; 

participants are required to hold words presented to them in memory while judging whether 

provided completions are correct or not, and the sets of operations/words range in size from two 

to six with three sets of each size. Participants were asked to decide whether simple 

mathematical equations (e.g., (9*1) – 2 = 7) were answered correctly or incorrectly and were 

then presented with a word to remember. Participants were asked to recall the words in the order 

in which they appeared as best as possible after each set with a prompt on the screen. They had 

two sets to practice the task during which the experimenter stayed with the participant and then 

they were left alone during the rest of the task.  

2.1.4.3 Flankers test.  

The Flankers test measures inhibitory control, or how well participants are able to inhibit 

conflicting stimuli to focus on the target (Eriksen & Eriksen, 1974). Participants were required to 

indicate the direction of a middle arrow (left or right) when flanked by congruent or incongruent 
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arrows. Participants were shown five arrows; the middle arrow either pointed congruously with 

the flanking arrows (i.e., the middle arrow pointed in the same direction as the arrows on the 

side) or incongruously (i.e., the middle arrow pointed in the opposite direction of the flanking 

arrows). They had to respond if the middle arrow pointed to the left or the right as quickly and 

accurately as possible. 

2.1.4.4 Raven’s matrices.  

Participants completed a portion of the Raven’s test of nonverbal intelligence which examines 

how well people can deduce the missing part of a larger pattern, independently of language, 

reading, or writing skill (Raven, 1981). This task asks participants to complete a six by six 

matrix of patterned items by choosing the missing element of the pattern from one of eight 

choices. The task gradually gets more difficult as participants progress. Participants were shown 

12 sets of the Raven’s matrices test, after three practice sets. There was no time limit on how 

long they could take to complete each pattern.  

2.1.4.5 MMN Protocol.  

The EEG sessions followed the traditional oddball paradigm to elicit the MMN response. 

Participants listened to the blocks of stimuli over noise-canceling headphones in a steady stream 

of one stimulus every 900 ms. The volume was set at a comfortable level. Participants watched a 

movie of their choice on mute while hearing the sounds to keep their attention occupied, in 

keeping with previous studies of the MMN (Näätänen, 2001; Näätänen et al., 1997). Participants 

listened to five blocks of native Hindi syllables: /pa/, /ba/, or /pha/ in a semirandom presentation, 

such that there were always at least three standard stimuli between presentations of a deviant 
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stimuli. The standard stimulus was always /pa/ and the deviant stimuli were always /ba/ and 

/pha/. 

There were five blocks of stimuli in the MMN protocol. Blocks one and three were set up 

with one standard stimulus of /pa/ with two deviant stimuli of /pha/ and /ba/. Blocks two and five 

had varying standard stimuli to investigate the effect of categorization on speech perception. 

Therefore, the standard stimuli varied between each other in increments of 10 ms of aspiration 

each. The deviant stimuli were kept the same as blocks one and three. Each block had 

approximately 1000 trials; the standard and deviant stimuli were presented in a pseudo-random 

order such that at least three standard stimuli were presented between each deviant stimulus. 

Approximately 85% of each block was a standard stimulus; the remaining 15% was divided 

equally between the two deviants. There was a final deviant-stimulus alone block in which 

participants listened to 400 trials of one deviant and 400 trials of the second deviant to ensure 

that that the responses to the deviants by themselves are not contaminated by the physical 

differences between the standard and deviant stimuli.  

EEG activity was recorded continuously during each EEG block at a sampling rate of 

1000 Hz and amplified with Neuroscan SynAmps2 amplifiers with 24-bit analog-to-digital 

conversion (Compumedics Neuroscan, Inc.). Participants wore a 64-channel Ag/AgCl electrode 

cap; hanging electrodes were placed on the right and left mastoid bones for re-referencing during 

preprocessing, on the outer canthi of the left and right eyes to monitor horizontal eye 

movements, and above and below the left eye to monitor eye blinks. Impedances were kept 

below 5kOhms as much as possible. After the five blocks of the MMN protocol, the electrode 

caps were removed and participants completed the other tasks on the appropriate days. See 

Figure 2 for a schemata of the EEG MMN recording paradigm. 
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Figure 2. EEG and MMN recording paradigm. 

2.1.4.6 EEG Preprocessing.  

EEG data were processed off-line with Neuroscan Edit 4.3 software. All electrodes were re-

referenced to the average of the right and left mastoids and low-pass filtered at 30 Hz with a 

slope of 24 dB per octave. Ocular artifact rejection was performed based on estimates of the 

average eye blink duration using standard algorithms (Neuroscan, Inc.). The ERP epoch was set 

from 100 ms pre-stimulus to 500 ms after the stimulus to encompass the MMN range of 150-250 

ms after stimulus presentation and the possibility of finding a phonological mismatch negativity 

(PMN) from 250-350 ms. Channels that contained large artifacts were excluded from the 

averages; this corresponded to a maximum of two excluded channels in two participants and one 
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electrode was excluded from all analyses due to large artifacts across all participants (FP1). 

Participants’ data were included if they had a minimum of 50 trials in each deviant condition 

without artifacts; due to the repetition of stimulus blocks and a large number of trials, no 

participants’ data were excluded on this basis. 
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3.0  RESULTS 

3.1 BEHAVIORAL DATA 

3.1.1 Training.  

3.1.1.1 Native English speakers.  

As stated above, native English speakers underwent three days of training with three different 

types of feedback: no feedback, standard feedback (correct or incorrect answer), or attentional 

feedback (correct or incorrect; if incorrect, they were given information regarding where to focus 

their attention to correctly distinguish between the phonemes: “Please pay attention to the 

beginning of the sound”). There were two training conditions, wherein one group received 

specific training on the /pa/-/pha/ continuum (A) and the other condition received training on the 

/ba/-/pa/ continuum (B). Training consisted of an AXB task in which participants heard three 

sounds (instances of the syllables) were asked to choose if the first sound or third sound they 

heard was more similar to the second. This was manipulated such that the correct answer shifted 

their categorization to align with the native Hindi speakers (e.g., less aspiration in the /pa/ to a 

/ba/ sound, indicating that /pha/ and /pa/ were actually not similar). Behavioral analyses were 

done to examine the effects of feedback on training accuracy. Only significant effects are 

reported and post-hoc tests are reported with Bonferroni corrections to correct for multiple 
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comparisons. An ANOVA with training and feedback type as variables indicated that there was a 

significant effect of feedback type on overall accuracy, F (2,16) = 5.56, p = .02 ηp
2 = .41, such 

that participants with the standard feedback (M = 68%) and attentional feedback (M = 69%) 

conditions had more accurate performance than the participants in the no feedback condition (M 

= 55%) (standard vs. none: t (13) = 3.49, p = .004; attentional vs. none: t (14) = 2.79, p = .02). 

There was no difference between the standard and attentional feedback conditions, t < 1, and 

there were no differences between training conditions, t (20) = 1.00, p = .33. These results 

suggest that for native English speakers, receiving feedback of some sort was more helpful 

during the training to correctly identify similarity between phonetic contrasts than receiving no 

feedback.  

Furthermore, there was a significant effect of feedback on day 1, F (2,16) = 7.02, p = 

.006, ηp
2 = .48, a marginal effect for day 2, F (2,16) = 3.14, p = .07, ηp

2 = .28, and no effect for 

day 3, F (2,16) = 1.07, p = .37, ηp
2 = .12, suggesting that the effect of feedback on total accuracy 

was driven by feedback type on the first and second days. Participants receiving attentional (M = 

82%) and standard (M = 88%) were significantly more accurate on Day 1 compared to those 

receiving no feedback (M = 63%) (attentional vs. none: t (14) = 2.53, p = .02; standard vs. none: 

t (13) = 3.83, p = .002). The same pattern continued for Day 2: attentional (M = 63%) and 

standard (62%) conditions performed better than those receiving no feedback (M = 51%) 

(attentional vs. none: t (14) = 1.99, p = .07; standard vs. none: t (13) = 2.11, p = .06). This effect 

was no seen for Day 3: attentional (M = 59%), standard (M = 57%) did not have better accuracy 

than those in the no feedback condition (M = 52%) (all t’s < 1). There were no significant 

differences between attentional and standard feedback conditions on any of the days (all t’s < 1). 

These results suggest that both feedback conditions led to better accuracy during training but 
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only for the first two days. As the difficulty of the training increased, the benefits seen by 

feedback decreased. See Figure 1 for mean accuracy for native English speakers across training 

and feedback type.   

 

Figure 3. Native English speakers' training accuracy across condition and feedback type. 

3.1.1.2 Native Spanish speakers.  

Native Spanish speakers had the same three days of training as native English speakers. An 

ANOVA revealed a marginal effect of feedback type, F (2,9) = 2.93, p = .10, or training 

condition, F < 1, for native Spanish speakers. The marginal effect of feedback type follows the 

same pattern as native English speakers, such that the participants in the attentional (M = 69%) 

and standard (M = 72%) feedback conditions had better accuracy than participants in the no-

feedback condition (M = 62%). Native Spanish speakers did not show an interaction for feedback 

on day, though there was a significant effect of training condition, such that the training on the 
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/b/-/p/ continuum led to better accuracy for the third day of training, F (1,9) = 8.16, p =.02, ηp
2 = 

.48. Participants in the /b/-/p/ training had a significantly higher accuracy (M = 65%) on Day 3 

compared to participants in the /p/-/ph/ training (M = 50%), t (13) = 3.27, p = .006. See Figure 2 

for mean accuracy across condition and feedback type. 

 

 

Figure 4. Native Spanish speakers' training accuracy across condition and feedback type. 
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3.1.3 Flanker’s Test.  

As a measure of inhibitory control, analyses for Flanker’s were done using reaction times for 

correct trials only, such that the trial was only counted if they were correct in noting if the arrow 

pointed to the right or left. There were no significant differences between native English (M = 

412 ms) and native Spanish speakers (M = 411 ms), F < 1.  

3.1.4 Raven’s Matrices.  

Total accuracy on the Raven’s matrices test (one point per problem if participants correctly 

answered out of a twelve possible total) showed significant differences between native English 

and native Spanish speakers, F (1, 35) = 7.71, p = .009, such that native Spanish speakers had 

significantly higher accuracy (M = 81%) than the native English speakers (M = 66%). 

Furthermore, native English speaking participants in the /ph/-/p/ training condition had higher 

Raven’s accuracy (M = 72%) than those in the /b/-/p/ training condition (M = 56%), despite 

random assignment to conditions. No such difference was seen for the native Spanish speakers.  

3.1.5 Identification Task.  

All participants completed the identification task before training and after training; accuracy was 

measured by correct identification of the Hindi syllables. Figures 1-3 show the categorization 

continuums of each language group. Native Hindi speakers categorized from /ba/ + 20 ms of 

aspiration to the fully aspirated /pha/ as “p” sounds. Native English speakers categorized from 

/pa/ + 10 ms of aspiration onwards as “p” sounds both pre- and post-training. However, native 
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Spanish speakers showed a difference between pre- and post-training such that they showed a 

later categorization crossing pre-training, at /pa/ + 0 ms of aspiration, suggesting that they were 

able to move their categorization continuum with continued exposure to the /b/-/p/ training 

stimuli.  

 A post-hoc repeated measures MANOVA with testing day and VOT as within-subject 

factors revealed that there was a main effect of testing day for both the /b/, F (1,35) = 4.34, p 

=.04, ηp
2 = .11, and /p/ continuum, F (1,35) = 13.46, p = .001, ηp

2 = .28. There was no 

interaction with language and testing day, suggesting that both native English and native Spanish 

speakers showed a difference in how they categorized /p/ and /b/. There were main effects for 

VOT for both continuums as well; /b/, F (9,315) = 46.72, p < .001, ηp
2 = .57; /p/, F (9, 315) = 

82.90, p < .001, ηp
2 = .70, suggesting a significant difference in where on the VOT continuum 

participants categorized b and p. This is not surprising, as both phones have different VOT 

measurements in Spanish and English. There was an interaction with language for /b/, F (9,315) 

= 2.73, p = .004, ηp
2 = .07, and /p/, F (9,315) = 7.84, p < .001, ηp

2 = .18, suggesting that native 

English and native Spanish speakers differed in where on the continuum they placed their /b/ and 

/p/ identification. Again, this is unsurprising because the native language groups use VOT 

differently for this range. There was also an interaction between testing day and VOT for both 

continuums, /b/, F (9,315) = 4.83, p < .001, ηp
2 = .12, and /p/, F (9,315) = 5.01, p < .001, ηp

2 = 

.13. This suggests that there was a difference in how both language groups categorized /b/ and /p/ 

from pre- to post-test, indicating that the training and exposure to the Hindi continuum shifted 

their representation.  
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Figure 5. Native English speaker categorization. 

 

Figure 6. Native Spanish speaker categorization. 
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Figure 7. Native Hindi speaker categorization. 

3.2 ERP DATA 

Results from averaged ERPs in the 100 to 300 ms range are reported to test for a traditional 

MMN response. A repeated measures ANOVA included the within-subject factors of Difference 

(ph-deviant (/p/ - /ph/), b-deviant (/b/ - /p/)), Session (1, 2, or 3), Block (1 and 3; 2 and 4), 

laterality (left, midline, right), and electrode site (frontal, frontocentral, central) and the between 

subject factor of language (English, Spanish). Analyses were also conducted comparing native 

Hindi speakers to native English speakers and native Spanish speakers separately. Electrodes 

were selected to test for a fronto-central negativity, as per previous research (e.g., Brandmeyer, 

2012; Nenonen et al., 2005); laterality was defined as left (electrodes F3, FC3, C3), midline (FZ, 

FCZ, CZ), and right (F4, FC4, C4). Lobes were defined within those electrodes tested: frontal 

(F), frontocentral (FC), and central (C). Blocks were combined for greater power and number of 

events per stimulus in the analyses; blocks 1 and 3 were combined and blocks 2 and 4 were 

combined, following the experimental setup of each one (i.e., blocks 1 and 3 were traditional 
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oddball paradigm, blocks 2 and 4 were the manipulation of standard stimuli within the standard 

presentation). Results are reported within the 100-300 ms window separately for blocks 1 and 3 

and blocks 2 and 4. Significant interactions were followed up using Duncan’s multiple-range test 

to locate the source of the effect. Per convention, corrected p- and F-values are reported with 

Greenhouse-Geisser non-sphericity corrections; degrees of freedom are reported uncorrected 

(Keil et al., 2014). Effect size partial eta-squared measures are also reported.  

3.2.1 Blocks 1 and 3 (traditional oddball paradigm).  

An ANOVA revealed significant effects of difference type such that the b-deviant (/b-p/) 

difference was more negative than the ph-deviant (/ph-p/) difference for both native Spanish, F 

(1,12) = 10.40, p = .007, ηp
2 = .46, and native English speakers, F (1, 18) = 6.31, p = .02, ηp

2 = 

.26. This difference was not significant for native Hindi speakers, F < 1. This confirms our initial 

hypotheses that native Hindi speakers show comparable MMN responses for both standard-

deviant pairs because they both exist as meaningful phonetic contrasts in their first language. 

However, native English and native Spanish speakers only have the Deviant 2 - Standard 

difference as a native contrast in their respective native languages and therefore show a larger 

MMN response to this contrast. Native Hindi speakers showed a significant main effect of block, 

F (1,11) = 4.89, p = .05, ηp
2 = .31, such that the first block showed more negative responses 

overall than the second block.  

Native Spanish speakers also showed a main effect of block, F (1,12) = 11.28, p = .006, 

ηp
2 = .48, such that the second block of the traditional MMN paradigm showed more negative 

responses than the first block, an opposite effect of what was seen for native Hindi speakers. 

Furthermore, there was a main effect of lobe, F (2,24) = 4.20, p = .04, ηp
2 = .26, such that frontal 
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electrode sites had more negative responses than central electrode sites. Native Spanish speakers 

also showed a marginal four-way interaction with difference type, session, block, and lobe, F 

(4,48) = 2.77, p = .07, ηp
2 = .19. Follow up tests indicated that the b-deviant difference was 

significantly more negative across all session except in the first block of Session 2. Furthermore, 

the ph-deviant response was most positive in the first block of Session 1 compared to all other 

responses, excepting the second block in Session 2.  

The results are in line with the hypothesis that the MMN response to the phonetic 

contrast already present in the native language would change very little over the course of the 

training; however, the response to the phonetic contrast not present in their native language 

changed, eliciting a more negative response after training, such that it was not significantly 

different in Sessions 2 and 3 from the native contrast negativity. This was confirmed with 

individual ANOVAs run between each session (Session 1 vs. Session 2, Session 1 vs. Session 3, 

and Session 2 vs. Session 3).  

Native Spanish speakers only showed differences between Sessions 1 and 2, F (1,12) = 

15.29, p = .002, ηp
2 = .56, and Sessions 1 and 3, F (1,12) = 8.62, p = .02, ηp

2 = .42, suggesting 

that native Spanish speakers showed the most difference between the MMN responses between 

pre- and post-training. Comparing between Sessions 1 and 3, there was an interaction between 

difference type and lobe, F (2,24) = 7.66, p = .006, ηp
2 = .39, which demonstrated that responses 

were most negative in Session 3 for the ph-deviant difference across the frontal and frontocentral 

electrodes, confirming a classic MMN response to the nonnative contrast. This suggests that 

training did affect the morphology of the MMN response although not significantly compared to 

the b-deviant response (all p’s < .05).  
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Native English speakers showed a significant interaction between difference type and 

lobe, F (2,36) = 4.14, p = .03, ηp
2 = .19, and between difference type and block, F (1,18) = 

10.87, p = .004, ηp
2 = .38. Although follow-up tests did not show significant differences between 

means, the means for difference type and lobe suggest that the b-deviant difference was more 

negative over frontal, frontocentral, and central electrodes compared to the ph-deviant difference; 

this reflects a standard MMN response. The interaction between difference type and block 

suggests that the b-deviant response was more negative in the second block within the traditional 

MMN paradigm compared to the first block. This could reflect the native contrast /b/-/p/ 

becoming more salient phonetically throughout training.  

Analyses were done to compare differences between sessions within a language group to 

test the hypotheses of changes to the MMN responses as training progressed. Native English 

speakers showed differences between difference types in all sessions: Session 1 vs. Session 2, F 

(1, 18) = 3.79, p = .07, ηp
2 = .17, Session 1 vs. Session 3, F (1, 18) = 4.01, p =.06, ηp

2 = .18, 

Session 2 vs. Session 3, F (1, 18) = 7.66, p = .01, ηp
2 = .30. Native English speakers showed a 

change in MMN responses between standard-deviant pairs across all sessions although this was 

only marginally significant between Session 1 and Session 2 and between Session 1 and Session 

3. The b-deviant response was more negative in all sessions compared to the ph-deviant response.  

For native English speakers, there was a significant interaction between difference type 

and block between Sessions 1 and 2, F (1,18) = 6.23, p = .02, ηp
2 = .26; follow-up tests did not 

reveal significant differences between means, but the effect appears to be driven by the second 

block being more negative for the b-deviant response compared to the second block of the ph-

deviant response. This same effect was found when comparing between Sessions 1 and 3, F 
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(1,18) = 7.66, p = .01, ηp
2 = .30 and Session 2 and 3, F (1,18) = 6.89, p = .02, ηp

2 = .28. This 

may be expected because this is the native contrast for native English speakers.  

There was an interaction between difference type and lobe between Session 1 and 

Session 3, F (2,36) = 7.08, p = .006, ηp
2 = .28. Follow up tests did not reveal significant 

differences, but the b-deviant response appears to show a more negative response across midline 

and right electrode sites compared to the ph-deviant response for native English speakers. 

Finally, there was an interaction between session, block, and laterality for Sessions 1 and 3 for 

native English speakers, F (2,36) = 4.61, p = .03, ηp
2 = .20. Post hocs did not show any 

significant differences between means; Session 2 appears to have more negative responses for 

the first block of the traditional MMN paradigm across midline and right electrodes compared to 

Session 1.  

For native Spanish speakers, there was a main effect of lobe with Sessions 2 and 3, F 

(2,24) = 5.42, p = .01, ηp
2 = .31, such that frontal electrode sites were more negative than central 

electrode sites. This suggests that the MMN responses followed the typical frontal and 

frontocentral distribution. There was also an interaction between block, lobe, and laterality for 

the comparison between Sessions 2 and 3, F (4,48) = 3.21, p = .04, ηp
2 = .21; post-hoc tests did 

not significant differences between means. The interaction appears to be driven by more negative 

left and midline frontal electrodes for the second block, and more negative responses in general 

for the second block.  

Comparing between Sessions 1 and 3 for native Spanish speakers, a main effect of block 

was found, F (1,12) = 6.93, p = .02, ηp
2 = .37, indicating the same pattern as the native English 

speakers, such that the second block in the traditional MMN paradigm showed a larger negativity 

compared to the first block. A four-way interaction between difference type, session, block, and 
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lobe when comparing Sessions 1 and 3, F (2,24) = 7.66, p = .006, ηp
2 = .39, showed that the ph-

deviant response in the first block of Session 1 had less negative responses than the b-deviant 

response in both Sessions 1 and 3 (p’s < .05). Figure 6 shows the mean amplitudes for native 

Hindi speakers for both the traditional and manipulated MMN paradigm. See Figures 7 and 8 for 

mean amplitudes across sessions and contrast types for both native language groups.  

 

Figure 8. Native Hindi speakers, contrast type within traditional and manipulated MMN paradigm. 
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Figure 9. Native English speakers, session by contrast in traditional MMN paradigm. 
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Figure 10. Native Spanish speakers, session by contrast in traditional MMN paradigm. 
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Comparisons between Hindi and English speakers for both Sessions 1 and 3 were done to test 

native language differences pre- and post-training for native English speakers. When comparing 

Session 1, an ANOVA showed an interaction between difference type and laterality, F (2,58) = 

3.99, p = .04, ηp
2 = .12; post-hoc tests showed no significant differences between the means but 

the interaction seems to show that the ph-deviant response was more negative over the left 

electrodes and the b-deviant response was more negative over the right electrodes. There was 

also an interaction between difference type and laterality, F (2,58) = 4.00, p = .04, ηp
2 = .12. 
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that the ph-deviant response showed more negativity over left electrode sites compared to more 
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negative response over right electrode sites for the b-deviant response. Furthermore, an 

interaction between block and laterality, F (2,58) = 5.90, p = .01, ηp
2 = .17 suggests that there 

were more negative responses in the first block of the traditional MMN paradigm compared to 

the second block. This is in contrast to comparisons within native English speakers showing that 

the second block tends to be more negative; this effect may be driven by the native Hindi 

speakers, although there were no interactions with language. There was also an interaction 

between difference type, lobe, laterality, and language, F (4,116) = 3.29, p = .04, ηp
2 = .10, in 

Session 1. Post hoc analyses showed that the interaction was driven by the frontal right electrode 

(F4) in the ph-deviant response being more positive than certain electrode sites within native 

English and native Hindi speakers (p < .05). These single electrode comparisons are not 

particularly important for our hypotheses; visual inspections of the means suggest that midline 

and right frontal and frontocentral electrodes are more negative for the ph-deviant contrast in 

native Hindi speakers, but native English speakers had more negative responses for the b-deviant 

responses in general. For Session 3 comparing native Hindi and native English speakers, there 

was a main effect of block such that the first block of the oddball paradigm had more negative 

responses than the second block, F (1,29) = 6.48, p = .02, ηp
2 = .18.  

3.2.1.2 Hindi vs. Spanish comparison.  

Comparisons between Hindi and Spanish speakers in Session 1 showed a significant main effect 

of difference type, F (1,23) = 6.00, p = .02, ηp
2 = .21, such that the b-deviant response was more 

negative in general than the ph-deviant response. There was also an interaction with language, F 

(1,23) = 9.04, p = .006, ηp
2 = .28; post-hoc tests showed no differences but the means suggested 

that there was a larger difference for the native Spanish speakers between the difference types 
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than for the native Hindi speakers (as shown by the non-significant difference between 

difference types for the native Hindi speakers, F < 1). There was also a main effect of laterality, 

F (2,46) = 6.31, p = .009, ηp
2 = .22; midline and right electrode sites showed more negativity 

than left electrode sites. There was also a significant interaction between block and language, F 

(1,23) = 9.63, p = .005, ηp
2 = .30. Although follow up tests did not show significant differences 

between means, the means suggest that native Hindi speakers showed more negative responses in 

the first block, but native Spanish speakers showed more negative responses in the second block. 

In Session 3, there was an interaction with difference type, lobe, and laterality, F (4,92) = 3.52, p 

= .04, ηp
2 = .13; follow-up tests showed no differences between means, but the means suggest 

that native Hindi and native Spanish speakers had maximally negative responses over the 

midline and right electrodes for the ph-deviant response.  

3.2.2 Blocks 2 and 4 (manipulated oddball paradigm).  

As with the traditional MMN paradigm, native Hindi speakers did not show a difference between 

responses to the ph-deviant or b-deviant responses (F < 1). Native Spanish speakers showed a 

larger negative response for the b-deviant response than the ph-deviant response, F (1,12) = 

22.15, p = .001, ηp
2 = .65; however, this was only marginally significant for native English 

speakers, F (1,18) = 3.04, p = .10, ηp
2 = .15. For the native English speakers, there was a main 

effect of lobe, F (2,36) = 4.15, p = .05, ηp
2 = .19, such that the frontal electrode sites showed 

more negative responses than the central electrode sites. There was an interaction between block 

and laterality, F (2.36) = 5.59, p = .01, ηp
2 = .24; post-hoc tests did not reveal significant 
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differences between means, but the interaction appears to be driven by more negative responses 

across left and midline electrodes for the second block within the manipulated MMN paradigm.  

Comparing Sessions 1 and 3 for native English speakers showed an interaction between 

session and block, F (1,18) = 4.37, p = .05, ηp
2 = .20; means did not show significant differences 

in follow up tests, but the effect appears to be driven by the second block in Session 3 having a 

more negative response compared to the first block and to both blocks in Session 1. There was 

also an interaction between block and laterality when comparing between Sessions 1 and 3, F 

(2,36) = 3.49, p = .05, ηp
2 = .16; the second block appeared to show more negative responses 

overall and particularly over left electrode sites, although post-hoc tests did not show significant 

differences between the means.  

There was also a significant interaction between session, lobe, and laterality for the 

comparison between Session 1 and Session 3, F (4,72) = 2.83, p = .05, ηp
2 = .14. Follow up tests 

indicated that frontal and frontocentral left and midline electrode sites showed more negative 

responses in Session 3 compared to central electrode sites in Session 1 (ps < .05). There was a 

main effect of block when comparing Sessions 2 and 3 for native English speakers, F (1,18) = 

4.23, p = .05, ηp
2 = .19, such that the second block of the manipulated oddball paradigm showed 

more negative responses than the first block across both sessions. This suggests that the training 

led to more negative responses across sessions specifically for the second block.  

For native Spanish speakers, there was a main effect of difference type when comparing 

Session 1 and Session 2, F (1,12) = 18.09, p = .001, ηp
2 = .60, such that participants had more 

negative responses for the b-deviant condition. This same pattern was seen when comparing 

Session 1 and Session 3, F (1,12) = 19.75, p = .001, ηp
2 = .62, such that the b-deviant response 

showed more negative responses in Session 3.  
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When comparing Session 1 and Session 2, there was an interaction between difference 

type and lobe, F (2,24) = 4.81, p = .03, ηp
2 = .29; follow up tests did not reveal any significant 

differences between means, but the results suggest that the b-deviant response was more negative 

on all lobes. There was an interaction between session, block, and lobe, F (2,24) = 4.72, p = .02, 

ηp
2 = .28; the means indicate that the frontal and frontocentral electrode sites showed more 

negative responses in Blocks 1 and 2 in Session 1, although these were not significant in post-

hoc tests.  

Native Spanish speakers also showed an interaction between session and laterality, F 

(2,24) = 4.46, p = .04, ηp
2 = .27. Follow up tests did not reveal a significant difference between 

means, but the means suggested that Session 1 showed more negativity across the right electrode 

sites compared to Session 2. An interaction between difference type, lobe, and laterality was 

found when comparing Sessions 1 and 2, F (4,48) = 4.63, p = .006, ηp
2 = .28; follow up tests 

showed that the b-deviant response was more negative over all electrode sites compared to the 

ph-deviant response (all p’s < .05). Furthermore, midline frontal and frontocentral electrode sites 

showed a larger difference for the ph-deviant response compared to all other electrode sites 

regardless of session (ps < .05).  

There was an interaction between difference type, lobe, and laterality when comparing 

Sessions 1 and 3 for native Spanish speakers, F (4,48) = 3.09, p = .04, ηp
2 = .21. Post hoc tests 

showed that the b-deviant response showed more negative responses across all electrode sites 

except for the central midline electrode (Cz) for the b-deviant response (all ps < .01). 

Comparing Session 2 and 3 for native Spanish speakers showed a significant effect of 

laterality, F (2,24) = 4.88, p = .02, ηp
2 = .29, such that left electrode sites showed more negative 

responses than the midline and right electrode sites. There was an interaction with lobe and 
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difference type, F (2,24) = 5.79, p = .02, ηp
2 = .33; post-hoc tests showed no significant 

differences between means, though they suggest that the b-deviant condition had more negative 

responses compared to the ph-deviant response. There was an interaction with block and lobe as 

well, F (2,24) = 3.65, p = .05, ηp
2 = .23. Follow up tests revealed no significant differences 

between means; the means suggest that Block 2 was more negative over central electrode sites, 

and Block 1 had more negative responses was more negative over frontal and frontocentral 

electrode sites. See Figures 9 and 10 for mean amplitudes across session and contrast type for 

each language group.  

 

 

Figure 11. Native English speakers, session by contrast in manipulated MMN paradigm. 
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Figure 12. Native Spanish speakers, session by contrast in manipulated MMN paradigm. 
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means in the post hoc analyses, but native English speakers appeared showed more negative 

responses over left and midline electrode sites compared to native Hindi speakers.  

3.2.2.2 Hindi vs. Spanish comparison.  

Comparisons between native Spanish and native Hindi speakers in Session 1 showed a 

significant main effect of difference type, F (1,23) = 5.25, p = .03, ηp
2 = .19, such that the b-

deviant response was more negative than the ph-deviant response. This was qualified by an 

interaction with language group, F (1,23) = 4.42, p = .05, ηp
2 = .16; follow up tests did not show 

significant differences between the means but native Spanish speakers seemed to show a more 

negative response to the b-deviant response whereas native Hindi speakers showed no difference 

between the two difference responses, F < 1. There was also an interaction with lobe, laterality, 

and language group within Session 1, F (4,92) = 3.50, p = .02, ηp
2 = .13; post hoc tests did not 

reveal significant differences between means. Visual inspection of the means suggests that native 

Spanish speakers showed more negative responses overall, but possibly less negative in 

frontocentral and central electrodes compared to native Hindi speakers. Finally, there was an 

interaction with difference type, lobe, and laterality, F (4,92) = 3.01, p = .03, ηp
2 = .12; follow up 

tests showed that the frontal midline and central right sites had more negative responses to b-

deviant response except to right electrode sites for the ph-deviant response (all p’s < .05).  

3.2.3 Summary of ERP data.  

See Figures 11 through 24 for ERP waveforms across all electrodes sites by session and native 

language group. Native Hindi speakers showed the predicted effect such that there were no 

differences between the ph-deviant and b-deviant responses; this confirms that both contrasts 
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were native to their first language (Hindi) and therefore they both showed negativity. Native 

English and native Spanish speakers showed a significant difference between the contrast pairs, 

such that the b-deviant response was more negative across all sessions compared to the ph-

deviant response. Although the initial difference was expected in the first session, the hypothesis 

also stated that this difference should lessen during training, as they learned to perceive the 

nonnative contrast. Analyses between sessions show that both native language groups showed 

the same pattern of responses: the b-deviant response was more negative across all sessions and 

blocks. Mean amplitudes suggest that the ph-deviant response became more negative throughout 

the training for native English and native Spanish speakers, however it was not a large enough 

difference to overcome the negativity for the native contrast (Deviant 2 – Standard). 

Comparisons between native Hindi and learner groups confirmed that native Hindi speakers 

showed no differences between responses to the phonetic contrasts; native English speakers and 

native Spanish speakers consistently showed a more negative MMN to the b-deviant response. 

The lack of differences between native language groups for Session 3 may suggest that the native 

English and native Spanish speakers started shifting their perceptual representation of the 

nonnative contrast such that it was no longer significantly different from native Hindi speakers; 

however, this must be interpreted cautiously because the absence of a difference does not 

necessarily mean that responses were comparable between language groups. Finally, the 

significant effects of block throughout the analyses suggest that the second block of both MMN 

paradigms have more negative responses in general, indicating that the participants may have 

experience a training or practice effect from hearing the blocks more than once. Importantly, we 

are interested in examining how training and feedback affects the ERP responses because better 
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performance on training may lead to a more negative MMN response for the predicted contrast; 

correlations between these variables are detailed below.  

3.2.4 Correlational analyses.  

Refer to Tables 3 and 4 in Appendix B for correlations between training, individual difference 

measures, and electrode sites. Correlations between individual difference measures and the 

difference types in the ERP measures showed that native English speakers had significant 

correlations between their performance on the training and the MMN response for the ph-deviant 

response in Sessions 2 and 3 across several electrodes sites, including right frontal and 

frontocentral electrodes, suggesting that the training did influence responses on the ph-deviant 

response. Additionally, native English speakers showed significant correlations between training 

performance and the b-deviant condition only in Session 1. The training correlation between ph-

deviant and training would only show up in either Session 2 or 3 because there was no training 

prior to Session 2. The significant correlations between training and the ph-deviant difference in 

Session 3 may reflect the consolidation of the MMN response at the canonical electrode site for 

MMN responses. Additionally, there were significant correlations between performance on the 

Raven’s Matrices test and ph-deviant difference in all three sessions. This suggests that the better 

the participants performed on the Raven’s matrices test, the larger difference was seen for the ph-

deviant condition. Finally, there were significant correlations between Flankers reaction time and 

the b-deviant responses only in Session 3 across the left and midline central electrode sites, 

suggesting that the faster the reaction time on Flanker’s, the larger the difference seen between 

the b-deviant response.   
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For native Spanish speakers, significant correlations between training performance and 

the first difference pair, ph-deviant (/pha/-/pa/), were found only with left electrode sites. 

Training performance and the second difference pair, b-deviant (/ba/-/pa/), were only correlated 

in Session 3, such that higher accuracy in training was correlated with more negative responses 

across frontal and frontocentral electrode sites for the pair. This suggests that the training 

consolidated the between-category deviant pair within the native Spanish speakers by the end of 

training, which was contrary to what was seen with the native English speakers. The native 

Spanish speakers showed significant correlations with the Raven’s matrices in Session 1 for only 

the Deviant 1- Standard response right and midline frontal, frontocentral, and central electrode 

sites, suggesting that higher accuracy on the Raven’s test showed a more negative response to the 

ph-deviant pair (the unique condition for native Spanish speakers). Finally, there were significant 

correlations between performance on the Raven’s matrices and the b-deviant responses only in 

Sessions 2 and 3, suggesting that higher accuracy on the Raven’s tests led to more negative ERP 

responses for the between-category condition. Correlations between individual difference 

measures that are not of theoretical interest in the present study were also found; see Tables 5 

and 6 in Appendix B for a summary. 
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Figure 13. Native English speakers, Session 1, traditional MMN paradigm. 
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Figure 14. Native English speakers, Session 1, manipulated MMN paradigm. 
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Figure 15. Native English speakers, Session 2, traditional MMN paradigm. 
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Figure 16. Native English speakers, Session 2, manipulated MMN paradigm.  

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100 150 200 250 300 350

F3

DiffStand-Dev1 F3 DiffStand-Dev2 F3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

-100 -50 0 50 100 150 200 250 300 350

FZ

DiffStand-Dev1 FZ DiffStand-Dev2 FZ

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

-100 -50 0 50 100 150 200 250 300 350

F4

DiffStand-Dev1 F4 DiffStand-Dev2 F4

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-100 -50 0 50 100 150 200 250 300 350

FC3

DiffStand-Dev1 FC3 DiffStand-Dev2 FC3

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-100 -50 0 50 100 150 200 250 300 350

FCZ

DiffStand-Dev1 FCZ DiffStand-Dev2 FCZ

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-100 -50 0 50 100 150 200 250 300 350

FCZ

DiffStand-Dev1 FCZ DiffStand-Dev2 FCZ

-1.5

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100 150 200 250 300 350

C3

DiffStand-Dev1 C3 DiffStand-Dev2 C3

-1.5

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100 150 200 250 300 350

CZ

DiffStand-Dev1 CZ DiffStand-Dev2 CZ

-1.5

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100 150 200 250 300 350

C4

DiffStand-Dev1 C4 DiffStand-Dev2 C4



 64 

 

   

   

   
Figure 17. Native English speakers, Session 3, traditional MMN paradigm. 
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Figure 18. Native English speakers, Session 3, manipulated MMN paradigm.  
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Figure 19. Native Hindi speakers, traditional MMN paradigm 
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Figure 20. Native Hindi speakers, manipulated MMN paradigm. 
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Figure 21. Native Spanish speakers, Session 1, traditional MMN paradigm. 
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Figure 22. Native Spanish speakers, Session 1, manipulated MMN paradigm. 
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Figure 23. Native Spanish speakers, Session 2, traditional MMN paradigm. 
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Figure 24. Native Spanish speakers, Session 2, manipulated MMN paradigm. 
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Figure 25. Native Spanish speakers, Session 3, traditional MMN paradigm. 
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Figure 26. Native Spanish speakers, Session 3, manipulated MMN paradigm. 
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4.0  DISCUSSION 

The present study compared how the first language can influence the perception and acquisition 

of nonnative phonetic contrasts; specifically, native English and native Spanish speakers were 

trained to perceive differences in Hindi phonetic contrasts that were present or not present in 

their first language. The phonetic contrast tested here, /p/ and /ph/, is a minimal pair distinction in 

Hindi, such that words or phrases that differ in only this contrast have distinct meanings. 

However, native English speakers categorize both the /p/ and /ph/ phones under the /p/ category, 

i.e., there is no minimal pair distinction, and native Spanish speakers do not have the fully 

aspirate /ph/ phone in their phonetic repertoire at all. Native English and native Spanish speakers 

underwent three days of training with an AXB task to learn to perceive the differences between 

these phonemes as meaningfully distinct. Behavioral and ERP measures during training were 

taken to examine the baseline ERP response to the contrasts, ERP responses during the training, 

and ERP responses after the training was completed.  

Results showed an overall effect of difference type for the native English and native 

Spanish speakers compared to native Hindi speakers. Both learner groups showed a significant 

difference in the MMN response to the /p/-/ph/ contrast and the /p/-/b/ contrast, such that there 

was a more negative response to the across-category phonetic contrast in both language groups, 

/p-b/, compared to the /p-ph/ contrast. Native Hindi speakers did not show a difference between 

contrasts types. These results suggest that the traditional MMN response was elicited 
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successfully by the paradigm within the first session. Furthermore, the learner groups were 

expected to show differences between sessions in their MMN response to the contrasts. Native 

Spanish speakers showed a significant difference between contrast responses from session 1 to 

session 2 and from session 1 to session 3, suggesting that the the response changed during 

training; however, there was a significant difference between the native Hindi speakers and the 

native Spanish speakers indicating that the difference between the responses to the phonetic 

contrasts did not match those of the native speaker group. The same held true for native English 

speakers; the difference in responses between phonetic contrasts held throughout the session as 

opposed to lessening like the native Hindi speaker responses. Generally, both learner groups 

showed a greater MMN response to the contrast that was already present in their native language 

(/b/ - /p/) and the response did not change significantly over the course of the training.  

Behavioral results showed that participants performed better on the training with 

feedback compared to no feedback, confirming previous work showing that feedback is 

beneficial to accurate perception of phonetic contrasts. Contrary to the hypothesis that attentional 

feedback could provide an additional benefit because it gives more information, there were no 

behavioral differences in performance between standard and attentional feedback. The lack of 

difference between the standard and the attentional feedback conditions could be due to the fact 

that the stimuli were kept constant across all linguistic features except aspiration and therefore, 

participants, if they were receiving feedback and able to notice the difference between the 

sounds, only had one difference to which they had to pay attention. That is, regardless of the type 

of feedback participants received, there was only ever one difference between the unaspirated 

and aspirated /p/; participants in the standard feedback condition would be paying attention to the 
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same feature as those participants in the attentional feedback condition, minimizing the 

differences in performance between conditions.  

Previous research has examined how the MMN response changes over the course of 

training with speakers of a single language and specific phonetic contrasts (Kraus et al., 1995; 

Kraus et al., 1997). The current study extends this to examining MMN responses across language 

groups to the same phonetic contrast. Results showed that better performance during the training 

resulted in more negative /pha/-/pa/ discrimination in native English speakers, suggesting that the 

training transferred to phonetic perception for the within-category contrast that was intended to 

become a between-category contrast. However, because there was still an overall difference 

between the deviant MMN responses in Session 3, the training did not improve their 

discrimination enough to show comparable responses to the native Hindi speakers (who showed 

no difference between deviant responses). It could be that with more training, this effect could 

strengthen such that more training would increase the MMN response to the within-category 

deviant enough to have it become a “between-category” deviant. Native English speakers have 

decades of exposure to their L1 and reversing the within- and between-category phonetic 

representations may take more than three one-hour sessions of training.  

There was a converse effect for native Spanish speakers, such that better performance 

during the training seemed to consolidate the between-category /ba/-/pa/ difference as opposed to 

heightening the response to the unique aspirated /p/. Although the /ba/ stimulus used as the 

deviant was clearly in the VOT range of a /b/ for native Spanish speakers, it could be that the 

training highlighted the /ba/-/pa/ difference as opposed to the /pha/-/pa/ difference which is not 

present at all in Spanish. Thus, this suggests that forming a new phonetic category requires more 

exposure to the phonemes than was provided in the current manipulation. Finally, the amount of 
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training may have influenced the MMN results for the between-category deviant because training 

on a phonetic contrast causes a heightened MMN response due to increased coherence between 

neurons for that stimulus (Kraus et al., 1995). That is, training consolidates the response to the 

phonetic contrasts and increases the number of neurons that fire for that particular stimulus. 

Here, native Spanish speakers show a heightened MMN response to the between-category 

deviant throughout training, including in the last EEG session where they received no training.  

Importantly, this underscores the importance of cue availability and reliability in the 

environment when forming new phonetic categories. The UCM predicts that based on the cue 

validity (availability and reliability), a unique condition can either be processed more or less 

efficiently. The lack of MMN response for the /pha/-/pa/ after training for the native Spanish 

speakers suggests that the cue for /ph/ was not as available or reliable as it could have been; in 

this case, it is important to note that not only did participants receive cues during training, but 

cues from the environment would also play a role in perception. Although the native Spanish 

speakers all resided within the United States at the time of testing and therefore exposed every 

day to English, many of them were new to the country and still used Spanish in their everyday 

lives with family and friends. A longer training period may have affected their MMN responses 

in the long term. However, because native English speakers have had much more reliable and 

available cues for aspiration due to exposure to English from birth, the importance of cues for 

native English speakers are confounded with native language exposure. Speakers weight features 

in language that help them discriminate relevant speech sounds from others; for example, native 

English speakers do not have consonant or vowel duration as a relevant cue (i.e., minimal pair 

distinctions) and therefore do not weight the cue of duration highly during processing. Cue re-

weighting can overcome these differences, such that intensive training can lead to native English 
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speakers using duration as a relevant cue (e.g., Ylinen et al., 2010). In this case, it is hard to 

overcome the lack of weighting for aspiration in English to form a new aspirated category and 

our training may not have been enough to do this. Therefore, there were unreliable cues for 

aspiration for native Spanish speakers due to the mixing of English and Spanish in their daily 

lives, and not enough cues during training to help native English speakers reweight them to be 

salient.  

Although the nonnative phonetic contrasts either did or did not exist in the participants’ 

L1 (the aspirated /p/ exists in English, but not in Spanish), the continued significant difference 

between the two by the end of training highlights the endurance of the L1 phonetic categories. 

Native Hindi speakers show an MMN response to both deviant-standard conditions because they 

are both between-category phonemes; however, native Spanish and native English speakers still 

showed a significant difference between the two, even though the amplitude changed from 

Session 1 to Session 3. The NLM posits the idea of neurally committed wiring for phonetic 

representations within a language once a listener reaches adulthood and the brain’s plasticity 

decreases (Kuhl & Rivera-Gaxiola, 2008); the results here suggest that the neural hardwiring 

may be too strong to overcome for native English and native Spanish speakers even when the 

contrast to be learned exists in the L1. However, this is tempered by the interaction with training 

– the better performance on training led to increased MMN responses for the aspirated /p/ 

contrast, indicating that more effective or more exposure to training may, in fact, reverse the 

hardwiring to allow for the same native-like responses to the nonnative contrast. For native 

Spanish speakers, forming a completely new category over the course of three days may not be 

enough time to affect the neural commitment of the brain’s hardwiring to the phonetic perceptual 

representations.  
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Importantly, the results here indicate that the same kind of response to both within and 

between category deviants can be elicited with a traditional MMN oddball paradigm and with 

one in which the standard category is varied within a phonetic category. Due to the inherently 

variable nature of speech, examining how the brain responds to natural speech variation for 

phonetic categorization allows us to more confidently examine how the MMN response indexes 

the underlying phonetic representations in the L1 and how those change with exposure to L2 

phonetic representations. Previous work has shown that the MMN can be elicited with varying 

nonspeech stimuli in the standard presentation (Winkler et al., 1990), but to our knowledge, 

varying the standard presentation within a phonetic category of natural speech has been shown 

here for the first time and suggests that the MMN is a clear marker of phonetic status of the 

incoming stimuli as it is elicited with a variable standard presentation. Further analysis should 

examine peak amplitude differences between the traditional and the manipulated oddball 

paradigm blocks to uncover more information on the exact physiological differences between 

these two presentations. Importantly, the similarity between the MMNs elicited in both 

paradigms speaks to the success of using this type of paradigm to provide more evidence that the 

MMN captures phonetic differences between sounds, and not just acoustic. Although the MMN 

was more variable in the manipulated paradigm, there were significant effects for both contrasts 

when the standards were varied. Importantly, the native English speakers showed an MMN to the 

/ph/-/p/ contrast in the manipulated paradigm much earlier compared to the traditional paradigm. 

This suggests that the inherent variability within the standard presentations helped native English 

listeners to more accurately encode aspiration as a relevant feature.  

Previous research examining variability during training and learning of an L2 has shown 

that variability leads to better learning for words (Perry, Samuelson, Malloy & Schiffer, 2010), 
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grammar (Gómez, 2002), morphosyntax (Eidsvag, Austad, Plante, & Asbjornson, 2015), and 

reading (Apfelbaum, Hazeltine, & McMurray, 2013). Importantly, input variability has been 

extensively studied for speech perception and production and previous research has 

demonstrated that input variability can lead to more accurate perception of novel phonemes in 

the long term, though there may be short term costs (Logan, Lively, & Pisoni, 1991, 1993; 

Nygaard & Pisoni, 1998; Pisoni, 1993). In this case, it may be that simply being exposed to the 

stimuli in the manipulated MMN paradigm in tandem with the training allowed participants to 

better shift their perceptual representation to consider the aspirated /p/ as a separate category. 

However, previous research has also shown that this variability can transfer to other features, 

such as voices, gender, talker identity, etc. In this case, it is interesting to note that exposure to 

the manipulated MMN paradigm did not seem to enhance MMN responses in the traditional 

MMN paradigm, though due to the mixing of blocks and overall exposure to training, it is 

difficult to examine if there was transfer between more and less variable paradigms. Finally, this 

same response was not seen for native Spanish speakers, who showed comparable responses 

between the manipulated and traditional MMN paradigm across sessions. This difference 

between native English and native Spanish speakers may arise from differences in similarity 

between the native Hindi phonemes and the respective phonemes in English and Spanish. That 

is, because native English speakers have aspiration as a systematic feature in their native 

language, they may be better able to use the variability in the manipulated paradigm and the 

training to shift their perceptual representation, as opposed to native Spanish speakers who must 

build up a new category.  

The similarity between the language groups was manipulated to examine how cross-

language similarity between languages would influence the neural responses. According to the 
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PAM, the aspirated /p/ could be categorized as a native phonemic segment for native English 

speakers because it does exist in English under the consonant category of /p/; for native Spanish 

speakers, the aspirated /p/ would most likely be categorized as “uncategorized”, such that it is 

not a native language phoneme. Within the PAM categorizations, the categorized exemplars are 

then rated on goodness-of-fit to examine how “good” or “bad" they are in contrast to the L1 

category. The present study did not specifically ask native English speakers to rate how well the 

Hindi aspirated /p/ fits into the English /p/ category, although the identification task does suggest 

that they had no issues categorizing it as a /p/. The PAM would most likely suggest that the /pha/-

/pa/ contrast would be categorized as Single Category assimilation, wherein two nonnative 

phones are perceived as belonging to the same native category; in this case, both the Hindi 

aspirated and unaspirated /p/ belong in the larger English /p/ category. In accordance with the 

PAM predictions, native English speakers do not show an MMN response to this contrast pre-

training because it is assimilated to one category.  

Accordingly, the acquisition of the aspirated /p/ would depend on whether or not the 

phone is categorized as a good or bad exemplar of the native category (Best & Tyler, 2007). In 

this case, we do not know if native English participants considered the aspirated /p/ a good or 

bad exemplar of the English /p/ category; the PAM predicts that speakers would have to learn a 

new phonetic category for this phone before being able to successfully use it at the phonological 

level. Based on the MMN responses seen here, it seems native English speakers started to build 

the new phonetic category by the end of training, but due to the training effects that enhance 

MMN responses in general (Kraus et al., 1995), the difference between the /ba/-/pa/ category and 

the /pha/-/pa/ category remained significant.   
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Alternatively, the presence of the aspirated /p/ in English phonetics may have caused 

competition in attempting to perceive and acquire it as a separate phone, according to the 

competition framework set forth by the UCM. The increase in MMN response to the aspirated /p/ 

contrast for native English speakers suggests that the similarity between the two phones 

contributed to more successful phonetic perception here, as measured by the MMN response 

difference from Session 1 to Sessions 2 and 3. The UCM would also predict this based on 

positive transfer between constructs that are similar between languages. In sum, the competition 

between the existing English /pha/ and the nonnative Hindi /pha/ was not strong enough to 

overrule effects of similarity between the languages. Examining these results in conjunction with 

the identification task, it seems that the difference between the /pha/-/pa/ contrast was only seen 

in the MMN responses and not in the overt behavioral responses (i.e., native English speakers 

did not show a difference in categorization of the /b/-/p/ continuum pre- to post-training). That is, 

participants showed a change in the MMN response from pre- to post-training for the /pha/-/pa/ 

contrast but this did not change their categorization of the entire continuum.  

For native Spanish speakers, the perception of the uncategorized aspirated /p/ would 

depend on the similarity to the L1 perceptual category (SLM; Flege, 1995) and the relationship 

between that category and other possible similar phones (Best & Tyler, 2007). The aspirated /p/ 

for native Spanish speakers is uncategorized because it does not have a similar phone in the L1 

(in general, Spanish does not use aspiration as a contrastive or even acoustic cue). This would 

suggest that it may be easy to learn perceptually because it does not have any competing or pre-

existing phonemes that would hinder perception or acquisition. However, the PAM also suggests 

that the ease of forming a new perceptual category depends on the relationship between the to-

be-learned phone and other existing phonetic representations (i.e., “its comparative relationships 
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within the interlanguage phonological system”, Best & Tyler, 2007). This suggests that other L1 

phones that may be similar will also affect the perception and acquisition of the category. In this 

case, because Spanish does not use aspiration as a functionally contrastive cue, the Hindi 

aspirated /p/ would remain uncategorized with no similar phonemes in Spanish, suggesting that it 

should be fairly easy to differentiate from the unaspirated /p/. Our MMN results show that native 

Spanish speakers showed a significant difference throughout training for both contrasts; for the 

/pha/-/pa/ contrast, the difference between the phones lessened from session 1 to session 2 (M = 

.289) and from session 1 to session 3 (M = .038). This suggests that although the effect was 

overshadowed by the L1 between-category response to /b/-/p/, speakers did show a change in 

MMN to /pha/-/pa/. Interestingly, native Spanish speakers did seem to show a difference from 

pre- to post-training on their continuum categorization, such that post-training, they showed a 

cross-category boundary more similar to that of native Hindi speakers. This may indicate that the 

behavioral training affected their categorization of the /b/-/p/ continuum, though this result 

should be interpreted cautiously because the training performance and ERP results were not 

significantly different from the native English speakers. However, examining what may have led 

to this shift in perceptual category boundary would elucidate how categories can be shifted with 

exposure to nonnative phonetic contrasts. It may be that the training emphasized already-existing 

phonetic contrasts and allowed the perceptual boundary to shift and mirror the native Hindi 

speaker boundary; however, this only happened for the /ba/-/pa/ difference, as seen in the 

correlational analyses. Therefore, the shift in boundary was linked to an over-emphasis on the 

/ba/-/pa/ contrast and not due to the shifting of the /pha/-/pa/ contrast.  

Alternatively, the training may have highlighted the /b/-/p/ difference for native Spanish 

speakers because it is possible that the /b/-/p/ distinction is not as frequent as it is in English. 
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That is, it is a salient cue because it is a minimal pair, but it may not occur as frequently as it 

does in English, leading to an increased response during training as participants hear it 

continuously (and in the MMN paradigm as well, leading to increased exposure). An initial 

search for exhaustive lists of /b/-/p/ minimal pairs does not appear to show that there is such a 

large difference between Spanish and English in /b/-/p/ minimal pairs, but a more in-depth search 

using corpus data would help answer this question.  

In sum, the results of the present study show that the similarity to the first language can 

influence the MMN response, such that the more similar contrast (i.e., the between-category 

contrast) showed a clear and definite MMN response before training; the /pha/-/pa/ contrast 

showed a more clearly defined MMN response after training, suggesting that our training worked 

even though it also enhanced the MMN response for the between-category contrast. There were 

no differences between language groups across any of the sessions; both speaker groups showed 

a larger MMN response for the between-category deviant /ba/-/pa/ across all sessions. However, 

the correlations show that the language groups showed differential results, such that the 

performance on the training task correlated with mean amplitudes for different contrasts. This 

suggests that depending on the native language, training augmented perception of either the 

within-category deviant (English) or the between-category deviant (Spanish). A possible 

explanation for this could be that the training highlights already-existing contrasts in the 

languages: the native English speakers have the aspirated /p/ as part of their perceptual category 

and the training successfully emphasizes the perceptual boundary that they are asked to make. 

Because native Spanish speakers do not have the aspirated /p/ as part of their initial perceptual 

category, the training only serves to highlight the already existing contrast of /b/-/p/, such as seen 

in training studies in which the existing MMN has been augmented (Kraus et al., 1995). 



 85 

Importantly, the linguistic feature (aspiration) used to perceive the difference between the 

critical contrast /ph/-/p/ was perceived at different time points during acquisition; that is, native 

Spanish speakers, who do not use aspiration as a systematic linguistic feature, were able to begin 

to perceive the difference between /ph/ and /p/ earlier during training (by Session 3) compared to 

native English speakers, who did not show increased negativity for the /ph/-/p/ contrast by the 

last day of training. This suggests that the similarity to the L1 can influence how the MMN is 

elicited during acquisition of new nonnative contrasts. Although similarity between languages (in 

this case, /b/-/p/ between all three languages) overshadowed the results seen for the critical /ph/-

/p/ contrast, it is possible that the competition between the English /ph/ and Hindi /ph/ did not 

allow native English speakers to perceive the /ph/ as a separate phoneme before the native 

Spanish speakers, who just had to learn to use the aspiration as a relevant linguistic cue.  

It is important to note that native Spanish speakers already had another language that they 

were exposed to that may have influenced their responses – that is, due to the fact that they were 

immersed in their L2 language and culture, native Spanish speakers were already juggling two 

language systems at the time of testing. This may have contributed to the lack of difference 

between native English and native Spanish speakers in ERP mean amplitudes for the different 

contrast pairs because native Spanish speakers were exposed to English during their daily lives. 

This exposure may have already started to influence the perceptual representation of the phonetic 

categories. Although this is a possibility, due to the pre-attentive and early nature of the MMN 

response, it is unclear how much influence exposure to English may have had. That is, because 

the MMN response taps into the earliest phonetic representation of the incoming stimulus that 

does not require attention or conscious access, it seems unlikely that native Spanish speakers 

would use their second language as the mediator for perceiving nonnative phonetic contrasts. 
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Previous research has shown that learning a third language (L3) can be mediated through the L2 

instead of the L1, depending on the similarity between the L1/L2 to the L3; learners can use their 

L2 to learn their L3 if it is more typologically similar to the L3 (Cenoz, 2001; Hammarberg, 

2001; Ringbom, 1987). However, much of this prior research has examined grammar and 

vocabulary learning, or morphosyntactic and syntactic processing (Cenoz, 2001) or case studies 

of one participant with a varied linguistic background (Hammarberg, 2001). For speech 

perception and production, this idea remains to be explored in depth in future research.  

The current study also provided new information about how individual differences can 

affect L2 speech perception. These results may be spurious, but the frontal and frontocentral 

electrodes show significant correlations with Raven’s that carry over from one session to 

another, suggesting that it may not be due to chance. Our results show significant correlations 

with performance on Raven’s matrices across language groups, sessions, and electrode sites. 

Importantly, the correlations correspond to each language group’s sensitivity to the difference 

responses; that is, native English speakers showed correlations between Raven’s and ERP 

responses for the ph-deviant condition across the three sessions, but native Spanish speakers 

showed correlations between Raven’s and ERP responses for the b-deviant condition. Native 

English speakers showed less correlations than native Spanish speakers; only two correlations 

out of a total of 36 possible correlations were seen in each session for native English speakers 

and we cannot discount the possibility of spurious relationships. But native Spanish speakers 

showed six significant correlations in Session 1, before training occurred, suggesting that their 

baseline perception was most correlated with Raven’s, gradually diminishing throughout 

training. Previous work has shown that there is a positive correlation between performance on 

Raven’s matrices and tone awareness in learning to read Chinese in third, fourth, and fifth grade-



 87 

age children (Huang & Hanley, 1995; Siok & Fletcher, 2001). However, the authors partial out 

performance on Raven’s to account for effects of IQ and do not further speculate on the 

mechanisms behind the correlation.  

Importantly, there were no significant correlations between performance on Raven’s and 

training, suggesting that a separate mechanism may be behind the relationship between 

nonspatial intelligence and speech perception. Previous research has examined nonverbal 

intelligence using Raven’s in conjunction with linguistic tasks; Chung, McBride-Chang, Cheung, 

and Wong (2013) showed that intelligence measures do not have a significant effect on speech 

perception in English-learning Chinese children, but they used Raven’s as a way to ensure that 

there were no differences between experimental groups and so kept it controlled in regression 

analyses as opposed to examining it as a theoretically important variable. Other studies have also 

used Raven’s in speech perception and production tasks, but have kept it controlled in analyses 

or as a way to ensure that there were no differences between groups (e.g., Jakoby et al., 2011; 

Soroli, Szenkovits, & Ramus, 2010). Although our aim was also to ensure that there were no 

differences between groups, the significant difference between native English and native Spanish 

speakers on the Raven’s test seems to show important effects on the ERP responses. It is 

important to note that native English speakers only showed significant effects of Raven’s on the 

perception of the within-category contrast (/ph/-/p/) across all sessions but native Spanish 

speakers showed a shift such that better Raven’s performance correlated with more negative 

responses for the /ph/-/p/ contrasts only in Session 1. After Session 1, more accurate Raven’s 

performance correlated with the between category difference, /b/-/p/. This suggests that the 

training did, in fact, overemphasize the existing contrasts for native Spanish speakers in general 

and it possibly influenced participants with higher scores on Raven’s more than participants with 
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lower scores on the Raven’s test. Future research should examine how nonspatial and nonverbal 

intelligence measures can affect speech perception, especially at a pre-attentive level.  

In conclusion, the present study elaborated on how models of L2 speech perception can 

use the MMN response as an objective measure of phonetic processing in L2 learners. 

Importantly, due to the fact that our manipulation with varying standards showed much the same 

results as the traditional oddball paradigm, future researchers should make sure to examine how 

varying standards within an oddball paradigm can more effectively mimic the natural variations 

within the speech signal. Although it is more difficult to control for acoustic effects, employing 

varying standards illustrates that the MMN is an effective objective measure of phonetic 

differences between categories. Previous research has controlled for acoustic distance between 

auditory stimuli to capture the linguistically meaningful phonetic differences; however, it is still 

a very controlled and unnatural exploration of the phonetic variation within a language. Our 

study demonstrates that the same type of MMN response can be elicited with natural speech 

variation, at least for contrasts that vary with aspiration and voicing. This is important for models 

and theories of L2 speech perception that search for an objective measure of similarity between 

contrasts. The MMN response, modulated by similarity (Kirmse et al., 2008) but not by natural 

speech variation within a phonetic category (Best & Tyler, 2007; Winkler et al., 1990, Näätänen, 

2001), pre-attentive and objective, represents the objective measure of similarity that models of 

L2 speech perception have examined with participant ratings.  

Furthermore, the present study demonstrated that the MMN response to within-category 

deviants can change over the course of training and that better performance on training elicits a 

larger change in the ERP amplitude for the contrasts. Models of L2 speech perception that rely 

on neural hardwiring for the L1 phonetic categories should ensure that they allow for exposure to 
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the L2 contrasts to affect the neuronal patterns for perceptual categorization, much like the NLM 

(Kuhl & Rivera-Gaxiola, 2008). The experiment presented here supports the idea that L1 

phonetic categories can be shifted with enough training, but the L1 phonetic categories 

themselves are still the most salient during perception and processing, at least with the current 

training parameters.  

Our results also show that participants performed better on training with feedback, 

though the type of feedback did not matter. This demonstrates that, in accordance with previous 

studies, feedback is helpful for phonetic perception, especially when attempting to actively shift 

or form perceptual categories, but more information is not necessarily better. In language 

learning classrooms, intensive exposure for a short time to dissimilar L2 speech categories with 

simple feedback may ensure that learners can start the neuronal re-hardwiring to more effectively 

acquire the L2 speech categories.  

Finally, it is important to note that our study used three language groups to examine the 

influence of cross-linguistic similarity, improving on studies that have only used two languages 

to examine how the perceptual categorization of one language affects acquisition of another 

language. In this case, we were able to highlight how similarity between languages can influence 

behavioral and neural results, by comparing two languages (English and Spanish) to each other 

in acquiring phonetic contrasts in another language (Hindi), and also comparing those languages 

to the learned language, as has been done in previous research.  

The present results contribute to our understanding of L2 speech perception both 

practically, in terms of learning with feedback, and theoretically, to understand how L2 speech 

categories can be described and measured. Furthermore, we are able to investigate these areas 

with an objective, independent method that captures the natural variation of speech and the 
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potential differences between languages that influence the acquisition and perception of L2 

speech.  
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APPENDIX A 

NORMING STUDY 

To ensure that our stimuli had been manipulated correctly before we used them in the training 

and ERP paradigm, we had ten native English and ten native Spanish speakers listen to our 

stimuli and categorize them. Native English speakers were recruited from the undergraduate 

psychology pool and received one credit for their participation. Native Spanish speakers were 

paid $7/hour for their time. They followed the same procedure as the participants in our training 

experiment: they were presented with a sound and asked to respond if they believed it began with 

a /p/ or a /b/ sound. Each participant was presented with 10 instances of each stimulus in a 

pseudorandom order such that there were no repetitions. Participants showed the appropriate 

category boundaries for native Spanish and native English speakers, such that native Spanish 

speakers categorized stimuli from 0 ms VOT and higher as /p/ and native English speakers 

categorized the stimuli from 20 ms VOT and higher as /p/ (Lisker & Abramson, 1964). This was 

the same categorization our participants in the critical task showed during the current study pre-

training. See Figures 25 and 26 for categorization continuums for these speakers.  
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Figure 27. Native Spanish speaker categorization, norming study. 

 

Figure 28. Native English speaker categorization, norming study. 
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APPENDIX B 

CORRELATIONS 

Tables 3 and 4 show correlations between training accuracy, individual difference measures and 

MMN amplitude across all electrode sites for each of the Deviant – Standard responses. 

 

Table 3. Native English speakers, correlations between electrode sites, training, and individual difference 

measures. 

  Individual Difference Measures 
Difference Response by 

Electrode Site  Training Accuracy Operation Span Flankers Ravens 
Session 1 
Diff Stand - Dev 1 Block 1F3 r .14 .30 -.24 .32 

 p-value .57 .22 .32 .18 
Diff Stand - Dev 2 Block 1F3 r -.08 .12 -.11 .15 

 p-value .74 .64 .67 .55 
Diff Stand - Dev 1 Block 3F3 r -.19 -.21 -.07 .05 

 p-value .44 .38 .79 .85 
Diff Stand - Dev 2 Block 3F3 r -.42 -.06 .22 -.17 

 p-value .07 .81 .37 .49 
Diff Stand - Dev 1 Block 1FZ r .20 .40 -.36 .43 

 p-value .42 .09 .14 .07 
Diff Stand - Dev 2 Block 1FZ r -.13 .12 -.25 .20 

 p-value .59 .63 .31 .42 
Diff Stand - Dev 1 Block 3FZ r -.06 .07 -.25 .23 

 p-value .80 .78 .30 .35 
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Diff Stand - Dev 2 Block 3FZ r -.48* -.13 .08 -.12 
 p-value .04 .59 .73 .61 

Diff Stand - Dev 1 Block 1F4 r -.05 .21 -.44 .35 
 p-value .84 .38 .06 .15 

Diff Stand - Dev 2 Block 1F4 r -.43 .12 -.41 .12 
 p-value .07 .64 .08 .62 

Diff Stand - Dev 1 Block 3F4 r .02 .14 -.26 .12 
 p-value .92 .58 .29 .62 

Diff Stand - Dev 2 Block 3F4 r -.57* -.13 -.04 -.24 
 p-value .01 .61 .89 .32 

Diff Stand - Dev 1 Block 1FC3 r .23 .33 .00 .23 
 p-value .35 .17 1.00 .35 

Diff Stand - Dev 2 Block 1FC3 r .08 .28 -.11 .23 
 p-value .74 .24 .65 .34 

Diff Stand - Dev 1 Block 1FCZ r .19 .28 -.19 .41 
 p-value .43 .25 .43 .09 

Diff Stand - Dev 2 Block 1FCZ r -.13 .19 -.18 .21 
 p-value .59 .43 .46 .40 

Diff Stand - Dev 1 Block 3FCZ r .04 .01 -.23 .19 
 p-value .86 .97 .35 .43 

Diff Stand - Dev 2 Block 3FCZ r -.32 -.17 .08 -.17 
 p-value .18 .50 .75 .49 

Diff Stand - Dev 1 Block 1FC4 r .12 .36 -.45 .42 
 p-value .62 .13 .05 .07 

Diff Stand - Dev 2 Block 1FC4 r -.22 .19 -.30 .24 
 p-value .38 .44 .21 .32 

Diff Stand - Dev 1 Block 3FC4 r .07 .05 -.19 .21 
 p-value .79 .86 .44 .39 

Diff Stand - Dev 2 Block 3FC4 r -.37 -.23 .11 -.25 
 p-value .12 .35 .65 .30 

Diff Stand - Dev 1 Block 1C3 r .35 .28 -.05 .42 
 p-value .15 .25 .84 .08 

Diff Stand - Dev 2 Block 1C3 r -.09 .35 -.24 .23 
 p-value .71 .15 .33 .35 

Diff Stand - Dev 1 Block 3C3 r .04 -.27 .07 .04 
 p-value .89 .26 .77 .88 

Diff Stand - Dev 2 Block 3C3 r -.13 .01 -.10 -.13 
 p-value .60 .96 .69 .59 

Diff Stand - Dev 1 Block 1CZ r .29 .31 -.21 .49* 
 p-value .23 .20 .38 .03 
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Diff Stand - Dev 2 Block 1CZ r -.12 .25 -.17 .10 
 p-value .61 .29 .49 .70 

Diff Stand - Dev 1 Block 3CZ r .06 -.18 -.13 .09 
 p-value .82 .45 .61 .71 

Diff Stand - Dev 2 Block 3CZ r -.13 -.25 .04 -.11 
 p-value .60 .30 .87 .65 

Diff Stand - Dev 1 Block 1C4 r .15 .28 -.44 .51* 
 p-value .54 .24 .06 .03 
Diff Stand - Dev 2 Block 1C4 r -.35 .12 -.22 .01 

 p-value .14 .63 .37 .99 
Diff Stand - Dev 1 Block 3C4 r .16 -.12 -.17 .21 

 p-value .51 .61 .50 .40 
Diff Stand - Dev 2 Block 3C4 r -.21 -.20 .02 -.23 

 p-value .40 .41 .94 .34 
Session 2 
Diff Stand - Dev 1 Block 1F3 r .06 -.18 -.15 .43 

 p-value .82 .45 .55 .07 
Diff Stand - Dev 2 Block 1F3 r -.22 .20 -.15 .18 

 p-value .37 .41 .55 .47 
Diff Stand - Dev 1 Block 3F3 r .37 .30 -.20 .06 

 p-value .12 .21 .42 .81 
Diff Stand - Dev 2 Block 3F3 r -.14 -.14 -.05 -.26 

 p-value .57 .57 .85 .28 
Diff Stand - Dev 1 Block 1FZ r .18 .00 -.28 .42 

 p-value .47 .99 .26 .07 
Diff Stand - Dev 2 Block 1FZ r -.08 .06 -.35 .34 

 p-value .75 .80 .14 .16 
Diff Stand - Dev 1 Block 3FZ r .28 .17 -.19 .18 

 p-value .25 .48 .43 .46 
Diff Stand - Dev 2 Block 3FZ r -.23 -.20 .03 -.32 

 p-value .34 .42 .91 .19 
Diff Stand - Dev 1 Block 1F4 r .12 .11 -.44 .19 

 p-value .62 .65 .06 .45 
Diff Stand - Dev 2 Block 1F4 r -.08 .23 -.23 .28 

 p-value .76 .34 .34 .24 
Diff Stand - Dev 1 Block 3F4 r .30 .05 -.15 .10 

 p-value .22 .83 .55 .69 
Diff Stand - Dev 2 Block 3F4 r -.25 -.23 .09 -.23 

 p-value .30 .35 .73 .35 
Diff Stand - Dev 1 Block 1FC3 r .02 -.37 .09 .12 
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 p-value .95 .12 .71 .62 
Diff Stand - Dev 2 Block 1FC3 r -.09 .20 -.17 .21 

 p-value .70 .41 .48 .39 
Diff Stand - Dev 1 Block 3FC3 r .36 .24 .06 .04 

 p-value .13 .33 .82 .88 
Diff Stand - Dev 2 Block 3FC3 r -.23 -.26 -.06 -.34 

 p-value .35 .29 .79 .16 
Diff Stand - Dev 1 Block 1FCZ r .14 .04 -.32 .48* 
 p-value .56 .88 .19 .04 
Diff Stand - Dev 2 Block 1FCZ r -.09 .00 -.13 .21 

 p-value .71 1.00 .59 .39 
Diff Stand - Dev 1 Block 3FCZ r .37 .17 -.10 .12 

 p-value .12 .50 .68 .61 
Diff Stand - Dev 2 Block 3FCZ r -.32 -.18 -.08 -.30 

 p-value .18 .47 .76 .22 
Diff Stand - Dev 1 Block 1FC4 r .19 -.14 -.33 .24 

 p-value .45 .58 .17 .33 
Diff Stand - Dev 2 Block 1FC4 r .04 .07 -.37 .34 

 p-value .87 .76 .11 .16 
Diff Stand - Dev 1 Block 3FC4 r .42 .07 .17 .12 

 p-value .07 .77 .49 .64 
Diff Stand - Dev 2 Block 3FC4 r -.31 -.20 -.05 -.18 

 p-value .19 .42 .83 .47 
Diff Stand - Dev 1 Block 1C3 r .14 -.18 .00 .42 

 p-value .56 .46 1.00 .07 
Diff Stand - Dev 2 Block 1C3 r -.01 .04 -.06 .15 

 p-value .97 .87 .82 .54 
Diff Stand - Dev 1 Block 3C3 r .50* .05 .15 -.07 

 p-value .03 .84 .54 .79 
Diff Stand - Dev 2 Block 3C3 r -.23 -.24 -.06 -.26 

 p-value .35 .32 .80 .28 
Diff Stand - Dev 1 Block 1CZ r .21 .04 -.30 .51* 
 p-value .39 .87 .21 .03 
Diff Stand - Dev 2 Block 1CZ r .01 .29 -.20 .30 

 p-value .95 .24 .42 .21 
Diff Stand - Dev 1 Block 3CZ r .26 -.07 .15 -.14 

 p-value .29 .78 .55 .57 
Diff Stand - Dev 2 Block 3CZ r -.19 -.14 -.15 -.24 

 p-value .45 .56 .54 .32 
Diff Stand - Dev 1 Block 1C4 r .11 -.16 -.35 .22 



 97 

 p-value .66 .52 .15 .37 
Diff Stand - Dev 2 Block 1C4 r .15 .12 -.29 .29 

 p-value .54 .63 .23 .22 
Diff Stand - Dev 1 Block 3C4 r .45 -.08 .29 .00 

 p-value .05 .76 .24 1.00 
Diff Stand - Dev 2 Block 3C4 r -.32 -.15 -.06 -.19 

 p-value .18 .54 .81 .45 
Session 3      
Diff Stand - Dev 1 Block 1F3 r .32 .04 .07 .32 

 p-value .19 .87 .77 .18 
Diff Stand - Dev 2 Block 1F3 r -.13 -.01 -.22 .09 

 p-value .59 .99 .37 .71 
Diff Stand - Dev 1 Block 3F3 r .18 .29 -.02 .09 

 p-value .47 .23 .94 .73 
Diff Stand - Dev 2 Block 3F3 r -.14 .12 -.49* .07 

 p-value .57 .62 .03 .78 
Diff Stand - Dev 1 Block 1FZ r .33 -.03 .06 .28 

 p-value .17 .90 .81 .25 
Diff Stand - Dev 2 Block 1FZ r -.14 -.05 -.27 .22 

 p-value .57 .83 .27 .37 
Diff Stand - Dev 1 Block 3FZ r .52* .15 .21 .04 

 p-value .02 .54 .39 .87 
Diff Stand - Dev 2 Block 3FZ r .06 .05 -.26 .07 

 p-value .80 .84 .28 .77 
Diff Stand - Dev 1 Block 1F4 r .16 -.42 .29 .29 

 p-value .53 .07 .23 .23 
Diff Stand - Dev 2 Block 1F4 r -.04 .19 -.33 .17 

 p-value .88 .43 .18 .48 
Diff Stand - Dev 1 Block 3F4 r .31 .22 .26 -.19 

 p-value .21 .36 .28 .43 
Diff Stand - Dev 2 Block 3F4 r .12 .01 -.25 .02 

 p-value .62 .96 .31 .94 
Diff Stand - Dev 1 Block 1FC3 r .14 -.07 -.21 .50* 
 p-value .58 .78 .38 .03 
Diff Stand - Dev 2 Block 1FC3 r -.08 .04 -.48* .24 

 p-value .73 .87 .04 .33 
Diff Stand - Dev 1 Block 3FC3 r .28 .14 .08 -.04 

 p-value .25 .57 .73 .88 
Diff Stand - Dev 2 Block 3FC3 r .00 .06 -.25 .04 

 p-value .99 .81 .30 .88 
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Diff Stand - Dev 1 Block 1FCZ r .04 -.26 .05 .32 
 p-value .86 .29 .83 .19 

Diff Stand - Dev 2 Block 1FCZ r -.08 .12 -.46* .19 
 p-value .75 .63 .05 .45 

Diff Stand - Dev 1 Block 3FCZ r .46* .21 .23 .03 
 p-value .05 .39 .34 .89 

Diff Stand - Dev 2 Block 3FCZ r .31 .11 -.16 -.06 
 p-value .20 .66 .52 .82 

Diff Stand - Dev 1 Block 1FC4 r .20 -.25 -.04 .39 
 p-value .42 .30 .86 .10 

Diff Stand - Dev 2 Block 1FC4 r -.09 .06 -.52* .51* 
 p-value .72 .82 .02 .03 
Diff Stand - Dev 1 Block 3FC4 r .25 .12 .25 -.26 

 p-value .31 .63 .31 .29 
Diff Stand - Dev 2 Block 3FC4 r .25 .14 -.05 -.12 

 p-value .31 .58 .84 .64 
Diff Stand - Dev 1 Block 1C3 r .13 .17 -.02 .31 

 p-value .59 .48 .95 .19 
Diff Stand - Dev 2 Block 1C3 r -.11 .09 -.52* .34 

 p-value .65 .72 .02 .16 
Diff Stand - Dev 1 Block 3C3 r .18 .19 -.12 .08 

 p-value .45 .43 .63 .76 
Diff Stand - Dev 2 Block 3C3 r .01 .03 -.20 .14 

 p-value .97 .92 .42 .58 
Diff Stand - Dev 1 Block 1CZ r .03 .02 -.10 .31 

 p-value .90 .94 .68 .20 
Diff Stand - Dev 2 Block 1CZ r -.23 .11 -.57* .35 

 p-value .34 .64 .01 .14 
Diff Stand - Dev 1 Block 3CZ r .31 .07 .11 .09 

 p-value .19 .78 .65 .72 
Diff Stand - Dev 2 Block 3CZ r .14 -.06 -.04 .06 

 p-value .56 .80 .87 .81 
Diff Stand - Dev 1 Block 1C4 r .08 -.11 -.10 .33 

 p-value .76 .65 .67 .17 
Diff Stand - Dev 2 Block 1C4 r -.23 .12 -.44 .33 

 p-value .34 .62 .06 .17 
Diff Stand - Dev 1 Block 3C4 r .29 .16 .22 -.16 

 p-value .24 .51 .36 .52 
Diff Stand - Dev 2 Block 3C4 r .34 -.04 .09 -.08 

 p-value .16 .86 .71 .75 
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Notes. * .05 alpha value ** .01 alpha value 

Table 4. Native Spanish speakers, correlations between electrode sites, training, and individual difference 

measures. 

  Individual Difference Measures 
Difference Response by 

Electrode Site  Training Accuracy Operation Span Flankers Ravens 
Session 1      

Diff Stand - Dev 1 Block 1F3 r .13 .31 .14 .33 
 p-value .67 .31 .66 .28 

Diff Stand - Dev 2 Block 1F3 r .38 .02 .47 -.03 
 p-value .20 .96 .11 .93 

Diff Stand - Dev 1 Block 3F3 r -.57* -.34 -.15 -.51 
 p-value .04 .25 .63 .08 

Diff Stand - Dev 2 Block 3F3 r .00 .03 .50 .26 
 p-value 1.00 .93 .09 .39 

Diff Stand - Dev 1 Block 1FZ r .03 .31 .00 .07 
 p-value .91 .30 1.00 .81 

Diff Stand - Dev 2 Block 1FZ r .44 -.09 .30 -.37 
 p-value .13 .76 .31 .22 

Diff Stand - Dev 1 Block 3FZ r -.44 -.39 -.29 -.65* 
 p-value .14 .19 .33 .02 

Diff Stand - Dev 2 Block 3FZ r -.09 -.13 .11 .11 
 p-value .76 .67 .71 .72 

Diff Stand - Dev 1 Block 1F4 r -.15 .06 .18 -.10 
 p-value .63 .85 .55 .76 

Diff Stand - Dev 2 Block 1F4 r .25 -.06 .06 -.35 
 p-value .42 .85 .85 .24 

Diff Stand - Dev 1 Block 3F4 r -.27 -.46 -.24 -.85** 
 p-value .38 .12 .43 .00 

Diff Stand - Dev 2 Block 3F4 r -.14 -.08 .03 .22 
 p-value .65 .79 .92 .47 

Diff Stand - Dev 1 Block 1FC3 r .13 .19 .09 .09 
 p-value .68 .53 .76 .76 

Diff Stand - Dev 2 Block 1FC3 r .29 -.10 .39 -.31 
 p-value .34 .76 .20 .30 

Diff Stand - Dev 1 Block 1FCZ r .02 .25 .10 .06 
 p-value .94 .40 .74 .86 

Diff Stand - Dev 2 Block 1FCZ r .52 -.04 .49 -.18 
 p-value .07 .91 .09 .55 



 100 

Diff Stand - Dev 1 Block 3FCZ r -.36 -.50 -.20 -.73** 
 p-value .23 .08 .52 .01 

Diff Stand - Dev 2 Block 3FCZ r -.21 -.14 .18 .14 
 p-value .49 .65 .56 .64 

Diff Stand - Dev 1 Block 1FC4 r -.11 .20 .01 .12 
 p-value .72 .52 .98 .70 

Diff Stand - Dev 2 Block 1FC4 r .40 -.03 .35 -.19 
 p-value .17 .93 .24 .54 

Diff Stand - Dev 1 Block 3FC4 r -.26 -.30 -.08 -.57* 
 p-value .39 .32 .80 .04 

Diff Stand - Dev 2 Block 3FC4 r -.11 -.14 -.04 .12 
 p-value .72 .64 .90 .69 

Diff Stand - Dev 1 Block 1C3 r -.07 .21 .08 .18 
 p-value .83 .50 .79 .57 

Diff Stand - Dev 2 Block 1C3 r .44 -.11 .41 -.29 
 p-value .13 .73 .17 .34 

Diff Stand - Dev 1 Block 3C3 r -.61* -.24 -.27 -.28 
 p-value .03 .42 .38 .36 

Diff Stand - Dev 2 Block 3C3 r -.01 -.04 .50 .30 
 p-value .98 .89 .08 .32 

Diff Stand - Dev 1 Block 1CZ r -.06 .17 .08 -.03 
 p-value .84 .58 .80 .91 

Diff Stand - Dev 2 Block 1CZ r .44 .21 .31 -.07 
 p-value .13 .48 .31 .83 

Diff Stand - Dev 1 Block 3CZ r -.47 -.42 -.45 -.56* 
 p-value .10 .15 .13 .05 

Diff Stand - Dev 2 Block 3CZ r -.08 .09 .24 .39 
 p-value .79 .77 .43 .19 

Diff Stand - Dev 1 Block 1C4 r .06 .03 .05 -.03 
 p-value .85 .92 .88 .92 

Diff Stand - Dev 2 Block 1C4 r .22 -.11 .22 -.20 
 p-value .47 .73 .48 .51 

Diff Stand - Dev 1 Block 3C4 r -.15 -.23 -.25 -.57* 
 p-value .63 .44 .40 .04 

Diff Stand - Dev 2 Block 3C4 r -.09 -.14 .42 .30 
 p-value .77 .66 .15 .32 

Session 2      
Diff Stand - Dev 1 Block 1F3 r .34 .39 -.13 -.10 

 p-value .25 .18 .67 .75 
Diff Stand - Dev 2 Block 1F3 r -.29 -.43 -.09 -.53 
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 p-value .34 .15 .76 .07 
Diff Stand - Dev 1 Block 3F3 r .07 -.08 .31 .48 

 p-value .81 .80 .31 .10 
Diff Stand - Dev 2 Block 3F3 r -.15 -.26 -.16 .12 

 p-value .62 .39 .61 .69 
Diff Stand - Dev 1 Block 1FZ r .29 .29 -.01 .26 

 p-value .34 .34 .97 .39 
Diff Stand - Dev 2 Block 1FZ r -.07 -.38 -.08 -.60* 

 p-value .83 .20 .79 .03 
Diff Stand - Dev 1 Block 3FZ r -.12 -.06 .25 .26 

 p-value .71 .84 .42 .39 
Diff Stand - Dev 2 Block 3FZ r -.29 -.02 -.14 .37 

 p-value .34 .94 .65 .22 
Diff Stand - Dev 1 Block 1F4 r .10 -.18 -.05 -.14 

 p-value .76 .55 .87 .66 
Diff Stand - Dev 2 Block 1F4 r .23 -.29 .01 -.43 

 p-value .46 .34 .98 .15 
Diff Stand - Dev 1 Block 3F4 r .14 .06 .31 .53 

 p-value .64 .84 .31 .06 
Diff Stand - Dev 2 Block 3F4 r -.24 -.16 .00 .24 

 p-value .44 .61 .99 .43 
Diff Stand - Dev 1 Block 1FC3 r .05 .33 -.28 -.02 

 p-value .88 .28 .36 .95 
Diff Stand - Dev 2 Block 1FC3 r -.12 -.33 -.05 -.57* 

 p-value .70 .27 .87 .04 
Diff Stand - Dev 1 Block 3FC3 r .23 -.04 .29 .53 

 p-value .45 .91 .34 .06 
Diff Stand - Dev 2 Block 3FC3 r -.15 -.25 -.16 .17 

 p-value .63 .40 .60 .59 
Diff Stand - Dev 1 Block 1FCZ r .26 .08 -.10 -.04 

 p-value .38 .79 .75 .90 
Diff Stand - Dev 2 Block 1FCZ r -.31 -.30 -.13 -.39 

 p-value .31 .32 .66 .19 
Diff Stand - Dev 1 Block 3FCZ r -.01 .01 .25 .45 

 p-value .97 .98 .41 .12 
Diff Stand - Dev 2 Block 3FCZ r -.40 -.03 -.16 .21 

 p-value .17 .92 .60 .49 
Diff Stand - Dev 1 Block 1FC4 r -.06 -.07 -.24 -.22 

 p-value .85 .82 .44 .47 
Diff Stand - Dev 2 Block 1FC4 r .02 -.20 -.10 -.55 
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 p-value .94 .52 .74 .05 
Diff Stand - Dev 1 Block 3FC4 r .01 -.03 .26 .52 

 p-value .98 .92 .40 .07 
Diff Stand - Dev 2 Block 3FC4 r -.37 -.10 .03 .23 

 p-value .22 .75 .93 .44 
Diff Stand - Dev 1 Block 1C3 r .21 .17 -.06 -.13 

 p-value .50 .58 .85 .68 
Diff Stand - Dev 2 Block 1C3 r -.11 -.36 -.12 -.58* 

 p-value .73 .23 .69 .04 
Diff Stand - Dev 1 Block 3C3 r -.05 -.15 .30 .42 

 p-value .88 .64 .33 .16 
Diff Stand - Dev 2 Block 3C3 r -.24 -.13 -.16 .09 

 p-value .43 .67 .60 .76 
Diff Stand - Dev 1 Block 1CZ r .02 -.04 -.32 -.16 

 p-value .95 .91 .29 .60 
Diff Stand - Dev 2 Block 1CZ r -.06 -.32 -.10 -.55 

 p-value .84 .29 .75 .05 
Diff Stand - Dev 1 Block 3CZ r -.25 -.12 .12 .41 

 p-value .42 .69 .69 .17 
Diff Stand - Dev 2 Block 3CZ r -.34 -.09 -.17 .07 

 p-value .25 .78 .57 .82 
Diff Stand - Dev 1 Block 1C4 r -.16 -.30 -.17 -.19 

 p-value .61 .33 .57 .53 
Diff Stand - Dev 2 Block 1C4 r .10 -.29 .05 -.44 

 p-value .74 .34 .88 .13 
Diff Stand - Dev 1 Block 3C4 r -.15 -.08 .21 .49 

 p-value .64 .79 .49 .09 
Diff Stand - Dev 2 Block 3C4 r -.36 -.05 -.06 .17 

 p-value .22 .87 .84 .58 
Session 3      

Diff Stand - Dev 1 Block 1F3 r -.11 -.15 -.33 .33 
 p-value .72 .62 .27 .28 

Diff Stand - Dev 2 Block 1F3 r -.66* -.40 -.33 -.42 
 p-value .02 .17 .27 .15 

Diff Stand - Dev 1 Block 3F3 r .49 -.20 .22 -.15 
 p-value .09 .51 .48 .61 

Diff Stand - Dev 2 Block 3F3 r .14 -.12 .44 .50 
 p-value .64 .69 .14 .08 

Diff Stand - Dev 1 Block 1FZ r -.22 -.36 -.10 .21 
 p-value .46 .23 .74 .50 
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Diff Stand - Dev 2 Block 1FZ r -.65* -.14 -.34 -.32 
 p-value .02 .65 .26 .28 

Diff Stand - Dev 1 Block 3FZ r .51 -.21 .11 -.26 
 p-value .07 .50 .73 .39 

Diff Stand - Dev 2 Block 3FZ r -.09 -.16 .35 .09 
 p-value .78 .60 .24 .76 

Diff Stand - Dev 1 Block 1F4 r -.15 -.28 -.12 .40 
 p-value .62 .36 .70 .17 

Diff Stand - Dev 2 Block 1F4 r -.58* -.06 -.37 -.12 
 p-value .04 .86 .21 .70 

Diff Stand - Dev 1 Block 3F4 r .54 -.17 .05 -.27 
 p-value .06 .58 .89 .38 

Diff Stand - Dev 2 Block 3F4 r -.10 -.08 .04 .26 
 p-value .75 .80 .90 .40 

Diff Stand - Dev 1 Block 1FC3 r .12 -.07 -.31 .43 
 p-value .70 .82 .30 .15 

Diff Stand - Dev 2 Block 1FC3 r -.52 -.32 -.29 -.29 
 p-value .07 .29 .34 .34 

Diff Stand - Dev 1 Block 3FC3 r .39 -.04 .12 -.16 
 p-value .19 .91 .70 .60 

Diff Stand - Dev 2 Block 3FC3 r -.04 -.28 .41 .25 
 p-value .91 .35 .17 .41 

Diff Stand - Dev 1 Block 1FCZ r -.22 -.49 -.05 -.01 
 p-value .48 .09 .89 .99 

Diff Stand - Dev 2 Block 1FCZ r -.54 -.31 -.17 -.46 
 p-value .06 .31 .59 .11 

Diff Stand - Dev 1 Block 3FCZ r .54 -.07 .10 -.17 
 p-value .06 .83 .76 .57 

Diff Stand - Dev 2 Block 3FCZ r .08 -.30 .49 .01 
 p-value .80 .33 .09 .97 

Diff Stand - Dev 1 Block 1FC4 r -.04 -.20 .04 .45 
 p-value .91 .52 .90 .12 

Diff Stand - Dev 2 Block 1FC4 r -.32 -.18 -.16 -.22 
 p-value .29 .55 .60 .47 

Diff Stand - Dev 1 Block 3FC4 r .56* -.06 .07 -.17 
 p-value .05 .85 .82 .59 

Diff Stand - Dev 2 Block 3FC4 r .01 -.04 .21 .20 
 p-value .98 .90 .50 .52 

Diff Stand - Dev 1 Block 1C3 r -.09 -.16 -.24 .30 
 p-value .78 .60 .42 .32 
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Diff Stand - Dev 2 Block 1C3 r -.34 -.63* -.10 -.73** 
 p-value .25 .02 .75 .01 

Diff Stand - Dev 1 Block 3C3 r .48 -.07 .19 -.10 
 p-value .10 .82 .55 .76 

Diff Stand - Dev 2 Block 3C3 r -.03 -.45 .57* .06 
 p-value .93 .13 .04 .86 

Diff Stand - Dev 1 Block 1CZ r .09 -.30 .02 .29 
 p-value .77 .31 .95 .33 

Diff Stand - Dev 2 Block 1CZ r -.35 -.50 -.01 -.61* 
 p-value .25 .08 .97 .03 

Diff Stand - Dev 1 Block 3CZ r .51 -.05 .03 -.18 
 p-value .08 .87 .93 .56 

Diff Stand - Dev 2 Block 3CZ r .20 -.27 .51 .08 
 p-value .52 .37 .08 .79 

Diff Stand - Dev 1 Block 1C4 r -.02 -.29 .10 .30 
 p-value .95 .34 .75 .32 

Diff Stand - Dev 2 Block 1C4 r -.38 -.41 -.14 -.50 
 p-value .20 .17 .65 .08 

Diff Stand - Dev 1 Block 3C4 r .54 .04 .03 -.16 
 p-value .06 .91 .93 .61 

Diff Stand - Dev 2 Block 3C4 r -.02 -.21 .21 .02 
 p-value .96 .48 .50 .95 

 

Notes. * .05 alpha value ** .01 alpha value. 

 

Correlations between the individual difference measures yielded several significant effects. First, 

there was a significant correlation between operation set size span and Flankers reaction time, r = 

- .47, p = .003, showing that participants with higher set size had faster reaction times on the 

Flankers reaction time for correct trials. This suggests that participants with higher working 

memory scores showed less interference during the Flanker’s task. Within the learner groups, 

native English speakers showed this same significant effect, r = -.59, p = .004, but the native 

Spanish speakers did not show this, suggesting that the main correlational effect is driven by the 

native English speakers. There was also a positive correlation between accuracy on the training 
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and accuracy on the Raven’s Matrices, r = .39, p = .02, suggesting that participants with higher 

accuracy on a nonspatial intelligence test had better accuracy on the training. See Tables 5 and 6 

for a summary of correlations between training and individual difference measures for each 

language group.   

 

Table 5. Native English speaker correlations between training and individual difference measures. 

 Individual Difference Measure 
Training Operation Span Flanker’s Raven’s 
Day 1 .07 .13 .10 
Day 2 .21 -.12 .33 
Day 3 .25 -.12 .45 * 
Combined Accuracy .20 -.01 .33 
Individual Difference 
Measures 

   

Operation Span -- -- -- 
Flanker’s -.59 ** -- -- 
Raven’s .34 -.39 -- 
Notes. * .05 significance level ** .01 significance level 

 

Table 6. Native Spanish speaker correlations between training and individual difference measures. 

 Individual Difference Measure 
Training Operation Span Flanker’s Raven’s 
Day 1 .09 .28 .47 
Day 2 -.58 * .19 .18 
Day 3 .34 .04 -.11 
Combined Accuracy -.05 .26 .29 
Individual Difference 
Measures 

   

Operation Span -- -- -- 
Flanker’s -.22 -- -- 
Raven’s .45 .10 -- 
Notes. * .05 significance level  
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