
ARCHITECTING SOCIAL INTERNET OF THINGS

by

Ji Eun Kim

B.E. Dong-A University, South Korea, 1995

M.S. Carnegie Mellon University, USA, 2003

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCE

This dissertation was presented

by

Ji Eun Kim

It was defended on

November 23rd, 2015

and approved by

Daniel Mosse, Ph.D., Computer Science Department, Professor

Shi-Kuo Chang, Ph.D., Computer Science Department, Professor

Jingtao Wang, Ph.D., Computer Science Department, Assistant Professor

Rosta Farzan, Ph.D., School of Information Sciences, Assistant Professor

Dissertation Director: Daniel Mosse, Ph.D., Computer Science Department, Professor

ii

ARCHITECTING SOCIAL INTERNET OF THINGS

Ji Eun Kim, PhD

University of Pittsburgh, 2015

In the new era of the Internet of Things (IoT), most of the devices we interact with daily are

connected to the Internet. From tiny sensors, lamps, home appliances, home security sys-

tems and health-care devices, to complex heating, ventilation and air conditioning (HVAC)

systems at home, myriad devices have network connectivity and provide smart applications.

The Social Internet of Things (SIoT) is a new paradigm where IoT merges with social net-

works, allowing people and connected devices as well as the devices themselves to interact

within a social network framework to support a new social navigation. Smart homes is one

of the domains that can fully leverage this new paradigm, which will enable people and de-

vices, even in different homes, to actively and mostly automatically collaborate to discover

and share new information and services. Unfortunately the heterogeneous nature of the de-

vices around the home prohibits seamless communication in the (S)IoT. Furthermore, the

state-of-the-art solutions in smart homes offer little, if any, support for collaborating users

and devices. This dissertation describes a new, scalable approach to connect, interact and

share useful information through devices and users with common interests. The dissertation

has three contributions. First, it proposes a holistic and extensible smart home gateway

architecture that seamlessly integrates heterogeneous protocol– and vendor– specific devices

and services and provides fine-grained access controls. Second, it defines an interoperable,

scalable and extensible software architecture for a novel cloud-based collaboration framework

for a large number of devices and users in many different smart homes. Third, it provides

a reasoning framework to enable automated decisions based on the discovered information

and knowledge created and shared by end users. The developed architecture and solutions

iii

are implemented in real systems, which integrate with many different devices from different

manufacturers and run multiple categories of rules created by end users. The architectural

evaluation results show the developed systems are interoperable, scalable and extensible.

iv

TABLE OF CONTENTS

PREFACE . xii

1.0 INTRODUCTION . 1

1.1 PROBLEM DEFINITION . 2

1.2 CONTRIBUTIONS . 3

2.0 RELATED WORK . 5

2.1 SMART HOME ARCHITECTURES . 5

2.2 SEMANTIC MODELS FOR SMART HOMES 6

2.3 SMART HOME ACCESS CONTROL . 8

2.4 SOCIAL INTERNET OF THINGS . 9

2.5 REASONING ENGINES . 10

2.6 END USER PROGRAMMING FOR SMART HOMES 11

3.0 INTEGRIFY: SEAMLESS INTEGRATION OF HETEROGENEOUS

DEVICES IN SMART HOMES . 13

3.1 REQUIREMENTS FOR SMART HOME ARCHITECTURE 14

3.2 SMART HOME ARCHITECTURE . 16

3.2.1 Smart Home Gateway Architecture 17

3.2.1.1 Background of OSGi . 18

3.2.1.2 Home Network Communication Technologies 18

3.2.1.3 Smart Home Device Stack and Discovery 20

3.2.2 Message Framework . 23

3.2.3 Semantic Integration . 25

3.2.3.1 Reasoning Engines . 26

v

3.3 ACCESS CONTROL FOR SMART HOMES 28

3.3.1 Policy Model . 28

3.3.2 Access Control Architecture and Design 29

3.4 INTEGRIFY IMPLEMENTATION: PROOF OF CONCEPT 30

3.4.1 Implementation . 32

3.4.2 Evaluation . 34

4.0 SOCIALITE: A CLOUD BASED DISTRIBUTED COLLABORATION

FRAMEWORK FOR SOCIAL INTERNET OF THINGS 37

4.1 NEW SOCIAL RELATIONSHIPS AND APPLICATIONS 38

4.1.1 New Social Relationships . 38

4.1.2 New Applications Leveraging New Social Relationships 40

4.2 USER SURVEY: SOCIAL INTERNET OF THINGS FOR SMART HOME

SYSTEMS . 42

4.2.1 Methodology . 42

4.2.2 Demographics . 44

4.2.3 Categorization of SIoT Features . 46

4.2.4 Observation of Relationship Types and Device Life-cycle Relevance . . 49

4.2.5 Acceptance of SIoT, End User Programming and Sharing Rules 49

4.3 NON-FUNCTIONAL REQUIREMENTS 51

4.4 SOCIALITE SYSTEM OVERVIEW . 52

4.5 SOCIALITE SEMANTIC MODELS . 54

4.5.1 Background of Technologies in Semantic Web 54

4.5.2 Socialite Semantic Model Description 55

4.6 SOCIALITE SERVER ARCHITECTURE 58

4.6.1 Interoperability for Various Manufacturer’s APIs 59

4.6.1.1 Physical and Logical Devices 59

4.6.1.2 Common Device Model and Manufacturer Specific Device Im-

plementation . 61

4.6.2 Persistent Management and Repositories 61

4.6.2.1 Semantic Model Management and Its Repository 61

vi

4.6.2.2 Device History Management and Its Repository 63

4.6.2.3 Rule Management and Its Repository 64

4.6.3 Scalability with Event-Driven Architectural Pattern 65

4.6.3.1 Background of Event-Driven Architectures 65

4.6.3.2 Socialite Event Channels . 66

4.6.3.3 Socialite Event Generators . 67

4.6.3.4 Event Processing Styles . 70

4.6.4 Large Scale Reasoning over Data Streams 71

4.6.4.1 Background of Apache Storm 72

4.6.4.2 Socialite Storm Topology . 73

4.7 END USER EMPOWERED REASONING FRAMEWORK 75

4.7.1 Socialite Reasoning Framework . 77

4.7.1.1 Background of Reasoning Engines 77

4.7.1.2 Socialite Reasoning Concept 80

4.7.1.3 Rule Transformation to Domain Specific Language 88

4.7.1.4 Rule Management and Sharing 89

4.7.2 Socialite Client Application . 92

4.7.2.1 Features . 92

4.7.2.2 End User Programming for Rules 94

4.7.2.3 Architecture Overview . 96

4.8 SOCIALITE IMPLEMENTATION: PROOF OF CONCEPT 96

4.8.1 Implementation . 96

4.8.2 Evaluation of Architecture . 101

4.8.2.1 Interoperability Evaluation . 101

4.8.2.2 Scalability Evaluation . 102

4.8.2.3 Extensibility Evaluation . 104

5.0 CONCLUSIONS AND FUTURE WORK 106

BIBLIOGRAPHY . 109

vii

LIST OF TABLES

1 Statistics for execution time (ms) of service calls to lamp device 35

2 New proposed relationship types in Socialite 39

3 Fields grouping input distribution per user 103

viii

LIST OF FIGURES

1 High level architecture for smart home systems 16

2 Core software building blocks for the home gateway 19

3 Device stack (a, left) and an instance of Insteon device (b, right) 21

4 New controller discovery process for the unknown controller driver to the gateway 22

5 ZigBee end device discovery process . 24

6 Integrify message framework . 25

7 Excerpt of the ontology representation . 27

8 Access control design concept . 30

9 Integrify demonstrator . 32

10 Execution time of service calls for the different experimental settings 35

11 Graphical representation of the new social relationships in Socialite 39

12 Demographics of participants . 45

13 Distribution (%) of the nine feature categories from the user survey analysis . 46

14 Distribution of programming experience, end user programming acceptance,

sharing rules, SIoT acceptance . 50

15 Socialite system overview . 52

16 RDF graph with two nodes (Subject and Object) and a triple connecting them

(Predicate) . 55

17 Graphical representation of the core ontologies in Socialite (Shortend) 56

18 Example of physical and logical devices of thermostat 60

19 Common semantic models for devices . 60

20 Broker topology in event-driven architecture 66

ix

21 Status update from (1) the physical devices, (2) the client application, and (3)

from the reasoning engine . 69

22 Storm cluster concept . 73

23 Storm topology in Socialite . 74

24 Event-driven distributed architecture . 76

25 High level view of production rule system [18] 78

26 Mapping categorized features from the user survey to rule categories and other

functions . 81

27 Intermediate common data models between the data payload in REST APIs

and Drools domain specific language . 89

28 Rule sharing concept . 91

29 Socialite Web based user interfaces . 93

30 End-user programming user interface . 95

31 Socialite client architecture overview with a rule creation example 97

32 Dynamically accessible Socialite APIs . 99

33 Socialite deployment view on Amazon Web Services (AWS) 100

x

LIST OF CODES

1 Example of XACML policy (shortened): Permit kids to turn on entertainment

devices only before 7 PM . 31

2 Example of Java class with JenaBean annotation 62

3 Example of resource representation in Turtle format 63

4 Basic structure of the rule model in the production rule system 79

5 Context generation rule example . 83

6 Automation example with user-defined context 84

7 Example of JSON payload . 90

xi

PREFACE

I would like to express my special appreciation and thanks to my advisor, Professor Daniel

Mosse, you have been a tremendous mentor for me. I would like to thank you for encouraging

and guiding my research for a long journey of my Ph.D. life. You trust me and share your life

experience even when I had difficulties in balancing out my Ph.D. research and professional

work. You are always available when I needed your advice and support.

I would also like to thank my committee members, Professor Shi-Kuo Chang, Professor

Jingtao Wang, and Professor Rosta Farzan for serving as my committee members. My

dissertation topics include various research areas where your advice on software engineering,

human computer interaction and social computing are great help to proceed my research

and shaped my dissertation a lot.

I would like to thank my current company Bosch and colleagues in our research cen-

ter. Bosch had financially supported my Ph.D. study and research. Discussions with my

colleagues always inspired me to develop a better idea than the ones from yesterday.

I also realize that Ph.D. is one of socialable works in my life. I would like to thank the

many students and researchers who had worked with me in discussions, software development

and writing papers together.

I would like to thank my family far away in South Korea, who is the most important

reason for me to get through long Ph.D. life with great joy. Your prayer is a deep foundation

for who I am.

Finally, I thank my God, my good Father, for letting me through all the difficulties. I

had experienced Your guidance day by day. You are the one who let me finish my degree.

I will keep on trusting You for my future. Thank you, Lord.

xii

1.0 INTRODUCTION

We are moving toward the new era of the Internet of Things (IoT) [160] where most of the

devices we constantly interact with have an Internet connection. Devices from tiny sensors,

lamps, home appliances, home security systems and health-care devices to complex Heat-

ing, Ventilating and Air Conditioning (HVAC) systems at home have network connectivity.

These devices are remotely accessible for people to monitor and control, and to run smart

applications. Gartner estimates that there will be nearly 26 billion devices on the IoT by

2020 [122]. According to a study released by Juniper Research, the smart home market,

equipped with these devices will reach $71 billion by 2018 [157].

A parallel and also explosive trend is that of social networks: most people are already

connected through various social networking services. With the help of the growing ubiquity

of smart phones, people are constantly generating content and easily sharing it with others

in their social networks. According to Pew Research Center, 74% of online adults use social

networking services as of January 2014 [6]. Another surprising fact is that, as of January

2015, more than half (56%) of all online adults 65 and older use Facebook [113].

The Social Internet of Things (SIoT) [130, 30, 133] merges the IoT with social networks.

It is a new paradigm that allows people and connected devices, as well as devices themselves,

to interact within a social network framework that supports a new practice in social navi-

gation [71, 69, 126]. It is expected that the SIoT will facilitate the seamless connection and

unprecedented collaboration of people and devices through new social relationships, which

has not yet been foreseen. The devices in the SIoT will become active participants based

on their new social roles in various contexts. The information generated and processed from

and directed to devices/people will become sharable with connected participants of the SIoT.

Furthermore, people and devices will not only become more cooperative but will also gain the

1

ability to make automated decisions with their knowledge in a distributed and cooperative

manner.

Smart homes is one of the domains that can fully leverage this new paradigm. This

dissertation propose a new collaboration framework for SIoT focusing on smart homes.

1.1 PROBLEM DEFINITION

A smart home user study [53] uncovered that there are four barriers for broad adoption of

smart homes, namely high cost of ownership, inflexibility, poor manageability and difficulty

in achieving security. In addition, I note that the heterogeneous nature of the smart home

system as well as the diverse groups of users are intrinsic causes of these barriers. In fact,

the lack of a de facto communication standard for smart home devices creates these barriers,

hindering the interoperability of devices from different vendors. In addition, more diverse

types of devices connected to the home result in more diverse groups of users that interact

with smart home solutions. For example, health-care related devices can be remotely acces-

sible by health-care service providers. Given the various groups accessing these devices, the

development of a flexible yet fine-grained access control mechanism is required to securely

manage various smart homes with different configurations of devices for diverse groups of

users.

It is expected that devices from different manufacturers will interact with each other

transparently in the Social Internet of Things. However, each manufacturer provides different

application programming interfaces and data models for their connected devices. Therefore,

one of the big challenges is how to utilize all the functionality coming from different devices

with similar capabilities and to provide a proper abstraction for implementation details of

accessing different programming interfaces and data models.

Even if devices from different manufacturers were able to communicate seamlessly with

each other, no mechanisms currently exist to effectively discover and share useful and relevant

information at scale. It is possible that neither an owner of a device, nor a device itself knows

if they could choose a more appropriate configuration for the device’s parameters, for example

2

to improve energy efficiency. However, if all the devices with same capabilities were able to

share their information with other devices in their social networks, an individual device

would have the opportunity to learn the configuration that results in a better operation.

Last but not least, there is no established approach for how to use the discovered in-

formation from the participants, both devices and humans to achieve common goals in a

collaborative way. The state-of-the-art solutions are inflexible and do not leverage the de-

vice functionalities/capabilities for new cross-domain applications or services. For example,

currently an alarm can only be detected only by dedicated devices (e.g., motion detection

sensor) installed for the home security system, instead of exploiting the same capabilities

available in other devices (e.g., motion detection sensor embedded in a thermostat). Fur-

thermore, an issued alarm is dispatched to only a specific security service provider rather

than flexibly dispatched to a neighbor or to a nearby police officer. As shown in this ex-

ample, only specific users and devices are used as designed by the manufacturer with less

flexibility. Therefore, current solutions limit the potential participation of users and devices

for a collaborative situation.

1.2 CONTRIBUTIONS

This dissertation creates a new approach and proposes a new solution to connect, interact

and share useful information through devices and users having common interests at scale.

The developed system aims to provide an interoperable, scalable and extensible collaboration

framework where smart home devices in a new social framework are able to make automated

decisions over the discovered information in a distributed manner, based on rules that are

created and shared by end users. To the best of the author’s knowledge, the developed solu-

tion in this dissertation is the first smart home system enhanced with the Social Internet of

Things (SIoT) and integrated with heterogeneous real devices, which enables unprecedented

people-device and device-device collaborations, based on the end user defined and shared

rules.

In particular, the contributions of this dissertation are as follows.

3

• A holistic and extensible smart home gateway architecture that allows heterogeneous

devices to be flexibly and dynamically installed, managed and accessed during runtime

• A new access control mechanism specific to smart home systems that utilize the

user’s role, the device status, the device location and the current time as access control

attributes

• An interoperable, scalable and extensible software architecture for a new cloud-

based collaboration framework that realizes the new features for the Social Internet of

Things through integration of real smart home devices from various manufacturers

• Semantic models for users, devices and their diagnostics, locations, services, and new

social relationships to be the basis for the interoperability of the devices as well as

autonomous interactions between people and devices, and between devices themselves

• A new reasoning framework that uses the semantic models for the basic/low-level

knowledge representation, events/messages for asynchronous communication, and pro-

duction rules for high-level reasoning. The reasoning capabilities include device and

capability-based automation, context-based automation, preference-based automation,

context generation and service invocation. New social relationships and temporal as-

pects are expressible in these reasoning capabilities.

• A new end-user programming tool that enables end users to create and share new

rules: these rules are fully integrated with the reasoning framework

The rest of this thesis is organized as follows. Chapter 2 summarizes related work. Chapter 3

and Chapter 4 describe proposed approaches from this dissertation and present the proof of

concept. Finally, the conclusion of this work and the future research directions are put forth

in Chapter 5.

4

2.0 RELATED WORK

Related work is categorized into the five research areas: 1) smart home architectures, 2) se-

mantic models for sensors, devices and services, 3) smart home access control mechanisms, 4)

Social Internet of Things paradigm and related research and 5) various reasoning approaches.

In the following sections each of these areas are discussed separately.

Note that the background knowledge employed to the system as basic foundation such

as communication protocols, principles of technologies, commonly used open-source or com-

mercialized products are discussed separately in relevant chapters.

2.1 SMART HOME ARCHITECTURES

Despite the heterogeneous nature of home network standards, existing smart home research

generally assumes a homogeneous underlying architecture. MavHome [60], for example,

predicts activities in a home and makes the home act as an intelligent agent providing optimal

support for its inhabitants. In [90], the authors address the important role of context for

smart home applications by providing adaptive middleware and APIs that provide context to

applications. Projects in [94] and [170] aim to assist end users to build their own individual

smart home applications. While these visions are important for the success of smart homes,

dealing with the heterogeneity of devices and services is a crucial requirement for them to

be realized.

The Open Service Gateway initiative (OSGi) [22] has been used for various home au-

tomation solutions [70, 168, 164, 87, 82, 107] as a basic framework. There are a number

of similar architectural approaches to our smart home gateway architecture discussed in

5

Chapter 3, which targets interoperability on the network protocol level. For instance, DOG

(Domotic OSGi Gateway) [45], Hydra [73], Amigo [79] and a project in [136] are the most

relevant approaches to our smart home gateway architecture in Chapter 3. All of them are

based on OSGi [22] and use a semantic model for abstraction. The device interoperability is

achieved by a multi-layer device stack, which roughly consists of drivers, common adapters

for similar device types and a high-level representation described semantically by a domain

model. Unfortunately, none of them gives a clear account on how devices communicating

over different protocols are discovered.

To address these issues, we present a complete device discovery workflow in smart home:

plug and play of heterogeneous devices during runtime, extensibility to new devices that are

not foreseen during system development, and the use of a barcode reading functionality with

smart phone cameras as a unique approach to improve usability. Moreover, our approach in

Chapter 3integrates cloud services to increase coverage of the device discovery process and

to extend the smart home functionality with new applications, drivers, and computationally

intensive services. The authors of [167] present an architecture to integrate cloud services

and smart home networks. However, unlike the smart home gateway in Chapter 3, they did

not implement the architecture in a prototype.

2.2 SEMANTIC MODELS FOR SMART HOMES

The DogOnt [45] ontology supports device and network independent descriptions of houses,

including both controllable (e.g., home appliances) and architecture (e.g., floor plan) ele-

ments. It is designed with a particular focus on inter-operation between domotic systems

by modeling device, state, functionality and network. The DogOnt ontology is built by in-

heriting the concepts available in DomoML [156], which is a mark-up language aiming at

the definition of an interoperability standard for domestic resources. The DogOnt ontol-

ogy is used in our smart home gateway discussed in Chapter 3 by extending it with more

functionality concepts that are needed for our system.

The Hydra [73, 150] project extends the FIPA device ontology [76] and vocabularies

6

from the Amigo project for device descriptions [79]. The Hydra device ontology includes

the basic device information, device services, device events, device malfunctions and device

capabilities such as hardware properties and state machine.

Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) [55] is an on-

tology that includes modular component vocabularies to represent intelligent agents with

associated beliefs, desires, intentions, time, space, events, user profiles, actions, and poli-

cies for security and privacy. Although they present applications and extensibility used in

smart spaces, SOUPA ontology addresses generic models rather than domain specific concept

descriptions.

Semantic Web technologies have been proposed as a means to enable interoperability

for sensors and sensing systems [59]. The Sensor Web Enablement (SWE) initiative of the

Open Geospatial Consortium (OGC) [47] defined data encoding and Web services to store

and access sensor-related data. These standards such as SensorML [48] and Observation and

Measurement [132] provide syntactic interoperability [153]. The World Wide Web Consor-

tium (W3C) Semantic Sensor Network group defines an OWL21 [80] ontology to describe the

capabilities and properties of sensors, the act of sensing and the resulting observation [59].

Unfortunately these ontology models are limited to sensors. Therefore, none of these models

completely supports all required semantic models for the smart home systems consisting of

sensors, actuators and devices with multiple capabilities.

Semantic Web technologies have been used also for describing Web Services. OWL-S

[117] is an ontology built on top of OWL for describing Semantic Web Services to automati-

cally discover, invoke, compose and monitor Web resources offering services, under specified

constraints. OWL-S is used for the Web Service Description Language (WSDL) [58], which

is an XML format for describing network services as a set of endpoints. It does not aim

for the current trend of REST Web Services [144], which is a lightweight implementation of

service oriented architecture. Similarly Web Service Modeling Ontology (WSMO) [146] and

Semantic Annotation for WSDL [106], officially supported by W3C describe only WSDL

based Web Services. The hRESTS (HTML for RESTful Services) [105] is a microformat for

machine-readable descriptions of Web APIs. The hRESTS microformat describes main as-

1OWL stands for Web Ontology Language

7

pects of services, such as operations, inputs and outputs. Socialite, a cloud based framework

for Social Internet of Things discussed in Chapter 4 reuses the vocabularies used in hRESTS

described in a microformat but converts them to an RDF model to be compatible with other

semantic models in the Socialite system.

2.3 SMART HOME ACCESS CONTROL

The Role Based Access Control (RBAC) concept began with multi-user and multi-application

online systems pioneered in the 1970s [149]. The authors in [101] articulate that the funda-

mental challenge is how to enable home users to manage access control policies for everyone

who visits their homes. The main issues revolve around the complexity and diversity of the

resources, the diversity of the subjects, the low sophistication of the administrators, and the

social context.

Several studies suggested the access control mechanism for the home network environ-

ment in which the OSGi service platform is operated. The authors in [57] proposed an

authorization policy management framework based on RBAC for OSGi service platform.

They classify the policy into two types: user-role assignment policy and permission-role as-

signment. They claim that RBAC model is flexible and more proper than other models such

as discretionary access control (the owner of an object has discretionary authority over the

others) [148] for home network environments operated by the OSGi service platform. The

authors in [20] provide RBAC for the OSGi service environment and use eXtensible Access

Control Markup Language (XACML) [139, 124] for their policy descriptions.

However, the authors do not address other important attributes in our policy model for

the smart home gateway, such as device type, location, device status and current time. Our

policy model provides a fine-grained access control with these attributes.

8

2.4 SOCIAL INTERNET OF THINGS

A few researchers recently have investigated the convergence of the Internet of Things (IoT)

and social networks as a promising direction for the future IoT systems [130, 30, 27, 29].

The new paradigm of the Social Internet of Things (SIoT) supports novel applications and

networking services for the IoT in a more effective and efficient way [30]. The authors in

[133] summarize the literature review on the ongoing activities in the SIoT and address open

research challenges in the generic software architecture.

Earlier approaches in [33, 85] employed human social networking sites as a medium for

publishing and sharing the measured data. However, the devices are not considered as actors

who can directly interact to share the information.

In [114], social devices for co-located devices and humans were introduced to interact

with each other. Their approaches aimed to enhance the remote communication for the

social media services when users and devices are located in the same space. Similar to our

social relationship models, the work in [29] devised different relationships between human

and devices. It discusses the high-level conceptual architecture model including the core

components of the system (e.g., ID management, service discovery and composition, and

trustworthiness management). Unlike our solution, their architecture addresses only the

security aspect of the system, which is a complement for our solution, and they did not

consider other important non-functional requirements such as interoperability, scalability

and extensibility.

Paraimpu [137] is a platform for a Social Web of Things that allows sharing of the

objects with other users. It allows the mash-ups of different devices by composing REST

Web Services. Similarly, the SenseWeb project [93] develops a platform for people to share

their sensor readings using Web services to send the data to a central server. However, none

of these works addresses the heterogeneity of devices and APIs from different manufacturers,

and use a common semantic model to mitigate this problem. Furthermore, their approaches

do not include different social relationships and thus the possible collaboration of users and

devices is limited.

9

2.5 REASONING ENGINES

Semantic models have been adopted by various researchers to enable smart applications such

as smart homes and buildings [99] and energy-efficient homes [142]. The ontology model and

inference rules are used in the middleware to infer the contextual information of the user of

the system [83, 166, 165].

Semantic reasoners are practically available as software frameworks and tools [44]. Pellet

[154] reasoner is a Description Logic (DL) reasoner that implements tablau based algorithms

[31] for the inference calculus. Sesame [52] and OWLIM [102] use standard rule engine to

reason with OWL.

Our smart home gateway system discussed in Chapter 3 integrates these semantic rea-

soners to discover knowledge, which is not explicitly specified in the smart home gateway

ontology but can be inferred based on the description logic from OWL data model (e.g.,

transitive and symmetric properties).

Our cloud based collaboration framework discussed in Chapter 4 approach requires a

mechanism to reason not only based on current facts, but also based on the history of

the previous events for temporal reasoning. The related work is covered in both semantic

model based reasoning as well as other reasoning engines without semantic models such as

production rule systems and Complex Event Processing (CEP).

SQL-like and algebra-based event languages are designed to specify the semantics of

events [130], but they also lack solid support from event processing engines. The authors

in [145] present Time-Annotated Resource Description Framework (TA-RDF) as a formal

extension to the RDF data model, which attaches a timestamp to each group of RDF triples.

The authors of [25] extend the standard SPARQL [140] query language by adding binary tem-

poral operators, so that semantic CEP can be done by executing Event Processing SPARQL

(EP-SPARQL) queries. Obviously, both solutions [145] [25] require modifications and opti-

mizations of SPARQL query engines and RDF repositories.

The Rete algorithm [77] is a pattern matching algorithm used in production rule systems

such as Drools[18] of which our Socialite system builds the reasoner on top. CEP [110, 169]

combines data from multiple sources to infer meaningful events or patterns, and responds to

10

them as quickly as possible.

The authors in [109] propose a framework where Linked Data are first translated into

events conforming to a lightweight ontology, and then fed to CEP engines to bridge the

gap between Semantic Web technologies and CEP. Their approach is similar to the Socialite

reasoning framework in a sense that they use both Semantic Web technologies and CEP.

However, the Socialite reasoning framework is different because we use the semantic model

for basic/low-level knowledge representation (e.g., device and people), events/messages for

asynchronous communication between event sources and reasoning engines, and production

rules for the high-level reasoning including temporal reasoning with CEP.

Since the low-level knowledge is based on the ontology model, our reasoning discussed

in Chapter 4 supports not only a device specific automation, but also a capability based

automation. Furthermore, none of the previous work considers using production rules with

social relationships and device capabilities that facilitates collaboration to efficiently share

configuration and information even with others’ devices otherwise unknown to the user.

2.6 END USER PROGRAMMING FOR SMART HOMES

A number of researchers have investigated end user programming in smart homes [163].

The authors in [65] analyzed 47 papers from ACM and IEEE Xplore Digital Libraries for

end user programming, and proposed the set of guidelines recommending trigger-action or

trigger-constraint-action formats for representing smart home rules. Furthermore, the real-

world applications adopting the end user programming with connected devices and Web

services have become popular over the last years. IFTTT [12], Atooma [9] and WigWag [17]

are examples that are used in industry.

The authors in [68] interviewed 20 participants about a context-aware application called

iCAP, finding the most common mental models to be rule-based as in trigger-action pro-

gramming (“if something happens, then do something else”). OSCAR [129] is an application

that supports flexible and generic control of devices and services in near-future home media

networks that also employs trigger-action programming. The authors in [163] confirmed

11

that many desired behaviors can be expressed using trigger-action programming through

their user study with IFTTT community usage.

In contrast, the authors in [53] argue that trigger-action programming can be difficult for

users to debug when problematic behaviors inevitably occur. The authors in [141] suggest

using machine learning over end-user programming.

The authors in [63, 64] studies users (family) in smart home rather than a single user

and articulate that the home is collaborative and conflict resolution is complex for the group

of users in home.

Although these studies address end user programming either for a single user or family,

no research has been done for the end user programming for smart homes with consideration

of social relationships. Our user survey and the end user programming prototype in Chapter

4 are the first research contribution that incorporate various categories of rules for Social

Internet of Things in smart home applications to the best of our knowledge.

12

3.0 INTEGRIFY: SEAMLESS INTEGRATION OF HETEROGENEOUS

DEVICES IN SMART HOMES

Smart home systems provide automation capabilities that allow home owners to have more

complete control over their home, and promote energy efficiency that allows them to save

money on energy bills. These smart home solutions integrate many devices with different

capabilities such as intrusion detection, video surveillance, fire detection, patient health

monitoring and entertainment. Many of these devices use different communication protocols

that are mostly incompatible with each other. Examples of such protocols are power line

communications such as X10 [147] and Insteon [62], wireless communications (ZigBee [24],

Z-Wave [23]), IP-based UPnP (Universal Plug-and-Play) [138], SOAP-based web Services

on devices such as DPWS (Device Profiles for Web Services) [4], Web of Things [86] using

RESTful Web services and many more proprietary protocols from diverse manufacturers.

Although the market prediction and current technological trends look promising, we ob-

served that no de facto communication standard exists in the smart home. This hinders the

integration of different services (e.g., energy management, security). Therefore, we propose

a smart home software architecture based on the OSGi (Open Services Gateway initiative)

framework [22], which seamlessly integrates heterogeneous protocols and diverse device types

used in home networks. Our aim is to enable end users to add new devices on demand, re-

gardless of the discovery peculiarities imposed by the particular communication protocol. In

addition, since device access by applications or end users should not depend on installation

details, we introduce an abstraction layer based on a simple semantic domain model. Fur-

thermore, more devices connected to the home result in more diverse groups of users and

services that interact with smart home solutions. This requires a new smart home access

control concept. For example, the smart home system should not allow a utility company to

13

access the home owner’s health-related data from medical devices. To satisfy this require-

ment, we propose a new access control model and its implementation supporting our policy

model for different users, permissions and multi-attributes including user roles, device type,

location, device status and time.

This chapter describes our holistic and extensible software architectural framework called

Integrify [99, 98] that seamlessly integrates heterogeneous protocol- and vendor-specific de-

vices and services, while making these services securely available over the Internet. The

architectural framework is developed on top of the OSGi framework and incorporates a

semantic model of a smart home system. As a result, Integrify achieves semantic interoper-

ability – the ability to integrate new applications and device drivers into the deployed system

during runtime. Furthermore, it provides a new access control model for specific smart home

scenarios.

The remaining of this chapter provides requirements for smart home architecture in

Section 3.1, our proposed smart home gateway architecture including device stack, discovery

of devices, message framework, and the semantic integration in Section 3.2. We present the

access control mechanism in Section 3.3, and proof of concept in Section 3.4.

3.1 REQUIREMENTS FOR SMART HOME ARCHITECTURE

A smart home user study [53] uncovered that high cost of ownership, inflexibility, poor

manageability and difficulties in achieving security constitute four barriers for broad adoption

of home automation. We find that the heterogeneous nature of the smart home system as

well as the diverse group of users is an intrinsic cause of these barriers.

Integrify is developed based on the in-depth analysis of the requirements of the different

groups of users (stakeholders). The stakeholders considered in the system include the diverse

roles of users in the smart home system as well as application developers using the Integrify’s

APIs.

14

Plug-and-play of new devices during runtime

Homeowners often add home devices incrementally over time due to limited budgets and

innovations in the market. Therefore, the combined process of seamless plug and play of

devices and discovery of semantic services is necessary to allow flexibility in managing smart

home systems. In our scenario, a home owner brings a new device (e.g., an Insteon dimmer

light) to the home. She uses her smart phone camera to scan a barcode of the device, which

is used by the smart home system to provide a corresponding discovery wizard for the device

installation. The smart home system connects to the application store in the cloud in order

to download relevant software drivers and basic applications recommended by the system.

Upon the home owner’s approval, the software can be deployed on the smart home system.

Once this discovery and installation process is completed, the home owner is able to access

the discovered device remotely using her smart phones or other user interface devices.

Supporting application development for 3rd party developers

The smart home applications should be developed without detailed knowledge about

devices and protocol specific information. Instead, the smart home system should allow the

applications to rely on an inference capability. Assume that a developer wants to develop

an application to provide a service to turn off all lights on the first floor of a smart home

if there is no one present for more than a certain period of time. Since every home has

different device types and a different configuration of devices, the developer should be able

to get a list of available devices with a certain level of abstraction. For example, the devel-

oper would request a list of the available lighting devices using the abstract interface and

get the corresponding device states to determine the occupancy status without knowing the

device address, protocol and other configurations. Thereafter, the third party developer can

command the appropriate devices to carry out a certain action; in this case, after checking

the state of the motion detection sensors, the program would shut off all lights on the first

floor.

Access control for different types of users

The smart home system connects many different devices, which can be used by diverse

15

users. The types of users include adults and children in family, visitors such as babysitters,

and service providers (e.g., utility company personnel or equipment maintenance contractors)

accessing smart home remotely in form of services. This requires a flexible yet fine-grained

access control mechanism to securely manage various smart homes with different configura-

tion of devices and stakeholders. Our scenarios include access control that utilizes device

status, device location, and current time as access control attributes.

3.2 SMART HOME ARCHITECTURE

Figure 1: High level architecture for smart home systems

The Integrify system, illustrated in Figure 1, consists of a home gateway, which connects

different types of home devices and provides unified interfaces that are accessible through

REST web services [144] by using smart phones (our development focus is smart phones,

although computer web access is trivially done). Home devices are categorized into end de-

vices and controller devices. End devices are sensors and/or actuators, such as temperature

sensors, video cameras, smart appliances, plug-in modules or any device that provide some

16

direct smart functionality. Controller devices do not offer specific services within the home,

but are instead processors and processes (i.e., gateway-type devices) that allow the home

gateway to communicate with end devices. The home gateway is also a processor hub with

a specific set of processes that connect to the cloud solutions component outside the smart

home; in particular, as the name suggests, the home gateway can connect with services that

reside in the cloud to facilitate access. In particular, cloud solutions encompass an applica-

tion store and provides cloud services. The application store manages the dependencies of

software and home devices, and downloads software drivers and applications at the bequest

of the user’s home gateway. By using services that reside in the cloud, Cloud services are

able to offer software services that require large amounts of storage or computation, such

as a video surveillance service and an energy optimization service with machine learning

algorithms.

Clearly, the system should not rely on an internet connection, due to the reliability of

such services. the home gateway is autonomous enough to control all the devices internally.

For that, the home gateway and the cloud services synchronize periodically to keep the

state (e.g., schedules and access control for each device, but not the sensor or derived data)

and has a very simple maintenance algorithm (i.e., much simpler than the machine learning

algorithms used in the cloud solutions).

3.2.1 Smart Home Gateway Architecture

Important architectural requirements for our smart home system are interoperability and

dynamic integration of many types of drivers and devices. As described in Section 3.2.1.3,

different types of devices and services can be added and removed during runtime, and services

within the system need to discover the existence of other services with which they need to

interact. To tackle this problem, Integrify is built on top of the OSGi framework, which

enables software bundles to be plugged in and out at runtime without shutting down the

system.

Figure 2 illustrates the software building blocks of our smart home gateway. Our archi-

tecture employs a device stack and a dynamic message-handling framework (Message FW)

17

that processes commands in different ways depending on the context. The HIM (Hardware

Interface Manager) detects any controller device that is connected to the system hardware.

The Deployment Manager connects to the application store in the cloud and forwards to

it properties of controller devices discovered by the HIM in order to download the proper

drivers for new devices. It manages installations of software and updates of the home gateway

profile in the cloud. Access Control manages authentication and authorization for different

requests. Remote access is available through REST APIs.

3.2.1.1 Background of OSGi The OSGi Alliance, formerly known as the Open Ser-

vices Gateway initiative (OSGi) is an open standards organization for specifications that

enable the modular assembly of software built in Java. The OSGi specification includes a

framework, resembling an embedded application server, for dynamically loading and man-

aging software components, called bundles. These bundles can be dynamically instantiated

by the framework to implement particular services [22, 116].

Device access service allows multiple devices to be discovered and their services adver-

tised by the framework so that they can be made available to other devices, services, and

applications [70]. Integrify uses this specification when we develop a plug-and-play of various

devices with different protocols.

Event admin service defines a general inter-bundle communication mechanism. The

communication conforms to the popular publish/subscribe paradigm and can be performed

in a synchronous or asynchronous manner. Integrify uses this service by creating our own

events for the communication between different components within the system.

3.2.1.2 Home Network Communication Technologies Prevailing home network de-

vices are extremely heterogeneous: there are several standards and devices use different

communication media (such as powerline and various RF bands), device addressing schemes

(static or dynamic addresses), and different device discovery mechanisms.

There are extreme differences in the amount and protocol for devices to provide its

capabilities (device description) to the system. Low data rate protocols such as X10 [147]

and Insteon [62] do not provide device descriptions. ZigBee [24], KNX [26], Bluetooth [43]

18

Figure 2: Core software building blocks for the home gateway

and EnOcean[1] provide device descriptions in the form of profiles specific to domains, such

as home automation. The UPnP [138] and DPWS [4] standards use XML to describe device

information. A common lack in all of these is that semantic descriptions are not provided

by any of these home networks.

Security mechanisms of these protocols vary in behavior. Examples are pairing mecha-

nisms of devices, checksums of message payload and data encryption techniques using sym-

metric keys. Due to these diverse and often incompatible mechanisms from different network

standards, smart home systems in the market remain fragmented and provide only partial

solutions addressing single protocols and subsets of devices.

The users of end devices at the smart home, however, are not interested in underlying

communication protocols. For the smart home to fully realize the benefits of interconnectiv-

ity, devices must be able to discover and communicate with each other to provide compound

services across these different home network protocols and technologies [70].

19

3.2.1.3 Smart Home Device Stack and Discovery Our smart home device stack

in Figure 3(a) allows for uniform services to access diverse types of devices. SH Service

(SmartHomeService) represents a service provided by a device in a protocol-agnostic way.

SH Device (SmartHomeDevice) represents a proxy to a physical end device. This object

contains common home device information such as the device’s URI (Universal Resource

Identifier), device type (e.g., video camera), services (e.g., streaming the video) supported

by this device, protocol information and device location. Service Adaptor is specific to

a protocol implementation for SH Service, that is able to connect the SHDevice with the

Controller Driver. The Controller Driver represents the features available by the controller

device, including the low-level handling of commands. Controller Driver is responsible for

acting as the base driver or for communicating with lower-level hardware drivers, such as an

implementation of the Universal Serial Bus (USB) protocol to send and receive information

from the device.

Figure 3(b) shows an example of the device stack. The Insteon device’s two capabilities

of turning on/off and dimming the lamp are represented as two protocol-agnostic services of

OnOffService and DimmerLampService. InsteonOnOffServieAdaptor and InsteonDimmer-

LampServiceAdaptor are Insteon protocol-specific implementations to turn on/off and dim

the lamp device. InsteonPowerLinc Controller Driver is an implementation of the Insteon

Controller Driver, which sends commands to the Physical Insteon Controller Device. Then

the Physical Insteon Controller Device broadcasts commands to all Physical Insteon End

Devices to control the Lamp. Clearly, although Insteon uses broadcast, only the End Device

with the same device Id in the command will act upon receiving the command.

New Controller Discovery

The controller discovery is described through an example illustrated in Figure 4. Upon

plugging in a controller device (such as the PowerLinc RS232), the HIM detects a new

controller and sends controller device information to the Device Factory module. The Device

Factory module, which is responsible for the life-cycle of devices, creates a Controller Device

with device information, and registers a new device event.

The OSGi Device Manager detects this event and starts the matching process of Con-

20

Figure 3: Device stack (a, left) and an instance of Insteon device (b, right)

troller Device and the corresponding driver (Controller Driver). If no driver is found, the

OSGi Device Manager contacts Driver Locator, an OSGi Service interface for locating drivers

for a device. Our implementation of Driver Locator calls Deployment Manager, which is re-

sponsible for downloading and installing the required software bundles from the application

store in the cloud.

The Application Store manages software dependencies of the connected devices and other

properties such as cost of software packages. Once the installation is complete, Device

Driver registers a Controller Driver and the Device Manager restarts the matching process;

the Controller Device finally matches with Controller Driver. With this approach, any

new protocol-specific gateway type devices, which is called as Controller Devices, can be

registered during runtime dynamically.

New End Device Discovery

Each protocol has its own device discovery mechanism. Discovery mechanisms are cate-

gorised into three types: manual, semi-automatic and automatic device discovery.

21

Figure 4: New controller discovery process for the unknown controller driver to the gateway

Manual discovery is device discovery that must be done entirely outside of the protocol

specification. One example is X10, which provides no means for automated discovery of

devices. In these instances the home gateway must derive all information about the device

via user input.

Semi-automatic discovery applies to protocols that support some level of device discovery

using the protocol, but still require human involvement. Insteon is an example of semi-

automatic discovery in that the user is required to either 1) input the hardware address of

a device to the controller device, or 2) press a hardware button on the device to initiate

a discovery mode. The ZigBee protocol also falls into this category of home automation

profiles.

Automatic discovery does not require any user interaction unless the system wants to

get additional (non-protocol) information specific to the user’s environment. An example of

automatic discovery is the UPnP protocol, which detects and adds new devices automatically

to the network system. In Integrify system, for security purposes, users are asked to confirm

the automatically discovered device and ask them to provide semantic information such as

location (room name) and a user-friendly name for the discovered device.

Manual discovery and semi-automatic discovery rely on user interaction to add new

22

devices to the smart home system. To mitigate the complexity of the discovery process,

our architecture utilizes a camera on a smart phone device. Our smart phone application

is capable of scanning the barcode of devices and sending the barcode to the application

store, which manages the discovery parameters specific to the device manufacturer’s model.

Depending on the discovery parameters returned by the application store, users are guided

with a corresponding wizard to easily add the new device.

At the home gateway, we introduce Device Discoverer modules for each protocol. De-

pending on the input from the smart phone, the home gateway calls the corresponding

discoverer to add the new device. Figure 5 illustrates an example of new ZigBee end device

discovery.

In our scenario, the user does not know the discovery mechanism that ZigBee supports.

The user scans the barcode of the ZigBee end device with her smart phone camera using

our smart phone application. The smart phone application sends a request to Application

Store in order to get the discovery parameters for the scanned barcode data. Upon the

discovery parameters, the smart phone application provides the proper wizards to discover a

new device and then sends the discovery request with parameters to the home gateway. The

home gateway finds the corresponding discoverer and sends a broadcast message to the local

ZigBee network through ZigBeeController Driver. This is equivalent to pushing a button on

the controller.

Once a new device is discovered, similar to the controller device discovery process, the

Device Factory component creates a new device object (SH Device) and the OSGi Device

Manager matches the corresponding Service Adaptors for that device. Service Adaptors, in

addition to matching to SH Device object instances, must be assigned to a Controller Driver

in order to execute commands.

3.2.2 Message Framework

We introduce a smart home internal message (SH Message) to communicate with different

software modules in the home gateway. SH Message can represent various types of messages,

such as command invocation messages (e.g., turn on kitchen lights), or state change messages

23

Figure 5: ZigBee end device discovery process

(e.g., data updates from a motion sensor if it detects motion).

SH Messages are handled in a centralized yet dynamic way using a mixture of Chain of

Responsibility and Strategy design patterns [78]. A SH Message is handled by invoking a list

of Message Handlers, each of which is a logical entity responsible for executing a specific task

such as raising an event throughout the system or logging the message. The list of Message

Handlers is constructed on-the-fly by the Chain Factory module, which uses the message

type to derive the purpose of the SH Message and how it should be handled. In this way we

provide an extensible framework where handlers may be added and removed dynamically.

Figure 6 illustrates how our message framework works for an example service. A Web

service creates a SH Message with priority and timestamp to invoke an action on a device (in

this example setting the temperature value) and inserts it in the queue. The Chain Factory

then constructs the chain of Message Handlers that will handle the message. In this example,

Event Publisher Message Handler raises a new event to any modules that are interested in

being notified of this particular type of occurrence (the set temperature command). Following

this, the Log Message Handler handles the message, which will record the execution of the

24

Figure 6: Integrify message framework

message in the log. Finally, the Service Invocation Message Handler carries out the message’s

purpose by sending the message’s intended command to the appropriate Controller Driver.

3.2.3 Semantic Integration

Our architecture incorporates a semantic model that enables new applications to be devel-

oped independently from the concrete environment in which they are deployed (see Section

3.1). The semantic model is formalized as an ontology. Ontologies translate a domain of

interest into a set of concepts, properties and relations governed by strictly formalized se-

mantics. Automatic inference operations can draw implicit conclusions from the explicitly

stated knowledge. Consider a typical yet motivating example application such as “turn on

all lights on the first floor.” The application will use an abstract lighting super-type to

retrieve all possible lamp devices. Moreover, based on the specified device location and the

contextual knowledge (e.g., kitchen is on the first floor), it has to infer that devices located

25

in the kitchen are also located on the first floor. After analyzing such and other examples,

the following elements are considered essential for the semantic knowledge in the smart home

domain and its potential use by new applications:

• Taxonomy of home devices and home environment to allow for abstraction and on-the-fly

semantic device retrieval, together with contextual knowledge (e.g., location and time)

required for context-aware applications.

• Reasoning about the implicit knowledge from a minimum number of explicit facts.

• APIs to retrieve and modify semantic knowledge without in-depth understanding of

formal ontology descriptions.

Knowledge about the smart home system has been addressed by domain ontologies such

as DogOnt [45] and Hydra [73]. The semantic model for the Integrify system is built on top

of DogOnt. Figure 7 shows an excerpt from our adapted domain ontology that supports the

example application presented above: transitive location properties (isIn or contains) enable

contextual reasoning. The concrete lamp device instance is grounded in the multi-level device

taxonomy and connected to the services it offers, which allows for abstract semantic device

retrieval.

We formalized the ontology using the Web Ontology Language (OWL) [34], because it is

well supported by toolkits such as Apache Jena framework [92] and reasoning engines such

as Pellet [154]. Note that the background of Semantic Web is provided in Section 4.5.1. The

related work in smart home semantic models and reasoning engines is discussed in Section

and 2.5 and Section 2.2 respectively.

3.2.3.1 Reasoning Engines Real-time smart home applications require fast responses,

making efficient reasoning engines especially important. High performance reasoning can

be achieved by excluding certain constructions from OWL and thereby reducing the expres-

sivity of the model. However, some of those constructions are important to automatically

detect an inconsistent model that might indicate a configuration mistake. One example is

disjointness of device classes, which prevents a device from being simultaneously configured

as two different and conflicting device types (e.g., as a lamp and as a TV).

26

Figure 7: Excerpt of the ontology representation

We distinguish online use cases such as semantic device retrieval by applications that

requires fast responses, and offline use cases such as consistency checking and device instance

classification during the gateway initialization where low response times can be traded in for

higher expressivity. Depending on the use case, we employ a suitable reasoning engine.

Online reasoning along with data storage is handled by OWLIM [102], a fast and scalable

reasoning engine that supports full RDFS semantics and parts of OWL-DL. For offline rea-

soning use cases, the more powerful Pellet [154] reasoning engine guarantees the consistency

of the model and fully classified device instances.

We run both online and offline reasoners on the same knowledge base although they are

built on top of slightly different RDF frameworks: While Pellet uses the Jena framework

[61], OWLIM is based on the Sesame framework [52]. We designed our system architecture

to include an adaptor that can transfer RDF triples from Jena/Pellet to Sesame/OWLIM

and vice versa. We attempt to quantify our expectations about the trade-off between expres-

siveness and response time, as well as the runtime impact and the scalability of the semantic

27

model in an experiment. The detailed results and our analysis can be found in Section 3.4.2.

3.3 ACCESS CONTROL FOR SMART HOMES

This section discusses how Integrify supports the flexible yet fine-grained access control for

the smart homes with different roles of users and devices. We propose a new policy model

that utilizes device status, device location and current time as access control attributes for

the smart home system. We realize the proposed new policy model in our Integrify framework

by combining 1) OSGi User Admin service for authentication and user’s roles retrieval and 2)

eXtensible Access Control Markup Language (XACML) [124] for access control supporting

the attributes mentioned above.

3.3.1 Policy Model

Our policy model includes different roles (e.g., administrator, adult, kid), and it allows

a user to be a member with a variety of roles. The policy model has four permission

types : user management, device management, controlling device, and monitoring device.

User management permission represents the ability to add, remove and modify user roles.

Device management permission represents the ability to add, remove and modify devices.

Controlling device permission represents the ability to issue a command to a device such

as opening a door lock or turning on a light. Monitoring device permission represents the

ability to get state information from sensor devices, which includes getting temperature data,

getting heart monitor data and video streaming.

Our smart home policy model represents fine-grained access policies similar to the ones

we enforce in real life. We identified four attributes capable of expressing a wide range of rules

when combined. The device type attribute is important in the smart home domain, because

our system interacts with different user roles (e.g., utility company, health-care provider)

from outside the home with limited access to certain types of the devices. For example,

smart meters can be accessible by utility companies but blood pressure monitoring devices

28

should not be accessible by utility companies. Also, a family usually consists of different

age groups that often require different access policies for different types of devices for safety

or other reasons. The location attribute is useful for more fine-grained control. A house

resident can limit the access of some places within the home for visitors. For example, a

visitor may be allowed to control devices in the living room, but not in the bedroom. The

device status attribute is also required especially concerning future smart grid integration.

One possible scenario in the future smart grid is that the service provider should not turn

off the laundry machine while the machine is on. The time attribute provides users with

a flexible way to control access during different times of the day, such as common parental

control schemes. For example, parents may only allow their kids to access entertainment

devices (e.g., television) during specified time durations.

3.3.2 Access Control Architecture and Design

To realize access control within our architecture, we develop a hybrid approach of OSGi User

Admin service and eXtensible Access Control Markup Language (XACML) [124]. While the

OSGi User Admin service is moderately expressive, it does not allow us to express the

multitude of variables introduced in our policy model. Thus, we use it only to represent

subjects (user roles) and assist in our authentication process, while the more expressive

XACML is used to specify and enforce the policy for given subjects.

Figure 8 illustrates how access control concepts are implemented in our architecture. The

client request is transformed into new internal messages (SHMessage discussed in Section

3.2.2). Each message is wrapped with an authentication header, which contains a flexible

form of user credentials such as username/password or an authentication token. The message

is then enqueued within the message framework for execution. The AuthenticationHandler

consults the OSGi User Admin service to validate the given credentials and get the user’s

roles. The AuthorizationHandler fulfills the role of Policy Enforcement Point (PEP) as

specified by XACML. It checks the authorization object of the message (representing the

subject), the intended action and the object of the message, as well as other attributes such

as location and time, and submits an XACML query based on this information to the Policy

29

Figure 8: Access control design concept

Decision Point (PDP). The PDP evaluates the XACML policy to see if the intended action

(e.g., turn on an entertainment device) is indeed an authorized one. If the policy allows the

request, the PDP will refer the message to the next handler for further processing. If the

policy does not permit the action, the message is denied and dropped. Code 1 is an example

of the XACML policy used in our demonstrator, “permitting kids to turn on entertainment

devices only before 7 PM.” Note that this policy permits kids to turn off entertainment

devices anytime because the policy contains only “on” status of the device status attribute.

3.4 INTEGRIFY IMPLEMENTATION: PROOF OF CONCEPT

This section provides how the proposed Integrify software architecture and access control

mechanism are realized in a real system. It also discusses our evaluation results of the real-

time behavior of the prototype system with different configuration of semantic reasoning

engines.

30

Code 1 Example of XACML policy (shortened): Permit kids to turn on entertainment

devices only before 7 PM

1 <Rule RuleId=”Rule 6 ” E f f e c t=”Permit”>
2 <Target>
3 <Subjects>
4 <Subject>
5 <SubjectMatch MatchId=”s t r i ng−equal”>
6 <Subjec tAtt r ibuteDes ignator DataType=”s t r i n g ” Att r ibute Id=”group”/>
7 <Attr ibuteValue DataType=”s t r i n g”>Kids</Attr ibuteValue>
8 </SubjectMatch>
9 </Subject>

10 </Subjects>
11 <Resources>
12 <Resource>
13 <ResourceMatch MatchId=”s t r i ng−equal”>
14 <ResourceAttr ibuteDes ignator dataType=”s t r i n g ” Att r ibute Id=”domain”/>
15 <Attr ibuteValue DataType=”s t r i n g”>Entertainment</Attr ibuteValue>
16 </ResourceMatch>
17 <ResourceMatch MatchId=”s t r i ng−equal”>
18 <ResourceAttr ibuteDes ignator DataType=”s t r i n g ” Att r ibute Id=”s ta tu s ”/>
19 <Attr ibuteValue DataType=”s t r i n g”>On</Attr ibuteValue>
20 </ResourceMatch>
21 </Resource>
22 </Resources>
23 <Actions>
24 <Action>
25 <ActionMatch MatchId=”s t r i ng−equal”>
26 <Act ionAttr ibuteDes ignator DataType=”s t r i n g ” Att r ibute Id=”act ion−id”/>
27 <Attr ibuteValue DataType=”s t r i n g”>contro l−device</Attr ibuteValue>
28 </ActionMatch>
29 </Action>
30 </Actions>
31 </Target>
32 <Condit ion FunctionId=”time−l e s s−than−or−equal”>
33 <Apply FunctionId=”time−one−and−only”>
34 <EnvironmentAttr ibuteDesignator DataType=”time” Att r ibute Id=”current−time

”/>
35 </Apply>
36 <Attr ibuteValue DataType=”time ”>19:00:00</Attr ibuteValue>
37 </Condition>
38 </Rule>

31

Figure 9: Integrify demonstrator

3.4.1 Implementation

We demonstrate our smart home architecture and design by implementing a prototype that

consists of an actual home gateway, real devices, a private cloud and a smart phone as

a user interface. The prototype realizes discovery of selected new devices and integrates

services based on semantic information. Our access control concept is also demonstrated

with example policies covering selected users, devices and services.

Figure 9 is a picture of the prototype system that realizes the Integrify concept. The

home gateway prototype is running on Ubuntu OS in a laptop, supporting two OSGi im-

plementations of ProSyst [16] and Equinox [118]. Prosyst is a commercial software of OSGi

implementation and it provides tools that help develop the Integrify system easily. Equinox

is an open source software, thus it does not require any cost to develop the system. The pro-

totype system integrates devices using X10, Insteon, ZigBee and UPnP protocols. We have

integrated various different device types: sensors (e.g., motion, water leak), on/off adapters

for home appliances and dimmer lamp adapters, RF transmitters to control TV, and video

surveillance cameras. The user interface devices run on iOS and Android devices as native

32

apps. The cloud web solutions currently include the application store component, which is

deployed in our private cloud.

During runtime, the user connects X10, Insteon and ZigBee controller devices via USB to

the home gateway. The home gateway then detects the presence of new controller devices and

creates new controller device objects. The UPnP drivers automatically discover a new UPnP

video camera when it is plugged into the network and send a notification to the user’s smart

phone (automatic discovery). For other end devices, our demonstrator uses iOS and Android

applications to start discovery of end devices by scanning the barcode of the devices. Note

that the different device discovery mechanisms for automatic, semi-automatic and manual

discoverie are discussed in Section 3.2.1.3. We demonstrate the message framework and the

semantic abstraction layer by implementing a demonstrator via a couple of applications,

namely simple remote control of devices and an occupancy dependent lamp control. The

demonstrator also contains a policy model to show access control for the different users,

permissions and attributes discussed in Section 3.3. Users can remotely access discovered

devices using smart phones based on the access control policy. Our example policy grants

all permissions to the users having the adult role, while it restricts accesses for the users

belonging to the kid role. Example policies include “kids are allowed to control all lighting

devices in the guest room.” and “kids are allowed to turn on entertainment devices before

7pm.” We use a permit-override algorithm, allowing a single evaluation of permit to take

precedence over any number of deny. In other words, if a policy set contains multiple policies

and those policies return different decisions including one permit and multiple deny for a

given request, then the permit is applied to a given request.

A demo video for the Integrify prototype system is available in [96], which uses the

devices, gateway, smart phones and application store shown in Figure 9. The video first shows

the remote access and control of heterogeneous devices through an iOS native application,

for example by turning on/off a lamp registered to the system. The next scene in the video

shows the plug and play of controller device: it first shows that there is no notification on the

Integrify iOS application; then the user plugs in a X10 controller device to the home gateway

through a USB port. The home gateway asks the application store with the controller device

information obtained from USB and downloads a software bundle for the controller device

33

driver. The smart phone application gets a new notification from the home gateway, which

asks a user to install a new controller device driver (X10/PLC controller driver). Once the

user clicks an install button on the iOS application, then the X10 controller device is added

to the home gateway. The next scene in the video shows a new end device discovery with a

manual discovery mechanism. The user brings a new radio, which is connected to an X10

On/Off adapter. The user clicks the profile icon on the iOS app, and click the plus button

to add a new device. The wizard on the iOS application guides a user to add device name,

device address, device location and device protocol. Once the device is successfully added,

the iOS application screen is back to the main menu. The user clicks the entertainment icon

in the main menu, then the screen shows the list of the entertainment devices and the user

can remotely control the radio device by clicking the turning on/off button on the iOS app.

The last scene shows the remote access and control of lamps and radios through both iOS

app and Android app.

3.4.2 Evaluation

To evaluate the real-time behavior of our prototype, especially regarding the overhead in-

troduced by reasoning on a semantic model, we measure the difference between the time

the gateway receives a service call from the remote user interface and the time it sends the

command out to the controller device. The execution time includes only time spent in the

gateway. It excludes the delay caused by network communications, in particular the remote

call to the gateway and the device protocol overhead. We compare the execution time for

different numbers of devices (n = 1, 5, 20, 50) and three different settings: 1) Jena: semantic

retrieval of the device given a particular location using Jena/Pellet for ontology access, 2)

Sesame: the same scenario but with Sesame/OWLIM, and 3) Nosemantic: direct access

to a lamp by its identifier without semantic retrieval. For each experiment, we restart the

gateway and send 50 remote service calls (i.e., turn on and off a lamp device) for each n

devices.

Our hypothesis is that the system should be scalable with constant execution time re-

gardless of the number of devices discovered. This means the average execution time is not

34

Figure 10: Execution time of service calls for the different experimental settings

Configuration Mean Std Min Max

Jena 558.33 1286.65 83 5641

Nosemantic 25.45 20.34 4 235

Sesame 89.67 34.44 52 215

Table 1: Statistics for execution time (ms) of service calls to lamp device

influenced by the number of devices, and the overhead of the semantic device retrieval should

stay constant for a growing number of devices. Our working hypothesis is that the average

execution time of Sesame (used for on-the-fly semantic access, low response times) will be

lower than that of Jena (static consistency checking, higher expressivity).

Figure 10 gives an overview of the execution times of all service calls for the different

experimental settings, while Table 1 presents the statistical results for the execution time

35

of service calls for the different experimental settings. For Nosemantic and Sesame, we

observe no user-perceived significant differences in the distribution of the execution time for

different device numbers. Although the average execution time with Sesame is 256% higher

(overhead of the semantic device retrieval) than without semantic support, the variation is

relatively low, specially when considering the IoT environments where human perception is

not affected in the millisecond granularity. When the semantic services are provided by Jena,

execution time is much higher on average. Also, the execution time varies tremendously over

the number of service calls. This is mainly due to the first few service calls: After 1-10 calls a

query caching mechanism sets in and reduces the delay for further calls to a level comparable

to Sesame. The proportion of service calls with high execution time depends on the number

of devices.

36

4.0 SOCIALITE: A CLOUD BASED DISTRIBUTED COLLABORATION

FRAMEWORK FOR SOCIAL INTERNET OF THINGS

The Social Internet of Things (SIoT) is a new paradigm that merges the Internet of Things

with Social Networks. In SIoT, all things can be socialized within a new social network

framework established between people and things/devices. People and devices in social

relationships will collaborate with each other by sharing and discovering new data (raw or

processed) at scale. They make automated decisions by reasoning about new data and their

knowledge.

Socialite [100] is a cloud based distributed collaboration framework to realize the vision

of the SIoT. The Socialite architecture aims to provide interoperability of connected devices

from different manufacturers participating in different ecosystems, scalability to handle large

number of data streams from interactions between devices and people. We also expect that

new device types that currently do not exist will be developed in the future. Therefore, the

Socialite architecture is designed to support extensibility by taking future devices into consid-

eration. Furthermore, extensibility greatly comes at the user’s end when they are empowered

to define and share their rules that consist of devices, services in various relationships flexibly

for their interests.

This chapter discusses new social relationships for the SIoT and new types of applications

in Section 4.1. A user survey on the SIoT for smart home systems is discussed in Section

4.2. The non-functional requirements for the Socialite system is discussed in Section 4.3.

The Socialite system overview is explained in Section 4.4. The Socialite semantic models,

which serves as a foundation for interoperability is explained in Section 4.5. The Socialite

server architecture supporting interoperability, scalability and extensibility is discussed in

Section 4.6. Section 4.7 provides an end user empowered reasoning framework including

37

the Socialite reasoning concept and the end user programming application, which is a part

of the Socialite client application. Section 4.8 demonstrates how this realizes the proposed

architecture through integration of real and virtual devices, services and user created rules

to the system, and provides the evaluation of our architecture with respect to non-functional

requirements.

4.1 NEW SOCIAL RELATIONSHIPS AND APPLICATIONS

The first insight of this work is realizing the necessity of new relationship types between peo-

ple and devices. In this section, after defining these new relationships, we discuss motivating

new types of applications coming from the proposed new relationships, which require a new

software framework such as Socialite.

4.1.1 New Social Relationships

Socialite defines a set of new relationship types (see Table 2) that allows participants in

Social Internet of Things to collaborate with each other, in addition to existing friendships

among users in social networks. Table 2 summarizes the new social relationships in Socialite

and Figure 11 illustrates these relationships with examples.

Users and devices participate in an ownership relationship if a user registers a device

in Socialite. Users and devices have location information, and a co-location relationship

between them is dynamically updated when their location is changed.

Socialite also provides explicit relationships between devices themselves, namely thriend-

ship, kinship and shared ownership. We assign kinship for the same model of devices from

the same manufacturer, and thriendship (things of friends) signifies the relationship between

devices owned by friends. A user usually owns more than one device; therefore we introduce

shared ownerships for the devices owned by the same owner.

The relationships in social networks represent which users can be related to other users.

By ‘relate’, it means that two or more users have some form of association that leads them

38

Relationship type Relationship definition

Friendship Relationship between users, as in social networks

Ownership A device registered by its owner

Co-location Users and/or devices in the same location

Kinship Devices with the same model and manufacturer

Thriendship Friendship among things/devices of friends

Shared Ownership Devices owned by the same user

Table 2: New proposed relationship types in Socialite

Figure 11: Graphical representation of the new social relationships in Socialite

39

to converse and share objects of sociality [95]. Consequently, how users of a social network

platform are connected often determines the what-and-how of information exchange. The

benefits of the Socialite system become larger when the new relationships are established

for exchanging, distributing and receiving the data generated by the users and devices. The

social capital can be increased in SIoT when the information is shared with participants in

new social relationships and the discovered information are used by them.

4.1.2 New Applications Leveraging New Social Relationships

Below we present a few promising applications that show how users would benefit from adopt-

ing Socialite and its relationships for sharing information with other people and devices. To

motivate the new relationships discussed in Section 4.1.1, we use three main applications in

which information sharing among devices could be leveraged through the new relationships.

Device Life-cycle Management

Devices in the kinship relationship can use/discover new information such as parameter

settings to improve their performance by sharing their configuration with other devices. This

is particularly useful for less experienced users, who can allow their devices to adapt based

on the information shared by more experienced users/devices (e.g., less tech-savvy users

allowing their thermostats to learn from neighbors’ thermostats). This actually happens

more often than one would think; consider for now heating systems that could profit from

this, that is, those installed in equivalent spaces (e.g., apartments on different floors, but

in the same geographical position in an apartment building) would share the configuration

parameters with other devices with relationships. These parameters may include air flow,

target temperature, and other intelligent thermostat settings.

The kinship relationship also enables devices to share errors and repair history, such as

an error generated by a boiler and replacement of spare parts or a service record for that

particular error. When coupled with other information, kinships can also be used to predict

a device failure. For example, the usage/load of a furnace together with the probability of

the failure of that type of furnace, calculated based on the failure events from other similar

devices in kinships, enable the owner of the same type of the furnace to receive predicted

40

information about future problems and schedule a maintenance service before the failure

occurs.

Device Collaboration for Common Goals

The user’s different devices, located in a common space (co-location relationship) and/or

owned by the same user (shared ownerships) can share information among themselves and

interact with each other to achieve a common goal. For instance, if a motion detector

shares the presence information and a light sensor shares the light level information, then

a lamp or a thermostat in the same room can adapt their settings based on the current

information provided by other devices in relationships. Moreover, any applications that

encompass intelligent rules or algorithms applicable to the historical data of the devices in

relationships can also take advantage of such information. Another example is when a game

encompassing both users and devices is created to achieve a goal collaboratively, for example,

a friendly competition among neighbors can lead their appliances to consume less energy in

a household.

Recommendation via Social Navigation

A common way to navigate an information space in the real world is with help of other

people. This communication with other agents (human or artificial) to navigate an infor-

mation space is called social navigation [71, 69, 126]. With the help of Socialite, it would

be possible to provide recommendations from user to user, based on the friend’s networks,

same device types (kinship), and reputations. This would be done transparently, based on

the request from users to their social networks in search of a device of a certain type with

certain characteristics; for example, a user posts that s/he would like to purchase a new air

conditioner or the air conditioner itself, knowing its lifetime is expiring, posts on behalf of

the user, describing the characteristics of the current device: 12,000 BTU and top 10 energy

efficient air conditioners in thriendships. Furthermore, the device itself can initiate the social

navigation to inquire about the operational performance of devices in thriendship.

Discussion

It is possible to program our devices to achieve some of applications described above

with other technologies and approaches. For example, a heating system manufacturer col-

lects the data from all connected heating systems and proposes a new configuration of the

41

setting and/or parameters. However, this would be done in a fragmented way with current

technologies, and therefore demonstrates the need to adopt a general framework such as

Socialite, with the explicit representation of the different relationships for the humans and

devices in the Internet of Things.

The Socialite framework can enable scalable and efficient ways of realizing the appli-

cations mentioned in this section. Since users and devices are able to query information,

publish and give access to their own information, decision making is to be more collaborative.

4.2 USER SURVEY: SOCIAL INTERNET OF THINGS FOR SMART

HOME SYSTEMS

We conducted a user survey in order to understand and identify the users’ needs on the

future smart home systems with our approach of the Social Internet of Things (SIoT). We

investigated the users’ desired features for the smart home system in SIoT specifically by

asking example scenarios with new social relationship types in Section 4.1.1. We were also

curious about their perceived acceptance on a hypothetical SIoT based smart home system,

a user empowered rule creation, and sharing of their rules with other people. The participant

was requested to answer these questions at the end of the survey along with demographic

information.

This survey aims to use the analyzed survey results as a foundation for the development

of the basic features, semantic models and the reasoning concept for the Socialite systems.

4.2.1 Methodology

The recruiting methods and the survey design are explained in this section.

Recruiting Methods: Participants to the survey were recruited in two ways: the

Amazon Mechanical Turk (MTurk) [7] web site and the Facebook [2] network community of

the author. MTurk is an online crowdsourcing labor marketplace where the registered crowd

workers perform micro-tasks posted by the requester and get paid based on their submitted

42

results. As for the MTurk participants, a qualification was applied to the participants by

restricting the survey to the US crowd workers who previously submitted more than 100

tasks and have greater than 95% approval rating. Each participant from MTurk was paid

$1.5 USD for approximately 30 minutes of the survey. 60 participants have participated in

the survey through MTurk (55 participants) and Facebook (5 participants).

Survey Design: The survey questionnaires were designed to have four phases: 1) get-

ting familiar with the smart home and SIoT concepts by watching two videos; 2) answering a

user’s desire for automated features for smart home systems in general, which implies owner-

ship relationships; 3) answering a user’s desire for automated features with consideration of

new social relationships as explained in the Section 4.1.1; 4) answering a set of background

questions and a participant’s perceived acceptance on the end user programming capability

and sharing of their rules and the SIoT concept. All participants received the same ques-

tionnaire, which is hosted in Google Forms [11]. All participants were requested to answer

the questions in 1), 2) and 3) in text fields except the background questions in 4).

In phase 2 of the survey, we asked the participant to watch two smart home promotion

videos from LG [10] and Ericsson [5]. The first video introduces a general smart home

concept without necessarily connecting to other smart homes. The second video leads the

participants to the future with the Social Internet of Things paradigm because devices

actively communicate and interact with each other as well as with the home owner. The

participant is asked to provide one example from the video where two (or more) devices

communicate or share information with each other. The participant is asked to provide two

preferred applications from the videos. We ask this question to validate if the participant

had a good understanding of the smart home and SIoT concept through the videos they

watched and gained enough context to proceed with next questions.

In phase 2 of the survey, we attempt to obtain the features desired in a smart home. A

picture of a smart home with various devices is presented to the participant to help him or

her to come up with two smart home applications by using the devices shown in the picture.

This phase focuses on only a single smart home, which implies an ownership relationship

between the user and devices, if devices are used in their desired application description.

In the phase 3 of the survey, we attempt to obtain the features desired in a smart home

43

with consideration of the new social relationships. The new social relationships from the

Socialite system including thriendship, co-locationship, kinship, and shared ownership are

explained to the participant with examples of relationships using three homes: my home, a

friend’s home and a stranger’s home. For this explanation, a visual description (see Figure

11) is used together with text based descriptions. The participant is requested to propose

two automated applications leveraging each relationship.

In the phase 4, the participants are requested to answer demographics, programming

experience, social network usage, perceived acceptance of end user programming, sharing of

their rules and a SIOT approach/concept similar to the Socialite system.

4.2.2 Demographics

• Age: Our participants ranged in age from 18 to 74 (See Figure 12a). In detail, 40% of

our participants were between 25 and 34 years old. 28% were between 35 and 44 years

old, 15% were between 45 and 54, 7% were between 54 and 64 years old, 5% of them are

each from between 18 and 24 years, and between 65 and 74 years old. (see Figure 12a

• Smart home experience: 10% of the participants have smart home devices at their home.

• Smart phone experience: 93% of participants use smart phones.

• Social networking site experience: 98% of participants are currently registered to the

social networking sites. 90% of participants have been using the social network sites

more than 3 years. Participants use multiple devices to access their SNS accounts. 47%

of them spend less than 1 hour per day in the social network site, while 37% spend

between 1 and 2 hours, 10% spend between 2 to 3 hours and 7% spend more than 3

hours per day in the social network site (see Figure 12b).

• Programming experience: 55% of the participants do not have programming experience.

15% of participants have less than one year of programming experience, 8% of them have

1 to 3 years of programming experience, 3% of them have 3 to 5 years of experience, and

18% of them have more than 5 years of experience. (see Figure 12c)

44

(a) Age distribution

(b) Social networking service daily usage hours

(c) Programming experience

Figure 12: Demographics of participants

45

Figure 13: Distribution (%) of the nine feature categories from the user survey analysis

4.2.3 Categorization of SIoT Features

The responses from phase 2 and 3 are 572 smart home features written in English. We

qualitatively analyzed the answers through two iterations. During the first iteration of our

analysis, the possible feature categories were listed by examining all features collected to

abstract them to high-level feature categories. We came up with nine different feature cat-

egories. During the second iteration of the analysis, the features from participants’ answers

were classified into the nine devised categories from the first iteration by labeling each an-

swer with the most relevant category. The labeling was done by two researchers including

the author and another Ph.D. student having knowledge of the Socialite system. If the

categorization of an answer was not agreed upon by these two people, we discussed it until

we reached a consensus category. The distribution of the nine categories are illustrated in

Figure 13. The description and examples of each category are as follows:

• remote access and control: The features that end users want to monitor and control

their connected devices using their smart phone or computer. Examples from the survey

are “Being able to control the thermostat from multiple devices (desktop PC and smart

phone, etc.) would be useful.” and “Start devices based on my remote input.”

46

• device/capability-based automation: The features having a combination of device

capabilities to automate the smart home are classified into this category. Users mention

either device types or device capabilities in their answers. The answers of “Automatically

lock all doors and windows at the same time.” and “I would want the lights to come on

when someone rings the doorbell.” are examples of this category.

• context-based automation: The definition of the context is often diffused and the per-

ceived context can be different amongst users. The answers that require the combination

of multiple devices and/or time and location to determine a condition are classified into

this category. If a specified condition can be determined by different rules, an answer is

classified into this example. For example, “Turn off TV when not watching.” is classified

into this category, because determining when not watching can be achieved in various

ways, for example by detecting user’s eye blinking or user’s movement. Another example

for this category is “When I am going to sleep, turn off room lights”. Obviously deter-

mining a user’s context of going to sleep can be done by evaluating a set of device status,

time and/or user’s location.

• preference-based automation: This category is for the answers that use a person’s

preferred value for automation rules in a smart home system. An example from the

survey is “If my friend’s smart phone is in my house, have the heater set to what she

normally likes it based on the weather outside.” Another example is “Joe’s smart phone

can ask his smart TV about shows that he likes to watch.”

• temporal reasoning based automation: Any answers that require temporal reason-

ing are classified into this category. Answers may include other automation categories

discussed above, but we separate any examples with temporal reasoning because the re-

alization of these features would require different approaches. Examples from the survey

are “If the television detects that no one has used the remote in a while, send a message

to the overhead light to turn itself off.” and “If the TV is on, and the motion detects no

one is watching TV after half an hour, then turn off the TV.”

• notification: Answers that include notifying an alert or notifiable state change to the

user’s smart phone or any displayable devices such as TV or computer screen. “If my

smart phone is in my living room, and my TV is on, then voicemail played on screen.”

47

and “The oven in the kitchen finishes cooking and the message is displayed on my smart

phone or TV if it is on.” are two examples from the survey.

• service invocation: Answers that require further processing of the information beyond

the reasoning with the Socialite semantic model and/or accessing services not immedi-

ately available in the Socialite system are classified into this category. For example, ”If

I am at home and it is around planned dinner, and nothing has been made, ask me if

I’d like to order out.” and ”If TV is out of order, then ask other TVs in kinship who

was used to repair TVs in past and satisfaction rating.” are related to this category.

First example requires an access to an external service to make an order, and the second

example requires a service implementation that can be done by analyzing the repair data

in the Socialite history repository.

• goal: Answers that address a high level status of the devices belong to this category.

It is expected that this feature category requires a user’s input, manufacturer defined

value ranges or general consensus on the expectation with a numeric value to validate

this feature. A participant responded that “I can check if my Brand X heating system

is working properly based on the usage data from other Brand X heating systems around

me.” In this example, working properly based on the usage data is ambiguous because

it can be reasoned based on the device’s energy consumption ranking or the correctness

of functions. However, the user’s interest is to know a high level status of their devices.

This could be achieved with a set of other concrete rules.

• others: Answers that are either not directly related to the features and/or require

other research and technology areas beyond this dissertation. For example, security

and privacy concerns are important in SIoT but it is not the scope of this dissertation.

Answers that are difficult to understand or are unclear to identify the intended meaning

are also belong to this category. For example, answers with device types (e.g., TV)

without any application scenarios/descriptions are classified into this category.

48

4.2.4 Observation of Relationship Types and Device Life-cycle Relevance

The features from co-locationship are mostly used together with friendship and thriendship.

Users want to know preferences of their friends’ devices when their friends are users’ homes

because it helps the user to be more sociable in the offline settings.

The most frequently referred feature for kinship includes diagnosis and repair related

applications. For this kind of feature, the example scenarios often mention other relationships

such as friendship and co-locationship, which implies that participants like to share with

people who they know or can be identifiable because of their proximity. Participants show

interests in sharing not only the repair and diagnosis related information but also proper

settings and configurations for the devices in kinship. We observe that the features listed in

the shared-ownership relationship address the automated sequence of the actions to achieve

a high level task by sharing the device status (e.g., washer is done then start dryer).

With the above observation, the Socialite reasoning concept is designed to include the

relationship types both in the condition and action expression in the rule description. More-

over, we allow the rules to be able to use union or conjunction of multiple relationships to

select the devices that participate in each rule.

4.2.5 Acceptance of SIoT, End User Programming and Sharing Rules

Figure 14 show the distribution of programming experience, end user programming accep-

tance, sharing rules acceptance and SIoT acceptance from the participants.

In general, SIoT acceptance is lower than end user programming acceptance and accep-

tance of sharing of their rules with others. As for SIoT acceptance, the negative answer is

low (20%) but the positive answer (28%) is also not high. 52% of participants answered

“maybe” for SIoT acceptance. The reasons for the positive acceptance of SIoT concept

include that the participants think our approach makes their life easier, secure, safe and

save time. Furthermore, participants like the communication and interaction with devices

because they can be informed about everything related to home when needed. Amongst the

participants who are neutral (answered “maybe”), 48% of them concerned about security

and privacy. Therefore, depending on the level of support for security and privacy they

49

Figure 14: Distribution of programming experience, end user programming acceptance, shar-

ing rules, SIoT acceptance

can be more positive in using systems in SIoT. Even among the participants with negative

answers, 17% of them showed their concern with the security and privacy, while the rest of

them are not interested at all in smart home in general.

In a previous study on Facebook privacy [19], the authors reported that privacy was a

barrier for people who have not registered to Facebook, while privacy is less concerned for

people who are already using Facebook. Also even for users who are using Facebook, their

awareness of privacy control on Facebook was misconception.

Many researchers have identified an importance of the security and privacy for Internet

of Things. In the SIoT paradigm, the security and privacy would be more concerned as

shown in our study. Therefore a further research on what users’ perceived privacy risks are

and how their behavior would be adapted should be considered as future work.

The programming experience is not correlated to each of these factors: end user pro-

gramming acceptance, SIoT acceptance and sharing rules in Pearson’s chi-squared test re-

sults (p > 0.05). Also, either age or gender are not correlated with these factors in Pearson’s

chi-squared test results (p > 0.05). However, end user programming acceptance, SIoT ac-

ceptance and sharing rules are all correlated each other in Pearson’s chi-squared test results

50

(p < 0.05). End user programming acceptance is 59.32% and positive answers on sharing

rules is 49.15%. This results implies that people are open to creating their own rules if an

easy to use tool is provided.

4.3 NON-FUNCTIONAL REQUIREMENTS

This section discusses non-functional requirements for systems such as the Socialite system

to realize the new paradigm of Social Internet of Things (SIoT).

Interoperability : Devices with Internet connectivity are available in the market. Typ-

ically, these devices are remotely accessible via the manufacturer’s mobile applications or

Web pages that internally use private or public Application Programming Interfaces (API)

defined by the manufacturer. Unfortunately these APIs are not standardized across domains

and/or manufacturers, possibly because there is no strong business needs yet to make an

effort for the standardization. Different manufacturers create their own applications to sup-

port different use cases. Therefore, an interoperable architectural solution is required to

enable these connected devices to interact with each other.

Scalability : We expect that the communication of devices, users and Socialite system

will become larger in SIoT than other applications of Internet of Things because more inter-

actions are necessary to share and discover new information through explicit relationships

and reasoning. In case the adoption rate of the new paradigm of SIoT will increase over

time, the architecture should be able to support horizontal scalability, which means that

the architecture should support to add more nodes to a system: add a new computer to a

distributed software system. At the same time, the real-time processing of the data at scale

[46, 28, 123] is one of the drivers in the development of the software framework.

Extensibility : A new device from a different manufacturer, which is not foreseen during

the development time should be supported, because a new company may produce devices

used by many people in Internet of Things. A new type of device can also be introduced in

addition to the devices we already know. The architecture should be extensible to support

new device types. To meet the different needs from various people, the system should be

51

Figure 15: Socialite system overview

extensible in terms of the future applications the users (both end users and developers) also

would come up with.

4.4 SOCIALITE SYSTEM OVERVIEW

Figure 15 graphically represents an overview of the Socialite System, which consists of Web

based Socialite Client application, a distributed Socialite Server accessing devices and ser-

vices and various Databases.

The users of the Socialite can remotely access and control their connected devices using

the Socialite Client application through a web browser on their computers, tablets or smart

phones. The core functions of the client application include the management of users’ devices

and relationships, and remote access and control of connected devices in relationships. In

addition, users can create their own rules (e.g., if my friend is in my living room, set the

thermostat temperature to my friend’s preference value.) through end user programming,

52

which is an enabler of the extensibility requirement.

The Socialite Server provides a uniform access to heterogeneous devices from different

manufacturers by decoupling common data models (represented in Semantic Model) and

manufacturer specific device implementations in Device Adaptor.

The Semantic Model is used to describe Rules defined by end users as well as system

administrators, which run on the reasoning engine to make an automated decision upon any

events (e.g., device status change, user’s location change).

Similarly, any REST services provided by third parties are uniformly accessible through

Semantic Model, which is decoupled from the implementation of Service Adaptor. The

semantic model and related architecture are our approach to enable interoperability and

extensibility.

The communication between the Socialite Client and Socialite Server are two kinds:

HTTP REST services are used for management of user profile, devices, relationships and

rules, and Web socket is used to get a notification on changes for the subscribed event to

the Socialite Server. The communication protocols between Devices and Socialite Server

are not restricted by our architecture and design. However, the current practice of device

APIs from the manufacturers offers HTTP(S) REST services with JSON payload. The third

party service invocation is only through HTTP(S) REST service call. The Socialite Server

uses remote procedure calls to access the various Database systems, which manage persistent

data (e.g., semantic models, device history and rules).

The Socialite Server is an event-driven architecture where asynchronous communication

is intrinsic communication mechanism and a basis for our solution to support scalability. The

reasoning engine that runs Rules performs computationally intensive tasks for the evaluate

of relevant rules in the engine upon a new event (e.g., device status change). Therefore,

reasoning engines are distributed over multiple nodes to evaluates rules for different users in

parallel and to accomplish scalability by integrating an open source data stream processing

solution developed by a social network platform (Twitter).

53

4.5 SOCIALITE SEMANTIC MODELS

The devices, users and their relationships together with other information are represented

using the formal languages used in the Semantic Web, often used for data integration and

interoperability [131, 42]. This section first provides the basic knowledge about ontology

and technologies used in Semantic Web. The details of the Socialite semantic model is then

introduced.

4.5.1 Background of Technologies in Semantic Web

An ontology is a specification of a conceptualization in the context of knowledge sharing [81].

It refers to the kinds of objects that will be important to the agent and the properties those

objects will be thought to have, and the relationships among them [49].

The Semantic Web [41] is a set of standards and best practices for sharing data and the

semantics of that data over the web for use by applications. A set of standards include the

Resource Description Framework (RDF) [103, 28] data model, the SPARQL query language

[140], the RDF Schema (RDFS) [50] and Web Ontology Language (OWL) [119] standards

for storing vocabularies and ontologies [72]. The Semantic Web is used for data integration

[21].

The RDF is a language for the representation of resources, which can be anything that

someone might want to talk about [21]. The triple is the fundamental data structure of

RDF. A triple is made up of a subject, predicate, and object. A set of such triples is called an

RDF graph. An RDF graph can be visualized as a node and directed-arc diagram, in which

each triple is represented as a node-arc-node link (see Figure 16). Triples are the statement

about resources, using Uniform Resource Identifiers (URIs), and literal values such as strings

and integers.

The serialization (the process of converting an object into a stream of bytes in order to

store the object or transmit it to memory, a database, or a file) format of RDF data includse

Turtle [37], N-Triples [36], N3 [40], RDF/XML [35] and JSON-LD [158]. A triple store, also

known as an RDF store, is a database that is tuned for storing and retrieving data in the

54

form of triples. In addition to the familiar functions of any database, an RDF store has the

additional ability to merge information from multiple data sources, as defined by the RDF

standard. RDFS and OWL are World Wide Web Consortium (W3C) standard vocabularies

that supports to define and describe classes and properties for the user’s dataset and allow

a certain application infer new information from the dataset.

The SPARQL is the W3C standard query language for RDF query language. The triple

store often provides a SPARQL endpoint, which accepts SPARQL queries delivered over the

Web and returning results in a choice of serialization formats.

4.5.2 Socialite Semantic Model Description

Semantic models in the Socialite system represent user and device information together with

its attempted repair solution, static and dynamic locations of users and devices, services

accessible through REST interfaces and relationships between users and devices on the Social

Internet of Things.

Our semantic models are formally described through RDF language [103, 28], which are

knowledge representation languages for authoring ontologies as discussed in Section 4.5.1.

The ontologies translate the domain of interest into a set of triples.

The goal of the Socialite ontology is to have a minimum set of models, which can address

the interoperability of different devices, use the device model for various device life-cycle

phases including operation and diagnosis/repair phases. The user model aims to represent

a user’s profile required for interaction with devices and other users through new social

relationship types proposed in Section 4.1.1. The location model is developed to represent

the user and device’s location often used in the context-based automation, and represent

Figure 16: RDF graph with two nodes (Subject and Object) and a triple connecting them

(Predicate)

55

F
ig

u
re

17
:

G
ra

p
h
ic

al
re

p
re

se
n
ta

ti
on

of
th

e
co

re
on

to
lo

gi
es

in
S

oc
ia

li
te

(S
h
or

te
n
d
)

56

co-location relationship. The service model is introduced in our semantic model to support

the service invocation feature from the user survey.

Figure 17 graphically illustrates the representation of ontology models for User, Device,

Location, Relationships, Device Diagnosis, and Service used in the Socialite framework. The

User ontology is associated with the Device ontology through the Relationship ontology.

The User ontology has a link to the Location ontology having their home address as well as

their current Locations.

The User requires LoginInformation to access a Socialite runtime instance. The So-

cialite’s user model can be later extended from the existing ontologies such as friend-of-friend

(FOAF) [51] if the Socialite system needs to integrate existing social systems in the future.

However, the adoption of FOAF is low and it does not support different relationships that

the Socialite proposes. Therefore, we develop our own User model to support the Socialite

use cases and features discussed earlier in the chapter.

The Socialite’s Location ontology is used to specify the location of both User and De-

vice. A User has OutdoorLocation, which is a subClass of Location. OutdoorLocation has

GeoLocation and one or more IndoorLocation, each of which has Rooms associated with it.

The Location ontology does not model different rooms, which is the case for the other smart

home ontology such as DogOnt[45]. We rather allow users to define their own room types

for their home.

The Device ontology is carefully developed to support interoperability of the heteroge-

neous devices. The Device model addresses semantic interoperability coming from different

data models used in manufacturers’ APIs and payload. It is a light-weight model compare

to the device model used in our smart home gateway (see Chapter 3) that is extended from

DogOnt. For example, the network and communication model to enable device and service

discovery is not considered in the Socialite ontology. The reason is the fact that the hetero-

geneous communication protocols are not required in the Socialite system and the inferred

knowledge from the hierarchy of the functionalities is also not required for the Socialite use

cases.

Device has various Capabilities. Specific device types, such as Thermostat and Lamp, are

subClasses of Device. Properties and Actions extend Capability. Properties represent device

57

status (e.g., get current temperature), while Actions represent control/actuation commands

(e.g., set the target temperature to a certain value). Property contains data History, while

Action contains both Preference and History. Preference for Action value (e.g., the prefer-

ence for the target temperature set-point is 75◦F) can be either given by the user’s input

about his/her target goal, or inferred by a set of rules or algorithms. The Property value

comes from usually the environment sensing (e.g., current temperature is 75◦F), thus it does

not require any Preference. Actions and Properties provide a generic representation of the

capabilities provided by each device type regardless of the manufacturer.

In order to handle failures possibly occurring during the life-cycle of devices, a Diagnosis

ontology is introduced. Device has Fault, which can be either Detected Fault such as an error

code from a device, or Described Fault, for example a symptom that a user of the device can

describe (e.g., the hot water is not very hot). Each Fault has the list of Attempted Repair

Solutions together with the result (either success or not) of the attempted action.

The Service ontology uses the RDF/OWL description of the hRESTS model [105]. As

discussed in Section 2.2, hRESTS is an HTML microformat for describing RESTful Web

Services. The microformat [3] is a semantic markup using HTML/XHTML tags for meta-

data, and other attributes in web pages. The hRESTS describes main aspects of services,

such as operations, inputs and outputs. The Service ontology is a RDF representation of

hREST model.

The Socialite Relationships (See in Table 2 in Section 4.1.1) are associated with User

and Device. Friendship is only allowed between users, while Kinship, Shared Ownership and

Thriendship are only allowed between Devices. Co-location is allowed for both Users and

Devices.

4.6 SOCIALITE SERVER ARCHITECTURE

The Socialite server architecture is an event-driven architecture that enables large scale

data stream processing with distributed reasoning engines. The Socialite semantic model

discussed in Section 4.5.2 is integrated to the system as a solution for interoperability. The

58

decoupling of the objects that represents semantic models and the detail implementation of

how to access the device’s application programming interfaces and the service interfaces is an

enabler to achieve interoperability and extensibility. The system is designed also to support

scalability by using an asynchronous communication for various software modules, and also

by distributing computationally intensive processing tasks (reasoning engines) over multiple

nodes and by employing a NoSQL database for the device history.

4.6.1 Interoperability for Various Manufacturer’s APIs

As discussed in Section 4.5, the Socialite device model abstracts common attributes for all

device types and all the way down to a specific device type. The semantic model that con-

ceptualizes the common attributes for a typical device type is able to unify implementation

variations from different manufacturers. The Socialite architecture decouples the imple-

mentation details of how to access devices from its common semantic model. This section

discusses how the similar types of devices from different manufacturers are modeled and

managed in the system.

4.6.1.1 Physical and Logical Devices We observed that the different manufacturers

use different physical components for the same type of devices. For example (see Figure

18), a thermostat from manufacturer A may have capabilities for measuring the current

temperature, and also for detecting occupancy. Another thermostat from manufacturer B

may be only capable to measure the current temperature.

Socialite aims to support interoperability of devices from different manufacturers. There-

fore, we define a common set of capabilities of each device type, and allow manufacturer spe-

cific capabilities to be mapped to other types of devices. The real devices are called physical

devices and devices represented in the Socialite’s semantic model are called logical devices.

In Figure 18, the Thermostat from Company A is represented as two Logical Devices, which

are (a) Motion Detector with Detect Occupancy Capability and (b) Thermostat with Measure

Temperature Capability. Socialite is designed to share the common information, such as the

device authentication, between the different logical devices from the same physical device.

59

Figure 18: Example of physical and logical devices of thermostat

Figure 19: Common semantic models for devices

60

4.6.1.2 Common Device Model and Manufacturer Specific Device Implemen-

tation As shown in Figure 19, the Device Model consists of Device Authentication and

Device Capabilities. Device Authentication is always required to access the registered device

remotely; however different manufacturers of the same type of devices often use different

authentication mechanisms.

For example, a thermostat from Manufacturer A uses OAuth 2.0 [89] for the device

authentication while another Manufacturer B requires providing the device serial number

and “the secret” (such as an authentication token). Also, the APIs and the payload are very

different across manufacturers. In our architecture, Device Authentication consists of any

number of Authentication Parameters, which are key-value pairs.

When the Device Manager creates an instance of the Thermostat Device Model, it can

create a proper Thermostat Adaptor implementing the device authentication for that thermo-

stat. By doing this, we can keep the consistency for the common attributes of the Thermostat

Device type while allowing different authentication mechanisms to be used for different de-

vices.

4.6.2 Persistent Management and Repositories

The Socialite server manages to store three different types of information in the database

systems. The Socialite semantic models (see Section 4.5) and its instances are stored in the

Triple store (RDF store), the history of device actions and properties, and user defined rules

(see Section 4.7.1) are stored in separate instances of the NoSQL databases. This section

explains how the Socialite manages to add, update, delete and retrieve the information stored

in these three different repositories.

4.6.2.1 Semantic Model Management and Its Repository Although Semantic

Web technologies have been available for decades, their complexity has hindered the emer-

gence of real implementations of Semantic Web services [38]. The Socialite server aims

to reduce this barrier during the software development by using Java object classes with

RDF/OWL annotation that is supported by JenaBean [61].

61

For example, in Code 2, Relationship object is a plain Java object with nothing but Java

annotations for the RDF/OWL attributes. A Java object with JenaBean annotations is

mapped to an object in the form of Resource Description Framework (RDF) model used in

the Jena framework [91], which is an open source Semantic Web framework for Java. The

Jena framework provides an API to read and write to RDF models. Code 3 provides a Tur-

tle [162] representation of an excerpt of the RDF model corresponding to JenaBean in Code 2.

Code 2 Example of Java class with JenaBean annotation

1 import thewebsemantic . ∗ ;
2

3 @Namespace (” http :// s i o t . p i t t . edu/ onto logy#”)
4 pub l i c c l a s s Re la t i on sh ip implements S e r i a l i z a b l e {
5

6 //This i s an exceprt o f Re la t i on sh ip Class .
7 //Not a l l v a r i a b l e s and methods are shown here .
8 protec ted St r ing r e l a t i o n s h i p I d ;
9 protec ted S

10

11 @Id
12 @RdfProperty (” http ://www.w3 . org /2000/01/ rdf−schema#” + ” l a b e l ”)
13 pub l i c S t r ing ge tRe l a t i on sh ip Id () {
14 re turn t h i s . r e l a t i o n s h i p I d ;
15 }
16

17 @RdfProperty (” http :// s i o t . p i t t . edu/ onto logy#” + ”hasObject ”)
18 pub l i c SIoThing getObjectThing () {
19 re turn objectThing ;
20 }
21

22 @RdfProperty (” http :// s i o t . p i t t . edu/ onto logy# + ”hasSubject ”)
23 pub l i c SIoThing getSubjectThing () {
24 re turn subjectThing ;
25 }
26 //End o f an excerpt o f code
27 }

The Socialite semantic models represented in the form of RDF are stored in the Triple

Store. We use the Virtuoso database [75] to store RDF triples. RDF triples are inserted,

updated, retrieved and deleted through a semantic query language, namley SPARQL [140].

Our software provides methods that abstract the SPARQL query details. SPARQL query

results (e.g., all devices located in a user A’s kitchen) are retrieved as Jena Model objects,

which then are mapped to JenaBean objects. By doing so, developers without in-depth

62

Code 3 Example of resource representation in Turtle format

1 @pref ix s i o t : <http :// s i o t . p i t t . edu/ onto logy#> .
2 @pref ix owl : <http ://www.w3 . org /2002/07/ owl#> .
3 @pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
4 @pref ix xml : <http ://www.w3 . org /XML/1998/namespace> .
5 @pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
6 @pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
7 @base <http :// s i o t . p i t t . edu/ onto logy#> .
8

9 <http :// s i o t . p i t t . edu/ onto logy#> rd f : type owl : Ontology .
10

11 s i o t : Re l a t i on sh ip rd f : type owl : Class .
12

13 s i o t : hasSubject rd f : type owl : ObjectProperty ;
14 r d f s : domain s i o t : Re l a t i on sh ip ;
15 r d f s : range s i o t : SIoThing .
16

17 s i o t : hasObject rd f : type owl : ObjectProperty ;
18 r d f s : domain s i o t : SIoThing ;
19 r d f s : range s i o t : SIoThing .
20

21 s i o t : r e l a t i o n s h i p I d rd f : type owl : DatatypeProperty ;
22 r d f s : domain s i o t : Re l a t i on sh ip .

understanding of the Semantic Web technologies can easily work on the Socialite system

because they only deal with Java objects rather than RDF models.

4.6.2.2 Device History Management and Its Repository We expect that device

history will grow, requiring horizontal scaling. Horizontal scaling means to add more nodes

to a system: add a new computer to a distributed software system. Because horizontal scal-

ability is not mature in triple stores, we employ NoSQL database systems that are designed

to support horizontal scalability better than relational database systems and RDF database

systems [88]. The Socialite architecture uses MongoDB [120] to store the device history

while managing the device semantic model in the Triple Store.

Consider how the device history is updated in the Socialite framework. There exist

two types of manufacturers’ APIs with respect to the device status change: 1) Push: the

manufacturer’s server pushes the change to Socialite, which subscribes to the changes of the

registered devices and 2) Poll : Socialite needs to call the APIs periodically to keep track of

63

the changes.

Once the Socialite gets informed about the changes either in push mechanism or poll

mechanism, changes are placed in the Device Message Queue where the Device Listener

consumes the message to update the device history in the MongoDB database and replace

the previous value with a new changed value via Device Manager and Persistent Manager.

The changes are propagated all the way down to the Persistent Manager, which is in turn

responsible for updating the history repository and semantic model repository.

4.6.2.3 Rule Management and Its Repository The end user programming features

in Client Application allow end users to define their own rules and share them with other users

through the Socialite framework. The rules in the Socialite server are internally represented

in a domain specific language with the rule syntax defined by the production rule system used

in the system. However, we do not envision that client application developers are familiar

with the rule syntax of Drools [18]. Rather, the Socialite server exposes rule-related APIs

in a plain JSON format, which can be translated into a proper rule syntax by providing a

rule translator.

The Rule manager in Socialite adds more attributes in addition to the attributes required

for the Drools reasoning engine, because those are not sufficient for our purpose of rule

management and sharing. The rule management supports activating and deactivating rules

as well as adding, editing and deleting rules. As discussed in Section 4.7.1, the rule has a

sharing attribute that can take the values of private, public and constrained by relationship.

These attributes are supported in the Rule management APIs.

When a new rule is added to the system through the REST interface, a rule message is

created and placed in a rule queue. The subscribers of the rule message include the rule per-

sistent manager, which stores the JSON payload in the MongoDB database. The reasoning

engine, which is another subscriber to rule messages, translates the rule in JSON payload to

Drools syntax and puts the translated rule syntax into the reasoning engine. Similarly, rule

deletion messages are subscribed to by the reasoning engine as well as Persistent Manager.

During the initialization of the Socialite server and reasoning engines, all rules read from

the rule repository are inserted into the reasoning engine.

64

4.6.3 Scalability with Event-Driven Architectural Pattern

The goal of the Socialite event-driven architecture is to handle any events from devices

and users, as well as the results from their interactions with the system in a distributed

and asynchronous manner. The events produced by devices and users are dispatched to

the listener (with specific periods and other temporal characteristics) that subscribes to

the events for various purposes including updating status of devices and users, executing

rules, visualizing the information and managing persistent repositories. The distributed

system architecture across the multiple reasoning engines support processing large scale

events through multiple channels. The intelligent rules specified as complex events are to be

executed within the time constraints specified for each application.

This section provides background information of event driven architecture and Java Mes-

sage Service. It discusses how we model and design events and related architectural compo-

nents for the Socialite system including event channels, event generators, event processing

styles.

4.6.3.1 Background of Event-Driven Architectures An event-driven architecture

is a distributed service-oriented architecture in which all communications are through events

and all services are independent, concurrent, reactive event driven processing (i.e., they react

to input events and produce output events) [111]. Therefore, it provides a loose coupling

of its components. A component publishes events and other components can subscribe to

these events. The producers/publishers and consumers/subscribers are completely decoupled

from each other. The event is distributed across the event processor components through

a lightweight message broker such as ActiveMQ [155] with which the Socialite framework

integrates. There are two main types of architectural components within the message broker:

a broker component and an event processor component. The broker component can be

centralized or federated and contains all of the event channels that are used within the event

flow. The event channels can be message queues, message topics, or a combination of both

[121]. Figure 20 illustrates a broker topology of the event-driven architecture. All events in

the Socialite system are created as a form of message.

65

Figure 20: Broker topology in event-driven architecture

Java Message Service (JMS) [143] is a specification that describes a common interface

to standard messaging protocols and also to special messaging services in support of Java

programs. It allows for communication between different components of a distributed ap-

plication to be loosely coupled, reliable and asynchronous. Therefore, JMS is regarded as a

solution for reducing the system bottlenecks and increasing overall system scalability [143].

When a message is sent, it is addressed to a destination (i.e., queue or topic), not a specific

application. An application that subscribes to or registers an interest in that destination

may receive the message. In this way, the applications that receive messages and those that

send messages are decoupled. Senders and receivers are not bound to each other in any way

and may send and receive messages as they see fit.

ActiveMQ [155] is an open source message broker that implements the JMS specification.

It provides persistence and, once and only once assurance for message delivery. The message

broker is responsible for creating and managing network connections and messages used for

communication. It supports the producer-consumer message model as well as the publisher-

subscriber model.

4.6.3.2 Socialite Event Channels An event represents a change of state. It usually

consists of a header and a body. The header contains meta information such as its name,

66

time of occurrence, duration, and so on. The body describes what happened. For example,

if an event is generated due to a device status change, the event header contains an event

type and a timestamp of the status change, and the event body includes the device object

with the capability name and value for an update.

The Socialite system has the following event channels/queues, which cover all possible

events in the Socialite system:

• Device channel: Events related to the device life-cycle management are placed in this

channel. The event types used in this channel are a new device registration, device

status change, and de-registration of a device from the system. The diagnostic/fault

information from the device is also categorized as the Device event because the fault is

a part of the device status change.

• User channel: Events related to the user management are placed in this channel,

including a new user registration, a user profile update and de-registration of a user from

the system.

• Location channel: Events related to the location management such as a creation of a

new location for a user or device, or update of a user’s current location use this channel.

• Relationship channel: This channel is used for events related to the relationship man-

agement such as a new relationship generation and removal of an existing relationship.

• Rule channel: Rule life-cycle related events are placed in this channel, which are a new

rule creation for a user, editing a rule, activating or deactivating a rule, removing a rule

from the system.

4.6.3.3 Socialite Event Generators Events in Socialite are generated from variable

sources including sensors, REST API calls and software components inside the Socialite

system. Different events are formatted into a uniform message format prior to being placed

in the event channel. The occurrence of these events can trigger the invocation of one or

many services through either producer-consumer or publish-subscribe architectural pattern.

The producer or publisher of an event puts an event in a designated queue. The message

includes a message type corresponding to each event type’s fine-grained classification (e.g.,

update device status) so that the interested parties can handle a message efficiently. The

67

message body includes a different object (e.g., Device object, Rule object) upon the message

type. The consumer/subscriber processes a message according to the appropriate event

processing logic. The three event processing styles are addressed in Section 4.6.3.4.

The current states of users devices, locations and relationships can be updated through

the client application, connected devices or actions from the reasoning engine. Figure 21

illustrates how the events generated from the devices, the client application and the rea-

soning engine are processed differently throughout the Socialite system; these three ways of

generating events are illustrated by examples.

Example 1: Device status is changed from the connected physical device

Consider a thermostat and a humidity sensor installed at a user’s home. If a device status is

changed either by a user through physical interaction with a device (e.g., changing a target

temperature through a physical device) or by another sensor through its physical sensing

capability (e.g., humidity sensor value is changed), the corresponding Device Adaptor is

updated. Some manufacturers detect the change and the manufacturer’s server publishes

the change to Socialite’s Device Adaptor, which subscribes to the change. If this option

is not implemented by the manufacturer, Socialite implements a task that regularly polls

the device status and updates the Device Adaptor if any difference is detected. When that

happens, the Device Adaptor calls the Semantic Model Manager to update the device status.

The Semantic Model Manager enhances the change information with semantic information

of the device and then notifies the Event Broker about the change. The subscribers evaluate

and process the event. For example, the Persistent Manager subscribes to the device status

change event and updates the records in Triple Store for the current status and MongoDB

for the history. The Pub/Sub API Service subscriber broadcasts it to the Client Application.

The Reasoning Engine subscriber inserts the updated device object to fire rules that meet

the condition triggered by the device change.

Example 2: User’s location is updated from Socialite REST API invocation in

the client application Consider that Client Application (either through GPS information

in smart phones, or manual check-in of a location on UI) informs to the Socialite server of

the change of the user’s current location. The REST service calls all functions to update the

Semantic Model with the change. Then Semantic Model notifies the Event Broker with the

68

Figure 21: Status update from (1) the physical devices, (2) the client application, and (3)

from the reasoning engine

69

change. The Reasoning Engine is notified with this change and triggers relevant rules, such

as updating the relationships (e.g., co-location relationship). The updated relationships are

again published from Event Broker. The rules matching the condition of this new relationship

change will react upon the updated relationships.

Example 3: Device status update invocation is called from the Socialite Rea-

soning Engine The Socialite Reasoning Framework discussed in Section 4.7.1 allows a user

to specify rules that execute various actions upon a triggered event. For example, a de-

vice status change event described in Example 1 and a user’s location change described in

Example 2 trigger actions. These actions include the internal service invocation in the Rea-

soning Engine to generate new Device status change event that are eventually notified to

the Semantic Model Manager through Event Broker. The Semantic Model Manager is re-

sponsible for updating the device semantic model and calling the Device Adaptor to request

for changing the real device value by accessing the manufacturer’s APIs.

4.6.3.4 Event Processing Styles There are three general styles of event processing in

the event driven architecture, which are simple, stream and complex event processing [121].

This section addresses how these three styles of the event processing are used in order to

accomplish various functions and reasoning required for the Socialite server.

• Simple event processing: Simple event processing includes processing such as chang-

ing the events schema from one form to another, augmenting the event payload with

additional data, redirecting the event from one channel to another, and generating mul-

tiple events based on the payload of a single event [125]. Examples of simple event

processing in Socialite include a new device is added, or a new relationship is created.

The processing logic assesses event type and content and then reacts accordingly. The

simple event processing style is used for the persistent manager to store the history in

the Socialite system upon event occurrence.

• Stream event processing: Stream event processing is commonly used to drive the real-

time flow of information in and around the system enabling real-time decision making

[121]. Device status change events either pushed by devices or polled by the server are

filtered for a notability (e.g., temperature value is changed from the previous value by a

70

certain threshold) and streamed to subscribers (e.g., persistent manager to update the

history) in the Socialite system. We expect that a great portion of the rules created by

the users are related to this type of event processing.

• Complex event processing: Complex event processing is primarily an event processing

concept that deals with the task of processing multiple events with the goal of identifying

the meaningful events [110]. Patterns spanning multiple independent events are detected

in order to derive new complex events, which are events that summarize, represent or

denote a set of other events. Typically, this processing involves applying a collection of

evaluation conditions or constraints over an event set. The events may span different

event types and may occur over a specified time period [121]. Complex event examples

are used to evaluate the sequence of the events (e.g., event 1 happens before event 2),

if a number of events happened in a specific time frame. Examples include a rule to

evaluate if the temperature of the sensor values is changed more than 10 ◦ F over last

10 minutes, or another rule to evaluate if the lamp on-off state has been toggled more

than 10 times over last one minute. The usage of the complex event processing in the

Socialite reasoning engine is discussed in Section 4.7.1.2.

4.6.4 Large Scale Reasoning over Data Streams

The Socialite server architecture is designed to be scalable to handle large events/messages

to make automated decisions based on the rules created by the end users. As a solution

for scalability, the Socialite Server architecture processes the events that are notified to

the Reasoning Engine in a distributed manner. The Socialite Reasoning Framework (see

Section 4.7.1) distributes the subscribed events to multiple data stream channels so that a

parallel and asynchronous processing of rule evaluation is scalable and fast compared to the

architecture with a single reasoning engine.

This dissertation studies our solution in existing social network systems, which are in

fact advanced in terms of the handling distributed, real-time and large-scale data streaming.

The Socialite system leverages Apache Storm [159], which is an open source software used

to run various critical computations in Twitter at scale, and in real-time [161].

71

The remaining of this section provides background information of Apache Storm and the

Socialite topology for distributed reasoning.

4.6.4.1 Background of Apache Storm Many modern data processing environments

require processing complex computation on streaming data in real-time [161]. This is partic-

ularly true in Social Internet of Things systems including the Socialite system, where each

interaction with users and devices often requires making a number of complex decisions,

based on data that has just been created.

Storm is designed to be scalable to support adding or removing nodes from the Storm

cluster without disrupting existing data flow through Storm topologies. It supports fault-

tolerance to provide fail over solutions against hardware component failures in a large cluster.

Storm offers good performance characteristics required in real-time applications [161].

The Storm cluster is made up of a main node and several working nodes as shown in

Figure 22. A daemon process called Nimbus is running on the main node, in order to allocate

codes, arrange tasks and detect errors. Each working node has a daemon process called

Supervisor to monitor, start and stop working processes. The coordination work between

Nimbus and Supervisor is handled by Zookeeper. Zookeeper is responsible for coordinating

the various nodes (e.g., Nimbus, Supervisor daemons) within a Storm cluster.

In order to realize real-time computation on Storm, topologies should be created inside

of it. Topology is a direct graph of processing logic nodes called Spouts and Bolts generating

data streams in the form of Tuple. Typically Spouts pull data from queues such as the

channels/queues in the Socialite system. The way Bolts and Spouts are connected indicates

how data should be passed around between these nodes, which makes up the topology. Bolts

process the incoming Tuples and pass them to the next set of Bolts downstream if needed.

Storm topology provides various grouping to route the tuple. The following groupings are

used in the Socialite system:

• fields grouping : The stream is partitioned by the fields specified in the grouping. For

example, if the stream is grouped by the username field, tuples with the same username

will always go to the same bolt, but tuples with different usernames may go to different

bolts.

72

Figure 22: Storm cluster concept

• all grouping : The stream is replicated across all the bolts.

In addition to fields grouping and all grouping, Storm provides five more built-in stream

groupings, which are shuffle grouping, partial key grouping, global grouping, none grouping,

and direct grouping. The following section explains why we choose fields grouping and all

grouping and how we use them in the Socialite system.

4.6.4.2 Socialite Storm Topology The Socialite server aims to support the large num-

ber of users expected in the Internet of Things. The Storm architecture is used to scale the

system horizontally. The bottleneck of the Socialite system is the reasoning engine because

it is computationally intensive: to evaluate all events disseminated from various sources and

types of events (user, device, relationship, location and rule) and to fire the rules if evaluation

is true.

One challenge with that is how the system distributes the events evenly by preserving

consistent destination for all device objects of which previously inserted status are used for

the evaluation of the rule. In particular, if a device owned by one user is in one processing

Bolt, and another device owned by the same user may be processed in a different Bolt. The

triggering conditions in the Socialite rules are expected to be mostly based on the devices

73

Figure 23: Storm topology in Socialite

with ownership relationships while the actuation can be any devices in all relationships and

services. Therefore, the parallel event processing is done based on the user identification by

configuring the reasoning engine Bolts with fields grouping of username, which is unique to

an individual user. The fields grouping sorts the incoming events and delivers all the events

for a user to the same Bolt. For the events that need to keep consistency all the time for

every reasoning engine, the states of the events are all disseminated to all Bolts.

Figure 23 illustrates a high level overview about the basic Storm topology in Socialite.

Each event dispatches to a designated event channel, subscribed to by a listener Spout. The

listener Spout gets a message, extracts the user name and creates a tuple that is sent to

the respective processing Bolt. The groupings define to which Bolt the tuple is sent to. For

Device, User and Rule messages, the fields grouping with username is used. Relationship

and Location messages on the other hand are handled with all grouping because two users

can be in the same location or can have a relationship together. Therefore, the relationship

and location messages are immediately sent to all the processing Bolts to make the necessary

74

information available to all reasoning engine instances. Depending on the number of users,

more instances of an implemented Spout or Bolt can be added dynamically during runtime by

leveraging re-balaning of the topology mechanism supported by Storm [108]. The topology

evaluation for the scalability with even distribution of users is discussed in Section 4.8.2.2

4.7 END USER EMPOWERED REASONING FRAMEWORK

Empowering users to program their smart spaces has been discussed in academic literature

for decades. The authors in [32] report that autonomous technologies often leave users

feeling out of control, without the possibility to adjust the level of autonomy of their home

according to their needs. Newman [128] argues that end-user configurability is key in smart

home applications and advocates sharing insights across a community of users.

With increased number of devices connected to the Internet and solutions from the

industry such as IFTTT (“If This Then That”) [12], users create their own rules for the

smart home devices as well as Web based services (e.g., weather service). However, the

current solutions are limited to rules for a single device type rather than rules for each

device capability. Furthermore, given the novelty of the Social Internet of Things (SIoT),

social relationships are not considered in the end user programming and underlying reasoning

engines.

We created Socialite to empower end users to create their own rules, which are used to

reason about both devices and people in their social relationships in order to make automated

decisions.

The features analyzed from the user survey in Section 4.2 are further classified into rule

categories to develop the Socialite reasoning concept. The Socialite reasoning framework

uses the Socialite semantic model to describe rules used in a production rule system namely

Drools [18]. The semantic model provides a basic/low level knowledge representation while

end-user created rules are high level knowledge representation for the reasoning in our system.

By synthesizing sets of guidelines for end user programming [65], we present a Web

based trigger-action programming application that uses the APIs available in the Socialite

75

F
ig

u
re

24
:

E
ve

n
t-

d
ri

ve
n

d
is

tr
ib

u
te

d
ar

ch
it

ec
tu

re

76

Server discussed in Section 4.6 for users to create their own rules running in the Socialite

Reasoning Framework. The rule management REST APIs enables the client application

developers to develop a light-weight end user programming tool without learning the domain

specific languages used in Drools. This section first provide the Socialite reasoning framework

concept, followed by the Socialite client application including the end-user programming

application.

4.7.1 Socialite Reasoning Framework

The Socialite reasoning framework uses the semantic models for the basic/low-level knowl-

edge representation (e.g., device and people), events/messages for asynchronous communica-

tion between the event sources and reasoning engines, and production rules for the high-level

reasoning. Since our low-level knowledge is based on the ontology model with hierarchy,

our reasoning supports both device-specific automation, and capability-based automation.

Furthermore, the rules, leveraging social relationships and device capabilities will facilitate

collaboration to efficiently share configuration and information even with devices from other

users otherwise unknown to the user.

This section introduces the foundation of the production rule system, including knowl-

edge representation and reasoning, then discusses the core reasoning concept with classifi-

cation of rules and their attributes. The rule interfaces and translation mechanism to the

domain specific rule language, and how rule management and sharing is done in the Socialite

reasoning framework are also discussed.

4.7.1.1 Background of Reasoning Engines Reasoning is the formal manipulation of

the symbols representing a collection of believed propositions to produce representations of

new ones [49]. Knowledge representation and reasoning is concerned with how an agent uses

what it knows in deciding what to do. The reasoning engine is the computer program that

delivers knowledge representation and reasoning [49] functionality to the rule creator [18].

The reasoning engine has three components at high level, which are ontology, rules and

data. The ontology is the representation model we use for our “things”. It could use records

77

Figure 25: High level view of production rule system [18]

or Java classes or full-blown OWL based ontologies. In Socialite reasoning framework, Java

classes with RDF/OWL annotations are used to formally represent objects that are needed

for describing the domain of interests. The rules are used to perform the reasoning by an

inference engine. Note that the Socialite reasoning engine does not include logical inference

obtained from inference capabilities coming from the richness of the RDFS and OWL models.

Rather, the Socialite reasoning framework uses rules of certain form called production rules as

its representation of general knowledge [49]. Rules can be defined by system administrators

during the development time (e.g., create thriendships between friends’ devices upon a new

device registration or new friendship creation) and rules can be also created by end users to

enable automation, complex event processing, context generation and service invocation in

Socialite.

Drools is a reasoning engine that uses the rule based approach to implement an ex-

pert system. It is used for reasoning when processing the data with a set of rules to infer

conclusion. Drools is categorized as a production rule system with a focus on knowledge

representation to express propositional and first order logic in a declarative manner. Figure

25 illustrates the high level view of the production rule system with the core components.

A basic element of the rule model is “when condition is met, then actions will be exe-

78

cuted.” as illustrated in Code 4. Rules are stored in the production memory in the production

rule system.

Code 4 Basic structure of the rule model in the production rule system

1 When
2 <cond i t ion>
3 Then
4 <act ion>

The inference engine matches facts that are information of objects in working memory

against rules in the production memory in order to infer conclusions, which result in actions.

The process of matching the new or existing facts against production rules is called pattern

matching. Drools’ pattern matching implements the rete algorithm [77] and is handled by

the inference engine. The inference engine is able to scale to a large number of rules and

facts.

A system with a large number of rules and facts may result in many of the rules being

true for the same fact assertion. These rules are said to be in conflict. The agenda is a

collection of activated rules and it is responsible of managing the execution order of the

conflicting rules. When the rules are being fired after pattern matching process, Drools

selects one rule from the agenda and executes its action. If a fact in the working memory is

changed as a result of the current rule execution, other rules can be activated or deactivated.

This continues until the Drools agenda is empty, that is there are no more rules to be fired.

The order in which Drools fires the rules can be configured with conflict resolution strategy.

Drools provides salient (or priority) and LIFO (Last In First Out) as conflict resolution

strategies.

There are two methods of execution for a rule system: forward chaining and backward

chaining ; systems that implement both are called hybrid chaining systems. Drools provides

hybrid chaining, both forward and backwards. Forward chaining is “data-driven” and thus

reactionary. Backward chaining is “goal-driven”, meaning that it starts with a conclusion

that the engine tries to satisfy. The Socialite’s reasoning is done with forward chaining

because most of rules are reactionary upon the evaluation results from the inserted facts

used in the rule evaluation condition.

79

A reasoning engine has two different modes of operation: a stateless or a stateful knowl-

edge session. A stateless session has its own isolated data/state that is disposed at the

end of the invocation, whereas stateful session are longer lived and allow iterative changes

over time [18]. In stateless knowledge sessions data is not saved; it can be processed once

and after that the data cannot be retrieved again. On the other hand, utilizing a stateful

knowledge session on the other hand allows the system to process the data, detect changes

over time, calculate average, minimum and maximum, and so forth. Temporal reasoning is

possible using the stateful knowledge session. The Socialite system configures Drools with

stateful knowledge sessions because the rule category includes temporal reasoning.

4.7.1.2 Socialite Reasoning Concept This section addresses the core concept of the

reasoning framework in the Socialite system, including the classification of rules and at-

tributes in each rule. The rule categories are driven by the analyzed results from the user

survey in Section 4.2.3 and our system design decision.

Mapping Feature Categories from User Survey to Rule Categories

After the feature categorization of all answers from the user survey discussed in Section

4.2, nine feature categories were mapped into rule categories and other functions (see Figure

26). Two types of user roles are considered in rule creation: end users and system devel-

opers. The rule categories for end users include automation, context generation and service

invocation. The rule category for explicit relationship management is assigned for system

developers, because the Socialite system aims to provide default rules for explicit relation-

ship management based on our concept of social relationships. In addition, remote access

and control feature is assigned as a basic client application feature since it does not require

any rules to enable this feature. The rest of two features (goal and others) are mapped to

other technologies with new event types that requires different technologies (e.g., security

and privacy, data mining) .

The automation rule category combines device/capability, preference and context based

automation where the action in the rule description can be expressed based on the semantic

80

Figure 26: Mapping categorized features from the user survey to rule categories and other

functions

model. On the other hand, in order to enable context based automation, we introduce the

context generation rule category where the user can specify what leads to a user’s context.

Obviously there exist other technologies to determine a user’s context (e.g., applying the

Bayesian approach [84]), but this dissertation addresses user-defined context and its reason-

ing based on the knowledge represented as a rule description.

The notification and service invocation features are categorized into the same rule cate-

gory, because the examples in the notification feature are mostly related to the display type

of devices, which are not part of our semantic model and require a service call to follow the

manufacturer’s notification APIs.

Temporal reasoning and relationships can be used for all the rule categories to express

the condition and/or the action in a rule description.

More detail about each rule category are explained with examples as below.

81

Classification of Rules

• Automation based on device capabilities, context, preference and temporal

reasoning

The Socialite reasoning engine supports creating rules to specify automation, that is,

the change of a set of device capabilities is triggered based on a specific condition that

user defines. Unlike conventional rules used in other smart home systems, the automa-

tion rules in the Socialite leverage not only a specific device type but also the device

capabilities.

Furthermore, the devices in the new social relationships, such as thriendships are used

in order to express the condition and/or action in the rule. As for action expressions

we limit the devices to the ones owned by the user as default. Depending on the access

control policies, the devices used in the rules can be selected differently in the future.

Although the current Socialite system does not support an access control mechanism yet,

the access control mechanism developed for the smart home gateway (see Section 3.3)

can be extended for the Socialite system with consideration of new social roles.

In addition, the context defined by the user can be used in expressing conditions in the

rules. An example of an automation rule, both with device capability and context shown

in Code 6 is “When Jenny’s living room’s temperature is greater than or equal to 80 ◦F

and Jenny is at home, then set Jenny’s air-conditioner’s target temperature to 75 ◦F”.

The preference that is accessible via the device semantic model can be used both in the

condition and action expressions to get/set the target value/state in a rule.

• Context Generation

As shown in the analyzed results from the user study (see Section 4.2), users expect to

have automated decisions, not only based on the device status change itself, but also

with a higher level situation that can be expressed with the Socialite semantic model,

information obtained from external services (e.g., weather) and temporal reasoning. The

definition of contexts is varied amongst researchers. One of the highly received context

definitions is that “Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant

82

Code 5 Context generation rule example

1 de c l a r e Context
2 context Id : S t r ing
3 end
4

5 r u l e ” context genera t i on example ”
6 when
7 (
8 $r1 : Device (dev i c e Id ==”jenny TV LivingRoom ”) and
9 DeviceProperty (property ==”OnOffState ” , propertyValue ==”On”) from

$r1 . d ev i c eP rope r t i e s
10)
11 (
12 $r2 : Device (dev i c e Id ==”jenny Light LivingRoom ”) and
13 DeviceProperty (property ==”Br ightnes s ” , propertyValue <”70”) from

$r2 . d ev i c eP rope r t i e s
14)
15 then
16 i n s e r t L o g i c a l (Context (context Id = ” jenny watchingTV ”)) ;
17 end

to the interaction between a user and an application, including the user and applications

themselves [67].”

Instead of extracting the context automatically by the system, our solution allows end

users to define their own context by using end-user programming. Unlike other smart

home systems where the context is a part of the ontology model within the system

[166], our system proposes context as a rule generated by a user and sharable with

others depending on their privacy settings on the rules. The user-defined context that

is inferred by the reasoning engine can be further used by automation rules discussed in

the first rule category. The following rules (Code 5 and Code 6) show how a context is

defined and how the inferred context is used for another rule in the automation category.

• Service Invocation Socialite allows actions in the rule to be expressed with a service

invocation. Services can be provided internally by the Socialite system or externally

from third party service providers. The services can further use the relationships of the

devices and users, a feature that is not yet possible for current practice of the Internet of

Things. For example, a service that leverages devices in kinship can be used to provide

83

Code 6 Automation example with user-defined context

1 r u l e ”when Jenny i s watching then turn o f f Jenny ’ s lamp”
2 when
3 Context (context Id == ”jenny watchingTV ”)
4 then
5 se tDev iceAct ion (” jenny lamp ” ,” dev i c eCapab i l i t y=”OnOffState ” ,”

dev iceAct ion=”Off ”) ;
6 end

repair solutions by analyzing the repair history of the devices in kinship, which had the

same error before. Since the Socialite semantic model employs the hREST ontology

[105] from W3C to represent the REST service interface, any services registered to the

Socialite system can be expressed in the action in the rule. When a rule is fired, a

service invocation is called by executing an internal function implemented in the Socialite

reasoning framework.

• Explicit Relationship Management Socialite supports specifying a rule to infer ex-

plicit relationships. As an illustrated example, let us assume that User 1 owns Device A

and User 2 owns Device B. If User 1 and User 2 establish a friendship, or if another device

is added to a user’s roster of devices, the rule engine may trigger a rule to explicitly create

and store new thriendships. In addition to the rule for these static relationships, the So-

cialite supports the dynamic aspect of the relationship such as co-location. The location

of mobile devices (e.g., smart phones) is dynamic in nature; devices may disappear from

an area and re-appear in a different environment. The co-location relationship rule is

triggered based on a device’s location. The derived relationships, such as thriendship and

kinship as well as dynamic changes of the co-locationship are created by default in the

Socialite system while ownership and friendships are controlled by the user. The explicit

relationship management rule is configurable to be active or inactive for users who have

privacy concerns and do not want the system to create relationships automatically (e.g.,

automatic creation of co-location relationships with people or devices that a user does

not know).

84

Temporal reasoning in the rule description

The condition and/or action of all of the rule categories in the Socialite system can

express temporal aspects of the object with Complex Event Processing (CEP). CEP tracks

streams of events (facts in a row) that are inserted into the reasoning engine and detects a

specified temporal event in real time. In detail, CEP enables evaluation of whether event1

happened before or after event2 or if events happened in a specific time frame. In order to

support CEP within a reasoning engine, the Drools engine is configured in a stateful session.

The use of CEP in the Socialite aims to identify events in real time over relatively short

time periods (less than 30 minutes) either explicitly by specifying the event expiration offset

in the rule or implicitly by analyzing the temporal constraints in the rule. Operation related

to event detection over long periods of is not addressed in CEP based rule in our system. An

example of rules from the user survey is “if my heater’s performance is lower than the heater

in my friend’s home, then notify me with possible solutions”. This would be done with

other technologies leveraging the harvest data in the device history repository, for example

applying abnormal detection algorithms [54]. The rule relevant for this example is rather

categorized as a service invocation in our rule categories, because it requires to access the

device history for long periods which is not stored in the production memory in Drools, but

stored in the device history repository.

Relationship used in the rule description

One novelty of the Socialite reasoning framework is that the relationships can be used

in all categories of the rules. A rule can specify a specific device by selecting one from the

filtered devices and relationship type, or specify a set of devices with relationship type and

capabilities.

Attributes in Rules

The following four attributes are considered in the rule description of the Socialite system.

These attributes are used for the rule operation and management in the system as well as

sharing with others.

85

• Sharing attribute: We expect that the users of the Socialite system share their rules

to address common goals collaboratively. Towards that end, the Socialite reasoning

framework supports the sharing attribute. The possible values for the sharing attributes

are 1) private, 2) public or 3) constrained to certain relationship types such as friendship

and thriendship.

• Event attribute: A rule is triggered by an external event that is notified to the

Socialite reasoning engine in the form of a message from the connected devices, users or

relationships as discussed in Section 4.6.3. A time event is modeled as a possible value

for the event attribute. The state-of-the-art reasoning engine sucn as Drools provides

the time event within the reasoning engine itself, the Socialite distinguishes a time event

from other events outside the reasoning engine. The time events are further modeled into

two perspectives: 1) periodic time event and 2) a time event at a certain point. When a

rule from the end user programming is translated into the syntax of the Drools domain

specific language, these time perspectives are embedded in a rule description and time

events are managed by Drools.

• Activeness attribute: A rule is modeled to support activeness attribute so that users

can manage their rules to be active or inactive depending on their usage patterns. A

rule can be active from now, inactive from now, or active only a certain time period.

Operational status based on the activeness can be specified in a higher level rule. For

example, a rule can specify that one rule is only active after it meets a certain condition

(e.g., the number of execution is greater than a threshold).

• Goal attribute: The Socialite introduces the goal attribute for further collaboration

and information sharing. A set of rules can have a common goal attribute such as energy

saving, or securing homes.

Rule Triggers

Depending on the event attribute values in Socialite, external events or schedulers are

currently implemented as rule triggers in the Socialite framework. An external event is

initiated when an object is inserted into the reasoning engine.

For example, if a device object is changed, the Spout listener, which subscribes to that

change, inserts the updated device object into the reasoning engine. As it enters the engine,

86

a fact is recorded and all the rules that have this device model in the rule condition are

evaluated. If the condition of a rule matches the fact in the working memory, the rule is

ready for execution.

In case of the timing event, rules can be scheduled at certain times or periodically (e.g.,

with a cron expression). The cron syntax is expressive and enables precise scheduling from

one second granularity to any time period (e.g., a rule can be fired only once per year).

To give the user more possibilities to specify more advanced rules, time restrictions on

the rules are considered. This includes allowing the user to specify a time frame in which

the rule is active; the rule would be inactive outside that time frame.

Drools already supports two specific keywords related to this issue, namely date-expires

to let a rule expire at a specific date and date-effective to activate a rule when the specified

time comes. These two keywords are in the date level granularity, not in the hour level

granularity.

In order to overcome the above limitation of the Drools reasoning engine, the Socialite

framework provides its own TimeFrame class to allows for the expression of the current

time including hours, minutes, months, even the weekday. By doing so, our system provides

fine-grained scheduling of the rules and also supports with the activeness/de-activeness of

the rule attribute.

Conflict Resolution Management

Rules in the system can conflict with each other since rule creation time, but actual

detected conflicts of rules can happen when a fact is inserted to the reasoning engine. The

reasoning engine detects possible conflicts and decides the conflict resolution strategy. For

example, consider a thermostat that accepts two rules, which are 1) “if a user is away, then

set the target temperature value to 60 ◦F” and 2) “if a user is away, then turn off all the

devices.”

Conflict resolution is required when there are multiple rules on the agenda, which is

responsible of managing the execution order of the conflicting rules in Drools. The reasoning

engine needs to know in what order the rules should fire (for instance, firing rule A may cause

rule B to be removed from the agenda). The default conflict resolution strategies employed

by Drools are: Salience (or priority) and LIFO (last in, first out).

87

The most visible one is salience, in which case a user can specify that a certain rule has a

higher priority than other rules. In that case, the rule with higher salience will be preferred.

LIFO priorities are based on the assigned working memory action counter value, with all

rules created during the same action receiving the same value. The execution order of a set

of firings with the same priority value is arbitrary.

Rule Execution in Emergency Situations

Using the Socialite’s rule concept, an emergency situation, such as fire, can be handled

efficiently. An emergency context would be triggered after two or more events from either

devices (e.g., smoke detector) or people (e.g., alert an event to neighbors). Once the emer-

gency context is confirmed, prioritized emergency rules can be activated. Examples include

“If a fire occurs, unlock all doors and windows” or “If fire occurs, notify police and neighbors

with the user’s location.” Once the emergency is cleared or the activation time period of the

rules has passed, emergency rules can be deactivated.

4.7.1.3 Rule Transformation to Domain Specific Language A user-specified rule

is created via the end user programming tool. We aim to enable the end-user programming

tool developers as well as end users to develop the tool or create rules without detailed

knowledge of the domain specific language used in Drools. The Drools’ rule language is

based on declarative programming, and therefore shifting paradigm to a declarative rules

style and learning how to write the rules properly and effectively can be time consuming for

the client application developers and the rule creators.

In order to address this concern, the Socialite server provides rule management interfaces

to the end user programming tool so that the client application (which includes end-user

programming) can be developed by using REST APIs. The Socialite server includes a rule

translation mechanism that translates the rule data payload in JSON format to the domain

specific language used in the Drools reasoning engine.

The JSON payload in the rule creation REST interface (an example is in Code 7) is

transformed into Java objects using an existing library such as Google gson. The rule

translator uses the Drools APIs to generate the Drools rule objects, which can be put into

88

Figure 27: Intermediate common data models between the data payload in REST APIs and

Drools domain specific language

the reasoning engine. Figure 27 represents the objects in the rule model, which are used

as an intermediate common data model between the data payload in JSON format and the

Drools domain specific language.

4.7.1.4 Rule Management and Sharing If people and devices are interacting with

each other through explicit relationships as proposed in the Socialite system, we expect

that people are more socially interactive when they use their connected devices. The user

survey discussed in Section 4.2 indicates that one of the main reasons why people share

their information from devices is to help others. Therefore, sharing the rules created by an

individual user can promote their motivation to participate in the Social Internet of Things

and ultimately achieve a common goal with sets of rules classified into a same goal (e.g.,

energy saving in a city).

This section discusses how we enable users to share their rules and how these rules are

instantiated by other users’ environment. Figure 28 illustrates the rule sharing concept.

89

Code 7 Example of JSON payload

1 {
2 ”Rule ” :{
3 ” ruleType ” :” Automation ” ,
4 ”name” :” ru le example1 ” ,
5 ”username ” :” jenny ” ,
6 ” ru l e I d ” :” j enny ru l e example1 ” ,
7 ”summary” :” This i s an example ru l e f o r the d e s c r i p t i o n o f the JSON ru l e

format . ” ,
8 ” pr ivacyAtt r ibute ” :” p r i va t e ” ,
9 ” goa l s ” : [

10 ”EnergySaving”
11] ,
12 ” eventAtt r ibute ” :{
13 ” type ” :” event ” ,
14 ”eventType ” :” UpdateDevice”
15 } ,
16 ” a c t i v en e s sAt t r i bu t e ” :{
17 ” a c t i v en e s s ” : ” a c t i v e ”
18 } ,
19 ” cond i t i onExpre s s i on ” :{
20 ” cond i t i on1 ” :{
21 ”model ” : ” Device ” ,
22 ”modelId ” :” jenny Thermostat LivingRoom ” ,
23 ”modelType ” :” Thermostat ” ,
24 ” property ” :” TemperatureF ” ,
25 ” operator ”:”>=”,
26 ” value ” :”80”
27 } ,
28 ” cond i t i on2 ” :{
29 ”model ” : ” Context ” ,
30 ”modelId ” :” jenny atHome”
31 } ,
32 ” operator ”:”&&”
33 } ,
34 ” a c t i on s ” : [
35 {
36 ”model ” : ” Device ” ,
37 ”modelType ” :” AirCondi t ioner ” ,
38 ”modelId ” :” j enny AirCond i t i oner ” ,
39 ” ac t i on ” :” TargetTemperatureF ” ,
40 ” operator ”:”=” ,
41 ” value ” :”75”
42 }
43]
44 }
45 }

90

Figure 28: Rule sharing concept

When a rule is created, sharing attributes should be specified with one of these values:

private, public, sharing with relationship types (i.e., union or conjunction). When a user

queries shared rules created by other users, the rule management component takes into

consideration sharing attributes, device capabilities and goal attribute used in rules and

returns only possible rules the user can apply to the user’s current system. The device

capabilities and the goal attributes are optional to use as filters for querying the sharable

rules because users could be interested in other rules that require new devices currently not

owned by users.

To measure the goal achievement, a new method to calculate each rule’s contribution

to a goal. The Socialite system has not realized any solutions in this dissertation, however,

awareness, visualization, sharing of their status of achievement and gamification can motivate

users participate in a common goal such as energy saving [115, 56]. For example, if energy

saving is a goal, then we can consider different ways to visualize their achievement: ranking

of participants in the same city (co-locationship) or in friendships with their total energy

91

consumption from the smart meters and/or simulated energy consumption based on the

device usages. If a goal is securing home, the goal achievement can be done by activating

relevant rules to help secure neighbors’ homes, or actions taken by the participants when an

alarm goes off.

4.7.2 Socialite Client Application

The Socialite client application is a Web based application using Backbone.js, which is a

light-weight JavaScript library with a REST Web Service and is based on the model view

presenter design paradigm [134]. We selected a Web based application because potential

users would use different mobile devices and computers when they access the existing social

networks site, as we found in the user survey. The Web based application can be accessible

from any type of devices. Obviously the client application can be extended with mobile

applications in the future.

4.7.2.1 Features Figure 29a shows all menus available in the Socialite Web based ap-

plication. As shown in 1© in Figure 29a, user profile management, user’s owned device

management, user’s friends management, user’s owned devices’ thriends management, and

rule management are realized in the Socialite client application. The Figure 29a is a screen-

shot of when a current user clicks “My Devices” menu from 1©. It shows that two devices are

registered in Living room and Bedroom. If the current user wants to register a new device,

the user clicks one of devices from the device catalog in 2©, and drag and drop to one of

the rooms in the left pane. Clearly, the room layout and other user interface can be further

enhanced with other available libraries, but it is beyond of the scope of this dissertation.

When a user clicks right top corner of icon representing one of the registered devices, the

user can monitor and control the selected device by interacting with the pop-up window as

shown in 3© in Figure 29b. The history of the selected device is visualized as a graph when

the user clicks the left bottom corner of the device icon on the room layout. A device can

be removed by also clicking the trash can on the right bottom of the device icon. The left

top corner of the device icon is used to edit the device information.

92

(a) Basic features

(b) Remote control of a lamp

Figure 29: Socialite Web based user interfaces

93

Push notifications originated by the server are sent to the client application through web

sockets and managed by the publish and subscribe service in the server side.

All operations originated by the client use the Socialite REST APIs provided by the

Socialite server.

4.7.2.2 End User Programming for Rules The Socialite end-user programming tool

is represented to the user as a trigger-action programming, which is one of the most common

formats in the academic literature that matches with users’ mental model [65, 68, 163].

Figure 30 represents the main UI view of a rule creation. The devices listed in 1© are

devices that satisfy the filtering options from 1© (relationship types) and 2© (device properties

or contexts). If the user drags and drops one of the devices or contexts listed in 3© (Trigger

panel) to 7© (IF panel), then a pop-up window is shown to allow the user to add a condition

(e.g., temperature >80 ◦F). The user can add as many devices and contexts from 3© as s/he

wants to express more conditions. The default operator among condition is conjunction.

In the panel 6© (Actuator panel), all user’s devices with action capabilities and services

are shown as a default. The user can select a different relationship type in 4© or filter

devices with a certain action capability or services in 5©. The user can select one of devices

or services and drag it to 8© (THEN panel). The user can set the action value by using the

pop-up window (9©) with a default action pre-selected from 5©. For the service actuator, the

user can select relationship types provided by the service. For example, a “repair solution

query service” may ask a user to select kinship or/and thriendship as parameter values used

for the implemented service. The user can also create a context instead of device action or

service invocation, by clicking the save context menu in 5©.

Once the user finishes the condition and action expression of the rule, then the user clicks

save button in 10©, which will call a Socialite server API to add the new rule for the current

user after providing the rule meta information, such as the rule name and description.

The current implementation of the end user programming application enables the de-

vice capability as well as device type based automation, context generation, context based

automation, and service invocation.

94

F
ig

u
re

30
:

E
n
d
-u

se
r

p
ro

gr
am

m
in

g
u
se

r
in

te
rf

ac
e

95

4.7.2.3 Architecture Overview The Socialite client application is a light-weight Web-

based application that communicates with the Socialite server via REST APIs. As explained

earlier in this section, we employed Backbone.js as a basic framework. Therefore, the ar-

chitecture design is based on the model view presenter architectural pattern. Figure 31

illustrates the Socialite client architecture overview with a rule creation user interface.

The client UI view represents HTML documents together with templates, which are

markup that can be used to create different reusable copies of that markup but populating

each component with different data. The model represents the data model such as rule,

device, relationship, user, etc. The presenter (e.g., rule presenter, device presenter) uses the

observer design pattern [78] to subscribe to changes from the model.

The Socialite end user programming support device/capability based automation, con-

text based automation, context generation and service invocation with consideration of re-

lationships. Although the server APIs are available, the existing end user programming

has not yet implemented preference based automation and temporal reasoning in the user

interface.

4.8 SOCIALITE IMPLEMENTATION: PROOF OF CONCEPT

This section provides how the proposed Socialite architecture and core concepts are realized

in a real system, which integrated real devices and is currently deployed in the Amazon Web

Service EC2 instances [8]. It also discusses an evaluation of the propose architecture with

respect to interoperability, scalability and extensibility.

4.8.1 Implementation

The Socialite framework implements the concept discussed in the previous sections, result-

ing in a real-world test-bed that integrates devices from different manufacturers deployed

in multiple homes. Note that Integrity (see Chapter 3) targets for the integration of de-

vices using different communication protocols and serves as a unified home gateway, while

96

F
ig

u
re

31
:

S
oc

ia
li

te
cl

ie
n
t

ar
ch

it
ec

tu
re

ov
er

v
ie

w
w

it
h

a
ru

le
cr

ea
ti

on
ex

am
p
le

97

Socialite addresses the “social” and “physical” integration of different users, devices and

home gateways (with many devices attached) in the cloud. Currently, Socialite provides

support for devices with public APIs, such as Nest Thermostat and Nest Smoke Detector

[14], NetAtMo Weather Station [127], Philips Hue [15], and Jaw Bone [13]. These devices

have been deployed in a real home and a lab (located in Pittsburgh, PA, USA) and can be

accessed through the REST Web service API provided by Socialite.

Besides the support for real devices, the Socialite framework also provides the imple-

mentation of virtual devices for existing devices that lack API support, for future devices

currently under development at a start-up company and for simulation of devices. Such de-

vices are useful when real devices are not available, and one would like to test some specific

aspect of the framework such as extensibility.

The device types implemented in Socialite system include CO2 sensor, humidity sen-

sor, smoke detector, motion sensor, noise sensor, temperature sensor, anemometer, blind

controller, contact sensor, cooker, coffee maker, damper controller, dish washer, door lock,

door controller, fridge, IP camera, oven, power meter, pressure sensor, siren, television and

thermostat.

All software is deployed to multiple instances on the Amazon Web Service for the eval-

uation. Figure 33 illustrates the deployment view of the Socialite instances for the proof of

concept.

As discussed in Section 4.7.2, management of users, devices, relationships and rules are

possible through the Socialite client application. The client application also includes remote

access and control and end-user programming for the various rule creation.

The Socialite demo video is available in [97] as of the publish date of this dissertation.

The video demonstrates important features by using two devices: a Philips Hue lamp and a

Nest thermostat.

First shows a remote access and control of a Philips Hue lamp by turning on and off

and changing the color of the lamp through the client application. Then it shows a rule

creation for an automation rule, namely “If the lamp is on, then set the thermostat’s target

temperature value to 70 ◦F.”

The next scene is to create three different contexts: 1) “If the temperature is ≤ 60,

98

Figure 32: Dynamically accessible Socialite APIs

99

F
ig

u
re

33
:

S
oc

ia
li

te
d
ep

lo
y
m

en
t

v
ie

w
on

A
m

az
on

W
eb

S
er

v
ic

es
(A

W
S
)

100

then context is cold.” 2) “If the temperature is between 60 ◦F and 75 ◦F, then context is

comfortable.” and 3) “If the temperature is ≥ 75 ◦F, then context is hot”. By using these

three contexts, three context-based automation rules are created: 1) “If the context is cold,

then set the lamp color to blue.”, 2) “If the context is comfortable, then set the lamp color

to green.”, and 3) “If the context is hot, then set the lamp color to red.”

Then the video shows the context-based automation in a real environment by changing

the temperature value in the Nest thermostat. The lamp color is changed depending on the

context, which is determined by the temperature.

In the next scene, the user adds a new friend (Jenny), and shows that Jenny’s devices

are added as thriends and displayed in My thriends menu.

In the next scene, the video shows a rule creation with thriendship relationship, which

is “If Jenny’s lamp is on, then turn on my lamp.”

In the last scene, the video shows another rule of “If an error occurs in my device, then

call the service that sends a text message to my friends in co-location relationship.”

4.8.2 Evaluation of Architecture

Our architecture supports interoperability, scalability and extensibility. This section includes

evaluation of our architecture with respect to these three non-functional requirements.

4.8.2.1 Interoperability Evaluation Interoperability is empirically evaluated by inte-

grating the real devices to the Socialite system.

Interoperability is supported in the Socialite system by providing a uniform access

through common semantic models to different implementation of functions to interact with

various APIs from different manufacturers. The device authentication model has a list of

authentication parameters with two data properties of key and value that supports various

authentication mechanisms required by the manufacturers.

An example of interoperability from the devices used in the proof of concept is humidity

sensor from NetAtMo and Nest Thermostat. Both of them represents a same device model

for humidity sensor, but APIs from NetAtMo is completely different from the ones from Nest.

101

Obviously they provide different URLs and payload to get the value of the humidity sensor.

Furthermore, the communication styles are also different for these two manufacturers. In

detail, NetAtMo does not send change in the sensing value to the Socialite server, rather

the Socialite server needs to call NetAtMo API to get the current value periodically. On the

other hand, Nest allows the Socialite server to subscribe to the change in value. Regardless of

different implementation on how to get the humidity value from these two different devices,

the common semantic model in the Socialite server always presents the same data model

and provide a uniform access to different devices.

NetAtMo and Nest use OAuth2 to authenticate the device. Therefore we reuse the same

software module for authentication but with different parameter values. However, Philips

Hue APIs does not support OAuth2 authentication mechanism. Therefore, to access Philips

Hue APIs we use different authentication parameters which are the username for the bridge

(gateway) that locally connects to the lamps.

4.8.2.2 Scalability Evaluation The Socialite aims to achieve scalability by distributing

a number of reasoning engines over multiple Bolts (see Section 4.6.4.2) installed on different

nodes to process reasoning in parallel.

The Socialite’s event-driven architecture that uses an implementation (ActiveMQ [155])

of Java Message Services (JMS) and a real-time distributed computing engine (Apache Storm

[159]) enable the Socialite system to be scalable; these two components make it scalable

because of asynchronous communications and parallel processing of messages from devices,

users and services.

Apache storm is designed to scale out by adding more nodes to a cluster. Therefore, we

evaluate scalability for even distribution of tasks with the Socialite Storm topology discussed

in Section 4.6.4.2.

Topology Performance Evaluation

In order to evaluate the scalability with even distribution of users, the distribution testing

is conducted by varying the number of User objects while keeping the number of Bolts fixed

at 10. A Spout produces a specific number of different user names for each test case and

sends them one by one via fields grouping to 10 different Bolts that count the number of

102

test case 1 2 3 4

number of users 100 200 1000 10000

expected number of users per bolt 10 20 100 1000

maximal difference 4 6 9 21

maximal difference in percent 40% 30% 9% 2.1%

Table 3: Fields grouping input distribution per user

user names they have received. (Note that the stream in a topology using fields grouping is

partitioned by the fields specified in the grouping.) The results can be seen in Table 3.

The evaluation test concludes as follows:

• If 10 or 20 users are allocated per Bolt, the uneven distribution is not relevant, since the

volume of users is low and the server can handle that, even if all of the 20 users are very

active at the same moment.

• For 100 or more users, the distribution of fields into the Bolts is approximately even and

is optimal for the use cases for the system.

The evaluation results show that an implementation with fields grouping can be used

to send all the events for one user to one Bolt consistently and process all of them in a

designated Bolt. For the less than 100 users per Bolt, uneven distribution is not a concern

because the low number of users produce a relatively low number of events that the system

handles. For 100 users and more, it does not matter how active or inactive one specific user

is, because the average behavior of all users will statistically even out the loads.

The scalability with respect to the large number of devices is not evaluated empirically

with the Socialite system. However, the existing usage of the Apache Storm at Twitter with

average 316 million active users and average 500 million tweets per day proves scalability.

We expect that evenly distributing messages over many nodes in Apache Storm cluster will

provide positive results on scalability in the Socialite architecture.

103

4.8.2.3 Extensibility Evaluation The extensibility of the architecture is evaluated

with three different growth scenarios:

• Adding a new device from a different manufacturer : If the device type already exist in

the semantic model but a new device from a different manufacturer needs to be added to

the system, it is only necessary to provide a Java class with two functions: (a) one that

extends the specific device model to provide the semantic information for such device,

and (b) one that implements the corresponding device interface to handle the access to

the device through the API provided by the manufacturer. Depending on the knowledge

about the APIs relevant for the device manufacturer, the implementation time could be

varied. During the Socialite proof of concept system development, we added NetAtMo

temperature sensor after having Nest thermostat with temperature sensing capability. It

took less than one week (40 person hours) for software developers who understand the

Socialite architecture to add a new device from a new manufacturer.

• Adding a new device type: In order to add a new device type that does not exist in the

current system, first a semantic model should be extended to support the new device

type. Then the corresponding new device model class needs to be created by extending a

generic device class together with the device capability interfaces to specify the functions

(e.g., get temperature) modeled for the new device model. Once the device model class

and device capability interfaces are defined, the rest of extension is same as the above

extensibility scenario. The required time and effort for adding a new device type can

be varied depending on the number of capabilities required for the new device type as

well as the knowledge of the APIs from the manufacture. During the proof of concept,

we added new device types over time because of the availability of the devices with us.

It took less than two weeks (80 person hours) in average for software developers who

understand the Socialite architecture to complete extending the new device type with

testing.

• Adding new rules by end users : Although usability and user study are not in the scope

of this dissertation, we evaluated the extensibility at the end user’s end. To evaluate

the extensibility, we registered five devices (including virtual devices), and asked the

recruited end users (two with programming experience and two with no programming

104

experience) to create new rules after a short introduction of the system. The subjects

came up with very creative rules (e.g., blinking the lamp with different colors to represent

a Christmas light) as well as similar rules to what we had presented to them (e.g., if a

motion is detected, then turn on the lamp and set the thermostat target temperature to

their preferred temperature). Regardless of programming experience, all of them were

able to complete to create the creation of their own rules within a 30 minutes evaluation

session.

105

5.0 CONCLUSIONS AND FUTURE WORK

This dissertation proposed a novel scalable approach for smart home systems to connect, in-

teract and share useful information through heterogeneous devices and people with common

interests by realizing the new paradigm of the Social Internet of Things (SIoT).

To achieve an effective and novel collaboration between people and devices as well as

among devices themselves, this dissertation created solutions to address the main challenges

of SIoT, as follows. First, a system to provide interoperability of heterogeneous communica-

tion protocols in home networks and in application-level data models. Second, a mechanism

for people and devices to effectively discover and share useful and relevant information at

scale. Third, a collaboration framework for people and devices at many homes to use the

discovered information toward an effective collaboration in an autonomous and customized

way.

The presented work achieves the device interoperability in the home gateway and the

cloud based collaboration framework by developing semantic models that abstract the het-

erogeneity of protocols and data models. The semantic models for users, locations, rela-

tionships, services and devices are a means to enable a uniform access to various connected

devices and people in the system. An effective discovery and sharing of relevant information

in SIoT is supported through newly defined social people-device and device-device relation-

ships, which serve as a foundation for a new framework for the SIoT. Depending on the

user’s needs in different phases of the device life-cycle, different relationship types can be

properly utilized such as when the new kinship relationship between devices with a same

product model and manufacturer is used to discover and share repair history and solutions

in the diagnosis/maintenance phase.

Furthermore, the reasoning framework introduced in this dissertation makes it easy for

106

end users to create their own rules and to share them with others having common interests.

The distributed and scalable reasoning engines perform computationally intensive tasks to

evaluate all rules upon a new event (e.g., device status change): distribution of reasoning

engines over multiple nodes allows for parallel execution and scalability is achieved by using

an open source data stream processing solution. The basic and low-level knowledge repre-

sented as semantic models is used when end users define their own high-level rules in order

to make an automated decision in a cooperative manner.

In summary, this dissertation presented new theories and a proof of concept implemen-

tation through the use of real devices, accessible from protocol specifications and application

programming interfaces to evaluate the proposed solution.

Beyond that, much work remains to be done. First, the promise of scalability of message

handling needs to be better evaluated given the expected number of connected devices in

IoT in the future. Second, the basic conflict resolution strategies need to be extended to

encompass new and flexible mechanisms for multi-user and mult-device interactions. This

can be accomplished without restricting user’s creativity by predicting which newly-created

rules cause conflicts. Third, achieving a common goal (e.g., energy saving) is implicitly

possible in the presented solution by executing rules relevant to a common goal in the user’s

system. By adding new approaches such as gamification [151, 66], the system can explicitly

visualize the performance and motivate users to voluntarily participate in a common goal.

In addition, the management and the visualisation of end user created and sharable rules

can be better supported to minimize the information overload when users have to deal with

a number of different rules.

In the existing human based social networks research [152, 104, 39, 135, 74], social net-

work analysis brought various benefits including the acceleration of knowledge flows, the im-

provement of efficiency and effectiveness of existing communication channels, and promoting

peer supports. Although the SIoT is in an early phase of research, similar advantages are

already identifiable when we grant new social relationships to the devices and people as dis-

cussed in new application types leveraging SIoT in this dissertation. The new collaboration

framework for SIoT presented in this dissertation can bring similar benefits to the ones in

human social network frameworks. Therefore, a new form of social capital obtained from a

107

new paradigm of SIoT should be further identified and researched.

Lastly, the user survey in this dissertation uncovers that the user’s acceptance of the

SIoT is highly related to how the system supports security and privacy, which is also sup-

ported by a survey from Pew Research Center [112]. Somewhat contradictorily, participants

have demonstrated that they want to offer and get help with their devices and rules. The

introduction of new relationships will open the discussion of balancing sharing/openness

benefits and privacy risks from sharing, given the gap between their perceived privacy risks

before and after joining the system. Note that privacy in SIoT will take different forms

and will depend on device types (e.g., home appliances, health monitoring devices, security

devices), different phases in the device life-cycle (e.g., operation, maintenance phases), data

processing phases (communicating, processing, storing and sharing data), and interaction

with devices and other users in different social relationships. Privacy enhancing solutions for

the collaboration framework will be able to bootstrap a wide adoption of the new paradigm

of the SIoT and ultimately help to gain a new form of social capital obtained from new social

networks with people and connected devices.

108

BIBLIOGRAPHY

[1] EnOcean Equipment Profiles (EEP) v2.0.

[2] Facebook. Available: https://www.facebook.com.

[3] Microformats. Available: http://microformats.org/.

[4] OASIS device profile for web services (DPWS), 2009.

[5] The Social Web of Things, 2012. Available: https://www.youtube.com/watch?v=

i5AuzQXBsG4.

[6] Social Networking Fact Sheet, 2014. Available: http://www.pewinternet.org/

fact-sheets/social-networking-fact-sheet/.

[7] Amazon Mechancal Turk, 2015. Available: https://www.mturk.com/.

[8] Amazon Web Services, 2015. Available: https://aws.amazon.com/.

[9] Atooma, 2015. Available: http://www.atooma.com/.

[10] CES 2015 LG - smart home, 2015. Available: https://www.youtube.com/watch?v=

-AsuUdi1BiY.

[11] Google forms, 2015. Available: https://www.google.com/forms.

[12] IFTTT, 2015. Available: https://ifttt.com/.

[13] Jawbone APIs, 2015. Available: https://jawbone.com/up/developer.

[14] NEST APIs, 2015. Available: https://developer.nest.com.

[15] Philips Hue APIs, 2015. Available: https://www.developers.meethue.com.

[16] Prosyst OSGi Services, 2015. Available: http://www.prosyst.com.

[17] WigWag, 2015. Available: http://wigwag.com/.

109

https://www.facebook.com
http://microformats.org/
https://www.youtube.com/watch?v=i5AuzQXBsG4
https://www.youtube.com/watch?v=i5AuzQXBsG4
http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/
http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/
https://www.mturk.com/
https://aws.amazon.com/
http://www.atooma.com/
https://www.youtube.com/watch?v=-AsuUdi1BiY
https://www.youtube.com/watch?v=-AsuUdi1BiY
https://www.google.com/forms
https://ifttt.com/
https://jawbone.com/up/developer
https://developer.nest.com
https://www.developers.meethue.com
http://www.prosyst.com
http://wigwag.com/

[18] Drools expert user guide, The JBoss Drools team. Available: https://docs.jboss.

org/drools/release/5.6.0.Final/drools-expert-docs/html/.

[19] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, information
sharing, and privacy on the Facebook. In Proceedings of the 6th International Conference
on Privacy Enhancing Technologies, PET’06, pages 36–58, Berlin, Heidelberg, 2006.
Springer-Verlag.

[20] Gail-Joon Ahn, Hongxin Hu, and Jing Jin. Security-enhanced OSGi service environ-
ments. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, 39(5):562–571, Sept 2009.

[21] Dean Allemang and James Hendler. Semantic Web for the working ontologist: effective
modeling in RDFS and OWL. Elsevier, 2011.

[22] OSGi Alliance. OSGi service platform release 4 version 4.2 core specification, 2009.

[23] Z-Wave Alliance. Z-wave specification. 2015.

[24] ZigBee Alliance. Zigbee home automation public application profile. IEEE J. Select.
Areas Commun, 2007.

[25] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-SPARQL: a
unified language for event processing and stream reasoning. In Proceedings of the 20th
international conference on World wide web, pages 635–644. ACM, 2011.

[26] Konnex Association et al. Knx specification, 2004.

[27] Luigi Atzori, Davide Carboni, and Antonio Iera. Smart things in the social loop:
Paradigms, technologies, and potentials. Ad Hoc Networks, 18:121–132, 2014.

[28] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[29] Luigi Atzori, Antonio Iera, and Giacomo Morabito. SIoT: Giving a social structure to
the internet of things. Communications Letters, IEEE, 15(11):1193–1195, 2011.

[30] Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The social internet of
things (SIOT)–When social networks meet the internet of things: Concept, architecture
and network characterization. Computer Networks, 56(16):3594–3608, 2012.

[31] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, 2001.

[32] Matthew Ball and Vic Callaghan. Managing control, convenience and autonomy-a study
of agent autonomy in intelligent environments., 2012.

110

https://docs.jboss.org/drools/release/5.6.0.Final/drools-expert-docs/html/
https://docs.jboss.org/drools/release/5.6.0.Final/drools-expert-docs/html/

[33] M Baqer. Enabling collaboration and coordination of wireless sensor networks via social
networks. In Distributed Computing in Sensor Systems Workshops (DCOSSW), 2010
6th IEEE International Conference on, pages 1–2. IEEE, 2010.

[34] Sean Bechhofer. Owl: Web ontology language. In Encyclopedia of Database Systems,
pages 2008–2009. Springer, 2009.

[35] Dave Beckett and Brian McBride. RDF/XML syntax specification (revised). W3C
recommendation, 10, 2004.

[36] David Beckett. N-Triples: A line-based syntax for an RDF graph, 2013.

[37] David Beckett, Tim Berners-Lee, and Eric Prud’hommeaux. Turtle-terse RDF triple
language. W3C Team Submission, 14, 2008.

[38] Vicenc Beltran, Antonio M Ortiz, Dina Hussein, and Noel Crespi. A semantic service
creation platform for social iot. In Internet of Things (WF-IoT), 2014 IEEE World
Forum on, pages 283–286. IEEE, 2014.

[39] Jacqueline L Bender, Maria-Carolina Jimenez-Marroquin, and Alejandro R Jadad. Seek-
ing support on facebook: a content analysis of breast cancer groups. Journal of medical
Internet research, 13(1), 2011.

[40] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable RDF syntax. W3C
Team Submission (Mar 2011).

[41] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

[42] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far. Seman-
tic Services, Interoperability and Web Applications: Emerging Concepts, pages 205–227,
2009.

[43] Bluetooth SIG, Inc. Bluetooth smart home, 2004.

[44] Jürgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking OWL reasoners.
In Proc. of the ARea2008 Workshop, Tenerife, Spain (June 2008), 2008.

[45] Dario Bonino and Fulvio Corno. Dogont-ontology modeling for intelligent domotic envi-
ronments. Springer, 2008.

[46] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16. ACM, 2012.

[47] Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC sensor web enable-
ment: Overview and high level architecture. In GeoSensor networks, pages 175–190.
Springer, 2008.

111

[48] Mike Botts and Alexandre Robin. OpenGIS sensor model language (SensorML) imple-
mentation specification. OpenGIS Implementation Specification OGC, 7(000), 2007.

[49] Ronald Brachman and Hector Levesque. Knowledge representation and reasoning. El-
sevier, 2004.

[50] Dan Brickley and Ramanathan V Guha. RDF vocabulary description language 1.0: Rdf
schema. 2004.

[51] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.98. Namespace document,
9, 2012.

[52] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A generic archi-
tecture for storing and querying rdf and rdf schema. In The Semantic WebISWC 2002,
pages 54–68. Springer, 2002.

[53] AJ Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan Saroiu, and Colin
Dixon. Home automation in the wild: challenges and opportunities. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 2115–2124.
ACM, 2011.

[54] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[55] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. Soupa: Standard ontology for
ubiquitous and pervasive applications. In Mobile and Ubiquitous Systems: Networking
and Services, 2004. MOBIQUITOUS 2004. The First Annual International Conference
on, pages 258–267. IEEE, 2004.

[56] Marshini Chetty, David Tran, and Rebecca E Grinter. Getting to green: understanding
resource consumption in the home. In Proceedings of the 10th international conference
on Ubiquitous computing, pages 242–251. ACM, 2008.

[57] Eun Cho, Chang-Joo Moon, and Doo-Kwon Baik. Home gateway operating model using
reference monitor for enhanced user comfort and privacy. Consumer Electronics, IEEE
Transactions on, 54(2):494–500, 2008.

[58] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, et al. Web
services description language (WSDL) 1.1, 2001.

[59] Michael Compton, Payam Barnaghi, Luis Bermudez, RaúL GarćıA-Castro, Oscar Cor-
cho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog,
et al. The SSN ontology of the W3C semantic sensor network incubator group. Web
Semantics: Science, Services and Agents on the World Wide Web, 17:25–32, 2012.

[60] Diane J. Cook, Michael Youngblood, Edwin O. Heierman, III, Karthik Gopalratnam,
Sira Rao, Andrey Litvin, and Farhan Khawaja. Mavhome: An agent-based smart home.
In Proceedings of the First IEEE International Conference on Pervasive Computing

112

and Communications, PERCOM ’03, pages 521–, Washington, DC, USA, 2003. IEEE
Computer Society.

[61] Taylor G Cowan. Jenabean: Easily bind JavaBeans to RDF. IBM DeveloperWorks,
2008.

[62] Paul Darbee. Insteon: The details. Smarthome Technology, pages 1–64, 2005.

[63] Scott Davidoff, Min Kyung Lee, Charles Yiu, John Zimmerman, and Anind K Dey.
Principles of smart home control. In UbiComp 2006: Ubiquitous Computing, pages
19–34. Springer, 2006.

[64] Scott Davidoff, Min Kyung Lee, John Zimmerman, and AK Dey. Socially-aware require-
ments for a smart home. In Proceedings of the international symposium on intelligent
environments, pages 41–44. Citeseer, 2006.

[65] Luigi De Russis and Fulvio Corno. Homerules: A tangible end-user programming in-
terface for smart homes. In Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems, pages 2109–2114. ACM, 2015.

[66] Sebastian Deterding. Gamification: designing for motivation. interactions, 19(4):14–17,
2012.

[67] Anind K Dey. Understanding and using context. Personal and ubiquitous computing,
5(1):4–7, 2001.

[68] Anind K Dey, Timothy Sohn, Sara Streng, and Justin Kodama. icap: Interactive proto-
typing of context-aware applications. In Pervasive Computing, pages 254–271. Springer,
2006.

[69] Andreas Dieberger. Supporting social navigation on the World Wide Web. International
Journal of Human-Computer Studies, 46(6):805–825, 1997.

[70] Pavlin Dobrev, David Famolari, Christian Kurzke, Brent Miller, et al. Device and service
discovery in home networks with osgi. Communications Magazine, IEEE, 40(8):86–92,
2002.

[71] Paul Dourish and Matthew Chalmers. Running out of space: Models of information
navigation. In Short paper presented at HCI, volume 94, pages 23–26, 1994.

[72] Bob DuCharme. Learning Sparql. O’Reilly Media, Inc., 2013.

[73] Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. Hydra: A development plat-
form for integrating wireless devices and sensors into ambient intelligence systems. In
The Internet of Things, pages 367–373. Springer, 2010.

113

[74] Nicole B Ellison, Charles Steinfield, and Cliff Lampe. Connection strategies: Social
capital implications of Facebook-enabled communication practices. New media & society,
page 1461444810385389, 2011.

[75] Orri Erling and Ivan Mikhailov. RDF support in the Virtuoso DBMS. In Networked
Knowledge-Networked Media, pages 7–24. Springer, 2009.

[76] Foundation for Intelligent Physical Agents. FIPA Device Ontology Specification. Avail-
able: http://www.fipa.org/specs/fipa00091/.

[77] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial intelligence, 19(1):17–37, 1982.

[78] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[79] N Georgantas et al. Amigo middleware core: Prototype implementation & documenta-
tion. IST Amigo Project Deliverable D, 3:2, 2006.

[80] W3C OWL Working Group et al. OWL 2 Web Ontology Language document overview.
2009.

[81] Thomas R Gruber. A translation approach to portable ontology specifications. Knowl-
edge acquisition, 5(2):199–220, 1993.

[82] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an osgi-based infrastructure
for context-aware applications. Pervasive Computing, IEEE, 3(4):66–74, 2004.

[83] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware for
building context-aware services. Journal of Network and computer applications, 28(1):1–
18, 2005.

[84] Tao Gu, Hung Keng Pung, Da Qing Zhang, Hung Keng Pung, and Da Qing Zhang. A
bayesian approach for dealing with uncertain contexts. na, 2004.

[85] Dominique Guinard, Mathias Fischer, and Vlad Trifa. Sharing using social networks in
a composable web of things. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Conference on, pages 702–707.
IEEE, 2010.

[86] Dominique Guinard and Vlad Trifa. Towards the web of things: Web mashups for em-
bedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight Com-
position on the Web (MEM 2009), in proceedings of WWW (International World Wide
Web Conferences), Madrid, Spain, page 15, 2009.

[87] Young-Guk Ha. Dynamic integration of zigbee home networks into home gateways using
osgi service registry. Consumer Electronics, IEEE Transactions on, 55(2):470–476, 2009.

114

http://www.fipa.org/specs/fipa00091/

[88] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Pervasive
computing and applications (ICPCA), 2011 6th international conference on, pages 363–
366. IEEE, 2011.

[89] Dick Hardt. The oauth 2.0 authorization framework. 2012.

[90] Markus C Huebscher and Julie A McCann. Adaptive middleware for context-aware
applications in smart-homes. In Proceedings of the 2nd workshop on Middleware for
pervasive and ad-hoc computing, pages 111–116. ACM, 2004.

[91] Apache Jena. Semantic Web framework for Java, 2007.

[92] Apache Jena. Apache jena. jena. apache. org [Online]. Available: http://jena. apache.
org [Accessed: Mar. 20, 2014], 2013.

[93] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: An infrastructure for
shared sensing. IEEE multimedia, (4):8–13, 2007.

[94] Fahim Kawsar, Tatsuo Nakajima, and Kaori Fujinami. Deploy spontaneously: sup-
porting end-users in building and enhancing a smart home. In Proceedings of the 10th
international conference on Ubiquitous computing, pages 282–291. ACM, 2008.

[95] Jan H Kietzmann, Kristopher Hermkens, Ian P McCarthy, and Bruno S Silvestre. So-
cial media? get serious! understanding the functional building blocks of social media.
Business horizons, 54(3):241–251, 2011.

[96] Ji Eun Kim. Integrify System Demo, 2015. Available: https://youtu.be/eE5QLZJELzU.

[97] Ji Eun Kim. Socialite Application Demo, 2015. Available: http://youtu.be/

B1C0lUXVCqY.

[98] Ji Eun Kim, Tassilo Barth, George Boulos, John Yackovich, Christian Beckel, and Daniel
Mosse. Seamless integration of heterogeneous devices and access control in smart homes
and its evaluation. Intelligent Buildings International, (ahead-of-print):1–18, 2015.

[99] Ji Eun Kim, George Boulos, John Yackovich, Tassilo Barth, Christian Beckel, and Daniel
Mosse. Seamless integration of heterogeneous devices and access control in smart homes.
In Intelligent Environments (IE), 2012 8th International Conference on, pages 206–213.
IEEE, 2012.

[100] Ji Eun Kim, Adriano Maron, and Daniel Mosse. Socialite: A flexible framework for social
internet of things. In Mobile Data Management (MDM), 2015 16th IEEE International
Conference on, volume 1, pages 94–103. IEEE, 2015.

[101] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse Walker.
Challenges in access right assignment for secure home networks. In HotSec, 2010.

115

https://youtu.be/eE5QLZJELzU
http://youtu.be/B1C0lUXVCqY
http://youtu.be/B1C0lUXVCqY

[102] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. Owlim–a pragmatic semantic
repository for owl. In Web Information Systems Engineering–WISE 2005 Workshops,
pages 182–192. Springer, 2005.

[103] Graham Klyne and Jeremy J Carroll. Resource description framework (RDF): Concepts
and abstract syntax. 2006.

[104] David Knoke and Song Yang. Social network analysis, volume 154. Sage, 2008.

[105] Jonathon Kopecky, Karthik Gomadam, and Tomas Vitvar. hrests: An html microformat
for describing restful web services. In Web Intelligence and Intelligent Agent Technology,
2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 1, pages 619–
625. IEEE, 2008.

[106] Jonathon Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Semantic
annotations for WSDL and XML schema. Internet Computing, IEEE, 11(6):60–67, 2007.

[107] Choonhwa Lee, David Nordstedt, and Sumi Helal. Enabling smart spaces with osgi.
Pervasive Computing, IEEE, 2(3):89–94, 2003.

[108] Jonathan Leibiusky, Gabriel Eisbruch, and Dario Simonassi. Getting started with storm.
O’Reilly Media, Inc., 2012.

[109] Dong Liu, Carlos Pedrinaci, and John Domingue. A framework for feeding linked data
to complex event processing engines. 2010.

[110] David Luckham. The power of events, volume 204. Addison-Wesley Reading, 2002.

[111] David C Luckham. Event processing for business: organizing the real-time enterprise.
John Wiley & Sons, 2011.

[112] Mary Madden. Public perceptions of privacy and security in the post-snowden era, 2014.
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/.

[113] Cliff Lampe Amanda Lenhart Mary Madden Maeve Duggan, Nicole B. Ellison. So-
cial media update 2014. Available: http://www.pewinternet.org/2015/01/09/

social-media-update-2014/.

[114] Niko Mäkitalo, Jari Pääkkö, Mikko Raatikainen, Varvana Myllärniemi, Timo Aaltonen,
Tapani Leppänen, Tomi Männistö, and Tommi Mikkonen. Social devices: collabora-
tive co-located interactions in a mobile cloud. In Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia, page 10. ACM, 2012.

[115] Jennifer Mankoff, Deanna Matthews, Susan R Fussell, and Michael Johnson. Leveraging
social networks to motivate individuals to reduce their ecological footprints. In System
Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on, pages
87–87. IEEE, 2007.

116

http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
http://www.pewinternet.org/2015/01/09/social-media-update-2014/
http://www.pewinternet.org/2015/01/09/social-media-update-2014/

[116] Dave Marples and Peter Kriens. The open services gateway initiative: An introductory
overview. Communications Magazine, IEEE, 39(12):110–114, 2001.

[117] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila McIl-
raith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, et al. OWL-S:
Semantic markup for web services. W3C member submission, 22:2007–04, 2004.

[118] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and Equinox: Creating highly
modular Java systems. Addison-Wesley Professional, 2010.

[119] Deborah L McGuinness, Frank Van Harmelen, et al. OWL Web ontology language
overview. W3C recommendation, 10(10), 2004.

[120] Peter Membrey, Eelco Plugge, and DUPTim Hawkins. The definitive guide to MongoDB:
the NoSQL database for cloud and desktop computing. Apress, 2010.

[121] Brenda M Michelson. Event-driven architecture overview. Patricia Seybold Group, 2,
2006.

[122] Peter Middleton, Peter Kjeldsen, and Jim Tully. Forecast: The internet of things,
worldwide, 2013. Gartner Research, 2013.

[123] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. Internet
of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–
1516, 2012.

[124] Tim Moses et al. Extensible access control markup language (xacml) version 2.0. Oasis
Standard, 200502, 2005.

[125] Catherine Moxey, Mike Edwards, Opher Etzion, Mamdouh Ibrahim, Sreekanth Iyer,
Hubert Lalanne, Mweene Monze, Marc Peters, Yuri Rabinovich, Guy Sharon, et al. A
conceptual model for event processing systems. IBM Redguide publication, 2010.

[126] Alan J Munro, Kristina Höök, and David Benyon. Social navigation of information
space. Springer Science & Business Media, 2012.

[127] Netatmo. NetAtMo APIs, 2015. Available: https://dev.netatmo.com.

[128] Mark W Newman. Now we’re cooking: Recipes for end-user service composition in the
digital home. 2006.

[129] Mark W Newman, Ame Elliott, and Trevor F Smith. Providing an integrated user
experience of networked media, devices, and services through end-user composition. In
Pervasive Computing, pages 213–227. Springer, 2008.

[130] Huansheng Ning and Ziou Wang. Future internet of things architecture: like mankind
neural system or social organization framework? Communications Letters, IEEE,
15(4):461–463, 2011.

117

https://dev.netatmo.com

[131] Natalya F Noy. Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Record, 33(4):65–70, 2004.

[132] GIS Open. Observation and Measurements (O&M) Implementation Specification. OGC
Geospatial Consortium INC, 2007.

[133] Antonio M Ortiz, Dina Hussein, Soochang Park, Son N Han, and Noel Crespi. The
cluster between internet of things and social networks: Review and research challenges.
Internet of Things Journal, IEEE, 1(3):206–215, 2014.

[134] Addy Osmani. Developing Backbone.js Applications. O’Reilly Media, Inc., 2013.

[135] Namsu Park, Kerk F Kee, and Sebastián Valenzuela. Being immersed in social net-
working environment: Facebook groups, uses and gratifications, and social outcomes.
CyberPsychology & Behavior, 12(6):729–733, 2009.

[136] Vctor Pelez, Roberto Gonzlez, Luis ngel San Martn, Antonio Campos, and Vanesa
Lobato. Multilevel and hybrid architecture for device abstraction and context information
management in smart home environments, pages 207–216. Springer, 2010.

[137] Antonio Pintus, Davide Carboni, and Andrea Piras. Paraimpu: a platform for a social
web of things. In Proceedings of the 21st international conference companion on World
Wide Web, pages 401–404. ACM, 2012.

[138] Alan Presser, Lee Farrell, Devon Kemp, and W Lupton. Upnp device architecture 1.1.
In UPnP Forum, volume 22, 2008.

[139] Seth Proctor et al. Sun’s xacml implementation. sunxacml. sourceforge. net, 2004.

[140] Eric Prud’Hommeaux, Andy Seaborne, et al. SPARQL query language for RDF. W3C
recommendation, 15, 2008.

[141] Parisa Rashidi and Diane J Cook. Keeping the resident in the loop: Adapting the smart
home to the user. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 39(5):949–959, 2009.

[142] Christian Reinisch, Mario J Kofler, Félix Iglesias, and Wolfgang Kastner. Thinkhome
energy efficiency in future smart homes. EURASIP Journal on Embedded Systems,
2011:1, 2011.

[143] Mark Richards, Richard Monson-Haefel, and David A Chappell. Java message service.
O’Reilly Media, Inc., 2009.

[144] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media, Inc., 2008.

[145] Alejandro Rodrıguez, Robert McGrath, Yong Liu, James Myers, and I Urbana-
Champaign. Semantic management of streaming data. Proc. Semantic Sensor Networks,
80, 2009.

118

[146] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stoll-
berg, Axel Polleres, Cristina Feier, Christoph Bussler, Dieter Fensel, et al. Web service
modeling ontology. Applied ontology, 1(1):77–106, 2005.

[147] Dave Rye. The x10 powerhouse powerline interface. Technical report, Technical report,
X10 PowerHouse, 2001.

[148] Ravi Sandhu and Qamar Munawer. How to do discretionary access control using roles.
In Proceedings of the third ACM workshop on Role-based access control, pages 47–54.
ACM, 1998.

[149] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based
access control models. Computer, (2):38–47, 1996.

[150] Martin Sarnovskỳ, Peter Kostelńık, Ján Hreňo, and Peter Butka. Device description in
hydra middleware. In Proceedings of the 2nd Workshop on Intelligent and Knowledge
oriented Technologies, pages 71–74, 2007.

[151] Jesse Schell. The Art of Game Design: A book of lenses. CRC Press, 2014.

[152] John Scott. Social network analysis. Sage, 2012.

[153] Amit Sheth, Cory Henson, and Satya S Sahoo. Semantic sensor web. Internet Comput-
ing, IEEE, 12(4):78–83, 2008.

[154] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical owl-dl reasoner. Web Semantics: science, services and agents on the
World Wide Web, 5(2):51–53, 2007.

[155] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action. Manning, 2011.

[156] Lorenzo Sommaruga, Antonio Perri, and Francesco Furfari. DomoML-env: an ontology
for Human Home Interaction. In SWAP, volume 166. Citeseer, 2005.

[157] S Sorrell. Smart home ecosystems & the internet of things-strategies & forecasts 2014-
2018. Juniperresearch. com. Retrieved August, 29:2014, 2014.

[158] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindström.
JSON-LD 1.0. W3C Recommendation (January 16, 2014), 2014.

[159] Apache Storm. Storm, Distributed and Fault-Tolerant Real-time Computation. 2014.

[160] ITU Strategy and Policy Unit. Itu internet reports 2005: The internet of things. Geneva:
International Telecommunication Union (ITU), 2005.

[161] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.

119

Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 147–156. ACM, 2014.

[162] RDF Turtle-Terse. Triple language. W3C Team Submission, 14, 2008.

[163] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. Practical
trigger-action programming in the smart home. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 803–812. ACM, 2014.

[164] Dimitar Valtchev and Ivailo Frankov. Service gateway architecture for a smart home.
Communications Magazine, IEEE, 40(4):126–132, 2002.

[165] Tam Van Nguyen, Wontaek Lim, Huy Nguyen, Deokjai Choi, and Chilwoo Lee. Context
ontology implementation for smart home. arXiv preprint arXiv:1007.1273, 2010.

[166] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology based
context modeling and reasoning using owl. In Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages 18–22.
Ieee, 2004.

[167] Zhiqiang Wei, Shuwei Qin, Dongning Jia, and Yongquan Yang. Research and design
of cloud architecture for smart home. In Software Engineering and Service Sciences
(ICSESS), 2010 IEEE International Conference on, pages 86–89. IEEE, 2010.

[168] Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu. Service-oriented smart-home architec-
ture based on osgi and mobile-agent technology. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, 37(2):193–205, 2007.

[169] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing
over streams. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 407–418. ACM, 2006.

[170] Tao Zhang and Bernd Brügge. Empowering the user to build smart home applications.
In ICOST 2004 International Conference on Smart Home and Health Telematics, 2004.

120

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Statistics for execution time (ms) of service calls to lamp device
	2. New proposed relationship types in Socialite
	3. Fields grouping input distribution per user

	LIST OF FIGURES
	1. High level architecture for smart home systems
	2. Core software building blocks for the home gateway
	3. Device stack (a, left) and an instance of Insteon device (b, right)
	4. New controller discovery process for the unknown controller driver to the gateway
	5. ZigBee end device discovery process
	6. Integrify message framework
	7. Excerpt of the ontology representation
	8. Access control design concept
	9. Integrify demonstrator
	10. Execution time of service calls for the different experimental settings
	11. Graphical representation of the new social relationships in Socialite
	12. Demographics of participants
	13. Distribution (%) of the nine feature categories from the user survey analysis
	14. Distribution of programming experience, end user programming acceptance, sharing rules, SIoT acceptance
	15. Socialite system overview
	16. RDF graph with two nodes (Subject and Object) and a triple connecting them (Predicate)
	17. Graphical representation of the core ontologies in Socialite (Shortend)
	18. Example of physical and logical devices of thermostat
	19. Common semantic models for devices
	20. Broker topology in event-driven architecture
	21. Status update from (1) the physical devices, (2) the client application, and (3) from the reasoning engine
	22. Storm cluster concept
	23. Storm topology in Socialite
	24. Event-driven distributed architecture
	25. High level view of production rule system droolsdoc
	26. Mapping categorized features from the user survey to rule categories and other functions
	27. Intermediate common data models between the data payload in REST APIs and Drools domain specific language
	28. Rule sharing concept
	29. Socialite Web based user interfaces
	30. End-user programming user interface
	31. Socialite client architecture overview with a rule creation example
	32. Dynamically accessible Socialite APIs
	33. Socialite deployment view on Amazon Web Services (AWS)

	LIST OF CODES
	1. Example of XACML policy (shortened): Permit kids to turn on entertainment devices only before 7 PM
	2. Example of Java class with JenaBean annotation
	3. Example of resource representation in Turtle format
	4. Basic structure of the rule model in the production rule system
	5. Context generation rule example
	6. Automation example with user-defined context
	7. Example of JSON payload

	PREFACE
	1.0 INTRODUCTION
	1.1 PROBLEM DEFINITION
	1.2 CONTRIBUTIONS

	2.0 RELATED WORK
	2.1 SMART HOME ARCHITECTURES
	2.2 SEMANTIC MODELS FOR SMART HOMES
	2.3 SMART HOME ACCESS CONTROL
	2.4 SOCIAL INTERNET OF THINGS
	2.5 REASONING ENGINES
	2.6 END USER PROGRAMMING FOR SMART HOMES

	3.0 INTEGRIFY: SEAMLESS INTEGRATION OF HETEROGENEOUS DEVICES IN SMART HOMES
	3.1 REQUIREMENTS FOR SMART HOME ARCHITECTURE
	3.2 SMART HOME ARCHITECTURE
	3.2.1 Smart Home Gateway Architecture
	3.2.1.1 Background of OSGi
	3.2.1.2 Home Network Communication Technologies
	3.2.1.3 Smart Home Device Stack and Discovery

	3.2.2 Message Framework
	3.2.3 Semantic Integration
	3.2.3.1 Reasoning Engines

	3.3 ACCESS CONTROL FOR SMART HOMES
	3.3.1 Policy Model
	3.3.2 Access Control Architecture and Design

	3.4 INTEGRIFY IMPLEMENTATION: PROOF OF CONCEPT
	3.4.1 Implementation
	3.4.2 Evaluation

	4.0 SOCIALITE: A CLOUD BASED DISTRIBUTED COLLABORATION FRAMEWORK FOR SOCIAL INTERNET OF THINGS
	4.1 NEW SOCIAL RELATIONSHIPS AND APPLICATIONS
	4.1.1 New Social Relationships
	4.1.2 New Applications Leveraging New Social Relationships

	4.2 USER SURVEY: SOCIAL INTERNET OF THINGS FOR SMART HOME SYSTEMS
	4.2.1 Methodology
	4.2.2 Demographics
	4.2.3 Categorization of SIoT Features
	4.2.4 Observation of Relationship Types and Device Life-cycle Relevance
	4.2.5 Acceptance of SIoT, End User Programming and Sharing Rules

	4.3 NON-FUNCTIONAL REQUIREMENTS
	4.4 SOCIALITE SYSTEM OVERVIEW
	4.5 SOCIALITE SEMANTIC MODELS
	4.5.1 Background of Technologies in Semantic Web
	4.5.2 Socialite Semantic Model Description

	4.6 SOCIALITE SERVER ARCHITECTURE
	4.6.1 Interoperability for Various Manufacturer's APIs
	4.6.1.1 Physical and Logical Devices
	4.6.1.2 Common Device Model and Manufacturer Specific Device Implementation

	4.6.2 Persistent Management and Repositories
	4.6.2.1 Semantic Model Management and Its Repository
	4.6.2.2 Device History Management and Its Repository
	4.6.2.3 Rule Management and Its Repository

	4.6.3 Scalability with Event-Driven Architectural Pattern
	4.6.3.1 Background of Event-Driven Architectures
	4.6.3.2 Socialite Event Channels
	4.6.3.3 Socialite Event Generators
	4.6.3.4 Event Processing Styles

	4.6.4 Large Scale Reasoning over Data Streams
	4.6.4.1 Background of Apache Storm
	4.6.4.2 Socialite Storm Topology

	4.7 END USER EMPOWERED REASONING FRAMEWORK
	4.7.1 Socialite Reasoning Framework
	4.7.1.1 Background of Reasoning Engines
	4.7.1.2 Socialite Reasoning Concept
	4.7.1.3 Rule Transformation to Domain Specific Language
	4.7.1.4 Rule Management and Sharing

	4.7.2 Socialite Client Application
	4.7.2.1 Features
	4.7.2.2 End User Programming for Rules
	4.7.2.3 Architecture Overview

	4.8 SOCIALITE IMPLEMENTATION: PROOF OF CONCEPT
	4.8.1 Implementation
	4.8.2 Evaluation of Architecture
	4.8.2.1 Interoperability Evaluation
	4.8.2.2 Scalability Evaluation
	4.8.2.3 Extensibility Evaluation

	5.0 CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

