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BAYESIAN FRAMEWORKS FOR PARSIMONIOUS MODELING OF MOLECULAR 

CANCER DATA 

Arturo López Pineda, M.S. 

University of Pittsburgh, 2015 

In this era of precision medicine, clinicians and researchers critically need the assistance of 

computational models that can accurately predict various clinical events and outcomes (e.g,, 

diagnosis of disease, determining the stage of the disease, or molecular subtyping). Typically, 

statistics and machine learning are applied to ‘omic’ datasets, yielding computational models that 

can be used for prediction. In cancer research there is still a critical need for computational 

models that have high classification performance but are also parsimonious in the number of 

variables they use. Some models are very good at performing their intended classification task, 

but are too complex for human researchers and clinicians to understand, due to the large number 

of variables they use. In contrast, some models are specifically built with a small number of 

variables, but may lack excellent predictive performance. 

This dissertation proposes a novel framework, called Junction to Knowledge (J2K), for 

the construction of parsimonious computational models. The J2K framework consists of four 

steps: filtering (discretization and variable selection), Bayesian network generation, Junction tree 

generation, and clique evaluation. The outcome of applying J2K to a particular dataset is a 

parsimonious Bayesian network model with high predictive performance, but also that is 

composed of a small number of variables. Not only does J2K find parsimonious gene cliques, but 

also provides the ability to create multi-omic models that can further improve the classification 

performance. These multi-omic models have the potential to accelerate biomedical discovery, 

followed by translation of their results into clinical practice. 
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1.0  INTRODUCTION 

In medicine, cancer is one of the leading causes of morbidity and mortality worldwide. 

According to the International Agency for Research on Cancer (IARC) of the World Health 

Organization (WHO), in 2012 there were approximately 14,000,000 new cancer cases, and 

8,200,000 cancer related deaths (World Health Organization 2012). The WHO World Cancer 

Report 2014 (Stewart & Wild 2014) highlights the importance of cancer control programs given 

the high burden of disease that cancer represents. For example, one in four deaths in the United 

States is due to cancer (R. Siegel et al. 2014). Globally, breast cancer is the leading cause of 

cancer death in females; similarly, lung cancers are the leading cause of cancer death in males. 

Cancer incidence rate in developed countries is double of that in developing countries, and 

survival tends to be poorer in developing countries (Jemal et al. 2011). By 2030, the WHO 

estimates that the global number of cancer cases will rise 69% to 21,000,000, and the number of 

cancer deaths will rise 72% to 13,000,000 (Zarocostas 2010), primarily because of population 

growth. However, the American Cancer Society (ACS) also estimates that there has been a 

decline in cancer deaths since 1991, mainly due to early detection and improved treatments. 

Early detection of cancer, also known as screening, has been shown to be associated with 

reduction in mortality. For example, in breast cancer the reduction in mortality is approximately 

20% (Myers et al. 2015) when following the screening recommendations of the ACS. These 

guidelines include non-invasive methods like self-examination, clinical imaging (X-ray, CT-
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scan, MRI). However, each method has its own limitations that make it difficult to identify 

occult lesions. For example, in a prospective study [3] with 1,909 women, the sensitivity and 

specificity of screening methods for breast cancer was assessed in the task of tumor 

identification. In this study, the sensitivity for self-examination was 17.9%, for mammography 

33%, and for MRI 79.5%, while the specificity was 98.1%, 95%, and 89.8% respectively. In a 

different prospective study [4] with 649 women, the sensitivity for mammography was 40%, and 

for MRI was 77%, while the specificity was 93% and 81% respectively. Overall, the specificity 

of all these methods is much higher than the sensitivity; hence, the adverse consequences for the 

individuals that are falsely classified need to be addressed, and new diagnostic methods are 

needed to improve both the sensitivity and specificity of diagnosis. 

Patients with positive screening test results would be given a diagnostic test. These tests 

are used to determine the presence and severity of cancer. Diagnostic tests also are used to gather 

more information about the cancer to guide decisions about treatment. Diagnosis of cancer is 

done with the use of invasive methods, like biopsy or surgery, where a small sample of tissue is 

extracted from the patient to be analyzed by a pathology laboratory. The analysis includes the 

inspection of the tissue under a microscope to search for differential cellular structures. Other 

studies such as immunohistochemistry (IHC) can be used to detect protein receptors in the cells 

of a tissue, i.e., in breast cancer ER, PR, and HER2. 

Clinicians and researchers could benefit from precise diagnostic capabilities using 

computational analysis of genomic, proteomic, and epigenomic data [13]. For example, the 

clinical impact of genomic testing in cancer was recognized by the American Society of Clinical 

Oncology (ASCO) in 2010, when it updated its policy on diagnostic testing to highlight the 

importance of assessing the presence of BRCA1 mutation [9] for breast cancer diagnosis. In 
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recent years, high-throughout “omic” methods have allowed the identification of groups of 

molecular biomarkers for breast cancer, leading to the development of genomic assays that are 

used in the clinical practice. For example, PAM50 (Parker et al. 2009) is a 50-gene classifier that 

improves significantly the subtype prediction of breast cancer subtypes, leading to better 

prognosis. Oncotype DX® (Lyman et al. 2007) is a 21-gene classifier for the risk of recurrence 

in estrogen receptor-positive women with early-stage breast cancer receiving tamoxifen.  

Although previous genomic assays have been shown to be highly sensitive and specific 

when searching for the intrinsic subtypes of cancer, the development of these assays is still a 

lengthy process (Bastien et al. 2012). Identifying these classifiers from high-throughput data is 

still an open problem. In 2001, the value of network thinking was already recognized to be 

essential to science, since there is a struggle to interpret the data from genomics at the time 

(Strogatz 2001). More recently, gene networks have been used to explain the interactions of 

genes in cancer-related research questions. Some examples of these complex networks can be 

seen in Figure 1 (Kairov et al. 2012), (Correia et al. 2014), (Qabaja et al. 2014), (J. Liu et al. 

2015). Many molecular cancer studies deliver results in the form of a ranked list of gene names, 

but there is an unsolved problem of using this information in downstream analysis to create a 

diagnostic or predictive gene signature for a disease (Kairov et al. 2012). The use of networks is 

a promising tool to represent the association between gene expression and disease (Qabaja et al. 

2014). The example networks in Figure 1 are not classification models, because they only 

represent relationships between molecular elements, but they do not depict the disease-class 

directly. 
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Figure 1. Examples of complex networks. 

In top-left Kairov et al. (2012), in top-right Correia et al. (2014), in bottom-left Quabaja (2014), and in 

bottom-right Liu et al. (2015). 

1.1 THE PROBLEM 

There is a critical need to build disease models that are useful in clinical practice for 

screening, diagnosis, monitoring, or prognosis of cancer patients. However, there are two main 

challenges in building those models: 1) finding an efficient method that can build accurate 

models from molecular cancer data, and 2) interpreting those models (functional analysis and 

validation of results). The first challenge deals with classification performance of the models, 

where models should be able to predict the disease state of the patient. The second challenge 
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deals with the parsimony of the models (number of variables in the model), so that these models 

can be interpreted and used in downstream translational research. 

1.1.1 Modeling molecular cancer data 

Analysis of molecular cancer data produced by high-throughput technologies involves the 

following challenges: 1) dimensionality of data, 2) missing data, 3) discretization, 4) feature 

selection, and 5) model building. This section explores some of the problems when dealing with 

these challenges in molecular cancer studies. 

Dimensionality of data. Typically, molecular cancer datasets are composed of large 

number of variables that are on the order of thousands (e.g., Illumina’s Infinium Human DNA 

Methylation 27K has 27,578 variables) to millions of variables (e.g., next-generation 

sequencing). In contrast, the number of cases and controls in those datasets is relatively small, 

ranging from tens of samples to a few hundred. The problem of sample availability is usually 

restricted by the clinical problem being analyzed (i.e., prevalence of disease), economical factors 

regarding the study (e.g., cost of enrolling patients), and quality of the data (e.g., batch effect or 

missing clinical information). Given the abundance of variables for each sample, the selection of 

an appropriate classification method is of critical importance in modeling molecular data from 

cancer samples. 

Missing data. Imputation methods can infer the most probable value for missing 

information. The effect of imputation results in an slight improvement to the classification in 

genomic datasets (De Souto et al. 2015). Another approach consists of building computational 

models that can handle missing data without imputation. Bayesian classifiers have been used to 

represent the presence or absence of data, leading to information value on its own (J. H. Lin & 
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Haug 2008). However, in molecular cancer high-throughput technologies, the problem of 

missing data is becoming less frequent as new sequencing machines are being developed. 

Nevertheless, in clinical care missing data remains an important challenge to address. 

Discretization. The use of an efficient discretization strategy has been shown to have the 

capacity of improve performance of machine learning classifiers (Dougherty et al. 1995). 

However, one challenge in genomic datasets is the identification of the appropriate discretization 

strategy that might later have a downstream effect in the interpretability of the models resulting 

from this discretization. Modeling an efficient discretization schema will be of critical 

importance in the selection of a computational model that describes the data. 

Feature selection. Most machine learning algorithms would like to avoid some of the 

problems associated with learning from large numbers of irrelevant features or variables (Saeys 

et al. 2007). The use of a feature selection method can lead to: a) avoiding overfitting and 

improving model performance, and b) providing faster and more accurate methods. The 

challenge of finding an appropriate feature selection mechanism for genomic data is important, 

since there was a considerable effort taken to obtain the data in the first place. Typically, in 

genomic data analysis selecting the differentially expressed genes would be used as the default 

feature selection mechanism. This is a good strategy if the intent is to find those genes that have 

the largest variations between cases and controls. However, in computational modeling 

sometimes there is a need to find the group of genes that jointly provide the best separability of 

the class, and not just a group of genes that individually separate well. Finding the group of 

genes that performs this task well can be challenging. 

Model building. Building computational methods for disease classification of cancer is a 

task that has accompanied the development of high-throughput technologies. For example 
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Aliferis et al. (Aliferis et al. 2002) compared several machine learning methods in the task of 

classifying between lung cancer subtypes. Although the results were promising, achieving an 

accuracy of up to 89%, the number of variables was not a critical factor for this study (ranging in 

the order of 388 genes used in the machine learning models). More recently, the same 

investigators (Statnikov et al. 2013) compared several modern machine learning models using 

high-throughput data to achieve higher classification performances. Nevertheless, the main 

objective of both studies was not the number of features used for the high classification.  

There is big potential to keep exploring computational models that accelerate 

translational research, facilitating improved diagnosis and personalized treatment options for 

patients. For example, a study by Chang and Ramoni (Chang & Ramoni 2009), yielded a 25-

gene classifier that can distinguish between lung cancer subtypes with 95% accuracy. 

1.1.2 Interpreting the models 

Often, computational models built from data are very complex. In most cases it is hard 

for human researchers to interpret the large number of nodes and connections that those models 

have. With complex genomic datasets, Bayesian networks create computational models that are 

difficult to visualize and interpret (Cossalter et al. 2011). Computational models are often very 

good at performing their intended classification task, but they are far too complex for human 

researchers to understand. In the genomic data analysis described in Section 1.1, it is illustrated 

that the computational models created will be further investigated by functional analysis and then 

validated via experimental validation (in the wet lab). It is a big burden for human researchers to 

validate a few interesting genes, which involves a significant amount of time, effort and money 

to perform a validation study of those genes. 
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Parsimony is a concept that deals with providing the same results with feweer resources. 

In the case of computational models, it would mean providing the same classification 

performance as a big model, with fewer variables. There is a critical need to develop models that 

are (a) computationally efficient as the larger complex models, (b) have less cognitive burden for 

human users. 

1.2 THE APPROACH 

This dissertation explores a novel framework to build parsimonious computational 

models that can be used for translational research in cancer. This framework builds upon various 

previously developed algorithms, using them in a way that creates a novel data pipeline. The 

resulting data-driven model cannot be achieved with the use of only one or some of the 

components. The overall goal is to develop an automated way to create computational models 

that can perform classification for a specific biomedical task in cancer research. These models 

should have two important characteristics: 1) be able to achieve high classification performance, 

and 2) have small number of variables, i.e., be parsimonious. 

In particular, this work develops a post-classification framework called “Junction to 

Knowledge” (J2K) that is composed of four elements: a) filtering, b) Bayesian network 

generation, c) Junction tree generation, and d) clique evaluation. 

In the filtering step, all variables are discretized into one or more intervals using Fayyad 

and Irani’s minimum description length principle cut (MDLPC) (Fayyad & Irani 1993), and 

removing those features that have a single interval. Then, feature selection is performed using the 

multivariate ReliefF algorithm [23], where the nearest neighbor samples (weighted by distance) 



 9 

are used to calculate the feature contribution to class separability. The top scoring features are 

selected from this step. 

In the model building step, an augmented naïve Bayesian model (ANB) is built. ANB is a 

specific type of Bayesian classifier where most variables (nodes) are conditionally dependent 

(children) of the target node (class variable), but there are also conditional dependencies between 

the nodes. The Efficient Bayesian Multivariate Classifier (EBMC) [24] is used to build an ANB 

model. EBMC greedily searches over the subspace of Bayesian networks that best predict the 

target node. To make the search efficient, it initially starts with an empty model and it identifies 

the set of nodes that are independent parents of the target and predicts it well. Then, EBMC 

transforms the temporary network into its statistically equivalent network where the parent nodes 

become children of the target with arcs between them. It then iterates the search for a new set of 

parents given the current structure. Finally, it greedily eliminates arcs between the children 

nodes. 

In the Junction tree generation step, the directed Bayesian network from the previous step 

is used to create an undirected graph. First, the graph is moralized, which adds a connection 

between every two nodes that have a common children node. Then, the directionality of the 

network is removed. Triangulation of the network is a process that normally would be part of the 

Junction tree generation step, but it is not necessary since the network is already triangulated 

given that the seeded Bayesian network is an ANB. Later, the cliques of the network are found 

and a network of cliques is built (Junction tree). 

In the clique evaluation step, each clique is successively evaluated in the original 

Bayesian network for classification performance. Each clique that contains the target node is 

extracted as a sub-network, where the classification performance can be tested for the smaller 



 10 

network, similarly as it would be done in a complete network. The best performing clique is 

selected from this step. 

Finally, parsimonious models build from J2K can be used to create a multi-omic data 

integration model. For some cancer-related classification tasks, the use of single-omic datasets 

does not achieve high classification performance, as for example determining the stage of cancer 

in a tumor. Hence, the use multi-omic datasets can improve performance. 

1.2.1 Thesis 

The central thesis of this dissertation is that the J2K framework produces parsimonious 

computational models with two properties: high classification performance and small number of 

variables. The parsimonious groups of variables are nodes in a Bayesian network, which 

represents genes of interest for a particular biomedical question. 

Based on the experiments performed on publicly available cancer datasets, the following 

specific conjectures are investigated: 

Claim 1. The components in the J2K framework, and the specific sequence of use, provide a 

mechanism for the identification of a parsimonious Bayesian network model with high 

classification performance. 

a. MDLPC discretization finds intervals in gene expression or methylation data that can 

be used to build a parsimonious model, effectively reducing the high dimensionality of 

data by removing variables with single intervals. 

b. ReliefF feature selection facilitates finding groups of genes or methylation sites that 

discriminate between disease states. 
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c. EBMC facilitates the search of a Bayesian network that provides a parsimonious 

classifier. 

d. Post classification processing improves the parsimony of a classifier. 

Claim 2. The single-omic parsimonious models created by J2K can be used to create multi-omic 

models. 

1.3 SIGNIFICANCE 

This section discusses the significance that would follow if the above hypothesis and 

conjectures are supported by the experimental results. From an informatics perspective, the J2K 

framework uses existing algorithms to successively transform ‘omic’ data into a computational 

model. This data-driven approach creates a computationally efficient Bayesian network, which 

J2K transforms into a parsimonious network with the same computational efficiency as the 

complete network. The novelty of this approach consists in the way Junction-trees are used to 

extract a parsimonious model from a larger model. Unfortunately, current frameworks and 

pipelines produce models that are computationally efficient for a particular classification task, 

but do not focus on reducing the number of variables that the model uses. 

The J2K framework builds Bayesian networks (BNs) (Neapolitan 2012), which 

traditionally have been used in other domains to perform probabilistic inference; and Junction 

trees (JTs) (Lauritzen & Spiegelhalter 1988), which have been widely applied to propagate belief 

over a network and compute exact posterior probabilities (Serang 2014). While there are many 

computational algorithms that can assist in the creation of Junction trees, their application to 

finding a parsimonious model is new. 
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From a biomedical perspective, the immediate impact of a parsimonious model generated 

by J2K will be the identification of a computational classifier that can be used for translational 

research. The gene regulatory networks, extracted from a data-driven analysis using the J2K 

framework, could lead to new findings in cancer research. Three translational research 

classification tasks can benefit from this research: 1) distinction between tumor and tumor-

adjacent normal samples, 2) molecular subtyping, and 3) cancer stage prediction. Building 

parsimonious models for each of these tasks can facilitate biological understanding by clinicians 

and researchers. A parsimonious model of genes can be investigated through experimental 

research in a laboratory and diagnostic tests with small number of genes could be a direct 

consequence of this study. 

1.4 DISSERTATION OVERVIEW 

The remainder of this dissertation is organized as follows. Chapter 2 provides relevant 

background information on the use of parsimonious models for genomic data analysis, with 

special emphasis in the use of Bayesian networks and Junction trees. Chapter 3 describes the J2K 

framework in detail, including an extension for application to multi-omic data integration, and 

provides descriptions of the datasets used. Chapter 4 provides an annotated example using J2K 

applied to breast cancer data. Chapter 5 presents experiments done to evaluate the J2K 

framework, that include comparisons to alternative algorithms in each step of the framework. 

Chapter 6 presents conclusions and discusses future plans. 
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2.0  BACKGROUND 

In this chapter, background on what constitutes a parsimonious model is provided, 

including some examples of most common methods that are described in the literature. Later, use 

of Junction trees in biomedical datasets is discussed, to support the idea of using J2K as a tool 

for finding parsimonious data models. In addition, background on functional modules is 

provided. Finally, these methods can be applied to the integrative multi-omic approach, which 

has been recently explored in the literature. 

2.1 ANALYSIS WORKFLOW OF MOLECULAR DATA 

Allison et al. (Allison et al. 2006) reported a typical workflow for the analysis of 

microarray data. Their workflow includes five steps: design, preprocessing, inference, 

classification, and validation of findings. A more recent model by Braun (Braun 2014) depicted a 

process with six steps: generating high-throughput data, experimental design, gene-level 

statistical analysis, identifying functional modules, dimension reduction, and pathway analysis. 

Another example is the process proposed by Karimpour-Fard et al. (Karimpour-Fard et al. 2015) 

with four steps: observe data and quality control, traditional statistics, dimension reduction with 

machine learning, and pathway analysis. A combination of the previous genomic analysis 

workflows can be distilled in the workflow shown in Figure 2, which involves five steps: data 
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generation (experimental design), preprocessing, or low-level analysis, modeling, functional 

analysis (pathway analysis), and validation of findings.  

 
Figure 2. Genomic data analysis workflow 

Data generation is the step of the workflow where high-throughput sequencing 

machines are used to analyze biopsies, and obtain genomic data for analysis. The internal 

validity of the experiment needs to consider the following concerns: 1) The use of optimal 

number of replicates to increase stability of the microarray measurements (Zakharkin et al. 

2006). Biological replicates are used to address biological variance, and technical replicates are 

used to avoid measurement error of the assay (Kerr 2003); 2) Increasing the sample size to 

improve the power of an stratified experiment (C. Wei et al. 2004); 3) Pooling biological 

samples to increase power (W. Zhang et al. 2007); and 4) Avoiding confounding factors (i.e., 

patients under different treatment plans).  

The preprocessing (or low-level analysis) step uses statistical methods to remove 

systematic variation. These quality-control measures are critically important in any high-

throughput study to provide certainty about the results (X. Wang et al. 2003). Robust multiarray 

analysis (RMA) is the most widely used preprocessing algorithm for Affymetrix and Nimblegen 

gene expression microarrays (McCall et al. 2012). RMA performs background correction, 

normalization, and summarization in a modular way. Meanwhile, common methods for RNA-seq 

normalization include: upper quartile scaling (UQ) (Bullard et al. 2010), trimmed mean of M 

values (TMM) (Robinson & Oshlack 2010), reads per kilobase of exon model (RPKM) 

(Mortazavi et al. 2008), remove unwanted variation (RUV) (Risso et al. 2014). A variety of 
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factors or ‘batch effects’ can contribute unwanted variation to the data, dominating the signal of 

interest. The choice of normalization method affects the power and reproducibility of the results 

(Peixoto et al. 2015). Furthermore, there is a need to account for the specific cell composition, 

given that it has been shown to influence specific high-throughput technologies, e.g., DNA 

methylation (Maksimovic et al. 2015). 

The modeling step involves the use of computational approaches to attempt a division of 

the samples into classes with two approaches: 1) Unsupervised classification (class discovery), 

where the goal is the identification of novel groups of samples on the basis of their molecular 

profiles (Hastie et al. 2009); and 2) Supervised classification (class prediction), where the goal is 

the identification of a minimal set of genes that can be used to categorize well a new sample into 

one of several known types, based on its molecular profile. This dissertation focuses on 

supervised classification modeling. 

In the functional analysis step the objective is to find biological processes of the 

differentially expressed genes or variables found in the modeling step. There are many tools 

available that can be used for the biological interpretation of gene lists (Huang et al. 2009). 

Enrichment analysis is a computational method that determines whether an a priori defined set of 

genes shows statistically significant differences between two phenotypes. The tools used for 

enrichment annotation of genes use statistical correlation between the genes and the knowledge-

based ontologies available. The annotation can have 1) annotation for individual genes, 2) 

annotation for the entire list of genes, and/or 3) annotation of modules of genes along with their 

inter-relationships. Some of the popular knowledge-based functional analysis bioinformatics 

tools include National Center for Biotechnology Information’s “Database for Annotation, 

Visualization and Integrated Discovery” DAVID (Huang et al. 2007), Ingenuity Pathway 
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Analysis IPA
®
, 3) Illumina

®
’s NextBio

®
, and 4) the “Kyoto Encyclopedia of Genes and 

Genomes” (Ogata et al. 1999). 

In the validation of findings step, the discoveries and conclusions made in the previous 

phases can be confirmed by testing them in the laboratory or clinical setting. 

2.2 PARSIMONIOUS DATA MODELS 

The principle of parsimony, also known as “Ockham’s razor” was first introduced by 

William of Ockham, an English friar, in the 14
th

 century (Guyon et al. 2010) stating in Latin as 

“Plurilitas non est ponenda sin necessitate” (plurality should not be posited without necessity). 

This is a heuristic approach that searches for a minimal explanation. The term razor refers to 

distinguishing between two hypotheses either by "shaving away" unnecessary assumptions or 

cutting apart two similar conclusions. 

In machine learning, the parsimony principle states that if two models can adequately 

model a given set of data, the one that is described by a fewer number of parameters will have 

better predictive ability given new data (Seasholtz & Kowalski 1993). This property opens new 

possibilities to search for minimum cost models that can still be meaningful to the data 

(Goemans & Bertsimas 1993). A compelling argument in favor of parsimony is to reduce the 

over-fitting of models (Guyon et al. 2010). 

The need for parsimonious modeling has been addressed in various fields. In education, 

parsimonious models are used as tools to help students understand complex concepts by 

presenting simple models that still hold the truth of the phenomenon being studied (Nelson & A. 

F. Siegel 1987). In retail, parsimony is used to forecast the revenue of certain products (Sawhney 
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& Eliashberg 1996); or estimate the an equity index (Arnett et al. 2003). In finance, 

parsimonious models are built to estimate asset pricing (Guvenen 2009). In telecommunications, 

parsimonious models are used to facilitate controlling mobile networks (Piorkowski et al. 2009). 

In industrial engineering, parsimonious models help in determination of levels of merchandise 

for display in a store (Ho & Chong 2003). In biology, parsimony helps in organism classification 

(Carpenter 1988). Particularly in genomics, parsimonious modeling has been used to learn gene 

regulatory networks using biclustering methods (Bonneau et al. 2006). 

The application of parsimonious models often seeks to reduce overfitting. However, the 

parsimonious models in the examples described above also exhibit a common characteristic: the 

models created are meant for human use or interaction. This human component often means that 

there will be some interpretation of the model’s, that the models will be used in real time 

applications, or that the final computation of a process requires a decision by a human agent to 

keep processing. In cognitive psychology, the amount of elements of information that a human 

can process is typically framed by the heuristic rule of seven plus minus two (G. A. Miller 1956). 

Therefore, the human interpretation of parsimonious models would likely fall in the size of 

Miller’s law of cognitive information processing, where models would have seven plus minus 

two variables. 

In Machine Learning, the problem of learning a parsimonious model can be done with 

combinations of: a) preprocessing and feature selection, b) model building, and, c) post-

processing. The dimensionality of the variable space is typically reduced by feature selection 

methods (e.g., ReliefF), many machine learning algorithms also have feature selection embedded 

(e.g., EBMC), or they have a mechanism to reduce the number of variables (e.g., tree pruning, 
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backward elimination, regularization). Other alternatives include the use of wrappers or 

ensemble methods, but these are outside the scope of this dissertation. 

2.3 JUNCTION TREES FOR BIOMEDICAL DATA 

A Junction tree (Lauritzen & Spiegelhalter, 1988) is a tree-structured undirected graph, 

whose nodes correspond to cliques of variables, and whose links connect pairs of cliques that 

have variables in common. A clique is a subset of nodes in an undirected graph where any two 

nodes are connected by an edge. A Junction tree can serve as the computational structure for 

belief propagation in a Bayesian network (Pakzad & Anantharam 2005). Graph decomposition is 

a way to solve inference in large and complex Bayesian networks (Olesen & Madsen 2002), 

which is the task of updating the probabilities while evidence is being acquired. Message passing 

is a way to make an efficient inference in Bayesian network (Madsen 2004). This technique 

creates a secondary structure (Junction trees) that propagates all possible dependence relations. 

Belief propagation by message passing can converge to optimal solutions in polynomial time 

(McAuley et al. 2008), although in the worst case scenario this is not true. 

The use of Junction trees in biomedical datasets is an emerging field that has yet to be 

explored. A search in PubMed (MEDLINE) with the keyword (“junction tree/s”) retrieved a list 

of 12 articles, but only half of them deal with biomedical datasets. 

Totir et al. (Totir et al. 2009) used Junction trees to efficiently calculate the posterior 

probabilities of the genotype in cattle pedigree (26 individuals). A monogenic recessive disease 

affects some members of this pedigree. From the original cattle (3 individuals), the breeding 

patterns are known for the available three generations, with loops in the breeding pattern. 
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Junction trees solved the issue of dealing with loops, while facilitating the inference. Similarly, 

Slooten (Slooten 2011), also used Junction trees for calculating posterior probabilities of human 

pedigree for recognition of remains in a disaster. Slooten compared the DNA profiles of 

unidentified individuals with surviving relatives. First, a Bayesian network is constructed to 

capture the dependencies in the data, and then a Junction tree is built to compute the posterior 

probabilities given the available data. 

Serang and Noble (Serang & Noble 2012) used Junction trees to efficiently identify 

proteins in a mixture of tandem mass spectrometry. They compared their results with sampling 

and marginalization techniques, and found that the use of Junction trees is more efficient in time 

because it increases convergence in the message passing. Three protein datasets (C. elegans, H. 

influenza, S. cerevisiae) were used in their experiments. Protein mixtures are digested into 

peptides and separated by hydrophobicity. Each peptide population is fragmented into a tandem 

mass spectrum. The spectra are matched to a known database to score them for protein inference. 

Prutenau-Malinici et al. (Pruteanu-Malinici et al. 2013) describe a graphical model to 

label gene expression time series images of the Drosophila embryonic development. Junction 

trees are used to facilitate the inference of annotations in the images. This method, annotate all 

images at once, instead of individually. 

Martini et al. (Martini et al. 2013) analyzed gene sets of chronic myeloid leukemia from 

the biological pathway Kyoto Encyclopedia of Genes and Genomes (KEGG). First, they selected 

the differentially expressed genes of the pathway and constructed a Junction tree. Then, they 

define sub-paths using the structure of cliques and junctions given by the Junction tree. Later, the 

sub-paths are compared in biological correlation to the disease, and the most relevant is selected. 
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They validated the experiments with an acute lymphocytic leukemia dataset. The finding of a 

relevant sub-path was possible due to the use of Junction trees. 

2.4 MULTI-OMIC DATA INTEGRATION 

Clinicians and researchers could benefit from precise diagnostic capabilities of ‘omic’ 

technologies (Coughlin 2014). Integrating multiple ‘omic’ data types from the same cohort of 

patients is referred to as multi-omic data integration (Mason et al. 2014). Integrating information 

from multiple molecular elements of the cell to identify novel targets has the potential to 

improve the clinical management of cancer (W. Wang, Baladandayuthapani, Morris, et al. 2013). 

Multi-omic data integration pose challenges of time and effort required for analysis (Palsson & 

Zengler 2010), i.e., the human genome is estimated to have around 20,000 genes (Ezkurdia et al. 

2013), which represent an increasingly large number of variables to be analyzed. Integrating 

multi-omic datasets increases the time and effort required of analysis and data processing 

(Palsson & Zengler 2010), but also provides clues for new research topics and has the potential 

for transforming the biological insight (Payne 2015). Nevertheless, preliminary results show that 

the integrative approach can offer a more complete picture that can be used for biomarker 

discovery in cancer (Y. Liu et al. 2013). 

Multi-omic data integration could provide a complete picture of the underlying biology of 

a disease, where researchers need to understand the relationships between different data types 

merged in a unified model. For example, a recent whole-cell computational model was 

developed for a human pathogen including its molecular components and interactions (Karr et al. 

2012). This model was possible because of the simplicity of the organism, a parasite containing 
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525 genes. In contrast, the human genome is estimated to have around 20,000 genes (Ezkurdia et 

al. 2013). There is a need to integrate the phenotype with the various layers of molecular data 

from the genome to enable personalized medicine. Analyzing the resulting data from sequencing 

technologies is a research bottleneck in clinical studies. 

Multi-omic data integration aims to enable personalized medicine by using information 

from various molecular elements. Multi-omic data integration occurs when multiple ‘omic’ 

technologies are applied to samples from the same cohort of patients, with the purpose being the 

discovery of novel interactions between distinct molecules, or to improve the diagnostic 

capabilities of a model. This dissertation focuses on vertical genomic integration, where previous 

efforts in this area can be divided into two groups: a) mapping of molecular elements to provide 

a graphical representation of their functional involvement in a phenotype that adds to 

interactome knowledge, and b) supervised classification to find molecular elements that describe 

a phenotype. In the first group, multi-omic data integration is achieved by creating a network of 

interconnected gene-gene interactions from multi-omic data (Moulos et al. 2011); a network of 

interconnected protein-protein interactions from multi-omic data (Tieri et al. 2014); or a network 

of interconnected molecular elements based on functional enrichment analysis (Y. Liu et al. 

2013; Balbin et al. 2013). In the second group, multi-omic data integration is achieved by 

vertically merging multi-omic datasets and building machine learning algorithms (Stetson et al. 

2014; Jayawardana et al. 2015) or statistical regression (D. Lin et al. 2014) models for 

classification. All of these previous efforts have shown evidence that the use of multi-omic data 

integration models is a feasible way to improve phenotype classification. However, our proposed 

method takes a different approach from previous studies by creating networks of interconnected 

molecular elements that can be used for classification. 



 22 

3.0  METHODS 

This section describes the datasets that are used in this dissertation, which are from The 

Cancer Genome Atlas. Also, this section describes the “Junction to Knowledge” (J2K) 

framework. Every J2K component is described, which are: discretization, feature selection, 

Bayesian network generation, Junction tree generation, and clique evaluation. Finally, the 

“Multi-Omic Data Integration” (MODI) framework is described as one potential implementation 

of J2K. 

3.1 DESCRIPTION OF DATA 

This section describes how gene expression and methylation data is acquired, which are 

the focus of this dissertation. The Cancer Genome Atlas is the main source of data for all the 

experiments in this dissertation. All the subsequent sections of this dissertation use the datasets 

and platforms mentioned in this section. 

3.1.1 Microarray Technology 

An emerging diagnostic technology is the use of DNA microarrays to measure specific 

characteristics of the DNA, analyzing thousands of genes at the same time. Typical analyses 
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include gene expression and more recently DNA methylation. Since DNA methylation plays a 

significant role in the regulation of gene expression (Phillips 2008), there is an added value of 

investigating both data types. 

Gene Expression 

Gene Expression is a measurement of the abundance of the transcripts (mRNA) of genes 

in the DNA. This measurement helps understand what cells can do, because genes can encode 

proteins and dictate cell function. The protein production starts when one strand of DNA is 

transcribed into RNA, which will later be translated into proteins. The protein-coding regions of 

the RNA (exons) are spliced together to produce messenger RNA (mRNA). The abundance and 

types of mRNA molecules reflect the function of a particular cell. 

Gene expression microarrays have a collection of microscopic spots that can probe 

specific DNA locations. Each probe tries to hybridize (or bind) with its corresponding 

complementary RNA (cRNA). A fluoroluminescent solution is used to label probes depending 

on the specific probe. Then, the microarray will be scanned to determine the abundance of 

mRNA that hybridized in that particular probe. If a gene is very active, it will produce more 

color-labeled molecules of mRNA; while genes that are less active produce fewer labeled 

molecules; if there are no labeled molecules the gene is inactive. 

There are two main vendors that offer gene expression microarray platforms: 1) 

Affymetrix HT HG-U133A (12,042 variables), and 2) Agilent 244k (17,814 variables). Both 

platforms are considered in this dissertation, but only one is used at any given experiment. A 

meta-analysis of cohorts analyzed from different platforms is outside the scope of this 

dissertation. 
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Gene expression microarray data has incredible value for computational genomics 

experiments. For example, in a retrospective study gene expression data was used as a classifier 

between lung carcinomas. Differentially expressed genes were found between adenocarcinoma 

(ADC) and squamous cell carcinoma (SCC) yielding a good classification performance 

(Sanchez-Palencia et al. 2011). This result confirms that the molecular gene expression 

mechanisms of ADC and SCC are considerably different, and they are involved in immune 

response, cell signal transduction, metabolism, cell division, and cell proliferation (J. Liu et al. 

2014). 

 

DNA Methylation 

Methylation is a molecular modification of the DNA that denotes the addition of a methyl 

group in specific locations of the DNA, typically in cytosine-phosphate-guanine (CpG) sites. 

DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of 

genes. It has been observed that hypermethylation of normally unmethylated gene promoter 

regions has the potential to silence gene transcription (Baylin et al. 2001). At the same time, 

hypomethylation has also been observed to have a role in the regulation of cancer growth and 

metastasis (Pufulete et al. 2005). 

There main vendor of methylation microarray technology is Illumina, which has two 

microarray platforms: 1) Infinium HumanMethylation27k Bead Chip (27,578 variables), and 2) 

Infinium HumanMethylation450k Bead Chip (485,577 variables). The first was deprecated in 

favor of the second one, however a lot of information is still available in the first platform. Both 

of them cover 96% of CpG islands, their shores and the regions flanking them. The 450k 

platform further covers CpG sites outside of CpG islands, non-CpG methylated sites identified in 
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human stem cells, differentially methylated sites identified in tumor versus normal (multiple 

forms of cancer) and across several tissue types, CpG islands outside of coding regions, and 

miRNA promoter regions. Although the 450k-methylation platform is more comprehensive of 

the regions that it is covering, it can always be scaled down to the 27k-methylation variables 

covered in the original platform. The rationale for doing this is to be able to jointly analyze the 

samples processed by both platforms, which means that the number of patients with methylation 

information can be summed up. 

Illumina methylation microarray uses probes to target specific sequences to measure the 

methylation intensity of a particular DNA site. Using a bisulphite solution the cytosine is 

converted to uracil, leaving the rest of the residues unaffected. This bisulphite treatment 

introduces specific changes to the DNA sequence depending on the methylation status of a 

segment of DNA. Then, two distinct fluorescent dye colors are used to recognize the bisulphite-

converted sequences. The microarray scanner averages the signal for methylated and 

unmethylated dyes to calculate the methylation intensity for a particular probeset. This is 

referenced as the β-value. A β-value of 0 represents an unmethylated CpG site, while a β-value 

of 1 represents a fully methylated CpG site. 

Methylation microarray data is a relatively new technology that has been shown to has 

incredible value for finding cancer biomarkers. For example, in lung cancer it is able to classify 

between normal and tumor samples (Rauch et al. 2012). Also, in breast cancer it has shown to 

have good classification performance (Szyf 2012). It has been suggested that DNA methylation 

signatures of cancer should be considered as a potential diagnostic or prognostic biomarker of 

the disease (Pfeifer & Rauch 2009). 
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3.1.2 The Cancer Genome Atlas 

The United States’s National Cancer Institute (NCI) created The Cancer Genome Atlas 

(TCGA) Research Network with the purpose of collecting and studying information on various 

human cancers to make them available for facilitating the discovery of molecular signatures. The 

TCGA website has a data portal (http://tcga-data.nci.nih.gov) to make available the datasets to 

researchers, clinicians, or any person with an email address. 

The TCGA Data Portal is the official storage and access point for all TCGA data and 

analysis tools. The TCGA’s strategy follows standard procedures for the analysis of molecular 

technologies, including gene expression, DNA methylation, protein levels, as well as the clinical 

information of the patients involved in the study. Through the TCGA data portal it is possible to 

download these files and analyze them for specific research questions. Each data type (i.e., DNA 

methylation) has one file per sample containing the results of the molecular technology (i.e., 

Illumina microarray) for that sample. Separately, there is another file containing the clinical 

information of the patients from whom those samples were acquired. A description of the 

TCGA’s data portal and the ‘omic platforms used is provided in Appendix I. 

Multiple centers and institutions participate in the creation of data in TCGA. Tissue and 

fluid samples are taken from patients in different locations and then contributed to the TCGA 

Research Network for cancer diagnosis and analysis. 

Tissue Source Sites (TSS). It is an institution that collects samples (tissue, cell or blood) 

and clinical metadata. There are 1052 TSSs currently contributing samples to the TCGA. Tissue 

samples are made from 30-100mg (preferably 100mg) of tissue, while blood derived samples are 

made from 2mls of whole blood, buffy coat, or 15ug DNA. 
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Biospecimen Core Resource (BCR). It receives the frozen samples from the TSSs. A 

BCR is a center that ensures sample quality through a standard methodology before performing 

molecular analysis. The BCR sends the samples to a sequencing center 

Genome Sequencing Center (GSC). It is a TCGA center that uses high-throughput 

methods to identify changes to DNA sequences that are associated with specific cancer types. 

GSCs receive plated DNA analytes, and corresponding aliquot barcodes. 

Genome Characterization Center (GCC). It is a TCGA center that uses high-throughput 

technologies to analyze genomic changes involved in cancer. The genomic changes that are 

identified will be further studied by the GSCs. GCCs receive plated DNA/RNA analytes, and 

corresponding aliquot barcodes. There are 32 GCCs currently processing samples. 

Data Coordinating Center (DCC). It is the central provider of TCGA data. The DCC 

standardizes data formats and validates submitted data. The DCC receives participant 

information, biospecimen data, clinical pathology data, corresponding TCGA barcodes (across 

all biospecimen data levels), and tissue slide images. Ultimately, the DCC is responsible for 

posting the data to the Data Portal. 

The TCGA Data Portal is the official storage and access point for all TCGA data and 

analysis tools. The TCGA’s strategy follows standard procedures for the analysis of molecular 

technologies, including gene expression, DNA methylation, or protein levels, as well as the 

clinical information of the patients involved in the study. Through the TCGA data portal it is 

possible to download these files and analyze them for specific research questions. Each data type 

(i.e., DNA methylation) has one file per sample containing the results of the molecular 

technology (i.e., Illumina microarray) for that sample. Separately, there is another file containing 

the clinical information of the patients from which those samples were taken from. 
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Data Extraction from the TCGA 

In data mining, an extraction, transformation, and load (ETL) process is required to build 

a repository that can be further used to infer new knowledge. ETL has commonly been used in 

domains with large volumes of information, like patent mining (Diaz Prado et al. 2010); and 

recently it has been used in the extraction of biomedical data (Saleem et al. 2013). The extraction 

process from the TCGA is shown in Figure 3. 

 
Figure 3. Extraction process from TCGA 

Extracting the data. Data extraction, transformation, and load from the TCGA are non-

trivial tasks that require reconciling clinical and genomic information. This ETL process has to 

be customized to the characteristics of the data. The TCGA data portal has a simple interface that 

requires some basic knowledge of the type of information a person is looking, e.g., the 

information of gene expression from a cohort of all tumor samples from breast cancer patients. 

However, one could not specify in the TCGA portal specific details about the patient cohort of 

interest, e.g., female patients older than 45 years old. In the extraction phase, the TCGA data 

portal (https://tcga-data.nci.nih.gov) was used. This step only requires an email authentication, 
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preferably from an academic institution. The selected patient and sample documents can be 

downloaded from a secure FTP channel. 

Transforming the data. In this phase, an R-language script was developed to process the 

extracted information. This script reconciles the information from the clinical files and ‘omic’ 

technologies, and creates a single file with a class label. First, it performs quality control on the 

data, normalizing across samples, batches and variables. However, this step was omitted since 

TCGA’s level 3 data already covers for data quality. Then, given the specific query of the 

researcher, the script selects the samples based on the clinical information criteria to have a 

selection of samples. One potential query could be normal samples and tumor samples; others 

could be the subtyping of tumor samples, early staging and late staging, benign and invasive 

tumors. Finally, the script finds the replicates in the cohort and averages them. 

Loading the data. In this phase, a script formats the information to become an ARFF file 

that can be read by the Waikato Environment for Knowledge Analysis (WEKA (Hall et al. 

2009)). In this format, it is relatively easy for most researchers to apply machine-learning (ML) 

algorithms for supervised and/or unsupervised learning. To be able to analyze the ‘omic’ 

information for translational research, it is necessary to reconcile it with the clinical information. 

Patient barcodes are the reference that helps ensuring this task. For example, the reported 

histological type of breast cancer patients can be “Infiltrating Ductal Carcinoma”, “Infiltrating 

Lobular Carcinoma”, “Mucinous Carcinoma”, “Medullary Carcinoma”, or any of the not 

specified/available categories. Selecting the appropriate clinical parameters is of great 

importance. Another example of clinical feature in breast cancer is the selection of sex of the 

patient. For example, in the TCGA’s breast cancer dataset there are 11 male patients out of 1043 

total patients. The list of clinical features in the TCGA data portal depends greatly on the cancer 
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dataset that is being analyzed. It is not the purpose of this dissertation to investigate the selection 

strategies of those features. 

3.1.3 TCGA Datasets 

This dissertation uses five cancer datasets from the TCGA: 1) lung adenocarcinoma (The 

Cancer Genome Atlas Research Network 2014) (LUAD), 2) lung squamous cell carcinoma (The 

Cancer Genome Atlas Research Network 2012a) (LUSC), 3) breast invasive carcinoma (The 

Cancer Genome Atlas Research Network, Getz, Saksena, Park, et al. 2012) (BRCA), 4) ovarian 

carcinoma (The Cancer Genome Atlas Research Network 2011) (OV), and 5) colon 

adenocarcinoma (The Cancer Genome Atlas Research Network 2012b). The samples for these 

datasets were contributed from several tissue source sites (TSS), but only specific genome 

coordination centers (GCC) processed the samples. 

In the TCGA pipeline, the University of North Carolina (UNC) is the GCC that analyzed 

samples with gene expression microarray technologies; while Johns Hopkins and the University 

of Southern California (JHU_USC) are the GCCs that analyzed samples with DNA methylation 

microarray technologies. Table 1 shows a breakdown of the number of samples in each dataset, 

the classification task that is used, and the type of ‘omic’ technology (gene expression G, or 

methylation M). 

 

 

 

 



 31 

Table 1. TCGA’s cancer datasets. 

# Database TCGA cancer type G/M Classification Task Cases Controls 

A luad-m-tn Lung adenocarcinoma M Tumor vs Normal 65 24 

B lusc-m-tn Lung squamous cell carcinoma M Tumor vs Normal 132 27 

C lung-g-adsq Lung carcinomas G ADC vs SCC 32 153 

D lung-m-adsq Lung carcinomas M ADC vs SCC 65 132 

E brca-g-tn Breast invasive carcinoma G Tumor vs Normal 1,065 124 

F brca-m-tn Breast invasive carcinoma M Tumor vs Normal 1,065 123 

G brca-g-stage Breast invasive carcinoma G Stage 0-I vs Stage II-IV 92 417 

H brca-m-stage Breast invasive carcinoma M Stage 0-I vs Stage II-IV 184 862 

I ov-g-tn Ovarian carcinoma G Tumor vs Normal 590 8 

J ov-m-tn Ovarian carcinoma M Tumor vs Normal 60 12 

K coad-g-tn Colon adenocarcinoma G Tumor vs Normal 155 19 

L coad-m-tn Colon adenocarcinoma M Tumor vs Normal 166 37 

 

Lung cancer. Lung cancer is the leading cause of human cancer death in the US, with an 

estimated of over 160 thousand yearly deaths (R. Siegel et al. 2014). Lung cancers can be 

divided into two major groups: small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC); the latter is further divided into adenocarcinoma, squamous cell carcinoma, and large 

cell carcinoma (Alberg et al. 2007). Despite extensive research, the mechanisms that lead to 

these different types of lung cancer remain uncertain. Adenocarcinoma (ADC) and squamous 

cell carcinoma (SCC) are the most common histological subtypes among all lung cancers. Both 

of them are a form of cancer that develops in the epithelial cells (carcinoma), and belong to the 

category of non-small cell lung cancer. Lung ADC develops in the glands that secrete products 

into the bloodstream or some other cavity in the body – the mucus secreting glands in the lungs. 

Most lung ADC arise in the outer, or peripheral, areas of the lung (College of American 

Pathologists 2011a). In contrast, lung SCC develops in flat surface covering cells. Squamous 

cells allow trans-membrane movement, like filtration and diffusion, for example the exchange of 

air in the alveoli of lungs. Squamous cells can also serve as boundary and protection of various 

organs. Most lung squamous cell cancers frequently arise in the central chest area in the bronchi 
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(College of American Pathologists 2011b). Samples in the TCGA data portal are of two types: 

adenocarcinoma (in LUAD), and squamous cell carcinoma (in LUSC). 

Breast cancer. In the TCGA, the available patient samples are included in the Breast 

Invasive Carcinoma dataset (BRCA). Breast cancer is a global public health concern with 

400,000 estimated yearly deaths (Jemal et al. 2011). The clinical impact of genomic testing in 

breast cancer was recognized by the American Society of Clinical Oncology (ASCO) in 2010, 

when it updated its policy on diagnostic testing to highlight the importance of assessing the 

presence of BRCA1 mutation (Robson et al. 2010). In recent years, whole-genome analysis has 

allowed the identification of groups of molecular biomarkers for breast cancer, leading to the 

development of genomic assays that are used in the clinical practice. For example, PAM50 

(Parker et al. 2009) is a 50-gene classifier that improves significantly the subtype prediction of 

breast cancer subtypes, leading to better prognosis. Oncotype DX® (Lyman et al. 2007) is a 21-

gene classifier for the risk of recurrence in estrogen receptor-positive (ER positive) women with 

early-stage breast cancer receiving tamoxifen. Although these new genomic assays have shown 

to be highly sensitive and specific when testing form mutations in cancer (Bastien et al. 2012) 

there are still open problems to be analyzed. 

The information obtained from pathology testing of the excised tissues, from blood tests 

and imaging studies is used to determine the “stage” of the tumor, according to the ‘TNM 

Staging System’ (Compton et al. 2012), which is the most commonly used staging system for 

breast cancer (E. Miller et al. 2014). This system takes into account the tumor size (T), the 

presence and the number of positive lymph nodes (N), and the presence of distant metastasis 

(M), resulting in a staging scale from 0 to IV (Bagaria et al. 2014). The stage of the disease 

determines the necessity for further treatment and the type thereof: lymph node-negative early 
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stages of breast cancer (stages 0 and I) may require additional radiotherapy to reduce recurrence, 

whereas node-positive early stages (some stage II) are commonly treated with prophylactic 

chemotherapy and radiation to prevent recurrence and metastasis. Locally advanced cancers 

(stage III and some stage II) and metastatic cancers (stage IV) require invariably the use of 

chemotherapy. However, the invasive procedures required for accurate breast cancer staging 

have consequences such as upper limb lymphedema following axillary lymph node dissection. 

Therefore, researchers have been trying to use less invasive methods, and it is hoped that 

molecular information will contribute towards this goal (Cyr 2015) and also improve the 

classification performance of the TNM staging system (Orucevic et al. 2015). 

Ovarian cancer. In the TCGA, the available patient samples are included in the Ovarian 

cancer dataset (OV). Ovarian cancer is one of the major causes of cancer death among women in 

the United States, accounting for 14,270 estimated deaths in 2014 only (R. Siegel et al. 2014). 

The standard treatment for ovarian cancer patients include aggressive surgery followed by 

platinum-taxane chemotherapy. However 25% of platinum-resistant patients will have recurrence 

(D. S. Miller et al. 2009) of the disease. There is still controversy on the extent of the surgery, 

both because of recurrence and fertility concerns (Seong et al. 2015). Despite ongoing efforts to 

develop an effective screening strategy, only 20% of ovarian cancers are diagnosed while they 

are still limited to the ovaries (Bast et al. 2009). This might be due to the fact that most women 

report almost no symptom, or symptoms that are similar to gastrointestinal or genitourinary 

symptoms. 

Ovarian cancer develops in the epithelium (cells covering the ovaries), germ line cells 

(cells that produce the ova) or stromal cells (structural tissue of the ovaries). The majority of 

ovarian cancers develop in the epithelium. These epithelial ovarian carcinomas have been 
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suggested to have three distinct phenotypic groups, according to the expression of epidermal 

growth factor receptor (EGFR), estrogen receptor (ER), progesterone (PR), and human epidermal 

growth factor receptor 2 (HER2) (Demir et al. 2014). These genes and proteins are also 

associated with breast cancer subtyping. Nevertheless, additional work is still needed to evaluate 

the diagnostic capabilities of other genes. One example is the use of Bayesian networks, that 

have been used to create gene-gene interaction graphs to predict the overall survival of ovarian 

cancer patients (Q. Zhang et al. 2014). 

Colorectal cancer. In the TCGA, the available patient samples are included in the 

colorectal adenocarcinoma dataset (COAD). Colorectal cancer is the second cause of cancer-

related deaths in the United States, with estimated deaths of 50,310 in 2014 alone (R. Siegel et 

al. 2014). The difference between colon cancer and rectal cancer is primarily the anatomical 

location, having patient management implications. Colon cancer develops in the large intestine, 

while rectal cancer develops only in the last centimeters of the colon. Colon adenocarcinoma 

develops in the inner lining of the intestine, specifically in the cells that secrete mucus to 

lubricate the colon to facilitate movement. Most colon cancers begin as small polyps in the 

intestine, and are detected by a colonoscopy. For each detected polyp, an assessment is made as 

to whether a resection is needed or not, depending on the size of the polyp, optical testing, and 

patient history (Rex et al. 2011). There are multiple questions that are not yet answered by 

modern practice, for example what to do with small polyps, the time to next colonoscopy, or the 

risk of recurrence (Takeuchi et al. 2015). Molecular diagnosis could help understand the biology 

of the disease to improve its diagnosis. For example, the use of Bayesian models have been 

shown to identify genes that have the potential to cause colon cancer (Fu et al. 2012). However, 
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further study on this area is needed to provide computational models that can help in the 

diagnosis of the disease. 

3.2 THE J2K FRAMEWORK 

In this dissertation, a novel framework, called “Junction to Knowledge (J2K)”, is 

proposed for the extraction of knowledge from The Cancer Genome Atlas. Its goal is to address 

the challenges described above and provide a novel application of currently existing algorithms. 

The J2K framework builds directed acyclic graphs, Bayesian networks, and then it transforms 

them into undirected graphs, Junction trees. The J2K framework provides a novel way of 

interpreting computational models to discover biological knowledge. 

An analysis of the genomic information from cancer patients can provide new knowledge 

about the group of genes involved in the disease. This analysis can be performed using publicly 

available datasets, such as the TCGA, to provide a simpler visualization that allows new 

hypotheses about the biological functions of the genes in a particular cancer cohort. 

The J2K framework, shown in Figure 4, allows the successive manipulation of data into 

the creation of a human readable graphical model. First, it extracts the TCGA’s data and creates 

processed data. Then, it filters the information by discretizing and feature selecting variables, to 

reduce dimensionality and create a Bayesian network. Using the directed structure from the 

Bayesian network it creates an undirected graphical structure in the form of a Junction tree, 

which is a graphical representation of a network of gene cliques. Each individual clique can be 

further investigated for accuracy in the classification, and potentially interpreted as functional 
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modules in the data. An experimental researcher can then use the best ranking clique to test new 

biological hypothesis. 

 
Figure 4. The J2K Framework 

3.2.1 Discretization 

Genomic microarray data analysis provides information on genes in a continuous manner. 

Gene expression platforms quantify the concentration of a gene’s mRNA transcript in a cell at a 

given time. The amount of transcripts ranges from zero, when the gene was not expressed, to a 

few hundred or a few hundreds of thousands, depending on the gene that is being investigated. 

This variability can have a big impact on the classification performance. A normalization step is 

often used to reduce the variability in the data using a single reference gene (de Kok et al. 2005). 

Similarly, DNA methylation microarray technologies measure the amount of methyl groups that 

can be found at a specific location of the DNA. The technology uses colorization between two 

probes (green and red) to determine the level of methyl groups that exists in that location. The 

measurement reflects the intensity at which an optical probe can read the amount of methylation 

that is present. This value ranges from 0 to 1. 

Although continuous values can provide great detail of each microarray measurement, 

there are some classifiers that require the use of discrete values. Bayesian classifiers use discrete 
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values to compute the posterior probability of an event to occur given the evidence provided. 

Even in those cases where Bayesian classifiers are built assuming Gaussian (or other) 

distributions, there still the need to have cut-points to stablish the occurrence of an event in the 

Bayes theorem. Partitioning a continuous variable into two or more intervals typically improves 

classification efforts.  

There are some advantages to the use of a supervised discretization method. For example, 

methylation values ranging from 0 to 1, can be discretized using three potential strategies. In the 

first strategy, a fix cut-point is determined arbitrarily (i.e., > 0.5 for methylated, and < 0.5 for 

non-methylated). In a second strategy, an expert-based discretization is made for all variables 

(i.e., non-methylated < 0.1, partially methylated between 0.1 and 0.8, and methylated > 0.8 

(Capra & Kostka 2014)). In the third strategy, a supervised discretization creates independent 

cut-points for each variable. For the first and second strategies, the same discretization scheme 

(i.e., same number of intervals or cut-points) is used for all variables. However, this approach is 

suboptimal for a classification task. For instance, when using MDLPC it is observed that the 

methylation site cg19782598 was discretized into two categories: methylated (> 0.86) and 

unmethylated (≤ 0.86); while methylation site cg11693019 was discretized into three categories: 

methylated (> 0.76), partially methylated (between 0.76 and 0.47), and unmethylated (< 0.47). 

Thus, supervised discretization could help identify appropriate cut-points for each variable, as 

opposed to the others, which naïvely assume the same cut-points for variables. 

The minimum description length (MDL) principle tries to find a model that facilitates the 

shortest description of the original data. The length of this description takes into account the 

description of the model itself and the description of the data using the model. 
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3.2.1.1 Minimum Description Length with Principle Cut (MDLPC)  

MDLPC (Fayyad & Irani 1993) consists of a greedy search method that recursively 

discretizes each partition. The selected cut point is the one that minimizes the joint entropy of the 

two resulting subintervals until a stopping criterion based on the minimum description length is 

met. It is desirable to discard those variables where a cut point was not selected. The minimum 

description length of an object is described as the minimum number of bits required to uniquely 

specify that object out of the universe of all objects. Thus, one of the main problems is the 

selection of cut points. The cut point is a value between two examples of different classes in the 

sequence of sorted examples. The fact that the algorithm selects cut points that are in the 

boundary between classes makes the creation of a multi-interval discretization much faster. 

3.2.1.2 Minimum Description Length with Kononenko Criteria 

Kononenko (Kononenko 1995) developed an algorithm for discretization based on the 

minimum description length (MDL) principle (M. Li & Vitanyi 2013), and a measure derived 

from the Relief algorithm (Kira & Rendell 1992). The Relief algorithm estimates the quality of 

attributes by efficiently dealing with strongly independent attributes. This algorithm searches for 

the nearest instances from the same class and the nearest instances from different classes.  

3.2.2 Feature Selection 

Feature selection is the process of identifying the most relevant features (variable-value 

pairs) for classification. Feature selection techniques do not alter the original representation of 

the variables, but merely select a subset of them. The main objectives of using feature selection 

include avoiding overfitting, improving prediction performance, providing faster and cost-
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effective models, and gaining insight into the processes that generated the data (Saeys et al. 

2007). 

3.2.2.1 ReliefF Algorithm 

 ReliefF (Kononenko et al. 1997) is a multivariate filter algorithm that estimates how well 

a given variable can distinguish the target class given the instances that are near to each other. A 

matrix filled with zeros (one for each variable) is initially created to represent each variable’s 

score. Then, the algorithm sequentially updates this score and selects the top scoring variables. 

To update the score, first it selects a random instance (in our configuration all instances are being 

considered). For this instance, it finds the H nearest hits and the M nearest miss (set to H=M=10 

as default value) for each class. The difference between the hits and the misses is being 

subtracted from the variable’s score, and the process is repeated until all instances have being 

used. 

Algorithm 1. Kononenko's Relief 

1. set all weights W[A] := 0.0; 

2. for i := 1 to n do 

3. begin 

4.  randomly select an instance R; 

5.  find nearest hit H and nearest miss M; 

6.  for A:= to #all_attributes do 

7.   W[A] := W[A] – diff(A, R, H)/n + diff(A, R, M)/n; 

8. end 

3.2.2.2 Information Gain 

 Information Gain (Quinlan 1986) is a univariate filtering method. It is the amount of 

information that is lost when a variable X is used to approximate the class variable, defined 

operationally as the expected extra number of bits required to code samples from the class 

variable using a code optimized for variable X rather than the code optimized for the class. In 
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feature selection, a good rule of thumb would seem to be to choose those attributes on which 

gains the most information. 

Equation 1. Information Gain 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑐𝑙𝑎𝑠𝑠, 𝑋) = 𝐻(𝑐𝑙𝑎𝑠𝑠) − 𝐻(𝑐𝑙𝑎𝑠𝑠|𝑋1) 

 

Equation 2. Entropy 

𝐻(𝑋) = − ∑ 𝑃(𝑋𝑖) log𝑏 𝑃(𝑋𝑖) 

3.2.2.3 Limma Algorithm 

As a way to compare with the feature selection done by ReliefF, the popular 

bioinformatics tools limma (Smyth 2004) was used. It is a tool for gene set analysis (GSEA) that 

is part of the Bioconductor repository. Limma includes functions to fit linear models for each 

gene given a series of arrays (lmFit) and then compute the log2 differential expression by 

empirical Bayes moderation of the standard errors towards a common value (eBayes). Although 

limma is not a feature selection algorithm, it has the property of ranking genes based on the 

eBayes score that each one obtains. The most differentially expressed genes can be selected 

using this ranking. 

In this dissertation, when using features selection, the maximum number of features 

selected was 30. This number has previously been reported to have a good trade-off between the 

model complexity and biological relevance of the features chosen (Dudoit et al. 2002). 
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3.2.3 Building Bayesian Networks 

A Bayesian network (BN) (Neapolitan 2012) is a probabilistic graphical model that 

explains a given set of discrete data. The Bayesian network structure is a directed acyclic graph 

(DAG) that a set of nodes (random variables) and arcs (probabilistic dependencies). The BN 

parameters define joint probability distribution over the variables. In the well-known Bayes 

theorem, the occurrence of an event given some observation can be calculated by the probability 

of occurrence of that observation given the event, times the probability of the event, and divided 

by the probability of the observation. 

Equation 3. Bayes' Theorem 

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑗𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

 

Let X = {X1, …, Xn} be a set of discrete random variables. A Bayesian network B =< G, 

Θ > is defined by a directed acyclic graph G =< N, U > where N represents the set of nodes (one 

node for each variable) and U the set of edges, and parameters Θ = {θijk} be the set of conditional 

probability tables of each node Xi knowing its parents’ state Pi. 

As an example, consider the Equations shown below (Equation 4) where the event is a 

patient having the adenocarcinoma (ad) subtype and the observation is a hypothetical geneA 

being upregulated. To solve the equations and calculate the posterior probability, various 

elements would have to be known: 1) the probability of a patient having adenocarcinoma, 2) the 

probabilities of geneA being upregulated (↑𝑟𝑒𝑔) given that the subtype is adenocarcinoma, and 3) 

the probability that geneA is upregulated given that the subtype is not adenocarcinoma (in this 



 42 

case, squamous cell carcinoma). All of these a priori probabilities can be easily derived from the 

training data. 

Equation 4. Bayes Example 

𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑|𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔) =
𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑 ∩ 𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔)

𝑃(𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔)
 

=
𝑃(𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔|𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) ∙ 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑)

𝑃(𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔|𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) ∙ 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) + 𝑃(𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔|𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑠𝑞) ∙ 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑠𝑞)
 

 

3.2.3.1 Naïve Bayes 

In a naïve Bayes (NB) classifier structure, strong independence between the variables is 

assumed. In a NB structure, the target node is the parent for all other features, and there are no 

arcs among those children nodes. 

 
Figure 5. Naïve Bayes network example 

Figure 5 shows an NB where two hypothetical genes have been incorporated into the 

structure. The probability of the maximum likelihood estimate of the subtype being ADC is 

equal to the number of ADC samples divided by the total number of samples in the dataset. For 

simplicity of this example, the TCGA’s gene expression dataset was used. Then, 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 =

𝑎𝑑) = 32/(32 + 154) = 0.17. Similarly, 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑠𝑞) = 1 − 𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) = 1 −

0.17 = 0.832/(32 + 154) = 0.17. Next, the a priori probability of the gene being upregulated 

given the subtype is ad has to be calculated. Let us assume that for the 32 samples that are 
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adenocarcinoma, geneA is upregulated in 16 of them 𝑃(𝑔𝑒𝑛𝑒𝐴 =↑𝑟𝑒𝑔 |𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) =
16

32
=

0.5, while geneB is upregulated in 20 of them 𝑃(𝑔𝑒𝑛𝑒𝐵 =↑𝑟𝑒𝑔 | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) =
20

32
= 0.625. 

That implies that the remaining samples are downregulated (↓𝑟𝑒𝑔). Lastly, let us assume the a 

priori probability of geneA and geneB being upregulated given the subtype is squamous (sq) to be 

0.25 and 0.15 respectively, with the corresponding complementary probabilities for down 

regulation. 

The posterior probability for a new sample of being of subtype adenocarcinoma would be 

equal to the calculation in the Bayes theorem. Let us assume that for a new sample, both geneA 

and geneB are downregulated, and then the posterior would be equal to the calculations in Eq. 5. 

In a NB structure the children nodes are independent given the parent, which facilitates the 

calculation by substituting the joint probability with the product of both probabilities. In this 

example the probability of the new sample to be of adenocarcinoma subtype is 0.057, which 

means that probability of it being squamous is 0.943. The NB classifier would call it then a 

squamous cell carcinoma sample. 

 

Equation 5. Bayes Example Solved 

𝑃(𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑 | 𝑔𝑒𝑛𝑒𝐴 =↓𝑟𝑒𝑔 ∩ 𝑔𝑒𝑛𝑒𝐵 =↓𝑟𝑒𝑔)  =
𝑗𝑜𝑖𝑛𝑡

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
 

=
0.031

0.561
 

= 0.057 

𝑗𝑜𝑖𝑛𝑡 = 𝑃(𝑔𝑒𝑛𝑒𝐴 =↓𝑟𝑒𝑔 ∩ 𝑔𝑒𝑛𝑒𝐵 =↓𝑟𝑒𝑔 | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) 

= 𝑃(𝑔𝑒𝑛𝑒𝐴 =↓𝑟𝑒𝑔  | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) ∙ 𝑃(𝑔𝑒𝑛𝑒𝐵 =↓𝑟𝑒𝑔  | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) ∙ 𝑃(𝑔𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑) 

= 0.5 ∙ 0.375 ∙ 0.17 

= 0.031 
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𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 = 𝑃(𝑔𝑒𝑛𝑒𝐴 =↓𝑟𝑒𝑔 ∩ 𝑔𝑒𝑛𝑒𝐵 =↓𝑟𝑒𝑔 | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑎𝑑)

∙ 𝑃(𝑔𝑒𝑛𝑒𝐴 =↓𝑟𝑒𝑔 ∩ 𝑔𝑒𝑛𝑒𝐵 =↓𝑟𝑒𝑔 | 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 = 𝑠𝑞) 

= 0.5 ∙ 0.375 ∙ 0.17 + 0.75 + 0.85 + 0.83 

= 0.561 

3.2.3.2 Tree Augmented Naïve Bayes 

A tree augmented naïve Bayes (TAN) (Friedman et al. 1997) approximates the 

interactions between attributes by using a tree structure imposed on the naive Bayesian structure. 

Although naïve Bayesian models have shown to have excellent performance in many datasets, 

NB has the underlying heavy independence assumption. Augmented Naive Bayes (ANB) 

classifier appear as a natural extension to the Naive Bayes classifier. It allows relaxing the 

assumption of independence of attributes given the class variable. TANs are a restricted family 

of ANBs in which the class variable has no parent and each other attribute has as parents the 

class variable and at most one other attribute. 

3.2.3.3 Efficient Bayesian Multivariate Classifier 

Learning the structure of a Bayesian network that explains a given set of data is a difficult 

task, since the number of possible DAGs for a given number of nodes makes the search task an 

NP-hard problem (Daly et al. 2011). A heuristic search to find efficient Bayesian network 

structures is considered a viable alternative. The Efficient Bayesian Multivariate Classifier 

(EBMC) (Cooper et al. 2010) is a classifier that greedily searches in a subspace of BNs to find 

the one that best predicts a target node. EBMC efficiently creates Bayesian networks that 

performs well in high dimensional discrete datasets (Jiang et al. 2014). It initially starts with an 

empty model and then it identifies a set of nodes that are parents of the target and predicts it well. 
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EBMC then transforms the temporary network structure into a statistically equivalent one where 

the parents of the target become children of the target with arcs among them. Then, it greedily 

eliminates arcs among these children that improve the prediction of the target. It then iterates the 

whole process until no set of parents (which we can view as a “probabilistic rule” can be added 

to the target node to improve the prediction of it.  

Algorithm 2. EBMC Algorithm: Function EBMC_learn 

1. var_set S, A; DAG_model Model; Bayesian_network B; Boolean  

2. flag;  

3. S := set of all variables;  

4. flag := true;  

5. Model := Ø;  

6. while flag  

7.  A := Ø;  

8.  FindPredictors(Model, A, S, flag, T); //finds a cluster of  

 predictors A 

9. if flag 

10.  InvertAndPrune(Model, A, T);  

11. endwhile;  

12. let B be the Bayesian network obtained by parameterizing Model 

    using database D 

13. return B; 

 

 
Algorithm 3. EBMC Algorithm: Function FindPredictors 

1. var Boolean flag2;  

2. flag2 := true;  

3. while flag2  

4.  if adding any variable in S as a parent of T in Model 

 increases Score(Model, D, T)  

5.  Var := Variable that increases Score(Model, D, T) the 

  most;  

6.  add Var as a parent of T in Model;  

7.  add Var to A;  

8. else flag2 := false;  

9. endwhile  

10. S := S - A;  

11. if A := Ø  

12.  flag :=false  

13. endif 
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Algorithm 4. EBMC Algorithm: Function InvertAndPrune 

1. var Boolean flag3; node Y; arc Z;  

2. remove the Variable in A as being the parents of T in Model;  

3. make all Variables in A be children of T in Model;  

4. create a saturated set of arcs in Model among the Variables in  

   A and let U denote this set of arcs;  

6. for each Variable Y in A do  

7. ParentsY := the parents of Y in Model;  

8. flag3 := true;  

9. while flag3  

10.  if removing any arc from ParentsY to Y increases 

  Score(Model, D, T)  

11.   Z := the arc that when removed increases  

   Score(Model, D, T) the most;  

12.   remove Z from Model;  

13.  else flag3 = false;  

14. endwhile;  

15. endfor; 

 

This dissertation uses the Waikato Environment for Knowledge Analysis (WEKA) (Hall 

et al. 2009). I implemented EBMC in the Java programming language to become a WEKA add-

on module. The advantages of having all algorithms running in the same framework include the 

possibility of incorporating other methods in the context of an internal cross-validation, such as 

discretization (MDLPC) and feature selection (ReliefF). 

3.2.4 Creating Junction Trees 

A Junction tree (Lauritzen & Spiegelhalter, 1988) is a tree-structured undirected graph, 

whose nodes correspond to cliques of variables, and whose links connect pairs of cliques that 

have variables in common. A clique is a subset of nodes in an undirected graph where any two 

nodes are connected by an edge. Consider the Bayesian network 𝐵𝑁 = (𝐺 = (𝑉, 𝐸), 𝑃), where 𝐺 

represents a graph with vertices 𝑉 and edges 𝐸, and 𝑃 represents the set of conditional 

probability distributions. The vertices 𝑉 of 𝐺 correspond to the variables of 𝑃. The 
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transformation of a Bayesian network into a Junction tree 𝐽𝑇 = (𝐶, 𝐽) requires three steps, where 

𝐶 represents the cliques and 𝐽 represents the junctions: 

1. Moralization. The moralization step removes the directionality of the arcs and 

connects parents with common children. The moral graph 𝐺𝑚 of 𝐺 is obtained by adding 

undirected edges between all pairs of nodes with a common child, and dropping the direction on 

all directed nodes. Figure 6 shows an example BN that was moralized. The nodes C and E are 

both parents of node E, but are not directly connected; therefore, in the moral graph they get a 

link between them (red line in the graph). 

 
Figure 6. Moralization 

2. Triangulation. In the triangulation step the moral graph 𝐺𝑚 is triangulated to obtain 

𝐺𝑡. A graph is triangulated if every cycle of length greater than 3 has a chord. The process of 

triangulation is an NP-hard task. This problem can be simplified by selecting an order of 

elimination. In this dissertation, the order chosen is given by the ranking of features given by 

ReliefF. A graph is chordal if and only if it has a perfect elimination ordering. A perfect 

elimination ordering in a graph is an ordering of the vertices of the graph such that, for each 

vertex, and the neighbors of that vertex in the order form a clique. The ordering from ReliefF 

might not be an optimal elimination ordering, nevertheless the triangulation solutions chosen 

follows this ordering. 
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In Figure 7, an example of the triangulation step is illustrated. The ordering of the nodes 

follows the alphabet. Originally, there is one cycle of length 5 given by 𝐺𝑚 = {𝐴, 𝐵, 𝐶, 𝐸, 𝐷}. For 

this example, there are 5 possible triangulation solutions; however, the chosen solution (marked 

in red in the graph) follows an iterative search given the order. The first subset of three nodes 

𝐺𝑚 = {𝐴, 𝐵, 𝐶} are not originally connected, and therefore they get a new connection to form a 

triangle. The remaining graph now has a cycle of size 4 given by 𝐺𝑚 = {𝐴, 𝐶, 𝐸, 𝐷}, from which 

the ordering selected (alphabetical) determines that the new connection to be made should be 

𝐺𝑚 = {𝐴, 𝐶, 𝐷}. The remaining graph is then completely triangulated 𝐺𝑡. 

 
Figure 7. Triangulation 

3. Construction of the Junction tree.  In the last phase, a junction tree 𝐽𝑇 is constructed 

with nodes corresponding to the cliques of 𝐺𝑡, which corresponds to a maximal complete 

subgraph of 𝐺𝑡. Junctions (separators) connect the cliques of the Junction tree, and the entire 

graph must hold the Junction tree property. This property states that for two cliques 𝐶𝐴 and 𝐶𝐵, 

that are connected by a path, the intersection 𝐽 = 𝐶𝐴 ∩ 𝐶𝐵 is a subset of every clique. Figure 8 

shows an example of a junction tree, where cliques are indicated using ovals while separators are 

indicated using boxes.  

Constructing the Junction tree follows the elimination algorithm illustrated in Figure 8. 

First, an elimination order is selected, because this is also an NP-hard problem; depending on the 

elimination order, a different Junction tree will be obtained. Similar to the triangulation step, the 

ordering from ReliefF was used (in Figure 8 portrayed alphabetically).  
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Figure 8. Construction of Junction Tree 

The first element in the ordering A is considered. It is part of two possible cliques 

𝐶𝐴 = {𝐴𝐵𝐶, 𝐴𝐶𝐷}. Because the chosen ordering has node B as its second element, the clique 

𝐶 = {𝐴𝐵𝐶} is selected as the first clique (shown in blue in top Figure 8) of 𝐽𝑇 (bottom Figure 8) 

and eliminated from 𝐺𝑇. Similarly, the next cliques are sequentially selected and eliminated, 

until no further nodes remain in 𝐺𝑇, and 𝐽𝑇 contains all possible cliques. 

3.3 THE MODI FRAMEWORK 

In this dissertation, a novel framework, called “multi-omic data integration (MODI)”, is 

developed. This framework uses the single-omic parsimonious models created by the J2K 

framework to create integrated multi-omic models. The MODI framework builds upon the ideas 

of Wang et al. (W. Wang, Baladandayuthapani, Holmes, et al. 2013) and Wang et al. (W. Wang, 

Baladandayuthapani, Morris, et al. 2013). In the iNET framework (W. Wang, 

Baladandayuthapani, Holmes, et al. 2013), multiple models are created (one for each gene), 

where Bayesian dependencies between gene expression, miRNA and phenotype are explored. In 

the MODI framework, the relationships from multi-omic elements with the phenotype are used 
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to create one integrated model that can be used for classification in a whole-genome dataset. In 

the iBAG framework (W. Wang, Baladandayuthapani, Morris, et al. 2013), a single model is 

built to consider the interactions between methylation and gene expression. All genes and their 

corresponding methylation values are connected with two latent variables that represent genes 

that are methylated and genes that are not. The final classification depends on linear factors that 

arise between the different layers of the model. In the MODI framework, the known biological 

regulation that methylation has over gene expression (Phillips 2008) is represented through the 

use of probabilistic dependencies on the single-omic models. This is an important difference with 

both iBAG and iNET, because a methylated gene might be part of the methylation-based model, 

but does not necessarily have to be part of the gene expression-based model. The process of 

creation of the MODI framework can be seen in Figure 9, which is a model-based integration 

(Ritchie et al. 2015) because it independently performs analysis on each data type, followed by 

integration of a resultant model. 

 
Figure 9. MODI workflow 

3.3.1 Integrating Multiple Bayesian Models 

The relationships between different data types were modified from Wang et al. (W. 

Wang, Baladandayuthapani, Holmes, et al. 2013), where models for individual genes were 
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constructed. In the MODI framework, individual single-omic models are built using the 

relationships illustrated in Figure 10 and described below. 

 
Figure 10. Methods for Bayesian multi-omic data integration 

All models are tree-augmented naïve Bayes models (TAN). Gene expression nodes are shaded lighter than 

methylation nodes. The mixture model might have interactions between gene expression nodes and methylation 

nodes, while the remaining three models first build single-omic models, and then integrate them using latent 

variables. 

 

1. Mixture model. Gene expression and DNA methylation affect the phenotype, where 

interactions between gene expression and methylation are possible. 

2. Independent model. Gene expression and DNA methylation affect the phenotype 

independently. However, gene expression and DNA methylation are independent, 

conditioning on the phenotype. 

3. Three-way model. Both gene expression and DNA methylation affect the phenotype and 

moreover, gene expression and DNA methylation are dependent, conditioning on the 

phenotype. 

4. Cascade model. DNA methylation is correlated with gene expression, which then is 

correlated with the phenotype. DNA methylation is independent of phenotype, conditioning 

on gene expression. This relationship is consistent with the underlying biological 
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mechanisms that DNA methylation has an effect on silencing of the gene expression, which 

then affects the phenotype. 

3.3.2 Latent Variables and the Expectation-Maximization Algorithm 

Each single-omic dataset was used to create an augmented naïve Bayesian (ANB) 

classifiers. All models have a common variable, which is the target node (clinical outcome or 

phenotype). These single-omic target nodes are considered to be latent (hidden) variables of the 

multi-omic model, and a new target node is created. Since the creation of latent variables 

happens after training each single-omic model, the probabilities in both the latent variables and 

the new target node are not known. 

The expectation-maximization (EM (Dempster et al. 1977)) algorithm is used to find the 

maximum likelihood estimates of the missing parameters in the latent variables. The 

implementation of the EM algorithm used for this dissertation is in the ‘Structural Modeling, 

Inference, and Learning Engine’ (SMILE, (Druzdzel 1999)). 

 

3.4 CLASSIFICATION PERFORMANCE 

The evaluation of the models was done using the area under the receiver operator 

characteristic (AUC) calculated as sensitivity vs. (1 – specificity) , and Brier Skill Score 

(BSS). The BSS (Wilks 2011) is a measurement of calibration. An ideal BSS is close to 1, while 

negative numbers indicate models that are less skilled than the weighted dice prediction of 0 

(unskilled reference). The Brier Score (BS) in Equation 9 is measured as the average squared 
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difference between the predicted value 𝑦𝑘 and the observed value 𝑜𝑘, with the ideal score being 0 

and the worst score being 1. On the other hand the Brier Skill Score (BSS) in Equation 10 is 

calculated as a scaled representation of the Brier Score relative to the relative frequency of the 

binary classes or reference Brier Score BSref. 

Equation 6. Brier Score 

𝐵𝑆 =
1

𝑛
∑(𝑦𝑘 − 𝑜𝑘)2

𝑛

𝑘=1

 

 

Equation 7. Brier Skill Score 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
 

 

For example, a BSref is equal to 0.098 in a hypothetical test dataset with 9.8% of cases, 

and let us assume that a hypothetical classification model has a BS of 0.25, then the BSS would 

be equal toBSS =  1 −  (0.25/0.098)  =  −1.55, which is considered an unskilled prediction. 

In this sense, it is better to use a BSS because it measures the difference between the score for 

the prediction and the score for the unskilled reference prediction, normalized by the total 

possible improvement that can be achieved. The ideal BSS score is1. 
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4.0  ANNOTATED EXAMPLE 

This chapter provides an example of how J2K and MODI create a parsimonious multi-

omic model. This example uses the breast cancer dataset with two classes: early stage breast 

cancer (Stage 0 and I), and advanced stage breast cancer (Stage II to IV). The objective of the 

modeling task is to capture molecular differences between samples with small tumor size and 

negative lymph node involvement, and samples with larger tumor size and positive lymph nodes. 

This task aims to provide better understanding of the genes that are involved in both groups of 

patients. In the future, it could allow personalized selection of patients that are candidates for 

sentinel lymph node biopsy and axillary lymph node dissection. 

4.1 DATASET 

High throughput ‘omic’ technologies are used in the TCGA to process samples from 

cancer patients across the United States. The output raw data for these technologies is stored in 

the TCGA data portal. The available breast cancer level 3 data (normalized and aggregated by 

gene) can be downloaded for research purposes. The gene expression information for each 

sample, as well as the methylation intensities for each sample, is stored in individual files. 

Following the process described in Section 3.1.2, these multiple files are converted into a single 

relational database, where rows correspond to samples, and columns correspond to variables. An 
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example of such relational databases can be seen in Table 2 (gene expression) and Table 3 

(methylation). 

Table 2. Raw data example (BRCA gene expression) 

Sample ELMO2 CREB3L1 RPS11 … class 

TCGA-BH-A0AY-01A 0.869 0.878 -0.025 
 

Stage0-I 

TCGA-A7-A0DB-01A 0.407 -0.092 0.108 
 

Stage0-I 

TCGA-C8-A1HI-01A 0.955 0.529 -0.162 
 

StageII-IV 

TCGA-BH-A1F0-01A -0.290 0.321 0.840 
 

StageII-IV 

TCGA-BH-A1EO-01A 0.242 1.060 0.853 
 

StageII-IV 

 

Table 3. Raw data example (BRCA methylation) 

Sample cg00000292 cg00002426 cg00003994 … class 

TCGA-BH-A0AY-01A 0.482 0.159 0.050 
 

Stage0-I 

TCGA-A7-A0DB-01A 0.411 0.496 0.066 
 

Stage0-I 

TCGA-C8-A1HI-01A 0.863 0.528 0.200 
 

StageII-IV 

TCGA-BH-A1F0-01A 0.637 0.272 0.090 
 

StageII-IV 

TCGA-BH-A1EO-01A 0.434 0.224 0.077 
 

StageII-IV 

 

In the relational tables, the first column contains the sample ID in TCGA format. This ID 

can be parsed to extract specific information about the patient 

(https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode). All IDs start with ‘TCGA’, followed 

by a two-digit alphanumeric code corresponding to the tissue source site (TSS), followed by a 

four-digit code representing the patient ID, followed by a two-digit numeric code representing 

the tissue type (e.g., ‘01’ for tumor, ‘11’ for normal), followed by a one-digit letter representing 

the replicates of that sample (i.e., ‘A’ means first replica, ‘B’ means second replica, etc.). The 

second column and every subsequent column (except the last one) contain variable names and 

values. For example, in the gene expression platform the variable names correspond to the 

17,814 variables in the Agilent platform, e.g., ELMO2, CREB3L1, RPS11, etc. Similarly, in the 

methylation platform the variables correspond to the 27,578 variables in the Illumina platform, 

which represent sites of the DNA where there are CpG islands, usually in promoter regions of 
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genes. The last column represents the class, which in the current example was obtained from the 

clinical description file for each patient, that is a different file obtained from the TCGA data 

portal. In the classification tasks of tumor vs. normal the class was obtained from the first 

column where the sample type is contained. Tables 2 and 3 contain only tumor samples (code 

‘01’), but the selection of samples could have included other sample types depending on the 

classification task. 

Finally, the dataset is transformed into the Attribute-Relation File Format (ARFF, 

http://www.cs.waikato.ac.nz/ml/weka/arff.html), which is the format used by the WEKA 

machine learning platform (used in this dissertation). 

4.2 DISCRETIZING WITH MDLCP 

The expression values and methylation intensities in Tables 2 and 3 respectively are 

continuous, ranging log10 scale in the case of gene expression, and from 0 to 1 in the case of 

methylation. However, the J2K framework is based on Bayesian modeling which requires 

discretization for these values. The WEKA implementation of the MDLPC algorithm is used to 

select the best discretization strategy in a univariate and supervised approach. Tables 4 and 5 

show an example of the discretized datasets. 

Table 4. Discretized data example (BRCA gene expression) 

PDCL3 MIER1 PIR … class 

'(0.9795-inf)' '(-inf-0.81125]' '(-1.449278-inf)' 
 

Stage0-I 

'(0.9795-inf)' '(-inf-0.81125]' '(-inf--1.449278]' 
 

Stage0-I 

'(-inf-0.9795]' '(0.81125-inf)' '(-1.449278-inf)' 
 

StageII-IV 

'(-inf-0.9795]' '(0.81125-inf)' '(-inf--1.449278]' 
 

StageII-IV 

'(-inf-0.9795]' '(-inf-0.81125]' '(-1.449278-inf)' 
 

StageII-IV 
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Table 5. Discretized data example (BRCA methylation) 

cg00955451 cg00962459 cg00970325 … class 

'(-inf-0.239753]' '(0.457448-inf)' '(-inf-0.340197]' 
 

Stage0-I 

'(-inf-0.239753]' '(0.457448-inf)' '(0.340197-inf)' 
 

Stage0-I 

'(0.239753-inf)' '(0.457448-inf)' '(0.340197-inf)' 
 

StageII-IV 

'(0.239753-inf)' '(-inf-0.457448]' '(0.340197-inf)' 
 

StageII-IV 

'(0.239753-inf)' '(-inf-0.457448]' '(0.340197-inf)' 
 

StageII-IV 

 

In the discretized form of the datasets, there are a few values that a variable can take. For 

example, Table 4 shows that the gene PDCL3 was discretized into two groups, where the 

cutpoint is 0.09795. This creates a group of values smaller or equal to the cutpoint, labeled '(-inf-

0.9795]', and another group whose values are greater than the cutpoint, labeled '(0.9795-inf)'. 

This process is repeated for all variables, with independent discretization strategies for each, 

depending on the cutpoints found by MDLPC. 

All the variables where MDLPC is not able to find cutpoints are removed from the 

analysis, since they will not be able to contribute to the classification. For example, in this 

example the gene ELMO2 was deleted because there was no difference between the values in 

both classes. The resulting database has 254 variables in the gene expression dataset, and 164 in 

the methylation dataset. 

 

Discretize: 
weka.filters.supervised.attribute.Discretize -R first-last 

Remove Useless: 
weka.filters.unsupervised.attribute.RemoveUseless -M 100.0 
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4.3 FEATURE SELECTION WITH RELIEFF 

Although the number of variables is already in the range of hundreds of variables (instead 

of thousands), there is no guarantee that this behavior will remain across many datasets. 

Furthermore, parsimony of the models would not be achieved with the number of variables from 

the discretization step. As mentioned in Section 2.1, a parsimonious model can be achieved by a 

combination of feature selection and model searching. The ReliefF algorithm is used to select the 

top 50 variables that have the highest scoring. In other words, the ReliefF score is an assessment 

of the usefulness of a variable to predict the class variable. A high ReliefF score is preferred. The 

WEKA implementation of the ReliefF algorithm is used for this purpose. Tables 6 and 7 show 

the top scoring variables in the gene expression and methylation datasets respectively. 

Table 6. Selected features with ReliefF (BRCA gene expression) 

# Variable ReliefF score  # Variable ReliefF score  # Variable ReliefF score 

1 LCE3B 0.1377  18 CHSY1 0.0772  35 CX3CR1 0.0554 

2 HNRPK 0.1345  19 PGM5 0.0749  36 BCL2 0.0546 

3 LIN7B 0.1338  20 OR2W3 0.0726  37 SPACA4 0.0536 

4 HOXC5 0.131  21 ELL3 0.0706  38 CIDEA 0.0505 

5 NFS1 0.1144  22 SORBS1 0.0695  39 SURF4 0.0503 

6 LRP6 0.1112  23 C12orf35 0.0687  40 CAMKK1 0.048 

7 BRINP1 0.106  24 AQP4 0.0676  41 TLR3 0.0471 

8 SLFN12 0.0993  25 SCARB2 0.0669  42 ZFP36L2 0.0459 

9 TLR10 0.0993  26 GJA1 0.0666  43 ZC3H12D 0.0451 

10 ULBP2 0.0985  27 CYBRD1 0.0663  44 DSN1 0.0449 

11 RWDD3 0.0971  28 GTF3C5 0.0661  45 SRXN1 0.0446 

12 CNN3 0.0969  29 NTRK2 0.0659  46 ACOT8 0.0444 

13 ZNF37A 0.0946  30 SLC13A4 0.0655  47 AGT 0.0435 

14 ELAVL4 0.0913  31 RRM2 0.0613  48 MPHOSPH9 0.0434 

15 DNASE1L3 0.0855  32 ASPDH 0.0612  49 ATP1A2 0.0428 

16 OR51G1 0.0846  33 SLC9A1 0.0591  50 JMJD6 0.0425 

17 C9orf140 0.0785  34 LRWD1 0.0565     
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Table 7. Selected features with ReliefF (BRCA methylation) 

# Variable ReliefF score  # Variable ReliefF score  # Variable ReliefF score 

1 cg07236190 0.0794  18 cg11653864 0.0297  35 cg11830061 0.0238 

2 cg19226099 0.0485  19 cg26538442 0.0292  36 cg17982102 0.0236 

3 cg06224510 0.0429  20 cg25014318 0.0292  37 cg02311163 0.0235 

4 cg21238818 0.0408  21 cg10107671 0.029  38 cg04740359 0.0227 

5 cg11630242 0.0396  22 cg15481539 0.0289  39 cg15777781 0.0218 

6 cg15028436 0.0388  23 cg19664945 0.0283  40 cg15742700 0.0215 

7 cg10269439 0.0371  24 cg19859270 0.0281  41 cg13204181 0.0212 

8 cg26389232 0.0371  25 cg06539804 0.0275  42 cg06220755 0.0208 

9 cg13482233 0.0369  26 cg27488807 0.0275  43 cg14409083 0.0207 

10 cg02085507 0.0362  27 cg10994126 0.0272  44 cg25384595 0.0205 

11 cg19404979 0.035  28 cg22637834 0.027  45 cg26743024 0.0205 

12 cg22730004 0.0342  29 cg11494699 0.0263  46 cg06207804 0.0204 

13 cg27341860 0.0339  30 cg13131015 0.026  47 cg07911663 0.0201 

14 cg11377136 0.0324  31 cg12732953 0.0249  48 cg03914397 0.0201 

15 cg05674036 0.0318  32 cg04413397 0.0249  49 cg22930187 0.0198 

16 cg17503750 0.0305  33 cg18986165 0.0241  50 cg10129493 0.0194 

17 cg21660392 0.0302  34 cg27071517 0.024     

 

In this example, the top 50 variables were selected based on previous experiences. This 

number of variables has been reported to offer a good trade-off between parsimony, relevance, 

and complexity of model (Dudoit et al. 2002). Another approach could be based on a greedy 

search of those variables with ReliefF scorings that are not significantly reduced compared to the 

top scoring feature. One more approach could use a wrapper mechanism to select the optimal 

number of features. However, these approaches are not in the scope of this dissertation and 

therefore the simpler approach was selected. 

 

Feature Selection: 
weka.attributeSelection.ReliefFAttributeEval -W -M -1 -D 1 -K 10 -A 2 

weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N 30 
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4.4 MODEL BUILDING WITH EBMC 

In the Bayesian framework, there are many algorithms that support the construction of a 

computational classifier that can handle missing data. However, there are few learning 

algorithms that also reduce the dimensionality of the variables. EBMC is one algorithm that 

searchers an efficient Bayesian structure that can classify between two states of disease. As 

mentioned in Section 3.2.3, the implementation used in this dissertation was developed in Java 

for WEKA, and it is equivalent to the original implementation. EBMC searches for the best 

available predictors and the conditional dependencies among them. The resulting structure is a 

tree augmented naïve Bayes, where all variables are conditionally dependent (children) on the 

target node, and some of them also have other dependencies. After this process, EBMC also 

implements forward elimination of the arcs that do not contribute much to the classification. In 

some cases, this will remove an arc between the target node and some of the predictors. 

However, even in these cases, in EBMC all nodes are part of the Markov blanket of the target 

node. 

Figures 11 and 12 show the EBMC-derived Bayesian model that was constructed for the 

breast cancer staging example. Both models were constructed using the same parameters, which 

includes: a) stating the scoring algorithm, in this case K2, b) defining the number of predictors 

searched, in this case 30, c) defining the number of potential parents for each node and potential 

children for each node, for both parameters 30. These numbers were selected to allow for a larger 

search given the number of predictors. Potentially, this parameter description could end up with a 

completely connected network of 30 variables. 
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Figure 11. EBMC-derived model (BRCA gene expression) 

 

 

Figure 12. EBMC-derived model (BRCA methylation) 

In the model created from gene expression data (Figure 11), there are 25 nodes, from a 

potential variable pool of 50. In this model, EBMC searched four times for predictors, creating 

corresponding clusters of up to 10 nodes. Similarly, in the model created from methylation data 

(Figure 12), there are 12 nodes out of 50. The EBMC search for this model also created clusters 

that are connected naïvely to the target node. Although the number of variables for both models 

is small, and significantly reduced from the original number of variables in the high-throughput 

platforms, the complexity of these models might still pose some cognitive burden for human 

researchers. Ideally, 72 variables would be preferred. 
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Model Building: 
weka.classifiers.bayes.BayesNet -D -Q 

weka.classifiers.bayes.net.search.local.EBMC -- -T 30 -P 30 -C 30 -S K2 -E 

weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5 

4.5 JUNCTION TREE BUILDING 

In the J2K framework, a junction tree is built from the Bayesian models created in the 

previous step. Since EBMC creates an augmented naïve Bayes (ANB) model (or a modified 

version without some arcs), the junction tree algorithm only needs to moralize the graph, that is 

to connect nodes with common children node, and remove directionality. The moral graph 

created from an EBMC-derived Bayesian network is already triangulated, which eliminates this 

step from the Junction tree algorithm. Finally, all cliques in the network are found to create a 

junction tree. A clique is a subgraph of the Bayesian network, where all nodes in the subgraph 

are completely connected. Creating the census of cliques (a list of all possible cliques in the 

network) is a computationally expensive task in large networks, but the EBMC-derived network 

is already a small network. The R-package SNA is used to calculate the census of cliques 

(Makino & Uno 2004). 

Figures 13 and 14 show the junction trees created from the EBMC-derived gene 

expression and methylation datasets, respectively. In Junction tree from the gene expression data 

(Figure 13), there are 5 cliques (blue circles) and 2 Junctions (red squares). The junctions contain 

common elements between two cliques. Similarly, the Junction tree from the methylation data 

(Figure 14) has 8 cliques but only one Junction (with the class). 
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Figure 13. Junction tree (BRCA gene expression) 

 

 

Figure 14. Junction Tree (BRCA methylation) 

 



 64 

4.6 CLIQUE EVALUATION 

In the junction trees, there is a chance that every clique can become a parsimonious 

classifier if it satisfies two conditions: 1) the clique contains the class, 2) the classification 

performance of the clique alone is statistically equivalent to the complete network. In the current 

example, the Junction tree from the gene expression data has five cliques, where only clique 3 

does not satisfy the first condition (does not contain the class). Similarly, the Junction tree from 

the methylation data has eight cliques, where all contain the class. The second condition can be 

tested by using the training data from which the model was generated from, evaluating the 

classification performance (measured by AUC), and comparing this performance to the 

performance of the complete network. Each clique is evaluated individually, even though there 

are some nodes that might be part of various cliques. The EBMC model is modified to include 

only the clique variables, and this model is used to compute classification performance. 

Table 8, shows the result of the clique evaluation. In the gene expression data, only clique 

#5 had a similar classification performance than the complete network. The remaining cliques 

were significantly worst. In this case, clique #5 can be a parsimonious substitute of the complete 

network. In the methylation data, only clique #1 had a similar classification performance to the 

complete network, while the remaining seven cliques had a significantly better classification 

performance. They would all be considered as potential parsimonious substitutes of the complete 

network. In this example, clique #8 was selected as the substitute, since it also has the highest 

AUC from all cliques. 
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Table 8. Classification performance of cliques (BRCA example) 

Omic Clique 

# of 

variables AUROC 95% C.I. 

Statistical 
comparison 

to complete 

network 

p-value 

Methylation 

Complete 12 0.72 0.68-0.75 1.0 

Clique 1 1 0.61 0.56-0.65 < 0.001 

Clique 2 1 0.61 0.57-0.66 < 0.001 

Clique 3 5 n.a. n.a. n.a. 

Clique 4 4 0.64 0.6-0.68 < 0.001 

Clique 5 5 0.71 0.68-0.75 0.93 

Gene Expression 

Complete 25 0.53 0.51-0.56 1.0 

Clique 1 1 0.63 0.57-0.69 0.004 

Clique 2 2 0.65 0.59-0.7 < 0.001 

Clique 3 3 0.69 0.63-0.74 < 0.001 

Clique 4 8 0.92 0.89-0.95 < 0.001 

Clique 5 8 0.91 0.88-0.93 < 0.001 

Clique 6 8 0.88 0.85-0.92 < 0.001 

Clique 7 8 0.90 0.86-0.92 < 0.001 

Clique 8 9 0.94 0.91-0.96 < 0.001 

4.7 MODI FRAMEWORK MODEL 

Until this point in the example, each ‘omic’ has been treated independently. Parsimonious 

single-omic models have been built using the J2K. An extension to the J2K framework is the use 

of the MODI framework, also covered in this dissertation. MODI integrates single-omic models 

to create multi-omic models to improve classification performance. The intent of MODI is to 

provide a comprehensive description of the data given a diverse set of data. In this example only 

two ‘omics’ are considered (gene expression and methylation), but this idea could be easily 

extended to incorporate other ‘omics’ and also clinical, and environmental data. As described in 

Section 3.3, the MODI framework uses a layered approach with latent variables to integrate 

multiple single-omic models, which are the inputs of the framework. Since every single-omic 
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model has the same target node, they are all treated as latent variables, and a new target node is 

created with the same variables. The expectation-maximization (EM) algorithm, is used to 

compute the probabilities of both the latent variables and the new target node.  

Figure 15 shows the MODI created with the two single-omic models, without selecting 

the best clique, while Figure 16 shows the same MODI created with the best clique scenario 

(clique #5 in gene expression, and clique #8 in methylation). The interactions from the latent 

variables (formerly target node in the single-omic models), are modelled to reflect the biology of 

the ‘omics’ being considered. Both ‘omics’ have an effect on the phenotype (target node, or class 

node), therefore the arcs marked with A and C in Figure 15 are necessary, while arc B reflects 

the relationship between the ‘omics’. In biology, it is known that hyper methylation of the DNA 

has an effect on the regulation of gene expression. 

 

Figure 15. MODI with complete network (BRCA) 
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Figure 16. Three-way MODI with best clique selection (BRCA) 

Evaluation of a multi-omic network is a difficult task, because it requires a patient to 

have multi-omic data in the first place. In cancer research, it means that the biopsy should have 

enough material to be used by the pathology laboratory, and also additional material for each 

‘omic’ machine that will be used. In the future, single-cell technologies could help avoid this 

inconvenience. In the TCGA breast cancer data, there are enough patients with data in both 

‘omic’ platforms. 

Table 9 shows the evaluation for the current example (classification task stage 0-I vs 

stage II-IV), and another example used as reference (classification task normal vs tumor). The 

evaluation includes single-omic models (gene model and methylation model), as well as multi-

omic models (mixture, independent, three-way, and cascade). All models were created using the 

J2K framework. The evaluation for the best cliques (parsimonious models) is also provided. 

These results are based on a stratified random sampling of samples where 70% of them were 

used for training of the models, and the remaining 30% were used for testing. 
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Table 9. Classification performance of MODIs (BRCA 70/30) 

Classification 

task Model AUC 95% C.I. 

Brier 

skill 

score 

Normal 

vs. 

Tumor 

Gene model 0.99 (0.99-1.0) 0.64 

Methylation model 0.99 (0.99-1.0) 0.82 

Mixture model 1.0 (1.0-1.0) 0.97 

Independent model 1.0 (1.0-1.0) 0.96 

Three-way model 1.0 (1.0-1.0) 0.97 

Cascade model 1.0 (1.0-1.0) 0.97 

Stage 0-I 

vs. 

Stage II-IV 

Gene model 0.5 (0.37-0.64) -2.04 

Methylation model 0.54 (0.46-0.62) -0.47 

Mixture model 0.57 (0.46-0.69) -2.55 

Independent model 0.8 (0.71-0.89) 0.15 

Three-way model 0.8 (0.71-0.89) 0.15 

Cascade model 0.79 (0.7-0.89) 0.2 

 

The results of Table 9 show that the J2K framework is able to create parsimonious 

models for molecular classification of cancer. The parsimony of this models is guaranteed by a 

small number of variables, with at least the same classification performance than the complete 

models. Furthermore, the MODI models (independent, three-way, and cascade) also improved 

the classification performance, compared to the single-omic models. 

Finally, the MODI shown in Figure 16, created using the complete set of data, shows that 

the node with the gene RRM2 is spouse of the latent variables (formerly the class node). This 

node, is a parent of many other nodes, jointly with the gene expression node, which provides an 

indication that its role in regulating the progression of the disease is important, given the 

classification task early stage vs late stage. Increased mRNA levels of the gene ribonucleotide 

reductase M2 (RRM2) have been associated with poor patient outcome in a dose-dependent 

manner, with prognostic power comparable to that of multiple gene signatures, and superior to 

TNM stage (H. Zhang et al. 2014), and also with Tamoxifen resistance (Putluri et al. 2014). The 

findings provided by the J2K framework suggest that there is a molecular change in the 
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expression of RRM2 between early and late stage patients that regulates other genes in the 

clique. 

The novel knowledge that was derived from the J2K framework was only possible to be 

observed because of the parsimony of the models. It would be extremely difficult for any human 

researcher to visually observe that gene from a network with 30 genes, and impossible from 

models with hundreds or thousands of variables. The strong indication of RRM2 should be 

validated experimentally in the laboratory, but J2K is already prioritizing a parsimonious list of 

genes that can be of potential interest. 

4.8 PARSIMONY IN J2K 

J2K is a framework that facilitates finding parsimonious models with high classification 

performance and small number of variables. In Figure 17, it is shown the progression these two 

metrics of parsimony as the J2K successively applies each of its components. The number of 

variables is reduced significantly from those in a high-throughput dataset into a number that 

reflects the rule of thumb of the cognitive psychology for human understanding (seven plus 

minus two). Also, the classification performance is either preserved or improved, when using the 

post-classification step in J2K. Finally, the new knowledge that is given to the experimental 

researchers is a list of differentially expressed genes and methylation sites that have a significant 

role in breast cancer progression. 
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Figure 17. Parsimony in J2K 

Top: Gene expression example, Bottom: DNA Methylation example 
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5.0  EXPERIMENTS AND ANALYSIS 

The J2K framework is a novel approach to automate data modeling from genomic 

datasets. The effectiveness of the framework in finding parsimonious classification models is 

dependent upon the actual algorithms employed by the framework and the quality of the genomic 

datasets. For this reason, the empirical effectiveness of the framework under controlled 

conditions is evaluated here with the data described in Section 3.2. The components of the J2K 

framework are evaluated following the diagram in Figure 18. 

 
Figure 18. Framework evaluation 
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The J2K framework uses four components with state-of-the-art algorithms to achieve a 

parsimonious model: a) Discretization using Minimum Description Length with Fayyad and 

Irani’s Principle Cut criteria (MDLPC) (Fayyad & Irani 1993), or with Kononenko’s criteria 

(Kononenko 1995). b) Feature selection using Kononenko’s ReliefF (Robnik-Šikonja & 

Kononenko 1997), which is compared to Smyth’s Limma (Smyth 2004), and Quinlan’s 

Information Gain (Quinlan 1986). c) Building of Bayesian model using Cooper’s EBMC 

(Cooper et al. 2010), and compared to the more traditional naïve Bayesian model (John & 

Langley 1995), and the TAN algorithm (Friedman et al. 1997). d) Building Junction tree using 

Lauritzen-Spiegelhalter algorithm (Lauritzen & Spiegelhalter 1988), obtaining the best clique, 

and comparing with a the first selection of genes done by EBMC. The following sections provide 

detailed explanations of these comparisons. 

5.1 DISCRETIZING CONTINUOUS VALUES 

Most ‘omic’ data, such as gene expression and methylation, are represented with 

continuous values. However, many machine learning algorithms are designed to handle only 

discrete (categorical) data, using nominal variables. The reason for that is that discretization, the 

process of transforming continuous values into discrete ones, has been shown to improve the 

performance of machine learning classifiers (Garcia et al. 2013). 

In the J2K framework, it is necessary to use a discretization algorithm since the selection 

of a Bayesian framework requires the use of discrete values. The J2K framework uses the 

minimum description length (MDL) algorithm with Fayyad and Irani’s Principle Cut (PC) 

criterion (Fayyad & Irani 1993). MDLPC is is a well-known algorithm that is frequently used in 
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machine learning studies with good results (Garcia et al. 2013). The MDL algorithm can also be 

implemented with the Kononenko criterion (MDLK) (Kononenko 1995), which is being used in 

this study as a comparison for the PC criterion. 

For each of the datasets considered in this dissertation, the experimental design of the 

discretization experiment uses a 10-fold cross validation to obtain 10 randomly stratified training 

folds, and their corresponding test folds. Every training fold is independently discretized using 

both MDLPC and MDLK. It is common that the resulting discretized datasets have a proportion 

of their original variables to have selected only one bin to which all values in that variables will 

be assigned, independently of the target variable value. Because this is an irrelevant feature that 

does not provide new information to the classification, these variables are eliminated, thus 

contributing to the parsimony of the model.  

Table 10 shows for each dataset the number of original variables and the resulting 

number of variables after discretizing with both methods. The proportion of variables that are 

eliminated through MDL discretization is the same for both criterions (Fayyad & Irani, and 

Kononenko) for a given dataset. The differences observed between the numbers of discretized 

variables in all datasets can be attributed to the difficulty of the classification task, rather than to 

the discretization method. 

 

 

 

 

 

 



 74 

 

Table 10. Experiments: Discretization number of variables. 

# Dataset 
# variables 

(original) 

# variables 

(Fayyad & 

Irani) 

# variables 

(Kononenko) 

A luad-m-tn 27,578 10,138 (36%) 10,316 (37%) 

B lusc-m-tn 27,578 17,437 (63%) 16,568 (60%) 

C lung-g-adsq 17,814 2,819 (16%) 3,387 (19%) 

D lung-m-adsq 27,578 7,409 (27%) 8,669 (31%) 

E brca-g-tn 17,814 11,672 (66%) 11,363 (64%) 

F brca-m-tn 27,578 14,489 (53%) 13,945 (50%) 

G brca-g-stage 17,814 225 (1%) 260 (1%) 

H brca-m-stage 27,578 138 (<1%) 111 (<1%) 

I ov-g-tn 17,814 1,356 (8%) 2,102 (12%) 

J ov-m-tn 27,578 5,886 (21%) 4,213 (15%) 

K coad-g-tn 17,814 6,165 (35%) 6,132 (34%) 

L coad-m-tn 27,578 15,504 (56%) 15,190 (55%) 

 

Table 11 shows the classification performance for both discretization methods. A naïve 

Bayes (NB) model was used to classify each of the case-control contrasts, using the 

corresponding test fold. The results shown in Table 11 do not have a significant statistical 

difference between the Fayyad & Irani criteria and the Kononenko criteria. The classification 

performance (measured with AUC) in all the tissue classification (Tumor vs Normal) is above 

0.86. The only exception is dataset I, which has the ovarian gene expression dataset. The reason 

for the poor performance in this dataset has to do with the extreme class imbalance between the 

cases and controls (590 to 8). Also, datasets G and H had poor performance, which can be 

attributed to the difficulty of the classification task, in this case determination of breast cancer 

stage. For these three examples the brier skill score (BSS) was negative. 
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Table 11. Experiments: Discretization performance 

# Dataset 

MDL with Fayyad & Irani 

criteria + NB 

MDL with Kononenko criteria + 

NB 

Statistical 

comparison 

between Fayyad 

& Irani and 

Kononenko 

p-value 

AUC 95% C.I. BSS AUC 95% C.I. BSS 

A luad-m-tn 1.0 1.0 - 1.0 0.99 1.0 1.0 - 1.0 0.99 1.0 

B lusc-m-tn 1.0 1.0 - 1.0 0.98 1.0 1.0 - 1.0 0.98 1.0 

C lung-g-adsq 0.86 0.78 - 0.93 0.4 0.86 0.78 - 0.94 0.4 0.96 

D lung-m-adsq 0.89 0.84 - 0.94 0.6 0.9 0.85 - 0.94 0.62 0.83 

E brca-g-tn 0.99 0.97 - 1.0 0.92 0.99 0.97 - 1.0 0.92 1.0 

F brca-m-tn 0.97 0.95 - 0.99 0.79 0.98 0.96 - 0.99 0.81 0.71 

G brca-g-stage 0.63 0.57 - 0.69 -0.76 0.62 0.56 - 0.68 -0.72 0.74 

H brca-m-stage 0.57 0.52 - 0.61 -1.4 0.57 0.52 - 0.61 -1.21 0.95 

I ov-g-tn 0.52 0.5 - 0.54 -0.16 0.52 0.5 - 0.54 -0.16 1.0 

J ov-m-tn 1.0 1.0 - 1.0 0.79 1.0 1.0 - 1.0 0.79 1.0 

K coad-g-tn 0.99 0.97 - 1.0 0.76 0.99 0.98 - 1.0 0.87 0.41 

L coad-m-tn 1.0 1.0 - 1.0 0.98 1.0 1.0 - 1.0 0.98 1.0 

 

There are other potential discretization strategies that could be used instead of MDL. In a 

preliminary study (Lopez Pineda et al. 2013), Fayyad and Irani’s MDLPC and Lustgarten’s 

Efficient Bayesian Discretization (EBD) (Lustgarten et al. 2011) were compared. Both 

discretizers were independently used with a naïve Bayes classifier (NB), with the Efficient 

Bayesian Multivariate Classifier (EBMC), and the Bayesian Rule Learner (BRL) 

(Gopalakrishnan et al. 2010). The results of this study, showed that the classification 

performance of these classifiers is improved by the use of discretizers, and that EBD performs 

equivalently to MDLPC. 

5.2 SELECTING VARIABLES FOR CLASSIFIERS 

DNA methylation microarrays are commonly used in cancer research to identify 

molecular characteristics of disease. These platforms generate high-dimensional data that can be 
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very challenging to analyze. Typically, researchers are presented with the task of finding 

differentially methylated (DM) genes that distinguish between two states of the disease (e.g., 

tumor and normal). Limma, a tool publicly available from the Bioconductor package in the R-

language, is used for the analysis of microarray data (Smyth 2004). Limma uses a t-statistic to 

rank genes in order of evidence for differential expression. It first fits linear models for each 

gene (lmFit), and then it uses empirical Bayes (eBayes) moderation to adjust the standard error 

of the models by borrowing information from the rest of the genes (average variance across all 

genes). This method is very effective in finding differentially expressed (DE) genes in 

microarray data, however with methylation datasets it has not been equally successful (Buhule et 

al. 2014). 

A recent study (J. Li et al. 2015) showed that it is possible to use ReliefF (Kononenko et 

al. 1997) to select features from a multi-omic dataset containing methylation data. ReliefF is an 

multivariate algorithm for data reduction that has been used to uncover gene-gene interactions 

(Greene et al. 2009). ReliefF iteratively updates the ranking of variables based on how well they 

can distinguish the target class. In each iteration, ReliefF sequentially selects a sample and finds 

its k-nearest hits (same class) and k-nearest misses (different class). The spatial distance of the 

hits is summed into the ranking, while the distance to the misses is deducted from it.  

The J2K framework uses the multivariate feature selection ReliefF, as an alternative to 

Limma. In addition, Information Gain is also compared to provide an example of a univariate 

feature selection method. The design of these experiments also uses 10-fold cross-validation. In 

each fold, the top 50 features are selected in Limma (Bioconductor package in R-language, 

version 3.24), ReliefF and Information Gain (Waikato Environment for Knowledge Analysis, 

WEKA (Hall et al. 2009), version 3.7). The training folds were used to learn naïve Bayesian 
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classifiers and their predictive ability was evaluated using the test folds. Their performance is 

reported using the average area under the receiver operating characteristic curve (AUC). 

Table 12 shows the results of the experimentation of ReliefF, where the concatenation of 

MDLCP, ReliefF, and NB yield models with 50 variables that have a classification performance 

higher than AUC0.79. These results are at least statistically equivalent or statistically better to 

the framework when feature selection is not used, thus showing that ReliefF is contributing to the 

parsimony of the models. 

Table 12. Experiments: Feature selection performance of ReliefF 

# Dataset 
MDLPC + NB MDLPC + ReliefF + NB 

Statistical 

comparison between 
MDLPC+ReliefF+NB 

and MDLPC+NB 

p-value 
AUC AUC 95% C.I. BSS 

A luad-m-tn 1.0 1.0 1.0 - 1.0 0.99 1.0 

B lusc-m-tn 1.0 1.0 1.0 - 1.0 0.98 1.0 

C lung-g-adsq 0.86 0.98 0.98 - 0.99 0.8 0.001 

D lung-m-adsq 0.89 0.97 0.96 - 0.98 0.79 0.002 

E brca-g-tn 0.99 1.0 1.0 - 1.0 0.95 0.28 

F brca-m-tn 0.97 0.99 0.99 - 0.99 0.83 0.02 

G brca-g-stage 0.63 0.91 0.91 - 0.92 0.08 < 0.001 

H brca-m-stage 0.57 0.79 0.78 - 0.8 -0.69 < 0.001 

I ov-g-tn 0.52 0.8 0.75 - 0.86 -0.96 < 0.001 

J ov-m-tn 1.0 1.0 1.0 - 1.0 0.68 0.27 

K coad-g-tn 0.99 1.0 1.0 - 1.0 0.97 0.04 

L coad-m-tn 1.0 1.0 1.0 - 1.0 0.98 1.0 

Table 13 shows the results with Information Gain, with similar characteristics as those 

observed by ReliefF. In fact, there are only a couple of datasets (G, H, I) where Information Gain 

had significantly lower performance than ReliefF. In the previous section these three datasets 

were already been identified to be hard classification performance tasks. The selection of 

algorithm in this case was for ReliefF because it is still better than Information Gain. 
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Table 13. Experiments: Feature selection performance of Information Gain 

# Dataset 

MDLPC 

+ NB 

MDLPC + 

ReliefF + 

NB 

MDLPC + Information 

Gain + NB 

Statistical 

comparison between 
MDLPC+ReliefF+NB 

and  

MDLPC+IG+NB 

p-value 

Statistical 
comparison 

between 

MDLPC+IG+NB 
and  

MDLPC+NB 

p-value 
AUC AUC AUC 95% C.I. BSS 

A luad-m-tn 1.0 1.0 1.0 1.0 - 1.0 0.99 1.0 1.0 

B lusc-m-tn 1.0 1.0 1.0 1.0 - 1.0 0.98 1.0 1.0 

C lung-g-adsq 0.86 0.98 0.98 0.97 - 0.99 0.76 0.2 0.002 

D lung-m-adsq 0.89 0.97 0.96 0.96 - 0.97 0.78 0.3 0.003 

E brca-g-tn 0.99 1.0 0.99 0.99 - 1.0 0.94 0.003 0.92 

F brca-m-tn 0.97 0.99 0.99 0.99 - 0.99 0.83 0.4 0.025 

G brca-g-stage 0.63 0.91 0.92 0.91 - 0.93 0.11 0.6 < 0.001 

H brca-m-stage 0.57 0.79 0.82 0.81 - 0.83 -0.55 < 0.001 < 0.001 

I ov-g-tn 0.52 0.8 0.8 0.75 - 0.86 -0.56 0.94 < 0.001 

J ov-m-tn 1.0 1.0 1.0 1.0 - 1.0 0.72 0.75 0.37 

K coad-g-tn 0.99 1.0 1.0 1.0 - 1.0 0.97 1.0 0.04 

L coad-m-tn 1.0 1.0 1.0 1.0 - 1.0 0.98 1.0 1.0 

 

So far, a comparison has been made considering that the order of the framework should 

be to discretize first and select features as a second step. However, the opposite order is also 

possible, and in fact, it is necessary for the comparison of ReliefF and Limma (since Limma 

requires the use of continuous values). 

In Table 14 the results of ReliefF are shown, considering it the first step in the 

framework. There is a possibility that when the number of variables in the classifier model will 

be further reduced by the combined effect of feature selection as first step and discretization as 

second. In the datasets tested with ReliefF and MDLPC, they all kept the original top 50 variable 

selection. There is no statistically significant difference between this order and those in previous 

tables, with the exception of those datasets with hard classification tasks (G, H, I). Therefore, 

using discretization as a first step is preferred. 
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Table 14. Experiments: Feature selection performance of ReliefF being performed before discretization 

# Dataset 

MDLPC + 

ReliefF + 

NB 

ReliefF + MDLPC + NB 
Statistical comparison 

between 

MDLPC+ReliefF+NB and  

ReliefF+MDLPC+NB 
p-value AUC # variables AUC 95% C.I. BSS 

A luad-m-tn 1.0 50 1.0 1.0 - 1.0 0.99 1.0 

B lusc-m-tn 1.0 50 1.0 1.0 - 1.0 0.95 1.0 

C lung-g-adsq 0.98 50 0.95 0.92 - 0.99 0.55 0.09 

D lung-m-adsq 0.97 50 0.95 0.91 - 0.98 0.7 0.14 

E brca-g-tn 1.0 50 0.98 0.96 - 1.0 0.91 0.14 

F brca-m-tn 0.99 50 0.99 0.98 - 1.0 0.77 0.18 

G brca-g-stage 0.91 50 0.64 0.57 - 0.7 -0.62 < 0.001 

H brca-m-stage 0.79 50 0.57 0.53 - 0.61 -1.11 < 0.001 

I ov-g-tn 0.8 50 0.52 0.5 - 0.54 -0.16 < 0.001 

J ov-m-tn 1.0 50 1.0 1.0 - 1.0 0.72 0.88 

K coad-g-tn 1.0 50 1.0 1.0 - 1.0 0.97 1.0 

L coad-m-tn 1.0 50 1.0 1.0 - 1.0 0.98 1.0 

 

Table 15 shows the results of the use of Limma to find DE or DM genes for the 

construction of a NB model. The top-50 variables selected by Limma, are further reduced when 

MDLPC is not able to select at least one cut-point to create two discretization bins. The 

statistical significance between the frameworks using ReliefF and Limma in two cases: A) when 

MDLPC is used after both feature selection algorithms, yielding a mix of results that are either 

equivalent or significantly worst, and B) when MDLPC is used before ReliefF, but after Limma, 

yielding mostly results that are significantly worst in the case of Limma. 
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Table 15. Experiments: Feature selection performance of Limma 

# Dataset 

MDLPC+ 

ReliefF+ 

NB 

ReliefF+ 

MDLP 

+NB 

Limma + MDLPC + NB 

Statistical 
comparison 

between 

ReliefF+MDLPC
+NB and Limma 

+ MDLPC+NB 

p-value 

Statistical 
comparison 

between 

MDLPC+ReliefF
+NB and Limma 

+MDLPC+NB 

p-value 

AUC AUC 
# 

variables 
AUC 95% C.I. BSS 

A luad-m-tn 1.0 1.0 7 0.88 0.8 - 0.97 0.43 0.008 0.008 

B lusc-m-tn 1.0 1.0 19 0.97 0.95 - 0.99 0.43 0.02 0.02 

C lung-g-adsq 0.98 0.95 39 0.89 0.82 - 0.95 0.14 0.08 0.003 

D lung-m-adsq 0.97 0.95 18 0.83 0.76 - 0.89 0.23 0.001 < 0.001 

E brca-g-tn 1.0 0.98 18 0.92 0.88 - 0.95 0.14 0.003 < 0.001 

F brca-m-tn 0.99 0.99 39 0.98 0.97 - 1.0 0.69 0.7 0.1 

G brca-g-stage 0.91 0.64 1 0.49 0.44 - 0.54 -0.01 < 0.001 < 0.001 

H brca-m-stage 0.79 0.57 1 0.49 0.45 - 0.54 -0.01 0.02 < 0.001 

I ov-g-tn 0.8 0.52 35 0.52 0.5 - 0.54 -0.15 0.9 < 0.001 

J ov-m-tn 1.0 1.0 14 0.84 0.7 - 0.99 -0.81 0.04 0.04 

K coad-g-tn 1.0 1.0 51 0.95 0.88 - 1.0 0.87 0.1 0.1 

L coad-m-tn 1.0 1.0 25 0.8 0.71 - 0.89 0.25 < 0.001 < 0.001 

 

There is, however, still an open question about the importance of using a multivariate 

method like ReliefF, given that the default bioinformatics analysis prefers Limma. A potential 

explanation is that ReliefF is indeed better than Limma in those cases where methylation data is 

being used, with mixed results when using gene expression. A potential explanation for this 

behavior is that normalized beta values in methylation microarray data have a probability density 

function that follows a bimodal distribution, where two distinct peaks are observed for hyper-

methylated and hypo-methylated samples. Bi-modality in the data is a hard problem to solve for 

univariate linear models, such as the ones used by Limma. In contrast, the multivariate approach 

of ReliefF facilitates the exploration of both peaks in the bimodal distribution. This is the main 

reason why ReliefF finds differentially methylated genes that perform better than Limma. The 

selection of genes is, in the worst-case scenario, as good as those found by Limma in both 

platforms. 
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5.3 BUILDING BAYESIAN NETWORK CLASSIFIERS 

Bayesian network classifiers are commonly used in biomedical problems, yielding 

excellent results for classification. Recent comparisons between several machine learning 

classifiers, it was observed the advantages of using a Bayesian framework (Lopez Pineda et al. 

2015; Jiang et al. 2014). Among these machine learning models, the logistic regression seems to 

be the most used in bioinformatics laboratories. However, it has been suggested that the 

predictions obtained from a logistic regression model are the same as those predictions 

originated from a naïve Bayes model (Sebastiani et al. 2012). Logistic regression is consistent 

with the conditional independence assumption used in naïve Bayes. Nevertheless, there are 

important differences in each algorithm. For example, logistic regression will adjust its 

parameters to maximize the conditional likelihood of the data, even if the resulting parameters 

are inconsistent with the naïve Bayes parameter estimates (Mitchell 2015). Furthermore, the 

possibility of making predictions in the presence of missing data is a characteristic that is better 

modeled in a Bayesian approach. The Bayesian model has prior parameter estimates that are 

obtained during the training step, and the prediction of a new case can be done without imputing 

any missing data. 

The J2K framework uses EBMC, a novel algorithm for the construction of Bayesian 

classifiers. EBMC facilitates the discovery of Bayesian network structures that have a good 

classification performance. The search strategy has two main phases: a) the greedy search for 

predictors of the target class node, and b) the search for conditional dependencies between those 

predictors, given the target class node. EBMC continuously switches between phases, until no 

improvement can be achieved, measured by the K2 score. At this point, the EBMC has obtained 
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a tree augmented naïve Bayes structure, but a last step is to remove any arc between nodes that 

improve the overall score of the network. EBMC potentially generates classifiers with less 

variables when fewer predictors are searched than those available, but this parameter is only an 

indication on when to stop the search, because the algorithm could stop by itself it no 

improvement is obtained. 

The design of these experiments uses 10-fold cross-validation. Each fold is discretized 

with MDLPC, and the top 50 ReliefF features are selected. Three algorithms are used to build a 

Bayeisan network: a) naïve Bayes (NB), which was shown in Table 12, b) EBMC, which was 

implemented in Java for WEKA, and c) Bouckaert’s TAN algorithm (Bouckaert 2008). The 

TAN algorithm first creates a tree-like structure from all the possible variables, and then it 

connects all nodes naïvely to the target node, obtaining a tree-augmented naïve Bayes structure 

(TAN) similar to that in EBMC. The main difference between EBMC structure and Bouckaerts’s 

TAN structure is the number of variables used, since Bouckaert’s TAN does not try to reduce the 

number of variables used in the final Bayesian structure, while EBMC starts with an empty 

structure and iteratively builds it up until no improvement can be obtained. 

Table 16 shows the classification performance of the framework with EBMC, where 

most classifiers achieved AUC > 0.89. The exceptions are the same as in previous experiments 

(G, H, I). In all cases the number of variables was reduced to 30 or less. Results for datasets A, 

B, D, F, K, and L where statistically equivalent or better to the results obtained when using NB 

with 50 variables, which confirms the contribution of EBMC to the parsimony of these models. 

The AUC for datasets C, E, and J were lower than when using NB, but there is no statistical 

difference. Finally, results for datasets G, H, and I are statistically worst than when using NB. 

However, for these datasets the Brier Skill Score is negative when using EBMC and also when 
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using NB, which talks about the poor calibration of the models, and the difficulty of these 

classification problems. Overall, EBMC contributed to the parsimony of the models by reducing 

the number of variables from 50 to 30. The optimal number of reduction that EBMC could 

obtain without compromising the AUC performance is still an open question, which would 

require the use of a wrapper approach to keep exploring the best alternative. 

Table 16. Experiments: building models with EBMC 

# Dataset 

MDLPC

+ 

ReliefF+ 

NB 

MDLPC + ReliefF + EBMC 

Statistical comparison 
between 

MDLPC+ReliefF+NB 

and 
MDLPC+ReliefF+EBMC 

p-value AUC 
# 

variables 
AUC 95% C.I. BSS 

A luad-m-tn 1.0 30 1.0 1.0 - 1.0 0.94 1.0 

B lusc-m-tn 1.0 30 1.0 0.99 - 1.0 0.94 0.32 

C lung-g-adsq 0.98 29 0.89 0.82 - 0.96 0.46 0.008 

D lung-m-adsq 0.97 30 0.97 0.95 - 0.99 0.73 0.82 

E brca-g-tn 1.0 30 0.99 0.97 - 1.0 0.92 0.32 

F brca-m-tn 0.99 20 1.0 0.99 - 1.0 0.82 0.06 

G brca-g-stage 0.91 26 0.62 0.56 - 0.68 -0.32 < 0.001 

H brca-m-stage 0.79 15 0.6 0.56 - 0.65 -0.19 < 0.001 

I ov-g-tn 0.8 3 0.55 0.49 - 0.62 -0.14 < 0.001 

J ov-m-tn 1.0 30 0.96 0.87 - 1.0 0.49 0.31 

K coad-g-tn 1.0 30 1.0 1.0 - 1.0 0.97 1.0 

L coad-m-tn 1.0 30 1.0 1.0 - 1.0 0.98 1.0 

 

Table 17 shows the results of using Bouckaert’s TAN algorithm, where almost all models 

achieved a classification performance AUC > 0.93, expect for datasets G, H, I. The use of this 

algorithm does not reduce the number of variables, which means that all models were 

constructed using 50 variables. The AUC variation with the models built using EMBC has mixed 

results (some are better, some are worst), but none of them has a statistically significant 

difference. Therefore, the use of EBMC is encouraged. 

 



 84 

Table 17. Experiments: building models with Bouckaert’s TAN 

# Dataset 

MDLPC 

+ ReliefF 

+ EBMC 

MDLPC + ReliefF + TAN 

Statistical comparison 
between 

MDLPC+ReliefF+EBMC 

and 
MDLPC+ReliefF+TAN 

p-value 
AUC AUC 95% C.I. BSS 

A luad-m-tn 1.0 0.98 0.96 - 1.0 0.88 0.16 

B lusc-m-tn 1.0 0.98 0.94 - 1.0 0.9 0.44 

C lung-g-adsq 0.89 0.93 0.88 - 0.99 0.49 0.34 

D lung-m-adsq 0.97 0.96 0.93 - 0.99 0.67 0.59 

E brca-g-tn 0.99 0.99 0.97 - 1.0 0.92 0.94 

F brca-m-tn 1.0 0.98 0.97 - 1.0 0.84 0.07 

G brca-g-stage 0.62 0.63 0.57 - 0.7 -0.29 0.80 

H brca-m-stage 0.6 0.6 0.56 - 0.64 -0.55 0.91 

I ov-g-tn 0.55 0.56 0.53 - 0.59 -0.04 0.81 

J ov-m-tn 0.96 1 0.99 - 1.0 0.56 0.32 

K coad-g-tn 1.0 1 0.99 - 1.0 0.92 0.32 

L coad-m-tn 1.0 1 1.0 - 1.0 0.98 1.0 

 

5.4 SELECTING PARSIMONIOUS MODELS 

Until this point, a traditional machine learning classification process has been followed 

were parsimony is gradually achieved by a specific sequence of algorithms. The J2K framework, 

proposes the use of a post-classification approach were inspection of the Bayesian model, which 

created in the classification step, can lead to the identification of an even more parsimonious 

model. The selection of this model with fewer nodes can be done by reducing the number of 

steps that the EBMC search algorithm is taking, or by inspection of the graphical structure of the 

network. The second approach has been described in this dissertation with the use of Junction 

trees, and the selection of one of its cliques. 

The experimental design of this section applies 10-fold cross-validation. Each fold is 

discretized with MDLPC, and the top 50 ReliefF features are selected. A Baysian classifier is 
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constructed using EBMC, where 30 predictors are searched and a completely connected network 

is allowed (maximum number of parents and children is also 30). Then, all cliques are extracted 

from the network, and evaluated individually using the training fold. The clique that obtains the 

best AUC with training data is selected as the best clique and evaluated with the test fold.  

Table 18 shows the results of the evaluation of the best clique. Datasets A, B, J, and L 

obtained classification performances of AUC > 0.87, but only B and J are statistically equivalent 

to those from the complete network. These are all parsimonious models that can be reported. In 

contrast, dataset K had an AUC of 0.76, which is significantly worst than the complete network. 

However, for datasets C, D, E, F, G, H, and I, the training data was not sufficient to build a 

parsimonious model that could be evaluated with the test data. When removing nodes from the 

original network to keep only those in the clique, the training data does not consider some 

conditional possibilities that are present in the test folds, therefore the predictions of the network 

are assigned to only one class in most cases. 

Table 18. Experiments: Selection of best clique from Junction tree 

# Dataset 

MDLPC 

+ ReliefF 

+ EBMC 

MDLPC + ReliefF + EBMC + Junction tree 
Statistical comparison 

between MDLPC + 
ReliefF + EBMC 

and 

 MDLPC + ReliefF + 
EBMC + BestClique 

p-value 

AUC 

# 

cliques 

in 

network 

# 

nodes 

in 

cliques 

AUC 

(best 

clique) 

95% C.I. 

(best 

clique) 

BSS 

(best 

clique) 

A luad-m-tn 1.0 8 7 0.87 0.78 - 0.95 0.58 0.004 

B lusc-m-tn 1.0 11 5 0.93 0.87 - 0.99 0.74 0.05 

C lung-g-adsq 0.89 8 8 0.53 0.42 - 0.64 0 < 0.001 

D lung-m-adsq 0.97 9 7 0.53 0.44 - 0.61 0 < 0.001 

E brca-g-tn 0.99 14 6 0.51 0.44 - 0.58 -0.02 < 0.001 

F brca-m-tn 1.0 8 7 0.51 0.46 - 0.56 -0.02 < 0.001 

G brca-g-stage 0.62 7 8 0.51 0.45 - 0.58 -0.01 0.004 

H brca-m-stage 0.6 7 4 0.51 0.46 - 0.55 0 < 0.001 

I ov-g-tn 0.55 2 4 0.61 0.45 - 0.76 -0.13 0.06 

J ov-m-tn 0.96 15 5 1 1.0 - 1.0 0.92 0.3 

K coad-g-tn 1.0 4 11 0.76 0.67 - 0.84 0.07 < 0.001 

L coad-m-tn 1.0 8 7 0.91 0.84 - 0.97 0.62 0.003 
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Table 19 shows the classification results when the first iteration of EBMC is used. 

Almost all models included 10 variables, and achieved classification performances of AUC > 

0.9. Datasets G, H, and I are cases that were not able to classify in previous steps of the 

framework. For all results, there is no statistical significance between the models created with the 

first iteration of EBMC and those models that undertake every iteration. Parsimony of these 

models is guaranteed by the first iteration only, which reduces the uncertainty of 

parameterization of EBMC algorithm, given that fewer predictors are searched, and also because 

the parents and children can be exhaustively investigated. EBMC-first is a better alternative than 

J2K to always provide a parsimonious model, given the available training data. 

Table 19. Experiments: Selection of the first iteration of EBMC  

# Dataset 

MDLPC + ReliefF + EBMC-first 
Statistical 

comparison between 

MDLPC + ReliefF 

+ EBMC-first 
and 

 MDLPC + ReliefF 

+ EBMC 

p-value 

Statistical comparison 

between MDLPC + 
ReliefF + EBMC-first 

and 

MDLPC + ReliefF + 
EBMC + BestClique 

p-value 

# variables AUC 95% C.I. BSS 

A luad-m-tn 10 1.0 0.99 - 1.0 0.87 0.30 0.005 

B lusc-m-tn 10 1.0 1.0 - 1.0 0.98 0.32 0.04 

C lung-g-adsq 10 0.9 0.84 - 0.97 0.33 0.81 < 0.001 

D lung-m-adsq 10 0.95 0.91 - 0.98 0.63 0.18 < 0.001 

E brca-g-tn 10 1.0 1.0 - 1.0 0.89 0.28 < 0.001 

F brca-m-tn 10 1.0 0.99 - 1.0 0.82 0.83 < 0.001 

G brca-g-stage 10 0.6 0.54 - 0.66 -0.28 0.59 0.02 

H brca-m-stage 6 0.59 0.55 - 0.64 -0.08 0.74 0.002 

I ov-g-tn 3 0.56 0.5 - 0.62 -0.14 0.83 0.05 

J ov-m-tn 10 1.0 0.99 - 1.0 0.47 0.33 0.07 

K coad-g-tn 10 1.0 1.0 - 1.0 0.95 1.0 < 0.001 

L coad-m-tn 10 1.0 1.0 - 1.0 0.93 0.23 0.003 
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5.5 HYPOTHESIS TESTING 

The J2K framework has four components with specific algorithms in each one. 

Alternative algorithms are tested in each component, as shown in Tables 11 to 19, using the 

TCGA datasets described in Table 1. Although there is a statistical comparison (p-value with 

DeLong’s method) associated with each comparison for each dataset in Tables 11 to 19, a 

statistical inference testing could reveal more concrete results across all datasets. These tests are 

enumerated in Table 20, and aggregated by J2K component.  

 

Table 20. Hypothesis testing 

J2K component Algorithm testing 

Discretization 1) Fayyad & Irani vs. Kononenko 

Feature Selection 

2) ReliefF vs. Information Gain vs. No Feature Selection 

3) Discretization before Feature Selection vs. Discretization after 

Feature Selection 

4) Limma vs. ReliefF 

Model Building 5) Naïve Bayes vs. EBMC vs. TAN 

Post-classification 
6) Best clique from Junction vs. First iteration of EBMC vs. No 

post classification 

 

Hypothesis testing is the use of statistics to determine the probability that a given 

hypothesis is true (Weisstein 2004a). Two statistical hypothesis testing methods were used for 

comparing classification performance across all datasets: a) Paired 2-tailed t-test (Weisstein 

2004b), and b) Wilcoxon signed rank test (Lowry 2014). In the paired t–test, given two paired 

sets 𝑋𝑖 and 𝑌𝑖 of 𝑛 measured values, the paired t-test determines whether they differ from each 

other in a significant way under the assumptions that the paired differences are independent and 

identically normally distributed. Therefore, it can be calculated as seen in Equation 8. 
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Equation 8. T-test 

�̂� = (𝑋𝑖 − �̅�) 

�̂� = (𝑌𝑖 − �̅�) 

𝑡 = (�̅� − �̅�)√
𝑛(𝑛 − 1)

∑ (𝑋𝑖 − 𝑌𝑖)2𝑛
𝑖=1

 

When the data within two correlated samples fail to meet one or another of the 

assumptions of the t-test, an appropriate non-parametric alternative can often be found in the 

Wilcoxon Signed-Rank Test (W statistic). The Wilcoxon test begins by transforming each 

instance of 𝑋𝑖 − 𝑌𝑖 into its absolute value, which is accomplished simply by removing all the 

positive and negative signs. Those cases in which there is a zero difference are eliminated from 

consideration, since they provide no useful information. The remaining absolute differences are 

then ranked from lowest to highest, with tied ranks included where appropriate. The positive or 

negative sign that was removed from the 𝑋𝑖 − 𝑌𝑖 difference is re-attached. Lastly, the W statistic 

is calculated by obtaining an average of the available ranks. 

For both test the null hypothesis is that the classification performance between method A 

and method D are identical, while the alternative is that they are different. The alpha parameter 

in all tests was established ad 0.05 given that the number of experiments is 𝑛 = 12. 

 

H0: classification performance between Method A and Method B are identical. 

H1: classification performance between Method A and Method B are different. 

 

Discretization. In Table 21, it is shown that MDL Fayyad & Irani criteria for discretization is 

statistically indistinguishable to MDL Kononenko criteria. Both algorithms have an average 
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performance of AUC=0.87, with standard error of the mean (SEM) of 0.05. The number of 

variables is statistically significantly reduced from an average of 23,510 in the original datasets 

to 7,770 with Fayyard & Irani, and 7,688 with Kononenko. The number of variables is 

statistically equivalent in both algorithms. 

Table 21. Hypothesis testing: Kononenko vs Fayyad&Irani 

 
P-value 

Paired 2-tailed t-test 0.59 

Wilcoxon signed rank test 1.0 

P-values for two hypothesis test methods. T: p-value in paired 2-tailed t-test, W: p-value in Wilcoxon signed rank 

test. Only top triangle is shown. Alpha is 0.05 

 

Feature Selection. In Table 22, it is shown that feature selection significantly improves 

classification. The AUC improves from 0.87, when no feature selection algorithm is used, to 

0.95 with a SEM of 0.02. The classification performance of ReliefF is statistically 

indistinguishable to that from Information Gain (IG). The number of variables is statistically 

significantly reduced from 7,770 to 50 variables. 

Table 22. Hypothesis testing: ReliefF vs Information Gain 

 MDLPC + ReliefF MDLPC + IG 

MDLPC 
0.01 (T) 

0.02 (W) 

0.02 (T) 

0.03 (W) 

MDLPC + ReliefF – 
1.0 (T) 

0.6 (W) 

P-values for two hypothesis test methods. T: p-value in paired 2-tailed t-test, W: p-value in Wilcoxon signed rank 

test. Only top triangle is shown. Alpha is 0.05 

 

In Table 23, it is shown that it is preferable to discretize before using a feature selection method, 

and not after. This is a soft claim, given that the non-parametrical W-statistic is not rejecting the 

null hypothesis, but the t-statistic is (with an alpha of 0.05). However, upon inspection of Table 

14, discretization before feature selection is recommended since in the worst case scenario it 
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would be the same as discretizing after feature selection. Table 23 also shows that using ReliefF 

statistically significantly improves classification when compared to Limma.  

Table 23. Hypothesis testing: Feature Selection and Discretization 

 
ReliefF + MDLPC Limma + MDLPC 

MDLPC + ReliefF 
0.03 (T) 

0.06 (W) 

< 0.01 (T) 

< 0.01 (W) 

ReliefF + MDLPC – 
< 0.01 (T) 

< 0.01 (W) 

P-values for two hypothesis test methods. T: p-value in paired 2-tailed t-test, W: p-value in Wilcoxon signed rank 

test. Only top triangle is shown. Alpha is 0.05 

 

Model building. In Table 24 it is shown that NB has statistically significantly improved 

classification when compared to both EBMC and TAN. The AUC of both EBMC and TAN is 

0.88, with a SEM of 0.05. EBMC is statistically indistinguishable to TAN. However, the number 

of variables that NB and TAN use (50, selected from ReliefF) cannot be said to be a 

parsimonious model, and therefore an acceptable error might be to use EBMC in favor of a 

simplistic model. The average BSS in NB is 0.53, while in EBMC is 0.53. The search of EBMC 

is truncated with the expectation of 30 predictors (features). However, NB assumes a strong 

independence between variables, which creates a structure that does not allow for any 

discrimination or prioritization from the variables. Therefore, EBMC is still a valid choice to use. 

Table 24. Hypothesis testing: EBMC vs TAN vs NB 

 
EBMC TAN 

NB 
0.04 (T) 

0.04 (W) 

< 0.01 (T) 

< 0.01 (W) 

EBMC – 
0.95 (T) 

0.68 (W) 

P-values for two hypothesis test methods. T: p-value in paired 2-tailed t-test, W: p-value in Wilcoxon signed rank 

test. Only top triangle is shown. Alpha is 0.05 
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Post classification. In Table 25, it is shown that the first iteration of EBMC is statistically 

indistinguishable to EBMC (AUC=0.88, SEM=0.05). The First iteration of EBMC improves 

classification when compared to the best clique from the Junction tree (AUC=0.68, SEM=0.05).  

There is a clear evidence that the use of a post-classification strategy can find a model that is 

more parsimonious, given a graphical structure. A NB structure would require more search in 

order to obtain a smaller subset of variables. 

Table 25. Hypothesis testing: Use of post classification 

 
EBMC-first EBMC + Junction 

EBMC 
1.0 (T) 

0.7 (W) 

< 0.01 (T) 

< 0.01 (W) 

EBMC-first – 
< 0.01 (T) 

< 0.01 (W) 

P-values for two hypothesis test methods. T: p-value in paired 2-tailed t-test, W: p-value in Wilcoxon signed rank 

test. Only top triangle is shown. Alpha is 0.05 

5.6 SUMMARY 

The main claim in this dissertation is to investigate whether the J2K framework provides 

a mechanism for the identification of parsimonious Bayesian models, by using specific 

algorithms in sequence. The arguments to support this claim can be seen by the following 

Sections. 

a. MDLPC improves parsimony of models: From Sections 4, 5.1.1, and 5.1.5, it was 

shown that this claim was strongly supported. 

b. ReliefF improves parsimony of models: From Sections 4, 5.1.2, and 5.1.5, it was 

shown that this claim was strongly supported. 
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c. EBMC improves parsimony of models: From Sections 4, 5.1.3, and 5.1.5, it was shown 

that this is supported. 

d. Post classification improves parsimony of models: From Sections 4, 5.1.4, and 5.1.5, it 

was shown that this claim was inconclusive for Junctions, but supported for the first 

iteration of EBMC. 

A secondary claim is that the J2K framework facilitates the creation of parsimonious multi-omic 

data integration models (MODI). From the annotated example in Section 4 it was shown 

that this claim is supported. 
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6.0  CONCLUSIONS, LIMITATIONS AND FUTURE WORK 

6.1 CONCLUSIONS 

Computational models can accelerate translational research, facilitating improved 

diagnosis and personalized treatment options for patients. Using a Bayesian framework, this 

dissertation has shown the feasibility of building parsimonious models for classification in 

cancer. It demonstrated how microarray data can be transformed into a Bayesian network with 

high classification performance with few variables.  

In machine learning, the parsimony principle states that if two models can adequately 

model a given set of data, the one that is described by a fewer number of parameters will have 

better predictive ability given new data (Seasholtz & Kowalski 1993). The experiments 

presented in this dissertation using real life cancer datasets from The Cancer Genome Atlas, have 

shown that a parsimonious model is possible using state of the art algorithms. 

Each component of the J2K framework is contributing individually to the parsimony of 

the model. Discretization with MDLPC provides a mechanism for the selection of genes or 

methylation sites that can take discrete values. The use of ReliefF facilitates finding groups of 

genes or methylation sites that jointly classify between disease states. The use of EBMC to build 

a Bayesian network efficiently selects an accurate classifier. EBMC facilitates the search of a 

Bayesian network structure that can become a parsimonious classifier. Although the algorithms 
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selected for the J2K framework could be replaced by others that might become available in the 

future, the selection of those algorithms should be based on the principle of parsimony. 

The J2K framework enables the creation of parsimonious multi-omic data integration 

models. Handling the large number of variables that cancer molecular studies have (and 

especially multi-omic studies) is a complex task. The MODI framework builds upon the J2K 

framework by taking these parsimonious models and creating hierarchical models. There is a 

potential to explore other algorithms for the novel genomic problems, such as pan-cancer 

analysis. 

Finally, in this dissertation many known algorithms were used in a novel framework to 

create classification models for cancer. The informatics novelty of this approach is the selection 

of algorithms, the post-classification of cliques and clusters of nodes, and the application to a 

multi-omic problem. The impact of this dissertation to cancer problems lie in the future use that 

these novel frameworks can have in the downstream analysis of biomarker discovery. 

 

6.2 LIMITATIONS 

The results presented in this dissertation suggest that the J2K framework is a valid 

approach to create parsimonious models. The results have to be interpreted in light of the 

following limitations: 

a. For each component of the J2K framework, only one algorithm was used. The J2K 

framework is only one approach to create a parsimonious model from data, but it does not 

address the selection of the most parsimonious model.  
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b. The discretization component of J2K is necessary for the Bayesian-EBMC component, 

but using a different machine learning classifier might not require the discretization step. 

c. The results presented only consider classification tasks using microarray data from the 

TCGA, in four cancer types. The external validity of the J2K needs to be tested when using other 

data sources. 

d. Only one instance of the algorithm for Junction tree generation was used. 

6.3 FUTURE WORK 

The work described in this dissertation has shown the potential to create parsimonious models 

for cancer research. This work directly leads to the following future directions: 

6.3.1 Investigate the Junction Structure. 

There is a potential to find interesting biological meaning in the structure generated from 

the Junction tree algorithm. For example, one application could be in the determination of gene-

gene-phenotype regulatory networks. Epistasis describes how gene interactions can affect 

phenotypes, and the data-driven approach of the J2K could be optimized to find such 

relationships. The impact of this method would be in the identification of relevant functional 

modules that could lead to new translational applications. 

Typically, the result of a microarray case-control experiment is a list of differentially 

expressed genes (Smyth 2004). The list of genes are then processed with gene set analysis tools, 

which are statistical methodologies to 1) rank the top scoring genes given a condition, 2) produce 
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small p-values for those genes (Tarca et al. 2013). However, a significant result from these 

methods does not necessarily mean that the gene set of interest contains genes that are associated 

with the phenotype (Maciejewski 2014). To solve this problem, heuristic methods are used to 

compare the gene sets with known biological pathways such as Gene Ontology GO (Ashburner 

et al. 2000) and the Kyoto Encyclopedia of Genes and Genomes KEGG (Ogata et al. 1999).  

From a systems biology perspective, functional modules are a group of molecular 

components (i.e., genes, gene products, or metabolites) that coordinately participate in 

accomplishing a specific biological function in the cell (Resendis-Antonio et al. 2012).  

Functional modules are subnetworks of the interactome composed of elements with physical 

interactions (i.e., protein-protein) or genomic interactions (i.e., gene-gene, gene-disease) (Mitra 

et al. 2013). Since the J2K provides a quick way of extracting groups of genes that are highly 

correlated between each other, and also to the disease, there is an initial thought that this would 

be a tool to find functional modules (in addition to parsimonious classifiers). 

6.3.2 Explore Novel Search Strategies for Bayesian Model Building. 

The EBMC search strategy has been shown in this dissertation to have an important role 

in finding Bayesian classifiers that accurately capture the complexity of data, while at the same 

time reducing the number of variables. Other search strategies could lead to the identification of 

causal relationships that can be explored in the experimental laboratory setting. 

The use in J2K of a univariate approach for discretization (MDLPC), multivariate 

approach for feature selection (ReliefF), and multivariate approach for model building (EBMC), 

creates a pipeline that facilitates the search. However, there is still a need to identify models that 

can provide feedback to these components. A wrapper approach is a potential solution to this 
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problem, but increases the time needed for training the models. Therefore, some heuristic 

methods should be considered when building a J2K-wrapper. 

Other alternatives could be to apply post-processing to state-of-the-art algorithms such as 

Model Averaging Naïve Bayes (MANB) algorithm (W. Wei et al. 2011), or the Bayesian Rule 

Learning (BRL) algorithm (Gopalakrishnan et al. 2010), which already expand on the idea of 

model searching, and are also well calibrated. 

6.3.3 Expand the MODI Framework to Integrate more ‘Omics’. 

The study of the molecular differences in cancer samples still has open questions of 

interest to personalized medicine experts. The use of a single-omic approach has limitations that 

are partially addressed by the MODI framework. Multi-omic data integration aims to enable 

personalized medicine by using information from various molecular elements, however, in 

MODI only two ‘omics’ are considered (gene expression and DNA methylation). However, the 

MODI framework could be easily extended to include more ‘omic’ platforms, as well as clinical 

data and imaging studies from the Electronic Health Record (EHR). The use of latent variables is 

an important contribution that could lead to an automated search of other latent variables. 

6.3.4 Modeling from Liquid Biopsy Samples 

In spite of the great advances in machine learning, the main source of information is case-

control studies that were generated with data from sequencing biopsy samples. Recently, it has 

been suggested that the use of blood-based liquid biopsies can be used to develop a noninvasive 

method to detect and monitor tumors (Bettegowda et al. 2014). The current tumor staging 
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procedure cannot detect early tumor cell dissemination as a key event in tumor progression, but 

there use of circulating tumor cells (CTC) (Alix-Panabières et al. 2012), and tumor-educated 

platelets (Best et al. 2015), might be able to help accomplish this task. Cell-free fragments of 

DNA can circulate cell-free in the blood stream. Trying to correlate these fragments with tumor 

staging and prognosis is a promising area of research (Diaz & Bardelli 2014). The sensitivity 

when using this approach in metastatic tumors is very high (Diehl et al. 2008), given the high 

content of these circulating fragments. However, in early stages this has not been the case, given 

the smaller number of circulating fragments. There is a lack of methods that look at liquid 

samples to find a group of biomarkers that can serve as a screening, diagnostic, or monitoring 

mechanism. 

Future work of this dissertation would be to explore the potential of liquid biopsies to 

become a screening mechanism for breast cancer. The goal of this potential study would be to 

obtain a parsimonious classifier, composed by small number of biomarkers from blood, that can 

detect breast cancer staging with a high sensitivity and specificity. The output of this classifier, 

could be tested and implemented in clinical care. The publicly available data in The Cancer 

Genome Atlas (TCGA) contains datasets that were generated using high-throughput technologies 

(microarrays, and next-generation sequencing). An exploration of the most informative type of 

data for correlation with liquid samples (e.g., SNPs, expression, methylation, etc) would be 

needed. The proposed method would also explore a selection of various types of samples, 

including: a) solid tumor biopsies from early stage breast cancer patients; b) solid tumor biopsies 

from late stage breast cancer patients; c) blood from early stage patients; and d) blood from late 

stage patients. Matched normal tissue samples are needed to exclude germ-line mutations from 

the tumors. 
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A machine learning analysis is suitable for identifying early stage cancer biomarkers 

from liquid biopsies. A challenge of this task is the amount of features available from where the 

machine learning process can take action. The process of creating a computational model, 

requires a training and test datasets, in the format of a data matrix where columns are features, 

and rows are samples. The target class for each sample would be assigned using a retrospective 

study where the true value can be obtained from an invasive procedure (solid tumor biopsy, and 

IHC analysis). The features for training the machine learning model would be from both tumor-

derived and blood-derived genotyping, while only the blood-derived genotyping features would 

be used for testing. The computational models created with this approach could be tested using 

either an independent dataset, or a prospective analysis. This study can be repeated over time, 

given that obtaining blood from patients is a far less invasive procedure than obtaining a tumor 

biopsy. 

A liquid biopsy screening that requires testing a small number of biomarkers has the 

potential to be implemented in clinical care. The methods presented in this dissertation could be 

adapted for searching blood-derived biomarkers. Data from the TCGA could be used to find an 

initial selection of biomarkers, and other available datasets with blood derived genotyping would 

have to be investigated, e.g., the  Norwegian Women and Cancer study (NOWAC) (Dumeaux et 

al. 2008). 
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APPENDIX A 

J2K APPLIED TO LUNG CANCER SUBTYPING 

BACKGROUND 

Lung cancer is the leading cause of human cancer death in the United States. 

Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most common histological 

subtypes among all lung cancers. Both of them are a form of cancer that develops in the 

epithelial cells (carcinoma), and belong to the category of non-small cell lung cancer. Several 

studies have shown that molecular profiling of lung carcinoma is a viable tool for disease 

diagnosis (Cai et al. 2014), and prognosis (Subramanian & Simon 2010). What is more, 

distinguishing between ADC and SCC has significant clinical implications – both can have 

different treatment regimens. Furthermore, ADC and SCC have distinct progression rate and 

progression free survival, which determines the selection of treatment (Chiu et al. 2014). The 

standard molecular testing for lung cancer is to check for mutations of two molecules: epidermal 

growth factor receptor (EGFR) and rearrangement of anaplastic lymphoma kinase (ALK). Each 

protein has mutations that lead to the development of lung cancer. However, EGFR is found to 

be mutated only in around 10% of tumors (Dacic et al. 2010). Similarly, ALK mutation occurs 

only in 6% of tumors (Soda et al. 2007). Although some drugs target EGFR and ALK positive 
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tumors with therapeutic benefits for the patient, 75% of lung tumors do not possess these 

molecular alterations (Richer et al. 2015). The high sensitivity and low specificity of these 

diagnostic molecules is a motivation to research into new diagnostic models. 

Typically, a biopsy tissue represents a very small portion of the lung. In spite of 

ultrasound guidance, it is easy to miss a small focal malignancy, and end up retrieving tumor-

adjacent histologically-normal tissue (TAHN) along with Tumor tissue. In those cases, the 

biopsy is discarded if it cannot retrieve more than 50% of tumor tissue (Dooms et al. 2014). The 

patient would have to undergo a new procedure to obtain another biopsy. Thus, it is worth 

exploring computational alternatives for classifying lung cancer subtypes given a small biopsy 

sample and a mix of TAHN and tumor tissue. 

The goal of the work presented in this Appendix was to test whether computational 

modeling can be a viable approach to accurately differentiate between lung cancer subtypes, 

given molecular profiles of tumor tissue and than using DNA methylation data. Specifically, the 

hypothesis that was tested was that “Bayesian modeling is sufficient to classify lung cancer 

subtypes, regardless of the tissue sample being tumor or tumor-adjacent”. Also, it was evaluated 

the ability of a Bayesian classifier to accurately differentiate lung cancer subtypes using 

molecular profiles of real lung cancer data sets that are also publicly available. 

EXPERIMENTAL DESIGN 

The lung cancer datasets from Table 1 were used. In particular, the methylation and gene 

expression datasets where ADC and SCC are used as a classification task (datasets C and D). A 

supervised classification process was followed on 10-fold cross-validation. That is, for each fold 
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the dataset was partitioned into training and test, where the former contains 90% of the samples, 

while the latter contains the remaining 10%. Each partition maintains the same class distribution 

as the whole dataset (stratified). In each fold, the datasets were analyzed using the experimental 

design as illustrated in Figure 19. According to the design, there are four main components, 

namely, a) Feature Selection, b) Discretization, c) Model Building, and d) Evaluation. 

Additionally, it was performed a Gene Functional Analysis, and Clustering methods were 

applied to better understand the characteristics of the features chosen by this framework. 

 
Figure 19. Appendix. Experimental Design 

Cross-validation (10-folds) experimental design for a particular classification task, using feature selection, 

discretization. There are three outcomes: a simple naïve Bayesian model with its test evaluation; clustering of 

samples based on selected genes; and gene enrichment analysis. Algorithms: ReliefF, Limma, minimum description 

length principle cut (MDLPC). Evaluation: area under the receiver operating characteristic (AUC), 95% confidence 

interval (CI), and Brier Skill Score (BSS). 
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RESULTS 

Four classification tasks were investigated depending on the tissue type. These tasks test 

the hypothesis that the TAHN tissue has distinct genomic signatures that can differentiate among 

non-small cell lung cancer subtypes. The classification tasks can be described as follows: 

1. TAHNADC vs. TumorADC, and TAHNSCC vs TumorSCC, searches for molecular differences 

between tumor tissue and TAHN tissue. These tasks are only applied to one lung cancer 

subtype at a time, either adenocarcinoma or squamous cell carcinoma patients; 

2. TumorADC vs. TumorSCC, which searches for molecular differences between subtypes 

using only Tumor tissue; 

3. TAHNADC vs. TAHNSCC, which searches for molecular differences between subtypes using 

only TAHN tissue; and 

4. TAHN-TumorADC vs. TAHN-TumorSCC, which searches for molecular differences between 

subtypes using both TAHN and Tumor tissue. 

 

The classification performance for every naïve Bayes classifier was calculated by 

averaging the AUCs over all folds from the experimental design illustrated in Figure 1. Table 26 

shows results for the classification tasks, including 95% confidence interval (C.I.) and Brier Skill 

Score (BSS) as a calibration measurement. Figure 20 shows heatmaps and clusters for each 

classification task with the methylation probe sites selected using ReliefF. 

Table 26. Appendix I. Results 

AUC classification performance for different classification tasks. 

Classification Task Omic 

Feature selection with 

ReliefF 

Feature selection with 

Limma 

AUC  95% C.I. BSS AUC 95% C.I. BSS 

TAHNADC vs. TumorADC 
G 

M 

0.99 

1.0 
0.97-1.0 

1.0-1.0 

0.89 

0.99 

0.94 

0.81 

0.82-1.0 

0.58-0.97 

0.73 

0.17 

TAHNSCC vs. TumorSCC M 1.0 0.99-1.0 0.94 0.99 0.96-1.0 0.66 

TumorADC vs. TumorSCC 
G 

M 

0.89 

0.97 

0.83-0.96 

0.94-0.99 

0.29 

0.71 

0.90 

0.89 

0.89-0.9 

0.74-1.0 

0.81 

0.38 

TAHNADC vs. TAHNSCC M 1.0 1.0-1.0 0.92 1.0 1.0-1.0 0.99 

TAHN-TumorADC vs. TAHN-

TumorSCC 
M 0.92 0.89-0.95 0.42 0.94 0.87-1.0 0.56 
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G: gene expression, M: DNA methylation. The Brier Skill Score is a measurement of calibration of the 

classifier. A positive value on the BSS means that the classifier is well calibrated. A baseline classification is the 

work by Chang and Ramoni (Chang & Ramoni 2009) which obtained an accuracy of 0.95 in the classification task 

TumorADC vs. TumorSCC. 

 
Figure 20. Appendix I. Heatmaps 

Heatmaps for classification task (A) TAHNADC vs. TAHNSCC, (B) TumorADC vs. TumorSCC, and (C) TAHN-

TumorADC vs. TAHN-TumorSCC using the ReliefF feature selection algorithm. In the vertical axis the corresponding 

methylation site and gene symbol (in parenthesis) are shown. Some methylation sites do not lie in a particular gene, 

therefore, no symbol is provided. When multiple methylation sites are selected for the same gene, these sites should 

have similar methylation intensity, for it to be included. In the horizontal axis, a color-coded representation of the 

tissue samples is provided. Two distinct groups are observed in all three heatmaps. Cluster purity (accuracy by 

classification using clustering) for each task is calculated to be 1.0, 0.94, and 0.85 respectively. 

 

The genes found by ReliefF in the classification task of TAHN-TumorADC vs TAHN-

TumorSCC using IPA® were analyzed. The results of the IPA® core analysis show a significant 

association between ReliefF-selected genes and the following diseases: cancer (25 out of 27) 

connective tissue disorder (13 out of 27), dermatological diseases and conditions (13 out of 27). 

Interestingly, the ReliefF-selected genes (19 out of 27) are associated with either 

adenocarcinoma (16 genes), squamous-cell carcinoma (4 genes), or carcinoma of the lung (4 

genes). The list of genes and their associations can be seen in Table 27. Using these interesting 

19 genes, we generated a gene interaction network to graphically visualize the relationships 

between genes and the disease class (adenocarcinoma, squamous-cell carcinoma, and carcinoma 

of the lung). The network is illustrated in Figure 21. 

 

 

A B C 
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Table 27. Appendix I. Gene Enrichment 

Genes selected for the classification task of TAHN-TumorADC Vs. TAHN-TumorSCC. 

Gene Symbol Gene Name 
Known Literature 

Evidence to Cancer 

ST18 suppression of tumorigenicity 18, zinc finger Yes (Forbes et al. 2015) 

CSTA cystatin A (stefin A) 
Yes (Forbes et al. 2015; 

Costea et al. 2013) 

LPP 
LIM domain containing preferred translocation partner in 

lipoma 
Yes (Forbes et al. 2015) 

CROT carnitine O-octanoyltransferase Yes (Forbes et al. 2015) 

BDKRB1 bradykinin receptor B1 
Yes (Dlamini & Bhoola 

2005) 

AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) Yes (B. Kim et al. 2007) 

TP73 tumor protein p73 
Yes (Flores et al. 2005; 

Lu et al. 2011; Tomasini 

et al. 2008) 

EFCAB3 EF-hand calcium binding domain 3 Yes 

RREB1 ras responsive element binding protein 1 Yes (Forbes et al. 2015) 

HIST1H4G histone cluster 1, H4g No 

STAR steroidogenic acute regulatory protein Yes 

ACSBG2 acyl-CoA synthetase bubblegum family member 2 Yes (Forbes et al. 2015) 

DQX1 DEAQ box RNA-dependent ATPase 1 Yes (Forbes et al. 2015) 

AQP10 aquaporin 10 Yes (Forbes et al. 2015) 

PLEKHA6 pleckstrin homology domain containing, family A member 6 

Yes (The Cancer 

Genome Atlas Research 

Network, Getz, Saksena, 

Zhang, et al. 2012; 

Seshagiri et al. 2012) 

GCSAM germinal center-associated, signaling and motility No 

WFDC5 WAP four-disulfide core domain 5 Yes 

KRT7 keratin 7, type II Yes (Laurell et al. 2006) 

DCST2 DC-STAMP domain containing 2 Yes (Forbes et al. 2015) 

CALML3 calmodulin-like 3 Yes 

ACAP3 ArfGAP with coiled-coil, ankyrin repeat and PH domains 3 Yes 

LRRC17 leucine rich repeat containing 17 Yes (Forbes et al. 2015) 

TRIM29 tripartite motif containing 29 
Yes (L. Wang et al. 

2015) 

CXCR2 chemokine (C-X-C motif) receptor 2 

Yes (Forbes et al. 2015; 

Raghuwanshi et al. 

2008; Raghuwanshi et 

al. 2013) 

HOXD9 homeobox D9 
Yes (Pickering et al. 

2013) 

COL17A1 collagen, type XVII, alpha 1 Yes (Forbes et al. 2015) 

LMO3 LIM domain only 3 (rhombotin-like 2) Yes 

The list of genes is ordered by their ranks, as selected by ReliefF for the classification task of TAHN-TumorADC Vs. 

TAHN-TumorSCC. The Entrez gene symbol, and the gene name are listed in the first two columns respectively. The 

‘Known Literature Evidence to Cancer’ indicates if links to cancer were detected by the IPA
®
 software. Citations are 

provided to literature indicating links to— adenocarcinoma, squamous-cell carcinoma, and carcinoma in lung. 
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Figure 21. Appendix I. Pathway analysis 

Gene interaction network generated by the IPA® software. It shows an analysis of the genes found by 

ReliefF in the classification task TAHN-TumorADC vs TAHN-TumorSCC. Three diseases are being shown (carcinoma 

of the lung, adenocarcinoma, and squamous cell carcinoma), and the selected genes were connected to these diseases 

via literature evidence that indicates: direct interactions (straight line), or indirect interactions (dashed line). Some of 

those interactions have arrow-heads indicating causation (e.g. BDKRB1). An arrow-head with a bar (i.e. TP73) 

indicates inhibition. 

 

DISCUSSION 

Evaluation of Classifiers. The classification performance for all models is high (AUC ≥

0.81), with positive calibration (BSS > 0). This positive calibration is a good indication that the 

models will perform well for other cases, and that they were not biased by the distribution of the 

data. 

The value of using TAHN tissue for classification. Lung cancer patients could benefit 

with a potentially novel approach for subtyping. The diagnosis of adenocarcinoma vs. squamous 

cell carcinoma is routinely accomplished using histology supplemented by 

immunohistochemistry (TTF-1 and p63/p40).  It is therefore not likely that the approach 

presented here would change this practice, which is well established, quick and inexpensive.  

Rather, this approach suggests that the use of epigenomic changes could help in the small 
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number of tumors which remain difficult to classify.  However, the primary importance of this 

work may be in providing additional understanding of the origins of squamous cell and 

adenocarcinomas, which suggest that these phenotypes are associated with, or perhaps even 

derived from, different epigenomic phenotypes. Epigenomic alterations, in the form of DNA 

methylation, prevent the binding of transcription machinery, resulting in gene silencing 

(Brzeziańska et al. 2013). Moreover, DNA methylation signatures are different between tissue 

types and between tumors and normal surrounding tissue (Szyf 2012). In this study, tumor-

adjacent histologically normal tissue samples were used to classify lung cancer subtypes with 

excellent results. This classification performance was achieved when no tumor samples were 

involved (TAHNADC vs. TAHNSCC), and when a mix of tissue was used (TAHN-TumorADC vs. 

TAHN-TumorSCC). The high AUC results are an indication of the diagnostic potential of this 

technology. 
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APPENDIX B 

J2K APPLIED TO BREAST CANCER STAGING 

This Appendix follows the example in Section 4. The classification performance, under a 

10-fold cross validation, of the single-omic and multi-omic data integration models is shown in 

Table 28 for the classification tasks of distinguishing between samples from early stage and 

advanced stage patients. Each model is evaluated for area under the receiver operating 

characteristic (AUC), 95% confidence interval (C.I.), and Brier Skill Score (BSS) for calibration 

of the model. The multi-omic models are shown in Section 4 (Figure 15), except for the mixture 

model, which is shown here in Figure 22. 

Table 28. Appendix II. Classification Performance 

Model Name AUC 95% C.I. BSS 

Single-Omic    

     Gene Expression model 0.64 0.45-0.83 -0.09 

     DNA Methylation model 0.6 0.47-0.74 -0.19 

Multi-Omic    

     Mixture model 0.65 0.47-0.83 0.01 

     Independent model 0.89 0.79-0.99 -0.18 

     Three-way model 0.88 0.78-0.99 -0.02 

     Cascade model 0.88 0.78-0.99 -0.01 
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Figure 22. Appendix II. Mixture Model 

The selected set of differentially expressed genes and methylation probes is different 

between the mixture model and the models with latent variables. To build a ANB structure, the 

mixture model searches over all possible variables in both ‘omics’, while the other three multi-

omic models first build single-omic ANB structures, and then integrate them using latent 

variables. There is no intersection in the genes selected using each method. Table 29 presents a 

list of genes selected from the multi-omic models that have been associated with breast cancer 

and cancer progression in the literature 

Table 29. Appendix II. List of genes from multi-omic models involved in breast cancer 

M/G 

Entrez 

Gene 

Symbol 

Gene Name 

Mixture model 

G CAV1 Caveolin 1, caveolae protein, 22kDa 

M FGFR1 Fibroblast growth factor receptor 1 

G MMP11 Matrix metallopeptidase 11 

M BCL2 B-cell CLL/lymphoma 2 

G COL11A1 Collagen, type XI, alpha 1 

M KISS1 KiSS-1 metastasis-suppressor 

MODI models 

G RRM2 Ribonucleotide reductase M2 

M AKAP10 A kinase (PRKA) anchor protein 10 

G AQP4 Aquaporin 4 

G BRINP1 
Bone morphogenetic protein/retinoic 

acid inducible neural-specific 1 

G TLR3 Toll-like receptor 3 

G HOXC5 Homeobox C5 
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Genes found by the mixture model. The caveolin 1, caveolae protein, 22kDa gene 

(CAV1) is a tumor suppressor gene candidate and has been shown to be differentially methylated 

among breast cancer subtypes (Z. Li et al. 2015). Expression of the fibroblast growth factor 

receptor 1 gene (FGFR1) in triple–negative breast cancers is independently prognostic of overall 

survival (Cheng et al. 2015). The matrix metallopeptidase 11 gene (MMP11) encodes a member 

of the proteins of the matrix metalloproteinase (MMP) family, which participate in normal 

physiological processes, as well as in disease processes, such as metastasis (Entrez). Expression 

of MMP11 by intratumoral mononuclear inflammatory cells has been associated with distant 

metastasis development and worse prognosis in breast cancer (Eiró et al. 2012). The B-cell 

CLL/lymphoma 2 gene (BCL2) is thought to be the cause of follicular lymphoma. It is 

overexpressed in ~75% of breast cancer (Merino et al. 2015), where it is also predictive of lymph 

node metastasis (H. Kim et al. 2015) and its hypermethylation has been associated with favorable 

response to endocrine treatment (Stone et al. 2013). The collagen, type XI, alpha 1 gene 

(COL11A1) is highly expressed by activated stromal cells of breast tumors, and correlates with 

tumor progression and lymph node metastasis (Vázquez-Villa et al. 2015), is therefore a marker 

of invasiveness in breast tumor lesions (Freire et al. 2014). The KiSS-1 metastasis-suppressor 

gene (KISS1) is known to suppress metastases of melanomas and breast carcinomas (Entrez 

Gene) via inhibition of breast cancer cell invasiveness by its protein product, kisspeptin (Tan et 

al. 2014). Kisspeptin-10 (KP-10) is a shorter fragment of KISS1 (Song & Zhao 2015), which 

suppresses breast cancer and human umbilical vein endothelial cell (HUVEC) growth both in 

vivo and in vitro. KP-10 is a novel regulator of EMT in breast cancer cells. 

Genes found by the MODI models. Increased mRNA levels of the gene ribonucleotide 

reductase M2 (RRM2) have been associated with poor patient outcome in a dose-dependent 
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manner, with prognostic power comparable to that of multiple gene signatures, and superior to 

TNM stage (H. Zhang et al. 2014). The A kinase anchor protein 10 gene (AKAP10) regulates 

protein kinase A (PKA). Overexpression of PKA is a hallmark of the great majority of human 

cancers including breast cancer (Wirtenberger et al. 2006) and expression of AKAP10 has been 

correlated with deeper tumor invasion, lymph nodes metastasis and advanced tumor stage in 

colorectal cancer (M. Wang et al. 2013).  The gene aquaporin 4 (AQP4) is markedly 

underexpressed in various cancers, including breast cancer (Shi et al. 2012). The gene bone 

morphogenetic protein/retinoic acid inducible neural-specific 1 (BRINP1, also known as DBC1) 

is reported to be hypermethylated in breast cancer and is high performing in cancer prediction (Z. 

Li et al. 2015). Stimulation of the toll-like receptor 3, encoded by the toll-like receptor 3 gene 

(TLR3) has been found to promote breast cancer cells toward a cancer stem cell phenotype in 

vitro and in vivo (Jia et al. 2015). The expression level of the homeobox C5 gene (HOXC5) was 

lower in breast cancer tissues with mutated-type p53 than in normal and cancerous tissues with 

wild-type p53, suggesting that aberrant expression of this gene is related to the development of 

breast cancer (Makiyama et al. 2005). 
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