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Rule-based modeling is a graph-based approach to specifying the kinetics of cell signaling 

systems. A reaction rule is a compact and explicit graph-based representation of a kinetic process, 

and it matches a class of reactions that involve identical sites and identical kinetics. Compact rule-

based models have been used to generate large and combinatorially complex reaction networks, 

and rules have also been used to compile databases of kinetic interactions targeting specific cells 

and pathways. In this work, I address three technological challenges associated with rule-based 

modeling. First, I address the ability to generate an automated global visualization of a rule-based 

model as a network of signal flows. I showed how to analyze a reaction rule and extract a set of 

bipartite regulatory relationships, which can be aggregated across rules into a global network. I 

also provide a set of coarse-graining approaches to compress an automatically generated network 

into a compact pathway diagram, even for models with 100s of rules. Second, I resolved an 

incompatibility between two recent advances in rule-based modeling: network-free simulation 

(which enables simulation without generating a reaction network), and energy-based rule-based 

modeling (which enables specifying a model using cooperativity parameters and automated 

accounting of free energy). The incompatibility arose because calculating the reaction rate requires 

computing the reaction free energy in an energy-based model, and this requires knowledge of both 

reactants and products of the reaction, but the products are not available in a network-free 

simulation until after the reaction event has fired. This was resolved by expanding each energy-

based rule into a number of normal reaction rules for which reaction free energies can be calculated 

unambiguously. Third, I demonstrated a particular type of modularization that is based on treating 

a set of rules as a module. This enables building models from combinations of modular hypotheses 

and supplements the other modularization strategies such as macros, types and energy-based 

compression. 
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1.0  RULE-BASED MODELING – A REVIEW 

1.1 MECHANISTIC MODELS OF CELL SIGNALING 

One of the hallmarks of a living cell is that its chemical composition responds dynamically to 

internal and external chemical stimuli. Characterizing the composition and dynamic behavior of a 

chemical system is a frequently encountered problem in the study and perturbation of cell 

responses, whether it is the movement of a bacterium towards nutrients or the response of a cancer 

cell to a secreted growth factor. A mechanistic model seeks to build the system from its molecular 

parts, encode the chemical properties at the level of individual molecules, and then predict in silico 

the behavior of the system under different conditions. However, biochemical systems are very 

complex and current experimental approaches can only explore a fraction of the chemical 

composition at a time. As a result, model building, prediction, experimentation and verification 

have to be performed in an iterative loop to constantly update our knowledge about the system [1]. 

A large number of software tools and environments have been developed to address each step of 

the “systems biology” loop [2]. In this thesis, I focus on a few key components: building a model 

of a chemical system, visualizing such models to improve comprehension and understanding, and 

simulating models for predictive analysis.  

The reaction network specification is the classical framework used for building chemical 

systems. However, biochemical molecules and complexes are highly structured and modular 
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objects [3], which are not handled natively by the reaction network specification. The rule-based 

modeling specification is a recent development designed to handle arbitrarily structured molecules 

and complexes [4]. The technology and methods developed in this thesis are applicable to rule-

based models. 

1.2 REACTION NETWORKS 

1.2.1 Specification 

The predominant mathematical framework for modeling cell signaling is the reaction 

network. A typical reaction looks like this: 

𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑘𝑘
→ 𝐸𝐸𝐸𝐸𝐸𝐸_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

EGF, EGFR and EGF_EGFR are called chemical species and the reaction consumes the species 

EGF and EGFR and produces the species EGF_EGFR and proceeds at a rate proportional to the 

rate constant k and the reactant concentrations. The semantics of the species labels are a matter of 

convention. For example, to those familiar with growth factor signaling in human and cancer cells, 

EGF is recognizable as the epidermal growth factor molecule, EGFR as the cognate receptor 

molecule that binds EGF, and by convention, EGF_EGFR is the complex of EGF with EGFR.  

A reaction network is a set of chemical species and reactions. The reaction network has a 

usual representation as a set of ordinary differential equations (ODEs) and the time-evolution of 

species concentrations can be simulated using ODE integration (species concentrations take 

continuous numeric values) or stochastic simulation (species concentrations take integer values). 
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There are many publically available ODE solvers, e.g. CVODE from SUNDIALS[5]. There also 

many stochastic simulators, mostly variants of Gillespie’s stochastic simulation algorithm[6], [7]. 

1.2.2 Community Efforts 

There are efforts in the biochemical modeling community to standardize representations of 

reaction networks and promote collaboration and reuse of published models. The Systems Biology 

Markup Language is a widely used interchange format that is supported by many software 

frameworks (sbml.org,[8]). Standard vocabularies and semantics have also been proposed for 

model annotation (MIRIAM [9]), simulation (SED-ML [10]), and visualization (SBGN [11]). The 

COMBINE initiative (co.mbine.org) meets regularly with the goal of improving these standards 

with community guidance. A review of current standards can be found here [12].   

BioModels is a central database that collects and curates standard versions of models 

published in the literature (biomodels.org, [13]). However, as of 2015, less than half of the 

submitted models have been curated (data provided by biomodels.org), and an even smaller 

percentage of them have been annotated to the full extent possible (data not shown). This is 

because reaction networks are being constructed that are increasingly large in size (e.g. Chen et al. 

provide a model of ErbB signaling with more than 800 reactions [14]), and significant investment 

of time and human resources is necessary to encode semantic annotations of species and reactions  

in a manner that is consistent across models [12], [15]–[17]. 
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1.2.3 Combinatorial Complexity 

Many of the problems with using reaction networks can be traced to the complexity of biochemical 

systems. Biochemical molecules and complexes are largely composed of modular elements 

(domains, motifs and binding sites), and a single molecule or complex can access many 

combinations of these elements, each unique combination being called a microstate [18], [19]. 

For example, consider a protein with 10 phosphorylation sites. The particular configuration where 

none of the sites are phosphorylated is an example of a microstate. Because each site could be 

unphosphorylated or phosphorylated, the protein has a total of 2^10 (1024) unique microstates. 

The phenomenon where a small number of modular elements generates a combinatorially large 

state space is called combinatorial complexity [18], [19].  

In spite of the combinatorial complexity, many microstates could behave similarly where 

the function of the protein is concerned. A group of microstates that are indistinguishable when 

measuring a particular property or behavior is called a macrostate. For example, the function of 

the above protein may simply be dependent on whether it has at least one site phosphorylated or 

none. If so, the function may be characterized in terms of two macrostates: unphosphorylated 

(containing one microstate) and phosphorylated (containing 1023 macrostates). Now, suppose the 

protein had two domains named X and Y, and X has 4 of those phosphorylation sites, while Y has 

the remaining 6. Also, suppose a second function of the protein is modulated by the 

phosphorylation status of X and Y individually. Characterizing this function requires that the 

protein be represented using four macrostates: XY (1 microstate), XpY (15 microstates), XYp (63 

microstates), and XpYp (945 microstates). This highlights an important aspect of biochemical 
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complexity: the relevant organization of microstates into macrostates is strongly dependent on 

which inputs and outputs are being considered.  

Combinatorial complexity could be an evolutionarily favorable feature. Evolution models 

have shown that network complexity that arises from modularity tends to increase under selection 

pressure [20], since it allows for selection of both robust and sensitive responses, adaptation of 

existing structures for different functions, and fitness against deleterious mutations [20], [21]. 

Combinatorial complexity cannot be ignored if models are to be constructed that are useful outside 

the narrow context in which they were first built. 

1.2.4 Issues 

The number of valid microstates in a model depends on (i) the number of modular elements 

hypothesized by the modeler and (ii) the number of valid combinations of the hypothesized 

modular elements. The first part relates to the assumptions made by the modeler about the system, 

and the second part can be formally derived from those assumptions. For example, in Figure 1-1, 

we see three types of molecules A, B, C. A has two sites that bind B and C respectively when 

phosphorylated. Given these model assumptions, one can compute that the molecule A exists in 4 

states: the unphosphorylated state A, the two states where only one site is phosphorylated Ap0 and 

A0p, and the doubly phosphorylated state App. The molecules B and C exist in 1 state each. There 

are 2 possible A-B complexes since there are two states of molecule A in which the B-binding site 

is phosphorylated (Ap0-B and App-B). With similar reasoning, there are 2 possible A-C complexes 

(A0p-C and App-C). There is only 1 A-B-C complex (App-B-C). In all, the system has 11 

microstates.  
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However, when building a reaction network, the modeler is free to choose an arbitrary 

macrostate organization, say A’=A, Ap’={Ap0, A0p, App}, AB’={Ap0-B,App-B}, AC’={A0p-

C,App-C}, ABC’=App-C. The choices made are not apparent in the specification itself, for 

example, given only A’, Ap’, AB’, AC’ and ABC’, we cannot infer how many sites are on A, B 

and C and how phosphorylation affects binding at those sites. The modeler is also free to make 

arbitrary inclusions and exclusions to the state space, which override the formally derived set of 

possibilities and introduce hidden errors and bias. The arbitrariness in defining micro-to-macro 

mappings hinders the reuse and aggregation of models. For example, a species EGFR_p in one 

model may refer to phosphorylation at a different site compared to EGFR_p in another model. 

Because of these issues, reaction networks become opaque to those not involved in its construction 

and require significant investment of time to understand, reuse or modify beyond their original use 

[22].  

The community response to these specification issues is to improve species annotation [17], 

standardize network representation [8] and increase resources for manual curation [13]. However, 

they do not address the fundamental nature of these issues: (i) there is a size disparity between the 

model assumptions and the reaction network, (ii) actions that require human effort (editing, 

aggregating, annotating, curating) scale poorly for large networks, and (iii) manual curation does 

not guarantee correctness when enumerating combinations. 
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Figure 1-1 An example of combinatorial complexity.  Consider a model with molecule types A, B, C. A 

has sites b,c that can be in 0 (unphosphorylated) and P (phosphorylated) states respectively and which bind 

molecules B and C respectively on phosphorylation. These assumptions translate to 11 different microstates 

organized under 6 macrostates: 4 A molecules, 1 B molecule, 1 C molecule, 2 A-B complexes, 2 A-C complexes 

and 1 A-B-C complex. A reaction network may be built by choosing 6 macrostates as shown above, or any other 

arbitrary choice. Although the state space is determined formally by the assumptions, the reaction network modeler 

is still free to override them by including or excluding chemical species at will, which introduces error and bias. 

1.3  RULE-BASED MODELS 

Rule-based models improve upon reaction network models by using a graph-based 

specification for molecules, complexes and reaction classes. A number of rule-based frameworks 

exist, with BioNetGen [4], [23]–[26], Kappa [27]–[29], and Simmune [30]–[32] being the most 

popular ones and with very similar graph abstractions.  
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1.3.1 Graph syntax – Molecules and Complexes 

In order to represent a chemical species such as a molecule or complex in a reaction network, the 

modeler would have to first specify an informative label, define the semantics of the label 

convention used, and if they are so inclined, encode the structures present in the species in the 

form of annotations. In contrast, rule-based models encode molecules and complexes using graphs 

with consistent semantics. The structure of the graph explicitly encodes the sites and binding 

interactions present in the species and the graph itself serves as an identity for the species, since 

its uniqueness can be formally determined by graph isomorphism [33], [34]. BioNetGen and 

Kappa provide a syntax for building graphs of molecules and complexes using alphanumeric 

strings. Here, we will demonstrate the BioNetGen syntax [24], [25] by using it to systematically 

build the complex AppBC (shown in Figure 1-1).  

The complex has three molecules A, B, C, and they are represented as a dot-separated list. 

A.B.C 

Molecule A has components b,c. Molecule B has component a. Molecule C has component a. 

Components are represented as a comma-separated list enclosed within brackets and placed 

adjacent to the respective molecule. 

A(b,c).B(a).C(a) 

Components b,c have internal states named P, which denotes the phosphorylated state. Internal 

states are prefixed with a ~ symbol and placed next to the component names. 

A(b~P,c~P).B(a).C(a) 
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The complex is formed as a consequence of two binding interactions, or bonds. One of the bonds 

is between the components A(b) and B(c), and is represented by a ! symbol and a tag 1 placed 

adjacent to the bonded pair. 

A(b~P!1,c~P).B(a!1).C(a) 

The other bond in the complex is between components A(c) and C(a). We use the ! symbol 

followed by the tag 2 to differentiate it from the other bond. 

A(b~P!1,c~P!2).B(a!1).C(a!2) 

The syntax is not affected by the ordering of components within molecules, or the ordering of 

molecules within a complex, or the ordering of bonds by tag IDs. So, the following strings all 

represent the same graph and the same chemical species as the one above. 

A(c~P!2,b~P!1).B(a!1).C(a!2) 

A(b~P!1,c~P!2).C(a!2).B(a!1) 

A(b~P!2,c~P!1).B(a!2).C(a!1) 

B(a!1).A(b~P!1,c~P!2).C(a!2) 

1.3.2 Patterns 

Properties of a graph can be formally extrapolated to supergraphs that contain the graph as a 

subgraph. In the rule-based framework, the pattern is a partial graph of a complex. Multiple 

complexes may share the same pattern as a subgraph, so the pattern also formally defines a class 

of complexes with a shared set of structures. This enables the formal, precise and flexible definition 

of macrostates based on the structures shared by the microstates. For example, the macrostate 
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{A,A0p,Ap0,App} in Figure 1-1 is defined by the following structural constraint: the species must 

be composed of one A molecule that is not bound to any other molecule. In BioNetGen syntax, it 

is sufficient to specify the following pattern: 

A(b,c) 

Here, we have not specified the internal states, so the internal states are not used in the matching 

process. However, we have specified that the components are unbound (no ! tags), so the pattern 

selects complexes with unbound b and c components, which are as follows (underline emphasizing 

the shared subgraph): 

A(b~0,c~0) 

A(b~P,c~0) 

A(b~0,c~P) 

A(b~P,c~P) 

Another example is the macrostate {Ap0, App, AppC} which selects complexes with an unbound 

phosphorylated B-binding site on molecule A. In BioNetGen, it is sufficient to specify the pattern 

A(b~P) 

This will automatically match the complexes (underline emphasizing the shared subgraph): 

A(b~P,c~0) 

A(b~P,c~P) 

A(b~P,c~P!1).B(a!1)  
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By providing a formal way to encode structural constraints, the pattern syntax removes the burden 

of manually defining the semantics of each micro or macro state. It also removes the burden of 

manual enumeration and verification. In contrast, any modeler interaction with a reaction network, 

such as specifying a new macrostate as an output, requires sequential or pairwise manual 

examination of the state space, which is time-intensive and introduces error and bias. 

1.3.3 Reaction Rules  

The reaction rule is a reaction composed by using patterns as reactants and products. Since 

patterns map to classes of complexes with shared structures, the reaction rule maps to a class of 

reactions on those shared structures. The entire reaction class can be parameterized by mapping 

the reaction rule to a rate law. For example, consider the reaction rule: 

A(b~P) + B(b) -> A(b~P!1).B(a!1)  k 

The reactant patterns specify the shared set of structures that enable a species to participate in this 

reaction class. Here, the pattern A(b~P) specifies that the b component on A must be 

phosphorylated and unbound, and the pattern B(b) specifies that the a component on B must be 

unbound. The product patterns represent a graph transformation relative to the reactants. Here, the 

transformation implemented is the addition of a bond !1 between components A(b) and B(a). By 

default, the reaction class is assumed to have an elementary rate law and the expression k specifies 

the rate constant uncorrected for symmetry and multiplicity [24], [25]. 

By using the patterns to select combinations of species, the entire reaction class can be 

enumerated. Here, the pattern A(b~P) maps to the species A(b~P,c~0), A(b~P,c~P) and 

A(b~P,c~P!1).C(a!1), and the pattern B(a) maps to the species B(a). The combinations of these 
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species (3x1) lead to the following three reactions, all of which are parameterized by the rate 

constant k (underline to emphasize the graph overlap with the reaction rule): 

A(b~P,c~0) + B(b) -> A(b~P!1,c~0).B(a!1)    k 

A(b~P,c~P) + B(b) -> A(b~P!1,c~P).B(a!1)    k 

A(b~P,c~P!2).C(a!2) + B(b) -> A(b~P!1,c~P).B(a!1).C(a!2) k 

In contrast to a reaction network, the reaction rule is explicit about which structures are necessary 

to define the reaction class. Also, the number of reaction rules needed to model a system depends 

on the number of such reaction classes with unique kinetics. A small number of modular 

independent interactions will require a small number of reaction classes to specify them, even if 

their combinations generate a much larger reaction network [18], [19].  

1.3.4 Model Specification and Simulation 

The domain-oriented approach makes rule-based models easy to modify and extend, as well as 

making explicit the contribution of each type of protein structure to each reaction class. When the 

corresponding reaction network is finite, it can be generated automatically from the rule-based 

specification [24]. This has enabled building models for systems where a small number of 

molecule types lead to very large networks, e.g. model of Syk activation in FcεRI receptor 

signaling (24 rules – 3680 reactions) [35], early events in epidermal growth factor signaling (39 

rules – 3749 reactions) [36], ultrasensitivity in multi-site phosphorylation [37], etc.   

If the reaction network is infinite or too large to be stored in computational memory, the 

rule-based specification can still be simulated using network-free approaches [38]–[40], or a 
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hybrid approach between network-based and network-free [34]. This has made the rule-based 

specification attractive for specifying models with infinite state spaces generated from finite 

reaction classes, e.g. receptor aggregation by ligand crosslinking [41], Lat crosslinking [42], 

CaMKII activation [43], etc. 

The reaction rule is also a compact and portable unit, which makes reaction rules suitable 

for cataloging kinetic processes. A number of rule-based knowledge bases have been constructed 

in recent times, such as for FcεRI receptor signaling [44], T-cell receptor signaling [45], signaling 

from the ErbB receptor family [46], yeast pheromone signaling [47], etc. Some of these 

repositories have 100s of rules that will result in a practically infinite network, and therefore cannot 

be simulated at all using network-based methods. 

1.3.5 Outstanding Issues 

Recently, a detailed mechanistic model of a whole cell was published [48], in which reaction 

networks were embedded as submodels. It is anticipated that such whole cell comprehensive 

models will eventually involve integration of rule-based databases of individual pathways, such as 

[44]–[46]. Model frameworks are also being built to use rule sets that can be re-combined in 

modular ways [49], so we expect to see larger rule-based models with 10 or more molecule types. 

However, currently, there is no automated way to visualize the signaling implicit in the rules as a 

global regulatory network or pathway diagram, which will be necessary to understand such large 

models. We address this in Chapter 2. 

Another problem inherited from reaction networks is that defining reaction classes with 

unique kinetic parameters does not constrain the thermodynamics of the system. When there are 
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loops of reaction mechanisms in the system, detailed balance constraints apply (sum of free 

energies of the reaction around the loop should be zero), but the specific loops present are not 

immediately obvious when reactions or reaction rules are being built. Manual verification is 

needed to get the correct model, and this can be resource intensive when there are a number of 

cooperative processes acting on the same molecule or complex. The lack of constraint on detailed 

balance is especially noticeable in the very large rule-based models [44], [46], where the varied 

branching structure of complexes results in many such reaction mechanism loops.  

A class of approaches have emerged to address this issue, which we call “energy-based 

rule-based modeling”. In this specification, graph isomorphism is used specify energy 

contributions from molecules, sites and binding interactions [50]–[52]. In energy-based 

BioNetGen, energies of species are measured by counting matches of the species to user-specified 

energy patterns. Reaction rules are defined with rate laws based on the Arrhenius equation, called 

“energy rules” [50], and reactions generated from these rules are guaranteed to satisfy detailed 

balance. However, calculating the energy-based reaction rate for a reaction depends on both 

reactants and products, and this makes it incompatible with network-free simulation, where 

information on the products is not available until the reaction event has fired. We address this 

problem in Chapter 3. 
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2.0  VISUALIZATION OF RULE-BASED MODELS 

2.1 SYNOPSIS 

Visualizing biochemical interactions has a long history of being conveyed through symbolic, 

pictorial and graphical representations. Typically, these systems contain many types of physical 

entities (such as molecules and complexes) and processes (such as reactions) and relationships 

defined between them. The primary goal of this chapter is to develop automated visualizations for 

rule-based models that convey encoded information at the level of individual processes (local 

level) as well as at the level of the model itself (global level). Figure 2-1 summarizes the 

contributions made in this chapter. 

Visualizations are hard to evaluate using exact metrics and attributes, however, there are 

broad aspects using which they can be compared against each other. In Section 2.2, I list some of 

the concerns applicable to visualization of rule based models. In Section 2.3, I discuss some of the 

standard diagramming procedures that have been developed for the signal transduction modeling 

community. In Section 2.4, I discuss automated methods that have been developed for reaction 

networks and the different rule-based frameworks, and their advantages and disadvantages. In 

Section 2.5, I provide formal graph abstractions that I have developed for rule-based models which 

enables generation of local and global visualizations. In Section 2.6, I apply these methods to rule-

based models in the literature. 
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(A) (B) (C) 

Figure 2-1 Summary of contributions to visualization of rule-based models.  Panel A shows a compact 

visualization of a single rule, in which the change implemented by the rule is shown as a graph transformation 

(ChangeState). Panel B shows a visualization of regulatory interactions between a small number of rules (R3, R4, R6, 

R7), called the regulatory graph. Dark edges show production and consumption of states, and light edges indicate a 

regulatory influence from a state to a rule. In this chapter, I provide theory and implementation that generates a 

regulatory graph from rule syntax. Panel C shows a visualization of a rule-based model as a regulatory graph, similar 

to a pathway diagram. The nodes on this graph represent groupings of rules and states. In this chapter, I provide a 

systematic pruning, grouping and coarse-graining procedure to generate compact pathway diagrams from the 

aggregated regulatory graphs of rules. 
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2.2 VISUAL CONCERNS 

2.2.1 Content versus Intent 

The word model is widely used, but it can mean a variety of things. In the context of 

modeling biochemistry, a model can imply a set of statements in the mind of the modeler 

representing biochemical knowledge, i.e. a mind model. The modeler translates these statements 

into machine-readable mathematical symbols and relationships, resulting in a formal model. When 

either of these representations is translated into visual objects in a visual medium, the resulting 

model is a visual model. 

In this chapter, I will use model to refer to the formal model in a particular mathematical 

framework such as rule-based modeling or reaction network modeling. The specific mathematical 

statements about entities and processes used in the model, as well as any systematic transformation 

thereof, will be referred to as the content of a model. The biochemical statements in the mind of 

the modeler that were used to create the model will be referred to as the intent of the model. A 

mapping of either of these representations to a set of visual objects and relationships will be 

referred to as a visualization.  

The separation of these concepts allows us to rationally treat the problem of 

interconversion. The intent of a model is limited only by the vernacular of biochemistry, and can 

be considered unrestricted for all practical purposes. The content of a model is restricted by the 

formal definitions of the mathematical framework used. The visualization of both model intent 

and content is restricted at a formal level by the choice of visual objects and notations, and at a 

practical level by the cognitive and aesthetic appeal of the generated diagram. The methods that I 
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develop in this chapter will use the content of a rule-based model to generate the visual 

representation, but will aim to convey the intent of the model and appeal to intuition. 

2.2.2 Local versus Global 

Both model intent and content are typically composed of individual statements about small 

numbers of entities, for example, a reaction with two reactant species and one product species 

representing a particular binding interaction. A visualization examining one such statement is 

considered to be local. A visualization of the whole model, composed from many such statements, 

is considered to be global. At the local level, the focus is on detail and the visualization is tailored 

to present the maximum amount of detail that is possible. At the global level, the focus is on 

identifying higher-order motifs and trends in the model, and a certain level of coarse-graining may 

be needed to uncover these. A comparison to real-world maps is applicable here: maps of larger 

geographic areas have to approximate features found in detailed maps of smaller areas in order to 

be useful. In this chapter, we will specifically distinguish between local and global visualizations 

of rule-based models and we will define appropriate coarse-graining procedures during the 

generation of global visualizations. 

2.2.3 Flow versus Adjacency 

An important visualization objective in diagrams of biochemistry is to emphasize the 

temporal order of events, particularly sequences and cycles [53]. Delineating specific paths, such 

as pathways, feedback loops and feed-forward loops, is important for visual comprehension and I 

will collectively refer to them as signal flows. Encoding the temporal order along a graphical 
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dimension, i.e. aligning signal flows top-down or left-right in the diagram can drastically improve 

visual comprehension [54]. However, a high density of edges can preclude a good visual alignment 

of flows, in which case force-directed layouts are efficient. However, these layouts emphasize 

adjacency relationships [55] and have poor visual comprehension. For a generated diagram to be 

useful, its size and edge density needs to be sufficiently sparse to align signal flows in an optimal 

manner. 

2.2.4 Art versus Automation 

There are many aspects to producing a diagram: synthesizing the content, defining the 

notation and attribute mappings, drawing the actual elements on some visual media, laying out the 

visual elements in an optimal manner. When every one of these aspects is left to the discretion of 

the diagrammer, then the diagram becomes a one-off art project that requires a heavy investment 

of time. It would be preferable to automate as many of these steps as possible.  However, artistic 

and aesthetic considerations do play a role in the usefulness of a diagram [54], so a balance is 

necessary between automation and artistic discretion. In this work, we focus on automated 

generation of the content of a diagram, and coarse-graining of diagrams with minimal user input. 

The development of automated layout algorithms is beyond the scope of this work. 

2.2.5 Abstraction versus Enumeration 

When defining a naming system or notation for a set of objects, there is a tendency to 

enumerate all possible states of those objects and to assign labels or features to every possibility 

indiscriminately. I call this the enumerative approach. Manual cataloguing, annotating and 
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diagramming approaches are typically of this type.  Another way of defining a system or notation 

is to generalize over the set of objects and create a few carefully defined types or classes of objects, 

then map the real-world possibilities as instances of those classes. I call this the abstract approach. 

Mathematical modeling frameworks are typically of this form. Enumeration is superficially the 

most direct approach, but it inevitable encounters a level of complexity that hinders automation 

and comprehension. Abstraction is much harder to do, but the right abstraction for a task can 

drastically reduce the complexity involved, improve clarity and enable automation. 

2.3 VISUAL STANDARDS 

A set of approaches exist whose goal is to standardize drawing schemes, notations and 

semantics for biochemical diagrams. In general, there are two types of maps: maps that emphasize 

the structural components of the system and binding interactions, which I call contact maps, and 

maps that emphasize temporal order and signal flow, which I call flow maps.  

Contact maps typically show one instance each of every type of entity in the system and 

use edges to show binding interactions, processes and influences of entities on processes. These 

maps are typically edge-dense and laid out to emphasize structural connectivity and adjacency. 

Contact maps present a global structure-centric view, but they are not very useful for local and 

detailed representations of processes. Also, large and complex contact maps make it difficult to 

delineate signal flows. 

Flow maps typically have one or two major types of nodes indicating entities and/or 

processes and are laid out such that the major signal flows are aligned along the top-down or left-

right dimension. These are typically edge-sparse and have improved visual comprehension, but 
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structural relationships may not be evident from the map. Flow maps can be useful at both local 

and global levels, i.e. to represent individual processes in detail as well as a network of signal 

flows. 

Here I review the standardized diagramming approaches, point out whether they are contact 

maps or flow maps, and discuss their positives and drawbacks.  

2.3.1 The Molecular Interaction Map (MIM) 

The Molecular Interaction Map [56]–[58] was an early standard diagramming procedure 

that falls in the class of contact maps. It provided a simple and flexible abstract visual notation that 

allowed representation of domains, motifs, covalent modifications and binding interactions as 

visual objects and processes as edges between entities. The MIM introduces the notion of 

contingency relations, which are influences of entities on processes and these were also 

represented as edges. Five basic contingencies are defined: stimulation, requirement, inhibition, 

absolute inhibition and catalysis. The MIM developers also provide an XML-based schema that 

can be used to generate machine-readable diagram. The MIM suffers from the same problems as 

all contact maps, such as high edge-density and de-emphasis of signal flows. 
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Figure 2-2. Molecular Interaction Map of the Faeder et al. model of signaling from the FcεRI receptor.  

Model is from Faeder et al [35] and diagram is from Chylek et al [59]. Boxes and labels represent molecules and 

domains. Edges show covalent modifications (double lines) and binding interactions (bidirectional arrows). Edges 

with special arrowheads show contingency relations such as catalysis (circles), cleavage (zigzag), stimulation 

(triangle) and inhibition (flat arrowhead). 

2.3.2 The Systems Biology Graphical Notation (SBGN) 

SBGN [11] was developed as a successor to MIMs with the goal of making it 

comprehensive with regard to biochemical representation. Recognizing that different visualization 

needs exist, it includes three different categories of maps: the process description map, the entity 

relationship map, and the activity flow map. SBGN also comes with XML-based schema to enable 

software support, with the schema being actively developed with community guidance [60]. There 

are a number of software that now support SBGN, such as SBGNViz [61],  Paxtools [62], 

CellDesigner [63], Cytoscape [64], and Rxncon [65]. 
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2.3.2.1 SBGN Process Description diagram 

The SBGN Process Description falls in the category of flow maps and is targeted towards 

visualizing individual reactions in detail. Physical entities can be represented as pools of other 

entities, enabling the representation of detailed molecular structures: complexes with many 

molecules and molecules with domains and covalent modifications. Processes are represented by 

a different type of node, and directed edges indicate whether an entity is consumed or produced 

by a process or whether an entity influences a process. The Process Description diagram is useful 

for representing reactions where information is available about the internal structure of 

participating species, e.g. a reaction where a receptor is phosphorylated by a recruited kinase. 

Technically, the Process Description diagram can be aggregated from individual reactions to a 

global visualization, however its visual comprehension scales poorly with number of reactions, 

primarily due to the amount of detail represented. In comparison to the other SGBN diagrams, the 

Process Description diagram has the most concise abstraction and semantics and is more applicable 

for visualizing model content rather than intent. 
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Figure 2-3. SBGN Process Description diagram of MAPK signaling from the insulin growth 

factor receptor.  Diagram is from sbgn.org. Glyphs on edges represent the type of interaction: binding (dark 

circles), conversions (empty squares). Edges with arrowheads represent requirements (empty circles and triangles). 

2.3.2.2 SBGN Entity Relationship diagram 

The SBGN Entity Relationship diagram falls in the class of contact maps and therefore 

suffers from the limitations of this class, namely high edge density and lack of alignment of signal 

flows. However, in comparison to MIMs, the notation used here is more comprehensive with 

regards to biochemistry. Entity classes are derived from the Systems Biology Ontology [12] and 

includes support for many types of material entities (genes, proteins, small molecules, sugars), 

functional entities (gene start site, etc.) and covalent modifications (phosphorylation, acetylation, 

etc.). Edges describe binding and other processes, as well as influences of entities on processes, 

with each type of edge requiring a distinct arrowhead. Unlike the Process Description, the 

approach used here is enumerative rather than abstract, so the diagrams become visually cluttered 

very quickly from the different entity node shapes and arrowheads. The semantics of entities and 

arrowheads are standardized [11], and designed to represent model intent.  
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Figure 2-4. SBGN Entity Relationship diagram of CAMKII signaling.  Diagram is from sbgn.org and Le 

Novere et al. [11]. Entities such as molecules and domains are represented as boxes with labels. Edges with special 

arrowheads indicate a variety of processes and influences of entities on processes. 

2.3.2.3 SBGN Activity Flow 

The SBGN Activity Flow diagram is a flow map constructed using only activity nodes and 

influence edges. Activity nodes are vaguer than process or entity nodes, and so the activity flow 

diagram is the most poorly defined of all three SBGN maps [11]. An activity is typically some 

combination of process and entity, e.g. a phosphorylation process at a phospho-motif site, or a 

catalytic process that generates a particular metabolite. However, because of its simplicity, it is 

similar to hand-drawn diagrams by biologists, and it is useful to show summaries of signal flow in 

model. Similar to methods we describe later in the chapter, model content in the form of process 

descriptions may be used to generate the activity flows using a coarse-graining method provided 

by Vogt et al. [66]. 
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Figure 2-5. Activity flow diagram of the epidermal growth factor signaling pathway.  Diagram is from 

sbgn.org and a previous version was published in Le Novere et al. [11] 

2.3.3 The Extended Contact Map 

The Extended Contact Map [59] is conceptually similar to the SBGN Entity Relationship and the 

MIM. It borrows aspects from both maps and applies them to rule-based models. Additionally, it 

provides a comprehensive and enumerative description of biochemical processes. Domain 

structure is represented as nested nodes, which allows more flexibility than the entity relationship 

diagram in representing molecular structure. The number of arrowheads used is minimized: 

contingencies are limited to stimulation, catalysis that is transformative (such as phosphorylation) 

and catalysis that is destructive (such as proteolysis). The map is designed to showcase model 
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intent rather than content, and is paired with a model guide where the model content is described 

in detail. Edges on the map are annotated with index entries in the model guide. 

 

Figure 2-6. Extended contact map of FcεRI signaling modeled in Faeder et al.  Model is from [35] and 

digaram is from Chylek et al. [59]. 

 

While the limitations of the contact map format are not completely resolved, Chylek et al. 

do provide guidelines on how to arrange molecule types in a top-down hierarchy that is best 

reflective of signal flow [59]. The major limitation of this map is the level of human effort required 

to build and lay out the map, build the model guide and annotate the map using the model guide. 

Also, commercial software are needed to build the map and there is no standard schema underlying 

the map that can be used to extend software support.  

 



 28 

2.4 VISUALIZATION OF RULE-BASED MODELS – STATE OF THE ART 

In this section, I discuss graph-based abstractions that have been used to visualize rule-based 

models and reaction networks. These are conceptually different from the standards in the previous 

section in that they have a solid mathematical definition, therefore, with appropriate mappings 

between the mathematical objects involved, these maps can be generated automatically from 

model content with relative ease. In this section, I will describe and evaluate formal abstractions 

currently used in the rule-based software frameworks such as BioNetGen [67], Kappa [68], 

Simmune [30], VCell [69] and Rxncon [65]. The reader is advised to be familiar with the basic 

concepts of reaction networks and rule-based models outlined in Chapter 1. 

2.4.1 The Reaction Petri Net 

The Petri Net is a directed bipartite graph with one node type for entities or states and another node 

type for processes. For chemical reaction networks, entities are chemical species and processes are 

reactions, and edge direction indicates whether a reaction consumes a species or produces a 

species. In Figure 2-7, we show a Petri net composed of the following reactions: 

Rxn1: A + B -> AB 

Rxn2: AB -> ABp 

Rxn3: ABp + C -> ABpC 
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Figure 2-7. Petri net of a model of three reactions.  The reactions are Rxn1:A+B->AB, Rxn2:AB->ABp, 

Rxn3:ABp+C->ABpC. The Petri net of each reaction is shown above and the combined Petri net is shown below. 

Aggregation of Petri nets to show signal flow is trivial because each chemical species (A, B, C, AB, ABp, ABpC) is 

produced or consumed in its entirety by individual reactions. 

 

As mentioned previously, reaction networks can be automatically generated from rule-

based models, and frameworks such as VCell [69] and BioUML (biouml.org) have provided tools 

to generate and visualize the corresponding Petri nets.  However, because of combinatorial 

complexity, even small rule-based models are capable of generating much larger reaction networks 

[35], [70], so the reaction network Petri net is not scalable for use with rule-based models. 
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2.4.2 The Site Graph 

The site graph [28] is a nested graph used to represent patterns. Component nodes are nested within 

molecules and internal state nodes are nested within components. Undirected edges between 

components represent bonds. Variations on the site graph been used for visualizing patterns in 

most of the current literature on rule-based models. The site graph is similar to a pool of entities 

in SBGN Process Description, but it has additional information in the form of bonds between 

molecular components. 

 

Figure 2-8. Site graph of a pattern A(b!1).B(a!1,c~P).  Molecule A has component b, molecule B has 

components a and c, component c has internal state P, and components a and b are linked by a bond. 

2.4.3 The Rule Petri Net 

A reaction rule is composed of reactant and product patterns, similar to how a reaction is 

composed of reactant and product species. So, similar to reactions, a reaction rule can also be 

visualized as a Petri net. Additionally, since patterns have site graph visualizations, these site 

graphs can be embedded in the entity nodes of the Petri net. This provides an explicit and detailed 

local visualization of the rule as is present in the model, and this visualization is also compatible 
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with SBGN Process Description. In Figure 2-9, we show Petri net visualizations of the following 

rules: 

R1: A(b) + B(a) -> A(b!1).B(a!1) 

R2: A(b!1).B(a!1,c~0) -> A(b!1).B(a!1,c~P) 

 

Figure 2-9. Rule Petri nets and partial overlaps.  Shown here are rules R1 and R2. R1 produces a bond 

between sites A(b) and B(a). R2 phosphorylates site B(c) (note 0 to P) when in the A-B complex. Note that the bond 

is shared between the rules (red overlay), being formed in R1 and used as context in R2, but it is only a subgraph of 

the reactant pattern in R2. Because of such partial overlaps, rule Petri nets cannot be aggregated into a combined Petri 

net. 

 

There are two problems with this approach. The first problem arises because a rule 

represents the necessary conditions to implement a graph transformation (Section 1.3.3), which 

means that some parts of the reactants are modified to generate the products, whereas some parts 

remain unmodified and are considered context for the implemented modification. However, 

representing reactants and products separately, as in a Petri net, does not necessarily convey 
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quickly which parts are modified and which parts are not, and a viewer would have to manually 

compare the graph structures of reactants and products to arrive at this information. When the rule 

has sufficiently detailed context, repeating these structures on both sides of the rule can obscure 

the parts of the rule that are modified, which results in poor visual comprehension. 

The second problem arises from partial overlaps between rules, which is not encountered 

in reaction networks. In a reaction network, a whole discrete chemical species is produced by one 

reaction and consumed by another. Petri nets of the individual reactions can be aggregated into a 

Petri net of the full model on which this flow of information is obvious. On the other hand, in a 

rule-based model, it is not necessary that the whole pattern produced in one rule be consumed by 

another to constitute a signal flow. It is sufficient that the overlap is partial, i.e. some subgraph of 

the product pattern of one rule which was modified by that rule is now present as a subgraph of 

the reactant pattern of another rule (see Figure 2-9). A simple Petri net representation of multiple 

rules would not resolve these partial overlaps and would not be a useful global visualization. 

2.4.4 The Formal Contact Map 

The formal contact map is a site graph that shows one instance each of structures defined in the 

model (molecular, component, internal state) and one instance each of types of bonds present. It 

is the simplest map in the class of contact maps, and provides a concise summary of the structural 

relationships in a model, but does not show signal flow. The formal contact map can be generated 

automatically in Kappa [28], [71] and Rulebender, the BioNetGen GUI [26]. 
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Figure 2-10. Contact map of FcεRI signaling modeled in Faeder et al.  [35]showing types of molecules, 

components, bonds and internal states [35]. Diagram generated in Rulebender, the BioNetGen graphical user interface 

[26]. 

2.4.5 The Rule Influence Diagram 

Both Kappa (http://kappa-dev.github.io) and Rulebender, the BioNetGen GUI [26], enable a 

visualization of every pairwise interaction within a set of rules, called the rule influence diagram. 

Generating this diagram involves characterizing every partial overlap between every pair of rules 

such as the one in Figure 2-9. While this can provide a picture of signal flow for a small set of 

rules, the number of overlaps that need to be examined grows as the square of the number of rules, 

which makes it infeasible for large rule-based models (10’s – 100’s of rules).  

 

Figure 2-11. Rule influence diagram.  Each rule is represented as a node and edges represent activation 

(green) or inhibition (purple) influences. Diagram is from Smith et al., generated in Rulebender, the BioNetGen GUI 

[26]. 
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2.4.6 The Kappa Story 

Kappa provides a visualization called the story by tracing and compressing the order in 

which simulation events happen in order to generate an observable state of interest [28]. The Kappa 

story is a good representation of signal flow, but computing it requires specific parameter choices 

and simulation to generate the traces, which can be infeasible for models with many rules. Also, 

the Kappa story is not strictly a global or complete visualization of the model, because each story 

is targeted at a specific endpoint state. 

 

Figure 2-12. Kappa story showing a causal sequence of rules.  The top two nodes are starting states. The 

other nodes are firings of rules showing the name of the rule and the simulation step. Diagram is from Danos et al. 

[28]. 

2.4.7 Simmune Network Viewer 

To obtain a visual representation of reaction rules that can be aggregated into a global picture, the 

Simmune Network Viewer [32] first coarse-grains reaction rules to their fundamental molecule 

stoichiometries. For example, consider the two reaction rules (underline for emphasis): 

A(b!1,x~on).B(a!1) -> A(b,x~on) + B(a!1) 

A(b!1,y~on).B(a!1) -> A(b,y~on) + B(a!1) 



 35 

Although they differ in their internal state specifications, they would both be coarse grained 

as: 

A.B -> A + B 

This form can then be converted into a Petri net of the rule (see Figure 2-13) and these rule 

Petri nets are aggregable unlike those in Section 2.4.3. Each entity node on this Petri net represents 

a particular arrangement of molecules and bonds in a complex.  

 

 

Figure 2-13. Simmune Network Viewer  coarse-grains rules to molecule stoichiometry to enable a Petri net 

or bipartite graph representation [32]. In the first panel, we show two rules with stoichiometry A.B -> A + B. When 

neither rule is selected by clicking, the red and blue ‘features’ are in the “don’t care” state (half filled). In the second 

panel, Rule1 is selected and the features specific to Rule1 are displayed (red feature is “on”, i.e. filled). Similarly, in 

the third panel, Rule2 is selected and the features specific to Rule2 are displayed (blue feature is “on”). 

 

The problem with this approach is that signal flows that are mediated through internal state 

changes are not represented on the visualization. For example, consider a molecule X with three 

sites that are sequentially activated. The rule set would be: 

X(a~off) -> X(a~on) 

X(a~on,b~off) -> X(a~on,b~on) 
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X(b~on,c~off) -> X(b~on,c~on) 

From observing the rules, we can infer that activation of X(a) leads to activation of X(b), 

which in turn leads to activation of X(c). However, since all patterns here have the same molecule 

stoichiometry X, the Simmune Network Viewer cannot show the signal flow represented by these 

rules (see Figure 2-14). 

 

Figure 2-14. Simmune Network Viewer cannot show signal flow mediated through ‘features’ (internal 

states in BioNetGen).  This diagram was generated from a sequential model where the red feature activates 

spontaneously, then red activates blue and blue activates green. In the Simmune Network Viewer, the different states 

of the molecule are represented by the same node X. 

2.4.8 Rxncon Regulatory Graph 

Rxncon [65] is a relatively new rule-based framework that emphasizes convenient model 

building and visualization. The Rxncon specification marries the enumerative approach of visual 

standards with the abstract approaches of rule-based frameworks such as BioNetGen, Kappa and 

Simmune. In Rxncon, entities can be “elemental states”, such as a single bond or a single 

phosphorylated state, or they can be simple combinations of these states using Boolean operators 

such as OR and AND. Processes are drawn from a manually enumerated list of commonly 

encountered processes such as binding, phosphorylation, acetylation, etc. Then, the influence of 
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entities on processes is modeled as contingency relations, and the list of defined contingencies 

closely adheres to those used in visualization: requirement, stimulation, inhibition, etc. If a kinetic 

model is desired, pre-defined rule-based templates are used to transform the Rxncon specification 

into either a rule-based model or reaction network or Boolean model.  An example of an Rxncon 

specification is shown below: 

A_ppi_B 

A_P+_B ; ! A--B 

Here, ppi and P+ are drawn from the Rxncon list of processes denoting protein-protein 

interaction and phosphorylation respectively. The symbol ! represents the contingency relation 

‘requires’ and A--B represents the bound AB state.  

The Rxncon specification has a few advantages. First, contingency relations can be 

expressed in the form of English-like statements (process-contingency-entity = subject-verb-

object) and easily scaled to tables and databases. Second, the enumerated lists of processes and 

contingencies closely mirror that of visual standards such SBGN diagrams, which can be 

automatically generated from the specification [65]. Third, it enables a new visualization called 

the regulatory graph (Figure 2-15). The regulatory graph is a bipartite graph or Petri net on 

elemental states and processes, with edges showing effects of processes and contingency relations. 

It is a compact and useful abstraction for conveying signal flow, and there is a 1:1 map between 

the Rxncon specification and the regulatory graph.  
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Figure 2-15. Regulatory graph from the Rxncon specification.  Diagram is from Tiger2012. Red nodes 

represent processes such as binding (ppi) and phosphorylation (P+), whereas blue nodes represent states created or 

modified by processes and which influence processes in the form of contingency relations. 

However, the convenience comes at a significant loss, especially in comparison to other 

rule-based modeling frameworks such as BioNetGen, Kappa and Simmune. First, biochemical 

signaling complexes are known to be of arbitrary and heterogenous composition [18]. This 

motivates other rule-based languages to use graphs to represent complexes, such as shown in 

Figure 2-16. However, Rxncon uses simple Boolean relations and does not have a high enough 

resolution to model arbitrary complexes [65]. Second, the rule-based templates and the rule-

generation process encode strong assumptions about how sites interact, which are not applicable 

to all biochemical systems. Rxncon applies the rule-generation logic to all systems uniformly, 

which will lead to incorrect mechanistic assumptions in many cases. Third, the enumerated list of 

processes and contingencies unnecessarily restrict the model specification. Because of the 

expanding nature of biochemical knowledge, it may not be possible to ever have a complete list of 

all relevant processes and contingencies. For example, Rxncon does not include conformational 

change as a possible reaction type, and even if it did, it would have to enumerate what types of 

conformational changes are commonly encountered. On the other hand, BioNetGen implements 
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the abstract notion of internal states on components and internal state changes in rules, which 

allows modeling of any process involving molecular attributes, such as phosphorylation (~0 to 

~P), acetylation (~0 to ~Ac), conformational change (say, ~open to ~closed), or any other 

uncommon process. In general, any approach that builds mechanistic kinetic models from human-

readable maps, such as Path2Models [72] or Rxncon [65], is bound to be approximate or incorrect 

because of these reasons. The recommended strategy is to separate the formal and visual 

specification, so that the model itself is exact and uses abstract entities, but visualization and 

human understanding are supplemented with annotations drawn from an enumerated list or 

database. Annotation frameworks for rule-based models are already being developed for this 

purpose [73]. 

 

 

Figure 2-16. Example of a real complex that cannot be represented in Rxncon. Shown is a receptor dimer 

formed by crosslinking due to a bivalent ligand. One receptor is phosphorylated and bound to Lyn. The other receptor 

is not bound to anything else and is unphosphorylated. In Rxncon, there is no Boolean combination of the elemental 

states Lig--Rec, Rec--Lyn, and Rec-{P} that can replicate this complex.
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2.5 GRAPH ABSTRACTIONS FOR RULE-BASED VISUALIZATIONS 

In this section, I define new graph-based abstractions for rule-based models that address 

two primary visual objectives for rule-based models: (i) visualizing individual rules in a compact 

manner to convey the modeled mechanisms, and (ii) visualizing a set of rules as a network of 

regulatory interactions. To the second objective, an addendum can be added: the network 

visualization must be compact, scalable and useful, even for large numbers of rules. The first and 

second objectives address visualization of model content as defined in the model specification, but 

the addendum addresses the problem of being able to generate useful diagrams that showcase 

model intent, even when the model content is too large or too complex.  

This section is intended to hold the formalisms underlying the generation of visualizations 

from a rule-based model. These visualizations address the objectives defined above: visualizing 

individual rules, inferring a network of interactions, and tuning the complexity of the generated 

network. As such, it is dense with abstract definitions and terminology, so the casual reader is 

advised to skip to Section 2.6, where the methods described here have been applied to specific 

models and systems. In this synopsis, I present a brief outline, summarized in Figure 2-17.  

In BioNetGen, the pattern (a graph representing sites on a complex) and the reaction rule 

(a graph transformation representing a kinetic process) are the fundamental mathematical 

abstractions used. Hogg et al. (Supplement) [34] provide standard definitions which I will adhere 

to. In Section 2.5.1 Preliminary Definitions, I define node-labeled edge-labeled graphs and 

elemental graph operations. In Section 2.5.2 Structure Graphs, I define pattern structure graphs 

which are used to generate site graph and rule Petri net visualizations, and then define rule structure 
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graphs which are used to generate compact rule visualizations. These visualizations address the 

first visual objective. In Section 2.5.3 Atomic Patterns, I define objects called atomic patterns 

that capture the notion of a class of sites in the model that can be acted upon, such as a free binding 

site, or a bond, or a phosphorylated state. In Section 2.5.4 Regulatory Graphs, I provide a 

systematic approach to generate a regulatory network in the form of a bipartite edge-labeled graph 

from a reaction rule, and show how to aggregate such graphs from individual rules into a flow-

based representation of the whole model. This addresses the second objective. Figure 2-17 also 

shows an outline on how these two objectives are achieved. Prior to this work, it was not possible 

to generate global visualizations of rule-based models by aggregating individual rules. The 

regulatory graph formalism enables the coarse-graining of the rule-based specification into a 

simpler aggregable representation. 

I also define automated coarse-graining procedures (pruning, grouping, collapsing) that use 

minimal external input to transform the generated model regulatory graphs into compact pathway 

diagrams. This addresses the addendum to the second objective. As I will demonstrate in Section 

2.5.7, these coarse-graining approaches can result in a dramatic reduction of complexity, 

generating useful visual representations even for very large rule-based models. 

 In Section 2.5.5 Complexity Analysis, I discuss scalability concerns of the methods used, 

and in Section 2.5.6 Comparisons to Other Approaches, I discuss how compact rule 

visualization and regulatory graphs compare with existing methods, such as those described in 

Sections 2.3 and 2.4.  
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Figure 2-17 Outline of the rule visualization methods  described in this chapter. Patterns from the reaction 

rule are represented as pattern structure graphs which are merged into the rule structure graph. These are used to 

generate the direct and compact rule visualizations. From the rule structure graph, atomic patterns and their 

relationship to the rule are inferred. These are then visualized as the rule regulatory graph. 
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2.5.1 Preliminary Definitions 

Here I define node-labeled edge-labeled graphs, consistency properties of node and edge labels, 

and simple graph operations. They form the basis for specific types of these graphs that will be 

defined in later parts of the chapter, and which will be used to represent objects in rule-based 

models and visualizations. 

2.5.1.1 Label prototypes and applications 

Definition 2.5-1 

A prototype, say f, is an arbitrarily defined type of labeling function.  

Definition 2.5-2 

An application 𝑓𝑓𝑋𝑋 ≔ 𝑋𝑋 → 𝐴𝐴∗ is an instance of a prototype f applied to a particular domain 

X. Here 𝐴𝐴∗ represents the set of words from alphanumeric characters plus the symbols 

{(, ), ~, !, +,−,∅}. The relationship between application, prototype and domain is denoted 𝑓𝑓 ⟼

𝑓𝑓𝑋𝑋. The prototype is multi-valued in the sense that more than one application can be defined over 

the same domain derived from the same prototype, i.e. 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,1,𝑓𝑓𝑋𝑋,2 … 

Definition 2.5-3 

A prototype set is a set of prototypes. This is denoted 𝐸𝐸 ≔ �𝑓𝑓𝑖𝑖�, where i indexes the set. 

Definition 2.5-4 

An application set is a set of applications derived from a prototype set applied to the same domain. 

𝐸𝐸 ≔  �𝑓𝑓𝑖𝑖� 

𝐸𝐸𝑋𝑋 ≔ �𝑓𝑓𝑋𝑋𝑖𝑖 ∶= 𝑋𝑋 → 𝐴𝐴∗�𝑓𝑓𝑖𝑖 ⟼ 𝑓𝑓𝑋𝑋𝑖𝑖∀𝑓𝑓𝑖𝑖 ∈ 𝐸𝐸} 

The relationship between the prototype set, application set and domain is denoted 𝐸𝐸 ⟼ 𝐸𝐸𝑋𝑋. 

Definition 2.5-5 
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Two applications are consistent (denoted ≡) if they are derived from the same prototype 

and map identical labels to identical elements. 

𝑓𝑓𝑋𝑋,1 ≡ 𝑓𝑓𝑋𝑋,2  ⟺ 

𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,1,𝑓𝑓𝑋𝑋,2 , 

𝑓𝑓𝑋𝑋,1(𝑥𝑥) = 𝑓𝑓𝑋𝑋,2(𝑥𝑥) ∀𝑥𝑥 ∈ 𝑋𝑋 

Applications defined on two domains are consistent if they are consistent over the domain 

of intersection. 

𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌 ⟺ 

𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑓𝑓𝑌𝑌 , 

𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑓𝑓𝑌𝑌(𝑥𝑥) ∀𝑥𝑥 ∈ 𝑋𝑋 ∩ 𝑌𝑌 

Definition 2.5-6 

Two application sets are consistent if they are derived from the same prototype set and 

each pair of applications derived from each prototype is consistent. 

𝐸𝐸𝑋𝑋,1 ≡ 𝐸𝐸𝑋𝑋,2  ⟺ 

𝐸𝐸 ⟼ 𝐸𝐸𝑋𝑋,1,𝐸𝐸𝑋𝑋,1   

𝑓𝑓𝑋𝑋,1
𝑖𝑖 ≡ 𝑓𝑓𝑋𝑋,2

𝑖𝑖  ∀𝑓𝑓𝑖𝑖 ∈ 𝐸𝐸 

Corollary 2.5-7 

An application (or application set) defined over a domain implies the existence of a 

consistent application defined over any subset of the domain. 

Proof: Given 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑌𝑌 ⊂ 𝑋𝑋, let 𝑓𝑓𝑌𝑌 ≔ 𝑓𝑓𝑋𝑋(𝑥𝑥)∀𝑥𝑥 ∈ 𝑌𝑌, then 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋and 𝑓𝑓𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋 by 

construction. By extending to every 𝑓𝑓𝑋𝑋𝑖𝑖 ∈ 𝐸𝐸𝑋𝑋 and by Definition 2.5-6, exists 𝐸𝐸𝑌𝑌 ≡ 𝐸𝐸𝑋𝑋. 

Corollary 2.5-8 
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Two consistent applications (or application sets) defined over two domains implies the 

existence of a consistent application over the union of the two domains.  

Proof: Given 𝑋𝑋,𝑌𝑌,𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑓𝑓 ⟼ 𝑓𝑓𝑌𝑌,𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌,  

by Corollary 2.5-7, exists 𝑓𝑓𝑋𝑋∩𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌,𝑓𝑓𝑋𝑋−𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋,𝑓𝑓𝑌𝑌−𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌, 

now let 𝑍𝑍 = 𝑋𝑋 ∪ 𝑌𝑌 = (𝑋𝑋 − 𝑌𝑌) ∪ (𝑋𝑋 ∩ 𝑌𝑌) ∪ (𝑌𝑌 − 𝑋𝑋), and 𝑓𝑓𝑍𝑍(𝑥𝑥) = �
𝑓𝑓𝑋𝑋−𝑌𝑌(𝑥𝑥) 𝑥𝑥 ∈ 𝑋𝑋 − 𝑌𝑌
𝑓𝑓𝑋𝑋∩𝑌𝑌(𝑥𝑥) 𝑥𝑥 ∈ 𝑋𝑋 ∩ 𝑌𝑌
𝑓𝑓𝑌𝑌−𝑋𝑋(𝑥𝑥) 𝑥𝑥 ∈ 𝑌𝑌 − 𝑋𝑋

 

By construction 𝑓𝑓𝑍𝑍 ≡ 𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌.  

By extending to every 𝑓𝑓𝑋𝑋𝑖𝑖 ∈ 𝐸𝐸𝑋𝑋 and by Definition 2.5-6, exists 𝐸𝐸𝑍𝑍 ≡ 𝐸𝐸𝑋𝑋 ≡ 𝐸𝐸𝑌𝑌. 

Definition 2.5-9 

Given a set X and a function g, 𝑔𝑔⊙ 𝑋𝑋 is defined as the image of g in X for elements where 

such an image exists, i.e. 𝑔𝑔⊙ 𝑋𝑋 = {𝑔𝑔(𝑥𝑥),∀𝑥𝑥 ∈ 𝑋𝑋|∃𝑔𝑔(𝑥𝑥)} 

2.5.1.2 Graphs 

Definition 2.5-10 

A graph type is defined by the tuple (Λ, Σ), where Λ is an arbitrarily defined set of node 

label prototypes and Σ is an arbitrarily defined set of edge label prototypes. 

Definition 2.5-11 

A graph instance, say G, of graph type (Λ, Σ), is defined by a set of nodes 𝑉𝑉 ⊂ 𝐴𝐴∗, a set 

of edges 𝐸𝐸 ⊂ 𝑉𝑉 × 𝑉𝑉, a particular node application Λ𝑉𝑉 ≔ 𝑉𝑉 → {𝐴𝐴∗},Λ ⟼ Λ𝑉𝑉 and a particular edge 

application Σ𝐸𝐸 ≔ 𝐸𝐸 → {𝐴𝐴∗}, Σ ⟼ Σ𝐸𝐸, i.e. 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸).  

Henceforth, “given 𝐸𝐸” will be taken to mean  “given 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸)”, with graph type 

assumed to be obvious. Similarly, “given 𝐸𝐸𝑖𝑖” will be taken to mean “given 𝐸𝐸𝑖𝑖 ≔ �𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖 ,Λ𝑉𝑉𝑖𝑖 , Σ𝐸𝐸𝑖𝑖�” 

for any index 𝑖𝑖. 

Definition 2.5-12 
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Two graphs are consistent (denoted ≡) if  their node and edge applications are consistent, 

i.e. given 𝐸𝐸1,𝐸𝐸2, if Λ𝑉𝑉1 ≡ Λ𝑉𝑉2 , Σ𝐸𝐸1 ≡ Σ𝐸𝐸2, then 𝐸𝐸1 ≡ 𝐸𝐸2. 

Definition 2.5-13 

A graph is a subgraph of another graph (denoted ⊏), if the two graphs are consistent and 

the nodes and edges of the first graph are subsets of the nodes and edges of the second graph, i.e. 

given 𝐸𝐸1,𝐸𝐸2, if 𝑉𝑉1 ⊂ 𝑉𝑉2,𝐸𝐸1 ⊂ 𝐸𝐸2,𝐸𝐸1 ≡ 𝐸𝐸2 then 𝐸𝐸1 ⊏ 𝐸𝐸2. 

2.5.1.3 Common Graph Operations 

Definition 2.5-14 

Given two consistent graphs, a trivial merge (denoted ⊔) of two graphs is the graph 

composed from the union of the node and edge sets, i.e. given 𝐸𝐸1,𝐸𝐸2,𝐸𝐸1 ≡ 𝐸𝐸2,  

then 𝐸𝐸1 ⊔ 𝐸𝐸2 ≔ (𝑉𝑉1 ∪ 𝑉𝑉2,𝐸𝐸1 ∪ 𝐸𝐸2,Λ𝑉𝑉1∪𝑉𝑉2 ,Σ𝐸𝐸1∪𝐸𝐸2) 

Definition 2.5-15 

A node remap operation 𝒱𝒱ℳ(𝑣𝑣0 → 𝑣𝑣1) copies edges incident on a node 𝑣𝑣0 to another 

node 𝑣𝑣1, i.e. given 𝐸𝐸 and nodes 𝑣𝑣0, 𝑣𝑣1 ∈ 𝑉𝑉, 

let 𝐸𝐸0 = �(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸�𝑣𝑣0 ∈ {𝑣𝑣, 𝑣𝑣′}� and 𝑔𝑔(𝑣𝑣) = �
𝑣𝑣1 𝑣𝑣 = 𝑣𝑣0
𝑣𝑣 𝑣𝑣 ≠ 𝑣𝑣0 and ℎ(𝑣𝑣, 𝑣𝑣′) =

�𝑔𝑔(𝑣𝑣),𝑔𝑔(𝑣𝑣′)�, 

let 𝐸𝐸1 = {ℎ(𝑣𝑣, 𝑣𝑣′),∀ (𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸0 } and  

and let Σ ⟼ Σ𝐸𝐸1𝑠𝑠. 𝑡𝑡.∀𝑓𝑓 ∈ Σ,𝑓𝑓𝐸𝐸1�ℎ(𝑣𝑣, 𝑣𝑣′)� = 𝑓𝑓𝐸𝐸0�(𝑣𝑣, 𝑣𝑣′)�∀(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸0  

then 𝒱𝒱ℳ(𝑣𝑣0 → 𝑣𝑣1) ∘ 𝐸𝐸 ≔ �𝑉𝑉,𝐸𝐸 ∪ 𝐸𝐸1,Λ𝑉𝑉 , Σ𝐸𝐸∪𝐸𝐸1� 

Definition 2.5-16 

A node remap sequence 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) performs a sequence of remap operations on a graph 𝐸𝐸 

using some set of ordered pairs 𝑌𝑌 ≔ {(𝑣𝑣, 𝑣𝑣′)| 𝑣𝑣, 𝑣𝑣′ ∈ 𝑉𝑉}.  
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𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) = � � 𝒱𝒱ℳ(𝑣𝑣 → 𝑣𝑣′)
(𝑣𝑣,𝑣𝑣′)∈𝑌𝑌

� ∘ 𝐸𝐸 

In this work, we will ensure by construction that the order of remaps does not matter, which 

can be achieved by having the sources and targets for the remap be disjoint sets, 

i.e. 𝑆𝑆𝑆𝑆𝑆𝑆 ∩ 𝑇𝑇𝑔𝑔𝑡𝑡 = {} where 𝑣𝑣 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑣𝑣′ ∈ 𝑇𝑇𝑔𝑔𝑡𝑡,∀(𝑣𝑣, 𝑣𝑣′) ∈ 𝑌𝑌 

Definition 2.5-17 

A node delete operation 𝒱𝒱𝒱𝒱(𝑣𝑣0) removes a node 𝑣𝑣0and any edges incident to 𝑣𝑣0, 

i.e. given 𝐸𝐸 = (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝑉𝑉) and node 𝑣𝑣0 ∈ 𝑉𝑉,  

let 𝐸𝐸0 = �(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸�𝑣𝑣0 ∈ {𝑣𝑣, 𝑣𝑣′}� and 𝑉𝑉0 = {𝑣𝑣0} the singleton 

then by construction 𝒱𝒱𝒱𝒱(𝑣𝑣0 → 𝑣𝑣1) ∘ 𝐸𝐸 ≔ �𝑉𝑉 − 𝑉𝑉0,𝐸𝐸 − 𝐸𝐸0,Λ𝑉𝑉−𝑉𝑉0 ,Σ𝐸𝐸−𝐸𝐸0� 

Definition 2.5-18 

A node delete sequence 𝐷𝐷𝐷𝐷𝐷𝐷(𝑌𝑌) performs a series of node delete operations on a graph 

𝐸𝐸 = (𝑉𝑉,𝐸𝐸, … ) using some subset of nodes 𝑌𝑌 ⊂ 𝑉𝑉, i.e. 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑌𝑌) = ��𝒱𝒱𝒱𝒱(𝑣𝑣0)
𝑣𝑣∈𝑌𝑌

� ∘ 𝐸𝐸 

Definition 2.5-19 

A filter operation ℱ(𝑓𝑓,𝑦𝑦) ∘ 𝑋𝑋 creates a subset of the domain X that maps to value y under 

the application of the prototype f, i.e. 

ℱ(𝑓𝑓, 𝑦𝑦) ∘ 𝑋𝑋 = {𝑥𝑥 ∈ 𝑋𝑋|𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑦𝑦} 

Definition 2.5-20 

A filter sequence 𝐸𝐸𝑖𝑖𝐷𝐷(𝑌𝑌) ∘ 𝑋𝑋 creates a subset of the domain X by sequentially filtering 

using each pair of prototypes and values in 𝑌𝑌 ≔ {(𝑓𝑓,𝑦𝑦)|𝑓𝑓 ∈ 𝐸𝐸,𝑦𝑦 ∈ 𝐴𝐴∗}. 
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𝐸𝐸𝑖𝑖𝐷𝐷(𝑌𝑌) ∘ 𝑋𝑋 = � � ℱ(𝑓𝑓, 𝑦𝑦)
(𝑓𝑓,𝑦𝑦)∈𝑌𝑌

� ∘ 𝑋𝑋 

2.5.2 Structure Graphs 

Here, I define graphs called structure graphs that are useful to represent structural objects such as 

molecules, components, internal states and bonds, and relationships between those objects. The 

pattern (described in Section 1.3.2) is represented as the pattern structure graph (2.5.2.1), and this 

is converted into a visual object called the pattern site graph (2.5.2.2). The reaction rule (described 

in Section 1.3.3) is composed from pattern structure graphs (2.5.2.3) and has a classical 

visualization as a Petri net (2.5.2.4). The information in the rule is condensed into a single rule 

structure graph (2.5.2.5), which in turn is converted into a visual object called the compact rule 

visualization (2.5.2.6). The compact rule visualization is a new contribution to the visualization of 

rule-based models. 

2.5.2.1 Pattern Structure Graph 

In BioNetGen, patterns are used to represent complexes and subgraphs of complexes. The 

pattern structure graph has one node each for every molecule, component, internal state and 

binding state in the pattern. Pattern structure graphs are based on hierarchical graphs defined in 

Lemons et al. [74], with the difference being that hierarchical graphs use an edge to represent a 

bond rather than a separate node. The pattern structure graph is also equivalent to the pattern 

defined in Hogg et al. [34], where it is defined as a generic data structure rather than a strict graph.  

Definition 2.5-21 
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The pattern structure graph is a graph with unlabeled edges and labeled nodes defined 

by the node labeling prototype Λ = {𝑇𝑇,Ω},  

where T is a node-type function mapping to the codomain {mol, comp, is, bs}, where 

mol=molecule, comp=component, is=internal state and bs=bond state, and Ω is a name function 

mapping to the set of all words 𝐴𝐴∗. Additionally, from Hogg REF, restrictions are placed on 

adjacency relationships, which are defined in the table below: 

 

Table 2-1. Adjacency restrictions for different node types on the structure graph. 

Node type 
Adjacent node type 

Molecule Component Internal State Bond State 

Molecule 0 
Defined by 

molecule type 
0 0 

Component 1 0 1 1 

Internal State 0 1 0 0 

Bond State 0 1 or 2 0 0 

 

Additionally, bond state labels are restricted to {!+,!-,!?}  respectively, denoting bond, 

unbound state and unspecified state respectively. A bond state labeled !+ is called a fully specified 

bond if it has two adjacent component nodes, or a bond wildcard if it has one adjacent component 

node. 

Let 𝑃𝑃∗denote the set of all pattern structure graphs present in a model. 
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2.5.2.2 Pattern Site Graph 

To convert the pattern structure graph into a pattern site graph visualization: (i) nest each 

component node within the adjacent molecule node, (ii) nest each internal state node within the 

adjacent component node, (iii) remove unbound state nodes, (iv) if a bond has two parents, replace 

bond node by an edge between the parent components. 

 

Figure 2-18. Pattern structure graph and site graph.  The first panel shows a pattern structure graph 

(defined in Definition 2.5-21), constructed from the pattern E(s!1).S(e~Y!1). Each node has a node-type (T) defined 

to be molecule (mol), component (comp), internal state (is) or bond state (bs). Each node also has a name 𝛀𝛀 which is 

shown as the node label. The bond state has two adjacent components and name !+, indicating it is a fully specified 

bond. The second panel shows a pattern site graph generated from the pattern structure graph (see Section 2.5.2.2). 

2.5.2.3 Reaction Rule 

Here, I provide a definition for the reaction rule that is compatible with previous definitions 

in this thesis as well as Hogg et al. [34]. 

Definition 2.5-22 

A reaction rule 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆), where 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷 is a unique name assigned to the rule 

and 𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆 ⊂ 𝑃𝑃∗are sets of reactant and product patterns respectively.  



 51 

Definition 2.5-23 

Let 𝐸𝐸𝐴𝐴∗  be the set of all rule names, and 𝐸𝐸∗be the set of all rules 𝑆𝑆. 

2.5.2.4 Rule Petri Net 

To obtain a rule Petri net (as in Section 2.4.3) from the rule as defined in Definition 2.5-23, 

(i) draw a node to represent the rule and label with 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, (ii) draw a node to represent each 

pattern 𝑀𝑀 ∈ 𝐸𝐸𝐷𝐷 ∪ 𝑃𝑃𝑆𝑆, (iii) within each node, embed the site graph of the respective pattern, (iv) 

draw a directed edge from each reactant pattern to the rule node, and (v) draw a directed edge from 

the rule node to each product pattern. As mentioned previously (Section 2.4.3), rule Petri nets 

cannot be aggregated from local visualizations of rules into a global one because of partial overlaps 

between rules. 

 

Figure 2-19. Petri net of Rule  R1 showing binding of enzyme and unphosphorylated substrate. The reactant 

patterns and product patterns are visualized separately as site graphs (Section 2.5.2.2) and embedded in the entity 

nodes of the Petri net. Note that other than the bond that is formed, each structure is repeated twice, once on the 

reactant side and once on the product side. 
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2.5.2.5 Rule Structure Graph 

The rule Petri net shows each reactant and product separately, and structures that are not 

modified by the rule are represented twice, once on the reactant side and once on the product side. 

The rule structure graph is a systematic merging of reactant and product pattern structure graphs 

of the rule that eliminates redundancies. 

Definition 2.5-24 

The rule structure graph is a node-labeled, edge-unlabeled graph defined by the tuple of 

node prototypes Λ = {𝑇𝑇,Ω, 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷}, where 𝑇𝑇,Ω are as defined in Definition 2.5-21 and 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 maps 

each node to one of {𝐷𝐷, 𝑆𝑆, 𝐷𝐷𝑆𝑆} indicating left, right or both respectively. 

To build a rule structure graph from a reaction rule: 

1. Given a rule 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆) where 𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆 ⊂ 𝑃𝑃∗, first we trivially merge the reactant 

and product sides separately to give ‘left’ and ‘right’ structure graphs, 𝐸𝐸𝑙𝑙and 𝐸𝐸𝑟𝑟 respectively. 

𝐸𝐸𝑙𝑙 ≔ � 𝐸𝐸𝑖𝑖
𝐺𝐺𝑖𝑖∈𝑅𝑅𝑅𝑅

= �𝑉𝑉𝑙𝑙 ,𝐸𝐸𝑙𝑙 ,Λ𝑉𝑉𝑙𝑙� 

𝐸𝐸𝑙𝑙 ≔ � 𝐸𝐸𝑗𝑗
𝐺𝐺𝑗𝑗∈𝑃𝑃𝑟𝑟

= (𝑉𝑉𝑟𝑟 ,𝐸𝐸𝑟𝑟 ,Λ𝑉𝑉𝑟𝑟) 

2. BioNetGen computes a partial one-to-one map 𝜙𝜙:𝑉𝑉𝑙𝑙 ↛ 𝑉𝑉𝑟𝑟 between reactant and product 

patterns that identifies the unmodified structures. Let 𝑠𝑠𝑑𝑑𝑟𝑟 and 𝑖𝑖𝑟𝑟𝑔𝑔 be the subsets of 𝑉𝑉𝑙𝑙 and 

𝑉𝑉𝑟𝑟 respectively in which this map is one-to-one onto. 

𝑖𝑖𝑟𝑟𝑔𝑔 = 𝜙𝜙 ⊙𝑉𝑉𝑙𝑙 

𝑠𝑠𝑑𝑑𝑟𝑟 = 𝜙𝜙−1 ⊙ 𝑖𝑖𝑟𝑟𝑔𝑔 

The structures mapped by 𝜙𝜙 are present on both sides of the rule. We refer to the nodes in 𝑠𝑠𝑑𝑑𝑟𝑟 

as ‘original’ and the nodes in 𝑖𝑖𝑟𝑟𝑔𝑔 as duplicate respectively. 

3. Now, we merge the left and right sides of the rule and remove the duplicate nodes. 
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𝑊𝑊 = {(𝜙𝜙(𝑣𝑣), 𝑣𝑣),∀𝑣𝑣 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟} 

𝐸𝐸 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖𝑟𝑟𝑔𝑔) ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑊𝑊) ∘ (𝐸𝐸𝑙𝑙 ⊔ 𝐸𝐸𝑟𝑟) 

4. We compute 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 depending on which side of the rule a node originates from: 

𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉(𝑣𝑣) = �
𝐷𝐷 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 − 𝑠𝑠𝑑𝑑𝑟𝑟
𝑆𝑆 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟 − 𝑖𝑖𝑟𝑟𝑔𝑔
𝐷𝐷𝑆𝑆 𝑣𝑣 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟           

 

5. The rule structure graph is given by 𝐸𝐸 as computed in step 3, with 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉  as computed in step 

4 being included in the application set Λ𝑉𝑉 . 

 

Figure 2-20. Synthesizing the rule structure graph from a reaction rule.  At the top, we show rule R1 

which has two reactant patterns (red) and one product pattern (blue), and they are shown as pattern structure graphs 

according to Definition 2.5-21. BioNetGen computes a partial map between reactants and products that identifies the 

unmodified structures (dotted black line). By merging the graphs and removing redundant nodes, we generate the rule 

structure graph as seen at the bottom. During the process, we keep track of the origins of the nodes, whether they are 

from the product side (blue), reactant side (red) or both (black). 

Definition 2.5-25 
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Let 𝑆𝑆′ = (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸) be the new definition of a rule, where 𝐸𝐸 is the rule structure graph 

derived from 𝑆𝑆 = (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆) as shown above.  Let 𝐸𝐸𝑠𝑠𝑠𝑠∗  be the set of all rules 𝑆𝑆′ as defined 

here. 

2.5.2.6 Compact Rule Visualization 

Using the rule structure graph, we can generate a compact visualization of the rule by 

identifying the modified structures and adding graph operation nodes. These are special nodes 

whose labels indicate what kind of graph transformation is being carried out by the rule. 

 Given a rule structure graph as in Definition 2.5-24, (i) for each molecule node with side 

𝐷𝐷, draw a graph operation node labeled DeleteMol and draw a directed edge from the molecule 

node to the graph operation node, (ii) for each molecule node with side 𝑆𝑆, draw a graph operation 

node labeled AddMol and draw a directed edge to the molecule node from the graph operation 

node, (iii) for each component with side 𝐷𝐷𝑆𝑆, whose adjacent internal states have side 𝐷𝐷 or 𝑆𝑆, draw a 

graph operation node labeled ChangeState, draw a directed edge from the adjacent internal state 

with side 𝐷𝐷 to the graph operation node, and draw a directed edge to the adjacent internal state with 

side 𝑆𝑆 from the graph operation node, (iv) for each bond with side 𝐷𝐷, replace bond node with graph 

operation node labeled DeleteBond, add edge direction away from graph operation node on 

incident edges, (v) for each bond with side 𝑆𝑆, replace bond node with graph operation node labeled 

AddBond, add edge direction away from graph operation node on incident edges, (vi) render 

remaining nodes according to site graph conventions in Section 2.5.2.2, (vii) nest ChangeState 

operation nodes within adjacent component nodes. 

The compact rule visualization is a compact and useful local visualization of rules that is 

explicit about which parts of the participating complexes are modified and which parts are context 
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for the interaction. However, parts modified in one rule can remain unmodified in another rule, so 

compact rule visualizations cannot be strictly aggregated into a global visualization.  

 

 

Figure 2-21. Compact rule visualization.  Instead of showing reactants and products separately, each 

structure present in the rule is shown only once. The changes implemented by the rule are shown as graph operation 

nodes of the following types: AddBond, DeleteBond, ChangeState, AddMol, DeleteMol. Shown here are five rules: 

R1, R1r, R2, R3 and R4. 

2.5.3 Atomic Patterns 

Patterns represent specific combinations of “actionable sites” that are relevant to a particular 

reaction rule. For example, a pattern such as EGFR(Y1068~P!1).Grb2(SH2!1) has the following 

“actionable sites”, a bond EGFR(Y1068!1).Grb2(SH2!1) that could be formed or broken between 

the binding sites EGFR(Y1068~P) and Grb2(SH2), and a phosphorylated state EGFR(Y1068~P) 

that could be dephosphorylated. However, the common understanding of signal flow is not through 

specific combinations, but through individual types of sites. For example, a statement such as “the 

phosphorylated state of Y1068 affects binding of Grb2” requires treating the classes of sites 
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EGFR(Y1068~P) and EGFR(Y1068!1).Grb2(SH2!1) separately with a causal influence from the 

first to the second. Here, I call actionable sites on patterns as atomic patterns, and provide a 

formalism where such sites can be identified on any pattern. Atomic patterns are analogous to 

elemental states used by Tiger et al. [65].  

2.5.3.1 Definitions and Interpretations 

Definition 2.5-26 

A node on a pattern structure graph is well-defined if (i) it is a molecule node, (ii) it is a 

component and its adjacent molecule is well-defined, (iii) it is a bond state node that is bound (!+) 

or unbound (!-) and its adjacent component(s) are well defined, (iv) it is an internal state other than 

the default state and its adjacent component is well-defined. 

Definition 2.5-27  

An atomic pattern is a connected pattern structure graph in which the graph has at most 

one well-defined bond state or internal state node, but not both at the same time, and there is at 

least one bond state or internal state per component. 

Practically, atomic patterns take five different forms which can be represented using 

BioNetGen syntax: (i) molecule such as A, (ii) free binding site such as A(b), (iii) bond such as 

A(b!1).B(b!1), (iv) bond wildcard such as A(b!+), and (v) internal state such as A(b~0!?). For 

internal state atomic patterns, we will use shorthand A(b~0) with the understanding that as long as 

it is treated as an internal state atomic pattern, only its internal state is relevant. The syntax form 

allows atomic patterns to be represented as compact alphanumeric labels. 

Definition 2.5-28 
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The atomic pattern equivalence class is defined by an atomic pattern structure graph and 

represents the class of isomorphic subgraphs on all patterns. Henceforth, all references to atomic 

patterns will be to the corresponding equivalence classes.  

 Let 𝑃𝑃𝑎𝑎𝑎𝑎∗  be the set of all atomic patterns encountered in a model. Since atomic patterns 

have syntax equivalents as mentioned in Definition 2.5-27, 𝑃𝑃𝑎𝑎𝑎𝑎∗ ⊂ 𝐴𝐴∗. 

By defining them as equivalence classes, atomic patterns are functionally equivalent to 

elemental states in Rxncon. Also, the number of atomic patterns in a model is bounded and much 

smaller than the number of patterns. This is because an atomic pattern describes an equivalence 

class for a single site or feature, whereas a pattern describes an arrangement of sites or features in 

a complex, which is subject to combinatorial complexity [18]. 

2.5.3.2 Determining Atomic Patterns 

Atomic patterns are not explicitly defined by the user, but instead, we provide a procedure 

by which they can be determined from pattern structure graphs automatically.  

Definition 2.5-29 

The atomic pattern map 𝜃𝜃:𝑉𝑉 → 𝐴𝐴∗ is a map from nodes of a pattern structure graph 𝐸𝐸 ≔

(𝑉𝑉,𝐸𝐸, … ) to a particular atomic pattern equivalence class, or none by default (∅). 

To build this map, subgraphs isomorphic to atomic patterns are determined heuristically 

by examining each node and its neighboring nodes (see Figure 2-22).  

2.5.4 Regulatory Graphs 

Regulatory graphs defined in this section are visually similar to the flow-based regulatory graphs 

shown in Section 2.4.8 as part of the Rxncon framework [65]. The inference of a regulatory graph 
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from a reaction rule (2.5.4.1) is a novel contribution of this work. Prior to this work, it was not 

possible to generate a global visualization of signal flow, but in this section we show how this is 

possible by aggregating regulatory graphs of rules (2.5.4.3). We also show how to reduce the 

complexity of the generated diagram by removing redundant nodes (2.5.4.4), by using a 

combination of automated and user-seeded approaches to group nodes (2.5.4.5). Atomic patterns 

on the graph are grouped manually, and this information is used by an automated algorithm to 

group reaction rules. Following this, the complexity of the graph can be greatly reduced by 

collapsing groups of nodes to single representative nodes (2.5.4.6) 

Definition 2.5-30 

The regulatory graph type is defined by the tuple (Λ, Σ), where Λ ≔ (𝑇𝑇,Ω,𝐸𝐸𝑆𝑆) and Σ ≔

{𝐸𝐸,𝑃𝑃,𝐶𝐶}. Here 𝑇𝑇 is a node type function prototype mapping to the codomain {𝑀𝑀𝑀𝑀, 𝑆𝑆}, denoting 

atomic pattern equivalence class and reaction rule respectively, Ω is a node subtype function 

prototype mapping to the codomain {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑓𝑓𝑓𝑓𝑠𝑠,𝑤𝑤𝑆𝑆, 𝑓𝑓, 𝑖𝑖𝑠𝑠,𝑔𝑔,∅}, where {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑓𝑓𝑓𝑓𝑠𝑠,𝑤𝑤𝑆𝑆, 𝑓𝑓, 𝑖𝑖𝑠𝑠} refer to 

the five types of atomic patterns (molecule, free binding site, bond wildcard, bond, internal state 

respectively), 𝑔𝑔 refers to ‘group’ and ∅ is a default value. 𝐸𝐸𝑆𝑆 maps each node to some group name 

in 𝐴𝐴∗ or to ∅ by default.  {𝐸𝐸,𝑃𝑃,𝐶𝐶} are binary function protoypes (i.e. with codomain {0,1}) used 

to identify whether an edge relation can be a reactant, a product, or a context relation respectively. 

A single edge can be assigned more than one relation. 

2.5.4.1 Rule Regulatory Graph 

1. Starting from a rule structure graph 𝑆𝑆 = {𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝑠𝑠𝑠𝑠} as in Definition 2.5-25, where 𝐸𝐸𝑠𝑠𝑠𝑠 ≔

(𝑉𝑉𝑠𝑠𝑠𝑠,𝐸𝐸𝑠𝑠𝑠𝑠,Λ𝑉𝑉𝑠𝑠𝑠𝑠), where Λ𝑉𝑉𝑠𝑠𝑠𝑠 = {𝑇𝑇𝑉𝑉𝑠𝑠𝑠𝑠 ,Ω𝑉𝑉𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉𝑠𝑠𝑠𝑠}, we first compute an atomic pattern map 

𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠:𝑉𝑉𝑠𝑠𝑠𝑠 → 𝑃𝑃𝑎𝑎𝑎𝑎∗ ∪ {∅} as defined in Definition 2.5-29. 
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2. We identify which atomic pattern subgraphs are consumed, produced or left unchanged by 

querying the 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 property.  We exclude molecule atomic patterns that are not consumed or 

produced to minimize the complexity of the generated graph. 

𝑉𝑉𝑙𝑙 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝐷𝐷) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠 

𝑉𝑉𝑟𝑟 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝑆𝑆) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠 

𝑉𝑉𝑙𝑙𝑟𝑟 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ (ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝐷𝐷𝑆𝑆) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠 − ℱ(𝑇𝑇,𝑟𝑟𝑑𝑑𝐷𝐷) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠) 

3. The node set for the regulatory graph is 𝑉𝑉 = 𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟 ∪ {𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷}.  Here, 𝑉𝑉𝑙𝑙 ,𝑉𝑉𝑟𝑟 ,𝑉𝑉𝑙𝑙𝑟𝑟 are 

atomic pattern nodes, and 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷 is the rule node. 

4. The edge set maps the rule node to each atomic pattern node, i.e.  

𝐸𝐸 = {𝑆𝑆𝑟𝑟𝐷𝐷𝐷𝐷} ×(𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟)   

5. The node applications are assigned depending on whether the node is an atomic pattern or the 

rule name. 

𝑇𝑇𝑉𝑉 = �𝑀𝑀𝑀𝑀 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟
𝑆𝑆 𝑣𝑣 = 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷

 

The subtype function Ω𝑉𝑉 is assigned from {𝑟𝑟𝑑𝑑𝐷𝐷,𝑓𝑓𝑓𝑓𝑠𝑠, 𝑖𝑖𝑠𝑠, 𝑓𝑓,𝑤𝑤𝑆𝑆} depending on the type of atomic 

pattern or to ∅ if 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷. 

6. Let 𝕝𝕝𝑥𝑥(𝑣𝑣) = �1 𝑣𝑣 ∈ 𝑉𝑉𝑥𝑥
0 𝑣𝑣 ∉ 𝑉𝑉𝑥𝑥, where 𝑣𝑣 is a node, and 𝑥𝑥 ∈ {𝐷𝐷, 𝑆𝑆, 𝐷𝐷𝑆𝑆}. The edge applications derived 

from prototypes 𝐸𝐸,𝑃𝑃,𝐶𝐶 are populated by querying the membership of nodes within each of 

these sets. Note that this allows the same edge to be assigned 1 for multiple applications. 

∀𝑣𝑣 ∈ 𝑉𝑉, 

𝐸𝐸𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑙𝑙(𝑣𝑣),  

𝑃𝑃𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑟𝑟(𝑣𝑣), 

𝐶𝐶𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑙𝑙𝑟𝑟(𝑣𝑣) 
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7. The remaining node application 𝐸𝐸𝑆𝑆𝑉𝑉 is populated with default values, i.e. 𝐸𝐸𝑆𝑆𝑉𝑉 ≔ 𝑉𝑉 → {∅} 

8. The graph 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸), where Λ𝑉𝑉 = {𝑇𝑇𝑉𝑉 ,Ω𝑉𝑉 ,𝐸𝐸𝑆𝑆𝑉𝑉}, Σ𝐸𝐸 = {𝐸𝐸𝐸𝐸 ,𝑃𝑃𝐸𝐸 ,𝐶𝐶𝐸𝐸} is the rule 

regulatory graph. 

 

Figure 2-22. Atomic Patterns and the Regulatory Graph.  The first panel shows the atomic pattern map 

built from a rule structure graph by querying neighborhoods of nodes and identify subgraphs compatible with 

Definition 2.5-27. During the process, we also identify the relationships of each atomic pattern to the rule: reactant 

(red), product (blue) and/or context (black). In the second panel, these relationships are visualized as the regulatory 

graph, with one node representing the rule, other nodes representing the atomic patterns, dark edges indicating reactant 

and product relationships and light edges indicating context relationships. 

2.5.4.2 Resolving Wildcards 

In BioNetGen, a wildcard bond such as A(b!+) can match one or more fully specified bonds 

such as A(b!1).B(a!1) and A(b!1).C(a!1). For the regulatory graph to be complete, these 

relationships need to be represented on the graph. BioNetGen can compute relationships between 

wildcard bonds and fully specified bonds by examining their syntax forms. 

𝐸𝐸𝑤𝑤𝑤𝑤 = {(𝑣𝑣𝑤𝑤𝑤𝑤 , 𝑣𝑣𝑏𝑏)|𝑣𝑣𝑏𝑏, 𝑣𝑣𝑤𝑤𝑤𝑤 ∈ 𝑉𝑉,Ω𝑉𝑉(𝑣𝑣𝑏𝑏) = 𝑓𝑓,Ω𝑉𝑉(𝑣𝑣𝑤𝑤𝑤𝑤) = 𝑤𝑤𝑆𝑆} 

𝑉𝑉𝑤𝑤𝑤𝑤 = {𝑣𝑣 ∀𝑣𝑣 ∈ 𝑉𝑉,Ω𝑉𝑉(𝑣𝑣) = 𝑤𝑤𝑆𝑆} 
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The wildcards are then “resolved”, by mapping context edges on wildcards onto matching 

bond nodes and then deleting the wildcard nodes. The resultant graph is 

𝐸𝐸′ = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑉𝑉𝑤𝑤𝑤𝑤) ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝐸𝐸𝑤𝑤𝑤𝑤) ∘ 𝐸𝐸 

 

Figure 2-23. Resolving Wildcards.  The first panel shows a graph with a wildcard node A(b!+) and three 

matching bond nodes. When resolving wildcards as defined in Section 2.5.4.2, context edges from wildcards are 

remapped to matching bond nodes and the wildcard nodes are deleted. The second panel shows the resultant graph. 

2.5.4.3 Model Regulatory Graph 

1. The model regulatory graph can be aggregated from individual rule regulatory graphs using a 

trivial merge, i.e. given rule set 𝑀𝑀 = {𝑆𝑆, 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝑟𝑟 ,𝐸𝐸𝑟𝑟)}, the merged regulatory graph is  

𝐸𝐸 = �𝐸𝐸𝑟𝑟
𝑟𝑟∈𝑀𝑀

= (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸) 

2. When the graph is aggregated as above, there may be some wildcard bonds used in some rules, 

but whose matching bonds were generated in other rules. These are resolved according to the 

procedure in Section 2.5.4.2. Let 𝑉𝑉𝑤𝑤𝑤𝑤 be the set of nodes removed and 𝐸𝐸𝑤𝑤𝑤𝑤 be the set of context 

edges added. The model regulatory graph is given by  

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 ≔ (𝑉𝑉 − 𝑉𝑉𝑤𝑤𝑤𝑤 ,𝐸𝐸 ∪ 𝐸𝐸𝑤𝑤𝑤𝑤 ,Λ𝑉𝑉−𝑉𝑉𝑤𝑤𝑤𝑤 , Σ𝐸𝐸∪𝐸𝐸𝑤𝑤𝑤𝑤). 

The model regulatory graph is a flow-based bipartite representation of the model that is 

derived directly from model content (reaction rules).  
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Figure 2-24. Merging Regulatory Graphs.  The top panel shows regulatory graphs of three rules, R1 and 

_reverse_R1 modeling reversible binding of kinase to substrate and R2 modeling simultaneous phosphorylation and 

dissociation, The bottom panel shows the regulatory graph of the model which is built by a simple merge of the 

regulatory graphs of individual rules.  

2.5.4.4 Pruned Regulatory Graph 

A subset of atomic patterns can be considered redundant to the representation of signal 

flow, for example, the bond pattern A(b!1).B(a!1) makes it obvious that the corresponding free 

binding sites are A(b) and B(a). Removing redundant nodes, which we call background nodes, 

can simplify the graph and clarify the signal flow. What specific nodes should be considered 

background can vary with each model although we provide common and useful heuristics.  

Given a model regulatory graph 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, … ), an arbitrary node application 

partitioning the node set 𝑓𝑓𝑉𝑉
𝑏𝑏𝑘𝑘𝑠𝑠:𝑉𝑉 → {0,1}, where the value 1 implies that the node is included in 

the background and the value 0 implies that it excluded from the background, the set of background 

nodes is 𝑉𝑉𝑏𝑏𝑘𝑘𝑠𝑠 = �𝑣𝑣 ∈ 𝑉𝑉�𝑓𝑓𝑉𝑉
𝑏𝑏𝑘𝑘𝑠𝑠(𝑣𝑣) = 1� and the pruned regulatory graph without background is  
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𝐸𝐸𝑠𝑠𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙𝑖𝑖𝑓𝑓𝑖𝑖𝑅𝑅𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷�𝑉𝑉𝑏𝑏𝑘𝑘𝑠𝑠� ∘ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 

There are different heuristics that can be applied to identify the background. Ranked in 

order of increasingly strong assumptions made about the model: (i) remove atomic patterns in the 

order in which they are encountered in the rules, (ii) remove all free binding sites and first 

encountered internal states on components, (iii) remove all reverses of bidirectional rules, (iv) 

remove all rules that do not produce non-background states. Currently, the implementation enables 

the first heuristic and allows for user input to override the selections made regarding background 

inclusions and exclusions. In the future, it might be useful to provide the user a flexible choice 

with regard to these heuristics in addition to the manual overrides. 

 

Figure 2-25. Removing redundant nodes (called background) from the model regulatory graph  

clarifies the signal flow. The first panel shows a regulatory graph of a model with reversible binding of kinase to 

substrate (R1, _reverse_R1) and phosphorylation (R2). Assigning the free binding sites E(s) and S(e) and the reverse 

rule R1(reverse) to background and removing them results in the graph in the second panel. On this graph, we see the 

signal flow that is pertinent to signaling: R1 causes the bound state which enables R2 which causes the phosphorylated 

state. 

2.5.4.5 Grouped Regulatory Graph 

A key reason for the predominance of manually drawn diagrams for biochemical models 

is that the principles of organization that “make sense” for a particular model are often arbitrarily 

defined and not generalizable to all biochemical models or even all rule-based models. There are 
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some principles that are generally applicable, for example, when multiple rules model the same 

kinetic process under different local conditions, it could be useful to refer to that group of rules as 

a collective process. On the other hand, when a molecule has multiple phosphorylation sites, in 

some models it might be useful to refer to all of them together as a collective phosphorylated state, 

whereas in other models it might be necessary to consider functional differences between them 

such as activating or downregulating phosphorylated states. On the regulatory graph, I provide an 

organizing scheme which seamlessly incorporates both formal analysis and user-driven choices. 

First, the modeler provides an organization of atomic patterns into groups or classes. Second, an 

automated algorithm compares the reactant/product relationships of individual rules, incorporates 

the user-defined grouping of atomic patterns, and sorts rules into functionally similar rule groups. 

1. Given a regulatory graph of the model, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, … ), let 𝑉𝑉𝑎𝑎𝑎𝑎,𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ⊂ 𝑉𝑉 be the sets of 

atomic pattern nodes and rule nodes respectively.  

2. For each rule node 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅, we can compute sets of reactants and products depending on 

their adjacent atomic pattern nodes. 

∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 , 

ℛ(𝑣𝑣) = �𝑣𝑣′ ∈ 𝑉𝑉𝑎𝑎𝑎𝑎|𝐸𝐸𝐸𝐸�(𝑣𝑣, 𝑣𝑣′)� = 1� 

𝒫𝒫(𝑣𝑣) = �𝑣𝑣′ ∈ 𝑉𝑉𝑎𝑎𝑎𝑎|𝑃𝑃𝐸𝐸�(𝑣𝑣, 𝑣𝑣′)� = 1� 

3. Given a seed grouping of atomic patterns, 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠:𝑉𝑉𝑎𝑎𝑎𝑎 → 𝐴𝐴∗, where an atomic pattern is assigned 

to a group with a label or to the default ungrouped state ∅,  we first construct a function that 

maps each element to itself or to its group name: 

𝜓𝜓(𝑣𝑣) =  �𝑣𝑣              𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) = ∅
𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) ≠ ∅ 

When no 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠 is provided, 𝜓𝜓(𝑣𝑣) is simply the identity function. 
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4. For each rule on the regulatory graph, we compute the transformed reactant-product tuple 

which will be used to assign membership to rules: 

𝐸𝐸𝑃𝑃(𝑣𝑣) = ({𝜓𝜓(𝑣𝑣),∀𝑣𝑣 ∈ ℛ(𝑣𝑣)} , {𝜓𝜓(𝑣𝑣),∀ 𝑣𝑣 ∈ 𝒫𝒫(𝑣𝑣)})  

 

Let 𝐸𝐸𝑃𝑃∗ = {𝐸𝐸𝑃𝑃(𝑣𝑣)|𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅} be the set of such tuples and let 𝑔𝑔𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀:𝐸𝐸𝑃𝑃∗ → 𝐴𝐴∗ 

define a set of unique labels applied to each unique element in 𝐸𝐸𝑃𝑃∗. 

5. Now, we have enough information to construct a grouping on all nodes: 

𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣) =  �
𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎𝑎𝑎

𝑔𝑔𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀�𝐸𝐸𝑃𝑃(𝑣𝑣)� 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅
 

𝐸𝐸𝑆𝑆𝑉𝑉 is included with the other node applications on the model regulatory graph in order to 

make it the grouped regulatory graph. 

2.5.4.6 Collapsed Regulatory Graph 

Given a grouped regulatory graph, a simplifying assumption can be made by rendering 

individual members of groups indistinguishable from each other. This allows a drastic compression 

of the graph, and a compact interpretation of the regulatory interactions in terms of groups of 

atomic patterns and sites, rather than individual ones. Since each group is collapsed to a single 

node representing the group, we call this the collapsed regulatory graph.  

1. Given a grouped regulatory graph 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, … ), we partition the set of nodes 𝑉𝑉 into two 

subsets: one set of nodes that have groups assigned to them, and the other with no groups 

assigned to them. 

𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚 = {𝑣𝑣 ∈ 𝑉𝑉|𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣) ≠ ∅},𝑉𝑉𝑟𝑟𝑢𝑢𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚 = 𝑉𝑉 − 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚 

2. Then, we define new nodes representing groups, i.e. 

𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠 = �𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣)�𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚�.  
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We also define appropriate node applications: 

𝑇𝑇𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠(𝑣𝑣) = �𝑇𝑇(𝑣𝑣′)�𝑣𝑣 = 𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣′), 𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚� 

Ω𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠(𝑣𝑣) = �𝑔𝑔, 𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠�  

We then create a temporary graph involving only the group nodes 

𝐸𝐸′ = �𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠, { },𝑇𝑇𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠,Ω𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠� 

3. Then we merge the two graphs, remap grouped nodes to group nodes and delete the grouped 

nodes to get the collapsed regulatory graph. 

Let 𝑌𝑌 = ��𝑣𝑣,𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣)�,∀𝑣𝑣 𝑖𝑖𝑟𝑟 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚�  

𝐸𝐸𝑤𝑤𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑠𝑠𝑅𝑅𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷�𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚� ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) ∘ (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 ⊔ 𝐸𝐸′) 

 

Figure 2-26. Grouping and Collapsing nodes on the regulatory graph.  The first panel shows a regulatory 

graph of a model where kinases A1 and A2 bind a scaffold X resulting in A1(x!1).X(a!1) and A2(x!1).X(a!1) 

respectively, which leads to the phosphorylated state X(b~pY), which in turn leads to binding of B to X, i.e. 
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B(x!1).X(b!1). Also shown in the first panel is a grouping of A(x!1).X(a!1) and A2(x!1).X(a!1)  bound states under 

A_X. The second panel shows automated rule-grouping using the first graph as a seed. Rule groups RG1 and RG2 

group rules that implement phosphorylation and B-binding respectively irrespective of context edges. Since the user 

defined a group on A(x!1).X(a!1) and A2(x!1).X(a!1), rules R1a and R1b, which produce A(x!1).X(a!1) and 

A2(x!1).X(a!1) respectively, are considered similar and grouped under RG0. 

2.5.5 Complexity Analysis 

Determining the atomic pattern map for every rule in the model as in Section 2.5.3.1 has a 

time complexity of 𝒪𝒪 �𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�, where 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 is the number of rules, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 is a 

bound on the number of nodes per rule structure graph, and 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 is a bound on the size of the 

local subgraph that needs to be explored to construct the atomic pattern. The stoichiometry 

constraints defined in Definition 2.5-21 and the additional restrictions used in Definition 2.5-27 

ensure that 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 has an upper bound of 4. The size of the largest rule in the model places an 

upper bound on 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 since rules are intended to be finite local descriptions of kinetic interactions. 

Thus, determining the atomic pattern map, and therefore the rule regulatory graph and the model 

regulatory graph has a time complexity of 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅). 

To generate the grouped and collapsed regulatory graphs requires additional work in 

determining local reactant/product relationships on the regulatory graph, sorting them and 

determining unique combinations, as detailed in Section 2.5.4.5. The time complexity of the 

grouping step is 𝒪𝒪 �𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

log𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

�, where 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 is the number of rules and 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 denotes 

the number of reactant/product relationships of each rule to the set of atomic patterns. The worst 

case scenario is when a number of molecule addition or deletion transformations are employed in 
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the same rule, which will result in a high value for 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

. Such pathological rules are rarely 

encountered and are typically a sign of poor model construction if encountered frequently within 

the same rule-based model. The average case encountered is where the rule implements at most 

one or two transformations involving AddBond, DeleteBond and ChangeState, and in this case, 

𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 has a low upper bound that is below 10. Thus, for the average rule-based model, the time 

complexity for the grouping step is 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅).  

2.5.6 Comparisons to Other Approaches 

SBGN Process Description (Section 2.3.2.1) provides a local visualization that can be 

adapted for the rule Petri net and it suffers from the same limitations as the rule Petri net, i.e. it 

cannot be aggregated over partial overlaps and there is significant repetition involved in showing 

reactants and products separately. The compact rule visualization is more compact than the rule 

Petri net (Section 2.4.3), and is tailored specifically for communicating graph transformations in 

reaction rules. 

In comparison to the rule influence diagram (Section 2.4.5) which has 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅2 ) 

complexity, the regulatory graph requires an 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅) time on average to be constructed from a 

rule-based model. This is because building the regulatory graph does not involve explicit 

comparisons of whole patterns in rules. This also makes the regulatory graph have fewer edges per 

node than the rule influence diagram, which improves visual comprehension. The regulatory graph 

also has a similar scalability advantage over the Kappa story (Section 2.4.6), which requires 

sampling combinations of rules that form causal sequences. 
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Additionally, in comparison to the Kappa story (Section 2.4.6), the regulatory graph is a 

truly global visualization, i.e. it does not require observables to be defined beforehand for the 

model graph to be synthesized. On the other hand, the Kappa story has the advantage of defining 

arbitrarily complex observables, whereas, the regulatory graph only uses atomic patterns. Future 

work in this direction would involve extending the regulatory graph abstraction to accommodate 

such observables.  

In comparison to the Simmune Network Viewer (Section 2.4.7), the regulatory graph 

enables identifying signal flows through internal states such as phosphorylated states. 

Additionally, the graph is complete, unlike Simmune Network Viewer, which does not resolve 

patterns involving wildcard bonds. Finally, the grouping approach provided on the regulatory 

graph is flexible and allows deploying different grouping strategies. This ability to systematically 

tune the resolution of the graph is not present in Simmune Network Viewer, which opts for a fixed 

two-layer view. 

The collapsed regulatory graph contains contextual information for processes at the same 

level of resolution as the molecular interaction map (Section 2.3.1), the SBGN Entity Relationship 

diagram (Section 2.3.2.2) and the Extended Contact Map (Section 2.3.3). It may seem that these 

maps contain more information than the collapsed regulatory graph because of the variety of 

contingency relations that are allowed to be represented. However, extracting these contingencies 

from a formal model is not trivial or generalizable, and typically these diagramming frameworks 

require the modeler to manually interpret the model in terms of the diagrammatic elements. 

However, since SBGN Process Description is also a bipartite abstraction, there is potential for the 

regulatory graph to be automatically converted to an SBGN PD diagram. 
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It is fairly obvious in most quantitative fields that information encoded in a high-resolution 

format can be systematically degraded into a lower-resolution format, and that the converse is not 

possible without making strong assumptions about the nature of the encoded information. For 

example, high-resolution images can be easily converted to low-resolution images that encode less 

information, but the reverse is not possible in the general case. In a similar vein, mechanistic 

models of biochemistry require graph-based formalisms such as that of BioNetGen in order to 

explicitly represent site-based interactions, and human-readable pathway diagrams have to 

necessarily be achieved by coarse-graining these explicit models. The Rxncon framework fails to 

recognize this disparity in resolution, and unlike the BioNetGen specification, the Rxncon 

specification cannot represent the full spectrum of site-based kinetic interactions [65]. In this work 

I have provided the opposite approach to Rxncon: begin with a BioNetGen kinetic specification of 

arbitrary complexity, and then apply systematic transformations and coarse-graining procedures 

to generate a simple human-readable diagram. 

2.5.7 Implementation 

The methods developed here have been implemented and packaged with BioNetGen 2.2.6 

(bionetgen.org). In a BioNetGen model, “actions” are calls to methods that analyze or simulate 

models. The visualization methods can be accessed with the visualize() action.  

For compact rule visualization, the following action is used: 

visualize( { type=>”ruleviz_operation”} ) 

For generating complete regulatory graphs from reaction rules, the following action is used: 

visualize( { type=>”regulatory”, background=>1 } ) 
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In both cases, to generate separate files for each rule, the flag each=>1 can be used.  

To generate a text file that contains all the rules, atomic patterns and relationships between 

them, use: 

visualize( { type=>”regulatory”, background=>1, textonly=>1 } ) 

To turn on the pruning heuristic, background=>0 is used. This is also the default setting. 

To enable automated grouping of rules, use: 

visualize( { type=>”regulatory”,groups=>1} ) 

To enable collapsing of the generated group structures, use: 

visualize( { type=>”regulatory”,groups=>1,collapse=>1} ) 

Options files can be provided to the visualize action to modify the background assignment and to 

provide groups of atomic patterns as seed for the rule-grouping algorithm: 

visualize( { type=>”regulatory”,opts=>[“opts1.txt”, “opts2.txt”] } ) 

In the options file, background options are specified as follows: 

begin background 

 begin include 

  <whitespace-separated list of atomic patterns> 

 end include 

 begin exclude 

  <whitespace-separated list of atomic patterns> 

 end exclude 

end background 
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Atomic patterns in the include and exclude sections are populated from the text file 

generated by textonly=>1.Atomic patterns in the include section are included in the background, 

and those in the exclude section are excluded from the background, with both inclusions and 

exclusions overriding the pruning heuristic. 

In the options file, groups of atomic patterns are specified as follows: 

begin classes 

 begin groupname1 

  <whitespace-separated list of atomic patterns> 

 end groupname1 

 begin groupname2 

  <whitespace-separated list of atomic patterns> 

 end groupname2 

end background 

These groups are used to seed the automated rule-grouping algorithm. Names for rule 

groups are assigned automatically. A detailed and updated version of the documentation can be 

found at http://bionetgen.org/index.php/Visualization. 

2.6 VISUALIZATION CASE STUDIES 

In this section, I demonstrate the effectiveness of the visualizations defined in Section 2.5 for local 

and global views of rule-based models, and I will do so by applying the methods developed here 
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on previously published models. As explained in Chapter 1, each rule models an explicit reaction 

mechanism, with patterns explicitly showing the participating sites in detail. The local perspective 

in a rule-based model is conveying the requirements and graph transformations in each reaction 

rule, and the global perspective is the network of signal flows between rules and sites in the model. 

In this work, for the first time, we demonstrate how to achieve a global visualization of signal flow 

from a rule-based model, as well as, how to simplify automatically generated diagrams of large 

models into compact pathway diagrams. Finally, we show how regulatory graphs are useful for 

identifying cascades and feedback loops in a model which improve the understanding of a model. 

2.6.1 Visualizing Mechanisms in Detail 

In the BioNetGen specification, each reaction rule has reactant and product patterns, with the 

reactants encoding the site configuration that drives the process (the “before” state), and the 

products encoding the transformation relative to the reactants (the “after” state). Compact rule 

visualization (Section 2.5.2.6) was designed to explicitly show the graph transformation modeled 

in a rule, instead of the implicit “before/after” representation used in the syntax. Here, I will use 

four rules from the Faeder et al. model of signaling from the Fc𝜀𝜀RI receptor in mast cells [35] to 

demonstrate the utility of the compact rule visualization in conveying these mechanisms. In the 

model, rules R3 and R6 are as follows (underline for comparison): 

R3: Rec(b~Y)   + Lyn(U,SH2) <->  Rec(b~Y!1).Lyn(U!1,SH2) 

R6: Rec(b~pY) + Lyn(U,SH2) <->  Rec(b~pY!1).Lyn(U,SH2!1)   

Both rules model binding of cytoplasmic Lyn with the 𝛽𝛽 domain (denoted ‘b’) of the 

receptor under slightly different local conditions. A bond is indicated by !1 placed next to the two 
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components forming the bond. In both R3 and R6, the Lyn kinase has to have both U and SH2 

domains unbound. In R3, the binding site on the receptor is unphosphorylated (~Y), and the 

binding site on Lyn is the ‘unique’ domain U. In R6, the binding site on the receptor is 

phosphorylated (~pY), and the binding site on Lyn is the SH2 domain.  

In biochemical parlance, rule R3 models constitutive recruitment of cytoplasmic Lyn to the 

receptor, and rule R6 models activated recruitment since it requires the phosphorylated state of the 

𝛽𝛽 domain. Rules R3 and R6 are examples of explicit reaction mechanisms: the sites driving the 

process, the sites affected by the process, the local arrangement of these sites within complexes, 

the relevant internal states (unphosphorylated/phosphorylated) and binding states 

(bound/unbound), are all explicitly specified. As shown in Figure 2-27, compact rule visualization 

shows the molecules and sites involved and differentiates between the modified and unmodified 

sites using graph operation nodes such as AddBond. It also enables a side-by-side display and 

comparison of the two mechanisms. 

 

Figure 2-27. Compact rule visualization of rules R3 and R6 from Faeder et al. [35] modeling recruitment 

of cytoplasmic Lyn kinase to the 𝜷𝜷 domain (‘b’) of the Fc𝜺𝜺RI receptor (Rec). In R3, recruitment is constitutive, i.e. 

Lyn binds via its U domain to an unphosphorylated 𝜷𝜷 domain (b~Y), whereas in R6, recruitment is activated, i.e. Lyn 

binds via its SH2 domain to a phosphorylated 𝜷𝜷 domain (b~pY).  The action of each rule is made explicit by using a 

graph operation node (AddBond), and the rules can be compared side-by-side. 
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Now consider the rules R4 and R7, as shown below (underline for comparison). 

R4:Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~Y)-> 

Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~pY)  

R7:Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~Y)-> 

Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~pY)  

Note that the patterns used in R4 and R7 are larger than the ones in R3 and R6, and involve 

more molecules, components and bonds (!1, !2, !3, etc.). Although the syntax is precise and 

flexible for building arbitrarily large graphs, the content of these large graphs are not immediately 

obvious to the human eye. However, this information can be easily conveyed using compact rule 

visualization, as in Figure 2-28. From this figure, we can see that both rules R4 and R7 require a 

receptor dimer which is formed when a bivalent ligand crosslinks two receptors. In both R4 and 

R7, one of the receptors in the dimer is bound to a Lyn kinase through its 𝛽𝛽 domain (denoted ‘b’), 

and the other receptor has an unbound 𝛽𝛽 domain that undergoes phosphorylation, as indicated by 

a ChangeState operation from Y to pY. The only difference between the two rules is the manner 

of recruitment of Lyn to the first receptor: in R4, Lyn is bound via the U domain to the 

unphosphorylated 𝛽𝛽 domain, whereas in R7, Lyn is bound via SH2 domain to the phosphorylated 

𝛽𝛽domain. 
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Figure 2-28. Compact rule visualization of rules R4 and R7 from Faeder et al.  [35]. In both rules, a 

receptor dimer is required which is formed due to crosslinking by a bivalent ligand. One half of the dimer binds Lyn 

kinase via its 𝜷𝜷 domain, which results in phosphorylation of the 𝜷𝜷 domain on the other half of the dimer. In R4, Lyn 

is recruited via its U domain to the unphosphorylated 𝜷𝜷 domain whereas in R7, Lyn is recruited via its SH2 domain 

to the phosphorylated 𝜷𝜷 domain. 

2.6.2 Visualizing Interactions of Mechanisms 

Signal flow in a rule-based model constitutes of effects of individual rules on sites, which can 

subsequently influence other rules. For example, consider the four rules shown in Figure 2-27 and 

Figure 2-28. R4 requires the constitutively bound state of Lyn to receptor, which is produced by 

R3. R7 requires the actively bound state of Lyn to receptor, which is produced by R6. R6 requires 

the phosphorylated state on the 𝛽𝛽 domain which is produced by rules R4 and R7. The compact 

rule visualization, while useful for understanding individual rules, cannot provide a global picture 

of signal flows. On the other hand, the regulatory graph, as developed in 2.5.4.1, was designed to 

show relationships between rules and their sites of action. Figure 2-29 is a pruned regulatory graph 

(Section 2.5.4.4), on which we can see that constitutive binding via R3 leads to phosphorylation 
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via R4, and then there is a positive feedback loop between activated recruitment via R6 and 

phosphorylation via R7.  

 

Figure 2-29. Regulatory graph of rules R3, R4, R6 and R7  that were visualized in Figure 2-27 and Figure 

2-28.  The graph has two types of nodes: rules and atomic patterns. Atomic patterns represent distinct classes of 

structural features, with bonds such as Lyn(U!1).Rec(b!1) and phosphorylated states such as Rec(b~pY). Atomic 

patterns representing free binding sites such as Lyn(U) and unphosphorylated states such as Rec(b~Y) are not shown. 

The regulatory graph enables identifying the positive feedback loop between R6 and R7. 

2.6.3 Visualizing Models as Pathway Diagrams 

The model regulatory graph (Section 2.5.4.3) is a complete, automated, flow-based visual 

representation of the model that is aggregated from individual rules. Even though it has a better 

scaling performance than the rule influence diagram or the Kappa story (see Section 2.5.5), the 

visual quality of these graphs was still found to degrade rapidly as the number of rules increases, 

which is expected behavior for the general class of node-link visualizations [75]. To usefully 

visualize rule-based models of any size, we needed to be able to control the size and complexity 

of the generated diagrams. So, we developed a series of coarse-graining procedures that 

incorporate both user input and graph analysis to transform the automatically generated model 
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regulatory graph into a smaller pathway diagram (Sections 2.5.4.4, 2.5.4.5, 2.5.4.6). We 

demonstrate this using the Faeder et al. model of mast cell signaling from the Fc𝜀𝜀RI receptor [35]. 

The Faeder et al. model uses four molecule types (Lig, Rec, Lyn, Syk), as seen in the formal 

contact map in Figure 2-30, and requires 24 reaction rules to specify very detailed kinetic 

interactions involving specific sites on these molecules [35]. The ligand has two symmetric 

receptor binding sites, and this leads to the formation of a crosslinked receptor dimer. The receptor 

has intracellular domains 𝛽𝛽 and 𝛾𝛾 that can be phosphorylated. Both phosphorylated and 

unphosphorylated forms of the 𝛽𝛽 domain bind Lyn, whereas only the phosphorylated form of the 

𝛾𝛾 domain binds Syk. When one of these kinases is recruited to one side of the dimer, it 

phosphorylates substrates found on the other side of the dimer, a phenomenon called trans-

phosphorylation. Lyn trans-phosphorylates both Lyn and Syk binding sites, as well as the linker 

region on recruited Syk. Syk trans-phosphorylates the activation loop on recruited Syk, which also 

enhances Syk’s kinase activity. 

Table 1.2-1 summarizes the 24 rules and the kinetic mechanisms they represent. The 

complete model regulatory graph, automatically generated from the model specification in 

BioNetGen, is shown in Figure 2-31. The graph has 45 nodes and 125 edges, and although it 

provides a flow-based representation, it is still too large and complex to be useful as a human-

readable pathway diagram. We then implemented the following steps to coarse-grain the graph 

into a simpler version that conveys model intent. 

The first step is to remove rules and atomic patterns that can be considered redundant 

(Section 2.5.4.4). On this graph, we removed the dephosphorylation rules, the reverses of binding 

rules, and the unphosphorylated states and free binding sites on the receptor and kinases. The 

background assignment was performed with a heuristic, but it can also be provided by the user in 
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the form of an options file. This results in the pruned regulatory graph in Figure 2-32, which has 

22 nodes and 45 edges. On this graph, it is easier to track the signal flow: ligand binding to Lyn 

recruitment to receptor phosphorylation to Syk recruitment and phosphorylation. The second step 

is to impose an organization of atomic patterns and rules into groups. For this model, user input 

was provided to group atomic patterns as follows: Lig = {Lig(l)}, Lig_Rec={Lig(l!1).Rec(a!1)}, 

Rec_p = {Rec(b~pY), Rec(g~pY)}, Rec_Syk = {Rec(g!1).Syk(tSH2!1)}. The automated rule-

grouping algorithm (Section 2.5.4.5) was then used to analyze the graph and identify groups of 

rules that have similar effects on atomic patterns. Figure 2-33 shows the grouped regulatory graph. 

The final step is to reduce groups of nodes to a single node each (Section 2.5.4.6). The collapsed 

regulatory graph, as shown in Figure 2-34, is much more compact than previous versions (15 

nodes, 25 edges) and shows the signal flows as one would on a simple pathway diagram, using 

broad classes of sites and processes.  

The graph in Figure 2-34 can also be used to identify feedbacks in the model: the positive 

feedback between activated Lyn recruitment and receptor phosphorylation, and the self-enhancing 

effects of receptor phosphorylation and Syk activation loop phosphorylation. This was not possible 

with any previous automated global visualization for rule-based models.  

When atomic patterns are left ungrouped, the regulatory graph makes it possible to discern 

the finer aspects of regulation involving specific atomic patterns. For example, in Figure 2-34, one 

can distinguish between processes that phosphorylate Syk at two different sites and we can see 

that one of them is Lyn-dependent, whereas the other is not. Similarly, one can distinguish that 

activated recruitment of Lyn participates in a positive feedback loop, but constitutive recruitment 

does not. It is possible to coarse-grain the model regulatory graph to different extents, by using a 

different grouping strategy. For example, in addition to the grouping specified above, if we also 
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specify Rec_Lyn = {Lyn(U!1).Rec(b!1), Lyn(SH2!1).Rec(b!1)} and Syk_p = {Syk(a~pY), 

Syk(l~pY)}, followed by automated rule grouping and collapsing, this results in the graph in 

Figure 2-35, which has 11 nodes and 18 edges. However, the regulatory description in this figure 

is more coarse-grained than previous ones, because Syk phosphorylation and Lyn recruitment are 

treated generically. By choosing the specific number and size of each group of atomic patterns, the 

modeler is able to modulate the complexity of the resultant diagram and the degree to which the 

details of the model regulatory graph are coarse-grained. This allows the modeler to tailor the 

generated diagram for a specific purpose or audience. 

 

 

Figure 2-30. Formal contact map of the Faeder et al. model  [35]. The model has four molecule types. 

The ligand has two symmetric binding sites for the receptor. The receptor has 𝜷𝜷 and 𝜸𝜸 domains that bind Lyn and Syk 

respectively, with Lyn being able to use U or SH2 domains to bind the receptor. The receptor 𝜷𝜷 and 𝜸𝜸 domains as 

well as the activation loop (denoted ‘a’) and the linker region (denoted ‘l’) on Syk can be in unphosphorylated (Y) or 

phosphorylated (pY) states.  
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Table 2-2. Descriptions of mechanisms modeled as reaction rules in the Faeder et al. model [35]. Rule names 

beginning with ‘_reverse_’ are reverses of binding rules. Multiple rules are required when there are kinetic 

contributions from variations in molecular states or binding interactions, e.g. trans-phosphorylation of 𝜷𝜷 by Lyn is 

assumed to have different rates when the kinase is recruited to the unphosphorylated site (rule R4) or the 

phosphorylated site (rule R7). 

Rule Names Kinetic Interaction Modeled 

R1, _reverse_R1 Binding of free ligand to receptor. 

R2, _reverse_R2 Crosslinking of ligand-bound receptor with another receptor. 

R3, _reverse_R3 Binding of Lyn to unphosphorylated 𝛽𝛽 domain of receptor. 

R6, _reverse_R6 Binding of Lyn to phosphorylated 𝛽𝛽 domain of receptor. 

R9, _reverse_R9 Binding of Syk to phosphorylated 𝛾𝛾 domain of receptor. 

R4, R7 Trans-phosphorylation of 𝛽𝛽 by Lyn. 

R5, R8 Trans-phosphorylation of 𝛾𝛾 by Lyn. 

R10, R11 Trans-phosphorylation of Syk linker region by Lyn. 

R12, R13 Trans-phosphorylation of Syk activation loop by Syk. 

R14 Dephosphorylation of 𝛽𝛽 domain of receptor. 

R15 Dephosphorylation of 𝛾𝛾 domain of receptor. 

R16, R18 Dephosphorylation of linker region of Syk. 

R17, R19 Dephosphorylation of activation loop of Syk. 
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Figure 2-31. Complete regulatory graph of the Faeder et al. model of Fc𝜺𝜺RI signaling [35], automatically 

generated from the BioNetGen specification. Dark edges indicate consumption and production and light edges indicate 

context influence. 
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Figure 2-32. Pruned regulatory graph of the Faeder et al. model generated from the model regulatory 

graph in Figure 2-31 by applying a heuristic and removing a few rules (reverses of binding rules, dephosphorylating 

rules) and atomic patterns (free binding sites and and unphosphorylated states on Rec, Lyn and Syk).  
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Figure 2-33. Grouped regulatory graph of the Faeder et al model generated from the pruned graph in 

Figure 2-32. We used user input that grouped atomic patterns as follows: Lig = {Lig(l)}, 

Lig_Rec={Lig(l!1).Rec(a!1)}, Rec_p = {Rec(b~pY), Rec(g~pY)}, Rec_Syk = {Rec(g!1).Syk(tSH2!1)}. The rule 

groups were automatically determined using this information, such that each group of rules produces the same effect 

on the sites involved. 
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Figure 2-34. Collapsed regulatory graph of the Faeder et al. model  generated from Figure 2-33 by 

automatically reducing groups of nodes to single representative nodes. At this level of resolution, the signal flow in 

the system is much more clarified and resembles a simple pathway diagram. Ligand binding and crosslinking (RG0) 

and constitutive Lyn recruitment (R3) initiate the cascade, which culminates in phosphorylation of Syk linker region 

(RG2) and activation loop (RG3). Signaling motifs can be identified on this graph, such as the positive feedback loop 

involving constitutive Lyn recruitment and receptor phosphorylation {R6, Lyn(SH2!1).Rec(b!1), RG1, Rec_p} and 

the self-enhancing effects of receptor phosphorylation {RG1. Rec_p} and Syk activation loop phosphorylation {RG3, 

Syk(a~pY)}. The ungrouped atomic patterns enable discerning the finer features of regulation (thick edges), e.g. Syk 

linker region phosphorylation (RG2) is Lyn-dependent (edges labeled 2), but Syk activation loop phosphorylation 

(RG3) is not, and that activated Lyn recruitment (R6) is part of a positive feedback loop, whereas constitutive 

recruitment (R3) is not (edges labeled 1). 
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Figure 2-35. Collapsed regulatory graph of Faeder et al. model, with an alternative grouping of atomic 

patterns provided by the user.  In addition to the groups of atomic patterns used in Figure 2-33, here we used the 

additional groups Syk_p = {Syk(a~pY),Syk(l~pY)} and Rec_Lyn  = {Lyn(U!1).Rec(b!1), Lyn(SH2!1).Rec(b!1)}. 

The resultant collapsed graph, as shown here, is simpler than Figure 2-34: the two Syk phosphorylated states have 

been merged into one, and the two Lyn-recruited states have been merged into one. As a consequence, Lyn recruitment 

and Syk phosphorylation are treated generically, and the finer regulatory features that were discerned in Figure 2-34 

cannot be identified in this figure. For example, the feedback loop is routed through the generic Lyn-recruited state 

Rec_Lyn (thick edges). 
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2.6.4 Visualizing Large Libraries of Rules 

Many recent publications in the literature involve building a repository of reaction rules that 

comprehensively document all site-based interactions in a particular biochemical system, typically 

a signaling pathway initiated from a specific family of cell surface receptors. Examples of modeled 

receptor families include the ErbB family of receptor tyrosine kinases [46], of which the epidermal 

growth factor receptor is a prominent member [25], the high affinity IgE receptor Fc𝜀𝜀RI [44], the 

T-cell receptor [45], and yeast pheromone receptor Ste2 [47]. These models typically have 10s to 

100s of rules, but by applying commonly used as well as model-specific grouping strategies to the 

model regulatory graphs (Sections 2.5.4.5, 2.5.4.6), we were able to generate relatively compact 

signal flow diagrams. Importantly, we were able to use these diagrams to identify signaling motifs 

such as cascades and feedback loops, which was not possible using previous automated global 

diagrams of rule-based models. Here we showcase regulatory graphs of Creamer et al. [46] and 

Chylek et al. [44], and discuss the strategies used in complexity reduction. 

The Creamer et al.[46] model, whose regulatory graph is shown in Figure 2-36, has 19 

molecule types, of which four are receptors from the ErbB family (EGFR, ErbB2, ErbB3, and 

ErbB4) and two are ligands that bind these receptors (EGF, HRG). In the model, each receptor can 

bind a ligand molecule (except ErbB2), which leads to dimerization of receptors on the membrane, 

which in turn activates an intracellular kinase domain on these receptors, which in turn 

phosphorylates the receptor tails. Adaptors and signal mediators bind to specific phospho-motifs 

in the receptor tails and initiate the MAP kinase pathway and PIP3/Akt1 pathway, whose primary 

outputs are activated Erk2 and activated Akt1 respectively. The model also includes internalization 

of ligand-bound receptors, feedback from Erk2 and Akt1, as well as crosstalk between the two 

pathways [46].  



 88 

The Creamer et al.[46] model faces severe combinatorial complexity, even when modeled 

as reaction rules, because of dimerization between receptor types: every receptor type can homo-

dimerize with another receptor of the same type or hetero-dimerize with a receptor of a different 

type, leading to 16 different dimer configurations (4x4), each of which requires ligand-binding, 

dimerization, and phosphorylation rules. The model requires 625 reaction rules in all and is 

currently the largest rule-based model in existence and is a challenge to visualize [46]. The 

complete model regulatory graph has 939 nodes and 5110 edges. The following grouping strategy 

was applied: the ligand-bound states were grouped together under Lig_Rec, and the dimer states 

were grouped under Dimer. Multiple phosphorylated states on a molecule were grouped into a 

collective phosphorylated state, and this was done for each molecule type. For kinases where 

binding to the kinase active-site cleft was explicitly modeled, the convention A_on_B was used to 

show the binding of a substrate B to the active-site of a kinase A. After pruning, grouping and 

collapsing, the resultant graph, shown in Figure 2-36 has 85 nodes and 157 edges and was laid out 

to visually emphasize the different modules in the system: surface interactions, internalization, 

adaptor binding, KRas activation, MAPK pathway, PI3K activation, Akt1 pathway, Erk2 feedback 

and Akt1 feedback.  
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Figure 2-36 Regulatory graph visualization of the Creamer et al. model of signaling from ErbB family 

of receptors [46]. The grouping of atomic patterns was provided by the user and rule-grouping was automated. 
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Chylek et al. model signaling from Fc𝜀𝜀RI receptor, which plays an important role in mast 

cell signaling [44]. The ligand is assumed to be a multivalent entity that crosslinks receptors, which 

initiates trans-phosphorylation events by cytoplasmic kinases (Lyn, Fyn, Csk, Syk, BTK) recruited 

to the receptor, and binding of adaptors (Grb2, Grap2). Also in the model are scaffolds (Pag1, Lat) 

that bring together many kinases and their substrates. This results in activation of multiple 

enzymatic processes that regulate phosphoinositide levels, including PI3K, Inpp5d and Plcg1 (with 

PTEN as a background modulator). Chylek et al. [44] actually provide two different models. The 

first model is larger, encompasses the whole system, and represents phosphoinositide entities as 

whole molecules, such as PIP2() and PIP3(). The second model is smaller, but focuses on the 

interaction of enzymes PI3K, Inpp5d and Plcg1 with phosphoinositide entities in high detail, with 

the phosphoinositides modeled as structured molecule named PI with sites OH3, OH4 and OH5 

representing the 3’,4’ and 5’ hydroxyl positions, internal state ~P representing phosphates at those 

positions, and the site ‘head’ representing the phosphoinositide head group [44]. We merged both 

models into a single model, replacing phosphoinositide-modifying rules in the first model with the 

detailed interactions from the second model. The resulting model has 17 molecule types and 

requires 178 reaction rules. The complete model regulatory graph has 313 nodes and 1084 edges. 

In general, the grouping strategy mirrored the one used for Creamer et al.[46]: pairs of binding 

molecules were grouped together, and phosphorylation sites on the same molecule were grouped 

together (with the exception of Lyn and Fyn which I will discuss shortly). After pruning, grouping 

and compressing, the resultant graph is shown in Figure 2-37, and has 70 nodes and 129 edges. 

The graph was laid out to emphasize the different parts of the system: the interactions governing 

Lyn/Fyn regulation, the Syk-Lat cascade beginning from ligand-binding, the initiation of the three 

arms of the phosphoinositide pathway, and the feedbacks involved. In Figure 2-38 and Figure 2-39, 
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I show different subsets of the graph in Figure 2-37, and I will use these to highlight the model-

specific grouping strategies involved, as well as the ability to identify signaling motifs such as 

feedback and feed-forward loops. 

In Figure 2-38, I show a subset of the graph in Figure 2-37 that highlights detailed and 

complex interactions between the receptor, the cytoplasmic kinases Lyn, Fyn and Syk, and the 

scaffold Pag1. Lyn and Fyn are structurally and functionally homologous Src kinases, so we 

lumped functionally similar sites on Lyn and Fyn within the same group, as if they belong to a 

generic SrcKinase. Multiple domains on Lyn and Fyn act in concert to either bind receptor, or the 

scaffold Pag1 or to bind in an intramolecular fashion and exist in a self-inhibited state. These 

domains were grouped under SrcKinaseBindingGroup. Phosphorylation sites on Lyn and Fyn 

could be distinctly classified as those with positive or negative effects on Lyn/Fyn activity, and so 

these were grouped under two different collectives: SrcKinaseActivation_p and 

SrcKinaseInhibition_p. In Figure 2-38, the thick edges outline the canonical signal flow, and the 

boxes were added to emphasize positive feedback loops. The initial cascade causes activation of 

Lyn and Fyn: Lyn/Fyn bind receptor (RG1), phosphorylate Lyn/Fyn binding sites on the receptor 

(RG3) in a positive feedback loop, then are phosphorylated themselves on their activating 

phospho-motifs (RG5). Activated Lyn and Fyn are important components of the Syk/Lat activation 

cascade that is not shown in this subset. Following Lyn/Fyn activation is a cascade that causes 

downregulation: activated Lyn/Fyn bind Pag1 and phosphorylate Pag1 in a similar positive 

feedback loop (RG7, RG8), which brings them in proximity to Csk kinase that phosphorylates 

inhibiting phospho-motifs (RG9), which in turn leads to the self-bound self-inhibited state (RG2), 

and attenuation of the signal from Lyn/Fyn. Having conveyed the architecture of the system using 

this diagram, it is much easier to discuss functional aspects of this architecture, for example, Barua 
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et al. [76] discuss how a similar architecture in B cells can result in a pulse-like signal from the 

Src kinases and how modulating concentrations of the Src kinases can lead to oscillatory behaviors. 

In Figure 2-39, we show subsets of the graph in Figure 2-37 that highlight the signaling 

motifs underlying phosphoinositide regulation. Note that the phosphoinositides are modeled as 

structured entities, so processes involving PIP2, PIP3 and other phosphoinositides are represented 

on this graph as processes producing or consuming the OH3, OH5 or the ‘head’ component. 3’-

phosphorylation by R152 represents PIP2 to PIP3 conversion by PI3K. Similarly, 5’-

dephosphorylation by R95 represents PIP3 consumption by Inpp5d, and head removal by R159 

represents PIP2 hydrolysis by Plcg1. Edges were annotated with labels to refer to different 

cascades in Figure 2-39. Cascade 1 shows signal flow from phosphorylated Lat (Lat_p) leading to 

PI3K activation (R152), which results in BTK recruitment to PIP3 at the membrane (R153). 

Cascade 2 also begins at Lat_p and shows Plcg1 recruitment to the membrane by Lat_p (R132). 

The two cascades 1 and 2 meet and synergize to cause BTK-dependent activation of Plcg1 (R154, 

R156), and this signaling motif is called a coherent feed-forward loop. Cascade 3 shows Plcg1 

enzyme activity (R159) following activation by BTK. Cascade 4 begins from the receptor 

phosphorylated state (Rec_b_p) and shows Gab2 phosphorylation by Fyn on the receptor complex 

(RG15), which leads to PI3K activity (R152), which increases PIP3 levels. Cascade 5 also begins 

from the phosphorylated receptor and shows Inpp5d recruitment (RG16), which results in Inpp5d 

activity (R95) and reduces PIP3 levels. The two cascades 4 and 5 originate and diverge from the 

same point (Rec_b_p), but have opposing effects on PIP3 levels, and this is an example of an 

incoherent feed-forward loop.  Cascade 6, in addition to cascade 4, follows a positive feedback 

loop involving PIP3-dependent recruitment of Gab2 to membrane (R146) which leads to increased 

phosphorylation of Gab2 (RG15) and increased PI3K activity (R152). Notably, Chylek et al. 
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include in their paper manually drawn visualizations that highlight these motifs [44], and in this 

work, we were able to trace these motifs on a diagram that was automatically generated from the 

formal BioNetGen specification and a user-specified organization of sites.  
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Figure 2-37. Regulatory graph visualization of the Chylek et al. model  of signaling from the Fc𝜺𝜺RI 

receptor [77]. The grouping of atomic patterns was provided by the user and rule-grouping was automated. 
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Figure 2-38. Subset of the Chylek et al. regulatory graph, showing interactions of the SrcKinases (Lyn 

and Fyn) with the Fc𝜺𝜺RI receptor  (full graph in Figure 2-37). Thick edges highlight the canonical flow of signal 

in the model: first, there is initiation of signaling by binding of the SrcKinaseBindingGroup (a group of domains on 

Lyn and Fyn) with the receptor (RG1). Then, there is a positive signaling cascade where receptor binds SrcKinase 

(RG1) leading to activation of the SrcKinase by trans-phosphorylation (RG5). Then, there is a negative cascade, which 

involves SrcKinase binding the scaffold Pag1 (RG7) leading to Csk-dependent phosphorylation of inhibitory sites on 

the SrcKinase (RG9) which in turn promotest the formation of a self-bound self-inhibited state of the SrcKinase (RG2). 

Boxes were added to highlight the positive feedback loops between receptor binding to SrcKinase (RG1) and receptor 

phosphorylation (RG9), and between Pag1 binding to SrcKinase (RG7) and Pag1 phosphorylation (RG8). 
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Figure 2-39. Subsets of the Chylek et al. regulatory graph, highlighting other signaling motifs  (full 

graph in Figure 2-37). In the graph on the left, the edges labeled 1 follow a path from phosphorylated Lat to PI3K 

activity (R152) to BTK recruitment (R153), and edges labeled 2 follow a path from phosphorylated Lat to Plcg1 

recruitment (R132). Both paths converge onto BTK-Plcg1 binding (R154) and Plcg1 activation (R156). This is an 

example of a coherent feed-forward loop, where multiple paths converge and synergize. The edges labeled 3 follow a 

path that results in a negative feedback: Plcg1 activation (R156) leading to PIP2 cleavage that consumes the 

phosphoinositol head group (PI_head), which in turn is required context for RG17 in branch 1. On the graph on the 

right, the edges labeled 4 follow a path from phosphorylated receptor to Gab2 phosphorylation (RG15) which leads 

to PI3K activity (R152) that produces the 3’-phosphate (PI3P), increasing PIP3 levels, and edges labeled 5 follow a 

path from phosphorylated receptor to phosphatase recruitment (RG16) and phosphatase activity (R95) that consumes 

the 5’-phosphate, decreasing PIP3 levels. This is an example of an incoherent feed-forward loop, where converging 

paths have opposing effects. Edges labeled 6 indicate a positive feedback loop involving PI3K activity (R153) and 

Gab2 recruitment via PIP3 (R146) and Gab2 phosphorylation (RG15). 
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2.6.5 Comparison of Visualization Size and Complexity 

Following Ghoniem et al. [75], the readability of graphs decays with graph size and edge density. 

Here, we took eight rule-based models of varying sizes and generated all possible automated 

visualizations so that they can be compared with these metrics. The chart in Figure 2-40 

summarizes these results. 

 

Figure 2-40 Analysis of graph size and complexity for different visualizations.  We have used eight rule-

based models of various sizes from the literature [35], [37], [42], [47], [76], [78]–[80], and compared the different 

automated visualizations. X-axis shows size of the graph as number of nodes. Y-axis shows density of the graph as 

number of edges per node.  
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In Figure 2-40, note that the contact maps are always the most compact, because they only 

show structural relationships. Reaction networks can be many times larger and denser than the 

corresponding rule-based models. The rule influence diagram usually has fewer nodes than 

regulatory graph, but can have an extremely large number of edges. The full regulatory graph is 

moderately larger than the rule influence diagram, but with much lower visual complexity. Also 

shown for the Faeder et al. model (marked 5 in Figure 2-40), are the extended contact map and the 

organized regulatory graph (i.e. after pruning, grouping and collapsing). The extended contact map 

is fully manual and is therefore very compactly designed. However, the organized regulatory graph 

which uses minimal user input to compress the regulatory graph is only marginally larger, and has 

similar number of edges per node. 
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2.7 CONCLUDING REMARKS 

The work in this chapter was geared towards solving two important visualization problems 

for rule-based models: visualizing individual rules to understand the modeled mechanisms, and 

visualizing sets of rules to understand the underlying regulatory network. As shown in the case 

studies, the regulatory graph can be used to extract and visualize information from a BioNetGen 

model specification [25], [35] and external input in the form of groups of sites can be 

systematically used to generate a compressed representation. The abstractions provided are also 

general enough to be applicable for other rule-based frameworks such as Kappa [68] and Simmune 

[30], and the development of a common standard (SBML-multi, sbml.org) will open up a wide 

range of models that can be visualized in this way. Also, unlike sets of rules, which can only be 

displayed as a list, the regulatory graph data structure is amenable to interactive display and 

exploration. We expect this to be useful for the increasingly large number and size of rule-based 

models that is anticipated in the immediate future. In fact, there is already significant movement 

in the broader modeling community towards collaborative and comprehensive models, such as the 

whole cell model of Mycoplasma genitalium [48]. There are many directions in which the 

regulatory graph can be extended, for example, node attributes can be paired with numeric values 

to represent simulation fluxes [81], and a hierarchical multi-layered grouping strategy could be 

useful for organizing very large model graphs [82]. A more immediate direction to encourage 

wider adoption is to synthesize automated SBGN diagrams from the regulatory graph [60]. 
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3.0  ENERGY-BASED MODELS AND NETWORK-FREE SIMULATION 

3.1 SYNOPSIS 

Network-free simulation and energy-based rule-based modeling are recent advances in rule-based 

modeling. Network-free simulation involves simulating a chemical system without having to 

generate the reaction network. This is accomplished by mapping patterns in a rule-based model 

directly to lists of agents in the simulation, calculating the reaction probabilities and firing reaction 

events. Energy-based rule-based modeling involves specifying a model such the free energy of a 

reaction can be computed by counting matches of “energy patterns” into reactant and product. In 

contrast to the classical rule-based specification which does not constrain the energetics of 

reactions, the energy-based specification ensures detailed balance is always satisfied leading to 

thermodynamically correct models. Also, it enables kinetics to be specified in terms of 

cooperativity parameters. Currently, it is not possible to perform a network-free simulation of an 

energy-based rule-based model. This is because calculating the rate of a reaction from its free 

energy requires knowing both reactants and products of the reaction event. While this can be 

accomplished very easily in a network-based context, this information is not available to a 

network-free simulation until after the reaction event has fired. I explain the problem using a 

simple example in Section 3.2.  
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In Section 3.3, I synthesize a common framework that brings together the rule-based 

specification, the reaction network, network generation from a rule-based model, the energy-based 

specification, and the network-based and network-free forms of simulation. The material for this 

section summarizes methods found in the rule-based literature [24], [34], [39], [50]. The casual 

reader is advised to skip this section.  

In Section 3.4, I provide a procedure to synthesize a set of rules compatible with network-

free simulation by expanding the energy rules in an energy-based rule-based specification. Then I 

demonstrate the method using two worked out examples. 

3.2 MOTIVATING EXAMPLE 

3.2.1 Energy-based Model 

Consider the following model, where a molecule A has two states A0 and Ap and binds molecule 

B under both conditions: 

𝐴𝐴0
𝑘𝑘𝑓𝑓𝑃𝑃1
⇌
𝑘𝑘𝑟𝑟𝑃𝑃1

𝐴𝐴𝑎𝑎

𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓1 ⇃↾ 𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓1 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓2⇃↾ 𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓2

𝐴𝐴0𝐵𝐵
𝑘𝑘𝑓𝑓𝑃𝑃2
⇌
𝑘𝑘𝑟𝑟𝑃𝑃2

𝐴𝐴𝑎𝑎𝐵𝐵

 

Rephrasing the model in terms of equilibrium constants, let 

𝐾𝐾𝑃𝑃1 =
𝑘𝑘𝑓𝑓𝑃𝑃1
𝑘𝑘𝑟𝑟𝑃𝑃1

,𝐾𝐾𝑃𝑃2 =
𝑘𝑘𝑓𝑓𝑃𝑃2
𝑘𝑘𝑟𝑟𝑃𝑃2

 

𝐾𝐾𝐴𝐴𝑓𝑓1 =
𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓1
𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓1

,𝐾𝐾𝐴𝐴𝑓𝑓2 =
𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓2
𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓2
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The model becomes  

𝐴𝐴0        
𝐾𝐾𝑃𝑃1�� 𝐴𝐴𝑎𝑎        

↕ 𝐾𝐾𝐴𝐴𝑓𝑓1 ↕ 𝐾𝐾𝐴𝐴𝑓𝑓2
𝐴𝐴0𝐵𝐵      

𝐾𝐾𝑃𝑃2�� 𝐴𝐴𝑎𝑎𝐵𝐵      

 

Each equilibrium constant can be related to the Gibbs free energy of the reaction thus: 

𝐾𝐾𝐴𝐴𝑓𝑓1 = exp �−
𝐸𝐸𝐴𝐴𝑓𝑓1
𝐸𝐸𝑇𝑇 � ,𝐾𝐾𝐴𝐴𝑓𝑓2 = exp �−

𝐸𝐸𝐴𝐴𝑓𝑓2
𝐸𝐸𝑇𝑇 � 

𝐾𝐾𝑃𝑃1 = exp �−
𝐸𝐸𝑃𝑃1
𝐸𝐸𝑇𝑇�

,𝐾𝐾𝑃𝑃2 = exp �−
𝐸𝐸𝑃𝑃2
𝐸𝐸𝑇𝑇�

 

By the principle of detailed balance, the sum of the free energies around the loop should be zero, 

i.e.  

𝐸𝐸𝐴𝐴𝑓𝑓1 + 𝐸𝐸𝑃𝑃2 − 𝐸𝐸𝐴𝐴𝑓𝑓2 − 𝐸𝐸𝑃𝑃1 = 0 

This places constraints on the equilibrium constants: 

𝐾𝐾𝐴𝐴𝑓𝑓1𝐾𝐾𝑃𝑃2 �
1

𝐾𝐾𝐴𝐴𝑓𝑓2𝐾𝐾𝑃𝑃1
� = 1 ⟹

𝐾𝐾𝑃𝑃2
𝐾𝐾𝑃𝑃1

=
𝐾𝐾𝐴𝐴𝑓𝑓2
𝐾𝐾𝐴𝐴𝑓𝑓1

 

To simplify the notation, let 𝛼𝛼 = 𝐾𝐾𝑃𝑃2
𝐾𝐾𝑃𝑃1

= 𝐾𝐾𝐴𝐴𝐴𝐴2
𝐾𝐾𝐴𝐴𝐴𝐴1

 and 𝐾𝐾𝑃𝑃 = 𝐾𝐾𝑃𝑃1 = 𝑘𝑘𝑓𝑓𝑃𝑃
𝑘𝑘𝑟𝑟𝑃𝑃

,𝐾𝐾𝐴𝐴𝑓𝑓 = 𝐾𝐾𝐴𝐴𝑓𝑓1 = 𝑘𝑘𝑓𝑓𝐴𝐴𝐴𝐴
𝑘𝑘𝑟𝑟𝐴𝐴𝐴𝐴

. Then, 

𝐴𝐴0        
𝐾𝐾𝑃𝑃�� 𝐴𝐴𝑎𝑎        

↕ 𝐾𝐾𝐴𝐴𝑓𝑓 ↕ 𝛼𝛼𝐾𝐾𝐴𝐴𝑓𝑓
𝐴𝐴0𝐵𝐵      

𝛼𝛼𝐾𝐾𝑃𝑃�� 𝐴𝐴𝑎𝑎𝐵𝐵      

 

Now, consider the problem of representing this system in BioNetGen using the molecule types 

A(b,t~0~P) and B(a), where t~0 and t~P represent the two states of A. 

If we assume that state change of A is independent of binding to B and vice versa, then 𝛼𝛼 = 1, and 

we only need to use two reversible rules to model the system: 

A(b) + B(a) <-> A(b!1).B(a!1) kfAB,krAB 

A(t~0) <-> A(t~P) kfP,krP 
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This is because the independence between the two processes enables each process to be modeled 

separately. 

On the other hand, if 𝛼𝛼 ≠ 1, and if we assume that 𝛼𝛼1
𝛼𝛼2

= 𝛼𝛼3
𝛼𝛼4

= 𝛼𝛼, then we need four reversible rules 

to model the system: 

A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1) kfAB,krAB 

A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1) alpha1*kfAB,alpha2*krAB 

A(t~0,b) <-> A(t~P,b)    kfP,krP 

A(t~0,b!1).B(a!1) <-> A(t~P,b!1).B(a!1) alpha3*kfP,alpha4*krP 

This is because the cooperativity between the two processes results in four unique reversible 

reaction classes instead of two. 

In the classical rule-based modeling framework, if there was cooperativity between binding and 

state change, the modeler would have to specify four rules, as well as specify the relationships 

between 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4. This was a source of error, because an inappropriate definition would break 

detailed balance. Also, the number of reaction classes was dependent on the number of 

cooperativities present in the system, making the model hard to edit by simply adding and 

removing cooperativity terms. 

Energy-based rule-based modeling was developed so that cooperativity terms can be defined in 

terms of pattern matches and free energy accounting can be performed automatically. The modeler 

only has to specify the minimum number of reaction rules with the most essential context, i.e.  

A(b) + B(a) <-> A(b!1).B(a!1)  

A(t~0) <-> A(t~P)  
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The kinetics is specified in terms of energy pattern matches. So, in the case where there is no 

cooperativity between binding and state change, the modeler would specify 

begin energy patterns 

 A(t~P)   G_P 

 A(b!1).B(a!1)  G_AB 

end energy patterns 

In the case where there is cooperativity, the modeler would specify 

begin energy patterns 

 A(t~P)   G_P 

 A(b!1).B(a!1)  G_AB 

 A(b!1,t~P).B(a!1) G_alpha 

end energy patterns 

In both cases, all four reactions are generated automatically from the two rules: 

A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1)  

A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1)  

A(t~0,b) <-> A(t~P,b)     

A(t~0,b!1).B(a!1) <-> A(t~P,b!1).B(a!1) 

The energies of each reaction are computed depending on the energy pattern definition used. For 

the first case (no cooperativity), the energies are calculated as: 
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𝐴𝐴0        
𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎  

↕ 𝐸𝐸𝐴𝐴𝑓𝑓          ↕ 𝐸𝐸𝐴𝐴𝑓𝑓
𝐴𝐴0𝐵𝐵      

𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎𝐵𝐵 

 

In the second case (cooperativity), the energies are calculated as: 

𝐴𝐴0        
𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎        

↕ 𝐸𝐸𝐴𝐴𝑓𝑓          ↕ 𝐸𝐸𝐴𝐴𝑓𝑓 + 𝐸𝐸𝛼𝛼
𝐴𝐴0𝐵𝐵      

𝐺𝐺𝑃𝑃+𝐺𝐺𝛼𝛼�⎯⎯� 𝐴𝐴𝑎𝑎𝐵𝐵      

 

Thus, in the energy-based specification, the model does not have to be specified in terms of 

reaction classes with unique kinetics, and when the reaction network is generated, the kinetic 

specification is calculated automatically from the calculated free energies of reactants and 

products.  

3.2.2 Network-free Simulation 

Consider a system with the binding reaction rule (with rate constant k): 

A(b) + B(a) <-> A(b!1).B(a!1) k  

Now suppose we instantiate a simulation system with three particles, Particle1 having structure 

A(b,t~0), Particle2 having structure A(b,t~P) and Particle3 having structure B(a). 

The system has two underlying reactions: 

Rxn1: A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1) k  

Rxn2: A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1) k 

If we know the underlying form of the species and reactions, then we can use simple labels to refer 

to the species: A0, Ap, to refer to the states of A,  B to refer to the molecule B, and A0-B and Ap-
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B to refer to the two A-B complexes respectively. We can also represent the simulation system of 

three particles as a set of populations of these species: 

 { A0 = 1, Ap = 1, B = 1, A0-B = 0, and Ap-B = 0 } 

The relative propensity of each reaction is calculated by the product of the rate constant with the 

populations of the reactant species: 

𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑥𝑥𝑟𝑟1) = 𝑘𝑘 ∗ 𝐴𝐴0 ∗ 𝐵𝐵 = 𝑘𝑘(1)(1) = 𝑘𝑘 

𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑥𝑥𝑟𝑟2) = 𝑘𝑘 ∗ 𝐴𝐴𝑎𝑎 ∗ 𝐵𝐵 = 𝑘𝑘(1)(1) = 𝑘𝑘 

The time of the next reaction event depends on the sum of the rates, i.e. 2𝑘𝑘. Which reaction is 

selected to fire depends on their relative propensity which is identically 𝑘𝑘
2𝑘𝑘

= 1
2
. Say Rxn1 fires, 

then the species populations are updated: 

{ A0 = 0, Ap = 1, B = 0, A0-B = 1, and Ap-B = 0 } 

Therefore, as long as the identity of species and reactions are known, the propensities of each 

reaction can be calculated explicitly and the reaction events can be sampled. 

However, it is possible to simulate this system even without knowing the species and 

reactions, i.e. as a network-free simulation. Given a system of three particles as above, Particle1 

having A(b,t~0), Particle2 having structure A(b,t~P) and Particle3 having structure B(a), and given 

a single reaction rule with rate constant k 

Rule1: A(b) + B(a) <-> A(b!1).B(a!1) k 

We keep track of matches of patterns to particles: 

A(b) – Particle1, Particle2 

B(a) – Particle3 

Then we can use the size of these lists to calculate the propensity of the reaction class 
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𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷1) = 𝑘𝑘 ∗ |𝐴𝐴(𝑓𝑓)| ∗ |𝐵𝐵(𝑀𝑀)| = 𝑘𝑘(2)(1) = 2𝑘𝑘 

So, although we used a single reaction class in this case rather than the two reactions above, the 

time of the next reaction event will be sampled correctly, i.e. with rate 2𝑘𝑘. When the event fires, 

particles are selected randomly from the lists of reactant patterns, i.e. Particle1 or Particle2 will be 

selected with equal probability from the list matching 𝐴𝐴(𝑓𝑓).  Therefore, the network-free 

simulation is considered exactly equivalent to the network-based simulation, as long as the 

propensities can be calculated from the current set of particles. 

Say Particle1 is selected for 𝐴𝐴(𝑓𝑓) and Particle3 for 𝐵𝐵(𝑀𝑀), then the firing of the reaction 

event results in the forming of a bond between the b component in Particle1 and the a component 

in Particle3. After the reaction event has fired, we can identify the effect of the reaction: Particle1 

had structure A(b,t~0), Particle3 had B(a), so the resultant must be a particle with structure 

A(b!1,t~0).B(a!1), which can be called Particle4. 

3.2.3 Network-free Simulation with Energy-based Rules 

Note that in the energy-based specification, the identity of both reactant and product species was 

essential to compute the free-energy of the reaction and hence the rate. This posed no problems in 

the network-based simulation because all possible reactions and species are known prior to 

instantiating the simulation system. However, in the network-free simulation, the rate needs to be 

computed only from the current set of particles, and the identity and structure of the product species 

can be known only after the reaction event has fired. Thus, energy rules cannot be used as reaction 

classes in a network-free simulation. The work in this chapter was geared towards synthesizing a 

set of rules that are equivalent to the energy-based specification, but can be simulated in a network-

free manner. 
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3.3 BIONETGEN THEORY FOR MODEL SPECIFICATION AND SIMULATION 

In this section, I define formalisms that summarize and unify the specification and simulation of 

models in the rule-based framework [24], [34], [39], [50], and establish the basis for energy-based 

network-free simulation. In Sections 3.3.1, 3.3.2 and 3.3.3, I establish the basic concepts of 

embeddings involving patterns and reaction rules. In Section 3.3.4, I define rule-based models and 

reaction networks, and simulation systems that can be equivalently set up under both frameworks. 

Section 3.3.5 summarizes the conversion of a rule-based model into a reaction network, and 

Section 3.3.6 discusses stochastic simulation using network-based methods. Sections 3.3.6, 3.3.7 

and 3.3.8 address the recent advance of energy-based rule-based modeling and simulation of 

energy-based models using network-based methods. Corollary 3.3-43 is a novel result that enables 

the work in Section 3.4. Section 3.3.9 discusses network-free simulation for the classical rule-

based model. 

3.3.1 Patterns 

Definition 3.3-1 

A molecule type definition is a set of molecule names 𝑀𝑀, a set of component names 𝐶𝐶, a set of 

internal state labels 𝑆𝑆, stoichiometry constraints for components in molecules 𝑁𝑁𝑀𝑀𝑀𝑀:𝑀𝑀 × 𝐶𝐶 → ℕ, 

and internal state label constraints for components 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀 × 𝐶𝐶 × 𝑆𝑆 → {0,1}. 

Definition 3.3-2 

A pattern is a graph 𝑀𝑀 ≔ (𝑉𝑉,𝐸𝐸,𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷) with a set of nodes 𝑉𝑉, a set of undirected edges 𝐸𝐸 ⊂

𝑉𝑉 × 𝑉𝑉, and node labeling functions 𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷 where 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷:𝑉𝑉 → {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀, 𝑖𝑖𝑠𝑠, 𝑓𝑓𝑠𝑠} indicates 

whether a node is molecule (mol), component (comp), internal state (is) or bond state (bs), and 
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𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷:𝑉𝑉 → 𝐴𝐴∗ ∪ {!+, !−, !? ,∅}, where 𝐴𝐴∗ is the set of alphanumeric labels allowed by BioNetGen, 

{!+, !−, !? } are labels indicating bound, unbound, and unspecified bond labels respectively, and ∅ 

indicates default internal state label respectively. Additional restrictions on the graph are: (i) a 

component must be adjacent to a single molecule, a single internal state and a single bond state, 

(ii) an internal state or a bond state with labels {!−, !? } must be adjacent to a single component, 

(iii) a bond state with label !+ must be adjacent to one or two components. Given a molecule type 

definition (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), additional model-specific restrictions are: if 𝑟𝑟𝑚𝑚𝑤𝑤 denotes the 

number of edges in 𝐸𝐸 whose node pairs are a molecule named 𝑟𝑟, and a component named 𝑆𝑆, and 

if 𝑟𝑟𝑚𝑚𝑤𝑤𝑠𝑠 denotes the number of connected 3-node subgraphs in (𝑉𝑉,𝐸𝐸) with a molecule named 𝑟𝑟, a 

component named 𝑆𝑆, and an internal state named 𝑠𝑠: 

∀𝑟𝑟 ∈ 𝑀𝑀, 𝑆𝑆 ∈ 𝐶𝐶,𝑟𝑟𝑚𝑚𝑤𝑤 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆)� 

∀𝑟𝑟 ∈ 𝑀𝑀, 𝑆𝑆 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑚𝑚𝑤𝑤𝑠𝑠 = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆, 𝑠𝑠)� 

A pattern has a canonical label, i.e. a unique label that can be generated by ordering molecules, 

components and bonds. 

Definition 3.3-3 

A stream is a path 𝑣𝑣 = (𝑣𝑣1, 𝑣𝑣2 … 𝑣𝑣𝑢𝑢) on a pattern 𝑀𝑀 = (𝑉𝑉,𝐸𝐸… ) such that the 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷 attribute 

satisfies the descending order 𝑟𝑟𝑑𝑑𝐷𝐷 > 𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀 > 𝑖𝑖𝑠𝑠, 𝑓𝑓𝑠𝑠. 

Definition 3.3-4 

A local view of a node is the subgraph composed from all streams passing through the node in the 

pattern. 

Definition 3.3-5 

A pattern tuple is a tuple of patterns. Given a pattern tuple, there also exists a pattern tuple 

graph formed by a trivial merge. We will refer to pattern tuples and pattern tuple graphs 

interchangeably and use the same notation (𝑀𝑀). 
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3.3.2 Pattern Embeddings 

Definition 3.3-6 

A pattern 𝑀𝑀 = �𝑉𝑉𝑎𝑎,𝐸𝐸𝑎𝑎, … � embeds in a pattern 𝑞𝑞 = �𝑉𝑉𝑞𝑞 ,𝐸𝐸𝑞𝑞 , … �, denoted 𝑀𝑀 ⊲ 𝑞𝑞, if there exists a 

total injective map 𝜙𝜙𝑎𝑎,𝑞𝑞 = 𝑉𝑉𝑎𝑎 → 𝑉𝑉𝑞𝑞 that preserves name and type attributes and edge relationships. 

If a number of embeddings exist, then this is denoted by the set �𝜙𝜙𝑎𝑎,𝑞𝑞�. A pattern tuple has a 

canonical order, which can be achieved by ordering the canonical labels of the individual patterns. 

All pattern tuples considered hereafter will be assumed to be in their canonical order. 

Definition 3.3-7 

A pattern tuple (𝑀𝑀) embeds in a pattern tuple (𝑞𝑞), denoted (𝑀𝑀) ⊲ (𝑞𝑞), if there exists an injective 

map pairing every pattern 𝑀𝑀 in (𝑀𝑀) with some pattern 𝑞𝑞 in (𝑞𝑞), and there exists an embedding 𝜙𝜙𝑎𝑎,𝑞𝑞 

for every pair (𝑀𝑀, 𝑞𝑞). The tuple of embeddings �𝜙𝜙𝑎𝑎,𝑞𝑞� that define a pattern tuple embedding is 

denoted Φ(𝑎𝑎),(𝑞𝑞), and if a number of such embeddings can exist, then the set of pattern tuple 

embeddings is denoted �Φ(𝑎𝑎),(𝑞𝑞)�. Nominally, a pattern tuple embedding can be treated as a simple 

embedding between the corresponding pattern tuple graphs. 

Definition 3.3-8 

A restricted embedding 𝜙𝜙𝑎𝑎,𝑞𝑞�𝑉𝑉 is derived from an embedding between patterns 𝜙𝜙𝑎𝑎,𝑞𝑞:𝑉𝑉𝑎𝑎 → 𝑉𝑉𝑞𝑞, by 

restricting the domain to the subset 𝑉𝑉 ∩ 𝑉𝑉𝑎𝑎 and the image to the subset 𝑉𝑉 ∩ 𝑉𝑉𝑞𝑞. By extension, a 

restricted embedding can also be derived from a pattern tuple embedding and is denoted Φ(𝑎𝑎),(𝑞𝑞)�𝑉𝑉. 

Corollary 3.3-9 

Embeddings are transitive, because the composition of two injections is injective. 

 𝑀𝑀 ⊲ 𝑞𝑞, 𝑞𝑞 ⊲ 𝑆𝑆 ⟹ ∃𝜙𝜙𝑎𝑎,𝑞𝑞,𝜙𝜙𝑞𝑞,𝑟𝑟 ⟹ ∃𝜙𝜙𝑎𝑎,𝑟𝑟|𝜙𝜙𝑎𝑎,𝑟𝑟 = 𝜙𝜙𝑎𝑎,𝑞𝑞 ∘ 𝜙𝜙𝑞𝑞,𝑟𝑟 ⟹ 𝑀𝑀 ⊲ 𝑆𝑆. 

Definition 3.3-10 
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A correspondence map between patterns or pattern tuples is a generalization of the embedding 

by allowing it to be partial in the domain, and allowing components to map without requiring a 

map between adjacent binding or internal states. A correspondence map is valid only if merging 

correspondent nodes still preserves the stoichiometry constraints outlined in the molecule type 

definition and pattern definition. 

Definition 3.3-11 

A pattern 𝑀𝑀, is isomorphic to another pattern 𝑞𝑞, denoted 𝑀𝑀~𝑞𝑞, if 𝑀𝑀 ⊲ 𝑞𝑞 and 𝑞𝑞 ⊲ 𝑀𝑀.  

Definition 3.3-12 

A pattern tuple (𝑀𝑀), is isomorphic to another pattern tuple (𝑞𝑞), denoted (𝑀𝑀)~(𝑞𝑞), if (𝑀𝑀) ⊲ (𝑞𝑞) 

and (𝑞𝑞) ⊲ (𝑀𝑀). 

Definition 3.3-13 

An embedding between two identical pattern tuples is called an automorphism, denoted Φ(𝑎𝑎),(𝑎𝑎).  

Definition 3.3-14 

The trivial automorphism is a special case of the automorphism, where every node maps to itself, 

denoted Γ𝑎𝑎,𝑎𝑎 for patterns and Γ(𝑎𝑎),(𝑎𝑎) for pattern tuples. 

3.3.3 Reaction Rules 

Definition 3.3-15 

The reaction rule 𝑆𝑆 ≔ �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� is defined by a tuple of reactant patterns 𝐸𝐸, a tuple of product 

patterns 𝑃𝑃, and a correspondence map between them Ψ𝑅𝑅,𝑃𝑃 (with the additional restriction that there 

is no unmatched component in 𝐸𝐸). BioNetGen can compute the correspondence map heuristically, 

so it is sufficient to define a rule as 𝑆𝑆 ≔ (𝐸𝐸,𝑃𝑃). The rule as defined here excludes the BioNetGen 
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features such as include/exclude reactants, include/exclude products, rules on dot-connected 

patterns, and species deletion. 

Definition 3.3-16 

The site of action of a rule is the subset of nodes not in the correspondence map.  

Definition 3.3-17 

The reaction center of a rule is the union of local views of the site of action.  

Definition 3.3-18 

The reaction context is the union of local views of the complement of the reaction center. 

Definition 3.3-19 

A reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃) embeds in another reaction rule 𝑆𝑆′ = (𝐸𝐸′,𝑃𝑃′,Ψ𝑅𝑅′,𝑃𝑃′), denoted   

𝑆𝑆 ⊲ 𝑆𝑆′, if 𝐸𝐸 ⊲ 𝐸𝐸′,𝑃𝑃 ⊲ 𝑃𝑃′ and the following loop commutes: 

𝐸𝐸
Ψ𝑅𝑅,𝑃𝑃�⎯� 𝑃𝑃

Φ𝑅𝑅,𝑅𝑅′ ↓ ↓ Φ𝑃𝑃,𝑃𝑃′

𝐸𝐸′
Ψ𝑅𝑅′,𝑃𝑃′�⎯⎯⎯� 𝑃𝑃′

 

Definition 3.3-20 

The restriction to the reaction center 𝑆𝑆|𝐸𝐸𝐶𝐶 of a reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃) is given by 𝑆𝑆|𝐸𝐸𝐶𝐶 =

�𝐸𝐸|𝐸𝐸𝐶𝐶,𝑃𝑃|𝐸𝐸𝐶𝐶,Ψ𝑅𝑅|𝑅𝑅𝑀𝑀,𝑃𝑃|𝑅𝑅𝑀𝑀� where 𝐸𝐸|𝐸𝐸𝐶𝐶,𝑃𝑃|𝐸𝐸𝐶𝐶 are restrictions of the reactant and product patterns 

to the reaction center.  

Corollary 3.3-21 

𝑆𝑆|𝐸𝐸𝐶𝐶 ⊲ 𝑆𝑆  because the correspondence maps  Ψ𝑅𝑅,𝑃𝑃,Ψ𝑅𝑅|𝑅𝑅𝑀𝑀,𝑃𝑃|𝑅𝑅𝑀𝑀  and self-embeddings Γ𝑅𝑅,𝑅𝑅|𝑅𝑅𝑀𝑀 , Γ𝑃𝑃,𝑃𝑃|𝑅𝑅𝑀𝑀 

commute. 

Definition 3.3-22 

Given pattern or pattern tuple graphs 𝐴𝐴 and 𝐵𝐵, a correspondence map Ψ𝐴𝐴,𝑓𝑓, 𝑉𝑉 denoting some set 

of nodes, and 𝐸𝐸 denoting some set of vertex pairs, we define the following graph operations 



 113 

𝐷𝐷𝑁𝑁(𝑉𝑉) ∘ 𝐴𝐴 Removes the nodes V and all downstream nodes from A. 

𝐸𝐸𝑁𝑁�Ψ𝐴𝐴,𝑓𝑓� ∘ 𝐴𝐴 Replaces each node in A with its image in B, if such an image exists. 

𝐴𝐴𝑁𝑁(𝑉𝑉) ∘ 𝐴𝐴 Adds nodes V to A. 

𝐴𝐴𝐸𝐸(𝐸𝐸) ∘ 𝐴𝐴 Adds edges E between pre-existing pairs of nodes in A. 

 

Definition 3.3-23 

A reaction rule 𝑆𝑆 = �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� can also be represented as a graph rewriting 𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃, which is 

equivalent to the following sequence of operations on the pattern tuple graph 𝐸𝐸: 

𝑃𝑃 = 𝐴𝐴𝐸𝐸�𝐸𝐸𝑖𝑖𝑚𝑚𝑠𝑠𝐶𝐶� ∘ 𝐴𝐴𝑁𝑁(𝑖𝑖𝑟𝑟𝑔𝑔𝑀𝑀) ∘ 𝐸𝐸𝑁𝑁�Ψ𝑅𝑅,𝑃𝑃� ∘ 𝐷𝐷𝑁𝑁(𝑠𝑠𝑑𝑑𝑟𝑟𝑀𝑀) ∘ 𝐸𝐸 

where (i) 𝑠𝑠𝑑𝑑𝑟𝑟,𝑠𝑠𝑑𝑑𝑟𝑟𝑀𝑀 are partitions induced by the partial map Ψ𝑅𝑅,𝑃𝑃 in 𝐸𝐸 and 𝑃𝑃 respectively such 

that the map is total in 𝑠𝑠𝑑𝑑𝑟𝑟 → 𝑖𝑖𝑟𝑟𝑔𝑔, (ii) 𝐸𝐸𝑖𝑖𝑚𝑚𝑠𝑠𝐶𝐶 ⊂ 𝐸𝐸𝑃𝑃 is the subset of edges on the product pattern 

tuple graph 𝑃𝑃 with at least one node in 𝑖𝑖𝑟𝑟𝑔𝑔𝑀𝑀 . 

Definition 3.3-24 

The action of a rule 𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃 on pattern tuple 𝐸𝐸′, given a pattern tuple embedding Φ𝑅𝑅,𝑅𝑅′ , is given 

by 

𝑃𝑃′ = 𝑆𝑆 ∘ 𝐸𝐸𝑁𝑁�Φ𝑅𝑅,𝑅𝑅′
−1 � ∘ 𝐸𝐸′ 

The action of a rule is denoted as 𝑃𝑃′ = 𝑆𝑆�𝐸𝐸′,Φ𝑅𝑅,𝑅𝑅′�. 

Given the action of a rule on pattern tuple 𝐸𝐸′, there exists an Φ𝑃𝑃,𝑃𝑃′ that commutes as follows: 

𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃

Φ𝑅𝑅,𝑅𝑅′ ↓ ↓ Φ𝑃𝑃,𝑃𝑃′

𝐸𝐸′
𝑟𝑟�𝑅𝑅′,Φ𝑅𝑅,𝑅𝑅′�
�������� 𝑃𝑃′

 

Definition 3.3-25 
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A reversible rule is a pair of rules (𝑆𝑆, 𝑆𝑆𝑟𝑟𝑅𝑅𝑣𝑣) with complementary reactant and product pattern 

tuples, i.e. if 𝑆𝑆 = (𝐸𝐸,𝑃𝑃), then 𝑆𝑆𝑟𝑟𝑅𝑅𝑣𝑣 = (𝑃𝑃,𝐸𝐸). 

Definition 3.3-26 

The statistical factor 𝜌𝜌𝑟𝑟 of the reaction rule 𝑆𝑆 = �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� is a function of how many 

symmetries are present on reactant side of the reaction center and how many of them are broken 

when they are converted to products. By convention, BioNetGen uses three terms to calculate the 

statistical factor. The rule group term 𝐸𝐸𝐸𝐸 counts how many automorphisms in 𝐸𝐸 induce an 

automorphism in 𝑃𝑃 under Ψ𝑅𝑅,𝑃𝑃. The reaction center stabilizer term 𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓 counts how many of the 

induced automorphisms are identity morphisms on the reaction center. The context reactant graph 

terms 𝐶𝐶𝐸𝐸𝐸𝐸 counts permutations on reactant patterns that do not form part of the reaction center. 

𝐸𝐸𝐸𝐸 = �𝜙𝜙 ∈ Φ𝑅𝑅,𝑅𝑅 ,Ψ𝑅𝑅,𝑃𝑃 ∘ 𝜙𝜙 ∘ Ψ𝑅𝑅,𝑃𝑃
−1 ∈ Φ𝑃𝑃,𝑃𝑃�  

𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓 = {𝜙𝜙 ∈ 𝐸𝐸𝐸𝐸,𝜙𝜙(𝑥𝑥) = 𝑥𝑥 ∀ 𝑥𝑥 ∈ 𝐸𝐸|𝐸𝐸𝐶𝐶} 

𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢 = {𝑀𝑀 ∈ 𝐸𝐸,𝑀𝑀 ∉ 𝑠𝑠𝑑𝑑𝑟𝑟Ψ, 𝑀𝑀 ≁ 𝑞𝑞∀𝑞𝑞 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟Ψ},𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢~ = {𝑞𝑞| 𝑞𝑞~𝑀𝑀, [∈ 𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢} 

|𝐶𝐶𝐸𝐸𝐸𝐸| = 𝑃𝑃𝐷𝐷𝑆𝑆𝑟𝑟(𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢,𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢) = � |{𝑀𝑀~𝑞𝑞,𝑀𝑀 ∈ 𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢}|!
𝑞𝑞∈𝑅𝑅𝑤𝑤𝑛𝑛𝑛𝑛~

 

𝜌𝜌 =
1

(|𝐸𝐸𝐸𝐸| |𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓|⁄ ) ∗ |𝐶𝐶𝐸𝐸𝐸𝐸|
 

3.3.4 Ensembles, Models and Rate Constants 

Definition 3.3-27 

A complex 𝑥𝑥, also known as a particle, is an instance of a pattern, as defined in Definition 3.3-2, 

with additional constraints: (i) no bond state or internal state is unspecified, (ii) 𝑟𝑟𝑚𝑚𝑤𝑤 =

𝑁𝑁𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆)�∀𝑟𝑟, 𝑆𝑆, (iii) all bonds named ‘!+’ are adjacent to two components, (iv) all components 
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are adjacent to exactly one bond state and one internal state. A particle is analogous to a freely 

diffusing chemical entity in a simulation system. 

Definition 3.3-28 

The particle ensemble, denoted 𝐸𝐸𝑟𝑟𝑠𝑠 = {𝑥𝑥}, is a set containing complex instances (defined in 

Definition 3.3-27).  

Definition 3.3-29 

The pattern embedding class in an ensemble, denoted ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 is the set of embeddings from pattern 

𝑀𝑀 to a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, i.e. ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 = {𝜙𝜙𝑎𝑎,𝑥𝑥, 𝑥𝑥 ∈ 𝐸𝐸𝑟𝑟𝑠𝑠}. 

Definition 3.3-30 

The species, denoted 𝑠𝑠, is a pattern that is isomorphic to particles.  

Definition 3.3-31 

The species observable class in an ensemble, denoted 𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠 is the set of particles in a particle 

ensemble isomorphic to species 𝑠𝑠, i.e. 𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠 = {𝑠𝑠~𝑥𝑥, 𝑠𝑠 ∈ 𝐸𝐸𝑟𝑟𝑠𝑠}. 

Definition 3.3-32 

The species space, denoted 𝑆𝑆 = {𝑠𝑠},  is a set of unique species. For a model, 𝑆𝑆 denotes the space 

of all possible species. 

Definition 3.3-33 

The species ensemble, denoted 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠), is a set of species mapped to population counters and 

can be used to represent the particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, i.e. 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) = {(𝑠𝑠,𝑟𝑟𝑠𝑠), 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑀𝑀 = |𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠|}. 

Definition 3.3-34 

The reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is a transformation from a reactant tuple of species 𝐸𝐸𝑠𝑠 to a product tuple 

of species 𝑃𝑃𝑠𝑠.  Similar to those for a reaction rule, the following can be defined for a reaction also: 

a correspondence map computable in BioNetGen (Definition 3.3-15), the site of action (Definition 
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3.3-16), the restriction to the reaction center (Definition 3.3-20), a reformulation using graph 

rewriting (Definition 3.3-23), and reversible reactions (Definition 3.3-25).  

Definition 3.3-35 

The reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) can also be equivalently defined as a set if tuples 𝜇𝜇 = ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑅𝑅,𝜇𝜇 ,𝑟𝑟𝑠𝑠

𝑃𝑃,𝜇𝜇��, 

where 𝑟𝑟𝑠𝑠
𝑅𝑅,𝜇𝜇 and 𝑟𝑟𝑠𝑠

𝑃𝑃,𝜇𝜇 represent stoichiometries of species 𝑠𝑠 in 𝐸𝐸𝑠𝑠 and 𝑃𝑃𝑠𝑠 respectively from 

Definition 3.3-34.  

Definition 3.3-36 

The reaction rule rate constant 𝑘𝑘𝑟𝑟 is a function describing the kinetics of the reaction class 

mapped by the rule 𝑆𝑆. The rate law can be decomposed as follows: 

𝑘𝑘𝑟𝑟 = 𝜌𝜌𝑟𝑟 ∗ 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) ∗ 𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇) 

Where 𝜌𝜌𝑟𝑟 is the statistical factor computed according to Definition 3.3-26, 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 is a function of 

user-defined variables, 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠 is a function of the current simulation ensemble, and 𝑘𝑘𝑟𝑟
𝜇𝜇 is a function 

of the map from the rule to the reaction or reaction instance. 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠 is composed of global functions 

which compute sums of species or particles in the ensemble. In current BioNetGen, 𝑘𝑘𝑟𝑟
𝜇𝜇 is restricted 

to be a function of individual local functions specific to reactant species, i.e. 

𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇) = 𝑓𝑓𝑟𝑟(𝑘𝑘1(𝑀𝑀1),𝑘𝑘2(𝑀𝑀2), … ),∀𝑀𝑀𝑖𝑖 ∈ 𝐸𝐸𝜇𝜇 

We shall therefore denote 𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇), as a function of the reactant species 𝑘𝑘𝑟𝑟

𝜇𝜇�𝐸𝐸𝜇𝜇�.  

Definition 3.3-37 

The rule-based model, 𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ �𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, {𝑆𝑆},𝐸𝐸𝑟𝑟𝑠𝑠, {𝑆𝑆} → {𝑘𝑘(𝑆𝑆,𝐸𝐸𝑟𝑟𝑠𝑠)}�, is a molecule type 

definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, a set of rules {𝑆𝑆}, a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, and a reaction rule rate constant 𝑘𝑘𝑟𝑟 

mapped to each rule. 

Definition 3.3-38 
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A reaction network, 𝐸𝐸𝑥𝑥𝑟𝑟𝑟𝑟𝐷𝐷𝑡𝑡 ≔ �𝑆𝑆, {𝜇𝜇}, {𝜇𝜇} → �𝑘𝑘𝜇𝜇�, 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)�, is a set of possible species S, a 

set of reactions {𝜇𝜇}, a function mapping each reaction 𝜇𝜇 to a symmetry-independent rate constant 

𝑘𝑘𝜇𝜇, and a species ensemble 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠). Note that the equivalent particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠 does not need 

to be specified, since it is sufficient to distinguish species from each other, without needing to 

distinguish particles. 

3.3.5 Network Generation from a Rule-based Model 

Network generation is a procedure to generate a reaction network (Definition 3.3-38) from a rule-

based model (Definition 3.3-37). 

1) Start with a rule-based model rule-based model 𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ �𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, {𝑆𝑆},𝐸𝐸𝑟𝑟𝑠𝑠, {𝑆𝑆} → {𝑘𝑘𝑟𝑟}�, {𝑆𝑆} 

being a set of rules {𝑘𝑘𝑟𝑟} being a set of rate laws, 𝐸𝐸𝑟𝑟𝑠𝑠 a particle ensemble, and 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) the 

equivalent species ensemble.  

2) Let 𝑃𝑃∗ be the set of all patterns from the reactants and products of all rules. Also define empty 

sets 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 and for each rule 𝑆𝑆, empty sets 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ,𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤.  

3) 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← 𝑆𝑆 

4) Mapping: ∀𝑀𝑀 ∈ 𝑃𝑃∗, 𝑠𝑠 ∈ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 Compute Φ𝑎𝑎,𝑠𝑠 = �𝜙𝜙𝑎𝑎,𝑠𝑠�.  

5) Φ∗ ← Φ∗ ∪ Φ𝑎𝑎,𝑠𝑠∀𝑀𝑀 ∈ 𝑃𝑃∗, 𝑠𝑠 ∈ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 

6) 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 ← 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← { } 

7) For each reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃), 

a) For each tuple  𝐸𝐸𝑠𝑠 = (𝑠𝑠) drawn with repeats from 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 and not canonically ordered,  

i) Compute �Φ𝑅𝑅,𝑅𝑅𝑠𝑠� where Φ𝑅𝑅,𝑅𝑅𝑠𝑠 = (𝜙𝜙), where  𝜙𝜙 ∈ Φ∗ 

ii) For each Φ𝑟𝑟
𝑖𝑖 ∈ �Φ𝑅𝑅,𝑅𝑅𝑠𝑠�,Φ𝑟𝑟

𝑖𝑖 ∉ 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟,  
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(1) compute 𝜇𝜇𝑟𝑟𝑖𝑖 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠), where 𝑖𝑖 indexes the set of maps, r  indicates the rule 

generating the reaction, and 𝑃𝑃𝑠𝑠 = 𝑆𝑆�𝐸𝐸𝑠𝑠,Φ𝑖𝑖�. 

(2) Perform additional checks on whether (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is a satisfactory reaction. 

(3) 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ∪ {𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 − 𝑃𝑃𝑠𝑠},𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤 ← �Φ𝑟𝑟
𝑖𝑖 � 

iii) Μ ← Μ∪ �𝜇𝜇𝑟𝑟𝑖𝑖 � 

8) If |𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤| > 0 or ∃𝑆𝑆, |𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤| > 0 

a) 𝑆𝑆 ← 𝑆𝑆 ∪ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 

b) ∀𝑆𝑆, 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ← 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ∪ 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤 

c) Goto Step 3 

9) Lumping: Let 𝑀𝑀~ = {𝜇𝜇~𝜇𝜇′∀𝜇𝜇′ ∈ 𝑀𝑀}. For each 𝜇𝜇 ∈ 𝑀𝑀~, let 𝑀𝑀𝜇𝜇,𝑟𝑟 be the subset of M 

isomorphic to 𝜇𝜇 generated from reaction rule 𝑆𝑆. The rate constant of the reaction is computed 

as follows: 

𝑘𝑘𝜇𝜇 = ��𝑘𝑘𝑟𝑟
𝑀𝑀𝜇𝜇,𝑟𝑟{𝑟𝑟}

 

Here, 𝑘𝑘𝑟𝑟 is the rate law function of the rule. From Definition 3.3-36,  

𝑘𝑘𝑟𝑟 = 𝜌𝜌𝑟𝑟 ∗ 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) ∗ 𝑘𝑘𝑟𝑟
𝜇𝜇�𝐸𝐸𝜇𝜇� 

Here, the statistical factor 𝜌𝜌𝑟𝑟, the function of user-defined variables 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 are available from 

the rule-based specification. 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) is translated into a function of global functions in the 

species space, i.e. some 𝑓𝑓𝑟𝑟�𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)�. 𝑘𝑘𝑟𝑟
𝜇𝜇�𝐸𝐸𝜇𝜇� is evaluated concretely since the form of the 

reaction 𝜇𝜇 is now available. Together, 𝑘𝑘𝜇𝜇 is a function of numeric constants and the species 

ensemble. 

10) The reaction network is given by 𝐸𝐸𝑥𝑥𝑟𝑟𝑟𝑟𝐷𝐷𝑡𝑡 ≔ �𝑆𝑆, {𝜇𝜇}, {𝜇𝜇} → �𝑘𝑘𝜇𝜇�, 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)� 
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The network generation process will be denoted 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷) for the general case presented 

here. When a specific set of seed species and rules are used to expand the network, without 

reference to a species ensemble or global or local functions, it will be denoted 

𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝐷𝐷𝐷𝐷𝑠𝑠𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷𝑠𝑠). 

3.3.6 Network-based Stochastic Simulation 

Consider a reaction network is generated from a rule-based model as in Section 3.3.5. Using the 

form of the reaction provided in Definition 3.3-35, each reaction 𝜇𝜇 is a set of tuples ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇 ,𝑟𝑟𝑠𝑠

𝑃𝑃𝜇𝜇��. 

Given a species ensemble 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) = {(𝑠𝑠,𝑟𝑟𝑠𝑠), 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑠𝑠 ∈ ℕ}, the rate 𝑀𝑀𝜇𝜇 of a reaction 𝜇𝜇 =

(𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is computed as: 

𝑀𝑀𝜇𝜇 = 𝑘𝑘𝜇𝜇 �(𝑟𝑟𝑠𝑠)^(𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇) 

𝑠𝑠∈𝑅𝑅𝜇𝜇

 

From the next reaction method of stochastic simulation [7], the time at which the next reaction 

fires is inversely proportional to Σ𝜇𝜇𝑀𝑀𝜇𝜇, and the relative probability of a particular reaction firing is 

computed as 𝑎𝑎𝜇𝜇
Σ𝜇𝜇𝑎𝑎𝜇𝜇

.  

1. Given 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)𝑐𝑐0 = ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑐𝑐0��, 𝑡𝑡 ← 𝑡𝑡0, 

2. Compute 𝑀𝑀𝜇𝜇(𝑡𝑡)∀𝜇𝜇 from 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)𝑐𝑐. 

3. Compute Δ𝑡𝑡 from Σ𝜇𝜇𝑀𝑀𝜇𝜇(𝑡𝑡). 

4. Select 𝜇𝜇 with relative probability 𝑎𝑎𝜇𝜇(𝑐𝑐)
Σ𝜇𝜇𝑎𝑎𝜇𝜇(𝑐𝑐)

. 

5. Update species ensemble: ∀𝑠𝑠,𝑟𝑟𝑠𝑠𝑐𝑐+Δ𝑐𝑐 ← 𝑟𝑟𝑠𝑠𝑐𝑐 − 𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇 + 𝑟𝑟𝑠𝑠

𝑃𝑃𝜇𝜇 . 

6. Update time. 𝑡𝑡 ← 𝑡𝑡 + Δ𝑡𝑡. 
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7. If 𝑡𝑡 < 𝑡𝑡𝑅𝑅𝑢𝑢𝑚𝑚, go to Step 2. 

The memory cost of the simulation scales with 𝒪𝒪�𝑟𝑟𝑟𝑟𝑅𝑅𝑎𝑎𝑤𝑤𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑠𝑠 + 𝑟𝑟𝑠𝑠𝑎𝑎𝑅𝑅𝑤𝑤𝑖𝑖𝑅𝑅𝑠𝑠� and is independent of the 

number of rules. Therefore, even if a small number of rules are sufficient to describe the kinetics 

of the system, it is possible that the equivalent reaction network is too large to be simulated or 

possibly even infinite in size. 

3.3.7 Energy-based Rule-based Formulation 

Definition 3.3-39 

An energy pattern 𝐷𝐷, is a pattern which is assigned the numeric energy value 𝐸𝐸𝑅𝑅. 

Definition 3.3-40 

An energy definition is the tuple (𝐸𝐸,𝐸𝐸𝐸𝐸), where 𝐸𝐸 = (𝐷𝐷) is a tuple of energy patterns, and  

𝐸𝐸𝐸𝐸:𝐸𝐸 → ℕ is a function mapping energy patterns to numeric energy values. 

Definition 3.3-41 

Given an energy definition, the free energy of formation of a species 𝑠𝑠, denoted 𝐸𝐸𝑠𝑠, is the sum of 

matches of energy patterns to the species, weighted by the respective energies. 

𝐸𝐸𝑠𝑠 = ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

Definition 3.3-42 

Given an energy definition, the free energy of a reaction 𝜇𝜇 = (𝐸𝐸𝜇𝜇,𝑃𝑃𝜇𝜇), denoted 𝐸𝐸𝜇𝜇, is the sum of 

the free energy of the product species minus the sum of the free energy of the reactant species. 

𝐸𝐸𝜇𝜇 = − � 𝐸𝐸𝑠𝑠
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ � 𝐸𝐸𝑠𝑠
𝑠𝑠∈𝑃𝑃𝜇𝜇

 

From Definition 3.3-41, 
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𝐸𝐸𝜇𝜇 = − � ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸𝑠𝑠∈𝑅𝑅𝜇𝜇

+ � ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸𝑠𝑠∈𝑃𝑃𝜇𝜇

 

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

 

Corollary 3.3-43 

The free energy of a reaction can be computed from only the energy patterns overlapping with the 

site of action.  

Proof: Let Ψ𝑅𝑅,𝑃𝑃 be the correspondence map of reaction 𝜇𝜇 = (𝐸𝐸,𝑃𝑃), defined according to 

Definition 3.3-34. Let 𝑉𝑉𝑅𝑅 ,𝑉𝑉𝑃𝑃 be the sets of nodes on the reactant and product tuple graphs 

respectively. The site of action (Definition 3.3-16) induces a partition 𝑉𝑉𝑅𝑅𝑀𝑀𝐴𝐴,𝑉𝑉𝑅𝑅Ψ on 𝑉𝑉𝑅𝑅 (𝑉𝑉𝑅𝑅𝑀𝑀𝐴𝐴- nodes 

in the site of action, 𝑉𝑉𝑅𝑅Ψ- nodes in the correspondence map), and a similar partition 𝑉𝑉𝑃𝑃𝑀𝑀𝐴𝐴,𝑉𝑉𝑃𝑃Ψ on 𝑉𝑉𝑃𝑃. 

Let 𝑉𝑉Ψ = 𝑉𝑉𝑅𝑅Ψ ∪ 𝑉𝑉𝑃𝑃Ψ. Now, 𝑉𝑉Ψ induces a partition in the set �𝜙𝜙𝑅𝑅,𝑠𝑠� of embeddings from any energy 

pattern 𝐷𝐷 to any species 𝑠𝑠 in 𝐸𝐸 or 𝑃𝑃, where  �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� is the set of embeddings completely in 𝑉𝑉Ψ 

and �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� is the complement of �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ�.  Substituting for �𝜙𝜙𝑅𝑅,𝑠𝑠� in Definition 3.3-42, 

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∪ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∪ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

Since �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∩ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� = {} by construction, 

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑅𝑅𝜇𝜇

− � ��𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

− � ��𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸
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By construction, Ψ𝑅𝑅,𝑃𝑃 is total and invertible in 𝑉𝑉RΨ → 𝑉𝑉𝑃𝑃Ψ, any embedding completely in 𝑉𝑉𝑅𝑅Ψ has 

an equivalent embedding in 𝑉𝑉𝑃𝑃Ψ and vice versa, so ∀𝐷𝐷,∑ ��𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��𝑠𝑠∈𝑅𝑅𝜇𝜇 = ∑ ��𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��𝑠𝑠∈𝑃𝑃𝜇𝜇 .  

Substituting in the equation for 𝐸𝐸𝜇𝜇 above, 

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 

By construction, �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� is the set of embeddings that involve at least one node in the site of 

action. Hence proved. 

Definition 3.3-44 

Given a reversible reaction (𝜇𝜇+, 𝜇𝜇−) where 𝜇𝜇+ = (𝐸𝐸,𝑃𝑃), 𝜇𝜇− = (𝑃𝑃,𝐸𝐸), free energy of formation 𝐸𝐸𝜇𝜇 

in the forward direction, activation energy 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴, and distribution parameter 𝜙𝜙𝜇𝜇, the forward and 

reverse rate constants 𝑘𝑘𝜇𝜇+,𝑘𝑘𝜇𝜇− , termed energy-based rate constants, are computed as follows: 

𝑘𝑘𝜇𝜇+ = exp �−
𝐸𝐸𝜇𝜇+
𝐸𝐸𝑇𝑇 �

 

𝑘𝑘𝜇𝜇− = exp �−
𝐸𝐸𝜇𝜇−
𝐸𝐸𝑇𝑇 �

 

Where 𝐸𝐸𝜇𝜇+ = 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + 𝜙𝜙𝜇𝜇𝐸𝐸𝜇𝜇 and 𝐸𝐸𝜇𝜇− = 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + �𝜙𝜙𝜇𝜇 − 1�𝐸𝐸𝜇𝜇 

Here, 𝐸𝐸𝜇𝜇+ and 𝐸𝐸𝜇𝜇− are energy terms that describe the kinetics in terms of forward and reverse 

activation energies, following from linear transition state theory (REF) and Arrhenius equation. 

The distribution term 𝜙𝜙𝜇𝜇 indicates how the free energy of reaction 𝐸𝐸𝜇𝜇 is distributed in the forward 

and reverse directions, and the 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 term captures all contributions to the kinetics that are 

independent of 𝐸𝐸𝜇𝜇. This definition of forward and reverse rate constants also satisfies the definition 

of the equilibrium constant in terms of the free energy of the reaction. 

𝐾𝐾𝜇𝜇
𝑅𝑅𝑞𝑞 =

𝑘𝑘𝜇𝜇+
𝑘𝑘𝜇𝜇−
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=
exp �−

𝐸𝐸𝜇𝜇+
𝐸𝐸𝑇𝑇 �

exp �−
𝐸𝐸𝜇𝜇−
𝐸𝐸𝑇𝑇 �

= exp �−
𝐸𝐸𝜇𝜇+ − 𝐸𝐸𝜇𝜇−

𝐸𝐸𝑇𝑇 � 

= exp�−
𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + 𝜙𝜙𝜇𝜇𝐸𝐸𝜇𝜇 − 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 − �𝜙𝜙𝜇𝜇 − 1�𝐸𝐸𝜇𝜇

𝐸𝐸𝑇𝑇
� 

𝐾𝐾𝜇𝜇
𝑅𝑅𝑞𝑞 = exp �−

𝐸𝐸𝜇𝜇
𝐸𝐸𝑇𝑇�

 

Definition 3.3-45 

The energy-based rule-based model 𝐷𝐷𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ {𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓,𝐸𝐸𝑟𝑟𝐷𝐷𝑆𝑆𝑔𝑔𝑦𝑦𝐷𝐷𝐷𝐷𝑓𝑓, {(𝑆𝑆+, 𝑆𝑆−)}, {(𝑆𝑆+, 𝑆𝑆−)} →

{𝑘𝑘𝐴𝐴𝑟𝑟𝑟𝑟(𝐸𝐸𝑟𝑟𝐸𝐸𝐴𝐴,𝜙𝜙𝑟𝑟)},𝐸𝐸𝑟𝑟𝑠𝑠}, has a molecule type definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, an energy definition 𝐸𝐸𝑟𝑟𝐷𝐷𝑆𝑆𝑔𝑔𝑦𝑦𝐷𝐷𝐷𝐷𝑓𝑓, 

a set of reversible rules {(𝑆𝑆+, 𝑆𝑆−)}, each of which is mapped to an Arrhenius rate law requiring an 

activation energy term 𝐸𝐸𝑟𝑟𝐸𝐸𝐴𝐴 and a distribution term 𝜙𝜙𝑟𝑟, and a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠. 

3.3.8 Energy-based Network Generation and Simulation 

Since the rules in an energy-based model have the same form as rules in a rule-based model, the 

network generation described in Section 3.3.5 is applicable for energy-based rule-based models 

also. However, in Step 6 of Section 3.3.5, after identifying the set of reactions up to isomorphism 

(𝑀𝑀~), the rate constants are not calculated by lumping. Instead, for each reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠), the 

free energy of the reaction 𝐸𝐸𝜇𝜇 is calculated according to Definition 3.3-42,  and then the forward 

and reverse rate constants 𝑘𝑘𝜇𝜇+and 𝑘𝑘𝜇𝜇− are calculated according to the Arrhenius rate law in 

Definition 3.3-44. Network-based stochastic simulation of the resultant reaction network is the 

same as outlined in Section 3.3.6. 
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3.3.9 Network-free Stochastic Simulation 

Network-free simulation involves simulating a rule-based model (Definition 3.3-37) without 

generating the corresponding reaction network. Given a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠 and a set of patterns 

𝑃𝑃∗ from the rule-based model, the algorithm keeps track of the pattern embedding class in the 

ensemble for each pattern, i.e. ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 (Definition 3.3-29).  

The reaction probability 𝑀𝑀𝑟𝑟 is calculated for the entire reaction class defined by the rule 𝑆𝑆 as 

follows: 

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗�𝑘𝑘𝑟𝑟
𝜇𝜇

𝑟𝑟⊲𝜇𝜇

   

Each term is explained in Definition 3.3-36. Here 𝜇𝜇 is the individual reaction instance on particles 

𝐸𝐸𝑥𝑥, rather than a reaction on species. In NFsim [39], the fast network-free simulator for 

BioNetGen, 𝑘𝑘𝑟𝑟
𝜇𝜇 is only allowed to be composed of products of local functions on individual 

reactant patterns:  

𝑘𝑘𝑟𝑟
𝜇𝜇 = � 𝑘𝑘𝑎𝑎(𝑥𝑥)

𝑎𝑎∈𝑅𝑅,𝑥𝑥∈𝑅𝑅𝑥𝑥

 

This allows for efficient simulation, because the sum of products is decomposed as a product of 

the sums, and there is no need to track individual combinations of pattern matches: 

� � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑎𝑎∈𝑅𝑅,𝑥𝑥∈𝑅𝑅𝑥𝑥𝑟𝑟⊲𝜇𝜇

= � � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑥𝑥∈ℙ𝑝𝑝𝐸𝐸𝑛𝑛𝑠𝑠𝑎𝑎∈𝑅𝑅

 

 

Substituting in the term for local functions, the rate of the reaction class is given by 

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗� � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑥𝑥∈ℙ𝑝𝑝𝐸𝐸𝑛𝑛𝑠𝑠𝑎𝑎∈𝑅𝑅
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When no local functions are used, the simulation is even more efficient, because the rate 

calculation resolves to: 

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�
𝑎𝑎∈𝑅𝑅

 

The time at which the next reaction instance fires is proportional to Σ𝑟𝑟𝑀𝑀𝑟𝑟, and the relative 

probability of each reaction class being chosen to fire is 𝑎𝑎𝑟𝑟
Σ𝑟𝑟𝑎𝑎𝑟𝑟

. Within each reaction class, a pattern 

match is selected randomly for each reactant pattern, with the probability weighted by any local 

function defined on that pattern match. 

1. Given 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐0 = {𝑥𝑥}, 𝑡𝑡 ← 𝑡𝑡0, 

2. Compute 𝑀𝑀𝑟𝑟(𝑡𝑡)∀𝑆𝑆 from 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐. 

3. Compute Δ𝑡𝑡 from Σ𝑟𝑟𝑀𝑀𝑟𝑟(𝑡𝑡). 

4. Select 𝑆𝑆 with relative probability 𝑎𝑎𝑟𝑟(𝑐𝑐)
Σ𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)

. 

5. For each 𝑀𝑀 ∈ 𝐸𝐸, select 𝜙𝜙𝑎𝑎,𝑥𝑥 with relative probability 𝑘𝑘𝑝𝑝(𝑥𝑥)
Σ𝑥𝑥𝑘𝑘𝑝𝑝(𝑥𝑥)

 

6. Determine reaction instance, i.e. the particle tuple 𝐸𝐸𝑥𝑥 ⊂ 𝐸𝐸𝑟𝑟𝑠𝑠, and the corresponding pattern 

tuple embedding Φ𝑅𝑅,𝑅𝑅𝑥𝑥. Determine 𝑃𝑃𝑥𝑥 = 𝑆𝑆�𝐸𝐸𝑥𝑥,Φ𝑅𝑅,𝑅𝑅𝑥𝑥�.  

7. Perform checks on whether this is a valid reaction. 

8. Update particle ensemble: 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐+Δ𝑐𝑐 ← 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐 − 𝐸𝐸𝑥𝑥 + 𝑃𝑃𝑥𝑥. 

9. Update time. 𝑡𝑡 ← 𝑡𝑡 + Δ𝑡𝑡. 

10. If 𝑡𝑡 < 𝑡𝑡𝑅𝑅𝑢𝑢𝑚𝑚, go to Step 2. 
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3.4 ENERGY-BASED NETWORK-FREE SIMULATION 

3.4.1 The Problem 

The rule-based model (Definition 3.3-37) is a set of reaction rules mapped to rate laws. By 

expanding each reaction rule into a class of reactions, a reaction network can be constructed which 

resolves all possible chemical species and all possible reactions between those species (Section 

3.3.5). In the energy-based formulation (Section 3.3.7), after building the network, the reactant 

and product species are analyzed to compute the free energy change of each reaction (Definition 

3.3-42), which in turn is used to compute the rate constant for that reaction (Definition 3.3-44). 

The reaction network can then be used to simulate a species ensemble, with each species is 

assigned a population number which is tracked across time (Section 3.3.6). Because the identity 

of reactants and products are known for each reaction are known prior to firing a reaction event, 

the energy-based formulation works seamlessly with network generation and network-based 

simulation. 

In contrast to network-based simulation, network-free simulation involves simulating a 

particle ensemble directly using reaction rules (Section 3.3.9). Here, the system keeps track, not 

of populations of types of particles, but each particle individually, and the embeddings of patterns 

into particles (Definition 3.3-29). Reaction events are selected by analyzing the current ensemble 

(i.e. the potential reactants for each reaction event), and the full specification of the product 

particles are known only after the reaction event fires. This makes simulation very efficient, but 

places restrictions on the types of rate laws that are possible, for example, rate laws with local 

functions can only use attributes of the reactants (Definition 3.3-36) and not the products. Since 

the energy-based rate laws require knowledge of both reactants and products to calculate the 
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reaction rate, the energy-based rule-based model specification cannot be directly simulated using 

a truly network-free algorithm. These concepts are explained with an example in Section 3.2. 

Rule refinement is a general procedure where patterns in a rule are expanded by adding 

molecules, components, internal states and bonds. The refined rule now only matches a subset of 

the reaction class matched by the original rule because of the additional match conditions. A rule 

refinement approach typically tries to organize the reaction class matched by a reaction rule into 

many such subsets, and generate a unique reaction rule for each subset. For example, in network 

generation (Section 3.3.5), the goal is to resolve reaction rules to reactions, so that each reaction 

produces and consumes distinct chemical species. Another example is the rule-refinement 

performed in the hybrid particle-population simulator [34], wherein some particles are treated 

individually and some are lumped using population counters. The goal of rule refinement here was 

to resolve reaction classes such that reactant/product patterns matched unlumped or lumped 

particles, but not both at the same time. 

 For energy-based network-free simulation, the goal is to generate reaction classes with 

distinct free energy change values. By Corollary 3.3-43, we know that it is sufficient to count 

overlaps of energy patterns with the reaction center. Therefore, the patterns in an energy rule only 

need to be resolved locally and not necessarily over the whole particle. Since the energy patterns 

are themselves finite, the depth to which configurations local to the reaction center have to be 

explored is also finite.  

The goal of the energy-based specification is to simplify the representation of cooperative 

interactions. Theoretically it is possible to use very complex rules as energy-based rules, such as 

rules with more than two reactant patterns, binding rules that form loops within a complex. 

However, the utility of the energy-based specification for those circumstances has not been clearly 
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determined. The most straightforward application of energy rules is for simple elementary reaction 

mechanisms where the complexity of variations in local context can be abstracted away in the form 

of energy pattern matches. For the rest of the chapter, we limit the discussion to exactly two types 

of energy rules: bimolecular binding reactions, and unimolecular state change reactions. 

3.4.2 Rule Expansion Strategy 

The overall strategy for refining the rule is as follows: (i) compose molecule type specific 

to the local context of the reaction center of the energy rule, (ii) incorporate tagging of the reaction 

center on the molecule types, (iii) identify how far patterns need to be expanded in order to capture 

unique combinations of energy pattern matches, (iii) use network generation to expand the local 

context upto those unique combinations, (iv) use network generation to expand the energy rule 

onto the generated set of patterns, and (v) use energy matches to compute the rate for each reaction 

rule in the expanded set. 

1) Given molecule type definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓 = (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), bond definition 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 

energy patterns 𝐸𝐸, and a reversible energy rule (𝑆𝑆+, 𝑆𝑆−) where 𝑆𝑆+ = (𝐸𝐸,𝑃𝑃). 

2) Compute 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤 = (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ) which excludes 

molecules, components, internal states and bonds that are not relevant to compute energies. 

3) Add new molecule types with tagged reaction centers and update 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤. 

4) Synthesize a set of seed species 𝑆𝑆𝑀𝑀 and a set of expander rules 𝐸𝐸𝑟𝑟 from 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤. 

5) Expand context and collect “species”: (𝑆𝑆𝑀𝑀′, … )  = 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟) 

6) Expand energy rule using generated species: (𝑆𝑆𝑀𝑀′′,𝐸𝐸𝑟𝑟𝑅𝑅𝑥𝑥𝑎𝑎 ) = 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀′, {𝑆𝑆+, 𝑆𝑆−}) 

7) Evaluate Arrhenius rate laws for 𝑆𝑆 ∈ 𝐸𝐸𝑈𝑈𝑅𝑅𝑥𝑥𝑎𝑎. 



 129 

3.4.3 Building Molecule and Bond Types for Local Context 

Given a molecule type definition (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and a bond type definition 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, a 

reversible energy rule (𝑆𝑆+, 𝑆𝑆−), where 𝑆𝑆+ = (𝐸𝐸,𝑃𝑃), an energy definition involving a set of energy 

patterns 𝐸𝐸, and a map from energy patterns to energies of formation 𝐸𝐸 → 𝐸𝐸𝐸𝐸, we first reduce the 

rule to its reaction center: 𝑆𝑆∘ = (𝐸𝐸∘,𝑃𝑃∘) as in Definition 3.3-20. Then, we use embeddings from 

𝐸𝐸∘ and 𝑃𝑃∘ to select “relevant” energy patterns (these are the only energy pattern embeddings that 

matter, according to Corollary 3.3-43). 

𝐸𝐸𝑟𝑟 = �𝑀𝑀 ∈ 𝐸𝐸�∃𝜙𝜙𝑎𝑎,𝑞𝑞, 𝑞𝑞 ∈ 𝐸𝐸∘ ∪ 𝑃𝑃∘� 

Then we build an extended molecule type definition (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ), 

that captures the space of local configurations around the reaction center. 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and 𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤 contain 

all molecule types and component types present in the patterns in 𝐸𝐸,𝑃𝑃,𝐸𝐸𝑟𝑟, and 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤is populated 

from 𝑁𝑁𝑀𝑀𝑀𝑀 for those molecule and component types. For every component type 𝑆𝑆 in molecule type 

𝑟𝑟, if at least one pattern in 𝐸𝐸,𝑃𝑃,𝐸𝐸𝑟𝑟 has an internal state, then 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 and 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 are populated with 

all internal states available to that component type in 𝑆𝑆 and 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 is populated with all pairs 

of doublets (𝑟𝑟1, 𝑆𝑆1), (𝑟𝑟2, 𝑆𝑆2) that are assigned 1 under 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 where at least one doublet (𝑟𝑟1, 𝑆𝑆1) 

has the value 1 under 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 . If any new molecule types or component types were added in this 

step, 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 are updated. 

3.4.4 Tagging the Reaction Center 

Next, we build a set of modified molecule types where molecules and components 

participating in the reaction center are tagged. For example, suppose the reaction center 𝑆𝑆∘ is 
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A(b) + B(a) -> A(b!1).B(a!1) 

We first build the renaming maps 

𝑆𝑆𝐷𝐷𝑟𝑟𝑀𝑀 = {𝐴𝐴 → 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵 → 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑆𝑆𝐷𝐷𝑟𝑟𝑀𝑀 = {(𝐴𝐴, 𝑓𝑓) → (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), (𝐵𝐵,𝑀𝑀) → (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚)} 

Then, using the templates in (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ),  we create additional 

molecule types 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚, which are renamed versions of 𝐴𝐴 and 𝐵𝐵 in which one component of 

type 𝑓𝑓 is replaced with one of type 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, and one of type 𝑀𝑀 is replaced with one of type 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚. The 

new molecule types and component types are added to 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and 𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤 respectively. 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 is 

updated with new stoichiometries, whereas internal state and bond state definitions in 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤  are copied over to the new component types. For example, if the template molecule type 

was 𝐴𝐴(𝑓𝑓, 𝑓𝑓, 𝑆𝑆), then the new molecule type is 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓, 𝑆𝑆), and the following updates are 

made: 

∀𝑠𝑠,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝐴𝐴, 𝑓𝑓, 𝑠𝑠) =  𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠) 

∀𝑟𝑟, 𝑆𝑆 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝐴𝐴, 𝑓𝑓), (𝑟𝑟, 𝑆𝑆)� = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), (𝑟𝑟, 𝑆𝑆)� 

The only exception to the 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤  assignment is an asymmetric tagging for the specific pair that 

was tagged in the first place: i.e. 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1) is allowed, but not 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1).𝐵𝐵(𝑀𝑀! 1) or 𝐴𝐴(𝑓𝑓! 1).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1). 

3.4.5 Topology Constraints 

Here, we compose a set of constraints that determine how deep patterns must be expanded to 

properly account for all energy contributions. For each energy pattern 𝐷𝐷, we use tagging-by-

renaming to generate variants {𝐷𝐷𝑖𝑖} that have exactly one reaction center. Then, the distance of non-
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tagged molecules from the reaction center is calculated.  For example, if 𝐴𝐴(𝑓𝑓! 1, 𝑓𝑓, 𝑆𝑆).𝐵𝐵(𝑀𝑀! 1) is 

an energy pattern, it results in the variants 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1, 𝑓𝑓, 𝑆𝑆).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1) and 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓! 1, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑆𝑆).𝐵𝐵(𝑓𝑓! 1). In the first variant, there is no molecule that is not part of the reaction 

center. In the second variant, the molecule B is at a distance 1 from the reaction center. The 

maximum distance for each non-tagged molecule type is computed over all variants of all energy 

patterns. This results in a map from each molecule type to a non-negative number, i.e. 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 →

ℕ0. 

3.4.6 Context Expansion 

Here, we use network generation to expand the patterns such that the context surrounding the 

reaction center is unambiguously resolved in terms of energy pattern matches. Given new molecule 

and bond types 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤 =  (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ), and topology 

constraints, 𝑇𝑇𝑑𝑑𝑀𝑀𝑑𝑑𝐷𝐷:𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 → ℕ0, we build a set of seed species 𝑆𝑆𝑀𝑀 = 𝑆𝑆𝐷𝐷𝐷𝐷𝑠𝑠(𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤) in 

which each pattern has one molecule only, which is an instance of one molecule type, and in which 

each component is instantiated with the maximum allowed stoichiometry in 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤, and with an 

internal state specified by 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 (none if unspecified, randomly chosen if multiple internal states 

are specified). Then, we build a set of expander rules 𝐸𝐸𝑟𝑟 =  𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷𝑠𝑠(𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤), wherein for 

each 𝑟𝑟1,𝑟𝑟2, 𝑆𝑆1, 𝑆𝑆2 such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝑟𝑟1, 𝑆𝑆1), (𝑟𝑟2, 𝑆𝑆2)� = 1, there exists a rule: 

m1(c1) + m2(c2) <-> m1(c1!1).m2(c2!1) 

Similarly, for every 𝑟𝑟, 𝑆𝑆, 𝑠𝑠1, 𝑠𝑠2 such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝑟𝑟, 𝑆𝑆, 𝑠𝑠1) = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝑟𝑟, 𝑆𝑆, 𝑠𝑠2) = 1, there exists a rule 

m(c~s1!?) <-> m(c~s2!?) 
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Then network generation is performed using these seed species and rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟) 

with the following constraints on species: (i) at least one species in each reaction must have a 

reaction center tag, (ii) no species generated can have more than one reaction center tag, (iii) the 

distance of any molecule to the reaction center tag is less than or equal to the limit computed from 

energy patterns, i.e. from  the set of topology constraints 𝑇𝑇𝑑𝑑𝑀𝑀𝑑𝑑𝐷𝐷. Note that the species in this 

network are true species only under the new molecule type definition, but not under the original 

one.  

3.4.7 Energy Rule Expansion 

Here, we use network generation to expand the energy rule into normal reaction rules. The input 

rule set comprises only the forward and reverse directions of the energy rule, and with the reaction 

center tagged. The reactions are limited to use the species generated during context expansion. 

After expansion, the tags are removed and the resultant set of “reactions” constitute the expanded 

rule set. For each rule in this set, a unique free energy can be calculated by counting energy pattern 

matches (as in Definition 3.3-42) and this can be used to compute the numeric rate from the 

Arrhenius rate law (as in Definition 3.3-44). 

3.4.8 Scalability Concerns 

When there are no repeated components within molecules, the number of rules generated from an 

energy rule scale with the size of the largest energy pattern that overlaps with each reaction center, 

which is typically a low bound. However, when there are repeated components, the number of 

rules generated from the energy rule has the potential to grow combinatorially. Nevertheless, there 
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is a finite limit on the number of rules that are possible since finite-sized energy patterns and finite-

sized molecule types are used. Also, even in the worst case scenario, it is the pre-processing of the 

model that is inefficient and there is no reduction in the efficiency of the simulation algorithm. 

3.4.9 Alternate Strategies 

Prior to this approach, I considered two other strategies. These were rejected because the 

inefficiency was not resolved prior to simulation. 

In the first strategy, based on rejection sampling [83], I proposed to treat energy rules as 

reaction classes and oversample them at a constant high rate. After the reaction event has fired, the 

identity of the products can be determined, which in turn can be used to determine the free energy 

of the just-fired reaction event, and consequently the difference between the correct rate and the 

oversampled rate. Following this, the reaction event can be probabilistically accepted or rejected 

resulting in exact kinetics. However, this strategy has two issues even if an upper bound on the 

reaction rate can be calculated for a given energy rule: (i) when there are repeated components, the 

bound may not be tight enough to enable efficient simulation, e.g. if a molecule has 3 components 

of the same type, then any energy patterns overlapping with a component of that type contribute 

three times the energy to the calculation of the bound, (ii) if there is at least one reaction generated 

by the rule that is much faster than the other reactions, then rejection sampling of the other 

reactions will be very inefficient. 

In the second strategy, I proposed to use the current state of the simulation system to 

compute the immediate future possibilities and sample them exactly. However, this strategy was 

discarded because it required computing a unique energy term for every potential reaction center 

present in the system, which is inefficient for bimolecular reactions. 
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3.4.10 Implementation Issues 

In order to implement the given procedure in BioNetGen, the network generation algorithm in the 

BioNetGen code needs to be modularized to perform generic rule refinement. First, the current 

code executes on the current model object that is persistent during runtime, but we require it to be 

called multiple times on arbitrary sets of molecule types, rules and species (e.g. Sections 3.4.6 and 

3.4.7), and not necessarily on the current model as a whole. Second, the checks on generated 

species and reactions, as well as modifications done to them such as lumping of statistical factors, 

are currently only those that are required for building the reaction network specification. These 

procedures must be imported as modules, so that tasks specific to the current refinement goal can 

be flexibly performed, such as arbitrary checks on species and reactions (Section 3.4.5), turning 

lumping off, evaluating pattern matches and rate laws, preventing new species from being formed 

(Section 3.4.7), etc. For each of the examples below, the molecule type construction (Section 

3.4.3), and reaction center tagging (Section 3.4.4) was done manually. Then, two different BNGL 

files were constructed manually, each calling the network generation code for respectively 

expanding context and energy rule. Parameters passed to network generation were tuned to be 

similar to the topology constraints (Section 3.4.6). 

3.4.11 Example 1: Bivalent Ligand Bivalent Receptor 

Consider an energy-based rule-based model with a bivalent ligand that binds a bivalent receptor. 

The molecule types are  

Lig(R,R) 

Rec(L,L) 
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There is only one type of bond 

Lig(R!1).Rec(L!1) 

Consider the energy rule 

Lig(R)+Rec(L) <-> Lig(R!1).Rec(L!1)    

Here, the single rule can generate an infinite state space of species because the combination of two 

sites on the receptor and two sites on the ligand leads to a chain that can grow indefinitely. First, 

because there is no other context in the model except unbound and bond states, we can skip Section 

3.4.3 and reuse the same molecule types. 

Next, we tag the reaction center on the rule,  

Lig_RC(R_RC)+Rec_RC(L_RC) <-> Lig_RC(R_RC!1).Rec(L_RC!1)    

Then we create the tagged molecule types where one component has been tagged that indicates 

participation in the reaction center. 

Lig_RC(R_RC,R) 

Rec_RC(L_RC,L) 

Now, consider the following set of energy patterns: 

Rec(L,L) 

Lig(R,R) 

Rec(L!1).Lig(R!1) 

The tagged variants of these energy patterns are: 

Rec_RC(L_RC,L) 

Lig_RC(R_RC,R) 



 136 

Rec_RC(L_RC!1).Lig_RC(R_RC!1) 

Rec_RC(L!1).Lig(R!1) 

Rec(L!1).Lig_RC(R!1) 

Note that in the last two patterns, one of the molecules have been tagged, but the components have 

not been tagged. This is valid because both receptor and ligand have multiple sites for each other. 

The new molecule types are  

Rec_RC(L_RC,L) 

Lig_RC(R_RC,R) 

The new bond types are 

Rec_RC(L_RC!1).Lig_RC(R_RC!1) 

Rec_RC(L!1).Lig_RC(R!1) 

The updated list of molecule types is 

Rec(L,L) 

Lig(R,R) 

Rec_RC(L_RC,L) 

Lig_RC(R_RC,R) 

The updated list of bond types is 

Rec(L!1).Lig(R!1) 

Rec_RC(L_RC!1).Lig_RC(R_RC!1) 

Rec_RC(L!1).Lig_RC(R!1) 
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From the tagged variants of the energy patterns, we compute topology constraints.  

Rec->1, Lig->1 

Using the new molecule types, we can compose the set of seed species (𝑆𝑆𝑀𝑀): 

Rec(L,L) 

Lig(R,R,R) 

Rec_RC(L_RC,L) 

Lig_RC(R_RC,R) 

Using the new molecule types and bond types, we can compose the set of expander rules (𝐸𝐸𝑟𝑟): 

Lig(R) + Rec(L) <-> Lig(R!1).Rec(L!1) 

Lig_RC(R) + Rec(L) <-> Lig_RC(R!1).Rec(L!1) 

Lig(R) + Rec_RC(L) <-> Lig(R!1).Rec_RC(L!1) 

Lig_RC(R_RC) + Rec_RC(L_RC) <-> Lig_RC(R_RC!1).Rec_RC(L_RC!1) 

Performing network generation using the seed species and expander rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟), 

we get the following species: 

     Rec(L,L) 

     Lig(R,R) 

     Rec_RC(L,L_RC) 

     Lig_RC(R,R_RC) 

     Lig_RC(R!1,R_RC).Rec(L!1,L) 

     Lig(R!1,R).Rec_RC(L!1,L_RC) 
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     Lig_RC(R,R_RC!1).Rec_RC(L,L_RC!1) 

     Lig(R!1,R).Lig_RC(R!2,R_RC).Rec(L!2,L!1)    

    Lig(R!1,R!2).Rec(L!2,L).Rec_RC(L!1,L_RC) 

    Lig(R!1,R!2).Lig_RC(R!3,R_RC).Rec(L!3,L!2).Rec_RC(L!1,L_RC) 

    Lig_RC(R!1,R_RC!2).Rec(L!1,L).Rec_RC(L,L_RC!2) 

    Lig(R!1,R).Lig_RC(R,R_RC!2).Rec_RC(L!1,L_RC!2) 

    Lig(R!1,R).Lig_RC(R!2,R_RC!3).Rec(L!2,L).Rec_RC(L!1,L_RC!3) 

    Lig(R!1,R).Lig_RC(R!2,R_RC!3).Rec(L!2,L!1).Rec_RC(L,L_RC!3) 

    Lig(R!1,R!2).Lig_RC(R,R_RC!3).Rec(L!2,L).Rec_RC(L!1,L_RC!3) 

    Lig(R!1,R).Rec(L!1,L) 

Using the energy rule to generate reactions drawn from this set of species and then removing the 

reaction center tags, we get the following rule variants: 

1. Lig(R,R) + Rec_RC(L,L) -> Lig_RC(R,R!1).Rec(L,L!1) 

2. Lig(R,R) + Lig(R!1,R).Rec(L!1,L) -> Lig(R!1,R).Lig(R,R!2).Rec(L!1,L!2) 

3. Lig(R,R) + Lig(R!1,R!2).Rec(L!2,L).Rec(L!1,L) -> 

Lig(R!1,R!2).Lig(R,R!3).Rec(L!2,L).Rec(L!1,L!3) 

4. Lig(R!1,R).Rec(L!1,L) + Rec(L,L) -> Lig(R!1,R!2).Rec(L!1,L).Rec(L,L!2) 

5. Lig(R!1,R).Lig(R!2,R).Rec(L!2,L!1) + Rec(L,L) -> 

Lig(R!1,R).Lig(R!2,R!3).Rec(L!2,L!1).Rec(L,L!3)  
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6. Lig(R!1,R).Rec(L!1,L) + Lig(R!1,R).Rec(L!1,L) -> 

Lig(R!1,R).Lig(R!2,R!3).Rec(L!2,L).Rec(L!1,L!3)  

By counting matches of energy patterns, as in Definition 3.3-42, the free energy of these rule 

variants are computed, and they result in the following expressions respectively: 

1. (-E_R)+(-E_L)+E_RL 

2. (-E_L)+E_RL 

3. (-E_L)+E_RL 

4. (-E_R)+E_RL 

5. E_RL 

6. E_RL 

3.4.12 Example 2: EGFR-Grb2-Shc 

Consider an energy-based rule-based model with the following molecule types 

EGF(r) 

EGFR(l,d,Y992~0~P,Y1068~0~P,Y1148~0~P) 

Grb2(SH2,SH3) 

Shc(PTB,Y317~0) 

Consider the energy rule: 

EGFR(Y1068~P) + Grb2(SH2) <-> EGFR(Y1068~P!1).Grb2(SH2!1)     

The context-free version of this rule is 
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EGFR(Y1068) + Grb2(SH2) <-> EGFR(Y1068!1).Grb2(SH2!1)     

Energy patterns that are relevant to the rule have to completely embed at least one of these patterns. 

Suppose the set of relevant energy patterns (with matching energies) was: 

EGFR(Y1068!1).Grb2(SH2!1)     E_RG1 

EGFR(Y1068!1,Y1148).Grb2(SH2!1)    E_RG2 

EGFR(Y1068,Y1148!1).Shc(PTB!1)    E_RS 

EGFR(Y1068!1,Y1148!2).Grb2(SH2!1).Shc(PTB!2)  E_RGS 

Grb2(SH2,SH3!1).Sos(dom!1)    E_GS 

Given these energy patterns and the rule patterns, the implied molecule type definition is: 

EGFR(Y1068~0~P,Y1148) 

Grb2(SH2,SH3) 

Shc(PTB) 

Sos(dom) 

Also, from the model, the bond definition is given by 

EGFR(Y1068!1).Grb2(SH2!1) 

EGFR(Y1148!1).Shc(PTB!1) 

Grb2(SH3!1).Sos(dom!1) 

Now, we take the context-free energy rule and add reaction center tags: 

EGFR_RC(Y1068_RC) + Grb2_RC(SH2_RC) <-> 

EGFR_RC(Y1068_RC!1).Grb2(SH2_RC!1) 



 141 

We create variants of the energy patterns using tagged molecule and component names. 

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1) 

EGFR_RC(Y1068_RC!1,Y1148).Grb2_RC(SH2_RC!1) 

EGFR_RC(Y1068_RC,Y1148!1).Shc(PTB!1) 

EGFR_RC(Y1068_RC!1,Y1148!2).Grb2(SH2_RC!1).Shc(PTB!2) 

Grb2_RC(SH2_RC,SH3!1).Sos(dom!1) 

This results in new molecule types and bond types. The new molecule types are: 

EGFR_RC(Y1068_RC~0~P,Y1148) 

Grb2_RC(SH2_RC,SH3) 

The new bond types are: 

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1) 

EGFR_RC(Y1148!1).Shc(PTB!1) 

Grb2_RC(SH3!1).Sos(dom!1) 

The updated list of molecule types is 

EGFR(Y1068~0~P,Y1148) 

Grb2(SH2,SH3) 

Shc(PTB) 

Sos(dom) 

EGFR_RC(Y1068_RC~0~P,Y1148) 

Grb2_RC(SH2_RC,SH3) 
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The updated list of bond types is: 

EGFR(Y1068!1).Grb2(SH2!1) 

EGFR(Y1148!1).Shc(PTB!1) 

Grb2(SH3!1).Sos(dom!1) 

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1) 

EGFR_RC(Y1148!1).Shc(PTB!1) 

Grb2_RC(SH3!1).Sos(dom!1) 

Using the variant energy patterns, we can compute maximum distance of each molecule from a 

reaction center: 

EGFR -> 0, Grb2-> 0, Shc -> 1, Sos -> 1 

Using the updated molecule types, we can compose a set of seed “species” (𝑆𝑆𝑀𝑀): 

EGFR(Y1068~0,Y1148) 

Grb2(SH2,SH3) 

Shc(PTB) 

Sos(dom) 

EGFR_RC(Y1068_RC~0,Y1148) 

Grb2_RC(SH2_RC,SH3) 

Using the updated molecule types and bond types, we can compose expander rules 𝐸𝐸𝑟𝑟: 

EGFR(Y1068~0!?) <-> EGFR(Y1068~P!?) 

EGFR_RC(Y1068_RC~0!?) <-> EGFR_RC(Y1068_RC~P!?) 
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EGFR(Y1068)+Grb2(SH2) <-> EGFR(Y1068!1).Grb2(SH2!1) 

EGFR(Y1148) + Shc(PTB) <-> EGFR(Y1148!1).Shc(PTB!1) 

Grb2(SH3) + Sos(dom) <-> Grb2(SH3!1).Sos(dom!1) 

EGFR_RC(Y1068_RC) + Grb2_RC(SH2_RC) <->  

EGFR_RC (Y1068_RC!1).Grb2_RC(SH2_RC!1) 

EGFR_RC(Y1148) + Shc(PTB) <-> EGFR_RC(Y1148!1).Shc(PTB!1) 

Grb2_RC(SH3) + Sos(dom) <-> Grb2_RC(SH3!1).Sos(dom!1) 

Performing network generation using the seed species and expander rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟), 

and using the constraints mentioned in Section 3.4.6, we get the following state space of species 

(𝑆𝑆𝑀𝑀′): 

EGFR(Y1068~0,Y1148)  

Grb2(SH2,SH3)  

Shc(PTB) 

Sos(dom)  

EGFR_RC(Y1068_RC~0,Y1148)  

Grb2_RC(SH2_RC,SH3)  

EGFR_RC(Y1068_RC~P,Y1148)  

EGFR_RC(Y1068_RC~0!1,Y1148).Grb2_RC(SH2_RC!1,SH3)  

EGFR_RC(Y1068_RC~0,Y1148!1).Shc(PTB!1)  

Grb2_RC(SH2_RC,SH3!1).Sos(dom!1)  



 144 

EGFR_RC(Y1068_RC~P!1,Y1148).Grb2_RC(SH2_RC!1,SH3)  

EGFR_RC(Y1068_RC~P,Y1148!1).Shc(PTB!1)  

EGFR_RC(Y1068_RC~0!1,Y1148).Grb2_RC(SH2_RC!1,SH3!2).Sos(dom!2) 

EGFR_RC(Y1068_RC~P!1,Y1148).Grb2_RC(SH2_RC!1,SH3!2).Sos(dom!2)  

EGFR_RC(Y1068_RC~0!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3).Shc(PTB!2)  

EGFR_RC(Y1068_RC~0!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3!3).Shc(PTB!2).Sos(dom!3)  

EGFR_RC(Y1068_RC~P!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3).Shc(PTB!2)  

EGFR_RC(Y1068_RC~P!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3!3).Shc(PTB!2).Sos(dom!3)  

Then we expand the energy rule using only these species, and then remove the reaction center tags. 

This results in the four variants: 

1. EGFR(Y1068~P,Y1148) + Grb2(SH2,SH3) -> 

EGFR(Y1068~P!1,Y1148).Grb2(SH2!1,SH3)  

2. EGFR_RC(Y1068~P,Y1148) + Grb2(SH2,SH3!1).Sos(dom!1) -> 

EGFR(Y1068~P!1,Y1148).Grb2(SH2!1,SH3!2).Sos(dom!2)  

3. EGFR(Y1068~P,Y1148!1).Shc(PTB!1) + Grb2(SH2,SH3) -> 

EGFR(Y1068~P!1,Y1148!2).Grb2(SH2!1,SH3).Shc(PTB!2) 

4. EGFR(Y1068~P,Y1148!1).Shc(PTB!1) + Grb2(SH2_RC,SH3!1).Sos(dom!1) -> 

EGFR(Y1068~P!1,Y1148!2).Grb2_RC(SH2!1,SH3!3).Shc(PTB!2).Sos(dom!3)  
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Computing the energy of formation for each of these rules using energy pattern matches (using 

Definition 3.3-42) results in a unique free energy change expression for each rule. The free energy 

changes in the forward direction for each reaction are as follows: 

1. E_RG1+E_RG2  

2. E_RG1+E_RG2+(-E_GS) 

3. E_RG1+(-E_RS)+E_RGS 

4. E_RG1+(-E_RS)+E_RGS+(-E_GS) 

3.5 CONCLUDING REMARKS 

The work in this chapter was geared towards bridging two recent advances in rule-based modeling: 

the energy-based rule-based model specification [34] and the network-free simulation algorithm 

[39]. First I showed that only overlaps of energy patterns with a reaction center need to be 

considered. Then I showed that when energy rules are limited to a single transformation, pre-

processing the rules to expand them is sufficient to generate reaction classes that can be used for 

network-free simulation. The procedure also requires a finite number of pre-processing steps, and 

does not require modifying the network-free simulation algorithm. 
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4.0  MODEL CONSTRUCTION USING REACTION RULE MODULES 

4.1 SYNOPSIS 

Rule-based models are being built with increasingly large sizes, as evidenced by some of the 

models referenced in this thesis [44]–[47]. Therefore, improving and scaling up rule-based model 

construction is an active area of research [65], [84]. In Section Error! Reference source not found. 

Error! Reference source not found., I detail some of the issues that hinder model construction. 

Section 4.3 CURRENT APPROACHES, I review some of the current strategies used in building 

larger rule-based models. In Section Error! Reference source not found. Error! Reference source 

not found., I provide an additional approach that complements the current approaches. I 

demonstrate this approach using an example of Ras mutants in which there are many possible 

models for explaining the behavior. 
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4.2 SOURCES OF COMPLEXITY IN MODEL CONSTRUCTION 

4.2.1 Contextual Complexity 

The same kinetic process can occur with different rates under different local conditions. 

Enumerating the combinations of local conditions that lead to the different kinetic variants can be 

a time consuming process. This is especially true, when there are cooperative interactions that 

occur on the same molecule. By the principle of detailed balance, the equilibrium constants of a 

loop of reaction mechanisms have to be constrained, as demonstrated in Section Error! Reference 

source not found. Error! Reference source not found.. Ignoring these constraints lead to too many 

unconstrained parameters and incorrect models. However, identifying such loops in reaction 

mechanisms is not trivial, e.g. in a model with 4 molecule types and 24 rules, Faeder et al. identify 

4 different loops that need to be constrained [35]. 

4.2.2 Model Hypotheses 

Usually, multiple hypotheses are available regarding how the kinetic classes are structured. These 

variations can be simple changes to rule parameters, e.g. say in Hypothesis 1, A binds B at a certain 

rate: 

A(b) + B(a) -> A(b!1).B(a!1)  k 

In Hypothesis 2, let the rate be reduced by a certain factor. 

A(b) + B(a) -> A(b!1).B(a!1)  f*k 
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Now, these are specific hypotheses about a single rule. A model hypothesis could involve many 

combinations of these hypotheses over the entire rule set, and each combination would be a valid 

model. Enumerating the combinations manually can be a cumbersome process. 

4.2.3 Variant Molecule Types 

A common experimental procedure is to modify the participating molecules (such as by truncating 

a domain or removing a phosphorylation site), and examining the changes in behavior, which will 

lead to functional hypotheses about the individual molecules as well as the role they play in the 

larger system. However, when building a rule-based model with many similar molecule types, 

reaction rules involving each molecule type have to be replicated for all the variants. When 

performed manually, this can consume a lot of time and resources.  

For example, in a model of ErbB family signaling [46], the general paradigm is that receptors can 

recruit ligands, and also form homo- and hetero- dimers, and there is cooperativity between the 

two processes. The species in the model are monomers (say, R), homodimers, say (RR), 

heterodimers (say RR’), and each of these species can bind one or two ligand molecules. Given 

that the model has two ligand types and four receptor types, enumerating the combinations that 

lead to ligand-binding and dimerization reaction classes comprises a large fraction of the 625 rules 

in the models. Not only so, each combination of cooperative interactions that results in a loop has 

to be cross-checked for detailed balance. 
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4.3 CURRENT APPROACHES 

4.3.1 The Macro Approach 

PySB [84] is a recent modular construction framework that was developed for rule-based models. 

Here, Python methods that build reaction rules are used to build and aggregate rule sets. For 

example, say a method was defined: 

def catalyze([<moleculetypes>]): 

 …. 

Say the catalysis method performs a simple of operation of taking two patterns, and building a 

catalysis rule set, such as: 

E(s) + S(e~Y) <-> E(s!1).S(e~Y!1)   k1,k2 

E(s!1).S(e~Y!1) -> E(s) + S(e~pY) kcat 

If there are many combinations of enzymes and substrates, then the method can be called 

repeatedly on each combination. For example, passing the method the enzyme E1 and substrate 

S1, we can generate the rules, 

E1(s) + S1(e~Y) <-> E1(s!1).S1(e~Y!1)   k1,k2 

E1(s!1).S1(e~Y!1) -> E1(s) + S1(e~pY) kcat 

The final model is constructed by aggregating calls to rule construction methods into a single 

program.  
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4.3.2 The Typing Approach 

In MetaKappa [85], the language enables the systematic variation of molecule types. For example, 

suppose we consider both MEK1 and MEK2 variants in a model, then, first we define a generic 

molecule type (Kappa syntax – %gen = generic molecule type): 

%gen: MEK(S~Y,ST~Y) 

Then we introduce concrete variations of the molecule type (Kappa syntax – %conc = concrete 

molecule type): 

%conc: MEK1 = MEK[S\{S218} ST\{S222}] 

%conc: MEK2 = MEK[S\{S222} ST\{S226}] 

Here component types from the generic type (S,ST) are replaced with concrete variants (S218, 

etc.) Now we are allowed to define rules on both generic and concrete types: 

MEK(S~pY) -> MEK(S~Y) 

MEK1(S218~pY) -> MEK(S218~Y) 

When compiling the model, rules constructed on generic types are expanded automatically to 

corresponding rules on the concrete types. 

4.3.3 The Energy-based Approach 

Energy based approaches [50]–[52] handle the combinatorial complexity that arises from allosteric 

and cooperative interactions. In energy-based BioNetGen, energy patterns are first specified by 

the user and assigned energy values: 

A(b!1).B(a!1) G_ab 
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B(a,x~0) G_b0 

B(a,x~1) G_b1 

Then, the model is specified using “energy-rules”,  

A(b) + B(a) -> A(b!1).B(a!1)  Arrhenius(phi, E_ab) 

When specified in this way, the free energy values (and thereby the reaction rate parameters) of 

reactions generated from the rule can be calculated by counting energy pattern matches to reactant 

and product sides. For example, the rule generates the following reactions with the following 

energies. 

A(b) + B(a,x~0) -> A(b!1).B(a!1,x~0) -G_b0 +G_ab 

A(b) + B(a,x~1) -> A(b!1).B(a!1,x~1) -G_b1 +G_ab 

This provides a high degree of compression for cooperative processes, because it is not necessary 

for the modeler to provide a separate rule and rate constant for each reaction class. Providing a set 

of energy rules and energy patterns ensures that all combinations of patterns that lead to contextual 

variants of the rule can be enumerated. 

4.4 REACTION RULE MODULES 

In the macro approach, the aggregable model object is the call to the Python rule-building method. 

However, it is not useful to create variations of pre-existing rule-sets. On the other hand, 

MetaKappa and energy-based rules provide a significant compression by identifying higher-order 

abstractions such as types of molecule types and energy patterns. Here, I propose the idea of a 
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reaction module that complements the above approaches. Using a prototype implementation of 

reaction modules for BioNetGen, I demonstrate the utility of the approach. 

4.4.1 Motivating Example 

Consider the molecule Ras, which is a small GTPase that is important for growth factor signaling. 

Ras mutations are widespread in cancer, and are therefore a target of intense experimental scrutiny. 

The Ras molecule has a nucleotide binding site, which binds GTP or GDP. The GTP-bound state 

is called ‘active’, and the Ras molecule can then bind effector molecules and activate them. GTP-

bound Ras slowly hydrolyzes GTP into GDP, which is the inactive form. Other molecule types 

regulate Ras activation and inactivation, e.g. RasGEF which promotes the release of GDP from 

the inactive form leading to its subsequent activation, and RasGAP which increase the endogenous 

GTP-ase activity of Ras, leading to its subsequent inactivation. In a study by Stites et al [86], 

multiple hypothesis are suggested for how Ras mutants can increase Ras activation: reduced 

GTPase activity, GAP insensitivity, increased effect affinity, etc. Here, we use this system as an 

example where model building is hindered by multiple overlapping model hypotheses, and show 

how a reaction-module approach can be useful. 

4.4.2 Basic Model 

We first build the wildtype model. Ras nucleotide binding and hydrolysis is represented as: 

Ras(nuc~u,bs) <-> Ras(nuc~gdp,bs)  kf_gdp, kr_gdp 

Ras(nuc~u,bs) <-> Ras(nuc~gtp,bs)  kf_gtp, kr_gtp   
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Ras(nuc~gtp,bs) -> Ras(nuc~gdp,bs) k_hyd 

RasGAP activity, which is an enhancement of GTP-hydrolysis, is modeled as 

Ras(nuc~gtp,bs) + GAP(ras) <-> Ras(nuc~gtp,bs!0).GAP(ras!0) kf_GAP,kr_GAP 

Ras(nuc~gtp,bs!0).GAP(ras!0) -> Ras(nuc~gdp,bs) + GAP(ras)   kcat_GAP 

RasGEF activity, which is enhanced release of bound nucleotide, is modeled as 

Ras(nuc~gdp,bs) + GEF(ras) <-> Ras(nuc~gdp,bs!0).GEF(ras!0)  kf_GEF_0,kr_GEF_0 

Ras(nuc~gdp,bs!0).GEF(ras!0) -> Ras(nuc~u,bs) + GEF(ras) kcat_GEF1 

Ras(nuc~gtp,bs) + GEF(ras) <-> Ras(nuc~gtp,bs!0).GEF(ras!0)  kf_GEF_1,kr_GEF_1 

Ras(nuc~gtp,bs!0).GEF(ras!0) -> Ras(nuc~u,bs) + GEF(ras) kcat_GEF1 

Activated Ras binds effector molecules which lead to subsequent signaling events. 

Ras(nuc~gtp,bs) + Eff(ras) <-> Ras(nuc~gtp,bs!0).Eff(ras!0) kf_Eff, kr_Eff 

Let K_gdp, K_gtp, K_GAP, K_GEF1, K_GEF2 and K_eff be the corresponding equilibrium 

binding constants of each binding event respectively. 

4.4.3 Mechanistic Hypotheses 

Stites et al. [86] experimentally explore multiple mechanistic hypotheses about Ras mutations. We 

show how these hypotheses affect the modeled rules. 
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4.4.3.1 Reduced GTPase activity (RGA) 

A Ras mutant could slow down the endogenous GTPase activity, leading to persistence of the 

activated state. In the model, this assumption would affect the k_hyd parameter, which would be 

reduced by a factor, say f_RGA*k_hyd. 

4.4.3.2 GAP Insensitivity (GI) 

A Ras mutant could be insensitive to GAP-induced acceleration of hydrolysis. Thus, even when 

GAP binds, inactivation proceeds only at the endogenous rate. In the model, this assumption would 

involve replacing the k_cat_GAP parameter with the endogenous hydrolysis rate k_hyd. 

4.4.3.3 Increased Effector Affinity (IEA) 

A Ras mutant could bind the effector stronger than wildtype Ras, which would lead to increased 

downstream activation. In the model, this would mean that the effector binding affinity K_eff is 

multiplied by a factor f_IEA. 

4.4.4 Combinatorial Complexity in the Hypotheses Space 

Note that the hypotheses above do not have to be mutually exclusive. Some combination of them 

could realistically be present in a Ras mutant. Also, the mechanisms can influence each other as 

well. For example, GAP insensitivity results in the GAP-bound catalytic rate being equal to the 

endogenous rate of hydrolysis, but the endogenous rate itself can be modified by the reduced 

GTPase activity hypotheses. Thus every combination of hypotheses is a different model. 

Consider a set of Boolean variables (which take values 0 or 1) which can be used to 

formulate the combinations. Let b_mut be the variable that indicates whether a mutant is present 
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or not, b_GI indicates GAP insensitivity, b_RGA indicates reduced GTPase activity and b_IEA 

indicates increased effector affinity. In total there are 1 wild type + 2^3 mutant models, i.e. 9 in 

all. Here we demonstrate how each combination of hypotheses can be built using reaction modules. 

4.4.5 Building Reaction Modules 

Here, we define a reaction module as a set of rules and associated rate expressions and parameters 

to which systematic modification operations can be defined. For demonstration, we use a module 

that models Ras interaction with GAP: 

Module Ras-GAP-basic 

Rule[1] = Ras(nuc~gtp,bs) + GAP(ras) <-> Ras(nuc~gtp,bs!0).GAP(ras!0) 

Rate[1] = kf_gap, kr_gap 

 Rule[2] = Ras(nuc~gtp,bs!0).GAP(ras!0) -> Ras(nuc~gdp,bs) + GAP(ras)  

 Rate[2] = kcat_gap 

Param = kf_gap, kr_gap, kcat_gap 

Now a modification can be defined where we add the context Ras(t~wt) 

Module Ras-GAP-wt gets Ras-GAP-basic 

 AddContext Ras(t~wt) 

Similarly, we can define a module with the added context Ras(t~mut), indicating mutant. 

Module Ras-GAP-mut gets Ras-GAP-basic 

 AddContext Ras(t~mut) 
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Now, we can define variations of the mutant module under each hypothesis. Here, we define a 

modification that replaces one parameter expression with another. 

Module Ras-GAP-mut-GI gets Ras-GAP-mut 

 SwapParam kcat_gap k_hyd 

Module Ras-GAP-mut-GI-RGA gets Ras-GAP-mut 

 SwapParam kcat_gap f_RGI*k_hyd 

Now, the logic for building rules and rate expressions for each combination of hypotheses is 

embedded within each module.  

4.4.6 Aggregating Modules using Boolean Variables 

The RasGAP portion of the model with its alternate variants can be specified with Boolean 

variables: 

if(b_mut==0) 

 load ras-GAP 

else 

 load ras-GAP-wt 

 if(b_GI==1) 

  if(b_RGA==1) 

   load ras-GAP-mut-GI-RGA 

  else 
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   load ras-GAP-mut-GI 

 else 

  load ras-GAP-mut 

From the specified logic, the expanded rules and rate expressions are automatically calculated. For 

example, the model will have the rule: 

Ras(nuc~gtp,bs!0,t~mut).GAP(ras!0) -> Ras(nuc~gdp,bs,t~mut) + GAP(ras) 

The rate expression for the rule will be compiled as 

b_GI*(b_RGA*f_RGI*k_hyd + (1-b_RGA)*k_hyd) + (1-b_GI)*kcat_GAP 

Evaluating the expression for different settings of b_RGA and b_GI will result in the right 

parameter expressions under those assumptions: 

b_GI=0 b_RGA=0 kcat_GAP 

b_GI=0 b_RGA=1 kcat_GAP   

b_GI=1 b_RGA=0 k_hyd 

b_GI=1 b_RGA=1 f_RGI*k_hyd 

4.4.7 Comparison with Current Approaches 

Rule sets are not distinct objects with attributes and methods in the macro approach.  To build this 

model with macros, we would have to define three separate rule-building methods for each 

hypotheses combination and then aggregate them. Here, there is an added layer of abstraction in 

the form of the Rule Module object, and defining standard procedures to modify them minimizes 

the effort involved in building individual rules. 



 158 

If we were to build this model using the typing approach, we would define two concrete 

variants of the generic Ras, but the compiled expression for the different combinations of 

hypotheses has to be constructed manually. Adding a Rule Module layer can therefore complement 

the typing approach. 

The energy-based specification can also benefit from the module strategy, by defining 

Energy Pattern Modules in addition to Rule Modules. Energies for pattern assignments can then 

be compiled using Boolean variables that depend on the model hypotheses, e.g.  

G_patt = b_1*G_1 + (1-b_1)*b_2*G_2 

This enables building of models where the complexity of assumptions can be tuned. For example, 

cooperative energy terms can be added sequentially for 2-molecule patterns only under one 

assumption, for 2-molecule and 3-molecule patterns under another assumption, and so on. 

A caveat for the rule module approach is complex rules with many instances of the same 

type would require complex modification strategies. For example, in the case demonstrated here, 

there is only one Ras molecule per rule which was easily modified by adding context. However, 

suppose there was a rule with 2 Ras molecules, and n Ras variants, then n^2 variants would need 

to be generated systematically. This could be co-ordinated with the macro approach. 

Macros, typing, energy rules and reaction modules all modularize different aspects of rule-

based modeling and therefore can be used to complement each other. It is possible that a rule-

based specification of the future would be able to use all four strategies in a seamless manner. 
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5.0  CONCLUSION 

Rule-based modeling is a graph-based approach for specifying biochemical kinetics[4], [25]. In a 

rule-based model, structured graphs called patterns specify parts of molecules and complexes, and 

a reaction rule specifies graph operations on a combinations of patterns. A reaction rule can be 

used to represent a class of many reactions by specifying the modifications common to the class 

(say, binding or phosphorylation), and the minimal configuration of sites necessary for that class 

(say, a phosphorylated state, or a particular arrangement of non-covalent bonds)  [24], [33], [34]. 

Mapping such reaction classes to rate laws enables an explicit site-based kinetic specification that 

is typically more compact than the equivalent reaction network because of sparse dependence 

relations between sites. The equivalent reaction network and the corresponding combinatorially 

complex state space of molecules and complexes can be generated automatically from the rule 

based model if such a finite network exists [24], [33], [34]. Compact rule-based models have been 

constructed for systems with combinatorially complex reaction networks [35], [79], and the 

reaction rule has been used as a portable data object to build databases of kinetic interactions [44], 

[46]. In this work, I provided new advances in the following aspects of the rule-based framework: 

building models, visualizing model content and simulating models. 

In Chapter 2, I first reviewed current diagramming approaches, both manual and 

automated, for rule-based models. Multiple standards exist for diagrams constructed by hand [11], 

[57], [59]. A few automated tools exist for rule-based models, but they are typically not global 

[28], not complete as a visual representation of signaling [32], or use a limited model-building 

framework that is favorable for visualization[65]. Here, I made two contributions: a new method 

for visualizing individual rules (called compact rule visualization), and a set of procedures for 
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generating a global visualization of signal flow and regulation from a given set of reaction rules 

(called the regulatory graph). I also provided coarse-graining procedures that can compress the 

automatically generated regulatory graph into compact pathway diagrams. I demonstrated the 

method’s scalability with regard to number of rules and usefulness in identifying cascades and 

feedback loops using case studies [35], [44], [46].  

In Chapter 3, I addressed a discrepancy between two recent advances in rule-based 

modeling and simulation. The first advance is the network-free simulation algorithm, which 

enables simulation of a rule-based model without having to generate the corresponding reaction 

network [39], [40]. This is accomplished by treating each reaction rule as a reaction class whose 

rate can be calculated by counting matches of the reactant patterns into the simulation system[39]. 

The second advance is the energy-based rule-based specification, which allows compact 

specification of cooperative processes without breaking detailed balance[50]–[52]. This is 

accomplished by specifying free energies of molecules and complexes as a sum of pattern matches 

weighted by energy values and computing rates of reactions from reaction free energies[50]. The 

discrepancy arises when one attempts to do a network-free simulation of an energy-based rule-

based model. The rate at which a reaction fires depends on the free energy of the reaction which 

in turn depends on both reactants and products, but the identity and structure of the products are 

not available in a network-free simulation until after the reaction has fired. The solution provided 

here was to expand the energy rule into distinct “normal” rules whose reaction free energies can 

be computed uniquely, and to use the generated rules in a network-free simulation.  

In Chapter 4, I discussed common approaches in the rule-based literature for improving 

and modularizing model construction and provided an additional method to supplement the current 

approaches. The current approaches include the macro approach[84], where a model is built using 
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programming calls to methods that build rules, the typing approach[85], where molecule types are 

themselves arranged in a hierarchy of types and rules can be defined at any level on the hierarchy, 

and the energy-based approach[50], where pattern matches are mapped to energy values and free-

energy accounting is automated for different combinations of matches. The approach I provided 

involves treating sets of rules as rule modules on which systematic modifications can be specified. 

Model construction can then be performed as Boolean combinations of rule modules, enabling 

automated compilation of rate expressions when different rates are supplied under different 

Boolean settings. This is useful when the same set of reaction rules can be parameterized in 

different ways depending on combinations of model hypotheses.  

In recent years, attention has been paid to the fact that detailed mechanistic models are 

necessary to be able to understand, predict and perturb biochemical systems. Outside the rule-

based framework, reaction networks of specific systems have tended to increase in size over time 

(e.g. [14], [87], [88]). A model of a whole unicellular organism has been built in which reaction 

networks have been used as submodels[48]. Rule-based modelers have improved on model-

building efforts, using the reaction rule as a modular unit in building increasingly large databases 

of kinetic interactions(e.g. [35], [44], [46], [47], [79]). I expect the regulatory graph abstraction 

developed in Chapter 2, paired with sophisticated grouping algorithms [89], to be useful for 

interactively navigating and visualizing these databases. The regulatory graph, by virtue of being 

a reduced model representation, will also be useful in other contexts, such as visualizing simulation 

fluxes [81].  

Another major problem with large sets of rules is the manual verification of detailed 

balance and the complexity involved in specifying cooperative processes. For example, the large 

models of Creamer et al. [46] and Chylek et al. [44] have many loops of binding reaction 
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mechanisms that need to be manually enumerated and verified for satisfying detailed balance. This 

is addressed elegantly by the energy-based rule-based specification: energy rules specify minimal 

context, energy patterns specify cooperativity parameters, and variations of processes due to 

cooperative interactions can be enumerated automatically while preserving detailed balance [50]–

[52]. Therefore, I expect the energy-based specification to play a bigger role in the development 

of rule databases in the future, and it should be the default way to encode reversible non-covalent 

binding interactions. The methods developed in Chapter 3 should then be important for the 

simulation of models built from these databases.  

Finally, mechanistic models of biochemistry typically have a large number of free 

parameters, and experimental data rarely constrain all model parameters to narrow bands of values. 

Studies show that for a single model fitted to a particular set of data, different directions in 

parameter space are often constrained to different extents [90], although it is still possible to extract 

falsifiable predictions from such models [91]. This phenomenon can be exploited too, for example, 

it is possible to select over the space of model perturbations to design experiments, optimizing for 

how well the results of the experiment are expected to constrain parameter values[92], [93]. When 

multiple model hypotheses are involved, models can be selected using probabilistic fitness 

measures for how well the model explains the data (e.g. [94], [95]), such as the Bayes factor ratio 

[96]. The methods developed in Chapter 4 will be useful for building nested models based on 

modular hypotheses about kinetic interactions in the system, which can then be subjected to 

probabilistic model selection as above. 
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