
i

RULE-BASED MODELING OF CELL SIGNALING: ADVANCES IN MODEL

CONSTRUCTION, VISUALIZATION AND SIMULATION

by

John Arul Prakash Sekar

B.Tech. Industrial Biotechnology, Anna University, 2007

Submitted to the Graduate Faculty of

School of Medicine in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF MEDICINE

This dissertation was presented

by

John Arul Prakash Sekar

It was defended on

December 4th, 2015

and approved by

James R. Faeder, Computational & Systems Biology

Daniel M. Zuckerman, Computational & Systems Biology

Chakra S. Chennubhotla, Computational & Systems Biology

Alexander D. Sorkin, Cell Biology

Russell S. Schwartz, Biological Sciences, Carnegie-Mellon University

Thesis Director: Daniel M. Zuckerman, Computational & Systems Biology

Dissertation Advisor: James R. Faeder, Computational & Systems Biology

iii

Copyright © by John Arul Prakash Sekar

2015

Rule-based Modeling of Cell Signaling: Advances in Model Construction, Visualization

and Simulation

John Arul Prakash Sekar, PhD

University of Pittsburgh, 2015

iv

Rule-based modeling is a graph-based approach to specifying the kinetics of cell signaling

systems. A reaction rule is a compact and explicit graph-based representation of a kinetic process,

and it matches a class of reactions that involve identical sites and identical kinetics. Compact rule-

based models have been used to generate large and combinatorially complex reaction networks,

and rules have also been used to compile databases of kinetic interactions targeting specific cells

and pathways. In this work, I address three technological challenges associated with rule-based

modeling. First, I address the ability to generate an automated global visualization of a rule-based

model as a network of signal flows. I showed how to analyze a reaction rule and extract a set of

bipartite regulatory relationships, which can be aggregated across rules into a global network. I

also provide a set of coarse-graining approaches to compress an automatically generated network

into a compact pathway diagram, even for models with 100s of rules. Second, I resolved an

incompatibility between two recent advances in rule-based modeling: network-free simulation

(which enables simulation without generating a reaction network), and energy-based rule-based

modeling (which enables specifying a model using cooperativity parameters and automated

accounting of free energy). The incompatibility arose because calculating the reaction rate requires

computing the reaction free energy in an energy-based model, and this requires knowledge of both

reactants and products of the reaction, but the products are not available in a network-free

simulation until after the reaction event has fired. This was resolved by expanding each energy-

based rule into a number of normal reaction rules for which reaction free energies can be calculated

unambiguously. Third, I demonstrated a particular type of modularization that is based on treating

a set of rules as a module. This enables building models from combinations of modular hypotheses

and supplements the other modularization strategies such as macros, types and energy-based

compression.

v

TABLE OF CONTENTS

TABLE OF CONTENTS .. V

LIST OF FIGURES ... X

LIST OF TABLES ... XIII

ACKNOWLEDGEMENTS .. XIV

1.0 RULE-BASED MODELING – A REVIEW .. 1

1.1 MECHANISTIC MODELS OF CELL SIGNALING...................................... 1

1.2 REACTION NETWORKS ... 2

1.2.1 Specification ... 2

1.2.2 Community Efforts .. 3

1.2.3 Combinatorial Complexity ... 4

1.2.4 Issues ... 5

1.3 RULE-BASED MODELS ... 7

1.3.1 Graph syntax – Molecules and Complexes.. 8

1.3.2 Patterns ... 9

1.3.3 Reaction Rules.. 11

1.3.4 Model Specification and Simulation .. 12

1.3.5 Outstanding Issues ... 13

2.0 VISUALIZATION OF RULE-BASED MODELS .. 15

2.1 SYNOPSIS .. 15

2.2 VISUAL CONCERNS ... 17

vi

2.2.1 Content versus Intent .. 17

2.2.2 Local versus Global ... 18

2.2.3 Flow versus Adjacency .. 18

2.2.4 Art versus Automation .. 19

2.2.5 Abstraction versus Enumeration ... 19

2.3 VISUAL STANDARDS ... 20

2.3.1 The Molecular Interaction Map (MIM) .. 21

2.3.2 The Systems Biology Graphical Notation (SBGN) 22

2.3.3 The Extended Contact Map .. 26

2.4 VISUALIZATION OF RULE-BASED MODELS – STATE OF THE ART28

2.4.1 The Reaction Petri Net .. 28

2.4.2 The Site Graph ... 30

2.4.3 The Rule Petri Net ... 30

2.4.4 The Formal Contact Map ... 32

2.4.5 The Rule Influence Diagram .. 33

2.4.6 The Kappa Story .. 34

2.4.7 Simmune Network Viewer .. 34

2.4.8 Rxncon Regulatory Graph .. 36

2.5 GRAPH ABSTRACTIONS FOR RULE-BASED VISUALIZATIONS 40

2.5.1 Preliminary Definitions ... 43

2.5.2 Structure Graphs ... 48

2.5.3 Atomic Patterns ... 55

2.5.4 Regulatory Graphs .. 57

vii

2.5.5 Complexity Analysis .. 67

2.5.6 Comparisons to Other Approaches.. 68

2.5.7 Implementation .. 70

2.6 VISUALIZATION CASE STUDIES ... 72

2.6.1 Visualizing Mechanisms in Detail .. 73

2.6.2 Visualizing Interactions of Mechanisms .. 76

2.6.3 Visualizing Models as Pathway Diagrams... 77

2.6.4 Visualizing Large Libraries of Rules ... 87

2.6.5 Comparison of Visualization Size and Complexity 97

2.7 CONCLUDING REMARKS .. 99

3.0 ENERGY-BASED MODELS AND NETWORK-FREE SIMULATION 100

3.1 SYNOPSIS .. 100

3.2 MOTIVATING EXAMPLE ... 101

3.2.1 Energy-based Model .. 101

3.2.2 Network-free Simulation ... 105

3.2.3 Network-free Simulation with Energy-based Rules 107

3.3 BIONETGEN THEORY FOR MODEL SPECIFICATION AND

SIMULATION .. 108

3.3.1 Patterns ... 108

3.3.2 Pattern Embeddings .. 110

3.3.3 Reaction Rules.. 111

3.3.4 Ensembles, Models and Rate Constants .. 114

3.3.5 Network Generation from a Rule-based Model .. 117

viii

3.3.6 Network-based Stochastic Simulation ... 119

3.3.7 Energy-based Rule-based Formulation ... 120

3.3.8 Energy-based Network Generation and Simulation 123

3.3.9 Network-free Stochastic Simulation .. 124

3.4 ENERGY-BASED NETWORK-FREE SIMULATION 126

3.4.1 The Problem ... 126

3.4.2 Rule Expansion Strategy ... 128

3.4.3 Building Molecule and Bond Types for Local Context 129

3.4.4 Tagging the Reaction Center .. 129

3.4.5 Topology Constraints .. 130

3.4.6 Context Expansion ... 131

3.4.7 Energy Rule Expansion ... 132

3.4.8 Scalability Concerns .. 132

3.4.9 Alternate Strategies ... 133

3.4.10 Implementation Issues ... 134

3.4.11 Example 1: Bivalent Ligand Bivalent Receptor 134

3.4.12 Example 2: EGFR-Grb2-Shc .. 139

3.5 CONCLUDING REMARKS .. 145

4.0 MODEL CONSTRUCTION USING REACTION RULE MODULES 146

4.1 SYNOPSIS .. 146

4.2 SOURCES OF COMPLEXITY IN MODEL CONSTRUCTION 147

4.2.1 Contextual Complexity.. 147

4.2.2 Model Hypotheses .. 147

ix

4.2.3 Variant Molecule Types .. 148

4.3 CURRENT APPROACHES ... 149

4.3.1 The Macro Approach .. 149

4.3.2 The Typing Approach ... 150

4.3.3 The Energy-based Approach .. 150

4.4 REACTION RULE MODULES .. 151

4.4.1 Motivating Example .. 152

4.4.2 Basic Model .. 152

4.4.3 Mechanistic Hypotheses .. 153

4.4.4 Combinatorial Complexity in the Hypotheses Space 154

4.4.5 Building Reaction Modules ... 155

4.4.6 Aggregating Modules using Boolean Variables .. 156

4.4.7 Comparison with Current Approaches ... 157

5.0 CONCLUSION ... 159

BIBLIOGRAPHY ... 163

x

LIST OF FIGURES

Figure 1-1 An example of combinatorial complexity. .. 7

Figure 2-1 Summary of contributions to visualization of rule-based models. 16

Figure 2-2. Molecular Interaction Map of the Faeder et al. model of signaling from the FcεRI

receptor. .. 22

Figure 2-3. SBGN Process Description Diagram of MAPK signaling from the insulin growth

factor receptor. .. 24

Figure 2-4. SBGN Entity Relationship diagram of CAMKII signaling. 25

Figure 2-5. Activity flow diagram of the epidermal growth factor signaling pathway. 26

Figure 2-6. Extended contact map of FcεRI signaling modeled in Faeder et al. 27

Figure 2-7. Petri net of a model of three reactions. .. 29

Figure 2-8. Site graph of a pattern A(b!1).B(a!1,c~P). ... 30

Figure 2-9. Rule Petri nets and partial overlaps. ... 31

Figure 2-10. Contact map of FcεRI signaling modeled in Faeder et al. 33

Figure 2-11. Rule influence diagram. ... 33

Figure 2-12. Kappa story showing a causal sequence of rules. .. 34

Figure 2-13. Simmune Network Viewer ... 35

Figure 2-14. Simmune Network Viewer cannot show signal flow mediated through ‘features’

(internal states in BioNetGen). ... 36

Figure 2-15. Regulatory graph from the Rxncon specification. ... 38

Figure 2-16. Example of a real complex that cannot be represented in Rxncon. 39

xi

Figure 2-17 Outline of the rule visualization methods ... 42

Figure 2-18. Pattern structure graph and site graph. ... 50

Figure 2-19. Petri net of Rule ... 51

Figure 2-20. Synthesizing the rule structure graph from a reaction rule. 53

Figure 2-21. Compact rule visualization. .. 55

Figure 2-22. Atomic Patterns and the Regulatory Graph. .. 60

Figure 2-23. Resolving Wildcards. ... 61

Figure 2-24. Merging Regulatory Graphs. .. 62

Figure 2-25. Removing redundant nodes (called background) from the model regulatory graph 63

Figure 2-26. Grouping and Collapsing nodes on the regulatory graph. .. 66

Figure 2-27. Compact rule visualization of rules R3 and R6 from Faeder et al. 74

Figure 2-28. Compact rule visualization of rules R4 and R7 from Faeder et al. 76

Figure 2-29. Regulatory graph of rules R3, R4, R6 and R7 ... 77

Figure 2-30. Formal contact map of the Faeder et al. model .. 80

Figure 2-31. Complete regulatory graph of the Faeder et al. model of Fc𝜀𝜀RI signaling 82

Figure 2-32. Pruned regulatory graph of the Faeder et al. model ... 83

Figure 2-33. Grouped regulatory graph of the Faeder et al model ... 84

Figure 2-34. Collapsed regulatory graph of the Faeder et al. model .. 85

Figure 2-35. Collapsed regulatory graph of Faeder et al. model, with an alternative grouping of

atomic patterns provided by the user. ... 86

Figure 2-36 Regulatory graph visualization of the Creamer et al. model 89

Figure 2-37. Regulatory graph visualization of the Chylek et al. model 94

xii

Figure 2-38. Subset of the Chylek et al. regulatory graph, showing interactions of the SrcKinases

(Lyn and Fyn) with the Fc𝜀𝜀RI receptor .. 95

Figure 2-39. Subsets of the Chylek et al. regulatory graph, highlighting other signaling motifs . 96

Figure 2-40 Analysis of graph size and complexity for different visualizations. 97

xiii

LIST OF TABLES

Table 2-1. Adjacency restrictions for different node types on the structure graph. 49

Table 2-2. Descriptions of mechanisms in the Faeder et al. model .. 81

xiv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. James R. Faeder for his continued support and

encouragement throughout the development of this thesis. I have learnt a lot from him that I will

carry forward as a part of my own journey in science, and he has been a source of inspiration for

me, both as an academic and as a person. I am very glad to be able to build on his pioneering

research, and I wish to carry the same optimism he has when asking the hard questions.

I would like to thank the other members of my committee, Dr. Daniel M. Zuckerman, Dr.

Chakra S. Chennubhotla, Dr. Russell S. Schwartz and Dr. Alexander D. Sorkin. They have pushed

me to do better and have encouraged me to take a wider perspective beyond the narrow confines

of a problem to be solved, and this thesis has benefited from that.

I would like to thank Leonard A. Harris, Justin S. Hogg, and Jose-Juan Tapia, equal parts

friends, mentors and colleagues. I could not have asked for a more compatible set of people to

interact with and learn from. I shall have many pleasant memories of interacting with them and

with the other members of the Faeder lab.

Over the years, I was blessed with a number of friends who were smart, motivated and

intellectual. Their eagerness to engage me in lively conversation has been a great source of joy,

and their continued support has been indispensable for my personal development.

Most importantly, I would like to thank my parents Jacintha and Antony Sekar, my sister

Sheeba and my brother-in-law Jeremiah Jasher. They are the rock on which I stand, and their love

and unquestioning support makes everything possible.

1

1.0 RULE-BASED MODELING – A REVIEW

1.1 MECHANISTIC MODELS OF CELL SIGNALING

One of the hallmarks of a living cell is that its chemical composition responds dynamically to

internal and external chemical stimuli. Characterizing the composition and dynamic behavior of a

chemical system is a frequently encountered problem in the study and perturbation of cell

responses, whether it is the movement of a bacterium towards nutrients or the response of a cancer

cell to a secreted growth factor. A mechanistic model seeks to build the system from its molecular

parts, encode the chemical properties at the level of individual molecules, and then predict in silico

the behavior of the system under different conditions. However, biochemical systems are very

complex and current experimental approaches can only explore a fraction of the chemical

composition at a time. As a result, model building, prediction, experimentation and verification

have to be performed in an iterative loop to constantly update our knowledge about the system [1].

A large number of software tools and environments have been developed to address each step of

the “systems biology” loop [2]. In this thesis, I focus on a few key components: building a model

of a chemical system, visualizing such models to improve comprehension and understanding, and

simulating models for predictive analysis.

The reaction network specification is the classical framework used for building chemical

systems. However, biochemical molecules and complexes are highly structured and modular

2

objects [3], which are not handled natively by the reaction network specification. The rule-based

modeling specification is a recent development designed to handle arbitrarily structured molecules

and complexes [4]. The technology and methods developed in this thesis are applicable to rule-

based models.

1.2 REACTION NETWORKS

1.2.1 Specification

The predominant mathematical framework for modeling cell signaling is the reaction

network. A typical reaction looks like this:

𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑘𝑘
→ 𝐸𝐸𝐸𝐸𝐸𝐸_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

EGF, EGFR and EGF_EGFR are called chemical species and the reaction consumes the species

EGF and EGFR and produces the species EGF_EGFR and proceeds at a rate proportional to the

rate constant k and the reactant concentrations. The semantics of the species labels are a matter of

convention. For example, to those familiar with growth factor signaling in human and cancer cells,

EGF is recognizable as the epidermal growth factor molecule, EGFR as the cognate receptor

molecule that binds EGF, and by convention, EGF_EGFR is the complex of EGF with EGFR.

A reaction network is a set of chemical species and reactions. The reaction network has a

usual representation as a set of ordinary differential equations (ODEs) and the time-evolution of

species concentrations can be simulated using ODE integration (species concentrations take

continuous numeric values) or stochastic simulation (species concentrations take integer values).

3

There are many publically available ODE solvers, e.g. CVODE from SUNDIALS[5]. There also

many stochastic simulators, mostly variants of Gillespie’s stochastic simulation algorithm[6], [7].

1.2.2 Community Efforts

There are efforts in the biochemical modeling community to standardize representations of

reaction networks and promote collaboration and reuse of published models. The Systems Biology

Markup Language is a widely used interchange format that is supported by many software

frameworks (sbml.org,[8]). Standard vocabularies and semantics have also been proposed for

model annotation (MIRIAM [9]), simulation (SED-ML [10]), and visualization (SBGN [11]). The

COMBINE initiative (co.mbine.org) meets regularly with the goal of improving these standards

with community guidance. A review of current standards can be found here [12].

BioModels is a central database that collects and curates standard versions of models

published in the literature (biomodels.org, [13]). However, as of 2015, less than half of the

submitted models have been curated (data provided by biomodels.org), and an even smaller

percentage of them have been annotated to the full extent possible (data not shown). This is

because reaction networks are being constructed that are increasingly large in size (e.g. Chen et al.

provide a model of ErbB signaling with more than 800 reactions [14]), and significant investment

of time and human resources is necessary to encode semantic annotations of species and reactions

in a manner that is consistent across models [12], [15]–[17].

4

1.2.3 Combinatorial Complexity

Many of the problems with using reaction networks can be traced to the complexity of biochemical

systems. Biochemical molecules and complexes are largely composed of modular elements

(domains, motifs and binding sites), and a single molecule or complex can access many

combinations of these elements, each unique combination being called a microstate [18], [19].

For example, consider a protein with 10 phosphorylation sites. The particular configuration where

none of the sites are phosphorylated is an example of a microstate. Because each site could be

unphosphorylated or phosphorylated, the protein has a total of 2^10 (1024) unique microstates.

The phenomenon where a small number of modular elements generates a combinatorially large

state space is called combinatorial complexity [18], [19].

In spite of the combinatorial complexity, many microstates could behave similarly where

the function of the protein is concerned. A group of microstates that are indistinguishable when

measuring a particular property or behavior is called a macrostate. For example, the function of

the above protein may simply be dependent on whether it has at least one site phosphorylated or

none. If so, the function may be characterized in terms of two macrostates: unphosphorylated

(containing one microstate) and phosphorylated (containing 1023 macrostates). Now, suppose the

protein had two domains named X and Y, and X has 4 of those phosphorylation sites, while Y has

the remaining 6. Also, suppose a second function of the protein is modulated by the

phosphorylation status of X and Y individually. Characterizing this function requires that the

protein be represented using four macrostates: XY (1 microstate), XpY (15 microstates), XYp (63

microstates), and XpYp (945 microstates). This highlights an important aspect of biochemical

5

complexity: the relevant organization of microstates into macrostates is strongly dependent on

which inputs and outputs are being considered.

Combinatorial complexity could be an evolutionarily favorable feature. Evolution models

have shown that network complexity that arises from modularity tends to increase under selection

pressure [20], since it allows for selection of both robust and sensitive responses, adaptation of

existing structures for different functions, and fitness against deleterious mutations [20], [21].

Combinatorial complexity cannot be ignored if models are to be constructed that are useful outside

the narrow context in which they were first built.

1.2.4 Issues

The number of valid microstates in a model depends on (i) the number of modular elements

hypothesized by the modeler and (ii) the number of valid combinations of the hypothesized

modular elements. The first part relates to the assumptions made by the modeler about the system,

and the second part can be formally derived from those assumptions. For example, in Figure 1-1,

we see three types of molecules A, B, C. A has two sites that bind B and C respectively when

phosphorylated. Given these model assumptions, one can compute that the molecule A exists in 4

states: the unphosphorylated state A, the two states where only one site is phosphorylated Ap0 and

A0p, and the doubly phosphorylated state App. The molecules B and C exist in 1 state each. There

are 2 possible A-B complexes since there are two states of molecule A in which the B-binding site

is phosphorylated (Ap0-B and App-B). With similar reasoning, there are 2 possible A-C complexes

(A0p-C and App-C). There is only 1 A-B-C complex (App-B-C). In all, the system has 11

microstates.

6

However, when building a reaction network, the modeler is free to choose an arbitrary

macrostate organization, say A’=A, Ap’={Ap0, A0p, App}, AB’={Ap0-B,App-B}, AC’={A0p-

C,App-C}, ABC’=App-C. The choices made are not apparent in the specification itself, for

example, given only A’, Ap’, AB’, AC’ and ABC’, we cannot infer how many sites are on A, B

and C and how phosphorylation affects binding at those sites. The modeler is also free to make

arbitrary inclusions and exclusions to the state space, which override the formally derived set of

possibilities and introduce hidden errors and bias. The arbitrariness in defining micro-to-macro

mappings hinders the reuse and aggregation of models. For example, a species EGFR_p in one

model may refer to phosphorylation at a different site compared to EGFR_p in another model.

Because of these issues, reaction networks become opaque to those not involved in its construction

and require significant investment of time to understand, reuse or modify beyond their original use

[22].

The community response to these specification issues is to improve species annotation [17],

standardize network representation [8] and increase resources for manual curation [13]. However,

they do not address the fundamental nature of these issues: (i) there is a size disparity between the

model assumptions and the reaction network, (ii) actions that require human effort (editing,

aggregating, annotating, curating) scale poorly for large networks, and (iii) manual curation does

not guarantee correctness when enumerating combinations.

7

Figure 1-1 An example of combinatorial complexity. Consider a model with molecule types A, B, C. A

has sites b,c that can be in 0 (unphosphorylated) and P (phosphorylated) states respectively and which bind

molecules B and C respectively on phosphorylation. These assumptions translate to 11 different microstates

organized under 6 macrostates: 4 A molecules, 1 B molecule, 1 C molecule, 2 A-B complexes, 2 A-C complexes

and 1 A-B-C complex. A reaction network may be built by choosing 6 macrostates as shown above, or any other

arbitrary choice. Although the state space is determined formally by the assumptions, the reaction network modeler

is still free to override them by including or excluding chemical species at will, which introduces error and bias.

1.3 RULE-BASED MODELS

Rule-based models improve upon reaction network models by using a graph-based

specification for molecules, complexes and reaction classes. A number of rule-based frameworks

exist, with BioNetGen [4], [23]–[26], Kappa [27]–[29], and Simmune [30]–[32] being the most

popular ones and with very similar graph abstractions.

8

1.3.1 Graph syntax – Molecules and Complexes

In order to represent a chemical species such as a molecule or complex in a reaction network, the

modeler would have to first specify an informative label, define the semantics of the label

convention used, and if they are so inclined, encode the structures present in the species in the

form of annotations. In contrast, rule-based models encode molecules and complexes using graphs

with consistent semantics. The structure of the graph explicitly encodes the sites and binding

interactions present in the species and the graph itself serves as an identity for the species, since

its uniqueness can be formally determined by graph isomorphism [33], [34]. BioNetGen and

Kappa provide a syntax for building graphs of molecules and complexes using alphanumeric

strings. Here, we will demonstrate the BioNetGen syntax [24], [25] by using it to systematically

build the complex AppBC (shown in Figure 1-1).

The complex has three molecules A, B, C, and they are represented as a dot-separated list.

A.B.C

Molecule A has components b,c. Molecule B has component a. Molecule C has component a.

Components are represented as a comma-separated list enclosed within brackets and placed

adjacent to the respective molecule.

A(b,c).B(a).C(a)

Components b,c have internal states named P, which denotes the phosphorylated state. Internal

states are prefixed with a ~ symbol and placed next to the component names.

A(b~P,c~P).B(a).C(a)

9

The complex is formed as a consequence of two binding interactions, or bonds. One of the bonds

is between the components A(b) and B(c), and is represented by a ! symbol and a tag 1 placed

adjacent to the bonded pair.

A(b~P!1,c~P).B(a!1).C(a)

The other bond in the complex is between components A(c) and C(a). We use the ! symbol

followed by the tag 2 to differentiate it from the other bond.

A(b~P!1,c~P!2).B(a!1).C(a!2)

The syntax is not affected by the ordering of components within molecules, or the ordering of

molecules within a complex, or the ordering of bonds by tag IDs. So, the following strings all

represent the same graph and the same chemical species as the one above.

A(c~P!2,b~P!1).B(a!1).C(a!2)

A(b~P!1,c~P!2).C(a!2).B(a!1)

A(b~P!2,c~P!1).B(a!2).C(a!1)

B(a!1).A(b~P!1,c~P!2).C(a!2)

1.3.2 Patterns

Properties of a graph can be formally extrapolated to supergraphs that contain the graph as a

subgraph. In the rule-based framework, the pattern is a partial graph of a complex. Multiple

complexes may share the same pattern as a subgraph, so the pattern also formally defines a class

of complexes with a shared set of structures. This enables the formal, precise and flexible definition

of macrostates based on the structures shared by the microstates. For example, the macrostate

10

{A,A0p,Ap0,App} in Figure 1-1 is defined by the following structural constraint: the species must

be composed of one A molecule that is not bound to any other molecule. In BioNetGen syntax, it

is sufficient to specify the following pattern:

A(b,c)

Here, we have not specified the internal states, so the internal states are not used in the matching

process. However, we have specified that the components are unbound (no ! tags), so the pattern

selects complexes with unbound b and c components, which are as follows (underline emphasizing

the shared subgraph):

A(b~0,c~0)

A(b~P,c~0)

A(b~0,c~P)

A(b~P,c~P)

Another example is the macrostate {Ap0, App, AppC} which selects complexes with an unbound

phosphorylated B-binding site on molecule A. In BioNetGen, it is sufficient to specify the pattern

A(b~P)

This will automatically match the complexes (underline emphasizing the shared subgraph):

A(b~P,c~0)

A(b~P,c~P)

A(b~P,c~P!1).B(a!1)

11

By providing a formal way to encode structural constraints, the pattern syntax removes the burden

of manually defining the semantics of each micro or macro state. It also removes the burden of

manual enumeration and verification. In contrast, any modeler interaction with a reaction network,

such as specifying a new macrostate as an output, requires sequential or pairwise manual

examination of the state space, which is time-intensive and introduces error and bias.

1.3.3 Reaction Rules

The reaction rule is a reaction composed by using patterns as reactants and products. Since

patterns map to classes of complexes with shared structures, the reaction rule maps to a class of

reactions on those shared structures. The entire reaction class can be parameterized by mapping

the reaction rule to a rate law. For example, consider the reaction rule:

A(b~P) + B(b) -> A(b~P!1).B(a!1) k

The reactant patterns specify the shared set of structures that enable a species to participate in this

reaction class. Here, the pattern A(b~P) specifies that the b component on A must be

phosphorylated and unbound, and the pattern B(b) specifies that the a component on B must be

unbound. The product patterns represent a graph transformation relative to the reactants. Here, the

transformation implemented is the addition of a bond !1 between components A(b) and B(a). By

default, the reaction class is assumed to have an elementary rate law and the expression k specifies

the rate constant uncorrected for symmetry and multiplicity [24], [25].

By using the patterns to select combinations of species, the entire reaction class can be

enumerated. Here, the pattern A(b~P) maps to the species A(b~P,c~0), A(b~P,c~P) and

A(b~P,c~P!1).C(a!1), and the pattern B(a) maps to the species B(a). The combinations of these

12

species (3x1) lead to the following three reactions, all of which are parameterized by the rate

constant k (underline to emphasize the graph overlap with the reaction rule):

A(b~P,c~0) + B(b) -> A(b~P!1,c~0).B(a!1) k

A(b~P,c~P) + B(b) -> A(b~P!1,c~P).B(a!1) k

A(b~P,c~P!2).C(a!2) + B(b) -> A(b~P!1,c~P).B(a!1).C(a!2) k

In contrast to a reaction network, the reaction rule is explicit about which structures are necessary

to define the reaction class. Also, the number of reaction rules needed to model a system depends

on the number of such reaction classes with unique kinetics. A small number of modular

independent interactions will require a small number of reaction classes to specify them, even if

their combinations generate a much larger reaction network [18], [19].

1.3.4 Model Specification and Simulation

The domain-oriented approach makes rule-based models easy to modify and extend, as well as

making explicit the contribution of each type of protein structure to each reaction class. When the

corresponding reaction network is finite, it can be generated automatically from the rule-based

specification [24]. This has enabled building models for systems where a small number of

molecule types lead to very large networks, e.g. model of Syk activation in FcεRI receptor

signaling (24 rules – 3680 reactions) [35], early events in epidermal growth factor signaling (39

rules – 3749 reactions) [36], ultrasensitivity in multi-site phosphorylation [37], etc.

If the reaction network is infinite or too large to be stored in computational memory, the

rule-based specification can still be simulated using network-free approaches [38]–[40], or a

13

hybrid approach between network-based and network-free [34]. This has made the rule-based

specification attractive for specifying models with infinite state spaces generated from finite

reaction classes, e.g. receptor aggregation by ligand crosslinking [41], Lat crosslinking [42],

CaMKII activation [43], etc.

The reaction rule is also a compact and portable unit, which makes reaction rules suitable

for cataloging kinetic processes. A number of rule-based knowledge bases have been constructed

in recent times, such as for FcεRI receptor signaling [44], T-cell receptor signaling [45], signaling

from the ErbB receptor family [46], yeast pheromone signaling [47], etc. Some of these

repositories have 100s of rules that will result in a practically infinite network, and therefore cannot

be simulated at all using network-based methods.

1.3.5 Outstanding Issues

Recently, a detailed mechanistic model of a whole cell was published [48], in which reaction

networks were embedded as submodels. It is anticipated that such whole cell comprehensive

models will eventually involve integration of rule-based databases of individual pathways, such as

[44]–[46]. Model frameworks are also being built to use rule sets that can be re-combined in

modular ways [49], so we expect to see larger rule-based models with 10 or more molecule types.

However, currently, there is no automated way to visualize the signaling implicit in the rules as a

global regulatory network or pathway diagram, which will be necessary to understand such large

models. We address this in Chapter 2.

Another problem inherited from reaction networks is that defining reaction classes with

unique kinetic parameters does not constrain the thermodynamics of the system. When there are

14

loops of reaction mechanisms in the system, detailed balance constraints apply (sum of free

energies of the reaction around the loop should be zero), but the specific loops present are not

immediately obvious when reactions or reaction rules are being built. Manual verification is

needed to get the correct model, and this can be resource intensive when there are a number of

cooperative processes acting on the same molecule or complex. The lack of constraint on detailed

balance is especially noticeable in the very large rule-based models [44], [46], where the varied

branching structure of complexes results in many such reaction mechanism loops.

A class of approaches have emerged to address this issue, which we call “energy-based

rule-based modeling”. In this specification, graph isomorphism is used specify energy

contributions from molecules, sites and binding interactions [50]–[52]. In energy-based

BioNetGen, energies of species are measured by counting matches of the species to user-specified

energy patterns. Reaction rules are defined with rate laws based on the Arrhenius equation, called

“energy rules” [50], and reactions generated from these rules are guaranteed to satisfy detailed

balance. However, calculating the energy-based reaction rate for a reaction depends on both

reactants and products, and this makes it incompatible with network-free simulation, where

information on the products is not available until the reaction event has fired. We address this

problem in Chapter 3.

 15

2.0 VISUALIZATION OF RULE-BASED MODELS

2.1 SYNOPSIS

Visualizing biochemical interactions has a long history of being conveyed through symbolic,

pictorial and graphical representations. Typically, these systems contain many types of physical

entities (such as molecules and complexes) and processes (such as reactions) and relationships

defined between them. The primary goal of this chapter is to develop automated visualizations for

rule-based models that convey encoded information at the level of individual processes (local

level) as well as at the level of the model itself (global level). Figure 2-1 summarizes the

contributions made in this chapter.

Visualizations are hard to evaluate using exact metrics and attributes, however, there are

broad aspects using which they can be compared against each other. In Section 2.2, I list some of

the concerns applicable to visualization of rule based models. In Section 2.3, I discuss some of the

standard diagramming procedures that have been developed for the signal transduction modeling

community. In Section 2.4, I discuss automated methods that have been developed for reaction

networks and the different rule-based frameworks, and their advantages and disadvantages. In

Section 2.5, I provide formal graph abstractions that I have developed for rule-based models which

enables generation of local and global visualizations. In Section 2.6, I apply these methods to rule-

based models in the literature.

 16

(A) (B) (C)

Figure 2-1 Summary of contributions to visualization of rule-based models. Panel A shows a compact

visualization of a single rule, in which the change implemented by the rule is shown as a graph transformation

(ChangeState). Panel B shows a visualization of regulatory interactions between a small number of rules (R3, R4, R6,

R7), called the regulatory graph. Dark edges show production and consumption of states, and light edges indicate a

regulatory influence from a state to a rule. In this chapter, I provide theory and implementation that generates a

regulatory graph from rule syntax. Panel C shows a visualization of a rule-based model as a regulatory graph, similar

to a pathway diagram. The nodes on this graph represent groupings of rules and states. In this chapter, I provide a

systematic pruning, grouping and coarse-graining procedure to generate compact pathway diagrams from the

aggregated regulatory graphs of rules.

 17

2.2 VISUAL CONCERNS

2.2.1 Content versus Intent

The word model is widely used, but it can mean a variety of things. In the context of

modeling biochemistry, a model can imply a set of statements in the mind of the modeler

representing biochemical knowledge, i.e. a mind model. The modeler translates these statements

into machine-readable mathematical symbols and relationships, resulting in a formal model. When

either of these representations is translated into visual objects in a visual medium, the resulting

model is a visual model.

In this chapter, I will use model to refer to the formal model in a particular mathematical

framework such as rule-based modeling or reaction network modeling. The specific mathematical

statements about entities and processes used in the model, as well as any systematic transformation

thereof, will be referred to as the content of a model. The biochemical statements in the mind of

the modeler that were used to create the model will be referred to as the intent of the model. A

mapping of either of these representations to a set of visual objects and relationships will be

referred to as a visualization.

The separation of these concepts allows us to rationally treat the problem of

interconversion. The intent of a model is limited only by the vernacular of biochemistry, and can

be considered unrestricted for all practical purposes. The content of a model is restricted by the

formal definitions of the mathematical framework used. The visualization of both model intent

and content is restricted at a formal level by the choice of visual objects and notations, and at a

practical level by the cognitive and aesthetic appeal of the generated diagram. The methods that I

 18

develop in this chapter will use the content of a rule-based model to generate the visual

representation, but will aim to convey the intent of the model and appeal to intuition.

2.2.2 Local versus Global

Both model intent and content are typically composed of individual statements about small

numbers of entities, for example, a reaction with two reactant species and one product species

representing a particular binding interaction. A visualization examining one such statement is

considered to be local. A visualization of the whole model, composed from many such statements,

is considered to be global. At the local level, the focus is on detail and the visualization is tailored

to present the maximum amount of detail that is possible. At the global level, the focus is on

identifying higher-order motifs and trends in the model, and a certain level of coarse-graining may

be needed to uncover these. A comparison to real-world maps is applicable here: maps of larger

geographic areas have to approximate features found in detailed maps of smaller areas in order to

be useful. In this chapter, we will specifically distinguish between local and global visualizations

of rule-based models and we will define appropriate coarse-graining procedures during the

generation of global visualizations.

2.2.3 Flow versus Adjacency

An important visualization objective in diagrams of biochemistry is to emphasize the

temporal order of events, particularly sequences and cycles [53]. Delineating specific paths, such

as pathways, feedback loops and feed-forward loops, is important for visual comprehension and I

will collectively refer to them as signal flows. Encoding the temporal order along a graphical

 19

dimension, i.e. aligning signal flows top-down or left-right in the diagram can drastically improve

visual comprehension [54]. However, a high density of edges can preclude a good visual alignment

of flows, in which case force-directed layouts are efficient. However, these layouts emphasize

adjacency relationships [55] and have poor visual comprehension. For a generated diagram to be

useful, its size and edge density needs to be sufficiently sparse to align signal flows in an optimal

manner.

2.2.4 Art versus Automation

There are many aspects to producing a diagram: synthesizing the content, defining the

notation and attribute mappings, drawing the actual elements on some visual media, laying out the

visual elements in an optimal manner. When every one of these aspects is left to the discretion of

the diagrammer, then the diagram becomes a one-off art project that requires a heavy investment

of time. It would be preferable to automate as many of these steps as possible. However, artistic

and aesthetic considerations do play a role in the usefulness of a diagram [54], so a balance is

necessary between automation and artistic discretion. In this work, we focus on automated

generation of the content of a diagram, and coarse-graining of diagrams with minimal user input.

The development of automated layout algorithms is beyond the scope of this work.

2.2.5 Abstraction versus Enumeration

When defining a naming system or notation for a set of objects, there is a tendency to

enumerate all possible states of those objects and to assign labels or features to every possibility

indiscriminately. I call this the enumerative approach. Manual cataloguing, annotating and

 20

diagramming approaches are typically of this type. Another way of defining a system or notation

is to generalize over the set of objects and create a few carefully defined types or classes of objects,

then map the real-world possibilities as instances of those classes. I call this the abstract approach.

Mathematical modeling frameworks are typically of this form. Enumeration is superficially the

most direct approach, but it inevitable encounters a level of complexity that hinders automation

and comprehension. Abstraction is much harder to do, but the right abstraction for a task can

drastically reduce the complexity involved, improve clarity and enable automation.

2.3 VISUAL STANDARDS

A set of approaches exist whose goal is to standardize drawing schemes, notations and

semantics for biochemical diagrams. In general, there are two types of maps: maps that emphasize

the structural components of the system and binding interactions, which I call contact maps, and

maps that emphasize temporal order and signal flow, which I call flow maps.

Contact maps typically show one instance each of every type of entity in the system and

use edges to show binding interactions, processes and influences of entities on processes. These

maps are typically edge-dense and laid out to emphasize structural connectivity and adjacency.

Contact maps present a global structure-centric view, but they are not very useful for local and

detailed representations of processes. Also, large and complex contact maps make it difficult to

delineate signal flows.

Flow maps typically have one or two major types of nodes indicating entities and/or

processes and are laid out such that the major signal flows are aligned along the top-down or left-

right dimension. These are typically edge-sparse and have improved visual comprehension, but

 21

structural relationships may not be evident from the map. Flow maps can be useful at both local

and global levels, i.e. to represent individual processes in detail as well as a network of signal

flows.

Here I review the standardized diagramming approaches, point out whether they are contact

maps or flow maps, and discuss their positives and drawbacks.

2.3.1 The Molecular Interaction Map (MIM)

The Molecular Interaction Map [56]–[58] was an early standard diagramming procedure

that falls in the class of contact maps. It provided a simple and flexible abstract visual notation that

allowed representation of domains, motifs, covalent modifications and binding interactions as

visual objects and processes as edges between entities. The MIM introduces the notion of

contingency relations, which are influences of entities on processes and these were also

represented as edges. Five basic contingencies are defined: stimulation, requirement, inhibition,

absolute inhibition and catalysis. The MIM developers also provide an XML-based schema that

can be used to generate machine-readable diagram. The MIM suffers from the same problems as

all contact maps, such as high edge-density and de-emphasis of signal flows.

 22

Figure 2-2. Molecular Interaction Map of the Faeder et al. model of signaling from the FcεRI receptor.

Model is from Faeder et al [35] and diagram is from Chylek et al [59]. Boxes and labels represent molecules and

domains. Edges show covalent modifications (double lines) and binding interactions (bidirectional arrows). Edges

with special arrowheads show contingency relations such as catalysis (circles), cleavage (zigzag), stimulation

(triangle) and inhibition (flat arrowhead).

2.3.2 The Systems Biology Graphical Notation (SBGN)

SBGN [11] was developed as a successor to MIMs with the goal of making it

comprehensive with regard to biochemical representation. Recognizing that different visualization

needs exist, it includes three different categories of maps: the process description map, the entity

relationship map, and the activity flow map. SBGN also comes with XML-based schema to enable

software support, with the schema being actively developed with community guidance [60]. There

are a number of software that now support SBGN, such as SBGNViz [61], Paxtools [62],

CellDesigner [63], Cytoscape [64], and Rxncon [65].

 23

2.3.2.1 SBGN Process Description diagram

The SBGN Process Description falls in the category of flow maps and is targeted towards

visualizing individual reactions in detail. Physical entities can be represented as pools of other

entities, enabling the representation of detailed molecular structures: complexes with many

molecules and molecules with domains and covalent modifications. Processes are represented by

a different type of node, and directed edges indicate whether an entity is consumed or produced

by a process or whether an entity influences a process. The Process Description diagram is useful

for representing reactions where information is available about the internal structure of

participating species, e.g. a reaction where a receptor is phosphorylated by a recruited kinase.

Technically, the Process Description diagram can be aggregated from individual reactions to a

global visualization, however its visual comprehension scales poorly with number of reactions,

primarily due to the amount of detail represented. In comparison to the other SGBN diagrams, the

Process Description diagram has the most concise abstraction and semantics and is more applicable

for visualizing model content rather than intent.

24

Figure 2-3. SBGN Process Description diagram of MAPK signaling from the insulin growth

factor receptor. Diagram is from sbgn.org. Glyphs on edges represent the type of interaction: binding (dark

circles), conversions (empty squares). Edges with arrowheads represent requirements (empty circles and triangles).

2.3.2.2 SBGN Entity Relationship diagram

The SBGN Entity Relationship diagram falls in the class of contact maps and therefore

suffers from the limitations of this class, namely high edge density and lack of alignment of signal

flows. However, in comparison to MIMs, the notation used here is more comprehensive with

regards to biochemistry. Entity classes are derived from the Systems Biology Ontology [12] and

includes support for many types of material entities (genes, proteins, small molecules, sugars),

functional entities (gene start site, etc.) and covalent modifications (phosphorylation, acetylation,

etc.). Edges describe binding and other processes, as well as influences of entities on processes,

with each type of edge requiring a distinct arrowhead. Unlike the Process Description, the

approach used here is enumerative rather than abstract, so the diagrams become visually cluttered

very quickly from the different entity node shapes and arrowheads. The semantics of entities and

arrowheads are standardized [11], and designed to represent model intent.

 25

Figure 2-4. SBGN Entity Relationship diagram of CAMKII signaling. Diagram is from sbgn.org and Le

Novere et al. [11]. Entities such as molecules and domains are represented as boxes with labels. Edges with special

arrowheads indicate a variety of processes and influences of entities on processes.

2.3.2.3 SBGN Activity Flow

The SBGN Activity Flow diagram is a flow map constructed using only activity nodes and

influence edges. Activity nodes are vaguer than process or entity nodes, and so the activity flow

diagram is the most poorly defined of all three SBGN maps [11]. An activity is typically some

combination of process and entity, e.g. a phosphorylation process at a phospho-motif site, or a

catalytic process that generates a particular metabolite. However, because of its simplicity, it is

similar to hand-drawn diagrams by biologists, and it is useful to show summaries of signal flow in

model. Similar to methods we describe later in the chapter, model content in the form of process

descriptions may be used to generate the activity flows using a coarse-graining method provided

by Vogt et al. [66].

 26

Figure 2-5. Activity flow diagram of the epidermal growth factor signaling pathway. Diagram is from

sbgn.org and a previous version was published in Le Novere et al. [11]

2.3.3 The Extended Contact Map

The Extended Contact Map [59] is conceptually similar to the SBGN Entity Relationship and the

MIM. It borrows aspects from both maps and applies them to rule-based models. Additionally, it

provides a comprehensive and enumerative description of biochemical processes. Domain

structure is represented as nested nodes, which allows more flexibility than the entity relationship

diagram in representing molecular structure. The number of arrowheads used is minimized:

contingencies are limited to stimulation, catalysis that is transformative (such as phosphorylation)

and catalysis that is destructive (such as proteolysis). The map is designed to showcase model

 27

intent rather than content, and is paired with a model guide where the model content is described

in detail. Edges on the map are annotated with index entries in the model guide.

Figure 2-6. Extended contact map of FcεRI signaling modeled in Faeder et al. Model is from [35] and

digaram is from Chylek et al. [59].

While the limitations of the contact map format are not completely resolved, Chylek et al.

do provide guidelines on how to arrange molecule types in a top-down hierarchy that is best

reflective of signal flow [59]. The major limitation of this map is the level of human effort required

to build and lay out the map, build the model guide and annotate the map using the model guide.

Also, commercial software are needed to build the map and there is no standard schema underlying

the map that can be used to extend software support.

 28

2.4 VISUALIZATION OF RULE-BASED MODELS – STATE OF THE ART

In this section, I discuss graph-based abstractions that have been used to visualize rule-based

models and reaction networks. These are conceptually different from the standards in the previous

section in that they have a solid mathematical definition, therefore, with appropriate mappings

between the mathematical objects involved, these maps can be generated automatically from

model content with relative ease. In this section, I will describe and evaluate formal abstractions

currently used in the rule-based software frameworks such as BioNetGen [67], Kappa [68],

Simmune [30], VCell [69] and Rxncon [65]. The reader is advised to be familiar with the basic

concepts of reaction networks and rule-based models outlined in Chapter 1.

2.4.1 The Reaction Petri Net

The Petri Net is a directed bipartite graph with one node type for entities or states and another node

type for processes. For chemical reaction networks, entities are chemical species and processes are

reactions, and edge direction indicates whether a reaction consumes a species or produces a

species. In Figure 2-7, we show a Petri net composed of the following reactions:

Rxn1: A + B -> AB

Rxn2: AB -> ABp

Rxn3: ABp + C -> ABpC

 29

Figure 2-7. Petri net of a model of three reactions. The reactions are Rxn1:A+B->AB, Rxn2:AB->ABp,

Rxn3:ABp+C->ABpC. The Petri net of each reaction is shown above and the combined Petri net is shown below.

Aggregation of Petri nets to show signal flow is trivial because each chemical species (A, B, C, AB, ABp, ABpC) is

produced or consumed in its entirety by individual reactions.

As mentioned previously, reaction networks can be automatically generated from rule-

based models, and frameworks such as VCell [69] and BioUML (biouml.org) have provided tools

to generate and visualize the corresponding Petri nets. However, because of combinatorial

complexity, even small rule-based models are capable of generating much larger reaction networks

[35], [70], so the reaction network Petri net is not scalable for use with rule-based models.

 30

2.4.2 The Site Graph

The site graph [28] is a nested graph used to represent patterns. Component nodes are nested within

molecules and internal state nodes are nested within components. Undirected edges between

components represent bonds. Variations on the site graph been used for visualizing patterns in

most of the current literature on rule-based models. The site graph is similar to a pool of entities

in SBGN Process Description, but it has additional information in the form of bonds between

molecular components.

Figure 2-8. Site graph of a pattern A(b!1).B(a!1,c~P). Molecule A has component b, molecule B has

components a and c, component c has internal state P, and components a and b are linked by a bond.

2.4.3 The Rule Petri Net

A reaction rule is composed of reactant and product patterns, similar to how a reaction is

composed of reactant and product species. So, similar to reactions, a reaction rule can also be

visualized as a Petri net. Additionally, since patterns have site graph visualizations, these site

graphs can be embedded in the entity nodes of the Petri net. This provides an explicit and detailed

local visualization of the rule as is present in the model, and this visualization is also compatible

 31

with SBGN Process Description. In Figure 2-9, we show Petri net visualizations of the following

rules:

R1: A(b) + B(a) -> A(b!1).B(a!1)

R2: A(b!1).B(a!1,c~0) -> A(b!1).B(a!1,c~P)

Figure 2-9. Rule Petri nets and partial overlaps. Shown here are rules R1 and R2. R1 produces a bond

between sites A(b) and B(a). R2 phosphorylates site B(c) (note 0 to P) when in the A-B complex. Note that the bond

is shared between the rules (red overlay), being formed in R1 and used as context in R2, but it is only a subgraph of

the reactant pattern in R2. Because of such partial overlaps, rule Petri nets cannot be aggregated into a combined Petri

net.

There are two problems with this approach. The first problem arises because a rule

represents the necessary conditions to implement a graph transformation (Section 1.3.3), which

means that some parts of the reactants are modified to generate the products, whereas some parts

remain unmodified and are considered context for the implemented modification. However,

representing reactants and products separately, as in a Petri net, does not necessarily convey

 32

quickly which parts are modified and which parts are not, and a viewer would have to manually

compare the graph structures of reactants and products to arrive at this information. When the rule

has sufficiently detailed context, repeating these structures on both sides of the rule can obscure

the parts of the rule that are modified, which results in poor visual comprehension.

The second problem arises from partial overlaps between rules, which is not encountered

in reaction networks. In a reaction network, a whole discrete chemical species is produced by one

reaction and consumed by another. Petri nets of the individual reactions can be aggregated into a

Petri net of the full model on which this flow of information is obvious. On the other hand, in a

rule-based model, it is not necessary that the whole pattern produced in one rule be consumed by

another to constitute a signal flow. It is sufficient that the overlap is partial, i.e. some subgraph of

the product pattern of one rule which was modified by that rule is now present as a subgraph of

the reactant pattern of another rule (see Figure 2-9). A simple Petri net representation of multiple

rules would not resolve these partial overlaps and would not be a useful global visualization.

2.4.4 The Formal Contact Map

The formal contact map is a site graph that shows one instance each of structures defined in the

model (molecular, component, internal state) and one instance each of types of bonds present. It

is the simplest map in the class of contact maps, and provides a concise summary of the structural

relationships in a model, but does not show signal flow. The formal contact map can be generated

automatically in Kappa [28], [71] and Rulebender, the BioNetGen GUI [26].

 33

Figure 2-10. Contact map of FcεRI signaling modeled in Faeder et al. [35]showing types of molecules,

components, bonds and internal states [35]. Diagram generated in Rulebender, the BioNetGen graphical user interface

[26].

2.4.5 The Rule Influence Diagram

Both Kappa (http://kappa-dev.github.io) and Rulebender, the BioNetGen GUI [26], enable a

visualization of every pairwise interaction within a set of rules, called the rule influence diagram.

Generating this diagram involves characterizing every partial overlap between every pair of rules

such as the one in Figure 2-9. While this can provide a picture of signal flow for a small set of

rules, the number of overlaps that need to be examined grows as the square of the number of rules,

which makes it infeasible for large rule-based models (10’s – 100’s of rules).

Figure 2-11. Rule influence diagram. Each rule is represented as a node and edges represent activation

(green) or inhibition (purple) influences. Diagram is from Smith et al., generated in Rulebender, the BioNetGen GUI

[26].

 34

2.4.6 The Kappa Story

Kappa provides a visualization called the story by tracing and compressing the order in

which simulation events happen in order to generate an observable state of interest [28]. The Kappa

story is a good representation of signal flow, but computing it requires specific parameter choices

and simulation to generate the traces, which can be infeasible for models with many rules. Also,

the Kappa story is not strictly a global or complete visualization of the model, because each story

is targeted at a specific endpoint state.

Figure 2-12. Kappa story showing a causal sequence of rules. The top two nodes are starting states. The

other nodes are firings of rules showing the name of the rule and the simulation step. Diagram is from Danos et al.

[28].

2.4.7 Simmune Network Viewer

To obtain a visual representation of reaction rules that can be aggregated into a global picture, the

Simmune Network Viewer [32] first coarse-grains reaction rules to their fundamental molecule

stoichiometries. For example, consider the two reaction rules (underline for emphasis):

A(b!1,x~on).B(a!1) -> A(b,x~on) + B(a!1)

A(b!1,y~on).B(a!1) -> A(b,y~on) + B(a!1)

 35

Although they differ in their internal state specifications, they would both be coarse grained

as:

A.B -> A + B

This form can then be converted into a Petri net of the rule (see Figure 2-13) and these rule

Petri nets are aggregable unlike those in Section 2.4.3. Each entity node on this Petri net represents

a particular arrangement of molecules and bonds in a complex.

Figure 2-13. Simmune Network Viewer coarse-grains rules to molecule stoichiometry to enable a Petri net

or bipartite graph representation [32]. In the first panel, we show two rules with stoichiometry A.B -> A + B. When

neither rule is selected by clicking, the red and blue ‘features’ are in the “don’t care” state (half filled). In the second

panel, Rule1 is selected and the features specific to Rule1 are displayed (red feature is “on”, i.e. filled). Similarly, in

the third panel, Rule2 is selected and the features specific to Rule2 are displayed (blue feature is “on”).

The problem with this approach is that signal flows that are mediated through internal state

changes are not represented on the visualization. For example, consider a molecule X with three

sites that are sequentially activated. The rule set would be:

X(a~off) -> X(a~on)

X(a~on,b~off) -> X(a~on,b~on)

 36

X(b~on,c~off) -> X(b~on,c~on)

From observing the rules, we can infer that activation of X(a) leads to activation of X(b),

which in turn leads to activation of X(c). However, since all patterns here have the same molecule

stoichiometry X, the Simmune Network Viewer cannot show the signal flow represented by these

rules (see Figure 2-14).

Figure 2-14. Simmune Network Viewer cannot show signal flow mediated through ‘features’ (internal

states in BioNetGen). This diagram was generated from a sequential model where the red feature activates

spontaneously, then red activates blue and blue activates green. In the Simmune Network Viewer, the different states

of the molecule are represented by the same node X.

2.4.8 Rxncon Regulatory Graph

Rxncon [65] is a relatively new rule-based framework that emphasizes convenient model

building and visualization. The Rxncon specification marries the enumerative approach of visual

standards with the abstract approaches of rule-based frameworks such as BioNetGen, Kappa and

Simmune. In Rxncon, entities can be “elemental states”, such as a single bond or a single

phosphorylated state, or they can be simple combinations of these states using Boolean operators

such as OR and AND. Processes are drawn from a manually enumerated list of commonly

encountered processes such as binding, phosphorylation, acetylation, etc. Then, the influence of

 37

entities on processes is modeled as contingency relations, and the list of defined contingencies

closely adheres to those used in visualization: requirement, stimulation, inhibition, etc. If a kinetic

model is desired, pre-defined rule-based templates are used to transform the Rxncon specification

into either a rule-based model or reaction network or Boolean model. An example of an Rxncon

specification is shown below:

A_ppi_B

A_P+_B ; ! A--B

Here, ppi and P+ are drawn from the Rxncon list of processes denoting protein-protein

interaction and phosphorylation respectively. The symbol ! represents the contingency relation

‘requires’ and A--B represents the bound AB state.

The Rxncon specification has a few advantages. First, contingency relations can be

expressed in the form of English-like statements (process-contingency-entity = subject-verb-

object) and easily scaled to tables and databases. Second, the enumerated lists of processes and

contingencies closely mirror that of visual standards such SBGN diagrams, which can be

automatically generated from the specification [65]. Third, it enables a new visualization called

the regulatory graph (Figure 2-15). The regulatory graph is a bipartite graph or Petri net on

elemental states and processes, with edges showing effects of processes and contingency relations.

It is a compact and useful abstraction for conveying signal flow, and there is a 1:1 map between

the Rxncon specification and the regulatory graph.

 38

Figure 2-15. Regulatory graph from the Rxncon specification. Diagram is from Tiger2012. Red nodes

represent processes such as binding (ppi) and phosphorylation (P+), whereas blue nodes represent states created or

modified by processes and which influence processes in the form of contingency relations.

However, the convenience comes at a significant loss, especially in comparison to other

rule-based modeling frameworks such as BioNetGen, Kappa and Simmune. First, biochemical

signaling complexes are known to be of arbitrary and heterogenous composition [18]. This

motivates other rule-based languages to use graphs to represent complexes, such as shown in

Figure 2-16. However, Rxncon uses simple Boolean relations and does not have a high enough

resolution to model arbitrary complexes [65]. Second, the rule-based templates and the rule-

generation process encode strong assumptions about how sites interact, which are not applicable

to all biochemical systems. Rxncon applies the rule-generation logic to all systems uniformly,

which will lead to incorrect mechanistic assumptions in many cases. Third, the enumerated list of

processes and contingencies unnecessarily restrict the model specification. Because of the

expanding nature of biochemical knowledge, it may not be possible to ever have a complete list of

all relevant processes and contingencies. For example, Rxncon does not include conformational

change as a possible reaction type, and even if it did, it would have to enumerate what types of

conformational changes are commonly encountered. On the other hand, BioNetGen implements

 39

the abstract notion of internal states on components and internal state changes in rules, which

allows modeling of any process involving molecular attributes, such as phosphorylation (~0 to

~P), acetylation (~0 to ~Ac), conformational change (say, ~open to ~closed), or any other

uncommon process. In general, any approach that builds mechanistic kinetic models from human-

readable maps, such as Path2Models [72] or Rxncon [65], is bound to be approximate or incorrect

because of these reasons. The recommended strategy is to separate the formal and visual

specification, so that the model itself is exact and uses abstract entities, but visualization and

human understanding are supplemented with annotations drawn from an enumerated list or

database. Annotation frameworks for rule-based models are already being developed for this

purpose [73].

Figure 2-16. Example of a real complex that cannot be represented in Rxncon. Shown is a receptor dimer

formed by crosslinking due to a bivalent ligand. One receptor is phosphorylated and bound to Lyn. The other receptor

is not bound to anything else and is unphosphorylated. In Rxncon, there is no Boolean combination of the elemental

states Lig--Rec, Rec--Lyn, and Rec-{P} that can replicate this complex.

 40

2.5 GRAPH ABSTRACTIONS FOR RULE-BASED VISUALIZATIONS

In this section, I define new graph-based abstractions for rule-based models that address

two primary visual objectives for rule-based models: (i) visualizing individual rules in a compact

manner to convey the modeled mechanisms, and (ii) visualizing a set of rules as a network of

regulatory interactions. To the second objective, an addendum can be added: the network

visualization must be compact, scalable and useful, even for large numbers of rules. The first and

second objectives address visualization of model content as defined in the model specification, but

the addendum addresses the problem of being able to generate useful diagrams that showcase

model intent, even when the model content is too large or too complex.

This section is intended to hold the formalisms underlying the generation of visualizations

from a rule-based model. These visualizations address the objectives defined above: visualizing

individual rules, inferring a network of interactions, and tuning the complexity of the generated

network. As such, it is dense with abstract definitions and terminology, so the casual reader is

advised to skip to Section 2.6, where the methods described here have been applied to specific

models and systems. In this synopsis, I present a brief outline, summarized in Figure 2-17.

In BioNetGen, the pattern (a graph representing sites on a complex) and the reaction rule

(a graph transformation representing a kinetic process) are the fundamental mathematical

abstractions used. Hogg et al. (Supplement) [34] provide standard definitions which I will adhere

to. In Section 2.5.1 Preliminary Definitions, I define node-labeled edge-labeled graphs and

elemental graph operations. In Section 2.5.2 Structure Graphs, I define pattern structure graphs

which are used to generate site graph and rule Petri net visualizations, and then define rule structure

 41

graphs which are used to generate compact rule visualizations. These visualizations address the

first visual objective. In Section 2.5.3 Atomic Patterns, I define objects called atomic patterns

that capture the notion of a class of sites in the model that can be acted upon, such as a free binding

site, or a bond, or a phosphorylated state. In Section 2.5.4 Regulatory Graphs, I provide a

systematic approach to generate a regulatory network in the form of a bipartite edge-labeled graph

from a reaction rule, and show how to aggregate such graphs from individual rules into a flow-

based representation of the whole model. This addresses the second objective. Figure 2-17 also

shows an outline on how these two objectives are achieved. Prior to this work, it was not possible

to generate global visualizations of rule-based models by aggregating individual rules. The

regulatory graph formalism enables the coarse-graining of the rule-based specification into a

simpler aggregable representation.

I also define automated coarse-graining procedures (pruning, grouping, collapsing) that use

minimal external input to transform the generated model regulatory graphs into compact pathway

diagrams. This addresses the addendum to the second objective. As I will demonstrate in Section

2.5.7, these coarse-graining approaches can result in a dramatic reduction of complexity,

generating useful visual representations even for very large rule-based models.

 In Section 2.5.5 Complexity Analysis, I discuss scalability concerns of the methods used,

and in Section 2.5.6 Comparisons to Other Approaches, I discuss how compact rule

visualization and regulatory graphs compare with existing methods, such as those described in

Sections 2.3 and 2.4.

 42

Figure 2-17 Outline of the rule visualization methods described in this chapter. Patterns from the reaction

rule are represented as pattern structure graphs which are merged into the rule structure graph. These are used to

generate the direct and compact rule visualizations. From the rule structure graph, atomic patterns and their

relationship to the rule are inferred. These are then visualized as the rule regulatory graph.

 43

2.5.1 Preliminary Definitions

Here I define node-labeled edge-labeled graphs, consistency properties of node and edge labels,

and simple graph operations. They form the basis for specific types of these graphs that will be

defined in later parts of the chapter, and which will be used to represent objects in rule-based

models and visualizations.

2.5.1.1 Label prototypes and applications

Definition 2.5-1

A prototype, say f, is an arbitrarily defined type of labeling function.

Definition 2.5-2

An application 𝑓𝑓𝑋𝑋 ≔ 𝑋𝑋 → 𝐴𝐴∗ is an instance of a prototype f applied to a particular domain

X. Here 𝐴𝐴∗ represents the set of words from alphanumeric characters plus the symbols

{(,), ~, !, +,−,∅}. The relationship between application, prototype and domain is denoted 𝑓𝑓 ⟼

𝑓𝑓𝑋𝑋. The prototype is multi-valued in the sense that more than one application can be defined over

the same domain derived from the same prototype, i.e. 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,1,𝑓𝑓𝑋𝑋,2 …

Definition 2.5-3

A prototype set is a set of prototypes. This is denoted 𝐸𝐸 ≔ �𝑓𝑓𝑖𝑖�, where i indexes the set.

Definition 2.5-4

An application set is a set of applications derived from a prototype set applied to the same domain.

𝐸𝐸 ≔ �𝑓𝑓𝑖𝑖�

𝐸𝐸𝑋𝑋 ≔ �𝑓𝑓𝑋𝑋𝑖𝑖 ∶= 𝑋𝑋 → 𝐴𝐴∗�𝑓𝑓𝑖𝑖 ⟼ 𝑓𝑓𝑋𝑋𝑖𝑖∀𝑓𝑓𝑖𝑖 ∈ 𝐸𝐸}

The relationship between the prototype set, application set and domain is denoted 𝐸𝐸 ⟼ 𝐸𝐸𝑋𝑋.

Definition 2.5-5

 44

Two applications are consistent (denoted ≡) if they are derived from the same prototype

and map identical labels to identical elements.

𝑓𝑓𝑋𝑋,1 ≡ 𝑓𝑓𝑋𝑋,2 ⟺

𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,1,𝑓𝑓𝑋𝑋,2 ,

𝑓𝑓𝑋𝑋,1(𝑥𝑥) = 𝑓𝑓𝑋𝑋,2(𝑥𝑥) ∀𝑥𝑥 ∈ 𝑋𝑋

Applications defined on two domains are consistent if they are consistent over the domain

of intersection.

𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌 ⟺

𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑓𝑓𝑌𝑌 ,

𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑓𝑓𝑌𝑌(𝑥𝑥) ∀𝑥𝑥 ∈ 𝑋𝑋 ∩ 𝑌𝑌

Definition 2.5-6

Two application sets are consistent if they are derived from the same prototype set and

each pair of applications derived from each prototype is consistent.

𝐸𝐸𝑋𝑋,1 ≡ 𝐸𝐸𝑋𝑋,2 ⟺

𝐸𝐸 ⟼ 𝐸𝐸𝑋𝑋,1,𝐸𝐸𝑋𝑋,1

𝑓𝑓𝑋𝑋,1
𝑖𝑖 ≡ 𝑓𝑓𝑋𝑋,2

𝑖𝑖 ∀𝑓𝑓𝑖𝑖 ∈ 𝐸𝐸

Corollary 2.5-7

An application (or application set) defined over a domain implies the existence of a

consistent application defined over any subset of the domain.

Proof: Given 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑌𝑌 ⊂ 𝑋𝑋, let 𝑓𝑓𝑌𝑌 ≔ 𝑓𝑓𝑋𝑋(𝑥𝑥)∀𝑥𝑥 ∈ 𝑌𝑌, then 𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋and 𝑓𝑓𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋 by

construction. By extending to every 𝑓𝑓𝑋𝑋𝑖𝑖 ∈ 𝐸𝐸𝑋𝑋 and by Definition 2.5-6, exists 𝐸𝐸𝑌𝑌 ≡ 𝐸𝐸𝑋𝑋.

Corollary 2.5-8

 45

Two consistent applications (or application sets) defined over two domains implies the

existence of a consistent application over the union of the two domains.

Proof: Given 𝑋𝑋,𝑌𝑌,𝑓𝑓 ⟼ 𝑓𝑓𝑋𝑋,𝑓𝑓 ⟼ 𝑓𝑓𝑌𝑌,𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌,

by Corollary 2.5-7, exists 𝑓𝑓𝑋𝑋∩𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌,𝑓𝑓𝑋𝑋−𝑌𝑌 ≡ 𝑓𝑓𝑋𝑋,𝑓𝑓𝑌𝑌−𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌,

now let 𝑍𝑍 = 𝑋𝑋 ∪ 𝑌𝑌 = (𝑋𝑋 − 𝑌𝑌) ∪ (𝑋𝑋 ∩ 𝑌𝑌) ∪ (𝑌𝑌 − 𝑋𝑋), and 𝑓𝑓𝑍𝑍(𝑥𝑥) = �
𝑓𝑓𝑋𝑋−𝑌𝑌(𝑥𝑥) 𝑥𝑥 ∈ 𝑋𝑋 − 𝑌𝑌
𝑓𝑓𝑋𝑋∩𝑌𝑌(𝑥𝑥) 𝑥𝑥 ∈ 𝑋𝑋 ∩ 𝑌𝑌
𝑓𝑓𝑌𝑌−𝑋𝑋(𝑥𝑥) 𝑥𝑥 ∈ 𝑌𝑌 − 𝑋𝑋

By construction 𝑓𝑓𝑍𝑍 ≡ 𝑓𝑓𝑋𝑋 ≡ 𝑓𝑓𝑌𝑌.

By extending to every 𝑓𝑓𝑋𝑋𝑖𝑖 ∈ 𝐸𝐸𝑋𝑋 and by Definition 2.5-6, exists 𝐸𝐸𝑍𝑍 ≡ 𝐸𝐸𝑋𝑋 ≡ 𝐸𝐸𝑌𝑌.

Definition 2.5-9

Given a set X and a function g, 𝑔𝑔⊙ 𝑋𝑋 is defined as the image of g in X for elements where

such an image exists, i.e. 𝑔𝑔⊙ 𝑋𝑋 = {𝑔𝑔(𝑥𝑥),∀𝑥𝑥 ∈ 𝑋𝑋|∃𝑔𝑔(𝑥𝑥)}

2.5.1.2 Graphs

Definition 2.5-10

A graph type is defined by the tuple (Λ, Σ), where Λ is an arbitrarily defined set of node

label prototypes and Σ is an arbitrarily defined set of edge label prototypes.

Definition 2.5-11

A graph instance, say G, of graph type (Λ, Σ), is defined by a set of nodes 𝑉𝑉 ⊂ 𝐴𝐴∗, a set

of edges 𝐸𝐸 ⊂ 𝑉𝑉 × 𝑉𝑉, a particular node application Λ𝑉𝑉 ≔ 𝑉𝑉 → {𝐴𝐴∗},Λ ⟼ Λ𝑉𝑉 and a particular edge

application Σ𝐸𝐸 ≔ 𝐸𝐸 → {𝐴𝐴∗}, Σ ⟼ Σ𝐸𝐸, i.e. 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸).

Henceforth, “given 𝐸𝐸” will be taken to mean “given 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸)”, with graph type

assumed to be obvious. Similarly, “given 𝐸𝐸𝑖𝑖” will be taken to mean “given 𝐸𝐸𝑖𝑖 ≔ �𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖 ,Λ𝑉𝑉𝑖𝑖 , Σ𝐸𝐸𝑖𝑖�”

for any index 𝑖𝑖.

Definition 2.5-12

 46

Two graphs are consistent (denoted ≡) if their node and edge applications are consistent,

i.e. given 𝐸𝐸1,𝐸𝐸2, if Λ𝑉𝑉1 ≡ Λ𝑉𝑉2 , Σ𝐸𝐸1 ≡ Σ𝐸𝐸2, then 𝐸𝐸1 ≡ 𝐸𝐸2.

Definition 2.5-13

A graph is a subgraph of another graph (denoted ⊏), if the two graphs are consistent and

the nodes and edges of the first graph are subsets of the nodes and edges of the second graph, i.e.

given 𝐸𝐸1,𝐸𝐸2, if 𝑉𝑉1 ⊂ 𝑉𝑉2,𝐸𝐸1 ⊂ 𝐸𝐸2,𝐸𝐸1 ≡ 𝐸𝐸2 then 𝐸𝐸1 ⊏ 𝐸𝐸2.

2.5.1.3 Common Graph Operations

Definition 2.5-14

Given two consistent graphs, a trivial merge (denoted ⊔) of two graphs is the graph

composed from the union of the node and edge sets, i.e. given 𝐸𝐸1,𝐸𝐸2,𝐸𝐸1 ≡ 𝐸𝐸2,

then 𝐸𝐸1 ⊔ 𝐸𝐸2 ≔ (𝑉𝑉1 ∪ 𝑉𝑉2,𝐸𝐸1 ∪ 𝐸𝐸2,Λ𝑉𝑉1∪𝑉𝑉2 ,Σ𝐸𝐸1∪𝐸𝐸2)

Definition 2.5-15

A node remap operation 𝒱𝒱ℳ(𝑣𝑣0 → 𝑣𝑣1) copies edges incident on a node 𝑣𝑣0 to another

node 𝑣𝑣1, i.e. given 𝐸𝐸 and nodes 𝑣𝑣0, 𝑣𝑣1 ∈ 𝑉𝑉,

let 𝐸𝐸0 = �(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸�𝑣𝑣0 ∈ {𝑣𝑣, 𝑣𝑣′}� and 𝑔𝑔(𝑣𝑣) = �
𝑣𝑣1 𝑣𝑣 = 𝑣𝑣0
𝑣𝑣 𝑣𝑣 ≠ 𝑣𝑣0 and ℎ(𝑣𝑣, 𝑣𝑣′) =

�𝑔𝑔(𝑣𝑣),𝑔𝑔(𝑣𝑣′)�,

let 𝐸𝐸1 = {ℎ(𝑣𝑣, 𝑣𝑣′),∀ (𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸0 } and

and let Σ ⟼ Σ𝐸𝐸1𝑠𝑠. 𝑡𝑡.∀𝑓𝑓 ∈ Σ,𝑓𝑓𝐸𝐸1�ℎ(𝑣𝑣, 𝑣𝑣′)� = 𝑓𝑓𝐸𝐸0�(𝑣𝑣, 𝑣𝑣′)�∀(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸0

then 𝒱𝒱ℳ(𝑣𝑣0 → 𝑣𝑣1) ∘ 𝐸𝐸 ≔ �𝑉𝑉,𝐸𝐸 ∪ 𝐸𝐸1,Λ𝑉𝑉 , Σ𝐸𝐸∪𝐸𝐸1�

Definition 2.5-16

A node remap sequence 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) performs a sequence of remap operations on a graph 𝐸𝐸

using some set of ordered pairs 𝑌𝑌 ≔ {(𝑣𝑣, 𝑣𝑣′)| 𝑣𝑣, 𝑣𝑣′ ∈ 𝑉𝑉}.

 47

𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) = � � 𝒱𝒱ℳ(𝑣𝑣 → 𝑣𝑣′)
(𝑣𝑣,𝑣𝑣′)∈𝑌𝑌

� ∘ 𝐸𝐸

In this work, we will ensure by construction that the order of remaps does not matter, which

can be achieved by having the sources and targets for the remap be disjoint sets,

i.e. 𝑆𝑆𝑆𝑆𝑆𝑆 ∩ 𝑇𝑇𝑔𝑔𝑡𝑡 = {} where 𝑣𝑣 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑣𝑣′ ∈ 𝑇𝑇𝑔𝑔𝑡𝑡,∀(𝑣𝑣, 𝑣𝑣′) ∈ 𝑌𝑌

Definition 2.5-17

A node delete operation 𝒱𝒱𝒱𝒱(𝑣𝑣0) removes a node 𝑣𝑣0and any edges incident to 𝑣𝑣0,

i.e. given 𝐸𝐸 = (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝑉𝑉) and node 𝑣𝑣0 ∈ 𝑉𝑉,

let 𝐸𝐸0 = �(𝑣𝑣, 𝑣𝑣′) ∈ 𝐸𝐸�𝑣𝑣0 ∈ {𝑣𝑣, 𝑣𝑣′}� and 𝑉𝑉0 = {𝑣𝑣0} the singleton

then by construction 𝒱𝒱𝒱𝒱(𝑣𝑣0 → 𝑣𝑣1) ∘ 𝐸𝐸 ≔ �𝑉𝑉 − 𝑉𝑉0,𝐸𝐸 − 𝐸𝐸0,Λ𝑉𝑉−𝑉𝑉0 ,Σ𝐸𝐸−𝐸𝐸0�

Definition 2.5-18

A node delete sequence 𝐷𝐷𝐷𝐷𝐷𝐷(𝑌𝑌) performs a series of node delete operations on a graph

𝐸𝐸 = (𝑉𝑉,𝐸𝐸, …) using some subset of nodes 𝑌𝑌 ⊂ 𝑉𝑉, i.e.

𝐷𝐷𝐷𝐷𝐷𝐷(𝑌𝑌) = ��𝒱𝒱𝒱𝒱(𝑣𝑣0)
𝑣𝑣∈𝑌𝑌

� ∘ 𝐸𝐸

Definition 2.5-19

A filter operation ℱ(𝑓𝑓,𝑦𝑦) ∘ 𝑋𝑋 creates a subset of the domain X that maps to value y under

the application of the prototype f, i.e.

ℱ(𝑓𝑓, 𝑦𝑦) ∘ 𝑋𝑋 = {𝑥𝑥 ∈ 𝑋𝑋|𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑦𝑦}

Definition 2.5-20

A filter sequence 𝐸𝐸𝑖𝑖𝐷𝐷(𝑌𝑌) ∘ 𝑋𝑋 creates a subset of the domain X by sequentially filtering

using each pair of prototypes and values in 𝑌𝑌 ≔ {(𝑓𝑓,𝑦𝑦)|𝑓𝑓 ∈ 𝐸𝐸,𝑦𝑦 ∈ 𝐴𝐴∗}.

 48

𝐸𝐸𝑖𝑖𝐷𝐷(𝑌𝑌) ∘ 𝑋𝑋 = � � ℱ(𝑓𝑓, 𝑦𝑦)
(𝑓𝑓,𝑦𝑦)∈𝑌𝑌

� ∘ 𝑋𝑋

2.5.2 Structure Graphs

Here, I define graphs called structure graphs that are useful to represent structural objects such as

molecules, components, internal states and bonds, and relationships between those objects. The

pattern (described in Section 1.3.2) is represented as the pattern structure graph (2.5.2.1), and this

is converted into a visual object called the pattern site graph (2.5.2.2). The reaction rule (described

in Section 1.3.3) is composed from pattern structure graphs (2.5.2.3) and has a classical

visualization as a Petri net (2.5.2.4). The information in the rule is condensed into a single rule

structure graph (2.5.2.5), which in turn is converted into a visual object called the compact rule

visualization (2.5.2.6). The compact rule visualization is a new contribution to the visualization of

rule-based models.

2.5.2.1 Pattern Structure Graph

In BioNetGen, patterns are used to represent complexes and subgraphs of complexes. The

pattern structure graph has one node each for every molecule, component, internal state and

binding state in the pattern. Pattern structure graphs are based on hierarchical graphs defined in

Lemons et al. [74], with the difference being that hierarchical graphs use an edge to represent a

bond rather than a separate node. The pattern structure graph is also equivalent to the pattern

defined in Hogg et al. [34], where it is defined as a generic data structure rather than a strict graph.

Definition 2.5-21

 49

The pattern structure graph is a graph with unlabeled edges and labeled nodes defined

by the node labeling prototype Λ = {𝑇𝑇,Ω},

where T is a node-type function mapping to the codomain {mol, comp, is, bs}, where

mol=molecule, comp=component, is=internal state and bs=bond state, and Ω is a name function

mapping to the set of all words 𝐴𝐴∗. Additionally, from Hogg REF, restrictions are placed on

adjacency relationships, which are defined in the table below:

Table 2-1. Adjacency restrictions for different node types on the structure graph.

Node type
Adjacent node type

Molecule Component Internal State Bond State

Molecule 0
Defined by

molecule type
0 0

Component 1 0 1 1

Internal State 0 1 0 0

Bond State 0 1 or 2 0 0

Additionally, bond state labels are restricted to {!+,!-,!?} respectively, denoting bond,

unbound state and unspecified state respectively. A bond state labeled !+ is called a fully specified

bond if it has two adjacent component nodes, or a bond wildcard if it has one adjacent component

node.

Let 𝑃𝑃∗denote the set of all pattern structure graphs present in a model.

 50

2.5.2.2 Pattern Site Graph

To convert the pattern structure graph into a pattern site graph visualization: (i) nest each

component node within the adjacent molecule node, (ii) nest each internal state node within the

adjacent component node, (iii) remove unbound state nodes, (iv) if a bond has two parents, replace

bond node by an edge between the parent components.

Figure 2-18. Pattern structure graph and site graph. The first panel shows a pattern structure graph

(defined in Definition 2.5-21), constructed from the pattern E(s!1).S(e~Y!1). Each node has a node-type (T) defined

to be molecule (mol), component (comp), internal state (is) or bond state (bs). Each node also has a name 𝛀𝛀 which is

shown as the node label. The bond state has two adjacent components and name !+, indicating it is a fully specified

bond. The second panel shows a pattern site graph generated from the pattern structure graph (see Section 2.5.2.2).

2.5.2.3 Reaction Rule

Here, I provide a definition for the reaction rule that is compatible with previous definitions

in this thesis as well as Hogg et al. [34].

Definition 2.5-22

A reaction rule 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆), where 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷 is a unique name assigned to the rule

and 𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆 ⊂ 𝑃𝑃∗are sets of reactant and product patterns respectively.

 51

Definition 2.5-23

Let 𝐸𝐸𝐴𝐴∗ be the set of all rule names, and 𝐸𝐸∗be the set of all rules 𝑆𝑆.

2.5.2.4 Rule Petri Net

To obtain a rule Petri net (as in Section 2.4.3) from the rule as defined in Definition 2.5-23,

(i) draw a node to represent the rule and label with 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, (ii) draw a node to represent each

pattern 𝑀𝑀 ∈ 𝐸𝐸𝐷𝐷 ∪ 𝑃𝑃𝑆𝑆, (iii) within each node, embed the site graph of the respective pattern, (iv)

draw a directed edge from each reactant pattern to the rule node, and (v) draw a directed edge from

the rule node to each product pattern. As mentioned previously (Section 2.4.3), rule Petri nets

cannot be aggregated from local visualizations of rules into a global one because of partial overlaps

between rules.

Figure 2-19. Petri net of Rule R1 showing binding of enzyme and unphosphorylated substrate. The reactant

patterns and product patterns are visualized separately as site graphs (Section 2.5.2.2) and embedded in the entity

nodes of the Petri net. Note that other than the bond that is formed, each structure is repeated twice, once on the

reactant side and once on the product side.

 52

2.5.2.5 Rule Structure Graph

The rule Petri net shows each reactant and product separately, and structures that are not

modified by the rule are represented twice, once on the reactant side and once on the product side.

The rule structure graph is a systematic merging of reactant and product pattern structure graphs

of the rule that eliminates redundancies.

Definition 2.5-24

The rule structure graph is a node-labeled, edge-unlabeled graph defined by the tuple of

node prototypes Λ = {𝑇𝑇,Ω, 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷}, where 𝑇𝑇,Ω are as defined in Definition 2.5-21 and 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 maps

each node to one of {𝐷𝐷, 𝑆𝑆, 𝐷𝐷𝑆𝑆} indicating left, right or both respectively.

To build a rule structure graph from a reaction rule:

1. Given a rule 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆) where 𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆 ⊂ 𝑃𝑃∗, first we trivially merge the reactant

and product sides separately to give ‘left’ and ‘right’ structure graphs, 𝐸𝐸𝑙𝑙and 𝐸𝐸𝑟𝑟 respectively.

𝐸𝐸𝑙𝑙 ≔ � 𝐸𝐸𝑖𝑖
𝐺𝐺𝑖𝑖∈𝑅𝑅𝑅𝑅

= �𝑉𝑉𝑙𝑙 ,𝐸𝐸𝑙𝑙 ,Λ𝑉𝑉𝑙𝑙�

𝐸𝐸𝑙𝑙 ≔ � 𝐸𝐸𝑗𝑗
𝐺𝐺𝑗𝑗∈𝑃𝑃𝑟𝑟

= (𝑉𝑉𝑟𝑟 ,𝐸𝐸𝑟𝑟 ,Λ𝑉𝑉𝑟𝑟)

2. BioNetGen computes a partial one-to-one map 𝜙𝜙:𝑉𝑉𝑙𝑙 ↛ 𝑉𝑉𝑟𝑟 between reactant and product

patterns that identifies the unmodified structures. Let 𝑠𝑠𝑑𝑑𝑟𝑟 and 𝑖𝑖𝑟𝑟𝑔𝑔 be the subsets of 𝑉𝑉𝑙𝑙 and

𝑉𝑉𝑟𝑟 respectively in which this map is one-to-one onto.

𝑖𝑖𝑟𝑟𝑔𝑔 = 𝜙𝜙 ⊙𝑉𝑉𝑙𝑙

𝑠𝑠𝑑𝑑𝑟𝑟 = 𝜙𝜙−1 ⊙ 𝑖𝑖𝑟𝑟𝑔𝑔

The structures mapped by 𝜙𝜙 are present on both sides of the rule. We refer to the nodes in 𝑠𝑠𝑑𝑑𝑟𝑟

as ‘original’ and the nodes in 𝑖𝑖𝑟𝑟𝑔𝑔 as duplicate respectively.

3. Now, we merge the left and right sides of the rule and remove the duplicate nodes.

 53

𝑊𝑊 = {(𝜙𝜙(𝑣𝑣), 𝑣𝑣),∀𝑣𝑣 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟}

𝐸𝐸 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖𝑟𝑟𝑔𝑔) ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑊𝑊) ∘ (𝐸𝐸𝑙𝑙 ⊔ 𝐸𝐸𝑟𝑟)

4. We compute 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 depending on which side of the rule a node originates from:

𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉(𝑣𝑣) = �
𝐷𝐷 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 − 𝑠𝑠𝑑𝑑𝑟𝑟
𝑆𝑆 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟 − 𝑖𝑖𝑟𝑟𝑔𝑔
𝐷𝐷𝑆𝑆 𝑣𝑣 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟

5. The rule structure graph is given by 𝐸𝐸 as computed in step 3, with 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉 as computed in step

4 being included in the application set Λ𝑉𝑉 .

Figure 2-20. Synthesizing the rule structure graph from a reaction rule. At the top, we show rule R1

which has two reactant patterns (red) and one product pattern (blue), and they are shown as pattern structure graphs

according to Definition 2.5-21. BioNetGen computes a partial map between reactants and products that identifies the

unmodified structures (dotted black line). By merging the graphs and removing redundant nodes, we generate the rule

structure graph as seen at the bottom. During the process, we keep track of the origins of the nodes, whether they are

from the product side (blue), reactant side (red) or both (black).

Definition 2.5-25

 54

Let 𝑆𝑆′ = (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸) be the new definition of a rule, where 𝐸𝐸 is the rule structure graph

derived from 𝑆𝑆 = (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝐷𝐷,𝑃𝑃𝑆𝑆) as shown above. Let 𝐸𝐸𝑠𝑠𝑠𝑠∗ be the set of all rules 𝑆𝑆′ as defined

here.

2.5.2.6 Compact Rule Visualization

Using the rule structure graph, we can generate a compact visualization of the rule by

identifying the modified structures and adding graph operation nodes. These are special nodes

whose labels indicate what kind of graph transformation is being carried out by the rule.

 Given a rule structure graph as in Definition 2.5-24, (i) for each molecule node with side

𝐷𝐷, draw a graph operation node labeled DeleteMol and draw a directed edge from the molecule

node to the graph operation node, (ii) for each molecule node with side 𝑆𝑆, draw a graph operation

node labeled AddMol and draw a directed edge to the molecule node from the graph operation

node, (iii) for each component with side 𝐷𝐷𝑆𝑆, whose adjacent internal states have side 𝐷𝐷 or 𝑆𝑆, draw a

graph operation node labeled ChangeState, draw a directed edge from the adjacent internal state

with side 𝐷𝐷 to the graph operation node, and draw a directed edge to the adjacent internal state with

side 𝑆𝑆 from the graph operation node, (iv) for each bond with side 𝐷𝐷, replace bond node with graph

operation node labeled DeleteBond, add edge direction away from graph operation node on

incident edges, (v) for each bond with side 𝑆𝑆, replace bond node with graph operation node labeled

AddBond, add edge direction away from graph operation node on incident edges, (vi) render

remaining nodes according to site graph conventions in Section 2.5.2.2, (vii) nest ChangeState

operation nodes within adjacent component nodes.

The compact rule visualization is a compact and useful local visualization of rules that is

explicit about which parts of the participating complexes are modified and which parts are context

 55

for the interaction. However, parts modified in one rule can remain unmodified in another rule, so

compact rule visualizations cannot be strictly aggregated into a global visualization.

Figure 2-21. Compact rule visualization. Instead of showing reactants and products separately, each

structure present in the rule is shown only once. The changes implemented by the rule are shown as graph operation

nodes of the following types: AddBond, DeleteBond, ChangeState, AddMol, DeleteMol. Shown here are five rules:

R1, R1r, R2, R3 and R4.

2.5.3 Atomic Patterns

Patterns represent specific combinations of “actionable sites” that are relevant to a particular

reaction rule. For example, a pattern such as EGFR(Y1068~P!1).Grb2(SH2!1) has the following

“actionable sites”, a bond EGFR(Y1068!1).Grb2(SH2!1) that could be formed or broken between

the binding sites EGFR(Y1068~P) and Grb2(SH2), and a phosphorylated state EGFR(Y1068~P)

that could be dephosphorylated. However, the common understanding of signal flow is not through

specific combinations, but through individual types of sites. For example, a statement such as “the

phosphorylated state of Y1068 affects binding of Grb2” requires treating the classes of sites

 56

EGFR(Y1068~P) and EGFR(Y1068!1).Grb2(SH2!1) separately with a causal influence from the

first to the second. Here, I call actionable sites on patterns as atomic patterns, and provide a

formalism where such sites can be identified on any pattern. Atomic patterns are analogous to

elemental states used by Tiger et al. [65].

2.5.3.1 Definitions and Interpretations

Definition 2.5-26

A node on a pattern structure graph is well-defined if (i) it is a molecule node, (ii) it is a

component and its adjacent molecule is well-defined, (iii) it is a bond state node that is bound (!+)

or unbound (!-) and its adjacent component(s) are well defined, (iv) it is an internal state other than

the default state and its adjacent component is well-defined.

Definition 2.5-27

An atomic pattern is a connected pattern structure graph in which the graph has at most

one well-defined bond state or internal state node, but not both at the same time, and there is at

least one bond state or internal state per component.

Practically, atomic patterns take five different forms which can be represented using

BioNetGen syntax: (i) molecule such as A, (ii) free binding site such as A(b), (iii) bond such as

A(b!1).B(b!1), (iv) bond wildcard such as A(b!+), and (v) internal state such as A(b~0!?). For

internal state atomic patterns, we will use shorthand A(b~0) with the understanding that as long as

it is treated as an internal state atomic pattern, only its internal state is relevant. The syntax form

allows atomic patterns to be represented as compact alphanumeric labels.

Definition 2.5-28

 57

The atomic pattern equivalence class is defined by an atomic pattern structure graph and

represents the class of isomorphic subgraphs on all patterns. Henceforth, all references to atomic

patterns will be to the corresponding equivalence classes.

 Let 𝑃𝑃𝑎𝑎𝑎𝑎∗ be the set of all atomic patterns encountered in a model. Since atomic patterns

have syntax equivalents as mentioned in Definition 2.5-27, 𝑃𝑃𝑎𝑎𝑎𝑎∗ ⊂ 𝐴𝐴∗.

By defining them as equivalence classes, atomic patterns are functionally equivalent to

elemental states in Rxncon. Also, the number of atomic patterns in a model is bounded and much

smaller than the number of patterns. This is because an atomic pattern describes an equivalence

class for a single site or feature, whereas a pattern describes an arrangement of sites or features in

a complex, which is subject to combinatorial complexity [18].

2.5.3.2 Determining Atomic Patterns

Atomic patterns are not explicitly defined by the user, but instead, we provide a procedure

by which they can be determined from pattern structure graphs automatically.

Definition 2.5-29

The atomic pattern map 𝜃𝜃:𝑉𝑉 → 𝐴𝐴∗ is a map from nodes of a pattern structure graph 𝐸𝐸 ≔

(𝑉𝑉,𝐸𝐸, …) to a particular atomic pattern equivalence class, or none by default (∅).

To build this map, subgraphs isomorphic to atomic patterns are determined heuristically

by examining each node and its neighboring nodes (see Figure 2-22).

2.5.4 Regulatory Graphs

Regulatory graphs defined in this section are visually similar to the flow-based regulatory graphs

shown in Section 2.4.8 as part of the Rxncon framework [65]. The inference of a regulatory graph

 58

from a reaction rule (2.5.4.1) is a novel contribution of this work. Prior to this work, it was not

possible to generate a global visualization of signal flow, but in this section we show how this is

possible by aggregating regulatory graphs of rules (2.5.4.3). We also show how to reduce the

complexity of the generated diagram by removing redundant nodes (2.5.4.4), by using a

combination of automated and user-seeded approaches to group nodes (2.5.4.5). Atomic patterns

on the graph are grouped manually, and this information is used by an automated algorithm to

group reaction rules. Following this, the complexity of the graph can be greatly reduced by

collapsing groups of nodes to single representative nodes (2.5.4.6)

Definition 2.5-30

The regulatory graph type is defined by the tuple (Λ, Σ), where Λ ≔ (𝑇𝑇,Ω,𝐸𝐸𝑆𝑆) and Σ ≔

{𝐸𝐸,𝑃𝑃,𝐶𝐶}. Here 𝑇𝑇 is a node type function prototype mapping to the codomain {𝑀𝑀𝑀𝑀, 𝑆𝑆}, denoting

atomic pattern equivalence class and reaction rule respectively, Ω is a node subtype function

prototype mapping to the codomain {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑓𝑓𝑓𝑓𝑠𝑠,𝑤𝑤𝑆𝑆, 𝑓𝑓, 𝑖𝑖𝑠𝑠,𝑔𝑔,∅}, where {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑓𝑓𝑓𝑓𝑠𝑠,𝑤𝑤𝑆𝑆, 𝑓𝑓, 𝑖𝑖𝑠𝑠} refer to

the five types of atomic patterns (molecule, free binding site, bond wildcard, bond, internal state

respectively), 𝑔𝑔 refers to ‘group’ and ∅ is a default value. 𝐸𝐸𝑆𝑆 maps each node to some group name

in 𝐴𝐴∗ or to ∅ by default. {𝐸𝐸,𝑃𝑃,𝐶𝐶} are binary function protoypes (i.e. with codomain {0,1}) used

to identify whether an edge relation can be a reactant, a product, or a context relation respectively.

A single edge can be assigned more than one relation.

2.5.4.1 Rule Regulatory Graph

1. Starting from a rule structure graph 𝑆𝑆 = {𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷,𝐸𝐸𝑠𝑠𝑠𝑠} as in Definition 2.5-25, where 𝐸𝐸𝑠𝑠𝑠𝑠 ≔

(𝑉𝑉𝑠𝑠𝑠𝑠,𝐸𝐸𝑠𝑠𝑠𝑠,Λ𝑉𝑉𝑠𝑠𝑠𝑠), where Λ𝑉𝑉𝑠𝑠𝑠𝑠 = {𝑇𝑇𝑉𝑉𝑠𝑠𝑠𝑠 ,Ω𝑉𝑉𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷𝑉𝑉𝑠𝑠𝑠𝑠}, we first compute an atomic pattern map

𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠:𝑉𝑉𝑠𝑠𝑠𝑠 → 𝑃𝑃𝑎𝑎𝑎𝑎∗ ∪ {∅} as defined in Definition 2.5-29.

 59

2. We identify which atomic pattern subgraphs are consumed, produced or left unchanged by

querying the 𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷 property. We exclude molecule atomic patterns that are not consumed or

produced to minimize the complexity of the generated graph.

𝑉𝑉𝑙𝑙 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝐷𝐷) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠

𝑉𝑉𝑟𝑟 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝑆𝑆) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠

𝑉𝑉𝑙𝑙𝑟𝑟 = 𝜃𝜃𝑉𝑉𝑠𝑠𝑠𝑠 ⊙ (ℱ(𝑠𝑠𝑖𝑖𝑠𝑠𝐷𝐷, 𝐷𝐷𝑆𝑆) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠 − ℱ(𝑇𝑇,𝑟𝑟𝑑𝑑𝐷𝐷) ∘ 𝑉𝑉𝑠𝑠𝑠𝑠)

3. The node set for the regulatory graph is 𝑉𝑉 = 𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟 ∪ {𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷}. Here, 𝑉𝑉𝑙𝑙 ,𝑉𝑉𝑟𝑟 ,𝑉𝑉𝑙𝑙𝑟𝑟 are

atomic pattern nodes, and 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷 is the rule node.

4. The edge set maps the rule node to each atomic pattern node, i.e.

𝐸𝐸 = {𝑆𝑆𝑟𝑟𝐷𝐷𝐷𝐷} ×(𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟)

5. The node applications are assigned depending on whether the node is an atomic pattern or the

rule name.

𝑇𝑇𝑉𝑉 = �𝑀𝑀𝑀𝑀 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙 ∪ 𝑉𝑉𝑟𝑟 ∪ 𝑉𝑉𝑙𝑙𝑟𝑟
𝑆𝑆 𝑣𝑣 = 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷

The subtype function Ω𝑉𝑉 is assigned from {𝑟𝑟𝑑𝑑𝐷𝐷,𝑓𝑓𝑓𝑓𝑠𝑠, 𝑖𝑖𝑠𝑠, 𝑓𝑓,𝑤𝑤𝑆𝑆} depending on the type of atomic

pattern or to ∅ if 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷.

6. Let 𝕝𝕝𝑥𝑥(𝑣𝑣) = �1 𝑣𝑣 ∈ 𝑉𝑉𝑥𝑥
0 𝑣𝑣 ∉ 𝑉𝑉𝑥𝑥, where 𝑣𝑣 is a node, and 𝑥𝑥 ∈ {𝐷𝐷, 𝑆𝑆, 𝐷𝐷𝑆𝑆}. The edge applications derived

from prototypes 𝐸𝐸,𝑃𝑃,𝐶𝐶 are populated by querying the membership of nodes within each of

these sets. Note that this allows the same edge to be assigned 1 for multiple applications.

∀𝑣𝑣 ∈ 𝑉𝑉,

𝐸𝐸𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑙𝑙(𝑣𝑣),

𝑃𝑃𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑟𝑟(𝑣𝑣),

𝐶𝐶𝐸𝐸�(𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑣𝑣)� = 𝕝𝕝𝑙𝑙𝑟𝑟(𝑣𝑣)

 60

7. The remaining node application 𝐸𝐸𝑆𝑆𝑉𝑉 is populated with default values, i.e. 𝐸𝐸𝑆𝑆𝑉𝑉 ≔ 𝑉𝑉 → {∅}

8. The graph 𝐸𝐸 ≔ (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸), where Λ𝑉𝑉 = {𝑇𝑇𝑉𝑉 ,Ω𝑉𝑉 ,𝐸𝐸𝑆𝑆𝑉𝑉}, Σ𝐸𝐸 = {𝐸𝐸𝐸𝐸 ,𝑃𝑃𝐸𝐸 ,𝐶𝐶𝐸𝐸} is the rule

regulatory graph.

Figure 2-22. Atomic Patterns and the Regulatory Graph. The first panel shows the atomic pattern map

built from a rule structure graph by querying neighborhoods of nodes and identify subgraphs compatible with

Definition 2.5-27. During the process, we also identify the relationships of each atomic pattern to the rule: reactant

(red), product (blue) and/or context (black). In the second panel, these relationships are visualized as the regulatory

graph, with one node representing the rule, other nodes representing the atomic patterns, dark edges indicating reactant

and product relationships and light edges indicating context relationships.

2.5.4.2 Resolving Wildcards

In BioNetGen, a wildcard bond such as A(b!+) can match one or more fully specified bonds

such as A(b!1).B(a!1) and A(b!1).C(a!1). For the regulatory graph to be complete, these

relationships need to be represented on the graph. BioNetGen can compute relationships between

wildcard bonds and fully specified bonds by examining their syntax forms.

𝐸𝐸𝑤𝑤𝑤𝑤 = {(𝑣𝑣𝑤𝑤𝑤𝑤 , 𝑣𝑣𝑏𝑏)|𝑣𝑣𝑏𝑏, 𝑣𝑣𝑤𝑤𝑤𝑤 ∈ 𝑉𝑉,Ω𝑉𝑉(𝑣𝑣𝑏𝑏) = 𝑓𝑓,Ω𝑉𝑉(𝑣𝑣𝑤𝑤𝑤𝑤) = 𝑤𝑤𝑆𝑆}

𝑉𝑉𝑤𝑤𝑤𝑤 = {𝑣𝑣 ∀𝑣𝑣 ∈ 𝑉𝑉,Ω𝑉𝑉(𝑣𝑣) = 𝑤𝑤𝑆𝑆}

 61

The wildcards are then “resolved”, by mapping context edges on wildcards onto matching

bond nodes and then deleting the wildcard nodes. The resultant graph is

𝐸𝐸′ = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑉𝑉𝑤𝑤𝑤𝑤) ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝐸𝐸𝑤𝑤𝑤𝑤) ∘ 𝐸𝐸

Figure 2-23. Resolving Wildcards. The first panel shows a graph with a wildcard node A(b!+) and three

matching bond nodes. When resolving wildcards as defined in Section 2.5.4.2, context edges from wildcards are

remapped to matching bond nodes and the wildcard nodes are deleted. The second panel shows the resultant graph.

2.5.4.3 Model Regulatory Graph

1. The model regulatory graph can be aggregated from individual rule regulatory graphs using a

trivial merge, i.e. given rule set 𝑀𝑀 = {𝑆𝑆, 𝑆𝑆 ≔ (𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝑟𝑟 ,𝐸𝐸𝑟𝑟)}, the merged regulatory graph is

𝐸𝐸 = �𝐸𝐸𝑟𝑟
𝑟𝑟∈𝑀𝑀

= (𝑉𝑉,𝐸𝐸,Λ𝑉𝑉 , Σ𝐸𝐸)

2. When the graph is aggregated as above, there may be some wildcard bonds used in some rules,

but whose matching bonds were generated in other rules. These are resolved according to the

procedure in Section 2.5.4.2. Let 𝑉𝑉𝑤𝑤𝑤𝑤 be the set of nodes removed and 𝐸𝐸𝑤𝑤𝑤𝑤 be the set of context

edges added. The model regulatory graph is given by

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 ≔ (𝑉𝑉 − 𝑉𝑉𝑤𝑤𝑤𝑤 ,𝐸𝐸 ∪ 𝐸𝐸𝑤𝑤𝑤𝑤 ,Λ𝑉𝑉−𝑉𝑉𝑤𝑤𝑤𝑤 , Σ𝐸𝐸∪𝐸𝐸𝑤𝑤𝑤𝑤).

The model regulatory graph is a flow-based bipartite representation of the model that is

derived directly from model content (reaction rules).

 62

Figure 2-24. Merging Regulatory Graphs. The top panel shows regulatory graphs of three rules, R1 and

_reverse_R1 modeling reversible binding of kinase to substrate and R2 modeling simultaneous phosphorylation and

dissociation, The bottom panel shows the regulatory graph of the model which is built by a simple merge of the

regulatory graphs of individual rules.

2.5.4.4 Pruned Regulatory Graph

A subset of atomic patterns can be considered redundant to the representation of signal

flow, for example, the bond pattern A(b!1).B(a!1) makes it obvious that the corresponding free

binding sites are A(b) and B(a). Removing redundant nodes, which we call background nodes,

can simplify the graph and clarify the signal flow. What specific nodes should be considered

background can vary with each model although we provide common and useful heuristics.

Given a model regulatory graph 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, …), an arbitrary node application

partitioning the node set 𝑓𝑓𝑉𝑉
𝑏𝑏𝑘𝑘𝑠𝑠:𝑉𝑉 → {0,1}, where the value 1 implies that the node is included in

the background and the value 0 implies that it excluded from the background, the set of background

nodes is 𝑉𝑉𝑏𝑏𝑘𝑘𝑠𝑠 = �𝑣𝑣 ∈ 𝑉𝑉�𝑓𝑓𝑉𝑉
𝑏𝑏𝑘𝑘𝑠𝑠(𝑣𝑣) = 1� and the pruned regulatory graph without background is

 63

𝐸𝐸𝑠𝑠𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙𝑖𝑖𝑓𝑓𝑖𝑖𝑅𝑅𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷�𝑉𝑉𝑏𝑏𝑘𝑘𝑠𝑠� ∘ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙

There are different heuristics that can be applied to identify the background. Ranked in

order of increasingly strong assumptions made about the model: (i) remove atomic patterns in the

order in which they are encountered in the rules, (ii) remove all free binding sites and first

encountered internal states on components, (iii) remove all reverses of bidirectional rules, (iv)

remove all rules that do not produce non-background states. Currently, the implementation enables

the first heuristic and allows for user input to override the selections made regarding background

inclusions and exclusions. In the future, it might be useful to provide the user a flexible choice

with regard to these heuristics in addition to the manual overrides.

Figure 2-25. Removing redundant nodes (called background) from the model regulatory graph

clarifies the signal flow. The first panel shows a regulatory graph of a model with reversible binding of kinase to

substrate (R1, _reverse_R1) and phosphorylation (R2). Assigning the free binding sites E(s) and S(e) and the reverse

rule R1(reverse) to background and removing them results in the graph in the second panel. On this graph, we see the

signal flow that is pertinent to signaling: R1 causes the bound state which enables R2 which causes the phosphorylated

state.

2.5.4.5 Grouped Regulatory Graph

A key reason for the predominance of manually drawn diagrams for biochemical models

is that the principles of organization that “make sense” for a particular model are often arbitrarily

defined and not generalizable to all biochemical models or even all rule-based models. There are

 64

some principles that are generally applicable, for example, when multiple rules model the same

kinetic process under different local conditions, it could be useful to refer to that group of rules as

a collective process. On the other hand, when a molecule has multiple phosphorylation sites, in

some models it might be useful to refer to all of them together as a collective phosphorylated state,

whereas in other models it might be necessary to consider functional differences between them

such as activating or downregulating phosphorylated states. On the regulatory graph, I provide an

organizing scheme which seamlessly incorporates both formal analysis and user-driven choices.

First, the modeler provides an organization of atomic patterns into groups or classes. Second, an

automated algorithm compares the reactant/product relationships of individual rules, incorporates

the user-defined grouping of atomic patterns, and sorts rules into functionally similar rule groups.

1. Given a regulatory graph of the model, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, …), let 𝑉𝑉𝑎𝑎𝑎𝑎,𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ⊂ 𝑉𝑉 be the sets of

atomic pattern nodes and rule nodes respectively.

2. For each rule node 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅, we can compute sets of reactants and products depending on

their adjacent atomic pattern nodes.

∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ,

ℛ(𝑣𝑣) = �𝑣𝑣′ ∈ 𝑉𝑉𝑎𝑎𝑎𝑎|𝐸𝐸𝐸𝐸�(𝑣𝑣, 𝑣𝑣′)� = 1�

𝒫𝒫(𝑣𝑣) = �𝑣𝑣′ ∈ 𝑉𝑉𝑎𝑎𝑎𝑎|𝑃𝑃𝐸𝐸�(𝑣𝑣, 𝑣𝑣′)� = 1�

3. Given a seed grouping of atomic patterns, 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠:𝑉𝑉𝑎𝑎𝑎𝑎 → 𝐴𝐴∗, where an atomic pattern is assigned

to a group with a label or to the default ungrouped state ∅, we first construct a function that

maps each element to itself or to its group name:

𝜓𝜓(𝑣𝑣) = �𝑣𝑣 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) = ∅
𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) ≠ ∅

When no 𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠 is provided, 𝜓𝜓(𝑣𝑣) is simply the identity function.

 65

4. For each rule on the regulatory graph, we compute the transformed reactant-product tuple

which will be used to assign membership to rules:

𝐸𝐸𝑃𝑃(𝑣𝑣) = ({𝜓𝜓(𝑣𝑣),∀𝑣𝑣 ∈ ℛ(𝑣𝑣)} , {𝜓𝜓(𝑣𝑣),∀ 𝑣𝑣 ∈ 𝒫𝒫(𝑣𝑣)})

Let 𝐸𝐸𝑃𝑃∗ = {𝐸𝐸𝑃𝑃(𝑣𝑣)|𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅} be the set of such tuples and let 𝑔𝑔𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀:𝐸𝐸𝑃𝑃∗ → 𝐴𝐴∗

define a set of unique labels applied to each unique element in 𝐸𝐸𝑃𝑃∗.

5. Now, we have enough information to construct a grouping on all nodes:

𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣) = �
𝑠𝑠𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣) 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎𝑎𝑎

𝑔𝑔𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀�𝐸𝐸𝑃𝑃(𝑣𝑣)� 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅

𝐸𝐸𝑆𝑆𝑉𝑉 is included with the other node applications on the model regulatory graph in order to

make it the grouped regulatory graph.

2.5.4.6 Collapsed Regulatory Graph

Given a grouped regulatory graph, a simplifying assumption can be made by rendering

individual members of groups indistinguishable from each other. This allows a drastic compression

of the graph, and a compact interpretation of the regulatory interactions in terms of groups of

atomic patterns and sites, rather than individual ones. Since each group is collapsed to a single

node representing the group, we call this the collapsed regulatory graph.

1. Given a grouped regulatory graph 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 = (𝑉𝑉,𝐸𝐸, …), we partition the set of nodes 𝑉𝑉 into two

subsets: one set of nodes that have groups assigned to them, and the other with no groups

assigned to them.

𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚 = {𝑣𝑣 ∈ 𝑉𝑉|𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣) ≠ ∅},𝑉𝑉𝑟𝑟𝑢𝑢𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚 = 𝑉𝑉 − 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚

2. Then, we define new nodes representing groups, i.e.

𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠 = �𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣)�𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚�.

 66

We also define appropriate node applications:

𝑇𝑇𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠(𝑣𝑣) = �𝑇𝑇(𝑣𝑣′)�𝑣𝑣 = 𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣′), 𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚�

Ω𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠(𝑣𝑣) = �𝑔𝑔, 𝑣𝑣 ∈ 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠�

We then create a temporary graph involving only the group nodes

𝐸𝐸′ = �𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠, { },𝑇𝑇𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠,Ω𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠�

3. Then we merge the two graphs, remap grouped nodes to group nodes and delete the grouped

nodes to get the collapsed regulatory graph.

Let 𝑌𝑌 = ��𝑣𝑣,𝐸𝐸𝑆𝑆𝑉𝑉(𝑣𝑣)�,∀𝑣𝑣 𝑖𝑖𝑟𝑟 𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚�

𝐸𝐸𝑤𝑤𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑠𝑠𝑅𝑅𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷�𝑉𝑉𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎𝑅𝑅𝑚𝑚� ∘ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌) ∘ (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑙𝑙 ⊔ 𝐸𝐸′)

Figure 2-26. Grouping and Collapsing nodes on the regulatory graph. The first panel shows a regulatory

graph of a model where kinases A1 and A2 bind a scaffold X resulting in A1(x!1).X(a!1) and A2(x!1).X(a!1)

respectively, which leads to the phosphorylated state X(b~pY), which in turn leads to binding of B to X, i.e.

 67

B(x!1).X(b!1). Also shown in the first panel is a grouping of A(x!1).X(a!1) and A2(x!1).X(a!1) bound states under

A_X. The second panel shows automated rule-grouping using the first graph as a seed. Rule groups RG1 and RG2

group rules that implement phosphorylation and B-binding respectively irrespective of context edges. Since the user

defined a group on A(x!1).X(a!1) and A2(x!1).X(a!1), rules R1a and R1b, which produce A(x!1).X(a!1) and

A2(x!1).X(a!1) respectively, are considered similar and grouped under RG0.

2.5.5 Complexity Analysis

Determining the atomic pattern map for every rule in the model as in Section 2.5.3.1 has a

time complexity of 𝒪𝒪 �𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�, where 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 is the number of rules, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 is a

bound on the number of nodes per rule structure graph, and 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 is a bound on the size of the

local subgraph that needs to be explored to construct the atomic pattern. The stoichiometry

constraints defined in Definition 2.5-21 and the additional restrictions used in Definition 2.5-27

ensure that 𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑛𝑛𝑟𝑟𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 has an upper bound of 4. The size of the largest rule in the model places an

upper bound on 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 since rules are intended to be finite local descriptions of kinetic interactions.

Thus, determining the atomic pattern map, and therefore the rule regulatory graph and the model

regulatory graph has a time complexity of 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅).

To generate the grouped and collapsed regulatory graphs requires additional work in

determining local reactant/product relationships on the regulatory graph, sorting them and

determining unique combinations, as detailed in Section 2.5.4.5. The time complexity of the

grouping step is 𝒪𝒪 �𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

log𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

�, where 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅 is the number of rules and 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 denotes

the number of reactant/product relationships of each rule to the set of atomic patterns. The worst

case scenario is when a number of molecule addition or deletion transformations are employed in

 68

the same rule, which will result in a high value for 𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

. Such pathological rules are rarely

encountered and are typically a sign of poor model construction if encountered frequently within

the same rule-based model. The average case encountered is where the rule implements at most

one or two transformations involving AddBond, DeleteBond and ChangeState, and in this case,

𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠
𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛

 has a low upper bound that is below 10. Thus, for the average rule-based model, the time

complexity for the grouping step is 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅).

2.5.6 Comparisons to Other Approaches

SBGN Process Description (Section 2.3.2.1) provides a local visualization that can be

adapted for the rule Petri net and it suffers from the same limitations as the rule Petri net, i.e. it

cannot be aggregated over partial overlaps and there is significant repetition involved in showing

reactants and products separately. The compact rule visualization is more compact than the rule

Petri net (Section 2.4.3), and is tailored specifically for communicating graph transformations in

reaction rules.

In comparison to the rule influence diagram (Section 2.4.5) which has 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅2)

complexity, the regulatory graph requires an 𝒪𝒪(𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑅𝑅) time on average to be constructed from a

rule-based model. This is because building the regulatory graph does not involve explicit

comparisons of whole patterns in rules. This also makes the regulatory graph have fewer edges per

node than the rule influence diagram, which improves visual comprehension. The regulatory graph

also has a similar scalability advantage over the Kappa story (Section 2.4.6), which requires

sampling combinations of rules that form causal sequences.

 69

Additionally, in comparison to the Kappa story (Section 2.4.6), the regulatory graph is a

truly global visualization, i.e. it does not require observables to be defined beforehand for the

model graph to be synthesized. On the other hand, the Kappa story has the advantage of defining

arbitrarily complex observables, whereas, the regulatory graph only uses atomic patterns. Future

work in this direction would involve extending the regulatory graph abstraction to accommodate

such observables.

In comparison to the Simmune Network Viewer (Section 2.4.7), the regulatory graph

enables identifying signal flows through internal states such as phosphorylated states.

Additionally, the graph is complete, unlike Simmune Network Viewer, which does not resolve

patterns involving wildcard bonds. Finally, the grouping approach provided on the regulatory

graph is flexible and allows deploying different grouping strategies. This ability to systematically

tune the resolution of the graph is not present in Simmune Network Viewer, which opts for a fixed

two-layer view.

The collapsed regulatory graph contains contextual information for processes at the same

level of resolution as the molecular interaction map (Section 2.3.1), the SBGN Entity Relationship

diagram (Section 2.3.2.2) and the Extended Contact Map (Section 2.3.3). It may seem that these

maps contain more information than the collapsed regulatory graph because of the variety of

contingency relations that are allowed to be represented. However, extracting these contingencies

from a formal model is not trivial or generalizable, and typically these diagramming frameworks

require the modeler to manually interpret the model in terms of the diagrammatic elements.

However, since SBGN Process Description is also a bipartite abstraction, there is potential for the

regulatory graph to be automatically converted to an SBGN PD diagram.

 70

It is fairly obvious in most quantitative fields that information encoded in a high-resolution

format can be systematically degraded into a lower-resolution format, and that the converse is not

possible without making strong assumptions about the nature of the encoded information. For

example, high-resolution images can be easily converted to low-resolution images that encode less

information, but the reverse is not possible in the general case. In a similar vein, mechanistic

models of biochemistry require graph-based formalisms such as that of BioNetGen in order to

explicitly represent site-based interactions, and human-readable pathway diagrams have to

necessarily be achieved by coarse-graining these explicit models. The Rxncon framework fails to

recognize this disparity in resolution, and unlike the BioNetGen specification, the Rxncon

specification cannot represent the full spectrum of site-based kinetic interactions [65]. In this work

I have provided the opposite approach to Rxncon: begin with a BioNetGen kinetic specification of

arbitrary complexity, and then apply systematic transformations and coarse-graining procedures

to generate a simple human-readable diagram.

2.5.7 Implementation

The methods developed here have been implemented and packaged with BioNetGen 2.2.6

(bionetgen.org). In a BioNetGen model, “actions” are calls to methods that analyze or simulate

models. The visualization methods can be accessed with the visualize() action.

For compact rule visualization, the following action is used:

visualize({ type=>”ruleviz_operation”})

For generating complete regulatory graphs from reaction rules, the following action is used:

visualize({ type=>”regulatory”, background=>1 })

 71

In both cases, to generate separate files for each rule, the flag each=>1 can be used.

To generate a text file that contains all the rules, atomic patterns and relationships between

them, use:

visualize({ type=>”regulatory”, background=>1, textonly=>1 })

To turn on the pruning heuristic, background=>0 is used. This is also the default setting.

To enable automated grouping of rules, use:

visualize({ type=>”regulatory”,groups=>1})

To enable collapsing of the generated group structures, use:

visualize({ type=>”regulatory”,groups=>1,collapse=>1})

Options files can be provided to the visualize action to modify the background assignment and to

provide groups of atomic patterns as seed for the rule-grouping algorithm:

visualize({ type=>”regulatory”,opts=>[“opts1.txt”, “opts2.txt”] })

In the options file, background options are specified as follows:

begin background

 begin include

 <whitespace-separated list of atomic patterns>

 end include

 begin exclude

 <whitespace-separated list of atomic patterns>

 end exclude

end background

 72

Atomic patterns in the include and exclude sections are populated from the text file

generated by textonly=>1.Atomic patterns in the include section are included in the background,

and those in the exclude section are excluded from the background, with both inclusions and

exclusions overriding the pruning heuristic.

In the options file, groups of atomic patterns are specified as follows:

begin classes

 begin groupname1

 <whitespace-separated list of atomic patterns>

 end groupname1

 begin groupname2

 <whitespace-separated list of atomic patterns>

 end groupname2

end background

These groups are used to seed the automated rule-grouping algorithm. Names for rule

groups are assigned automatically. A detailed and updated version of the documentation can be

found at http://bionetgen.org/index.php/Visualization.

2.6 VISUALIZATION CASE STUDIES

In this section, I demonstrate the effectiveness of the visualizations defined in Section 2.5 for local

and global views of rule-based models, and I will do so by applying the methods developed here

 73

on previously published models. As explained in Chapter 1, each rule models an explicit reaction

mechanism, with patterns explicitly showing the participating sites in detail. The local perspective

in a rule-based model is conveying the requirements and graph transformations in each reaction

rule, and the global perspective is the network of signal flows between rules and sites in the model.

In this work, for the first time, we demonstrate how to achieve a global visualization of signal flow

from a rule-based model, as well as, how to simplify automatically generated diagrams of large

models into compact pathway diagrams. Finally, we show how regulatory graphs are useful for

identifying cascades and feedback loops in a model which improve the understanding of a model.

2.6.1 Visualizing Mechanisms in Detail

In the BioNetGen specification, each reaction rule has reactant and product patterns, with the

reactants encoding the site configuration that drives the process (the “before” state), and the

products encoding the transformation relative to the reactants (the “after” state). Compact rule

visualization (Section 2.5.2.6) was designed to explicitly show the graph transformation modeled

in a rule, instead of the implicit “before/after” representation used in the syntax. Here, I will use

four rules from the Faeder et al. model of signaling from the Fc𝜀𝜀RI receptor in mast cells [35] to

demonstrate the utility of the compact rule visualization in conveying these mechanisms. In the

model, rules R3 and R6 are as follows (underline for comparison):

R3: Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2)

R6: Rec(b~pY) + Lyn(U,SH2) <-> Rec(b~pY!1).Lyn(U,SH2!1)

Both rules model binding of cytoplasmic Lyn with the 𝛽𝛽 domain (denoted ‘b’) of the

receptor under slightly different local conditions. A bond is indicated by !1 placed next to the two

 74

components forming the bond. In both R3 and R6, the Lyn kinase has to have both U and SH2

domains unbound. In R3, the binding site on the receptor is unphosphorylated (~Y), and the

binding site on Lyn is the ‘unique’ domain U. In R6, the binding site on the receptor is

phosphorylated (~pY), and the binding site on Lyn is the SH2 domain.

In biochemical parlance, rule R3 models constitutive recruitment of cytoplasmic Lyn to the

receptor, and rule R6 models activated recruitment since it requires the phosphorylated state of the

𝛽𝛽 domain. Rules R3 and R6 are examples of explicit reaction mechanisms: the sites driving the

process, the sites affected by the process, the local arrangement of these sites within complexes,

the relevant internal states (unphosphorylated/phosphorylated) and binding states

(bound/unbound), are all explicitly specified. As shown in Figure 2-27, compact rule visualization

shows the molecules and sites involved and differentiates between the modified and unmodified

sites using graph operation nodes such as AddBond. It also enables a side-by-side display and

comparison of the two mechanisms.

Figure 2-27. Compact rule visualization of rules R3 and R6 from Faeder et al. [35] modeling recruitment

of cytoplasmic Lyn kinase to the 𝜷𝜷 domain (‘b’) of the Fc𝜺𝜺RI receptor (Rec). In R3, recruitment is constitutive, i.e.

Lyn binds via its U domain to an unphosphorylated 𝜷𝜷 domain (b~Y), whereas in R6, recruitment is activated, i.e. Lyn

binds via its SH2 domain to a phosphorylated 𝜷𝜷 domain (b~pY). The action of each rule is made explicit by using a

graph operation node (AddBond), and the rules can be compared side-by-side.

 75

Now consider the rules R4 and R7, as shown below (underline for comparison).

R4:Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~Y)->

Lig(l!1,l!2).Lyn(U!3,SH2).Rec(a!2,b~Y!3).Rec(a!1,b~pY)

R7:Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~Y)->

Lig(l!1,l!2).Lyn(U,SH2!3).Rec(a!2,b~pY!3).Rec(a!1,b~pY)

Note that the patterns used in R4 and R7 are larger than the ones in R3 and R6, and involve

more molecules, components and bonds (!1, !2, !3, etc.). Although the syntax is precise and

flexible for building arbitrarily large graphs, the content of these large graphs are not immediately

obvious to the human eye. However, this information can be easily conveyed using compact rule

visualization, as in Figure 2-28. From this figure, we can see that both rules R4 and R7 require a

receptor dimer which is formed when a bivalent ligand crosslinks two receptors. In both R4 and

R7, one of the receptors in the dimer is bound to a Lyn kinase through its 𝛽𝛽 domain (denoted ‘b’),

and the other receptor has an unbound 𝛽𝛽 domain that undergoes phosphorylation, as indicated by

a ChangeState operation from Y to pY. The only difference between the two rules is the manner

of recruitment of Lyn to the first receptor: in R4, Lyn is bound via the U domain to the

unphosphorylated 𝛽𝛽 domain, whereas in R7, Lyn is bound via SH2 domain to the phosphorylated

𝛽𝛽domain.

 76

Figure 2-28. Compact rule visualization of rules R4 and R7 from Faeder et al. [35]. In both rules, a

receptor dimer is required which is formed due to crosslinking by a bivalent ligand. One half of the dimer binds Lyn

kinase via its 𝜷𝜷 domain, which results in phosphorylation of the 𝜷𝜷 domain on the other half of the dimer. In R4, Lyn

is recruited via its U domain to the unphosphorylated 𝜷𝜷 domain whereas in R7, Lyn is recruited via its SH2 domain

to the phosphorylated 𝜷𝜷 domain.

2.6.2 Visualizing Interactions of Mechanisms

Signal flow in a rule-based model constitutes of effects of individual rules on sites, which can

subsequently influence other rules. For example, consider the four rules shown in Figure 2-27 and

Figure 2-28. R4 requires the constitutively bound state of Lyn to receptor, which is produced by

R3. R7 requires the actively bound state of Lyn to receptor, which is produced by R6. R6 requires

the phosphorylated state on the 𝛽𝛽 domain which is produced by rules R4 and R7. The compact

rule visualization, while useful for understanding individual rules, cannot provide a global picture

of signal flows. On the other hand, the regulatory graph, as developed in 2.5.4.1, was designed to

show relationships between rules and their sites of action. Figure 2-29 is a pruned regulatory graph

(Section 2.5.4.4), on which we can see that constitutive binding via R3 leads to phosphorylation

 77

via R4, and then there is a positive feedback loop between activated recruitment via R6 and

phosphorylation via R7.

Figure 2-29. Regulatory graph of rules R3, R4, R6 and R7 that were visualized in Figure 2-27 and Figure

2-28. The graph has two types of nodes: rules and atomic patterns. Atomic patterns represent distinct classes of

structural features, with bonds such as Lyn(U!1).Rec(b!1) and phosphorylated states such as Rec(b~pY). Atomic

patterns representing free binding sites such as Lyn(U) and unphosphorylated states such as Rec(b~Y) are not shown.

The regulatory graph enables identifying the positive feedback loop between R6 and R7.

2.6.3 Visualizing Models as Pathway Diagrams

The model regulatory graph (Section 2.5.4.3) is a complete, automated, flow-based visual

representation of the model that is aggregated from individual rules. Even though it has a better

scaling performance than the rule influence diagram or the Kappa story (see Section 2.5.5), the

visual quality of these graphs was still found to degrade rapidly as the number of rules increases,

which is expected behavior for the general class of node-link visualizations [75]. To usefully

visualize rule-based models of any size, we needed to be able to control the size and complexity

of the generated diagrams. So, we developed a series of coarse-graining procedures that

incorporate both user input and graph analysis to transform the automatically generated model

 78

regulatory graph into a smaller pathway diagram (Sections 2.5.4.4, 2.5.4.5, 2.5.4.6). We

demonstrate this using the Faeder et al. model of mast cell signaling from the Fc𝜀𝜀RI receptor [35].

The Faeder et al. model uses four molecule types (Lig, Rec, Lyn, Syk), as seen in the formal

contact map in Figure 2-30, and requires 24 reaction rules to specify very detailed kinetic

interactions involving specific sites on these molecules [35]. The ligand has two symmetric

receptor binding sites, and this leads to the formation of a crosslinked receptor dimer. The receptor

has intracellular domains 𝛽𝛽 and 𝛾𝛾 that can be phosphorylated. Both phosphorylated and

unphosphorylated forms of the 𝛽𝛽 domain bind Lyn, whereas only the phosphorylated form of the

𝛾𝛾 domain binds Syk. When one of these kinases is recruited to one side of the dimer, it

phosphorylates substrates found on the other side of the dimer, a phenomenon called trans-

phosphorylation. Lyn trans-phosphorylates both Lyn and Syk binding sites, as well as the linker

region on recruited Syk. Syk trans-phosphorylates the activation loop on recruited Syk, which also

enhances Syk’s kinase activity.

Table 1.2-1 summarizes the 24 rules and the kinetic mechanisms they represent. The

complete model regulatory graph, automatically generated from the model specification in

BioNetGen, is shown in Figure 2-31. The graph has 45 nodes and 125 edges, and although it

provides a flow-based representation, it is still too large and complex to be useful as a human-

readable pathway diagram. We then implemented the following steps to coarse-grain the graph

into a simpler version that conveys model intent.

The first step is to remove rules and atomic patterns that can be considered redundant

(Section 2.5.4.4). On this graph, we removed the dephosphorylation rules, the reverses of binding

rules, and the unphosphorylated states and free binding sites on the receptor and kinases. The

background assignment was performed with a heuristic, but it can also be provided by the user in

 79

the form of an options file. This results in the pruned regulatory graph in Figure 2-32, which has

22 nodes and 45 edges. On this graph, it is easier to track the signal flow: ligand binding to Lyn

recruitment to receptor phosphorylation to Syk recruitment and phosphorylation. The second step

is to impose an organization of atomic patterns and rules into groups. For this model, user input

was provided to group atomic patterns as follows: Lig = {Lig(l)}, Lig_Rec={Lig(l!1).Rec(a!1)},

Rec_p = {Rec(b~pY), Rec(g~pY)}, Rec_Syk = {Rec(g!1).Syk(tSH2!1)}. The automated rule-

grouping algorithm (Section 2.5.4.5) was then used to analyze the graph and identify groups of

rules that have similar effects on atomic patterns. Figure 2-33 shows the grouped regulatory graph.

The final step is to reduce groups of nodes to a single node each (Section 2.5.4.6). The collapsed

regulatory graph, as shown in Figure 2-34, is much more compact than previous versions (15

nodes, 25 edges) and shows the signal flows as one would on a simple pathway diagram, using

broad classes of sites and processes.

The graph in Figure 2-34 can also be used to identify feedbacks in the model: the positive

feedback between activated Lyn recruitment and receptor phosphorylation, and the self-enhancing

effects of receptor phosphorylation and Syk activation loop phosphorylation. This was not possible

with any previous automated global visualization for rule-based models.

When atomic patterns are left ungrouped, the regulatory graph makes it possible to discern

the finer aspects of regulation involving specific atomic patterns. For example, in Figure 2-34, one

can distinguish between processes that phosphorylate Syk at two different sites and we can see

that one of them is Lyn-dependent, whereas the other is not. Similarly, one can distinguish that

activated recruitment of Lyn participates in a positive feedback loop, but constitutive recruitment

does not. It is possible to coarse-grain the model regulatory graph to different extents, by using a

different grouping strategy. For example, in addition to the grouping specified above, if we also

 80

specify Rec_Lyn = {Lyn(U!1).Rec(b!1), Lyn(SH2!1).Rec(b!1)} and Syk_p = {Syk(a~pY),

Syk(l~pY)}, followed by automated rule grouping and collapsing, this results in the graph in

Figure 2-35, which has 11 nodes and 18 edges. However, the regulatory description in this figure

is more coarse-grained than previous ones, because Syk phosphorylation and Lyn recruitment are

treated generically. By choosing the specific number and size of each group of atomic patterns, the

modeler is able to modulate the complexity of the resultant diagram and the degree to which the

details of the model regulatory graph are coarse-grained. This allows the modeler to tailor the

generated diagram for a specific purpose or audience.

Figure 2-30. Formal contact map of the Faeder et al. model [35]. The model has four molecule types.

The ligand has two symmetric binding sites for the receptor. The receptor has 𝜷𝜷 and 𝜸𝜸 domains that bind Lyn and Syk

respectively, with Lyn being able to use U or SH2 domains to bind the receptor. The receptor 𝜷𝜷 and 𝜸𝜸 domains as

well as the activation loop (denoted ‘a’) and the linker region (denoted ‘l’) on Syk can be in unphosphorylated (Y) or

phosphorylated (pY) states.

 81

Table 2-2. Descriptions of mechanisms modeled as reaction rules in the Faeder et al. model [35]. Rule names

beginning with ‘_reverse_’ are reverses of binding rules. Multiple rules are required when there are kinetic

contributions from variations in molecular states or binding interactions, e.g. trans-phosphorylation of 𝜷𝜷 by Lyn is

assumed to have different rates when the kinase is recruited to the unphosphorylated site (rule R4) or the

phosphorylated site (rule R7).

Rule Names Kinetic Interaction Modeled

R1, _reverse_R1 Binding of free ligand to receptor.

R2, _reverse_R2 Crosslinking of ligand-bound receptor with another receptor.

R3, _reverse_R3 Binding of Lyn to unphosphorylated 𝛽𝛽 domain of receptor.

R6, _reverse_R6 Binding of Lyn to phosphorylated 𝛽𝛽 domain of receptor.

R9, _reverse_R9 Binding of Syk to phosphorylated 𝛾𝛾 domain of receptor.

R4, R7 Trans-phosphorylation of 𝛽𝛽 by Lyn.

R5, R8 Trans-phosphorylation of 𝛾𝛾 by Lyn.

R10, R11 Trans-phosphorylation of Syk linker region by Lyn.

R12, R13 Trans-phosphorylation of Syk activation loop by Syk.

R14 Dephosphorylation of 𝛽𝛽 domain of receptor.

R15 Dephosphorylation of 𝛾𝛾 domain of receptor.

R16, R18 Dephosphorylation of linker region of Syk.

R17, R19 Dephosphorylation of activation loop of Syk.

 82

Figure 2-31. Complete regulatory graph of the Faeder et al. model of Fc𝜺𝜺RI signaling [35], automatically

generated from the BioNetGen specification. Dark edges indicate consumption and production and light edges indicate

context influence.

 83

Figure 2-32. Pruned regulatory graph of the Faeder et al. model generated from the model regulatory

graph in Figure 2-31 by applying a heuristic and removing a few rules (reverses of binding rules, dephosphorylating

rules) and atomic patterns (free binding sites and and unphosphorylated states on Rec, Lyn and Syk).

 84

Figure 2-33. Grouped regulatory graph of the Faeder et al model generated from the pruned graph in

Figure 2-32. We used user input that grouped atomic patterns as follows: Lig = {Lig(l)},

Lig_Rec={Lig(l!1).Rec(a!1)}, Rec_p = {Rec(b~pY), Rec(g~pY)}, Rec_Syk = {Rec(g!1).Syk(tSH2!1)}. The rule

groups were automatically determined using this information, such that each group of rules produces the same effect

on the sites involved.

 85

Figure 2-34. Collapsed regulatory graph of the Faeder et al. model generated from Figure 2-33 by

automatically reducing groups of nodes to single representative nodes. At this level of resolution, the signal flow in

the system is much more clarified and resembles a simple pathway diagram. Ligand binding and crosslinking (RG0)

and constitutive Lyn recruitment (R3) initiate the cascade, which culminates in phosphorylation of Syk linker region

(RG2) and activation loop (RG3). Signaling motifs can be identified on this graph, such as the positive feedback loop

involving constitutive Lyn recruitment and receptor phosphorylation {R6, Lyn(SH2!1).Rec(b!1), RG1, Rec_p} and

the self-enhancing effects of receptor phosphorylation {RG1. Rec_p} and Syk activation loop phosphorylation {RG3,

Syk(a~pY)}. The ungrouped atomic patterns enable discerning the finer features of regulation (thick edges), e.g. Syk

linker region phosphorylation (RG2) is Lyn-dependent (edges labeled 2), but Syk activation loop phosphorylation

(RG3) is not, and that activated Lyn recruitment (R6) is part of a positive feedback loop, whereas constitutive

recruitment (R3) is not (edges labeled 1).

 86

Figure 2-35. Collapsed regulatory graph of Faeder et al. model, with an alternative grouping of atomic

patterns provided by the user. In addition to the groups of atomic patterns used in Figure 2-33, here we used the

additional groups Syk_p = {Syk(a~pY),Syk(l~pY)} and Rec_Lyn = {Lyn(U!1).Rec(b!1), Lyn(SH2!1).Rec(b!1)}.

The resultant collapsed graph, as shown here, is simpler than Figure 2-34: the two Syk phosphorylated states have

been merged into one, and the two Lyn-recruited states have been merged into one. As a consequence, Lyn recruitment

and Syk phosphorylation are treated generically, and the finer regulatory features that were discerned in Figure 2-34

cannot be identified in this figure. For example, the feedback loop is routed through the generic Lyn-recruited state

Rec_Lyn (thick edges).

 87

2.6.4 Visualizing Large Libraries of Rules

Many recent publications in the literature involve building a repository of reaction rules that

comprehensively document all site-based interactions in a particular biochemical system, typically

a signaling pathway initiated from a specific family of cell surface receptors. Examples of modeled

receptor families include the ErbB family of receptor tyrosine kinases [46], of which the epidermal

growth factor receptor is a prominent member [25], the high affinity IgE receptor Fc𝜀𝜀RI [44], the

T-cell receptor [45], and yeast pheromone receptor Ste2 [47]. These models typically have 10s to

100s of rules, but by applying commonly used as well as model-specific grouping strategies to the

model regulatory graphs (Sections 2.5.4.5, 2.5.4.6), we were able to generate relatively compact

signal flow diagrams. Importantly, we were able to use these diagrams to identify signaling motifs

such as cascades and feedback loops, which was not possible using previous automated global

diagrams of rule-based models. Here we showcase regulatory graphs of Creamer et al. [46] and

Chylek et al. [44], and discuss the strategies used in complexity reduction.

The Creamer et al.[46] model, whose regulatory graph is shown in Figure 2-36, has 19

molecule types, of which four are receptors from the ErbB family (EGFR, ErbB2, ErbB3, and

ErbB4) and two are ligands that bind these receptors (EGF, HRG). In the model, each receptor can

bind a ligand molecule (except ErbB2), which leads to dimerization of receptors on the membrane,

which in turn activates an intracellular kinase domain on these receptors, which in turn

phosphorylates the receptor tails. Adaptors and signal mediators bind to specific phospho-motifs

in the receptor tails and initiate the MAP kinase pathway and PIP3/Akt1 pathway, whose primary

outputs are activated Erk2 and activated Akt1 respectively. The model also includes internalization

of ligand-bound receptors, feedback from Erk2 and Akt1, as well as crosstalk between the two

pathways [46].

 88

The Creamer et al.[46] model faces severe combinatorial complexity, even when modeled

as reaction rules, because of dimerization between receptor types: every receptor type can homo-

dimerize with another receptor of the same type or hetero-dimerize with a receptor of a different

type, leading to 16 different dimer configurations (4x4), each of which requires ligand-binding,

dimerization, and phosphorylation rules. The model requires 625 reaction rules in all and is

currently the largest rule-based model in existence and is a challenge to visualize [46]. The

complete model regulatory graph has 939 nodes and 5110 edges. The following grouping strategy

was applied: the ligand-bound states were grouped together under Lig_Rec, and the dimer states

were grouped under Dimer. Multiple phosphorylated states on a molecule were grouped into a

collective phosphorylated state, and this was done for each molecule type. For kinases where

binding to the kinase active-site cleft was explicitly modeled, the convention A_on_B was used to

show the binding of a substrate B to the active-site of a kinase A. After pruning, grouping and

collapsing, the resultant graph, shown in Figure 2-36 has 85 nodes and 157 edges and was laid out

to visually emphasize the different modules in the system: surface interactions, internalization,

adaptor binding, KRas activation, MAPK pathway, PI3K activation, Akt1 pathway, Erk2 feedback

and Akt1 feedback.

 89

Figure 2-36 Regulatory graph visualization of the Creamer et al. model of signaling from ErbB family

of receptors [46]. The grouping of atomic patterns was provided by the user and rule-grouping was automated.

 90

Chylek et al. model signaling from Fc𝜀𝜀RI receptor, which plays an important role in mast

cell signaling [44]. The ligand is assumed to be a multivalent entity that crosslinks receptors, which

initiates trans-phosphorylation events by cytoplasmic kinases (Lyn, Fyn, Csk, Syk, BTK) recruited

to the receptor, and binding of adaptors (Grb2, Grap2). Also in the model are scaffolds (Pag1, Lat)

that bring together many kinases and their substrates. This results in activation of multiple

enzymatic processes that regulate phosphoinositide levels, including PI3K, Inpp5d and Plcg1 (with

PTEN as a background modulator). Chylek et al. [44] actually provide two different models. The

first model is larger, encompasses the whole system, and represents phosphoinositide entities as

whole molecules, such as PIP2() and PIP3(). The second model is smaller, but focuses on the

interaction of enzymes PI3K, Inpp5d and Plcg1 with phosphoinositide entities in high detail, with

the phosphoinositides modeled as structured molecule named PI with sites OH3, OH4 and OH5

representing the 3’,4’ and 5’ hydroxyl positions, internal state ~P representing phosphates at those

positions, and the site ‘head’ representing the phosphoinositide head group [44]. We merged both

models into a single model, replacing phosphoinositide-modifying rules in the first model with the

detailed interactions from the second model. The resulting model has 17 molecule types and

requires 178 reaction rules. The complete model regulatory graph has 313 nodes and 1084 edges.

In general, the grouping strategy mirrored the one used for Creamer et al.[46]: pairs of binding

molecules were grouped together, and phosphorylation sites on the same molecule were grouped

together (with the exception of Lyn and Fyn which I will discuss shortly). After pruning, grouping

and compressing, the resultant graph is shown in Figure 2-37, and has 70 nodes and 129 edges.

The graph was laid out to emphasize the different parts of the system: the interactions governing

Lyn/Fyn regulation, the Syk-Lat cascade beginning from ligand-binding, the initiation of the three

arms of the phosphoinositide pathway, and the feedbacks involved. In Figure 2-38 and Figure 2-39,

 91

I show different subsets of the graph in Figure 2-37, and I will use these to highlight the model-

specific grouping strategies involved, as well as the ability to identify signaling motifs such as

feedback and feed-forward loops.

In Figure 2-38, I show a subset of the graph in Figure 2-37 that highlights detailed and

complex interactions between the receptor, the cytoplasmic kinases Lyn, Fyn and Syk, and the

scaffold Pag1. Lyn and Fyn are structurally and functionally homologous Src kinases, so we

lumped functionally similar sites on Lyn and Fyn within the same group, as if they belong to a

generic SrcKinase. Multiple domains on Lyn and Fyn act in concert to either bind receptor, or the

scaffold Pag1 or to bind in an intramolecular fashion and exist in a self-inhibited state. These

domains were grouped under SrcKinaseBindingGroup. Phosphorylation sites on Lyn and Fyn

could be distinctly classified as those with positive or negative effects on Lyn/Fyn activity, and so

these were grouped under two different collectives: SrcKinaseActivation_p and

SrcKinaseInhibition_p. In Figure 2-38, the thick edges outline the canonical signal flow, and the

boxes were added to emphasize positive feedback loops. The initial cascade causes activation of

Lyn and Fyn: Lyn/Fyn bind receptor (RG1), phosphorylate Lyn/Fyn binding sites on the receptor

(RG3) in a positive feedback loop, then are phosphorylated themselves on their activating

phospho-motifs (RG5). Activated Lyn and Fyn are important components of the Syk/Lat activation

cascade that is not shown in this subset. Following Lyn/Fyn activation is a cascade that causes

downregulation: activated Lyn/Fyn bind Pag1 and phosphorylate Pag1 in a similar positive

feedback loop (RG7, RG8), which brings them in proximity to Csk kinase that phosphorylates

inhibiting phospho-motifs (RG9), which in turn leads to the self-bound self-inhibited state (RG2),

and attenuation of the signal from Lyn/Fyn. Having conveyed the architecture of the system using

this diagram, it is much easier to discuss functional aspects of this architecture, for example, Barua

 92

et al. [76] discuss how a similar architecture in B cells can result in a pulse-like signal from the

Src kinases and how modulating concentrations of the Src kinases can lead to oscillatory behaviors.

In Figure 2-39, we show subsets of the graph in Figure 2-37 that highlight the signaling

motifs underlying phosphoinositide regulation. Note that the phosphoinositides are modeled as

structured entities, so processes involving PIP2, PIP3 and other phosphoinositides are represented

on this graph as processes producing or consuming the OH3, OH5 or the ‘head’ component. 3’-

phosphorylation by R152 represents PIP2 to PIP3 conversion by PI3K. Similarly, 5’-

dephosphorylation by R95 represents PIP3 consumption by Inpp5d, and head removal by R159

represents PIP2 hydrolysis by Plcg1. Edges were annotated with labels to refer to different

cascades in Figure 2-39. Cascade 1 shows signal flow from phosphorylated Lat (Lat_p) leading to

PI3K activation (R152), which results in BTK recruitment to PIP3 at the membrane (R153).

Cascade 2 also begins at Lat_p and shows Plcg1 recruitment to the membrane by Lat_p (R132).

The two cascades 1 and 2 meet and synergize to cause BTK-dependent activation of Plcg1 (R154,

R156), and this signaling motif is called a coherent feed-forward loop. Cascade 3 shows Plcg1

enzyme activity (R159) following activation by BTK. Cascade 4 begins from the receptor

phosphorylated state (Rec_b_p) and shows Gab2 phosphorylation by Fyn on the receptor complex

(RG15), which leads to PI3K activity (R152), which increases PIP3 levels. Cascade 5 also begins

from the phosphorylated receptor and shows Inpp5d recruitment (RG16), which results in Inpp5d

activity (R95) and reduces PIP3 levels. The two cascades 4 and 5 originate and diverge from the

same point (Rec_b_p), but have opposing effects on PIP3 levels, and this is an example of an

incoherent feed-forward loop. Cascade 6, in addition to cascade 4, follows a positive feedback

loop involving PIP3-dependent recruitment of Gab2 to membrane (R146) which leads to increased

phosphorylation of Gab2 (RG15) and increased PI3K activity (R152). Notably, Chylek et al.

 93

include in their paper manually drawn visualizations that highlight these motifs [44], and in this

work, we were able to trace these motifs on a diagram that was automatically generated from the

formal BioNetGen specification and a user-specified organization of sites.

 94

Figure 2-37. Regulatory graph visualization of the Chylek et al. model of signaling from the Fc𝜺𝜺RI

receptor [77]. The grouping of atomic patterns was provided by the user and rule-grouping was automated.

 95

Figure 2-38. Subset of the Chylek et al. regulatory graph, showing interactions of the SrcKinases (Lyn

and Fyn) with the Fc𝜺𝜺RI receptor (full graph in Figure 2-37). Thick edges highlight the canonical flow of signal

in the model: first, there is initiation of signaling by binding of the SrcKinaseBindingGroup (a group of domains on

Lyn and Fyn) with the receptor (RG1). Then, there is a positive signaling cascade where receptor binds SrcKinase

(RG1) leading to activation of the SrcKinase by trans-phosphorylation (RG5). Then, there is a negative cascade, which

involves SrcKinase binding the scaffold Pag1 (RG7) leading to Csk-dependent phosphorylation of inhibitory sites on

the SrcKinase (RG9) which in turn promotest the formation of a self-bound self-inhibited state of the SrcKinase (RG2).

Boxes were added to highlight the positive feedback loops between receptor binding to SrcKinase (RG1) and receptor

phosphorylation (RG9), and between Pag1 binding to SrcKinase (RG7) and Pag1 phosphorylation (RG8).

 96

Figure 2-39. Subsets of the Chylek et al. regulatory graph, highlighting other signaling motifs (full

graph in Figure 2-37). In the graph on the left, the edges labeled 1 follow a path from phosphorylated Lat to PI3K

activity (R152) to BTK recruitment (R153), and edges labeled 2 follow a path from phosphorylated Lat to Plcg1

recruitment (R132). Both paths converge onto BTK-Plcg1 binding (R154) and Plcg1 activation (R156). This is an

example of a coherent feed-forward loop, where multiple paths converge and synergize. The edges labeled 3 follow a

path that results in a negative feedback: Plcg1 activation (R156) leading to PIP2 cleavage that consumes the

phosphoinositol head group (PI_head), which in turn is required context for RG17 in branch 1. On the graph on the

right, the edges labeled 4 follow a path from phosphorylated receptor to Gab2 phosphorylation (RG15) which leads

to PI3K activity (R152) that produces the 3’-phosphate (PI3P), increasing PIP3 levels, and edges labeled 5 follow a

path from phosphorylated receptor to phosphatase recruitment (RG16) and phosphatase activity (R95) that consumes

the 5’-phosphate, decreasing PIP3 levels. This is an example of an incoherent feed-forward loop, where converging

paths have opposing effects. Edges labeled 6 indicate a positive feedback loop involving PI3K activity (R153) and

Gab2 recruitment via PIP3 (R146) and Gab2 phosphorylation (RG15).

 97

2.6.5 Comparison of Visualization Size and Complexity

Following Ghoniem et al. [75], the readability of graphs decays with graph size and edge density.

Here, we took eight rule-based models of varying sizes and generated all possible automated

visualizations so that they can be compared with these metrics. The chart in Figure 2-40

summarizes these results.

Figure 2-40 Analysis of graph size and complexity for different visualizations. We have used eight rule-

based models of various sizes from the literature [35], [37], [42], [47], [76], [78]–[80], and compared the different

automated visualizations. X-axis shows size of the graph as number of nodes. Y-axis shows density of the graph as

number of edges per node.

 98

In Figure 2-40, note that the contact maps are always the most compact, because they only

show structural relationships. Reaction networks can be many times larger and denser than the

corresponding rule-based models. The rule influence diagram usually has fewer nodes than

regulatory graph, but can have an extremely large number of edges. The full regulatory graph is

moderately larger than the rule influence diagram, but with much lower visual complexity. Also

shown for the Faeder et al. model (marked 5 in Figure 2-40), are the extended contact map and the

organized regulatory graph (i.e. after pruning, grouping and collapsing). The extended contact map

is fully manual and is therefore very compactly designed. However, the organized regulatory graph

which uses minimal user input to compress the regulatory graph is only marginally larger, and has

similar number of edges per node.

 99

2.7 CONCLUDING REMARKS

The work in this chapter was geared towards solving two important visualization problems

for rule-based models: visualizing individual rules to understand the modeled mechanisms, and

visualizing sets of rules to understand the underlying regulatory network. As shown in the case

studies, the regulatory graph can be used to extract and visualize information from a BioNetGen

model specification [25], [35] and external input in the form of groups of sites can be

systematically used to generate a compressed representation. The abstractions provided are also

general enough to be applicable for other rule-based frameworks such as Kappa [68] and Simmune

[30], and the development of a common standard (SBML-multi, sbml.org) will open up a wide

range of models that can be visualized in this way. Also, unlike sets of rules, which can only be

displayed as a list, the regulatory graph data structure is amenable to interactive display and

exploration. We expect this to be useful for the increasingly large number and size of rule-based

models that is anticipated in the immediate future. In fact, there is already significant movement

in the broader modeling community towards collaborative and comprehensive models, such as the

whole cell model of Mycoplasma genitalium [48]. There are many directions in which the

regulatory graph can be extended, for example, node attributes can be paired with numeric values

to represent simulation fluxes [81], and a hierarchical multi-layered grouping strategy could be

useful for organizing very large model graphs [82]. A more immediate direction to encourage

wider adoption is to synthesize automated SBGN diagrams from the regulatory graph [60].

 100

3.0 ENERGY-BASED MODELS AND NETWORK-FREE SIMULATION

3.1 SYNOPSIS

Network-free simulation and energy-based rule-based modeling are recent advances in rule-based

modeling. Network-free simulation involves simulating a chemical system without having to

generate the reaction network. This is accomplished by mapping patterns in a rule-based model

directly to lists of agents in the simulation, calculating the reaction probabilities and firing reaction

events. Energy-based rule-based modeling involves specifying a model such the free energy of a

reaction can be computed by counting matches of “energy patterns” into reactant and product. In

contrast to the classical rule-based specification which does not constrain the energetics of

reactions, the energy-based specification ensures detailed balance is always satisfied leading to

thermodynamically correct models. Also, it enables kinetics to be specified in terms of

cooperativity parameters. Currently, it is not possible to perform a network-free simulation of an

energy-based rule-based model. This is because calculating the rate of a reaction from its free

energy requires knowing both reactants and products of the reaction event. While this can be

accomplished very easily in a network-based context, this information is not available to a

network-free simulation until after the reaction event has fired. I explain the problem using a

simple example in Section 3.2.

 101

In Section 3.3, I synthesize a common framework that brings together the rule-based

specification, the reaction network, network generation from a rule-based model, the energy-based

specification, and the network-based and network-free forms of simulation. The material for this

section summarizes methods found in the rule-based literature [24], [34], [39], [50]. The casual

reader is advised to skip this section.

In Section 3.4, I provide a procedure to synthesize a set of rules compatible with network-

free simulation by expanding the energy rules in an energy-based rule-based specification. Then I

demonstrate the method using two worked out examples.

3.2 MOTIVATING EXAMPLE

3.2.1 Energy-based Model

Consider the following model, where a molecule A has two states A0 and Ap and binds molecule

B under both conditions:

𝐴𝐴0
𝑘𝑘𝑓𝑓𝑃𝑃1
⇌
𝑘𝑘𝑟𝑟𝑃𝑃1

𝐴𝐴𝑎𝑎

𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓1 ⇃↾ 𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓1 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓2⇃↾ 𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓2

𝐴𝐴0𝐵𝐵
𝑘𝑘𝑓𝑓𝑃𝑃2
⇌
𝑘𝑘𝑟𝑟𝑃𝑃2

𝐴𝐴𝑎𝑎𝐵𝐵

Rephrasing the model in terms of equilibrium constants, let

𝐾𝐾𝑃𝑃1 =
𝑘𝑘𝑓𝑓𝑃𝑃1
𝑘𝑘𝑟𝑟𝑃𝑃1

,𝐾𝐾𝑃𝑃2 =
𝑘𝑘𝑓𝑓𝑃𝑃2
𝑘𝑘𝑟𝑟𝑃𝑃2

𝐾𝐾𝐴𝐴𝑓𝑓1 =
𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓1
𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓1

,𝐾𝐾𝐴𝐴𝑓𝑓2 =
𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓2
𝑘𝑘𝑟𝑟𝐴𝐴𝑓𝑓2

 102

The model becomes

𝐴𝐴0
𝐾𝐾𝑃𝑃1�� 𝐴𝐴𝑎𝑎

↕ 𝐾𝐾𝐴𝐴𝑓𝑓1 ↕ 𝐾𝐾𝐴𝐴𝑓𝑓2
𝐴𝐴0𝐵𝐵

𝐾𝐾𝑃𝑃2�� 𝐴𝐴𝑎𝑎𝐵𝐵

Each equilibrium constant can be related to the Gibbs free energy of the reaction thus:

𝐾𝐾𝐴𝐴𝑓𝑓1 = exp �−
𝐸𝐸𝐴𝐴𝑓𝑓1
𝐸𝐸𝑇𝑇 � ,𝐾𝐾𝐴𝐴𝑓𝑓2 = exp �−

𝐸𝐸𝐴𝐴𝑓𝑓2
𝐸𝐸𝑇𝑇 �

𝐾𝐾𝑃𝑃1 = exp �−
𝐸𝐸𝑃𝑃1
𝐸𝐸𝑇𝑇�

,𝐾𝐾𝑃𝑃2 = exp �−
𝐸𝐸𝑃𝑃2
𝐸𝐸𝑇𝑇�

By the principle of detailed balance, the sum of the free energies around the loop should be zero,

i.e.

𝐸𝐸𝐴𝐴𝑓𝑓1 + 𝐸𝐸𝑃𝑃2 − 𝐸𝐸𝐴𝐴𝑓𝑓2 − 𝐸𝐸𝑃𝑃1 = 0

This places constraints on the equilibrium constants:

𝐾𝐾𝐴𝐴𝑓𝑓1𝐾𝐾𝑃𝑃2 �
1

𝐾𝐾𝐴𝐴𝑓𝑓2𝐾𝐾𝑃𝑃1
� = 1 ⟹

𝐾𝐾𝑃𝑃2
𝐾𝐾𝑃𝑃1

=
𝐾𝐾𝐴𝐴𝑓𝑓2
𝐾𝐾𝐴𝐴𝑓𝑓1

To simplify the notation, let 𝛼𝛼 = 𝐾𝐾𝑃𝑃2
𝐾𝐾𝑃𝑃1

= 𝐾𝐾𝐴𝐴𝐴𝐴2
𝐾𝐾𝐴𝐴𝐴𝐴1

 and 𝐾𝐾𝑃𝑃 = 𝐾𝐾𝑃𝑃1 = 𝑘𝑘𝑓𝑓𝑃𝑃
𝑘𝑘𝑟𝑟𝑃𝑃

,𝐾𝐾𝐴𝐴𝑓𝑓 = 𝐾𝐾𝐴𝐴𝑓𝑓1 = 𝑘𝑘𝑓𝑓𝐴𝐴𝐴𝐴
𝑘𝑘𝑟𝑟𝐴𝐴𝐴𝐴

. Then,

𝐴𝐴0
𝐾𝐾𝑃𝑃�� 𝐴𝐴𝑎𝑎

↕ 𝐾𝐾𝐴𝐴𝑓𝑓 ↕ 𝛼𝛼𝐾𝐾𝐴𝐴𝑓𝑓
𝐴𝐴0𝐵𝐵

𝛼𝛼𝐾𝐾𝑃𝑃�� 𝐴𝐴𝑎𝑎𝐵𝐵

Now, consider the problem of representing this system in BioNetGen using the molecule types

A(b,t~0~P) and B(a), where t~0 and t~P represent the two states of A.

If we assume that state change of A is independent of binding to B and vice versa, then 𝛼𝛼 = 1, and

we only need to use two reversible rules to model the system:

A(b) + B(a) <-> A(b!1).B(a!1) kfAB,krAB

A(t~0) <-> A(t~P) kfP,krP

 103

This is because the independence between the two processes enables each process to be modeled

separately.

On the other hand, if 𝛼𝛼 ≠ 1, and if we assume that 𝛼𝛼1
𝛼𝛼2

= 𝛼𝛼3
𝛼𝛼4

= 𝛼𝛼, then we need four reversible rules

to model the system:

A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1) kfAB,krAB

A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1) alpha1*kfAB,alpha2*krAB

A(t~0,b) <-> A(t~P,b) kfP,krP

A(t~0,b!1).B(a!1) <-> A(t~P,b!1).B(a!1) alpha3*kfP,alpha4*krP

This is because the cooperativity between the two processes results in four unique reversible

reaction classes instead of two.

In the classical rule-based modeling framework, if there was cooperativity between binding and

state change, the modeler would have to specify four rules, as well as specify the relationships

between 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4. This was a source of error, because an inappropriate definition would break

detailed balance. Also, the number of reaction classes was dependent on the number of

cooperativities present in the system, making the model hard to edit by simply adding and

removing cooperativity terms.

Energy-based rule-based modeling was developed so that cooperativity terms can be defined in

terms of pattern matches and free energy accounting can be performed automatically. The modeler

only has to specify the minimum number of reaction rules with the most essential context, i.e.

A(b) + B(a) <-> A(b!1).B(a!1)

A(t~0) <-> A(t~P)

 104

The kinetics is specified in terms of energy pattern matches. So, in the case where there is no

cooperativity between binding and state change, the modeler would specify

begin energy patterns

 A(t~P) G_P

 A(b!1).B(a!1) G_AB

end energy patterns

In the case where there is cooperativity, the modeler would specify

begin energy patterns

 A(t~P) G_P

 A(b!1).B(a!1) G_AB

 A(b!1,t~P).B(a!1) G_alpha

end energy patterns

In both cases, all four reactions are generated automatically from the two rules:

A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1)

A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1)

A(t~0,b) <-> A(t~P,b)

A(t~0,b!1).B(a!1) <-> A(t~P,b!1).B(a!1)

The energies of each reaction are computed depending on the energy pattern definition used. For

the first case (no cooperativity), the energies are calculated as:

 105

𝐴𝐴0
𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎

↕ 𝐸𝐸𝐴𝐴𝑓𝑓 ↕ 𝐸𝐸𝐴𝐴𝑓𝑓
𝐴𝐴0𝐵𝐵

𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎𝐵𝐵

In the second case (cooperativity), the energies are calculated as:

𝐴𝐴0
𝐺𝐺𝑃𝑃↔ 𝐴𝐴𝑎𝑎

↕ 𝐸𝐸𝐴𝐴𝑓𝑓 ↕ 𝐸𝐸𝐴𝐴𝑓𝑓 + 𝐸𝐸𝛼𝛼
𝐴𝐴0𝐵𝐵

𝐺𝐺𝑃𝑃+𝐺𝐺𝛼𝛼�⎯⎯� 𝐴𝐴𝑎𝑎𝐵𝐵

Thus, in the energy-based specification, the model does not have to be specified in terms of

reaction classes with unique kinetics, and when the reaction network is generated, the kinetic

specification is calculated automatically from the calculated free energies of reactants and

products.

3.2.2 Network-free Simulation

Consider a system with the binding reaction rule (with rate constant k):

A(b) + B(a) <-> A(b!1).B(a!1) k

Now suppose we instantiate a simulation system with three particles, Particle1 having structure

A(b,t~0), Particle2 having structure A(b,t~P) and Particle3 having structure B(a).

The system has two underlying reactions:

Rxn1: A(b,t~0) + B(a) <-> A(b!1,t~0).B(a!1) k

Rxn2: A(b,t~P) + B(a) <-> A(b!1,t~P).B(a!1) k

If we know the underlying form of the species and reactions, then we can use simple labels to refer

to the species: A0, Ap, to refer to the states of A, B to refer to the molecule B, and A0-B and Ap-

 106

B to refer to the two A-B complexes respectively. We can also represent the simulation system of

three particles as a set of populations of these species:

 { A0 = 1, Ap = 1, B = 1, A0-B = 0, and Ap-B = 0 }

The relative propensity of each reaction is calculated by the product of the rate constant with the

populations of the reactant species:

𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑥𝑥𝑟𝑟1) = 𝑘𝑘 ∗ 𝐴𝐴0 ∗ 𝐵𝐵 = 𝑘𝑘(1)(1) = 𝑘𝑘

𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑥𝑥𝑟𝑟2) = 𝑘𝑘 ∗ 𝐴𝐴𝑎𝑎 ∗ 𝐵𝐵 = 𝑘𝑘(1)(1) = 𝑘𝑘

The time of the next reaction event depends on the sum of the rates, i.e. 2𝑘𝑘. Which reaction is

selected to fire depends on their relative propensity which is identically 𝑘𝑘
2𝑘𝑘

= 1
2
. Say Rxn1 fires,

then the species populations are updated:

{ A0 = 0, Ap = 1, B = 0, A0-B = 1, and Ap-B = 0 }

Therefore, as long as the identity of species and reactions are known, the propensities of each

reaction can be calculated explicitly and the reaction events can be sampled.

However, it is possible to simulate this system even without knowing the species and

reactions, i.e. as a network-free simulation. Given a system of three particles as above, Particle1

having A(b,t~0), Particle2 having structure A(b,t~P) and Particle3 having structure B(a), and given

a single reaction rule with rate constant k

Rule1: A(b) + B(a) <-> A(b!1).B(a!1) k

We keep track of matches of patterns to particles:

A(b) – Particle1, Particle2

B(a) – Particle3

Then we can use the size of these lists to calculate the propensity of the reaction class

 107

𝑆𝑆𝑀𝑀𝑡𝑡𝐷𝐷(𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷1) = 𝑘𝑘 ∗ |𝐴𝐴(𝑓𝑓)| ∗ |𝐵𝐵(𝑀𝑀)| = 𝑘𝑘(2)(1) = 2𝑘𝑘

So, although we used a single reaction class in this case rather than the two reactions above, the

time of the next reaction event will be sampled correctly, i.e. with rate 2𝑘𝑘. When the event fires,

particles are selected randomly from the lists of reactant patterns, i.e. Particle1 or Particle2 will be

selected with equal probability from the list matching 𝐴𝐴(𝑓𝑓). Therefore, the network-free

simulation is considered exactly equivalent to the network-based simulation, as long as the

propensities can be calculated from the current set of particles.

Say Particle1 is selected for 𝐴𝐴(𝑓𝑓) and Particle3 for 𝐵𝐵(𝑀𝑀), then the firing of the reaction

event results in the forming of a bond between the b component in Particle1 and the a component

in Particle3. After the reaction event has fired, we can identify the effect of the reaction: Particle1

had structure A(b,t~0), Particle3 had B(a), so the resultant must be a particle with structure

A(b!1,t~0).B(a!1), which can be called Particle4.

3.2.3 Network-free Simulation with Energy-based Rules

Note that in the energy-based specification, the identity of both reactant and product species was

essential to compute the free-energy of the reaction and hence the rate. This posed no problems in

the network-based simulation because all possible reactions and species are known prior to

instantiating the simulation system. However, in the network-free simulation, the rate needs to be

computed only from the current set of particles, and the identity and structure of the product species

can be known only after the reaction event has fired. Thus, energy rules cannot be used as reaction

classes in a network-free simulation. The work in this chapter was geared towards synthesizing a

set of rules that are equivalent to the energy-based specification, but can be simulated in a network-

free manner.

 108

3.3 BIONETGEN THEORY FOR MODEL SPECIFICATION AND SIMULATION

In this section, I define formalisms that summarize and unify the specification and simulation of

models in the rule-based framework [24], [34], [39], [50], and establish the basis for energy-based

network-free simulation. In Sections 3.3.1, 3.3.2 and 3.3.3, I establish the basic concepts of

embeddings involving patterns and reaction rules. In Section 3.3.4, I define rule-based models and

reaction networks, and simulation systems that can be equivalently set up under both frameworks.

Section 3.3.5 summarizes the conversion of a rule-based model into a reaction network, and

Section 3.3.6 discusses stochastic simulation using network-based methods. Sections 3.3.6, 3.3.7

and 3.3.8 address the recent advance of energy-based rule-based modeling and simulation of

energy-based models using network-based methods. Corollary 3.3-43 is a novel result that enables

the work in Section 3.4. Section 3.3.9 discusses network-free simulation for the classical rule-

based model.

3.3.1 Patterns

Definition 3.3-1

A molecule type definition is a set of molecule names 𝑀𝑀, a set of component names 𝐶𝐶, a set of

internal state labels 𝑆𝑆, stoichiometry constraints for components in molecules 𝑁𝑁𝑀𝑀𝑀𝑀:𝑀𝑀 × 𝐶𝐶 → ℕ,

and internal state label constraints for components 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀 × 𝐶𝐶 × 𝑆𝑆 → {0,1}.

Definition 3.3-2

A pattern is a graph 𝑀𝑀 ≔ (𝑉𝑉,𝐸𝐸,𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷) with a set of nodes 𝑉𝑉, a set of undirected edges 𝐸𝐸 ⊂

𝑉𝑉 × 𝑉𝑉, and node labeling functions 𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷, 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷 where 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷:𝑉𝑉 → {𝑟𝑟𝑑𝑑𝐷𝐷, 𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀, 𝑖𝑖𝑠𝑠, 𝑓𝑓𝑠𝑠} indicates

whether a node is molecule (mol), component (comp), internal state (is) or bond state (bs), and

 109

𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷:𝑉𝑉 → 𝐴𝐴∗ ∪ {!+, !−, !? ,∅}, where 𝐴𝐴∗ is the set of alphanumeric labels allowed by BioNetGen,

{!+, !−, !? } are labels indicating bound, unbound, and unspecified bond labels respectively, and ∅

indicates default internal state label respectively. Additional restrictions on the graph are: (i) a

component must be adjacent to a single molecule, a single internal state and a single bond state,

(ii) an internal state or a bond state with labels {!−, !? } must be adjacent to a single component,

(iii) a bond state with label !+ must be adjacent to one or two components. Given a molecule type

definition (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), additional model-specific restrictions are: if 𝑟𝑟𝑚𝑚𝑤𝑤 denotes the

number of edges in 𝐸𝐸 whose node pairs are a molecule named 𝑟𝑟, and a component named 𝑆𝑆, and

if 𝑟𝑟𝑚𝑚𝑤𝑤𝑠𝑠 denotes the number of connected 3-node subgraphs in (𝑉𝑉,𝐸𝐸) with a molecule named 𝑟𝑟, a

component named 𝑆𝑆, and an internal state named 𝑠𝑠:

∀𝑟𝑟 ∈ 𝑀𝑀, 𝑆𝑆 ∈ 𝐶𝐶,𝑟𝑟𝑚𝑚𝑤𝑤 ≤ 𝑁𝑁𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆)�

∀𝑟𝑟 ∈ 𝑀𝑀, 𝑆𝑆 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑚𝑚𝑤𝑤𝑠𝑠 = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆, 𝑠𝑠)�

A pattern has a canonical label, i.e. a unique label that can be generated by ordering molecules,

components and bonds.

Definition 3.3-3

A stream is a path 𝑣𝑣 = (𝑣𝑣1, 𝑣𝑣2 … 𝑣𝑣𝑢𝑢) on a pattern 𝑀𝑀 = (𝑉𝑉,𝐸𝐸…) such that the 𝑡𝑡𝑦𝑦𝑀𝑀𝐷𝐷 attribute

satisfies the descending order 𝑟𝑟𝑑𝑑𝐷𝐷 > 𝑆𝑆𝑑𝑑𝑟𝑟𝑀𝑀 > 𝑖𝑖𝑠𝑠, 𝑓𝑓𝑠𝑠.

Definition 3.3-4

A local view of a node is the subgraph composed from all streams passing through the node in the

pattern.

Definition 3.3-5

A pattern tuple is a tuple of patterns. Given a pattern tuple, there also exists a pattern tuple

graph formed by a trivial merge. We will refer to pattern tuples and pattern tuple graphs

interchangeably and use the same notation (𝑀𝑀).

 110

3.3.2 Pattern Embeddings

Definition 3.3-6

A pattern 𝑀𝑀 = �𝑉𝑉𝑎𝑎,𝐸𝐸𝑎𝑎, … � embeds in a pattern 𝑞𝑞 = �𝑉𝑉𝑞𝑞 ,𝐸𝐸𝑞𝑞 , … �, denoted 𝑀𝑀 ⊲ 𝑞𝑞, if there exists a

total injective map 𝜙𝜙𝑎𝑎,𝑞𝑞 = 𝑉𝑉𝑎𝑎 → 𝑉𝑉𝑞𝑞 that preserves name and type attributes and edge relationships.

If a number of embeddings exist, then this is denoted by the set �𝜙𝜙𝑎𝑎,𝑞𝑞�. A pattern tuple has a

canonical order, which can be achieved by ordering the canonical labels of the individual patterns.

All pattern tuples considered hereafter will be assumed to be in their canonical order.

Definition 3.3-7

A pattern tuple (𝑀𝑀) embeds in a pattern tuple (𝑞𝑞), denoted (𝑀𝑀) ⊲ (𝑞𝑞), if there exists an injective

map pairing every pattern 𝑀𝑀 in (𝑀𝑀) with some pattern 𝑞𝑞 in (𝑞𝑞), and there exists an embedding 𝜙𝜙𝑎𝑎,𝑞𝑞

for every pair (𝑀𝑀, 𝑞𝑞). The tuple of embeddings �𝜙𝜙𝑎𝑎,𝑞𝑞� that define a pattern tuple embedding is

denoted Φ(𝑎𝑎),(𝑞𝑞), and if a number of such embeddings can exist, then the set of pattern tuple

embeddings is denoted �Φ(𝑎𝑎),(𝑞𝑞)�. Nominally, a pattern tuple embedding can be treated as a simple

embedding between the corresponding pattern tuple graphs.

Definition 3.3-8

A restricted embedding 𝜙𝜙𝑎𝑎,𝑞𝑞�𝑉𝑉 is derived from an embedding between patterns 𝜙𝜙𝑎𝑎,𝑞𝑞:𝑉𝑉𝑎𝑎 → 𝑉𝑉𝑞𝑞, by

restricting the domain to the subset 𝑉𝑉 ∩ 𝑉𝑉𝑎𝑎 and the image to the subset 𝑉𝑉 ∩ 𝑉𝑉𝑞𝑞. By extension, a

restricted embedding can also be derived from a pattern tuple embedding and is denoted Φ(𝑎𝑎),(𝑞𝑞)�𝑉𝑉.

Corollary 3.3-9

Embeddings are transitive, because the composition of two injections is injective.

 𝑀𝑀 ⊲ 𝑞𝑞, 𝑞𝑞 ⊲ 𝑆𝑆 ⟹ ∃𝜙𝜙𝑎𝑎,𝑞𝑞,𝜙𝜙𝑞𝑞,𝑟𝑟 ⟹ ∃𝜙𝜙𝑎𝑎,𝑟𝑟|𝜙𝜙𝑎𝑎,𝑟𝑟 = 𝜙𝜙𝑎𝑎,𝑞𝑞 ∘ 𝜙𝜙𝑞𝑞,𝑟𝑟 ⟹ 𝑀𝑀 ⊲ 𝑆𝑆.

Definition 3.3-10

 111

A correspondence map between patterns or pattern tuples is a generalization of the embedding

by allowing it to be partial in the domain, and allowing components to map without requiring a

map between adjacent binding or internal states. A correspondence map is valid only if merging

correspondent nodes still preserves the stoichiometry constraints outlined in the molecule type

definition and pattern definition.

Definition 3.3-11

A pattern 𝑀𝑀, is isomorphic to another pattern 𝑞𝑞, denoted 𝑀𝑀~𝑞𝑞, if 𝑀𝑀 ⊲ 𝑞𝑞 and 𝑞𝑞 ⊲ 𝑀𝑀.

Definition 3.3-12

A pattern tuple (𝑀𝑀), is isomorphic to another pattern tuple (𝑞𝑞), denoted (𝑀𝑀)~(𝑞𝑞), if (𝑀𝑀) ⊲ (𝑞𝑞)

and (𝑞𝑞) ⊲ (𝑀𝑀).

Definition 3.3-13

An embedding between two identical pattern tuples is called an automorphism, denoted Φ(𝑎𝑎),(𝑎𝑎).

Definition 3.3-14

The trivial automorphism is a special case of the automorphism, where every node maps to itself,

denoted Γ𝑎𝑎,𝑎𝑎 for patterns and Γ(𝑎𝑎),(𝑎𝑎) for pattern tuples.

3.3.3 Reaction Rules

Definition 3.3-15

The reaction rule 𝑆𝑆 ≔ �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� is defined by a tuple of reactant patterns 𝐸𝐸, a tuple of product

patterns 𝑃𝑃, and a correspondence map between them Ψ𝑅𝑅,𝑃𝑃 (with the additional restriction that there

is no unmatched component in 𝐸𝐸). BioNetGen can compute the correspondence map heuristically,

so it is sufficient to define a rule as 𝑆𝑆 ≔ (𝐸𝐸,𝑃𝑃). The rule as defined here excludes the BioNetGen

 112

features such as include/exclude reactants, include/exclude products, rules on dot-connected

patterns, and species deletion.

Definition 3.3-16

The site of action of a rule is the subset of nodes not in the correspondence map.

Definition 3.3-17

The reaction center of a rule is the union of local views of the site of action.

Definition 3.3-18

The reaction context is the union of local views of the complement of the reaction center.

Definition 3.3-19

A reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃) embeds in another reaction rule 𝑆𝑆′ = (𝐸𝐸′,𝑃𝑃′,Ψ𝑅𝑅′,𝑃𝑃′), denoted

𝑆𝑆 ⊲ 𝑆𝑆′, if 𝐸𝐸 ⊲ 𝐸𝐸′,𝑃𝑃 ⊲ 𝑃𝑃′ and the following loop commutes:

𝐸𝐸
Ψ𝑅𝑅,𝑃𝑃�⎯� 𝑃𝑃

Φ𝑅𝑅,𝑅𝑅′ ↓ ↓ Φ𝑃𝑃,𝑃𝑃′

𝐸𝐸′
Ψ𝑅𝑅′,𝑃𝑃′�⎯⎯⎯� 𝑃𝑃′

Definition 3.3-20

The restriction to the reaction center 𝑆𝑆|𝐸𝐸𝐶𝐶 of a reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃) is given by 𝑆𝑆|𝐸𝐸𝐶𝐶 =

�𝐸𝐸|𝐸𝐸𝐶𝐶,𝑃𝑃|𝐸𝐸𝐶𝐶,Ψ𝑅𝑅|𝑅𝑅𝑀𝑀,𝑃𝑃|𝑅𝑅𝑀𝑀� where 𝐸𝐸|𝐸𝐸𝐶𝐶,𝑃𝑃|𝐸𝐸𝐶𝐶 are restrictions of the reactant and product patterns

to the reaction center.

Corollary 3.3-21

𝑆𝑆|𝐸𝐸𝐶𝐶 ⊲ 𝑆𝑆 because the correspondence maps Ψ𝑅𝑅,𝑃𝑃,Ψ𝑅𝑅|𝑅𝑅𝑀𝑀,𝑃𝑃|𝑅𝑅𝑀𝑀 and self-embeddings Γ𝑅𝑅,𝑅𝑅|𝑅𝑅𝑀𝑀 , Γ𝑃𝑃,𝑃𝑃|𝑅𝑅𝑀𝑀

commute.

Definition 3.3-22

Given pattern or pattern tuple graphs 𝐴𝐴 and 𝐵𝐵, a correspondence map Ψ𝐴𝐴,𝑓𝑓, 𝑉𝑉 denoting some set

of nodes, and 𝐸𝐸 denoting some set of vertex pairs, we define the following graph operations

 113

𝐷𝐷𝑁𝑁(𝑉𝑉) ∘ 𝐴𝐴 Removes the nodes V and all downstream nodes from A.

𝐸𝐸𝑁𝑁�Ψ𝐴𝐴,𝑓𝑓� ∘ 𝐴𝐴 Replaces each node in A with its image in B, if such an image exists.

𝐴𝐴𝑁𝑁(𝑉𝑉) ∘ 𝐴𝐴 Adds nodes V to A.

𝐴𝐴𝐸𝐸(𝐸𝐸) ∘ 𝐴𝐴 Adds edges E between pre-existing pairs of nodes in A.

Definition 3.3-23

A reaction rule 𝑆𝑆 = �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� can also be represented as a graph rewriting 𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃, which is

equivalent to the following sequence of operations on the pattern tuple graph 𝐸𝐸:

𝑃𝑃 = 𝐴𝐴𝐸𝐸�𝐸𝐸𝑖𝑖𝑚𝑚𝑠𝑠𝐶𝐶� ∘ 𝐴𝐴𝑁𝑁(𝑖𝑖𝑟𝑟𝑔𝑔𝑀𝑀) ∘ 𝐸𝐸𝑁𝑁�Ψ𝑅𝑅,𝑃𝑃� ∘ 𝐷𝐷𝑁𝑁(𝑠𝑠𝑑𝑑𝑟𝑟𝑀𝑀) ∘ 𝐸𝐸

where (i) 𝑠𝑠𝑑𝑑𝑟𝑟,𝑠𝑠𝑑𝑑𝑟𝑟𝑀𝑀 are partitions induced by the partial map Ψ𝑅𝑅,𝑃𝑃 in 𝐸𝐸 and 𝑃𝑃 respectively such

that the map is total in 𝑠𝑠𝑑𝑑𝑟𝑟 → 𝑖𝑖𝑟𝑟𝑔𝑔, (ii) 𝐸𝐸𝑖𝑖𝑚𝑚𝑠𝑠𝐶𝐶 ⊂ 𝐸𝐸𝑃𝑃 is the subset of edges on the product pattern

tuple graph 𝑃𝑃 with at least one node in 𝑖𝑖𝑟𝑟𝑔𝑔𝑀𝑀 .

Definition 3.3-24

The action of a rule 𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃 on pattern tuple 𝐸𝐸′, given a pattern tuple embedding Φ𝑅𝑅,𝑅𝑅′ , is given

by

𝑃𝑃′ = 𝑆𝑆 ∘ 𝐸𝐸𝑁𝑁�Φ𝑅𝑅,𝑅𝑅′
−1 � ∘ 𝐸𝐸′

The action of a rule is denoted as 𝑃𝑃′ = 𝑆𝑆�𝐸𝐸′,Φ𝑅𝑅,𝑅𝑅′�.

Given the action of a rule on pattern tuple 𝐸𝐸′, there exists an Φ𝑃𝑃,𝑃𝑃′ that commutes as follows:

𝐸𝐸
𝑟𝑟
⇒ 𝑃𝑃

Φ𝑅𝑅,𝑅𝑅′ ↓ ↓ Φ𝑃𝑃,𝑃𝑃′

𝐸𝐸′
𝑟𝑟�𝑅𝑅′,Φ𝑅𝑅,𝑅𝑅′�
�������� 𝑃𝑃′

Definition 3.3-25

 114

A reversible rule is a pair of rules (𝑆𝑆, 𝑆𝑆𝑟𝑟𝑅𝑅𝑣𝑣) with complementary reactant and product pattern

tuples, i.e. if 𝑆𝑆 = (𝐸𝐸,𝑃𝑃), then 𝑆𝑆𝑟𝑟𝑅𝑅𝑣𝑣 = (𝑃𝑃,𝐸𝐸).

Definition 3.3-26

The statistical factor 𝜌𝜌𝑟𝑟 of the reaction rule 𝑆𝑆 = �𝐸𝐸,𝑃𝑃,Ψ𝑅𝑅,𝑃𝑃� is a function of how many

symmetries are present on reactant side of the reaction center and how many of them are broken

when they are converted to products. By convention, BioNetGen uses three terms to calculate the

statistical factor. The rule group term 𝐸𝐸𝐸𝐸 counts how many automorphisms in 𝐸𝐸 induce an

automorphism in 𝑃𝑃 under Ψ𝑅𝑅,𝑃𝑃. The reaction center stabilizer term 𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓 counts how many of the

induced automorphisms are identity morphisms on the reaction center. The context reactant graph

terms 𝐶𝐶𝐸𝐸𝐸𝐸 counts permutations on reactant patterns that do not form part of the reaction center.

𝐸𝐸𝐸𝐸 = �𝜙𝜙 ∈ Φ𝑅𝑅,𝑅𝑅 ,Ψ𝑅𝑅,𝑃𝑃 ∘ 𝜙𝜙 ∘ Ψ𝑅𝑅,𝑃𝑃
−1 ∈ Φ𝑃𝑃,𝑃𝑃�

𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓 = {𝜙𝜙 ∈ 𝐸𝐸𝐸𝐸,𝜙𝜙(𝑥𝑥) = 𝑥𝑥 ∀ 𝑥𝑥 ∈ 𝐸𝐸|𝐸𝐸𝐶𝐶}

𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢 = {𝑀𝑀 ∈ 𝐸𝐸,𝑀𝑀 ∉ 𝑠𝑠𝑑𝑑𝑟𝑟Ψ, 𝑀𝑀 ≁ 𝑞𝑞∀𝑞𝑞 ∈ 𝑠𝑠𝑑𝑑𝑟𝑟Ψ},𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢~ = {𝑞𝑞| 𝑞𝑞~𝑀𝑀, [∈ 𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢}

|𝐶𝐶𝐸𝐸𝐸𝐸| = 𝑃𝑃𝐷𝐷𝑆𝑆𝑟𝑟(𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢,𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢) = � |{𝑀𝑀~𝑞𝑞,𝑀𝑀 ∈ 𝐸𝐸𝑤𝑤𝑚𝑚𝑢𝑢}|!
𝑞𝑞∈𝑅𝑅𝑤𝑤𝑛𝑛𝑛𝑛~

𝜌𝜌 =
1

(|𝐸𝐸𝐸𝐸| |𝑆𝑆𝑡𝑡𝑀𝑀𝑓𝑓|⁄) ∗ |𝐶𝐶𝐸𝐸𝐸𝐸|

3.3.4 Ensembles, Models and Rate Constants

Definition 3.3-27

A complex 𝑥𝑥, also known as a particle, is an instance of a pattern, as defined in Definition 3.3-2,

with additional constraints: (i) no bond state or internal state is unspecified, (ii) 𝑟𝑟𝑚𝑚𝑤𝑤 =

𝑁𝑁𝑀𝑀𝑀𝑀�(𝑟𝑟, 𝑆𝑆)�∀𝑟𝑟, 𝑆𝑆, (iii) all bonds named ‘!+’ are adjacent to two components, (iv) all components

 115

are adjacent to exactly one bond state and one internal state. A particle is analogous to a freely

diffusing chemical entity in a simulation system.

Definition 3.3-28

The particle ensemble, denoted 𝐸𝐸𝑟𝑟𝑠𝑠 = {𝑥𝑥}, is a set containing complex instances (defined in

Definition 3.3-27).

Definition 3.3-29

The pattern embedding class in an ensemble, denoted ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 is the set of embeddings from pattern

𝑀𝑀 to a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, i.e. ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 = {𝜙𝜙𝑎𝑎,𝑥𝑥, 𝑥𝑥 ∈ 𝐸𝐸𝑟𝑟𝑠𝑠}.

Definition 3.3-30

The species, denoted 𝑠𝑠, is a pattern that is isomorphic to particles.

Definition 3.3-31

The species observable class in an ensemble, denoted 𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠 is the set of particles in a particle

ensemble isomorphic to species 𝑠𝑠, i.e. 𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠 = {𝑠𝑠~𝑥𝑥, 𝑠𝑠 ∈ 𝐸𝐸𝑟𝑟𝑠𝑠}.

Definition 3.3-32

The species space, denoted 𝑆𝑆 = {𝑠𝑠}, is a set of unique species. For a model, 𝑆𝑆 denotes the space

of all possible species.

Definition 3.3-33

The species ensemble, denoted 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠), is a set of species mapped to population counters and

can be used to represent the particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, i.e. 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) = {(𝑠𝑠,𝑟𝑟𝑠𝑠), 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑀𝑀 = |𝕆𝕆𝑠𝑠
𝐸𝐸𝑢𝑢𝑠𝑠|}.

Definition 3.3-34

The reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is a transformation from a reactant tuple of species 𝐸𝐸𝑠𝑠 to a product tuple

of species 𝑃𝑃𝑠𝑠. Similar to those for a reaction rule, the following can be defined for a reaction also:

a correspondence map computable in BioNetGen (Definition 3.3-15), the site of action (Definition

 116

3.3-16), the restriction to the reaction center (Definition 3.3-20), a reformulation using graph

rewriting (Definition 3.3-23), and reversible reactions (Definition 3.3-25).

Definition 3.3-35

The reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) can also be equivalently defined as a set if tuples 𝜇𝜇 = ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑅𝑅,𝜇𝜇 ,𝑟𝑟𝑠𝑠

𝑃𝑃,𝜇𝜇��,

where 𝑟𝑟𝑠𝑠
𝑅𝑅,𝜇𝜇 and 𝑟𝑟𝑠𝑠

𝑃𝑃,𝜇𝜇 represent stoichiometries of species 𝑠𝑠 in 𝐸𝐸𝑠𝑠 and 𝑃𝑃𝑠𝑠 respectively from

Definition 3.3-34.

Definition 3.3-36

The reaction rule rate constant 𝑘𝑘𝑟𝑟 is a function describing the kinetics of the reaction class

mapped by the rule 𝑆𝑆. The rate law can be decomposed as follows:

𝑘𝑘𝑟𝑟 = 𝜌𝜌𝑟𝑟 ∗ 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) ∗ 𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇)

Where 𝜌𝜌𝑟𝑟 is the statistical factor computed according to Definition 3.3-26, 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 is a function of

user-defined variables, 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠 is a function of the current simulation ensemble, and 𝑘𝑘𝑟𝑟
𝜇𝜇 is a function

of the map from the rule to the reaction or reaction instance. 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠 is composed of global functions

which compute sums of species or particles in the ensemble. In current BioNetGen, 𝑘𝑘𝑟𝑟
𝜇𝜇 is restricted

to be a function of individual local functions specific to reactant species, i.e.

𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇) = 𝑓𝑓𝑟𝑟(𝑘𝑘1(𝑀𝑀1),𝑘𝑘2(𝑀𝑀2), …),∀𝑀𝑀𝑖𝑖 ∈ 𝐸𝐸𝜇𝜇

We shall therefore denote 𝑘𝑘𝑟𝑟
𝜇𝜇(𝑆𝑆 ⊲ 𝜇𝜇), as a function of the reactant species 𝑘𝑘𝑟𝑟

𝜇𝜇�𝐸𝐸𝜇𝜇�.

Definition 3.3-37

The rule-based model, 𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ �𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, {𝑆𝑆},𝐸𝐸𝑟𝑟𝑠𝑠, {𝑆𝑆} → {𝑘𝑘(𝑆𝑆,𝐸𝐸𝑟𝑟𝑠𝑠)}�, is a molecule type

definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, a set of rules {𝑆𝑆}, a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠, and a reaction rule rate constant 𝑘𝑘𝑟𝑟

mapped to each rule.

Definition 3.3-38

 117

A reaction network, 𝐸𝐸𝑥𝑥𝑟𝑟𝑟𝑟𝐷𝐷𝑡𝑡 ≔ �𝑆𝑆, {𝜇𝜇}, {𝜇𝜇} → �𝑘𝑘𝜇𝜇�, 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)�, is a set of possible species S, a

set of reactions {𝜇𝜇}, a function mapping each reaction 𝜇𝜇 to a symmetry-independent rate constant

𝑘𝑘𝜇𝜇, and a species ensemble 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠). Note that the equivalent particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠 does not need

to be specified, since it is sufficient to distinguish species from each other, without needing to

distinguish particles.

3.3.5 Network Generation from a Rule-based Model

Network generation is a procedure to generate a reaction network (Definition 3.3-38) from a rule-

based model (Definition 3.3-37).

1) Start with a rule-based model rule-based model 𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ �𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, {𝑆𝑆},𝐸𝐸𝑟𝑟𝑠𝑠, {𝑆𝑆} → {𝑘𝑘𝑟𝑟}�, {𝑆𝑆}

being a set of rules {𝑘𝑘𝑟𝑟} being a set of rate laws, 𝐸𝐸𝑟𝑟𝑠𝑠 a particle ensemble, and 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) the

equivalent species ensemble.

2) Let 𝑃𝑃∗ be the set of all patterns from the reactants and products of all rules. Also define empty

sets 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 and for each rule 𝑆𝑆, empty sets 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ,𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤.

3) 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← 𝑆𝑆

4) Mapping: ∀𝑀𝑀 ∈ 𝑃𝑃∗, 𝑠𝑠 ∈ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 Compute Φ𝑎𝑎,𝑠𝑠 = �𝜙𝜙𝑎𝑎,𝑠𝑠�.

5) Φ∗ ← Φ∗ ∪ Φ𝑎𝑎,𝑠𝑠∀𝑀𝑀 ∈ 𝑃𝑃∗, 𝑠𝑠 ∈ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤

6) 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 ← 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← { }

7) For each reaction rule 𝑆𝑆 = (𝐸𝐸,𝑃𝑃),

a) For each tuple 𝐸𝐸𝑠𝑠 = (𝑠𝑠) drawn with repeats from 𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 and not canonically ordered,

i) Compute �Φ𝑅𝑅,𝑅𝑅𝑠𝑠� where Φ𝑅𝑅,𝑅𝑅𝑠𝑠 = (𝜙𝜙), where 𝜙𝜙 ∈ Φ∗

ii) For each Φ𝑟𝑟
𝑖𝑖 ∈ �Φ𝑅𝑅,𝑅𝑅𝑠𝑠�,Φ𝑟𝑟

𝑖𝑖 ∉ 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟,

 118

(1) compute 𝜇𝜇𝑟𝑟𝑖𝑖 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠), where 𝑖𝑖 indexes the set of maps, r indicates the rule

generating the reaction, and 𝑃𝑃𝑠𝑠 = 𝑆𝑆�𝐸𝐸𝑠𝑠,Φ𝑖𝑖�.

(2) Perform additional checks on whether (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is a satisfactory reaction.

(3) 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ← 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 ∪ {𝑆𝑆𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑢𝑢𝑐𝑐 − 𝑃𝑃𝑠𝑠},𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤 ← �Φ𝑟𝑟
𝑖𝑖 �

iii) Μ ← Μ∪ �𝜇𝜇𝑟𝑟𝑖𝑖 �

8) If |𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤| > 0 or ∃𝑆𝑆, |𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤| > 0

a) 𝑆𝑆 ← 𝑆𝑆 ∪ 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤

b) ∀𝑆𝑆, 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ← 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟 ∪ 𝐸𝐸𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑅𝑅𝑤𝑤

c) Goto Step 3

9) Lumping: Let 𝑀𝑀~ = {𝜇𝜇~𝜇𝜇′∀𝜇𝜇′ ∈ 𝑀𝑀}. For each 𝜇𝜇 ∈ 𝑀𝑀~, let 𝑀𝑀𝜇𝜇,𝑟𝑟 be the subset of M

isomorphic to 𝜇𝜇 generated from reaction rule 𝑆𝑆. The rate constant of the reaction is computed

as follows:

𝑘𝑘𝜇𝜇 = ��𝑘𝑘𝑟𝑟
𝑀𝑀𝜇𝜇,𝑟𝑟{𝑟𝑟}

Here, 𝑘𝑘𝑟𝑟 is the rate law function of the rule. From Definition 3.3-36,

𝑘𝑘𝑟𝑟 = 𝜌𝜌𝑟𝑟 ∗ 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) ∗ 𝑘𝑘𝑟𝑟
𝜇𝜇�𝐸𝐸𝜇𝜇�

Here, the statistical factor 𝜌𝜌𝑟𝑟, the function of user-defined variables 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 are available from

the rule-based specification. 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠(𝐸𝐸𝑟𝑟𝑠𝑠) is translated into a function of global functions in the

species space, i.e. some 𝑓𝑓𝑟𝑟�𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)�. 𝑘𝑘𝑟𝑟
𝜇𝜇�𝐸𝐸𝜇𝜇� is evaluated concretely since the form of the

reaction 𝜇𝜇 is now available. Together, 𝑘𝑘𝜇𝜇 is a function of numeric constants and the species

ensemble.

10) The reaction network is given by 𝐸𝐸𝑥𝑥𝑟𝑟𝑟𝑟𝐷𝐷𝑡𝑡 ≔ �𝑆𝑆, {𝜇𝜇}, {𝜇𝜇} → �𝑘𝑘𝜇𝜇�, 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)�

 119

The network generation process will be denoted 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷) for the general case presented

here. When a specific set of seed species and rules are used to expand the network, without

reference to a species ensemble or global or local functions, it will be denoted

𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝐷𝐷𝐷𝐷𝑠𝑠𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷𝑠𝑠).

3.3.6 Network-based Stochastic Simulation

Consider a reaction network is generated from a rule-based model as in Section 3.3.5. Using the

form of the reaction provided in Definition 3.3-35, each reaction 𝜇𝜇 is a set of tuples ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇 ,𝑟𝑟𝑠𝑠

𝑃𝑃𝜇𝜇��.

Given a species ensemble 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠) = {(𝑠𝑠,𝑟𝑟𝑠𝑠), 𝑠𝑠 ∈ 𝑆𝑆,𝑟𝑟𝑠𝑠 ∈ ℕ}, the rate 𝑀𝑀𝜇𝜇 of a reaction 𝜇𝜇 =

(𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠) is computed as:

𝑀𝑀𝜇𝜇 = 𝑘𝑘𝜇𝜇 �(𝑟𝑟𝑠𝑠)^(𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇)

𝑠𝑠∈𝑅𝑅𝜇𝜇

From the next reaction method of stochastic simulation [7], the time at which the next reaction

fires is inversely proportional to Σ𝜇𝜇𝑀𝑀𝜇𝜇, and the relative probability of a particular reaction firing is

computed as 𝑎𝑎𝜇𝜇
Σ𝜇𝜇𝑎𝑎𝜇𝜇

.

1. Given 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)𝑐𝑐0 = ��𝑠𝑠,𝑟𝑟𝑠𝑠
𝑐𝑐0��, 𝑡𝑡 ← 𝑡𝑡0,

2. Compute 𝑀𝑀𝜇𝜇(𝑡𝑡)∀𝜇𝜇 from 𝑆𝑆𝑀𝑀(𝐸𝐸𝑟𝑟𝑠𝑠)𝑐𝑐.

3. Compute Δ𝑡𝑡 from Σ𝜇𝜇𝑀𝑀𝜇𝜇(𝑡𝑡).

4. Select 𝜇𝜇 with relative probability 𝑎𝑎𝜇𝜇(𝑐𝑐)
Σ𝜇𝜇𝑎𝑎𝜇𝜇(𝑐𝑐)

.

5. Update species ensemble: ∀𝑠𝑠,𝑟𝑟𝑠𝑠𝑐𝑐+Δ𝑐𝑐 ← 𝑟𝑟𝑠𝑠𝑐𝑐 − 𝑟𝑟𝑠𝑠
𝑅𝑅𝜇𝜇 + 𝑟𝑟𝑠𝑠

𝑃𝑃𝜇𝜇 .

6. Update time. 𝑡𝑡 ← 𝑡𝑡 + Δ𝑡𝑡.

 120

7. If 𝑡𝑡 < 𝑡𝑡𝑅𝑅𝑢𝑢𝑚𝑚, go to Step 2.

The memory cost of the simulation scales with 𝒪𝒪�𝑟𝑟𝑟𝑟𝑅𝑅𝑎𝑎𝑤𝑤𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑠𝑠 + 𝑟𝑟𝑠𝑠𝑎𝑎𝑅𝑅𝑤𝑤𝑖𝑖𝑅𝑅𝑠𝑠� and is independent of the

number of rules. Therefore, even if a small number of rules are sufficient to describe the kinetics

of the system, it is possible that the equivalent reaction network is too large to be simulated or

possibly even infinite in size.

3.3.7 Energy-based Rule-based Formulation

Definition 3.3-39

An energy pattern 𝐷𝐷, is a pattern which is assigned the numeric energy value 𝐸𝐸𝑅𝑅.

Definition 3.3-40

An energy definition is the tuple (𝐸𝐸,𝐸𝐸𝐸𝐸), where 𝐸𝐸 = (𝐷𝐷) is a tuple of energy patterns, and

𝐸𝐸𝐸𝐸:𝐸𝐸 → ℕ is a function mapping energy patterns to numeric energy values.

Definition 3.3-41

Given an energy definition, the free energy of formation of a species 𝑠𝑠, denoted 𝐸𝐸𝑠𝑠, is the sum of

matches of energy patterns to the species, weighted by the respective energies.

𝐸𝐸𝑠𝑠 = ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

Definition 3.3-42

Given an energy definition, the free energy of a reaction 𝜇𝜇 = (𝐸𝐸𝜇𝜇,𝑃𝑃𝜇𝜇), denoted 𝐸𝐸𝜇𝜇, is the sum of

the free energy of the product species minus the sum of the free energy of the reactant species.

𝐸𝐸𝜇𝜇 = − � 𝐸𝐸𝑠𝑠
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ � 𝐸𝐸𝑠𝑠
𝑠𝑠∈𝑃𝑃𝜇𝜇

From Definition 3.3-41,

 121

𝐸𝐸𝜇𝜇 = − � ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸𝑠𝑠∈𝑅𝑅𝜇𝜇

+ � ���𝜙𝜙𝑅𝑅,𝑠𝑠��𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸𝑠𝑠∈𝑃𝑃𝜇𝜇

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

Corollary 3.3-43

The free energy of a reaction can be computed from only the energy patterns overlapping with the

site of action.

Proof: Let Ψ𝑅𝑅,𝑃𝑃 be the correspondence map of reaction 𝜇𝜇 = (𝐸𝐸,𝑃𝑃), defined according to

Definition 3.3-34. Let 𝑉𝑉𝑅𝑅 ,𝑉𝑉𝑃𝑃 be the sets of nodes on the reactant and product tuple graphs

respectively. The site of action (Definition 3.3-16) induces a partition 𝑉𝑉𝑅𝑅𝑀𝑀𝐴𝐴,𝑉𝑉𝑅𝑅Ψ on 𝑉𝑉𝑅𝑅 (𝑉𝑉𝑅𝑅𝑀𝑀𝐴𝐴- nodes

in the site of action, 𝑉𝑉𝑅𝑅Ψ- nodes in the correspondence map), and a similar partition 𝑉𝑉𝑃𝑃𝑀𝑀𝐴𝐴,𝑉𝑉𝑃𝑃Ψ on 𝑉𝑉𝑃𝑃.

Let 𝑉𝑉Ψ = 𝑉𝑉𝑅𝑅Ψ ∪ 𝑉𝑉𝑃𝑃Ψ. Now, 𝑉𝑉Ψ induces a partition in the set �𝜙𝜙𝑅𝑅,𝑠𝑠� of embeddings from any energy

pattern 𝐷𝐷 to any species 𝑠𝑠 in 𝐸𝐸 or 𝑃𝑃, where �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� is the set of embeddings completely in 𝑉𝑉Ψ

and �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� is the complement of �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ�. Substituting for �𝜙𝜙𝑅𝑅,𝑠𝑠� in Definition 3.3-42,

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∪ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∪ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

Since �𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ� ∩ �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� = {} by construction,

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑅𝑅𝜇𝜇

− � ��𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

= ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��
𝑠𝑠∈𝑃𝑃𝜇𝜇

− � ��𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

 122

By construction, Ψ𝑅𝑅,𝑃𝑃 is total and invertible in 𝑉𝑉RΨ → 𝑉𝑉𝑃𝑃Ψ, any embedding completely in 𝑉𝑉𝑅𝑅Ψ has

an equivalent embedding in 𝑉𝑉𝑃𝑃Ψ and vice versa, so ∀𝐷𝐷,∑ ��𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��𝑠𝑠∈𝑅𝑅𝜇𝜇 = ∑ ��𝜙𝜙𝑅𝑅,𝑠𝑠|Ψ��𝑠𝑠∈𝑃𝑃𝜇𝜇 .

Substituting in the equation for 𝐸𝐸𝜇𝜇 above,

𝐸𝐸𝜇𝜇 = ��− ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑅𝑅𝜇𝜇

+ ���𝜙𝜙𝑅𝑅,𝑠𝑠|SA��
𝑠𝑠∈𝑃𝑃𝜇𝜇

�𝐸𝐸𝑅𝑅
𝑅𝑅∈𝐸𝐸

By construction, �𝜙𝜙𝑅𝑅,𝑠𝑠|SA� is the set of embeddings that involve at least one node in the site of

action. Hence proved.

Definition 3.3-44

Given a reversible reaction (𝜇𝜇+, 𝜇𝜇−) where 𝜇𝜇+ = (𝐸𝐸,𝑃𝑃), 𝜇𝜇− = (𝑃𝑃,𝐸𝐸), free energy of formation 𝐸𝐸𝜇𝜇

in the forward direction, activation energy 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴, and distribution parameter 𝜙𝜙𝜇𝜇, the forward and

reverse rate constants 𝑘𝑘𝜇𝜇+,𝑘𝑘𝜇𝜇− , termed energy-based rate constants, are computed as follows:

𝑘𝑘𝜇𝜇+ = exp �−
𝐸𝐸𝜇𝜇+
𝐸𝐸𝑇𝑇 �

𝑘𝑘𝜇𝜇− = exp �−
𝐸𝐸𝜇𝜇−
𝐸𝐸𝑇𝑇 �

Where 𝐸𝐸𝜇𝜇+ = 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + 𝜙𝜙𝜇𝜇𝐸𝐸𝜇𝜇 and 𝐸𝐸𝜇𝜇− = 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + �𝜙𝜙𝜇𝜇 − 1�𝐸𝐸𝜇𝜇

Here, 𝐸𝐸𝜇𝜇+ and 𝐸𝐸𝜇𝜇− are energy terms that describe the kinetics in terms of forward and reverse

activation energies, following from linear transition state theory (REF) and Arrhenius equation.

The distribution term 𝜙𝜙𝜇𝜇 indicates how the free energy of reaction 𝐸𝐸𝜇𝜇 is distributed in the forward

and reverse directions, and the 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 term captures all contributions to the kinetics that are

independent of 𝐸𝐸𝜇𝜇. This definition of forward and reverse rate constants also satisfies the definition

of the equilibrium constant in terms of the free energy of the reaction.

𝐾𝐾𝜇𝜇
𝑅𝑅𝑞𝑞 =

𝑘𝑘𝜇𝜇+
𝑘𝑘𝜇𝜇−

 123

=
exp �−

𝐸𝐸𝜇𝜇+
𝐸𝐸𝑇𝑇 �

exp �−
𝐸𝐸𝜇𝜇−
𝐸𝐸𝑇𝑇 �

= exp �−
𝐸𝐸𝜇𝜇+ − 𝐸𝐸𝜇𝜇−

𝐸𝐸𝑇𝑇 �

= exp�−
𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 + 𝜙𝜙𝜇𝜇𝐸𝐸𝜇𝜇 − 𝐸𝐸𝜇𝜇𝐸𝐸𝐴𝐴 − �𝜙𝜙𝜇𝜇 − 1�𝐸𝐸𝜇𝜇

𝐸𝐸𝑇𝑇
�

𝐾𝐾𝜇𝜇
𝑅𝑅𝑞𝑞 = exp �−

𝐸𝐸𝜇𝜇
𝐸𝐸𝑇𝑇�

Definition 3.3-45

The energy-based rule-based model 𝐷𝐷𝑀𝑀𝑑𝑑𝑠𝑠𝐷𝐷𝐷𝐷 ≔ {𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓,𝐸𝐸𝑟𝑟𝐷𝐷𝑆𝑆𝑔𝑔𝑦𝑦𝐷𝐷𝐷𝐷𝑓𝑓, {(𝑆𝑆+, 𝑆𝑆−)}, {(𝑆𝑆+, 𝑆𝑆−)} →

{𝑘𝑘𝐴𝐴𝑟𝑟𝑟𝑟(𝐸𝐸𝑟𝑟𝐸𝐸𝐴𝐴,𝜙𝜙𝑟𝑟)},𝐸𝐸𝑟𝑟𝑠𝑠}, has a molecule type definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, an energy definition 𝐸𝐸𝑟𝑟𝐷𝐷𝑆𝑆𝑔𝑔𝑦𝑦𝐷𝐷𝐷𝐷𝑓𝑓,

a set of reversible rules {(𝑆𝑆+, 𝑆𝑆−)}, each of which is mapped to an Arrhenius rate law requiring an

activation energy term 𝐸𝐸𝑟𝑟𝐸𝐸𝐴𝐴 and a distribution term 𝜙𝜙𝑟𝑟, and a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠.

3.3.8 Energy-based Network Generation and Simulation

Since the rules in an energy-based model have the same form as rules in a rule-based model, the

network generation described in Section 3.3.5 is applicable for energy-based rule-based models

also. However, in Step 6 of Section 3.3.5, after identifying the set of reactions up to isomorphism

(𝑀𝑀~), the rate constants are not calculated by lumping. Instead, for each reaction 𝜇𝜇 = (𝐸𝐸𝑠𝑠,𝑃𝑃𝑠𝑠), the

free energy of the reaction 𝐸𝐸𝜇𝜇 is calculated according to Definition 3.3-42, and then the forward

and reverse rate constants 𝑘𝑘𝜇𝜇+and 𝑘𝑘𝜇𝜇− are calculated according to the Arrhenius rate law in

Definition 3.3-44. Network-based stochastic simulation of the resultant reaction network is the

same as outlined in Section 3.3.6.

 124

3.3.9 Network-free Stochastic Simulation

Network-free simulation involves simulating a rule-based model (Definition 3.3-37) without

generating the corresponding reaction network. Given a particle ensemble 𝐸𝐸𝑟𝑟𝑠𝑠 and a set of patterns

𝑃𝑃∗ from the rule-based model, the algorithm keeps track of the pattern embedding class in the

ensemble for each pattern, i.e. ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠 (Definition 3.3-29).

The reaction probability 𝑀𝑀𝑟𝑟 is calculated for the entire reaction class defined by the rule 𝑆𝑆 as

follows:

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗�𝑘𝑘𝑟𝑟
𝜇𝜇

𝑟𝑟⊲𝜇𝜇

Each term is explained in Definition 3.3-36. Here 𝜇𝜇 is the individual reaction instance on particles

𝐸𝐸𝑥𝑥, rather than a reaction on species. In NFsim [39], the fast network-free simulator for

BioNetGen, 𝑘𝑘𝑟𝑟
𝜇𝜇 is only allowed to be composed of products of local functions on individual

reactant patterns:

𝑘𝑘𝑟𝑟
𝜇𝜇 = � 𝑘𝑘𝑎𝑎(𝑥𝑥)

𝑎𝑎∈𝑅𝑅,𝑥𝑥∈𝑅𝑅𝑥𝑥

This allows for efficient simulation, because the sum of products is decomposed as a product of

the sums, and there is no need to track individual combinations of pattern matches:

� � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑎𝑎∈𝑅𝑅,𝑥𝑥∈𝑅𝑅𝑥𝑥𝑟𝑟⊲𝜇𝜇

= � � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑥𝑥∈ℙ𝑝𝑝𝐸𝐸𝑛𝑛𝑠𝑠𝑎𝑎∈𝑅𝑅

Substituting in the term for local functions, the rate of the reaction class is given by

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗� � 𝑘𝑘𝑎𝑎(𝑥𝑥)
𝑥𝑥∈ℙ𝑝𝑝𝐸𝐸𝑛𝑛𝑠𝑠𝑎𝑎∈𝑅𝑅

 125

When no local functions are used, the simulation is even more efficient, because the rate

calculation resolves to:

𝑀𝑀𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑤𝑤𝑚𝑚𝑢𝑢𝑠𝑠𝑐𝑐 ∗ 𝑘𝑘𝑟𝑟𝐸𝐸𝑢𝑢𝑠𝑠��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�� ∗ 𝜌𝜌𝑟𝑟 ∗��ℙ𝑎𝑎𝐸𝐸𝑢𝑢𝑠𝑠�
𝑎𝑎∈𝑅𝑅

The time at which the next reaction instance fires is proportional to Σ𝑟𝑟𝑀𝑀𝑟𝑟, and the relative

probability of each reaction class being chosen to fire is 𝑎𝑎𝑟𝑟
Σ𝑟𝑟𝑎𝑎𝑟𝑟

. Within each reaction class, a pattern

match is selected randomly for each reactant pattern, with the probability weighted by any local

function defined on that pattern match.

1. Given 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐0 = {𝑥𝑥}, 𝑡𝑡 ← 𝑡𝑡0,

2. Compute 𝑀𝑀𝑟𝑟(𝑡𝑡)∀𝑆𝑆 from 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐.

3. Compute Δ𝑡𝑡 from Σ𝑟𝑟𝑀𝑀𝑟𝑟(𝑡𝑡).

4. Select 𝑆𝑆 with relative probability 𝑎𝑎𝑟𝑟(𝑐𝑐)
Σ𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)

.

5. For each 𝑀𝑀 ∈ 𝐸𝐸, select 𝜙𝜙𝑎𝑎,𝑥𝑥 with relative probability 𝑘𝑘𝑝𝑝(𝑥𝑥)
Σ𝑥𝑥𝑘𝑘𝑝𝑝(𝑥𝑥)

6. Determine reaction instance, i.e. the particle tuple 𝐸𝐸𝑥𝑥 ⊂ 𝐸𝐸𝑟𝑟𝑠𝑠, and the corresponding pattern

tuple embedding Φ𝑅𝑅,𝑅𝑅𝑥𝑥. Determine 𝑃𝑃𝑥𝑥 = 𝑆𝑆�𝐸𝐸𝑥𝑥,Φ𝑅𝑅,𝑅𝑅𝑥𝑥�.

7. Perform checks on whether this is a valid reaction.

8. Update particle ensemble: 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐+Δ𝑐𝑐 ← 𝐸𝐸𝑟𝑟𝑠𝑠𝑐𝑐 − 𝐸𝐸𝑥𝑥 + 𝑃𝑃𝑥𝑥.

9. Update time. 𝑡𝑡 ← 𝑡𝑡 + Δ𝑡𝑡.

10. If 𝑡𝑡 < 𝑡𝑡𝑅𝑅𝑢𝑢𝑚𝑚, go to Step 2.

 126

3.4 ENERGY-BASED NETWORK-FREE SIMULATION

3.4.1 The Problem

The rule-based model (Definition 3.3-37) is a set of reaction rules mapped to rate laws. By

expanding each reaction rule into a class of reactions, a reaction network can be constructed which

resolves all possible chemical species and all possible reactions between those species (Section

3.3.5). In the energy-based formulation (Section 3.3.7), after building the network, the reactant

and product species are analyzed to compute the free energy change of each reaction (Definition

3.3-42), which in turn is used to compute the rate constant for that reaction (Definition 3.3-44).

The reaction network can then be used to simulate a species ensemble, with each species is

assigned a population number which is tracked across time (Section 3.3.6). Because the identity

of reactants and products are known for each reaction are known prior to firing a reaction event,

the energy-based formulation works seamlessly with network generation and network-based

simulation.

In contrast to network-based simulation, network-free simulation involves simulating a

particle ensemble directly using reaction rules (Section 3.3.9). Here, the system keeps track, not

of populations of types of particles, but each particle individually, and the embeddings of patterns

into particles (Definition 3.3-29). Reaction events are selected by analyzing the current ensemble

(i.e. the potential reactants for each reaction event), and the full specification of the product

particles are known only after the reaction event fires. This makes simulation very efficient, but

places restrictions on the types of rate laws that are possible, for example, rate laws with local

functions can only use attributes of the reactants (Definition 3.3-36) and not the products. Since

the energy-based rate laws require knowledge of both reactants and products to calculate the

 127

reaction rate, the energy-based rule-based model specification cannot be directly simulated using

a truly network-free algorithm. These concepts are explained with an example in Section 3.2.

Rule refinement is a general procedure where patterns in a rule are expanded by adding

molecules, components, internal states and bonds. The refined rule now only matches a subset of

the reaction class matched by the original rule because of the additional match conditions. A rule

refinement approach typically tries to organize the reaction class matched by a reaction rule into

many such subsets, and generate a unique reaction rule for each subset. For example, in network

generation (Section 3.3.5), the goal is to resolve reaction rules to reactions, so that each reaction

produces and consumes distinct chemical species. Another example is the rule-refinement

performed in the hybrid particle-population simulator [34], wherein some particles are treated

individually and some are lumped using population counters. The goal of rule refinement here was

to resolve reaction classes such that reactant/product patterns matched unlumped or lumped

particles, but not both at the same time.

 For energy-based network-free simulation, the goal is to generate reaction classes with

distinct free energy change values. By Corollary 3.3-43, we know that it is sufficient to count

overlaps of energy patterns with the reaction center. Therefore, the patterns in an energy rule only

need to be resolved locally and not necessarily over the whole particle. Since the energy patterns

are themselves finite, the depth to which configurations local to the reaction center have to be

explored is also finite.

The goal of the energy-based specification is to simplify the representation of cooperative

interactions. Theoretically it is possible to use very complex rules as energy-based rules, such as

rules with more than two reactant patterns, binding rules that form loops within a complex.

However, the utility of the energy-based specification for those circumstances has not been clearly

 128

determined. The most straightforward application of energy rules is for simple elementary reaction

mechanisms where the complexity of variations in local context can be abstracted away in the form

of energy pattern matches. For the rest of the chapter, we limit the discussion to exactly two types

of energy rules: bimolecular binding reactions, and unimolecular state change reactions.

3.4.2 Rule Expansion Strategy

The overall strategy for refining the rule is as follows: (i) compose molecule type specific

to the local context of the reaction center of the energy rule, (ii) incorporate tagging of the reaction

center on the molecule types, (iii) identify how far patterns need to be expanded in order to capture

unique combinations of energy pattern matches, (iii) use network generation to expand the local

context upto those unique combinations, (iv) use network generation to expand the energy rule

onto the generated set of patterns, and (v) use energy matches to compute the rate for each reaction

rule in the expanded set.

1) Given molecule type definition 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓 = (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀), bond definition 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,

energy patterns 𝐸𝐸, and a reversible energy rule (𝑆𝑆+, 𝑆𝑆−) where 𝑆𝑆+ = (𝐸𝐸,𝑃𝑃).

2) Compute 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤 = (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤) which excludes

molecules, components, internal states and bonds that are not relevant to compute energies.

3) Add new molecule types with tagged reaction centers and update 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤.

4) Synthesize a set of seed species 𝑆𝑆𝑀𝑀 and a set of expander rules 𝐸𝐸𝑟𝑟 from 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤.

5) Expand context and collect “species”: (𝑆𝑆𝑀𝑀′, …) = 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟)

6) Expand energy rule using generated species: (𝑆𝑆𝑀𝑀′′,𝐸𝐸𝑟𝑟𝑅𝑅𝑥𝑥𝑎𝑎) = 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀′, {𝑆𝑆+, 𝑆𝑆−})

7) Evaluate Arrhenius rate laws for 𝑆𝑆 ∈ 𝐸𝐸𝑈𝑈𝑅𝑅𝑥𝑥𝑎𝑎.

 129

3.4.3 Building Molecule and Bond Types for Local Context

Given a molecule type definition (𝑀𝑀,𝐶𝐶, 𝑆𝑆,𝑁𝑁𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) and a bond type definition 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, a

reversible energy rule (𝑆𝑆+, 𝑆𝑆−), where 𝑆𝑆+ = (𝐸𝐸,𝑃𝑃), an energy definition involving a set of energy

patterns 𝐸𝐸, and a map from energy patterns to energies of formation 𝐸𝐸 → 𝐸𝐸𝐸𝐸, we first reduce the

rule to its reaction center: 𝑆𝑆∘ = (𝐸𝐸∘,𝑃𝑃∘) as in Definition 3.3-20. Then, we use embeddings from

𝐸𝐸∘ and 𝑃𝑃∘ to select “relevant” energy patterns (these are the only energy pattern embeddings that

matter, according to Corollary 3.3-43).

𝐸𝐸𝑟𝑟 = �𝑀𝑀 ∈ 𝐸𝐸�∃𝜙𝜙𝑎𝑎,𝑞𝑞, 𝑞𝑞 ∈ 𝐸𝐸∘ ∪ 𝑃𝑃∘�

Then we build an extended molecule type definition (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤),

that captures the space of local configurations around the reaction center. 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and 𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤 contain

all molecule types and component types present in the patterns in 𝐸𝐸,𝑃𝑃,𝐸𝐸𝑟𝑟, and 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤is populated

from 𝑁𝑁𝑀𝑀𝑀𝑀 for those molecule and component types. For every component type 𝑆𝑆 in molecule type

𝑟𝑟, if at least one pattern in 𝐸𝐸,𝑃𝑃,𝐸𝐸𝑟𝑟 has an internal state, then 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤 and 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 are populated with

all internal states available to that component type in 𝑆𝑆 and 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 is populated with all pairs

of doublets (𝑟𝑟1, 𝑆𝑆1), (𝑟𝑟2, 𝑆𝑆2) that are assigned 1 under 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 where at least one doublet (𝑟𝑟1, 𝑆𝑆1)

has the value 1 under 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 . If any new molecule types or component types were added in this

step, 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 are updated.

3.4.4 Tagging the Reaction Center

Next, we build a set of modified molecule types where molecules and components

participating in the reaction center are tagged. For example, suppose the reaction center 𝑆𝑆∘ is

 130

A(b) + B(a) -> A(b!1).B(a!1)

We first build the renaming maps

𝑆𝑆𝐷𝐷𝑟𝑟𝑀𝑀 = {𝐴𝐴 → 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵 → 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚}

𝑆𝑆𝐷𝐷𝑟𝑟𝑀𝑀 = {(𝐴𝐴, 𝑓𝑓) → (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), (𝐵𝐵,𝑀𝑀) → (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚)}

Then, using the templates in (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤), we create additional

molecule types 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚, which are renamed versions of 𝐴𝐴 and 𝐵𝐵 in which one component of

type 𝑓𝑓 is replaced with one of type 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, and one of type 𝑀𝑀 is replaced with one of type 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚. The

new molecule types and component types are added to 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and 𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤 respectively. 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 is

updated with new stoichiometries, whereas internal state and bond state definitions in 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 and

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 are copied over to the new component types. For example, if the template molecule type

was 𝐴𝐴(𝑓𝑓, 𝑓𝑓, 𝑆𝑆), then the new molecule type is 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓, 𝑆𝑆), and the following updates are

made:

∀𝑠𝑠,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝐴𝐴, 𝑓𝑓, 𝑠𝑠) = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠)

∀𝑟𝑟, 𝑆𝑆 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝐴𝐴, 𝑓𝑓), (𝑟𝑟, 𝑆𝑆)� = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), (𝑟𝑟, 𝑆𝑆)�

The only exception to the 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 assignment is an asymmetric tagging for the specific pair that

was tagged in the first place: i.e. 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1) is allowed, but not

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1).𝐵𝐵(𝑀𝑀! 1) or 𝐴𝐴(𝑓𝑓! 1).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1).

3.4.5 Topology Constraints

Here, we compose a set of constraints that determine how deep patterns must be expanded to

properly account for all energy contributions. For each energy pattern 𝐷𝐷, we use tagging-by-

renaming to generate variants {𝐷𝐷𝑖𝑖} that have exactly one reaction center. Then, the distance of non-

 131

tagged molecules from the reaction center is calculated. For example, if 𝐴𝐴(𝑓𝑓! 1, 𝑓𝑓, 𝑆𝑆).𝐵𝐵(𝑀𝑀! 1) is

an energy pattern, it results in the variants 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚! 1, 𝑓𝑓, 𝑆𝑆).𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚! 1) and

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓! 1, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑆𝑆).𝐵𝐵(𝑓𝑓! 1). In the first variant, there is no molecule that is not part of the reaction

center. In the second variant, the molecule B is at a distance 1 from the reaction center. The

maximum distance for each non-tagged molecule type is computed over all variants of all energy

patterns. This results in a map from each molecule type to a non-negative number, i.e. 𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 →

ℕ0.

3.4.6 Context Expansion

Here, we use network generation to expand the patterns such that the context surrounding the

reaction center is unambiguously resolved in terms of energy pattern matches. Given new molecule

and bond types 𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤 = (𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝐶𝐶𝑢𝑢𝑅𝑅𝑤𝑤, 𝑆𝑆𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤), and topology

constraints, 𝑇𝑇𝑑𝑑𝑀𝑀𝑑𝑑𝐷𝐷:𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 → ℕ0, we build a set of seed species 𝑆𝑆𝑀𝑀 = 𝑆𝑆𝐷𝐷𝐷𝐷𝑠𝑠(𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤) in

which each pattern has one molecule only, which is an instance of one molecule type, and in which

each component is instantiated with the maximum allowed stoichiometry in 𝑁𝑁𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤, and with an

internal state specified by 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 (none if unspecified, randomly chosen if multiple internal states

are specified). Then, we build a set of expander rules 𝐸𝐸𝑟𝑟 = 𝐸𝐸𝑟𝑟𝐷𝐷𝐷𝐷𝑠𝑠(𝑀𝑀𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑁𝑁𝐷𝐷𝑤𝑤), wherein for

each 𝑟𝑟1,𝑟𝑟2, 𝑆𝑆1, 𝑆𝑆2 such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤 �(𝑟𝑟1, 𝑆𝑆1), (𝑟𝑟2, 𝑆𝑆2)� = 1, there exists a rule:

m1(c1) + m2(c2) <-> m1(c1!1).m2(c2!1)

Similarly, for every 𝑟𝑟, 𝑆𝑆, 𝑠𝑠1, 𝑠𝑠2 such that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝑟𝑟, 𝑆𝑆, 𝑠𝑠1) = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑅𝑅𝑤𝑤(𝑟𝑟, 𝑆𝑆, 𝑠𝑠2) = 1, there exists a rule

m(c~s1!?) <-> m(c~s2!?)

 132

Then network generation is performed using these seed species and rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟)

with the following constraints on species: (i) at least one species in each reaction must have a

reaction center tag, (ii) no species generated can have more than one reaction center tag, (iii) the

distance of any molecule to the reaction center tag is less than or equal to the limit computed from

energy patterns, i.e. from the set of topology constraints 𝑇𝑇𝑑𝑑𝑀𝑀𝑑𝑑𝐷𝐷. Note that the species in this

network are true species only under the new molecule type definition, but not under the original

one.

3.4.7 Energy Rule Expansion

Here, we use network generation to expand the energy rule into normal reaction rules. The input

rule set comprises only the forward and reverse directions of the energy rule, and with the reaction

center tagged. The reactions are limited to use the species generated during context expansion.

After expansion, the tags are removed and the resultant set of “reactions” constitute the expanded

rule set. For each rule in this set, a unique free energy can be calculated by counting energy pattern

matches (as in Definition 3.3-42) and this can be used to compute the numeric rate from the

Arrhenius rate law (as in Definition 3.3-44).

3.4.8 Scalability Concerns

When there are no repeated components within molecules, the number of rules generated from an

energy rule scale with the size of the largest energy pattern that overlaps with each reaction center,

which is typically a low bound. However, when there are repeated components, the number of

rules generated from the energy rule has the potential to grow combinatorially. Nevertheless, there

 133

is a finite limit on the number of rules that are possible since finite-sized energy patterns and finite-

sized molecule types are used. Also, even in the worst case scenario, it is the pre-processing of the

model that is inefficient and there is no reduction in the efficiency of the simulation algorithm.

3.4.9 Alternate Strategies

Prior to this approach, I considered two other strategies. These were rejected because the

inefficiency was not resolved prior to simulation.

In the first strategy, based on rejection sampling [83], I proposed to treat energy rules as

reaction classes and oversample them at a constant high rate. After the reaction event has fired, the

identity of the products can be determined, which in turn can be used to determine the free energy

of the just-fired reaction event, and consequently the difference between the correct rate and the

oversampled rate. Following this, the reaction event can be probabilistically accepted or rejected

resulting in exact kinetics. However, this strategy has two issues even if an upper bound on the

reaction rate can be calculated for a given energy rule: (i) when there are repeated components, the

bound may not be tight enough to enable efficient simulation, e.g. if a molecule has 3 components

of the same type, then any energy patterns overlapping with a component of that type contribute

three times the energy to the calculation of the bound, (ii) if there is at least one reaction generated

by the rule that is much faster than the other reactions, then rejection sampling of the other

reactions will be very inefficient.

In the second strategy, I proposed to use the current state of the simulation system to

compute the immediate future possibilities and sample them exactly. However, this strategy was

discarded because it required computing a unique energy term for every potential reaction center

present in the system, which is inefficient for bimolecular reactions.

 134

3.4.10 Implementation Issues

In order to implement the given procedure in BioNetGen, the network generation algorithm in the

BioNetGen code needs to be modularized to perform generic rule refinement. First, the current

code executes on the current model object that is persistent during runtime, but we require it to be

called multiple times on arbitrary sets of molecule types, rules and species (e.g. Sections 3.4.6 and

3.4.7), and not necessarily on the current model as a whole. Second, the checks on generated

species and reactions, as well as modifications done to them such as lumping of statistical factors,

are currently only those that are required for building the reaction network specification. These

procedures must be imported as modules, so that tasks specific to the current refinement goal can

be flexibly performed, such as arbitrary checks on species and reactions (Section 3.4.5), turning

lumping off, evaluating pattern matches and rate laws, preventing new species from being formed

(Section 3.4.7), etc. For each of the examples below, the molecule type construction (Section

3.4.3), and reaction center tagging (Section 3.4.4) was done manually. Then, two different BNGL

files were constructed manually, each calling the network generation code for respectively

expanding context and energy rule. Parameters passed to network generation were tuned to be

similar to the topology constraints (Section 3.4.6).

3.4.11 Example 1: Bivalent Ligand Bivalent Receptor

Consider an energy-based rule-based model with a bivalent ligand that binds a bivalent receptor.

The molecule types are

Lig(R,R)

Rec(L,L)

 135

There is only one type of bond

Lig(R!1).Rec(L!1)

Consider the energy rule

Lig(R)+Rec(L) <-> Lig(R!1).Rec(L!1)

Here, the single rule can generate an infinite state space of species because the combination of two

sites on the receptor and two sites on the ligand leads to a chain that can grow indefinitely. First,

because there is no other context in the model except unbound and bond states, we can skip Section

3.4.3 and reuse the same molecule types.

Next, we tag the reaction center on the rule,

Lig_RC(R_RC)+Rec_RC(L_RC) <-> Lig_RC(R_RC!1).Rec(L_RC!1)

Then we create the tagged molecule types where one component has been tagged that indicates

participation in the reaction center.

Lig_RC(R_RC,R)

Rec_RC(L_RC,L)

Now, consider the following set of energy patterns:

Rec(L,L)

Lig(R,R)

Rec(L!1).Lig(R!1)

The tagged variants of these energy patterns are:

Rec_RC(L_RC,L)

Lig_RC(R_RC,R)

 136

Rec_RC(L_RC!1).Lig_RC(R_RC!1)

Rec_RC(L!1).Lig(R!1)

Rec(L!1).Lig_RC(R!1)

Note that in the last two patterns, one of the molecules have been tagged, but the components have

not been tagged. This is valid because both receptor and ligand have multiple sites for each other.

The new molecule types are

Rec_RC(L_RC,L)

Lig_RC(R_RC,R)

The new bond types are

Rec_RC(L_RC!1).Lig_RC(R_RC!1)

Rec_RC(L!1).Lig_RC(R!1)

The updated list of molecule types is

Rec(L,L)

Lig(R,R)

Rec_RC(L_RC,L)

Lig_RC(R_RC,R)

The updated list of bond types is

Rec(L!1).Lig(R!1)

Rec_RC(L_RC!1).Lig_RC(R_RC!1)

Rec_RC(L!1).Lig_RC(R!1)

 137

From the tagged variants of the energy patterns, we compute topology constraints.

Rec->1, Lig->1

Using the new molecule types, we can compose the set of seed species (𝑆𝑆𝑀𝑀):

Rec(L,L)

Lig(R,R,R)

Rec_RC(L_RC,L)

Lig_RC(R_RC,R)

Using the new molecule types and bond types, we can compose the set of expander rules (𝐸𝐸𝑟𝑟):

Lig(R) + Rec(L) <-> Lig(R!1).Rec(L!1)

Lig_RC(R) + Rec(L) <-> Lig_RC(R!1).Rec(L!1)

Lig(R) + Rec_RC(L) <-> Lig(R!1).Rec_RC(L!1)

Lig_RC(R_RC) + Rec_RC(L_RC) <-> Lig_RC(R_RC!1).Rec_RC(L_RC!1)

Performing network generation using the seed species and expander rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟),

we get the following species:

 Rec(L,L)

 Lig(R,R)

 Rec_RC(L,L_RC)

 Lig_RC(R,R_RC)

 Lig_RC(R!1,R_RC).Rec(L!1,L)

 Lig(R!1,R).Rec_RC(L!1,L_RC)

 138

 Lig_RC(R,R_RC!1).Rec_RC(L,L_RC!1)

 Lig(R!1,R).Lig_RC(R!2,R_RC).Rec(L!2,L!1)

 Lig(R!1,R!2).Rec(L!2,L).Rec_RC(L!1,L_RC)

 Lig(R!1,R!2).Lig_RC(R!3,R_RC).Rec(L!3,L!2).Rec_RC(L!1,L_RC)

 Lig_RC(R!1,R_RC!2).Rec(L!1,L).Rec_RC(L,L_RC!2)

 Lig(R!1,R).Lig_RC(R,R_RC!2).Rec_RC(L!1,L_RC!2)

 Lig(R!1,R).Lig_RC(R!2,R_RC!3).Rec(L!2,L).Rec_RC(L!1,L_RC!3)

 Lig(R!1,R).Lig_RC(R!2,R_RC!3).Rec(L!2,L!1).Rec_RC(L,L_RC!3)

 Lig(R!1,R!2).Lig_RC(R,R_RC!3).Rec(L!2,L).Rec_RC(L!1,L_RC!3)

 Lig(R!1,R).Rec(L!1,L)

Using the energy rule to generate reactions drawn from this set of species and then removing the

reaction center tags, we get the following rule variants:

1. Lig(R,R) + Rec_RC(L,L) -> Lig_RC(R,R!1).Rec(L,L!1)

2. Lig(R,R) + Lig(R!1,R).Rec(L!1,L) -> Lig(R!1,R).Lig(R,R!2).Rec(L!1,L!2)

3. Lig(R,R) + Lig(R!1,R!2).Rec(L!2,L).Rec(L!1,L) ->

Lig(R!1,R!2).Lig(R,R!3).Rec(L!2,L).Rec(L!1,L!3)

4. Lig(R!1,R).Rec(L!1,L) + Rec(L,L) -> Lig(R!1,R!2).Rec(L!1,L).Rec(L,L!2)

5. Lig(R!1,R).Lig(R!2,R).Rec(L!2,L!1) + Rec(L,L) ->

Lig(R!1,R).Lig(R!2,R!3).Rec(L!2,L!1).Rec(L,L!3)

 139

6. Lig(R!1,R).Rec(L!1,L) + Lig(R!1,R).Rec(L!1,L) ->

Lig(R!1,R).Lig(R!2,R!3).Rec(L!2,L).Rec(L!1,L!3)

By counting matches of energy patterns, as in Definition 3.3-42, the free energy of these rule

variants are computed, and they result in the following expressions respectively:

1. (-E_R)+(-E_L)+E_RL

2. (-E_L)+E_RL

3. (-E_L)+E_RL

4. (-E_R)+E_RL

5. E_RL

6. E_RL

3.4.12 Example 2: EGFR-Grb2-Shc

Consider an energy-based rule-based model with the following molecule types

EGF(r)

EGFR(l,d,Y992~0~P,Y1068~0~P,Y1148~0~P)

Grb2(SH2,SH3)

Shc(PTB,Y317~0)

Consider the energy rule:

EGFR(Y1068~P) + Grb2(SH2) <-> EGFR(Y1068~P!1).Grb2(SH2!1)

The context-free version of this rule is

 140

EGFR(Y1068) + Grb2(SH2) <-> EGFR(Y1068!1).Grb2(SH2!1)

Energy patterns that are relevant to the rule have to completely embed at least one of these patterns.

Suppose the set of relevant energy patterns (with matching energies) was:

EGFR(Y1068!1).Grb2(SH2!1) E_RG1

EGFR(Y1068!1,Y1148).Grb2(SH2!1) E_RG2

EGFR(Y1068,Y1148!1).Shc(PTB!1) E_RS

EGFR(Y1068!1,Y1148!2).Grb2(SH2!1).Shc(PTB!2) E_RGS

Grb2(SH2,SH3!1).Sos(dom!1) E_GS

Given these energy patterns and the rule patterns, the implied molecule type definition is:

EGFR(Y1068~0~P,Y1148)

Grb2(SH2,SH3)

Shc(PTB)

Sos(dom)

Also, from the model, the bond definition is given by

EGFR(Y1068!1).Grb2(SH2!1)

EGFR(Y1148!1).Shc(PTB!1)

Grb2(SH3!1).Sos(dom!1)

Now, we take the context-free energy rule and add reaction center tags:

EGFR_RC(Y1068_RC) + Grb2_RC(SH2_RC) <->

EGFR_RC(Y1068_RC!1).Grb2(SH2_RC!1)

 141

We create variants of the energy patterns using tagged molecule and component names.

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1)

EGFR_RC(Y1068_RC!1,Y1148).Grb2_RC(SH2_RC!1)

EGFR_RC(Y1068_RC,Y1148!1).Shc(PTB!1)

EGFR_RC(Y1068_RC!1,Y1148!2).Grb2(SH2_RC!1).Shc(PTB!2)

Grb2_RC(SH2_RC,SH3!1).Sos(dom!1)

This results in new molecule types and bond types. The new molecule types are:

EGFR_RC(Y1068_RC~0~P,Y1148)

Grb2_RC(SH2_RC,SH3)

The new bond types are:

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1)

EGFR_RC(Y1148!1).Shc(PTB!1)

Grb2_RC(SH3!1).Sos(dom!1)

The updated list of molecule types is

EGFR(Y1068~0~P,Y1148)

Grb2(SH2,SH3)

Shc(PTB)

Sos(dom)

EGFR_RC(Y1068_RC~0~P,Y1148)

Grb2_RC(SH2_RC,SH3)

 142

The updated list of bond types is:

EGFR(Y1068!1).Grb2(SH2!1)

EGFR(Y1148!1).Shc(PTB!1)

Grb2(SH3!1).Sos(dom!1)

EGFR_RC(Y1068_RC!1).Grb2_RC(SH2_RC!1)

EGFR_RC(Y1148!1).Shc(PTB!1)

Grb2_RC(SH3!1).Sos(dom!1)

Using the variant energy patterns, we can compute maximum distance of each molecule from a

reaction center:

EGFR -> 0, Grb2-> 0, Shc -> 1, Sos -> 1

Using the updated molecule types, we can compose a set of seed “species” (𝑆𝑆𝑀𝑀):

EGFR(Y1068~0,Y1148)

Grb2(SH2,SH3)

Shc(PTB)

Sos(dom)

EGFR_RC(Y1068_RC~0,Y1148)

Grb2_RC(SH2_RC,SH3)

Using the updated molecule types and bond types, we can compose expander rules 𝐸𝐸𝑟𝑟:

EGFR(Y1068~0!?) <-> EGFR(Y1068~P!?)

EGFR_RC(Y1068_RC~0!?) <-> EGFR_RC(Y1068_RC~P!?)

 143

EGFR(Y1068)+Grb2(SH2) <-> EGFR(Y1068!1).Grb2(SH2!1)

EGFR(Y1148) + Shc(PTB) <-> EGFR(Y1148!1).Shc(PTB!1)

Grb2(SH3) + Sos(dom) <-> Grb2(SH3!1).Sos(dom!1)

EGFR_RC(Y1068_RC) + Grb2_RC(SH2_RC) <->

EGFR_RC (Y1068_RC!1).Grb2_RC(SH2_RC!1)

EGFR_RC(Y1148) + Shc(PTB) <-> EGFR_RC(Y1148!1).Shc(PTB!1)

Grb2_RC(SH3) + Sos(dom) <-> Grb2_RC(SH3!1).Sos(dom!1)

Performing network generation using the seed species and expander rules, i.e. 𝑁𝑁𝐷𝐷𝑡𝑡𝐸𝐸𝐷𝐷𝑟𝑟(𝑆𝑆𝑀𝑀,𝐸𝐸𝑟𝑟),

and using the constraints mentioned in Section 3.4.6, we get the following state space of species

(𝑆𝑆𝑀𝑀′):

EGFR(Y1068~0,Y1148)

Grb2(SH2,SH3)

Shc(PTB)

Sos(dom)

EGFR_RC(Y1068_RC~0,Y1148)

Grb2_RC(SH2_RC,SH3)

EGFR_RC(Y1068_RC~P,Y1148)

EGFR_RC(Y1068_RC~0!1,Y1148).Grb2_RC(SH2_RC!1,SH3)

EGFR_RC(Y1068_RC~0,Y1148!1).Shc(PTB!1)

Grb2_RC(SH2_RC,SH3!1).Sos(dom!1)

 144

EGFR_RC(Y1068_RC~P!1,Y1148).Grb2_RC(SH2_RC!1,SH3)

EGFR_RC(Y1068_RC~P,Y1148!1).Shc(PTB!1)

EGFR_RC(Y1068_RC~0!1,Y1148).Grb2_RC(SH2_RC!1,SH3!2).Sos(dom!2)

EGFR_RC(Y1068_RC~P!1,Y1148).Grb2_RC(SH2_RC!1,SH3!2).Sos(dom!2)

EGFR_RC(Y1068_RC~0!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3).Shc(PTB!2)

EGFR_RC(Y1068_RC~0!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3!3).Shc(PTB!2).Sos(dom!3)

EGFR_RC(Y1068_RC~P!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3).Shc(PTB!2)

EGFR_RC(Y1068_RC~P!1,Y1148!2).Grb2_RC(SH2_RC!1,SH3!3).Shc(PTB!2).Sos(dom!3)

Then we expand the energy rule using only these species, and then remove the reaction center tags.

This results in the four variants:

1. EGFR(Y1068~P,Y1148) + Grb2(SH2,SH3) ->

EGFR(Y1068~P!1,Y1148).Grb2(SH2!1,SH3)

2. EGFR_RC(Y1068~P,Y1148) + Grb2(SH2,SH3!1).Sos(dom!1) ->

EGFR(Y1068~P!1,Y1148).Grb2(SH2!1,SH3!2).Sos(dom!2)

3. EGFR(Y1068~P,Y1148!1).Shc(PTB!1) + Grb2(SH2,SH3) ->

EGFR(Y1068~P!1,Y1148!2).Grb2(SH2!1,SH3).Shc(PTB!2)

4. EGFR(Y1068~P,Y1148!1).Shc(PTB!1) + Grb2(SH2_RC,SH3!1).Sos(dom!1) ->

EGFR(Y1068~P!1,Y1148!2).Grb2_RC(SH2!1,SH3!3).Shc(PTB!2).Sos(dom!3)

 145

Computing the energy of formation for each of these rules using energy pattern matches (using

Definition 3.3-42) results in a unique free energy change expression for each rule. The free energy

changes in the forward direction for each reaction are as follows:

1. E_RG1+E_RG2

2. E_RG1+E_RG2+(-E_GS)

3. E_RG1+(-E_RS)+E_RGS

4. E_RG1+(-E_RS)+E_RGS+(-E_GS)

3.5 CONCLUDING REMARKS

The work in this chapter was geared towards bridging two recent advances in rule-based modeling:

the energy-based rule-based model specification [34] and the network-free simulation algorithm

[39]. First I showed that only overlaps of energy patterns with a reaction center need to be

considered. Then I showed that when energy rules are limited to a single transformation, pre-

processing the rules to expand them is sufficient to generate reaction classes that can be used for

network-free simulation. The procedure also requires a finite number of pre-processing steps, and

does not require modifying the network-free simulation algorithm.

 146

4.0 MODEL CONSTRUCTION USING REACTION RULE MODULES

4.1 SYNOPSIS

Rule-based models are being built with increasingly large sizes, as evidenced by some of the

models referenced in this thesis [44]–[47]. Therefore, improving and scaling up rule-based model

construction is an active area of research [65], [84]. In Section Error! Reference source not found.

Error! Reference source not found., I detail some of the issues that hinder model construction.

Section 4.3 CURRENT APPROACHES, I review some of the current strategies used in building

larger rule-based models. In Section Error! Reference source not found. Error! Reference source

not found., I provide an additional approach that complements the current approaches. I

demonstrate this approach using an example of Ras mutants in which there are many possible

models for explaining the behavior.

 147

4.2 SOURCES OF COMPLEXITY IN MODEL CONSTRUCTION

4.2.1 Contextual Complexity

The same kinetic process can occur with different rates under different local conditions.

Enumerating the combinations of local conditions that lead to the different kinetic variants can be

a time consuming process. This is especially true, when there are cooperative interactions that

occur on the same molecule. By the principle of detailed balance, the equilibrium constants of a

loop of reaction mechanisms have to be constrained, as demonstrated in Section Error! Reference

source not found. Error! Reference source not found.. Ignoring these constraints lead to too many

unconstrained parameters and incorrect models. However, identifying such loops in reaction

mechanisms is not trivial, e.g. in a model with 4 molecule types and 24 rules, Faeder et al. identify

4 different loops that need to be constrained [35].

4.2.2 Model Hypotheses

Usually, multiple hypotheses are available regarding how the kinetic classes are structured. These

variations can be simple changes to rule parameters, e.g. say in Hypothesis 1, A binds B at a certain

rate:

A(b) + B(a) -> A(b!1).B(a!1) k

In Hypothesis 2, let the rate be reduced by a certain factor.

A(b) + B(a) -> A(b!1).B(a!1) f*k

 148

Now, these are specific hypotheses about a single rule. A model hypothesis could involve many

combinations of these hypotheses over the entire rule set, and each combination would be a valid

model. Enumerating the combinations manually can be a cumbersome process.

4.2.3 Variant Molecule Types

A common experimental procedure is to modify the participating molecules (such as by truncating

a domain or removing a phosphorylation site), and examining the changes in behavior, which will

lead to functional hypotheses about the individual molecules as well as the role they play in the

larger system. However, when building a rule-based model with many similar molecule types,

reaction rules involving each molecule type have to be replicated for all the variants. When

performed manually, this can consume a lot of time and resources.

For example, in a model of ErbB family signaling [46], the general paradigm is that receptors can

recruit ligands, and also form homo- and hetero- dimers, and there is cooperativity between the

two processes. The species in the model are monomers (say, R), homodimers, say (RR),

heterodimers (say RR’), and each of these species can bind one or two ligand molecules. Given

that the model has two ligand types and four receptor types, enumerating the combinations that

lead to ligand-binding and dimerization reaction classes comprises a large fraction of the 625 rules

in the models. Not only so, each combination of cooperative interactions that results in a loop has

to be cross-checked for detailed balance.

 149

4.3 CURRENT APPROACHES

4.3.1 The Macro Approach

PySB [84] is a recent modular construction framework that was developed for rule-based models.

Here, Python methods that build reaction rules are used to build and aggregate rule sets. For

example, say a method was defined:

def catalyze([<moleculetypes>]):

 ….

Say the catalysis method performs a simple of operation of taking two patterns, and building a

catalysis rule set, such as:

E(s) + S(e~Y) <-> E(s!1).S(e~Y!1) k1,k2

E(s!1).S(e~Y!1) -> E(s) + S(e~pY) kcat

If there are many combinations of enzymes and substrates, then the method can be called

repeatedly on each combination. For example, passing the method the enzyme E1 and substrate

S1, we can generate the rules,

E1(s) + S1(e~Y) <-> E1(s!1).S1(e~Y!1) k1,k2

E1(s!1).S1(e~Y!1) -> E1(s) + S1(e~pY) kcat

The final model is constructed by aggregating calls to rule construction methods into a single

program.

 150

4.3.2 The Typing Approach

In MetaKappa [85], the language enables the systematic variation of molecule types. For example,

suppose we consider both MEK1 and MEK2 variants in a model, then, first we define a generic

molecule type (Kappa syntax – %gen = generic molecule type):

%gen: MEK(S~Y,ST~Y)

Then we introduce concrete variations of the molecule type (Kappa syntax – %conc = concrete

molecule type):

%conc: MEK1 = MEK[S\{S218} ST\{S222}]

%conc: MEK2 = MEK[S\{S222} ST\{S226}]

Here component types from the generic type (S,ST) are replaced with concrete variants (S218,

etc.) Now we are allowed to define rules on both generic and concrete types:

MEK(S~pY) -> MEK(S~Y)

MEK1(S218~pY) -> MEK(S218~Y)

When compiling the model, rules constructed on generic types are expanded automatically to

corresponding rules on the concrete types.

4.3.3 The Energy-based Approach

Energy based approaches [50]–[52] handle the combinatorial complexity that arises from allosteric

and cooperative interactions. In energy-based BioNetGen, energy patterns are first specified by

the user and assigned energy values:

A(b!1).B(a!1) G_ab

 151

B(a,x~0) G_b0

B(a,x~1) G_b1

Then, the model is specified using “energy-rules”,

A(b) + B(a) -> A(b!1).B(a!1) Arrhenius(phi, E_ab)

When specified in this way, the free energy values (and thereby the reaction rate parameters) of

reactions generated from the rule can be calculated by counting energy pattern matches to reactant

and product sides. For example, the rule generates the following reactions with the following

energies.

A(b) + B(a,x~0) -> A(b!1).B(a!1,x~0) -G_b0 +G_ab

A(b) + B(a,x~1) -> A(b!1).B(a!1,x~1) -G_b1 +G_ab

This provides a high degree of compression for cooperative processes, because it is not necessary

for the modeler to provide a separate rule and rate constant for each reaction class. Providing a set

of energy rules and energy patterns ensures that all combinations of patterns that lead to contextual

variants of the rule can be enumerated.

4.4 REACTION RULE MODULES

In the macro approach, the aggregable model object is the call to the Python rule-building method.

However, it is not useful to create variations of pre-existing rule-sets. On the other hand,

MetaKappa and energy-based rules provide a significant compression by identifying higher-order

abstractions such as types of molecule types and energy patterns. Here, I propose the idea of a

 152

reaction module that complements the above approaches. Using a prototype implementation of

reaction modules for BioNetGen, I demonstrate the utility of the approach.

4.4.1 Motivating Example

Consider the molecule Ras, which is a small GTPase that is important for growth factor signaling.

Ras mutations are widespread in cancer, and are therefore a target of intense experimental scrutiny.

The Ras molecule has a nucleotide binding site, which binds GTP or GDP. The GTP-bound state

is called ‘active’, and the Ras molecule can then bind effector molecules and activate them. GTP-

bound Ras slowly hydrolyzes GTP into GDP, which is the inactive form. Other molecule types

regulate Ras activation and inactivation, e.g. RasGEF which promotes the release of GDP from

the inactive form leading to its subsequent activation, and RasGAP which increase the endogenous

GTP-ase activity of Ras, leading to its subsequent inactivation. In a study by Stites et al [86],

multiple hypothesis are suggested for how Ras mutants can increase Ras activation: reduced

GTPase activity, GAP insensitivity, increased effect affinity, etc. Here, we use this system as an

example where model building is hindered by multiple overlapping model hypotheses, and show

how a reaction-module approach can be useful.

4.4.2 Basic Model

We first build the wildtype model. Ras nucleotide binding and hydrolysis is represented as:

Ras(nuc~u,bs) <-> Ras(nuc~gdp,bs) kf_gdp, kr_gdp

Ras(nuc~u,bs) <-> Ras(nuc~gtp,bs) kf_gtp, kr_gtp

 153

Ras(nuc~gtp,bs) -> Ras(nuc~gdp,bs) k_hyd

RasGAP activity, which is an enhancement of GTP-hydrolysis, is modeled as

Ras(nuc~gtp,bs) + GAP(ras) <-> Ras(nuc~gtp,bs!0).GAP(ras!0) kf_GAP,kr_GAP

Ras(nuc~gtp,bs!0).GAP(ras!0) -> Ras(nuc~gdp,bs) + GAP(ras) kcat_GAP

RasGEF activity, which is enhanced release of bound nucleotide, is modeled as

Ras(nuc~gdp,bs) + GEF(ras) <-> Ras(nuc~gdp,bs!0).GEF(ras!0) kf_GEF_0,kr_GEF_0

Ras(nuc~gdp,bs!0).GEF(ras!0) -> Ras(nuc~u,bs) + GEF(ras) kcat_GEF1

Ras(nuc~gtp,bs) + GEF(ras) <-> Ras(nuc~gtp,bs!0).GEF(ras!0) kf_GEF_1,kr_GEF_1

Ras(nuc~gtp,bs!0).GEF(ras!0) -> Ras(nuc~u,bs) + GEF(ras) kcat_GEF1

Activated Ras binds effector molecules which lead to subsequent signaling events.

Ras(nuc~gtp,bs) + Eff(ras) <-> Ras(nuc~gtp,bs!0).Eff(ras!0) kf_Eff, kr_Eff

Let K_gdp, K_gtp, K_GAP, K_GEF1, K_GEF2 and K_eff be the corresponding equilibrium

binding constants of each binding event respectively.

4.4.3 Mechanistic Hypotheses

Stites et al. [86] experimentally explore multiple mechanistic hypotheses about Ras mutations. We

show how these hypotheses affect the modeled rules.

 154

4.4.3.1 Reduced GTPase activity (RGA)

A Ras mutant could slow down the endogenous GTPase activity, leading to persistence of the

activated state. In the model, this assumption would affect the k_hyd parameter, which would be

reduced by a factor, say f_RGA*k_hyd.

4.4.3.2 GAP Insensitivity (GI)

A Ras mutant could be insensitive to GAP-induced acceleration of hydrolysis. Thus, even when

GAP binds, inactivation proceeds only at the endogenous rate. In the model, this assumption would

involve replacing the k_cat_GAP parameter with the endogenous hydrolysis rate k_hyd.

4.4.3.3 Increased Effector Affinity (IEA)

A Ras mutant could bind the effector stronger than wildtype Ras, which would lead to increased

downstream activation. In the model, this would mean that the effector binding affinity K_eff is

multiplied by a factor f_IEA.

4.4.4 Combinatorial Complexity in the Hypotheses Space

Note that the hypotheses above do not have to be mutually exclusive. Some combination of them

could realistically be present in a Ras mutant. Also, the mechanisms can influence each other as

well. For example, GAP insensitivity results in the GAP-bound catalytic rate being equal to the

endogenous rate of hydrolysis, but the endogenous rate itself can be modified by the reduced

GTPase activity hypotheses. Thus every combination of hypotheses is a different model.

Consider a set of Boolean variables (which take values 0 or 1) which can be used to

formulate the combinations. Let b_mut be the variable that indicates whether a mutant is present

 155

or not, b_GI indicates GAP insensitivity, b_RGA indicates reduced GTPase activity and b_IEA

indicates increased effector affinity. In total there are 1 wild type + 2^3 mutant models, i.e. 9 in

all. Here we demonstrate how each combination of hypotheses can be built using reaction modules.

4.4.5 Building Reaction Modules

Here, we define a reaction module as a set of rules and associated rate expressions and parameters

to which systematic modification operations can be defined. For demonstration, we use a module

that models Ras interaction with GAP:

Module Ras-GAP-basic

Rule[1] = Ras(nuc~gtp,bs) + GAP(ras) <-> Ras(nuc~gtp,bs!0).GAP(ras!0)

Rate[1] = kf_gap, kr_gap

 Rule[2] = Ras(nuc~gtp,bs!0).GAP(ras!0) -> Ras(nuc~gdp,bs) + GAP(ras)

 Rate[2] = kcat_gap

Param = kf_gap, kr_gap, kcat_gap

Now a modification can be defined where we add the context Ras(t~wt)

Module Ras-GAP-wt gets Ras-GAP-basic

 AddContext Ras(t~wt)

Similarly, we can define a module with the added context Ras(t~mut), indicating mutant.

Module Ras-GAP-mut gets Ras-GAP-basic

 AddContext Ras(t~mut)

 156

Now, we can define variations of the mutant module under each hypothesis. Here, we define a

modification that replaces one parameter expression with another.

Module Ras-GAP-mut-GI gets Ras-GAP-mut

 SwapParam kcat_gap k_hyd

Module Ras-GAP-mut-GI-RGA gets Ras-GAP-mut

 SwapParam kcat_gap f_RGI*k_hyd

Now, the logic for building rules and rate expressions for each combination of hypotheses is

embedded within each module.

4.4.6 Aggregating Modules using Boolean Variables

The RasGAP portion of the model with its alternate variants can be specified with Boolean

variables:

if(b_mut==0)

 load ras-GAP

else

 load ras-GAP-wt

 if(b_GI==1)

 if(b_RGA==1)

 load ras-GAP-mut-GI-RGA

 else

 157

 load ras-GAP-mut-GI

 else

 load ras-GAP-mut

From the specified logic, the expanded rules and rate expressions are automatically calculated. For

example, the model will have the rule:

Ras(nuc~gtp,bs!0,t~mut).GAP(ras!0) -> Ras(nuc~gdp,bs,t~mut) + GAP(ras)

The rate expression for the rule will be compiled as

b_GI*(b_RGA*f_RGI*k_hyd + (1-b_RGA)*k_hyd) + (1-b_GI)*kcat_GAP

Evaluating the expression for different settings of b_RGA and b_GI will result in the right

parameter expressions under those assumptions:

b_GI=0 b_RGA=0 kcat_GAP

b_GI=0 b_RGA=1 kcat_GAP

b_GI=1 b_RGA=0 k_hyd

b_GI=1 b_RGA=1 f_RGI*k_hyd

4.4.7 Comparison with Current Approaches

Rule sets are not distinct objects with attributes and methods in the macro approach. To build this

model with macros, we would have to define three separate rule-building methods for each

hypotheses combination and then aggregate them. Here, there is an added layer of abstraction in

the form of the Rule Module object, and defining standard procedures to modify them minimizes

the effort involved in building individual rules.

 158

If we were to build this model using the typing approach, we would define two concrete

variants of the generic Ras, but the compiled expression for the different combinations of

hypotheses has to be constructed manually. Adding a Rule Module layer can therefore complement

the typing approach.

The energy-based specification can also benefit from the module strategy, by defining

Energy Pattern Modules in addition to Rule Modules. Energies for pattern assignments can then

be compiled using Boolean variables that depend on the model hypotheses, e.g.

G_patt = b_1*G_1 + (1-b_1)*b_2*G_2

This enables building of models where the complexity of assumptions can be tuned. For example,

cooperative energy terms can be added sequentially for 2-molecule patterns only under one

assumption, for 2-molecule and 3-molecule patterns under another assumption, and so on.

A caveat for the rule module approach is complex rules with many instances of the same

type would require complex modification strategies. For example, in the case demonstrated here,

there is only one Ras molecule per rule which was easily modified by adding context. However,

suppose there was a rule with 2 Ras molecules, and n Ras variants, then n^2 variants would need

to be generated systematically. This could be co-ordinated with the macro approach.

Macros, typing, energy rules and reaction modules all modularize different aspects of rule-

based modeling and therefore can be used to complement each other. It is possible that a rule-

based specification of the future would be able to use all four strategies in a seamless manner.

 159

5.0 CONCLUSION

Rule-based modeling is a graph-based approach for specifying biochemical kinetics[4], [25]. In a

rule-based model, structured graphs called patterns specify parts of molecules and complexes, and

a reaction rule specifies graph operations on a combinations of patterns. A reaction rule can be

used to represent a class of many reactions by specifying the modifications common to the class

(say, binding or phosphorylation), and the minimal configuration of sites necessary for that class

(say, a phosphorylated state, or a particular arrangement of non-covalent bonds) [24], [33], [34].

Mapping such reaction classes to rate laws enables an explicit site-based kinetic specification that

is typically more compact than the equivalent reaction network because of sparse dependence

relations between sites. The equivalent reaction network and the corresponding combinatorially

complex state space of molecules and complexes can be generated automatically from the rule

based model if such a finite network exists [24], [33], [34]. Compact rule-based models have been

constructed for systems with combinatorially complex reaction networks [35], [79], and the

reaction rule has been used as a portable data object to build databases of kinetic interactions [44],

[46]. In this work, I provided new advances in the following aspects of the rule-based framework:

building models, visualizing model content and simulating models.

In Chapter 2, I first reviewed current diagramming approaches, both manual and

automated, for rule-based models. Multiple standards exist for diagrams constructed by hand [11],

[57], [59]. A few automated tools exist for rule-based models, but they are typically not global

[28], not complete as a visual representation of signaling [32], or use a limited model-building

framework that is favorable for visualization[65]. Here, I made two contributions: a new method

for visualizing individual rules (called compact rule visualization), and a set of procedures for

 160

generating a global visualization of signal flow and regulation from a given set of reaction rules

(called the regulatory graph). I also provided coarse-graining procedures that can compress the

automatically generated regulatory graph into compact pathway diagrams. I demonstrated the

method’s scalability with regard to number of rules and usefulness in identifying cascades and

feedback loops using case studies [35], [44], [46].

In Chapter 3, I addressed a discrepancy between two recent advances in rule-based

modeling and simulation. The first advance is the network-free simulation algorithm, which

enables simulation of a rule-based model without having to generate the corresponding reaction

network [39], [40]. This is accomplished by treating each reaction rule as a reaction class whose

rate can be calculated by counting matches of the reactant patterns into the simulation system[39].

The second advance is the energy-based rule-based specification, which allows compact

specification of cooperative processes without breaking detailed balance[50]–[52]. This is

accomplished by specifying free energies of molecules and complexes as a sum of pattern matches

weighted by energy values and computing rates of reactions from reaction free energies[50]. The

discrepancy arises when one attempts to do a network-free simulation of an energy-based rule-

based model. The rate at which a reaction fires depends on the free energy of the reaction which

in turn depends on both reactants and products, but the identity and structure of the products are

not available in a network-free simulation until after the reaction has fired. The solution provided

here was to expand the energy rule into distinct “normal” rules whose reaction free energies can

be computed uniquely, and to use the generated rules in a network-free simulation.

In Chapter 4, I discussed common approaches in the rule-based literature for improving

and modularizing model construction and provided an additional method to supplement the current

approaches. The current approaches include the macro approach[84], where a model is built using

 161

programming calls to methods that build rules, the typing approach[85], where molecule types are

themselves arranged in a hierarchy of types and rules can be defined at any level on the hierarchy,

and the energy-based approach[50], where pattern matches are mapped to energy values and free-

energy accounting is automated for different combinations of matches. The approach I provided

involves treating sets of rules as rule modules on which systematic modifications can be specified.

Model construction can then be performed as Boolean combinations of rule modules, enabling

automated compilation of rate expressions when different rates are supplied under different

Boolean settings. This is useful when the same set of reaction rules can be parameterized in

different ways depending on combinations of model hypotheses.

In recent years, attention has been paid to the fact that detailed mechanistic models are

necessary to be able to understand, predict and perturb biochemical systems. Outside the rule-

based framework, reaction networks of specific systems have tended to increase in size over time

(e.g. [14], [87], [88]). A model of a whole unicellular organism has been built in which reaction

networks have been used as submodels[48]. Rule-based modelers have improved on model-

building efforts, using the reaction rule as a modular unit in building increasingly large databases

of kinetic interactions(e.g. [35], [44], [46], [47], [79]). I expect the regulatory graph abstraction

developed in Chapter 2, paired with sophisticated grouping algorithms [89], to be useful for

interactively navigating and visualizing these databases. The regulatory graph, by virtue of being

a reduced model representation, will also be useful in other contexts, such as visualizing simulation

fluxes [81].

Another major problem with large sets of rules is the manual verification of detailed

balance and the complexity involved in specifying cooperative processes. For example, the large

models of Creamer et al. [46] and Chylek et al. [44] have many loops of binding reaction

 162

mechanisms that need to be manually enumerated and verified for satisfying detailed balance. This

is addressed elegantly by the energy-based rule-based specification: energy rules specify minimal

context, energy patterns specify cooperativity parameters, and variations of processes due to

cooperative interactions can be enumerated automatically while preserving detailed balance [50]–

[52]. Therefore, I expect the energy-based specification to play a bigger role in the development

of rule databases in the future, and it should be the default way to encode reversible non-covalent

binding interactions. The methods developed in Chapter 3 should then be important for the

simulation of models built from these databases.

Finally, mechanistic models of biochemistry typically have a large number of free

parameters, and experimental data rarely constrain all model parameters to narrow bands of values.

Studies show that for a single model fitted to a particular set of data, different directions in

parameter space are often constrained to different extents [90], although it is still possible to extract

falsifiable predictions from such models [91]. This phenomenon can be exploited too, for example,

it is possible to select over the space of model perturbations to design experiments, optimizing for

how well the results of the experiment are expected to constrain parameter values[92], [93]. When

multiple model hypotheses are involved, models can be selected using probabilistic fitness

measures for how well the model explains the data (e.g. [94], [95]), such as the Bayes factor ratio

[96]. The methods developed in Chapter 4 will be useful for building nested models based on

modular hypotheses about kinetic interactions in the system, which can then be subjected to

probabilistic model selection as above.

 163

BIBLIOGRAPHY

[1] H. Kitano, “Systems biology: a brief overview.,” Science, vol. 295, no. 5560, pp. 1662–4,

Mar. 2002.

[2] S. Ghosh, Y. Matsuoka, Y. Asai, K.-Y. Hsin, and H. Kitano, “Software for systems biology:

from tools to integrated platforms,” Nat. Rev. Genet., vol. 12, no. 12, pp. 821–832, Nov.

2011.

[3] D. L. Nelson, M. M. Cox, and A. L. Lehninger, Lehninger Principles of Biochemistry, 6th

ed. New York: W.H. Freeman, 2013.

[4] L. A. Chylek, L. A. Harris, C. S. Tung, J. R. Faeder, C. F. Lopez, and W. S. Hlavacek,

“Rule-based modeling: A computational approach for studying biomolecular site dynamics

in cell signaling systems,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine,

vol. 6, no. 1. pp. 13–36, 2014.

[5] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C.

S. Woodward, “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation

Solvers,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 363–396, Sep. 2005.

[6] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J. Phys.

Chem., vol. 81, no. 25, pp. 2340–2361, Dec. 1977.

[7] M. A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of Chemical Systems

with Many Species and Many Channels,” J. Phys. Chem. A, vol. 104, no. 9, pp. 1876–1889,

Mar. 2000.

[8] M. Hucka, a. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, a. P. Arkin, B. J.

Bornstein, D. Bray, a. Cornish-Bowden, a. a. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel,

 164

V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S.

Juty, J. L. Kasberger, a. Kremling, U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P.

Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T.

Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi,

M. Tomita, J. Wagner, and J. Wang, “The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models,” Bioinformatics,

vol. 19, no. 4, pp. 524–531, Mar. 2003.

[9] N. Le Novere, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J. Collado-Vides, E. J.

Crampin, M. Halstead, E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro, J. L. Snoep,

H. D. Spence, and B. L. Wanner, “{M}inimum information requested in the annotation of

biochemical models ({M}{I}{R}{I}{A}{M}),” Nat. Biotechnol., vol. 23, no. 12, pp. 1509–

1515, Dec. 2005.

[10] D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller, I. I.

Moraru, D. Nickerson, S. Sahle, J. L. Snoep, and N. Le Novere, “{R}eproducible

computational biology experiments with {S}{E}{D}-{M}{L}--the {S}imulation

{E}xperiment {D}escription {M}arkup {L}anguage,” BMC Syst Biol, vol. 5, p. 198, 2011.

[11] N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner,

M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, R. Gauges, P. Ghazal, H. Kawaji, L. Li,

Y. Matsuoka, A. Villéger, S. E. Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T. C. Freeman,

A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle, E. Schmidt,

S. Watterson, G. Wu, I. Goryanin, D. B. Kell, C. Sander, H. Sauro, J. L. Snoep, K. Kohn,

and H. Kitano, “The Systems Biology Graphical Notation.,” Nat. Biotechnol., vol. 27, no.

8, pp. 735–41, Aug. 2009.

 165

[12] M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Zhukova, A. Dräger, M. Dumontier, A.

Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D. B. Kell, S. Kerrien, J.

Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, D.

J. Wilkinson, S. Wimalaratne, C. Laibe, M. Hucka, and N. Le Novère, “Controlled

vocabularies and semantics in systems biology.,” Mol. Syst. Biol., vol. 7, no. 543, p. 543,

Jan. 2011.

[13] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A.

Henry, M. I. Stefan, J. L. Snoep, M. Hucka, N. Le Novère, and C. Laibe, “BioModels

Database: An enhanced, curated and annotated resource for published quantitative kinetic

models.,” BMC Syst. Biol., vol. 4, p. 92, Jun. 2010.

[14] W. W. Chen, B. Schoeberl, P. J. Jasper, M. Niepel, U. B. Nielsen, D. a Lauffenburger, and

P. K. Sorger, “Input-output behavior of ErbB signaling pathways as revealed by a mass

action model trained against dynamic data.,” Mol. Syst. Biol., vol. 5, no. 239, p. 239, Jan.

2009.

[15] R. Randhawa, C. a Shaffer, and J. J. Tyson, “Model composition for macromolecular

regulatory networks.,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 7, no. 2, pp. 278–

87, 2010.

[16] M. Schulz, F. Krause, N. Le Novère, E. Klipp, and W. Liebermeister, “Retrieval, alignment,

and clustering of computational models based on semantic annotations.,” Mol. Syst. Biol.,

vol. 7, no. 512, p. 512, Jan. 2011.

[17] J. H. Gennari, M. L. Neal, M. Galdzicki, and D. L. Cook, “Multiple ontologies in action:

Composite annotations for biosimulation models,” J. Biomed. Inform., vol. 44, no. 1, pp.

146–154, Feb. 2011.

 166

[18] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, A. S. Perelson, and B. Goldstein, “The

complexity of complexes in signal transduction.,” Biotechnol. Bioeng., vol. 84, no. 7, pp.

783–94, Dec. 2003.

[19] N. M. Borisov, N. I. Markevich, J. B. Hoek, and B. N. Kholodenko, “Signaling through

receptors and scaffolds: independent interactions reduce combinatorial complexity.,”

Biophys. J., vol. 89, no. 2, pp. 951–66, Aug. 2005.

[20] O. S. Soyer and S. Bonhoeffer, “Evolution of complexity in signaling pathways.,” Proc.

Natl. Acad. Sci. U. S. A., vol. 103, no. 44, pp. 16337–42, 2006.

[21] A. Steinacher and O. S. Soyer, “Evolutionary Principles Underlying Structure and Response

Dynamics of Cellular Networks,” in Evolutionary Systems Biology, vol. 751, O. S. Soyer,

Ed. New York, NY: Springer New York, 2012, pp. 225–247.

[22] C. A. Shaffer, J. J. Tyson, and R. Randhawa, “Model Composition and Aggregation in

Macromolecular Regulatory Networks Ranjit Randhawa Model Composition and

Aggregation in Macromolecular Regulatory Networks Ranjit Randhawa Abstract,” Syntax,

2008.

[23] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, and W. Fontana,

“Rules for modeling signal-transduction systems.,” Sci. STKE, vol. 2006, p. re6, 2006.

[24] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-based modeling of biochemical

systems with BioNetGen.,” Methods Mol. Biol., vol. 500, no. 2, pp. 113–67, Jan. 2009.

[25] J. A. P. Sekar and J. R. Faeder, “Rule-based modeling of signal transduction: a primer.,”

Methods Mol. Biol., vol. 880, pp. 139–218, Jan. 2012.

[26] A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai, “RuleBender: integrated

modeling, simulation and visualization for rule-based intracellular biochemistry.,” BMC

 167

Bioinformatics, vol. 13 Suppl 8, p. S3, Jan. 2012.

[27] V. Danos and C. Laneve, “Formal molecular biology,” Theor. Comput. Sci., vol. 325, no.

1, pp. 69–110, Sep. 2004.

[28] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-based Modelling of

Cellular Signaling,” in CONCUR 2007 - Concurrency Theory, Lecture Notes in Computer

Science, vol. 4703, 2007, pp. 17–41.

[29] V. Danos, J. Feret, W. Fontana, and J. Krivine, “Scalable Simulation of Cellular Signaling

Networks,” in Programming Languages and Systems, Lecture Notes in Computer Science,

vol. 4807, 2007, pp. 139–157.

[30] M. Meier-Schellersheim, X. Xu, B. Angermann, E. J. Kunkel, T. Jin, and R. N. Germain,

“Key role of local regulation in chemosensing revealed by a new molecular interaction-

based modeling method,” PLoS Comput. Biol., vol. 2, pp. 0710–0724, 2006.

[31] F. Zhang, B. R. Angermann, and M. Meier-Schellersheim, “The Simmune Modeler visual

interface for creating signaling networks based on bi-molecular interactions.,”

Bioinformatics, vol. 29, no. 9, pp. 1229–30, May 2013.

[32] H.-C. Cheng, B. R. Angermann, F. Zhang, and M. Meier-Schellersheim, “NetworkViewer:

visualizing biochemical reaction networks with embedded rendering of molecular

interaction rules.,” BMC Syst. Biol., vol. 8, p. 70, Jan. 2014.

[33] M. Blinov, J. Yang, J. Faeder, and W. S. Hlavacek, “Graph Theory for Rule-Based

Modeling of Biochemical Networks,” Trans. Comput. Syst. Biol. VII, vol. 4230, pp. 89–

106, 2006.

[34] J. S. Hogg, L. A. Harris, L. J. Stover, N. S. Nair, and J. R. Faeder, “Exact hybrid

particle/population simulation of rule-based models of biochemical systems.,” PLoS

 168

Comput. Biol., vol. 10, no. 4, p. e1003544, Apr. 2014.

[35] J. R. Faeder, W. S. Hlavacek, I. Reischl, M. L. Blinov, H. Metzger, A. Redondo, C. Wofsy,

and B. Goldstein, “Investigation of early events in Fc epsilon RI-mediated signaling using

a detailed mathematical model.,” J. Immunol., vol. 170, no. 7, pp. 3769–81, Apr. 2003.

[36] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “A network model of early

events in epidermal growth factor receptor signaling that accounts for combinatorial

complexity,” in BioSystems, 2006, vol. 83, no. 2–3 SPEC. ISS., pp. 136–151.

[37] O. Dushek, P. A. Van Der Merwe, and V. Shahrezaei, “Ultrasensitivity in multisite

phosphorylation of membrane-anchored proteins,” Biophys. J., vol. 100, no. 5, pp. 1189–

1197, 2011.

[38] J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. Von Hoff, and R. G. Posner,

“Simulation of large-scale rule-based models.,” Bioinformatics, vol. 25, no. 7, pp. 910–7,

Apr. 2009.

[39] M. W. Sneddon, J. R. Faeder, and T. Emonet, “Efficient modeling, simulation and coarse-

graining of biological complexity with NFsim.,” Nat. Methods, vol. 8, no. 2, Dec. 2010.

[40] J. Yang, M. Monine, J. Faeder, and W. Hlavacek, “Kinetic Monte Carlo method for rule-

based modeling of biochemical networks,” Phys. Rev. E, vol. 78, no. 3, pp. 1–7, Sep. 2008.

[41] M. I. Monine, R. G. Posner, P. B. Savage, J. R. Faeder, and W. S. Hlavacek, “Modeling

multivalent ligand-receptor interactions with steric constraints on configurations of cell-

surface receptor aggregates.,” Biophys. J., vol. 98, no. 1, pp. 48–56, Jan. 2010.

[42] A. Nag, M. I. Monine, J. R. Faeder, and B. Goldstein, “Aggregation of membrane proteins

by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system.,”

Biophys. J., vol. 96, no. 7, pp. 2604–23, Apr. 2009.

 169

[43] P. J. Michalski and L. M. Loew, “CaMKII activation and dynamics are independent of the

holoenzyme structure: an infinite subunit holoenzyme approximation.,” Phys. Biol., vol. 9,

no. 3, p. 036010, Jun. 2012.

[44] L. A. Chylek, D. A. Holowka, B. A. Baird, and W. S. Hlavacek, “An interaction library for

the FcεRI signaling network,” Front. Immunol., vol. 5, no. APR, p. 172, Jan. 2014.

[45] L. A. Chylek, V. Akimov, J. Dengjel, K. T. G. Rigbolt, B. Hu, W. S. Hlavacek, and B.

Blagoev, “Phosphorylation site dynamics of early T-cell receptor signaling.,” PLoS One,

vol. 9, no. 8, p. e104240, 2014.

[46] M. S. Creamer, E. C. Stites, M. Aziz, J. a Cahill, C. W. Tan, M. E. Berens, H. Han, K. J.

Bussey, D. D. Von Hoff, W. S. Hlavacek, and R. G. Posner, “Specification, annotation,

visualization and simulation of a large rule-based model for ERBB receptor signaling.,”

BMC Syst. Biol., vol. 6, no. 1, p. 107, Jan. 2012.

[47] T. M. Thomson, K. R. Benjamin, A. Bush, T. Love, D. Pincus, O. Resnekov, R. C. Yu, A.

Gordon, A. Colman-Lerner, D. Endy, and R. Brent, “Scaffold number in yeast signaling

system sets tradeoff between system output and dynamic range,” Proc. Natl. Acad. Sci., vol.

108, no. 50, pp. 20265–20270, 2011.

[48] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V Gutschow, J. M. Jacobs, B. Bolival, N.

Assad-Garcia, J. I. Glass, and M. W. Covert, “A whole-cell computational model predicts

phenotype from genotype.,” Cell, vol. 150, no. 2, pp. 389–401, Jul. 2012.

[49] C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger, “Programming biological

models in Python using PySB,” Mol. Syst. Biol., vol. 9, Feb. 2013.

[50] J. Hogg, “Advances in rule-based modeling: Compartments, energy, and hybrid simulation,

with application to sepsis and cell signaling.,” 2013.

 170

[51] V. Danos, R. Harmer, and R. Honorato-Zimmer, “Thermodynamic graph-rewriting,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 8052 LNCS, pp. 380–394.

[52] J. F. Ollivier, V. Shahrezaei, and P. S. Swain, “Scalable rule-based modelling of allosteric

proteins and biochemical networks.,” PLoS Comput. Biol., vol. 6, no. 11, p. e1000975, Jan.

2010.

[53] P. Saraiya, C. North, and K. Duca, “Visualizing biological pathways: requirements analysis,

systems evaluation and research agenda,” Inf. Vis., vol. 4, no. 3, pp. 191–205, 2005.

[54] E. R. Tufte, The Visual Display of Quantitative Information. Graphics Press, 1986.

[55] H. Gibson, J. Faith, and P. Vickers, “A survey of two-dimensional graph layout techniques

for information visualisation,” Inf. Vis., vol. 12, no. 3–4, pp. 324–357, 2012.

[56] K. W. Kohn, “Molecular interaction map of the mammalian cell cycle control and DNA

repair systems.,” Mol. Biol. Cell, vol. 10, no. 8, pp. 2703–34, Aug. 1999.

[57] K. W. Kohn, “Molecular interaction maps as information organizers and simulation

guides.,” Chaos, vol. 11, no. 1, pp. 84–97, Mar. 2001.

[58] K. W. Kohn, M. I. Aladjem, S. Kim, J. N. Weinstein, and Y. Pommier, “Depicting

combinatorial complexity with the molecular interaction map notation.,” Mol. Syst. Biol.,

vol. 2, p. 51, Jan. 2006.

[59] L. a Chylek, B. Hu, M. L. Blinov, T. Emonet, J. R. Faeder, B. Goldstein, R. N. Gutenkunst,

J. M. Haugh, T. Lipniacki, R. G. Posner, J. Yang, and W. S. Hlavacek, “Guidelines for

visualizing and annotating rule-based models.,” Mol. Biosyst., vol. 7, no. 10, pp. 2779–2795,

Oct. 2011.

[60] M. P. Van Iersel, A. C. Villéger, T. Czauderna, S. E. Boyd, F. T. Bergmann, A. Luna, E.

 171

Demir, A. Sorokin, U. Dogrusoz, Y. Matsuoka, A. Funahashi, M. I. Aladjem, H. Mi, S. L.

Moodie, H. Kitano, N. Le novère, and F. Schreiber, “Software support for SBGN maps:

SBGN-ML and LibSBGN,” Bioinformatics, vol. 28, no. 15, pp. 2016–2021, 2012.

[61] M. Sari, I. Bahceci, U. Dogrusoz, S. O. Sumer, B. A. Aksoy, Ö. Babur, and E. Demir,

“SBGNViz: A Tool for Visualization and Complexity Management of SBGN Process

Description Maps.,” PLoS One, vol. 10, no. 6, p. e0128985, 2015.

[62] E. Demir, Ö. Babur, I. Rodchenkov, B. A. Aksoy, K. I. Fukuda, B. Gross, O. S. Sümer, G.

D. Bader, and C. Sander, “Using Biological Pathway Data with Paxtools,” PLoS Comput.

Biol., vol. 9, no. 9, pp. 1–5, 2013.

[63] Y. Matsuoka, A. Funahashi, S. Ghosh, and H. Kitano, “Modeling and simulation using

CellDesigner.,” Methods Mol. Biol., vol. 1164, pp. 121–45, 2014.

[64] E. Gonçalves, M. van Iersel, and J. Saez-Rodriguez, “CySBGN: a Cytoscape plug-in to

integrate SBGN maps.,” BMC Bioinformatics, vol. 14, p. 17, 2013.

[65] C.-F. Tiger, F. Krause, G. Cedersund, R. Palmér, E. Klipp, S. Hohmann, H. Kitano, and M.

Krantz, “A framework for mapping, visualisation and automatic model creation of signal-

transduction networks.,” Mol. Syst. Biol., vol. 8, no. 578, p. 578, Jan. 2012.

[66] T. Vogt, T. Czauderna, and F. Schreiber, “Translation of SBGN maps: Process Description

to Activity Flow.,” BMC Syst. Biol., vol. 7, p. 115, Jan. 2013.

[67] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “BioNetGen: Software for

rule-based modeling of signal transduction based on the interactions of molecular domains,”

Bioinformatics, vol. 20, no. 17, pp. 3289–3291, Nov. 2004.

[68] V. Danos and C. Laneve, “Formal molecular biology,” in Theoretical Computer Science,

2004, vol. 325, pp. 69–110.

 172

[69] I. I. Moraru, J. C. Schaff, B. M. Slepchenko, M. L. Blinov, F. Morgan, A. Lakshminarayana,

F. Gao, Y. Li, and L. M. Loew, “Virtual Cell modelling and simulation software

environment.,” IET Syst. Biol., vol. 2, no. 5, pp. 352–62, Sep. 2008.

[70] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “A network model of early

events in epidermal growth factor receptor signaling that accounts for combinatorial

complexity.,” Biosystems., vol. 83, no. 2–3, pp. 136–51, 2006.

[71] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine, C. Thompson-Walsh,

and G. Winskel, “Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models,”

in IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 2012), 2012, vol. 18, pp. 276–288.

[72] F. Büchel, N. Rodriguez, N. Swainston, C. Wrzodek, T. Czauderna, R. Keller, F. Mittag,

M. Schubert, M. Glont, M. Golebiewski, M. van Iersel, S. Keating, M. Rall, M. Wybrow,

H. Hermjakob, M. Hucka, D. B. Kell, W. Müller, P. Mendes, A. Zell, C. Chaouiya, J. Saez-

Rodriguez, F. Schreiber, C. Laibe, A. Dräger, and N. Le Novère, “Path2Models: large-scale

generation of computational models from biochemical pathway maps.,” BMC Syst. Biol.,

vol. 7, p. 116, 2013.

[73] G. Misirli, M. Cavaliere, W. Waites, M. Pocock, C. Madsen, O. Gilfellon, R. Honorato-

Zimmer, P. Zuliani, V. Danos, and A. Wipat, “Annotation of rule-based models with formal

semantics to enable creation, analysis, reuse and visualisation.,” Bioinformatics, Nov. 2015.

[74] N. W. Lemons, B. Hu, and W. S. Hlavacek, “Hierarchical graphs for rule-based modeling

of biochemical systems.,” BMC Bioinformatics, vol. 12, p. 45, 2011.

[75] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability of graphs using node-

link and matrix-based representations: a controlled experiment and statistical analysis,” Inf.

 173

Vis., vol. 4, no. 2, pp. 114–135, 2005.

[76] D. Barua, W. S. Hlavacek, and T. Lipniacki, “A computational model for early events in B

cell antigen receptor signaling: analysis of the roles of Lyn and Fyn.,” J. Immunol., vol. 189,

no. 2, pp. 646–58, 2012.

[77] L. A. Chylek, B. S. Wilson, and W. S. Hlavacek, “Modeling Biomolecular Site Dynamics

in Immunoreceptor Signaling Systems,” in A Systems Biology Approach to Blood, M. Orešič

and A. Vidal-Puig, Eds. Cham: Springer International Publishing, 2014, pp. 245–262.

[78] D. Barua, J. R. Faeder, and J. M. Haugh, “Structure-based kinetic models of modular

signaling protein function: focus on Shp2.,” Biophys. J., vol. 92, no. 7, pp. 2290–300, Apr.

2007.

[79] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “A network model of early

events in epidermal growth factor receptor signaling that accounts for combinatorial

complexity.,” Biosystems., vol. 83, no. 2–3, pp. 136–51, 2006.

[80] P. Kocieniewski, J. R. Faeder, and T. Lipniacki, “The interplay of double phosphorylation

and scaffolding in MAPK pathways.,” J. Theor. Biol., vol. 295, pp. 116–24, Feb. 2012.

[81] M. König and H.-G. Holzhütter, “Fluxviz - Cytoscape plug-in for visualization of flux

distributions in networks.,” Genome Inform., vol. 24, pp. 96–103, 2010.

[82] Z. Hu, Y. C. Chang, Y. Wang, C. L. Huang, Y. Liu, F. Tian, B. Granger, and C. Delisi,

“VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and

therapies.,” Nucleic Acids Res., vol. 41, no. Web Server issue, 2013.

[83] J. Von Neumann, “13. Various Techniques Used in Connection With Random Digits,”

1951.

[84] C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger, “Programming biological

 174

models in Python using PySB.,” Mol. Syst. Biol., vol. 9, p. 646, Jan. 2013.

[85] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-Based Modelling and

Model Perturbation,” in Transactions on Computational Systems Biology XI, vol. 5750, C.

Priami, R.-J. Back, and I. Petre, Eds. Springer Berlin / Heidelberg, 2009, pp. 116–137.

[86] E. C. Stites, P. C. Trampont, Z. Ma, and K. S. Ravichandran, “Network analysis of

oncogenic Ras activation in cancer.,” Science, vol. 318, no. 5849, pp. 463–7, Oct. 2007.

[87] B. N. Kholodenko, O. V Demin, G. Moehren, and J. B. Hoek, “Quantification of short term

signaling by the epidermal growth factor receptor.,” J. Biol. Chem., vol. 274, no. 42, pp.

30169–81, Oct. 1999.

[88] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, and G. Müller, “Computational modeling of

the dynamics of the MAP kinase cascade activated by surface and internalized EGF

receptors.,” Nat. Biotechnol., vol. 20, no. 4, pp. 370–5, Apr. 2002.

[89] C. Vehlow, F. Beck, and D. Weiskopf, “The State of the Art in Visualizing Group Structures

in Graphs,” in Eurographics Conference on Visualization (EuroVis), 2015.

[90] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna,

“Universally sloppy parameter sensitivities in systems biology models.,” PLoS Comput.

Biol., vol. 3, no. 10, pp. 1871–78, Oct. 2007.

[91] R. N. Gutenkunst, F. P. Casey, J. J. Waterfall, C. R. Myers, and J. P. Sethna, “Extracting

falsifiable predictions from sloppy models.,” Ann. N. Y. Acad. Sci., vol. 1115, pp. 203–11,

Dec. 2007.

[92] F. P. Casey, D. Baird, Q. Feng, R. N. Gutenkunst, J. J. Waterfall, C. R. Myers, K. S. Brown,

R. A. Cerione, and J. P. Sethna, “Optimal experimental design in an epidermal growth factor

receptor signalling and down-regulation model,” IET Syst. Biol., vol. 1, no. 3, p. 190, 2007.

 175

[93] J. F. Apgar, D. K. Witmer, F. M. White, and B. Tidor, “Sloppy models, parameter

uncertainty, and the role of experimental design.,” Mol. Biosyst., vol. 6, no. 10, pp. 1890–

900, Oct. 2010.

[94] D. J. Klinke, “An empirical Bayesian approach for model-based inference of cellular

signaling networks.,” BMC Bioinformatics, vol. 10, p. 371, Jan. 2009.

[95] H. Eydgahi, W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and P. K. Sorger,

“Properties of cell death models calibrated and compared using Bayesian approaches.,”

Mol. Syst. Biol., vol. 9, p. 644, Feb. 2013.

[96] R. E. Kass and A. E. Raftery, “Bayes factors,” J. Am. Stat. Assoc., vol. 90, no. 430, pp. 773–

795, 1995.

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1-1 An example of combinatorial complexity.
	2-1 Summary of contributions to visualization of rule-based models.
	2-2 Molecular Interaction Map of the Faeder et al. model of signaling from the FceRI receptor.
	2-3 SBGN Process Description diagram of MAPK signaling from the insulin growth factor receptor.
	2-4 SBGN Entity Relationship diagram of CAMKII signaling.
	2-5 Activity Flow diagram of the epidermal growth factor signaling pathway.
	2-6 Extended Contact Map of FceRI signaling modeled in Faeder et al.
	2-7 Petri Net of a model of three reactions.
	2-8 Site Graph of a pattern A(b!1).B(a!1,c~P).
	2-9 Rule Petri nets and partial overlaps.
	2-10 Contact map of FceRI signaling modeled in Faeder et al.
	2-11 Rule Influence Diagram.
	2-12 Kappa Story showing a causal sequence of rules.
	2-13 Simmune Network Viewer
	2-14 Simmune Network Viewer cannot show signal flow mediated through 'features' (internal states in BioNetGen).
	2-15 Regulatory Graph from the Rxncon specification.
	2-16 Example of a real complex that cannot be represented in Rxncon.
	2-17 Outline of the rule visualization methods.
	2-18 Pattern Structure Graph and Site Graph.
	2-19 Petri Net of Rule.
	2-20 Synthesizing the Rule Structure Graph from a Reaction Rule.
	2-21 Compact Rule Visualization.
	2-22 Atomic Patterns and the Regulatory Graph.
	2-23 Resolving Wildcards.
	2-24 Merging Regulatory Graphs.
	2-25 Removing redundant nodes (called background) from the model regulatory graph.
	2-26 Grouping and Collapsing nodes on the regulatory graph.
	2-27 Compact rule visualization of rules R3 and R6 from Faeder et al.
	2-28 Compact rule visualization of rules R4 and R7 from Faeder et al.
	2-29 Regulatory graph of rules R3, R4, R6 and R7.
	2-30 Formal contact map of the Faeder et al. model.
	2-31 Complete regulatory graph of the Faeder et al. model of FceRI signaling.
	2-32 Pruned regulatory graph of the Faeder et al. model.
	2-33 Grouped regulatory graph of the Faeder et al. model.
	2-34 Collapsed regulatory graph of the Faeder et al. model.
	2-35 Collapsed regulatory graph of the Faeder et al. model, with an alternative grouping of atomic patterns provided by the user.
	2-36 Regulatory graph visualization of the Creamer et al. model.
	2-37 Regulatory graph visualization of the Chylek et al. model.
	2-38 Subset of the Chylek et al. regulatory graph, showing interactions of the SrcKinases (Lyn and Fyn) with the FceRI receptor.
	2-39 Subsets of the Chylek et al. regulatory graph, highlighting other signaling motifs.
	2-40 Analysis of graph size and complexity for different visualizations.

	LIST OF TABLES
	2-1 Adjacency restrictions for different node types on the structure graph.
	2-2 Descriptions of mechanisms in the Faeder et al. model.

	ACKNOWLEDGEMENTS
	1.0 RULE-BASED MODELING – A REVIEW
	1.1 MECHANISTIC MODELS OF CELL SIGNALING
	1.2 REACTION NETWORKS
	1.2.1 Specification
	1.2.2 Community Efforts
	1.2.3 Combinatorial Complexity
	1.2.4 Issues

	1.3 RULE-BASED MODELS
	1.3.1 Graph syntax – Molecules and Complexes
	1.3.2 Patterns
	1.3.3 Reaction Rules
	1.3.4 Model Specification and Simulation
	1.3.5 Outstanding Issues

	2.0 VISUALIZATION OF RULE-BASED MODELS
	2.1 SYNOPSIS
	2.2 VISUAL CONCERNS
	2.2.1 Content versus Intent
	2.2.2 Local versus Global
	2.2.3 Flow versus Adjacency
	2.2.4 Art versus Automation
	2.2.5 Abstraction versus Enumeration

	2.3 VISUAL STANDARDS
	2.3.1 The Molecular Interaction Map (MIM)
	2.3.2 The Systems Biology Graphical Notation (SBGN)
	2.3.2.1 SBGN Process Description diagram
	2.3.2.2 SBGN Entity Relationship diagram
	2.3.2.3 SBGN Activity Flow

	2.3.3 The Extended Contact Map

	2.4 VISUALIZATION OF RULE-BASED MODELS – STATE OF THE ART
	2.4.1 The Reaction Petri Net
	2.4.2 The Site Graph
	2.4.3 The Rule Petri Net
	2.4.4 The Formal Contact Map
	2.4.5 The Rule Influence Diagram
	2.4.6 The Kappa Story
	2.4.7 Simmune Network Viewer
	2.4.8 Rxncon Regulatory Graph

	2.5 GRAPH ABSTRACTIONS FOR RULE-BASED VISUALIZATIONS
	2.5.1 Preliminary Definitions
	2.5.1.1 Label prototypes and applications
	2.5.1.2 Graphs
	2.5.1.3 Common Graph Operations

	2.5.2 Structure Graphs
	2.5.2.1 Pattern Structure Graph
	2.5.2.2 Pattern Site Graph
	2.5.2.3 Reaction Rule
	2.5.2.4 Rule Petri Net
	2.5.2.5 Rule Structure Graph
	2.5.2.6 Compact Rule Visualization

	2.5.3 Atomic Patterns
	2.5.3.1 Definitions and Interpretations
	2.5.3.2 Determining Atomic Patterns

	2.5.4 Regulatory Graphs
	2.5.4.1 Rule Regulatory Graph
	2.5.4.2 Resolving Wildcards
	2.5.4.3 Model Regulatory Graph
	2.5.4.4 Pruned Regulatory Graph
	2.5.4.5 Grouped Regulatory Graph
	2.5.4.6 Collapsed Regulatory Graph

	2.5.5 Complexity Analysis
	2.5.6 Comparisons to Other Approaches
	2.5.7 Implementation

	2.6 VISUALIZATION CASE STUDIES
	2.6.1 Visualizing Mechanisms in Detail
	2.6.2 Visualizing Interactions of Mechanisms
	2.6.3 Visualizing Models as Pathway Diagrams
	2.6.4 Visualizing Large Libraries of Rules
	2.6.5 Comparison of Visualization Size and Complexity

	2.7 CONCLUDING REMARKS

	3.0 ENERGY-BASED MODELS AND NETWORK-FREE SIMULATION
	3.1 SYNOPSIS
	3.2 MOTIVATING EXAMPLE
	3.2.1 Energy-based Model
	3.2.2 Network-free Simulation
	3.2.3 Network-free Simulation with Energy-based Rules

	3.3 BIONETGEN THEORY FOR MODEL SPECIFICATION AND SIMULATION
	3.3.1 Patterns
	3.3.2 Pattern Embeddings
	3.3.3 Reaction Rules
	3.3.4 Ensembles, Models and Rate Constants
	3.3.5 Network Generation from a Rule-based Model
	3.3.6 Network-based Stochastic Simulation
	3.3.7 Energy-based Rule-based Formulation
	3.3.8 Energy-based Network Generation and Simulation
	3.3.9 Network-free Stochastic Simulation

	3.4 ENERGY-BASED NETWORK-FREE SIMULATION
	3.4.1 The Problem
	3.4.2 Rule Expansion Strategy
	3.4.3 Building Molecule and Bond Types for Local Context
	3.4.4 Tagging the Reaction Center
	3.4.5 Topology Constraints
	3.4.6 Context Expansion
	3.4.7 Energy Rule Expansion
	3.4.8 Scalability Concerns
	3.4.9 Alternate Strategies
	3.4.10 Implementation Issues
	3.4.11 Example 1: Bivalent Ligand Bivalent Receptor
	3.4.12 Example 2: EGFR-Grb2-Shc

	3.5 Concluding Remarks

	4.0 MODEL CONSTRUCTION USING REACTION RULE MODULES
	4.1 SYNOPSIS
	4.2 SOURCES OF COMPLEXITY IN MODEL CONSTRUCTION
	4.2.1 Contextual Complexity
	4.2.2 Model Hypotheses
	4.2.3 Variant Molecule Types

	4.3 CURRENT APPROACHES
	4.3.1 The Macro Approach
	4.3.2 The Typing Approach
	4.3.3 The Energy-based Approach

	4.4 REACTION RULE MODULES
	4.4.1 Motivating Example
	4.4.2 Basic Model
	4.4.3 Mechanistic Hypotheses
	4.4.3.1 Reduced GTPase activity (RGA)
	4.4.3.2 GAP Insensitivity (GI)
	4.4.3.3 Increased Effector Affinity (IEA)

	4.4.4 Combinatorial Complexity in the Hypotheses Space
	4.4.5 Building Reaction Modules
	4.4.6 Aggregating Modules using Boolean Variables
	4.4.7 Comparison with Current Approaches

	5.0 CONCLUSION
	BIBLIOGRAPHY

