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Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in 

maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), a 

number of studies have revealed that MAP2’s typically robust immunoreactivity (IR) is 

significantly reduced across several cortical regions. Previous studies have not explored the 

relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently 

reported in schizophrenia nor has MAP2-IR loss been investigated in the primary auditory cortex 

(Brodmann Area 41), a site of conserved pathology in Sz. Last, the impact of chronic 

antipsychotic exposure is little understood. Using quantitative spinning disk confocal microscopy 

in two cohorts of Sz subjects and matched control subjects (Sz, n=20; C, n=20), we measured 

MAP2-IR as well as dendritic spine density and spine number in deep layer 3 of BA41. Sz 

subjects exhibited a significant reduction in MAP2-IR. The reductions in MAP2-IR were not 

associated with neuron loss, loss of MAP2 protein, clinical confounds, or technical factors; nor 

were MAP2-IR reductions linked with chronic haloperidol exposure in a macaque model. 

Dendritic spine density and number were also reduced in Sz and correlated with MAP2-IR. 

Twelve (60%) Sz subjects exhibited MAP2-IR values lower than the lowest controls; only in this 

group were spine density and number significantly reduced. These findings demonstrate that 

MAP2-IR loss is closely linked to dendritic spine pathology in Sz. Because MAP2 shares 

substantial sequence, regulatory, and functional homology with MAP tau, the wealth of 
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knowledge regarding tau biology and the rapidly expanding field of tau therapeutics provide 

resources for identifying how MAP2 is altered in Sz and possible leads to novel therapeutics. 
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1.0  GENERAL INTRODUCTION 
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2.0  SCHIZOPHRENIA: EPIDEMIOLOGY AND ETIOPATHOLOGY 

2.1 PREVALENCE AND PRESENTATION 

Schizophrenia (Sz) is a devastating, progressive psychiatric disorder that affects between 

0.5-1% of the global population (Jablensky 2000) . Most individuals present with symptoms 

during late adolescence and early adulthood, generally between the ages of 18 and 30, a period of 

rapid cortical development and social, occupational, and educational transition (Moyer et al 

2015). During this time of developmental sensitivity, stressful life events can produce psychiatric 

pathology in genetically vulnerable individuals. Males typically have an earlier age of onset, a 

higher lifetime risk of developing Sz, and tend to have a poorer prognosis overall. Though, for 

all afflicted, Sz incurs a considerable interpersonal cost in terms of lost educational and 

employment opportunities, difficulties in managing social relationships, and maintaining 

independent self-care. The clinical population experiences a shortening of general life 

expectancy compared to the general population of between two to three decades, partly 

attributable to increased rates of substance abuse and suicide but also due to a greater incidence 

of comorbid cardiovascular disease (Lewis and Sweet 2009, Moyer et al 2015, Salyers and 

Mueser 2001, Tiihonen et al 2009). 

While highly heterogeneous, the disorder is characterized by a pattern of symptomology 

divided into three major domains: positive, negative, and cognitive. Positive symptoms, also 
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referred to as psychotic symptoms, are abnormal functions which distort reality. Hallucinations, 

especially auditory verbal hallucinations, are classically associated with Sz. However, positive 

symptomology extends beyond a distortion in the normal perception of the external world and 

includes a parallel distortion in the production of normal thought, speech, and psychomotor 

activity. This often manifests in delusional thinking, false beliefs, loose associations, over-

inclusiveness, and neologisms (i.e. the creation of new words or expressions). Psychomotor 

impairments are expressed as grossly disorganized behavior and posturing. While positive 

symptoms may be conceived as the addition of abnormal functions, negative symptoms describe 

a loss of normal functions. Negative symptoms include alogia (i.e. poverty in speech 

production), avolition (i.e. a deficit in motivation), and anhedonia (i.e. a deficit in the ability to 

experience pleasure) (Chapman 1966, Lewis and Sweet 2009).  

Cognitive symptoms are deficits in higher executive function including attention, 

working and episodic memory, impulse control, and social engagement. Evidence places the 

cognitive symptomology at the core of the disorder. The degree of cognitive symptomology is 

relatively stable over the course of the disorder and is independent from the severity of positive 

symptoms. Cognitive deficits are present during developmental stages prior to diagnosis and 

become overt during the first clinical presentation. The large majority of Sz patients (i.e. between 

75%-85%) perform 1-3 standard deviations below control subjects on tests of specific 

neuropsychological abilities such as attention, learning, memory, and abstraction. This finding 

holds true both for chronic Sz patients and for neuroleptic naive individuals assessed at their 

first-episode of psychosis. Retrospective studies of Sz patients which compare their academic 

performance to that of their peers prior to disease onset, show that individuals who go on to 

develop Sz are more likely to under-perform academically and are less likely to be in an age-
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appropriate class as a result. The idea that cognitive symptoms are at the core of schizophrenia is 

lent further credence by the fact that cognitive symptomology remains the best predictor of long-

term functional outcome (Lewis and Sweet 2009, Reichenberg and Davidson 2006). Cognitive 

pathology extends into deficits in socio-emotional processing. Deficits in attention, a distinctly 

neurocognitive domain, are strongly associated with the acquisition of social skills; indeed it is 

cognitive symptoms which correlate most strongly with functional impairment (Green 1996).    

2.2 GENETIC AND ENVIRONMENTAL INFLUENCES 

Sz is a highly heritable disorder, and while simple Mendelian genetics do not account for 

the transition to psychosis, recent evidence links a number of genetic loci to the disorder.  

 Genome–Wide Association Studies (GWAS) have identified a number of single 

nucleotide polymorphisms in genetic regions whose activity plays a role in glutamatergic 

circuitry (NRGN), synaptic function (CACNA1C), verbal ability (ZNF804A), neurodevelopment 

(TCF4), and immune response (MHC) (Consortium 2014, Owen et al 2010, Pocklington et al 

2014). This lends support to the validity of the findings in that these systems are linked to the 

phenotypic expression of Sz. However, direct links between alterations to risk genes and the 

development or pathology of Sz have not been identified.  It is important to recognize that, 

individually, identified risk alleles confer little to disease liability. Summing the effect of 

contributions from thousands of common, small effect alleles reveals a robust polygenic 

component to disease heritability. The emerging genetic picture involves the dual contribution 

from many, common small-effect allelic variants and more rare risk variants with much greater 

effect (Owen et al 2010). The interplay between the genetics and pathophysiology of Sz is 
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difficult to disentangle because target genes perform varied cellular functions and interact with a 

multitude of protein partners. As a result of complex heritability, broadly overlapping symptoms, 

and shared genetic risk loci, Sz is often comorbid with other diagnoses including affective, 

addiction, and anxiety disorders.  Specifically, risk loci CACNA1C and ZNF804A achieve 

genome-wide significance in GWAS of Bipolar Disorder (BD). This fact, combined with 

evidence that polygenic scores of risk-alleles common in Sz are found in higher prevalence in 

BD than in controls, suggests a strong genetic overlap between the disorders (Owen et al 2010).  

It is clear that Sz is a complex trait. The polygenic allelic variation which underlies Sz also 

underlies non-clinical endophenotypes present in unaffected first degree relatives, and the 

common allelic variations apparent in Sz are found in individuals without any identifiable 

neurodevelopmental phenotype. The high genetic variability of Sz has led some to postulate that 

Sz is in truth a group of phenotypically related disorders that are etiopathologically distinct 

(Consortium 2014).  

  Data from twin cohorts produce two clear lessons about the heritability of Sz. The first 

is the degree of shared genetics predicts liability to Sz in relatives to those with the disorder; the 

second is that environmental effects play an enormous role in producing clinical pathology 

despite genetic vulnerability. As stated above, the global prevalence of Sz is ~1%; however, the 

incidence rate doubles in 3rd degree relatives, increases to as high as 6% in 2nd degree relatives, 

and increases further to between 6-17% in 1st degree relatives. Dyzogtic twins share an 

incidence rate of ~17% and monozygotic twins share an incidence rate ~50%. Meta-analysis of 

twin studies places the estimate of heritability of liability to Sz at ~81% (Lewis and Lieberman 

2000, Sullivan et al 2003). Given that monozygotic twins are genetically identical, the fact they 

do not share absolute concordance for Sz reveals unique environmental effects play a significant 
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role in developing clinical pathology even when environmental influences greatly overlap (e.g. 

shared gestation, common upbringing). A number of environmental risk factors, clustered during 

early development, have been found to contribute to the prevalence of Sz including prenatal 

maternal infection, prenatal maternal stress, fetal hypoxia, and obstetric complications (Ellman 

and Cannon 2006). Other environmental risk factors have their effect during later maturational 

stages, including early childhood social isolation, heavy adolescent cannabis exposure, 

emigration to a region in which one is an ethnic or racial minority, and urban residency (Lewis 

and Lieberman 2000). 

2.3 AUDITORY CORTEX AS MODEL CORTICAL SYSTEM 

Many studies of the cortical pathology associated with Sz focus on areas responsible for 

executive function and memory. However, the auditory cortex is an especially important site for 

understanding the pathophysiology of Sz. While the pathogenesis of the disorder involves 

genetic factors and developmentally early insults, the first episode of psychosis rarely occurs 

before the onset of puberty. The maturation of the auditory cortex follows a parallel timeline and 

is not complete until an individual’s third decade. This protracted maturational process may 

leave this region particularly vulnerable to the effect of environmental stressors, an idea which is 

supported by structural, cellular, and molecular alterations specific to this area in disease (Moyer 

et al 2015). As is discussed in further detail below, abnormalities in the auditory domain are 

tightly linked to schizophrenia pathology with serious implications for the individual’s prognosis 

and abilities. For additional information on the role of the auditory cortex in disease, see section 

3.1. The auditory cortex has added value as a model system in its conservation through species. 
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Prefrontal regions are uniquely developed in primate species, especially humans, which makes 

modelling the relationships between structural and molecular changes and alterations to behavior 

in animal models difficult to interpret.      
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3.0  LOSS OF MICROTUBULE ASSOCIATED PROTEIN 2 IMMUNOREACTIVITY 

LINKED TO DENDRITIC SPINE LOSS IN SCHIZOPHRENIA 

3.1 INTRODUCTION 

Individuals with schizophrenia (Sz) present with a number of functional deficits in the auditory 

domain. Patients exhibit impaired performance on pure tone discrimination tasks, an inability 

which does not depend on attention and thus implicates the auditory cortex itself (2000, Leitman 

et al 2010, Rabinowicz et al 2000). This functional deficit has consequences for social cognition 

in individuals with the disorder in that it makes prosody detection more difficult (Javitt 2009, 

Leitman et al 2006). In electrophysiological studies, Sz subjects display reduced amplitude on 

mismatch negativity(Javitt et al 2000, Naatanen and Kahkonen 2009, Umbricht et al 2003, 

Umbricht and Krljes 2005) (MMN), an event-related potential generated in the primary auditory 

cortex in response to stimuli deviant from preceding stimuli with respect to a particular feature 

(e.g. pitch, amplitude, duration)(Javitt et al 1994). Performance on tone discrimination tasks and 

MMN amplitude are correlated, and impairments on both are linked to severity of positive and 

negative symptoms (Hermens et al 2010, Javitt et al 2000, Rabinowicz et al 2000).  

These functional and electrophysiological deficits are paralleled at the cortical level by 

progressive gray matter volume reduction in the superior temporal gyrus (STG) in Sz subjects 

and first-degree relatives at high-risk (McCarley et al 1999, Rajarethinam et al 2004) and 
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specifically in Heschl’s gyrus which contains the primary auditory cortex (Hirayasu et al 2000, 

Kasai et al 2003, Rajarethinam et al 2004, Salisbury et al 2007, Takahashi et al 2009) (Brodmann 

area 41; BA41). Reductions in gray matter are found at (Rajarethinam et al 2004, Takahashi et al 

2009), or prior to transition to, (Hirayasu et al 2000, Kasai et al 2003, Salisbury et al 2007) the 

first psychotic episode indicating initial gray matter loss cannot be attributed to the effects of 

treatment or illness duration. STG gray matter loss is selective for individuals with Sz in 

comparison to those diagnosed with bipolar disorder (Hirayasu et al 2000, Kasai et al 2003, 

Salisbury et al 2007).  

Gray matter volume loss in the auditory cortex in Sz is not explained by underlying 

reductions in layer 3 pyramidal neuron number(Dorph-Petersen et al 2009), and more likely 

represents reductions in pyramidal neuron somal size and excitatory connections in this cortical 

region (Sweet et al 2004, Sweet et al 2009). We previously described a decrease in the density of 

spinophillin-immunoreactive puncta in deep layer 3 of the primary auditory cortex in Sz, 

representing reductions in pyramidal neuron spine density paralleling findings of a loss of spines 

per length of dendrite described in other cortical regions (Garey et al 1998, Glantz and Lewis 

2000, Rosoklija et al 2000). Sz is also characterized by a reduction in the extent and complexity 

of the dendritic arbor in hippocampus and cingulate and frontal cortices (Black et al 2004, 

Broadbelt et al 2002, Glantz and Lewis 2000, Kalus et al 2000). However, the molecular 

mechanisms that contribute to these concurrent reductions in dendrites and spines in disease are 

currently unknown.  

Microtubule associated protein 2 (MAP2) stands at the intersection of these phenomena. 

MAP2 is the most prevalent isoform of the dendritic MAPs, a family of cytoarchitectural 

proteins that includes the axonal homolog MAP tau (Dehmelt and Halpain 2005, Sanchez et al 
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2000). MAP2 is an important regulator of neuritic development and maintenance that acts by 

binding and nucleating the primary structural component of the dendritic cytoskeleton, 

microtubule (MT) monomers and subsequently stabilizing and spacing mature MT bundles in the 

dendrite.(Belanger et al 2002, Dehmelt and Halpain 2005, Farah and Leclerc 2008, Sanchez et al 

2000, Teng et al 2001). MAP2 plays a similar role in supporting the actin cytoskeleton in spines, 

binding and nucleating filamentous actin (f-actin) to regulate spine morphology.(Selden and 

Pollard 1983)  MAP2 is regulated by development and experience-dependent plasticity, with 

these processes tightly controlling MAP2 function by phosphorylation across its functional 

domains (Sanchez et al 2000). MAP2 immunoreactivity (MAP2-IR) is markedly reduced in a 

number of different cortical regions associated with Sz pathology including those regions where 

reduction of the dendritic arbor has been described (Arnold et al 1991, Jones et al 2002, Rioux et 

al 2004, Rosoklija et al 2005, Somenarain and Jones 2010) (e.g. cingulate and frontal cortices, 

hippocampal formation). However, MAP2 mRNA expression levels are unchanged in the 

disorder suggesting that Sz pathology impacts MAP2 protein and not its transcript (Law et al 

2004).  

In the present study, we investigated whether MAP2-IR is diminished in deep layer 3 of 

the primary auditory cortex of Sz subjects and its potential association with spine reduction, 

which we have previously observed in this layer (Sweet et al 2009). To address this question, we 

used multi-label quantitative fluorescence microscopy to measure the intensity of MAP2-IR, 

spine density, and spine number in 20 subjects with Sz and matched controls. We found that 

MAP2-IR was significantly decreased in individuals with Sz, with a subset of 60% of Sz subjects 

that exhibited MAP2-IR levels below the lowest level observed in controls. MAP2-IR was 

significantly associated with spine density and spine number, with reductions in spine density 
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and number restricted to the 60% of subjects with Sz with MAP2-IR below normal levels. These 

findings suggest that MAP2 is functionally compromised by disease pathology with implications 

for dendritic arbor and dendritic spine structural integrity. 

3.2 MATERIALS AND METHODS 

3.2.1 Human Subjects  

For this study, we used tissue from two cohorts (Table 1) comprised of subjects 

diagnosed with schizophrenia or schizoaffective disorder (together referred to as Sz) and controls 

matched on the basis of sex, and as closely as possible for age, post-mortem interval (PMI), and 

handedness. Brain tissue was obtained during autopsies conducted at the Allegheny County 

Office of the Medical Examiner, after receiving consent from next-of-kin using a mechanism 

approved by the University of Pittsburgh Institutional Review Board and Committee for 

Oversight of Research Involving the Dead. An independent committee of experienced clinicians 

made consensus DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th ed.) 

diagnoses for each subject, using information obtained from clinical records and structured 

interviews with surviving relatives as previously described.(Glantz and Lewis 2000, Sweet et al 

2009) 

 

 Cohort 1 Cohort 2 Total 
 Control Sz Control Sz Control Sz 
n 12 12 8 8 20 20 
Mean Age (SD) 45.2(12.9) 47.3(13.4) 46.4(14.0) 46.5(12.4) 45.8(13.0) 46.9(13.4) 
     Range 19-65 27-71 24-62 25-62 19-65 25-71 
Sex (F/M) 3/9 3/9 4/4 4/4 7/13 7/13 
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Handedness 
(R/L/A/U/) 

11/1/0/0 6/2/1/3 8/0/0/0 5/3/0/0 19/1/0/0 11/5/1/3 

PMI (SD) 18.1(6.5) 17.9(8.8) 13.7(6.5) 15.6(6.8) 16.4(6.7) 17.0(7.9) 
Storage Time , 
Months (SD) 

155.0(27.2) 145.5(29.8) 97.1(22.4) 92.8(14.0) 131.8(38.2) 124.4(35.9) 

Illness 
Duration, 
Years (SD) 

 22.1(14.7)  22(13.3)  22.1(13.8) 

    Range  3-50  4-41  3-50 
Age at Onset 
(SD) 

 25.2(7.7)  24.5(9.6)  24.9(8.3) 

Suicide, n(%)  2(16.7%)  2(25.0%)  4(20.0%) 
Schizoaffective, 
n (%) 

 4(33.3%)  2(25.0%)  6(30.0%) 

Alcohol/ 
Substance 
Abuse ATOD 

 5(41.7%)  0(0%)  5(25.0%) 

Anticonvulsant 
ATOD, n(%) 

 5(62.5%)  1(12.5%)  6(30.0%) 

Antidepressant 
ATOD, n(%) 

 3(37.5%)  5(62.5%)  8(40.0%) 

Antipsychotic 
ATOD, n(%) 

 11(91.7%)  6(75.0%)  17(85.0%) 

Benzodiazepine 
ATOD, n(%) 

 1(8.3%)  3(37.5%)  4(20.0%) 

History of 
Cannabis Use, 
n(%) 

 5(41.7%)  2(25.0%)  7(35.0%) 

Tobacco 
ATOD, n(%) 

4(33.3%) 8(66.7%) 3(37.5%) 6(75.0%) 7(35.0%) 14(70.0%) 

Table 1. Subject Characteristics. Each Sz subject in cohorts 1 and 2 was previously 
matched to a normal control subject based on sex, and as closely as possible for age and 
postmortem interval. There were no diagnostic group differences in age [t(38) = -
0.333, p = 0.741] or postmortem interval [t(38) = -0.272, p = 0.787]. The distribution of 
handedness between diagnostic groups reached trend level (χ2 = 8.800, p = 0.066). Mean 
tissue storage time did not differ between diagnostic groups [cohort 1: t(22) = 0.817,p = 
0.423; cohort 2: t(14) = 0.461, p = 0.652].  
F, female; M, male; R, right-handed; L, left-handed; A, ambidextrous; U, unknown; PMI, 
postmortem interval; ATOD, at time of death. 
 

3.2.2  Antipsychotic-exposed Monkey Cohort.  

We also used a previously described monkey (Macaca fascicularis) cohort comprised of four 

animals chronically administered the antipsychotic haloperidol decanoate and age, sex, and 
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weight matched control animals (Figure 1 top panels) (Akil et al 1999, Moyer et al 2012, Moyer 

et al 2013, Sweet et al 2009). Over a period of 9-12 months, macaques were intramuscularly 

administered the antipsychotic haloperidol decanoate every four weeks at a dose [mean (standard 

deviation)] of 16 (2.1) mg/kg which maintained trough serum levels at 4.3 (1.1) ng/ml. Similar 

concentrations have been associated with a therapeutic response in humans, (Volavka et al 1992) 

and resulted in extrapyramidal symptoms, which were effectively controlled in all treated 

animals with benztropine mesylate.  

At the end of haloperidol exposure, all animals were euthanized by pentobarbital 

overdose; brains were removed and immersed in 4% paraformaldehyde following a 45 minute 

PMI. Primary auditory cortex was identified in sections from the STG using previously described 

cytoarchitectonic and immunohistochemical features (Sweet et al 2004). All protocols were 

approved by the University of Pittsburgh’s Institutional Animal Care and Use Committee.  

3.2.3 Human Tissue Processing 

Brains from individuals in cohorts 1 and 2 were bisected and the left hemisphere was cut into 1-2 

cm thick coronal blocks, which were then immersed in 4% paraformaldehyde in phosphate 

buffer for 48 hours, equilibrated in a series of graded sucrose solutions, and stored at -30˚C in an 

antifreeze solution.  

The left superior temporal gyrus (STG) of each subject was dissected from fixed coronal 

blocks; reassembled in their in vivo orientation, and cut into 3mm thick slabs as previously 

described (Sweet et al 2005). Every other slab was selected, sectioned exhaustively, and adjacent 

sections stained for parvalbumin (PV), acetylcholinesterase (AChE), and Nissl substance for 

determination of the boundaries of the primary auditory cortex (Sweet et al 2005). For each 
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human and monkey subject, the borders of layers 2/3 and 3/4 were identified on the mapping 

sections to determine the total layer 3 area for each subject. A contour outline of the deepest one 

third of layer 3 was drawn in Stereo Investigator (Figure 1, MicroBrightField Inc., Colchester, 

Vermont). These contours were then aligned to the tissue sections used in the current study using 

pial surface fiduciaries. 

For cohort 1, the primary auditory cortex was dissected from the unused slabs, and 

further subdivided into 3 mm wide blocks which were sectioned at 50 μm in an orientation 

perpendicular to the pial surface, and stored in antifreeze solution at -30˚C until selected for use 

in this study as described previously (Dorph-Petersen et al 2009, Moyer et al 2012, Moyer et al 

2013). For cohort 2, 60 µm sections adjacent to the mapping sections were sampled systematic 

uniform random for assay (Figure 1).   

 

 

Figure 1. Sampling of primary auditory cortex deep layer 3.  
(Top) Illustration of delineation of primary auditory cortex deep layer 3 on sections 
containing auditory cortex for human and antipsychotic exposed macaque cohorts. For 
each human and monkey subject, the borders of layers 2/3 and 3/4 were identified on 
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adjacent Nissl-stained sections to determine the total layer 3 area for each subject. A 
contour outline (shown in white) of the deepest one third of layer 3 was drawn in Stereo 
Investigator (MicroBrightField Inc., Colchester, Vermont).  (Bottom) A sampling grid 
was created in Stereo Investigator to generate sampling sites for both human and 
nonhuman primate subjects. The grid was then randomly rotated, and a sampling site 
(shown as counting frames) was marked at every intersection between the grid and the 
deep layer 3 contour.  At each sampling site, a 12.5-μm thick stack of 50 image planes, 
each separated by 0.25 μm, was collected using spinning disk confocal microscopy. 
 

3.2.4 Immunohistochemistry 

A single tissue section per subject was included in each run along with its matched pair for a 

total of 3-4 sections per subject from cohort 1 and 3 sections per subject from cohort 2. In order 

to visualize dendritic spines, we used two markers in combination: a polyclonal antibody 

directed against spinophilin and raised in rabbit (Millipore AB5669, Billerica, MA) at a dilution 

of 1:1500. The second was the f-actin binding mushroom toxin phalloidin (Invitrogen A12380, 

Carlsbad, CA) conjugated to Alexa Fluor® 568. Spinophilin is highly enriched in spine 

heads.(Allen et al 1997, Muly et al 2004)  Phalloidin binds f-actin which is also highly enriched 

in dendritic spines (Capani et al 2001). These two labels show clear co-localization in structures 

resembling dendritic spines in human postmortem brain tissue (Figure 2) MAP2 was detected 

through the use of mouse monoclonal IgG antibody SMI-52 (Covance SMI-52R, Princeton, NJ) 

at a dilution of 1:500. SMI-52 has been shown to react with mammalian MAP2 both in culture 

and in fixed sections, robustly labeling the soma and dendritic arbor of neurons in human tissue 

(Anderson et al 1996). In immunoblot experiments, SMI-52 recognizes all isoforms of MAP2 

(MAP2A, MAP2B, MAP2C) (Kaufmann et al 1997). Free-floating sections were pre-treated 

with 1%NaBH4 to reduce auto-fluorescence and 0.3% Triton X in order to permeabilize the 

sections before being incubated for two hours at room temperature in blocking buffer comprised 
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of 20% normal human serum, 20% normal goat serum, 1% bovine serum albumin, 0.1% Lysine, 

0.1% Glycine, and phosphate buffered saline (PBS). Following blocking, tissue was immediately 

placed in primary antibody buffer (5% normal human serum, 5% normal goat serum, 1% bovine 

serum albumin, 0.1% Lysine, 0.1% Glycine, PBS, and antibodies) overnight at 4˚C. Sections 

were rinsed in PBS then incubated in the same buffer, containing biotinylated goat anti-mouse 

(1:250; Invitrogen BA-9200), Alexa Fluor® 488 goat anti-rabbit (1:500; Invitrogen A11034), 

and Phalloidin- Alexa Fluor® 568 (3:200) at 4˚C for 24 hours. Tissue was again rinsed then 

incubated overnight in a 1:500 dilution of streptavidin Alexa Fluor® 647 (Invitrogen, S32357) at 

4˚C. The tissue sections were subsequently mounted on gel-coated slides, rehydrated to 

ameliorate the effects of z-axis tissue shrinkage, and coverslipped using Vectashield hard-set H-

1400 mounting medium (Vector Laboratories, Burlingame, CA). Sections from the 

antipsychotic- and control monkeys were processed together within immunohistochemistry runs 

using identical procedures.   
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Figure 2. Phalloidin labeled and spinophilin-immunoreactive puncta in deep layer 3.  
(Top) Phalloidin labeled puncta (red) and spinophilin-IR puncta (green) co-localize 
throughout deep layer 3 of BA41 and are often organized along MAP2-IR processes 
(blue) suggesting spine structures along dendrites. Images below are a magnification of 
the inset in the top panel more closely revealing the relationship between phalloidin-
labeled (a) and spinophilin-IR objects (b), and their co-localization in putative spine 
structures (c). Scale bar=5 µm. 

3.2.5 Image Collection 

Matched pairs from each cohort were imaged during the same session by an experimenter (JTN) blinded 

to diagnostic or antipsychotic exposure group All images were taken using a 1.42 numerical aperture 

(NA) 60X oil supercorrected objective mounted on an Olympus BX51Wl upright microscope (Olympus, 

Center Valley, PA) equipped with an Olympus DSU spinning disk, Hamamatsu Orca R2 camera 

(Hamamatsu, Bridgewater, NJ), MBF CX9000 front mounted digital camera (MicroBrightField Inc., 

Natick, MA), BioPrecision2 XYZ motorized stage with linear XYZ encoders (Ludl Electronic Products 
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Ltd., Hawthorne, NY), excitation and emission filter wheels (Ludl Electronic Products Ltd., Hawthorne, 

NY), Sedat Quad 89000 filter set (Chroma Technology Corp., Bellows Falls, VT), and a Lumen 220 

metal halide lamp (Prior Scientific, Rockland, MA).  The process of image collection was accomplished 

using Slidebook software version 5.027 (Intelligent Imaging Innovations, Denver, CO) and Stereo 

Investigator version 8 (MicroBrightField Inc., Natick, MA). 

3.2.6 Image Processing 

Images were processed using Slidebook software version 5.027 with keystrokes automated by 

Automation Anywhere software (Automation Anywhere, Inc. San Jose, CA). Camera 

background was subtracted from channels 488 and 568 prior to processing.  

Single plane MAP2 images were masked using a threshold segmentation defined by the 

Ridler Calvard (RC) derived value in Slidebook. Underlying gray level values were extracted 

from the mask objects.  

 

Image stacks were deconvolved using the AutoQuant adaptive blind deconvolution 

algorithm (MediaCybernetics, Rockville, MD). After deconvolution, edges were sharpened by 

taking the difference between images convolved at two standard deviations of the Gaussian 

distribution (σ1=0.7; σ2=2.0) as previously described, (Kirkwood et al 2013) then subjected to 

iterative intensity/morphological segmentation (Fish et al 2008). Spinophilin-IR and phalloidin 

puncta with intensity measures above the RC defined minimum threshold derived value in 

Slidebook were selected and contiguous pixels were defined as a ‘mask object.’ Spinophilin-IR 

and phalloidin mask objects with volumes between 0.1 and 0.8 µm3 and 0.04 and 1.5 µm3, 

respectively, were selected at each iteration. Due to lower spinophilin-IR intensity in cohort 2, it 
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was necessary to begin with a minimum threshold value at 1/3 the RC defined value. At each of 

100 iterations, the threshold intensity was increased and the mask objects combined with those of 

the prior iteration. 

 

3.2.7 Calculation of Spine Density and Number 

While both spinophilin-IR and phalloidin binding are strongly localized to spines, each has some 

off target label (Capani et al 2001, Muly et al 2004) Therefore, identification of putative 

dendritic spines required co-localization of spinophilin-IR and phalloidin label (Figure 2), 

operationalized as phalloidin mask objects that overlapped (≥ 1 voxel) with a spinophilin-IR 

mask object Spine density (Nv) and number (N) in cohort 1 was calculated as previously 

described with minor modification: (Moyer et al 2012, Moyer et al 2013)  

 

 

Where a  is the area of the counting frames,  is the count of dendritic spines within 

the ith block,   is the count of the associated points hitting the region of interest in the ith block, 

h= disector height, BA  is the cryostat block advance (50 μm for cohort 1 and 60 μm for cohort 2, 

  is the block-and-number-weighted mean section thickness calculated using this formula: 

(2) 
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where  is the local section thickness measured centrally in the  jth sampling frame and 

 is the corresponding count of dendritic spines in the jth frame.  is the block weight—i.e. 

either 1 or 1/3. The number of spines was estimated as the product of previously determined 

deep layer 3 volumes in these subjects (Dorph-Petersen et al 2009, Moyer et al 2012, Moyer et al 

2013) and the calculated in the above equation, represented here: 

(3) 

 

Because for cohort 2, sections adjacent to the mapping sections were sampled, calculation 

of   and   were as above but omitting the block weighting (Dorph-Petersen and Lewis 2011).   

 

Phalloidin mask objects overlapping spinophilin mask objects were counted 

automatically by determining whether the centroid of each automatically detected object was 

inside the disector. This corresponds to the so-called “associated point rule” (Baddeley 2005), which is 

an unbiased alternative to the unbiased counting frame (Gundersen 1977).  Guard zones of 10 

pixels were applied around all edges in the X and Y dimensions of each stack, and a guard zone 

of 4 Z planes was provided starting at the top of the tissue below the coverglass. The resulting 

disectors were 492 x 492 pixels in X and Y dimensions, and 24 Z planes (cohort 1) or 4 Z planes 

(cohort 2). These Z ranges were selected based on evidence from calibration plots that puncta 
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counts and intensities were uniform across these Z axis depths.  It should be noted that the 

relatively low disector height (1.0 µm in Cohort 2) could be implemented robustly because we 

used confocal microscopy allowing for a high number of thin focal planes, because of our use of 

deconvolution with full thickness reconstructions and determination of centroids; and because 

we performed a careful analysis of the distribution of the puncta along the Z axis. We determined 

the position of the disector and corresponding guard zones post hoc ensuring that puncta were 

only sampled in the zone with uniform bouton counts. Such sampling was also possible due to 

the high number of automatically detected puncta per subject. Thus, while a disector height of 

only 1.0 µm should be avoided in a standard brightfield microscopy study with manual counts, 

we were able to robustly implement such a disector in the current study. 

 

3.2.8 Statistical Models 

3.2.8.1 Human Tissue Study 

For each subject in the human tissue study, the intensity of MAP2-IR was first log transformed 

to more normally distribute MAP2-IR data. To assess the diagnostic effect in log MAP2-IR, 

spine density, spine number and deep layer 3 volume, two analysis of covariance (ANCOVA) 

models were used. Because we pair subjects within each cohort on age, sex, and postmortem 

interval, the primary model included diagnosis, cohort (which in this case includes effects of 

assay run and imaging run because the cohorts were studied sequentially), pair nested within 

cohort as blocking factors and tissue storage time (which is not a pairing variable, but may affect 

assay fidelity) as a covariate. To then assess the robustness of results, a secondary model was 
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used with diagnosis, cohort, and tissue storage time as covariates, and in place of subject 

pairings, we instead enter as covariates the pairing variables: age, sex, and postmortem interval. 

        In order to examine the confound effect of each of the following factors: sex (F/M), 

manner of death (suicide), diagnostic variation (schizoaffective disorder (Y/N), age of onset, 

duration of disease)), antipsychotic use (Y/N), anticonvulsant use (Y/N), benzodiazepine use 

(Y/N), non-diagnosis related drug treatment (Y/N), and substance abuse/dependence at time of 

death [alcohol (Y/N), tobacco (Y/N), cannabis history (Y/N), non-specified (Y/N)], the pairwise 

percent difference in each of the four variables was analyzed. If the confound variable was 

dichotomous, a two sample t test was used. If the confound variable was continuous, a simple 

linear regression analysis was used. The percent difference in log MAP2-IR within a pair is 

calculated as: 

. 

The pairwise percent differences for other variables were calculated similarly.       

         The relationship between log MAP2-IR and spine density was determined by two 

methods: Pearson’s correlation coefficient and alternatively optimized Kendall’s tau. In order to 

examine the relationship between log MAP2-IR and spine density, both variables were 

dichotomized by choosing cutoff points. A 2 by 2 contingency table was calculated for each 

chosen set of cutoff points. Kendall’s tau was used as the measure of association of the 

contingency table. An optimizing search was used to find the cutoff points for each of 

log(MAP2-IR)  and spine density so that Kendall’s tau was maximized. The asymptotic p-value 

was obtained for the Kendall’s tau to test if it is different from 0.   
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Diagnostic effect in spine density and spine numbers were examined within of the MAP2 

Low and MAP2 Normal subgroups using the same primary and secondary models used on the 

entire 20 pairs of subjects.  

        The analyses for diagnosis effect and confound effect were implemented in SAS 

PROC GLM with alpha 0.05; Kendall’s tau was obtained in SAS PROC FREQ, and the Pearson 

correlation coefficient was obtained in SAS PROC CORR.  

3.2.8.2 Monkey Tissue Study   

For each observation in the monkey tissue study, log MAP2-IR was taken before analysis so that 

MAP2 intensity was more normally distributed. Haloperidol treatment effect was examined with 

two mixed effect models: a primary model with treatment, assay and pair as fixed effect and 

monkey as a normal random effect to account for the repeated measures within one monkey; the 

secondary model was the same as the primary model except that pair was not included in the 

model. The analyses for the monkey tissue study were implemented in SAS PROC MIXED with 

alpha=0.05. 

 

3.3 RESULTS 

3.3.1 MAP2 Immunoreactivity  

MAP2-IR was significantly reduced in Sz subjects compared to their matched control pairs 

(Figure 3) [primary model: F(1,18)=18.32; p=0.001 and secondary model: F(1,33)=13.88; 
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p=0.001]. There was a 70.0% reduction in log MAP2-IR in Sz subjects relative to controls based 

on the primary model. The mean log MAP2-IR (SE) for control and Sz subjects was 3.068 

(0.085) for controls and 2.545 (0.092) for Sz subjects.  

 
Figure 3. MAP2-IR is significantly reduced in Sz primary auditory cortex. 
 (A) MAP2-IR in subject pairs from cohort 1 and cohort 2. The unity line represents 
schizophrenia=control values; points beneath the line represent pairs in which 
schizophrenia<control; points above the line represent schizophrenia>control. The plus 
indicates the group mean. (B) MAP2-IR for control and schizophrenia subjects in cohort 
1 and cohort 2. Bars represent mean IR for each group. (C-D) Representative 
micrographs of MAP2-IR taken from a control subject (left) and schizophrenia subject 
(right); scale bar= 10 µm. (cohort 1, pair 8, filled circle in A). 
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3.3.2 Primary Auditory Cortex Deep Layer 3 Neuron Number in Cohort 1 Subjects 

We previously reported that pyramidal neuron number did not differ between control 

subjects and schizophrenia subjects in individuals from cohort 1 (Dorph-Petersen et al 2009). 

Mean layer 3 pyramidal neuron number for control subjects was 3.38 × 106 and 4.11× 106 for 

schizophrenia subjects, a non-significant difference (F1,10=1.25; p=0.29) The relationship 

between MAP2-IR and pyramidal neuron number is show in Figure 4). This finding confirms 

that MAP2-IR loss is not a result of pyramidal neuron loss.  

 

 

Figure 4. No loss of pyramidal neuron number in primary auditory cortex. 
MAP2-IR plotted as a function of deep layer pyramidal neuron number in primary 
auditory cortex in control subjects (open circles) and schizophrenia subjects (filled 
circles) from cohort 1. For all subjects, r2=0.013; the corresponding values for control, 
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r2=0.0828 and schizophrenia subjects, r2=0.0047. None of the correlations were 
significant. 

 

3.3.3 MAP2 Peptide Amount in Primary Auditory Cortex Deep Layer 3 

MAP2-IR loss could reflect a loss of protein, or a reduction in the ability to bind to its 

epitope.  To determine if MAP2-IR loss is driven by a loss of protein, total protein was extracted 

from gray matter homogenates obtained from Heschl’s gyrus containing the primary auditory 

cortex as previously described (Deo et al 2012). Five MAP2 peptides representing sequences 

along the length of MAP2 protein (Figure 5, Top) were quantified using liquid chromatography-

mass spectrometry with selected reaction monitoring and quantification via a stable isotope 

labeled mouse brain standard as previously described (MacDonald et al 2012). MAP2 peptides 

were quantified in 5 pairs of subjects from the present study in whom the schizophrenia (Sz) 

subject exhibited MAP2-IR values below the lowest control value observed in the entire cohort, 

deemed MAP2-IR Low We found no significant differences in MAP2 peptide levels, despite 

substantial reductions in MAP2-IR in these same subject pairs (Figure 5, Bottom). 
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Figure 5. MAP2 peptide levels are unchanged in MAP2-IR Low Sz subjects. 
 (Top) Schematic of MAP2 protein isoforms. Dark green shows amino acids included in 
isoform MAP2C, whereas MAP2A and MAP2B also include the projection domain 
shown in blue. The locations of other functional domains along the length of MAP2 
(numbering indicates amino acids) are as indicated. Dashed gray lines indicate the 
potential regions within MAP2 to which antibody used in this study (SMI-52, Covance) 
binds. The peptide sequences used for subsequent quantification are shown in their 
respective locations within the MAP2 protein.  (Bottom) Mean ratios of MAP2 peptides 
in five MAP2-IR Low pairs (control, C; schizophrenia, Sz). Mean MAP2-IR for the same 
5 pairs is shown in last panel. **, p<0.01. Error bars are SEM. 

3.3.4 Influence of Post-Mortem Interval on MAP2 Immunoreactivity 

We found no significant effect of post-mortem interval (PMI) in log MAP2-IR based on 

our secondary model in which the term pair is replaced by age, PMI, and sex (F(1,33)=0.06, 

p=0.81; Figure 6).  
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Figure 6. MAP2-IR is unaffected by PMI. 
We found no significant effect of PMI on MAP2-IR. MAP2-IR is shown for each pair in 
order (from left to right) of ascending PMI of the Sz subjects. Control subjects open 
circles; schizophrenia subjects, filled circles.  

3.3.5 Spine Density and Number 

Mean spine density was significantly reduced in Sz subjects compared to matched controls 

[Figure 7A; primary model: F(1,18)=6.17; p=0.023 and secondary model: F(1,33)=8.83; 

p=0.005]. Mean spine density for control subjects [0.0333 µm -3 (0.0018)] and Sz subjects 

[0.0269 µm3 (0.0020)] revealed a 19.22% reduction in spine density.  

The reduction in spine density in Sz subjects was paralleled by an accompanying 

reduction in mean spine number [Figure 7B; primary F(1,18)= 4.13, p=0.057 and secondary 
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F(1,33)=4.46, p=0.042]. The mean spine number (reported in billions) for control and Sz 

subjects were 1.30(0.083) and 1.06(0.009) respectively; a 18.79% reduction in spine number 

across diagnosis. In the secondary model, the effect of cohort was significant [F(1,33)= 6.33, 

p=0.017] but the diagnosis by cohort interaction was not significant. 

 

Figure 7. Spine number/density reduced in Sz primary auditory cortex.  
(A) (Top) Mean spine density in deep layer 3 of primary auditory cortex in pairs from 
cohort 1 and 2. The unity line represents schizophrenia=control values; points beneath the 
line represent pairs in which schizophrenia<control; points above the line represent 
schizophrenia>control. The plus indicates the value of the group mean. (Bottom) Mean 
spine density for control (C) and schizophrenia (Sz) subjects in cohort 1 and cohort 2. 
Error bars are ± SEM. (B) (Top) Spine number in deep layer 3 of primary auditory cortex 
in subject pairs. The unity line and plus symbol represent the same relationships as 
described above. (Bottom) Mean spine number for control (C) and schizophrenia (Sz) 
subjects. Error bars are ± SEM. 
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3.3.6 Association with Clinical Factors 

We examined the effect of a number of clinical factors (e.g. sex, manner of death, diagnostic 

variation, drug exposure, and substance abuse/dependence at time of death) on pairwise percent 

difference in MAP2-IR, spine density, and spine number. No significant associations were 

detected.  

3.3.7 Correlation between MAP2-Immunoreactivity and Dendritic Spine Density and 

Number 

There was a significant linear correlation between MAP2-IR and spine density (r2=0.433, 

p=0.005) but not between MAP2-IR and spine number (r2=0.162, p=0.32). However, the 

optimized Kendall’s tau approach indicated that MAP2-IR and spine density were significantly 

related to each other based on the highest Kendall’s tau obtained (τ=0.562, z=3.08, p=0.002), as 

were MAP2-IR and spine number (τ=0.5295, Z=4.48, p<0.001). 

Twelve Sz subjects (60%) exhibited MAP2-IR values below the lowest control value, 

deemed MAP2-IR Low. MAP2-IR Low subjects had significant reductions, relative to their 

matched controls, in spine density [Figure 8; primary: F(1,10)=15.970, p=0.003 and secondary: 

F(1,17)=16.9, p=0.001] and spine number [Figure 8; primary: F(1,10)=12.06, p=0.006 and 

secondary: F(1,17)=12.01,p=0.003]. MAP2-IR Normal Sz subjects did not differ from their 

matched controls in either spine density [Figure 8; primary: F(1,6)=0.040, p=0.851 and 

secondary: F(1,9)=0.060, p=0.817] or spine number [Figure 8; primary: F(1,6)=0.12,p=0.74 and 

secondary: F(1,9)=0.15,p=0.708].  
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Figure 8. Relationship of MAP2-IR to dendritic spine number/ density. 
(A) Mean spine density plotted as a function of MAP2-IR for control subjects (open) and 
schizophrenia subjects (crossed) in cohort 1 (unfilled) and cohort 2 (filled).  (B) Spine 
number as a function of MAP2-IR for control subjects (open symbols) and schizophrenia 
subjects (crossed symbols) in cohort 1 (unfilled) and cohort 2 (filled). (C) Spine density 
for control (C) and schizophrenia (Sz) subjects in pairs in which the Sz subject MAP2-IR 
was above (MAP2-IR Normal) or below (MAP2-IR Low) the minimum MAP2-IR 
observed in control subjects. Bars represent mean values for each group. (D) Spine 
number for control (C) and schizophrenia (Sz) subjects in pairs in which the Sz subject 
MAP2-IR was above (MAP2-IR Normal) or below (MAP2-IR Low) the minimum 
MAP2-IR observed in control subjects. Bars represent mean values for each group.  
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3.3.8 Antipsychotic Exposed Monkeys 

We found no significant effect of chronic haloperidol exposure on MAP2-IR. [Figure 9; primary 

F(1,2.77)=0.54 p=0.52 and secondary F(1,5.76)=0.15 p=0.71 ]. We previously reported no 

significant effect of haloperidol exposure on spine density in this group of animals. (Sweet et al 

2009)  

 

Figure 9. Mean MAP2 intensity is unchanged in haloperidol exposed macaques. 
Chronic antipsychotic exposure did not alter MAP2-IR in adult male macaques. Error 
bars are ± SEM. 
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3.4 DISCUSSION 

We hypothesized MAP2-IR is reduced in BA41 of individuals with Sz. Using quantitative 

fluorescence confocal microscopy, we examined alterations in MAP2-IR intensity in BA41 deep 

layer 3 and examined the relationship between MAP2-IR and dendritic spine markers within the 

same region. We found that MAP2-IR intensity was significantly reduced in Sz subjects in 

comparison to matched control subjects. Dendritic spine density and number were also reduced 

and were associated with MAP2-IR intensity. Twelve (60%) Sz subjects exhibited MAP2-IR 

intensity levels lower than the lowest control value. In this subset, deemed MAP2-IR Low, there 

were significant reductions in spine density and spine number while there were no significant 

reductions in spine density and number in MAP2-IR Normal subjects. Our findings are the first 

to show a change in MAP2-IR within the auditory cortex of individuals with Sz, and to relate 

MAP2-IR to dendritic spine alterations.  

3.4.1 Schizophrenia Associated MAP2-IR Changes 

We found a significant reduction in MAP2-IR in BA 41 deep layer 3. Although the 

immunoreactive intensity and subcellular location of MAP2 are sensitive to the effects of 

increasing PMI (Figure 6), (Schwab et al 1994) it is unlikely that our finding can be attributed to 

the effects of PMI or effects of age, sex, and storage time. Our subject pairs were well matched 

for these variables, mitigating their influence. Moreover, we saw no significant association of 

any of the aforementioned variables with MAP2-IR within our statistical models, and no 

significant interactions between them and diagnosis. Similarly, none of the prior studies of 

MAP2-IR in Sz found significant effects of age, sex, or PMI. (Arnold et al 1991, Jones et al 
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2002, Rioux et al 2004, Rosoklija et al 2005, Somenarain and Jones 2010) Neither we, nor 

Rosoklija et al. (Rosoklija et al 2005) found a significant effect of antipsychotic treatment. 

Finally, we examined whether reduced MAP2-IR results from long term antipsychotic exposure 

in an animal model, and found no effect on MAP2-IR. 

Many previous reports have documented reductions in MAP2-IR in other cortical regions 

linked to Sz pathology.(Arnold et al 1991, Jones et al 2002, Rioux et al 2004, Rosoklija et al 

2005, Somenarain and Jones 2010) The drastic nature of the change in IR lends itself to 

macroscopic observation, which has allowed some groups to qualitatively assess regional IR. 

Within their cohort, Arnold et al.(Arnold et al 1991) found a qualitative loss of MAP2-IR in the 

subiculum and entorhinal cortex of 83% and 66% of their Sz subjects respectively; similar to our 

observation of marked MAP2-IR loss in the auditory cortex in 60% of our Sz subjects. Rosoklija 

et al. (Rosoklija et al 2005) reported qualitatively low or absent MAP2-IR in the subiculum of 

20% of Sz subjects within their cohort but no overall change in IR in comparison to controls 

within the other hippocampal subfields.  In order to quantify this change, others utilized optical 

density measurements  or area fraction analysis.(Jones et al 2002, Somenarain and Jones 2010) 

As measured by Jones et al.(Jones et al 2002), MAP2-IR area fraction was decreased by 45% in 

layer 5 of frontal cortex (BA9) and 40% in layer 3 of BA9, 44% in layer 5 of cingulate cortex 

(BA32), and 32% in layer 3 of BA32 in Sz subjects compared to controls. Somenarain 

(Somenarain and Jones 2010) found a similar result in BA9 area fraction: a 38% reduction in 

layer 5 and a 39% reduction in layer 3.  

Others (Jones et al 2002, Somenarain and Jones 2010) investigated the relationship 

between MAP2-IR reductions and neuron loss finding no differences in cell density in areas that 

showed a disease-specific reduction in MAP2-IR. Similarly, in a previous report,(Dorph-
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Petersen et al 2009) the pyramidal neuron number in the twelve pairs that comprise cohort 1 in 

the present work was determined to be unchanged in BA41 layer 3 (Figure 4).  Arnold et al. 

(Arnold et al 1991) found no neuron loss or accompanying increase in markers of 

neurodegeneration (e.g. gliosis, neurofibrillary tangles) in subjects with a decrease in MAP2-IR, 

while Rosoklija et al.(Rosoklija et al 2005)found no increase in gliosis as assessed by glial 

fibrillary acidic protein IR. It is clear from these data that neuron loss does not account for 

reductions in MAP2-IR. Further, using liquid chromatography-mass spectrometry, we have 

shown that MAP2-IR loss is not a result of MAP2 protein loss (S2.). 

The large number of positive studies, despite the different regions, antibodies, and 

approach to quantification, in conjunction with evidence that reduced MAP2-IR does not result 

from common confounds such as PMI, age, and antipsychotic treatment, together lend 

confidence to the conclusion that reduced MAP2-IR represents a disease-associated alteration 

present across cortical regions in a large proportion of subjects with Sz. This interpretation raises 

important questions: what does the decrease in MAP2-IR indicate in terms of molecular changes 

to MAP2, and what consequences might MAP2-IR loss have for neuronal function in Sz? 

3.4.2 Molecular Changes in MAP2 Leading to MAP2-IR Loss 

MAP2, like its axonal homolog MAP tau, is tightly regulated by a strict balance of 

phosphorylation; extremes in either direction lead to decreased MT binding, nucleation, 

assembly, and stabilization. (Brugg and Matus 1991, Murthy and Flavin 1983, Sanchez et al 

2000, Tsuyama et al 1986) It is important to note, that even at intermediate, endogenous levels of 

phosphate load, site-specific phosphorylation is more important than total phosphate amount in 

regulating MAP2-MT interaction.(Ainsztein and Purich 1994, Brugg and Matus 1991) MAP2 is 
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comprised of four functional domains tasked with different roles: 1) the n-terminal domain, 

which binds the RII subunit of cAMP-dependent protein kinase (PKA) 2) the 1372 amino acid 

(aa) projection domain found only in high molecular weight isoforms of MAP2 (i.e. MAP2A and 

MAP2B) that regulates the spacing of MT bundles (Belanger et al 2002) 3) the regulatory proline 

rich region, and; 4) the microtubule binding domain (MTBD) responsible for binding to MT’s 

and actin. (Sanchez et al 2000) A number of protein kinases and phosphatases interact with sites 

within each region resulting in diverse functional consequences. To illustrate, PKA incorporates 

phosphate groups at sites primarily within the n-terminal and projection domains, thereby 

disrupting MAP2-MT binding and MT nucleation. (Itoh et al 1997) Similarly, Cdc2 kinase, 

which phosphorylates the MTBD, also disrupts MAP2-MT binding and MT nucleation, but 

additionally disrupts MT stabilization.(Itoh et al 1997) Even within functional domains, site-

directed kinases can produce highly specific effects.(Ainsztein and Purich 1994) Although 

MAP2 is a natively unfolded protein, it can adopt complex folded conformations; a process that 

is sensitive to divalent cation concentration and depends on the C-terminal MTBD.(Ainsztein 

and Purich 1994, Di Noto et al 1999, Wille et al 1992) While not firmly established, it has been 

proposed that this process could potentially be a result of the high abundance of proline residues 

within the 156 aa adjacent to the MTBD. (Farah and Leclerc 2008, Sanchez et al 2000) Proline 

has the ability to exist in cis- and trans- isomers based on phosphorylation state and therefore 

may underlie MAP2’s previously observed ability to fold upon itself. (Wille et al 1992) 

Phosphorylation-dependent folding has been previously demonstrated in MAP tau models of 

disease. (Jeganathan et al 2008) Thus, the reduction of MAP2-IR in our Sz subjects could 

indicate disease-associated alterations in MAP2 phosphorylation which, via changes in binding 

to MT targets or in folding, prevents the antibody from reaching its binding site. 
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It should be noted that other possibilities exist to explain MAP2-IR loss. Rather than a 

change in MAP2 protein, the phenomenon could represent a change in the network of proteins 

that bind MAP2. Outside of its role in the cytoskeleton, MAP2 serves as a receptor for the 

neurosteroids pregnenolone (PREG) and dehydroepiandrosterone (DHEA), an interaction which 

impacts dendritic stability, changes MAP2 phosphorylation state, and influences MAP2 

immunostaining. (Fontaine-Lenoir et al 2006, Murakami et al 2000) Recent studies have 

identified changes in serum levels of both of these neurosteroids in patients with first-episode 

psychosis and linked this phenomenon to symptom severity.(Ritsner 2011) MAP2 also serves as 

an anchoring protein linking PKA to class C L-type Ca2+ channels,(Davare et al 1999) a class of 

voltage gated Ca2+ channels that have been linked to Sz by genomic studies.(He et al 2014)  

Genetic studies have also identified genes in the immediate early gene activity-regulated 

cytoskeleton-associated gene, Arc, pathway as linked to schizophrenia(Fromer et al 2014, Purcell 

et al 2014). Arc is locally expressed in the dendritic arbor in response to neuronal activity, and it 

has been demonstrated both in vivo and in vitro that up-regulation of Arc reduces MAP2-IR 

independent of MAP2 protein loss.(Fujimoto et al 2004) Dysregulation of NMDA receptor 

activity also changes the subcellular location of the MT plus end capping protein EB3, causing it 

to bind MAP2 at the MTBD.(Kapitein et al 2011) Disease state could potentially alter any of 

these partners, increasing their MAP2 binding and thus obscuring the antibody epitope. In 

support of such an interpretation, Cotter et al.(Cotter et al 2000) found increased MAP2-IR 

dendritic length in subiculum and hippocampus of subjects with schizophrenia using an antigen 

retrieval method that disrupts non-covalent protein binding (and/or MAP2 folding), potentially 

representing a greater unmasking of MAP2-IR sites in schizophrenia subjects.  
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3.4.3 Potential Consequences of MAP2-IR Loss for Neuronal Function in Schizophrenia  

A primary role of MAP2 is stabilizing mature MT bundles in the dendrite. (Belanger et al 2002, 

Dehmelt and Halpain 2004, Farah and Leclerc 2008, Sanchez et al 2000, Teng et al 2001) Recent 

evidence has elucidated effects of MTs on dendritic spine morphology, finding that dynamic 

MTs enter developing and mature dendritic spines in response to synaptic activity. (Gu et al 

2008, Hu et al 2008, Jaworski et al 2009) This entry leads to a transition from immature 

filopodia to mature mushroom head structure in developing spines. (Hu et al 2008, Jaworski et al 

2009) Similarly, MT entry into spines has been demonstrated to be protective against spine 

reduction induced by long term depression, a process in which MAP2 participates. The link 

between spine structural plasticity and MAP2 is further supported by findings that inhibition of 

MT polymerization leads to a loss of mature spine structure, prevents long-term potentiation, and 

ultimately, ends in a drastic loss of spines themselves.(Gu et al 2008, Hu et al 2008, Jaworski et 

al 2009)  

 

We therefore hypothesized that MAP2-IR reductions would be associated with dendritic 

spine loss in Sz. Our hypothesis was supported by our finding that the reduction in dendritic 

spines in Sz subjects was restricted to those with substantial reductions in MAP2-IR. Our finding 

replicated and extended our prior observation that dendritic spine density is significantly lower in 

deep layer 3 of primary auditory cortex in individuals with Sz. (Sweet et al 2009) The current 

observation was made in a non-overlapping cohort of subjects. Furthermore, by using stereologic 

methods to provide an estimation of spine number, we also showed that the reported loss in spine 

density reflects a loss of spines themselves as opposed to an expansion in surrounding tissue 

volume. This finding parallels Golgi-impregnation studies which have documented a Sz-
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associated loss of layer 3 spine structures per unit of dendrite length in dorsolateral prefrontal 

cortex(Garey et al 1998, Glantz and Lewis 2000) and subiculum.(Rosoklija et al 2000) In 

addition, the loss of dendritic spines, in the absence of a change in neuron number, can be seen 

as congruent with earlier hypotheses of reduced neuropil in schizophrenia(Selemon and 

Goldman-Rakic 1999). In contrast, the reduced detectability of dendrites due to lower MAP2-IR 

precludes any firm conclusion regarding whether reduced dendritic length or arborization is 

present and contributes to reduced neuropil in our subjects. Given its role in maintaining cell 

structure, it is plausible that changes to MAP2 protein may also contribute to reduced somal 

volume, another cellular change previously described in this area of cortex (Sweet et al 2004).  

3.4.4 Summary 

We found that 60% of subjects with Sz had dramatic reductions in MAP2-IR in BA 41, and that 

this deficit was correlated with reduced dendritic spine density. The loss of MAP2-IR was not 

explained by technical factors or subject comorbidities and treatments, suggesting MAP2-IR 

reduction is a disease-associated alteration. Importantly, reduced MAP2-IR was not due to a loss 

of MAP2 protein. Future studies will need to identify whether reduced MAP2-IR in Sz results 

from alterations to MAP2 phosphorylation state, conformation, and/or binding to its interaction 

partners.  This process will be aided by identifying the affected functional domain of MAP2 that 

contributes to IR reduction, and by investigation of disease linked changes in the MAP2 protein 

interactome. Because MAP2 shares substantial sequence, regulatory, and functional homology 

with MAP tau, (Dehmelt and Halpain 2005) the wealth of knowledge tau biology and the rapidly 

expanding field of tau therapeutics(Wischik et al 2014) provide  resources for identifying how 

MAP2 is altered in Sz and possible leads to novel therapeutics.   
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