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Energy consumption in cellular networks is increasingly a concern, due to the rapid growing

demand for mobile communications, the necessity of adding new base stations will continue

to grow as well as the amount of energy needed to operate the network. This dissertation

presents two algorithms to manage the increasing service demand and create possibilities for

energy reduction. The novel cell selection algorithms are bandwidth-based (BB) and energy-

aware (EA) cell selection. BB balances traffic between two tiers of a LTE heterogeneous

network (HetNet) and offloads traffic from high-powered base stations. EA considers the po-

tential energy requirement to serve users and enables turning off base stations during quiet

hours. Also, this thesis shows two energy optimization models to minimize the amount of

energy consumption in operating LTE HetNets while maintaining levels of customer satisfac-

tion. First, step-dimming (SD) energy reduction technique reduces the transmission power of

high-powered base stations according to the levels of traffic demand. Second, resource-based

(RE) energy reduction optimization minimizes the spectrum resources required to achieve

user service demand level according to the user channel quality indicator (CQI). Last, this

dissertation studies benefits of the proposed algorithms in a minimum CAPEX LTE access

network in a sample city-like area with time and spatial varying traffic demand.
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1.0 INTRODUCTION

Energy consumption is a critical issue in many fundamental infrastructures. Only recently

has energy consumption become a vital focus in cellular networks. Techniques have been pro-

posed and studied to reduce energy consumption and improve energy efficiency in operating

the networks. The majority of the techniques focus on tackling the most energy-consuming

part of the networks which is the radio access network. For example, switching off base

stations or eNodeBs (eNBs) and strategically adding smaller cells. The proposed approaches

still have many challenges and constraints, for instance, interference coordination manage-

ment, providing sufficient coverage, and bandwidth. In this dissertation, we divide the energy

consumption challenge into three sections. First, we cope with the rising traffic demand that

is the leading cause of the increasing energy requirement. We present two novel cell selec-

tion techniques to moderate the impact of high demand and create a potential for energy

reduction. Next, we introduce two advanced energy reduction techniques to cut energy

requirements in serving user demand. Last, we examine the state-of-the-art cell selection

and energy reduction techniques in a simulated network and study a potential impact on

optimizing capital expense in expanding a network.

1.1 REDUCING ENERGY CONSUMPTION IN CELLULAR NETWORK

Studies have suggested constant growth of traffic demand in cellular networks, thanks to

the rapid increase in popularity of smartphones and tablets. The addition of improved and

advanced cellular network facilities will continue to be needed to satisfy increased service

demand and enable ubiquitous wireless access [1]. Despite the increase of energy consumed
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to provide wireless connections in networks, which is estimated to be up to 80% of the

total power consumption, it is projected that less than 20% of communication traffic will be

wireless in 2020 [2]. It shows that even though the demand in wireless section of a network is

light compared to other sections, the energy to serve the demand is significant. Furthermore,

[3,4] report that the access network base station consumes the biggest proportion of energy

in cellular networks. In addition, [5] notes that the financial cost of energy is now as large

as the personnel cost to operate networks. As a result, there has recently been a focus on

reducing energy consumption in LTE access networks. The focus is on reducing the energy

consumption of the network not the customer mobile devices. This is because the energy

consumption of the network is in orders of magnitude larger than the total energy consumed

by the users mobile devices [6].

To reduce energy consumption, it is understandable that the simplest way is to turn off

the equipment. Recent research has proposed and examined several techniques to switch off

unnecessary eNBs during certain periods of time [7–14]. The techniques take advantage of the

fact that traffic demand varies over time, and a network is designed and deployed based on

peak demand. Therefore, there is a possibility of switching off eNBs when the traffic is lower

than the peak. Also, to enhance the chance of turning off an eNB, users connection to the eNB

can be maneuvered and handed over to other eNBs. The remaining active eNBs are assumed

to take responsibility of providing service to users during the period either by maintaining

their regular operation or adjusting according to the added responsibility. Furthermore,

research agrees that operating smaller coverage cells can improve energy efficiency and reduce

the total network energy consumption. By deploying smaller eNBs, available bandwidth per

user is increased, and energy consumed by signal transmission is reduced while providing

better received signal strength (RSS) to users.

However, every advancement has its difficulty. In most cases, switching off an eNB

would leave an area with poor service from neighboring eNBs or no service at all. Doing

so would upset customers in the area or conflict with regulatory emergency localization

requirements. Expanding the coverage area of neighboring eNBs to compensate for the

coverage hole has been shown in some cases to require even more energy consumption [15].

Although implementing smaller coverage eNBs can ease the issue of poor quality of service
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(QoS) after turning off eNBs while saving total energy, dense eNBs deployment requires

additional interference management. Last but not least, few works have studied the extra

cost of installation the additional eNBs and expansion of the backhaul to support the eNBs.

1.2 PROPOSED ENERGY REDUCTION APPROACH

To tackle the challenges of reducing energy consumption while maintaining or improving

the quality of service, we first look at how to manipulate the traffic to enable increased

opportunity for reducing the energy. We consider the deployment of smaller cells, picocells or

low-powered nodes (LPNs), inevitable to provide more available bandwidth and improve the

user experience. Also, we are not concerned about energy consumption in user equipment.

One of the challenges in operating a network with the added LPNs is load management.

Current research on cell selection techniques mainly aim to improve network performance,

and quality of service, by offloading more traffic from high-powered nodes (HPNs) to low-

powered-nodes (LPNs). In addition, according to research, HPNs consume significantly

higher energy than LPNs when operating at full capacity. More users connecting to LPNs

or fewer users associating with HPNs can lessen the necessity of HPNs operating fully and

increase the possibility of saving power at the HPNs. Consequently, offloading more traffic

to LPNs would create more possibility to reduce energy consumption in HPNs. Therefore,

we first propose Bandwidth-based (BB) cell selection that shares the number of users fairly

among eNBs in an area and lowers the number of users associating with HPNs.

In addition to providing a more balanced network to improve service performance and

create opportunities to reduce energy consumption at HPNs, we see more possibility during

very light-loaded hours. Depending on the energy required to operate LPNs, running multiple

LPNs, in fact, could cause higher energy consumption than the energy saved at the HPNs. In

this research, we calculate user spectrum resource requirement based on user service demand

and user received signal quality. The required spectrum resource is defined as a percentage

of the total spectrum resource at an eNB. We found that during light-load periods, operating

HPNs in low-power mode could potentially provide sufficient services to users without any

3



active LPNs and would create lower total network energy consumption. Thus, we present

Energy-aware (EA) cell selection that keeps LPNs inactive and ensures sufficient services is

provided by reduce-powered HPNs.

After managing load demand to produce the potential to reduce energy requirement in

eNBs and sufficiently maintain the service quality, we focus on minimizing the energy con-

sumption in HPNs and LPNs. Due to smaller power an LPN transmits, efforts to reduce

energy consumption in LPNs may not considerably minimize the total energy consumption.

Thus, we concentrate on reducing the energy consumption in HPNs by presenting a Step-

dimming (SD) mechanism. The transmission power of HPN can be adjusted according to

pre-defined steps. The steps are determined based on the number of users and guaranteed

achievable data rate. To the furthest possibility, an HPN could transmit a signal at a very

low level just to maintain its coverage and provide enough achievable data rate for the con-

trol signaling. Next, we advance the consideration of the required spectrum resource and

develop a Resource-based (RE) energy reduction technique to further minimize the energy

consumption in eNBs, both HPNs and LPNs. Depending on user different service demand,

each user receives sufficient spectrum resource transmitted to the user at a calculated trans-

mission power from an eNB. This technique further minimizes the obligation for eNBs to

transmit signal at high power in both time and frequency domain thus reducing the energy

required.

Last, even though adding more eNBs can improve network performance, and quality of

service, one drawback of doing so is the increase in the cost of deployment. To the best of our

knowledge, very little literature has considered this issue. Therefore, we extend our scope

of research to study impacts of our energy reduction mechanisms on network expansion. In

a sample city-like area, we divide and categorize the area into five different types of service

areas, namely, Business district, Entertainment area, Residential, Highway, and Unoccupied.

Each type of service area carries unique variant traffic characteristic. Regarding the different

demand characteristic, we present a CAPEX optimization problem to plan a network in the

sample area. After the network deployment and extension, we investigate the possibility of

energy saving and analyze the potential impact on the capital expenditure. Eventually, the

results of anticipated energy saving could influence the modification of network planning.
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1.3 RESEARCH CONTRIBUTION

Here, we summarize the contribution in this thesis. The main focus of this thesis is to

optimize the total cost of operational expense (OPEX) and capital expenditure (CAPEX)

of an LTE access network given a prospective service area with projected time and location

dependent traffic.

This research makes contributions in three parts.

1. Cell Selection: In Chapter 4, we propose two cell selection algorithms for HetNets

to increase the possibility of energy reduction while maintaining the quality of service.

Numerical results show that Bandwidth-based cell selection can offload more users to

LPNs and create a more a balanced network that has higher possibility to reduce energy

consumption and also increases overall user satisfaction. Next, we propose Energy-aware

cell selection that is an advanced version of BB cell selection. EA cell selection takes into

account the various levels of service demand from users and the quality of user RSS. We

found that in many hours of a day, an operator can sufficiently satisfy user demand by

operating HPNs in a reduced-power mode that can decrease the requirement of power

even further.

2. Energy Consumption Minimization: After we manipulate the traffic demand to

increase the opportunity to reduce energy consumption, we propose two novel energy

optimization approaches in Chapter 5. The Step-dimming (SD) energy reduction ap-

proach dynamically reduces the transmission power of HPNs, according to the traffic

load. When our cell selection offloads users to LPNs, SD is shown to reduce the power

requirement to operate the network considerably and maintain customer satisfaction lev-

els. A second approach called Resource-based energy reduction (RE) further considers

the user service levels and RSS quality to determine adequate spectrum resource for each

user and transmission power of eNBs. RE decreases the total energy consumption even

further than SD and improves the user satisfaction in certain time periods.

3. OPEX/CAPEX Optimization: To incorporate energy consumption minimization

into the process of planning a network, we propose a optimization problem that considers

the cost of deploying the network in Chapter 6. The optimization problem includes
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consideration of the base station cost, installation, backhaul transmission and site lease

which are different for an HPN and an LPN. With some constraints, we generate a

network in a sample area as a result of the optimization problem. The sample area

contains five different types of service areas which have various traffic profiles. The types

of the service areas are business, entertainment, residential, highway and unoccupied.

Next, we examine the energy consumption in the generated network and found that with

the amount of operational expense saving from reduced energy consumption the operator

can plan to deploy more base stations and satisfy more users.

1.4 THESIS OUTLINE

Table 1.1 summarizes frequently used abbreviations in this thesis. The remainder of this

thesis is organized as follows. Chapter 2 provides a literature review on energy reduction

techniques in cellular networks, related issues, their limitations and drawbacks and compar-

ison with our proposed techniques. Chapter 3 describes our scope of research. Chapter 4

presents the proposed cell selection techniques and numerical results. Chapter 5 introduces

the energy reduction optimization methods, their numerical results, and analysis. Chapter

6 presents CAPEX network design optimization approach and its challenges. Last, Chapter

7 concludes the dissertation with discussion and possible future work.
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Table 1.1: List of abbreviations

LTE Long term evolution

HetNet Heterogenous Network

HPN High powered node

LPN Low powered node

UE User entity

eNB eNodeB

RSS Received signal strength

SINR Signal to interference plus noise ratio

OPEX Operating expense

CAPEX Capital expenditure

QoS Quality of service

QCI QoS Class Identifier

CQI Channel Quality Indicator

MILP Mixed-integer linear programing

DB Distance-based cell selection

SB SINR-based cell selection

BB Bandwidth-based cell selection

EA Energy-aware cell selection

SD Step-dimming energy reduction

RE Resource-based energy reduction
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2.0 LITERATURE REVIEW

In the past five years, energy consumption in cellular networks has received a great deal

of research attention, especially in energy-efficient network operation. The majority of the

research notes that the access part of a network is taking the most of the energy to provide

24×7 service coverage [3]. Several research directions have been proposed to save energy, for

example, switching off base stations [7–14], implementing smaller cells [16–27], and partially

turning off service [28–30]. In [7], the authors take advantage of the number of base stations

in a dense service area and suggests that one base station in the area can be turned off during

light-loaded periods. In [8, 9], the authors partition a service area into responsible smaller

areas and congregate traffic demand into fewer base stations. With a pre-set threshold, the

lowest loaded base station is switched off. A similar methodology is analyzed in a network-

wide scenario in [10]. These techniques all use the assumption that neighboring base stations

can expand their coverage and provide services to switched-off base station service area. To

be able to cover the area, a physical antenna adjustment has been proposed and analyzed by

[11–13, 21]. However, expanding cell coverage has several challenges, for example, increased

interference to neighboring service cell, decrease in the amount of available bandwidth per

users [31], lower achievable data rate due to lower RSS and higher energy consumption in

the system. Also, the study in [32] points out that switching on and off network equipment

frequently actually consumes more energy per time unit than keeping it active. Energy

required to provide service to an extra area, in fact, grows faster than energy saved by

simply turning off base stations [15]. The authors in [21] propose to deploy a sector in a

base station using an 800 MHz frequency carrier and takes advantage of its low path loss

attenuation. By physical adjustment of the antenna, the solution can provide higher RSS

in the expanded area without increasing transmission power. Partially switching off base
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stations methods have been proposed. Techniques in [28–30] gather remaining traffic during

light-loaded time into fewer frequency basebands and switch off unoccupied ones.

To overcome the challenges HPN-only networks present using smaller cell sizes was stud-

ied in [16, 18]. Regarding required coverage and transmission power, four strategies of im-

plementing smaller cells and their locations were designed based upon the distance between

each base stations in [17]. [19] presents a multi-hop transmission cellular network to divide

a link between a base station and a user into shorter links to enjoy lower pathloss and

lower necessary transmission power. Most of the research mentioned is developed regarding

a single-layer network. Coordinating strategies between base stations or backhaul are pro-

posed in [21–23, 33]. All methods still assume that neighboring base stations can cover the

coverage hole left by turning off a base station.

Energy efficiency in multi-tier networks was studied in [20,23,24,34–40]. Initially, HetNet

deployment is to improve the spectral efficiency in cellular networks by offloading traffic from

HPNs to LPNs. Such deployment leads to an increase in energy requirements due to the

additional eNBs installed. Nevertheless, by introducing cell sleeping, HetNets can potentially

operate more energy-efficiently than traditional single-tier networks. During peak traffic

hours, more energy-efficient LPNs can become active and offload some demand from HPNs.

Then, those LPNs are turned to sleep during light traffic hours when the HPNs are capable

of maintaining throughput and coverage [34]. [24] conducts a study on LPN deployment with

dynamic sleep mode. The deployment shows to improve the coverage of cellular network but

consumes more energy when the LPNs do not adapt to traffic load. [34, 35] present similar

cross-layer energy optimization models for heterogeneous cellular network. The authors find

that certain LPNs are located in the coverage of HPNs. Thus, the main challenge is to

associate users with the group of eNBs to minimize the energy consumption after lightly-

loaded small cells go to sleep. In [36], the authors use fuzzy set theory to determine frequency

reuse and improve spectral and power efficiency. [20] uses stochastic geometry to model a

multi-tier HetNet system and optimizes power consumption by statically switching off base

stations while [40] adds a layer of smaller base stations to improve energy efficiency with

trade-offs of outage probability. [37] switches off small cells when traffic demand is below

a threshold and shows that higher traffic offloaded to smaller cells can reduce total energy
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consumption of the network. [38] proposes a shared baseband unit to be used by multiple

base stations. The unit can mitigate inter-cell interference and eventually reduce energy

consumption. To maintain coverage of a service area, [39] finds an optimal number of eNBs

that can be switched off as a function of coverage radius. However, all of the mentioned

works consider only energy reduction by switching off LPNs

At the time of writing, there is no standardized energy efficiency metrics to compare the

performance of different energy reduction mechanisms [6, 41]. The main issue is differences

among various cellular networks are so significant that comparing their energy performance

becomes subjective. The comparison depends highly on benchmark settings and specifica-

tions of the measured network i.e. specific models of equipment, types of base stations, the

number of tiers in the network, characteristic of the considered coverage area. Many papers

measure energy efficiency by achievable data rate per energy unit. The performance can be

improved by deploying more base stations simply to increase available capacity [42]. How-

ever, having more operating base stations can create higher interference. Simulations have

been done assuming all types of base stations, HPNs and LPNs, are operating in the same

frequency band. The interference can be caused by transmission signal from either HPNs

that act as umbrella cells, neighboring LPNs or from a combination of both [39]. [11, 43]

consider interference in an area with densely deployed LPNs while [44] presents impact of

inter-tier interference where both tiers are transmitting signal at the same level of power. [11]

proposes baseband units that can adaptively switch baseband. By switching the baseband,

the network can timely reallocate the baseband to areas where more spectrum is needed to

produce more energy efficiency, reduce interference and improve spectrum efficiency.

Widely used metrics to measure the effect of interference are coverage probability, outage

probability and achievable data rate. [8] shows that once base stations are turned off, inter-

ference is reduced, and coverage probability and achievable data rate are improved. Outage

probability is caused by being unable to provide a service to users that experience a SINR

below a set threshold or there is no available bandwidth [39]. [45] utilizes outage probabil-

ity as the result of switching off an eNB as a constraint in optimizing energy consumption.

However, the study did not consider service performance for individual users. Some research

neglects the impact of interference when LPNs are far away from another [9], located in
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another macro cell [46] or assumed to not have overlapping coverage [10]. There are stud-

ies on the optimization of the number of LPNs to balance the tradeoff between maximum

energy efficiency, network performance, i.e., outage probability [39] or user experience (e.g.,

the number of users per cell [47]). A way to avoid high inter-cell interference is to have a

coverage range [38, 48] and number of active base stations per cell [48] that create the least

interference. Another way to mitigate interference is to have a frequency reuse strategy.

Frequency reuse techniques are presented in [9, 12, 13, 36, 49]. So far, all studies have been

conducted on a single frequency band that is shared by both HPN and LPN yielding a high

possibility of interference. Several Inter-Cell Interference Coordination (ICIC) techniques

have been proposed to reduce the impact of the interference [50–55]. However, to prevent

LPN users from interference caused by HPNs, HPN users suffer from deteriorated service. In

this thesis, we utilize a dual-frequency scenario where minimum inter-tier interference exists.

Two distant frequency bands can operate simultaneously in the same area on different tiers

in the HetNet. HPNs, which provide service to a bigger coverage, operate on a lower fre-

quency band. LPNs, which handle smaller coverage, operate on a higher frequency such as

the AWS band. Thanks to LTE technology, it allows LPNs to concern only user data traffic

or user-plane while leaves responsibility of control signal or control-plane for HPNs [56, 57].

A similar implementation has been conducted in [12,21]. However, the works only reserve the

lower frequency band for users during low traffic to expand the coverage after switching off

base stations while both frequency bands are deployed at the same eNB in [58]. In addition,

these advantages are possible in practice considering that all four major network providers

in the USA possess licenses on both low and high frequency bands [59, 60] and additional

spectrum bands will continue to be available in 2016 [61].

So far in this section, the majority of research aims mainly to meet customer service

demand fully and equally among customers. However, the service demand can be categorized

into several levels and the service provided can be adequately adjusted without customers

noticing, instead of always providing full-service [28]. [47] shows that the different levels of

service is experienced even though eNBs transmit at a constant level of power. The levels

of service depend on the number of users sharing constant limited bandwidth. Moreover,

although a few studies have concerned and suggested the importance of different network
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planning for various types of service area, no concrete method has been proposed to reflect

the difference yet. Note that, [36] suggests that a network needs to be broken down into

five typical deployment areas, i.e., dense urban, urban, suburban, rural and unpopulated.

Moreover, a day can be divided into five periods, i.e., night, morning, average, high and busy

hour. However, the work does not state how to model the differences. [62] points out that

traffic profile in smaller areas served by pico cells can be different from one in bigger areas

served by HPNs that cover the same wider area. [28] expresses that a cellular network can be

divided into four types of service area, Business, Entertainment and Shopping, Highway and

Residential. Additionally, energy optimization is more effective when it considers different

time-varied patterns of demand and peaks of the demand in particular areas rather than

network-wide demand. Moreover, increasing capacity alone will not be enough to improve

the network energy efficiency. The capacity needs to be tuned dynamically according to

traffic demand that varies by time and locations [63]. Another interesting study shows that

the energy saving from switching off base stations is proved to increase when a ratio of the

traffic variance over its mean and the density of base stations are high. That means it is

more probable to reduce energy consumption in an area where there is high traffic variance

between day and night as well as high base station density such as in an urban area [64]

Instead of using total network traffic demand or demand per area which creates an in-

accurate average traffic demand, studies utilize the location of users to imitate geographical

variations of the traffic. Also, users location is a critical factor in computing their achiev-

able data rate and evaluating the network performance. Two major approaches to user

distribution have been assumed. The network could consist of uniformly distributed users

location [22–24,37,42,48] where the average of traffic load follows the approximated level of

demand per area. Even though the uniform distribution of user can represent the spatial

variation of traffic demand in wide areas, it does not present the nature of user concentration

in particular areas creating considerably high traffic at certain times. In comparison, the

users could gather in specific areas forming dense areas of users or particularly high service

demand per area in small regions. The occurrence can be simulated by distributing the users

according to a Poisson Point Process (PPP) with specified locations acting as centers of the

distribution and hotspots or small areas where there is high demand [20,38–40,47]. However,
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only PPP does not demonstrate sufficient traffic demand in areas far away from the hotspots.

Moreover, [65, 66] show that implementing LPNs can save significant energy when they are

where users are gathered, and energy saved increases when traffic is offloaded more to picos.

Even though backhaul energy is mentioned, solely first hop connection, microwave link in

HPNs and Ethernet terminal in LPNs, is considered. The backhaul energy consumption is

assumed to be independent of traffic and location of the eNBs. [67] re-arranges users among

coverage cells to enable turning off base stations by re-assigning users in a low loaded base

station to a new base station within range. However, the study does not consider the effect of

the reassignment on the network performance. A similar idea is experimented in [68] where

an optimization model is created to switch off base stations that have no users and maintain

required service demand. The model is extended to guarantee no coverage holes in [32].

Energy consumption concern is still not widely included when designing a network. Only

very few works have presented studies on the potential of minimizing operation energy cost

by including consideration of future energy consumption. The ability to minimize energy

consumption depends highly on network layout. Crucial constraints that limit the energy re-

duction are coverage guarantee, the location of eNBs relevant to the user location, adaptation

of the mechanism in regards to traffic profiles. [69] presents a possible network deployment

approach where the entire traditional HPN-only network is replaced by LPNs to reduce the

transmission power and the total network energy consumption. However, the number of

eNBs required to cover entire coverage area is extremely high and would cost a considerable

amount of capital to deploy the high number of LPNs and their backhaul connections. An-

other study includes QoS, coverage and capacity constraints in an optimal selection of eNBs

locations [70]. The results show that a network will mainly consist of a vast number of LPNs

to achieve the most energy efficiency. Also, there is a trade-off between network deployment

cost and level of efficiency in energy management. A constraint of full coverage requirement

limits the energy savings when the traffic level is low if there is no specific energy reduction

implemented at the remaining eNBs. In [71], the initial investment in building a network

is considered as an extra objective in the energy optimization. However, the considered

investment cost includes only a cost of installation. A cost of connection from eNBs to the

backhaul that varies by the distance from the eNBs to the backhaul is still to be studied.
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However, this work does not include distant frequency bands into the planning.

In summary, the current literature has considered mainly on how to improve the energy

efficiency of the network or cut down energy requirement by switching off equipment. The

approaches lack respects to causes of energy consumption increase and effects of energy

reduction. One of the causes that require growing energy demand is the rising service

demand. The service demand, when is handled by a standard load management, can limit

the probability to reduce the network energy consumption. In this work, we propose two

cell selection techniques to create further opportunities to save energy while maintaining

the quality of service. Moreover, besides switching off equipment, we present two energy

saving approaches that generate additional detailed energy reduction to the system. The

two approaches reduce energy requirement more specifically to the user service demand and

most importantly creates no coverage hole. Last, studies on energy saving in a cellular

network are based on results from simulations that assume either static traffic demand or

universal dynamic traffic demand that varies by only time or locations. In the last chapter

of this thesis, we evaluate our proposed energy saving mechanism in a city-like area where

traffic demand varies in both time and locations.
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3.0 SYSTEM MODEL AND SCOPE OF RESEARCH

In this chapter, we define the research problem and depict our research model and scope of

the research on LTE HetNet cell selection, energy consumption, network planning, service

demand as well as evaluation metrics.

The ultimate goal of this research is to determine a methodology for operating an LTE ac-

cess network with minimized energy requirement. The general problem is: given a prospective

service area and predicted time- and location-dependent traffic demand, determine a strategy

to operate and deploy eNBs in LTE access network that optimizes the operator’s OPEX and

CAPEX. We tackle the problem by dissecting the problem into three parts; load management

by cell selection, energy consumption and network planning.

Table 3.1 presents variables used in the following two sections and their definitions.

3.1 CELL SELECTION IN LTE HETNET

In a LTE HetNet, the traditional cell selection aims for UEs to connect to an eNB that offers

the highest SINR, which leads to the possible highest achievable data rate.

Consider a LTE network consisting of N eNB eNBs supporting NUE users. In traditional

cell selection UEi, where i ∈
{

1, . . . , NUE
}

connects to eNBj having the highest SINR,

where j ∈
{

1, . . . , N eNB
}

. Thus, the base station eNBi
j selected by UEi is given by:

eNBi
j = maxj{SINRi

j} (3.1)

where SINRi
j is the SINR level measured by UEi from base station j. In HetNets, the eNBs

have various levels of transmission power with the HPNs operating at high power and the
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Table 3.1: Variables and definitions.

Variable Definition

NUE Total number of users

UEi User equipment i when i ∈ {1, 2, 3, . . . , NUE}

N eNB Total number of eNodeBs

eNBj eNodeB j when j ∈ {1, 2, 3, . . . , N eNB}

NHPN Total number of HPNs: hpn = {1, 2, 3, . . . , NHPN}

NLPN Total number of LPNs: lpn = {1, 2, 3, . . . , NLPN}

Ehpn Energy hpn when hpn ∈ {1, . . . , NHPN}

Elpn Energy lpn when lpn ∈ {1, . . . , NLPN}

T Total number of time periods: t = {1, 2, 3, . . . , T}

Et Network energy requirement at time t

SE Supporting equipment energy factor

AC Heating ventilation and air conditioning factor

LPNs at low power. If the standard cell selection technique is used the UEs tend to connect

to the HPNs, leaving the LPNs underutilized. To better exploit LPNs, CRE techniques have

been proposed by adding an offset value offsetj to the SINR from LPNs This results in the

UEi selecting the eNB with the largest SINRi
j plus offset as given by

eNBi
j = maxj{SINRi

j + offsetj}. (3.2)

The offsetj value is zero for HPNs and is typically selected in the range of 2 - 20 dB for

LPNs [53]. Note that the offsetj can be different among LPNs. As presented in Fig. 3.1,

adding an offset value increases the geographic coverage range of LPNs, and, therefore, more

UEs connect to LPNs. As the number of UEs connecting to LPNs increases, the network

bandwidth efficiency and overall data rate increases. However, such an improvement depends

on the offset values selected. If the offset value is too small, most UEs will still select the
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Figure 3.1: Expanded LPN service range.

HPNs, thus leading to a low offloading performance. On the other hand, when the offset value

is too high, UEs will select LPNs even though they have a poor SINR and the performance

will suffer.

Because the cause of increasing energy consumption is the growing traffic demand, cell

selection or load management is critical to promote energy saving. We consider that HPNs

generally consume significantly higher energy than LPNs due to the high transmit power.

The HPNs are required to transmit at a high power because they cover a much wider area and

need to provide services to a greater number of users than LPNs. Due to the rapidly growing

mobile communication, additional deployment of LPNs is inevitable. Assuming that LPNs

obtain the same amount of bandwidth as HPNs, the LPNs can provide services to as many

users as HPNs. With more users offloaded to LPNs, we can reduce the HPNs transmit power.

In Chapter 4, we first develop a cell selection to mitigate the problem of users congestion

in HPNs caused by the standard cell selection. The first technique, Bandwidth-based (BB)

cell selection (Section 4.1), considers the number of users in each eNBs in addition to the
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SINR. BB can solve the problem of user congestion in HPNs during normal hours and create

opportunities for HPNs to reduce the power consumption. However, during quiet hours, we

found a disadvantage of the BB cell selection. The cell selection balances the load between

HPNs and LPNs regardless of the total demand. In some occasions, the total demand can

be so low that it does not require LPNs to be active. All users can particularly connect

to HPNs and receive satisfying services. We consider that HPNs are needed to operate

at all times to avoid coverage hole despite the traffic demand. The network can save more

energy by keeping LPNs inactive. Therefore, we develop the second cell selection techniques,

Energy-aware (EA) cell selection (Section 4.2), to generate further energy saving during the

quiet hours. EA maintains users with the HPNs as long as the HPNs operate at the lowest

power and satisfy users demand. Although the cell selection techniques improve the quality

of service in many cases, we do not prioritize the improvement in this work. Given the

opportunities to save power in eNBs by BB and EA cell selection, we proceed to focusing on

mechanisms to reduce the energy consumption.

3.2 ENERGY CONSUMPTION IN LTE HETNET

Because the majority of energy requirement in an LTE network is from the access network [3],

specifically, transmission equipment in eNBs [72]. Note that, we consider only the access

network of a HetNet. Power requirement and operation limits in the core network and the

user terminal are not in the scope of this research. According to [73], energy consumption in

the core network contributes to a low percentage of the total network energy consumption.

Meanwhile, energy requirement in user equipments has received great improvement for the

last two decades. Current user equipment requires more than 97% less power than one in

1990s. The advancement has made the energy consumption in user equipment negligible

when compared to the consumption in eNBs [6].

Consider a HetNet access network that consists of NHPN HPNs and NLPN LPNs. We

divide a day into a set T of non-overlapping time periods t = {1, 2, 3, . . . , T}. Note that

the time periods need not be equally long. Let Et represents the total energy consumption

18



in a LTE HetNet in time interval t. For a given eNB, we define the energy requirement

based on dependent and independent traffic demands [73]. The traffic dependent energy

requirement includes the transmission power and energy required for signal processing. The

other supporting equipment, including the power supply and controlling signal processor, are

assumed to be independent of the amount of traffic but require electric power when the eNB

is operating. Moreover, HPNs, which are, in general, installed in a dedicated building or

room, needing supplemental heating ventilation and air conditioning (HVAC). In contrast,

LPNs typically do not need. As a result, the total energy consumption in the network in

time interval t can be expressed as follows:

Et =
NLPN∑
lpn=1

xlpnt ·
(
Ellpnt + SE

)
+

NHPN∑
hpn=1

yhpnt ·
(
Ehhpnt + SE

)
+NHPN · AC,

(3.3)

where Ellpnt and Ehhpnt are the varying traffic dependent energy in LPNs and HPNs at time

t. The variables xlpnt and yhpnt are binary decision variables equal to 1 when the particular

eNB is providing service and 0 otherwise. However, in this thesis, as we require all HPNs to

stay active at all time to avoid coverage hole, yhpnt alway equals to 1. We let SE and AC

represent the energy consumption of the supporting equipment and HVAC respectively.

In this research, we focus on reducing the total energy consumption in the network. To

do so, there can be two ways according to Eq. 3.3. First is limiting the number of operating

LPNs by having as many xlpnt equal to zero as possible. To limit the number of active LPNs,

we adopt widely-studied switching off LPNs method. By switching off LPNs, we can let xlpnt

in Eq. 3.3 equal to 0. Second, in Chapter 5, we focus on reducing the Ellpnt and Ehhpnt

in Eq. 3.3 based on the traffic demand. The variables are power consumption required in

transmission of the respective eNBs. In this thesis, we assume that the traffic demand consists

of the number of users in the network and their service demand levels. According to the traffic

demand, we propose reducing the power consumed by lowering the level of HPN transmit

power based on the number of users (Section 5.1), lowering operating spectrum resource

based on the user service levels or both (Section 5.2). (Section 3.4 discusses the relation
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between the energy requirement and the spectrum resource requirement.) We analyze the

fundamental Shannon capacity equation, C = Blog2(1 + SINR) where C is user achievable

data rate, B is available bandwidth and SINR is signal to interference plus noise ratio.

Once there are fewer users in the system, available bandwidth per user, B, increases. As a

result, SINR can be lower without decreasing C. Lower required SINR yields a possibility

to reduce transmission power. We apply this principle and propose Step-dimming energy

reduction method in Section 5.1. On the other hand, when a user receives high SINR, an

eNB can restrict the user to a smaller B or spectrum resource and retain the user data rate,

C. In Section 5.2, we present an optimization model to calculate a required amount of B for

users according to their SINR.

3.3 NETWORK PLANNING

Improving the network performance by network planning is not one of our goals in this

thesis as there exists plenty of literature covering the topic. However, current literatures

on network planning still lack consideration of energy consumption. One of the challenges

is incorporating energy consideration into network planning creates a significantly greater

optimization problem. The extremely large problem for planning a city-wide network could

become an NP-hard problem. Another issue in the current literature regarding network plan-

ning for energy optimization is traffic demand consideration. A literature assumes uniform

traffic demand across the area [71]. In a large area, it is highly likely that the trend of traffic

demand varies greatly both spatially and in time. In this work, we include the diversity of

the demand into consideration. Moreover, existing cellular networks show a slowly increasing

expansion rate in the last few years. The saturation of cellular penetration rate [74] indicates

that there is a less likelihood that an operator needs to plan and build a greenfield network,

especially in an urban area [72]. Hence, to examine our energy reduction in a sample net-

work with minimum CAPEX that is as realistic as we can, we present a network planning

optimization problem in Section 6.1. The problem is to generate a sample existing HPN-

only network that requires additions of LPNs to serve the increasing demand. The problem
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focuses on coverage-driven network planning with minimum CAPEX to provide full coverage

of an area and service-driven network planning for additional demand in high-demand spots.

The additional high-demand spots represent the increase of service demand that requires an

expansion of the network in certain areas. We define a high-demand spot as a small area

where users gather and create a cluster of users that require high capacity in a small area. A

similar two-step method to plan a network is proposed in [75]. However, the work considers

a uniform traffic demand peak in planning the network expansion. A one-step model that

combines both concerns of coverage and service is presented in [71]. However, the authors

explain that the network performance or service quality part in the model does not produce

any influence on the results. Also, even though the optimization includes a variation of

traffic demand for determination of power requirement, the traffic demand does not contain

spatial variation in the coverage area. After comparing the results in a similar scenario of

the one-step model [71] and the two-step method [75], we found no significant advantage

of the one-step model over the other in terms of total expense. In this thesis, due to the

size of the planning problem and deficiency of computational resources, we decide to adopt

a two-step approach. Besides CAPEX, the two models also include energy consumption

due to traffic demand and network performance into the network planning models. Never-

theless, in the two studies, the authors consider only switching on and off eNBs to reduce

energy demand. In Chapter 5, we show that our proposed energy minimization can reduce

a significant amount of energy requirement in network operation. The amount of saving is

considerably greater than simply turning off eNBs. Therefore, we apply the CAPEX mini-

mization network planning and the OPEX minimization or energy reduction separately. In

this work, we further take into account cost of eNB equipment, site installation, backhaul

transmission equipment and radio network controller equipment in the CAPEX calculation.

The costs could impact the placement of eNBs location.

Furthermore, to our knowledge, no previous work has studied the benefit of reduced

OPEX on network planning. In Chapter 6, we create a city-like network for the purpose

of evaluating our proposed energy reduction methodology and analyzing the benefit of the

energy saving on network planning. The simulated city-like network represents a dense urban

and suburban area where traffic demand always exists. At the lowest, there is sufficient
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demand to enforce eNBs to stay active and provide services. At the highest, the demand

is so overwhelming that the available bandwidth of the eNBs in the area cannot satisfy all

the users. There are two reasons for this assumption. First is reducing energy consumption

by switching off equipments is likely not possible during busy hours in a dense area. Given

the demand, we can examine how our cell selection and energy reduction perform in such

a demanding scenario. Second, we do not consider a rural area where service demand is

sparse and minimal. Although we believe our energy reduction methods can accomplish in

the type of area, the methods will not be tested applicable with high demand. We formulate

the network planning optimization solely to construct a city-like sample network on which

we can examine our cell selection and energy reduction techniques. To an extent, the scale

of such optimization platform can be advanced in the future and used for broader purposes.

3.4 SERVICE LEVELS AND SPECTRUM RESOURCE

One main constraint in reducing energy consumption in a cellular network is guaranteeing a

quality of service (QoS) to customers. The quality of service can be classified into multiple

levels of service depending on the operator and the area of service. In 3GPP LTE standard

release 13 [76], QoS is classified into 13 categories represented by the QoS class identifier

(QCI). Seven QCI categories are best-effort-like services, and the rest are guarantee-bit-rate

(GBR) services. The categories can also be grouped into video service, real-time service,

TCP-based service, and voice service. Since we focus only on high level user data rates, we

use 5 QoS categories to represent different service levels. They are FullHD video (1080p),

HD video (720p), SD video (480p), TCP and voice service. The services require data rates of

10 Mbps, 4-7 Mbps, 500 kbps - 3 Mbps, 700 kbps [77] and 48 kbps for the Super Wideband

Adaptive Multi-Rate (SWB-AMR) voice codec [78] respectively. In this thesis, we let the

minimum required data rate for the service levels to be 10 Mbps, 5 Mbps, 3 Mbps, 700 kbps

and 50 kbps, respectively.

Additionally, the LTE standards utilize a Channel Quality Indicator (CQI). CQI is de-

fined to represent discrete levels of signal quality reception or SINR. The quality of the
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channel can be depicted by levels of SINR ranges [79–83]. The levels are determined by the

operator to suit its services. A CQI level indicates a specific modulation and coding scheme

(MCS) and transport block size (TBS) for transmitting data to the users. With MCS and

TBS, one can estimate a user achievable data rate by using the information and the number

of resource blocks (RB) assigned to the user. Here, we simplify the estimation by disre-

garding the complexity of MAC layer scheduling and physical layer modulation and coding

process. Instead, we adopt an LTE-specific modified Shannon capacity formula from [84] to

estimate the users achievable data rate. Therefore, we only need the discrete CQI levels in

considering the quality of the channel when determining the required amount of spectrum

resources for a user. To estimate and guarantee the minimum achievable data rate for a UE,

we can consider the lowest SINR of user’s reported CQI level and calculate the estimated

throughput. The CQI levels and their minimum SINR requirement are presented in Table

3.2 which is taken from [83].

Next, based on the users CQI levels, we determine a minimum amount of spectrum

resource that satisfies the users demand and minimizes the energy requirement. In LTE,

spectrum is distributed over both time domain and frequency domain. The smallest unit

that can be assigned to a user is a resource block (RB) spans over 0.5 ms in time and 180kHz

in frequency [85]. Assuming constant transmit power in all RBs, an eNB either providing

services in fewer RBs or smaller frequency band can result in less energy consumption [86,

87]. The relationship between energy consumption and resource usage in the time domain

(duration of transmission) and frequency domain (operating bandwidth) is discussed in [86,

87]. In frequency domain, 3GPP LTE standard limits bandwidth availability of an eNB

to be 1.4, 3, 5, 10, 15 and 20 MHz [88]. To establish energy saving, an eNB can execute

discontinuous transmission (DTX) and bandwidth adaptation [87, 89] which is to limit the

total number of active RBs. Figure 3.2 illustrates the standard LTE resource block and

examples of DTX and bandwidth adaptation. For example, the energy requirement in signal

transmission reduces to 60% when an eNB operates on 15 MHz bandwidth (out of a total

of 20 MHz) for 80% of the total working time. In other words, the reduced bandwidth of 15

MHz requires 75% of energy. When an eNB transmits 15 MHz bandwidth for 80% of the

time, the total energy requirement decreases to 60%. An eNB can achieve the same amount
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Table 3.2: CQI levels and minimum SINR requirement

CQI level Minimum SINR (dB)

1 -7

2 -5.0714

3 -3.1429

4 -1.2143

5 0.7143

6 2.6429

7 4.5714

8 6.5000

9 8.4286

10 10.3571

11 12.2857

12 14.2143

13 16.1429

14 18.0714

15 20

of energy saving by operating at full bandwidth (20 MHz) but only 60% of the time. As

different operating configurations can yield the same level of power saving, we disregard when

the discontinuous transmission happens and the specification of the operating bandwidth.

Instead, we determine Resource Unit (RU) as the spectrum resource usage in percentage

both in time and frequency domain. Considering the modified Shannon capacity formula

C = 0.75×B× log(1 +SINR/1.25) where B is the full bandwidth [84], we define a resource
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Figure 3.2: Spectrum Resource with DTX and Bandwidth Adaptation

unit (RU) as

RU =
reqC

(0.75×B × log(1 + SINR
1.25

)
(3.4)

RU = reqC

(0.75×B×log(1+SINR
1.25

)
in percentage; where reqC is the requested achievable data rate of

a user service demand.

3.5 RESOURCE MANAGEMENT

According to [90], several resource management techniques and scheduling techniques have

their advantages and disadvantages making them suitable for certain particular situations

and operator’s preferences. In this work, we divide the resource management strategy into
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three main situations namely: quiet hours, normal hours and busy hours. The distinction of

the situations is the amount of required bandwidth to support the service demand. During

the quiet hours, the resource availability is sufficient to meet all users demand regardless of

their service level. During normal hours, the available resource is enough to satisfy only some

of the demand but not all. Depending on users arrival to the network, their service level

could be degraded to a lower level. Busy hours or overload scenarios are when the operator

may be able to meet some users demand but can only guarantee a minimum requirement of

QoS or voice call.

Here, to describe how to incorporate adaptive resource management to various levels of

QoS, we discuss principles of resource management strategy used in this research. To provide

various levels of QoS, we distinguish services into guaranteed-bit-rate (GBR) services and

non-GBR or Best-effort (BE) services as mentioned in the previous section. An operator first

needs to prioritize and meet the demand of GBR users then provide the rest of the resource

to BE users. To implement fairness among GBR users, an eNB considers the different levels

of QoS the users demand and the users CQI. The eNB then determine a necessary amount

of resource to dedicate to each user. Assuming all users have the same channel condition

and duration of a connection, users with higher guaranteed rate should receive a greater

amount of resources. For example, a user that requests FullHD video (1080p) service, which

we assume require 10 Mbps rate, would require twice as much RU than a user that demands

HD video (720p) service of 5 Mbps. However, users do not necessarily have the same channel

conditions. Using CQI feedback, an eNB has knowledge of the channel conditions. Users

with the same type of demand will occupy more resource if they have a lower CQI level

than others to compensate the inferior channel condition. In other words, a user at cell-edge

would receive more spectrum resource than a user at cell center when they demand the same

level of QoS. Moreover, we set a maximum threshold of resource for BE users. The threshold

is a percentage of the total available resource. The threshold allows the eNB to have unused

radio resource and creates energy reduction opportunities. Also, when the resources are

heavily used, the available resource for BE users could be the only unused resource from

GBR users which, in this case, is less than the threshold. For example, the threshold of BE

users resource is 25% of the total resource. When the GBR users require 60% of the total
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available spectrum resource, all the BE users can enjoy the resource up to 25% of the total

resource. This case the eNB can save the energy of 15% given that the eNB is transmitting

at the maximum power. On the contrary, if the GBR users require 80%, all BE users will

receive 20% of the total resource and the eNB needs to operate at full capacity.

During normal hours, when the service demand increases and the available spectrum re-

source can meet only a portion of the demand, we consider a first-come-first-serve scheduling

strategy in addition to QoS levels. A BE user who connects to the network during the hours

may receive the minimum achievable data rate of 50 kbps which is sufficient to make a voice

call. Note that we consider the data rate for voice call as the lowest constraint for all users in

the network. Furthermore, when a GBR user requests a connection to an eNB that already

utilize full spectrum resource, the resource allocated to the latest connected BE user will be

reduced to meet only the minimum requirement. Later, when the demand increases further

and all connected BE users already receiving the minimum resource, the resource of the

latest GBR user will get reduced to a lower level. This procedure ensures to provide service

to every users according to their service demand and to minimize the possibility of access

failure. During the busy hours, the available resource is not enough to provide the minimum

guaranteed service to all the users. We assign the amount of resource to users proportionally

to their service demand and do not consider their CQI level to simplify the calculation for

the extremely high number of users. A GBR user with demand of 10 Mbps would receive

twice the resources a 5 Mbps-demanding user and so on. This assignment could potentially

satisfy a portion of the users.

3.6 EVALUATION METRICS

In this research we apply three particular evaluation metrics. We measure the performance

of energy reduction methods by comparing the amount of energy consumption saved by

the energy minimization mechanisms. To calculate user achievable data rates, we utilize a

LTE-specific modified Shannon’s achievable data rate formula [84]. Also, we allow users to

experience adverse effect of energy reduction; lower data rate. Therefore, to examine the
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impact, we define customer satisfaction metric which compares the percentage of users that

receive data rate higher than required data rate according to the levels of service.

When doing research on energy optimization, very often researchers measure the perfor-

mance and analyze the results using certain general metrics, for instance, data rate, SINR

and coverage probability. However, it is understandable that in doing an experiment, there

are certain variables and constraints that substantially affect the format of the measurement

and correspondingly the intuition of network or optimization performance [6]. For example,

an increased data rate, higher coverage probability or greater data transferred per energy

unit can lead to a conclusion of better network performance. However, the improvement of

the results could be achieved by only deploying more base stations that consequently cause

an additional amount of energy consumption. Therefore, we focus mainly on the amount of

energy consumption as the goal of optimizing the network operation.

3.6.1 Customer Satisfaction

Measuring the performance based on only the general metrics can also mislead the analysis

of optimization results. Lower system performance after performing an energy reducing

process does not always represent an inferior mechanism for energy saving. For example,

during a light load time, because there are fewer users demanding the service at the time,

as long as the users receive the service they expect, the energy saving technique should be

considered successful. However, the results of the general metrics could reveal otherwise.

Therefore, to evaluate the service performance of the system in this research, we do not take

into account various defined QoS measurement metrics, coverage probability, and outage

probability as in [20, 38]. We suggest adhering an achievable data rate, and we propose

customer satisfaction as a further performance metric for more informative results.

An optimization decision is often made solely based on the general measurements. With

the same reason previously discussed, discarding firm constraints on the general metrics could

lead to more opportunities to reduce energy consumption. Therefore, our work concentrates

primarily on lessening amount of energy and allows users to experience an occasional adverse

effect of degraded resource availability and QoS. Customer satisfaction is a percentage of
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the number of satisfied users and the number of total users in the system. We assume that

users are satisfied when they experience a higher data rate than their respective request and

are not satisfied when the received achievable data rate is lower. Thus, a user can only be

either satisfied or not satisfied. The percentage can present the drawbacks of power cutting

and provide an informative comparison of the user experience before and after the power

reduction procedure.

In this work, we define the customer satisfaction according to the traffic demand assump-

tion in each scenario. In principle scenarios (Section 4.1) where we assume users receive equal

bandwidth, we define a minimum baseline requirement of data rate to be 695.4 kbps. The

minimum baseline is the average user data rate in a traditional HPN-only cellular network

before the demand of mobile communication steeply increased. We assume that after net-

work expansion or the addition of LPNs, users should receive a better service; higher data

rate than the minimum baseline. See Appendix for calculation of the baseline. Furthermore,

in scenarios where we apply various QoS levels, the customer satisfaction rate is a percentage

of users that receive an achievable data rate that is higher than their respective service. We

consider GBR users satisfied when they receive a data rate that is higher than 700 kbps

which is the minimum guaranteed data rate for VDO services. Similarly, satisfied BE users

are BE users who achieve a data rate higher than 50 kbps which is the guaranteed data

rate for voice call. A similar customer satisfaction metric is mentioned in [91] to compare

the performance of different energy reduction methods in terms of energy per satisfied users.

However, no computational work was shown.
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4.0 CELL SELECTION

In this chapter, we present our two cell selection techniques, namely; Bandwidth-based

(BB) and Energy-aware (EA) cell selection. The two techniques are our first part of the

process to minimize the energy consumption in LTE access network. The purpose of the two

approaches is to manipulate the traffic load to create the maximum possibility of reducing

power requirement in operating eNBs while maintaining the quality of service for users.

It is widely known that the majority of energy consumed in an access cellular network

is at HPNs. Research often displays that the amount of energy that can be saved depends

highly on how a system handles the traffic demand. Studies show more power can be re-

duced when traffic demand or users are moved to particular desired eNBs in order to enable

other eNBs to switch off. However, after LTE technology has been deployed, LTE-based cell

selection mechanisms have been proposed and implemented, thus far no cell selection tech-

niques have taken into consideration energy consumption yet. Besides, current researchers

believe that offloading more traffic from high-powered nodes (HPNs) to low-powered nodes

(LPNs) that provides smaller coverage can improve overall service quality. However, that is

not always necessary. With the typical technique, too many users could be connecting to

the same eNB yielding small available bandwidth for each user. Many agree the network

needs a cell selection technique that aims to balance the number of users in HPNs and LPNs.

One considerable challenge making the network imbalance is significantly different RSS users

experience from HPN and LPN. [50, 53, 92, 93] present Cell Range Expansion (CRE) with

Offset Value by adding a logical offset value to cell selecting decision, making UEs connect

to LPNs regardless of the stronger signal from HPNs. As a result, the traffic is offloaded to

LPNs, bandwidth is more utilized and spectral efficiency increases. However, the improve-

ment depends greatly on the determination of the offset value. If the value is too small,
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most UEs will remain with HPNs leaving lower network performance for most UEs. On the

other hand, when the offset value is too high, LPN UEs that are far away from the node will

experience much interference due to the farther distance from the connecting LPN. [93–96]

show a method using an adaptive offset value based on the time varied UE distribution

and traffic requirement. Nevertheless, the proposed CRE with offset techniques still cannot

achieve a well-balanced HetNet that evenly utilizes the available bandwidth from both HPNs

and LPNs. Therefore, we propose additional considerations to the cell selection techniques.

In order to maintain the levels of service, we consider both the network performance in terms

of UEs achievable data rate and the possibility to reduce the energy required. Note that a

HetNet implementation is assumed inevitable in this dissertation.

Here we discuss two cell selection techniques; Bandwidth-based and Energy-aware, their

possibility of reducing the total energy consumption and their effect on the overall UEs

experience in the dual-frequency system. The result of analysis in this chapter will be used

in later chapters when we consider reducing energy consumption.

4.1 BANDWIDTH-BASED CELL SELECTION

Studies have shown that standard cell selection techniques fail to promote a well-balanced

HetNet where available bandwidth in both HPNs and LPNs is shared equally. Using only

specific cell range [14] or SINR, even with a CRE offset [14] and [20], to choose eNBs, in

most cases, still leaves the majority of UEs connecting to the HPNs. This is because of

the bigger area covered by the HPNs and the stronger transmit signal strength from the

HPNs. Since HPNs consume the majority of the network energy, we would like to create

more opportunities to reduce the energy requirement in operating HPNs. To do so, we want

to push more UEs to LPNs and leave fewer UEs demanding service from HPNs. Therefore,

we propose Bandwidth-based cell selection to share the available resource in HetNet more

evenly and create more possibility to minimize traffic load in HPNs and, as a result, lower

energy consumption.

Note that using SINR as the decisive factor can cluster UEs into one or a few eNBs the
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bandwidth in a eNB is shared among UEs. The connecting UEs may suffer from decreased

available bandwidth and achievable data rate. Also, it requires the eNBs to operate at

full capacity. Because there are UE-congested eNBs, there must be other eNBs that have

a more available bandwidth that at the moment is shared by fewer UEs. The concept of

a Self-organizing Network (SON) [97] proposes that eNBs, both HPNs and LPNs, in the

same service area communicate and exchange their network conditions. The advancement

enables a system to act collectively to save energy by redistributing traffic and sharing traffic

information among eNBs [98, 99]. Our goal here is to move UEs from the congested eNBs

to the ones that are less congested in order to benefit from more available bandwidth and

produce feasibility for HPNs not to operate at full capacity. To focus on the number of

users offloaded and average performance of the network, at this stage of the research, we

consider all UEs receive the equal amount of bandwidth and the same type of service. The

performance of the network and the quality of service is measured by comparing the user

achievable data rate to the average data rate of user when there are only HPNs operating,

BaseC (see Section 3.6).

A diagram showing the process is presented in Figure 4.1. A UEi searches for the

strongest SINR from all eNB and initially requests to connect to the eNB that provides

the highest SINR (eNBk, k = 1). The eNB grants the request and establishes the connection

if the number of connected UEs (NUE
k ) does not exceed a threshold (TL). TL is set to equal

to the total number of UE in the service area divided by the number of eNBs (NUE/NeNB).

Then, the selected eNBk updates its number of connected users NUE
k . If the UEi is excessive,

the UEi will try to connect the eNB that provides the next strongest SINR; eNBk, k = 2.

Moreover, the process repeats until k surpasses α in case the second eNB is also too crowded

according to the same threshold. In the end, if all the choices are crowded, the eNBs

(eNBk; k = 1, 2, ...α) will decide according to the number of their existing UEs and connect

UEi to the eNB that can provide the most available bandwidth; fewest connected users

(mink(NUE
k )). An example of connections between UEs and eNBs with Bandwidth-based

cell selection in a cell of 500 meter radius, with the total of 200 UEs, one HPN and 18

LPNs distributed 50 meters to the cell edge is presented in Figure 4.2. Blue circles and lines

represent HPN UEs and connections to the HPN while red represents LPNs, their UEs and
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eNBk updates 

Nk
UE = Nk
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Figure 4.1: Bandwidth-based cell selection mechanism

their connections. An immediate observation shows that, because of the cell selection, UEs

that would have connected to the HPN due to HPN stronger SINR connect to LPNs.

4.2 ENERGY-AWARE CELL SELECTION

The purpose of the Bandwidth-based cell selection is to draw more UEs to LPNs so that

HPNs need to provide service to fewer users and require less energy. However, from our study,

we found a disadvantage of the cell selection during light load periods. Because BB pushes

more UEs to LPNs creating a possibility to reduce energy consumption at HPNs, LPNs

need to operate for a longer period to serve the offloaded users. Depending on the number

of LPNs installed in the network, the higher number of operating LPNs could adversely

generate more energy consumption than the energy saved at load-reduced HPNs. Also, we

assume that HPNs act as umbrella eNBs that handle communication of the control signal.

As a result, HPNs need to maintain their operation at a certain level at all time regardless of
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Figure 4.2: Connection example of bandwidth-based cell selection

the amount of traffic. The level of operation can be at the minimum energy-consuming stage.

Consider a low load period when few users are sharing the HPN bandwidth, a significant

amount of resource can be dedicated to the users. The vast amount of resource then lessens

the necessity of high transmit power from HPNs. Hence, at the minimum energy-consuming

stage, HPNs can provide service for the low number of users with their minimum transmit

power. Also, on such occasions, we can have the LPNs inactive and reduce the total energy

consumption of the network. Here, we propose Energy-aware (EA) cell selection that aims to

create a maximum possibility to reduce the total energy consumption by keeping the LPNs

off as long as possible and providing the sufficient service to UEs by only the HPNs.

Consider a HetNet that contains eNBj when j ∈ [1, N eNB] and N eNB is the total number

of eNBs in the HetNet. The HetNet contains one central eNB which is an HPN, NHPN = 1.

We let eNB1 represent the HPN and eNBj when j ∈ [2, NLPN +1] given NLPN is the number

of LPNs represent LPNs. At time t, there are UEi when i ∈ [1, NUE
t ]. According to Eq. 3.4,

the required RU for UEi is RU i when the requested service requires an achievable data rate
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of reqCi and SINR of reqSINRi. When performing EA cell selection, the HPN decides to

connect and provide the service to all the users when two conditions are met. The conditions

are 1) the HPN (eNB1) must be able to provide the service to all users,
∑NUE

t
i RU i < 100%,

and 2) the SINR that all users receive from the HPN minimum transmit power must be

equal or greater than the requirement, SINRi
1 ≥ reqSINRi. When either of the conditions

is not met, the HPN decides to switch to BB cell selection and turn on the neighboring

LPNs. When all UEs connect to the HPN due to EA cell selection, we can have all LPNs

switched off and let xlpnt = 0,∀ lpn to minimize the total energy consumption according to

Eq. 3.3. Furthermore, due to the main purpose of cell selection is to hold the total energy

consumption at the minimum. According to Eq. 3.4, the operator could lower the QoS

(reqCi) for some users to keep the transmit power of HPN at the minimum. The HPN

would need to increase its transmit power to increase SINRi
1 in order to compensate with

the limited RU when the number of users increases. Also, by lowering the QoS, the system

can maintain the total of RU (
∑NUE

t
i RU i) under 100% and refrain LPNs from switching on.

A similar cell selection technique has been very recently proposed in [100]. Although

the work does prove that users would have the best experience receiving services when the

load is well balanced between the tiers, the proposed technique does not consider energy

consumption in the network. The proposed technique solely aims to improve the quality of

service by utilizing adaptive CRE and traditional SINR-based cell selection to balance the

traffic load between an HPN and LPNs. Even though the authors consider switching off

LPNs, there is no possibility of energy reduction in terms of optimizing resource utilization

in eNBs involved (see Section 5.2). Besides, the criteria to start offloading from an HPN

is a solid pre-determined percentage of load regardless of energy requirement and service

levels. Also, the authors assume that the traffic load in an area increases gradually creating

a slight necessity to switch on several LPNs at the same time. The assumption contradicts

to our traffic profile that we received from a real network measurement [101]. In our data,

the traffic demand rises sharply from a quiet hour to a busy hour. The sudden increase

makes switching to BB more suitable. Nevertheless, in a future work, we can improve EA

cell selection by ensuring HPNs remain operating at close to 100% resource at the minimum

energy even after switching on LPNs. Doing so would restrain additional LPNs from starting
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to provide service and save more energy during this transition time. However, in this work,

due to sharp increase in general traffic demand and brief time of the transition that we

conceive, we decide that the potential amount of extra energy saving would not worth the

additional concern and calculation.

Figure 4.3 and Figure 4.4 show an example of connections between UEs and eNBs with

Energy-aware cell selection in a cell of 500 meter radius on a quiet hour with the total of

56 UEs and on a busy hour with the total of 200 UEs. The example has one HPN and 18

LPNs distributed 50 meters to the cell edge. Blue circles and lines represent HPN UEs and

connections to the HPN while red represents LPNs, their UEs and their connections. Figure

4.3 shows that during quiet hours, all UEs connect to the HPN while Figure 4.4 presents

similar UE-eNB connections to BB cell selection.

Distance(m)

-500 -400 -300 -200 -100 0 100 200 300 400 500

D
is

ta
n
c
e
(m

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Figure 4.3: Connection example of energy-aware cell selection during quiet hours
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Figure 4.4: Connection example of energy-aware cell selection during busy hours

4.3 NUMERICAL RESULTS

To evaluate the performance of our proposed cell selection techniques, we compare the tech-

niques with two simplified cell selection techniques, namely, Distance-based (DB) and SINR-

based (SB). When the system utilizes DB, UEs connect to LPNs whenever they are within

a pre-determined geographical distance from the LPNs regardless of the distance from the

HPN and SINR [14]. This LPN coverage is assumed be an effective cell radius of the LPNs.

This number can vary by scenarios. Figure 4.5 shows an example of a service cell of 500

meter radius, with 200 total UEs connecting to eNBs according to DB cell selection. The

effective cell radius of the LPNs in the example is 50 meters. Blue circles and lines rep-

resent HPN UEs and connections to the HPN while red represents LPNs, LPN UEs and

their connection. Also, a UE performing SINR-based cell selection chooses to connect to an

eNB that can provide the highest SINR regardless of physical distance between the UE and

eNBs [14, 20]. Because an HPN transmits signal at a considerably higher power level than
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LPNs, usually by selecting an eNB based on only the SINR, the majority of UEs will con-

centrate into the HPN. CRE offset value has been introduced into this technique to increase

the logical level of the LPNs signal strength. Doing so allows signal strength from LPNs to

be more comparable and draws more UEs to the LPNs making the network more balanced.

As a result, UEs that connect to the LPNs can enjoy more available bandwidth and thus

higher achievable data rate. Figure 4.6 shows an example of UEs with connection to eNBs

using SINR-based cell selection with offset value of zero. Blue color represents HPN UEs

and their connection and red color represents LPNs, LPN UEs and their connection.
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Figure 4.5: Connection example of distance-based cell selection

Next, we explain a sample HetNet on which we evaluate our proposed cell selection

techniques. We assume that the service area of this work contains three service cells covered

by three HPNs. The HPNs operate as umbrella eNBs with coverage of 500 meters in radius.

Each service cell has 18 LPNs providing services at high-demand spots within the HPN
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Figure 4.6: Connection example of SINR-based cell selection when offset = 0 dB

coverage. LPNs are deterministically distributed around their HPN with equal angular

distance [17,102]. Six LPNs are deployed 200 meters away from the HPN, and 12 LPNs are

350 meters away to form two rings of coverage that can cover the service cell. Figure 4.7

shows the service area with blue dots represent HPNs, and red dots represent LPNs.

In this chapter, we examine the performance of the cell selection techniques on various

traffic load. We define two types of users, namely, general users and HS users. We vary

the number of general users from 20 to 240 users and assume that each high-demand spots

generates an additional 10% of the general users to the total load. For instance, when

there are 100 users in the general area of the service cell, each high-demand spot will have

an addition of 10 users. The total number of users in the service cell becomes 280 users

(100 + (0.1× 100× 18) = 280). General users location is uniformly distributed throughout

the service cell while the additional high-demand spot users are uniformly distributed around

the location of the LPNs. We determine a user location by a distance from the center of

the distribution (d) and angle of the vector to the UE location (θ). Thus, a user location
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Figure 4.7: eNBs location

coordinate is determined by (d cos θ, d sin θ), as shown in Figure 4.8, where d is uniformly

random from 0 – 500 meters for general users and 0 – 150 meters for high-demand spot users

and θ is uniformly random from 0 – 360 degrees. To learn the impact of load, we vary the

number of general users from 20 to 240. We conduct each scenario for 1,000 iterations to

simulate the variation of users location and order of network entry. Particularly, in Energy-

aware cell selection when we start to consider various levels of service demand, we define

minimum data rate requirements of 10 Mbps, 5 Mbps, 3 Mbps, 700 kbps and 50kbps, for

FullHD video, HD video, SD video, TCP and voice service, respectively. Probability for a

user to request for each type of service equals to 0.05, 0.15, 0.25, 0.25 and 0.3 for FullHD

video, HD video, SD video, TCP and best-effort. Note that best-effort users are users who

receive a guarantee for only voice service that requires 50 kbps but initially we aim to provide

higher data rate, “baseline” mentioned in Section 3.6.1, to satisfy the users.

The HPN transmits a signal at the power of 46 dBm on 800 MHz band while the LPNs

are operating on 2.1 GHz band with the transmit power of 30 dBm. We use Okumura-Hata
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Figure 4.8: Determining UEs location

urban model [103] to calculate pathloss for HPN signal; Lp = 69.55 + 26.16log(f)− 13.82 ∗

log(hb)− a(hm) + (44.9− 6.55log(hb))log(d). The factor a is 3.2(log(11.75hm))2 − 4.97. Lp

is pathloss in dB, f is frequency which is 800MHz, hb is the height of them, d is distance

between the HPN and the UE in km. For LPN pathloss, we calculate according to “3GPP

heterogeneous system simulation baseline parameters for outdoor/Hotzone”, model 1 for 2

GHz Pico to UE, Lp = 140.7 + 36.7log10(d) [104]. Each eNB obtains 10 MHz bandwidth

(B). A user achievable data rate, C, is calculated according to the LTE-specific modified

Shannon’s formula [84], C = 0.75Blog2(1+SINR/1.25), where B is the available bandwidth,

SINR is the RSS of the UE, I is the interference which is equal to the combination of signal

strength from all eNBs operating on the same frequency band and we assume no inter-tier

interference. Noise (N) is set -92 dBm. Table 4.1 summarizes the system parameters.

Figure 4.9 - 4.13 show numerical results of all cell selection techniques. Black solid lines

present results for Distance-based (DB) cell selection. Red solid lines present results for

SINR-based (SB) cell selection. Pink solid lines show results for Bandwidth-based (BB) cell

selection. Blue solid lines represent results for Energy-aware (EA) cell selection and blue

dash lines are for EA when the load is significantly low (the number of general users is two

to 20). We present the offloading rate in Figure 4.9. When compared to SB, both BB and
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Table 4.1: System parameters

HPN cell radius, RHPN 500 m

LPN cell radius, RLPN 150 m

Transmission power, Pt 46 dBm (HPN)

30 dBm (LPN)

Carrier frequency, f 800 MHz (HPN)

2.1 GHz (LPN)

Bandwidth, B 10 MHz

Pathloss model Lp (HPN)= 69.55 + 26.16log(f)− 13.82 ∗ log(hb)

−a(hm) + (44.9− 6.55log(hb))log(d);

a = 3.2(log(11.75hm))2 − 4.97

Lp (LPN)= 140.7 + 36.7log10(d)

Achievable data rate, C C = 0.75Blog2(1 + SINR/1.25)

Interference, I
∑
RSSneighboring eNB

Noise, N -92 dBm
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EA have a significantly higher percentage of LPN users. The higher portion of LPN users

produces the considerably high opportunity to reduce energy consumption in HPNs because

the HPNs need to provide service to fewer users. Also, we can see an effect of EA when the

traffic load is very small. There are no LPN users. The HPNs can provide service to all users

in the service area until the number of general users increases over 20 (the total number of

users is over 56).
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Figure 4.9: Percentage of LPN user

Next, we observe the effect of cell selection techniques on overall user achievable data

rate. Figure 4.10 shows that user data rate reduces when the load rises. Moreover, the

Figure presents the result of keeping users connect to HPNs. The average data rate of users

decreases by the number of users until the system switches from EA to BB.

Figure 4.10 shows that the overall user data rate when the network operates on SB is

higher than our techniques. However, we can see from the Figure 4.11 that the majority
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Figure 4.10: Achievable data rate of all users

of users which connect to the HPNs suffer tremendously. The data rate of most users is

extremely low because they share a limited HPN bandwidth with the great number of users

at HPNs. Figure 4.12 confirms the reason of studies that want to offload more users to

LPNs. With typical SB cell selection, there is considerably more radio resource available in

LPNs. Whereas, our BB cell selection produces an extremely comparable data rate for all

users, both HPN and LPN users.
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Figure 4.11: Achievable data rate of HPN users
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Figure 4.12: Achievable data rate of LPN users
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In addition, we present customer satisfaction rate of the users in Figure 4.13. Figure

4.10 shows that the average achievable data rate of all users is the highest when the system

uses SB. However, according to Figure 4.13, the percentage of users that enjoy the services is

significantly lower than the two proposed techniques. That is because the majority of users

connect to HPNs and suffer from a shortage of available bandwidth. On the other hand,

BB and EA result in lower overall data rate but more users are satisfied. It is because the

network is more balanced, and the available resource is shared more evenly than when the

system uses SB. All the results show that, with our proposed cell selection, an operator can

accomplish a great possibility of energy reduction in the network while improving the service

quality as well.
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Figure 4.13: Customer satisfaction
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Last, we vary the number of LPNs underlaying the HPNs to see the impact of the number

of LPNs on the network performance. We further consider when the system has 6, 12 or 24

LPNs per HPN instead of 18. The location of the eNBs are shown in Figure 4.14 - Figure

4.16. Figure 4.17 and Figure 4.18 present offloading rate and customer satisfaction rate when

the system has different number of LPNs. Figure 4.17 shows that when the network has 18

and 24 LPNs per HPN the system can offload the highest number of users to LPNs. However,

when the network consists of 24 LPNs per HPN, the network can satisfy significantly fewer

users as illustrated in Figure 4.18. The reason is because when there are 24 LPNs per HPN,

the LPNs become congested in the area and create high interference to neighboring LPNs.

Therefore, with the considered network, the ratio of 18 LPNs per HPN can produce the

highest possibilities to reduce energy reduction and customer satisfaction rate.
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Figure 4.14: eNBs location with 6 LPNs per HPN

47



Distance(m)

-600 -400 -200 0 200 400 600 800

D
is

ta
n
c
e
(m

)

-800

-600

-400

-200

0

200

400

600

800

HPN
LPN

Figure 4.15: eNBs location with 12 LPNs per HPN
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Figure 4.16: eNBs location with 24 LPNs per HPN
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5.0 ENERGY REDUCTION

In this chapter we present two energy reduction models, namely, Step-dimming(SD) and

Resource-based(RE) Energy optimization. After we succeed manipulating traffic demand

to promote the most possibility to reduce network energy consumption by cell selection

techniques, we now present models to minimize the energy consumption while maintaining

the service quality and customer satisfaction. Energy reduction cooperation among eNBs

has become a standard by the introduction of 3GPP TS 32.521 technical specification [97].

The technical specification introduces Telecommunication management, Self-Organizing Net-

works (SON), and Policy Network Resource Model (NRM). The standard adds automatic

network management and intelligent features to the system. Thus, it improves performance

and increases flexibility of the cellular system through network optimization and reconfigura-

tion processes. SON enables the eNBs to adjust their configurations when necessary without

human intervention. Thus, more operations such as timed sleep mode are possible [98, 99].

Sleep mode is one of the various applications of SON, where eNBs are enabled to act collec-

tively to save energy by redistributing traffic and sharing traffic information among eNBs.

In this chapter, we present Step-dimming energy reduction that reduces transmit power of

HPNs according to the number of connecting users. The numerical results of the model are

discussed in Section 5.1.1. Last, based on our resource management (see Section 3.5) and

various service demand levels, we propose Resource-based energy optimization in Section 5.2

and discuss its experimental results in Section 5.2.1.
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5.1 STEP-DIMMING ENERGY REDUCTION

We believe that the majority of the energy consumption in LTE HetNets is at HPNs, which

operators deploy to provide wide area coverage. At an HPN, when there are fewer users, the

available bandwidth per user increases. The increase of available bandwidth for each user

requires lower SINR to achieve the same level of data rate. Hence, it is possible for an HPN

to transmit signal at lower power strength and maintain the quality of service.

Consider the energy required by each eNB at time t discussed in Section 3.2 and the

number of attached users to LPNs and HPNs, Nllpnt and Nhhpnt , result from the cell selection

in Chapter 4. At this stage we consider the number of users as the load of the eNBs. We

assume that LPNs operate at low power and can only be turned on or off, xlpnt ∈ {0, 1}.

Therefore, when operating, Nllpnt > 0 and xlpnt = 1, an LPN transmits at TxLPN constantly

and consumes an extra SE percent of TxLPN for supporting equipment regardless of the

demand level. As a result,
∑NLPN

lpn=1 x
lpn
t ·

(
Ellpnt + SE

)
in Eq. 3.3 becomes

∑NLPN

lpn=1 x
lpn
t ·

(1 + SE) · T xLPN in Eq. 5.1a. Meanwhile, HPNs require energy for signal transmission,

supporting equipment and HVAC. An operator can determine variation of transmission power

depending on the current traffic. We assume a set of possible transmission power levels

for HPNs, TxHPN = [30, 31, 32, . . . ,MaxT xHPN ] dBm. Thanks to increased available

bandwidth per users during light-loaded periods, the transmission power of HPNs can be

lowered and users can achieve expected data rate. Depending on the operator network

planning, baseline targeted data rate is defined in matrix BaseC(Figure A1). The matrix

contains expected achievable data rate when an HPN has Nhhpn = [10, 15, 20, . . . , 250]

and transmits at TxHPN . Calculation of BaseC can be found in the Appendix. Binary

matrix nhpn
t and phpn

t are created to specify the current condition of HPNs at time t such

that the number of HPNs users Nhhpnt 6 Nhhpn × [nhpn
t ]t;

∑
nhpn

t = 1 and the HPNs

transmission power T xHPN
t = TxHPN × [phpn

t ]t;
∑

phpn
t = 1. As a result, the traffic

dependent energy at HPNs Ehhpnt = [TxHPN ] × [phpn
t ]t in Eq. 5.1a. Moreover, we define

supporting equipment, SE, and air-conditioning, AC, energy requirement as percentage of

the maximum transmission power, MaxT xHPN . The supporting equipment consumes energy

only when the HPNs are transmitting signal, yhpnt = 1, while the air-conditioning is needed
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to be on at all time. Even though the supporting equipment and air-conditioning consume

varying power due to the amount of traffic processed and heat generated by the equipment,

the varying portion is marginal [105]. We assume the varying portion is included in the

transmission power consumption.

Given the definitions above, we seek to minimize the total energy consumption
∑T

t=1Et

by turning off LPNs when there are no users (Nllpnt = 0) and optimize the HPNs transmission

power according to the current number of HPNs users (Nhhpnt ). A linear integer programming

optimization is formulated as follows:

min
T∑
t=1

NLPN∑
lpn=1

xlpnt · (1 + SE) · T xLPN

+
T∑
t=1

NHPN∑
hpn=1

yhpnt ·
[
TxHPN

]
×
[
phpn
t

]t
+

T∑
t=1

NHPN∑
hpn=1

(
yhpnt · SE ·MaxT xHPN

)
+ T ·NHPN · AC ·MaxT xHPN

(5.1a)

s.t.

Nllpnt · x
lpn
t ≥ Nllpnt (5.1b)

Nhhpnt · yhpnt ≥ Nhhpnt (5.1c)[
nhpn

t

]
× [BaseC]×

[
phpn
t

]t
≥ ExpC (5.1d)

xlpnt , yhpnt ∈ {0, 1} (5.1e)

The objective of the model is to minimize the total network energy consumption over time T .

Eq. 5.1a consists of energy requirement from LPNs, HPNs transmission, HPNs supporting

equipment and HPNs HVAC respectively. Eq. 5.1b and 5.1c assure eNBs are switched on

when there are users connected. Constraint Eq. 5.1d determines HPNs transmission power

regarding the number of HPN users and expected achievable data rate, ExpC.

A similar concept is mentioned in [102]. However, the work does not include any opti-

mization model nor various traffic profile.
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5.1.1 Numerical Results

To evaluate the power optimization model, we simulate a sample HetNet system similar to

the one in Section 4.3. Three HPNs are operating on 800 MHz frequency band and able to

transmit a signal at the maximum of 46 dBm. The HPNs transmit power can vary depending

on the load (Nhhpnt ), TxHPN = {30, 31, 32, . . . ,MaxT xHPN}. LPNs are operating on 2100

MHz frequency band and transmit a signal at 30 dBm constantly when active. The locations

of the eNBs are identical to Figure 4.7. According to [73], we define energy requirement for

supporting equipment, SE, and air-conditioning, AC, to be 27% of regarding eNB maximum

transmission power. Table 5.1 presents our simulation parameters. We simulate the traffic

load by using a measured traffic profile from an area in Northern California [101]. The profile

contains mean and variance of traffic demand in areas. The average of demand is normalized

to represent the percentage of system capacity in an area. Figure 5.1 shows the normalized

average network traffic demand in each hour. In our sample HetNet, we assume that the

maximum number of general users is 200 users, and each high-demand spot adds 10% of

the number of users. We use the same random method of generating users location as in

Section 4.3. To simulate the variation of users location and the order of network entry, we

conduct each scenario for 500 iterations. Moreover, we continue to analyze results when DB

and SB cell selection is used along with our proposed cell selections, BB, and EA, to learn

the impact of various cell selections. DB cell selection presents a reference when a fixed

cell coverage of LPNs is strictly enforced. SB cell selection represents current standard cell

selection technique.

When considering the effectiveness of energy optimization, an analysis is typically based

on general metrics such as an impact on the data rate of users, coverage probability and

efficiency of energy usage. However, in practice, there are more variables and constraints

that substantially affect the measurement and the evaluation. For example, an operator could

conclude that an increased data rate, higher coverage probability, or greater data transferred

per energy unit lead to an improved network performance. However, the improvement can be

achieved by only deploying more base stations that consequently causes additional energy

consumption. Therefore, to measure the performance we focus on the actual amount of
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Table 5.1: Simulation parameters

Parameter Configuration

HPN cell radius, RHPN 500 m

LPN cell radius, RLPN 150 m [106]

Max. transmission power, MaxT x 46 dBm (HPN) [107,108], 30 dBm (LPN) [106,107]

Carrier frequency, f 800 MHz (HPN), 2.1 GHz (LPN)

SE energy factor, SE 27% of MaxT x [73]

AC energy factor, AC 27% of MaxT x [73]

Bandwidth, B 10 MHz [107,108]

Pathloss model Lp (HPN)= 69.55 + 26.16log(f)− 13.82 ∗ log(hb)

−a(hm) + (44.9− 6.55log(hb))log(d);

a = 3.2(log(11.75hm))2 − 4.97 [103]

Lp (LPN)= 140.7 + 36.7log10(d) [104]

Achievable data rate, C C = 0.75Blog2(1 + SINR/1.25) [84]

Interference, I
∑
RSSneighboring eNB

Noise, N -92 dBm

Time periods, T 24 hours
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Figure 5.1: Normalized network traffic demand

energy consumption and measure the improvement in terms of percentage of the energy

required after optimization. Also, we do not limit the maximum data rate of users who

receive high SINR. On the other hand, we allow users to experience descended services caused

by an adverse effect of degraded signal quality as a trade-off of lower energy consumption.

We only consider data rate required for a voice call, 50kbps, as the minimum requirement.

Firstly, we present Table 5.2. The table shows the percentage of energy requirement after

performing energy reduction mechanisms. The percentage is a percentage of full operation

energy consumption when there is no energy reduction performed. Results in each scenario

contain two numbers. The first is the percentage of energy consumed after performing Step-

dimming (SD) energy reduction. The second is the percentage of energy consumption when

the system only operates widely-proposed switching on-off eNB technique. The difference

is that, in our proposed method, we also optimize the transmit power of HPNs in addition

to solely switching off zero-loaded eNBs. The table presents the percentage of the energy

consumption in the network (Total), HPNs and LPNs. In the table, BB represents proposed
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Table 5.2: Total energy consumption in percentage of full operation energy requirement

when using Step-dimming compared to switching on and off eNBs only (SD/no dimming)

BB EA DB SB

Total 36.67%/95.24% 32.98%/91.54% 36.70%/95.26% 57.81%/91.97%

HPNs 19.60%/100% 19.60%/100% 19.60%/100% 53.09%/100%

LPNs 82.46%/82.46% 68.84%/68.84% 82.56%/82.56% 70.45%/70.45%

BB:Bandwidth-based, EA:Energy-aware, DB:Distance-based, SB: SINR-based cell selection

Bandwidth-based cell selection, EA stands for Energy-aware cell selection, DB and SB are

Distance-based and SINR-based respectively. According to the table, we can reduce the

total energy consumption considerably with the proposed energy optimization technique,

Step-dimming model. The network requires as low as 32.98% of full operation requirement

when the system uses EA cell selection and SD energy reduction model. The optimization

method can also reduce the energy consumption when the system uses the typical SB cell

selection to 57.81%. Though, the power consumption is considerably higher than the system

uses BB and EA, which requires 36.67% and 32.98% respectively. The reason is that the SB

congests a larger number of users at the HPNs, which consume significantly more power than

the LPNs. When there are a significant number of users at HPNs, it is less possible to reduce

the transmit power at HPNs. As a result, the energy requirement at the HPNs, 53.09%, is

significantly higher than when the network uses other cell selection techniques, 19.60%.

Moreover, EA results in the lowest energy requirement regardless of the energy optimization

methods. The main reason is that the cell selection creates the most opportunities for LPNs

to switch off. EA results in LPNs consuming energy at 68.84% of when they are always

active.

Next, Figure 5.2 - 5.7 present further numerical results in each hour period. In the

figures, black lines with ‘x’ markers present results for Distance-based (DB) cell selection.

Red lines with ‘�’ markers present results for SINR-based (SB) cell selection. Pink lines

with ‘4’ marker show results for Bandwidth-based (BB) cell selection. Blue lines with ‘◦’
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markers represent results for Energy-aware (EA) cell selection. Also, dash lines and solid

lines demonstrate results before and after performing energy reduction. First, we analyze the

system power consumption by hours to see the effect of the variation in traffic load. Figure

5.2 shows that the difference in power consumption between EA and other cell selection

techniques is apparent during low-load periods. Figure 5.3 shows that during those periods

LPNs consume significantly smaller amount of energy on average or become inactive while

Figure 5.4 shows that the cell selection does not increase power consumption at HPNs during

that time. On the other hand, SB requires the highest amount of power during the busy

hours (10 - 20) due to the significant number of users congesting in the HPNs.
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Figure 5.2: Total energy consumption in percentage of full operation after using Step-

dimming
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Figure 5.3: LPN energy consumption in percentage of full operation
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Figure 5.4: HPN energy consumption in percentage of full operation after using Step-

dimming

58



Figure 5.5 shows customer satisfaction before and after applying SD (Dim). DimDB,

DimSB, DimBB and DimEA represent the results after applying SD when DB, SB, BB and

EA cell selection is applied, respectively. The figure demonstrates that the optimization

technique can relatively maintain the level of satisfaction after reducing energy consumption

regardless of cell selection schemes. Moreover, when the system provides equal services to all

users, BB can provide the highest customer satisfaction rate. When measuring the customer

satisfaction based on equal services, EA receives lower customer satisfaction rate because of

the spectrum resource management we adopt. The resource management procedure ensures

that high-service users demand occupy more resource than low-service users. The lower

user demand then receives spectrum resource that could be insufficient to achieve their

expectation. Therefore, we also measure the customer satisfaction rate according to the

users service level. Because we apply different services to the scenario of EA only, the

figure shows EAServ and DimEAServ as the results before and after performing SD energy

reduction with EA. When we measure the satisfaction according to the different service

demand, EA gains considerably high satisfaction rate. Note that even though we do not

measure the satisfaction rate by the other cell selection techniques, we can interpret the

result. The satisfaction rate of BB would not be considerably different from EA due to EA

utilizes BB during peak time periods. On the other hand, the satisfaction rate of SB would

be significantly lower. Because of the significant number of users connecting to the HPNs,

the extremely high number of the HPN users would receive discounted services yielding lower

satisfaction rate.
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Figure 5.5: Customer satisfaction

As mentioned, we focus on creating a possibility to lower the energy requirement and

reducing the amount of power consumption. We believe that by allowing users to experience

the decreased quality of service, we can minimize the energy consumption while maintain-

ing users satisfaction. According to Figure 5.5, the proposed energy reduction model can

considerably maintain the customer satisfaction. Figure 5.6 shows the outcome of reducing

energy consumption. The figure presents the achievable data rate of HPN users in the net-

work. HPN users are the only users affected by the minimized transmit power. Solid lines

represent the data rate after dimming the HPNs transmit power and dash lines represent

the rate before dimming. With most cell selection techniques, it is apparent that the energy

reduction decreases the data rate of users. Especially during light-loaded periods, the de-

duction is more evident than during busy time. However, when we consider the energy that

we save, Figure 5.7 shows that the ratio of the HPN users achievable data rate per energy

consumption increases significantly by the energy reduction mechanism.
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Figure 5.6: HPN users achievable data rate before and after using Step-dimming
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Figure 5.7: HPN achievable data rate and energy consumption ratio
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5.2 RESOURCE-BASED ENERGY OPTIMIZATION

In telecommunication, one valid way to quantify the quality of service a user experiences is to

evaluate the user achievable data rate. The aim of our work is to save the network total power

consumption. Therefore, associating the achievable data rate with power consumption can

certainly bring us an insight of how to manage a network energy efficiently while satisfying

users. Consider Shannon capacity equation, (C = Blog2(1 +SINR)), the equation provides

a straightforward view of relations between critical network parameters. In the previous

section, we reduce the transmit power at HPNs by allocating a minimized amount of power

to all RBs that ensures the resulting SINR meet a user’s requirement. The process enables us

to minimize the total energy consumption of HPNs and hence the network. In this section,

we further deploy relations between bandwidth and transmit power. We exploit advanced

LTE resource management to limit the energy consumption by minimizing the number of

resource blocks an eNB allocates to a user. As discussed in Section 3.4, the number of

resource blocks can be restricted because different users demand various levels of service.

The resource blocks that an eNB assigns to provide lower levels can be transmitted at

relatively low transmit power level. In contrast, those users who require high-level services

could require the resource blocks to have higher transmit powers. With the concept, we

propose Resource-based (RE) energy optimization to minimize the spectrum resource usage

and the transmit power required to satisfy users.

In 5.1, we focus on reducing the total energy consumption by minimizing HPN transmis-

sion power only. The procedure concerns the number of users in the system. No different

QoS levels are considered in the energy reduction. User achievable data rate depends mainly

on the quality of the received SINR. Several satisfied users could, in fact, receive a widely

different quality of service depending on their SINR. Some could achieve data rate that is

considerably higher than their demand due to proximity to the connected eNBs. The ex-

tra resource that yields the high achievable data rate to the users would cause unnecessary

energy consumption and therefore potentially leads to a further possibility of energy reduc-

tion. In this section, we exploit additional energy saving of transmission in radio resource.

Due to CQI technology and advanced antennas, we can further reduce the total energy re-
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quired to provide services by optimizing the amount of spectrum resource and minimizing

the transmission power to guarantee various QoS levels.

Resource-based energy reduction optimization aims to reduce the total energy consump-

tion at all eNBs, both HPNs and LPNs, by minimizing the amount of spectrum resource

allocated to each user as well as minimizing the HPN transmit power. We formulate the

model to execute in each time period, t, independently. Although the value of variables

change in every time period, we let all variables in the model represent their value at time t

without subscription for simplicity and ease of understanding.

Consider a HetNet containing of N eNB eNBs which include both LPNs and HPNs. At an

eNB enb when enb = [1, N eNB], there areNeenb UEs connected as a result from a cell selection

scheme. A UE, i when i = [1, Neenb], maps its SINR to a CQI value (CQI has 15 values,

NCQI = 15, each corresponds to a certain range of SINR [79–83]) then reports the CQI value,

q when q = [1, NCQI ], to the associated eNB. Based on the service level the user demands

(reqCi), the eNB optimizes an amount of spectrum resource for the user (
∑NCQI

q=1 rui,q) and

minimizes the user’s required CQI level (cqi,q). rui,q is an amount of spectrum resource

in percentage allocated to a user i when the user receives a CQI level q. cqi,q is a binary

variable that equals to one when the user i receives the corresponding CQI level q. Note

that to achieve a certain degree of service demand, an eNB can vary its transmit power

that consequently changes the users SINR (CQI level q) and alters the amount of spectrum

resource for users (rui,q). The range of transmit power an eNB can perform depends on an

operators requirement. Also, an eNB could assign up to 100% of resource to a user. However,

the minimum of provided resource depends on the type of the eNB. In our work, because

LPNs can be switched off when there is no active user connecting to the LPNs, the LPNs

can reduce their total assigned resource to zero percent (
∑Neenb

i=1

∑NCQI

q=1 rui,q = [0, 1]). In

contrast, because we set HPNs to cover service area at all time, the HPNs cannot provide

zere assigned resource to the area. We determine that the minimum amount of resource the

HPNs require providing be the lowest amount of resource in the frequency domain that is

1.4 MHz at all time. 1.4 MHz is the minimum bandwidth an eNB can operate according to

an LTE standard. Thus, the minimum amount of resource an HPN can operate would be

14% when the full bandwidth of the HPNs is 10 MHz (
∑Neenb

i=1

∑NCQI

q=1 rui,q = [0.14, 1]).
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The goal of the problem is to optimize the total resource (
∑Neenb

i=1

∑NCQI

q=1 rui,q) used

at an eNB which leads to the energy consumption. The total energy consumption at an

eNB is proportional to the amount of resource allocated to all users at the eNB and the

transmit power. To satisfy a user service requirement, the eNB can allocate more resource

if the transmit power is low and increase the transmit power when only a limited amount of

resource is available. In the optimization problem, an eNB takes into account the minimum

required SINR of each CQI level and the user demanded achievable data rate (reqCi)to

obtain the optimized amount of resource for a user. We adopt 15 levels of CQI based on

levels of SINR and 10% block error ratio (BLER) from Vienna LTE Simulators [83]. The

minimum SINR of each CQI level, reqSINRi,q, is presented in Table 5.3. With the minimum

SINR, the eNB can approximate the achievable data rate of the user i using the modified

Shannon capacity equation [84] (Ci = rui,q∗0.75∗B∗log2(1+reqSINRi,q/1.25)). Because the

available spectrum resource at an eNB cannot exceed 100%, the summation of the resource

allocated to all users must be less or equal to 1 (
∑Neenb

i=1

∑NCQI

q=1 rui,q ≤ 1). Furthermore,

to enable energy reduction, an eNB also tries to minimize the users received CQI level that

reduces the necessary eNB transmit power. To do so, an eNB tries to provide the lowest CQI

level to a user as long as it meets the service requirement. With the information of minimum

SINR requirement for each CQI level shown in Table 5.3, an eNB can assure the user achieve

its expected achievable data rate until the user reports a change in its CQI level.

Given the consideration above, we create an optimization model that considers different

service demand levels, user CQI levels and transmission power at each eNB and time period.

The first stage is to determine the necessary amount of resource and required CQI level

for each user in order to achieve their expected data rate. Next, we calculate the required

transmission power strength of the eNB for each user based on the users required CQI level

result from the first stage.

min
Neenb∑
i=1

NCQI∑
q=1

{[
RU |CQ

]
×
[
Sf

F

]}
(5.2a)
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s.t.

NCQI∑
q=1

[
RU × S

]
≥ reqCi ∀ i (5.2b)

NCQI∑
q=1

CQ = 1 ∀ i (5.2c)

Neenb∑
i=1

NCQI∑
q=1

RU ≤ 1 (5.2d)

RU ≤ CQ ∀ i, q (5.2e)

when

RU = [ru1,1 ru1,2 . . . ru1,N
CQI

ru2,1 . . . ruNeenb,NCQI

] (5.2f)

CQ = [cq1,1 cq1,2 . . . cq1,N
CQI

cq2,1 . . . cqNeenb,NCQI

] (5.2g)

Sf = S � F (5.2h)

S =
[
s | s | · · · |s

]T
1×Neenb ; s = [s1 s2 s3 . . . s

NCQI

] (5.2i)

F =
[
f |f | · · · |f

]T
1×Neenb ;f = [f1 f2 f3 . . . fNCQI ] (5.2j)

i ∈ {1, 2, . . . , Neenb} (5.2k)

q ∈ {1, 2, . . . , NCQI} (5.2l)

rui,q ∈ RU , cqu,q ∈ CQ , sq ∈ s , fq ∈ f (5.2m)

rui,q ∈ [0, 1] , cqi,q ∈ {0, 1} (5.2n)

The objective of the first stage optimization (Eq. 5.2a) is to minimize the total operating

spectrum resource and users CQI level at an eNB, enb. Each element of RU , rui,q, represents

the percentage of eNB resource within a time period that is dedicated for a user, i, with a

particular CQI level, q (Eq. 5.2f). If the considered eNB is an LPN, rui,q can vary from

0 to 1 (Eq. 5.2n). If the eNB is an HPN, rui,q can vary from 1.4MHz (HPN minimum

bandwidth) to 1. cqi,q in CQ is a binary variable indicating CQI level of a user (Eq. 5.2g).

cqi,q is 1 when user i has CQI level q and 0 otherwise. Sf is a Hadamard product or

entry-wise product of S and F (Eq. 5.2h). From Eq. 5.2i, S is an array of row matrix s

containing, sq. sq is a constant representing a part of the modified Shannon’s achievable data
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rate equation (log2(1+SINR/1.25)) [84] with the minimum reqSINRi,q in each determined

CQI levels as shown in Table 5.3. The value of sq depends on determination of received

SINR range for each CQI levels. For example, a user, i = 1, will report a CQI level 2

(q = 2) if it receives SINR between -5.0714 and -3.1429 dB from its associating eNB. From

the table, s2 = log2(1 + (−5.0714dB) = 0.3206. Consequently, in Eq. 5.2c, cq1,2 = 1 and

cq1,q = 0; q 6= 2. In Eq. 5.2j, fq is a constant factoring in the difference of transmit power

required to provide the minimum SINR to achieve each CQI levels. The product of sq and

fq for each CQI or s � f is presented in Table 5.3. F is utilized in the objective to favor

providing resource with lower CQI requirement over higher CQI levels. The optimization

problem concerns that the achievable data rate provided must be greater or equal to user

demand, reqCi (Eq. 5.2b). The guaranteed minimum achievable data rate a user receives

is calculated from the percentage of resource dedicated to a user, rui,q, and sq associated to

the particular CQI level. Also, there can only exist one CQI level for each user (Eq. 5.2c).

Eq. 5.2d ensures that the portion of resource dedicated to all users at one eNB is less or

equal to 100%. Constraint Eq. 5.2e is a condition such that cqi,q needs to be one if rui,q has

a value.

The first stage of the optimization model (Eq. 5.2) results in the amount of spectrum

resource (rui,q) an eNB (enb) needs to reserve for a user (i) and their required CQI levels

(q) to guarantee their achievable data rate (reqCi). To guarantee that each UE receives

SINR within a specific range according to the required CQI levels (SINRi ≥ reqSINRi,q)

while minimizing transmit power of the eNB, we apply a heuristic optimization to min-

imize transmit power in HPNs (Eq. 5.3). We consider an HPN with possible transmit

power levels TxHPN = {30, 31, . . . , 46} dBm. The HPN knows its users required achievable

data rate (reqCi), their minimized CQI level (q) and the minimum SINR of the CQI level

(reqSINRi,q). The HPN then heuristically reduces its transmit power (TxHPN) for a user

starting from the maximum. The process continues until the calculated SINR of the user is

lower than the minimum SINR requirement of the user CQI required level. The HPN then

concludes to transmit at one power level above to the user.

In contrast, because LPNs already transmit at a very low level of power, we assume it

is not worth to concern the transmit power reduction for LPNs. Due to this consideration,
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Table 5.3: Resource-dimming Energy Reduction factors

CQI level (q) reqSINRi,q (dB) s f s � f

1 -7.0000 0.2137 1.0000 0.2137

2 -5.0714 0.3206 1.5590 0.4998

3 -3.1429 0.4730 2.4305 1.1496

4 -1.2143 0.6825 3.7891 2.5859

5 0.7143 0.9583 5.9072 5.6609

6 2.6429 1.3046 9.2094 12.0148

7 4.5714 1.7190 14.3574 24.6805

8 6.5000 2.1933 22.3852 49.0929

9 8.4286 2.7162 34.8955 94.7814

10 10.3571 3.2759 54.4020 178.2131

11 12.2857 3.8621 84.8128 327.5543

12 14.2143 4.4667 132.2231 590.6039

13 16.1429 5.0838 206.1358 1047.9516

14 18.0714 5.7091 321.3657 1834.7137

15 20.0000 6.3399 501.0091 3176.3225

67



the first stage of the optimization model(Eq. 5.2) needs an additional constraint to secures

particular cqi,q of LPNs users in (Eq. 5.2g) to 1. The constraint affirms that the CQI level

every users receives cannot be adjusted in the next stage. However, LPNs are still able to

operate at a reduced power level by minimizing the assigned amount of spectrum resource.

min
∑ [

TxHPN
]
×
[
phpn,i

]T
(5.3a)

s.t.

[
TxHPN

]
×
[
phpn,i

]T ≥ reqP ti ∀ i (5.3b)

From (Eq. 5.3a), the objective of the problem is to minimize the transmit power of

an HPN. phpn,i is a state matrix representing the transmit power level an HPN, hpn, is

transmitting to a user i. A member of the matrix is a binary variable that equals to one

when a represented level of transmit power is chosen and equals to zero otherwise. TxHPN

contains applicable levels of transmit power determined by the operator. The only constraint

in the problem is the transmit power must not be lower than a require transmit power

(reqP ti) that yields a greater SINR than the reqSINRi,q obtained from the previous stage

of the problem.

Until the time of writing, there are few works that present energy efficiency in LTE

network utilizing discontinuous transmission (DTX) in either frequency domain [109] or

time domain [110,111]. None has proposed the energy reduction considering both time and

frequency domain collectively.
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5.2.1 Numerical Results

In this section, we evaluate the performance of Resource-based (RE) energy optimization

model by applying the model to similar scenarios as ones in Section 5.1.1. The sample

network contains three HPNs and 54 LPNs. The locations of the eNBs are shown in Figure

4.7. We maintain the same value of simulation parameters presented in Table 5.1. The

mean traffic percentage of capacity follows Figure 5.1. The maximum number of general

users is 200 users, and each high-demand spot creates additional 10% of users. We randomly

generate users location similarly to Section 4.3. All cell selection schemes (DB, SB, BB, and

EA) are applied and examined here. Moreover, we simulate the variation of users location

and order of network entry in each hour by conducting each scenario for 500 iterations.

We continue to define service levels and their minimum achievable data rate as follows;

FullHD video, HD video, SD video, TCP and voice service have the minimum data rate

requirement of 10 Mbps, 5 Mbps, 3 Mbps, 700 Mbps, and 50 kbps, respectively. We determine

the probability of a user service demand to be 5%, 15%, 25%, 25% and 30% for FullHD,

HD video, SD video, TCP, and best-effort, respectively. Note that best-effort users receive

a guarantee for only voice service that requires 50 kbps. However, the BE users are satisfied

when achieving at least 695.4kbps (customer satisfaction baseline). To manage the spectrum

resource regarding various levels of service demand, we apply the resource management

explained in Section 3.5. The maximum amount of resource that can be allocated to BE

users is set to 25% of resource assigned to GBR users.

Table 5.4 presents the comparison of energy saving results when the system performs

Resource-based(RE) energy optimization and the Step-dimming(SD) energy reduction. Note

that in RE, we adopt the principles of SD during the second stage of the optimization.

Overall, the results show that RE can reduce a significant amount of energy. The network

requires as low as 33.63% of the full capacity when operates EA cell selection. However,

the network requires more energy than when the network implements SD energy reduction

and EA cell selection (32.98%). The main reason is our input on consideration of different

service levels. In SD, we consider meeting a considerable lower rate to users (695.4kbps).

In RE optimization, 70% of the users, on average, demand a higher achievable data rate.
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Table 5.4: Total energy consumption in percentage of full operation energy requirement

after Resource-based(RE) energy optimization compared with Step-dimming energy reduc-

tion(SD) (RE/SD)

BB EA DB SB

Total 37.33%/36.67% 33.63%/32.98% 46.37%/36.70% 66.37%/57.81%

HPNs 25.84%/19.60% 24.73%/19.60% 38.73%/19.60% 80.32%/53.09%

LPNs 60.45%/82.46% 57.51%/68.84% 66.86%/82.56% 28.95%/70.45%

BB:Bandwidth-based, EA:Energy-aware, DB:Distance-based, SB: SINR-based cell selection

50% of the demand requires extremely higher services (3-10 Mbps). Understandably, the

network needs more energy to provide faster data rates. Consider the significant increase of

required data rate (314.93% increase on average) and the extra number of high-level service

users (45%), the additional amount of energy is acceptable. The table further shows that the

extra power consumption occurs in the HPNs. When the system performs EA, HPNs require

24.73% of full operation energy while they require 19.60% with SD. Obviously, it is because

HPNs need to increase their transmit power. Due to the demand for the higher service

levels, HPNs need to allocate more amount of spectrum resource to the users. The amount

of resource then becomes more limited. To compensate the decreased amount of resource

for users, the HPNs need to transmit the signal at a higher level to meet the users expected

achievable data rate. On the other hand, LPNs, which do not adjust their transmit power,

benefit from our RE optimization. LPNs can save more energy consumption by optimizing

their spectrum resource in addition to switching off when not necessary. When operating

EA, LPNs require 57.51% of energy to operate using RE compared to 68.84% when using

SD.

Next, Figure 5.8 - 5.15 present further numerical results in each hour period. In the

figures, black lines with ‘x’ markers present results for Distance-based (DB) cell selection.

Red lines with ‘�’ markers present results for SINR-based (SB) cell selection. Pink lines
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with ‘4’ marker show results for Bandwidth-based (BB) cell selection. Blue lines with

‘◦’ markers represent results for Energy-aware (EA) cell selection. Also, dash lines and

solid lines demonstrate results before and after performing Resource-based energy reduction.

Considering the energy consumption in each time periods, we can see from Figure 5.8 that

the system requires energy the most during peak hours (10-19 hour) and the least during

quiet hours (3-6 hour). BB and EA cell selection creates the most energy saving. The effect

of RE is most apparent by comparing energy consumption when SB is used with SD and

RE. SB represents a standard LTE network that has the majority of the users congested in

HPNs. The considerable congestion at the HPNs restrict the HPNs to reduce their power

consumption forcing the HPNs to operate at full capacity (see Figure 5.4). Also, SB requires

all LPNs to stay operating to provide service at high-demand spots as shown in Figure

5.3. Because RE can optimize LPNs spectrum resource and eliminate unnecessary energy

consumption, the system that operates SB can produce energy reduction during the peak

hours. We can also see different impacts of BB and EA during quiet hours in Figure 5.8.

As EA keeping LPNs inactive by gathering users into HPNs only, energy saving by EA is

present during the hour of 1-2 and 7-8.

71



Hours
2 4 6 8 10 12 14 16 18 20 22 24

P
e
rc

e
n
ta

g
e

0

10

20

30

40

50

60

70

80

90

100
DB
SB
BB
EA

Figure 5.8: Total energy consumption in percentage of full operation after Resource-based

energy optimization

To continue observing the impact of EA when operating RE optimization, we present

Figure 5.9 and Figure 5.10. Because EA gathers all users into HPNs to allow LPNs to stay

off during quiet hours, HPNs require higher energy to satisfy the higher number of users

than when the system uses BB. On the other hand, EA can save LPN energy consumption

by stopping the LPNs from operating during the hour of 3-6 that contributes considerably to

the total energy reduction. Further, we can see a level of energy saving in LPNs due to RE

optimization during the hours of 17-20 in Figure 5.10. Also, RE optimization successfully

reduces the energy requirement at HPNs to the minimum during the peak hours as shown

in Figure 5.9.
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Figure 5.9: HPN energy consumption in percentage of full operation after Resource-based

energy optimization
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Figure 5.10: LPN energy consumption in percentage of full operation after Resource-based

energy optimization

Considering customer satisfaction, in this section we measure the customer satisfaction

according to the user demand service levels. Figure 5.11 shows that RE commits to main-

taining the customer satisfaction rate at all time regardless of cell selection scheme. When

we view the results during quiet hours, we observe that the system with EA can satisfy

users demand by running only HPNs. In contrast, the scenario where BB is used, a certain

number of users do not receive their expected service. The reason is that the users connect

to LPNs due to BB. The LPNs users suffer from interference from nearby “unnecessarily”

active LPNs. Also, because EA congests users into HPNs when possible, the HPN users

suffer from the limited available resource. We can see the impact of the limited resource

that dissatisfies users by comparing the satisfaction rate when the system utilizes BB and

EA during busy hours from 7 to 24. The figure also shows that our optimization succeeds in

reducing the energy requirement and maintaining the users satisfaction at a high level when

compared to users satisfaction when the system performs SD in Figure 5.5.
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Figure 5.11: Customer satisfaction

Next, we examine the impact of the optimization model on users achievable data rate.

Presumably, reducing allocated resource and transmit power decreases users data rate. Both

Figure 5.12 and Figure 5.13 show that user achievable data rate is considerably lower during

light load periods. The lower data rate is a confirmation of concrete possibility of energy

saving. Even though the user data rate decreases, the system can satisfy all the users

according to their various service demand levels. Especially, when there are only HPNs

operating during the quiet time, the HPNs can optimize their spectrum resource and transmit

power while meeting users expectation favorably.
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Figure 5.12: HPN users achievable data rate before and after Resource-based energy opti-

mization
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Figure 5.13: LPN users achievable data rate before and after Resource-based energy opti-

mization

Figure 5.14 and Figure 5.15 show ratios of user achievable data rate and energy con-

sumption at HPNs and LPNs, respectively. Note that Figure 5.15 is cropped to present a

better view of the graphs. The ratio of DimSB is approximately 14 Mbps/Watts at time

3-6. The results show consistent trends of improved bits per energy consumption similar to

ones with SD. Regardless of cell selection techniques, RE optimization can increase the ratio

significantly, especially during low load when a typical network wastes an enormous amount

of energy.
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Figure 5.14: HPN user achievable data rate and HPN energy consumption ratio
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Figure 5.15: LPN user achievable data rate and LPN energy consumption ratio
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In this thesis, we propose two cell selection algorithms, Bandwidth-based cell selection

and Energy-aware cell selection. The methods intend to create possibilities to reduce en-

ergy consumption in the HPNs and, consequently, the network. The bandwidth-based cell

selection algorithm can be considered as a greedy heuristic algorithm. The energy-aware cell

selection is an advanced algorithm of the bandwidth-based that focuses on quiet hours. Here,

we examine the performance of the bandwidth-based algorithm by comparing the results to

an optimum from Brute-force search or exhaustive search in a small environment. Brute-

force search is to consider all possibilities of UEs cell selections. The scenarios contain, nine

users, one HPN and two LPNs, with the bandwidth (B) of 0.5, 1.0 and 1.5 MHz at each

eNBs. We conduct 100 iterations to vary users location, service demand level and order of

arrival. Figure 5.16 shows the eNBs locations and an example of UEs location. We input the

results of the UEs cell selections to the RE energy reduction model to calculate the energy

requirement by the selections. In each iteration, we select the result from Brute-force search

that demands the lowest energy to compare with the result from our bandwidth-based cell

selection. Last, we compare the customer satisfaction rate in the selected cases.
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Figure 5.16: eNBs locations and user locations example

Figure 5.17 shows comparisons of energy requirement when the network utilizes BB cell

selection and the optimum result of Brute-force search from the same user settings. The

figure presents a group of cases that the network needs to operate at almost full capacity

when it uses BB and has limited available bandwidth of 0.5 MHz. In spite of the particular

cases, BB results in a comparable level of energy consumption to the optimum results from

Brute-force search. The average of the energy consumption in each scenarios is shown in

Table 5.5.

Even though BB requires relatively higher energy consumption than the optimum from

Brute-force search, Figure 5.18 - Figure 5.20 indicate considerably higher customer satis-

faction rates by BB in most of the cases. Also, Table 5.6 present the average of customer

satisfaction rate from the scenarios. The rate depends greatly on the available bandwidth

in the system. When the bandwidth is limited (B = 0.5 MHz), more cases result in low

customer satisfaction. The satisfaction rate is as low as approximately 55% with BB. In the

same setting, even though brute-force search yields lower energy requirement, the algorithm
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Figure 5.17: Percentage of energy consumption; Bandwidth-based vs. Brute-force

cannot satisfy any user in the network. When there is more available bandwidth, the net-

work can satisfy more users. BB can satisfy all users in several cases when B is 1.5 MHz

promoting the average customer satisfaction rate of 98.11%. On the other hand, in the low

energy-consuming cases by brute-force search, the system could satisfy as low as 21% of the

users and 61.56% on average. However, brute-force search can also yield 100% customer

satisfaction rate when there is more available bandwidth with low energy consumption. The

scenarios represent the disadvantage of BB which we address by proposing energy-aware cell

selection to produce further energy reduction possibility during quiet hours.
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Table 5.5: Average percentage of energy consumption with Bandwidth-based cell selection

in comparison with Brute-force search

B = 0.5 MHz B = 1.0 MHz B = 1.5 MHz

Bandwidth-based 31.47% 21.85% 21.68%

Brute-force 18.96% 18.93% 18.93%
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Figure 5.18: Customer satisfaction; Bandwidth-based vs. Brute-force (0.5 MHz bandwidth)
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Figure 5.19: Customer satisfaction; Bandwidth-based vs. Brute-force (1.0 MHz bandwidth)
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Figure 5.20: Customer satisfaction; Bandwidth-based vs. Brute-force (1.5 MHz bandwidth)
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Table 5.6: Average customer satisfaction with Bandwidth-based cell selection in comparison

with Brute-force search

B = 0.5 MHz B = 1.0 MHz B = 1.5 MHz

Bandwidth-based 85.78% 95.11% 98.11%

Brute-force 37.33% 53.33% 61.56%
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6.0 ENERGY OPTIMIZATION IN MINIMUM CAPEX NETWORK

In this chapter, we expand our energy optimization goal into network planning. The goal of

our network planning is to plan a network with minimum CAPEX in a city-like area. The area

contains various types of service area, namely, residential, highway, entertainment, business

and unoccupied. Each kind of service area possesses unique traffic demand characteristic.

Then we examine our energy optimization and cell selection in the network to analyze the

power reduction and the customer satisfaction in the different kinds of service area and the

potential for network improvement.

In Section 6.1, we discuss a network planning optimization model. Next, we present our

simulations in Section 6.2. In section 6.2.1, we explain the characteristic of our simulation

environment including determination of the service areas and the various traffic demand.

Simulation process and results of coverage-driven and service-driven network planning are

explained in Section 6.2.2. Last, we examine the proposed energy consumption optimization

model in the sample city-like area in Section 6.2.3.

6.1 NETWORK PLANNING OPTIMIZATION

In this section, we present our optimization model to plan a city-wide network with minimum

CAPEX. Consider an area of A km2, we define a set of test points tp when tp ∈ [1, NTP ]. Test

points exist to guarantee network coverage while do not present any traffic demand. We also

determine a set of potential HPN sites ps when ps ∈ [1, NPS] and a number of high-demand

spots hp when hp ∈ [1, NHP ]. The potential HPN sites limit possible locations to deploy

an HPN. The limitation resembles reality where several factors such as geographic terrain,
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accessible infrastructure, surrounding obstacles, site acquisition difficulties could restrict the

freedom of deploying an HPN. We let ψps equal to one when there is an HPN deployed at

potential site ps. A high-demand spot represents a small area where users gather creating

a cluster of users. Unlike HPNs, we determine that LPNs have no limitation in terms of

location of installation. We assume we can install an LPN at a test point location. Θtp equals

to one when there is an LPN installed at test point tp. Moreover, because we determine that

HPNs need to provide full coverage of the area regardless of LPNs being active [112], each

test point must be covered by at least one HPN. We let τ tp,ps equal to one when test point tp

is covered by HPN from potential HPN sites ps and zero otherwise. Also, we determine that

a high-demand spot hp must be covered by at least an LPN. We let λhp,tp be one when a high-

demand spot hp is covered by an LPN from test point tp and zero otherwise. Furthermore, to

concern about the relation between the location of LPNs and high-demand spots [65,66], we

include consideration of the distance between high-demand spots and LPNs location into the

objective. Also, we determine the cost of deploying a network contain cost of the eNB that

includes base station equipment, radio equipment, site installation and buildout, ΦHPN for

an HPN and ΦLPN for an LPN, the cost of backhaul between HPNs and LPNs, α, [113] and

the cost of LPNs being away from high-demand spots, β. To plan a network with minimum

CAPEX, we present an optimization model as follows.

min
NPS∑
ps=1

ΦHPNψps +
NTP∑
tp=1

ΦLPNΘtp+

NPS∑
ps=1

NTP∑
tp=1

αdistps,tpψpsΘtp +
NHP∑
hp=1

NTP∑
tp=1

βdisthp,tpλhp,tpΘtp
(6.1a)
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s.t.

NTP∑
tb=1

τ tp,psψps ≥ 1 ∀ps (6.1b)

NHP∑
hp=1

λhp,tpΘtp ≥ 1 ∀tp (6.1c)

disttp,psτ tp,psψps ≤ RHPN ∀tp, ∀ps (6.1d)

disthp,tpλhp,tpΘtp ≤ RLPN ∀hp, ∀tp (6.1e)

ψps ∈ {0, 1} ∀ps (6.1f)

Θtp ∈ {0, 1} ∀tp (6.1g)

τ tp,ps ∈ {0, 1} ∀tp, ∀ps (6.1h)

λhp,tp ∈ {0, 1} ∀hp, ∀tp (6.1i)

The objective (Eq. 6.1a) comprises of two parts. The former two terms are to minimize

the cost of eNBs installation by minimizing the number of eNBs deployed. The latter two

terms are to optimize the location of LPNs. The total cost of installing backhaul connecting

the LPNs and the HPNs, α, depends on the distance between the LPNs and their connecting

HPN disttp,ps is the distance between potential HPN site ps to test point tp. Locating an LPN

also needs to consider the distance between the LPN at test point tp and their responsible

high-demand spot hp, disthp,tp, to provide satisfying service to clusters of users. β is a

factor penalizing when the LPNs are away from high-demand spots. Because HPNs handle

providing full coverage at all time, constraint at Eq. 6.1b ensures that all test point have at

least one HPN covering. Eq. 6.1c guarantees that LPNs cover all the high-demand spots.

Eq. 6.1d and Eq. 6.1e impose that test point tp and high-demand spots hp need to be within

the service radius of the respective HPN and LPN. Eq. 6.1f - 6.1i set the binary nature of

the decision variables.

Considering our purpose of planning a network in a city-wide area, the number of decision

variables is tremendous. The size of the problem causes the problem to become an NP-hard

problem. We choose to break the problem into two parts, coverage-driven network planning,

and service-driven network planning. The first part contains the consideration of providing

full coverage to the area. Meanwhile, the second part concerns the addition of demand in
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high-demand spots. The addition of service demand in high-demand spots represents in-

crease of demand in particular spots that require supplementary network resource to provide

satisfying service to added users. The coverage-driven optimization problem becomes as

follows.

min
NPS∑
ps=1

ΦHPNψps

(6.2a)

s.t.

NTP∑
tb=1

τ tp,psψps ≥ 1 ∀ps (6.2b)

disttp,psτ tp,psψps ≤ RHPN ∀tp, ∀ps (6.2c)

ψps ∈ {0, 1} ∀ps (6.2d)

τ tp,ps ∈ {0, 1} ∀tp, ∀ps (6.2e)

And, the service-driven optimization problem becomes the following.

min
NTP∑
tp=1

ΦLPNΘtp +
NPS∑
ps=1

NTP∑
tp=1

αdistps,tpψpsΘtp+

NHP∑
hp=1

NTP∑
tp=1

βdisthp,tpλhp,tpΘtp
(6.3a)

s.t.

NHP∑
hp=1

λhp,tpΘtp ≥ 1 ∀tp (6.3b)

disthp,tpλhp,tpΘtp ≤ RLPN ∀hp, ∀tp (6.3c)

Θtp ∈ {0, 1} ∀tp (6.3d)

λhp,tp ∈ {0, 1} ∀hp, ∀tp (6.3e)
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6.2 SIMULATIONS

In this section, we discuss our simulations of the network planning. Firstly, we define our sim-

ulations environment and demand characteristics. Secondly, we present results of coverage-

driven network planning and service-driven network planning. Lastly, we examine the energy

optimization in the result network. We divide the simulations into three parts. 1) We define

an area to depict a middle-sized urban city. The city requires a full coverage of cellular

network and contains “general” users. Deterministically located test points ensure that the

network can provide a full coverage to the area. Also, we divide the city into five types of

service area. Each type of service area possesses various characteristics of traffic demand

that varies by time. Consider the uniqueness of the traffic demand in each area of the city,

we determine high-demand spots that symbolize coverage holes left by HPNs or generate

additional traffic or “high-demand spots” users at locations. The extra traffic distinguishes

the overall traffic demand between service areas. 2) We present the HPNs location that pro-

vides full coverage of the city that result from the coverage-driven network planning model.

Also, we show the result of service-driven network planning model which is LPNs location.

3) We experiment energy-aware cell selection and resource-based energy optimization model

in the simulated city. The results of the energy optimization are compared to those of a typ-

ical cellular network operation proposed in literatures (SINR-based cell selection and on/off

LPNs). The comparisons lead to the possible benefit of our energy optimization to network

expansion. In the next section (6.2.1), we explain features of the target area and its traffic

demand in different types of the service area. Then, in Section 6.2.2, we present the full

coverage network result from the model presented in the last section and the result of LPNs

deployment to serve the extra demand. Last, in Section 6.2.3, we examine the proposed

energy optimization in the simulated environment and analyze the result.

6.2.1 Service Area and Traffic Demand Definition

To simulate an area of a mid-sized urban city, we define an area of 36 km2 or 6 × 6 km.

In the city, we define five different types of service area, namely, unoccupied, residential,
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Figure 6.1: Test points in five types of service area

highway, entertainment and business. Also, to ensure the full coverage of the network, 1,681

test points (NTP = 1681) are deterministically distributed throughout the area with 150 m

of distance apart. Figure 6.1 presents the area of each type. Black ‘·’, green ‘+’, red ‘4’,

blue ‘�’ and yellow ‘�’, represent test points in unoccupied, residential, business, highway,

entertainment area respectively. We determine that there be three possible sites for installing

an HPN for every square kilometer. Thus, there is the total of 108 uniformly distributed

possible sites (NP = 108) in the city. The uniform distribution of the possible locations of

HPNs is done by randomization of locations on two axes separately. Figure 6.2 shows the

area of interest with test points colored by their respective areas and an example of a set of

possible HPN locations (blue circle).

Because actual cellular network traffic is difficult to obtain, we define that there is a

maximum of 200 general users per km2 and each high-demand spot generates additional 10%

of the concurrent general users. Each type of service area thus contains various numbers of

high-demand spots to differentiate the unique user congestion in the areas. We adopt ratios
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Figure 6.2: Location possible HPN sites

of user density from [36]. The ratios of user density per km2 ranked from the busiest area to

the least occupied area are 4.5 : 2 : 1.5 : 1. In this work, we determine that the business area

has the most users density. Also, we assume that the residential area has the least demand

due to the high availability of wireless internet access in residence. Therefore, to distinguish

the traffic demand in the types of service area, we define the number of high-demand spots in

each service area according to the ratio and size of each type of service area. Table 6.1 shows

the detail information of the service areas. Next, to moderate the size of the optimization

problem, we use the test points as possible sites of high-demand spots and LPNs location.

An LPN is considered more manageable to deploy and not require a dedicated space. All

test points in the area then get randomly selected to be high-demand spots according to

the area-specific numbers showed in the table. Figure 6.3 shows an example of selected test

points for high-demand spots in service areas. Furthermore, we normalize and proportionate

average demand in [28] for a percentage of maximum traffic in service areas. The average

of traffic demand in the percentage of the maximum for every service area is presented in
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Figure 6.4. The average traffic demand gives input to the simulation of the number of users

in every hour. The generation of the number of users and their locations remains the same

as in the previous chapters. Figure 6.5 - 6.8 show an example of users location at the hour

of 4, 9, 13 and 21.

Table 6.1: Information of service areas

Business En* Highway Residential Un**

Number of test points 234 305 80 923 139

Ratio of extra users 4.5 2 1.5 1 0

Number of high-demand spots per km2 9 4 3 2 N/A

Size of area (km2) 5.27 6.86 1.80 20.77 1.30

Total number of high-demand spots 47 27 5 41 N/A

*Entertainment
**Unoccupied
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Figure 6.3: Locations of high-demand spots in service areas
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Figure 6.4: Average traffic demand in percentage of maximum by areas
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Figure 6.5: Example of users location at the hour of 4
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Figure 6.6: Example of users location at the hour of 9
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Figure 6.7: Example of users location at the hour of 13
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Figure 6.8: Example of users location at the hour of 21

95



6.2.2 Simulation Results

To create alteration, we generate ten different sets of possible HPN sites. We determine that

each HPN can cover up to 1,200 meters in radius (RHPN = 1200 m) [36, 71]. As a result of

coverage-driven network planning model 6.2, from out of the ten generated sets of possible

locations, nine sets yield a feasible result. In the only case that does not have a feasible result,

we cannot find a possible set of HPNs that meets the constraint of HPN radius (Eq. 6.2b.

Out of the nine results, we select three sets of HPNs location that require the lowest number

of HPNs (NHPN = 21) to be installed. Figure 6.9 shows one of the three results of HPNs

location. The example of HPNs location in the figure shows the most possibility of being

realistic when we consider types of the service area. There are two main reasons for selecting

this scenario. First, there is neither possible HPN location nor selected HPN location in

the unoccupied zone. Second, there are few potential locations and selected locations in the

business downtown area which we consider more difficult to deploy an HPN than outside

of the area. Solid circles show selected HPNs location, blank circles show possible HPN

locations and dots are the location of test points. This result is comparable to the result of a

similar scenario that requires full coverage in [71] in terms of the number of HPNs per area.

After we locate the HPNs, we proceed to the service-driven network planning according

to model 6.3. We define the coverage of LPNs be 150 m (RLPN = 150 m). Also, according

to [65,66], the network could provide better service and save more energy consumption when

the LPNs are close to the high-demand spots. Therefore, we set α = 1 and β = 10 to favor

the LPNs being close to their high-demand spots and correspond to a scenario in [71] which

produces the minimum OPEX and CAPEX. Service-driven planning model 6.3 gives a result

of 120 LPNs (NLPN = 120). Figure 6.10 presents location of LPNs with a backhaul link to

their associated HPN. Moreover, based on the distribution of eNBs, when LPNs attach to an

HPN creating a cluster of eNBs, the network can operate with higher energy efficiency [66].

The main HPN and the member LPNs exchange their information collected by a minute

supplement protocol in eNBs [6]. We continue to consider these eNB member groups in our

experiment on energy reduction in the next section. When we operate EA cell selection, the

members only start their operation only when notified by the main HPN.
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Figure 6.9: Locations of possible HPN sites and selected HPN locations
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Figure 6.10: Locations of LPNs and their connection to HPNs
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Considering the cost of deploying the network, we adopt a CAPEX model for HPNs and

LPNs in Table 6.2 which is taken from [113]. The model normalizes all the costs in terms

of HPN equipment. We determine 1 euro equal to 1.4 dollars making HPN equipments (ceq)

cost $28,000. As a result, deploying the network that contains 21 HPNs and 120 LPNs in

the city costs $6.8 M.

Table 6.2: CAPEX information for eNBs

CAPEX cEQ cRN cBT cSite

HPN ceq 0.25ceq 0.25ceq 1.5ceq

LPN 0.5ceq 0.25ceq 0.25ceq 0.5ceq

cEQ: eNB equipment
cRN : Radio equipment
cBT : Backhaul transmission equipment
cSite: Site installation and buildout

6.2.3 Energy Optimization

The experiment proceeds to examine our energy optimization models on the result city

network. Table 6.3 summarizes simulation parameters used in the optimization. We conduct

the simulation for 50 iterations. Traffic characteristics comply with what explained in Section

6.2.1. The locations of all eNBs are shown in Figure 6.10. The network utilizes Energy-

aware cell selection and Resource-based energy optimization. Our analysis starts with a

comparison of the network energy requirement when the same network utilizes the proposed

mechanisms and standard techniques. Because the number of iterations is relatively low, we

perform the simulations of every scenario with the same set of user data to provide a fair

comparison. The user data includes the number of users, the users location, and the users

service demand. After analyzing the total energy savings of the network, we investigate the

energy consumption for each type of service area individually. Then, we show the impact

of the optimization toward the network performance. Note that because currently there is

yet a standard interference management in HetNet, we experiment the worst case scenarios
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with no interference mitigation in this study. The interference that a user experiences is the

summation of received signals from all other tier-sharing eNBs at their maximum transmit

power. Last, we review the advantage of our models over the typical mechanism and the

potential network improvement.

Table 6.4 presents the results of energy optimization in the network in three scenarios.

The scenarios differ in terms of cell selection techniques and energy optimization models. In

the first case, the network performs the proposed energy-aware cell selection and resource-

based energy optimization (EA&RE). In the second scheme (SINR&RE), we examine the

effect of resource-based energy optimization on the network that operates SINR-based cell

selection. Last, we simulate the network with SINR-based cell selection and reduce the

energy requirement by merely turning off eNBs that do not have any user demand (SINR).

According to the table, the network performing RE together with EA cell selection can

successfully reduce the energy requirement the most. The total energy consumption decreases

to 73.56% of full operation consumption. RE only can also reduce the energy consumption

of the network even though the system performs SB cell selection. The reduction confirms

the effectiveness of the energy optimization model beyond EA cell selection. Meanwhile,

the network demands the most energy when it performs only turning off eNBs. The main

benefits of EA and RE are twofold. First, EA pushes more users to LPNs than SINR-based

cell selections creating less energy requirement at HPNs. We can observe from the difference

of energy level at HPNs and LPNs in the case of EA&RE which are 71.89% and 89.49%,

respectively, compared to SINR&RE 94.06% and 56.47%. Also, EA&RE case is the only

case that LPNs consume more energy in terms of percentage of full operation than HPNs.

However, because HPNs consume a greater amount of energy than LPNs, the saving at

HPNs influences further to the total energy consumption. The second benefit of EA and

RE is RE energy optimization not only switches off eNBs but also optimizes eNBs spectrum

resources and their transmit power to match the user demand. The result is there is no

wasted energy in providing service to the customers. The result is evident when comparing

the energy requirement in the cases of SINR&RE and SINR. In SINR, the HPNs need to

operate fully(100%) while RE reduces the HPNs energy consumption to 94.06%. The saving

is even larger at LPNs. LPNs consume only 56.47% of energy with RE while they consume
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Table 6.3: Simulation parameters

Parameter Configuration

Max. transmission power, MaxT x 46 dBm (HPN) [107,108], 30 dBm (LPN) [106,107]

Carrier frequency, f 800 MHz (HPN), 2.1 GHz (LPN)

SE energy factor, SE 27% of MaxT x [73]

AC energy factor, AC 27% of MaxT x [73]

Bandwidth, B 10 MHz [107,108]

Pathloss model, Lp Lp(HPN)= 69.55 + 26.16log(f)− 13.82 ∗ log(hb)

−a(hm) + (44.9− 6.55log(hb))log(d);

a = 3.2(log(11.75hm))2 − 4.97 [103]

Lp(LPN)= 140.7 + 36.7log10(d) [104]

Achievable data rate, C C = 0.75Blog2(1 + SINR/1.25) [84]

Interference, I
∑
RSSeNB; When eNBs transmit at Maximum Tx

Noise, N -92 dBm

Time periods, T 24 hours
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Table 6.4: Energy consumption in percentage of full operation

Scenario EA&RE SINR&RE SINR

Total 73.56% 90.08% 98.78%

HPNs 71.89% 94.06% 100%

LPNs 89.49% 56.47% 88.47%

EA&RE: Energy-aware cell selection and Resource-
based energy reduction, SINR&RE: SINR-based
cell selection and Resource-based energy reduction,
SINR: SINR-based cell selection and turning on/off
eNBs

88.47% when they do not optimize their resources.

Consider power consumption in each hour, Figure 6.11 shows the energy requirement in

the percentage of full operation in the EA&RE case. Black O indicates the total network

energy consumption while blue / and red . indicate HPNs and LPNs power consumption.

The figure shows the network consumes the most energy between 20 to 21 hour. Moreover,

it is apparent that HPNs energy consumption is more influential to the network energy

consumption than LPNs. Furthermore, when we consider the period of 12 to 18, we observe

that almost all LPNs require operating at full capacity while HPNs can still save a certain

amount of power. The saving is because, during the busiest time of the day, there are

some areas that contain light user congestion. In the areas, the HPNs do not require to

transmit at their maximum transmit power to satisfy few users. However, the figure cannot

clearly portray the effect of our model on the network that contains the spatial variation

of traffic characteristics. Therefore, we select certain eNB groups in various service areas

to investigate the impact of traffic diversity on the energy requirement. The selected eNBs

group to represent each service area are shown by eNBs with active connections (red lines)

in Figure 6.12 to 6.15.
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Figure 6.11: Total energy consumption in percentage of full operation
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Figure 6.12: Selected eNBs for business area
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Figure 6.13: Selected eNBs for entertainment area
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Figure 6.14: Selected eNBs for highway area
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Figure 6.15: Selected eNBs for residential area

The results of energy requirement in business, entertainment, highway and residential

areas are presented in Figure 6.16 to Figure 6.19, respectively. As shown in Figure 6.16,

LPNs require operating at a higher capacity than HPNs. Because the business area contains

a high number of clustered high-demand spots and LPNs, LPNs can cover a wide area and

provide sufficient service to users. HPNs consequently receive opportunities to reduce their

energy consumption especially during the night which contributes to a large power saving.

Figure 6.17 shows the result of energy optimization in entertainment area. The advantage

of EA is evident in this area. Between the hour of 2-8, the service demand in this area

is considerably low. Mostly, the very low traffic demand requires only HPNs to provide

the service. Therefore, we can see that LPNs, on average, require significantly low power.

The energy consumption in entertainment eNB groups does not exactly follow the traffic

demand trend in the area. The alternation exists because one of the selected eNB groups

contains many LPNs located in the business area, but the LPNs connect to an HPN in the

entertainment area. The traffic in the business area that has a substantially higher level of

demand alters the result.
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Figure 6.16: Energy consumption in percentage of full operation in business area
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Figure 6.17: Energy consumption in percentage of full operation in entertainment area
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Next, we present the result of energy optimization in highway area in Figure 6.18. Be-

cause the nature of the narrow area and the location of the group members, the result is

affected considerably by nearby service area traffic demand. The neighboring service areas

that are entertainment and residential area perceive extremely high traffic at night. At the

hour of 9, both of the neighboring areas receive relatively lower demand than the highway

area itself. At the time, the focused eNBs switch to operate LPNs at a high capacity while

the HPN reduces its energy consumption to almost the minimum just to cover the area and

provide lower level service. On the other hand, when the neighboring areas require great

service at night, the HPN consumes significantly high energy. Due to the location of the

LPNs that are close to the HPN, HPN is required providing services to users that are far

away.

The last type of service area is the residential area that spreads out in the largest area in

the city. The energy consumption in the area is presented in Figure 6.19. Due to the sparsity

of high-demand spots, HPNs require operating at the almost full capacity to provide service

to users during peak time at night. Our assumption on traffic demand in this area could be

conflicting to a practical case in which accessibility to the internet in residence is high. In

the case, the users demand should not consist of great high-leveled service demand. Thus,

the necessity for energy at HPNs to provide high-speed service in a wide area that causes

high energy consumption should be significantly lower.
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Figure 6.18: Energy consumption in percentage of full operation in highway area
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Figure 6.19: Energy consumption in percentage of full operation in residential area
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Furthermore, we consider the quality of service the network provides to the customers.

Figure 6.20 and Figure 6.21 present the user satisfaction rate and user satisfaction rate to

power consumption ratio. The figures display the quality of service prior (dash lines) and

after (solid lines) the energy reduction procedure. Blue ‘◦’ represents EA&RE case while

pink ‘4’ and red ’�’ display SINR&RE and SINR schemes, respectively. In Figure 6.20,

we observe that the customer satisfaction rate in EA&RE case is lower than the other cases

during quiet early morning hours. However, the rate is higher during the rest of the day when

the traffic is significantly greater. Our worst scenario approach of calculating the interference

affects this result tremendously. When there are a low number of users in the network, the

system tries to optimize its energy consumption by reducing transmit power and spectrum

resources assigned to users. The users that suffer from decreased quality of service are those

who stand far away from the selected eNBs and experience extremely high interference from

neighboring eNBs. We believe that a network with an interference management method

could solve this issue and increase this satisfaction rate. Also, this low satisfaction rate of

the users could be caused by a disadvantage of EA cell selection. The cell selection seeks

minimum energy consumption in HPNs. Therefore, once the traffic demand reaches the

determined ratio, the HPNs decide to switch on LPNs and hand over users to the LPNs. In

certain circumstances, a great portion of users become congested in the LPNs and suffer from

limited resources. The trade-off between the potentially additional energy requirement at

HPNs to satisfy more users and declined LPN user satisfaction rate could be topic for future

study. On the other hand, a benefit of RE is obvious when the traffic in the network is high.

The capability of strategic resource management improves the user satisfaction. Compare

the cases of SINR&RE and SINR, RE model and resource management can maintain the

greater number of users satisfy. Moreover, another factor that affects the percentage of

satisfied customers is the portion of users congested in particular areas. In other words,

during the hour of 12 to 16, the majority of users in the network congested in the business

area creating low satisfaction rate due to insufficient resources in the area. During the hour

of 16 to 20, most of the users are in either highway or entertainment areas. Also, during the

hour of 20 to 24, a great number of users are in the residential area. Due to the residential

area spans over the largest area, the number of users in the area corresponds to the highest
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Figure 6.20: User satisfaction prior and after energy reduction

percentage of the total users and contributes greatly to the total network satisfaction rate.

Overall, the network could obviously advance and satisfy more users during peak times

with more available resources. Consider the effectiveness of RE energy optimization model,

Figure 6.21 displays a major improvement. In EA&RE scenario, the model can maintain

the level of customer satisfaction with considerable lower energy, especially during quiet

periods. The ratio decreases when the traffic increases. The lower ratio is caused by both

lower satisfaction rate due to the insufficient resources and more energy required to serve

the users with the insufficient resources.
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Figure 6.21: User satisfaction per energy consumption ratio

Moreover, we consider the customer satisfaction in the different types of service area.

Red ‘4’, green ‘+’, blue ‘�’ and yellow ‘�’, represent customer satisfaction rate in business,

residential, highway and entertainment area. Solid line and dash line show the rate after and

prior performing EA energy reduction. Overall, when we consider the customer satisfaction

by service area, we can see that customer satisfaction rate is the lowest in the business area

at all hours. Insufficient resource is most concerning in the business area. Similarly, the lack

of resource is also troublesome in other areas during the busy hours especially at t = 20.

On the other hand, the customer satisfaction rate is relatively high the low load hours in

highway and entertainment areas.
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Figure 6.22: User satisfaction prior and after energy reduction by types of service area

Considering the cost of network operation, we determine the cost of energy is $0.49 per

kWh [71]. Assuming that the network has lifetime of ten years (365 days a year), the OPEX

cost of the network in the three scenarios (EA&RE, SINR&RE, SINR) is $45.59M, $55.68M

and $61.05M over ten years. Since the cost of full operation is $61.81M, the proposed cell

selection technique and energy optimization model can save $16.22M in ten years. From

the simulations, an LPN cost of operation is $48,790 per ten years and cost of installation

is $42,000. Consequently, the saved CAPEX cost can transform to 205 supplemental LPNs

in the city. The addition increases the number of eNBs in the city to 346 eNBs. The

additional LPNs can be strategically deployed near the HPNs to offload more users from the

current installed HPNs and far enough from the existing LPNs to moderate the interference.

Also, a further study can reveal areas with weak SINR for UEs. The additional LPNs can

provide supplemental service and improve the quality of service to the UEs in the areas.

However, the strategy to locate LPNs in different scenarios and constraints is a widely

studied topic [17, 25–27, 71] and is not a purpose of this research. Considering the busiest
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Table 6.5: Energy consumption in percentage of full operation with different traffic means

Scenario - 10% Current + 10%

Total 70.14% 73.56% 76.43%

HPNs 67.89% 71.89% 75.38%

LPNs 89.12% 89.49% 89.77%

period in the city that is at the hour of 20, the average numbers of users per km2 are 68,

50, 47 and 192 in business, entertainment, highway and residential, respectively. With the

numbers of users per area and the number of eNBs, each eNBs serve 13.8 users on average.

We compare the ratio of users per eNBs in the city to the results in Section 5.2. The results

show that the potential network can increase the user satisfaction rate to around 90%. The

calculation could be more accurate if we consider the ratio of users per eNB separately in

each type of the area. However, in the city, we cannot specify a type of service area to all

the eNBs because there are several LPNs that connect to an HPN in a different service area

type. Thus, we need to estimate the result from an average in the city-wide area.

Here, we investigate variation of the assumed mean traffic demand. We examine when

the traffic demand estimation in the simulated network varies by ten percent; 10% lower

and 10% higher than the current assumption. The network continues to utilize our proposed

EA cell selection and RE energy reduction. From Table 6.5, the difference of the traffic

mean creates impact on the network energy requirement. 10% fluctuation of traffic average

generates approximately 3% variation of total network energy requirement. Most of the

energy consumption change appears at the HPNs. The change of traffic average requires

roughly 4% change of energy consumption at the HPNs. On the other hand, the varied

mean traffic demand does not require significantly altered energy at LPNs. Due to our

cell selection that draws the majority of users to the LPNs to reduce energy consumption

at HPNs, LPNs generally operate at almost full capacity. The HPNs, therefore, require to

increase their amount of service for the additional demand and to consume more power when
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there are 10% increase of the traffic demand average.

Regarding the customer satisfaction rate, we present Figure 6.23. From the figure, the

variation of mean traffic alters the customer satisfaction in three perspectives. First, quiet

hour period of the network last longer. During the quiet hours, the network can satisfy

approximately the same percentage of users during quiet hours. However, because there

are fewer users when the traffic average is 10% lower, the system also satisfies users at a

high percentage at the hour of t = 8. Second, the customer satisfaction rate is considerably

lower during the normal hours when the average traffic is 10% higher. The lack of available

resource starts to make an impact at some areas earlier than the current traffic assumption.

On the contrary, during the busy hours or between t = 20 to t = 22, the customer satisfaction

rate is relatively higher when there is 10% lower traffic on average.
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Figure 6.23: User satisfaction prior and after energy reduction with different traffic means
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7.0 CONCLUSION

Energy consumption in a cellular network has become a critical concern, especially in the ac-

cess network. Studies have shown great possibilities to reduce power requirement in network

operation. Researchers have been proposing methodologies to minimize energy consumption

and increase energy efficiency in cellular networks. Nevertheless, the main focus of the pro-

posed work has been on finding an optimum process to switch off transmission equipment.

This thesis contains three major parts. First, we propose two cell selection techniques to

produce more opportunities for energy reduction in eNBs, namely, Bandwidth-based(BB)

cell selection and Energy-aware(EA) cell selection. Both techniques produce significantly

higher offloading rate to the system compared to a widely considered SINR-based cell se-

lection. Also, the techniques considerably raise the user achievable data rate to most users

and possess greatly higher customer satisfaction. Furthermore, the approaches noticeably

create additional possibilities for energy reduction. From our simulations, with the deter-

mined network topology, our approaches yield the best network performance and the highest

opportunities to reduce energy consumption in HPNs when there are 18 LPNs per an HPN.

Second, we develop two energy reduction models. Step-dimming(SD) energy reduction suc-

cessfully reduce energy requirement at HPNs by minimizing transmit power according to the

current traffic load. Resource-based(RE) energy optimization produces power saving at all

eNBs by optimizing spectrum resources and transmit power dedicated to users based on user

service demand levels. The two energy models show great potential in saving power in net-

work operation while maintaining required quality of service and customer satisfaction. Even

though the models can reduce the power requirement in the network regardless of the cell

selection, they perform significantly better with our two proposed cell selection approaches.

Last, we examine our proposed model in a minimum CAPEX city-like network with time and
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spatial traffic variation. We conclude that with our energy optimization model, an operator

could deploy a minimum CAPEX network in a city and satisfy almost all customers. The

analysis of average traffic variation shows that our proposed models are effective with dif-

ferent levels of mean traffic demand. Also, the considered variation of average traffic (10%)

does not alter the energy requirement greatly. Thanks to our energy minimization model,

the network energy consumption is already at its minimum. On the other hand, the limited

available resource can affect the customer satisfaction rate considerably.

This work extends the possibility of energy reduction in cellular access network opera-

tion. In addition to turning off the equipment or the entire base stations, we present a new

way of reducing energy by optimizing spectrum resources and transmit power. Not only

does the optimization take into account the number of users but also various levels of service

demand from the users. We take the consideration of relatively high data rates as service

levels that start to appear in many urban markets. Moreover, we further believe that energy

optimization can be improved by a proper traffic load management. The traffic manage-

ment can create higher feasibility for energy reduction at eNBs when the load management

considers users potential energy requirement during cell selection. Additional considerations

to SINR the users receive could present many more possibilities in both improved service

quality and energy efficiency. Also, a recent survey [6] lists a negative impact of reducing

energy by switching off equipment as one of missing concerns in literature. Our applica-

tion of customer satisfaction rate instead of sole data rate reveals the first evaluation that

exposes the adversity of cutting down energy consumption. Further, the same survey also

notes another inaccuracy in simulation studies. The studies assume either stable or uniform

traffic trend in the environment. In our last chapter, we present a city-like area where there

are five distinct traffic characteristics that vary in both time and location. We can analyze

the benefit and the disadvantage of models regarding different demand trend.

Nevertheless, doing research carries issues. The most challenging deficiency is the short-

age of actual traffic and network information, especially energy requirement and cost of

equipment. Measured traffic demand, operation information, and network specifications are

very commercially sensitive. Acquiring the specific information is very difficult for external

research bodies. The purpose of doing simulations is to resemble actual scenarios as accurate
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as possible. Scenarios with differences in, for example, traffic characteristics, service levels

and area locations could contain contrasting assumptions and yield diverse results. Assump-

tions that appear in this thesis is constructed based on available data in publicly accessible

studies. Therefore, we cannot affirm that applications of our proposed algorithms will al-

ways produce the same results in other scenarios with different assumptions and constraints.

We believe the same uncertainty also applies to any theoretical research. In this thesis, we

compare our numerical results to other simulation studies with similar parameters and as-

sumptions. We found that within a scope of considerations in the similar scenarios in other

studies, our results are valid. Nevertheless, the lack of measured data in research studies is

a critical issue that needs to be addressed to provide certitude to an actual network.

Moreover, optimization models in a large area contain a high number of decision variables.

Accurately simulating a relatively large area network requires tremendous computational

resources. Assumptions and simplifications need to be made to downsize the problems to be

able to perform on a stand-alone computer. Furthermore, literature on the similar matter

as this thesis assumes no limitation of communication between eNBs over control plane.

Additional algorithm for load management or energy reduction produces greater traffic on

the control plane. As the process gets more sophisticated, the increased traffic on the control

plane could become more concerning. More specifically to this work, because we aim mainly

to generate a city-like area where there is always service demand, the simulation does not

exploit the greatest benefit of EA. EA is suitable where the traffic is considerably low for the

majority of the time. Also, peak traffic creates a significantly higher traffic and remains for

a shorter period. The examples where the EA can be most beneficial are conference centers,

sport or entertainment venues and rest stops on the highway. A suitable decisive condition

of when to switch on the LPNs is dependent on the feature of the locations and is still an

interesting study topic. Furthermore, in this work, we assume the worst case scenarios in

terms of signal interference. Currently, there are several interference mitigation approaches

proposed. There has been none standardized. With an interference management, especially

during low load time, both network performance and energy consumption can be improved.

With the lower interference, user RSS is higher yielding higher achievable data rate and

transmit power required to satisfy user service demand level is lower.
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Overall, to relieve and overcome the challenges, future improvement exists. Following is

a list of possible research to advance our work.

• Improved EA: Currently, the system that operates EA switches to BB when the demand

exceeds the limit that an HPN can provide sufficient spectrum resource and quality of

RSS to meet the users service demand. The approach works efficiently when the demand

increases sharply from lower than the limit to considerably higher than the limit. When

the demand is slightly higher than the limit, the system turns on LPNs to offload users

from the HPN. The load in each eNBs becomes light, especially in the HPN. In our

work, results show a small advantage of offloading to LPNs. The users satisfaction rate

increases because users in each eNBs can access greater resources from eNBs. However,

instead of waking up many LPNs to balance the load, the system could require a fewer

LPNs. The fewer LPNs can serve only the excessive users leaving the HPN operate at

full resource at the lowest transmit power. This approach could increase energy efficiency

at the HPN during the particular incident.

• Combined EA&RE: In our work, the system performs EA cell selection and RE energy

optimization separately. EA connects users to eNBs regarding their expected energy

requirement. Then, RE optimizes the eNBs resource and transmit power according to

connected users. A process that combines EA and RE into one procedure could reduce

the time and resource required to simulate the experiment. Also, a combined EA&RE

could yield a higher energy efficient model that solves the problem mentioned earlier in

improved EA.

• Interference managed RE: Because there is no universal standard for interference manage-

ment, we decide to simulate the highest interference possible. Current interference miti-

gation approaches proposed in literature [50, 52, 54, 114, 115] are considerably advanced.

An interference mitigation technique could provide spectrum resource management that

limits the interference and, as a result, improve the network performance.

• MIMO energy optimization: Our energy optimization model considers a single-input

single-output (SISO) system. LTE technology exploits the multiple-input multiple-

output (MIMO) technology greatly. With multiple antennas, the system can already

reach great energy saving without any energy reduction mechanism [4, 116]. However,

117



with the rapidly increasing user demand, it will not be long until the advanced system

consumes an alarming amount of power. Fundamentally, one can apply our RE model

in MIMO environment with modification regarding spectrum resource determination.

• User equipment energy consumption: Because we neglect the energy consumption of

user equipment in our studied models, our proposed techniques, especially cell selection

algorithms, could produce adversary consequences to user equipment. A study of require-

ments from user equipment in order to comply with a network effort of energy reduction

is recommended to validate practicality of an energy reduction model.

This dissertation explores a new way to perceive energy reduction in access LTE network.

The energy can be saved by managing the load among eNBs regarding potential energy

requirement by the users and by optimizing spectrum resource and transmit power for users

according to their service demand. With the expectation of lower network operation cost,

an operator can deploy a larger network and satisfy more users. The user demand for higher

data rate and ubiquitousness of service will continue increasing rapidly and tremendously

requiring an even larger network. Cellular network industry will continue to be one of the

most energy-consuming industries. Energy consumption will continue to be one of the most

critical concerns both financially and environmentally. This dissertation presents a promising

possibility to overcome challenges for a “greener” telecommunication network.
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APPENDIX

BASELINE CUSTOMER SATISFACTION CALCULATION

In this work, we assume that the supplementary deployment of LPNs is inevitable. The

addition is due to the recent rapid increase of traffic demand in cellular network. Therefore,

we assume that users are satisfied when they receive higher or the same level of data rate as

before the expansion of the network. To find the level of expectation of users, we perform

a simulation in an extreme scenario to find the expected data rate when the network had

only one traditional base station. Customer satisfaction rate is the percentage of satisfied

user in the network and is used as an evaluation metric throughout this work (Section 4.3,

5.1.1, 5.2.1 and 6.2). This simulation result also serves as a reference and a constraint in

Step-dimming energy reduction (Section 5.1).

The simulation is set on a sample service area with radius of 500 meters. The service is

provided by one base station operating on 800 MHz carrier frequency with a bandwidth of

10 MHz. We vary the transmit power of the base station from 30 dBm to 46 dBm. There is

no interference but noise is set at -92 dBm. We collect the average of user achievable data

rate when there are 10 to 250 users in the cell. The users location is uniformly distributed

the same way as in Section 4.3. Achievable data rate is calculated based on Okumura-Hata

urban model [103] which is Lp = 69.55 + 26.16log(f) − 13.82 ∗ log(hb) − a(hm) + (44.9 −

6.55log(hb))log(d). The factor a is 3.2(log(11.75hm))2 − 4.97. Pathloss calculation follows

LTE-specific modified Shannon’s formula [84] which is C = 0.75Blog2(1 + SNR/1.25). B

is the available bandwidth which equals to 10 MHz and SNR is the RSS of the UEs. We

conduct the simulation for 10,000 iterations. Figure A1 presents the result of the simulation.
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In most parts of this research, we assume that an HPN is deployed to serve 200 users. When

the base station operates at full capacity and transmits at the maximum power of 46 dBm,

the average achievable data rate in the result is 695.4 kbps. Therefore, we define that the

user achievable data rate must be higher or equal to 695.4 kbps to be satisfactory to users.
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Figure A1: Baseline average user data rate (Mbps)
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