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Ankur Joshi, PhD

University of Pittsburgh, 2015

Auditory cortex (AC) layer (L) 5B contains both corticocollicular neurons, a type of pyramidal-tract
neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic
neuron projecting to contralateral AC. It is known that these neuronal types display dichotomous in vivo
responses to sound. While corticocollicular neurons display robust evoked responses to wide range of
sound frequencies, corticocallosal neurons are responsive to a limited range of sound frequencies.
However, the intrinsic and synaptic mechanisms shaping these dichotomous responses remain
unexplored. It is also known that corticocollicular neurons are critical for learning-induced plasticity
involved in relearning sound localization after monaural occlusion. This learning induced-plasticity also
requires the release of acetylcholine (ACh) in the AC. However, the effect of ACh release on the
excitability of corticocollicular neurons is unknown. Therefore, we recorded in brain slices of mouse AC
from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B to identify the
intrinsic and synaptic mechanisms that contribute to the in vivo responses of these neurons to sound, and
to examine the effect of ACh release on corticocollicular and corticocallosal neurons to identify cell-
specific mechanisms that enable corticocollicular neurons to participate in relearning sound localization.
In comparison to corticocallosal neurons, corticocollicular neurons display a more depolarized resting
membrane potential, faster action potentials and less spike frequency adaptation. In paired recordings
between single L2/3 and labeled L5B neurons, trains of EPSCs showed no synaptic depression in
L2/3—corticocollicular connections, but substantial depression in L2/3—corticocallosal connections. We

propose that these differences in intrinsic and synaptic properties contribute to the dichotomous in vivo



responses of corticocallosal and corticocollicular neurons to sound. Additionally, ACh release generates
nicotinic acetylcholine receptor (nAChR)-mediated depolarizing potentials in both corticocallosal and
corticocollicular neurons, but muscarinic acetylcholine receptor (MAChR)-mediated hyperpolarizing
potentials in corticocallosal neurons and mMAChR-mediated prolonged depolarizing potentials in
corticocollicular neurons. This prolonged mAChR-mediated depolarizing potential leads to persistent
firing in corticocollicular neurons, whereas corticocallosal neurons lacking this prolonged mAChR-
mediated depolarizing potential do not fire persistently. We propose that this mAChR-mediated persistent
firing in corticocollicular neurons may be a mechanism required for relearning sound localization after

monaural occlusion.
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1.0 INTRODUCTION

The auditory cortex (AC), located in the temporal lobe, is the final target of all afferent auditory
information and is thought to be responsible for the conscious perception of sound (Purves et al., 2001;
Hackett, 2015). It receives auditory information from subcortical structures via the auditory thalamus,
also called the medial geniculate body (MGB). The auditory cortex is subdivided into a number of
sections that varies based on species, but the general feature is that there is a primary region (A1) which is
surrounded by a variable number of belt regions (Malmierca and Ryugo, 2011). Al has a precise
tonotopic organization, i.e. different areas of Al respond to specific sound frequencies, whereas the belt
areas are less precise in their tonotopy. The precise tonotopy in Al arises due to its inputs from the ventral
MGB, which itself is tonotopically organized; however, the AC belt areas are less precise in their
tonotopy as they receive inputs from the belt areas of the MGB which are not very precise in their
tonotopy (Purves et al). Additionally, like other areas of the sensory neocortex, the AC has a laminar
organization, i.e. it is subdivided into layers (L) 1-6.

Based on their projection targets, there are three main classes of excitatory neurons in the
neocortex, including the AC. The first class of excitatory neurons is the intratelencephalic (IT) neurons.
IT neurons are located in L 2-6 and project solely within the telencephalon (cortex and striatum)
(Shepherd, 2013); IT neurons are also the only excitatory neurons that project to the contralateral cortex
via the corpus callosum and anterior commisure (Harris and Shepherd, 2015). The second class of
excitatory neurons is the pyramidal tract (PT) neurons, which reside in L5B and project to subcerebral
brain structures such as the midbrain, brainstem and the spinal cord (Shepherd, 2013). Corticothalamic

neurons are the third and final class of excitatory neurons, which are located in L6 and project to the



ipsilateral thalamus (Shepherd, 2013). We will not discuss corticothalamic neurons, and interneurons
(which are found in all cortical layers and comprise the remaining 20% of cortical neurons) here as the
focus of this work is on the two classes of excitatory cell types in L5B of the AC, the IT and PT neurons,
which will be discussed further in the document.

In the AC, L5B contains corticocollicular neurons, a type of PT neuron projecting to the inferior
colliculus (IC), and corticocallosal neurons, a type of IT neuron projecting to contralateral AC (Games
and Winer, 1988; Doucet et al., 2003). The initial motivation to study AC L5B corticocallosal and
corticocollicular projection neurons arose from studies which show that putative AC L5 IT and PT
neurons display dichotomous in vivo responses to sound (Turner et al., 2005; Sun et al., 2013). However,
the role of intrinsic and synaptic properties in shaping the firing of AC L5 projection neurons has not been
explored in the AC. Therefore, we investigated the intrinsic and synaptic properties of labeled L5B IT and
PT neurons, namely corticocallosal and corticocollicular neurons respectively, to identify mechanisms
that shape the distinct in vivo responses of AC L5 IT and PT neurons to sound.

In addition to displaying distinct responses to sound, AC L5B projections neurons also play
crucial roles in auditory processing. Specifically, the corticocollicular projection is crucial for learning-
induced plasticity in the AC as animals with corticocollicular projection lesions cannot relearn sound-
localization after monaural occlusion (Bajo et al., 2010). This learning-induced plasticity is also
dependent on cholinergic innervation of the AC as animals with lesions of Nucleus Basalis, the major
source of cortical acetylcholine (ACh), cannot relearn sound localization after monaural occlusion (Leach
et al.,, 2013). Despite the involvement of ACh and corticocollicular neurons in relearning sound
localization, the effect of ACh on the excitability of corticocollicular neurons is unexplored. Therefore,
we investigated the effects of ACh release on corticocollicular neurons to understand the mechanisms via
which cholinergic modulation enables corticocollicular neurons to participate in relearning sound
localization. It is also known that cholinergic modulation affects the activity of L5 IT and PT neurons
differently in other neocortical areas (Dembrow et al., 2010). However, whether ACh has projection-
specific effects on AC neurons is unknown. Therefore, we examined whether ACh release on AC L5B
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corticocallosal and corticocollicular neurons leads to projection-specific neuromodulation in the AC or
not.

Overall, the goal of this dissertation was to study the intrinsic and synaptic mechanisms that
control the excitability of AC L5B projection neurons and allow them to play distinct roles in auditory

processing.

11 PART 1

1.1.1 General classification of layer 5 projection neurons in the auditory cortex

Two types of projection neurons have been identified in L5 of the AC. They are called the intrinsic
bursting (IB) and regular-spiking (RS) neurons. In vitro studies show that intracellular current injections
cause an initial high frequency discharge of action potentials in IB neurons, and the spike train that
follows maintains a sustained firing rate, i.e. lacks spike frequency adaptation (Hefti and Smith, 2000).
On the other hand intracellular current injections lead to a train of action potentials in RS neurons, which
is composed of single action potentials, and does not maintain a sustained firing rate, i.e. displays spike
frequency adaptation (Hefti and Smith, 2000). IB neurons display significantly larger soma and apical
dendrites compared to RS neurons; additionally, the apical dendrite of the IB neurons is characterized by
the apical dendritic ‘tuft” which extends into layer 1 while the apical dendrite of RS neurons lacks this tuft
and terminates in L2/3 (Hefti and Smith, 2000; Sun et al., 2013). Based on anatomical evidence, it is
believed that 1B neurons project to the inferior colliculus (Games and Winer, 1988) and to the cochlear
nucleus (Weedman and Ryugo, 1996b, a) whereas RS neurons project to the contralateral cortex (Games
and Winer, 1988). Thus, IB neurons fall in the broader category of PT neurons, whereas RS neurons fall

in the broader category of IT neurons. Since corticocollicular neurons projecting from AC L5B to the IC



constitute the majority of AC PT projection neurons (Doucet et al., 2003), it can be inferred that many IB

neurons are corticocollicular neurons.

1.1.2 Invivo responses of layer 5 IT and PT neurons in the auditory cortex

In vivo studies have revealed that putative AC L5 IT and PT neurons display distinct responses to sound
stimuli evidenced by their tonal receptive fields (TRFs). TRF represents the evoked responses of an AC
neuron in response to tones of various frequencies over a range of sound intensities. PT neurons display
broadly tuned TRFs, i.e. they exhibit sustained, reliable spiking in response to a wide range of sound
frequencies (Sun et al., 2013). On the other hand, AC L5 IT neurons exhibit spiking over a limited range
of sound frequencies and display narrowly tuned TRFs (Sun et al., 2013). Additionally, sound stimuli
drive bursts of action potentials, containing up to 2-3 action potentials in PT neurons, whereas sound
stimuli in IT neurons leads to generation of single action potentials (Turner et al., 2005; Sun et al., 2013).
This in vivo bursting in PT neurons and the lack of it in IT neurons is reminiscent of the activity IB and
RS neurons reported in the in vitro literature (Hefti and Smith, 2000). Another difference in the response
of PT and IT neurons is the latency of spiking after sound stimulus, which is significantly shorter in PT
neurons compared to IT neurons; on the other hand, the latency of response in PT neurons is comparable
to latency of response in L4 neurons, suggesting that like L4 neurons, PT neurons are driven by direct

thalamic input, whereas cortical input drives IT neurons (Sun et al., 2013).

1.1.3 Current understanding of the mechanisms shaping the in vivo responses of layer 5 IT and

PT neurons in the auditory cortex

The broad tuning of PT neurons and the narrow tuning of L5 IT neurons in the AC has been attributed to
the difference in the synaptic inputs received by them. The range of synaptic inputs received by neurons

can be indirectly assayed by examining the subthreshold TRFs. In L5 PT neurons, broad suprathreshold
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spike TRFs are matched by broad subthreshold TRFs, while the narrow suprathreshold spike TRFs in L5
IT neurons are matched with narrow subthreshold TRFs; this difference in the subthreshold TRFs
indicates that L5 PT neurons receive a broader range of synaptic inputs compared to L5 IT neurons (Sun
etal., 2013).

The difference in synaptic inputs received by AC PT and IT neurons is shaped by the excitatory
and inhibitory inputs converging on these neurons. A direct examination of excitatory and inhibitory
inputs in voltage clamp mode reveals that PT neurons display a broad excitatory TRF and a much
narrower inhibitory TRF, indicating that excitatory inputs to PTs are broadly tuned while the inhibitory
inputs to PTs show narrow tuning; on the other hand, IT neurons display a narrow excitatory TRF, which
is matched to their inhibitory TRF (Sun et al., 2013). Overall, as the range of inhibitory inputs impinging
on PT and IT neurons are not significantly different, the broad tuning of PT neurons to sound can be
explained by the broad range of excitatory inputs received by PT neurons (Sun et al., 2013).

While the range of excitatory inputs received by PT and IT neurons can explain their in vivo
responses to sound, we still do not have a clear understanding of the source and properties of these
excitatory inputs. Additionally, synaptic inputs are not the only factor that shapes the firing of neurons, as
intrinsic properties such as AP threshold, AP width, resting membrane potential, input resistance, etc.
have a bearing on the excitability of neurons. Therefore, in order to fully understand how these neurons
respond to sound, we have to explore cell-specific intrinsic and synaptic mechanisms of L5 IT and PT

neurons.

1.1.4 Potential mechanisms shaping the in vivo responses of layer 5 IT and PT neurons in the

auditory cortex

In vitro studies, using retrograde labeling, have revealed differences in intrinsic properties of L5 IT and
PT neurons in various cortical areas (Morishima and Kawaguchi, 2006; Dembrow et al., 2010; Suter et
al., 2013). Spike related properties in L5 motor, frontal and prefrontal cortices suggest that PT neurons are

5



intrinsically endowed to generate prolonged APs. In comparison to L5 IT neurons, PT neurons of the
motor cortex display a more hyperpolarized AP threshold, narrow APs (half-width), and lack of spike
frequency adaptation (Hattox and Nelson, 2007; Suter et al., 2013). Similar results have been reported in
the prefrontal cortex where in comparison to L5 IT neurons, PT neurons display a more hyperpolarized
AP threshold, faster APs and a lack of spike frequency adaptation (Dembrow et al., 2010). A difference in
spike frequency adaptation between L5 IT and PT neurons has also been reported in the frontal cortex
(Morishima and Kawaguchi, 2006). The lack of spike frequency adaptation in PT neurons suggests that
they are intrinsically tuned to fire in a tonic or prolonged fashion, whereas adaptation in L5 IT neurons
suggests that they are intrinsically tuned to display phasic or transient firing (Shepherd, 2013).
Additionally, the linear relationship between stimulus intensity and the evoked firing rate in PT neurons
(Suter et al., 2013) argues that PT neurons can fire reliably at high frequencies (Shepherd, 2013).

In L5 AC, intrinsic properties of labeled IT and PT neurons have not been examined
systematically and hence their contribution to in vivo responses of L5 IT and PT neurons to sound is
unknown. Therefore, an inquiry into the intrinsic properties of L5 IT and PT neurons using in vitro
techniques can help us to understand the intrinsic mechanisms that shape their in vivo responses to sound.

In addition to intrinsic properties, the synaptic inputs impinging on neurons can also affect their
excitability. We know that PT neurons receive a broader range of excitatory synaptic inputs in
comparison to IT neurons (Sun et al., 2013), but the source or the nature of these excitatory inputs
remains to be explored. One of the major sources of excitatory input to L5 pyramidal neurons is from
L2/3 neurons (Adesnik and Scanziani, 2010; Anderson et al., 2010; Wallace and Jufang, 2011; Shepherd,
2013; Harris and Shepherd, 2015). L2/3 input to L5 pyramidal neurons can differ based on the location
and the projection class of L5 pyramidal neurons. In the motor cortex L2/3 inputs to IT neurons in lower
L5A are much stronger compared to inputs in upper L5A, while L2/3 inputs to IT neurons in L5B are
weak regardless of the location; on the other hand, L2/3 inputs to PT neurons are stronger in upper L5B
compared to lower L5B (Anderson et al., 2010). A comparison of L2/3 inputs to upper L5B IT and PT
neurons reveal significantly stronger inputs to PT neurons (Anderson et al., 2010). The above discussion
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highlights that the strength of excitatory inputs to L5 IT and PT neurons are region/cell-specific.
Significant differences in the strength of L2/3 inputs to L5 IT and PT neurons can dramatically affect
their ability to fire APs. Therefore, an in vitro examination of synaptic inputs in AC from L2/3to L5 IT
and PT neurons can help us understand the synaptic mechanisms shaping L5 IT and PT in vivo responses
to sound.

Together, an in vitro understanding of intrinsic properties of AC L5 IT and PT neurons, and their
synaptic inputs from L2/3 will be useful for understanding their dichotomous in vivo responses to sound.
In order to do so, we have to selectively target L5 IT and PT neurons in vivo, which can help in the

subsequent in vitro identification of these specific neurons for an in depth assessment of their properties.

1.1.5 Retrograde labeling as a tool to identify specific L5 IT and PT neurons- the corticocallosal

and corticocollicular neurons in the auditory cortex

Retrograde labeling with fluorescent tracers has been used extensively to label and study distinct
populations of projection neurons in the cortex (Anderson et al., 2010; Dembrow et al., 2010; Kiritani et
al., 2012; Suter et al., 2013; Yamawaki et al., 2014). Corticocollicular neurons projecting from AC L5B
to the IC constitute the majority of AC PT projection neurons (Doucet et al., 2003) while corticocallosal
neurons projecting to the contralateral cortex constitute IT neurons (Games and Winer, 1988). Therefore,
injections of retrograde tracers of different colors into the IC and the contralateral cortex can label distinct
populations of corticocollicular and corticocallosal neurons. Corticocollicular neurons reside in L 5B of
the AC (Doucet et al., 2003), whereas corticocallosal neurons are found in L2-6 (Harris and Shepherd,
2015). This anatomical segregation can allow us to target specific corticocallosal neurons within L5B of
the AC. By studying the intrinsic and synaptic properties of labeled L5B corticocallosal and
corticocollicular neurons, we can understand the mechanisms shaping the in vivo responses of L5 IT and

PT neurons to sound.



1.1.6 The role of AC L5B corticocollicular projection neurons in behavioral auditory relearning

In addition to displaying distinct evoked responses to sound, L5 projection neurons also play an important
role in auditory processing. Recent evidence shows that the corticocollicular projection from L5B AC to
IC plays a critical role in behavioral auditory relearning (Bajo et al., 2010).

When we hear a sound, our two ears perceive the sound differently i.e. there is a difference in the
intensity and timing of the sound reaching our ears. This difference along with the spectral cues generated
by how the sound interacts with the external folds of our ears is used to locate the direction of the sound
source (Leach et al., 2013). Perturbations in interaural timing and intensity, generated by monaural
occlusion for example, can dramatically affect the ability of animals to localize sound (Bajo et al., 2010;
Leach et al., 2013). However, under normal circumstances, animals learn to overcome this disruption by
relying on the cues provided by the unoccluded ear and can relearn to localize sound (Bajo et al., 2010;
Leach et al., 2013). The corticocollicular projection plays a crucial role in this learning-induced plasticity
as animals with corticocollicular lesions cannot relearn sound localization after monaural occlusion (Bajo
et al., 2010). It must be mentioned that under normal conditions, i.e. without monaural occlusion, animals
with corticocollicular lesions can locate the sound source (Bajo et al., 2010), highlighting the fact that the
corticocollicular projection plays a critical role during conditions that require an animal to adapt to altered
cues.

Interestingly, the ability to relearn sound localization is not only dependent on corticocollicular

projections, but also on the release of the neuromodulator ACh in the AC (Leach et al., 2013).



1.2 PART 2

1.2.1 Overview of acetylcholine and its role in modulating auditory processing

ACh is a neuromodulator that is important for learning (Kilgard, 2003; Ramanathan et al., 2009), memory
(Winkler et al., 1995; Hasselmo and Stern, 2006) and tasks that require attention (Himmelheber et al.,
2000; Herrero et al., 2008; Parikh and Sarter, 2008). The main source of cortical ACh is the Nucleus
Basalis, a group of neurons in the basal forebrain (Lehmann et al., 1980; Dani and Bertrand, 2007). ACh
shapes cortical functioning by modulating the activity of cortical neurons via the activation of two types
of acetylcholine receptors, the nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs)
(Dani and Bertrand, 2007). nAChRs are ligand-gated pentameric ionotropic receptors, which belong to
the cystine-family of receptors (Dani and Bertrand, 2007). The structure of these receptors is based on
various combinations of twelve subunits (02-a10 and 2-B4) (Gotti and Clementi, 2004). Two main types
of nAChRs are found in the cerebral cortex: the homopentameric nAChRs composed of five a7 subunits
and the heteropentameric nAChRs that contain two o4 subunits, two B2 subunits and a fifth subunit that
can be o4, B2, or B5 (Albuquerque et al., 2009). Activation of nAChRs allows the flow of Na*, K*, and
Ca?*, which leads to the depolarization of the cell membrane. On the other hand, mMAChRs belong to the
family of G-protein coupled receptors (Ishii and Kurachi, 2006). There are five different types of
MAChRs (M1-M5). The odd numbered mAChRs (M1, M3 and M5) are coupled to Gq proteins, while the
even numbered mAChRs (M2 and M4) are coupled to Gi proteins (Brown, 2010). The cerebral cortex
mainly contains M1, M2 and M4 types of mMAChRs (Levey et al., 1991), and their activation leads to
different intracellular signaling cascades which can cause both hyperpolarization and depolarization of the
cell membrane by causing changes in potassium and calcium conductances (Brown, 2010; Thiele, 2013).
ACh plays an important role in auditory processing and plasticity. Electrical stimulation of the
Nucleus Basalis, paired with an auditory stimulus results in tonotopic plasticity in Al; specifically, an
over representation of the frequency of the auditory stimulus that was paired with Nucleus Basalis
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stimulation is seen in Al (Kilgard and Merzenich, 1998b). Similarly, pairing a sound stimulus with
Nucleus Basalis stimulation modifies the excitation and inhibition generated in response to the paired
stimuli; specifically, there in an increase in the amplitude of EPSCs and a decrease in the amplitude of
IPSCs elicited in response to the paired stimuli (Froemke et al., 2007). These studies show that ACh
causes tonotopic and synaptic modifications in the AC. ACh also participates in behavioral auditory
plasticity. Stimulation of Nucleus Basalis with a preceding tone can induce stimulus-specific associative
memory in the auditory cortex; when presented with a range of tones with different frequencies, animals
can discriminate the specific tone that was paired with the Nucleus Basalis stimulation (Weinberger et al.,
2006). Interestingly, this ability is dependent on the level of ACh released in the AC as weak stimulation
of Nucleus Basalis does not induce stimulus-specific associative memory (Weinberger et al., 2006). In
addition to shaping AC related plasticity, ACh is also important for normal auditory processing. Lesions
of Nucleus Basalis can impair the ability of animals to locate short broadband sounds (40-500 ms
stimulus durations) and the extent of impairment is positively correlated to the severity of lesions in the
Nucleus Basalis (Leach et al., 2013). While animals retain their ability to locate sounds of longer
durations after Nucleus Basalis lesions, they do so by sacrificing the speed of their responses as evidenced
by longer latencies in their response times (Leach et al., 2013).

The studies cited above highlight the role of ACh in shaping auditory processing. However, the
mechanisms by which ACh generates such changes are unknown as the specific neuronal types involved

in different forms of auditory processing are not known.

1.2.2 Linking AC L5B corticocollicular neurons and acetylcholine in behavioral auditory

processing

To bridge the gap in knowledge about the mechanisms by which ACh shapes auditory processing, we
have to understand the effect of ACh release on specific neurons in the AC that are involved in auditory
processing. This makes corticocollicular neurons an extremely interesting target, as they are involved in
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learning-induced plasticity which is important for relearning sound localization after monaural occlusion
(Bajo et al., 2010). This learning-induced plasticity requires ACh release in the AC, as animals with
lesions of Nucleus Basalis are also unable to relearn sound localization after monaural occlusion (Leach
et al., 2013). Therefore, the study of the effects of ACh release on corticocollicular neurons can help us to
understand the mechanisms by which ACh enables relearning sound localization.

Studies also show that neuromodulators have distinct effects on the activity of L5 IT and PT
neurons in the neocortex. In the medial prefrontal cortex, cholinergic activation can lead to distinct
neuromodulation of L5 IT and PT neurons, which leads to increased excitability of PT neurons but not IT
neurons (Dembrow et al., 2010). The presence of corticocallosal neurons (type of IT neurons) in L5B of
the AC provides a target to understand whether ACh has projection specific effects in the AC neurons.

Together, an assessment of the effect of ACh on AC L5B corticocallosal and corticocollicular
neurons will reveal the basic mechanisms by which ACh modulates neuronal activity and will contribute
to the growing knowledge about the differences in the physiological properties of different projection
neurons in the cortex. Specifically, the effect of ACh on AC L5B corticocallosal and corticocollicular
neurons will lead to the understanding of the cell-specific mechanisms that enable corticocollicular

neurons to play a critical role in relearning sound localization.

1.2.3 Summary of dissertation research

The first goal of this dissertation was to identify the intrinsic and synaptic mechanisms shaping the
dichotomous in vivo responses of AC L5 IT and PT neurons. By the use of retrograde labeling, we
identified distinct populations of AC L5B IT and PT neurons, namely the corticocallosal and
corticocollicular neurons. Using in vitro electrophysiology, we showed that a combination of distinct
intrinsic and synaptic properties promote sustained frequency-independent firing in corticocollicular

neurons, while generating frequency dependent firing in corticocallosal neurons.
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The second goal of this dissertation was to identify the mechanisms by which ACh affects the
activity of corticocollicular neurons and enables them to participate in relearning sound localization after
monaural occlusion, and to examine whether ACh has projection-specific neuromodulatory effects on AC
L5B neurons. By the use of in vivo retrograde labeling, and in vitro electrophysiological methods
combined with optogenetic activation of cholinergic fibers, we reveal that ACh has projection-specific
effects on corticocollicular and corticocallosal neurons, which lead to mMAChR-mediated persistent firing
in corticocollicular neurons only. This persistent firing in corticocollicular neurons may represent a
critical mechanism for ACh-mediated experience dependent plasticity involved in relearning sound

localization after monaural occlusion.
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2.0 CHAPTER 1: CELL-SPECIFIC ACTIVITY DEPENDENT FRACTIONATION OF

LAYER 2/3 > 5B EXCITATORY SIGNALING IN MOUSE AUDITORY CORTEX

2.1 OVERVIEW

Auditory cortex (AC) layer (L) 5B contains both corticocollicular neurons, a type of pyramidal-tract
neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic
neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles
in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms
shaping their input-output functions remain less understood. Here, we recorded in brain slices of mouse
AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B.
Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated
current (Iy), depolarized resting membrane potential, faster action potentials, initial spike doublets, and
less spike frequency-adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the
probability of connection, amplitude, latency, rise time, and decay time constant of the unitary excitatory
postsynaptic current (EPSC) were not different for L2/3—-corticocollicular and L2/3—-corticocallosal
connections. However, short trains of unitary EPSCs showed no synaptic depression in
L2/3—corticocollicular connections, but substantial depression in L2/3—corticocallosal connections.
Synaptic potentials in L2/3—corticocollicular connections decayed faster and showed less temporal
summation, consistent with increased Iy in corticocollicular neurons, whereas synaptic potentials in
L2/3—corticocallosal connections showed more temporal summation. Extracellular L.2/3 stimulation at

two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was
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frequency-dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-
specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B

into two functionally distinct pathways with different input-output functions.

2.2 INTRODUCTION

The corticocollicular projection from auditory cortex (AC) to the inferior colliculus (IC) plays crucial
modulatory roles in auditory processing (Winer, 2006; Suga, 2012; Stebbings et al., 2014). The functional
properties of the corticocollicular projection have been studied by electrically stimulating AC while
measuring IC responses (Yan and Ehret, 2002; Yan et al., 2005; Suga, 2012). For example, AC
stimulation enhances the responses of IC neurons that are matched in best-frequency to the AC stimulated
neuron, but suppresses IC responses that are unmatched (Suga, 2012). AC stimulation shifts the frequency
tuning of IC neurons (Yan and Ehret, 2002), and modulates the gain of IC neurons’ responses by
elevating thresholds and reducing dynamic ranges (Yan and Ehret, 2002). Behavioral studies show that
corticocollicular projections mediate learning-induced plasticity (Suga et al., 2002; Bajo et al., 2010).
Whereas progress has been made towards characterizing AC—IC projections at the level of the IC
(Doucet et al., 2003; Suga and Ma, 2003; Bajo et al., 2010), the intracortical circuits and cellular
mechanisms shaping the activity of corticocollicular neurons remain incompletely understood.
Corticocollicular neurons in AC are located in L5B (Games and Winer, 1988; Doucet et al., 2003;
Doucet and Ryugo, 2003; Slater et al., 2013). L5B also contains another major class of projection
neurons, the corticocallosal neurons (Games and Winer, 1988). Corticocallosal neurons, which are found
in other layers as well, project axons via the corpus callosum to the contralateral AC and thereby mediate
interhemispheric connectivity between the right and left AC cortices (de la Mothe et al., 2006). Callosal
projections are important in establishing a continuity of sensory representation across the two

hemispheres (Hackett and Phillips, 2011).
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Recent studies in a variety of cortical areas have revealed numerous differences in the
physiological properties of pyramidal-tract (PT) neurons, of which corticocollicular are a sub-type, and
intratelencephalic (IT) neurons, of which corticocallosal neurons are a sub-type (reviewed in Shepherd
2013). While anatomical differences and differential response properties to sound have been reported for
L5 PT and IT neurons in AC (Turner et al., 2005; Atencio and Schreiner, 2010a, b; Sun et al., 2013), the
differences in synaptic and intrinsic properties of L5B PT and IT neurons and their contribution to the
firing of L5B projection neurons have not been systematically studied in AC.

Here, we investigated the intrinsic and synaptic properties of corticocollicular and corticocallosal
neurons with the general aim of characterizing the dynamic synaptic properties of these two major classes
of infragranular neurons in mouse AC. We used in vivo retrograde labeling combined with in vitro
electrophysiology-based methods. Our results indicate L5B AC neurons, receive functionally distinct
L2/3 input and exhibit different intrinsic properties. Together, these properties reveal an activity-
dependent partition of L2/3—5B resulting in firing in corticocollicular neurons that is independent of the
L2/3 stimulation rate, and in frequency-dependent, reduced firing in corticocallosal neurons at lower L2/3

stimulation rates.

2.3 RESULTS

2.3.1 Identification of corticocollicular and corticocallosal neurons in auditory cortex (AC)

To label corticocollicular and corticocallosal projection neurons in L5B of AC for subsequent targeted
recordings in brain slices, we performed in vivo injections of fluorescent retrograde tracers. Small
volumes of fluorescent microspheres were injected in the IC, while microspheres of different color were
injected in the contralateral AC (Figure 2-1A). In brain slices prepared two to three days later,

corticocollicular and corticocallosal neurons were selectively labeled (Figure 2-1B, C). Consistent with
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previous studies of similar classes of projection neurons in Al and in other cortical areas (Games and
Winer, 1988; Akintunde and Buxton, 1992; Morishima and Kawaguchi, 2006), we found no double
labeling (0 out of more than 660 neurons) of these two populations; that is, this labeling paradigm labels
two types of L5B projection neurons that represent distinct, non-overlapping classes (Figure 2-1C).

While AC is stereotaxically localizable in the intact brain, AC localization is more challenging in
brain slices because its areal borders are not sharply demarcated by cytoarchitectural features. In general,
in this study we were guided by (1) anatomical landmarks such as the rhinal fissure and underlying
hippocampal anatomy (Figure 2-1D1), and (2) the presence of retrogradely labeled neurons projecting to
the inferior colliculus in localizing AC in slices (Figure 2-1D2) as well as retrogradely labeled neurons
projecting to the contralateral auditory cortex (Figure 2-1D3). However, in the early phase of these
studies we additionally localized the AC ex-vivo using a two-step procedure that was based on a
functional assay in vivo. First, we localized AC in vivo by transcranially measuring flavoprotein
autofluorescence (FA) signals elicited by acoustic stimulation (Figure 2-1E-G), and then we labeled AC
identified by FA imaging with sulforhodamine (Figure 2-1D3) (Takahashi et al., 2006). FA signals are
generated by mitochondrial flavoproteins due to changes in oxidation state caused by neuronal activity
(Shibuki et al., 2003; Middleton et al., 2011). Mirror-reversed tonotopic gradients have been used to
identify Al and the anterior auditory field (AAF) in many mammalian species including mice (Kaas,
2011; Guo et al., 2012). In response to low frequency sound (5 KHz), we observed two distinct regions
with increased FA activity, representing the caudal end of Al and the rostral end of AAF (Figure 2-1E).
The relative location of the FA signals (Figure 2-1F), the timing of the FA signals after the stimulus onset
(Figure 2-1G), and the distance (Figure 2-1H) between the centers of two regions of the FA signals are
consistent with localization of mouse A1 using either FA, electrophysiological recordings or optical Ca?*
imaging (Stiebler et al., 1997; Takahashi et al., 2006; Guo et al., 2012; Honma et al., 2013; Issa et al.,
2014). After completion of FA-assisted localization of Al, we applied a fluorescent dye to mark the
location of Al (Lefort et al., 2009), enabling us to precisely localize the Al region of auditory cortex in
subsequently prepared brain slices (Figure 2-1D). These results suggest that FA- and sulforhodamine-
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assisted Al localization is an efficient approach for localizing Al in brain slice recordings. The FA- and
sulforhodamine-assisted Al localization helped us to localize Al in the initial phase of the project.
Because these experiments revealed that the location of Al was consistent in relation to the location of
retrogradely labeled corticocollicular neurons, in subsequent experiments, we relied on retrograde
labeling of corticocollicular neurons and on the rhinal fissure and underlying hippocampal anatomy for
targeting our recordings to AC.

To characterize the dendritic morphology of corticocollicular and corticocallosal neurons we
filled them with biocytin to reconstruct their dendritic arbors. Both cell types displayed the morphological
hallmarks of cortical pyramidal neurons, with numerous branches in the basal perisomatic arbor and a
prominent apical dendrite extending to the pia, branching into an apical tuft in L1 (Figure 2-2A). Neither
the total dendritic length (Figure 2-2B, inset) nor the amount and horizontal spread of dendrites in the
L5B perisomatic region (Figure 2-2B) differed between the two cell types (n = 6 corticocollicular, n = 6
corticocallosal; p > 0.05, rank-sum test). However, compared to corticocallosal neurons, corticocollicular
neurons had more horizontally spreading apical tufts in layer 1 (Figure 2-2C). The vertical profiles of
dendrites (dendritic length as a function of absolute or soma-normalized depth) did not differ significantly
between corticocallosal and corticocollicular neurons (Figure 2-2D). These results indicate that the
differences in dendritic structure between the two cell types are primarily in the distal dendritic arbors in
the apical tufts but not in their basal arbors. These results appear broadly consistent with, but smaller in
magnitude, than the reported morphological differences of putative PT and IT neurons in rat AC (Sun et
al., 2013) and with prior reports for IT and PT neurons in other cortical areas and species (Gao and

Zheng, 2004; Dembrow et al., 2010).
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Figure 2-1: Localization and identification of AC corticocollicular (Ccol) and L5B corticocallosal

(Ccal) neurons.

Legends for Figure 2-1

A, Labeling of corticocollicular and corticocallosal neurons with fluorescent tracers. Projection neurons in

the AC were retrogradely labeled by injecting different colored fluorescent latex microspheres in the

contralateral AC and the ipsilateral inferior colliculus.
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B, Low magnification images (4X) show the full extent of the AC and labeled Ccal (top) and Ccol

neurons (bottom).

C, Merged image showing intermingling but no double labeling of corticocollicular (green) and

corticocallosal (red) neurons in L5B of AC.

D-H: In vivo localization of AC areas by FA imaging of sound-evoked activity was performed in 11

experiments.

D1-D3, Brightfield (D1), green (D2) and red (D3) fluorescent images, of a representative coronal slice
that was labeled in vivo with sulforhodamine. The brightfield image (D1) indicates the rhinal fissure and
the location of primary auditory cortex estimated from the stereotaxic coordinate mouse brain atlas
(Franklin and Paxinos, 2001). The green fluorescent image (D2) shows retrogradely labeled
corticocollicular neurons in L5B that are present in Al and extend towards the rhinal fissure. The red
fluorescent image (D3) shows the in vivo applied sulforhodamine spot. Sulforhodamine was applied to the
pial surface in vivo and here identifies Al in this coronal brain slice (FA-assisted Al identification was
performed as shown in E-F). D3 also shows retrogradely labeled corticocallosal neurons that extend
medially and laterally from Al. The upper and lower layer 5B boundaries are indicated by dashed lines

(WM stands for white matter).

E, Image of cortical surface indicating caudal (C), rostral (R), dorsal (D) and ventral (V) direction.

F, In response to amplitude-modulated tones (carrier frequency of 5 kHz and modulation frequency of 20

Hz, 40-50 dB), FA image showing peaks of activity corresponding to Al and non-Al auditory cortical

areas. The more caudal (left) of the two domains of activation is Al and the more rostral (right) of the two
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domains is the anterior auditory field (AAF). Image is an average of 10 trials and is from a frame taken 1

sec after stimulus onset. Images were smoothed using a spatial filter with a 100 um space constant.

G, The average (10 trials) relative fluorescence from regions of interest at the peak of Al (blue) and AAF

(magenta) area. The horizontal bar indicates the duration of the auditory stimulus.

H, The distance between the centers of 5 kHz activation of Al and AAF (974 £ 27 um, n=11).
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Figure 2-2: Dendritic morphology of corticocollicular and corticocallosal neurons in L5B of AC.

Legends for Figure 2-2

A, Example reconstructions.
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B, Horizontal profile of the total dendritic length in the perisomatic/L5B region, showing the mean +
SEM for corticocollicular (blue, n = 6) and corticocallosal (red, n = 6) neurons. Each neuron’s horizontal
profile was calculated as the average in a 150-um wide band extending horizontally across the
perisomatic region, as indicated in A. No significant differences were found at any of the locations (rank-
sum test). Inset: total dendritic length, plotted as the mean + SEM for the two cell types (lines) along with

the individual values (circles). The samples were not significantly different (rank-sum test).

C, Horizontal profile of the dendritic length in the apical tuft, showing the mean £ SEM for
corticocollicular (blue, n = 6) and corticocallosal (red, n = 6) neurons. Each neuron’s horizontal profile
was calculated as the average in a 150-um wide band extending horizontally across the apical tuft region,

as indicated in A. Locations where values differed significantly are marked (*) (p < 0.05, rank-sum test).

D, Vertical profiles, calculated as the dendritic length in 50 pum bins and plotted as the mean £ SEM for
the two cell types; no differences were found (rank-sum test). Inset: each profile was first normalized to
the soma (distance = 1), rebinned, and plotted as the mean + SEM; no differences were found (rank-sum

test).

2.3.2 Intrinsic properties of L5B projection neurons

To characterize the intrinsic properties of the two classes of projection neurons, labeled corticocollicular
and L5B corticocallosal neurons were targeted for whole-cell recordings in voltage- and current-clamp
modes. Corticocollicular neurons, compared to corticocallosal neurons, had lower input resistance (Figure
2-3A, B), depolarized resting membrane potential (Figure 2-3C), and greater “sag potentials” in response
to hyperpolarizing pulses (Figure 2-3D1, D2). Sag potentials were abolished by 10 uM ZD7288 (an Ix

blocker, Figure 2-3D3) suggesting that I, mediates these potentials. These results are consistent with
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previous studies of corresponding classes of projection neurons in auditory, motor, and prefrontal cortex
(Dembrow et al., 2010; Sheets et al., 2011; Shepherd, 2013; Slater et al., 2013; Suter et al., 2013).

Next, we evaluated the spike related properties of corticocollicular and corticocallosal neurons in
L5B. Corticocollicular neurons displayed faster action potentials (Figure 2-4A, B). Moreover, the action
potential threshold of corticocollicular neurons was more hyperpolarized (2-4C). In response to
depolarizing current, repetitive firing patterns differed (Figure 2-4D). The initial linear slope of the
current - firing frequency (f-I) function revealed that firing rate increased faster in corticocollicular
neurons (Figure 2-4E, F); moreover the f-I function revealed that the threshold for eliciting firing was
higher for corticocollicular neurons (Figure 2-4E, G). Corticocollicular neurons often fired faster initial
doublets (Figure 2-4l, L, inset) at the onset of current injection while corticocallosal neurons do not
(Figure 2-41, L). Spike frequency decreased (adapted) over time in corticocallosal neurons while it
remained nearly constant in corticocollicular neurons (Figure 2-41, K). Initial instantaneous frequency for
corticocollicular neurons was high (Figure 2-4J1), reflecting more fast-doublet firing. The relative
constancy of the instantaneous firing frequency in corticocollicular neurons after the initial fast doublet
(Figure 2-4J1 inset) indicates lack of spike frequency adaptation. Corticocallosal neurons exhibit low
initial instantaneous firing frequency (Figure 2-4J2), because they do not show fast doublet firing. The
relative decay of instantaneous firing frequency in corticocallosal neurons (Figure 2-4J2, inset) indicates
spike frequency adaptation. Overall, corticocollicular neurons fire in a more tonic (honadapting) pattern
and corticocallosal neurons fire in a more phasic (adapting) pattern (Figure 2-4D-L). PT neurons in mouse
somatosensory cortex (S1) show greater spike-frequency adaptation than their counterparts in mouse
motor cortex (M1) (Miller et al., 2008); our results indicate that the AC corticocollicular neurons are more
consistent with the M1 pattern, which has also been reported for PT neurons in secondary somatosensory
cortex (Suter et al., 2013). Collectively, our results indicate that spiking properties of AC L5B projection
neurons are cell-specific and are consistent with previous in vitro studies suggesting that PT neurons tend

to fire in a tonic pattern, and IT fire in a more phasic pattern (Shepherd, 2013). Our results suggest that
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these cell-specific intrinsic properties may contribute to the observed burst-like and more sustained firing

in PT compared to IT L5 neurons in response to sound (Sun et al., 2013).
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Figure 2-3: Intrinsic subthreshold properties of AC corticocollicular (Ccol) and L5B corticocallosal
(Ccal) neurons are distinct.

Legends for Figure 2-3

A, Hyperpolarizing pulses (top) in voltage-clamp recording mode result in transient current responses
(bottom). The difference between baseline and steady state hyperpolarized current (Al) is used to

calculate the input resistance of Ccol and Ccal neurons.
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B, The average input resistance is significantly lower for Ccol neurons (108.11 = 7.06 MQ, n= 32 vs. 185

+11.27MQ, n =29, p <0.0001).

C, The average resting membrane voltage, Vnm, is significantly more depolarized for Ccol neurons (-65.98

+0.70mV,n=32vs.-70.54 £ 1.22 mV, n = 29, p = 0.0014).

D1, Hyperpolarizing current injection reveals sag potentials in Ccol and Ccal neurons. Sag is measured by
dividing the difference between the minimum voltage hyperpolarization and the steady state

hyperpolarized voltage by the steady state hyperpolarized voltage.

D2, The average sag is significantly higher for Ccol neurons (0.18 + 0.01, n = 32, vs. 0.08 £ 0.01, n = 20,

p < 0.0001).

D3, Sag potentials are abolished by ZD7288 (black trace) indicating that they are mediated by

hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (average sag in control = 0.10 +

0.01; post ZD7288 = 0.01 £ 0.01, n=3, p < 0.01).
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Figure 2-4: Action potential (AP) properties and spike frequency adaptation of AC corticocollicular

(Ccol) and L5B corticocallosal (Ccal) neurons are distinct.
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Legends for Figure 2-4

A, AP waveforms of representative Ccol and Ccal neurons. Arrows indicate AP width.

B, On average, Ccol neurons have narrower APs (1.00 + 0.04 msec, n = 32, vs. 1.26 + 0.07 msec, n = 29,

p = 0.0016).

C, On average, Ccol neurons have a more hyperpolarized AP threshold (-40.70 £ 0.59 mV, n = 32, vs. -

36.95+ 0.65 mV, n = 29, p < 0.0001).

D, Representative firing of Ccol and Ccal neurons in response to increasing depolarizing current (0 - 400

pA, 50 pA increments).

E, Firing frequency as a function of injected current amplitude for Ccal and Ccol neurons (f-I
relationship). The slope of the f-I curve between 150 and 250 pA is used to calculate the slope (gain) of

the f-1 curve.

F, The f-1 slope is significantly steeper for Ccol neurons (0.11 + 0.01 Hz/pA, n = 32 vs. 0.08 + 0.004

Hz/pA, n =29, p = 0.0007).

G, The smaller current that elicited firing is significantly higher for Ccol neurons (162.50 + 8.09 pA, n =
32vs. 131.03 £ 7.12 pA, n = 29, p = 0.005 Rank-sum test, numbers next to circles indicate the number of

neurons that fire under this current injection).

H, Temporal patterning of action potential generation was analyzed by calculating instantaneous firing

frequencies (i.e. inverse of the inter-spike interval).
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I, Ccol often start to fire with a faster initial doublet (inset, marked by the arrow) at the onset of current
injection compared to Ccal neurons. Spike frequency decreases (adapts) over time in Ccal neurons while

it remains nearly constant in Ccol neurons.

J1 — J2, Instantaneous firing frequency as a function of time for Ccal and Ccol neurons. Initial
instantaneous frequency for Ccol neurons is high, which indicates more fast-doublet firing. Insets

illustrate instantaneous firing frequency in Ccol and Ccal neurons after the initial fast doublet.

K, The average adaptation ratio, AR = fo/f,, (see H and | for representative traces) is significantly lower

for Ccal neurons and close to 1 for Ccol neurons (0.70 £ 0.02, n = 29, vs. 0.97 £ 0.03, n = 32, p < 0.0001).

L, The average fast-doublet index, FDI = fi/f, (see H and | inset for representative traces), is significantly

higher in Ccol neurons (7.50 £ 1.18, n =32, vs. 1.73 £ 0.09, n = 29, p < 0.0001).

2.3.3 Unitary connections from L2/3 to L5B projection neurons

To assess synaptic properties within the AC intracortical circuits of L2/3 to L5B projection neurons, we
recorded from synaptically coupled pairs of L2/3—corticocollicular and L.2/3—corticocallosal neurons.
Connections were assessed by eliciting presynaptic spikes in the L2/3 neuron while monitoring EPSCs in
the corticocollicular or L5B corticocallosal neuron (Figure 2-5A, B). Connection rates were similar for
L2/3—corticocollicular (14 connections found out of 235 tested) and L2/3—-corticocallosal (11
connections found out of 223 tested) unitary connections. For all pairs we only tested the connectivity
between from L2/3—corticocollicular or L2/3—cortococallosal neurons; we did not test for connectivity
in the reverse direction. Unitary EPSC amplitude and other baseline unitary connection properties such as

latency, rise time, and decay time constant were not different (Figure 2-5C-F).
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Given the importance of short-term synaptic plasticity dynamics in sensory processing (Abbott
and Regehr, 2004) and the more sustained synaptic response properties to sound in AC PT neurons (Sun
et al., 2013), we hypothesized that short-term plasticity might differ between L2/3—corticocollicular and
L2/3—corticocallosal synapses. Trains of action potentials at 20 Hz in the presynaptic L2/3 neuron
evoked a depressing series of EPSCs in L5B corticocallosal neurons, but EPSC strength was maintained
throughout the series of EPSCs in corticocollicular neurons (Figure 2-5G-I). Together, our results indicate
that spatially intermingled AC L5B receive pathway-specific inputs that show distinct short-term synaptic
plasticity. The cell/pathway-specific short-term plasticity of L5B corticocollicular and corticocallosal
neurons favors a tonic (sustained) relay of information in the L2/3—corticocollicular pathway and a
phasic (transient) relay of information in L2/3—corticocallosal pathway.

To explore the interaction of synaptic and intrinsic properties in shaping activity in
corticocollicular and corticocallosal neurons, we next recorded unitary responses from the same
connected pairs in current-clamp mode (Figure 2-6A, B). Consistent with our paired recordings in
voltage-clamp mode, current-clamp experiments revealed that baseline unitary EPSP parameters did not
differ between L2/3—corticocollicular and L2/3—corticocallosal connections (Figure 2-6C-E), with one
exception: the decay time constant of the unitary EPSP for L2/3—corticocallosal connections was
significantly longer (Figure 2-6F). This finding is consistent with lower amounts of I, and higher input
resistance in corticocallosal neurons (Figure 2-3B, D). Trains of action potentials in the presynaptic L2/3
neuron did not change significantly the peak of the unitary EPSPs in either L2/3—corticocollicular or
L2/3—-corticocallosal connections (Figure 2-6G, H). The peak amplitude of the series of EPSP reflects
the combination of temporal summation and synaptic depression/facilitation; thus, to assess the
contribution of temporal summation we measured the trough values in the EPSPs (Figure 2-6G). Trough
values were higher for L2/3—corticocallosal connections, suggesting more temporal summation for
L2/3—-corticocallosal connections (Figure 2-61). This result is consistent with the reduced levels of I in
corticocallosal neurons (Figure 2-3D). Subtraction of trough from the peak values (peak minus trough)

revealed greater values for L2/3—corticocollicular connections, suggesting that L2/3 inputs do not
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depress for corticocollicular neurons, but depress for L5B corticocallosal neurons (Figure 2-6J). These

results are consistent with our voltage-clamp mode experiments (Figure 2-51) and unmask the interaction

of cell-specific intrinsic and synaptic properties in shaping the differential kinetics and dynamics of L2/3

synaptic inputs to corticocollicular and L5B corticocallosal neurons.
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Figure 2-5: Paired recordings reveal similar basal synaptic properties but pathway-specific short-

term plasticity of corticocollicular and L5B corticocallosal

neurons;
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connections depress, but L2/3—corticocollicular connections do not depress.

Legends for Figure 2-5
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A, Example unitary L2/3—corticocollicular connection.

B, Example unitary L2/3—corticocallosal connection.

C, Average unitary EPSC amplitude (L2/3—Ccal = 28.90 + 8.20 pA; L2/3—Ccol = 30.90 + 8.80, p >
0.05).
D, Average unitary EPSC latency (L2/3—Ccol = 1.60 + 0.30 msec, n=11; L2/3—Ccal = 1.40 + 0.10

msec, n=10, p > 0.05).

E, Average unitary EPSC rise time (L2/3—Ccal= 0.70 £ 0.10 msec; L.2/3—Ccol= 0.70 + 0.10 msec, p >

0.05).

F, Average unitary EPSC decay tau (L2/3—Ccal = 5.10 + 0.50 msec; L2/3—Ccol = 4.90 £+ 0.50 msec, p >

0.05).

G, An example of action potential (AP) train in presynaptic L2/3 neuron eliciting a series of EPSCs in a

Ccol neuron.

H, An example of AP train in presynaptic L2/3 neuron eliciting an EPSC train in a L5B Ccal neuron.

I, Average peak amplitudes of the EPSCs in the train, normalized to the peak amplitude of the first EPSC.
Asterisks (*) indicate significant differences between 1L.2/3—Ccol (n = 11) and L2/3—Ccal (n = 10)
connections. (At time = 100 msec, L.2/3—Ccal = 0.72 £ 0.06, L2/3—Ccol = 1.06 £ 0.12, p = 0.037; at
time = 200 msec, L2/3—Ccal = 0.64 + 0.07, L2/3—Ccol = 1.12 + 0.14, p = 0.01). Pluses (+) indicate
significant differences compared to 1t EPSC within L2/3—corticocallosal or L2/3—corticocollicular
connections (compared to the first L2/3—Ccal EPSC, at time = 100 msec, L2/3—Ccal = 0.72 + 0.06, p=
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0.002; at time= 150 msec, L2/3—Ccal = 0.75 = 0.07, p = 0.01; at time = 200 msec, L2/3—Ccal = 0.64 +

0.07, p = 0.0009).
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Figure 2-6: Synaptic dynamics of L2/3—corticocollicular and L2/3—corticocallosal connections in

current clamp mode.

Legends for Figure 2-6

A, Example unitary L2/3—corticocollicular connection.
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B, Example unitary L2/3—corticocallosal connection.

C, Average unitary EPSP amplitude (L2/3—Ccol = 0.80 £+ 0.20; L2/3—Ccal = 1.00 + 0.30 mV, p > 0.05).

D, Average unitary EPSP latency (L2/3—Ccol = 2.10 £ 0.30 msec, n = 11; L2/3—Ccal =1.60 + 0.10

msec, n = 8, p>0.05).

E, Average unitary EPSP rise time (L2/3—Ccol = 1.5 £ 0.1 msec; L2/3—Ccal = 1.60 + 0.20 msec,

p>0.05).

F, Average unitary EPSP decay tau (L2/3—Ccol= 19.00 £ 2.60 msec; L2/3—Ccal = 36.50 £ 2.00 msec, p

= 0.0001).

G, Overlay of traces from A and B, normalized to the first EPSP.

H, Average peak amplitudes of the EPSPs in the train, normalized to the amplitude of the first EPSP. No

significant differences are observed between or within groups.

I, Trough amplitudes, normalized to the amplitude of the first EPSP. Asterisk (*) indicates significant
differences between L2/3—Ccol and L2/3—Ccol connections (At time = 50 msec, L2/3—Ccal = 0.28 +
0.06, L2/3—Ccol =-0.03 £ 0.09, p = 0.024; at time = 100 msec, L.2/3—Ccal = 0.32 + 0.06, L2/3—Ccol =
0.00 + 0.10, p = 0.028; at time= 200 msec, L2/3—Ccal = 0.26 £+ 0.06, L2/3—Ccol =-0.04 + 0.1, p =

0.039).

J, Trough-subtracted peak EPSP amplitudes, normalized to the amplitude of the first EPSP. Peak-trough
values were obtained by subtracting the peak amplitude of the EPSP from the trough amplitude of the
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preceding EPSP; this resulted in four peak-trough values at 50, 100, 150 and 200 msec. The first value at
time = 0 msec is not a peak-trough value: it is the normalized amplitude of the peak of the first EPSP.
Asterisk (*) indicates significant differences between L2/3—Ccol and L2/3—Ccal connections (At time =
100 msec, L2/3—Ccol = 1.13 £ 0.15; L2/3—Ccal = 0.63 + 0.06, p = 0.016. Pluses (+) indicate significant
differences within L2/3—CCol or L2/3—CCal connections. Compared to the first L2/3—Ccal Peak-
Trough, at time = 50 msec, L2/3—Ccal = 0.80 + 0.08, p = 0.038; at time = 100 msec, L2/3 —Ccal = 0.63
+ 0.06, p = 0.0003; at time = 150 msec, L2/3—Ccal = 0.62 £ 0.09, p = 0.004; at time = 200 msec,

L2/3—Ccal = 0.67 % 0.10, p = 0.012).

2.3.4 Inresponse to L2/3 stimulation, the combined effects of synaptic and intrinsic properties

shape cell-specific L5B firing

The constancy of the peak voltage of wunitary EPSPs, in either L2/3—-corticocollicular or
L2/3—-corticocallosal connections during a 20 Hz train of presynaptic action potentials (Figure 2-6G),
suggests that the spiking output of these two pathways in response to L2/3 repetitive stimulation would be
similar. However, because EPSC and EPSP amplitudes (peak-trough) for L2/3—corticocallosal synapses
depress (Figure 2-51 and 2-6J), the lack of depression of the peak voltages of L2/3—-corticocallosal
synapses is probably due to the increased summation (trough, Figure 2-61) arising from longer synaptic
decay time constants (Figure 2-6F). At lower stimulation frequencies, where summation is less or not
occurring, we expect that the pathway-specific depression of L2/3—corticocallosal may reveal depression
of EPSP peaks and postsynaptic firing in corticocallosal but not corticocollicular neurons.

To test this hypothesis, we investigated the effect of a lower frequency of presynaptic stimulation
- 10 Hz, which generates less summation - on monosynaptic EPSPs and postsynaptic firing for
L2/3—corticocollicular and L.2/3—corticocallosal connections. Because the size of unitary EPSPs does
not lead to firing in either corticocollicular or corticocallosal neurons, for this experiment we used

extracellular electrical stimulation by positioning a stimulating electrode in L2/3 and recording EPSPs
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from corticocollicular and corticocallosal neurons (in the same slice); these EPSPs were larger and
capable to induce firing in both corticocollicular and corticocallosal neurons. This stimulation method
presumably activated not only L2/3 pyramidal neurons but also other cell types (including interneurons
mediating feedforward inhibition). However, we assume that a significant fraction of the postsynaptic
responses represents inputs from L2/3 pyramidal neurons. A 20 Hz stimulation led to pathway-specific
depression of L2/3—-corticocallosal EPSCs similar to the one that we observed with paired-recordings
(Figure 2-7A-C), suggesting that pathway-specific synaptic plasticity between L.2/3—corticocollicular
and L2/3—corticocallosal connections is a robust phenomenon maintained even at less stringent
stimulation conditions. Importantly, 10 Hz stimulation led to similar pathway-specific depression in
L2/3—corticocallosal EPSCs, while L2/3—corticocolicular EPSCs remain unaffected (Figure 2-7D-F).
Because temporal summation of EPSPs is less in 10 Hz and synaptic depression is occurring at this
frequency, in current-clamp mode, we observed a depression in the peak amplitude of
L2/3—corticocallosal EPSPs during 10 Hz stimulation, which was absent in L2/3—corticocollicular
EPSPs (Figure 2-7G-1). Therefore, we hypothesized that the synaptic dynamics we observe will have a
differential frequency-dependent effect on the firing of the two projection neurons. Namely, 10 and 20 Hz
stimulation of L2/3 is expected to lead to similar firing in corticocollicular neurons, but 10 Hz stimulation
is expected to lead to decreased firing, compared to 20 Hz, in corticocallosal neurons. Consistent with our
hypothesis, at threshold conditions (~50% firing in response to 10 pulses, 20 Hz stimulation protocol),
transitions from 20 to 10 Hz stimulation left corticocollicular neurons unaffected (Figure 2-7J,K), but led
to decreased firing in corticocallosal neurons (Figure 2-7L,M). This is an important finding, suggesting
that in AC, synaptically driven corticocallosal output is modulated by frequency while corticocollicular

output is frequency-independent.
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B, An example of an EPSC train in a Ccal neuron elicited by a train of 20 Hz extracellular stimulation of

L2/3. Dotted line in A-I indicates normalization to first EPSC/P.

C, Average peak amplitudes of the EPSCs from the trains as in A and B, normalized to the peak
amplitude of the 1% EPSC. Red asterisks (*) indicate significant differences compared to 1 EPSC within
L2/3—corticocallosal connection (compared to the 1% EPSC peak, at peak 3, L2/3—Ccal = 0.88 £ 0.03, p
= 0.003; at peak 4, L2/3—Ccal = 0.77 + 0.04, p < 0.0001; at peak 5, L.2/3—Ccal = 0.70 £ 0.03, p <
0.0001; n = 14). Cyan asterisks (*) indicate significant differences compared to the 1% EPSC peak for the
L2/3—corticocollicular connection (compared to the 1 EPSC peak, at peak 2, L2/3—Ccol = 1.25 + 0.04,

p =0.0002; at peak 3, L2/3—Ccol = 1.23 £ 0.07, p=0.01; n=9).

D, An example of an EPSC train in a Ccol neuron elicited by a train of 10 Hz extracellular stimulation of

L2/3.

E, An example of an EPSC train in a Ccal neuron elicited by a train of 10 Hz extracellular stimulation of

L2/3.

F, Average peak amplitudes of the EPSCs from trains as in D and E, normalized to the peak amplitude of
the 1t EPSC. Asterisks (*) indicate significant differences compared to 1% EPSC within
L2/3—-corticocallosal connection (compared to the 1% EPSC peak, at peak 2, L2/—Ccal = 0.88 + 0.03, p
= 0.0002, at peak 3, L2/3—Ccal = 0.78 + 0.03, p < 0.0001; at peak 4, L2/3—Ccal = 0.72 + 0.03, p <
0.0001; at peak 5, L2/3—Ccal =0.72 £ 0.03, p < 0.0001; n = 14). There is no significant difference in the

EPSC train for L2/3—Ccol connection (n =9).

G, An example of an EPSP train in a Ccol neuron elicited by a train of 10 Hz extracellular stimulation of
L2/3.
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H, An example of an EPSP train in a Ccal neuron elicited by a train of 10 Hz extracellular stimulation of

L2/3.

I, Average peak amplitudes of the EPSPs from the trains as in G and H, normalized to the peak amplitude
of the 1 EPSP. Red asterisks (*) indicate significant differences compared to 1% EPSC within
L2/3—corticocallosal connection (compared to the 1% EPSC peak, at peak 3, L2/3—Ccal = 0.86 + 0.03, p
< 0.0001; at peak 4, L2/3—Ccal = 0.81 + 0.03, p < 0.0001; at peak 5, L2/3—Ccal = 0.78 + 0.03, p <
0.0001; n = 14). Cyan asterisk (*) indicates a significant difference compared to 1 EPSC within
L2/3—corticocollicular connection (compared to the first EPSC peak, at peak 2, L2/3—Ccol = 1.12 +

0.04, p=0.01; n = 9).

J, An example of spikes elicited in a Ccol neuron by three trains of extracellular stimulation of L2/3 (10
pulses in each train, delivered in succession at 20 Hz, 10 Hz and 20 Hz respectively). The breaks (/ /)
indicate that at the end of each stimulation train, a 10 second pause was introduced before the starting the

next train.

K, Average data for the example shown in J; number of spikes fired in each train have been normalized to
the number of spikes fired in the 1% 20 Hz train. Ccol neurons fire similar number of spikes at 20 Hz and
10 Hz (compared with 20 Hz train 1, at 10 Hz train 2, Ccols fired an average of 1.04 + 0.16 spikes, p =

0.78; 20 Hz trainl and 20 Hz train 3 are not significantly different, p = 0.5; n = 5).

L, Example traces, as the one in J, but for Ccal neurons.

M, Average data for the example shown in L; number of spikes fired in each train have been normalized
to the number of spikes fired in the 1% 20 Hz train. Ccal neurons fire significantly fewer spikes at 10 Hz
compared with those at 20 Hz (compared with 20 Hz train 1, at 10 Hz train 2, Ccals fired an average of
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0.55 £ 0.07 spikes, p = 0.0002; 20 Hz trainl and 20 Hz train 3 are not significantly different, p = 0.5289;

n=6).

2.4 DISCUSSION

To characterize the synaptic and intrinsic properties of corticocollicular and corticocallosal neurons, we
developed paradigms for ex vivo analysis of L5B projection neurons in mouse AC. Our approach was
based on the combined use of retrograde fluorescent labeling to selectively label corticocollicular and
L5B corticocallosal neurons, single-cell electrophysiology, and paired recordings to isolate unitary L2/3
connections to L5B projection neurons for quantitative assessment of synaptic properties. We show that
sustained L2/3 activity unmasks a dynamic fractionation of the L2/3—5B pathway that generates
frequency-independent firing in corticocollicular neurons and frequency-dependent firing in
corticocallosal neurons. While we have not explored whether different subnetworks of L2/3 neurons
project to corticocollicular and corticocallosal L5 neurons, our results are consistent with previous studies
in somatosensory cortex showing that specific subnetworks in L5 receive input from different L2/3
subnetworks with distinct connection probabilities (Kampa et al., 2006). In this context, we propose that
different subnetworks of L2/3—5B with similar connection probabilities but with distinct dynamic

properties may underlie corticocallosal vs. corticocollicular auditory processing.

2.4.1 Linking the response properties of corticocollicular and corticocallosal neurons with

synaptic and intrinsic properties

AC neurons display a variety of firing behaviors in response to acoustic stimuli. Firing can range from
phasic to tonic, and can vary monotonically or non-monotonically with intensity (Volkov and Galazjuk,

1991; Schreiner et al., 1992; Calford and Semple, 1995; Barbour and Wang, 2003; Wang et al., 2005; de

38



la Rocha et al., 2008). L5B contains different types of projection neurons with different response
properties (Turner et al., 2005; Atencio and Schreiner, 2010b, a; Sun et al.,, 2013). PT- and
corticocallosal-type L5B neurons in AC display dichotomous sound-evoked responses, with PT-type
neurons firing in a more sustained (tonic) pattern and corticocallosal-type neurons in a more transient
(phasic) manner (Sun et al., 2013).

The lack of spike frequency adaptation (Figure 2-41-K), the narrower action potentials (Figure 2-
4A,B), and the increased gain in frequency-current relationships of corticocollicular neurons (Figure 2-
4F) suggest that the spike properties of these neurons -- in accordance to their sound responses in vivo --
allow for more reliable, sustained firing. The observed burst-like (faster initial doublet) firing in
corticocollicular neurons in the presence of blockers of excitatory and inhibitory synaptic transmission
(Figure 2-41,L) suggests that the intrinsic properties of corticocollicular neurons contribute to the bursting
responses of PT neurons to sound (Sun et al., 2013).

The non-depressing excitatory L2/3 input to corticocollicular neurons is consistent with the in
vivo long-lasting excitatory responses of PT neurons to acoustic stimuli (Sun et al., 2013). Given that the
corticocollicular projection shapes the response properties of IC neurons, and mediates sound localization
learning (Bajo et al., 2010), our results suggest that sustained activity in the corticocollicular pathway
may play an important role in inducing these forms of L5-mediated, learning induced plasticity (Bajo et
al., 2010).

The firing properties and the response properties of AC L5B projection neurons are determined
not only by the intrinsic and L2/3 synaptic properties studied in our experiments, but also by excitatory
and inhibitory synaptic inputs arising from other local intracortical sources. In addition to L2/3, a second
source of input to L5B neurons is from other L5B neurons. Based on studies from other cortical areas, L5
PT and corticocallosal neurons form recurrent (within-class) connections, but across-class connectivity is
asymmetric and in some cases even unidirectional from corticocallosal to PT neurons (Morishima and
Kawaguchi, 2006; Brown and Hestrin, 2009b; Kiritani et al., 2012). If this hierarchical microcircuit
organization occurs in AC L5B, which is currently unknown, it could further contribute to the
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dichotomous tonic/phasic activity in L5B projection neurons, because activity in corticocollicular neurons
would be further sustained through recurrent connectivity without propagating to the upstream
corticocallosal neurons.

Other candidate mechanisms that could also contribute to differentially regulating L5B projection
neuron activity are the thalamocortical input and the inhibitory microcircuit organization of L5B.
Recently, an AC circuit model was proposed based on in vivo evidence (Sun et al., 2013) in which fast-
spiking (FS) interneurons selectively connect to PT neurons, and non-FS interneurons selectively interact
with corticocallosal neurons. Moreover, the same study suggested a direct influence of thalamocortical
inputs on sound-evoked activity of PT- but not corticocallosal-type neurons (Sun et al., 2013). An
additional mechanism that could further contribute to the dichotomous activity in L5B projection neurons
involves interneurons and is suggested by findings in M1 and prefrontal cortex: in M1 disynaptic
inhibition is stronger in corticocallosal neurons compared to PT neurons (Apicella et al., 2012), while in

prefrontal cortex PT neurons receive stronger feedforward inhibition (Lee et al., 2014).

2.4.2 Types of excitatory inputs in AC

Our findings complement and extend previous studies of AC L5 neurons and their circuit organization
(Winer and Prieto, 2001). Sherman and colleagues propose that glutamatergic inputs can be classified as
Class 1 (“driver”) or Class 2 (“modulatory”) (Reichova and Sherman, 2004; Lee and Sherman, 2008,
2010; De Pasquale and Sherman, 2011; Viaene et al., 2011a, b, c). Class 1 inputs have larger initial
EPSPs, exhibit paired-pulse depression, and activate only ionotropic glutamate receptors. Class 2 inputs
exhibit paired-pulse facilitation and activate both ionotropic and metabotropic glutamate receptors, and
depression can be converted to facilitation by activation of postsynaptic mGIuR2 receptors (De Pasquale
and Sherman, 2012). Our results suggest that L2/3 axons, an important source of Class 1 inputs, may be
further sub-divided based on their projection target (corticocollicular vs. corticocallosal), with distinct
short-term plasticity properties.
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2.4.3 Short-term plasticity in the neocortex

Although in a few cases facilitating excitatory connections have been described (Wang et al., 2006;
Thomson and Lamy, 2007; Covic and Sherman, 2011), excitatory synaptic connections between cortical
pyramidal neurons are usually depressing (Atzori et al., 2001; Thomson and Lamy, 2007; Oswald and
Reyes, 2008; Covic and Sherman, 2011; Reyes, 2011). Because L2/3 inputs to L5B corticocallosal
neurons depress, corticocallosal output is reduced during sustained cortical activity in frequencies where
temporal summation of EPSPs is reduced (Figure 2-7H, 1). In contrast, the lack of depression in the L2/3
to corticocollicular pathway renders the corticocollicular pathway active during sustained cortical activity,
irrelevant of the frequency of presynaptic stimulation (Figure 2-6 and Figure 2-7). Our results are
consistent previous studies showing pathway-specific depression of callosal inputs to IT neurons but not
in PT neurons in L5 neurons of prefrontal cortex (Lee et al., 2014). Moreover, our results are consistent
with the observed depression of IT inputs to IT neurons but no depression of PT inputs to PT neurons in
prefrontal cortex and motor cortex (Morishima and Kawaguchi, 2006; Kiritani et al., 2012). Together,
these studies suggest that excitatory inputs to PT cells are non-depressing, while excitatory inputs to IT

cells are depressing.

2.4.4 Conclusions

Our findings complement and extend previous cortical studies revealing pathway-specific, short-term
plasticity of excitatory inputs in intracortical circuits. For example, short-term plasticity of excitatory
inputs differs among 1.2/3—2/3, L2/3—5 and L5—5 connections (Williams and Atkinson, 2007). Our
results reveal differential short-term plasticity even within the L2/3—5B pathway, which is determined by
the projectional identity of the L5B neuron -- the anatomical targeting of its long-range axonal branches
to downstream centers. In this context, our results also extend recent studies in many cortical areas that

have established that the projectional identity of cortical pyramidal neurons can be a major determinant of

41



functional properties (Morishima and Kawaguchi, 2006; Brown and Hestrin, 2009b, a; Anderson et al.,
2010; Dembrow et al., 2010; Little and Carter, 2013; Shepherd, 2013).

Together, our results identify an activity-dependent fractionation of L2/3 excitatory input into two
dynamically distinct L2/3—5B pathways with specific input-output functions, which promote sustained
firing in L2/3—corticocollicular connections during different L2/3 stimulation rates and reduced firing in
L2/3—corticocallosal connections during lower L2/3 stimulation rates. We propose that this functional
architecture may represent a general feature of neocortical circuit design enabling divergent output

channels to carry distinct information, rather than simply copies of the same signals.

2.5 MATERIALS AND METHODS

2.5.1 Animals

ICR mice (Harlan) (P22-P24 for microsphere injection and P24-P32 for recordings) of either sex were
used for all experiments. All experimental procedures were approved by the Institutional Animal Care

and Use Committee of the University of Pittsburgh.

2.5.2 Stereotaxic injections

Mice were anaesthetized with isoflurane (induction: 3 % in O, 0.6 L/min; maintenance: 50% of induction
dose) and positioned in a stereotaxic frame (Kopf). Projection neurons in the auditory cortex (AC) were
retrogradely labeled by injecting different colored fluorescent latex microspheres (Lumafluor Inc.) in the
contralateral AC (in a small craniotomy drilled 4 mm posterior to bregma and 4 mm lateral, injection
depth 1mm) and the ipsilateral inferior colliculus (1 mm posterior to lambda and 1 mm lateral, injection

depth 0.75 mm). A volume of ~ 0.1 puL. microspheres was pressure injected (25 psi, 10-15 msec duration)
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from capillary pipettes (Drummond Scientific Company) with a Picospritzer (Parker-Hannifin). The
injection volume was distributed between several sites along the injection depth so as to label the entire
extent of the injection site. After injection, the pipette was held in the brain for 1.5 minutes before slowly
withdrawing. The animals were allowed to recover for at least 48 hours to allow time for retrograde

transport of the tracers.

2.5.3 Invivo flavoprotein autofluorescence imaging

Mice (n=11) were anesthetized with urethane (induction: 1.5 mg/g; maintenance: 50% of induction dose).
An incision (~1.5 cm) was made in the scalp and an intramuscular injection of lidocaine-epinephrine (2%)
was delivered to the left temporal muscle. The temporal muscle was separated from the skull sufficiently
to allow access to the underlying AC (~4.0 — 4.5 mm from the midline). The skull overlying the AC was
thinned by careful drilling and left intact for transcranial flavoprotein autofluorescence (FA) imaging.
Dental acrylic was used to secure a head post to the skull over the ipsilateral frontal cortex and to create a
reservoir for artificial cerebrospinal fluid (aCSF), which was periodically applied over the recording site
to keep the skull from drying out. Subsequently, mice were head-fixed and FA intrinsic signals were
recorded while the animals were exposed to low intensity auditory stimuli (amplitude-modulated tone
with a carrier frequency of 5 kHz and modulation frequency of 20 Hz, 40-50 dB from speakers placed ~
10 cm from the ear). The skull was exposed to blue light (LED light: peak wavelength = 461.4 nm;
FWHM = 19.3 nm; M470L3, ThorLabs) for 10 seconds; 1 second long acoustic stimuli were presented 3
seconds after initiation of exposure to blue light. During this time the endogenous FA signal (540 nm)
was recorded by a CCD camera (Middleton et al., 2011). Two regions of sound evoked FA activity were
consistently observed: The more caudal of the two regions corresponds to the primary auditory cortex
(A1) and the more rostral one corresponds to the anterior auditory field (AAF) (see Figure 2-1). After FA
imaging and AC identification a small piece of skull overlying the region identified as AC was exposed
(by carefully scoring the perimeter of the thinned skull with a fine surgical blade and removing a small
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bone flap with fine forceps) and sulforhodamine was applied to the pial surface to label AC for in vitro

identification experiments immediately after FA-assisted AC localization.

2.5.4 Slice electrophysiology

Coronal slices (300 um) containing AC were prepared from mice that had previously been injected with
retrograde beads and, in some experiments (n=5, used for assessing intrinsic properties), had also
undergone FA-assisted AC localization (see above and Results describing Figure 1). The cutting solution
(pH 7.35) contained the following (in mM): 2.5 KCI, 1.25 NaH;PO4, 25 NaHCO3, 0.5 CaCly, 7 MgCly, 7
dextrose, 205 sucrose, 1.3 ascorbic acid, and 3 sodium pyruvate (bubbled with 95% 0O./5% CO.). The
slices were transferred and incubated at 36°C in a holding chamber for 30 minutes. The holding chamber
contained aCSF (pH 7.35) containing the following (in mM): 125 NaCl, 2.5 KCI, 1.25 NaH;PQO,, 25
NaHCOs, 2 CaCly, 1 MgCl,, 10 glucose, 1.3 ascorbic acid, and 3 sodium pyruvate (bubbled with 95%
02/5% CO3). Post incubation, the slices were stored at room temperature until the time of recording.
Whole-cell recordings in voltage- and current-clamp modes were performed on slices bathed in
carbogenated aCSF, which was identical to the incubating solution. The flow rate of the aCSF was ~1.5
ml/min, and its temperature was maintained at 32-34°C using an in-line heating system (Warner). To
examine intrinsic properties, the following drugs were added to the aCSF (in mM): 0.02 DNQX (AMPA
receptor antagonist), 0.05 APV (NMDA receptor antagonist), and 0.02 gabazine (GABAA receptor
antagonist). Layer 5B of the AC was identified as the layer containing corticocollicular neurons.
Recordings were targeted to either green fluorescent corticocollicular neurons or red fluorescent
corticocallosal neurons within L5B. Borosilicate pipettes (World Precision Instruments) were pulled into
patch electrodes with 3-6 MQ resistance (Sutter Instruments) and filled with a potassium based
intracellular solution which was composed of the following (in mM): 128 K-gluconate, 10 HEPES, 4
MgCl., 4 Na,ATP, 0.3 Tris-GTP, 10 Tris Phosphocreatine, 1 EGTA, and 3 sodium ascorbate. Data were
sampled at 10 kHz and Bessel filtered at 4 kHz using an acquisition control software package Ephus
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(www.ephus.org) (Suter et al., 2010). Pipette capacitance was compensated and series resistance for
recordings was lower than 25 MQ. Series resistance was determined in voltage clamp mode (command
potential set at -70 mV) by giving a -5 mV voltage step. Series resistance was determined by dividing the
-5 mV voltage step by the peak current value generated immediately after the step in the command
potential. The data were not corrected for 10 mV liquid junction potential. Rinpue Was calculated in
voltage-clamp mode (command potential set to -70 mV) by giving a -5 mV step, which resulted in
transient current responses. The difference between baseline and steady state hyperpolarized current (Al)
was used to calculate Rinpue using the following formula: Rinput = -5 mV/AI — Rseries. The average resting
membrane potential (Vm) was calculated by holding the neuron in voltage-follower mode (current-clamp,
at | = 0) immediately after breaking in and averaging the membrane potential over the next 20 seconds.
Sub- and suprathreshold membrane responses in current-clamp were elicited by injecting -200 to +500 pA
in 50 pA increments (baseline Vi was maintained at -75 mV, by injecting the required current if
necessary). Sag was measured during the -200 pA current injection, using the formula, SAG = (Vmin-
V steady-state)/ Vsteady-state- 1N first resulting action potential (AP) at rheobase was analyzed for AP width. AP
width was calculated as the full width at the half-maximum amplitude of the AP. Adaptation ratio and
fast-doublet index were measured at the current step that gave the closest AP firing rate to 10 Hz. Firing
rate increases were quantified by calculating the initial (150-250 pA) slope of the frequency-current (f-1)
relationship. We chose to calculate the slope between those three particular current points because they
are above the non-linear region of the curves near the rheobase, and they are below the region of large
current values where the f-1 functions start to saturate. Adaptation ratio was calculated by dividing the
instantaneous frequency between the 9™ and 10" AP by the instantaneous frequency between the 2nd and
3rd AP (f9/f2) (Figure 2-4 H, K). Fast-doublet index was calculated by dividing the instantaneous
frequency between the 1% and 2™ AP by the instantaneous frequency between the 2" and 3" AP (f1/f2)
(Figure 2-4 H, I, L). In Figure 2-3 and Figure 2-4, which examine intrinsic properties, 24/32

corticocollicular and 24/29 corticocallosal neurons were recorded from the same slice.
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2.5.5 Paired recordings

Whole-cell recordings were established from a L2/3 and a bead-labeled corticocollicular or L5B
corticocallosal neuron. For these experiments, we used coronal slices without dye in the pipettes and
therefore without direct assessment of intactness of dendritic arbors. Connectivity was assessed by
evoking a train (five pulses, 20 Hz) of action potentials in the L2/3 neuron while monitoring the
postsynaptic response in the L5B neuron; at least 20 trials of the presynaptic train were delivered (10 sec
inter trial interval); multiple trials were averaged to detect the presence of a connection. Events that were
>3 standard deviations of the baseline noise level (noise levels were measured during a 50 msec timing
period prior to the first spike in the presynaptic neuron) detected as events and were further analyzed.
EPSC or EPSP latency was calculated as the time from the peak of the presynaptic AP to the time where
the postsynaptic signal was >3 standard deviations of the baseline noise level. EPSC or EPSP amplitudes
were obtained by averaging a 1 msec window around the peak response. Rise time was defined as the
time from 20-80% of the peak response. Decay time constants were measured by fitting an exponential
function from peak of a single EPSP to its baseline response. EPSC or EPSP trains were normalized to the
amplitude of the first EPSC or EPSP before analyzing them for short-term plasticity. In current-clamp
mode recordings, neurons were held at -75 mV. For 12 out of 14 L2/3—corticocollicular connected pairs
and for 9 out of 11 L2/3—corticocallosal pairs, both EPCSs and EPSPs were recorded from the same
postsynaptic neuron. With the exception of two paired recordings, we were not able to obtain more than

one pair per slice.

2.5.6 Extracellular L2/3 stimulation and postsysnaptic spiking experiments

Whole-cell recordings were established from bead-labeled corticocollicular or L5B corticocallosal
neurons from the same slice; L2/3 was stimulated with a theta glass stimulating electrode filled with

extracellular solution. The stimulation electrode was positioned in 1.2/3, ~200 um from the pial surface,
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and laterally to the recording electrode in L5B to avoid direct stimulation of L5B neurons. EPSCs were
obtained while holding the neuron at -70 mV. EPSPs were obtained in current clamp mode (membrane
potential maintained at -75 mV for both cell types). To examine the effect of stimulation frequency on the
firing of corticocallosal or to corticocollicular neurons, we adjusted the stimulus intensity such that in
response to a stimulus train of 10 pulses at 20 Hz, ~50% spikes were evoked in the postsynaptic
corticocallosal or corticocollicular neuron. Two stimulus trains (10 pulses in each train) were delivered
for each frequency in the following order: 20 Hz, 10 Hz and 20 Hz (inter train interval: 10 sec). The
spikes evoked by the two trains were averaged; i.e., we averaged the number of spikes evoked by trains 1
and 2 (20 Hz), the number of spikes evoked by trains 3 and 4 (10 Hz), and the number of spikes evoked
by trains 5 and 6 (20 Hz). A trial was considered complete if the average number of spikes evoked in
trains 5 and 6 did not change by > 20% compared to the average spikes evoked in trains 1 and 2. For each
neuron, the average number of spikes per frequency was normalized to the average number of spikes of
the first two trains at 20 Hz. All recordings from the two different neuronal types were performed from

the same slice.

2.5.7 Morphological reconstructions

As described in detail previously (Suter et al., 2013), neurons were filled with biocytin during whole-cell
recordings, and the slices were fixed, processed for streptavidin-based fluorescent labeling, and imaged
by 2-photon microscopy. For morphological reconstructions, the angle of cutting was slightly modified
for optimal preservation of dendritic arbors. Dendrites were three-dimensionally traced in stitched image
stacks (Neurolucida) and data sets were further analyzed to quantify dendritic length as previously

described (Shepherd et al., 2005; Yamawaki et al., 2014).
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2.5.8 Statistical analysis

Data that were normally distributed (based on Lilliefors test) were analyzed using unpaired t-tests. For
non-normally distributed data, we used the Wilcoxon rank sum test (indicated in the manuscript wherever
this was the case). Within group analysis for paired recordings was done using paired t-tests. Significance

was reported if p value < 0.05.
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3.0 CHAPTER 2: CHOLINERGIC MODULATION OF EXCITABILITY OF LAYER 5B

PRINCIPAL NEURONS IN MOUSE AUDITORY CORTEX

3.1 OVERVIEW

The neuromodulator acetylcholine (ACh) is important for important cognitive functions, such as
perception, attention and learning and memory. Whereas in most cases the cellular circuits or the specific
neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC)
corticocollicular neurons, projecting from layer (L) 5B to the inferior colliculus, are required for
cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of
the effects of ACh on the excitability of corticocollicular neurons will bridge cell-specific properties and
cognitive properties of ACh. To identify cell-specific mechanisms that enable corticocollicular neurons to
participate in sound localization relearning - because AC L5B contains another class of neurons called
corticocallosal neurons, which project to the contralateral cortex - we investigated the effects of ACh
release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and
optogenetics in mouse brain slices, we found that ACh generated nicotinic (n) AChR-mediated
depolarizing potentials and muscarinic (m) AChR-mediated hyperpolarizing potentials in AC L5B
corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated
depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in
corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in
corticocollicular neurons. This prolonged depolarizing potentials generated persistent firing in

corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing
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potentials did not show persistent firing. We propose that ACh-mediated persistent firing in
corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in

AC.

3.2 INTRODUCTION

Acetylcholine (ACh) release in the cortex is crucial for perception, attention, learning and memory (Bear
and Singer, 1986; Edeline et al., 1994; Kilgard and Merzenich, 1998b; Weinberger, 2003; Froemke et al.,
2007; Bajo et al., 2010; Hasselmo and Sarter, 2011; Leach et al., 2013). As a result, the Nucleus Basalis
(NB), which is the main source of cortical ACh (Lehmann et al., 1980; Dani and Bertrand, 2007), has
been implicated in all these cognitive aspects. Despite the importance of these cognitive functions, the
specific cortical neuronal types mediating these functions, as well as the synaptic effects of ACh on these
neurons remain poorly understood.

In the auditory cortex (AC), pairing electrical stimulation of NB with an auditory stimulus
induces stimulus-specific representational cortical plasticity and auditory memory (Kilgard and
Merzenich, 1998b, a; Weinberger et al., 2006; Froemke et al., 2007), and enhances discrimination
learning (Reed et al., 2011). Moreover, cortical cholinergic input is required for normal perception of
sound source location and experience-dependent plasticity involved in relearning sound localization after
reversible occlusion of one ear (Leach et al., 2013). Although in most cases the specific neuronal
population upon which ACh acts to exert its cognitive and perceptual effects is not known, recent studies
revealed that the cholinergic and experience-dependent plasticity involved in relearning sound
localization after reversible occlusion of one ear is lost after specific elimination of corticocollicular
neurons (Bajo et al., 2010), an AC layer 5B (L5B) neuronal type projecting to the inferior colliculus (IC).

The knowledge of the specific neuronal population mediating learning-induced auditory plasticity, as well
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as the necessity of cortical ACh for this mechanism provide an ideal model for determining the cell-
specific synaptic mechanisms via which ACh enables sound localization.

Here, we investigated the effects of exogenous and endogenous ACh on the synaptic excitability
of L5B corticocollicular neurons. However, L5B contains different types of projection neurons including
corticocollicular, and corticocallosal neurons - a second major class of L5 neurons with axons projecting
to the contralateral Al. Because recent studies in a variety of cortical areas, including the AC, have
revealed numerous differences in the physiological properties of pyramidal tract (PT) neurons, of which
corticocollicular are a subtype, and intratelencephalic (IT) neurons, of which corticocallosal neurons are a
subtype (for review, see Shepherd, 2013), we hypothesize that ACh may have cell-specific effects on the
excitability of projection neurons. These cell-specific effects may be important for the cholinergic-
mediated experience-dependent plasticity involved in relearning sound localization after plugging one ear
(Bajo et al., 2010), as well as in the distinct role of PT and IT neurons in the delay period that occurs
during movement planning (Li et al., 2015).

To study the effects of ACh on corticocollicular and L5B corticocallosal neurons, we used in vivo
retrograde labeling, as well as in vitro electrophysiological methods combined with optogenetic activation
of cholinergic fibers. We show that ACh has cell-specific effects on L5B projection neurons. Namely,
ACh elicits nicotinic ACh receptor- (nAChR) mediated depolarizing potentials in both neuronal types,
whereas ACh evokes muscarinic ACh receptor- (mMAChR) mediated hyperpolarizing potentials in
corticocallosal neurons, but long-lasting mMAChR-mediated depolarizing potentials only in
corticocollicular neurons. The long-lasting mAChR depolarizing potential generates persistent firing in

corticocollicular neurons, which may be involved in top-down modulation of auditory learning.
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3.3 RESULTS

3.3.1 Exogenous application of acetylcholine generates distinct responses in AC L5B

corticocallosal and corticocollicular neurons

To study the effect of ACh on AC L5B corticocallosal and corticocollicular neurons, AC L5B projection
neurons were targeted for whole-cell recordings in current-clamp mode. Briefly, fluorescent microspheres
were injected in the IC in vivo, while microspheres of different color were injected in the contralateral
AC. In brain slices prepared two to three days later, corticocollicular and corticocallosal neurons were
selectively labeled (Joshi et al., 2015). Layer 5B of the AC was identified as the layer containing
corticocollicular neurons as (Games and Winer, 1988; Doucet et al., 2003; Doucet and Ryugo, 2003;
Slater et al., 2013; Joshi et al., 2015). In all our experiments, recordings were targeted to either red
fluorescent corticocollicular neurons or green fluorescent corticocallosal neurons within L5B.

In 23 out of 42 corticocallosal neurons, puff application of 100 uM ACh onto their somata (20
p.s.i, ~ 50 um from soma) generated a monophasic depolarizing potential (Figure 3-1 Al, A2 control
black trace). This depolarizing potential was mediated by nAChRs, because it was blocked by the
application of a cocktail of nAChR blockers (5 puM Mecamylamine hydrochloride + 50 pM
Hexamethonium bromide) (Figure 3-1 Al, orange trace; Figure 3-1 A3 summary). Furthermore, this
depolarizing potential was blocked by 500 nM Dihydro-B-erythroidine (DHBE), a selective antagonist of
a-4 receptor subunit of nAChRs, indicating that it was mediated by o-4 subunit containing nAChRs
(Figure 3-1 A2, magenta trace; Figure 3-1 A3 summary). In 3 out of 10 corticocallosal neurons,
application of nAChR blockers eliminated the depolarizing potential and revealed a hyperpolarizing
potential (Figure 3-1 B1, black trace- depolarizing potential , magenta trace-hyperpolarizing potential
after application of DHBE). This hyperpolarizing potential was blocked by the application of 1 uM
atropine (MAChR blocker) (Figure 3-1 B1, green trace; Figure 3-1 B2 summary) indicating that it was
mediated by muscarinic acetylcholine receptors (MAChRS).
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In the rest of the recorded corticocallosal neurons (19 out of 42), puffing ACh onto their somata
generated biphasic responses - a depolarizing potential followed by a hyperpolarizing potential (Figure 3-
1 C1, black trace). Sequential application of 1 uM atropine and nAChR blocker cocktail abolished the
hyperpolarizing and depolarizing potentials respectively (Figure 3-1 C1, green trace-atropine, orange
trace- nAChR blocker cocktail; Figure 3-1 C2 hyperpolarizing potential summary ; Figure 3-1 C3
depolarizing potential summary). Together, our results show that exogenous application of ACh results in
excitatory and inhibitory potentials in corticocallosal neurons, which are mediated by nAChRs and
MAChRs, respectively.

Next we studied the effect of exogenous ACh on corticocollicular neurons. In 18 out of 28
corticocollicular neurons, puffing ACh onto their somata (20 p.s.i, ~ 50 um from soma) generated a
depolarizing potential (Figure 3-2 A1, A2 control black trace), which was mediated by nAChRs, because
it was blocked by the application of nAChR blockers (Figure 3-2 Al, orange trace; Figure 3-2 A3
summary). Furthermore, the depolarizing potential was also blocked by 500 nM DHPE, indicating that it
was mediated by a-4 subunit containing nAChRs (Figure 3-2 A2, magenta trace; Figure 3-2 A3
summary). In 2/10 corticocollicular neurons, application of nAChR blockers eliminated the depolarizing
potential and revealed a hyperpolarizing potential (Figure 3-2 B, black trace- depolarizing potential,
magenta trace- hyperpolarizing potential after application of DHBE). These results suggest that
application of ACh revealed similar monophasic potentials in corticocollicular and corticocallosal
neurons.

However, in 10 of 28 corticocollicular neurons exogenous application of ACh revealed a distinct
response. Namely, puffing of ACh generated a 2 peak (peak 1 and peak 2) depolarizing potential (Figure
3-2 C1, black trace). Sequential application of nAChR blockers and 1 uM atropine (MAChR blocker)
abolished peak 1 and peak 2, respectively (Figure 3-2 C2, orange trace- nAChR blocker cocktail, green
trace-atropine; Figure 3-2 C3 summary peak 1; Figure 3-2 C4, summary peak 2). We concluded that peak
1 was mediated by nAChRs and the slower peak 2 was mediated by mAChRs. Together our results show
that the exogenous ACh caused nAChR-mediated depolarizing potentials, which were similar between
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L5B corticocallosal and corticocollicular neurons. On the other hand exogenous ACh activated mAChRs,
which, in turn, caused hyperpolarizing potential in corticocallosal neurons, but delayed, long-lasting

depolarizing potentials in corticocollicular neurons.
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Figure 3-1: Puffing ACh generates nicotinic excitation and muscarinic inhibition in corticocallosal
neurons.

Legends for Figure 3-1

Al, A single puff of 100 uM ACh (50 ms, 20 psi) denoted by the black arrow, generates a monophasic
depolarizing potential (Ctrl. black trace) in a subset of corticocallosal neurons. The depolarizing potential
is abolished by the addition of a cocktail of nAChR blockers (5 uM Mecamylamine hydrochloride + 50

uM Hexamethonium bromide, orange trace).
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A2, The monophasic depolarizing potential (Ctrl. black trace) is also abolished by the addition of 500 nM

DHBE (magenta trace).

A3, Group data summarizing the effects of the application of nAChR blocker cocktail and DHBE on the
monophasic depolarizing potential (depolarizing potential amplitude in aCSF: 1.0 + 0.0; depolarizing
potential amplitude is significantly reduced after the addition of nAChR blockers as indicated by the
orange asterix: -0.003 + 0.02, n = 4, p-value = 0.0007); depolarizing potential amplitude is significantly
reduced after the addition of DHPBE as indicated by the magenta asterix: 0.03 + 0.02; n = 3, p-value =

0.02).

B1, In 3/10 neurons, application of nAChR blocker cocktail (1 neuron) or DHBE (2 neurons) abolished
the monophasic depolarizing potential but revealed a hyperpolarizing potential (Ctrl. black trace -
depolarizing potential;, DHBE magenta trace - hyperpolarizing potential). This hyperpolarizing potential

was abolished by the addition of 1 uM atropine (green trace), a blocker of all mMAChRs.

B2, Group data summarizing the effect of the application of atropine on the hyperpolarizing potential
revealed in the presence of nAChR blockers (hyperpolarizing amplitude in aCSF: 1.0 + 0.0;
hyperpolarizing amplitude is significantly reduced after the addition of atropine as indicated by the green

asterix: -0.06 + 0.07, n = 3, p-value = 0.004).

C1, A single puff of 100 uM ACh (50 ms, 20 psi, 50 um away from the soma) denoted by the black
arrow, generates biphasic (depolarizing/hyperpolarizing) potentials - (Ctrl. black trace) in another subset
of corticocallosal neurons. Sequential application of 1 uM atropine (green trace), a blocker of all

mAChRs and a cocktail of nAChR blockers (5 uM Mecamylamine hydrochloride + 50 pM
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Hexamethonium bromide) (orange trace) abolished the hyperpolarizing and depolarizing potential

respectively.

C2, Group data summarizing the effect of the application of atropine on the hyperpolarizing potential in
the biphasic response. The amplitudes of the responses have been normalized to amplitude of the
hyperpolarizing potential in aCSF (hyperpolarizing potential amplitude in aCSF: 1.0 + 0.0;
hyperpolarizing potential amplitude is significantly reduced after the addition of atropine as indicated by

the green asterix: 0.10 + 0.08, n = 6, p-value < 0.0001).

C3, Group data summarizing the effects of the application of atropine and nAChR blocker cocktail on the
depolarizing potential in the biphasic response. The amplitudes of the responses have been normalized to
amplitude of the depolarizing potential in aCSF (depolarizing potential amplitude in aCSF: 1.0 £ 0.0, n =
6; depolarizing potential amplitude after the addition of atropine is not significantly different compared to
the depolarizing potential amplitude in aCSF: 1.09 £ 0.21, n = 6, p > 0.05; depolarizing potential
amplitude after the addition of nAChR blocker cocktail is significantly reduced compared to the
depolarizing potential amplitude in aCSF (indicated by the orange asterix) and atropine (indicated by the
plus sign): -0.01 + 0.02, n =6, n = 6, p < 0.01 compared to compared to aCSF, p < 0.01 compared to

atropine).
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Figure 3-2: Puffing ACh generates nicotinic and muscarinic excitation in corticocollicular neurons.

Legends for Figure 3-2

Al, A single puff of 100 uM ACh (50 ms, 20 psi) denoted by the black arrow, generates monophasic
depolarizing potential (Ctrl. black trace) in a subset of corticocollicular neurons. The depolarizing

potential is abolished by the addition of a cocktail of nAChR blockers (5 uM Mecamylamine

hydrochloride + 50 uM Hexamethonium bromide, orange trace).

A2, The monophasic depolarizing potential (Ctrl. black trace) is also abolished by the addition of 500 nM

DHBE (magenta trace).

A3, Group data summarizing the effects of the application of nAChR blocker cocktail and DHBE on the
monophasic depolarizing potential (depolarizing potential amplitude in aCSF: 1.0 + 0.0; depolarizing

potential amplitude is significantly reduced after the addition of NnAChR blockers as indicated by the red
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asterix: 0.05 + 0.11, n = 4, p-value = 0.003); depolarizing potential amplitude is significantly reduced

after the addition of DHPE as indicated by the magenta asterix: -0.01 + 0.13; n = 4, p-value = 0.004).

B, In 2/10 neurons, application of NAChR blocker cocktail (1 neuron) or DHBE (1 neuron) abolished the
monophasic depolarizing potential but revealed a hyperpolarizing potential (Ctrl. black trace -

depolarizing potential; DHBE magenta trace —hyperpolarizing potential).

C1, A single puff of 100 uM ACh (50 ms, 20 psi, 50 um away from the soma) denoted by the black
arrow, generates 2 peak depolarizing potential (black trace, peak 1 and peak 2) in another subset of

corticocollicular neurons.

C2, Sequential application of a cocktail of nAChR blockers (5 uM Mecamylamine hydrochloride + 50
uM Hexamethonium bromide) (orange trace) and 1 uM atropine (green trace), a blocker of all mMAChRs

abolished peak 1 and peak 2 respectively.

C3, Group data summarizing the effects of the application of NAChR blocker cocktail on peak 1 of 2 peak
depolarizing potentials. The amplitudes of the responses have been normalized to amplitude of peak 1 in
aCSF (peak 1 amplitude in aCSF: 1.0 + 0.0; peak 1 amplitude is significantly reduced after the addition of

nNAChR blocker cocktail as indicated by the orange asterix: -0.07 + 0.02, n = 3, p = 0.0003).

C4, Group data summarizing the effects of the application of nAChR blocker cocktail and atropine on
peak 2 in 2 peak depolarizing potential. The amplitudes of the responses have been normalized to
amplitude of peak 2 in aCSF (peak 2 amplitude in aCSF: 1.0 + 0.0; peak 2 amplitude after the addition of
NAChR blocker cocktail is not significantly different compared to the depolarizing potential amplitude in

aCSF: 1.47 + 0.27, n = 3, p-value > 0.05; peak 2 amplitude after the addition of atropine is significantly
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reduced compared to the depolarizing potential amplitude in aCSF (indicated by the green asterix) and
nNAChR blocker cocktail (indicated by the plus sign) : -0.02 + 0.03, n = 3, p < 0.01 compared to aCSF, p <

0.02 compared to nAChR blocker cocktail).

3.3.2 Endogenous release of acetylcholine evokes distinct responses in corticocollicular and

corticocallosal neurons

Next, we determined whether endogenous release of ACh on AC L5B corticocallosal and
corticocollicular neurons has actions similar to those of exogenous ACh. To investigate the effect of
endogenous ACh, we used the ChAT-ChR2-EYFP mouse line, which expresses the light activated cation
channel channelrhodopsin (ChR2) selectively in cholinergic axons (Zhao et al., 2011). To confirm the
presence of ChR2-EYFP fibers amongst AC L5B corticocallosal and corticocollicular neurons, we
performed in vivo injections of fluorescent retrograde tracers in ChAT-ChR2-EYFP mice. Small volumes
of red fluorescent microspheres (red emission) were injected in the IC, while choleratoxin (far red
emission) was injected in the contralateral AC (Figure 3-3 A). Mice were perfused a week later and then
their brains were cryoprotected and subsequently sectioned on a microtome into 50 pm thick AC-
containing sections. Epifluorescence imaging revealed labeled corticocollicular neurons in L5B of the AC
(Figure 3-3 B), whereas choleratoxin labeled corticocallosal neurons were present in L5 B and other
layers of the auditory cortex (Figure 3-3 C). EYFP containing green cholinergic axons were also present
in L5B AC (Figure 3-3D). An overlay of the three separate images (Figure 3-3 B, C and D) revealed an
intermingled population of auditory cortex L5B corticocollicular and corticocallosal neurons (red and
blue) amongst green cholinergic axons (Figure 3-3 E), thus confirming the presence of cholinergic axons
in L5B of the auditory cortex.

To assess the effects of endogenous release of ACh on AC L5B corticocallosal neurons, we used
widefield illumination of the slice with a blue LED (A = 470 nm) to activate ChR2-containing cholinergic
terminals and evoke ACh release. In 12 out of 21 corticocallosal neurons, endogenous release of ACh by
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stimulation with a single pulse of blue light (pulse width = 5 ms) generated a monophasic depolarizing
potential, which was similar to the monophasic depolarizing potential we observed with exogenous ACh
(Figure 3-4 Al - control black trace). To assess the pharmacology of these responses, we stimulated with
10 pulses of blue light (at 50 Hz), as the responses were more robust. This monophasic depolarizing
potential was mediated by nAChRs because it was blocked by the application of nAChR blockers (Figure
3-4 A2, orange trace; Figure 3-4 A4 summary). Furthermore, the depolarizing potential was also blocked
by 500 nM DHQE, indicating that it was mediated by a-4 subunit containing nAChRs (Figure 3-4 A3,
magenta trace; Figure 3-4 A4 summary).

In 4 out of 21 corticocallosal neurons, endogenous release of ACh with a single pulse of blue
light generated biphasic responses — a depolarizing potential followed by a hyperpolarizing potential
(Figure 3-4 B1 - control black trace). Sequential application of 1 uM atropine and nAChR blockers
abolished the hyperpolarizing and depolarizing potential respectively, showing that biphasic response was
mediated by n- and mAChRs (Figure 3-4 B2 - Control black trace depolarization/hyperpolarization, green
trace after atropine, orange trace after nAChR blockers; Figure 3-4 B3 the summary of the effect of
atropine on the hyperpolarizing potential; Figure 3-4 B4 summary of the effect of atropine and nAChR
blockers on the depolarizing potential). Finally, in 5 out 21 corticocallosal neurons, endogenous release of
ACh by optogenetic stimulation with a single pulse of blue light generated a hyperpolarizing potential
(Figure 3-4 C1 - control black trace). This hyperpolarizing potential was mediated by mAChRs, because
it was abolished by the application of 1 uM atropine (Figure 3-4 C2 Control black trace hyperpolarizing
potential, green trace atropine, Figure 3-4 C3 summary). Although we did not observe monophasic
hyperpolarizing potentials with extracellular ACh application, taken together, our results indicate that
exogenous and endogenous ACh had similar effects on the excitability of L5B corticocallosal neurons.

Next we studied the effect of endogenous ACh on the excitability of corticocollicular neurons. In
5 out of 13 corticocollicular neurons, 1 or 10 pulses of blue light elicited monophasic responses (Figure 3-
5 Al). Because corticocollicular neurons consistently gave responses to 60 pulses delivered at 50 Hz, we
employed this stimulation protocol for assessing the response of corticocollicular neurons to endogenous
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ACh. Under these conditions, in 7 out of 13 corticocollicular neurons, endogenous release of ACh
generated a monophasic depolarizing potential, which was similar to the monophasic depolarizing
potential we observed with exogenous ACh (Figure 3-5 A2 - control black trace). This depolarizing
potential was mediated by a-4 subunit containing nAChRs, because it was blocked by DHBE (Figure 3-5
A2, magenta trace; Figure 3-5 A3 summary). Moreover, in 2 out of 5 corticocollicular neurons which
showed a depolarizing potential, application of nAChR blockers eliminated the depolarizing potential and
revealed a hyperpolarizing potential, which was blocked by the application of atropine (Figure 3-5 B)
indicating that it was mediated by mAChRs. These results show that the responses due to endogenous
ACh resemble the responses obtained with exogenous application of ACh.

In 6 out of 13 corticocollicular neurons, photostimulation of cholinergic fibers elicited a broader
depolarizing potential that exceeded the train of photostimulation (Figure 3-5 C1, black trace). This broad
depolarizing potential was reminiscent of the peak 2 of the ‘2 peak depolarizing potential’ obtained in
response to exogenous ACh. Because peak 2 of the ‘2 peak depolarizing potential’ was mediated by
mMAChRs (Figure 3-2 C1, C2), we tested whether the broad depolarizing potential was also mediated by
mMAChRs. Application of 1 uM atropine revealed a narrower depolarizing potential (Figure 3-5 C1, green
trace) which was subsequently eliminated by application of NnAChR blockers (Figure 3-5 C1, C3 orange
trace). Together these results suggest that endogenous ACh, like exogenous ACh, generates n- and
mAChR-mediated depolarizing potentials in corticocollicular neurons; the mAChR-mediated depolarizing

potentials are long-lasting.
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A B Bead labeled Choleratoxin labeled
corticocollicular neurons corticocallosal neurons

Surgical Procedure

ChAT-ChR2-EYFP
mouse

Figure 3-3: Cholinergic axons are present in the auditory cortex and are intermingled amongst
corticocollicular and corticocallosal neurons.

Legends for Figure 3-3

A. Labeling of corticocollicular and corticocallosal neurons with fluorescent tracers. Projection neurons in

the AC were labeled by injecting different colored retrograde tracers in the contralateral AC (choleratoxin

to label corticocallosal neurons) and the ipsilateral inferior colliculus (red fluorescent microspheres to

label corticocollicular neurons).

B. 20 X epifluorescence image showing labeled corticocollicular neurons in L5B of the AC.

C. 20 X epifluorescence image showing labeled corticocallosal neurons in L5B and other layers of the

AC.
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D. 20 X epifluorescence image showing green cholinergic axons in L5B of AC. E. Merged image
showing intermingled population of corticocallosal and corticocollicular neurons amongst green

cholinergic axons in L5B of AC.

E. Merged image (B, C, and D combined) showing intermingled population of corticocallosal and

corticocollicular neurons amongst green cholinergic axons in L5B of AC.
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Figure 3-4: Release of endogenous ACh by optogenetic stimulation generates nicotinic excitation
and muscarinic inhibition in corticocallosal neurons.

Legends for Figure 3-4

Al, Optogenetic stimulation with a single pulse (A = 470 nm, pulse width 5 ms) denoted by the blue
vertical bar, generates a monophasic depolarizing potential (Ctrl. black trace) in a subset of corticocallosal
neurons. Note: pharmacology was established using optogenetic stimulation with 10 pulses (2 = 470 nm,

pulse width 5 ms) denoted the blue rectangle.
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A2, The monophasic depolarizing potential is abolished by the addition of a cocktail of nAChR blockers

(5 uM Mecamylamine hydrochloride + 50 uM Hexamethonium bromide, orange trace).

A3, The monophasic depolarizing potential (Ctrl. black trace) is also abolished by the addition of 500 nM

DHfE (magenta trace).

A4, Group data summarizing the effects of the application of nAChR blocker cocktail and DHBE on the
monophasic depolarizing potential (depolarizing potential amplitude in aCSF: 1.0 + 0.0; depolarizing
potential amplitude is significantly reduced after the addition of nAChR blockers as indicated by the red
asterix: 0.01 + 0.04, n = 3, p = 0.001); depolarizing potential amplitude is significantly reduced after the

addition of DHBE as indicated by the magenta asterix: 0.03 + 0.04; n =5, p < 0.0001).

B1, Optogenetic stimulation with a single pulse (A = 470 nm, pulse width 5 ms) denoted by the blue
vertical bar, generates a biphasic (depolarizing/hyperpolarizing) potentials (Ctrl. black trace) in another

subset of corticocallosal neurons.

B2, Sequential application of 1 uM atropine (green trace), a blocker of all mMAChRs and a cocktail of
nNAChR blockers (5 uM Mecamylamine hydrochloride + 50 uM Hexamethonium bromide) (orange trace)

abolished the hyperpolarizing and depolarizing potential respectively.

B3, Group data summarizing the effect of the application of atropine on the hyperpolarizing potential in
the biphasic response. The amplitudes of the responses have been normalized to amplitude of the
hyperpolarizing potential in aCSF (hyperpolarizing potential amplitude in aCSF: 1.0 + 0.0;
hyperpolarizing potential amplitude is significantly reduced after the addition of atropine as indicated by

the green asterix: -0.05 £ 0.07, n = 3, p = 0.008).
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B4, Group data summarizing the effects of the application of atropine and nAChR blocker cocktail on the
depolarizing potential in the biphasic response. The amplitudes of the responses have been normalized to
amplitude of the depolarizing potential in aCSF (depolarizing potential amplitude in aCSF: 1.0 £ 0.0, n =
6; depolarizing potential amplitude after the addition of atropine is significantly increased compared to
the depolarizing potential amplitude in aCSF: 2.07 + 0.15, n = 3, p < 0.01; depolarizing potential
amplitude after the addition of nAChR blocker cocktail is significantly reduced compared to the
depolarizing potential amplitude in aCSF (indicated by the plus sign) and atropine (indicated by the green

asterix): -0.17 £ 0.08, n = 3, p < 0.02 compared to compared to aCSF, p < 0.03 compared to atropine).

C1, Optogenetic stimulation with a single pulse (A = 470 nm, pulse width 5 ms) denoted by the blue
vertical bar, generates a monophasic hyperpolarizing potential (Ctrl. black trace) in another subset of

corticocallosal neurons.

C2, The hyperpolarizing potential is abolished by the addition of a 1 uM atropine (green trace), a blocker

of all mMAChRs.

C3, Group data summarizing the effects of the application of atropine on inhibitory responses
(hyperpolarizing potential amplitude in aCSF: 1.0 = 0.0; hyperpolarizing potential amplitude is

significantly reduced after the addition of atropine 0.12 + 0.08; n = 3, p = 0.008).
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Figure 3-5: Release of endogenous ACh by optogenetic stimulation generates nicotinic and
muscarinic excitation in corticocollicular neurons.

Legends for Figure 3-5

Al, Optogenetic stimulation with 1 or 10 pulses (A = 470 nm, pulse width 5 ms @ 50 Hz) denoted by the
blue rectangle, generates a monophasic depolarizing potential (Ctrl. black trace) in small number (5/13) of

corticocollicular neurons.

A2, Optogenetic stimulation with 60 pulses (A = 470 nm, pulse width 5 ms @ 50 Hz) denoted by the blue
rectangle, generates a monophasic depolarizing potential (Ctrl. black trace) in a subset of corticocollicular
neurons. The depolarizing potential is abolished by the addition 500 nM DHBE (magenta trace) in 2
neurons and a cocktail of nAChR blockers (5 uM Mecamylamine hydrochloride + 50 upM

Hexamethonium bromide, data not shown) in 1 neuron.
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A3, Group data summarizing the effects of the application of nAChR blocker cocktail and DHBE on the
monophasic depolarizing potential (depolarizing potential amplitude in aCSF: 1.0 + 0.0; depolarizing
potential amplitude is significantly reduced after the addition of nAChR blockers/ DHBE as indicated by

the brown asterix: 0.05 + 0.12, n = 3, p-value = 0.003).

B, In 2/5 neurons, the application of nAChR blocker cocktail abolished the monophasic depolarizing
potential but revealed an hyperpolarizing potential (Ctrl. black trace.- depolarizing potential; orange trace,
Mecamylamine hydrochloride + Hexamethonium bromide - hyperpolarizing potential). This
hyperpolarizing potential was abolished by the addition of 1 uM atropine (green trace), a blocker of all

MAChRS in 2/2 neurons.

C1, Optogenetic stimulation with 60 pulses (A = 470 nm, pulse width 5 ms @ 50 Hz) denoted by the blue
rectangle, generates a broad depolarizing potential (Ctrl. Black trace) in another subset of
corticocollicular neurons. Application of 1 uM atropine, a blocker of all mMAChRs changed the shape of
the broad depolarizing potential to resemble that of a monophasic depolarizing potential (green trace).
Post atropine treatment, application of a cocktail of nAChR blockers (5 puM Mecamylamine

hydrochloride + 50 uM Hexamethonium bromide- orange trace) abolished the remaining response.

C2, Group data summarizing the effects of the application atropine on broad depolarizing potentials. To
guantify the mAChR-mediated component in the broad depolarizing potential, we plotted the response
after the application of atropine (green trace, C1) onto the original broad depolarizing potential (black
trace, C1). The muscarinic component was quantified as the membrane depolarization of the black trace,
by averaging 500 ms of membrane depolarization from the time point 50 msec after the green trace

reached baseline value. (depolarizing potential amplitude in aCSF: 1.0 £ 0.0; depolarizing potential

amplitude is significantly reduced after the addition of atropine: 0.12 = 0.09; n = 4, p = 0.002).
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C3, Group data summarizing the effect of the application of nAChR blocker cocktail on the remaining
monophasic depolarizing potential (green trace) in C1. The nicotinic component was the membrane
potential (average of 20 ms around the peak of the green trace in C1 (depolarizing potential amplitude in

aCSF: 1.0 £ 0.0; depolarizing potential amplitude is significantly reduced after the addition of atropine: -

0.05+0.04; n = 4, p = 0.0001).

3.3.3 Muscarinic AChRs mediate persistent firing in corticocollicular neurons

Our results show that release of ACh onto AC L5B pyramidal neurons resulted in distinct responses in
corticocollicular and corticocallosal neurons. The most prominent difference is seen in a subset of
corticocollicular neurons, which exhibit a fast nicotinic depolarizing potential and a prolonged muscarinic
depolarizing potential upon the release of ACh. Such a prolonged depolarizing potential has the potential
to cause neurons to fire persistently in response to transient suprathreshold stimulus. Because, cholinergic
activation leads to persistent firing in cortical neurons, which is associated with mnemonic and learning
tasks (Haj-Dahmane and Andrade, 1996, 1998; Wang, 2001; Egorov et al., 2002; Egorov et al., 2006;
Fransen et al., 2006; Gulledge et al., 2009; Dembrow et al., 2010; Hedrick and Waters, 2015), we
hypothesized that corticocollicular neurons displaying prolonged mAChR-mediated depolarizing
potentials will display persistent firing in response to endogenous ACh release or exogenous ACh
application.

Consistent with our hypothesis, puffing or endogenous release of ACh onto corticocallosal
neurons with monophasic depolarizing potentials or biphasic (depolarizing /hyperpolarizing potentials)
responses (Figure 3-6 Al, B1, C1), when held near their action potential (AP) threshold, elicited transient
firing but failed to elicit any persistent firing (Figure 3-6 A2, B2, C2). Plots of the firing frequency as a
function of time indicated that corticocallosal neurons fired APs only during the stimulus or immediately
after stimulus termination (Figure 3-6 A3, B3, C3). Note that even 60 pulses stimulation did not induce

persistent firing in corticocallosal neurons (Figure 3-6 C4, C5, C6). Similar results were obtained from
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exogenous puffing or endogenous release of ACh onto corticocollicular neurons exhibiting monophasic
depolarizing potentials (Figure 3-6, D1-D3, E1-E3). However the subset of corticocollicular neurons
which exhibit 2 peak depolarizing potentials or broad depolarizing potentials (Figure 3-7 Al, B1), showed
persistent firing in response to either exogenous or endogenous ACh (Figure 3-7 A2, B2). Plots of the
firing frequency as a function of time indicated that corticocollicular neurons which exhibit broad
depolarizing potentials fired APs for > 10 seconds after stimulus termination (Figure 3-7 A3, B3).
Persistent firing was abolished upon application of atropine, suggesting that mAChRs are crucial for the
persistent firing of corticocollicular neurons (Figure 3-7 A4, A5, B4, B5). Finally, the intrinsic properties,
such as AP threshold and AP width, did not change from the onset of firing and during the spike train
(Figure 3-7 C, D), suggesting that mAChRs promote persistent firing without affecting the intrinsic AP
properties. This finding suggests that ACh is capable of converting AC neurons projecting to the IC into a
“persistent” mode, whereas intracortically projection neurons do not enter this mode. The persistent firing
maybe essential for the ACh-dependent, learning-induced plasticity mediated by corticocollicular neurons

(Bajo et al., 2010; Leach et al., 2013).
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Figure 3-6: ACh release generates transient spiking in corticocallosal and corticocollicular neurons
lacking prolonged mAChR-mediated depolarizing potentials.

Legends for Figure 3-6
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Al, An example of a corticocallosal neuron, which responds with a monophasic depolarizing potential to

a puff of 100 uM ACh (50 ms, 20 psi), denoted by the black arrow.

A2, The same neuron as in Al, when held close to its action potential threshold, fires transiently in
response to a puff of ACh. This transient spiking was observed in 7/7 corticocallosal neurons with

monophasic depolarizing potentials.

A3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

APsasin A2 (n=7).

B1, An example of a corticocallosal neuron, which responds with a biphasic potential to a puff of 100

uM ACh (50 ms, 20 psi, 50 um away from the soma).

B2, The same neuron as in B1, when held close to its action potential threshold, fires transiently in
response to a puff of ACh. This transient spiking was observed in 5/5 corticocallosal neurons with

biphasic responses.

B3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

APs asin B2 (n=5).

C1, An example of a corticocallosal neuron, which responds with a monophasic depolarizing potential to

release of endogenous ACh by optogenetic stimulation with 10 pulses of blue light (A = 470 nm, pulse

width =5 ms @ 50 Hz).
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C2, The same neuron as in C1, when held close to its action potential threshold, fires transiently in
response to the same optogenetic stimulation used in C1. This transient spiking was observed in 4/4

corticocallosal neurons with monophasic depolarizing potentials.

C3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

APs as in C2 (n = 4).

C4, The corticocallosal neuron as in C1, responds with a broader monophasic depolarizing potential to
release of endogenous ACh by optogenetic stimulation with 60 pulses of blue light (A = 470 nm, pulse

width =5 ms @ 50 Hz).

C5, The same neuron as in C4, when held close to its action potential threshold, fires transiently in

response to the same optogenetic stimulation used in C4.

C6, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

APs as in C5 (n =5).

D1, An example of a corticocollicular neuron, which responds with a monophasic depolarizing potential

to a puff of 100 uM ACh (50 ms, 20 psi, 50 um away from the soma).

D2, The same neuron as in D1, when held close to its action potential threshold, fires transiently in
response to a puff of ACh. This transient spiking was observed in 5/5 corticocollicular neurons with

monophasic depolarizing potentials.

D3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for
APs as in D2 (n =5).
73



E1, An example of a corticocollicular neuron, which responds with a monophasic depolarizing potential
to the release of endogenous ACh by optogenetic stimulation with 60 pulses of blue light (A = 470 nm,

pulse width = 5ms @ 50 Hz).

E2, The same neuron as in E1, when held close to its action potential threshold, fires transiently in

response to the same optogenetic stimulation used in E1. This transient spiking was observed in 3/3

corticocollicular neuron with a monophasic depolarizing potentials.

E3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

APs asin E2 (n=3).
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Figure 3-7: ACh release generates persistent firing in corticocollicular neurons that show prolonged

MAChR-mediated depolarizing potentials, and this persistent firing is abolished by atropine.

Legends for Figure 3-7
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Al, An example of a corticocollicular neuron, which responds with a 2 peak depolarizing potential to a

puff of ACh.

A2, The same neuron as in Al, when held close to its action potential threshold, fires persistently in
response to a puff of ACh. This persistent firing was observed in 5/5 corticocollicular neurons with 2 peak

depolarizing potentials.

A3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset (t = 0) for

trains of APs as generated in A2 (n =5).

A4, After the application of 1 uM atropine, the same neuron as in Al and A2, fails to fire persistently in
response to a puff of ACh. This effect of atropine was seen in 3/3 persistently firing corticocollicular

neurons with 2 peak depolarizing potentials.

A5, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset, before and
after the application of atropine. Atropine causes a significant reduction in the firing of the neuron
indicated by the black asterix. (Average firing frequency for the last five seconds (t = 10-14) in control:
1.52 + 0.34; Average firing frequency for the last five seconds (t = 10-14) in atropine: 0.00 £ 0.00, n = 3,

p < 0.05).

B1, An example of a corticocollicular neuron, which responds with a broad depolarizing potential to the

release of endogenous ACh by optogenetic stimulation with 60 pulses of blue light (A = 470 nm, pulse

width = 5ms @ 50 Hz).
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B2, The same neuron as in B1, when held close to its action potential threshold, fires persistently in
response to the same optogenetic stimulation used in B1. This persistent firing was observed in 4/4

corticocollicular neurons with broad depolarizing potentials.

B3, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset for trains of

APs as generated in B2 (n = 4).

B4, After the application of 1 uM atropine, the same neuron as in B1 and B2, fails to fire persistently in
response to the same optogenetic stimulation used in B1 and B2. This effect of atropine was seen in 3/3

persistently firing corticocollicular neurons with broad depolarizing potentials.

B5, Average firing frequency quantified for 15 seconds starting at the time of stimulus onset, before and
after the application of atropine. Atropine causes a significant reduction in the firing of the neuron
indicated by the black asterix. (Average firing frequency for the last five seconds in control: 2.36 + 0.54;

Average firing frequency for the last five seconds in atropine: 0.00 + 0.00, n = 3, p < 0.05).

C-D, AP threshold and AP width were quantified as a function of time for the persistent firing generated
in response to optogenetic stimulation as in B2. The inset shows the first AP from the spike train in B2

along with its AP threshold and AP width.

C, Group average showing the AP threshold plotted as a function of time. The AP threshold did not
change significantly during persistent firing (average AP threshold during stimulus (t = 0-2): -40.63 +
1.55, average AP threshold during the last five seconds of the train (t = 10-14): -39.62 +1.36,n=4,p =

0.16).
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D, Group average showing the AP width plotted as a function of time. The AP width did not change
significantly during persistent firing (average AP width during stimulus (t = 0-2): 1.70 + 0.12, average AP

width during the last five seconds (t = 10-14): 1.77 £ 0.16, n =4, p=0.22).

3.4 DISCUSSION

To assess the effects of ACh on the excitability of L5B projection neurons, we used in vivo retrogradely
fluorescent labeling to selectively label corticocollicular and L5B corticocallosal neurons, single-cell
electrophysiology, exogenous application of ACh as well as selective stimulation of cholinergic fibers.
Whereas exogenous and endogenous ACh generated fast NAChR-mediated depolarizing potentials in
corticocollicular and corticocallosal neurons, ACh release generated mAChR-mediated hyperpolarizing
potentials in corticocallosal neurons but long-lasting mAChR-mediated depolarizing potentials in
corticocollicular neurons. The long-lasting mAChR depolarizing potentials were crucial for the persistent

firing observed selectively in corticocollicular neurons, which may be involved in auditory learning.

3.4.1 Acetylcholine-mediated persistent firing in corticocollicular neurons: roles and mechanisms

ACh-mediated neuronal modulation causes persistent firing in several neocortical areas as well as in the
substantia nigra pars compacta and subthalamic nucleus (Andrade, 1991; Haj-Dahmane and Andrade,
1996; Egorov et al., 2002; Yamashita and Isa, 2003a, b; Egorov et al., 2006; Fransen et al., 2006;
Gulledge et al., 2009; Dembrow et al., 2010; Hedrick and Waters, 2015). In these brain areas, persistent
firing of selective neuronal populations is a proposed cellular mechanism underlying learning and
mnemonic functions, such as working memory (Wang, 2001; Hasselmo and Stern, 2006; Barak and
Tsodyks, 2014). Our results show that cholinergic activation generates persistent firing in a subset of

corticocollicular neurons, which display prolonged mAChR-mediated depolarizing potentials. Because
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these neurons are crucial for cholinergic-mediated auditory learning of sound localization (Bajo et al.,
2010; Leach et al., 2013), we propose that persistent firing in corticocollicular neurons is a critical
mechanism for auditory learning. Moreover, we predict that mAChR blockers will block this form of
auditory learning.

ACh-mediated persistent firing in other brain areas relies either on mMAChR-mediated
enhancement of postsynaptic calcium and enhancement of afterdepolarizing potentials (ADP) generated
by a calcium-activated nonselective cation current, or activation of nAChRs and elevations in
postsynaptic calcium (Haj-Dahmane and Andrade, 1999; Egorov et al., 2002; Yamashita and Isa, 20033,
b; Egorov et al., 2006; Zhang and Seguela, 2010; Rahman and Berger, 2011; Hedrick and Waters, 2015).
Our results show that the persistent firing activity of corticocollicular neurons in response to ACh release
is mediated by mAChRs. Whereas our studies did not evaluate the role of postsynaptic calcium, because
MAChR activation does not affect the spiking properties of corticocollicular neurons and because the time
course of persistent firing matches the time course of the mAChR-mediated prolonged depolarization, we
propose that it is this depolarization that generates persistent firing lasting for about 10-20 sec after
stimulus termination. Therefore, our studies support an additional mechanism for generating persistent

firing in cortical neurons.

3.4.2 Cell-specific cholinergic neuromodulation of AC L5B corticocallosal and corticocollicular

neurons

AC L5B corticocallosal and corticocollicular neurons fall in the broader category of IT and PT neurons
respectively. PT tract neurons project to subcortical targets whereas IT neurons project to the contralateral
cortex. Studies in different cortical areas showed that PT and IT type neurons differ not only in their
projection targets, but also display differences in their anatomical (Gao and Zheng, 2004; Dembrow et al.,
2010; Sun et al., 2013), intrinsic (Dembrow et al., 2010; Sheets et al., 2011; Slater et al., 2013; Suter et
al., 2013; Joshi et al., 2015) and synaptic/circuit properties (Morishima and Kawaguchi, 2006; Anderson
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et al.,, 2010; Dembrow et al., 2010; Kiritani et al., 2012; Lee et al., 2014; Joshi et al., 2015). These
multiple projection-specific cellular and synaptic mechanisms collectively promote dichotomous activity
in L5 neurons, leading to sustained (tonic) responses in corticocollicular neurons, and transient (phasic)
responses in corticocallosal neurons. This hypothesis is further validated by the dichotomous response PT
and IT neurons to sound in vivo (Sun et al., 2013). Our results, which are consistent with differential
effects of neuromodulatory systems on PT and IT neurons (Dembrow et al., 2010; Avesar and Gulledge,
2012; Gee et al., 2012; Sun et al., 2013), further contribute to the dichotomous phasic/tonic activity in L5
projection neurons, because ACh promotes persistent firing in PT, but not in IT neurons.

The distinct responses of PT and IT neurons to cholinergic modulation suggest that they subserve
distinct functions. This is consistent with recent findings showing that during motor planning and
movement behavior activity with a contralateral population bias arises specifically in PT, but not in IT,
neurons (Li et al., 2015). The ability of PT neurons to undergo persistent firing beyond their stimulus
input makes them good candidates to contribute to persistent activity that occurs during the delay period
that occurs during movement planning. Indeed, recent findings show that population activity in PT

neurons appears and persists for hundreds of milliseconds prior to movement onset (Li et al., 2015).

3.4.3 nAChR- and mAChR-mediated responses in Layer 5 cortical pyramidal neurons

Several studies have used exogenous ACh and one study (Hedrick and Waters, 2015) has used
endogenous ACh (Hedrick and Waters, 2015) to study cholinergic neuromodulation in L5 cortical
neurons. Exogenous and endogenous ACh causes mAChR-mediated hyperpolarizing and depolarizing
responses as well as facilitation and inhibition in L5 principal neurons of different cortices (Metherate et
al., 1992; Gulledge and Stuart, 2005; Gulledge et al., 2007). Overall, these responses are consistent with
mMAChRs mediating slow depolarizing potentials observed in corticocollicular neurons and
hyperpolarizing potentials in corticocallosal neurons in L5B AC. However, the biphasic response seen in
AC L5 corticocallosal neurons is unique to the AC. In AC L5 corticocallosal neurons, biphasic responses
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consisted of a depolarization followed by a hyperpolarization, which were mediated by nAChRs and
mMAChRs respectively, whereas in the somatosensory cortex biphasic responses consisted of a
hyperpolarization followed by a depolarization, which were both mediated by mAChRs (Gulledge and
Stuart, 2005).

Exogenous application or endogenous release of ACh also generates nAChR-mediated responses
in L5 pyramidal neurons somatosensory, prefrontal and motor cortices (Zolles et al., 2009; Poorthuis et
al., 2013; Hedrick and Waters, 2015). Nicotinic AChR-mediated depolarizing responses in L5 prefrontal
cortex are mediated by a-7 subunit containing nAChRs (Poorthuis et al., 2013), whereas depolarizing
responses in L5 somatosensory cortex are mediated by a-7 subunit containing and a-4 subunit containing
nNAChRs (Zolles et al., 2009). In L5B of the AC, exogenous and endogenous ACh generates nAChR-
mediated depolarizing potentials in both corticocallosal and corticococollicular neurons, which are
mediated by o-4 containing nAChRs, presumably o432 nAChRs. Our results are similar to results
obtained from motor cortex, which showed that the a-4 subunit containing nAChR-mediated depolarizing
potentials in L5 pyramidal neurons (Hedrick and Waters, 2015).

The hypothesized combined effect of mAChs and nAChRs on AC receptive fields is to reduce
receptive field width and to enhance responsiveness within the sharpened receptive field (reviewed by
Metherate, 2011). Several in vivo studies have shown that stimulation of NB enhances, via mAChRs,
afferent responses in AC evoked by thalamic (Metherate et al., 1992; Metherate and Ashe, 1993) or
acoustic stimulation (Edeline et al., 1994; Chen and Yan, 2007). This result is consistent with the
mAChR-mediated prolonged depolarizing potentials that we observed in corticocollicular neurons.
Moreover, sharpening of receptive fields by mAChRs is consistent with the biphasic and inhibitory
potentials we observed in L5B corticocallosal neurons. Moreover, although previous studies have shown
that nAChRs enhance responsiveness via presynaptic regulation of thalamocortical transmission
(reviewed by Metherate, 2004), our results add an additional mechanism that can enhance responsiveness.
Namely, the nAChR-mediated depolarizing potentials observed in corticocollicular L5B corticocallosal
also contribute ACh-mediated enhanced responsiveness of AC receptive fields. Together, our results are
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consistent with in vivo studies revealing sharpening and enhancement of AC receptive fields by ACh.
Importantly, our results provide cellular and synaptic mechanisms via which ACh mediates its effects on

AC receptive fields.

3.5 MATERIALS AND METHODS

3.5.1 Animals

ICR mice (Harlan) (P22-P30 for microsphere injection and P24-P40 for recordings) of either sex were
used for experiments that examined the effect of exogenous application of ACh on corticocollicular and
corticocallosal ~ neurons.  ChAT-ChR2-EYFP  mice  (C57BL/6J  strain)  (B6.Cg-Tg(Chat-
COP4*H134R/EYFP)6Gfng/J; The Jackson Laboratory) (P30-P40) for microsphere injection and P32-
P45 for recordings) of either sex were used for experiments that examined the effect of endogenous
release of ACh on corticocollicular and corticocallosal neurons. All experimental procedures were

approved by the Institutional Animal Care and Use Committee of the University of Pittsburgh.

3.5.2 Stereotaxic injections

Mice were anaesthetized with isofluorane (induction: 3% in Oz, 0.6 L/min; maintenance: 50% of
induction dose) and positioned in a stereotaxic frame (Kopf). Projection neurons in the (AC were
retrogradely labeled by injecting different colored fluorescent latex microspheres (Lumafluor Inc.) in the
contralateral AC (in a small craniotomy drilled 4 mm posterior to bregma and 4 mm lateral, injection
depth 1mm) and the ipsilateral inferior colliculus (1 mm posterior to lambda and 1 mm lateral, injection
depth 0.75 mm). A volume of ~ 0.1 puL microspheres was pressure injected (25 psi, 10-15 msec duration)

from capillary pipettes (Drummond Scientific Company) with a Picospritzer (Parker-Hannifin). The
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injection volume was distributed between several sites along the injection depth so as to label the entire
extent of the injection site. After injection, the pipette was held in the brain for 1.5 minutes before slowly
withdrawing. The animals were allowed to recover for at least 48 hours to allow time for retrograde

transport of the tracers.

3.5.3 Slice electrophysiology

Coronal slices (300 um) containing AC were prepared from mice that had previously been injected with
retrograde beads. The cutting solution (pH 7.35) contained the following (in mM): 2.5 KCI, 1.25
NaH.PO., 25 NaHCOs, 0.5 CaCl,, 7 MgCl,, 7 dextrose, 205 sucrose, 1.3 ascorbic acid, and 3 sodium
pyruvate (bubbled with 95% O./5% CO_). The slices were transferred and incubated at 36°C in a holding
chamber for 30 minutes. The holding chamber contained aCSF (pH 7.35) containing the following (in
mM): 125 NaCl, 2.5 KCI, 1.25 NaH2,PO4, 25 NaHCOs3, 2 CaCl,, 1 MgCls, 10 glucose, 1.3 ascorbic acid,
and 3 sodium pyruvate (bubbled with 95% O2/5% CO>). Post incubation, the slices were stored at room
temperature until the time of recording. Whole-cell recordings in voltage- and current-clamp modes were
performed on slices bathed in carbogenated aCSF, which was identical to the incubating solution. The
flow rate of the aCSF was ~1.5 ml/min, and its temperature was maintained at 32-34°C using an in-line
heating system (Warner). Layer 5B of the AC was identified as the layer containing corticocollicular
neurons. Recordings were targeted to either green fluorescent corticocollicular neurons or red fluorescent
corticocallosal neurons within L5B. Borosilicate pipettes (World Precision Instruments) were pulled into
patch electrodes with 3-6 MQ resistance (Sutter Instruments) and filled with a potassium based
intracellular solution which was composed of the following (in mM): 128 K-gluconate, 10 HEPES, 4
MgCl., 4 Na,ATP, 0.3 Tris-GTP, 10 Tris Phosphocreatine, 1 EGTA, and 3 sodium ascorbate. Data were
sampled at 10 kHz and Bessel filtered at 4 kHz using an acquisition control software package Ephus
(www.ephus.org) (Suter et al., 2010). Pipette capacitance was compensated and series resistance for
recordings was lower than 25 MQ.
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3.5.4 Puffing experiments

After establishing whole-cell recording from corticocallosal or corticocollicular neurons, 100 uM ACh
was puffed for 20 ms at 20 p.s.i from a patch pipette placed 50 um from the neuronal soma. Responses
were identified if they were >2.5 standard deviations of the baseline noise level (noise levels were

measured during a 100 msec timing period prior to the ACh puff) and were further analyzed.

3.5.5 Optogenetic experiments

After establishing whole-cell recordings from corticocallosal or corticocollicular neurons, we used wide-
field illumination (using the 40 X objective) with a blue LED (470 nm at maximum intensity, Thor Labs)
to activate ChR2 containing cholinergic axons. Stimulations ranged from a single 5 ms pulse of blue light
to 10 or 60 pulses (5 ms each, 50 Hz). Responses were identified if they were > 2.5 standard deviations of
the baseline noise level (noise levels were measured during a 100 msec timing period prior to
illumination) and were further analyzed.

To test for persistent firing, neurons were depolarized by a current injection to a membrane
potential that was close to firing threshold. Firing frequency of the APs elicited in response to ACh
release was plotted as a function of time starting from the stimulus onset (time, t=0) to 15 seconds after
the termination of the stimulus. Persistent firing was defined as the ability of the neuron to fire APs at
least 5 seconds after the stimulus (t=0) termination. AP threshold was measured as the membrane
potential corresponding to the time where the first derivative of the AP crossed 10 mV/second. AP width

was calculated as the full-width at the half-maximum amplitude of the AP.
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3.5.6 Pharmacology

The identity of the receptors mediating the responses elicited by the release of ACh on corticocollicular or
L 5B corticocallosal neurons was established by applying blockers of nAChRs and mAChRs (nAChR
mediated responses identified by the application of a cocktail of nAChR blockers Mecamylamine
hydrochloride (5 pM) + Hexamethonium bromide (50 uM), or Dihydro-B-erythroidine (DHBE) (500 nM);
MAChR mediated responses identified by the application of atropine (1 uM). The blockers were applied
for at least 10 minutes before assessing their effects on the evoked responses. All drugs were obtained

from Sigma.

3.5.7 Anatomy

For anatomical visualization of EYFP-containing cholinergic axons amongst corticocollicular and L 5B
corticocallosal neurons, ChAT-ChR2-EYFP mice were injected with red colored fluorescent latex
microspheres in the IC to label corticocollicular neurons, and choleratoxin (far red emission) in the
contralateral auditory cortex to label corticocallosal neurons. Mice were allowed to recover for 7 days and
were subsequently perfused with 4% paraformaldehyde (PFA). The brains were extracted and post-fixed
in 4 % PFA for 4 hours, after which they were cryoprotected overnight in 25% sucrose solution
maintained at 4 degrees Celsius. The brains were washed with phosphate buffer solution the next day and
were sectioned on a microtome into 50 um thick sections, containing the auditory cortex. The sections
were mounted and imaged on an Olympus microscope with a 20 X objective using standard filters for
green, red and far-red emissions. The acquired images were subsequently processed in ImageJ for

brightness and contrast.
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3.5.8 Statistical analysis

Paired t-test was used for all statistical analysis to compare the effect of drug applications on responses
generated by exogenous or endogenous release of ACh. In cases where 2 drugs were added sequentially, a
one-way ANOVA was used to examine the effect of each drug application on the response. Significance

was reported if p-value was found to be < 0.05.
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4.0 GENERAL DISCUSSION

The novelty of this dissertation arises from the use of retrograde labeling of AC L5B projection neurons,
which allowed us to identify distinct cell-specific intrinsic and synaptic properties of AC L5B
corticocallosal and corticocollicular neurons. This is significant as such a comparison has not been
conducted in AC L5 previously. These cell-specific intrinsic and synaptic properties reveal potential
mechanisms that contribute to the dichotomous in vivo responses of AC L5 projection neurons to sound
and enable them to participate in relearning sound localization after monaural occlusion. Furthermore our
findings corroborate and extend the knowledge, about differences in the general properties of IT and PT

neurons in the neocortex.

4.1 PART 1

4.1.1 Corticocollicular labeling marks the location of AC

We used in vivo flavoprotein autofluorescence imaging and retrograde labeling of corticocollicular
neurons to locate the auditory cortex in mice. Our results show that AC can be located by playing low
frequency sounds (5 kHz) which reveal two distinct non-overlapping regions in the AC, where the caudal
region represents the primary auditory cortex (Al) and the rostral region represents the anterior auditory
fields (AAF). This result is consistent with many previous studies that have employed mirror-reversed

tonotopic gradients to identify A1 and AAF in at least twenty species (Kaas, 2011) including mice

87



(Stiebler et al., 1997; Takahashi et al., 2006; Guo et al., 2012; Honma et al., 2013). Furthermore, we
consistently found retrogradely labeled corticocollicular neurons in brain slices (prepared from mice that
had undergone AC localization) in the regions of the mouse cortex that corresponded to the in vivo
location of Al. Therefore in general, retrograde corticocollicular labeling can be used as an effective way

to locate and target AC in future in vitro studies.

4.1.2 Morphology of AC L5B corticocallosal and corticocollicular neurons

In general, the morphology of AC L5B corticocallosal and corticocollicular neurons is similar to the
morphology of L5 pyramidal neurons in the neocortex and is characterized by anatomical features found
in pyramidal neurons such as a basal perisomatic arbor and a prominent apical dendrite which extends
into layer 1. Previous studies have reported that the morphology of putative L5 IT and PT neurons in the
AC (the RS and IB neurons respectively) is extremely varied, in that PT neurons are characterized by a
tufted dendrite which extends into layer 1, while L5 IT neurons lack this apical tuft and their dendrites do
not reach layer 1 and are limited to L2/3 (Hefti and Smith, 2000; Sun et al., 2013). Our morphological
reconstructions show that AC L5B corticocallosal and corticocollicular neurons are mostly similar in their
morphology. Unlike putative L5 IT, neurons, the apical dendrites of both L5B corticocallosal and
corticocollicular neurons extend into layer 1 of the AC. The only difference we find is that
corticocollicular neurons display more horizontally spreading apical tufts compared to corticocallosal
neurons, similar to AC L5 putative IT and PT neurons (Hefti and Smith, 2000). Our results are also
congruous to labeled L5 IT and PT neurons in medial prefrontal cortex, where more horizontal spread is

reported in the apical dendrites of PT neurons in comparison to IT neurons (Dembrow et al., 2010).
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4.1.3 Intrinsic properties of AC L5B corticocallosal and corticocollicular neurons and their

contribution to in vivo responses of AC L5 IT and PT neurons to sound

Differences in intrinsic properties of IT and PT neurons are well established in various cortical areas, but
how these differences translate into behavioral functions remains poorly understood (Shepherd, 2013).
Our findings discussed below provide a plausible explanation of how differences in the intrinsic
properties of AC L5B projection neurons can help shape their distinct in vivo behavior to sound.

The output of a neuron in response to a stimulus is not just a function of its synaptic connectivity,
but also a function of how it responds to the stimulus itself (Shepherd, 2013). Therefore, we examined
intrinsic properties of AC L5B corticocallosal and corticocollicular neurons in the presence of blockers of
synaptic excitation and inhibition. Our results show that AC L5B corticocallosal and corticocollicular
neurons have distinct intrinsic properties which affect their spiking behavior.

An analysis of sub-threshold intrinsic properties reveal that corticocollicular neurons display
significantly more hyperpolarization-activated current- 1, compared to corticocallosal neurons.
Consistent with the role of I, in the setting a depolarizing the resting membrane potential (Robinson and
Siegelbaum, 2003), corticocollicular neurons also have a more depolarized resting membrane potential
compared to corticocallosal neurons. However, consistent with the presence of I, corticocollicular
neurons also have decreased input resistance compared to corticocallosal neurons. Increased Iy in
corticocollicular neurons compared to corticocallosal neurons is consistent with studies showing greater Iy,
in PT than IT neurons in the medial prefrontal cortex (Dembrow et al., 2010; Gee et al., 2012) and motor
cortex (Sheets et al., 2011; Suter et al., 2013). Greater I, in corticocollicular neurons in comparison to
corticocallosal neurons also supports the finding that HCN 1 mRNA levels are higher in PT neurons in
comparison to IT neurons (Sheets et al., 2011). It can be argued that the greater presence of Iy in
corticocollicular neurons also makes them more susceptible to neuromodulatory influences that affect In.

For example, noradrenaline reduces In in PT neurons in the medial prefrontal cortex and increases the
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temporal summation of EPSPs which drives the generation of APs, whereas IT neurons are unaffected by
noradrenaline (Dembrow et al., 2010).

Our results also reveal that corticocollicular and corticocallosal neurons display distinct
suprathreshold spike related properties. Corticocollicular neurons in comparison to corticocallosal
neurons display a more hyperpolarized AP threshold, narrower APs and a lack of spike frequency
adaptation. Furthermore, we found that at the onset of the current injection, corticocollicular neurons tend
to fire two APs in quick succession (a doublet) while corticocallosal neurons do not. This doublet is
similar to the in vitro burst like behavior reported in putative AC IB neurons (Hefti and Smith, 2000).
Additionally, the ability of corticocollicular neurons to fire doublets in the presence of blockers of
synaptic transmission suggest that intrinsic properties of corticocollicular neurons contribute to the
observed in vivo burst like behavior of putative AC PT neurons in response to sound (Sun et al., 2013).
While we have not explored the underlying mechanisms generating this bursting behavior, increase in
intracellular Ca?* is important for bursting behavior (Slater et al., 2013). Furthermore, the difference in
suprathreshold intrinsic properties such as the narrow AP width and lack of spike frequency adaptation
suggests that corticocollicular neurons are capable of generating sustained APs in comparison to
corticocallosal neurons. This result can also explain the in vivo responses of putative AC L5 PT neurons
to a wide range of sound frequencies in comparison to IT neurons (Sun et al., 2013). In general, spike
frequency adaptation in corticocallosal neurons and the lack of it in corticocollicular neurons is consistent
with the existing literature, which shows similar differences in firing patterns in L 5 IT and PT neurons in
the, frontal cortex (Morishima and Kawaguchi, 2006; Dembrow et al., 2010) and the motor cortex (Suter

etal., 2013).
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4.1.4 Synaptic connections from L2/3 to AC L5B corticocallosal and corticocollicular neurons

and their contribution to in vivo responses of AC L5 IT and PT neurons to sound

We examined unitary connections from L2/3->L5B corticocallosal and corticocollicular neurons as L2/3
is a major source of excitatory input to L5 pyramidal neurons (Adesnik and Scanziani, 2010; Anderson et
al., 2010; Wallace and Jufang, 2011; Shepherd, 2013; Harris and Shepherd, 2015). Our results - the
similar connection probability and similar strength of the unitary EPSC amplitude between L2/3->L5B
corticocallosal neurons and corticocollicular neurons suggests that in L5B AC, the strength of inputs from
L2/3 to 5B to projection neurons is similar. A previous study in the motor cortex found that in upper L5B,
L2/3 inputs to PT neurons are stronger than inputs to IT neurons (Anderson et al., 2010). Since we did not
evaluate the probability of connections or the strength of unitary EPSC amplitude based on the location of
the postsynaptic neurons in L5B, we cannot be certain if the similarity in the strength of input from
L2/3->L5B corticocallosal and corticocollicular neurons is a specific feature of the AC. However, given
that AC is a sensory neocortical area involved in different tasks than the motor cortex, it may very well be
that the similarity in the strength of L2/3 input to different classes of AC L5B projection neurons is a
feature unique to the sensory neocortex or to the AC itself.

The major finding of our study is that unitary excitatory inputs from L2/->L 5B corticocallosal
neurons and corticocollicular neurons display distinct short term plasticity; specifically, L2/3-> L5B
corticocallosal inputs are depressing, while L2/->L5B corticocollicular inputs are non-depressing. A
study in the AC using extracellular presynaptic stimulation showed that excitatory inputs from L2/3 to
layer 5B are subdivided into depressing and facilitating inputs (Covic and Sherman, 2011). Our results
support this finding, but more importantly, reveal that differences in short term plasticity of L2/3 inputs to
L5B neurons in AC is dependent on the projectional identity of the L5B neuron. Our result also supports
the recent finding in the medial prefrontal cortex, where inputs from the contralateral cortex (i.e. callosal
inputs) to L5 IT neurons are depressing whereas inputs to L5 PT neurons are non-depressing.
Additionally, our data is consistent with the short-term plasticity observed in the inputs to L5 IT and PT
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neurons of the neocortex. In L5 of the motor cortex, IT->IT excitatory connections are depressing, while
P->PT excitatory connections are non-depressing (Kiritani et al., 2012). In L5 of the frontal cortex,
IT2>IT connections are depressing while IT->PT connections are non-depressing (Morishima and
Kawaguchi, 2006). These studies and ours results show that excitatory connections to PT neurons are
non-depressing while excitatory connections to IT neurons are depressing.

While most excitatory connections between pyramidal neurons are depressing (Atzori et al.,
2001; Thomson and Lamy, 2007; Oswald and Reyes, 2008; Covic and Sherman, 2011; Kiritani et al.,
2012), our data supports the limited but emerging evidence which suggests that pathway specific short-
term plasticity may be a general feature of the neocortex enabling different projection neurons to subserve
divergent roles in cortical processing. Indeed, the non-depressing L2/3 inputs to corticocollicular neurons,
indicating a sustained relay of information, could contribute to the sustained in vivo activity of putative
AC PT neurons to sound (Sun et al., 2013). This view is further supported by our result which shows that
depressing inputs to AC L5B corticocallosal neurons result in reduced AP generation during sustained
cortical activity in frequencies where temporal summation of EPSPs is reduced. On the other hand, the
lack of depressing inputs to corticocollicular neurons promotes consistent AP generation during sustained

cortical activity regardless of the frequency of the presynaptic activity.

4.1.5 Putative mechanisms shaping the activity of AC L5B corticocallosal and corticocollicular

neurons and their potential to contribute to in vivo responses of AC L5 IT and PT neurons to sound

It is known that IT and PT neurons make recurrent connections (within-class) in the neocortex
(Morishima and Kawaguchi, 2006; Wang et al., 2006; Kiritani et al., 2012). But another defining feature -
hierarchical connectivity-exists in the neocortex. In simple terms, this implies that presynaptic IT neurons
excite postsynaptic IT and PT neurons but presynaptic PT neurons only excite postsynaptic PT neurons
but not IT neurons (Shepherd, 2013). This has been shown in the frontal cortex where IT neurons show
unidirectional connectivity toward PT neurons (Morishima and Kawaguchi, 2006). Similar results have
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been found in the L5B motor cortex - unidirectional connectivity is seen between IT and PT neurons
(Anderson et al., 2010; Kiritani et al., 2012). Unidirectional connectivity is also seen from L2/3-IT and
L5A-IT to PT neurons in the motor cortex (Anderson et al., 2010; Kiritani et al., 2012). In is unknown
whether the concept of hierarchical connectivity applies to AC L5B corticocallosal and corticocollicular
neurons. However, such a potential mechanism can further contribute to the distinct in vivo sound
responses of AC L5B IT and PT neurons as L5B corticocallosal neurons would provide another source of
excitation to corticocollicular neurons which would be amplified due to recurrent activity amongst
corticocollicular neurons and the lack of upstream propagation to corticocallosal neurons.

While we did not explore the role of interneurons in shaping the in vitro spiking output of AC
L5B corticocallosal and corticocollicular neurons, evidence from the motor cortex suggests that fast-
spiking (FS) interneurons (INs) in L5B can affect the activity of L5B IT and PT neurons differently. In
the motor cortex, both L5B IT and PT neurons excite FS INs powerfully, which subsequently inhibit L5B
IT and PT neurons; however, the net inhibition on L5B IT neurons is significantly stronger compared to
PT neurons (Apicella et al., 2012). Such cell-specific inhibition could be another potential mechanism
which could lead to lead to differential spiking output in AC L5B corticocallosal and corticocollicular
neurons and could also explain the distinct in vivo responses of AC L5B IT and PT neurons to sound.
However, whether this is applies to AC L5B IT and PT neurons is uncertain, as FS-mediated inhibition
onto L5B PT neurons is stronger compared to the inhibition onto L5B IT neurons in other areas of the
cortex such as the medial prefrontal cortex (Lee et al., 2014).

An additional mechanism contributing to the in vivo response of L5 IT and PT neurons could
arise from thalamocortical inputs to the AC. Sun et al., (2013) suggested that AC PT neurons are driven
by direct thalamic input, whereas intracortical input drives AC L5 IT neurons. This is supported by the
observation that cortical silencing abolishes sound evoked responses in L5 IT neurons, whereas PT
neurons still retain their broad TRFs (Sun et al., 2013). A recent study shows that thalamic inputs in the
motor cortex preferentially excite L6 IT neurons in comparison to L5B IT neurons, the latter being mostly
excited by within-class neurons (Yamawaki and Shepherd, 2015). This is consistent with the report that in
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vivo responses of L5 IT neurons to sound are not driven directly by thalamic input (Sun et al., 2013).
Given the findings of Sun et al., and a recent study which showed that optogenetic activation of
thalamocortical axons generates robust responses in AC L5 pyramidal neurons (unlabeled neurons) (Ji et
al., 2015), optogenetic approaches combined with retrograde labeling of AC L5B corticocallosal and
corticocollicular can provide a clearer understanding of the thalamocortical mechanisms shaping the in

vivo responses of AC L5B IT and PT neurons to sound.

4.2 PART 2

4.2.1 Effect of acetylcholine release on AC L5B corticocallosal and corticocollicular neurons in

comparison to other neocortical areas

We find that endogenous and exogenous ACh release onto AC L5B projection neurons generates nAChR-
mediated depolarizing potentials in both corticocallosal and corticocollicular neurons. However, ACh
release generates mAChR-mediated hyperpolarizing potentials in corticocallosal neurons but mAChR-
mediated long lasting depolarizing potentials in corticocollicular neurons. Overall, our results are
consistent with the presence of NnAChRs and mAChRs on cortical pyramidal neurons (Vanderzee et al.,
1992).

The nAChR-mediated responses observed by us are consistent with the nAChR-mediated
responses seen in L5 pyramidal neurons of the somatosensory and prefrontal cortices upon exogenous
application of ACh (Zolles et al., 2009; Poorthuis et al., 2013). Additionally, these responses are also
consistent with the nAChR-mediated responses seen in L5 pyramidal neurons of the motor cortex upon
endogenous release of ACh (Hedrick and Waters, 2015). However, the pharmacology of these responses
shows that different nAChR-subunits participate in nAChR-mediated responses in different cortical areas.

nAChR-mediated responses seen in L5 pyramidal neurons of the prefrontal cortex are mediated by o-7
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subunit containing nAChRs (Poorthuis et al., 2013), while both a-7 subunit containing nAChRs and a-4
subunit containing NAChRs (the response has 2 nicotinic components) mediate the responses in L5
pyramidal neurons of the somatosensory cortex (Zolles et al., 2008). On the other hand, the nAChR-
mediated responses observed by us are mediated by a-4 containing nAChRs (likely a4p2 nAChRs) and
are consistent with the a-4 containing NAChR-mediated responses seen in L5 pyramidal neurons of the
motor cortex (Hedrick and Waters, 2015). The pharmacology of different nAChR-mediated responses
suggests that the expression of specific NAChRs may be region specific. In fact, in the prefrontal cortex
itself, NAChR mediated responses in L5 pyramidal neurons are mediated by o -7 subunit containing
nAChRs (Poorthuis et al., 2013), while nAChR mediated responses in L6 pyramidal neurons are mediated
by a-4 subunit containing nAChRs (Kassam et al., 2008; Poorthuis et al., 2013).

The mAChR-mediated depolarizing and hyperpolarizing responses seen by us are consistent with
exogenous ACh generating mAChR-mediated depolarizing and hyperpolarizing responses in L5
pyramidal neurons of the prefrontal, somatosensory and visual cortices (Gulledge and Stuart, 2005;
Gulledge et al., 2007); additionally, they are also consistent with endogenous ACh generating mAChR-
mediated depolarizing and hyperpolarizing responses in L5 pyramidal neurons of the motor cortex
(Hedrick and Waters, 2015). In L5 pyramidal neurons of the somatosensory cortex, exogenous ACh
release also generates mAChR-mediated biphasic responses, which consist of a hyperpolarization
followed by a depolarization (Gulledge and Stuart, 2005). Endogenous ACh also generates mAChR-
mediated biphasic responses in parvalbumin-expressing interneurons in the hippocampus (Bell et al.,
2015). However, the biphasic response observed by us upon exogenous and endogenous release of ACh
onto AC L5B corticocallosal neurons is distinct in two ways- firstly, it consists of a depolarization
followed by a hyperpolarization, and secondly, nAChRs mediate the depolarization and mAChRs mediate
the hyperpolarization.

It should be added that in the motor cortex, ACh release generates mAChR-mediated
hyperpolarizing and depolarizing responses in both L5 IT and PT neurons, indicating that mAChRs do
not have projection specific effects in the L5 pyramidal neurons of the motor cortex (Hedrick and Waters,
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2015). However, our results show that in the AC, ACh release leads to mAChR-mediated
hyperpolarizing responses only in L5B corticocallosal (IT) neurons, and mAChR-mediated depolarizing
responses only in corticocollicular (PT) neurons. This indicates that unlike motor cortex, mAChRs in the
AC have projection specific effects on L5B pyramidal neurons. This phenomenon could be specific to the
AC, or may represent differences in sensory neocortex v/s. other neocortical areas.

We did not establish the pharmacology of the mAChRs mediating the hyperpolarizing potentials
in corticocallosal neurons and the slow depolarizing potentials in corticocallosal neurons. However, based
on previous studies in various cortices, M1 mAChR most likely mediates the hyperpolarizing potentials
and depolarizing potentials observed in corticocallosal and corticocollicular neurons respectively. The
activation of M1-type mAChR has been linked to the depolarizing responses in cortical pyramidal
neurons by the inhibition of sub-threshold voltage-gated K* channels or M-channels (McCormick and
Prince, 1986; Brown, 2010). As M1-type mAChRs are coupled to Gq proteins, their activation results in
the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP,), which leads to the closure of M-channels,
and generates a depolarizing current (Brown, 2010). M1 channel activation can also cause depolarizing
responses by the opening of Ca?* activated nonspecific cation channels (Haj-Dahmane and Andrade,
1998; Zhang and Seguela, 2010; Rahman and Berger, 2011). On the other hand, M1 activation can cause
hyperpolarizing responses in cortical pyramidal neurons by opening of small conductance potassium (SK)
channels (Gulledge and Stuart, 2005). M1 activation causes the cleavage of PIP; into inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds to receptors on endoplasmic reticulum releasing
intracellular Ca?* which bind and opens SK channels, causing an efflux of K* leading to hyperpolarizing
responses. Indeed, in L5 pyramidal neurons of the somatosensory cortex, depolarizing responses are
blocked by the application of pirenzepine, a M1 mAChR-selective antagonist (Gulledge and Stuart,
2005), which also blocks the hyperpolarizing responses in the L5 pyramidal neurons of the somatosensory
and prefrontal cortices (Gulledge and Stuart, 2005; Gulledge et al., 2007). It should be mentioned that
activation of the M2-type mAChR can also cause inhibitory effects via the activation of Gi proteins and
subsequent opening of inward rectifying potassium channels (Brown, 2010). However, studies suggest
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that inhibitory responses in cortical neurons are mediated by M1-type mAChRs (Gulledge and Stuart,
2005; Gulledge et al., 2007).

We also observed some differences in the effects of exogenous and endogenous release of ACh
onto corticocallosal neurons. Both exogenous and endogenous release of ACh generates NAChR-mediated
monophasic depolarizing potentials and NnAChR/mAChR mediated biphasic responses in corticocallosal
neurons. However, exogenous release of ACh never generates monophasic hyperpolarizing potentials in
corticocallosal neurons, whereas endogenous release of ACh results in mAChR-mediated monophasic
hyperpolarizing potentials in some corticocallosal neurons. This difference indicates that while exogenous
application of ACh can activate both nAChRs and mAChRs, endogenous release sometimes fails to
activate nAChRs. This phenomenon cannot be explained by the lack of nAChRs on the subset of
corticocallosal neurons that display monophasic hyperpolarizing potentials in response to endogenous
ACh release; the presence of nAChRs on all corticocallosal neurons is supported by nAChR mediated
depolarizing potentials or biphasic responses (which also contain nAChR-mediated depolarizing
potentials) in response to exogenous release of ACh. The possibility, that mAChR-mediated inhibition is
concealing the nAChR-mediated depolarizing potentials is also not plausible as the blockade of the
hyperpolarizing potentials by atropine fails to reveal any nAChR-mediated response. Additionally, the
possibility that there is insufficient release of endogenous ACh to activate nAChRs seems implausible as
the ACh release is sufficient to activate nAChRs on other corticocallosal neurons. Therefore, the
monophasic mMAChR-mediated hyperpolarizing potentials in corticocallosal neurons could arise from the
fact that nAChRs are located away from the release sites of ACh, and ACh fails to reach these receptors
before its reuptake. This possibility can be tested by inhibiting ACh esterase, the enzyme responsible for
breaking down ACh, and observing whether blocking ACh reuptake generates a nAChR-mediated
response.

We also observed that during exogenous application of ACh onto corticocallosal neurons, the
depolarizing potential in the biphasic response was unchanged after the blockade of the hyperpolarizing
potential. However, during endogenous release of ACh onto corticocallosal neurons, the depolarizing
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potential in the biphasic response was significantly increased after the blockade of the hyperpolarizing
potential. This phenomenon could be due to the difference in the onset of the hyperpolarizing potential
(latency of the hyperpolarizing potential) by exogenous v/s. endogenous release of ACh. Faster onset of
the hyperpolarizing potential in response to endogenous release of ACh probably limits the size of the
preceding nAChR-mediated depolarizing potential, whereas the slower onset of the hyperpolarizing
potential in response to exogenous ACh does not affect the size of the preceding depolarizing potential.
This proposition can be tested by blocking the nAChR-mediated depolarizing potential in the biphasic
responses generated by both exogenous and endogenous release of ACh, and measuring the latency of the
remaining hyperpolarizing potential. We predict that the latency of the hyperpolarizing potential
generated by exogenous ACh will be significantly greater than the latency of the hyperpolarizing potential

generated by endogenous ACh.

4.2.2 Upregulation of cholinergic tone due to extra copies of VAChT gene and VACHT protein in

ChAT-ChR2-EYFP mice

The occurrence of monophasic hyperpolarizing potentials mediated by mAChRs in corticocallosal
neurons upon endogenous release of ACh could also arise due to another issue. We used the ChAT-ChR2-
EYFP mice (C57BL/6J strain) (B6.Cg-Tg(Chat-COP4*H134R/EYFP)6Gfng/J; The Jackson Laboratory)
for our experiments to test the effect of endogenous release of ACh. ChAT-ChR2-EYFP mice are bacterial
artificial chromosome (BAC) transgenic mice which express ChR2 protein under the control of the
choline acetyltransferase (ChAT) promoter (Zhao et al., 2011). The ChAT gene produces choline
acetyltransferase, the enzyme which is responsible for the synthesis ACh. The ChAT locus also contains
the vesicular acetylcholine transporter (VAChT) gene, as the entire open reading frame for the VAChT lies
within the intron between the first and second exons of ChAT gene (Bejanin et al., 1994; Erickson et al.,
1994; Roghani et al., 1994; Cervini et al., 1995).Therefore, the BAC, which is designed to create ChAT-
ChR2-EYFP mice, also contains the VAChT gene (Kolisnyk et al., 2013). In vitro studies have shown that
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an increased expression of VAChT protein results in an increased cholinergic tone, evidenced by
increased amplitude of miniature EPSCs and greater number of synaptic vesicles containing ACh (Song et
al., 1997). A recent study revealed that ChAT-ChR2-EYFP mice contain 56 copies of VAChT gene, which
causes a 550% increase in VAChT protein in the hippocampus and a 350% increase in VAChT protein in
the brainstem (Kolisnyk et al., 2013). Given that over expression of VAChT protein results in an
increased cholinergic tone (Song et al., 1997), the increased expression of VAChT protein in ChAT-
ChR2-EYFP mice will also lead to an increase in the cholinergic tone of these mice. This is supported by
the finding that ChAT-ChR2-EYFP mice show enhanced motor endurance, which is consistent with an
increase in the cholinergic tone in these mice (Kolisnyk et al., 2013). Such an increased cholinergic tone
can desensitize nAChRs, and potentially lead to the monophasic hyperpolarizing potentials seen in
corticocallosal neurons that are mediated by mAChRs, upon endogenous release of ACh. This can also
explain why we always see NAChR-mediated responses in corticocallosal neurons in brain slices prepared

from ICR mice (non-transgenic), upon puffing exogenous ACh.

4.2.3 Significance of persistent firing in corticocollicular neurons and its relation to relearning

sound localization

Persistent firing is the ability of a single neuron to generate sustained APSs in response to transient supra-
threshold stimulus and can last from hundreds of milliseconds to seconds (Wang, 2001; Major and Tank,
2004). Single cell persistent activity is thought to be the cellular substrate for learning and memory in the
brain (Wang, 2001; Hasselmo and Stern, 2006). In vitro studies show that pyramidal neurons in cortical
areas responsible for learning and memory show persistent firing in response to cholinergic activation,
which is mediated by mAChRs (Haj-Dahmane and Andrade, 1998; Egorov et al., 2002). Studies also
show that entorhinal cortex neurons display persistent firing during behavioral tasks that assess working
memory (Suzuki et al., 1997; Young et al., 1997); importantly, drugs that block mAChRs can cause
deficits in working memory (Penetar and McDonough, 1983; Schon et al., 2005). The studies cited above
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propose that learning and memory are influenced by the cholinergic activation of persistent firing in
cortical neurons.

It is known that Nucleus Basalis, the main source of cortical ACh, is crucial for learning-induced
plasticity involved in the relearning of sound localization after plugging one ear (Leach et al., 2013). This
cholinergic-mediated experience-dependent plasticity involved in relearning sound localization after
reversible occlusion of one ear is also lost after eliminating corticocollicular neurons (Bajo et al., 2010).
This indicates that cholinergic modulation of the activity of corticocollicular neurons may be crucial for
auditory learning. Our results show that ACh release generates persistent firing in a subset of
corticocollicular neurons which display prolonged mAChR-mediated depolarizing potentials. Thus,
mAChR-mediated persistent firing in corticocollicular neurons may be a critical mechanism for relearning

sound localization after monaural occlusion by earplugging one ear.

4.2.4 General mechanisms mediating persistent firing in cortical neurons

Studies in other cortical areas have also shown that cholinergic activation can lead to persistent firing in
L5 pyramidal neurons (Haj-Dahmane and Andrade, 1998; Egorov et al., 2002; Gulledge et al., 2009;
Dembrow et al., 2010; Hedrick and Waters, 2015). In L5 neurons of M1, persistent firing is mediated by
nNAChRs as the persistent firing is blocked by nAChR antagonists (Hedrick and Waters, 2015).
Additionally, it is mediated by an increase in postsynaptic intracellular Ca?*, which is dependent on the
activation of nAChRs as persistent firing is not abolished in the presence of blockers of mMAChRs. In
other regions of the cortex such as the prefrontal, entorhinal and anterior cingulate cortices, persistent
firing in pyramidal neurons is mediated by mAChRs as it is blocked by the application of mAChR
antagonist atropine (Haj-Dahmane and Andrade, 1998; Egorov et al., 2002; Zhang and Seguela, 2010);
mAChR-mediated increase in postsynaptic Ca?" activates a non-specific cation current which results in
afterdepolarizing potentials causing persistent activity (Haj-Dahmane and Andrade, 1998; Egorov et al.,
2002; Zhang and Seguela, 2010). The role of Ca?" activated non-specific cation current in the generation
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of mMAChR-mediated persistent firing is validated by studies which show that flufenamic acid- a blocker
of Ca?" activated non-specific cation currents, abolishes mMAChR-mediated persistent firing (Egorov et al.,
2002; Zhang and Seguela, 2010). The persistent firing observed by us is also mediated by mAChRs. We
did not evaluate whether the persistent firing is generated by Ca?* activated non-specific cation currents.
However, the persistent firing seen by us may not driven by Ca?" activated non-specific cation currents as
we did not observe any changes in the spiking properties (AP width and AP threshold) of corticocollicular
neurons during persistent firing, while Ca?* activated non-specific cation current driven persistent spiking
has been shown to be accompanied by changes in spike properties such as AP threshold and AP width

(Dembrow et al., 2010).

4.2.5 Cell autonomous/circuit mediated persistent firing

Cell-autonomous persistent firing is the ability of a neuron to fire APs persistently in the absence of local
circuit involvement, i.e. the neuron fires persistently in the presence of blockers of synaptic transmission.
Cell autonomous persistent firing after cholinergic activation has been reported in L5 pyramidal neurons
of the entorhinal cortex, medial prefrontal cortex as well as in the motor cortex (Egorov et al., 2002;
Dembrow et al., 2010; Hedrick and Waters, 2015). In our experiments, the persistent firing in
corticocollicular neurons upon ACh release is abolished by the application of atropine, which shows that
it is mediated by the activation of mAChRs. However, we did not test whether persistent firing in
corticocollicular neurons seen after ACh release, can be sustained in the presence of blockers of synaptic
transmission. Therefore we cannot state for certain if the observed persistent firing in corticocollicular

neurons is cell-autonomous or whether it requires the involvement of the local circuits.
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4.2.6 Significance of the effects of acetylcholine release on AC L5B corticocallosal and
corticocollicular neurons in relation to cholinergic modulation of evoked responses in the auditory

cortex

Studies show AC responses generated by thalamic stimulation are enhanced when paired with the
stimulation of Nucleus Basalis (Metherate and Ashe, 1993). Responses in AC generated by sensory
stimuli are also enhanced after pairing the auditory stimuli with Nucleus Basalis stimulation (Edeline et
al., 1994; Chen and Yan, 2007; Froemke et al., 2007). Similar enhancements in tone evoked responses in
the AC are also seen when the tone is paired with continuous administration of external ACh (McKenna
et al., 1988). These studies suggest that afferent responses in AC are heavily modulated by ACh.
Furthermore, these enhancements in AC responses are mediated by mAChRs as they are abolished in the
presence of MAChR blocker atropine (McKenna et al., 1988; Edeline et al., 1994; Chen and Yan, 2007;
Froemke et al., 2007). The enhancement in AC responses can be explained by the observation that pairing
Nucleus Basalis stimulation with a tone increases the EPSPs and decreases the IPSPs generated in
response to the tone (Froemke et al., 2007). The long lasting mAChR-mediated depolarizing potentials
observed in corticocollicular neurons after exogenous and endogenous release of ACh release are
consistent with the enhancement of tone-evoked EPSPs after pairing of the tone with Nucleus Basalis
stimulation (Froemke et al., 2007). Behavioral studies show that pairing a stimulus with Nucleus Basalis
stimulation induces stimulus-specific associative memory in the AC (Weinberger et al., 2006). The
underlying mechanism for such a phenomenon could also involve ACh-mediated increase in excitability
of cortical neurons, as seen in corticocollicular neurons via mAChRs.

It has also been proposed that the combined effect of ACh on nAChRs and mAChRs shapes the
receptive field breadth of the AC, which involves suppression of AC responses to non-characteristic
frequencies (characteristic frequency-CF) but facilitation of AC responses to CFs and near CFs
(Metherate, 2011). nAChRs are thought to play a role in the facilitation of responses to CF and near CFs
as they can increase the excitability of thalamocortical projections to the AC by increasing the excitability
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of thalamocortical axons (Kawai et al., 2007). Indeed, blockade of nAChRs in thalamic white matter
(containing thalamocortical axons) decreases the amplitude of CF tone-evoked responses in the AC
(Kawai et al., 2007). Our results show that ACh release also increases excitability by generation of
nAChR-mediated depolarizing potentials in both corticocallosal and corticocollicular neurons. This
finding may represent another mechanism by which nAChRs contribute to the facilitation of responses in
the AC to CFs and near CFs. On the other hand, the biphasic and inhibitory responses (where the
hyperpolarizing potential is mediated by mAChRs) seen in corticocallosal neurons could represent a

mechanism to limit the receptive field breadth by suppression of responses to non CFs.

4.2.7 General role of neuromodulators in shaping the activity of IT and PT neurons

PT and IT neurons in various cortical areas differ in their anatomy (Dembrow et al., 2010; Sun et al.,
2013), intrinsic properties (Chen et al., 1996; Dembrow et al., 2010; Suter et al., 2013; Joshi et al., 2015)
and synaptic (Morishima and Kawaguchi, 2006; Kiritani et al., 2012; Lee et al., 2014; Joshi et al., 2015).
Additionally, studies show that neuromodulatory systems also affect the excitability of PT and IT neurons
differentially. In the prefrontal cortex, noradrenergic modulation selectively alters the subthreshold
activity of PT neurons by closure of HCN channels leading to a reduction in I, whereas no such
modulation is seen in IT neurons (Wang et al., 2007; Dembrow et al., 2010); this reduction in I, increases
temporal summation of EPSPs and drives the generation of APs in PT neurons (Dembrow et al., 2010).
Dopaminergic modulation augments spiking in PT neurons and not IT neurons in the prefrontal cortex
due to the selective expression of D2 receptors on PT neurons; the opening of D2 receptors causes
increased afterdepolarization which enhances firing in PT neurons (Gee et al., 2012). Serotonin also
affects PTs and ITs differentially in the medial prefrontal cortex as it causes excitation in IT but inhibition
in PT neurons (Avesar and Gulledge, 2012). PT and IT neurons in prefrontal cortex are also distinctly
modulated by ACh. Similar to noradrenergic modulation, cholinergic activation alters subthreshold
activity in PT neurons by reducing In while leaving IT neurons unaffected; additionally, cholinergic
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activation in the prefrontal cortex causes persistent firing in PT neurons and but not in IT neurons
(Dembrow et al., 2010).

Our results also show that cholinergic modulation affects AC L5B corticocallosal (IT-type) and
corticocollicular (PT-type) neurons distinctly. The presence of mAChR-mediated slow depolarizing
potentials promotes persistent firing in corticocollicular neurons, while corticocallosal neurons which lack
mAChR-mediated slow depolarizing potentials do not fire persistently. Thus, our results add to the
growing list of literature which shows that numerous factors, including neuromodulators, control the

excitability of PT and IT neurons in the neocortex.

4.3 PART 3

4.3.1 Potential relevance of our findings toward understanding auditory disorders

Tinnitus, the perception of a phantom sound in the absence of acoustic stimuli, is a debilitating auditory
disorder that affects nearly 5-15% of the population (Li et al., 2013). The primary auditory cortex (Al)
has been implicated in the perception of tinnitus (Eggermont and Roberts, 2004; Llinas et al., 2005;
Leaver et al., 2011). Existing literature reports spontaneous hyperactivity of Al in human patients of
tinnitus (Arnold et al., 1996; Schecklmann et al., 2013). Increases in spontaneous firing rates of Al
neurons in animal models of noise induced hearing loss (which often accompanies tinnitus) have also
been reported (Eggermont and Komiya, 2000; Eggermont, 2006). Hence, literature thus far has revealed
important neural correlates of tinnitus in Al but the mechanistic understanding of tinnitus remains poor
due to the lack of understanding of the direct neuronal and synaptic/circuit changes in Al that cause
tinnitus.

Emerging evidence suggests that disorders of the central nervous system may involve the

improper functioning of IT and PT neurons. For example autism spectrum disorders are accompanied
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with the thinning of the corpus callosum, which implicates the involvement of IT neurons (Just et al.,
2007; Keary et al., 2009; Frazier et al., 2012), and reduced firing rates in PT neurons (but not IT neurons)
in the motor cortex of primates after induction of parkinsonism implicates PT neurons in Parkinson’s
disease (Pasquereau and Turner, 2011). In general, schizophrenia, autism spectrum disorders, and
obsessive compulsive disorders appear to involve IT neurons and PT neurons seem to be involved in
conditions such as amyotrophic lateral sclerosis and Parkinson’s disease (reviewed in Shepherd, 2013). A
recent study showed that people suffering from Asperger’s syndrome, a part of autism spectrum disorder
(though to involve IT neuron dysfunction) also experience hyperacusis (abnormal sensitivity to sound)
and tinnitus (Danesh et al., 2015). This suggests that dysfunction of projection-specific neurons could
contribute to auditory disorders such as tinnitus.

Our results show that projection specific intrinsic and synaptic properties (including
neuromodulation) shape the activity of AC neurons. Changes in intrinsic and synaptic properties that
favor excitability of pyramidal neurons have been seen in models of hearing loss (which often
accompanies tinnitus) (Kotak et al., 2005; Takesian et al., 2013). Given the dysfunction of IT and PT
neurons in various neurological and neurodegenerative disorders, a cell-specific inquiry into the intrinsic
and synaptic/circuit properties of AC IT and PT neurons in animal models of tinnitus may provide a novel

understanding of the changes in neuronal and/or synaptic/circuit properties that underlie tinnitus.

4.3.2 Conclusions

Pyramidal neurons in the cortex are broadly classified into distinct categories based on their axonal
projection targets. In the AC, L5B corticocallosal neurons fall into the category of intratelencephalic (IT)
neurons, which project to the contralateral cortex, and corticocollicular neurons fall into the category of
pyramidal tract (PT) neurons, which project to the subcortical structures (Shepherd, 2013). Studies in
other cortical areas show that IT and PT neurons differ not only in their axonal projection targets, but also

display differences in their intrinsic (Dembrow et al., 2010; Sheets et al., 2011; Slater et al., 2013; Suter et
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al., 2013) and synaptic properties (Morishima and Kawaguchi, 2006; Anderson et al., 2010; Dembrow et
al., 2010; Kiritani et al., 2012; Lee et al., 2014). These differences in intrinsic and synaptic properties
favor tonic or sustained activity in PT neurons and transient or phasic activity in IT neurons. Furthermore,
studies also show that neuromodulatory systems affect the excitability of IT and PT neurons differently,
and promote sustained activity in PT neurons and transient activity in IT neurons (Dembrow et al., 2010).
Our results show that in comparison to corticocallosal neurons, corticocollicular neurons have narrower
APs and a lack of spike frequency adaptation, which favor sustained activity in corticocollicular neurons
and transient activity in corticocallosal neurons. Distinct short term plasticity of L2/3 inputs also favors
sustained activity in corticocollicular neurons and transient activity in corticocallosal neurons, as L2/3
inputs to corticocollicular neurons are non-depressing whereas L2/3 inputs to corticocallosal neurons are
depressing. Additionally, cholinergic neuromodulation preferentially enhances the excitability of
corticocollicular neurons in comparison to corticocallosal neurons. In corticocallosal neurons, ACh
generates NAChR-mediated monophasic depolarizing potentials, biphasic responses where nAChRs
mediate the depolarizing potential and mAChRs mediate the hyperpolarizing potential, and mAChR-
mediated monophasic hyperpolarizing potentials; these ACh-mediated responses lead to transient firing in
corticocallosal neurons. On the other hand, ACh generates nAChR-mediated depolarizing potentials, as
well as mAChR-mediated long lasting depolarizing potentials in corticocollicular neurons; the long-
lasting mAChR-mediated depolarizing potentials generate persistent firing in corticocollicular neurons.
Collectively, our results also show that in L5B of the AC, intrinsic and synaptic properties as well as
neuromodulatory mechanisms support transient or phasic activity in IT neurons and sustained or tonic

activity in PT neurons.
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