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First-order growth mixture model (1-GMM) has received increased attention over the past 

decade. It models class-specific latent growth trajectory and individual classification using 

composite scores computed over items of the same scale across multiple time points. By default, 

using composite scores assumes identical item-to-construct relationship over time (longitudinal 

measurement invariance; L-MI), which is not necessarily the case in research practice.  

Violation of L-MI assumption has been studied using latent growth curve modeling 

where subjects are assumed to be sampled from one latent class. Deviation from L-MI 

assumption impacted the growth characteristics, thus producing invalid conclusions on the 

pattern of change. This study extends the prior research on the impact of L-MI violation to the 

situation where multiple latent classes exist. A Monte Carlo study was performed to examine 

how systematically varied measurement non-invariance impacted class-specific growth factor 

parameter recovery and classification accuracy. Five factors were systematically manipulated in 

studying the impact of L-MI assumption violation: directional change in non-invariant item 

intercepts, patterns of item loadings and item intercepts, percent of items containing a set of non-

LONGITUDINAL MEASUREMENT NON-INVARIANCE ON GROWTH 

PARAMETERS RECOVERY AND CLASSIFICATION ACCURACY IN GROWTH 

MIXTURE MODELING

Caiyan Zhang, PhD 

University of Pittsburgh, 2015



v 

invariant item parameters, presence of time-adjacent within-item correlated measurement error, 

and latent class distances. Additionally, three GMMs were compared to assess their robustness 

against longitudinal measurement non-invariance, including 1-GMM, second order GMM with 

constrained measurement invariance, and second order GMM with freely estimated item factor 

loadings and item intercepts.  

Accuracy, precision, Type I error, and power were examined on the slope factor 

parameter estimates. Additionally, mixture proportion and individual classification were 

assessed. Results show that the second order GMM with freely estimated item loadings and item 

intercepts was robust under various violation of L-MI and able to produce accurate estimates of 

slope factor parameters. Performance of the second order GMM with constrained measurement 

invariance on slope factor parameters recovery depended on the specific generating measurement 

non-invariance configuration. 1-GMM, on the other hand, was not able to recover the slope 

factor parameters with deviation from the L-MI assumption. With extremely unbalanced mixture 

proportions, class membership assignment was found not satisfactory regardless of simulated 

measurement non-invariance condition and analysis model.  
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1.0  INTRODUCTION 

1.1 INTRODUCTION OF GROWTH MIXTURE MODEL (GMM) 

In various research areas, researchers have investigated heterogeneous qualitatively different 

developmental pathways. One area for example is in adolescent substance use, which has been 

reported in 2011 as the top public health problem in the United States according to The National 

Center on Addiction and Substance Abuse. The research area has received increased attention as 

misuse of substance in youth results in expensive consequences such as impaired health (e.g., 

substance use disorders, mental illness), increased risks of dangerous behaviors (e.g., unintended 

pregnancy, violence), and impaired academic and career performance (e.g., educational 

attainment, academic performance).  

In studies of adolescent substance use development, the target is to describe how 

differently adolescent alcohol and drug use unfolds over time, and examine antecedents and 

consequences associated with different developmental courses. Growth mixture modeling 

(GMM; Muthén & Shedden, 1999) is well suited to these purposes. In general, GMM uses latent 

classes and latent growth factors to investigate different developmental growth trajectories (i.e., 

patterns of change) on an outcome variable among unobserved heterogeneous populations. It 

purposefully 1) identifies latent classes with distinct growth trajectories, 2) assesses class-

specific growth trajectory shape by estimating the growth factor means,  3) estimates within-
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class variability around the growth factor means, 4) assigns latent class membership to 

individuals based on estimated latent class probabilities (i.e., posterior probabilities), 5) estimates 

mixture proportion (i.e., percentage of the individuals in one specific latent class), and 6) 

uncovers predictive covariates and distal outcome of latent class and/or latent growth factors 

(i.e., antecedence and consequence).  

Researchers have taken advantage of GMM in modeling heterogeneous developmental 

substance use trajectories among adolescence. For example, Warner, White, and Johnson (2007) 

studied different developmental growth trajectories of problem drinking from adolescence into 

young adulthood. Participants’ responses to the Revised Rutgers Alcohol Problem Index (RAPI; 

White & Labouvie, 1989) were collected repeatedly to form the outcome with higher score 

indicating higher levels of alcohol related problems. Three latent classes, namely, adolescence-

limit problem (ALP) class, no-or-low problem (NLP) class, and escalating problem (EP) class, 

were identified with each associated with a distinct nonlinear growth pattern. More specifically, 

the NLP class remained relatively low and stable over the course of the time while the ALP class 

was featured with an initial sharp increase followed by a gradual decline and then a sharp 

decline, reaching level as low as the NLP class by young adulthood. The EP class, on the other 

hand, though started at a lower level than the ALP class but consistently caught up over time, 

and eventually escalated and reached the highest level among the three classes at the end of the 

study period. The majority of the participants (66.2%) were found to pertain to the NLP class 

while the rest belonged to a problem drinker class (21.6% for ALP class, 12.1% for EP class).  

As can be seen, meaningful clinical interpretations are closely related to the implication 

of extracting multiple developmental trajectories and classification of individuals into different 

latent classes. GMM enables examination in the change pattern for each adolescent 

../../../../caz18.PITT/Downloads/Chap1%2011-11.docx#_ENREF_26
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subpopulation where at-risk youth with an increasing pattern of substance use can be detected. 

Moreover, the identified different patterns of onset and escalation in adolescent substance use is 

important as it might promote effective development and implementation of intervention and 

prevention programs (Colder, Campbell, Ruel, Richardson, & Flay, 2002; Hix-Small, Duncan, 

Duncan, & Okut, 2004). 

Besides adolescence substance use, GMM has been widely applied to capturing specific 

developmental course, predictors and consequences in other research areas such as mental health 

(Broadbent et al., 2007; Dekker et al., 2007; Schaeffer, Petras, Ialongo, Poduska, & Kellam, 

2003), and cognitive and language development (Landa, Gross, Stuart, & Bauman, 2012; 

Rescorla, Mirak, & Singh, 2000). As a modeling tool, GMM is fairly flexible and can be 

embedded in other modeling framework such as stage-sequential models (e.g.,Kim, 2012), 

mediation analysis (e.g., Lane, Bluestone, & Burke, 2013), and multilevel modeling (e.g.,Chen, 

Kwok, Willson, & Luo, 2010). Given the flexibility, GMM has received increased attention over 

the past decade. According to the PsycINFO database (retrieved on 10/25/2014), the number of 

publications with GMM application was eight-folded in 2013 as compared to 2004 (i.e., 57 in 

2013 as opposed to 7 in 2004).  

With the increased popularity in empirical research, methodological researchers have 

made an endeavor to expand and extend GMM’s utilities such as 1) GMM with nonlinear growth 

patterns (e.g., Estabrook, Ram, & Grimm, 2010; Kohli, Harring, & Hancock, 2013; Zopluoglu, 

Harring, & Kohli, 2014), 2) robustness of GMM to non-ignorable missing data (e.g., Lu, 2011; 

Zhang, Lu, & Lubke, 2011), and 3) alternative Bayesian estimators of GMM (e.g., Depaoli, 

2010, 2012, 2013; Depaoli & Boyajian, 2014). However, there is a lack of research in studying 

../../../../caz18.PITT/Downloads/Chap1%2011-11.docx#_ENREF_5
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the effects of measurement model assumption violation in GMM, particularly, consequences 

from deviation of longitudinal measurement invariance (L-MI) assumption. 

1.2  LONGITUDINAL MEASUREMENT INVARIANCE (L-MI) IN GMM 

L-MI is a prerequisite for valid interpretation of pattern of change over time in GMM. L-MI is 

evolved from measurement invariance (MI), which is rooted in classical test theory (CTT; Lord 

& Novick, 1968). MI assumption is used to evaluate the observed (i.e., manifest) variables’ 

measurement equivalence across groups. It has been researched extensively with the focus on 

measurement equivalence between independent groups in a cross-sectional framework, such as 

gender (e.g., Byrne, 1988; Byrne, Baron, & Balev, 1996) and race (e.g., Chan, 1997; Collins & 

Gleaves, 1998). The assumption implies the score on the instrument is independent of any 

variables other than the person’s value on the construct (Eid & Diener, 2006). When MI 

assumption holds, it indicates that respondents from different groups conceptualize a given 

instrument in a similar way. When MI assumption is violated, the observed group difference is 

confounded with the differential function of the instrument between the groups. It would be 

unknown whether the observed group difference is merely a consequence of violation of the 

assumption or a true difference on the construct between the groups. Hence, with violation of MI 

between independent groups, the meaningful interpretation of between-group difference is in 

jeopardy (Bollen, 1989; Drasgow, 1984, 1987).  

The logic generalizes to longitudinal studies where the interest is to examine the change 

in the construct(s). Items of the instrument repeatedly administrated need to have consistent 

meaning over time (i.e., meeting L-MI assumption) to ensure the manifested change on the 
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instrument over time is only due to the true change on the underlying construct rather than the 

differential functioning of the items over time. 

In GMM, latent classes of subjects are formed with different change patterns. By default, 

GMM assumes L-MI by using the score on the same instrument in modeling change patterns 

over time. However, the use of the same instrument does not guarantee the tenability of L-MI 

assumption. At the instrument level, the relation between the construct and the instrument might 

have a temporal change, calling for changed operational definition of the construct (e.g., Caspi & 

Roberts, 2001; Fergusson, Horwood, Caspi, Moffitt, & Silva, 1996; Pajer, 1998). At the item 

level, relationship between items and the construct does not always stay unchanged. For 

example, the same response category of one item might mean different things over time for one 

subject. Regardless at which level, as long as one set of items can be interpreted differently over 

time, the concluded change pattern in the underlying construct would be questionable. Hence, in 

GMM, the crux in making sound conclusion in patterns of change in the construct relies on the 

maintenance of L-MI assumption. 

Impact of L-MI violation has been studied in several longitudinal models to study intra- 

and inter-individual change, such as latent growth models (Leite, 2007; Olivera-Aguilar, 2013; 

Wirth, 2008) and autoregressive quasi-simplex model (Olivera-Aguilar, 2013). Latent growth 

modeling (LGM; Meredith & Tisak, 1990) resembles GMM in using continuous latent growth 

factors to represent the average growth trajectory and the variability around it. However, LGM 

assumes all individuals are from one homogeneous population while GMM assumes individuals 

are sampled from different latent classes. 

The heterogeneous population assumption in GMM implies at least two dissimilarities 

from LGM. First, there are multiple average growth trajectories, rather than one as in LGM, 
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modeled in GMM with each associated with one latent class. Secondly, individuals in GMM can 

be classified based on their estimated posterior probabilities of the latent class membership. An 

example demonstrating these dissimilarities between LGM and GMM is graphed. Growth

trajectory over 4 occasions is plotted for each individual (left panel of Figure 1). The individual 

growth trajectories illustrate within-individual changes over time. Meanwhile, the trajectories, 

collectively, indicate presence of between-individual differences in the changes on the outcome 

as some of the trajectories increase while the others remain stable over time. 

GMM is able to capture the two general growth patterns by using two latent classes. With 

C1 denoting class 1 and C2 for class 2, class-specific average growth trajectory is graphed in the 

right panel. The individuals whose growth trajectories resemble a stable pattern would be 

classified as from C1 and the rest who take an increasing pattern would be classified as from C2. 

Had the population been assumed as homogeneous in LGM, one average growth trajectory (i.e., 

C0) would have been estimated and every individual would have been classified into C0. Hence, 

GMM not only extracts multiple average growth trajectories but also allows accurate 

classification of individuals into their appropriate sampled class. 

Figure 1. A contrived example of the individual growth trajectories, the estimated class-specific average growth 

trajectories in LGM and GMM 
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In LGM, violation of L-MI was found to alter growth characteristics including shape of 

the growth trajectory and growth factor estimates (Leite, 2007; Olivera-Aguilar, 2013; Wirth, 

2008). With higher degree of violation such as more non-invariant items, a LGM model without 

capability of accommodating L-MI deviation produced biased growth factors estimates. With no 

item parameter maintaining L-MI assumption, none of the growth factors’ parameters, including 

their means, variances, and covariance, were accurately or efficiently recovered (Wirth, 2008).  

1.3 GOAL OF THE STUDY 

As one average growth trajectory is subject to the influence of L-MI violation in LGM, we 

expect that deviation from L-MI will impact the growth characteristics recovery in GMM with 

multiple latent classes. Up to date, there has been no research looking into the effects of L-MI 

violation in GMM. Hence, this study aims at bridging the research gap by extending the prior 

studies on the L-MI violation in LGM to GMM. More specifically, the study will first assess the 

impact of L-MI violation in GMM on growth characteristics recovery including growth factor 

estimates and classification accuracy. Secondly, the study will evaluate the robustness of 

alternative GMM models under various deviations from L-MI assumption. While most of the 

applied studies with GMM use the first-order GMM model, it is impossible to assess L-MI 

assumption as composite scores instead of item scores are modeled. In contrast, a second-order 

GMM (SOGMM; Ram & Grimm, 2009) can test L-MI explicitly using item scores and 

simultaneously modeling growth trajectories for multiple latent classes. Consequently, a 

SOGMM was used to generate item scores with different levels of L-MI. Both first- and second-

order models, assuming L-MI on all items, and a second-order model, assuming L-MI on one 
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item, were applied to the simulated data to compare their performance under impact of 

longitudinal measurement non-invariance.   

1.4 RESEARCH QUESTIONS 

Three research questions are addressed in this study: 

1) Are the concluded biased estimates of growth factors in LGM with longitudinal 

measurement non-invariance generalizable to GMM and if yes, what factors 

contribute to the bias?  

2) Does the longitudinal measurement non-invariance impact the classification accuracy 

and if yes, what factors contribute to the classification inaccuracy?  

3) Do the factors affect the growth factors’ estimation for each latent class in the same 

way with the same magnitude? 

1.5 SIGNIFICANCE OF THE STUDY 

One of the primary uses of GMM is to identify growth characteristics such as average growth 

rate for multiple subpopulations. Classes associated with particular growth trend and the 

individuals within these classes are often identified, for example, in adolescent substance use 

developmental studies for intervention and prevention purposes. L-MI is a prerequisite for 

measuring change over time in GMM. Longitudinal measurement non-invariance has been 

shown to affect the performance of LGM, and thus is projected to impact the performance of 
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GMM. There has been no research on examining the impact of violation of L-MI on growth 

factor recovery and classification rate in GMM. This study has significant implications for both 

empirical users of the model and methodological researchers. Measurement non-invariance is 

prevalent in applied research. It is important to understand how the growth factors and the 

classification rates are affected by different configurations of L-MI such as number/percentage of 

non-invariant items and combinations of non-invariant item parameters. This will provide some 

guidance in the degree of confidence in interpreting primary questions that GMM addresses 

under varying configurations of longitudinal measurement non-invariance. Additionally, the 

comparison of the frequently adopted first-order GMM and SOGMMs will inform applied 

researchers to choose the optimal model in presence of longitudinal measurement non-

invariance.  

1.6 ORGANIZATION OF THE PAPER 

To proceed, the second chapter starts with an introduction to first-order GMM including its 

model parametrization, parameter interpretation, assumptions, and estimation, followed by 

SOGMM with comparable sections and a conclusion on SOGMM’s similarities and advantages 

to the first-order GMM. L-MI will then be introduced in the framework of SOGMM. It is 

followed by the description of partial L-MI, identification, identification invariance, and how 

longitudinal measurement non-invariance might affect latent growth factors parameters using 

examples. Studies examining unaccounted L-MI in LGM will be summarized regarding their 

strengths, weakness. Chapter 3 describes the Monte Carlo study including the research design, 

data generation, data analysis, data validation and the evaluation criteria. Chapter 4 presents 



10 

results from the Monte Carlo study. Finally, Chapter 5 summarizes the findings with discussion 

of the results, limitations, implication in applied research and future research.  
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2.0  LITERATURE REVIEW 

This study investigates the comparative performance of SOGMM and 1st-order GMM in 

recovery of growth parameter estimates and classification accuracy with varying degrees and L-

MI configurations. This chapter discusses 1st-order GMM, SOGMM, longitudinal ME/I in 

SOGMM, in details, followed by examples and literature review in modeling latent growth when 

there is measurement non-invariance in LGM.   

2.1 GMM 

2.1.1 First-order GMM, parameters, interpretation, assumptions and estimation 

GMM is used to identify latent classes with heterogeneous growth patterns. Consider the 

standard unconditional linear GMM on an outcome tiy of individual i at time t: 

ti

c

it

c

itiy   )()(

10 , ),0(~  Nti
,       (1) 

where the outcome ( tiy ) is defined as the influence of two continuous latent variables (or latent 

growth factors i0 and i1 ) through a function of time (factor loadings of and t ) and residuals on 

the observed outcome ( ti ). Factor loadings of are fixed at 1 across time and t  are set at 0, 1, 2, 

…, t-1 allowing for interpretation of 0 as the latent intercept factor at the initial time point and 
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1 as the rate of linear change over time (i.e., slope factor). Both latent intercept and linear slope 

are treated as random effects so that growth trajectories at latent class level and individual level 

can be modeled. More specifically, the latent intercept and linear slope factors, respectively, are 

expressed as a composite of growth mean parameters ( 0 and 1 ) and individual deviations 

( i0 and i1 ) away from these means: 

i

cc

i 0
)(

0
)(

0   ,          (2) 

i
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i 1
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1   ,          (3) 

with 










































1

100,
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








N

i

i ,       (4) 

where c in the parentheses indicates the particular parameter is for latent class c. Growth mean 

parameters (i.e., mean intercept and mean linear slope), modeled as fixed effects, jointly define 

the average growth trajectory pooling of individuals within each latent class. The individual 

deviations from the respective means, on the other hand, are treated as random, enabling forming 

of individual growth trajectories so that each individual has his/her own intercept and linear 

slope. 

The equations (1-4) in matrix notation can be written as: 

i

(c)

ii εΛηy  ,          (5) 

with  Ψ,αN~η
(c)(c)

i ,         (6) 

and  Θ0,N~εi
,          (7) 

where 
iy is a 1p vector of repeated measured outcome for individual i  , p is the number of 

measurement, η  is a 1q vector of class-specific latent growth factors and q is the number of 

latent growth factors. The factor loading matrixΛ has a dimension of qp , and ε  is a 
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1p vector of residuals on the outcome. Class-specific growth mean parameters are contained 

in which is a 1q vector. Variance-covariance matrix of the latent growth factorsΨ has a 

dimension of qq and the variance-covariance matrix of residuals on the outcome, , has a 

dimension of pp and is a diagonal matrix (i.e., off-diagonal elements are constrained to be 0).  

Estimation of the above parameters is obtained through finite mixture model framework. 

Given that the observed outcome
iy  is defined as the linear combination of normally distributed 

growth factors and residuals on the outcome, 
iy is then distributed multivariate normally with the 

probability density function as: 

];[)(
1

)(
)Σ(θ),(θμyy

(c)(c)(c)

ii 



C

c

(c)cf  ,       (8) 

with 1
1

)( 


C

c

c ,          (9) 

where )(c is the mixture proportion (or the average probability that an individual is drawn from 

latent class c). )(c is the class-specific multivariate normal probability density function for
iy  

with model-implied mean vector and covariance matrix as:  

(c)(c)(c)
Λα)(θμ  ,          (10) 

ΘΛΨΛ)Σ(θ
'(c)  ,          (11) 

where θ is a vector containing all the model parameters to be estimated. The covariance matrix is 

class invariant (i.e., without superscript c) since the factor loadings (Λ ), covariance matrices of 

the growth factors (Ψ ), and residuals on the outcome (Θ ) are assumed to be the same between 
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the classes. Though a more general model could have been defined1, this paper considers only 

the difference in the class-specific growth mean parameters.   

Maximum likelihood estimator (MLE) through expectation-maximum algorithm (EM; 

Dempster, Laird, & Rubin, 1977) is the most frequently used estimation method to obtain the 

parameters contained in θ (McLachlan & Peel, 2000). Since the latent class membership (c) is 

not directly observable, the main idea is to augment the data with a vector of binary variables 

indicating latent class membership so that the likelihood function can be constructed similarly as 

regular likelihood function with complete data. An estimate of the probability that an individual 

belongs to a class given the observed data (i.e., posterior probability) is used to calculate the 

expectations for class membership in the Expectation-step (i.e., E-step). In the Maximization-

step (i.e., M-step), the posterior probability from the E-step is used to maximize multiple 

expected complete-data log likelihood functions. The E- and M-step then keep alternating 

between each other with the input from the E-step to produce the parameters in the M-step which 

is used for the input for the next E-step, until convergence (the difference is negligible between 

the log likelihood functions evaluated respectively with parameters at an iteration and its 

proceeding iteration). Then MLE ( ̂ ) is found that maximizes the likelihood in which the 

observed data would have been drawn from the multivariate normal distribution with the mean 

vector and the covariance matrix. Certain regularity assumption needs to be met in mixture 

model (e.g., Peters & Walker, 1978; Redner & Walker, 1984), a broad modeling family where 

GMM is rooted in. Interested readers please refer to Muthén and Shedden (1999), Muthén et al., 

(2002), and Muthén and Asparouhov (2008), for more details of MLE in GMM via EM 

algorithm.  
                                                 

1
 Alternative models could have class-specific parameters in any combinations of factor loadings, covariance 

matrices of growth factors, and covariance matrices of residuals on the outcome. 
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Figure 2 illustrates the path diagram of a GMM with 4 times of measurement. The factor 

loadingsΛ are set to be )( t1 , where 1 is a column of ones and )3,2,1,0(t , which define 

the shape of the growth patterns as linear. Assuming the latent classes only differ in their growth 

mean parameters, latent class (c) does not have pathways to model parameters other than the 

growth mean parameters. If two latent classes are modeled using the diagram, for example, two 

distinct class-level growth trajectories will be estimated each with a mean intercept and a mean 

linear slope, respectively (i.e., )1(
1

)1(
0 ˆ,ˆ  for latent class 1; )2(

1
)2(

0 ˆ,ˆ  for latent class 2). Variability 

estimates of individual intercepts and linear slopes around the mean intercept and mean linear 

slope parameters are 
0

ˆ
 and

1
ˆ
 , respectively, for each latent class, with their covariance 

as
10

ˆ
 . The residual variance of the outcome is ̂  at each time point and no correlation is 

parametrized among the residuals.  

This type of GMM is the first-order GMM as the observed outcomes are driven directly 

by the underlying latent growth factors. In the literature, it is often referred to as GMM where the 

outcome is a continuous scale score based on multiple items repeatedly measured over time. A 

sum or a mean score is commonly used to represent the individual’s standing on the outcome 

where the growth trajectories are modeled on.  

By using the composite score based on equally weighted items, 1st-order GMM 

automatically implies that the item-to-scale relationship is the same not only within time but also 

over time (i.e., satisfaction of L-MI assumption). When the presumption is untenable, as will be 

shown later, it will lead to fallacious interpretations on the growth characteristics. L-MI 

assumption calls for an explicit test in order to reach valid conclusions in patterns of change, 

which is made possible in a SOGMM.  
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Figure 2. PATH DIAGRAM FOR LINEAR GMM WITH P = 4, Q = 2, C = 2 

2.1.2 SOGMM, parameters, interpretation and its advantages over first-order GMM 

While first-order GMM implicitly assumes that L-MI is met and the assumption is impossible to 

be tested without item-level score, SOGMM, on the other hand, allows explicit test for L-MI 

assumption and simultaneous modeling of longitudinal growth trajectories for multiple latent 

class. A SOGMM consists of a longitudinal common factor model, a latent growth model, and a 

mixture component.  

The longitudinal common factor model originates from the common factor model 

(Thurstone, 1947) which defines a common factor as an underlying and unobservable variable 
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that explains the co-variability among observed outcomes. In a common factor model, the 

observed outcomes are assumed to be a linear function of the underlying common factors and the 

unique factors (i.e., the part of an observed variable not explained by the common factors) 

(MacCallum, 2009). As a consequence of this definition, a common factor model partitions the 

variance of each observed outcome into common variance (i.e., variance accounted for by the 

common factors) and unique variance (i.e., the variance not accounted for by the common 

factors).  

From SOGMM’s perspective, score on each item/indicator is an observed outcome. At 

each time, the variability in the observed item scores is generated by the same one common 

factor (or the construct such as depression). The common factor underlying the item scores is 

called first-order factor. Its relationship to the item scores is captured by the longitudinal 

common factor model, which serves as the first layer in a SOGMM. Using the relation between 

first-order factor and observed item score, a longitudinal common factor model can be expressed 

as   

jti

c

tijtjtjtix   )( ,         (12) 

where jtix is the observed score on item j at time t  for individual i . jt  is the item intercept for 

item j at time t . ti  is the first-order factor scores for individual i  at time t . jt  is first-order factor 

loadings of item j  to the first-order factor at time t , which can be interpreted as latent variable 

regression coefficients, and jti is the unique factor scores for individual i  on item j at time t .  

A latent growth model serves as the second layer of the SOGMM in order to capture the 

longitudinal patterns of change. The latent growth factors are used as the 2nd-order factors in 

explaining the change in the 1st-order common factor. Their relation can be specified as 
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ti

c

it

c

i

c

ti   )(
11

)(
00

)( , (13) 

where 0 and t1 are 2nd-order factor loadings, respectively, for relating the 2nd-order factor or the

growth factors ( )(
0

c and )(
1

c ) to the 1st-order factors ( )(c

t ). The 2nd-order factor loadings

determine the shape of the growth trajectories. Depending on how the 2nd-order factor loadings

are parametrized, the interpretation of the 2nd-order factor can change. When 0 is fixed as 1

and t1 is set as 0, 1, …, t-1, the 2nd-order factors have the same interpretation as the intercept and

linear slope growth factors as in 1st-order GMM. 
t is the specific factor (or disturbance of the 

1st-order common factor) that remains not explained by the underlying growth trajectories (i.e.,

the 2nd-order factors).

The last layer of SOGMM accounts for the mixture components where 2nd-order growth

factors are decomposed of class-specific means and deviations to the means.  

i

)c()c(

i 000   , (14) 

i

)c()c(

i 111   , (15) 

where )(
0

c and )(
1

c  are the mean intercept and mean linear slope for each latent class, and i0 and 

i1  are the individual random deviations from these means. In SOGMM, as the scale of the first-

order factors is arbitrary, the mean of the intercept factor for one of the latent classes needs to be 

constrained to be 0 for the other means of the intercept factor for the other classes’ to be 

identified. 

Using matrix notations, equations (12-15) can be generally written as below. For time t, 

t

(c)

tttt εηΛτx  , )(~ tt Θ0,ε N , (16) 

t

(c)

t

(c)

t ςξΓη  , )(~ tt Ψ0,ς N , (17) 
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ωαξ
(c)(c)  , )(~ Ω0,ω N , (18) 

where 
tx is a 1j vector of observed item score and j is the number of items at time t, t is 

a 1j vector of item intercepts at time t, t is a rj matrix of first-order or item factor loadings 

at time t, (c)

tη is a vector of 1r first-order factor scores for individual i who is from latent class c 

at time t, and 
tε is the 1j vector of unique factor scores for individual i at time t,

tΘ is the 

jj covariance matrix for the unique factors at time t. tΓ is a sr second-order factor loading 

matrix and s is the number of 2nd-order factors. (c)
ξ  is a 1s  vector of second-order factor scores 

for individual i who is from latent class c, and 
tς is a 1r vector of latent variable disturbance 

scores.   is a 1s vector of latent growth factor means for latent class c and ω  is a 1s  vector 

of individual deviations from the means.   is ss covariance matrix for the second-order 

factors, 
tΨ is rr covariance matrix for the first-order factors. In SOGMM, as mentioned, since 

the number of common factor for first order model is 1, 1r from equation (16) to (17) so that at 

each time t, dimension for the 1st-order factor loading (
tΛ ) and the 2nd-order factor loading (

tΓ ) 

are respectively, 1j , and s1 . The first-order factor score ( )(c

t ), disturbance factor score (
t ) 

and covariance for the fist-order factor (
t ) is a scalar ( 11 ).  

Item scores can be expressed in a super-vector as each element in (16) is a sub-vector or 

sub-matrix in a super-vector or super-matrix (MacCallum, 2009). The observed item scores, item 

intercepts, and unique factor scores across times can be defined as 
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where each of the 
tx  , 

tτ and 
tε are defined as above.  

The first-order factor loadings across time, similarly, can be constructed so that 
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2

1

Λ00
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00Λ
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.        (20) 

The first-order common factors are defined as 
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The unique factor has expected values of 0 and the covariance structure over time is 

 

)()( TJTJ 



TTT2T1

2T2221

1T1211

ΘΘΘ

ΘΘΘ

ΘΘΘ

Θ









, with ntt,ntt Θε,ε  )(Cov .    (22) 

The expected values for disturbance in (17) and random deviations in (18) are zeros so 

that expected values for the 1st-order common factor scores at each time and across time are 

respectively, 
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The covariance structure for the 1st-order common factor at each time is  
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Ψ'ΩΓΓη tt

(c)

t )(Cov ,         (25)  

where the variability of the 1st-order common factor at time t is the addition of a scalar 

( 11 for 'ΩΓΓ tt
) and the time-specific disturbance factor variance with the super-matrix for the 

covariance for the disturbance factor variance over time as 

)()( TrTr 
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(c)

t Ψη,η  )(Cov .    (26) 

Figure 3 illustrates the path diagram for a SOGMM with responses from 6 items over 4 

time points, similar to the 1st-order GMM in Figure 2. In SOGMM, the item scores are used to 

find the underlying individuals’ true level on the construct where the growth trajectories are 

modeled on, as opposed to 1st-order GMM where observed scale score is used as the outcome 

directly in modeling growth trajectories. In SOGMM, the bottom longitudinal common factor 

model captures the first-order common factor (i.e., construct) underlying the item responses at 

each time while the middle-to-top latent growth model with the mixture component accounts the 

variability of the construct by using the growth factors as second-order factors. Though both 

modeling frameworks capture within- and between-individual variability in patterns of change 

by using the growth mean parameters and the variance estimates of the growth factors, there are 

benefits in how the model is parametrized in SOGMM. 

By using item scores, 1) true representation of individual’s standing on the underlying 

construct can be utilized (Ram & Grimm, 2009), 2) unique variance from the variability on the 

item scores that is not accounted for by the underlying construct is partitioned out (Harman, 

1976). By taking advantage of the 2nd-order factors, variance due to specific factors is separated 

from the measurement error, resulting in a theoretically error-free measure of the construct 
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(Chen, Sousa, & West, 2005). More importantly, by using item scores, the relationship between 

each item and the construct can be assessed explicitly in terms of tenability of longitudinal ME/I, 

which will be discussed in more details.  
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Figure 3. Path diagram of 4 times occasions for a linear SOGMM with j=6, r=1, s=2 (item intercepts 

omitted) 
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2.2 LONGITUDINAL MEASUREMENT INVARIANCE (L-MI) 

When L-MI is established, meaningful interpretation can be made on whether there is 

longitudinal change observed on the construct through its manifest variables (i.e., items) (Chan, 

1998; Ferrer, Balluerka, & Widaman, 2008; Widaman & Reise, 1997). Different methods can be 

applied to investigate the L-MI assumption. From the perspective of modeling longitudinal 

growth patterns, for example, both factorial analytical method (e.g., longitudinal common factor 

model) and item response theory (IRT) method can be used. The former is of interest in the study 

as the factorial analytical approach has been utilized in most of the prior studies on longitudinal 

invariance. Readers interested in using IRT for longitudinal ME/I can refer to papers such as 

Golembiewski, Billingsley, and Yeager (1976), and Meade and Lautenschlager (2004).   

From factorial analytical perspective, MI is considered to be established when a set of 

model parameters are invariant over different populations where MI is tested. Different levels of 

MI are defined as whether invariance holds for different sets of item parameters such as item 

intercepts, factor loadings2, and unique factor variances (Meredith, 1993). A restricted or nested 

model with constrains placed on the set of particular item parameters is compared to a nesting 

model where these parameters are freely estimated. The particular level of MI is said to exist if 

there is no significant difference in the model fit between the two models (i.e., no significant 

reduction of model fit using the more parsimonious model). The following are the different 

levels of MI that are often tested in the literature. 

                                                 

2 Factor loading in ME/I means factor loadings in the measurement model (i.e., first-order model). 
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2.2.1 MI levels and their meanings in SOGMM 

Complete covariance invariance (Jöreskog, 1971) is considered as an omnibus test assessing the 

equality of covariance structure over time. When complete covariance invariance is established, 

the same model-implied covariance structure holds over time. The model under complete 

covariance invariance assumption is compared to the covariance structure where the item 

parameters3 are free to vary over time. If the null hypothesis is retained, it indicates the 

exchangeability of time (Byrne, Shavelson, & Muthén, 1989). However, if the null hypothesis is 

rejected, further investigation is required to determine which particular model parameters are 

statistically different among time.   

Configural invariance (Horn, McArdle, & Mason, 1983) (or configurational invariance; 

Thurstone, 1947; or pattern invariance; Millsap, 1997) is the least restrictive MI assumption 

following the omnibus test. It aims to assess whether the same factorial pattern holds over time. 

It requires that the same number of factors with the same patterns of free and fixed factor 

loadings exist across time. The within-item factor loading among times are not required to be 

equal to meet this level of invariance. In general, if configural invariance is met, it indicates each 

time has the same number of factors and that each factor is defined by the same variables 

(Millsap & Olivera-Aguilar, 2012). Putting in SOGMM framework, it implies that at each time 

of measurement, the same construct is hypothesized and is defined by the same items. If this 

level of invariance is rejected, the factorial structure needs to be investigated respectively at each 

time of measurement in order to justify the instrument and the nature of the construct. On the 

other hand, once this level of invariance is established, further levels of L-MI should be looked 

                                                 

3 The parameters are estimated freely for item intercepts, factor loadings, and unique factor variances.  
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into to locate the source of non-equivalence. However, during estimation, as long as the same 

factor pattern is extracted, this level of L-MI is maintained.  

Metric invariance (Thurstone, 1947) (or weak invariance; Meredith, 1993; or factor 

pattern invariance; Millsap, 1995) is the next in-line level of L-MI to be tested after 

establishment of configural invariance (e.g., Widaman & Reise, 1997). It is slightly stringent 

than configural invariance as metric invariance requires not only the number and pattern of the 

factor loadings to be the same over time, the factor loadings should also remain the same over 

time. In SOGMM, it means that there is equality of first-order factor loading for each item 

among times (i.e.,  t
). Using the example in Figure 3, metric invariance is met if and only 

if 4321 jjjj λλλλ  with j }6,...,1{ . Under metric invariance assumption, the 1st-order factor 

loading of the same item are fixed to be the same over the times while the other parameters (i.e., 

item intercepts and unique factor variances) are freely estimated.  

As the first-order factor loadings are the regression coefficients relating the observed item 

score to the 1st-order factor (i.e., construct), they can be interpreted as the expected change on the 

item score with unit change on the 1st-order factor score. Hence, testing whether there is equality 

on the 1st-order factor loadings among times is essentially assessing equality of scaling units over 

time. Rejecting the null hypothesis means at least one item has different 1st-order factor loadings 

at one or more time points. It indicates that the meaning of construct might be different over time 

and further analysis is needed to find out which items have variant loadings (Olivera-Aguilar, 

2013; Widaman & Reise, 1997). Metric invariance has been generally considered the minimum 

level of MI for the construct to have comparable interpretation (Widaman & Reise, 1997) and it 

has been examined the most frequently among all MI levels in the published articles in studying 
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MI (Vandenberg & Lance, 2000). However, some researchers suggested higher level of MI is 

needed to ensure the same construct is measured over time (e.g., Meredith, 1993). 

Strong invariance (Meredith, 1993) is one of the higher levels of MI that could be tested 

in case when metric invariance is established. It intends to assess whether the observed scores 

among different time haves the same origin. Strong invariance assumes equality of measurement 

intercepts in addition to the same factor loadings over time. In SOGMM, this level of L-MI 

means that there is equality on within-item intercept (i.e., ττt  ) in addition to the equality of 

within-item 1st-order factor loadings. Using the notations described previously, strong invariance 

is met if and only if 4321 jjjj λλλλ  and 4321 jjjj   with j }6,...,1{ . In addition to 

the covariance structure traditionally used in testing MI, this level of assumption investigates the 

model-implied mean structure as well. The argument is that if intercept non-invariance is found, 

different times have different means on the items and thus individual scores cannot easily be 

compared across time and items need to be assessed to determine which intercept(s) is/are non-

invariant among time. On the other hand, retaining this level of ME/I ensures researchers that the 

observed difference on the mean level of the items at each time is not due to the measurement.  

Strict invariance (Meredith, 1993) (or complete invariance; Millsap, 1995), as another 

higher level of ME/I, could be assessed after strong invariance is met (e.g., Vandenberg & 

Lance, 2000). Additional to the within-item equality on item intercepts and first-order factor 

loadings, within-item unique factor variance should be the same over time (i.e., ΘΘt  ) to 

establish this level of L-MI in SOGMM. In order to test this assumption, the model with equality 

placed on 1st-order factor loadings, item intercepts and unique factors over time is compared to 

the model with strong invariance. If there is no difference in model fit, then strict invariance is 

maintained.  
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Under strict invariance, the model-implied mean and covariance structure on the 

observed item scores at time t are  

)(c

tΛτu
tx  ,          (27) 

  ΘΛΨΩΓΓΛΣ
''

ttxt
 ,            (28)   

where every element is defined previously. If unique factor variance varies with time (i.e., 

violation of strict invariance), (28) is rewritten as 

  t

''

ttx ΘΛΨΩΓΓΛΣ
t

 ,        (29) 

where the variability on the observed item scores is different over time and the difference could 

be due to non-invariant unique factor variance or changing second-order factor loadings over 

time. To make sure that the observed changes in the mean and covariance structure over time can 

be only attributed to changes in the latent variable, not the variability, of the measurement error 

not accounted by the latent construct, researchers need to test strict invariance. This level of L-

MI is important as it increases both the confidence and validity of research findings (DeShon, 

2004; Lubke & Dolan, 2003; Meredith, 1993). 

As shown, there are a number of levels of L-MI that could be tested in SOGMM. With 

increasing strictness of the assumption (i.e., higher level of L-MI), more sets of item parameters 

are considered invariant over time so that more confidence could be put in interpreting the 

observed changes without the influence of measurement. As indicated, in order to test the level 

L-MI, sequential tests need to be performed. In literature, there is no universal consensus as the 

specific order of the levels of MI to test (Bollen, 1989; Steenkamp & Baumgartner, 1998). 

However, it is generally recognized there is a hierarchical order among the tests such as starting 

from configural and followed by metric and strong invariance (Vandenberg & Lance, 2000).  
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2.2.2 Partial L-MI 

The MI levels described are said to maintain if and only if when the whole set of model 

parameters remains the same over time, which might be too stringent to obtain. This leads to the 

less stringent MI conditions what is called partial MI. Partial MI (Byrne et al., 1989; Reise, 

Widaman, & Pugh, 1993) in a longitudinal sense is defined as only a subset of the model 

parameters maintaining their equality over time instead of the whole set.  

Partial L-MI can be tested when researchers reject the hypothesis of a specific level of L-

MI as described earlier. Using the example from Figure 3, if metric invariance is rejected, for 

instance, partial metric invariance could be tested for fixing 4321 jjjj λλλλ   j }4,...,1{  

while allowing the other two item’s 1st-order factor loadings free to vary over time. The partial 

metric model can then be compared to configural invariance in their model fit. If the null 

hypothesis is retained, partial metric invariance is established. Most of the existing literature 

examined partial MI when metric invariance is rejected but it can happen after rejecting any level 

of MI.  

Compared to the sequential tests for the level of MI, there has been more debate on 

partial MI (e.g., Byrne et al., 1989; Millsap & Hartog, 1988).With the rejection of a specific level 

of MI, in order to test partial MI, a choice must be made on the selection of reference indicators 

(e.g., items) whose item parameter values are supposedly to be invariant over time. The items 

whose parameter values are non-invariant over time are considered as offending items and hence 

need to be freely estimated. A sequence of tests will start from comparing the nested model 

holding constant item parameters on the reference indicators and freeing offending parameters to 

the nesting model where a level of MI was rejected. The choice of reference indicator(s) could 
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influence the item parameters’ estimates on subsequent tests of invariance, and thus the 

conclusion about MI pattern could change drastically (Ferrer et al., 2008). It calls for guide of 

theory and contextual knowledge in addition to the empirical statistical results when choosing 

the reference indicators. However, it is out of the scope of this paper and more in-depth 

discussion on the topic can be found somewhere else (e.g., Byrne et al., 1989; Steinmetz, 2011; 

van de Schoot et al., 2013). In general, compared to the MI assumptions (i.e., the levels 

described in 2.1.3), partial MI is more practical and makes it possible to assess the changes on 

the outcome which otherwise might not be appropriate (Vandenberg & Lance, 2000). 

2.2.3 Identification and identification invariance 

There are infinite numbers of estimates of the item parameters that can be found to produce the 

same mean and covariance structure. In order to find unique solution, identification constraints 

are needed. One of the two alternatives is often adopted to identify covariance structure, each 

with their consequences. Put in SOGMM, one way is to fix one particular item’s 1st-order factor 

loading to be 1 at the initial time and subsequent times. It results in 1) the 1st-order factor to be 

on the same scale with the same item constrained and 2) the variance of the 1st-order factor to be 

freely estimated. The other alternative is to fix the 1st-order factor variance at 1 so that the factor 

being measured will be on a standardized normal scale (i.e., mean of 0 and standard deviation of 

1) and the 1st-order factor loadings will be estimated freely. This is not appropriate in growth 

model as change is of interest. When the item used for identification is truly invariant, it is said 

to maintain identification invariance. Depending on whether the item constrained meets 

identification invariance, it could impact the interpretation in modeling growth (Wirth, 2008).  
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2.3 MEASUREMENT IN LATENT GROWTH 

The current practice in estimating growth in GMM context is using composite such as mean 

score of a scale.  Reliability such as Cronbach’s alpha is calculated at each time to support the 

use of these scale scores. However, high reliability index does not justify or guarantee the 

satisfaction of L-MI assumption. With violation of L-MI, growth parameters and model fit can 

be biased (Leite, 2007; Olivera-Aguilar, 2013; Wirth, 2008). The following section illustrates 

what happens in modeling growth when there is such violation. Examples have been 

demonstrated by Leite (2007), Wirth (2008), and Olivera-Aguilar (2013) in LGM which can be 

considered as a special case of GMM when there is one subpopulation (i.e., c=1).  

Wirth (2008) used both mean score and factor score as indicators in capturing growth 

characteristics where the performance of factor scores using a number of methods was compared 

to the mean score. He demonstrated factor score’s ability in recovering growth parameters for a 

linear trend when high level of L-MI is maintained. Over 4 times of measurement, the 

relationship between a mean score (
tiy ) and the underlying growth trajectory can be specified as  
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where the mean score alternatively could be a factor score with item parameters in a longitudinal 

common factor model as 



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1 )(  , leading to rewriting the above equation 

as  
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assuming it is adequate to use mean score represent the true score on the construct. If we further 

assume that all measurement intercepts equal to 0, factor loadings equal to 1, and average of the 

residual score over items is 0 for all time, the above equation could be re-written as a series of 

linear equations as 




















































































i

i

i

i

i

i

i

i

i

i

4

3

2

1

1

0

4
1

3
1

2
1

1
1

31
21
11
01

)040(4
)040(4
)040(4
)040(4





















,       (32) 

so that 
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The equations in (33) indicate that when strict invariance holds, the invariant item 

intercepts and factor loadings do not have a systematic effect on the growth parameters such that 

  ttE )( .  

On the other hand, when there is configural invariance, using the values from Leite 

(2007)’s example, as the item intercepts and factor loadings are, 

 75.75.75.75.5.5.5.5.25.25.25.25.0000'  ,  (34) 
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the linear equation is now 
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The latent factor
tη can be solved as 
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Equation (37) shows that in the presence of systematically changing measurement 

characteristics over time, the relationship between the latent construct and the underlying growth 

factors are differentially weighted. This not only indicates that the measurement characteristics 

(e.g., factor loading) have different effects at each measurement occasion so 

that   ttE )( , but also implies that using mean score replacing the true score on the 

construct in modeling the growth trajectories is inappropriate when there is violation of L-MI.  

2.4 SUMMARY OF STUDIES IN L-MI IN LGM 

Based on the above example, it can be seen that using mean score as indicator in modeling 

growth is likely to produce biased parameter estimates when there is violation of L-MI. Effect of 
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violation of longitudinal measurement non-invariance has been studied by a few researchers in 

LGM where one average growth trend is sufficient to describe the inter-individual differences in 

individual growth trajectories.  

Leite (2007) studied and compared effects of violation of L-MI in curve-of-factor model 

(i.e., 2nd-order LGM4; McArdle, 1988) and LGM using mean score (i.e., 1st order LGM) using 

Monte Carlo simulation. In his study, the independent variables (IVs) systematically manipulated  

included number of time (3, 5), number of items (5, 10, 15), total sample size (100, 200, 500, 

1000), type of item (congeneric, essentially tau-equivalent), level of ME/I (strict, metric, and 

configural), and mean reliability for the mean composite (.7, .9). Model fit indices were 

examined along with growth parameters including means of intercept and slope factors, their 

variances, covariance, and standard errors.  

In general, growth parameters were estimated more accurately when the item-to-construct 

relation was accommodated by the 2nd-order LGM. LGM using mean composite produced 

consistently larger bias on the growth parameter estimates under same violation of L-MI 

compared to the 2nd-order LGM. . With a higher degree of violation, the degree of relative bias 

was more severe. When each item score had an additive and multiplicative constant in its relation 

to the true score (i.e., congeneric items), the absolute magnitude of relative bias, for example, 

can be .49 and .47 for variance of intercept, variance of slope, respectively. Both numbers were 

reduced to .02 when the violation of L-MI lessened to the case where all items were essentially 

tau-equivalent. When equivalence of within-item factor loading over time can be assumed (i.e., 

essentially tau-equivalent), almost all growth parameters were able to be recovered with 

                                                 

4 As contrast to the factor-of-curve model which is also a 2nd-order LGM which does not address the 
growth of a single latent construct measured by multiple indicators, but the common growth of multiple observed 
variables.  
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negligible relative bias using mean score as outcome in LGM. The only exception is the mean of 

the intercept factor mean which was estimated with unacceptable large bias regardless of 

whether the items were congeneric and even essentially-tau equivalent. Compared to LGM using 

mean composite, the performance of 2nd-order LGM in recovering the accuracy in growth 

parameters was robust to violation of L-MI. Its ability to produce unbiased growth parameter 

estimates was not influenced by the type of item and L-MI deviation. The relative bias 

magnitude for all growth parameters estimates was negligible using 2nd-order LGM.  

Though 2nd-order LGM was found better at recovering parameter estimates than LGM 

using mean score, the study was associated with a few limitations that restrict the ability in its 

generalization. There was no systematic change in the measurement characteristics over time 

manipulated in the study as the within-item factor loadings and item intercepts were selected 

randomly between .5 to 1, and 0 and 1, respectively. Item parameters included in the study 

assumed either strict, metric or configural invariance excluding the possibility of examination on 

partial L-MI. Additionally, there was no specification as which and whether the same item was 

constrained for identification and whether there was identification invariance on the same item 

over time. Without such information, the question arises as what scale is the latent construct on 

at each time and whether, longitudinally, they are comparable. It made the examination of the 

results of the study somewhat difficult.  

Wirth (2008) conducted a simulation study in assessing longitudinal measurement non-

invariance in LGM context and included conditions to address some of the questions that Leite 

(2007)’s study did not answer. Systematic changes on item parameters were simulated in order to 

study the impact of the measurement characteristics on the growth model parameters. 

Longitudinal measurement non-invariance was generated on either the item intercepts or on both 
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of item intercepts and factor loadings. More specifically, a decreasing or a mixed changing 

pattern was simulated for these parameters when there was measurement non-invariance. A 

decreasing pattern was defined as decreasing parameter values on the same item over time 

whereas a mixed pattern was defined at between-item level where some items parameters’ values 

increased and the others decreased over time. Partial L-MI was also incorporated in examining 

the recovery of the growth parameters as the items were either 1) strictly maintaining specific 

measurement invariance (8 out of 8 items), 2) partially invariant (2 out of 8 items) or 3) non-

invariant (0 out of 8 items). Identification of the scale on the construct used either one or all 

items (i.e., assuming L-MI on one item or on all items). As a consequence, for some conditions 

where the item truly invariant was constrained for identification, identification invariance was 

maintained whereas, for others, it was not. Other factors were sample size (250, 750), item-

specific, time adjacent unique factor correlations (0, .1), factor score methods (mean score, 

regression-based factor scores, 2nd-order LGM-based factor scores), and trajectory shape (linear, 

free-loading). Evaluation criteria included bias, relative bias, and RMSE of growth parameters, 

model fit indices and the likelihood of rejecting the true functional form.  

By incorporating the systematic changes on item intercepts and factor loadings, 

relationship between degree and direction of bias on growth parameter estimates and generating 

item intercepts and factor loadings were discovered. In general, regardless of the scoring 

methods and the scores used in modeling growth, for fixed effects (i.e., intercept factor mean and 

slope factor mean), the degree of bias was found to be correspondent to the difference of 1) the 

(mean) constrained generating factor loading and unity, and 2) the (mean) constrained generating 

item intercept and 0. For random effects including variance of intercept factor, variance of slope 
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factor, and their covariance, the degree of bias was only influenced by the difference in the 

(mean) constrained generating factor loading and 1.  

As for direction of the bias, when using mean score, it was the direction that the 

differences themselves might reflect. For example, the mean intercept estimate was negatively 

biased when the generating mean intercept and mean factor loading were less than 0 and 1. As 

the author indicated, when using mean score, the presence of bias was the result of the 

discrepancy between the true measurement model and the equal weighting mechanism adopted 

by the model using mean score. As the gap between the two got bigger, parameter estimates with 

larger bias were expected. As a consequence, it was expected that the consistent decreasing 

pattern of measurement characteristics included in the study produced larger biases than those 

from Leite (2007)’s study as the generating item intercepts and factor loadings were 

systematically deviated from 0 and 1.  

Contrast to the similar impact from the decreasing pattern, mixed pattern non-invariance 

exhibited differential influence on the growth parameters. Intercept factor mean estimates 

resulted from using mean score were associated with severe bias and highest RMSE when there 

was a mixed pattern on either item intercepts or on both item intercepts and factor loadings. 

Slope factor mean estimates, on the other hand, had negligible bias when non-invariance was 

only on item intercepts using mean score as indicator for latent growth but large bias and RMSE 

when both item intercepts and factor loadings had mixed changing patterns. Under non-

invariance mixed pattern on item intercepts, both intercept and slope factor variance had raw bias 

around 0 but their RMSE (including the RMSE on their covariance) were substantially inflated. 

When both item intercepts and factor loadings had mixed non-invariant patterns, the random 

effects recovery was worse.  
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Correlated measurement error was associated with producing less well recovered 

intercept, slope factor variance and their covariance with inflated relative bias and RMSE but 

this factor had negligible influence on the means for intercept and slope factors. Sample size was 

found to not influence recovery of the growth parameters, in comparison to the other factors in 

the study, but rather the model fit indices and the rejection rate of the functional form of the 

average growth trajectory. 

Partial L-MI with identification invariance and factor score methods were found to 

produce unbiased growth factor parameters. When there were no items maintaining measurement 

invariance including the single item constrained for identification, both the fixed and random 

effects were not accurately recovered regardless of the scoring methods (mean or factor scores). 

However, when there was partial measurement invariance, factor score methods, in particularly, 

using factor score by constraining single item produced least amount of bias in both fixed effects 

and random effects, which was better than recovering growth parameters than using the mean 

score.  

Olivera-Aguilar (2013) took a step further in studying longitudinal measurement non-

invariance by including other systematic measurement characteristics in LGM including total 

number of items (6, 9, 15), the proportion of non-invariant items (1/3, 2/3), and degree of L-MI 

violation. Bias, relative bias, standard errors of the parameter estimates, their RMSE, and model 

fit were examined. The L-MI deviation was simulated either on factor loadings fixing item 

intercepts and unique factor scores (i.e., non-invariant item intercepts) or on item intercepts 

fixing factor loadings and unique factor scores (i.e., non-invariant item factor loadings). Contrary 

to Wirth (2008) who included decreasing within-item/mixed between-item pattern on item 

parameters when there was measurement non-invariance, factor loadings and item intercepts 
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were simulated to have decreasing pattern only and increasing pattern only, respectively. Both 

patterns were created within items. Sample size was set at 100, 200, 500, or 1000.  

When sum scores were used as LGM outcomes, degree of growth parameters bias and 

relative bias were found expectedly increasing with higher degree of contamination (% of items 

exhibiting non-invariance). Both non-invariant intercepts, and non-invariant factor loadings were 

associated with biased growth parameters. More specifically, both of the non-invariant 

conditions affected slope factor mean recovery and non-invariant factor loadings conditions 

additionally negatively influenced recovery of slope factor variance and covariance between the 

intercept and slope factor. 

Though it was of hope to provide more insight of unaccounted measurement non-

invariance in LGM, Olivera-Aguilar (2013)’s simulation design is limited in using only the sum 

score as outcome variables in LGM whereas the data was generated using curve-of-factors 

model. All growth parameters were found not recovered well even in conditions with invariant 

item intercepts and factor loadings. The generating parameter values were adjusted after the 

simulation study to avoid inflated bias, relative bias and RMSE. It was done, separately, for 

conditions with different number of items so that with measurement invariance, under each 

different total number of items condition, there was no bias for all growth parameters. This 

method however, comes with some costs. With various population parameters for different 

number of items, comparisons cannot be made between the effects from different numbers of 

items on parameter recovery. Similar logic could be applied to the other factors that were 

originally designed to be crossed with the number of items. The fact that the other parameters, 

such as unique factor variance, had unadjusted (i.e., incorrect) values restricts the generalizability 

on the results of the study. More importantly, the question still remains open in regards to the 
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effects of the factors manipulated such as the contamination level on the growth parameter 

recovery as the parameters might be adjusted overly. 

2.5 CONCLUSION 

There has been a rise in studying growth in longitudinal setting where various growth-associated 

questions get answered such as rate of growth and individual variability on the growth rate. 

However, there has been less attention paid to the role of measurement invariance in the growth 

context while L-MI is a prerequisite to make sure there is no systematic change due to the 

measurement over time in drawing valid conclusion on the longitudinal changes in the 

underlying construct. 

Effects of violation of L-MI have been studied in a handful of studies in LGM framework 

on growth parameter recovery. In general, with higher degree of violation of L-MI (including 

increased magnitude, more non-invariant items, and fewer sets item parameters exhibiting 

measurement invariance over time), LGM using composite scores produced growth parameters 

with large bias. In contrast, second-order LGM model or using factor score as indicator with 

satisfactory of identification invariance in modeling growth was found to be more robust in 

recovering the growth parameters. Though LGM is a very useful tool in examining the growth 

pattern in a longitudinal setting, it assumes that there is homogeneous population underlying the 

growth pattern. This assumption might be untenable in some situations where multiple 

subpopulations exist. 

GMM accounts for heterogeneity in the population, addresses questions such as average 

rate of growth for each latent class and classification of individuals to a latent class associated 
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with certain growth characteristics. However, longitudinal measurement non-invariance has not 

been well understood in a mixture of subgroups that associate with different growth patterns. 

Though SOGMM is available in studying longitudinal patterns of change for latent classes and 

can be used to test explicitly L-MI, it has not been studied with the presence of longitudinal 

measurement non-invariance. As a matter of fact, up to date, to our knowledge, there is no study 

systematically examining the violation of L-MI in GMM context.  
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3.0  METHODOLOGY 

The purpose of the study is to evaluate how the longitudinal measurement non-invariance 

impacts the growth factor recovery and subject classification in GMM using first- and second-

order GMMs. The general research questions include: 

1) Are growth factors in GMM affected when longitudinal measurement non-invariance 

is present? If yes, what factors contribute to the biased/imprecise growth parameters?  

2) Does the L-MI deviation impact the classification accuracy and if yes, what factors 

contribute to poor classification accuracy?  

3) Do the factors affect the growth parameters in the same way with the same magnitude 

for each latent class?  

A Monte Carlo study was used to answer these questions. This chapter is organized into 

eight sections; 1) Literature review of GMM in empirical studies, 2) fixed simulation factors, 3) 

manipulated simulation factors, 4) generating model, 5) data generation, 6) data analysis, 7) 

evaluation criteria, and 8) data generation validation.  

3.1 LITERATURE REVIEW OF GMM APPLICATION 

A literature review on GMM was performed to help determine the configurations in the 

simulation. Fifty studies were extracted from PsycINFO database (10/25/2014) by using the 
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keyword of “Growth Mixture Model”. L-MI was assessed in only 2 (4%) of the 50 studies 

(Callina, Johnson, Buckingham, & Lerner, 2014; Kirves, Kinnunen, De Cuyper, & Mäkikangas, 

2014) where the rest used first-order GMM with a composite score. About half of the time, the 

items measuring the construct was on a continuous scale. The score on the instrument was either 

based on the responses collected from all the items on an instrument (e.g., Lutz et al., 2014; 

Schumm, Walter, & Chard, 2013) or a subset of the items from a more general instrument or 

assessment. For example, Zerwas, Von Holle, Watson, Gottfredson, and Bulik (2014) selected 

items related to childhood anxiety from Child Behavior Check List (CBCL/ age 4-18 years) that 

measure anxious feelings and anxiety-related somatic symptoms; Callina et al., (2014) used six 

items from the Search Institute’s Profiles of Student Life-Attitudes and Behaviors (PSL-AB) 

questionnaire to measure trust, defined by adolescences’ perceived positive connections with 

their parents. Among the studies, the number of repeated measures ranged from 2 to 12. Most 

often, the studies were based on 4 occasion of measurement (14; 28%). Linear growth pattern 

was discovered for majorities of the studies (32; 64%). Total number of latent classes discovered 

varied from 2 to 7. Twenty-eight studies reported the specific estimator they used. Of these 28 

articles, 26 used ML estimator. The growth factor estimates could vary largely depending on the 

field of research and the instrument used. For the studies which specified the growth parameter 

estimates and their standard errors, 95% confidence interval (CI) was constructed between paired 

growth factor mean estimates from any two latent classes. The results indicated the 

configurations of (dis)similarity in growth factor means among the latent classes could vary 

largely. For example, the intercept factor and the linear slope factor could have statistically 

similar means among classes (e.g., Galatzer-Levy, 2011; Lydecker, 2011; Thompson, Swartout, 

& Koss, 2013) (i.e., CI contained a difference of 0). In some other cases, both the intercept and 
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linear slope factor could have statistically different means among the classes (e.g., Hong et al., 

2014; Liu, 2012; Mustillo, Hendrix, & Schafer, 2012). It can also be a combination of the above 

two situations where intercept and slope factor means among some latent classes were 

statistically different while they were not among the others (e.g., Gunn et al., 2013; Lavender et 

al., 2013).  Lastly, the total sample size as well as the size for the smallest class could vary 

largely (See Table 1). 

Table 1. Descriptive statistics for total sample size and sample size for the smallest class 

  Mean SD Min Max 
Total Sample Size 1175 1568 88 10099 

Sample Size for the smallest class 155 385 3 2191 
 

3.2 FIXED FACTORS 

The section summarizes the factors held constant across conditions. Given there has been no 

research so far investigated L-MI violation in GMM, the number of latent classes was set as 2 to 

allow easy interpretation. Given the literature review in GMM above, time of measurement was 

fixed at 4 with linear trend for both of the latent classes. Mixture proportions were set at .8 and .2 

representing the proportion of individuals from one dominant class and one rare class. Total 

sample size was fixed at 1000 so that the sample sizes for the latent classes were representative 

of the average sample sizes found in empirical research. The total number of items was fixed at 

6. The number was chosen for two reasons. Firstly, the number of items was within the range of 

the item numbers examined by Leite (2007) and Olivera-Aguilar (2013). Additionally, as 

indicated from literature, a smaller number of items often occurred in practice as the items were 
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chosen from a larger instrument catering to the operational definition of a specific construct. No 

missing data was generated in the simulation to keep the conditions under the study manageable.  

3.3 MANIPULATED FACTORS 

The current study varied six factors including 1) number of items violating L-MI, 2) combination 

of item intercepts (i.e.,  ) and item loadings (i.e.,  ), 3) absence or presence of within-item 

correlated measurement error, 4) direction of change on non-invariant item intercepts, 5) latent 

class distance, and 6) model used to estimate growth factor parameters and individual 

classification. This section describes and justifies the specific levels of each factor included in 

the study. 

3.3.1 Contamination level of measurement non-invariance 

The factor was expressed as percentages of a set of item parameters violating L-MI. Three 

contamination levels were considered: 0%, 50%, and 100%. 0% of the items violating L-MI was 

defined as all item parameters on the 6 items exhibiting a certain level of L-MI. When the 

contamination was more than 0%, there were either 3 items (50%) or 6 items (100%) having a 

set of non-invariant item parameters. Under 50% contamination, non-invariance was simulated 

on item intercepts only, item loadings only, or on both item intercepts and item loadings. Under 

100% contamination, either all item loadings were non-invariant or all item intercepts were non-

invariant except the reference item’s intercept.  
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Both Wirth (2008) and Olivera-Aguilar (2013) varied the number of items exhibiting 

measurement non-invariance in examining the impact of L-MI violation on the growth parameter 

recovery. Zero, two or all eight items had non-invariant item parameters in Wirth (2008)’s study. 

However, contamination level was not included as a factor in the analysis in examining its 

systematic effect on the growth factor recovery. The proportion of non-invariant items was set 

either as 1/3 or 2/3 in Olivera-Aguilar (2013), resulting in 2 to 10 non-invariant items out of a 

total of 6, 9, or 15 items simulated. This study fixed the total number of items at 6 with an 

intention to mimic more severe contamination level associated with smaller number of items. 

The different contamination levels included would provide answer to the research question as 

whether higher level contamination is associated with more biased/less precisely estimated 

growth factor and classification rates.  

3.3.2 Longitudinal measurement non-invariance pattern 

Different generating L-MI patterns were created by combination of item loadings (  ) and item 

intercepts ( ) in order to assess the impact of varying degree of measurement non-invariance on 

growth parameters and classification rates recovery. The combinations under the study generally 

included 1) strict, 2) strong, and 3) partial invariance. Particularly, under strict invariance, item 

loadings and item intercepts were combined to form the pattern of invariant loadings and 

invariant intercepts on all items in addition to invariant unique factor variance. Under strong 

invariance, item loadings and intercepts were invariant but the unique factor variance was 

different on the same item over time. Under partial invariance, with 50% contamination, L-MI 

patterns were created as invariant loadings on all items and partially invariant intercepts on 3 

items ( ), partially invariant loadings on 3 items and invariant intercepts on all items 
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( pLiT ), and partially invariant loadings and partially invariant intercepts on 3 items ( pLpT ). 

With 100% contamination, more severer L-MI deviation patterns were included as partially 

invariant loadings on 3 items and non-invariant intercepts on all but the identification item 

( pLNiT ), and non-invariant loadings on all items and partially invariant intercepts on 3 items 

( NiLpT ). 

Different combinations of the item loadings and item intercepts represented various L-MI 

deviation configurations which were studied by Leite (2007), Wirth (2008) and Olivera-Aguilar 

(2013). Item parameters were simulated to meet strict, metric or configural invariance in Leite 

(2007). Olivera-Aguilar (2013) included 1) non-invariant item loadings while keeping item 

intercepts and unique factor variances the same and 2) non-invariant item intercepts while 

maintaining metric invariance on item loadings. Wirth (2008), on the other hand, simulated a 

wide range of combinations including 1) maintenance of strong/metric invariance, 2) full or 

partial non-invariance on item intercepts under metric invariance, 3) partial invariance on both 

item intercepts and loadings, and 4) non-invariance on both sets of item parameters for all items. 

In general, the combinations included in the study were to replicate the conditions 

included in Wirth (2008)’s study but with modifications. In the current study, the combinations 

of item loadings and item intercepts are associated with different levels of contamination. 

Specifically, iLiT pattern was under 0% contamination which included both the strict and strong 

pLiT pLpTL-MI patterns. Patterns of  iLpT , pLiT and pLpT designated the partial invariance patterns 

associated with 50% contamination. Patterns of pLNiT and NiLpT , on the other hand, 

resembled escalated L-MI violation where most of the item parameters were non-invariant. 

Identification invariance on the referent item was maintained on both item loading and intercept 
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under pLNiT while NiLpT violated identification invariance where none of the item loadings 

were invariant.  

The specific combinations of item intercept and item loading were created by considering 

1) whether each set of the item parameters, respectively, was invariant or not, and 2) if non-

invariant, whether it was fully non-invariant, or partially non-invariant. Non-invariant condition 

on both item intercept and loading ( NiLNiT ) was not included in the current study as it was 

found by Wirth (2008) not able to produce accurate growth factor estimates regardless of the 

analysis model and the item(s) used for identification.  

In practice, when an item is found invariant over time, it is constrained to have an item 

loading of one across all occasions for identification purpose. This item is named as the 

identification item or referent item. The action of constraining an identification item’s loading 

which is truly invariant to be the same over time results in identification invariance where the 

model is essentially correctly specified (Hancock, 2005).  

The current study assumed the presence of identification invariance items. With 

identification invariance, at least one item needed to be identified as invariant and the same 

item(s) was/were constrained for identification purpose over time. As a consequence, it resulted 

in 7 combinations of item loadings and item intercepts out of 9 possible combined patterns under 

different contamination levels (combination of iL , pL , or NiL paired with iT , pT , or NiT ). The 

spectrum of the combinations would be able to provide information on the modeled outcomes 

when 1) both item loadings and item intercepts were invariant, 2) only item loadings were 

invariant, 3) only item intercepts were invariant, and 4) varying degree of measurement non-

invariance with minimum partial L-MI maintained. 
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All the combinations created under the second-order growth factor had different unique 

factor variance except under strict invariance. No partial invariance condition was generated 

under strict invariance. The purpose of including this specific level of invariance was to establish 

a “golden-standard” in assessing recovery of growth factors and classification rate. Under strict 

L-MI assumption, observed change on the outcomes can be only attributed to the underlying 

construct (i.e., growth factor scores) instead of to any shift on measurement characteristics over 

time. Due to the fact that performance of SOGMM is unknown, though this level of invariance 

might be hard to meet in research practice, it was considered necessary to be included in the 

simulation.  

3.3.3 Within-item correlated measurement error over time 

Presence of within-item correlated measurement error was defined as a constant time-adjacent 

unique factor correlation within the same item. Within-item correlated measurement error on 

unique factors was simulated to be either present or absent. When present, the correlated 

measurement error was fixed at .1 for the same items over time. This value replicated Wirth 

(2008)’s study. The magnitude was small but it was found to systematically influence the growth 

factor recovery when first-order factor scores and second-order growth factor scores were 

estimated separately in a 2-step procedure. This study used the same magnitude of correlated 

measurement error and intended to examine its effect when the factor scores are estimated 

simultaneously altogether. 
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3.3.4 Directional change on the non-invariant item intercepts 

Item intercepts were either consistently increasing or decreasing when they were non-invariant. 

In contrast, non-invariant item loadings were simulated with a decreasing pattern in the current 

study. The decreasing pattern on the item loadings was consistent with the changing pattern on 

the item loadings in Wirth (2008) and Olivera-Aguilar (2013). Both of these studies suggested 

that the bias direction on the slope factor mean estimates is related with the intercept change 

direction. However, item intercepts with opposite change direction has not been examined as 

Olivera-Aguilar (2013) included only increasing pattern and Wirth (2008) investigated within-

item decreasing pattern and between-item mixed pattern for item intercepts. This factor aimed to 

address the question whether the direction in the bias on the slope factor mean corresponds to the 

direction on non-invariant item intercepts.   

As the non-invariant item intercepts were found to produce biased estimate on the slope 

factor mean (Olivera-Aguilar, 2013), the two patterns simulated were expected to provide answer 

to their effect on the bias direction in the slope factor means for the latent classes. The simulated 

direction was used as a superscript with conjunction of specific generating L-MI pattern in 

reporting the results. For example, for iLNiT level, iLNiT indicates all non-invariant item 

intercepts had an increasing pattern while iLNiT means a decreasing pattern for the non-

invariant item intercepts, with all item loadings invariant over time.   

3.3.5 Latent class distance 

Two levels of latent class distance were included in the study. Mahalanobis distance (MD) was 

used to indicate how distinguishable the latent classes were. MD was set as either 5 or 1.5 for 
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extremely or intermediately well separated latent classes. Extremely large effect sizes of latent 

class distance were found in empirical research (e.g., Allan et al., 2014; Yaroslavsky, Pettit, 

Lewinsohn, Seeley, & Roberts, 2013). In simulation studies (Depaoli, 2013; Liu, 2012), 

indistinguishable latent classes were found to adversely influence growth factor recovery in first-

order GMM. Thus, different latent class distances are needed to examine the impact of L-MI 

violation on growth characteristics recovery respectively under distinguishable and harder-to-

distinguish latent classes.  

Parameters such as within-class variability could be varied to reflect different levels of 

MD, but most often the growth factor means have been manipulated to study the effect of latent 

class distance in the literature (e.g., Depaoli, 2013; Liu, 2012; Peugh & Fan, 2012). Hence, 

growth factor means, in particular the slope factor means for the rare class, were varied to 

produce different levels of MD. The values of the growth factors were specified in the following 

section describing the generating model. 

3.3.6 Analysis model 

Different analysis models were included to examine their comparative performance in GMM 

context with L-MI deviation. The generated data was analyzed, respectively, by 3 GMMs 

including the 1st-order GMM using mean score, a constrained SOGMM and a freely estimated 

SOGMM. In the constrained SOGMM, all item parameters including those for the referent item 

were constrained to be equal over time. In the freely estimated SOGMM, all item parameters but 

those for the referent item were freely estimated over time.  

Both Leite (2007) and Wirth (2008) included different analysis models when there was 

longitudinal measurement non-invariance in LGM. Growth factor parameters produced by 2nd-
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order model (or using factor scores) were found with less bias than first-order model (or using 

observed scores). Both growth factor means and variability estimates were found to recover well 

as long as identification invariance was maintained (Wirth, 2008). 

This study is primarily interested in finding the optimal model in the presence of L-MI 

violation. Among the analysis models included, the constrained SOGMM had the advantage of 

appropriately accounting for covariance structure among items in contrast to the first-order 

model. The freely estimated SOGMM, on the other hand, was better than the constrained 

SOGMM at additionally accounting for non-invariant item parameters. As a consequence, the 

growth factor parameters were expected to be recovered well by the freely estimated SOGMM 

when identification invariance holds. The constrained SOGMM might perform well in the second 

place while the first-order GMM would be mostly impacted by the L-MI deviation. On the other 

hand, given the prevalence of first-order models, the study intended to assess conditions under 

which the 1st-order GMM was still safe to use in interpreting the class-specific growth

characteristics and classification rate, if such conditions existed. 

3.3.7 Summary of the factors and their conditions 

The factors manipulated in the simulation were not fully crossed with each other. Table 2 

illustrates the design conditions formed by the factors and their levels, with each combination of 

item loading and item intercept multiplied by the number specified under each factor, resulting in 

a total of 132 conditions. For ease of reporting, Table 3 summarized each of the factors with their 

corresponding levels. 
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Table 2. Design conditions for the study 

Contamination  

Combination 
of Loading 

and 
Intercept 

Directional 
Change on 

Item 
Intercepts 

Correlated 
Measurement 

Error 

Latent 
class 

distance 

Analysis 
model Total 

0% 
strict None x 2 x 2 x 3 12 
strong None x 2 x 2 x 3 12 

50.00% 
iLpT x 2 x 2 x2 x 3 24 
pLiT None x 2 x 2 x 3 12 
pLpT x 2 x 2 x 2 x 3 24 

100.00% 
pLNiT x 2 x 2 x 2 x 3 24 
NiLpT x 2 x 2 x 2 x 3 24 

     Total 132 
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Table 3. Acronyms for the study conditions to be used in presentation of results 

Factor Acronym Definition 

Contamination 

0% Full L-MI where all items maintained a 
specific level of L-MI 

50% Partial L-MI where 3 items have non-
invariant item parameters 

100% All items had non-invariant item parameters 

Combination 
of  and   

iLiT  Invariant and invariant  on all items 
iLpT  Invariant on all items and non-invariant on 

3 items  
pLiT  Non-invariant on 3 items and invariant on 

all items 
pLpT  Non-invariant and non-invariant on 3 

items 
pLNiT  Non-invariant on 3 items and non-

invariant on all but referent item  
NiLpT  Non-invariant on all items and non-

invariant on 3 items 
Within-item 
correlated 
measurement 
error 

No correlated ME Correlated measurement error over time for 
the same item was 0. 

Correlated ME Correlated measurement error over time for 
the same item was .1. 

Directional 
change on item 
intercepts 

None Item intercepts were invariant over time. 
  Non-invariant item intercepts increased over 

time. 
  Non-invariant item intercepts decreased over 

time. 

Latent class 
Distance 

5MD  Latent classes are separately extremely well.  
5.1MD  Latent classes are separately with 

intermediate distance. 

Analysis model 

C2-GMM Data was analyzed using constrained 
SOGMM. 

F2-GMM Data was analyzed using freely estimated 
SOGMM. 

1-GMM Data was analyzed using 1st-order GMM on 
mean score composite. 



54 

3.4 GENERATING MODELS 

The generating model was a SOGMM corresponding to 2 latent classes whose linear growth 

trajectories were defined on 6 items over 4 time points. The growth factor parameter values in 

this study were set in general to mimic prior simulation studies in which individuals were the 

same at the baseline between the latent classes and then became more distinct over time. With 

this setup, this study focused on the influence of L-MI deviation on the rate of change rather than 

the initial status. Specifically, population growth parameter values were set to mimic the study 

from Muthén, Asparouhov, and Nylund (2007) who investigated the performance of enumeration 

indices (e.g., AIC, BIC) in correctly choosing the number of latent classes in different mixture 

models. The population parameters are summarized in Table 4.  

Table 4. Population growth factor values for the two latent classes 

Model parameters Dominant 
Class (80%) 

Rare Class 
(20%) 

Growth parameters 
 Intercept factor mean 0 0 

Var (Intercept factor) 0.25 0.25 
Slope factor mean 0 1.00 (or .2) 
Var (Slope factor) 0.04 0.04 

Covar (Intercept, Slope) 0.02 0.02 
 

The variances of the intercept factor and the slope factor were the same for the two 

classes. The intercept and slope factors were correlated with a correlation of .2 within each class. 

Intercept factor means were simulated as the same between the two latent classes. The mean on 

the slope factor for the rare class was set as either 1 or .2 to reflect large or small latent class 

distances, with all the other growth factors held to be the same under varying MD conditions.  

../../../../caz18.PITT/Downloads/Chap3%2011-11.docx#_ENREF_15
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The disturbance variance was chosen so that 80% of the variability in the first-order 

factor score was explained by the growth factors at each time. According to equation (17), the 

variance of the 1st-order factor scores5 and the proportion of the variance accounted for by the 

growth factors were, respectively,  

  
1010

2)( 2'
tttttVar ,     (38) 
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











1010

1010

2
2

)( 2

2
2

tt

tt

tR .       (39) 

Based on the parameter values in Table 4 and the above formula, the resulting calculated 

disturbance variance values were listed in Table 5.  

Table 5. Generating disturbance variance across conditions 

Time Variance t  Variance t  
1 0.31 0.06 
2 0.41 0.08 
3 0.61 0.12 
4 0.91 0.18 

 

3.4.1 Item parameters 

Item parameters (loading and intercept) were based on the measure on the lack of self-efficacy in 

poly-substance use for the group of norm adolescence (Pentz & Chou,1994). Self-efficacy in 

treating adolescent misuse of substance is an important construct as it was found to predict 

substance use outcome even after controlling for treatment or intervention (Ramo, Anderson, 

Tate, & Brown, 2005). Adolescence is a period of time where fast development takes place in 

                                                 

5 Latent class membership was omitted since the 2nd-order factor loadings and growth factor covariance 
structure was assumed to be the same between latent classes. 
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cognitive, physical, behavioral, social and emotional domains. It is important to make sure the 

youth perceive, interpret and endorse the items measuring self-efficacy the same way over the 

course of time in order to conclude with more informative etiology model in studying the 

developmental path of self-efficacy, finding out potential risk and protective factors, and 

devising proper interventions.  

The following section describes the generating values for item loadings and item 

intercepts. The L-MI patterns were created by combing the specific values of the item loading 

and the item intercept. Item parameters were set to be the same for the dominant and rare classes 

to maintain the between-class measurement invariance. Under such setting, dominant class on 

average had a flat growth trajectory resembling stable self-efficacy throughout adolescence. In 

contrast, the rare class was depicted by an increased average growth indicating elevated risks 

with substance use during this time period. The general patterns (whether stable or increasing) as 

mentioned previously were reflected in the slope factor means, respectively, for the two latent 

classes.  

Table 6 had the generating values for item factor loadings. For the iL (invariant 

condition), the loadings were generated so that the average of the factor loadings equaled to 1 at 

each time point. For the pL  condition, 3 items (50% items) exhibited changing loadings on the 

same items. For the NiL condition, factor loadings on all items including the referent item were 

non-invariant over time. For pL and NiL conditions, the item factor loading at the first time was 

the same as that for iL condition. The last three items were defined to have non-invariant factor 

loadings under partial invariant condition. When there were non-invariant factor loadings, only 

the pattern of decreasing was simulated, and the decrease had a uniform amount of .08 between 

adjacent time points. Across 4 occasions, the overall decrease on the factor loading for each item 
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was .24, which was similar to the magnitude in Wirth (2008)’s study. Olivera-Aguilar (2013) 

defined .2 as a small effect size on the change of item factor loading. 

Table 7 had the specific generating values for the item intercepts when there was 

increasing non-invariant trend and Table 8 summarized the values for the item intercepts when 

there was a decreasing non-invariant trend over time. The generating average values for the 

intercept for the iT condition were controlled at 1.9. The same item intercepts at time 1 were 

used across different L-MI patterns ( iT , pT , NiT ) at initial time of measurement. The last three 

items were set to have non-invariant item intercepts under partial invariant condition. With non-

invariance, there was a consistent amount of .14 applied to the change in the same item intercept 

between the adjacent time points. The overall change over time (.42) were also similar to the 

magnitude of the change on item intercept in Wirth (2008)’s study. The change of the direction 

was the opposite between Table 7 and Table 8 on items with non-invariant item intercepts but the 

magnitude of change was the same. 

All items were constrained when fitting the constrained SOGMM and the first item was 

constrained for identification when fitting the freely estimated SOGMM. The item parameters 

for the 1st item were generated as truly invariant except for the non-invariant factor loading

condition ( NiL ). Due to the fact that the condition of NiLNiT was not included in the study, not 

all item parameters were non-invariant simultaneously. That is to say, at least partial 

measurement invariance was maintained on either the item factor loadings or item intercepts. 
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Table 6. Population parameters of factor loadings for various L-MI patterns 

Time 
Condition Contamination Item 1 2 3 4 

iL 0.00% 

1 1 1 1 1 

2 1 1 1 1 
3 1.027 1.027 1.027 1.027 
4 0.846 0.846 0.846 0.846 
5 0.846 0.846 0.846 0.846 
6 1.3 1.3 1.3 1.3 

average 1 1 1 1 

pL 50.00% 

1 1 1 1 1 

2 1 1 1 1 
3 1.027 1.053 1.053 1.053 
4 0.846 0.766 0.746 0.726 

5 0.846 0.766 0.746 0.726 

6 1.3 1.22 1.2 1.18 

average 1 0.97 0.96 0.95 

NiL 100.00% 

1 1 0.92 0.9 0.88 
2 1 0.92 0.9 0.88 
3 1.027 0.947 0.927 0.907 
4 0.846 0.766 0.746 0.726 
5 0.846 0.766 0.746 0.726 
6 1.3 1.22 1.2 1.18 

average 1 0.923 0.903 0.883 
Note: Item 1 is the referent item (Bold) in freely estimated SOGMM; non-

invariant items parameters are italicized 
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Table 7. Population parameters of item intercepts with increasing L-MI pattern 

Time 

Condition Contamination Item 1 2 3 4 

iT 0.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.813 1.813 1.813 

3 1.884 1.884 1.884 1.884 

4 1.684 1.684 1.684 1.684 

5 1.684 1.684 1.684 1.684 

6 2.5 2.5 2.5 2.5 

average 1.9 1.9 1.9 1.9 

pT+ 50.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.813 1.813 1.813 

3 1.884 1.884 1.884 1.884 

4 1.684 1.824 1.964 2.104 
5 1.684 1.824 1.964 2.104 
6 2.5 2.64 2.78 2.92 

average 1.9 1.97 2.04 2.11 

NiT+ 100.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.953 2.093 2.233 
3 1.884 2.024 2.164 2.304 
4 1.684 1.824 1.964 2.104 
5 1.684 1.824 1.964 2.104 
6 2.5 2.64 2.78 2.92 

average 1.9 2.01 2.13 2.25 

Note: Item 1 is the reference indicator (Bold) in freely estimated SOGMM; 

non-invariant items parameters are italicized. 
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Table 8. Population parameters of item intercepts with decreasing L-MI pattern 

Time 
Condition Contamination Item 1 2 3 4 

iT 0.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.813 1.813 1.813 
3 1.884 1.884 1.884 1.884 
4 1.684 1.684 1.684 1.684 
5 1.684 1.684 1.684 1.684 
6 2.5 2.5 2.5 2.5 

average 1.9 1.9 1.9 1.9 

pT- 50.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.813 1.813 1.813 
3 1.884 1.884 1.884 1.884 
4 1.684 1.544 1.404 1.264 

5 1.684 1.544 1.404 1.264 

6 2.5 2.36 2.22 2.08 

average 1.9 1.83 1.76 1.69 

NiT- 100.00% 

1 1.813 1.813 1.813 1.813 

2 1.813 1.673 1.533 1.393 

3 1.884 1.744 1.604 1.464 

4 1.684 1.544 1.404 1.264 

5 1.684 1.544 1.404 1.264 

6 2.5 2.36 2.22 2.08 

average 1.9 1.78 1.66 1.55 

Note: Item 1 is the reference indicator (Bold) in freely estimated SOGMM; 
non-invariant items parameters are italicized. 
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3.4.2 Unique factor variance 

Time-specific unique factor variance is defined differently over varying combinations of 

 and . Under strict invariance, unique factor variance equals to .2 for all items at each time 

point, resulting with item communality ranging from .53 to .88. Under all other invariance 

conditions with different levels of contamination on factor loadings, unique factor variance at 

different times for each item is listed in Table 9 where an increment of .05 was simulated for 

each item. These unique factor variance values resulted in item communalities ranging from .40 

to .81 under different levels of non-invariance on factor loadings. 

Table 9. Generating unique factor variance for conditions other than strict invariance 

Item time 1 time 2 time 3 time 4 
1 0.3 0.35 0.4 0.45 
2 0.2 0.25 0.3 0.35 
3 0.4 0.45 0.5 0.55 
4 0.2 0.25 0.3 0.35 
5 0.3 0.35 0.4 0.45 
6 0.2 0.25 0.3 0.35 

3.5 DATA GENERATION 

The data was generated in SAS 9.4 for each latent class, separately. Individual 2nd-order factor 

scores, disturbance factor scores and unique factor scores were generated from univariate normal 

distributions, respectively, with dimension of 2n , 4n , and 24n where n was the sample size 

for the specific latent class. They were then converted to multi-normal distributed random 

variables so that their mean and covariance structure equaled to the parameters described in 
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previous sections. For the 2nd-order factor scores, the expected value, respectively, for the 

dominant and rare class was  

)00()( 1 E   10)( 2 E ,       (40) 

with the common covariance structure as 
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For the disturbance factor scores, its multivariate normal distributions after 

transformation was  
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The unique factor scores were generated from a multivariate normal distribution 

with a 124  mean vector of 0 and covariance of 
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with diagonal elements for the covariance of unique factors among the items at each time, 

and off-diagonal elements for the covariance structure of the correlated unique factors among the 

items over time. The diagonal elements were the same for each time and it can be specified as 

follows 
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When there was no correlated measurement error ( 0
)(, nTjjT  ), all the other values in the 

super matrix in (43) was 0. With the presence of the correlated measurement error ( 1.
)(, nTjjT  ), all 

the other off-diagonal matrices in (43) were fixed as 
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 After transforming the 2nd-order factor scores and disturbance scores, first-order factor 

scores for each individual on each item were created by using equation (17). Individual item 

scores were then formed by combining the generating values of  and  from Table 6 to Table 8 

with the first-order factor scores and generated unique factor scores. Composite scores were 

calculated as the mean of item scores at each time. Datasets generated separately for individual 

latent classes were combined together as the final dataset for analysis. Individual item scores and 

the composite scores were used as input variables for Mplus 7 to fit the SOGMMs and the 1st-

order GMM, respectively. 
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3.6 DATA ANALYSIS 

When fitting SOGMMs, each individual item score was used as indicator of the lack in self-

efficacy construct on which the growth trajectories were modeled. When the data was analyzed 

using SOGMMs, regardless of the conditions, for the common factor model at each time point, 

1) unique factor scores and the within-item correlation over time were estimate freely, 2) the 

item intercept for the first item was constrained to be the same over time and 3) the factor 

loading on the first item was fixed as 1. For the constrained SOGMM, for the rest of the items, 

item factor loadings and item intercepts were constrained equal over the four time points. In 

other words, identification invariance was assumed on all item parameters in this analysis model. 

The freely estimated SOGMM, on the other hand, placed identification invariance assumption 

only on the referent item. With the rest of the item parameters being freely estimated, conditional 

on whether the referent item was truly invariant, measurement non-invariance might be 

appropriately accounted for. Thus, undue influence from violation of L-MI could be minimized 

on the underlying growth factor estimates. Number of latent classes to extract was specified as 2. 

The 2nd-order factor loadings were specified as 0, 1, 2, and 3 to impose linear shape for the 

growth trajectories for both latent classes. For the growth factors, no constraints were put on 

them so that their mean and (co)variances were estimated freely6.  

When fitting 1st-order model, mean scores averaged over the items at each time period 

were used as outcome for which the growth trajectories were modeled. Similar to fitting the 

SOGMMs, 2 latent classes were extracted with their average growth trajectory patterns identified 

                                                 

6 Except the means on the intercept factors for both latent classes so that influence on particularly the 
slope factors can be studied.  
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as linear (i.e., factor loadings of 0, 1, 2, 3). Moreover, growth factors were freely estimated for 

both latent classes except the means on the intercept factor. 

During estimation of the models, a maximum of 1000 iterations were allowed for model 

convergence. After a number of pilot tests, the numbers of starting values in the initial and final 

optimization stages were set as 100 and 20 to avoid problems in non-convergence. A replication 

was saved once it converged properly to a global solution. Number of replications with non-

convergence (e.g., not-replicable best likelihood, negative variance estimate, inadmissible 

solution) was recorded. More than 900 replications were allowed in order to reach minimally 200 

replications in each design cell. The first 200 replications which converged properly were 

retained for analysis in each cell. 

In each of the analysis models of any generated dataset, besides convergence rate, we 

recorded 1) estimate of each latent class’s slope factor mean and variance and 2) overall and 

class-specific classification among individuals.  

3.7 EVALUATION CRITERIA 

Evaluation criteria of this simulation study included convergence rate, raw bias, relative bias, and 

root mean square error (RMSE) of the slope factor estimates. Raw bias was used to evaluate 

recovery of class-specific slope factor means. It was defined as the difference between the 

estimate and its corresponding population parameter. For each of the slope factor means, raw 

bias was calculated as 

  (c)
d

(c)
rd

(c)
rd θθ̂θ̂B  ,          (46) 
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where r is the r
th replication, (c)

rdθ̂ is estimate of the slope factor mean of latent class c for 

replication r in condition d and (c)
dθ is the population generating value of latent class c in 

condition d. As the slope factor mean for the dominant class was simulated as zero, use of raw 

bias on both slope factor means enabled fair comparisons between the latent classes. 

Relative bias was used to assess recovery of class-specific slope factor variance. It was 

calculated as the ratio of raw bias over the corresponding population parameter using the 

notations defined previously. 
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RMSE is a measure of the variability of the slope factor mean and variance estimates 

over the number of replications (i.e., 200). It was defined as the square root of the average 

squared difference between the parameter estimate and its population value.  
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Analysis of variances (ANOVAs) was performed under each MD condition to determine 

the effect of the simulation factors on overall/class-specific classification accuracy, and raw bias 

and relative bias for slope factor mean and variance. The separated analysis for conditions with 

these two different class distances enabled examination of other simulation factors on the 

outcomes, avoiding the dominant impact from large differences simulated in the latent class 

distances. All the other factors were treated as between-subject factors since each of the final 200 

replications was generated differently under each level of the generating condition and the 

replications saved in each cell were different among the three analysis models.  
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Directional change on item intercepts was nested under generating L-MI pattern, which 

was in turn nested under contamination level. Analysis model and within-item correlated 

measurement error were crossed with each other and the rest of the factors in the design. Full 

model with all the main effects with up to 3-way interactions were examined. Effects with partial 

Eta-squared larger than .02 was considered for reporting.  

The findings on the recovery in the growth rates were augmented with empirical Type I 

error and power rates. Type I error was examined on the slope factor mean for the dominant class 

(C1) for which the slope factor mean parameter was generated as zero. Percent of replications 

within each cell rejecting the null hypothesis was defined as Type I error rate. This calculation 

was restricted to generating condition of strong invariance with presence of correlated ME as this 

resembled the model specification in the 2nd-order models where the unique factor variances and 

correlated ME were freely estimated. Such restriction avoided the influence from false 

measurement models and consequently, the parameters were expected to follow the sampling 

distribution under the null hypothesis. Power, on the other hand, was assessed on the slope factor 

mean for the rare class (C2) where the true parameter value was non-zero. Percent of replications 

within each cell that correctly rejecting the null hypothesis was calculated. In contrast to 

calculation of Type I error, empirical power rates were examined across varying generating 

conditions to gauge the impact of deviation of measurement assumption and the robustness of the 

analysis model under such deviation. 
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3.8 DATA GENEARTION VALIDATION 

A subset data was generated for verification.  Due to the fact that the data was generated class by 

class, validation was performed on class-specific data first. Then the two classes’ data was 

pooled together for further validation. The purposes of validating the data included examination 

of whether 1) a generated L-MI can be appropriately identified, and 2) item parameters and 

growth parameters can be recovered.  

For purpose one, the data was generated for one replication under strict invariance 

and %)33.33(iLpT with absence of correlated measurement error. Strict invariance was chosen 

given it is the most optimal measurement situation. Under strict invariance, within each latent 

class, the observed difference on the outcome scores can be attributed only to latent variable 

other than the measurement property. If the data was generated as intended, it was expected to 

have no raw bias on the fixed effects (e.g., growth factor means particularly slope factor means) 

and negligible raw bias on the random effects (e.g., slope factor variance). As most of the 

conditions to be created presented measurement non-invariance, %)33.33(iLpT was chosen 

representing the less optimal measurement conditions. It was looked into as whether partial 

invariance could be detected.  

Chi-square difference test, RMSEA, CFI, and SRMR were used to determine whether the 

generated invariance level was met. A non-significant p-value from Chi-square difference test, 

absolute change on RMSEA, CFI, and SRMR being less than .02, .01, .03 (Chen, 2007), 

respectively, indicated no difference in model fit. When data was generated under strict 

invariance, all the model fit indices indicated the strict invariance assumption was met. 

Moreover, it was able to detect partial strong invariance properly. Using the same sample 

../../../../caz18.PITT/Downloads/Chap3%2011-11.docx#_ENREF_3
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generated under strict invariance, both item parameters and growth parameter estimates were 

examined. There were negligible differences between the true parameter values and their 

corresponding estimates.  
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4.0  RESULTS 

The study aimed to examine the influence of varying L-MI deviation configurations on growth 

rate recovery and classification accuracy, and performance of alternative growth mixture models. 

This chapter is organized in four sections. Section 1 reports convergence rates over all simulation 

conditions. Section 2 reports results for the simulation conditions with large class separation 

(MD=5) with a focus on the following outcomes: 1) relative/raw bias and RMSE of growth 

factor means and variances, 2) empirical Type I error and power rates on class-specific slope 

factor mean, and 3) overall/class-specific classification accuracy. Section 3 reports results on the 

same outcomes for the simulation conditions with small class separation (MD=1.5). Section 4 

provides a summary and comparison on results from the two latent class distances. 

In the sections examining the accuracy (relative/raw bias and RMSE) of growth rates, 

raw bias was used for both slope factor means allowing comparison between latent classes. 

Relative bias was used for assessing recovery of slope factor variances. Raw and relative biases 

with a magnitude greater than .05 were considered practically significant. For recovery of growth 

rates, results started with partially nested ANOVAs to assess the effects of various simulation 

factors. Partially nested ANOVAs were used because there was a nested structure among the 

simulation design factors of item intercepts change, generating L-MI pattern, and contamination 

level. Modelled effects included main effects, 2-way interactions, and 3-way interactions. Effects 

with at least small sizes ( 02.2 p ) were interpreted. Descriptive results were then collapsed 
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among the levels of factors which had negligible effect sizes ( 02.2 p ). Recovery of growth 

rates were accompanied by the results on the empirical Type I error and power, with Type I error 

on the slope factor mean in the dominant class under conditions with L-MI assumed, and power 

on the slope factor mean in the rare class under all generating L-MI configurations. Lastly, 

recovery of classification was assessed by the count of individuals classified into each latent 

class (i.e., mixture proportion in unit of sample size) and the count of individuals into their 

generating latent class using partially nested ANOVAs. The counts enabled examination of 

classification accuracy at class- and individual-level, respectively.  

4.1 CONVERGENCE 

A replication was defined as convergent if it reached to a proper global solution with no report of 

negative variance estimates, local maximum or inadmissible solution. Convergence rate was 

calculated as the percentage of replications that converged out of the 900 replications per design 

cell. Convergence rates were associated with latent class separation within the scope of this 

study. Replications converged 100% times under extremely large latent class separation (MD=5) 

while the convergence rates varied with the increased overlap between the latent classes 

(MD=1.5) (Table 10). With intermediate distance between the latent classes, convergence rates 

ranged from 27% to 44% with similar convergence rates among varying levels of manipulated 

factors except the analysis models. The marginal convergence rate was increased by 33% using 

the F2-GMM as compared to the other two analysis models. 

Convergence rates in this study were found to be low under MD = 1.5. Low convergence 

rates have been documented for complicated GMMs such as in Liu and Hancock (2014). Hence, 
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the low convergence rates were expected for the 2nd-order GMMs (i.e., C2-GMM and F2-GMM) 

where item parameters were estimated, and both of 1st- and 2nd-order factors were scored. For 1-

GMM, the low convergence rates might be due to the problems in estimating growth factors 

resulted from harder-to-separate latent classes. This would be discussed in more detail in the 

following section 4.3. Given the low convergence rate, 200 converged replications per design 

cell were selected for further analysis.  

Table 10. Convergence rates by analysis models under each generating condition under MD=1.5. 

      No Correlated ME Correlated ME 

Contamination L-MI 
Pattern 

Intercept 
Change 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 29% 32% 38% 33% 31% 43% 
0% strong None 31% 33% 42% 30% 31% 43% 
50% pLiT None 29% 32% 41% 31% 29% 38% 
50% iLpT + 31% 34% 41% 31% 32% 42% 
50% pLpT + 33% 32% 41% 34% 29% 40% 
100% pLNiT + 33% 33% 39% 29% 34% 41% 
100% NiLpT + 31% 30% 37% 30% 31% 37% 
50% iLpT - 29% 30% 39% 31% 30% 40% 
50% pLpT - 28% 27% 41% 30% 28% 44% 
100% pLNiT - 32% 32% 43% 33% 30% 40% 
100% NiLpT - 28% 32% 42% 32% 28% 39% 

 

4.2 GROWTH CHARACTERISTICS RECOVERY UNDER MD = 5 

Table 11 presented the factors with significant effect sizes in the ANOVAs. Effects with 

negligible sizes were not reported, including 3-way interactions, main effect of correlated ME 

and its 2-way interactions with other factors. Symbols indicating the nesting structure between 

factors were omitted to save space. 
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In general, the accuracy in the growth parameters recovery was mostly explained by 

contamination %, generating MI pattern, analysis model and their interactions. The accuracy in 

the recovery of the slope factor mean also depended on item intercepts change. The factors with 

significant prediction of the relative/raw bias were, to some extent, similar between the two 

latent classes. More specifically, the factors significantly predicting the bias in slope mean are 

similar in C1 and C2, while the latter has dissipating effect sizes for nearly all factors. The 

exception was the main effects of contamination % and generating MI pattern which had larger 

effect sizes in C2 than in C1. 

4.2.1 Slope factor mean 

4.2.1.1 Raw bias 

Based on the ANOVA results, contamination %, generating MI pattern, item intercepts change, 

analysis model and their 2-way interactions significantly impacted the raw bias of the slope 

factor means for both latent classes. Mean raw bias under combinations of generating MI pattern 

and item intercepts change were plotted for each analysis model in Figure 4, separately for C1 

and C2. 

The effect of MI pattern, item intercepts change and analysis model interacted in 

interpreting raw bias on the slope factor means. When there was no change on the item 

intercepts, slope factor mean was estimated accurately in C1 regardless of the analysis model. In 

C2, however, estimates on the slope factor mean were positively biased using 1-GMM, but not 

C2-GMM or F2-GMM.  
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Table 11. ANOVA results investigating class-specific growth rate estimates accuracy when MD = 5. 

Latent 
Class 

Parameter 
Estimate 

Main Effects  2-way Interactions 

Model Contamination MI 
Pattern 

Intercepts 
Change 

Model                           
Contamination 

% 

 Model   
MI 

Pattern 

Model   
Intercepts 
Change 

C1 
Slope Mean* 0.85 0.08 0.05 0.83 0.16 0.09 0.71 
Slope 
Variance 0.44 0.03 0.04 -----  0.09 0.08 -----  

C2 
Slope Mean* 0.44 0.19 0.17 0.41 0.03 0.05 0.27 
Slope 
Variance 0.19 ----- ----- -----  ----- ----- -----  

Note: * indicates raw bias was used on slope factor mean as outcome in the ANOVA instead of relative bias.  
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Figure 4. Mean raw bias on class-specific slope factor mean under combinations of MI pattern and item 
intercepts change for each analysis model when MD = 5. Line of |.05| was drawn as reference. 

 

With increased item intercepts, raw bias on slope factor means were negligible using F2-

GMM under all generating L-MI patterns except under NiLpT condition in C2. C2-GMM 

produced marginally acceptable raw bias on the average growth rate under the same generating 

L-MI pattern. 1-GMM was only able to produce accurate slope factor mean for the dominant 

class (C1) under iLpT. In C1, under the rest of the generating L-MI patterns, raw bias 

consistently increased with larger deviation from L-MI assumption. The raw bias was 

unacceptable in C2 regardless of generating L-MI pattern, with less distinctive pattern in the 

change of magnitude of raw bias compared to that in C1.  
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When item intercepts decreased, F2-GMM performed the best among the analysis 

models. For F2-GMM, the calculated mean raw bias exhibited the same pattern, compared to 

when item intercepts increased. Performance of C2-GMM was again not as good as F2-GMM in 

either latent class, just as in the condition with increased intercepts. The slope factor means were 

not estimated accurately by C2-GMM with mean raw bias larger than |.05|. Moreover, mean raw 

bias produced by C2-GMM was larger in magnitude under the same MI generating pattern with 

decreased item intercepts in contrast to increased item intercepts. 1-GMM, on the other hand, 

performed better than C2-GMM but not as well as F2-GMM. More specifically, the mean raw 

bias produced by 1-GMM was (marginally) acceptable among the various generating L-MI 

patterns.  

Besides magnitude on raw bias, direction on raw bias of slope factor mean estimate was 

influenced by the directional change on item intercepts for 1-GMM and C2-GMM models. More 

specifically, the direction of raw bias was generally the same as the direction in intercepts change 

for both analysis models, particularly, when there was non-negligible raw bias. This finding is 

the same as from Wirth (2008) who found the directional correspondence between the non-

invariance pattern and slope factor mean bias. With mean generating item loadings and intercepts 

being non-invariant over time, the model using an averaged scale score (i.e., 1-GMM) or 

constrained item scores (i.e., C2-GMM) essentially used inappropriate weights among items. 

With increased item parameters, for example, the weights were inappropriately set as 1, which 

resulted in underweighting items when using items aggregately. The uncounted non-invariance 

on the item parameters was consequently pushed into the growth rate estimates with the sign 

remained. The directional effect of item intercepts change on accuracy in slope factor mean 

recovery was not detected for F2-GMM when measurement invariance sustained on the referent 
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item. Wirth (2008) also had the same finding where no bias was observed on the slope factor 

mean as long as generating item factor loadings and intercepts maintained partial invariance.  

Given the above findings, under minimal L-MI violation and increased item intercepts, 

this study generally draws the same conclusion as Wirth (2008) in model comparison where F2-

GMM with maintenance of partial measurement invariance was found robust in accurate 

recovery of slope factor means for both latent classes under various deviation of L-MI 

assumption. Performance of C2-GMM was (marginally) well and 1-GMM was not acceptable 

with deviation of L-MI. Under decreased item intercepts, the magnitude of bias by 1-GMM was 

smaller than C2-GMM over all L-MI patterns with some of the bias being negligible.  

As no previous studies evaluated impact from L-MI deviation on growth parameters 

recovery with multiple latent classes, the reason why 1-GMM outperformed C2-GMM under 

simultaneously decreased item loadings and intercepts is hypothesized to be from the altered 

latent classes distance by L-MI deviation. Bias on the growth rate estimates from 1-GMM is not 

only influenced by the direction of non-invariant items, but also the latent class distance or 

overlap under the generating L-MI patterns. With simultaneously decreased item loadings and 

intercepts, the distance between the latent classes should remain the same as measurement 

invariance was simulated between the two classes. As a consequence, compared to minimal 

violation of L-MI, under decreased item intercepts, the bias on the slope factor mean was similar 

with magnitude under .10 for 1-GMM (mostly around .05). When there was competing effects 

between change on item intercepts (positive) and item factor loadings (negative) in their 

direction, drawing upon the same rationale, distances between estimated latent classes was 

smaller. Thus, it was harder for 1-GMM to distinguish the latent classes, which resulted in less 
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accuracy in estimating the growth rates under the same generating L-MI with the opposite 

direction on the change in the non-invariant item intercepts and loadings. 

4.2.1.2 RMSE 

Figure 5 compares three analysis models on the slope factor mean RMSE under combinations of 

generating L-MI pattern and item intercepts change, separately for C1 and C2. The levels on 

correlated ME were averaged out as their RMSE values were similar. The order of performance 

among the analysis models in terms of RMSE resembled that of bias. F2-GMM was able to 

estimate precisely the slope factor means for both latent classes under all but NiLpT pattern. 1-

GMM had larger RMSE than C2-GMM when item intercepts increased, but smaller RMSE when 

item intercepts decreased. Hence, the factors that impacted the bias also affected precision of 

slope factor mean estimates in a similar way.  

4.2.2 Slope factor variance 

4.2.2.1 Relative bias 

ANOVA results (Table 11) suggested that only analysis model had more than small effect size in 

predicting relative bias on slope variance estimate in C2 while contamination level and L-MI 

generating pattern were significant in C1 besides analysis model. Moreover, interaction between 

analysis model with contamination % and MI pattern were also significant. Figure 6 presented 

the relative bias on slope factor variance estimate by L-MI pattern and analysis model for both 

classes for side by side comparison.   
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Figure 5. RMSE on class-specific slope factor mean under combinations of MI pattern and item intercepts 
change for each analysis model when MD = 5. 

 

Figure 6 showed that 1-GMM had unacceptable relative bias in slope variance estimate. 

Slope factor variance was consistently overestimated by using 1-GMM. It was the case for both 

latent classes. F2-GMM performed better than C2-GMM where relative bias was acceptable 

among all but the NiLpT generating L-MI condition. On the other hand, C2-GMM produced 

negligible relative bias on slope factor variance with none or minimal violation of L-MI 

assumption (i.e., strict, strong, pLiT, and iLpT). With increased deviation of L-MI assumption 

(i.e., pLpT and pLNiT), the slope factor variance estimates for both latent classes became biased 
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using C2-GMM, which was not able to estimate slope factor variance accurately just as F2-

GMM under NiLpT condition.  

 

Figure 6. Relative bias on slope factor variance under generating MI patterns for each analysis model when 
MD = 5. Line of |.05| was drawn as reference. 

 

The findings on the order among analysis models in preserving the bias in growth rates 

variance estimates are consistent as from Wirth (2008). In producing accurate growth rate 

variance estimates, the model in his study that constrained single item parameters performed the 

best compared to the mode that placed constraints on all within-item item parameters. The mean 

score model performed the worst in both studies with moderate to severe bias on the slope factor 

variance estimates. 
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4.2.2.2 RMSE 

RMSEs on the slope factor variance estimates were consistently low and stable among 

generating measurement characteristics and the analysis models (Table 12). The variability on 

the parameter estimate was negligible for both latent classes. This might be due to the fact that 

the latent classes were separated extremely well and the within-class variability was relatively 

small. Under this premise, even with violation of L-MI, the models did not have a problem 

producing the estimate precisely.  

Table 12. RMSE on slope factor variance by each of the analysis model for each latent class.  

Model C1 C2 
1-GMM 0.01 0.03 

C2-GMM 0.01 0.01 
F2-GMM 0.01 0.01 

 

4.2.3 Type I error and power 

Empirical Type I error by each analysis model was calculated as the percent of replications 

incorrectly rejecting the true null slope factor mean in C1. Power of each analysis model was 

calculated as the percent of replications successfully rejecting the false null hypothesis that the 

slope factor mean was 0 in C2. When MD = 5, 1-GMM had inflated Type I error (i.e., .75) while 

the values from the 2nd-order models (i.e., .04 for C2-GMM and .03 for F2-GMM) were close to 

the nominal value. Power rates were plotted in Figure 7 under all generating conditions, 

respectively, for each analysis model. 

With the correlated ME, F2-GMM had greater than .80 power among various generating 

L-MI patterns. The only exception was in NiLpT condition where there was almost no power by 

F2-GMM. The use of 1-GMM resulted with acceptable power when there was no or minimal 
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violation of L-MI assumption (strict, strong, pLiT). When item intercepts decreased with 

simultaneous decrease in item factor loadings, 1-GMM still had acceptable power rates under 

varying generating L-MI patterns, which can be due to the remained generating latent classes 

distance after L-MI violation. When there was competition on the directional change between 

item intercepts and item factor loadings (i.e., increased item intercepts with decreased item factor 

loadings), the ability for 1-GMM correctly rejecting the null hypothesis was largely reduced to 

the extent that the power was no longer acceptable. Similar to the hypothesized reason for the 

poor performance of 1-GMM in estimating slope factor means under increased item intercepts, 

1-GMM’s poor performance in power can be the result of more overlapped latent classes (i.e., 

smaller between-class distance) after L-MI deviation. As for C2-GMM, it only had high enough 

power when item intercepts remained invariant (i.e., strict, strong, pLiT). Regardless of the 

direction on the item intercepts change, C2-GMM was not able to reject the null hypothesis with 

a satisfactory rate.  

Generally, the pattern of power rates for each analysis model was similar to their 

counterpart, compared to the scenario where no correlated ME was simulated, as far as using .80 

as cut-off value in drawing conclusions on the performance for the analysis models. The 

exception was in 1-GMM under minimal MI violation, where an over-fitted measurement model 

reduced the power to slightly below .80.  

4.2.4 Classification 

Numbers of individuals assigned to C1 and C2 were averaged at 800 and 200 without much 

variability (SD = 9) among the simulation cells under MD = 5. Even though the overall number 

of individuals classified into each latent class was basically correct, the individuals were not 
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necessarily classified into their generating latent class. Partially nested ANOVAs suggested that 

only analysis model significantly (eta-square = .02) impacted the individual classification 

accuracy for both latent classes. In general, C2-GMM had consistently the highest accuracy in 

individual classification rate but the classification by any of the analysis model was not 

satisfactory. More specifically, the classification accuracy aggregated between both latent classes 

were 59%, 73%, 57% for 1-GMM, C2-GMM, and F2-GMM. Hence, about 590 individuals were 

correctly classified into the latent class that he/she was generated from using 1-GMM, and so 

forth for C2-GMM and F2-GMM which respectively classified accurately about 730 and 570 

individuals over the two latent classes.  

The recovery of the mixture proportion and individual classification found under MD =5 

in this study partially agreed with the findings from Liu (2012) who studied both raw count and 

accurate count in 1-GMM with varying between-class distances. He found that the unbalanced 

mixture proportion was not recovered well and this does not depend on the between-class 

distance. It is not the case in this study where the mixture proportions in the unit of sample were 

recovered well, and the possible reason is that the latent classes were extremely well separated, 

when compared to the maximum MD = 1.6 in Liu’s study. On the other hand, classification 

accuracy in his study under the most optimal between-class distance was found to be similar as 

the numbers in this study. Hence, with extremely well separated latent classes, the mixture 

proportions could be well recovered but not classification accuracy at the individual level.  
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Figure 7. Empirical power rates detecting other-than-zero slope factor mean under varying conditions 
when MD = 5. ME = Measurement error correlation. Line of .80 was drawn as reference. 

4.3 GROWTH CHARACTERISTICS RECOVERY UNDER MD = 1.5 

The ANOVA results were summarized in Table 13 for MD = 1.5. The table had the same set up 

compared to the ANOVA table for growth rate estimates under MD = 5 with the same omitted 

effects and symbols indicating the nesting structure.  

Analysis model was a significant predictor for almost all growth rate estimates with 

effect sizes ranging from .04 to .21. The only exception is that the accuracy in the slope factor 
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mean recovery for the dominant class was not explained by the main effect of analysis model, 

but by the interaction between the analysis model and item intercepts change. Item intercepts 

change factor was practical significant in recovery of slope factor mean estimates for both latent 

classes.  

4.3.1 Slope factor mean 

4.3.1.1 Raw bias 

Based on the ANOVA results, main effects of item intercepts change and analysis model 

significantly impacted the raw bias of the slope factor means for the rare class (C2). Their 

interaction also had explained significant proportion of raw biases in the dominant class (C1). 

Mean raw bias under each level of item intercepts change for each analysis model was plotted in 

Figure 8, for C1 and C2.  

When item intercepts were invariant (i.e., strict, strong, and pLiT), there was negligible 

raw bias by F2-GMM for both latent classes. Under the same generating L-MI pattern, C2-GMM 

produced generally unbiased slope factor means, with no bias in C2 and marginally acceptable 

bias in C1. As for 1-GMM, even with minimal violation of L-MI assumption, slope factor means 

were estimated with much less accuracy.  

With increased item intercepts, slope factor mean in C1 was estimated with no bias 

regardless of the analysis model used. The slope factor mean in C2, however, was (marginally) 

accurately estimated by the 2nd-order models but not the 1-GMM where raw bias was 

unacceptably large. With decreased item intercepts, slope factor mean was only estimated 

accurately by F2-GMM. 
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Table 13. ANOVA results investigating class-specific growth parameter estimates accuracy when MD = 1.5. 

    Main Effects  2-way Interactions 

Latent 
Class 

Parameter 
Estimate Model Contamination  MI 

Pattern 
Intercepts 
Change 

Model   
Contamination 

% 

Model   
MI 

Pattern 

Model   
Intercepts 
Change 

C1 
Slope Mean* ----- ----- ----- 0.04 ----- ----- 0.02 
Slope Variance 0.04 ----- ----- ----- ----- ----- ----- 

C2 
Slope Mean* 0.21 ----- ----- 0.04 ----- ----- ----- 
Slope Variance 0.07 ----- ----- ----- ----- ----- ----- 

Note: * indicated raw bias was used on slope factor mean as outcome in the ANOVA instead of relative bias.  
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Figure 8. Mean raw bias on class-specific slope factor mean under combinations of MI pattern and item 
intercepts change for each analysis model when MD = 1.5. Line of |.05| was drawn as reference. 

 

Hence, under MD = 1.5, the bias magnitude was acceptable using F2-GMM, regardless 

of item intercepts change and which latent class the slope factor mean parameter was from. The 

magnitude of bias produced by C2-GMM was similar between the latent classes under the same 

item intercepts change condition. For 1-GMM, slope factor mean was less accurately estimated 

in C2 than in C1, reflected by the upward shift of mean raw bias under the same item intercepts 

change condition.  
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4.3.1.2 RMSE 

RMSEs on the slope factor mean estimates under MD = 1.5 for the 2nd-order models were 

similar between levels of correlated ME while this is not the case for 1-GMM. In general, when 

there was minimal violation of measurement invariance, slope factor mean was estimated with 

more variability (i.e., larger RMSE) with presence of within-item unique factor correlation than 

when there was an absence in correlated ME. The conclusion applied to the dominant class but 

not the rare class. The difference between the latent classes was tangled with generating MI 

pattern and direction in item intercepts change where no consistent and distinctive pattern on 

RMSE was found for 1-GMM. Nevertheless, all of these RMSEs by 1-GMM were much larger 

than the ones produced by the 2nd-order models under the same condition. To enhance 

interpretability compared to MD = 5, RMSEs were averaged out between absence and presence 

of correlated ME and the values were plotted in Figure 9.  

Slope factor mean estimates were more variable for the rare class than for the dominant 

class. Regardless of the generating L-MI characteristics (i.e., contamination %, MI pattern, and 

item intercepts change), F2-GMM was able to produce stable slope factor mean estimate. The 

variability in the slope factor mean was slightly larger in C2 than in C1 but both variability were 

close to 0. C2-GMM produced larger variability in the estimate than F2-GMM under any 

generating condition. The difference was smaller in C2 but more obvious in C1. 1-GMM, on the 

other hand, had consistently larger variability in estimating the slope factor mean parameter than 

the 2-nd order models.  
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Figure 9. RMSE on slope factor mean under generating MI patterns for each analysis model when MD = 

1.5. 

Combined with the results on raw bias, F2-GMM was able to produce both accurate and 

precise slope factor mean estimates, especially for the dominant class under MD = 1.5. C2-GMM 

performed as the second best in recovering the slope factor means. The parameters were 

estimated with (marginal) accuracy and precision when there was no or increased item intercepts 

change. The model’s performance got worse when all of the item parameters had non-invariance 

in the same direction. When both item intercepts and item factor loadings decreased, the slope 

factor means were not estimated accurately meanwhile with considerable variability. 1-GMM 

retuned slope factor mean estimates with large variability (i.e., at least 2 times larger than the 2-
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nd order models). Even under none or minimal violation of L-MI assumption (i.e., strict, strong, 

pLiT), there was large variability in the slope factor mean estimates by 1-GMM, which was 

considered to be caused by the large deviation of the true model which might be made worse 

with less indistinguishable latent classes.  

4.3.2 Slope factor variance 

4.3.2.1 Relative bias 

Accuracy in slope factor variance estimates were affected by the analysis model. 1-GMM 

produced large positive relative bias on the slope factor variance estimates for both latent classes 

(Table 14). Both of the 2nd-order models were found to have underestimated slope factor 

variance estimates. Between the models, F2-GMM was able to return unbiased slope factor 

variance estimates, with negligible relative bias in C2 and marginally acceptable in C1. C2-

GMM also had bias on the slope factor variance estimate under control for C2 and marginally for 

C1. 
Table 14. Relative bias in the slope factor variance by analysis model for each latent class under MD = 1.5. 

Model C1 C2 
1-GMM 2.2 3.94 

C2-GMM -0.12 -0.05 
F2-GMM -0.08 -0.01 

4.3.2.2 RMSE 

Conclusion on the magnitude in the RMSEs on the slope factor variance were similar to the 

conclusion on the relative bias, for each of the analysis model. 1-GMM, regardless of the 

generating MI conditions, was not able to estimate the parameter precisely with the disappointing 

performance more obvious in the rare class (Figure 10).  
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Figure 10. RMSE on slope factor variance under generating MI patterns for each analysis model when MD 
= 1.5. 

4.3.3 Type I error and power 

Type I error and power were calculated in the same way as described when MD = 5. The 

increased overlap between the two latent classes highly impacted the performance of the 2nd-

order models in both Type I error and power. More specifically, Type I error rates were .45, .29 

for C2-GMM and F2-GMM, respectively while the rate remained unacceptably high for 1-GMM 

(.74). Moreover, none of the analysis model was able to achieve .80 for power rate under any of 
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the generating measurement characteristics (Figure 11). Hence, none of the analysis model was 

able to correctly retaining 1) the null hypothesis for the slope factor mean in the dominant class, 

and 2) the alternative hypothesis for the slope factor mean in the rare class when the classes were 

more overlapped.  

 

Figure 11. Empirical power rates detecting other-than-zero slope factor mean under varying conditions 
when MD = 1.5. 

4.3.4 Classification 

Analysis model impacted the recovery of the raw count in individual assignment into each of the 

latent classes with an eta-square of .03 for both latent classes. Estimated mixture proportions in 
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unit of sample size for each latent class by each analysis model are summarized in Table 15. As 

can be seen, for the rare class, more than 200 (number of individuals generated from the rare 

class) individuals were estimated to be from the rare class. Meanwhile, the size of the dominant 

class was shrinking. It indicated that when latent classes were not separated as well, GMMs 

tended to decrease the difference in the sizes between the latent classes.  

This finding was the same as Liu (2012)’s study where he found under less 

distinguishable latent classes, 1-GMM artificially increased mixture proportion estimate for the 

rare class while decreased the estimate for the dominant class. With smaller latent class distances 

(MD = 1.5 in the current study and MD = 1.6 in Liu’s study), both studies found that mixture 

proportion recovery was not satisfactory. The accuracy in the classification by all the analysis 

models remained not satisfactory. Among the analysis models, C2-GMM was found with the 

most severe loss in accuracy (43% compared to 73%). The other two models had worse 

performance but not as much with 55% for 1-GMM as compared to 59%, 52% for F2-GMM as 

compared to 57%. Hence, 550, 430, and 520 individuals were correctly classified into their 

generating latent class by using 1-GMM, C2-GMM, and F2-GMM.  

Table 15. Raw count by analysis model for each latent class 

Model C1 Count C2 Count 
1-GMM 537 436 

C2-GMM 494 506 
F2-GMM 663 337 
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4.4 SUMMARY OF RESULTS 

This section summarizes the results by the design factors in the order of 1) analysis model, 2) 

correlated measurement error, 3) longitudinal measurement non-invariance characteristics, and 

4) latent class distance.

4.4.1 Analysis model 

The three analysis models were compared in terms of the recovery of the growth characteristics 

under each between-class distance in Table 16 and Table 17. In general, F2-GMM with true 

identification invariance is the most robust model under various deviation of L-MI deviation in 

recovery of slope factor estimates. The comparative performance between C2-GMM and 1-

GMM was not universal over different L-MI generating configurations. Rather, the order of 

these two models’ performance is mixed depending on the contamination level, MI pattern, item 

intercepts change, and between-class distance. 

4.4.2 Correlated ME 

Difference between over- and appropriately-specified measurement models with respect to 

within-item correlated ME was not systematically associated with recovery of growth rates. This 

finding was somewhat different from the findings in Wirth (2008)’s study who found ignored 

presence of the small amount of within-item unique factor correlation in a two-step procedure 

impacted recovery of growth factor variance estimates. The difference highlights that when 

common factor scores and growth factor scores are modeled sequentially in two steps, even 
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when the within-item unique factor correlation is small, the model used to estimate common 

factor scores need to accommodate the with-item relationship. Otherwise, the growth factor 

variance estimates were impacted by inappropriately estimated common factor scores. However, 

when common factor scores and growth factor scores are modeled simultaneously, the 

measurement model with over-specified within-item unique factor correlation did not hurt the 

accuracy in the underlying growth rates recovery with the magnitude of correlation being small.   

4.4.3 Contamination level, L-MI pattern and non-invariant item intercepts directional 

change 

Item intercepts change was nested within MI pattern which was nested within contamination 

level in the design. The three factors had effect on almost all aspects in growth rates recovery 

except precision in class-specific slope factor variance under MD = 5. The worsen recovery of 

the growth parameters under various measurement conditions were tangled with a couple of 

other factors including 1) mechanism of the scoring from a particular analysis model, 2) specific 

growth parameter, 3) specific latent class, and 4) competing directional change on the item 

parameters. Hence, no universal conclusion on the impact of the three factors can be made. 

Rather, the interaction effects between these factors should be looked at. The three factors 

influenced the magnitude of deviation on growth rates recovery under MD = 5 where it can be 

considered as the influence from deviated L-MI on class-specific growth parameter recovery 

without influence from between-class distance. The performance on the recovery of the 

parameters did not necessarily get worse with more L-MI deviation. However, when the 

generating latent classes were closer (MD = 1.5), the effects of these three factors were no longer  

Significant except directional change on non-invariant item intercepts.  
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Table 16. Summary table of recovery in growth characteristics by each analysis model when MD = 5. 

Outcome of interest 
Accuracy Direction of Bias Precision 

F2-
GMM 

C2-
GMM 

1-
GMM F2-GMM C2-GMM 1-GMM F2-

GMM 
C2-

GMM 
1-

GMM 

Slope Mean (C1) Yes No2 No2 ------ Same as item 
intercepts 

Same as item 
intercepts Yes No2 No2 

Slope Variance (C1) Yes1 No2 No ------ Negative Positive Yes Yes Yes 
Type I error on Slope Mean 

(C1) Yes Yes No             

Slope Mean (C2) Yes1 No2 No2 Negative Same as item 
intercepts 

Same as item 
intercepts Yes1 No2 No 

Slope Variance (C2) Yes1 No2 No Negative Same as item 
intercepts Positive Yes Yes Yes 

Power on Slope Mean (C2) Yes1 No2 No2             
Raw Count Yes Yes Yes ------ ------ ------   

 
  

Overall Accuracy No No No             
Note: 1 indicated exception under NiLpT condition. 2 meant dependent on the generating measurement characteristics including 

contamination %, MI pattern, and item intercepts change. 3 meant marginally. 
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Table 17. Summary table of recovery in growth characteristics by each analysis model when MD = 1.5 

Outcome of interest 
Accuracy Direction of Bias Precision 

F2-
GMM 

C2-
GMM 

1-
GMM 

F2-
GMM C2-GMM 1-GMM F2-

GMM 
C2-

GMM 
1-

GMM 

Slope Mean (C1) Yes No2 No2 ------ Same as item 
intercepts 

Opposite 
between classes Yes No2 No 

Slope Variance (C1) Yes3 No No ------ Negative Positive Yes Yes No 
Type I error on Slope Mean 

(C1) No No No             

Slope Mean (C2) Yes No2 No ------ Same as item 
intercepts 

Opposite 
between classes Yes3 Yes3 No 

Slope Variance (C2) Yes Yes No ------ ------ Positive Yes Yes No 
Power on Slope Mean (C2) No No No           

Raw Count No No No             
Overall Accuracy No No No             

Note: 1 indicated exception under NiLpT condition. 2 meant dependent on the generating item intercepts change. 3 meant 
marginally. 

 

 

 

 

 

 



98 

Item intercepts change or the competing directional change on item intercepts and item 

factor loadings was found to impact the direction in bias of slope factor mean estimates, for the 

analysis models using aggregated relation among item scores (i.e., 1-GMM). More specifically, 

the direction in the change from the item parameters was generally consistent as the direction in 

the bias on the slope factor mean. The results intuitively made sense as the location of scale score 

at each time was defined by both the magnitude and the sign of the item parameters. Hence, 

when there was decreased non-invariance patterns on both of the item intercepts and item factor 

loadings, the model-implied scale score at each time decreased. To capture the decrease, the 

growth rate estimate would decrease, and vice versa, when with an increased non-invariance 

pattern.  

One thing to note was the effect from the pattern of NiLpT. Among the varying 

measurement characteristics, NiLpT condition mimicked the most deviated L-MI assumption. 

All item factor loadings and 3 item intercepts were decreasing under this condition. When latent 

classes were separated well (to make inference without influence from increased overlap), the 

pattern was found associated with unacceptable recovery on both fixed and random effects for 

slope factor in the rare class. Moreover, it produced nearly no power in detecting the slope factor 

mean in the rare class.  

4.4.4 Latent class distance 

The different latent class distances presented different conclusions on effect of L-MI violation, 

model robustness comparison, Type I error and power on slope factor mean recovery and 

necessity of identification invariance assumption.  
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Systematic effect of L-MI violation in predicting growth rates recovery was washed out 

when latent classes were less distinctive. The only exception is the directional change in the non-

invariant item intercepts which significantly impacted the slope factor mean recovery. It 

indicated that the generating between-class distance is interacted with the occurrence of L-MI 

violation. Order of performance between C2-GMM and 1-GMM was also dependent on 

generating latent class distance and specific directional change on the non-invariant item 

parameters. Type I error was controlled and power was satisfactory by the most robust GMM 

model (i.e., F2-GMM) under maintenance of identification invariance when classes were 

separately extremely well. With increased overlap between the latent classes, the Type I error 

was inflated and power was low regardless of the analysis model. As for the identification 

invariance assumption, it was critical in recovery of slope factor estimates under extremely 

distinct classes. However, when the latent classes were more clustered, whether the single item 

used for constraining item parameters truly met identification invariance assumption did not 

matter anymore. With the violation of identification invariance, bias on the slope factor estimates 

produced by F2-GMM was under control.  
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5.0  DISCUSSION 

GMM has been used to study heterogeneous developmental pathways for various subpopulations 

in different disciplines where class-specific latent growth trajectory has been extracted with 

clinically meaningful interpretations. To draw valid conclusions on longitudinal change in the 

measured construct, researchers need to make sure the items repeatedly administrated have 

similar meaning for the respondents over time. Otherwise, comparing mean differences across 

occasions in order to reach conclusion on patterns of change is nothing different from comparing 

apples to oranges.  

From previous research, deviation from L-MI assumption adversely impacted the growth 

characteristics which could be estimated with lack of accuracy and precision. Meanwhile, the 

conclusion on the shape of the growth trajectory could also be altered. As GMM models several 

growth trajectories, L-MI is projected to influence growth recovery when multiple latent classes 

exist. To our knowledge, this study is the first one that examined the impact from L-MI 

assumption deviation on growth characteristics recovery in GMM framework. Recovery on 

class-specific fixed and random effects on the slope factors (slope factor means and slope factor 

variances) and marginal and individual classification rates were investigated using a Monte Carlo 

simulation. Six factors were systematically manipulated in studying the impact of L-MI 

assumption violation and robustness of three alternative GMMs: directional change in non-

invariant item intercepts, patterns of item loadings and item intercepts, percent of items 
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containing a set of non-invariant item parameters, presence of time-adjacent within-item 

correlated measurement error, latent class distances, and different GMM analysis models. 

Accuracy, precision, Type I error, and power were examined on the slope factor parameter 

estimates. Additionally, mixture proportion and individual classification were assessed.  

This chapter summarizes and discusses the results in the order of the general research 

questions presented in Chapter 3, followed by a discussion of the limitation of the study, 

direction for future research, and implication based on the results for applied researchers.  

To recall, the general research questions this study aimed to answer are: 

1) Are growth factors in GMM affected when longitudinal measurement non-invariance 

is present? If yes, what factors contribute to the biased/imprecise growth parameters?  

2) Does the L-MI deviation impact the classification accuracy and if yes, what factors 

contribute to poor classification accuracy?  

3) Do the factors affect the growth parameters and classification accuracy in the same 

way with the same magnitude for each latent class?  

5.1 RQ1: IMPACT ON GROWTH FACTORS 

Growth factor estimates recovery in multiple latent classes was found to be impacted by the 

violation of L-MI, when there was a discrepancy between the generating L-MI configurations 

and the analysis model used to obtain the growth factor estimates.  

Longitudinal measurement non-invariance pattern. Increased bias and decreased 

precision on the slope factor estimates were found with higher contamination level and more 

deviated L-MI pattern. This finding was the same as in LGM with one latent class from Wirth 
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(2008) and Olivera-Aguilar (2013) where the slope factor mean and variability showed the 

largest degree of bias with violation of L-MI assumption. It indicated the bias on the growth rate 

estimate was related to not only the number of non-invariant items but also the non-invariant 

item parameters including both item factor loadings and intercepts.   

Direction of item intercept change. The directional change in non-invariant item 

intercepts had an impact on the direction of bias in slope factor mean estimates for 1-GMM and 

C2-GMM. This study found the direction in the bias on slope factor mean estimates was the 

same as the directional change on the non-invariant item intercepts with decreased item factor 

loading and increased item intercepts, which was similarly concluded in Wirth (2008) and 

Olivera-Aguilar (2013) in one latent class. Hence, this study generalizes the finding into both 

latent classes with competing non-invariance direction between item factor loadings and 

intercepts for both 1-GMM and C2-GMM, regardless of generating between-class distance. This 

study additionally found the opposite direction in class-specific slope factor mean estimate bias 

for 1-GMM under same directional change on non-invariant item intercepts when between-class 

distance was smaller.  

Within-item error correlation. In the current study, the factor of within-item 

measurement error correlation was not associated with explained variability in the accuracy or 

precision of the growth rate estimates (both means and variances). The conclusion was different 

from Wirth (2008)’s study where the measurement error correlation, with the same magnitude, 

was practically significant in impacting the accuracy in growth factor variability. The difference 

in the conclusion might be due to the fact that factor scores (both 1st- and 2nd-order) were 

estimated simultaneously under a specified measurement model in the current study, while Wirth 

used a two-stage process to estimate the growth factors using calculated latent scores. Even 
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though the measurement model with respect to within-item unique factor correlation was over-

specified, the influence of the mis-specification on the recovery of slope factor variability 

estimates in a concurrent step (as in the current study) was not as strong as the systematically 

generated L-MI configuration combined with the alternative scoring models. In contrast, when 

the growth factor scores were estimated in a subsequent step using the factor scores obtained first 

(as in Wirth’s study), the analysis model’s ability in correctly reproducing the within-item 

relationship was more important on recovery of the growth factor scores.  

Analysis model. Among the three analysis models, F2-GMM outperformed C2-GMM and 

the first-order model in terms of their robustness in obtaining accurate growth factor estimates. 

Wirth (2008) made the same conclusion in LGM where the model that assumed L-MI on one 

item was the most robust followed by the same model but with assumed L-MI on all items. The 

model based on mean score composite was the least robust in recovering growth factor estimates 

once there was deviation of L-MI assumption.   

Function of single constrained item for identification invariance. When identification 

invariance held, F2-GMM was able to accommodate the non-invariant item parameters so that 

the underlying (common and growth) factor parameters were recovered well. When 

identification invariance did not hold, it resulted in unacceptable large bias on the average 

growth rate estimate using the F2-GMM which inappropriately put constraint on non-invariant 

item factor loadings. These findings corroborated what were found in Wirth (2008) on the impact 

of identification invariance in LGM. However, it was not found previously that the dominant 

class was free of the impact from violation of L-MI and wrong identification invariance on the 

estimated growth rate.  
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Latent class distance. The impact of L-MI deviation was dependent on how well latent 

classes are separated. The interacted relationship was reflected on growth factor recovery, bias 

direction on growth rates estimates, and the functionality of identification invariance. When the 

latent classes were separated extremely well, L-MI violation had systematic impact on the 

recovery of growth rate estimates. When they were less distinguishable, the original distance 

between the latent classes was confounded with the changing measurement characteristics so that 

effects from contamination level and generating L-MI patterns were washed out leaving only 

choice of analysis model being most influential on recovery of the growth rate estimates 

followed by non-invariant item intercepts change direction.  

The study additionally found the modified conclusion on Type I error and power on the 

slope factor mean estimates. When between-class distance was really large, Type I error and 

power were impacted by violation of L-MI assumption but the impact was reduced to 

negligibility when the model used to obtain the growth factor estimates corresponded to the true 

generating model (i.e., with identification invariance maintained) under various L-MI 

configurations. The robustness of F2-GMM disappeared with increased overlap between latent 

classes in addition to the changing measurement characteristics where Type I error was not 

acceptable and power was not satisfactory. Despite the difference in the above conclusions, the 

shrunk distance between the latent classes had the following similar patterns as compared to the 

situation where between-class separation was extremely well. Unsatisfactory performance in 

classification was still only related to analysis model. Over-fitted within-item unique factor 

correlation similarly did not impact accuracy and precision on growth rate estimates. Order of 

the performance among the analysis models preserved with F2-GMM being the most robust 

under varying L-MI configurations followed by C2-GMM. 1-GMM was not able to recover 
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growth rate estimates well. The hierarchy among the models was reflected from bias and 

precision on both the growth factor means and variances.  

The conclusion on directional bias on the slope factor mean estimates from non-invariant 

item intercepts were similar within each latent class for C2-GMM and 1-GMM where shifted up 

bias was observed with increased item intercepts as compared to invariant item intercepts, and 

vice versa with decreased item intercepts. However, with decreased between-class distance, the 

direction of bias on the slope factor mean estimates by 1-GMM were found to be opposite 

between the two latent classes under the same item intercepts change level. It can be considered 

as the first-order model was trying to maximally separate the location of the growth rate 

estimates for the two classes when they were not as easily distinguishable. As for the 

identification invariance, presence/absence of it did not impact the growth rates recovery, unlike 

when classes were minimally overlapped. Moreover, the failure of maintaining identification 

invariance did not result in differences on class-specific growth rate recovery.  

5.2 RQ2: IMPACT ON CLASSIFICATION RATE 

The recovery on the marginal classification (i.e., mixture proportion in the unit of sample size) 

and accurate overall classification among individuals from the latent classes were not influenced 

by L-MI deviation. Marginal classification was recovered well when latent classes were 

separated really well. Despite this fact, accuracy in the individual classification was not 

satisfactory with L-MI maintenance or not using any of the analysis model. This finding was 

somewhat counter-intuitive. The reason is that individuals are classified into respective latent 

classes based on two factors. One is the identified location of the growth factor (its mean) and 
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the other is the estimated individual deviation from the growth factor means so that each 

individual has an estimated growth factor score (e.g., individual slope). If the violation in L-MI 

has been appropriately accounted for where the growth factor means are recovered well, 

performance on the individual estimates on the growth factor scores are expected to be 

reasonably well so that individual classification should be decent. However, it was not the case 

even under the most stringent L-MI assumption (i.e., strict invariance).  

In Mplus, during classification, each individual was assigned into the latent class with a 

higher estimated posterior probability. A post-hoc analysis was performed on 4 replications 

under MD = 5 to check the differences in the estimated posterior probabilities between the latent 

classes. The descriptive statistics of the posterior probability for each generating latent class into 

the respective correct and incorrect latent class were summarized in Table 18 by each of the 

analysis model. Each mean represents the average posterior probability among the individuals 

classified into the predicted latent class. Each standard deviation indicates how spread out the 

estimated posterior probabilities are. Minimum and maximum columns show the lower and upper 

bound of the estimated posterior probabilities under the specific predicted class.  

From the table, it can be seen that, on average, the average estimated posterior 

probabilities for the correct classification (i.e., predicted class being the same as the generating 

class) were much  higher than the average posterior probabilities for the incorrect classification 

(i.e., predicted class being different from the generating class). It was the case for all analysis 

models regardless of the generating latent class. Additionally, there was no overlap on the ranges 

of the estimated posterior probabilities between the correct classification and the incorrect 

classification by each analysis model (e.g., .63-.99 for predicted C1 from C1 and .00-.39 for
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predicted C2 from C1 by 1-GMM). The conclusion applied to all analysis models among all 

conditions. Hence, the poor individual classifications cannot be explained by the differences in 

estimated posterior probabilities. 

Table 18. Descriptive statistics of posterior probabilities for incorrect and correct classification by each analysis 

model 

On the other hand, the results on the poor individual classification were generally 

consistent as the findings from Liu (2012) who concluded with poor classification accuracy with 

imbalanced mixture proportions. In his study, the percentage of correct assignment of class 

membership ranged in the sixty’s to seventy’s with minimal between-class overlap, which are 

similar to the numbers in this study under similar total sample size and sample size for respective 

latent classes.  

Generating 
Class 

Predicted 
Class Model Mean Std 

Dev Minimum Maximum

C1 

C1 
1-GMM 

0.88 0.13 0.63 0.99 
C2 0.16 0.14 0.00 0.39 
C1 

C2-GMM 
0.94 0.10 0.66 1.00 

C2 0.19 0.11 0.01 0.36 
C1 

F2-GMM 
0.90 0.11 0.66 1.00 

C2 0.16 0.12 0.01 0.36 

C2 

C2 1-GMM 
0.89 0.09 0.68 0.98 

C1 0.15 0.10 0.01 0.33 
C2 C2-GMM 

0.92 0.09 0.66 0.99 
C1 0.18 0.09 0.02 0.31 
C2 F2-GMM 

0.89 0.10 0.66 0.98 
C1 0.16 0.10 0.01 0.32 
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5.3 RQ3: BETWEEN-CLASS DIFFERENCE IN THE IMPACT ON GROWTH 

FACTORS 

Non-invariant item intercepts change direction and analysis model were found to impact slope 

factor mean bias direction similarly for both latent classes. The conclusion applied to different 

MD levels, presence of correlated ME, and combinations of item factor loadings and intercepts. 

However, the impact on other aspects of growth rates recovery from manipulated L-MI 

configurations was not always the same between the latent classes. More specifically, 

contamination %, combination of item intercepts and factor loadings exhibited differential 

effects on slope factor mean and variance bias/RMSE magnitude between the MD levels. Since 

no universal conclusion can be made, the discussion on the different between-class impact on the 

growth rates recovery focuses on the results from F2-GMM as it was the most robust among the 

models under majority of L-MI deviations.  

Under F2-GMM, the impact from inappropriately accounted for L-MI deviation on the 

slope factor recovery was different for the respective latent class. Slope factors were estimated 

with acceptable accuracy and high precision in the dominant class but with large bias and low 

precision in the rare class. As L-MI was evaluated only in one latent class cases in previous 

studies, this finding in the different impact between the latent classes from the same L-MI 

deviation was new.  

In particular, the rare class was more susceptible to the non-invariant loading of the 

identification item (i.e., NiLpT condition) than the dominant class. Wirth (2008) found that both 

slope factor mean and variance estimates had severe bias and low precision when the 

identification item has non-invariant item parameters in LGM. This conclusion applied to only 

the rare class in this study with existence of extremely separated latent classes. With non-
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invariant identification item parameters constrained to be the same in the analysis model, the bias 

from the incorrectly specified measurement model was expected to be forcefully pushed into the 

estimates of growth factor scores. Hence, the finding is somewhat counter-intuitive. With the 

latent classes being extremely well separated, even with the systematically changing item 

parameters which essentially change the overlap between the latent classes, it was expected to 

have clear enough interpretation on the recovery of growth factors. With between-class 

measurement invariance assumed, the same degree of impact from L-MI violation was expected 

between classes, which is not the case in this study. With a larger sample size in the dominant 

class, deviation from L-MI assumption was expected to have a more obvious impact as there was 

more power to detect such violation. Given the above, the reason why the dominant class was not 

impacted by the non-invariance of the identification item might be related to how the growth 

factor means (or location of the growth trajectories) were identified during estimation with 

existence of multiple latent classes. The dominant class might be estimated with more stability 

given its larger sample size as compared to the rare class. With the latent classes being well 

separated, the dominant latent class containing a large proportion of individuals did not suffer 

from deviation of L-MI assumption on its growth rate estimate recovery even when identification 

invariance failed. However, as there was no literature supporting this finding, more analytical 

work is needed to find out the underlying reason for this finding. 

5.4 LIMITATIONS AND FUTURE RESEARCH 

As any other simulation studies, this study inevitably is associated with a few limitations. Since 

the primary purpose of the study is focused on L-MI violations, majority of the simulated factors 
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were about measurement model characteristics. As indicated from the results, there was the 

competing effect between latent class distance and changing measurement characteristics. This 

study is limited in studying the impact of measurement characteristics with fixed mixture 

proportions and only two latent class distances. While extremely well separated latent classes 

was used to evaluate the effect of L-MI deviation, another level of MD could have been 

simulated to be compared to MD = 1.5. Classification accuracy in the study was found to be poor 

and unrelated to variation of L-MI violation. More balanced proportions could have been 

simulated to evaluate the recovery of marginal classification (i.e., mixture proportion) then the 

cell classification (e.g., individual truly generated from the rare class was classified into the rare 

class). Moreover, as this study is the first study that evaluated L-MI violation on growth 

characteristics in multiple latent classes, only linear shaped class-specific growth trajectory was 

included, and the number of latent classes was set as 2 for simplicity in interpretation. In real 

research practice, there was often class-specific non-linear growth and the number of classes was 

more often than 2.  

The future research could focus more on the impact from the latent class configurations 

by varying the mixture proportion and the number of latent classes, and adding more levels to the 

class distance factor. Moreover, non-linear growth pattern can be considered, which increases the 

complexity in estimating separating classes.  

5.5 IMPLICATIONS AND RECOMMENDATIONS 

When latent classes were extremely well separated, there was a more distinct pattern on the 

impact of the measurement characteristics on the growth recovery. F2-GMM is recommended as 
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it was the most robust model with presence of L-MI deviation. Meanwhile, the use of the 

identification item was critical. There was a need to find the item that was truly invariant in 

terms of item factor loading and item intercept to avoid the drift of the scale over time. Growth 

rates can be well recovered when F2-GMM was used. However, researchers should be cautious 

relying solely on the robustness of the F2-GMM. Unbiasedly recovered growth parameters do 

not indicate that there is no necessity in a closer and critical scrutiny to the instrument that is 

used to score the factor. Explicit test on the L-MI assumption is needed. Violation of the L-MI 

could reflect systematic manifestation of the construct and/or the item parameters changing 

relationship to the construct over time. It calls for more than a robust model to ensure the reliable 

use of the instrument, and the valid interpretation on the score from the instrument. Classification 

was not satisfactory among individuals even under minimal or no L-MI deviation. Researchers 

should be cautioned in interpreting individual classification using GMMs.  

When latent classes were not as well separated which was more common in practice, the 

growth recovery was challenged as the latent class distance was tangled with non-invariance 

configuration. The growth rate estimates were marginally recovered by F2-GMM but not the 

other two models. So, F2-GMM is still recommended. One thing to note is that even though the 

growth rates were marginally recovered, the Type I error and power by F2-GMM were 

unacceptable. Hence, the interpretation on the classification is questionable as the clinical 

meaning in how the growth unfolds over time was altered.  

Given the above, appropriate identification of measurement model is critical when latent 

classes were unobserved. Besides tests to use to find identification item, researchers should strive 

to find more items that meet L-MI assumption to the maximal degree to minimize the negative 

impact on the underlying factor scores estimation (i.e., growth parameters). 
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APPENDIX A 

Table A1. Mean raw bias on slope factor mean for C1 under MD = 5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None -0.02 -0.04 -0.01 -0.05 -0.04 -0.01 
0% strong None 0.02 -0.05 -0.02 -0.02 -0.04 -0.02 
50% pLiT None 0.02 -0.03 -0.01 -0.01 -0.03 -0.01 
50% iLpT + 0.03 0.04 -0.02 0.07 0.04 -0.02 
50% pLpT + 0.11 0.05 -0.01 0.06 0.05 -0.01 
100% pLNiT + 0.13 0.08 -0.01 0.11 0.09 -0.01 
100% NiLpT + 0.17 0.04 -0.02 0.14 0.05 -0.01 
50% iLpT - -0.07 -0.12 -0.02 -0.12 -0.11 -0.01 
50% pLpT - -0.03 -0.11 -0.01 -0.06 -0.11 -0.02 
100% pLNiT - -0.11 -0.16 -0.01 -0.07 -0.15 -0.02 
100% NiLpT - 0.01 -0.1 -0.01 -0.02 -0.11 -0.01 
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Table A2. Mean raw bias on slope factor mean for C2 under MD = 5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 0.09 0.00 0.00 0.07 0.00 0.00 
0% strong None 0.10 0.00 0.00 0.08 0.00 0.00 
50% pLiT None 0.08 -0.01 -0.01 0.06 -0.01 0.00 
50% iLpT + 0.17 0.05 0.00 0.16 0.04 0.00 
50% pLpT + 0.15 0.04 0.00 0.13 0.03 0.00 
100% pLNiT + 0.19 0.06 0.00 0.17 0.05 0.00 
100% NiLpT + 0.13 -0.07 -0.12 0.10 -0.07 -0.12 
50% iLpT - 0.03 -0.06 0.00 0.03 -0.06 0.00 
50% pLpT - 0.01 -0.07 0.00 -0.02 -0.07 0.00 
100% pLNiT - -0.04 -0.13 0.00 -0.05 -0.12 0.00 
100% NiLpT - -0.02 -0.18 -0.11 -0.04 -0.18 -0.12 
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Table A3. Mean raw bias on slope factor mean for C1 under MD = 1.5 

   
No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None -0.13 -0.08 -0.02 -0.17 -0.08 -0.02 
0% strong None -0.06 -0.09 -0.03 -0.12 -0.08 -0.03 
50% pLiT None -0.09 -0.06 -0.03 -0.12 -0.06 -0.03 
50% iLpT + -0.12 0.01 -0.03 -0.01 0.01 -0.03 
50% pLpT + 0.02 0.02 -0.02 -0.07 0.02 -0.02 
100% pLNiT + 0.01 0.05 -0.03 -0.01 0.06 -0.03 
100% NiLpT + 0.1 0.01 -0.03 0.06 0.02 -0.02 
50% iLpT - -0.16 -0.16 -0.04 -0.26 -0.14 -0.03 
50% pLpT - -0.13 -0.14 -0.03 -0.17 -0.15 -0.04 
100% pLNiT - -0.22 -0.18 -0.02 -0.15 -0.18 -0.04 
100% NiLpT - -0.07 -0.13 -0.02 -0.13 -0.14 -0.03 
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Table A4. Mean raw bias on slope factor mean for C2 under MD = 1.5 

   
No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 0.30 -0.04 0.00 0.27 -0.01 0.00 
0% strong None 0.32 -0.04 0.00 0.31 -0.02 0.01 
50% pLiT None 0.29 -0.02 0.00 0.31 -0.03 0.01 
50% iLpT + 0.36 0.04 0.00 0.38 0.05 0.00 
50% pLpT + 0.39 0.06 0.01 0.37 0.06 0.03 
100% pLNiT + 0.44 0.08 -0.01 0.42 0.08 0.01 
100% NiLpT + 0.48 0.02 -0.01 0.41 0.03 -0.02 
50% iLpT - 0.22 -0.12 -0.02 0.13 -0.13 -0.01 
50% pLpT - 0.23 -0.12 0.00 0.18 -0.12 -0.02 
100% pLNiT - 0.23 -0.15 0.00 0.23 -0.15 0.00 
100% NiLpT - 0.29 -0.15 -0.04 0.28 -0.12 -0.04 
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Table A5. Mean relative bias on slope factor variance for C1 under MD = 5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 0.89 -0.03 -0.01 1.80 0.00 0.00 
0% strong None 1.51 0.02 0.00 1.02 -0.03 -0.04 
50% pLiT None 0.89 -0.09 -0.05 1.40 -0.05 -0.02 
50% iLpT + 2.00 -0.07 0.02 1.17 -0.06 0.00 
50% pLpT + 0.82 -0.14 -0.02 1.51 -0.14 -0.04 
100% pLNiT + 1.27 -0.17 0.00 1.30 -0.13 -0.03 
100% NiLpT + 1.08 -0.28 -0.26 1.00 -0.33 -0.29 
50% iLpT - 1.17 -0.04 -0.04 1.67 -0.03 -0.03 
50% pLpT - 1.35 -0.09 -0.04 1.07 -0.09 -0.02 
100% pLNiT - 1.59 -0.05 0.00 0.75 -0.11 -0.02 
100% NiLpT - 0.89 -0.27 -0.26 1.09 -0.24 -0.27 
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Table A6. Mean relative bias on slope factor variance for C2 under MD = 5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 0.31 -0.01 0.00 0.23 -0.01 -0.01 
0% strong None 0.35 0.00 0.00 0.31 0.01 0.01 
50% pLiT None 0.46 -0.03 0.03 0.31 -0.06 0.00 
50% iLpT + 0.43 -0.05 0.01 0.36 -0.07 0.01 
50% pLpT + 0.38 -0.14 -0.03 0.34 -0.12 0.01 
100% pLNiT + 0.43 -0.13 0.01 0.32 -0.14 0.03 
100% NiLpT + 0.65 -0.31 -0.25 0.37 -0.33 -0.27 
50% iLpT - 0.40 0.01 0.01 0.43 0.05 0.04 
50% pLpT - 0.43 -0.06 0.00 0.32 -0.02 0.03 
100% pLNiT - 0.45 -0.02 0.03 0.29 -0.06 -0.02 
100% NiLpT - 0.53 -0.30 -0.29 0.39 -0.26 -0.26 
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Table A7. Mean relative bias on slope factor variance for C1 under MD = 1.5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 1.58 -0.07 -0.04 3.45 -0.01 0.00 
0% strong None 2.75 0.06 0.01 1.84 -0.03 -0.07 
50% pLiT None 1.49 -0.12 -0.08 2.58 -0.04 -0.03 
50% iLpT + 3.71 -0.08 0.04 2.11 -0.04 0.01 
50% pLpT + 1.31 -0.20 -0.07 2.79 -0.14 -0.06 
100% pLNiT + 2.22 -0.19 0.02 2.39 -0.11 -0.06 
100% NiLpT + 1.72 -0.21 -0.24 1.68 -0.33 -0.31 
50% iLpT - 2.07 -0.06 -0.06 3.12 -0.06 -0.06 
50% pLpT - 2.36 -0.12 -0.08 1.91 -0.12 -0.02 
100% pLNiT - 2.87 -0.06 -0.01 1.25 -0.19 -0.05 
100% NiLpT - 1.33 -0.28 -0.26 1.86 -0.21 -0.28 
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Table A8. Mean relative bias on slope factor variance for C2 under MD = 1.5 

   
No Correlated ME Correlated ME 

Contamination 
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 4.22 0.10 0.01 4.00 0.02 0.07 
0% strong None 4.33 0.05 -0.01 3.64 0.14 0.08 
50% pLiT None 3.57 0.11 0.08 3.69 0.01 0.02 
50% iLpT + 4.55 0.08 0.08 3.78 -0.07 -0.02 
50% pLpT + 4.36 0.07 0.06 2.91 -0.07 0.02 
100% pLNiT + 4.89 -0.19 -0.06 4.53 -0.08 0.05 
100% NiLpT + 4.40 -0.18 -0.17 3.57 -0.25 -0.23 
50% iLpT - 4.20 0.00 0.06 2.70 -0.07 0.00 
50% pLpT - 3.16 0.04 0.08 2.23 -0.05 -0.03 
100% pLNiT - 5.46 -0.16 -0.07 3.44 -0.11 -0.05 
100% NiLpT - 4.48 -0.18 -0.06 4.61 -0.27 -0.19 
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Table A9. Mean overall classification for C1 under MD = 5 

   
No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 804 804 804 802 802 802 
0% strong None 803 803 803 802 802 802 
50% pLiT None 802 802 802 803 803 802 
50% iLpT + 803 803 803 802 802 802 
50% pLpT + 805 805 805 803 802 803 
100% pLNiT + 802 802 802 803 803 803 
100% NiLpT + 803 802 802 803 803 803 
50% iLpT - 802 802 802 802 802 802 
50% pLpT - 802 802 802 802 802 802 
100% pLNiT - 803 803 803 804 804 804 
100% NiLpT - 804 804 804 803 803 803 
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Table A10. Mean overall classification for C2 under MD = 5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 196 196 196 198 198 198 
0% strong None 197 197 197 198 198 198 
50% pLiT None 198 198 198 197 197 198 
50% iLpT + 197 197 197 198 198 198 
50% pLpT + 195 195 195 197 198 197 
100% pLNiT + 198 198 198 197 197 197 
100% NiLpT + 198 198 198 197 197 197 
50% iLpT - 198 198 198 198 198 198 
50% pLpT - 198 198 198 198 198 198 
100% pLNiT - 197 197 197 196 196 196 
100% NiLpT - 196 196 196 197 197 197 
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Table A11. Mean overall classification for C1 under MD = 1.5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 548 469 653 541 474 704 
0% strong None 584 451 666 562 462 658 
50% pLiT None 496 531 662 523 513 650 
50% iLpT + 495 515 655 561 527 668 
50% pLpT + 557 565 689 519 557 696 
100% pLNiT + 523 496 653 510 492 671 
100% NiLpT + 627 468 641 573 524 687 
50% iLpT - 544 455 613 452 460 659 
50% pLpT - 528 488 698 468 483 618 
100% pLNiT - 539 460 640 585 498 659 
100% NiLpT - 558 506 687 513 463 658 
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Table A12. Mean overall classification for C2 under MD = 1.5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 452 531 347 459 526 296 
0% strong None 416 549 334 438 538 342 
50% pLiT None 504 469 338 477 487 350 
50% iLpT + 505 485 345 439 473 332 
50% pLpT + 443 435 311 481 443 304 
100% pLNiT + 477 504 348 490 508 329 
100% NiLpT + 373 532 359 427 476 313 
50% iLpT - 456 545 387 548 540 341 
50% pLpT - 472 513 302 532 517 382 
100% pLNiT - 461 540 360 415 502 341 
100% NiLpT - 442 494 313 487 537 342 
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Table A13. Mean individual classification for C1 under MD = 5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 448 526 417 475 545 385 

0% strong None 537 619 475 537 595 467 

50% pLiT None 479 552 494 440 642 440 

50% iLpT + 545 557 479 514 584 436 

50% pLpT + 445 604 480 452 568 428 

100% pLNiT + 498 591 502 413 580 471 

100% NiLpT + 439 575 448 394 638 494 

50% iLpT - 564 626 463 513 595 455 

50% pLpT - 474 602 482 502 614 424 

100% pLNiT - 521 584 452 480 561 522 

100% NiLpT - 391 612 464 386 592 479 
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Table A14. Mean individual classification for C2 under MD = 5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 109 126 102 116 131 95 

0% strong None 129 148 115 130 143 114 

50% pLiT None 116 133 120 107 153 108 

50% iLpT + 131 133 116 124 140 107 

50% pLpT + 107 143 115 110 136 105 

100% pLNiT + 121 142 122 101 139 114 

100% NiLpT + 107 138 110 97 152 119 

50% iLpT - 136 150 113 124 142 111 

50% pLpT - 116 144 117 122 147 104 

100% pLNiT - 125 139 110 116 134 125 

100% NiLpT - 95 145 112 95 141 116 
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Table A15. Mean individual classification for C1 under MD = 1.5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 341 280 341 317 290 320 
0% strong None 322 267 320 317 273 375 
50% pLiT None 270 317 330 317 279 311 
50% iLpT + 259 326 375 311 327 318 
50% pLpT + 309 304 372 283 307 378 
100% pLNiT + 279 282 370 290 314 341 
100% NiLpT + 377 259 326 327 312 354 
50% iLpT - 303 289 298 245 298 312 
50% pLpT - 302 282 330 264 291 319 
100% pLNiT - 337 276 343 331 285 350 
100% NiLpT - 329 294 360 293 264 367 
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Table A16. Mean individual classification for C2 under MD = 1.5 

 No Correlated ME Correlated ME 

Contamination  
L-MI 

Pattern 

Directional 
Change on 

Item 
Intercepts 

1-
GMM 

C2-
GMM 

F2-
GMM 

1-
GMM 

C2-
GMM 

F2-
GMM 

0% strict None 215 169 182 246 126 161 
0% strong None 220 157 182 231 146 175 
50% pLiT None 295 129 177 246 133 177 
50% iLpT + 294 128 169 253 135 171 
50% pLpT + 242 130 147 252 115 149 
100% pLNiT + 253 142 179 245 151 179 
100% NiLpT + 199 146 174 218 122 161 
50% iLpT - 241 141 206 279 139 183 
50% pLpT - 256 141 148 253 145 189 
100% pLNiT - 238 153 178 213 134 179 
100% NiLpT - 259 141 156 247 154 212 
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