
 

1 
 

ON THE USE OF FIXED POINT THEORY TO DESIGN COUPLED CORE WALLS  

Abdelatee A. Eljadei
1
, Kent A. Harries

2
  

 

ABSTRACT 

The use of Fixed Point Theory (FPT) to optimize the design of coupling beams in coupled core 

wall (CCW) systems is demonstrated. The basis for optimization is minimizing the 

transmissibility of horizontal ground motion by appropriately linking two coupled wall piers 

having different dynamic properties with beams having appropriate stiffness and damping 

characteristics. Using 21 example CCW structures illustrating a range of pier properties, it was 

shown that the resulting optimization of coupling stiffness is quite small and other design 

considerations will require stiffer, non-optimal coupling beams. Nonetheless, the potential to 

leverage the small amount of coupling available in a ‘slab-coupled’ series of wall piers in order 

to reduce transmissibility is suggested by the findings of this study. 

 

INTRODUCTION 

Hull and Harries (2008) identified Fixed Point Theory (FPT) as having potential applications to 

the performance-based design (PBD) of coupled core wall (CCW) systems. They identified the 

potential transition from CCW behavior under service lateral loads to a system of linked wall 

piers (LWP) under design seismic loads. Their work focused on the performance of the LWP 

system. Hull and Harries proposed a novel measure of performance: minimization of 

transmissibility of horizontal ground motion through the optimization of coupling beam stiffness 

resulting in the optimal engagement of two wall piers. Transmissibility is simply defined as the 

ratio of structural deflection to input horizontal ground motion. With the exception of very stiff 

structures, transmissibility is typically greater than unity. In a structure composed of multiple 

linked structural elements, transmissibility is affected by the ratio of dynamic properties of the 

coupled elements and the connection between these. By varying the relationship between 

dynamic properties of elements, transmissibility may be changed. Structures composed of 

dynamically identical components cannot be optimized using FPT; in such a case transmissibility 

is only a function of the sum of the element stiffnesses (Hull and Harries 2008).   
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In this paper, the practical application of optimizing coupling beam stiffness between 

dynamically dissimilar wall piers using FPT will be investigated. The hypothesis being that the 

stiffness of the coupling beams for a given set of wall piers may be optimized to improve the 

CCW and subsequent LWP response to earthquake excitation. As shown in Figure 1, each wall 

pier is idealized as a single degree of freedom (SDOF) system having mass, stiffness and 

damping, mi, ki and ci. The stiffness and damping (kb and cb, respectively) of the coupling 

continuum are represented by a spring and dashpot system and may be optimized so as to 

minimize lateral deflections X1 and X2 for a ground excitation U (Iwanami et al. 1996). 

 

Figure 1 Idealized 2DOF system for application of fixed point theory (adapted from Hull and Harries 2008) 

 

In this study, CCW prototype structures similar to those previously identified by Harries 

et al. (2004a) are used. These are 12 storey structures that have seven individual pier geometries 

labeled A through G, shown schematically in Table 1. The thickness of the wall piers is 0.35 m 

and the uniform storey height is 3.6 m. The other dimensions and resulting wall pier areas and 

moments of inertia are presented in Table 1. The coupling beam geometric information is not 

relevant at this point; indeed, this analysis is intended to lead to coupling beam stiffness 

requirements. The individual wall piers are paired into two-pier CCW systems, each pier 

matched with each other pier resulting in 28 unique analysis cases. Optimal coupling of identical 

wall piers based on transmissibility is meaningless (i.e.: Wall A coupled to Wall A); thus the 

number of unique analyses is 21. For example, case 16 (Wall D coupled to Wall E) is shown in 

Figure 2. 
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Table 1 Wall pier dimensions used in FPT analysis (Harries et al. 2004a) 

Wall 

Wall 

flange 

(hwall) 

Wall web 

(lwall) 

Gross 

wall area 

(Ag) 

Gross 

wall 

inertia 

(Ig) 

 Wall geometry 

m m m
2
 m

4
 

 

A 7.00 9.00 7.80 40.20 

B 6.00 3.00 5.01 18.00 

C 4.00 3.00 3.60 5.83 

D 5.00 6.00 5.35 13.86 

E 3.00 6.00 3.96 3.32 

F 3.00 3.00 2.91 2.61 

G 4.00 9.00 5.70 8.51 

 

 

Figure 2 Example of prototype CCW Plan: Case 16: coupled Walls D and E 

 

DERIVATION OF THE EQUIVALENT SDOF STRUCTURE 

In order to model each MDOF wall pier as a SDOF system, it is represented by a massless beam-

column member supporting a lumped mass at the top (Figure 1). Each beam-column is assigned 

geometric and material properties of the wall pier. The eigenvector method (Seto et al. 1987) is 

used to establish the equivalent SDOF mass. For each analysis case, the mass of the MDOF wall 

pier takes the form of a diagonal mass matrix, Mi, with the diagonal values representing the 

portion of the storey mass assigned to each wall pier, i, based on its relative sectional area.  

 Each MDOF cantilever wall pier is assumed to have a fixed base and a single DOF at 

each floor level. The resulting stiffness matrix for each wall is therefore: 



 

4 
 

 



































iXiX

iXiX

iXiX

iXiXiX

iXiX

i

kk

k2k0...

2kk0

0k2kk

...0k2k

K  (1) 

 

In which the lateral stiffness associated with each floor, x, of each wall, i, is kix = 12EIix/h
3
. 

 The eigenvalues, ωin, representing the natural frequencies, and the eigenvectors, φin, 

representing the solution to the undamped free vibration equation of each wall, Miẍ + Kix = 0, 

are calculated. The effective equivalent SDOF modal mass of each wall, Min, corresponding to 

each mode, n, is (Chopra 2009): 

 
 
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T
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N

i i

in
φMφ

φm
m


  (2) 

Where N is the number of degrees of freedom (storeys) in the MDOF structures, and mi is the 

storey mass associated with each DOF. The equivalent SDOF stiffness of each wall, Kin, is 

defined as (Chopra 2006): 

 in
2
nin mωk   (3) 

For the present study, only the fundamental natural frequency is considered; thus n =1 in 

all equations. Due to the assumed vertical uniformity of the wall piers, considering only the first 

mode results in a modal participation factor equal to greater than 0.90 in all cases (Eljadei 2012).  

 

FIXED POINT THOERY 

Using the SDOF systems derived in the previous section, FPT is used to determine optimal 

values of coupling stiffness, kb, and damping, cb, that result in the lowest transmissibility for the 

2DOF system shown in Figure 1. The transmissibility is defined as the ratio of the structure top 

displacement (xi) to the displacement induced by the ground motion (u). The complete derivation 

of the closed-form solutions for the 2DOF system using FPT is presented in Richardson (2003); 

only necessary equations are presented here. In this formulation, it is mathematically necessary 

to designate walls 1 and 2 such that the frequency ratio, γ = ω2/ω1 > 1.0. The equation of motion 

for each individual SDOF is (Iwanami et al. 1996): 

      12b12b1111 xxcxxkxukxm  
   

(1a) 
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      21b21b2222 xxcxxkxukxm  
   

 (4b) 

 Where all parameters are shown in Figure 1. Considering that the system is subjected to 

harmonic motion, Iwanami et al. (1996) derived the displacement transmissibility, x1/u and x2/u, 

shown in Equations 5a and 5b for two SDOF piers connected at the top. The equations are 

functions of the properties of each SDOF pier as well as the connecting element properties. 
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Where ω = the forcing function frequency 

ωi = natural frequency of wall pier i: iii /mkω   

η = fixed point stiffness ratio: 1b/kkη  

μ = the mass ratio of the wall piers: 12/mmμ   

ζ = damping ratio:  22b km2/cζ   

Figure 3 shows a schematic representation of the two transmissibility equations plotted 

by ranging the damping, ζ, from zero and infinity. Three curves result: one for each DOF (wall 

pier) when the damping is set to zero and a third curve for both walls when ζ = ∞. Setting ζ = ∞ 

in the latter case effectively constrains the two SDOF systems to behave as a single unit, and 

consequently the two walls have the same displacement and transmissibility (Hull and Harries 

2008). The points P and Q in Figure 3 are the fixed points (FPT is also referred to as P-Q theory), 

corresponding to the maximum values of the transmissibility equations 5a and 5b. Hull and 

Harries (2008) showed that the optimal transmissibility of the system is achieved when the 

transmissibility values of P and Q are equal. The value of the fixed point stiffness ratio 

corresponding to this optimum case is obtained (Richardson 2003) as η = U/L; where: : 
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The optimum damping ratio, cb, of the connecting element is taken as the average of the 

damping values associated with points P and Q (Hull and Harries 2008). Hull and Harries present 

the interaction of stiffness and damping properties and demonstrate that near the P and Q points, 

the optimization is relatively insensitive to the selection of damping, particularly in the range 

typical of engineered structures. Indeed, ‘near optimal’ solutions may exist for a relatively wide 

range of properties (Hull and Harries 2008). In this research only the optimum stiffness of the 

coupling beams is considered in addressing the objectives of the study. 

 

Figure 3 Schematic representation of transmissibility (Hull 2006) 
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PARAMETRIC ANALYSIS OF PROTOTYPE STRUCTURES 

Twenty one prototype structures representing all combinations of different wall piers provided in 

Table 1 are used to explore the use of the FPT in optimizing CCW behavior. In these analyses, 

cracked concrete section properties are considered. In the calculation of the stiffness matrix (Eq. 

1), the hinge region of the twelve-storey wall piers is assumed to form in the first two storeys, 

where a flexural stiffness of 0.35EIg was used; 0.7EIg was used for the upper ten storeys. The 

modulus of elasticity of concrete was assumed to be E = 28500 MPa. The total storey mass is 

assumed to be 10000 kN which is assigned to each wall pier based on its relative sectional area. 

The results, including the calculated optimal stiffness and damping ratios for the connecting 

elements, of the FPT analyses are summarized in Table 2 for the 21 cases.  

When the natural frequency ratio, γ, approaches 1.0, the calculated fixed point stiffness 

ratio approaches zero. This represents the trivial case where two identical SDOF systems will 

have continued identical dynamic behavior (and thus equal transmissibility) regardless of the 

level of coupling and/or damping provided. Additionally, in the closed-form solution, when the 

product of the mass and frequency ratios, µγ, falls below 1.0, the optimization process yields 

negative stiffness values (cases 15 and 19 in Table 2). Although mathematically correct, such 

results are not physically meaningful — indicating a negative stiffness is required for 

optimization. In essence, coupling the wall piers in this case results in increased transmissibility 

compared to a system of uncoupled walls (Hull and Harries 2008). 

 

DISTRIBUTION OF 2DOF OPTIMUM STIFFNESS TO MDOF SYSTEM 

Having calculated the optimal stiffness, the next step is to determine the geometric dimensions of 

the coupling beams for these 12-storey prototype structures. The optimal coupling stiffness, kb, is 

distributed to all coupling beams of the CCW system. This distribution of the total stiffness 

among the coupling beams should be proportional to the shear demand in the coupling beams 

associated with lateral loading, but as preliminary trial, a constant distribution is used. The beam 

stiffness and dimensions can then be determined: 

 
b

bb

b

b
bi

L

Ewhα2

L

EAα2

N

k
k                                         (9) 

Where hb, wb, and lb are the coupling beam depth, width, and length respectively. N = 12 

is the number of storeys and the factor 2 accounts for the two beams per storey (Figure 2). The 
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factor α = 0.1 is the reduction factor for axial stiffness in tension for reinforced concrete coupling 

beams (Kabeyasawa et al. 1983). The width and length of the coupling beams are assumed for all 

combinations to be equal to 0.35 m and 2.0 m, respectively (Figure 2). Thus, the required depth, 

hb, of a single coupling beam can be determined. These calculated values are shown in Table 2. 

In most cases, the depth of beam, hb, required to generate the coupling stiffness required, kbi, is 

less than the thickness of a typical concrete slab. 

Table 2 Optimization results of connecting elements using FPT 

Case 

Properties of Wall 1 Properties of Wall 2 Ratios Properties of connecting elements 

Wall m1 k1 ω1 Wall m2 k2 ω1 μ γ  cb η kb h 

 
 Kg kN/m rad - Kg kN/m rad m2/m1 ω2/ω1 - kb/k1 kN/m m 

  x 10
5
 x 10

5
   x 10

5
 x 10

5
      x 10

4
  

1 B 43.05 118.79 52.5 A 67.13 265.61 62.9 1.56 1.20 0.046 0.059 70.63 0.058 

2 C 34.88 38.38 33.2 A 75.30 265.61 59.4 2.16 1.79 0.084 0.632 242.26 0.201 

3 D 44.80 91.50 45.2 A 65.38 265.61 63.7 1.46 1.41 0.083 0.149 136.16 0.113 

4 E 37.07 21.89 24.3 A 73.12 265.61 60.3 1.97 2.48 0.115 1.518 332.74 0.277 

5 F 29.92 17.22 24.0 A 80.27 265.61 57.5 2.68 2.40 0.082 1.760 302.09 0.253 

6 G 46.55 56.19 34.8 A 63.63 265.61 64.6 1.37 1.86 0.132 0.430 242.26 0.201 

7 C 46.12 38.38 28.9 B 64.07 118.79 43.1 1.39 1.49 0.097 0.181 69.47 0.058 

8 D 56.92 91.50 40.1 B 53.27 118.79 47.2 0.93 1.18 0.059 0.007 6.13 0.006 

9 E 48.60 21.89 21.2 B 61.59 118.79 44.0 1.27 2.07 0.154 0.556 122.01 0.101 

10 F 40.43 17.22 20.6 B 69.61 118.79 41.3 1.72 2.01 0.115 0.731 125.51 0.104 

11 G 58.67 56.19 30.9 B 51.52 118.79 48.0 0.88 1.55 0.141 0.072 40.57 0.034 

12 C 44.37 38.38 29.4 D 65.82 91.50 37.3 1.48 1.27 0.060 0.082 31.52 0.027 

13 E 57.65 21.89 19.5 C 52.54 38.38 27.0 0.91 1.39 0.109 0.037 8.17 0.006 

14 F 49.18 17.22 18.7 C 61.00 38.38 25.1 1.24 1.34 0.083 0.082 14.01 0.012 

15 G 67.42 56.19 28.8 C 42.61 38.38 30.0 0.63 1.04 0.017 -0.005 -2.77 - 

16 E 46.85 21.89 21.6 D 63.34 91.50 38.0 1.35 1.76 0.125 0.345 75.60 0.064 

17 F 38.82 17.22 21.0 D 71.36 91.50 35.8 1.84 1.70 0.093 0.454 77.93 0.064 

18 G 56.77 56.19 31.4 D 53.27 91.50 41.4 0.94 1.32 0.093 0.028 15.62 0.012 

19 E 63.48 21.89 18.6 F 46.70 17.22 19.2 0.73 1.03 0.013 -0.003 -0.58 - 

20 E 45.10 21.89 22.0 G 65.09 56.19 29.4 1.44 1.33 0.073 0.107 23.50 0.018 

21 F 37.21 17.22 21.5 G 72.97 56.19 27.8 1.96 1.29 0.051 0.143 24.52 0.021 
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DISCUSSION OF USE OF FPT OPTIMIZATION 

Based on the fixed point theory (FPT) approach presented, it is seen that the performance 

objective of minimizing the transmissibility of horizontal ground motion through the 

optimization of coupling beam stiffness results in very small levels of required coupling 

stiffness. The ‘required’ coupling beam dimensions are generally smaller than the depth of the 

concrete slab, let alone a practically dimensioned coupling beam.  

Such low levels of coupling stiffness are structurally impractical using either concrete or 

steel coupling beams and would result in unacceptably low values for the degree of coupling 

(doc). The premise of the FPT optimization is to permit the structure to degrade from a CCW to 

a LWP structure, essentially allowing the doc to fall to zero under the effects of significant 

ground motion (Eljadei 2012). Nonetheless, the coupling elements in a typical CCW geometry 

also participate in the gravity load resistance and must maintain sufficient residual capacity to do 

so. The calculated beam dimensions in this case were generally inadequate to provide the 

required residual capacity. The effect of providing coupling stiffness based on practical coupling 

beam designs is to move the dynamic system away from the optimum case for minimizing 

transmissibility. That is to say, other design considerations – primarily the target doc (El-Tawil et 

al. 2009) will control the design of these coupling beams. 

FPT applications in structural engineering are generally most applicable to problems 

having large frequency ratios (γ = ω2/ω1) such as when isolating vibrating equipment from a 

structure. In practice, the frequency ratio of practical CCW systems (considering structural 

layout and efficient resistance of lateral load) will rarely exceed γ = 2.0. This relatively low ratio 

makes optimization impractical or trivial with respect to the global structural performance. 

Considerably more research is necessary to identify a design space in which FPT is useful 

to the structural designer. As guidance for future study, the following applications are suggested: 

1. The anticipated seismic performance of shear wall structures (those resisting lateral 

forces only through the summation of wall moments) may be enhanced by considering 

the beneficial effect of the small degree of coupling resulting from the presence of the 

floor diaphragm. While the diaphragm is not assumed to develop coupling frame action, 

it does act as a link between piers, affecting some interaction between individual piers 

and therefore also affecting the transmissibility of ground motion. Such an approach is 

not likely necessary in initial design but may serve the objectives of the seismic 
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assessment of existing structures. The beneficial effects of ‘slab coupling’ may mitigate 

the need for seismic strengthening in some cases. 

2. ‘Mega-coupled’ wall structures are those having coupling elements at only a few discreet 

locations rather than at each floor. Such systems are analogous to ‘outrigger’ structures 

which are relatively common in modern high-rise design. The performance of such 

structures, which is dominated by few structural degrees of freedom, may benefit from 

the CCW to LWP design approach and therefore from the FPT optimization approach. 

 

CONCLUSION 

Based on the results presented, the primary objectives of this study of investigating the evolution 

process of a CCW structure to a collection of LWP structures does not appear to be enhanced 

through the FPT optimization of transmissibility between dynamically different wall piers. Other 

practical design considerations including the core having a practical floor plan and the need to 

develop a doc > 50% for an efficient CCW system (El-Tawil et al. 2009) appear to control the 

design of coupling beams. The use of the FPT approach to optimizing transmissibility is best 

suited to systems having large frequency ratios (γ = ω2/ω1); Practical CCW systems will rarely 

exceed γ = 2.0.  
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