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MATHEMATICAL MODELING IN SYSTEMS MEDICINE: NEW

PARADIGMS FOR GLUCOSE CONTROL IN CRITICAL CARE

Ari Pritchard-Bell, PhD

University of Pittsburgh, 2016

Stress hyperglycemia occurs frequently in critical care patients and many of the harmful

repercussions may be mitigated by maintaining glucose within a “healthy” zone. While the

exact range of the zone varies, glucose below 80 mg/dl or above 130 mg/dl increases risk of

mortality. Zone glucose control (ZGC) is accomplished primarily using insulin administration

to reduce hyperglycemia. Alternatively, we propose also allowing glucose administration to

be used to raise blood glucose and avoid hypoglycemia.

While there have been attempts to create improved paradigms for treatment of stress

hyperglycemia, inconsistencies in glycemic control protocols as well as variation in outcomes

for different ICU subpopulations has contributed to the mixed success of glucose control in

critical care and subsequent disagreement regarding treatment protocols. Therefore, a more

accurate, personalized treatment that is tailored to an individual may significantly improve

patient outcome. The most promising method to achieve better control using a personalized

strategy is through the use of a model-based decision support system (DSS), wherein a

mathematical patient model is coupled with a controller and user interface that provides for

semi-automatic control under the supervision of a clinician.

Much of the error and subsequent failure to control blood glucose comes from the failure

to resolve inter- and intrapatient variations in glucose dynamics following insulin administra-

tion. The observed variation arises from the many biologically pathways that affect insulin

signaling for patients in the ICU. Mathematical modeling of the biological pathways of stress

hyperglycemia can improve understanding and treatment.
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Trauma and infection lead to the development of systemic insulin resistance and elevated

blood glucose levels associated with stress hyperglycemia. We develop mathematical models

of the biological signaling pathways driving fluctuations in insulin sensitivity and resistance.

Key metabolic mediators from the inflammatory response and counterregulatory response are

mathematically represented acting on insulin-mediated effects causing increases or decreases

in blood glucose concentration. Data from published human studies are used to calibrate

a composite model of glucose and insulin dynamics augmented with biomarkers relevant to

critical care. The resulting mathematical description of the underlying mechanisms of insulin

resistance could be used in a model-based decision support system to estimate patient-specific

metabolic status and provide more accurate insulin treatment and glucose control for critical

care patients.
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1.0 INTRODUCTION

Critical illness is often concomitant with metabolic dysregulation. The most common man-

ifestation of metabolic dysregulation in the intensive care unit (ICU) is elevated levels of

blood glucose, also known as stress hyperglycemia [1, 2]. Severity and duration of stress

hyperglycemia are directly correlated to mortality and morbidity in the ICU [3, 4]. Data

from the High-Density Intensive Care (HIDENIC) database, collected from the University of

Pittsburgh Medical Center (UPMC), was compiled in Figure 1 and demonstrates a clear ad-

vantage of maintaining glucose within a zone of 110 to 130 mg/dl. This association persisted

after adjustment for a large number of known and potential confounders. Mortality increases

for average glucose values of greater than 130 mg/dl and rapidly increases for values decreas-

ing below 80 mg/dl. Therefore, we propose a lower bound to the zone 110 mg/dl to provide a

safety margin to protect against hypoglycemia. Additional studies show hypoglycemia [5, 6]

and overall glycemic variability [7, 8] correlate with worsened outcomes for patients in criti-

cal care. Our hypothesis, from retrospective observational studies [3, 9, 10, 11], is that there

exists a normoglycemic range of blood glucose values that, if maintained, results in decreased

mortality and morbidity in the ICU. Therapeutic intervention (e.g., the administration of the

anabolic hormone insulin, glucose, or the catabolic hormone glucagon) is essential to mitigate

the harmful repercussions of dysglycemia. A plausible solution to maintain the aforemen-

tioned ideal range is through the implementation of zone glucose control (ZGC). The primary

challenge in implementing ZGC in critical care revolves around identifying metabolic vari-

ability. Unlike the ambulatory diabetic, insulin sensitivity can fluctuate rapidly within an

individual resulting in dynamics that are difficult to predict. Additionally, changing critical

care conditions such as surgeries [12], inflammation [13], and drug administration [14] may
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Figure 1: Mortality percentage vs. average glucose in HIDENIC (High-Density Intensive

Care) study database. Mortality minimum for normal glycemic range seen between 80 and

130 mg/dl. Mortality gradually increases for values rising above 130 mg/dl, and steeply rises

for values falling below 80 mg/dl.

further confound attempts for glucose control. To gain better insight, and ultimately better

dynamic predictions, we focus on the biological mechanisms governing human metabolism.

Human metabolism is a robust process through which the body adapts substrate utiliza-

tion based on relative availability of macronutrients such as proteins, carbohydrates, and fat.

In addition to substrate availability, metabolic processes are heavily influenced by changes

in immune system and hormonal fluctuations [15]. Metabolism has evolved to allow sur-

vival under extreme conditions such as starvation, injury, and many other changes in our

environment. Though we are able to adapt quickly and effectively, there can be long-term
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consequences that become apparent after immediate danger has subsided. For example,

the physiological response to infection or trauma is to maintain energy substrate supply

(e.g., blood glucose) and avoid catastrophic system failure caused by hypoglycemia. Hyper-

glycemic detriments accrued from the naturally aggressive avoidance of hypoglycemia are

evolutionarily tolerated because they cause health problems which, unlike immediate hypo-

glycemic system failure, develop over the course of days and months and are beyond the

scope of imminent survival [16]. The resulting asymmetry of endogenous blood glucose con-

trol mechanisms cause pathologies coinciding with moderate to extreme inflammation that

induces a prolonged state of hyperglycemia. The consequences of an over active endogenous

response to physiological stress must be mediated to avoid the long-term damaging effects

of persistent activation. This cascade is triggered by severe trauma and must be critically

addressed in the same manner as short-term risk.

1.1 GLYCEMIC CONTROL IN CRITICAL CARE

In 2001 a prospective randomized controlled trial was performed on over 1,500 patients in the

Leuven ICU showing that tight glycemic control (TGC), through administration of insulin,

reduced mortality from 8% to 4.6% [17]. This landmark study generated new paradigms for

insulin therapy in the critical care population [18]. In a similar study [19] on 800 critically ill

patients, TGC reduced mortality 29.3% and overall length of stay (LOS) by 10.8%, with no

significant changes in hypoglycemia. Treating stress hyperglycemia through insulin adminis-

tration exhibited decreased mortality as expected from the retrospective literature showing

hyperglycemia correlating to mortality [20].

Despite the literature and prospective studies supporting TGC, several follow-up studies

to the 2001 Leuven study showed limited benefit: morbidity and not mortality reduction in

the case of the Leuven follow-up study in 2006 [21], or no change in outcome whatsoever as

seen in both Glucontrol [22] and CREATE-ECLA [23]. The waning motivation for control-

ling stress hyperglycemia was further exacerbated in 2009 when a multicenter prospective

study (NICE-SUGAR) [24] of over 6,000 patients showed an increase in mortality in the
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group receiving intensive insulin treatment. Retrospective analysis of the NICE-SUGAR

study [25] indicated that improved outcomes from glycemic control are overwhelmed by

the increased risk of hypoglycemia and the accompanying increase in mortality associated

with hypoglycemia [5, 6]. As a result, current guidelines allow for hyperglycemia so as to

appropriately promote safety set well beyond an optimal zone.

Analysis of the literature reveals inconsistencies in glycemic control protocols [26], as

well as variation in TGC outcomes for different ICU subpopulations [27, 28, 29]. Due to the

mixed success of TGC, there is significant disagreement regarding treatment protocols using

insulin [30, 31]. Methods for TGC require further investigation of the biological mechanisms

of stress hyperglycemia. Mathematically describing the underlying biological mechanisms

leading to stress hyperglycemia could allow for increasingly accurate, patient-specific in-

sulin treatment protocols (i.e., personalized medicine). Increasing biological resolution and

subsequent accuracy of mathematical models is a critical component for good control [32].

However, to maintain control relevance, the model must be identifiable in a clinical setting.

Therefore, models of both biological and clinical scope must be explored and evaluated in

the context of human treatment in critical care.

Blood glucose in critical care can be maintained within a target zone via either glucose

(to increase) or insulin (to decrease) infusion. Two critical components of ZGC, regardless

of how low and tight this zone is, must be addressed to overcome the challenges and biases

observed in clinical trials of ZGC in critically ill patients: (i) standardization of treatment [26,

30, 31] and (ii) characterization of the biologically driven variations among critical care

cohorts [27, 28, 29]. A model-based decision support system (DSS), similar to those deployed

for type 1 diabetes [33, 34, 35, 36], could address both needs. A closed-loop system with

clinical oversight provides an algorithmic standardization between patients, while an accurate

mechanistic model provides predictions grounded in the underlying biology that can result

in a more robust, patient-specific ZGC. There have been encouraging studies investigating

the use of a DSS in critical care [37, 38]. Therefore, to balance biological understanding

with control relevance, we create a decision support system with semi-automated control

architecture that allows for ZGC consistency across many different ICUs, potentially reducing

variability in treatment implementation.
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1.2 ETIOLOGY OF INSULIN RESISTANCE

Major trauma or infection triggers a hyper-catabolic state, providing the necessary substrate

for damaged or infected tissue [39] to recover. The most effective anabolic hormone capable

of counteracting hyper-catabolism is insulin, but it must be administered with care so as to

avoid hypoglycemia. Precise insulin treatment is particularly challenging in the ICU due to

irregular fluctuations in insulin sensitivity, which can manifest concomitantly in a variety

of tissues, resulting in unexpected blood glucose fluctuations. Therefore, a crucial step for

successful glycemic control is to identify patient-specific insulin sensitivity dynamics and

make accurate predictions using mathematical models.

The primary challenge in modeling and understanding insulin sensitivity is that, while

there are many biological pathways involved in elevated glucose levels [40, 41], the governing

mechanism through which the pathological state of stress hyperglycemia progresses and per-

sists remains convoluted. Low frequency blood glucose data are the primary measurements

available. Therefore, to build a useful model, we must analyze the contributing factors (e.g.,

stress hormones, cytokines, etc.) and be able to describe their interactions not only with

insulin sensitivity but any synergistic or overlapping mechanisms they may invoke to create

changes in blood glucose. A comprehensive model would allow blood sample measurements

of various species to depict a systems-level prediction of how a patient will respond to in-

sulin treatment. Such a system could estimate an individual patient’s underlying metabolic

state, via simulation and collection of key measurements, to allow for real-time personalized

treatment.

1.3 CELLULAR MECHANISMS OF INSULIN RESISTANCE

Due to the multiple potential drivers of insulin resistance present in circulation at any given

time, we expect there to be multiple phenotypes of stress hyperglycemia. This phenotype

behavior would be expected between patients but also perhaps in the same patient who is

recovering from a particular trauma and returning to health. These mechanistic changes
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over time are informed by additional measurements that may be available in the clinic.

Cortisol has been shown to be the most correlated marker to insulin resistance following

cardiac surgery [15], though metabolically active components such as TNF, IL6, leptin, and

adiponectin are also present. Initial contributions we focus on are the effect of TNF, inducing

glucose uptake and cortisol, the latter of which inhibits insulin signaling and increases hepatic

glucose output. Relative tissue contributions to stress hyperglycemia are a way to begin to

decouple the many components and mechanism altering glucose metabolism.

1.3.1 Insulin Resistance and Inflammation

Insulin resistance develops in numerous pathological conditions: metabolic syndrome [16],

type-2 diabetes mellitus (T2DM), and following trauma or infection [42]. In all the above

cases, the common factor is inflammation, in which signaling proteins are released to coun-

teract the anabolic effects of insulin. Specifically, mechanisms for T2DM insulin resistance

have been investigated [43] and there is some mechanistic overlap with the inflammatory

pathways activated in critical care [44]. While species of interest from T2DM such as TNF,

IL1β, and many other cytokines [45] play an active role in regulating insulin resistance

and metabolism, the degree to which these species interact with the additional milieu of

trauma-related species found in the critical care population remains to be determined.

The challenge in elucidating the underlying mechanism of stress hyperglycemia is deter-

mining how pathways such as inflammation and anti-inflammation affect insulin resistance.

Insulin resistance is a general term for a variety of pathological conditions in which insulin

signaling becomes impaired [46]. Insulin is one of the most potent anabolic hormones found

in the human body and it plays a central role in globally signaling tissues to stop releasing

nutrients into the blood and to start storing them locally. Therefore, desensitization of the

insulin signal blocks the anabolic effects of insulin and is the fundamental reason why in-

sulin is the downstream signaling target of so many different biological processes that require

increased available nutrients in the blood. While insulin is an effective global messenger in-

ducing system-wide anabolism, selective inhibition of the insulin signal in specific tissues

allows for an extra layer of control over where nutrients are directed [47]. For example,
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selective insulin resistance in the muscle would allow adequate glucose for the CNS while

allowing the liver to maintain glycogen reserves as a result of working insulin signaling. Such

downstream trafficking allows tissue-specific insulin signaling mediation to act as a robust

mechanism for orchestrating metabolism. This is particularly important due to the fact that

each tissue plays a specific role in metabolic regulation.

1.3.2 Glucose Transporters Govern Tissue Specificity

The key tissue types in metabolic actuation and control are: pancreas, liver, muscle, adi-

pose, and the central nervous system (CNS: brain, erythrocytes, etc.). Glucose transport is

facilitated within each tissue differently depending on which types of glucose transporters

(GLUT) are present in that tissue. The GLUT transporters are a family of transmembrane

proteins that allow glucose to move from the extracellular space to the cytosol. In the CNS,

glucose is transported via GLUT1 and GLUT3, passive glucose transporters that are inde-

pendent of insulin and allow glucose flux into cells to be driven by diffusion [47]. In muscle

and adipose tissues, the insulin-sensitive GLUT4 is the primary glucose transporter and is

constantly being exocytosed in response to insulin and endocytosed in the absence of insulin.

The liver and pancreas utilize GLUT2, an insulin-independent glucose transporter with a

very high saturation limit, allowing glucose to flow quasi-linearly into these tissues in order

to sense blood glucose with high precision.

Combined, GLUT transporters play a critical role in defining tissue-specific actuation of

glucose metabolism. For example, elevated glucose is sensed in the liver and pancreas via

GLUT2, and insulin is released from the pancreas while the liver begins storing excess glucose

as glycogen. GLUT4 is subsequently translocated to the membrane of adipose and muscle

cells receiving an insulin signal, lowering blood glucose levels by trafficking glucose out of

the bloodstream. Keeping blood glucose levels in the correct range is critical at the cellular

level so as to provide consistent diffusive flux to the CNS via GLUT1 and GLUT3 and to

avoid overloading the GLUT2 sensing mechanism in the pancreas and liver. Inflammation, or

other biological pathways signaling increased nutrient requirements, induce insulin resistance

primarily by decreasing GLUT4 translocation [43] and thus decrease uptake of blood glucose
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by adipose and muscle tissues in anticipation of increased demand by the CNS and immune

system. Similarly, a disrupted insulin signal in the liver leads to increased forkhead box

protein O1 (FOXO1) and increased glucose production via gluconeogenesis [48].

1.3.3 Inhibition of Insulin Receptor Substrate

GLUT4 translocation is the primary glucose transporter that responds to insulin signaling.

Early in the insulin signaling pathway is a critical node, insulin receptor substrate 1 (IRS-1),

which can become serine and/or threonine phosphorylated [49] (see Figure 2) preventing it

from propagating the insulin signal via tyrosine phosphorylation. Serine phosphorylation of

IRS-1 plays a central role in insulin resistance [50, 51, 52], though it is not independently

responsible [53]. Antagonists of early insulin signaling are the primary drivers of insulin

resistance but are numerous and may overlap in mechanism. A common characteristic of

conditions leading to insulin resistance is the activation of the inflammatory response [16, 44].

It follows that this is the probable initiating mechanism in critical care due to the frequent

occurrence of inflammation as a result of surgery, trauma, etc. [54]. Serine kinases such as

c-Jun N-terminal kinases (JNK) are responsible for serine phosphorylation and subsequent

inhibition of IRS-1 as well as propagating the inflammatory cascade. This cascade ultimately

leads to transcription of the cytokine interleukin-6 (IL-6), whose activation induces suppres-

sor of cytokine 3 (SOCS3) in adipose [55] and muscle [56] cells. SOCS3 has been shown to

activate ubiquitin-dependent IRS-1 degradation [57, 58] leading to reduced insulin signaling.

Many sources attribute stress hyperglycemia to these two mechanisms based on correlation

with deactivation of the critical IRS-1 node [59]. However, there remains open debate regard-

ing the underlying cellular and tissue mechanisms causing (not correlating to) the response.

A previously published study [42] found the cytokine interleukin 6 (IL-6) to be directly corre-

lated to insulin resistance as quantified via hyperinsulinemic euglycemic clamp [60] following

elective surgery. Therefore, IL-6 has been a proposed driver of insulin resistance, a mecha-

nism corroborated by multiple animal and cellular studies [48, 55, 56, 59, 61, 62, 63, 64, 65]

showing a mechanism of insulin resistance via (i) IL-6 activating suppressor of cytokines III

(SOCS-3) via the JAK-STAT pathway; and (ii) SOCS-3 inhibiting insulin receptor substrate
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Figure 2: Insulin binding results in receptor autophosphorylation and subsequent tyro-

sine phosphorylation of insulin receptor substrate (IRS-1). The cascade leading to GLUT4

translocation / glucose uptake is disrupted by serine phosphorylation of IRS-1 (outlined in

red).

1 (IRS-1) through ubiquitin-mediated degradation [57]. However, when IL-6 and insulin are

infused into healthy human subjects [66, 67], glucose uptake is higher than when compared

to insulin alone, reflecting a paradoxical increase in insulin sensitivity, possibly caused by

AMPK up-regulation in response to IL-6 [68], despite elevated SOCS-3 levels [66]. Similarly,

TNF is implicated as a driver of insulin resistance [69, 70], via NF-κB and c-Jun N-terminal

kinase (JNK) leading to serine phosphorylation (and deactivation) of IRS-1 [48, 52]. How-

ever, a human study looking at local effects of TNF infusion [71] found an increase in glucose

uptake following TNF infusion in humans. Both IL-6 and TNF drive endogenous release of

the hormone cortisol [69, 70, 72], which has been found to inhibit insulin-mediated glu-

cose uptake in humans [15, 73, 74]. Additionally, in a study of humans with low cortisol

and growth hormone [75], TNF infusion did not trigger the metabolic response found in
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the control group. Therefore we propose cortisol (and growth hormone) as the explanatory

mechanism for the contradictory cytokine effects.

1.3.4 Published Mechanisms of Insulin Resistance

In this section, many of the mechanistic components identified in humans have been compiled

to evaluate their relative contributions to stress hyperglycemia. While these components are

metabolically active when identified, further analysis is required to determine if they play an

important role in describing metabolic fluctuations in critical care. The metabolically active

components listed in Table 1 contain mostly in vivo human studies. Previously published

reviews [45, 48, 76] use studies including in vitro and in vivo data to inform mechanism

provide a basis understanding mechanisms in the ICU. Any component from Table 1 whose

role in human metabolism remains unclear for humans in critical care is a candidate for

further mechanistic discovery.

1.3.5 Identifying Human Mechanisms

Figure 3 shows a simplified insulin signaling cascade highlighting key pathway differences

in the three primary insulin-responsive tissues: liver, adipose, and muscle. Stress response

molecules (left box) act via epinephrine inhibiting the production of insulin [80], cortisol,

epinephrine, and growth hormone inhibiting insulin in all tissues, and all three hormones in

addition to glucagon activating gluconeogenesis [74, 78, 79, 80, 81, 82]. The innate immune

response (right box) shows the synergy of adiponectin citeleh08,piy13,hil12, IL-6 [66], and

IL-10 [76, 83] to enhance insulin sensitivity. TNF has shown a mixed role, in [84], infusion

of TNF decreased insulin sensitivity in the muscle and not the liver [84]. However, local

metabolic measurement studies following infusion show that TNF enhances insulin sensitivity

in muscle [71] during a human infusion. Therefore, TNF can be considered to increase glucose

uptake. Additionally, IGFBP-1 is associated with liver specific insulin resistance [70] and

serves as a marker of critical care outcome [85]. Cortisol plays a central role in causing

insulin resistance in critical care. It has been correlated as a predictor of insulin resistance

in humans [15, 86] and human studies show cortisol to both increase endogenous glucose
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Table 1: Components involved in metabolic regulation having either a positive (+), negative

(-) effect on stress hyperglycemia. Source is shown as either human or mixed. A mixed

source entry represents a combination of in vitro and in vivo studies used to corroborate

mechanism.

Component Stress Hyperglycemia Source(s)

ACTH + Human [77]

Adiponectin - Mixed [45]

Cortisol + Human [73, 74]

CRH + Human [77]

Epinephrine + Human [78]

Glucagon + Human [79]

IGFBP-1 + Human [70]

IL-1 + Mixed [76]

IL-10 - Mixed [76]

IL-6 - Human [66]

JNK + Mixed [48]

NF-κb + Mixed [48]

TNF-α - Human [71]

Vistafin - Mixed [76]

production [73, 74, 87] and increase insulin resistance [73, 74, 88]. Cortisol release is triggered

by a number of different cytokines and could be the mechanism of action through which these

cytokines correlate to insulin resistance [67, 69, 89]. The observed correlations between

cytokines and insulin resistance could be explained by cortisol activation, while the direct

mechanistic role of the cytokines act to increase insulin sensitivity in humans [66, 71].

TNF is a cytokine strongly associated with the inflammatory cascade and insulin re-

sistance in humans [69, 70, 84, 90]. However, in many of the human studies, cortisol is
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Figure 3: Insulin is released by the pancreas and signals to other tissue types (liver, muscle,

and adipose) via plasma circulation. Simplified tissue specific processes are activated via

insulin (boxes). Components of interest are shown on either side (ovals) belonging to stress

response hormones (left) and the innate immune response (right). Cortisol, epinephrine, and

growth hormone act on insulin signaling in all tissues, while all three hormones in addition

to glucagon act to promote gluconeogenesis and glycogenolysis. Epinephrine additionally

suppresses insulin release, lowering the total insulin available. Adiponectin, IL-6, and IL-10

are generally associated with increased insulin sensitivity while TNF acts locally in muscle

to promote insulin-mediated glucose uptake.

either correlated with TNF [15] or significantly elevated following TNF infusion [69, 70, 84].

Cortisol is released via the hypothalamic-pituitary-adrenal (HPA) axis. In a comparison

study done in humans [75] TNF was infused, comparing the metabolic response of patients

12



with hypopituitary function to healthy controls. The study [75] showed cortisol and growth

hormone release were necessary to facilitate the metabolic changes driven by TNF infusion.

Furthermore, local glucose uptake measurements in humans during TNF infusion show an

enhancement in insulin sensitivity [71] indicating TNF as an activator of glucose uptake.

Similar to TNF, studies investigating the effects of IL-6 on insulin sensitivity are con-

tradictory [68]. Correlation analysis [15, 42] shows that IL-6 is one of the best predictors of

insulin resistance in critical care patients, second only to cortisol [15]. A study of patients

undergoing varying degrees of elective surgery found a “linear relationship between the re-

duction in relative insulin sensitivity and the concomitant plasma levels of IL-6” [42]. Taken

together, these studies [15, 42] begin to describe IL-6 as a mechanistic link to insulin resis-

tance. However, three different human studies found that IL-6 infusion (3-4 hours) either

increased insulin-mediated glucose uptake [66], increased rate of glucose appearance [67], or

had no effect on glucose appearance or disposal [89]. While cortisol was not reported in [66],

the steady-state IL-6 concentration averaged 195 pg/ml, which falls between the two different

levels 143 and 319 pg/ml reached during the low and high IL-6 infusions in [89]. Importantly,

the cortisol levels in [89] reached approximately 3 times basal levels following both high and

low levels of IL-6 infusion. In [67], IL-6 levels reached an average of 594 pg/ml resulting in an

approximate 2.5 fold increase in cortisol concentrations. In two separate studies [73, 74], glu-

cose production and insulin resistance were significantly increased when cortisol increased by

approximately 1.5 fold [74] or approximately 2.5 fold [73], respectively. Taken together, these

human studies [15, 42, 66, 67, 73, 74, 89] suggest two potential mechanisms that balance

glucose metabolism. The cytokines TNF [71] and IL-6 [66] increase glucose uptake while

simultaneously causing the endogenous release of cortisol. Subsequently, cortisol [73, 74]

induces glucose production and insulin resistance. These interactions have been summarized

in Figure 4. Incidents of hypoglycemia in critical care are common [5] and have been shown

to increase patient mortality risk with even one episode [6]. A follow-up study of the NICE-

SUGAR [24] trial found that 45% of the critical care population had moderate hypoglycemia

(41-70 mg/dl). The study [25] also found “the adjusted hazard ratios for death among pa-

tients with moderate [hypoglycemia was] 1.41.” An insulin infusion study [91] shows that

a dropping glucose concentration at about 75 mg/dl elicits the counterregulatory response.
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Figure 4: Diagram of key molecules driving changes to glucose metabolism. Cytokines TNF

and IL-6 correlate with insulin resistance [15, 42, 67], however, the mechanism of action could

be through cortisol activation. (1) Cortisol levels of 1.5 fold [74] and 2.5 fold [73] normal

levels cause significant increases in glucose production and insulin resistance. (2) TNF [71]

and (3) IL-6 [66] infusions in humans cause increases in glucose uptake. (4) TNF [69, 70, 84]

and (5) IL-6 [66, 67, 89] infusions in humans also cause increases in cortisol resulting in

metabolically active concentrations seen in [73, 74].

The counterregulatory response consists of the release of glucagon [79], epinpehrine [78], cor-

tisol [74], and growth hormone [82]. Taken together, these studies [5, 6, 25, 74, 78, 79, 82, 91]

describe counterregulation as a possible mechanism for glucose-related complications and in-

creased mortality in critical care.
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1.4 THESIS OVERVIEW

Chapter one is an overview of stress hyperglycemia and the motivation for glucose control in

critical care. The chapter describes the mechanisms leading to stress hyperglycemia and how

modeling specific biological pathways could help understand the disease and improve patient

outcomes. Certain metabolically active components are investigated to better understand

mechanisms and correlations observed in critical care patients. This results in identifying

a small number of key biological markers that describe the primary components of stress

hyperglycemia.

Chapter two describes the construction of a mathematical model of acute inflammatory

effects on glucose metabolism. Lipopolysaccharide (LPS) as an acute inflammatory activa-

tor is used to develop the combination of metabolic effects following infection. There are

consistent changes to glucose metabolism following the introduction of LPS, where glucose

uptake increases and is followed by a period of insulin resistance. The interactions include

LPS, TNF as a glucose uptake activator, and cortisol causing insulin resistance. These com-

ponents represent the core components leading to metabolic changes and shed some light

onto the mechanisms of stress hyperglycemia in humans.

Chapter three describes the construction of a mathematical model of the counterregula-

tory response and how it affects glucose metabolism. Counterregulation occurs as a natural

response to low blood glucose concentration, a problem that occurs frequently in critical

care. The dynamic changes and mechanistic components causing changes to blood glucose

dynamics are examined and modeled. A series of early studies[91] elucidate the four individ-

ual components: glucagon, epinephrine, cortisol, and growth hormone. Each of these four

components are modeled to form a mechanism of action starting from low glucose, leading

to activated hepatic glucose output and systemic insulin resistance.

Chapter four describes the construction of a mathematical model of plasma insulin ap-

pearance following a subcutaneous insulin infusion or bolus. This model is motivated by

the need for a simple structure that can account for multiple types of insulin (fast-acting

release and regular release). The final model contains three parameters to describe plasma
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insulin appearance following insulin infusion or bolus. Only one parameter varies between

fast-acting insulin and regular insulin.

Chapter five describes the construction of a virtual patient simulator and how it can be

used for controller tuning and testing. A nonlinear control algorithm is developed and the

performance is evaluated using in silico methods to compare to the current clinical standard

of care. This chapter also details the ways in which additional dynamic models can be

added to form a more realistic biological response. Finally, chapter six is a summary of the

work within this thesis, followed by possible extensions of this work providing the basis for

additional research studies.
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2.0 MODELING GLUCOSE DYNAMICS FOLLOWING AN ACUTE

INFLAMMATORY CHALLENGE

2.1 INTRODUCTION

A mathematical model capable of capturing and predicting the biological drivers of stress

hyperglycemia can help identify the underlying metabolic dynamics. Ideally, each molecular

component contributing to stress hyperglycemia would be built into a systems-level math-

ematical model to then analyze whether the whole system is equal to, greater, or less than

the sum of each part. In practice, however, we develop mechanistic approximations that

capture primary pathway effects in light of often infeasible cellular resolution. Herein, we

develop a mass-action-based mathematical model to characterize the key regulators of stress

hyperglycemia and how they contribute to dynamic metabolic variability and the observed

inter- and intra-patient variations in critical care.

2.1.1 Tissue-Specific Modeling of Stress Hyperglycemia

We can understand stress hyperglycemia as a glucose mass balance and explicitly identify

the tissue-specific sources and sinks of glucose in the body. Elevated blood glucose levels

are primarily caused by the following three mechanisms: (i) uninhibited endogenous glucose

production by the liver, (ii) inhibited insulin-mediated glucose uptake and storage as glycogen

in primarily muscle and adipose tissue, or (iii) suppressed insulin secretion by the pancreas.

While there is some debate as to which process dominates in critical care, there are a number

of tissue-specific mechanisms to be elucidated by isolating these three processes.

This material is to be submitted to PLOS Computational Biology
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Figure 5: Composite model structure showing insulin and glucose plasma concentrations

(squares), along with exogenous and endogenous sources of glucose and insulin.

2.1.2 Insulin Signaling

Endogenous glucose production and insulin-mediated glucose uptake in peripheral tissue are

both governed by insulin signaling. Therefore, we build a mechanistic mathematical model of

stress hyperglycemia with the insulin signaling cascade. This cascade, depicted in Figure 2,

describes the pathway starting from insulin binding to surface receptors, to the translocation

of glucose transporters (GLUT4) to the cell membrane, resulting in increased glucose uptake.

This process takes place primarily in adipose and muscle tissues, causing glucose uptake into
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the target cells. Similarly, the insulin signaling pathway leads to the down-regulation of

glucose production via gluconeogenesis and glycogenolysis in the liver.

A previously published mathematical model of the insulin binding pathway [92] is used

as a starting point for developing a multiscale, tissue-specific model of the development of

insulin resistance leading to stress hyperglycemia. The 22-state ordinary differential equation

(ODE) model was originally constructed by measuring insulin-sensitive cells in response

to insulin exposure. This creates a number of numerical problems when combining the

model with the original organism-level model of glucose and insulin dynamics. First, when

the model is exposed to prolonged insulin input, there is a failure in mass-balance closure

leading to a drift in insulin-mediated activation. This is addressed by fitting a two-state,

nonlinear simplified model to the original model [92] using a series of insulin challenges,

as shown in Figure 6. The simplified insulin signaling model is combined with the overall

model of glucose and insulin dynamics where the insulin effect state, Q(t), in Figure 5 is

replaced with the cell-level model as shown in Figure 7. Plasma concentration of insulin

is fed as input to the cell model and GLUT4 translocation output from the cell model

is scaled to represent the insulin effect lowering glucose. The combined model is used to

fit insulin sensitivity recovery in patients following surgery [93]. The study [93] measured

insulin resistance and the cytokine IL-6, and claims IL-6 is responsible for causing insulin

resistance. The results of this model fit are not shown due to the overall inaccuracy of this

assumption. As previously discussed, IL-6 infusion in humans [66] fails to cause the proposed

insulin resistance and thus required a more rigorous analysis of the underlying biology. While

the proposed mechanism in [93] does not appear to govern human metabolism, this paper

provides an important biological link between the immune system and glucose metabolism.

The resolution of measurements in [93] is on the order of days, while in the previous sections,

we have shown this mechanism to take place more rapidly, on the order of hours. Therefore,

it is likely that the IL-6/insulin resistance relationship forms from the following sequence:

inflammatory mechanisms increase IL-6 concentrations, which subsequently increases cortisol

levels, leading to insulin resistance. The missing component in [93] is cortisol, which could

describe the observed correlation between IL-6 and insulin resistance.
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2.1.3 Modeling the Hypothalamic-Pituitary-Adrenal Axis

Cortisol is a key element to model the overlap between the innate immune response and the

stress response. It is a stress response hormone responsible for insulin resistance, activated

by the inflammatory cytokine response. When modeling cortisol, the primary challenge

is representing the endogenous diurnal variations in the Hypothalamic-Pituitary-Adrenal

(HPA) axis. The cyclical activation of the HPA axis has been studied and modeled using

various waveforms. For example in [94] six different mathematical functions were compared

while fitting the diurnal variations in cortisol serum measurements. A cosine driving function

is used in our own preliminary work. However, the parameters of such a cycle are impractical

to identify in real-time for critical care patients. There are also a number of factors affecting

the baseline cycles, including nervous [95] and immune [95, 96] system interactions, creating

an unidentifiable situation in critical care [96].

In order to study the effects of IL-6 activating cortisol release, a baseline release model

is fit using the control study [67] described as follows. First, cortisol is modeled using an

auto-inhibition term:

XCOR(t)

dt
=

Ub(t) + UI(t)

XCOR(t)/k3 + 1
− kdXCOR(t) (2.1)

Here kd is the clearance coefficient of cortisol found in the literature [97]. Cortisol release

comes from two sources: baseline Ub(t), and IL-6 triggered, UI(t). Auto-inhibition is repre-

sented by the denominator of the first term in Equation (2.1), where k3 is the normalization

concentration of cortisol. IL-6 activates cortisol release UI(t) as follows:

UI(t) =
k1XIL6(t)

XIL6(t) + k2

(2.2)

Here IL-6 activation of cortisol is represented as a saturating Michaelis-Menten function with

maximum rate k1 and concentration of half-maximal activation k2. The plasma concentration

of IL-6, XIL6, is used as input to the model, activating cortisol release, UI(t). The results

of fitting a human IL-6 infusion study [67] are shown in Figure 8. At each measurement, a

baseline cortisol release value Ub(t) is fit to match the baseline plasma cortisol. The same

baseline profile, Ub(t), is then simulated when fitting the effects of IL-6 infusion to remove
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the confounding effects of changing baseline cortisol. The model is calibrated using nonlinear

least-squares regression. Ub(t) varies for the control case at each measurement time point

to capture the baseline cortisol release profile shown in Figure 8. The error between model

predictions and data at each time point was weighted by the inverse of the standard deviation

of the data at that point in time as in Equation (2.12). Ub(t) at each measurement. The

baseline release found from the control is used along with the IL-6 infusion to capture IL-6

only activation of cortisol. Results of the fit are shown in Figure 8.

The 95% confidence intervals of the estimated parameters are computed by using nl-

parci in MATLAB ( c©2015, The Mathworks, Natick, MA). The resulting parameter values

and confidence intervals are shown in Table 2. After model calibration using a human in-

fusion study of IL-6 [67], the model was used to predict two different LPS challenges in

humans [72]. The hypothesis tested was that the cortisol response observed following LPS

infusion is primarily governed by the interaction of IL-6 activating cortisol release. Thus,

our model previously calibrated in Figure 8 was first fit to baseline cortisol dynamics to

extract the time-varying baseline release Ub(t) as shown in Figure 9. Once baseline release

was extracted from the control case, the model of IL-6 driven cortisol release is validated

by simulating IL-6 driven effects using the model calibrated previously in Figure 9. The

IL-6 trajectories following both low and high dose LPS boluses are used to drive the pre-

viously calibrated model as shown in Figure 10. The results shown in Figure 10 validate

our model and hypothesis, which describes IL-6 as the primary connection driving the stress

response hormone cortisol from the innate immune activation of IL-6. This model provides a

groundwork for linking the two processes present in critical care that interact to contribute

to significant changes in glucose metabolism. The final model (section 2.2.1) describing

LPS and glucose metabolism incorporates this effect using TNF in place of IL-6 as driving

cortisol. This simplification was necessary due to data constraints and the fact that the

dynamics between TNF and IL-6 following an LPS challenge are similar [72]. The similar

dynamics between TNF and IL-6 combined with the fact that TNF activates IL-6 makes the

relative contribution of each component unidentifiable without specific experimental data.

Additionally, auto-inhibition of cortisol was removed once the full network was developed,
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due to the fact that the inhibitory effect of cortisol on the innate immune response (TNF)

had the same effect since TNF was used as the driver of cortisol.

The previously described work ultimately leads to a simplified approach where key el-

ements of each major pathway are incorporated into a simplified model described in sec-

tion 2.2.1. Interleukin 6 (IL-6) is a key innate immune marker responsible for driving cortisol,

a primary stress hormone inducing hepatic and peripheral insulin resistance; paradoxically,

IL-6 directly increases glucose uptake via AMPK [68]. Our final model describes this dual

activation/inhibition of stress hyperglycemia with TNF (combining TNF and IL-6) driving

cortisol and simultaneously increasing glucose uptake. Each arrow shown in Figure 12 repre-

sents a vital constituent of stress hyperglycemia. Corresponding human infusion data from

literature accompanies each arrow which is a prerequisite for our models to represent in vivo

human responses.

2.2 MATERIALS AND METHODS

2.2.1 Model Development and Assumptions

We model cytokine and hormone driven metabolic changes following infusion of lipopolysac-

charide (LPS) in humans. LPS triggers an inflammatory response characterized by the

cytokines TNF and IL-6, followed by an anti-inflammatory counterregulatory response pri-

marily acting through cortisol, and growth hormone, and including release of gluconeo-

genesis activator glucagon. A parsimonious mathematical model represents inflammatory

cytokine effects as TNF and the anti-inflammatory effects as a single cortisol state. The

network of interactions shown in Figure 11 was developed using data from human studies

only [13, 67, 70, 72, 73], in an effort to avoid the inconsistencies and confounders observed

between mouse models and humans [42, 66, 68, 98]. These studies are used to develop the

activation/inhibition relationships between TNF [71], cortisol [15, 72, 74], and insulin [13].

Figure 11 is represented mathematically by the system of coupled ordinary differential equa-

tions (ODEs) shown in Equations (2.3) to (2.11). Pharmacokinetics of injected LPS [99]
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are modeled with Equation (2.3). Equations (2.3) to (2.7) describe the relationships be-

tween LPS, TNF, and cortisol. A previously published, clinically validated mathematical

model [100], shown in Equations (2.8) to (2.11), describes glucose and insulin dynamics.

dXLPS(t)

dt
= − XLPS(t)

1.0 + αldXLPS(t)
, XLPS(0) =

ULPS
VLPS

(2.3)

dXLPS2(t)

dt
= klf (XLPS(t)−XLPS2(t)) (2.4)

dXTNF (t)

dt
= klt

(
1− XCOR(t)

XCOR(t) +KMct

)
XLPS2(t− ψldt) + UTNF − ktdXTNF (t)(2.5)

dXCOR(t)

dt
=

ktcXTNF (t)

XTNF (t) +KMtc

− kcdXCOR(t) (2.6)

dXCOR2(t)

dt
= kcf (XCOR(t)−XCOR2(t)) (2.7)

dQ(t)

dt
= nI(I(t)−Q(t))− nC

Q(t)

1 + αGQ(t)
(2.8)

dI(t)

dt
= −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t)) +

Uex(t)

VI
+ (1− xL)

Uen
VI

(2.9)

dG(t)

dt
= −pGG(t)−XIMGD(t) +

P + EGPb − CNS
VG

(2.10)

XIMGD(t) = SI
Q(t)

1 + αGQ(t)
G(t) + ktgX

2
TNF (t)G(t)− kc2gXCOR2(t− ψcdg) (2.11)

The states XLPS(t) and XLPS2(t) represent the effective LPS in the system and the ac-

tive pathways driven by LPS, respectively. A time delay, ψltd, is added between the lagged

LPS signal, XLPS2(t) and TNF activation to capture the time necessary for biological pro-

cessing of the LPS signal (i.e., cell signaling, transcription, and translation). Changes in

cytokine and hormone concentrations, XTNF (t) and XCOR(t), respectively, represent the

change from baseline concentrations of TNF and cortisol. The parameter UTNF represents

the TNF infusion from [70] scaled by the TNF volume of distribution. Equations (2.8)

to (2.10) come from [100], with Equation (2.11) modified to include cytokine and cortisol

concentration effects, as appended to the original formulation. The states I(t) and G(t)

are the plasma concentrations of insulin and glucose, respectively. The intermediate insulin

state, Q(t), represents the remote insulin that drives the insulin-dependent term in the glu-

cose balance, XIMGD(t), and accounts for both insulin suppression of endogenous glucose
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production (EGP) as well as insulin-mediated glucose uptake (IMGU), referred to collec-

tively as insulin-mediated glucose dynamics (IMGD; Equation (2.11)). XIMGD(t), herein

modified to represent both IMGU and EGP. Equation (2.11) captures the changes in insulin

effect induced by inflammatory cytokines (increased sensitivity) and hormones (decreased

sensitivity), as seen in humans [15, 66, 71, 73]. This is represented by the state XTNF and

is squared to capture the sharp dynamic increase in IMGD activation. Cortisol inhibits

XIMGD(t) through a filtered state XCOR2 which has a time delay of ψcdg which accounts for

the aforementioned signaling time. The cortisol effect is lagged through a filter in addition to

the delay to account for the signal dispersal that appears in the glucose inhibition dynamics.

2.2.2 Human in vivo Data for Model Calibration

Data from three different studies [13, 70, 99] were digitized using WebPlotDigitizer [101] and

used to fit the parameters of the model (Equations (2.3) to (2.11)). Human in vivo data was

explicitly used so that the final model represents clinically-relevant patient-level dynamics.

Three studies were used together to capture varying levels of inflammatory response, as

well as capture multiple components and interactions not measured simultaneously within a

single dataset. Figure 12 shows the interactive species measured in each respective dataset.

The three datasets consist of two different LPS challenges [13, 99] and a continuous infusion

of TNF [70]. Data from [99], an LPS type EC-5 injection of 2 ng
kg

, were used to fit parameters

describing LPS dynamics and LPS activation of endogenous TNF release. Data from [70], a

continuous 1 µg
hr m2 infusion of recombinant human TNF, were used to capture TNF dynamics

and TNF effects on endogenous cortisol release. Plasma TNF appearance following infusion

is constrained to reach 99% of steady-state concentration a minimum of 30 minutes after

infusion. This constraint is based on TNF infusion data from [102]. Data from [13], an LPS

type EC-6 injection of 20 U
kg

, were used to fit parameters describing LPS-induced endogenous

TNF release, TNF-induced cortisol production, and the inhibition of TNF by cortisol. Since

the two types of LPS vary between [13] and [99], a scaling factor (kLPS) is used to estimate

the EC-5 equivalent (from [99]) of the EC-6 LPS used in [13]. The dataset from [13] is

also used to calibrate the insulin and glucose dynamics resulting from the insulin infusion
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and LPS injection. During the study, a hyperinsulinemic euglycemic clamp with an insulin

infusion of 80 mU/m2/min was performed over a period of 10 hours, during which either

an LPS challenge was administered after the first 2 hours of the clamp, or no LPS was

administered in the control case. The cytokine TNF and the hormone cortisol were sampled

every hour from blood. Blood glucose was held approximately constant at 90 mg/dl using

a continuous glucose infusion; therefore, the amount of glucose infused as a function of time

represents the IMGU in addition to the insulin-driven suppression of EGP, as represented in

Equation (2.11).

2.2.3 Parameter Identification

Model calibration is performed in two stages. First, baseline insulin and glucose dynamics

(Equations (2.8) to (2.11)) were calibrated with glucose and insulin measurements following

a hyperinsulinemic euglycemic clamp [13] using nonlinear regression. During the calibra-

tion, regularization was used to maintain model parameters close to the originally published

parameters from [100]. The recalibrated baseline parameters were then used in the second

fitting stage, where the model captures the additional effects of TNF and cortisol on glucose

uptake. During the second fitting stage, parameters from Equation (2.3) to (2.7) and Equa-

tion (2.11) are simultaneously fit using Markov chain Monte Carlo (MCMC) optimization

to the three datasets [13, 70, 99], as previously described and shown in Figure 12.

2.2.3.1 Stage I: Nonlinear Regression with Regularization Parameter estimation

in stage I was performed using least-squares nonlinear regression, lsqnonlin, implemented

in MATLAB ( c©2015, The Mathworks, Natick, MA). The residual error between model

predictions and data at each time point is weighted by the inverse of the sample standard

deviation of the data at that point in time as follows:

min
θ

N∑
i=1

[
yj(ti)− y(ti, θ)

σij

]2

(2.12)

Here, yj(ti) is the measured data at time ti during experiment j, which has a standard

deviation of σij. The model prediction is given by y(ti, θ1, . . . , θM), which depends on θm,
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m ∈ [1,M ], the model parameters. N is the number of data points, and M is the total

number of model parameters being calibrated. The log transformed regularization penalizes

parameter deviations from the previously published model [100]. Shown in Equation (2.13),

the baseline parameters governing glucose and insulin dynamics were fit while minimizing the

logarithm of fraction difference between the previously published studies’ parameters. Such

regularization penalizes large deviations from the published parameters and is asymmetric to

more strongly penalize driving existing parameters to zero, a possible consequence of having

data that is more sparse than the data used to build the original model [100].

min
θ

{
N∑
i=1

[
yi(ti)− y(ti, θ)

σi

]2

+ Γ
M∑
j=1

[
log10

(
θj
θ∗j

)]2
}

(2.13)

Here the residual sum of squared error is supplemented with a penalty for parameter devi-

ation from nominal parameters θ∗j from [100]. The weighting parameter, Γ, is used to trade

off the relative contributions of quality of fit,
∑N

i=1

[
yi(ti)−y(ti,θ)

σi

]2

and parameter consistency

with [100],
∑M

j=1

[
log10(

θj
θ∗j

)
]2

.

2.2.3.2 Stage II: Markov chain Monte Carlo After the baseline insulin and glucose

dynamics are fit in stage I, the parameter space is explored using a Markov chain Monte Carlo

(MCMC) search with parallel tempering to provide posterior distributions for the model

parameters, as in [103]. Relative parameter steps are sampled from a Gaussian distribution

and accepted according to the probability e(−∆J/T (k)). Parameter values swap with values

found in neighboring temperature chains, T , with probability e(−∆J/∆T ). The vector T is the

range of parallel temperatures T (index) ∈ {T (1) . . . T (k)}. Here J(θ) is the energy function

defined as:

J(θ) =
D∑
d=1

Nd∑
i=1

[
yi(ti)− y(ti, θ)

σi

]2

(2.14)

Equation (2.14) contains the sum of squared residual error and is proportional to the negative

log-likelihood estimate. The measured data at time ti are compared to the model with

parameters θj, j ∈ [1,M ]. Nd is the number of data points per dataset d ∈ D and M is the

total number of model parameters.
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MCMC was run for a total of 1e06 steps with a swap attempt every 25 steps. Parameter

values are saved during each swap attempt, resulting in 4e04 saved parameter sets. The

integrated autocorrelation time as defined in [104] is calculated for each parameter. The

maximum absolute integrated autocorrelation time among parameters is 3e − 12. The low

integrated autocorrelation time indicates that the number of simulations during MCMC is

sufficient to approximate the posterior parameter distributions.

2.3 RESULTS

2.3.1 Calibrating Baseline Glucose and Insulin Dynamics

For the first stage of model calibration, regularized nonlinear regression was used to fit

baseline insulin pharmacokinetics and pharmacodynamics during an 80 mU
m2 min

insulin infu-

sion [13]. Insulin-mediated glucose dynamics are calculated as in [13], where M(t) is the

percentage change in glucose uptake starting from 120 minutes after beginning an insulin

infusion as shown in Equation 2.15.

M(t) = 100×
(
IMGD(t)− IMGD(120)

IMGD(120)

)
(2.15)

The parameters in Equations (2.8) to (2.11) were fit to match M(t), while simultaneously

capturing baseline endogenous insulin (constant) as well as the insulin concentration, I(t).

The regularization coefficient, Γ from Equation (2.13), was determined by scanning over a

range of Γ values from 0 to 2 in increments of 0.001. The maximum absolute slope of the

derivative for each term occurred at Γ = 0.74, indicating a reasonable trade-off between

fitting the current data set and proximity to the original parameter values. Values of the

fitted parameters compared to nominal values are shown in Table 3.
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2.3.2 LPS Pharmacokinetics and Pharmacodynamics

In the second fitting stage, three different datasets were used to calibrate model Equa-

tions (2.3) to (2.7) and Equation (2.11). Figure 14 shows the calibrated model capturing

LPS pharmacokinetics, as well as the TNF response from [99] following a 2 ng
kg

LPS injection.

The parameter VLPS is found as the initial dose of 2 ng
kg

divided by the initial condition of the

model simulation in Figure 14 (top). Nonlinear clearance from Equation (2.3) was necessary

to capture the rapid elimination of plasma LPS seen in Figure 14. Much of the variability

in TNF response occurs during the maximum, between 50 and 100 minutes following LPS

administration, which is recapitulated in the model variability represented as red and beige

confidence intervals in Figure 14 (bottom). Figure 15 shows the model compared to TNF

and cortisol data from [70], where 1 µg
hr m2 of recombinant human TNF is continuously infused

into healthy human subjects. Simulated plasma TNF and cortisol concentrations shown in

Figure 15 follow the data from [70]. Figure 16 shows the calibrated model capturing TNF

and cortisol dynamics from [13] following a 20 U
kg

LPS injection. The conversion factor be-

tween EC-5 and EC-6 type LPS, kLPS, was fit to capture the magnitude of TNF response

seen in Figure 16 (top), where the largest variability in both the data and the model oc-

curs during the peak TNF response following LPS administration. Cortisol dynamics driven

by TNF are captured at two different magnitudes: (1) following a high LPS bolus, shown

in Figure 16 (bottom), and (2) during a low TNF infusion, shown in Figure 15 (bottom).

Agreement between simulations and the data show the model captures both the range and

nonlinearity of the dynamic relationship between TNF and cortisol. Cortisol overestimation

of the last data point is caused by the simultaneous fit of cortisol in 15 and additional long

term measurements could elucidate which cortisol value is more accurate. Figure 17 shows

the model capturing the effects of inflammation (TNF) and anti-inflammation (cortisol) on

insulin-mediated glucose dynamics in Equation (2.15). The TNF and cortisol dependent

terms in Equation (2.11) are fit to match data from [13] following a 2 U
kg

LPS injection

given 120 minutes following the start of a continuous insulin infusion of 80 mU
min m2 . The large

amount of model variability around 90 minutes following the insulin infusion is indicative of

the effects of TNF (inflammation) on rapid increases in glucose uptake. The model captures
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possible individual variations and highlights the time range during which we expect patient-

specific variations to have the largest impact on blood glucose dynamics. The model can

therefore inform potential time periods of higher risk based on these highly variable regions

in time as seen in Figure 17. The decrease in glucose uptake beginning around 250 minutes

after the start of insulin infusion shows the delayed effects of cortisol (anti-inflammation)

causing insulin resistance.

2.4 DISCUSSION

We show that the interactions between the human innate immune system and the endocrine

metabolic response can be modeled using a simplified structure relating key mechanistic

drivers. Baseline insulin pharmacokinetics and pharmacodynamics are calibrated using data

from a previously published LPS infusion study [13]; regularization was used to maintain

the parameters of the physiologically-motivated model near their originally published values

for critical care patients [100]. The complex activation and negative feedback between TNF,

cortisol, and LPS is captured using an ordinary differential equation structure with parame-

ters fit via Markov Chain Monte Carlo (MCMC) search to explore the parameter landscape

across three different datasets [13, 70, 99]. The baseline and inflammatory challenge models

combine to describe the contributions of the inflammatory response to insulin mediated glu-

cose dynamics. The resulting model provides a mechanistically motivated description of key

biomarkers driving transient changes to glucose metabolism following an acute inflammatory

challenge.

The original model from literature [100] and the published insulin pharmacokinetic and

pharmacodynamic data [13] show agreement with the literature-derived model parameters, to

within small changes (Table 3). Such agreement indicates that the model effectively captures

the combined effects of both insulin mediated glucose uptake (IMGU) and insulin suppression

of endogenous glucose production (EGP) in a mathematically combined effect, collectively

referred to herein as insulin mediated glucose dynamics (IMGD(t), Equation (2.11)). The

only free parameter fit during the baseline calibration is the parameter Uen, the endogenous

29



release of insulin. We chose to model Uen as a constant, instead of employing physiologically

driven dynamics, due to the rapid increase in exogenous insulin that would marginalize the

effect of changes in endogenous insulin release.

Correlation analysis is performed on the parameter distributions obtained from MCMC.

The correlation coefficient (ρ) is calculated between each pair of parameters over the 4e04

saved parameter values. The analysis excluded the regularized parameters previously pub-

lished [100] resulting in analysis for the remaining 16 in table 4. Two pairs were found to

be highly correlated with a ρ ≥ 0.95. TNF degradation rate, ktd, is highly correlated with

the scaled TNF infusion rate UTNF (ρ = 0.99). Similarly, cortisol degradation kcd and the

magnitude of cortisol activation by TNF, ktc is highly correlated (ρ = 0.95). These correla-

tions indicate that a single parameter could be used in place of each correlated pair, with a

corresponding constant scaling factor. This constant substitution would be useful for fitting

patients in critical care because it reduces the total number of fitted parameters to capture

the inflammation-driven metabolic model.

The simplified mass-action model captures the activation, propagation, and negative

inhibition dynamics of LPS driving TNF and cortisol, which ultimately cause changes in

insulin-mediated glucose dynamics. The scale and scope of the interactions within the model

were chosen to emphasize observed human dynamics, thereby excluding some inconsistent

findings from cell and animal studies to maintain applicability to human subjects.

The primary components of the model represent a simplified network combining multiple

effects. The increased glucose uptake observed with both TNF [71] and IL-6 [66] infusions

in humans are combined into the TNF state, because their relative contributions cannot be

independently identified from the time series data in [13, 70, 99]. Similarly, the counter-

insulin effects of cortisol, glucagon, and growth hormone are combined into the cortisol state

due to the fact that, in many of the datasets used, there is a large amount of dynamic overlap

between these species. These simplified primary components play a key role in regulating the

effect of insulin on glucose dynamics and are the first step towards mathematically describing

the complex interplay of inflammation, anti-inflammation, and metabolism on glucose-insulin

dynamics. Additional experiments in, and measurements from, human subjects could help
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resolve the individual contributions of these combined species of interest while simultaneously

informing estimates of interpatient variability.

Stress hyperglycemia is induced mechanistically by inflammatory, anti-inflammatory, and

metabolic signaling. The mathematical model we developed reconciles this complex dynamic

relationship and provides temporal resolution to explain the observed insulin effects during

acute inflammation. The overall model describes the core drivers of metabolic change during

acute inflammation. Key measurements of these primary components in the two pathways

could provide a metabolic fingerprint to be used to identify the degree of insulin resistance

in a patient during acute inflammation. This type of fundamental metabolic knowledge can

be used for treatment of stress hyperglycemia in critical care.

Our model is a first step towards understanding the dynamics of between inflammation

and endocrine function. Mechanistic understanding through modeling can identify points of

actuation within the interaction cascade. Though additional cytokines, hormones and signal-

ing pathways require further experimental and modeling study (e.g., IL-6, IL-10, epinephrine,

growth hormone, glucagon), additional experiments will further improve the quality and res-

olution of both the model and clinical understanding of stress-induced hyperglycemia. This

metabolic resolution could be used to differentiate treatment cohorts, as well as provide dy-

namic predictions of various outcome and risk trajectories. Furthermore, the establishment

of additional points of actuation may also identify novel treatments to improve blood glucose

control in critical care patients. Resolving the contributions leading to rapid blood glucose

dynamics provides key insight for design of a decision support system for maintaining blood

glucose control. Such a system could estimate an individual patient’s underlying metabolic

state, via simulation and collection key measurements, to allow for real-time personalized

treatment.
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Figure 6: Simplified model (blue) fit to original model (green) following two different insulin

challenges of 15 minutes, and 140 minutes. Drift becomes clear during the longer, 140 min

insulin infusion.
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Figure 7: Multiscale model structure. Plasma insulin is scaled by parameter pm1 as fraction

diffused. Cellular effects (right) are multiplied by the scaling factors pm2 (Endogenous

glucose production: EGP) and pm3 (Insulin mediated glucose uptake: IMGU).
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Figure 8: Baseline cortisol levels (top: red) used to fit basal cortisol release (top/middle:

black) to match model baseline (top: blue) to data (top/middle: red). Resulting model fit

(middle: blue) of plasma cortisol as a function of IL-6 infusion (bottom).
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Table 2: Parameter set for IL-6 driving cortisol model.

Parameter Value CI(±) Units

kd 0.0105 fixed [97] min−1

k1 169.4 35.6 ng pg−1 min−1

k2 2,059 391.2 pg ml−1

k3 27.9 < 0.0 ng ml−1

ub(t) 3.1-4.7 0.7 ng ml−1 min−1
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Figure 9: Cortisol baseline measured for prediction data set (n = 26) [72]. Model (blue) fit

to control data (red) by adjusting baseline cortisol release (right: black).
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Figure 10: Low, 0.4 ng
kg

(n = 16), LPS infusion (left) and high, 0.8 ng
kg

(n = 12), LPS infusion

(right) are predicted by model from previous dataset [67]. IL-6 (bottom) drives cortisol

release. Baseline release used as underlying source for two different LPS dose levels.

Cortisol 

LPS 

TNF 

IMGD 

Figure 11: Crosstalk between the inflammatory response (represented by TNF, left) and the

anti-inflammatory response (represented by cortisol, right). Both pathways lead to changes

in insulin-mediated glucose dynamics (IMGD).
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Figure 12: Measured components from the three different datasets used simultaneously in

fitting the model (Equations (2.3) to (2.7) and Equation (2.11)). Top left: a low-dose LPS

bolus [99] is delivered with plasma LPS and TNF measured. Top right: a continuous, low-

dose intravenous infusion of TNF [70] with plasma TNF and cortisol measured. Bottom

center: a high-dose LPS bolus [13] is delivered with plasma TNF, cortisol, insulin, and

glucose measured.
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Figure 13: Model dynamics (black line) compared to data (blue, mean ± 1 standard devia-

tion, from [13]) during a continuous insulin infusion. Insulin concentrations for control (top)

and LPS challenge (middle) are fit in addition to insulin effect on glucose uptake (bottom).

The parameters used to fit these data are regularized to account for the lack of dynamic

resolution.
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Table 3: Stage I model parameters. Parameters without a value for Best were

not adjusted from the original publication [100].

Parameter Units Nominal [100] Best Ratio

aG
L
mU

1.54e− 02 5.67e− 03 3.68e− 01

nI min−1 3.00e− 03 1.47e− 03 4.91e− 01

nC min−1 3.00e− 03 9.63e− 03 3.21e+ 00

nK min−1 5.42e− 02 4.36e− 02 8.05e− 01

nL min−1 1.58e− 01 1.12e− 01 7.07e− 01

aI
L
mU

1.70e− 03 2.01e− 03 1.18e+ 00

VI L 3.15e+ 00 4.76e+ 00 1.51e+ 00

xL none 6.70e− 01 6.77e0− 1 1.01e+ 00

Uen
mU
min

− 1.49e+ 01 −

Γ none − 7.41e− 01 −

pG min−1 6.00e− 03 − −

SI L
mU ·min 3.00e− 04 − −

P mg
min

0e+ 00 − −

EGPb
mg
min

2.09e+ 02 − −

CNS mg
min

5.40e+ 01 − −

VG dl 1.33e+ 02 − −
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Figure 14: Model dynamics (black line) compared to data (mean: blue circles; error bars

represent ± 1 standard deviation) for LPS (top) and TNF (bottom) from [99] following a 2

ng
kg

EC-5 LPS bolus injection at time=0. The shaded region denotes 68% (beige) and 95%

(red) confidence in dynamic response using accepted parameter sets found via MCMC.
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Figure 15: Model dynamics (black line) compared to data (mean: blue circles; error bars

represent ± 1 standard deviation) for TNF (top) and cortisol (bottom) from [70] following a

continuous TNF infusion. The shaded region denotes 68% (beige) and 95% (red) confidence

in dynamic response using accepted parameter sets found via MCMC.
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Figure 16: Model dynamics (black line) compared to data (mean: blue circles; error bars

represent ± 1 standard deviation) for TNF (top) and cortisol (bottom) from [13] following

an LPS bolus injection at time=0. The shaded region denotes 68% (beige) and 95% (red)

confidence in dynamic response using accepted parameter sets found via MCMC.
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Figure 17: Model dynamics (black line) compared to data (mean: blue circles; error bars

represent ± 1 standard deviation) for IMGD percent change described in Equation (2.15).

Data from [13] following an LPS bolus injection at time=0 minutes during a continuous

insulin infusion starting at time=-120 minutes. The shaded region denotes 68% (beige) and

95% (red) confidence in dynamic response using accepted parameter sets found via MCMC.
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Table 4: Stage II model parameters. Best model parameter values found with

MCMC with minimum and maximum value of top 95% of accepted MCMC

samples.

Parameter (units) Best Min 95% Max 95%

VLPS( L
kg

) 1.18e− 01 8.26e− 02 1.98e− 01

αld(
mL
pg

) 1.16e+ 00 5.14e− 01 3.29e+ 00

klf (min
−1) 6.58e− 03 2.88e− 03 1.01e− 02

KMct(
ng
mL

) 8.69e+ 01 8.70e− 02 8.69e+ 04

klt(min
−1) 4.35e+ 01 5.04e+ 00 1.64e+ 04

ψldt(min) 4.47e+ 01 1.70e+ 01 4.50e+ 01

Utnf (
pg
min

) 7.84e− 01 2.55e− 01 2.74e+ 00

ktd(min
−1) 5.19e− 02 1.41e− 02 1.59e− 01

ktc(
ng

pg·min) 3.43e+ 00 1.39e+ 00 8.21e+ 00

KMtc(
pg
mL

) 2.78e+ 01 8.43e+ 00 7.56e+ 01

kcd(min
−1) 1.55e− 02 5.12e− 03 3.82e− 02

kcf (min
−1) 3.24e− 03 3.24e− 06 3.24e+ 00

kc2g(
mL
ng

mg
dl·min) 2.14e− 03 5.44e− 04 1.23e+ 00

ψcdg(min) 2.55e+ 02 2.55e− 01 1.60e+ 05

ktg(
mL2

pg2·min) 1.28e− 09 1.28e− 12 1.03e− 08

klps(
ngEC5
UEC6

) 1.82e− 01 6.70e− 02 5.43e− 01
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3.0 MODELING THE COUNTERREGULATORY HORMONE RESPONSE

FOLLOWING HYPOGLYCEMIA

3.1 INTRODUCTION

The endogenous response to hypoglycemia consists of the release of the counterregulatory

hormones epinephrine, norepinephrine, glucagon, cortisol, and growth hormone, with the pri-

mary factors being glucagon and epinephrine [91, 105]. These hormones perform a number

of endogenous functions that result in increased blood glucose concentration. The collective

functions of the counterregulatory hormone response are to decrease glucose absorption into

peripheral tissues by lowering insulin sensitivity and to trigger the release of endogenous

glucose supply into the bloodstream from the liver. Most glucose control studies see non-

trivial rates of insulin-induced hypoglycemia. As a result, there is a need to understand the

endogenous response to such an event, as clinicians, or a model-based DSS, will be making

glucose control decisions in the presence of this response.

3.2 MATERIALS AND METHODS

3.2.1 Model Development and Assumptions

In order to capture the endogenous counterregulatory response to hypoglycemia, we syn-

thesize mass-action-based model extensions to a previously published mathematical model

of glucose and insulin dynamics [100] that describe data from previously published clinical

studies [74, 78, 79, 82]. The counterregulatory hormones resulting from exogenously induced
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hypoglycemia lead to the onset of resistance to insulin-mediated glucose uptake (IMGU) and

increased endogenous glucose production (EGP). The resulting network of modeled interac-

tions is shown in Figure 18. Figure 18 is mathematically represented and fit simultaneously

Growth 

Hormone 

Liver Glucose Peripheral 

EGP IMGU 

Cortisol 

Epinephrine 

Glucagon 

Hypoglycemia 

Figure 18: Counterregulatory response induced via hypoglycemia causes the release of four

hormones: glucagon, epinephrine, cortisol, and growth hormone. All four hormones increase

endogenous glucose production. Epinephrine, cortisol, and growth hormone decrease insulin-

mediated glucose uptake.

to the data from [74, 78, 79, 82] as three different components: (i) Hormone release (Sec-

tion 3.2.2.1), the decreasing glucose profile caused by insulin infusion is used to trigger the

release of glucagon, epinephrine, cortisol, and growth hormone; (ii) IMGU (Section 3.2.2.2),

the effect of epinephrine, cortisol, and growth hormone on insulin-mediated glucose uptake;

and (iii) EGP (Section 3.2.2.2), the effect of glucagon, epinephrine, cortisol, and growth

hormone on endogenous glucose production.

46



3.2.2 Human in vivo Data for Model Calibration

A previously published study [91] using the pancreatic-adrenocortical-pituitary (PAP) clamp,

measures the counterregulatory hormones in response to an exogenously induced hypo-

glycemic event. The PAP clamp is used to mimic the endogenous counterregulatory re-

sponse by infusing the primary hormones exogenously while suppressing their endogenous

secretion, in such a way as to replicate the endogenous response. Once successful at mim-

icking the endogenous response, the researchers then withheld components one-by-one and

measured the insulin and glucose response from withholding each independent species. The

PAP clamp process introduced in [91] is illustrated in Figure 19. Data from four human

studies [74, 78, 79, 82] were digitized using WebPlotDigitizer [101]. Each study was a sepa-

rate published data set for each counterregulatory hormone being withheld during the PAP

clamp. The individually published human studies represented adrenergic [78], glucagon [79],

cortisol [74], and growth hormone [82] effects on glucose metabolism. The individual compo-

nents were combined into the overall model constructed for the counterregulatory response.

3.2.2.1 Hormone Release Hormone release is modeled with a scaled activation and

first-order degradation:

dĈi(t)

dt
= kuiFrelease(t)− kidĈi(t) (3.1)

(3.2)

The concentration of each hormone, subtracted from its baseline value, is given by Ĉi(t),

where i ∈ {glucagon, epinephrine, cortisol, growth hormone}. For each hormone there is a

corresponding activation gain, kui, as well as a first order elimination rate kid. In Equa-

tion (3.1) the function Frelease is an activation function used to trigger the release of hor-

mones. An easy function to trigger release is the Heaviside in Equation (3.3). However, it

is more physiologically correct to incorporate glucose-driven effects, which also allows the

driving function to turn off. As a result, the Heaviside function is ultimately replaced by
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Figure 19: PAP clamp as described in [91]. Hypoglycemia is first induced via continu-

ous subcutaneous insulin infusion (top left). Hypoglycemia leads to the counterregulatory

hormone release. During the clamp, the endogenous counterregulatory hormones are first

suppressed (bottom left), then reinfused exogenously to match endogenous effects on glucose

(right). Individual exogenous hormones withheld to quantify relative contribution to glucose

rate.

Equation (3.4).

Frelease(t) =

0 t < ψrelease

1 t ≥ ψrelease

(3.3)
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Here the Heaviside step function has a time delay ψi,release for the release of each counterreg-

ulatory hormone i. This Heaviside function approximation was made based on the dynamics

of the blood glucose driving function. The data shown in Figure 20, from [78], following

subcutaneous insulin infusion results in an approximately linear decrease in blood glucose

that can be estimated as a linear integrator that crosses a threshold at t = ψrelease result-

ing in the counterregulatory hormone release. The Heaviside release function only applies

during a constant insulin infusion and only under the same glucose trajectory. Therefore,

Equation (3.4) is used following the initial model structure development phase.

Figure 20: Data digitized from [78]. Blood glucose measurements following a 12 hour con-

tinuous subcutaneous insulin infusion of 15 mU
m2 min

.
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The initial Heaviside release function from Equation (3.3) is used to develop the model

structure for hormone induced changes to IMGU and EGP described in sections 3.2.2.2.

Subsequent modifications are made to the release function Frelease to incorporate the blood

glucose values from [78]. In the updated formulation a sigmoid function is used to model the

functionality between declining blood glucose and counterregulatory hormone release. The

model formulation of hormone release as a function of blood glucose is:

Frelease(G(t)) = 1− 1

1 + e−ki,mgG(t)+kgb
(3.4)

The sigmoid is a function of blood glucose concentration G(t) and is parameterized by the

glucose scaling factor ki,mg for each hormone i and offset kgb which is the same across all

hormones. The functionality described in Equation (3.4) is preferred to Equation (3.3) be-

cause it is a continuous function of blood glucose concentration, G(t). As G(t) decreases,

the exponential term e−ki,mgG(t)+kgb grows proportionally to ki,mg, causing Frelease(G(t)) to

approach one. When G(t) reaches the value of the ratio
kgb
ki,mg

the exponential term becomes

one and Frelease(G(t)) is equal to 1
2
, or half of the maximal hormone release. This func-

tionality is chosen over a Michaelis-Menten formulation due to the rapid dynamics it can

produce without parameterizing (and identifying) higher-order exponents such as with a Hill

function.

3.2.2.2 EGP and IMGU Endogenous glucose production (EGP) and insulin-mediated

glucose uptake (IMGU) are modeled using a key assumption that the effects of each coun-

terregulatory hormone are additive. Under this assumption, the glucose balance and insulin-

mediated glucose dynamics (IMGD) from [100], previously introduced in Equations (2.10)

and (2.11), are modified as follows:

dG(t)

dt
= −pGG(t)−XIMGD(t) +

P + EGPb − CNS
VG

(3.5)

XIMGD(t) = SI
Q(t)

1 + αGQ(t)
G(t)− FIMGU − FEGP (3.6)

The algebraically defined XIMGD(t) describes the lumped effects of both decreased IMGU

(FIMGU) and increased EGP (FEGP ). The IMGU term, FIMGU is negative as it represents
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a resistance to insulin-mediated glucose uptake. Similarly, the EGP term, FEGP , is negative

because it acts to increase blood glucose concentration G(t).

By assuming that each counterregulatory hormone contribution is additive, we fit the dif-

ference when the challenge experiment (hormone suppressed) is subtracted from the control

(hormone present). By doing, so Equation (3.6) becomes:

∆Xi,IMGD(t) = −∆Fi,IMGU −∆Fi,EGP (3.7)

Here the ∆ indicates the difference between the experiment with the hormone i and

without. The first term from Equation (3.6),
(
SI

Q(t)
1+αGQ(t)

G(t)
)

does not appear in Equa-

tion (3.7) because all of the time-varying components (Q(t) and G(t)) are the same in the

control and challenge cases, resulting in a cancellation. The resulting terms ∆Fi,IMGU and

∆Fi,EGP are then calculated by transforming the published experiments [74, 78, 79, 82]:

subtracting the challenge from the control. Note that in keeping with convention to the

publications [74, 78, 79, 82] that the control case is when hormone i is present and the chal-

lenge case is when the effect of hormone i is suppressed. Using this convention ∆Fi,IMGU

and ∆Fi,EGP represent the contribution of the suppressed hormone.

The PAP clamp reproduces the endogenous counterregulatory response. In the control

case, all four hormones (glucagon, epinephrine, cortisol, and growth hormone) are infused,

activating the full response in glucose dynamics. In each challenge data, an individual

hormone is not infused, thereby quantifying the changes in glucose dynamics when that

hormone is not present. Taking the difference between control data and challenge data

yields the relative contributions to EGP and IMGU of the individual hormone suppressed

for that specific challenge. EGP driven by glucagon and epinephrine are both modeled using

a filtered feedback term to achieve an overshoot response seen in the data [78, 79].

dRi(t)

dt
=

kirĈi(t)

kmiĈi(t) + kriRi3(t) + 1
− kridRi(t) (3.8)

dRi2(t)

dt
= kirf (Ri(t) +Ri2(t)) (3.9)

dRi3(t)

dt
= kirf (Ri2(t) +Ri3(t)) (3.10)
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Here the state Ri(t) represents the effect of component i, glucagon or epinephrine, on the

EGP data, ∆Fi,EGP from Equation (3.7). The effect is driven by the change in hormone

from baseline, Ĉi(t). The two states Ri2(t) and Ri3(t) with the filter coefficient kirf represent

the lagged auto-inhibition of component i, with the relative magnitude of auto-suppression

parameterized by kri versus kmi in the denominator of Equation (3.8).

Changes in EGP caused by cortisol and growth hormone are less dynamically complex

and are modeled using a first order filter:

dRi(t)

dt
= kirf (Ĉi(t)−Ri(t)) (3.11)

The state Ri(t) is the contribution of component i, cortisol or growth hormone, on changes

to EGP, ∆Fi,EGP . The change from baseline of the released hormone, Ĉi(t), is lagged with

a filter coefficient kirf , and Ri(t) is compared to the data describing ∆Fi,EGP .

Modeling the dynamics of IMGU caused by counterregulatory hormones epinephrine,

cortisol, and growth hormone is achieved using three consecutive lagged filter states.

dQi1(t)

dt
= kiqf (Ĉi(t) +Qi1(t)) (3.12)

dQi2(t)

dt
= kiqf (Qi1(t) +Qi2(t)) (3.13)

dQi(t)

dt
= kiqQi2(t) + kiqdQi(t) (3.14)

Here, the stateQi(t) is the contribution of component i ∈ {epinephrine, cortisol, or growth hormone}

on IMGU, ∆Fi,IMGU . The change from baseline of the released hormone, Ĉi(t), is lagged

with a filter coefficient kiqf , and Qi(t) is compared to the data describing ∆Fi,IMGU . The

counterregulatory hormone glucagon does affect IMGU.

The models for hormone effects on IMGU and EGP are integrated with the overall model

of insulin and glucose dynamics [100]. The simplification described in Equation (3.7) is

useful for identifying the model structures in Equations (3.8) to (3.14). However, integration

with the overall glucose homeostasis model [100] becomes more complex, as baseline EGP

and IMGU model terms must be calibrated. Specifically, the first term in Equation (3.6):(
SI

Q(t)
1+αGQ(t)

G(t)
)

must be modified to describe EGP functionality for baseline insulin as as

well as changes from baseline following the counterregulatory response. Similarly, the original
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homeostasis model does not contain an EGP functionality, so one is constructed which is

activated by counterregulatory hormones and inhibited by insulin. The model equations

describing the dynamics of insulin and glucose following a subcutaneous insulin infusion are

given by:

dQSC(t)

dt
= Usc(t)− k1QSC(t) (3.15)

dQ1a(t)

dt
= k1QSC(t)− (kv + ka1)Q1a(t) (3.16)

dQ2(t)

dt
= ka1Q1a(t)− ka1Q2(t) (3.17)

dI(t)

dt
= −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t)) (3.18)

+
Uex + ka1Q2(t)

VI
+ (1− xL)

Uen
VI

(3.19)

dQ(t)

dt
= nI(I(t)−Q(t))− nC

Q(t)

1 + αGQ(t)
(3.20)

dG(t)

dt
= −pGG(t) +XIMGD(t) (3.21)

XIMGD(t) = SI
Q(t)

1 + αGQ(t) +
∑

i αiQi(t)
G(t)− Cegp

1 + βiR4
I(t)
−
∑
j

ηjRj(t) (3.22)

dRI(t)

dt
= kifr(I(t)−RI(t)) (3.23)

Here the subcutaneously infused insulin, USC(t), passes through two filter states, Q1a(t)

and Q2(t) (rate constant, ka1), before reaching the plasma insulin compartment, I(t). The

subcutaneous insulin infusion model is developed in Chapter 4. Remote insulin, Q(t), in-

creases IMGU through the first term in Equation (3.22). The algebraic state, IMGD(t),

is modified with the term
∑

i αiQi(t) representing the additive IMGU inhibitory effects of

counterregulatory hormones i ∈ {epinephrine, cortisol, growth hormone}. The second term

in Equation (3.22) is an endogenous glucose production term accounting for insulin-mediated

effects. The constant Cegp is the maximum glucose production when no insulin is present.

The filtered insulin state, RI(t), acts to suppress EGP in the presence of insulin. The fi-

nal term describes insulin-independent EGP activation by the counterregulatory hormones

with the term
∑

j ηjRj(t) for, j ∈ {glucagon, epinephrine, cortisol, growth hormone}. The

final counterregulatory response model is given by combining the dynamics of the counter-

regulatory states with the modified model of glucose and insulin dynamics. The dynamics
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of the counterregulatory states, Qi(t) and Rj(t), are given by the previous Equations (3.8)

to (3.14). These Equations are coupled with Equations (3.15) to (3.23) to form the final set

of model equations.

3.2.3 Parameter Identification

Figure 18 is represented mathematically by the system of coupled ODEs shown in Equa-

tions (3.1) to (3.14). Initial calibration of the model is performed using least-squares non-

linear regression as described in Section 2.2.3.1. However, unlike in Section 2.2.3.1, no

parameter regularization is used because prior parameter information is unknown. Final

calibration of model parameters is achieved using the MCMC technique as described pre-

viously in Section 2.2.3.2. The overall model consists of the three different measurements

following a continuous subcutaneous insulin infusion: hormone release, EGP, and IMGU.

The datasets [74, 78, 79, 82] are fit to simultaneously calibrate the model.

3.3 RESULTS

3.3.1 Preliminary Counterregulatory Model

Initial counterregulatory hormone release is modeled using a Heaviside function described in

Equation (3.3) with release delayed until t = ψi,release for hormone i. In this model, the data

is fit simultaneously using least-squares nonlinear regression described in Section 2.2.3.1.

The hormone release profiles represent a first-order step response starting at each individual

hormone delay parameter ψi,release. The resulting calibrated model is shown in Figure 21.

Preliminary results for IMGU and EGP dynamics are modeled using the transformation in

Equation (3.7), where the individual hormone suppression is subtracted from the full counter-

regulatory response. These results rely on the assumption that the counterregulatory effects

on IMGU and EGP are additive, and are not integrated into the overall model of glucose

and insulin homeostasis described in Equations (3.15) to (3.23). Instead, the results match

the difference between control and challenge data and capture hormone induced changes
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Figure 21: Heaviside hormone release model dynamics (black line) compared to data (blue,

mean ± 1 standard deviation). Counterregulatory hormone data for epinpehrine [78],

glucagon [79], cortisol [74], and growth hormone [82] during a continuous subcutaneous

insulin infusion.

to IMGU and EGP. The counterregulatory ∆EGP and ∆IMGU responses shown in Fig-

ure 23 and 22 are transformed back into EGP (mg/kg/min) and IMGU (mg/kg/min) by

subtracting the modeled response from the data in the control cases [74, 78, 79, 82]. The

resulting EGP and IMGU responses are shown in Figure 25 and Figure 24, respectively.

Figure 26 shows the counterregulatory effect of EGP added to the glucose and insulin dy-

namic model. This can be used to simulate different possible scenarios depending on whether

or not a given counterregulatory hormone is being suppressed. From Figure 26, there are

large differences in patient safety when comparing a patient with or without a counterregu-
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latory response. There could be significant differences in patients with abnormal HPA axis

function, for example, a patient receiving steroids in critical care.

3.3.2 Final Counterregulatory Model

The final counterregulatory model captures three different processes: hormone release, IMGU,

and EGP. Hormone release is shown in Figure 27. Figure 28 shows the full counterregulatory

effect on IMGU (no suppression), as well as when each of the three IMGU-suppressing hor-

mones is absent. Epinephrine, cortisol, and growth hormone all act with varying magnitude

to reduce IMGU after an initial rise. The initial rise in IMGU can be attributed to the

corresponding early increases in EGP (i.e., higher glucose concentration leads to increased

disposal).

The final model for hormone release given by Equations (3.1) and (3.4) replaces the de-

lay parameters ψi,release with the parameters kgb and ki,mg. Thus, this model increases the

total number of parameters by one, while providing a continuous function of blood glucose

concentration. The final model shown in Figure 27 is calibrated using MCMC described in

Section 2.2.3.2. Variability in the data exceeds the model confidence intervals due to the

constrained model structure. If individual patient data is available and additional model

variation is required, the parameter kgb could be fit for each hormone. However, the model

captures the mean data points well using a single value of kgb. Each of the four counterregu-

latory hormones contribute to an increase in EGP, which counteracts the suppression of EGP

by insulin. Figure 29 shows the counterregulatory hormone-induced increase of EGP follow-

ing early suppression by subcutaneous insulin infusion. The full EGP response represents

the additive effects of each counterregulatory hormone. The magnitude of each individual

hormone effect is identified using the individual suppression datasets. Figure 30 shows the

individual counterregulatory effects on EGP when each hormone is individually suppressed.

The model captures the dynamics of glucagon, however, the overall magnitude of effect is

under predicted by the model. Similarly, the peak response of EGP induced by cortisol is

under predicted by the model. The error capturing magnitude in both of these responses is
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caused by the data variable for those measurements, resulting in a lower calibration weight

compared across all the other measured data.

3.4 DISCUSSION

The counterregulatory model describes the dynamics of the hormones epinephrine, glucagon,

cortisol, and growth hormone when activated by low levels of blood glucose (parameterized

by kgb and ki,mg) and the subsequent changes to metabolic insulin sensitivity and endoge-

nous glucose production that result. This model provides mechanistic insight into the way

multiple hormones react to counter hypoglycemia. The in silico results indicate that the

components may be modeled as additive effects, and that the two hormones glucagon and

epinephrine collectively contribute to approximately 76.4% of the overall peak EGP response

to hypoglycemia.

The model captures hormone release triggered by glucose concentration which subse-

quently leads to changes in glucose production and uptake. The production and uptake

rates could then be incorporated into the dynamic glucose concentration balance (right-

hand-side of Equation 3.21). Incorporating rate feedback into the glucose balance remains

difficult due to the error in measurement of the fitted rate data compared to the sensitivity

of glucose concentration on the rates. This type of feedback in the model may require ad-

ditional EGP and IMGU rate data to reduce some of the variability. However, this would

allow for more robust simulations of glucose homeostasis dynamics.

A major assumption in the model is that the individual components are considered

additive. The overall ability of the model to capture the data both of individual components

(Figures 28 and 30) and the overall EGP effect (Figure 29) supports the claim that this

approximation holds. However, a human infusion study [14] claims “the combined infusion of

epinephrine, glucagon, and cortisol produces a greater than additive hyperglycemic response

in normal humans,” seeming to contradict the proposed model assumption. This could be due

to the missing growth-hormone effect that our model accounts for, however, it could also be

due to the fact that our model captures hormone effect through removal. This contradiction
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could make the model over predict the effects of isolated epinephrine, glucagon, or cortisol

infusions.

The mechanisms of the counterregulatory pathway described by this model further re-

solve the metabolic state of a critical care patient following hypoglycemia and quantify the

individual roles of the contributing hormones within the counterregulatory response. Such

information may be used to inform measurements of specific species and further identify the

individual roles of the counterregulatory hormones, ultimately leading to more effective and

safer control of blood glucose.
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Figure 22: Preliminary counterregulatory IMGU model dynamics (black line) compared to

transformed data (blue, mean ± 1 standard deviation). Counterregulatory hormone data for

epinpehrine [78], cortisol [74], and growth hormone [82] is transformed by subtracting the

challenge (without hormone) from the control (with hormone).
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Figure 23: Preliminary counterregulatory EGP model dynamics (black line) compared to

data (blue, mean ± 1 standard deviation). Counterregulatory hormone data for epin-

pehrine [78], glucagon [79], cortisol [74], and growth hormone [82] is transformed by sub-

tracting the challenge (without hormone) from the control (with hormone).
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Figure 24: Preliminary counterregulatory IMGU model dynamics (black line) compared to

challenge data (red, mean ± 1 standard deviation) shown with control data (blue, mean

± 1 standard deviation). Counterregulatory hormone model is transformed back into the

challenge (hormone suppressed) IMGU rate by subtracting the model trajectory (individual

hormone effect) from control data (hormones present) for epinpehrine [78], cortisol [74], and

growth hormone [82]
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Figure 25: Preliminary counterregulatory EGP model dynamics (black line) compared to

challenge data (red, mean ± 1 standard deviation) shown with control data (blue, mean

± 1 standard deviation). Counterregulatory hormone model is transformed back into the

challenge (hormone suppressed) EGP rate by subtracting the model trajectory (individual

hormone effect) from control data (hormones present) for epinpehrine [78], glucagon [79],

cortisol [74], and growth hormone [82]
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Figure 26: Simulated counterregulatory glucose dynamics (solid black line) following a sub-

cutaneous insulin infusion starting a t = 0. The counterregulatory response occurs when

t = ψi,release for each i hormone. The missing contribution of each hormone is simulated to

show the relative effects (dashed). Regions of hypoglycemia (yellow) and severe hypoglycemia

(red) are highlighted. All four hormones suppressed (black dashed line) shows the largest

drop in blood glucose followed by glucagon suppressed (green dashed line), epinephrine

suppressed (blue dashed line), cortisol suppressed (red dashed line), and growth hormone

suppressed (magenta dashed line).
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Figure 27: Final hormone release model dynamics (black line) compared to data (blue, mean

± 1 standard deviation). Counterregulatory hormone data for epinpehrine [78], glucagon [79],

cortisol [74], and growth hormone [82] during a continuous subcutaneous insulin infusion.

The shaded region denotes 68% (beige) and 95% (red) confidence in dynamic response using

accepted parameter sets found via MCMC.
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Figure 28: Final counterregulatory IMGU model dynamics (black line) compared to data

(blue, mean ± 1 standard deviation). Counterregulatory hormone data for epinpehrine [78],

cortisol [74], and growth hormone [82] during a continuous subcutaneous insulin infusion.

The shaded region denotes 68% (beige) and 95% (red) confidence in dynamic response using

accepted parameter sets found via MCMC.
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Figure 29: Final counterregulatory EGP model dynamics (black line) compared to data

(blue, mean ± 1 standard deviation). Counterregulatory hormone data from [78] when all

four hormones are active during a continuous subcutaneous insulin infusion. The shaded

region denotes 68% (beige) and 95% (red) confidence in dynamic response using accepted

parameter sets found via MCMC.
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Figure 30: Final counterregulatory EGP model dynamics (black line) compared to data

(blue, mean ± 1 standard deviation). Counterregulatory hormone data for epinpehrine [78],

glucagon [79], cortisol [74], and growth hormone [82] during a continuous subcutaneous

insulin infusion. The shaded region denotes 68% (beige) and 95% (red) confidence in dynamic

response using accepted parameter sets found via MCMC.
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4.0 MODELING SUBCUTANEOUS INSULIN DELIVERY

4.1 INTRODUCTION

Stress hyperglycemia and its accompanying deleterious effects are primarily treated via either

continuous intravenous or intermittent subcutaneous insulin administration. Subcutaneously

injected insulin is a less invasive form of delivery used preferentially when patients are deemed

stable enough to transition from intravenous administration in the ICU. Therefore, a control-

relevant model that can be tailored to match individual patient dynamics of subcutaneously

administered insulin for multiple insulin types is the focus of this work. While several

mathematical models have been proposed to describe subcutaneous insulin delivery [106,

107, 108], the present focus is:

• Low order state and parameter dimension model.

• Readily tailored to individual patients.

• Practically-identifiable parameters when applied to clinical data.

• Single structure for multiple insulin types.

• Single structure for insulin bolus and infusion.

Previously published models of subcutaneous insulin [106, 107, 108] use different mathemat-

ical structures for each type of infused insulin (e.g., rapid-acting, regular, lente, etc.). The

present work included regular and rapid-acting insulin types, and focused on constructing a

single-structure model with parameters specific to insulin-type. To build a low-order, prac-

tically identifiable subcutaneous insulin model, a previously reduced model [109] starts from

a literature review of subcutaneous insulin models [107], and is further analyzed using pub-

This material is submitted to Control Engineering Practice
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lished human data [110, 111, 112, 113]. The model is fit using a Markov Chain Monte Carlo

(MCMC) parameter search (described in Section 2.2.3.2) to provide posterior distributions

of the model parameters. Finally, the reduced model of subcutaneous insulin delivery is

validated with patient data from an intensive care clinical database to construct a virtual

patient cohort for in silico analysis and potential use in control system design.

4.2 MATERIALS AND METHODS

4.2.1 Wilinska Model

Wilinska et al. [107] evaluates 11 different compartmental models for insulin dynamics, find-

ing “model 10” to be the best for subcutaneous insulin administration (via either bolus injec-

tion or continuous infusion) of rapid-acting insulin analogues in insulin-dependent diabetics.

This model is presented in Figure 31, and has two different pathways of insulin absorption.

The transfer rates of the model are ka1, ka2 and ke (1/min). LDa and LDb (mU/min)

are Michaelis-Menten functions that capture local degradation at the insulin administration

site. The Wilinska model is used as a starting point for building an ICU-relevant model

that can capture the plasma insulin dynamics for a variety of insulin types, administration

routes, and patients.

4.2.2 Clinical Insulin Data

Two different clinical studies are used to fit the plasma insulin data for regular insulin (highly

purified porcine insulin; Actrapid MC, 40 U/mL, Novo Industries, Denmark). From ([110]),

ten normal subjects were given an IV insulin infusion of 1 U/hr into the contralateral arm

for 60 minutes to suppress endogenous insulin release from the pancreas. The study began

(defined as time 0) when subjects were administered a 10 U subcutaneous “bolus” of insulin

over 5 minutes (2 U/min). The plasma insulin level at time 0 of the study is used as the

steady state plasma insulin for the model fit. In ([111]), nine insulin-dependent diabetics

and three normal subjects were studied. In the bolus arm, insulin was delivered by a single
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Figure 31: Wilinska model: Subcutaneous insulin absorption for bolus or continuous ad-

ministration of rapid-acting insulin analogues for insulin-dependent diabetics [107]. Insulin

injection is represented as U (mU) with the amount distributed between the two channels

determined by a fraction, p. Compartments Q1a and Q1b (mU) are the insulin mass in

each compartment with degradation (via LDa and LDb) and can also be absorbed into the

plasma. Compartment Q2 (mU) captures the slower dynamics associated with the fraction,

p, of insulin administered. Ip (mU/L) represents insulin in the plasma compartment.

subcutaneous injection at a dose of 0.15 U/kg body weight. In the continuous infusion arm,

six subjects were administered the same dose of insulin over 60 minutes.

Fast-acting insulin analogue data is used from two additional studies. A clinical study

from [112] examined fourteen insulin-dependent diabetic subjects and compared two fast-

acting analogues. Participants were injected subcutaneously with a 10 U bolus of insulin

Lispro (Humalog, 100 U/mL, Eli Lilly, Indianapolis, IN) and (on a different day) a 10 U
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bolus of insulin Aspart (NovoRapid, 100 U/mL, Novo-Nordisk, Bagsveard, Denmark). The

parameter set fit to the Hedman [112] clinical study is validated using data from a clinical

study of 24 insulin-dependent diabetic patients using the same insulin at a subcutaneous

bolus dose of 7.1 ± 1.3 U ([113]).

4.2.3 Akaike Information Criterion

The Akaike Information Criterion [114, 115] (AIC) is computed for each of the models to

establish a statistical comparison between the Wilinska model, the “extended” Wilinska

model and our low-order model. The AIC is computed as follows:

AIC = N ln

(
J(θ)

N

)
+ 2M (4.1)

Here, J(θ) is the weighted sum of squared error as defined in Equation 2.14. N is the number

of data points, and M is the number of model parameters. The criterion is minimized over

choices of M to form a tradeoff between the quality of fit of the model to the data and the

complexity of the model, as represented by its number of parameters, M . The model having

the lower AIC score is preferred.

4.2.4 Wilinska Model Extension and Reduction

In our earlier work [109], a subcutaneous insulin absorption model from literature [107]

is modified and reduced while fitting previously published data of regular [110, 111] and

fast-acting [112, 113] insulin. Similar to the original review [107], Akaikes information crite-

rion [115, 116] (AIC) is used to compare and select the model variation that best balances

fitting error against over-parameterization. The original model, shown in Figure 32A is

modified to replace the complementary fractions p and 1− p, with a kinetically driven com-

partment (Qsc(t)) and corresponding rate coefficients k1 and k2, respectively, governing

the rate of material transfer into the two possible insulin transport channels to form the

”Extended” model, as shown in Figure 32B. This structure was subsequently truncated by

removing the second, single compartment (lower) as a result of the observation that, in the

case of fitting each insulin type, the two compartment partition (top) is more utilized (total
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fraction of insulin mass going through this channel is 99% for fast-acting insulin and 79%

for regular insulin). The final model structure, the so-called ”Reduced model”, is shown in

Figure 32C, where only one channel of insulin transport remains. Separate parameters are fit

A) B) C) 
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Figure 32: Reduction of the originally published model by Wilinska et al. [107] as described

in [109].

for both fast-acting and regular insulin. Model selection is performed using AIC to establish

the model having the best trade-off between complexity (as measured by the number of free

parameters) and quality of fit (a weighted sum-of-squared error between model predictions

and data). Table 5 shows the comparison between the three models investigated. The orig-

inal model from [107] and the reduced model had the same number of fitted parameters,

however, the structure of the reduced model, specifically the parameter ka3, resulted in a

better fit for both regular and fast-acting insulin, as shown in Table 5. The reduced model

with low AIC scores for both regular and fast-acting insulin is considered a superior model

to describe subcutaneous insulin dynamics for multiple insulin types.
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Table 5: Number of parameters, sum of squared error, and AIC scores for the three models

fit with separate parameter values for both fast-acting and regular insulin.

Model Parameters
SSE AIC

Regular Fast Regular Fast

Wilinska et al. 7 368.2 336.2 101.7 104.7

Extended 9 351.4 158.7 106.9 79.5

Reduced 7 356.7 186.0 100.6 79.8

4.2.5 Composite Model

A previously published, clinically validated model of glucose and insulin dynamics [100] is

combined with a version of the previously developed [109] reduced subcutaneous insulin

model (chosen by Table 5), and is further simplified to possess fewer fitted parameters.

Additionally, the original [107, 109] nonlinear degradation from state Q1a, is replaced with

a linear term.

The resulting composite model describes the dynamics of glucose and insulin, including

exogenously administered glucose, insulin, and subcutaneous insulin. The mathematical

description of the subcutaneous insulin model is as follows:

New subcutaneous insulin model:

dQSC(t)

dt
= USC(t)− k1QSC(t) (4.2)

dQ1a(t)

dt
= k1QSC(t)− kvQ1a(t)− ka1Q1a(t) (4.3)

dQ2(t)

dt
= ka1Q1a(t)− ka1Q2(t) (4.4)
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This model feeds a circulating glucose and insulin model from [100]:

dI(t)

dt
= −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t))

+
Uex(t) + ka1Q2(t)

VI
+ (1− xL)

Uen(t)

VI
(4.5)

dQ(t)

dt
= nI(I(t)−Q(t))− nC

Q(t)

1 + αGQ(t)
(4.6)

dG(t)

dt
= −pGG(t)− SI(t)G(t)

Q(t)

1 + αGQ(t)
+
P (t) + EGPb − CNS

VG
(4.7)

Uen(t) = k1e
−I(t)k2/k3 (4.8)

Here, subcutaneous insulin input, USC(t), enters the model through the QSC(t) state. In the

simplified model, insulin mass travels through the states Q1a(t) and Q2(t) and appears in the

plasma compartment I(t) with rate ka1Q2(t). This is added to the exogenous (intravenous)

insulin administration term from [100], as both serve to increase the amount of circulating

insulin. Subcutaneous insulin is removed from the compartment Q1a(t) at a rate kvQ1a(t).

This is shown schematically in Chapter 2, Figure 5.

When the subcutaneous model is added to the insulin-glucose model, the state through

which the two models are connected is the plasma insulin state, I(t). In the previously

described fitting and comparison of the isolated reduced subcutaneous model, the rate of

insulin degradation is a first-order linear degradation from Equation (4.4). However, when

concatenating the two models, the insulin state has nonlinear dynamics originating from the

insulin-glucose model, described in Equation (4.5). To reconcile this difference, the same

insulin data [110, 111, 112, 113] are refit using the dynamic equations from Equation 4.5 to

model insulin concentration.

4.2.6 Parameter Identification

Parameter identification for the composite model described in Section 4.2.5 is done using the

MCMC method detailed in Chapter 2.2.3.2. Prior parameter distributions for the composite

model are obtained from MCMC and used to generate confidence intervals for the model.
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Additionally, the Kullback-Liebler (KL) distance is used to compare the similarities resulting

posterior parameter distributions between each insulin type. The KL distance is given by:

D(p||q) =
∑
x

p(x)log2
p(x)

q(x)
(4.9)

Here D(p||q) is the Kullback-Leibler distance between probability mass functions p(x) and

q(x).

4.3 RESULTS AND DISCUSSION

4.3.1 Parameter Space Reduction

MCMC is used to obtain separate posterior parameter distributions for both fast-acting and

regular insulin. It is first run fitting three separate parameters (k1, ka1, and kv) for each in-

sulin type (six parameters total). The resulting distributions are then used to further reduce

the model by comparing the similarities in distributions between type-specific parameters.

The Kullback-Leibler (KL) distances for each parameter are calculated between insulin types

as in Equation (4.9), and are summarized in Table 6.

Table 6: Final Kullback-Leibler distances between parameter distributions fitting regular

(R) and fast-acting (F) insulin.

Distance k1 kv ka1

D(R||F ) 2.71E-1 6.06E-1 5.77E-1

D(F ||R) 2.87E-1 1.74 8.51E-1

Total 5.58E-1 2.35 1.43
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The parameter kv is chosen to remain variable between insulin types due to having the

largest KL distance between types. The parameter search space for the MCMC routine is

decreased in the simplified model by fixing the parameters k1 and ka1 to remain constant

between insulin types. The resulting model is shown in Equation (4.2) to Equation (4.4),

where only kv varies between insulin type. The parameter kv represents the effect of local

degradation on subcutaneously delivered insulin before reaching the bloodstream.

MCMC is run again to obtain the final parameter distributions. Model development and

simplification is done using plasma insulin concentrations without information about the

unobserved compartments present in the model. Therefore Equations (4.2) to (4.4) have no

physiological meaning, and the model may not capture any additional insulin types without

modifications. Additional data of various other insulin types are necessary to extend the

model utility beyond regular and fast-acting insulin.

4.3.2 Calibrating Model Parameters with MCMC Sampling

The MCMC algorithm is used a second time to compute the posterior parameter distributions

after fitting the model (Equations (4.2) to (4.4)) to human glucose data. The resulting

subcutaneous insulin model is prepended to an existing model of glucose and insulin dynamics

from the literature [100]. The MCMC algorithm ran for 1,000,000 sampled parameter steps.

The initial 500,000 steps are truncated to account for burn-in and the final 500,000 steps

are used to generate the parameter distributions shown in Figure 33. Human data from

[110, 111, 112, 113] were used to calibrate the model for fast-acting and regular insulin.

To initialize Type 1 diabetic patients who had nonzero initial insulin concentrations from

[112, 113], the model response to an insulin bolus of 5 units is simulated until the simulated

insulin concentration (decreasing with time) matched that of the initial data point. The full

state vector at this time point is used to initialize the model for parameter fitting purposes.

This method attempts to capture the effect of insulin already on-board before the experiment

is performed and data collected. Failure to address the nonzero unobservable insulin states

led to a pronounced drop in insulin immediately following the start of the simulation, before

the simulated experimental subcutaneous bolus had reached the bloodstream. The resulting
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Figure 33: Subcutaneous insulin model parameter distributions for fast-acting and regular

insulin found using MCMC optimization.

fits of the data using the minimum energy parameter sets found from MCMC are shown

in Figures 34 and 35 for fast-acting and regular insulins, respectively. The final model

parameters are shown in Table 7.

4.4 SUMMARY

Markov Chain Monte Carlo parameter optimization is used to consolidate from 4 parame-

ters fit for each insulin type (8 total) to 3 parameters fit in total across insulin types for
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Table 7: Final parameter values found using MCMC parameter optimization.

Parameter (units) Regular Fast

kv (1/min) 2.68E-2 6.82E-3

k1 (1/min) 1.08 1.08

ka1 (1/min) 1.27E-2 1.27E-2

the subcutaneous insulin infusion model. This parameter-efficient structure fits k1 and ka1

across insulin types while Vmax changes depending on the type of insulin administered. The

composite model successfully simulates both regular and fast-acting subcutaneous insulin

administration.
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Figure 34: Model dynamics (black line) compared to data (mean: blue circles; error bars rep-

resent ± 1 standard error) for plasma insulin appearance following fast-acting subcutaneous

insulin administration. The shaded region denotes 68% (beige) and 95% (red) confidence in

dynamic response using accepted parameter sets found via MCMC. Top panel: 10 U insulin

Lispro [112]. Second panel: 10 U insulin Aspart [112]. Third panel: 7.1 U insulin Lispro

[113]. Bottom panel: 7.1 U insulin Aspart [113]. Note: y-axis changes between subfigures.
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Figure 35: Model dynamics (black line) compared to data (mean: blue circles; error bars

represent ± 1 standard error) for plasma insulin appearance following regular subcutaneous

insulin administration. The shaded region denotes 68% (beige) and 95% (red) confidence in

dynamic response using accepted parameter sets found via MCMC. Top panel: 9 U bolus

[111]. Middle panel: 6.8 U continuous subcutaneous infusion over 60 minutes [111]. Bottom

panel: 10 U bolus [110]. Note: y-axis changes between subfigures.
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5.0 VIRTUAL PATIENTS: CONSTRUCTION AND ANALYSIS

5.1 INTRODUCTION

In this chapter clinical data is used to calibrate biologically relevant patient models, like

those developed in the previous chapters. Figure 36 shows the iterative mechanism by which

clinical data can be used to both: (i) develop patient models for better controller prediction,

and (ii) tune controller behavior in silico by simulating patient response. The models are

used to inform a model-based controller to predict and treat patients within a decision

support system (DSS). The DSS allows for more patient-specific parameterization within

the predictive model and can reduce the amount of time needed from medical personnel by

automating the analysis of patient measurements and, potentially administering treatment.

Glucose and insulin data comes from the HIgh-DENsity Intensive Care (HIDENIC) data

set containing ICU patient information from the University of Pittsburgh Medical Center

(UPMC). The data is used to extract patient-specific parameter profiles as virtual patients

and provide a testing platform for controller formulation. Controller performance is then

evaluated based on overall ability to maintain normoglycemia despite fluctuations in the

aforementioned individual parameter profiles and the delivery of nutritional support. The

actions suggested by the controller can be presented, in a semi-closed-loop, to clinical per-

sonnel who will make the final treatment decision.
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Figure 36: Cyclic process consisting of: gathering patient data (top left), model building

and calibration with patient data (top right), iterative in silico controller tuning (bottom

right), and controller driven treatment (bottom left).

5.2 CONSTRUCTING A VIRTUAL PATIENTS COHORT

5.2.1 Clinical Data Workflow

Patient data from the High-Density Intensive Care (HiDenIC) database at the University

of Pittsburgh Medical Center (UPMC) are used to construct virtual patients. A series of

Python scripts are used to query the SQL database and construct tables of patient data

matching the criteria needed for model validation. Data is extracted for 48 non-diabetic

patients, with a length of stay in the ICU between 1 to 14 days, and between the years 2003

and 2009. Selection of the 48 patients is based on the existence of a window of approximately

72 hours during which the following three conditions are met: frequent (approximately q3-q4
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hour) finger stick glucose measurements [117], subcutaneous insulin administration, and no

oral nutrition administration. These criteria allowed for the characterization of the delivered

subcutaneous insulin effects on glucose levels in the absence of additional dynamic glucose

processes such as gastric emptying or dynamics unique to diabetic patients. Intravenous

glucose and insulin are also extracted over the interval of glucose measurements and modeled

as direct inputs to Equations (4.7) and (4.5), respectively.

5.2.2 Virtual Patient Synthesis: Methods

For each extracted patient record, a metabolic profile is calculated in the form of a time-

varying parameter, SI(t), the insulin sensitivity term from Equation (4.7), and a baseline

constant EGPb, similar to [118, 119]. The time-varying parameter SI(t) and constant EGPb

are fit for each patient so that the combined effects of any exogenous inputs resulted in

the model output matching the glucose values recorded in the data to within the error of

the fingerstick glucose measurement of 5% [117]. The parameter SI(t) is estimated every 5

minutes to approximate a continuous signal when compared to the hourly scale of glucose

measurements in the database. A zero-order hold is applied to the SI(t) signal, thereby

making it constant over each 5-minute interval. Regularization, with weight Γ, is used to

smooth the SI(t) profile, due to the highly overparameterized problem of fitting SI(t) at 5-

minute intervals to data that is sampled no more rapidly than hourly. The overall objective

function fitting individualized SI(t) and EGPb to each patient dataset is as follows:

min
SI(t)

1

N
J(SI(t)) + Γ

N−1∑
i=1

(SI(ti+1)− SI(ti)))2 (5.1)

Here, the sum-of-squared error term is normalized by the number of points in the data

record, and Γ is the regularization parameter that penalizes the variance of the time-varying,

patient-specific insulin sensitivity parameter SI(t). The virtual patient fitting procedure is

summarized in Figure 37. The regularization parameter Γ is determined by fitting 48 patient

profiles across a span of Γi values and finding the value of Γi that results in a mean absolute

percent error (MAPE) per point of 5% for a given patient, i. This value is chosen to match the

coefficient of variation precision threshold set for the blood glucose sensor [117]. Figure 38
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Figure 37: Block diagram for fitting metabolic profiles of patients by taking exogenous inputs

and matching glucose output measurements through adjustment of insulin sensitivity, SI(t).

Here, G(ti) is the glucose measurement from a patient at time ti, which is fit by the model

predicted glucose value Ĝ(ti). The value ∆SI(ti) is the change in SI from ti−1 to ti.

shows the 48-patient distribution of Γ values that yielded a MAPE of 5%. The median

Γ value of 7.34E7 from the distribution in Figure 38 was used to fit the virtual patients in

generating the patient cohort. Parameter estimation for SI(t) was performed using nonlinear

least squares and solved using the interior point solver IPOPT [120] implemented in the

Coopr/Pyomo package [121]. The model of ordinary differential equations was solved using

orthogonal collocation on finite elements (5-minute duration for each element), with three

Radau collocation points [122] per finite element.

5.2.3 Virtual Patient Synthesis: Results and Discussion

An example patient profile with modeled and measured glucose values, exogenous inputs,

and SI(t) profile is shown in Figure 39. The results from fitting 48 patients from the HiDenIC

database are summarized in Table 8. Overall, the time-varying parameter SI(t) and constant

EGPb are able to capture the blood glucose profiles for individual patients to within an
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Figure 38: Distribution of 48 patient-specific Γ values where the mean absolute percent error

per glucose measurement was 5%.

average absolute mean error:

1

n

n∑
i=1

[
1

mi

m∑
j=1

∣∣∣[Gi,j]− [Ĝi,j]
∣∣∣] (5.2)

Here n is the total number of patients (48) and mi is the number of glucose measurements per

patient in the data. Patients were selected from the database if they have glucose measure-

ments, intravenous and subcutaneous insulin infusions all present within a 72 hour window.

Here [Ĝi,j] is the simulated glucose value, and the corresponding glucose measurement is

[Gi,j]. The average absolute mean error is 3.7 mg/dL per patient per data point. This

value is lower than the 5% blood glucose sensor error from [117] due to the choice of median

Γ value. Model-based analysis indicates that patients fall outside of the desired targeted

blood glucose range of 80 to 130 mg/dL on average 12 % of the time. Virtual patients are
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Figure 39: Representative patient fit by adjusting parameter SI(t). Top panel: Measured

glucose values (x) and model-predicted glucose (line). Second panel: Time-varying param-

eter SI(t). Third panel: Exogenous subcutaneous (black line, red circle) and intravenous

(blue dashed line) insulin. Bottom panel: Exogenous intravenous glucose.
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Table 8: Results of fitting the SI(t) profile of 48 patients to match measured blood glucose.

Note: (∗) the parameter SI(t) is lower bounded by zero when the recorded exogenous glucose

input does not sufficiently account for the observed increase in blood glucose.

Quantity (units) Mean SD Minimum Maximum

Mean absolute error (mg/dL) 3.7 3.0 0.4 14.3

Time in 80 to 130 mg/dL range (%) 88.2 13.5 45 100

SI(t) (L/mU/min) 3.3E-4 2.9E-4 0.0∗ 2.3E-3

EGPb (mmol/L/min) 1.7 6.5E-1 1.0 4.9

Subcutaneous insulin given (U) 67 44 20 214

Patient data record length (hr) 66 7.9 37 72

constructed by fitting the composite model to intensive care unit data from patients who

had received exogenous subcutaneous insulin in addition to intravenous glucose and insulin.

One time-varying parameter, SI(t), and one constant parameter, EGPb, are fit for each of

48 patients to form an individualized metabolic profile. Blood glucose measurements are

captured using the recorded exogenous inputs as well as the fitted parameters, resulting in

an average model error of 3.7 mg/dL per measurement per patient, to match blood glucose

sensor error from [117], over an average time window of 66 hours.

One of the primary challenges in treating stress hyperglycemia in critical care is the

intra- and inter-patient variations in glucose metabolism resulting from changes in insulin

sensitivity. The fitted parameter profile, SI(t), calculated for each patient data set extracted

from the critical care database forms a virtual patient cohort. Each unique, time-varying

parameter profile can be used to simulate a realistic patient responding to exogenous inputs

such as insulin and glucose administration in critical care. This forms a test platform for

in silico controller design and optimization capable of utilizing subcutaneous insulin and

expanding beyond strictly intravenous-based control.
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5.3 CONTROLLING A VIRTUAL PATIENT COHORT

For zone glucose control (ZGC), we develop a DSS that runs closed-loop in silico to evaluate

controller performance. Virtual patient simulations can be controlled by a model predic-

tive controller (MPC) that uses zone control to minimize both hypoglycemic events and

hyperglycemia through administration of insulin and glucose. Virtual patient simulations,

originally fit to match clinical metabolic profiles, provide a platform to refine controller pa-

rameters. The results of performing virtual control on the clinically-derived virtual patients

shows improved performance compared to the original patient data.

5.3.1 Virtual Patient Control: Methods

A preliminary nonlinear controller formulation is implemented to evaluate control perfor-

mance on a virtual patient cohort. Model predictive control (MPC) is combined with moving

horizon estimation (MHE), which allows the internal controller model to recalibrate based

on newly received blood glucose measurements. Equations 5.3 through (5.5) describe the

MPC/MHE formulation.

minuI,uG

k+P∑
i=k+1

(Epred(i))
2 + Γgug(i)

2 (5.3)

s.t. BGpred(i) = f (BGmeas(i− 1), u(i), θ(k))) (5.4)

Epred(i) =


0, BGlb ≤ BGpred(i) ≤ BGub

BGpred(i)−BGub, BGpred(i) ≥ BGub

BGpred(i)−BGlb, BGpred(i) ≤ BGlb

(5.5)

Manipulated inputs uI and uG are exogenous insulin and glucose, respectively, over the

interval [k + 1, P ]. The optimization penalizes predicted blood glucose values, BGpred(i),

outside of the control zone. The zone is defined as the region between BGlb and BGub.

Regularization on absolute glucose infusion uG(K) is weighted by Γg to penalize unnecessary

glucose infusion. Model predictions are generated by sampling a continuous-time nonlinear

model (f (BGmeas(i− 1), u(k), p(k)))) at the measurement interval of 5 minutes over the
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prediction horizon, P . The nonlinear model provides predicted glucose values BGpred(k) as

a function of the current glucose measurement BGmeas(k), input administration u(k), and

the model parameters θ(k). Inputs u(k) for each time point k include glucose and insulin

such that uI(k), uG(k) ∈ u(k).

Equations (5.3) through (5.5) describe the formulation used for optimizing MHE.

minθfit(L)∈θ

k∑
i=k−N

(BGest(i)−BGmeas(i))
2 (5.6)

s.t. BGest(k + 1) = f (BGmeas(k), u(L), θ(L)) (5.7)

θlb ≤ θfit(L) ≤ θub (5.8)

The past N discrete measurements are used to recalibrate the model parameters, θfit(L), over

the interval L ∈ [k−N, k] to match the model glucose concentration estimate, BGest(L) for

each past measurement. A subset of parameters, θfit(L), belonging to the nonlinear model

are adjusted to match model output with measurements. Examples of MPC/MHE and zone

control are depicted in Figure 40. The overall DSS schematic displayed in Figure 41 shows

the targeted implementation in the clinical setting that is simulated in silico to determine

feasibility and controller confidence. Zone-MPC as shown in Figure 40 is evaluated in silico

using a model of metabolic homeostasis (Appendix ).

5.3.2 Virtual Patient Control: Results and Discussion

In a separate analysis, 99 patient records are extracted from the same HiDenIC database. The

99 patients were selected based on the density of glucose measurements available within the

database. The results of implementing zone-MPC is a reduction in hypo- and hyperglycemia

in silico for our 99 virtual patients. Glucose control metrics [124] are drastically improved

as seen in Table 9 and overall population mean glucose is mostly maintained to within the

desired control region as shown in Figure 42. To design a controller relevant to critical care

patients, our detailed metabolic model captures and simulates 99 virtual patient’s dynamics.

The virtual patient test cohort is used to successfully simulate identical scenarios with and

without glycemic control. We show, using the virtual patient test cohort, that glycemic

variability is reduced and large hypo and hyperglycemic fluctuations are minimized using
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Figure 40: MPC/MHE schematic (left) showing prediction and estimation horizons along

with optimal control actuation (adapted from [123]). MHE minimizes the error between past

glucose measurements and model predictions by adjusting a subset of parameters, θfit(L).

Zone control schematic (right) showing control moves only when predicted blood glucose

leaves specified zone. Manipulated variables uI(K) and uG(K) are adjusted over prediction

horizon with a penalty, Γg, for leaving uG(K) nonzero.

zone control. These results indicate a successful pilot study using virtual patients derived

from a critical care population. This concept is extended through more detailed modeling

and higher resolution measurements to form a robust simulation test platform for in silico

critical care trials.
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Figure 41: Patient specific time-varying parameters are estimated by the MHE algorithm us-

ing glucose measurements. Controller uses MPC to calculate optimal insulin and/or glucose

infusion, the manipulated variables, to maintain blood glucose within target range.

Table 9: Summary of suggested statistics [124] for comparing glucose control protocols.

Glucose statistics TGC Original

Central tendency (median;IQR) 121; 12 (mg dl−1) 128; 28 (mg dl−1)

Dispersion (median;IQR) 17; 10 (mg dl−1) 37; 24 (mg dl−1)

Moderate hypoglycemia (41-70 mg dl−1) 12% 47%

Severe hypoglycemia (≤ 40 mg dl−1) 0% 1%
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Figure 42: Per patient average blood glucose shows reduction in variance and mean glucose

concentration, as well as an increased frequency of patients within the target zone, under

Zone-MPC/MHE.

5.4 IMPROVING THE VIRTUAL PATIENT COHORT

Controller performance is limited by the accuracy of the model [32]. Model accuracy is also

important for simulating a realistic patient response. Temporal resolution of the virtual

patient simulator is improved by incorporating additional key dynamics. The modules listed

in Table 10 are the core models used in developing the virtual patient cohort. It is our

ultimate goal to incorporate additional modules such as the inflammatory challenge, coun-

terregulation, and subcutaneous insulin models previously described. Additionally, a model

of continuous glucose monitoring noise is added to the virtual patient to simulate realistic

glucose measurement noise.

In addition to our simulator there have been a number of similar virtual patient plat-

forms developed for glucose and insulin dynamics. The in silico control results presented

earlier in this chapter (Section 5.3.2) use the core model of glucose and insulin dynamics

from [125] (Appendix ). However, a key state impacting glucose-insulin dynamics from [125]

is free fatty acids (FFAs), which is unidentifiable without explicit measurements of plasma

FFAs. As a result, the results below replace the core glucose-insulin model from [125] with a

clinically validated model [100], resulting in the referenced core models in Table 10. Table 11

contains a list of other simulators with model structures that can be potentially be used in-
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Table 10: Core components for a metabolic simulator that can accomodate multiple clinically

available measurements

Module Notes

Subcutaneous Insulin (Ch 4) Capture subcutaneous insulin delivery

CGM (Ch 5) Incorporate sensor measurements to infer blood glucose

Meal [125, 126] Incorporate oral nutrition

Glucose [100] Primary dynamics of plasma glucose

Insulin [100] Lag and effect of insulin on plasma glucose

Cytokines (Ch 2 & 5) Innate immune effects on glucose homeostasis

Stress hormones (Ch 2 & 3) Hormonal modulation of glucose homeostasis

terchangeably with core insulin and glucose dynamic components from the virtual patient

model. These published model structures could be used for increased versatility if additional

data is available. The proposed core platform summarized by Table 10 forms a virtual pa-

Table 11: Published in silico simulator-algorithm pairs used for controller formulation and

testing in critical care.

Principal Investigator Model Algorithm

Hovorka [127] [119] eMPC

Seborg [128] [129] MPC

Chase [100] [129] MPC

Van Den Berghe [130] [21] NL-MPC

Parker (this work) [100] MPC
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tient to test implementation of control strategies and enables rapid algorithm prototyping

and refinement in silico. Each patient undergoing ZGC has an individual plasma fingerprint,

describing a personalized profile of how they will respond to insulin treatment based on SI(t)

and EGPb. The modules describing subcutaneous insulin dynamics were previously devel-

oped and added to the virtual patient platform from Chapter 4 in order to improve upon

the model, and hence the quality of the control performance observed in Section 5.3.2.

The following sections describe the characterization and simulation of continuous glu-

cose monitor (CGM) error and the application of the inflammatory model from Chapter 2

to human trauma data. These modules represent improvements to application-relevant com-

ponents of the virtual patient simulator.

5.4.1 Continuouse Glucose Monitoring

Subcutaneous continuous glucose monitors (CGMs) provide dense measurements that can be

mathematically reconstructed into the unmeasured plasma glucose levels for use in ZGC. We

collect measurements of patient’s glucose concentrations using a Dexcom G4 PlatinumTM(G4P)

CGM with a frequency of 1/5 min−1. A simple approach is used to build the module of the

transport between plasma glucose and interstitial glucose. The dynamics are found to be

well described using a first-order filter of the form:

dGSC(t)

dt
=

1

τ
(G(t)−GSC(t)) (5.9)

GSCS(t) = GSC(t) + σSC (5.10)

Here, G(t), GSC(t), and GSCS(t) are the concentrations of blood glucose (BG), interstitial

glucose (IG), and sensed interstitial glucose (IGs), respectively. The coefficient τ is the

time constant associated with glucose transport from plasma to interstitial space and has

been experimentally determined [131]. The parameter σSC is a noise term associated with

the interstitial sensor measurement. Tables 1A and 4A from the G4P user’s manual [117]

containing experimental measurement error data are used to simulate the noise, statistically

similar to the sensor, for a given range of glucose values. This module allows the overall
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model to simulate a more realistic clinical environment where noisy, high frequency data is

potentially available.

In addition to simulating noise for use in a virtual patient simulator, we also develop

a technique to convert a noisy sensor measurement to a reconstructed blood glucose value.

The slope is calculated between each blood glucose measurement which is then interpolated

to shift the CGM measurement along the same line. This technique, described in Equa-

tion (5.11) and shown in Figure 43 can only be applied as a post-hoc analysis, rather than

in real-time, and is useful for characterizing the noise observed from clinical samples. IG

is estimated using blood glucose measurements to reconstruct sensed IG signal between the

finger-stick blood glucose measurement time points. The IGs measurement is then projected

along the angle of the two reference blood glucose measurements to recreate the real IG

as shown in Equation (5.11). IG is then projected through the BG to IG first-order filter

described in Equation (5.9).

IG(ti) = IGs(ti) +
ti − t0
tn − t0

θIG + Z (5.11)

Here, IG(ti) represents IG at time point ti, n and 0 represent the time points of the

first and second calibration glucose points, respectively. The parameters θIG and Z are

the projection angle and vertical shift, respectively. Clinically measured θ and Z can be

added to a virtual patient simulator to recreate the noise encountered when using a CGM.

Controller performance in silico in response to CGM noise could then be used to evaluate

the feasibility of ZGC using CGM measurements. Future work could include a comparison

of control with or without blood glucose measurements and can begin to quantify the loss

in controller performance as a result of the added CGM noise. Successful control with a

CGM signal in silico could enables significant decrease in clinical manpower required for

ZGC because CGM requires fewer human operating hours.
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Figure 43: Schematic with synthetic data showing shift and projection of original sensed

signal (blue) along blood glucose anchor points (black) to reconstruct blood glucose (green).

5.4.2 Simulating Plausible Mechanisms

The critical component of a patient-tailored DSS is a mathematical model that can resolve

the dynamic changes resulting from an individuals unique metabolic state. The underlying

mechanism of stress hyperglycemia is a complex network of biological signaling pathways

that decrease sensitivity to insulin [132] and increase endogenous glucose production (EGP).

In this section, the mathematical model described in Chapter 2 is used to identify and

characterize the complex biological pathways leading to stress hyperglycemia. The mod-

eled metabolic regulatory processes involved in dynamic modification of metabolism in the

ICU include cytokines, such as TNF- and IL-6, and hormones, such as cortisol, which alter

insulin-mediated glucose uptake (IMGU) in humans [73, 84]. As in Chapter 2, the metabolic

regulatory pathway is coupled with a model of glucose and insulin homeostasis [100] from

literature to resolve patient specific variations in metabolic state.

Patient data was used from the Cologne area participating in the German Trauma Reg-

istry effort. Blood glucose and IL-6 measurements were taken every 6 to 10 hours. Here,
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IL-6 is used instead of TNF due to measurement availability and because they share a sim-

ilar dynamic profile [13]. The dynamic differences between TNF and IL-6 compared to the

frequency of measurements allows for this approximation. The inflammatory LPS state is

allowed to vary with time along with the magnitude of IL-6 activation and cortisol inhibition

of glucose uptake. These parameters are fit in order to match the measured glucose values

from the dataset. The estimation process is shown schematically in Figure 44. The corre-

IMGD 

LPS 

IL-6 Cortisol 
Measured component 

interactions 

Unmeasured component 

interactions 

Estimated component 

interactions 

Figure 44: Diagram showing the acute inflammatory pathway governing insulin-mediated

glucose dynamics (IMGD). LPS represents the inflammatory state and is fit over time to

match the glucose dynamics and IL-6 measurements from human truama data.

sponding IL-6 measurements are compared to the IL-6/TNF state output from the model.

The IL-6 data is classified as either an inlier or outlier using a random sample consensus

(RANSAC) [133] algorithm. The RANSAC algorithm is an iterative process through which

data is excluded from the objective function if it does not fit the model to within a given

threshold. A random subset of data is iteratively selected and fit until a group of data points

is selected as inliers, and the rest are excluded as outliers.

If the IL-6 data matches the model output to within a threshold value of 1 pg/ml then

the data is classified as an inlier and added to the data being fit. The regions where the

IL-6 data is classified as an inlier represents where the inflammatory model is a plausible
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explanatory mechanism. Conversely, when outliers in the IL-6 data are detected, it represents

a region where other dynamic processes are likely responsible for the changes observed in

blood glucose. An example could be a sharp drop in glucose due to an unrecorded insulin

infusion, as shown in Figure 46. This is a common occurrence and represents some of the

limitations with the dataset used.

Figure 45: Example patient data fit using the outlier detection algorithm. Glucose data

(top) is fit by adjusting the LPS state. Regions where IL-6 data (bottom) matches the

model output is classified as an inlier (blue circles), otherwise they are considered outliers

(black X).

5.5 DISCUSSION

A model of glucose and insulin is combined with mechanistic inflammatory dynamics (Equa-

tions (2.3) to (2.11)) to serve as a simulation platform to generate clinically-relevant critically
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Figure 46: Example patient data fit using the outlier detection algorithm. Glucose data

(top) is fit by adjusting the LPS state. Regions where IL-6 data (bottom) matches the

model output is classified as an inlier (blue circles), otherwise they are considered outliers

(black X). Early timepoints indicate a drop in glucose not explained by the IL-6 trajectory.

This could be caused by an infusion of insulin that is unaccounted for in the data.

ill patient metabolic profiles. Two test patients from a data set of 215 trauma victims from

two hospital centers in the Cologne area participating in the German Trauma Registry ef-

fort are chosen for analysis to provide virtual patient dynamics of clinical response that

includes realistic inflammatory effects. The patient’s measured IL-6 concentrations are used

as a surrogate for the TNF model state. The model is able to estimate IL-6 concentrations

falling around 100 pg/ml. This concentration falls within the 10 − 1, 000 pg/ml range of

LPS concentration used to calibrate the original model.

With further resolved data, a library of these time-varying inflammatory profiles could be

used to differentiate inflammation-driven metabolic effects. This database would then add

to the virtual patient platform by providing mechanistic patient-to-patient variability. Such

a virtual patient platform is useful for developing DSS control strategies, as well as to better
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understand possible patient differentiation metrics for separating treatment cohorts (e.g.,

driven by inflammation, counterregulation, or other exogenous factors) for which treatment

strategies may differ as a result of their metabolic upset.
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6.0 SUMMARY AND FUTURE WORK

6.1 MODELING MECHANISMS OF INSULIN RESISTANCE

There are many different mechanisms that cause changes to blood glucose in critical care

patients. To treat patients with stress hyperglycemia we develop mathematical models to

better understand the mechanistic interactions of both endogenous and exogenous processes.

Elucidating these interactions provides the potential to guide patient-specific interventions

that improve glucose control without aggravating stress hyperglycemia.

The previously developed model of acute inflammation as a driver of metabolic changes

is a result of mechanisms found in literature corroborated or contrasted by human studies of

stress hyperglycemia. The process of model refinement through available data and identifi-

able mechanisms is used to build the model described in section 2.2.1. Many different aspects

of the disease of stress hyperglycemia were explored. These aspects include a deeper level

of mechanism that were not ultimately included due to a shortage of human data. Thus,

the “dead-ends described in sections 2.1.1 to 2.1.3 are avenues that warrant future investi-

gation to elucidate the complex pathways and biomarkers involved in stress hyperglycemia.

The scale and scope of the model may be further explored, looking at multiscale modeling

implementations as found in [134, 135, 136] as well as differentiating between tissue-specific

metabolic effects. Limited human experiments ultimately led to the necessary simplification,

though increased resolution could allow for a more fundamental understanding.

The counterregulatory response is another important process governing changes to glu-

cose metabolism. We constructed a model that quantifies the individual contributions of

the four hormones: glucagon, epinephrine, cortisol, and growth hormone. The model pro-

vides insight into how the dynamics of counterregulatory hormone release influence glucose
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metabolism. However, if additional rate data on glucose appearance and disposal is avail-

able, the model could be improved by allowing the glucose rate changes to feed back into

the blood glucose balance.

6.1.1 Endogenous Insulin Release

Quantifying insulin release in critical care is challenging because it is often difficult to mea-

sure. Suppression of insulin released by the pancreas is a possible tissue-specific mechanism

of stress hyperglycemia. There are many stress hormones that act to suppress endogenous

release of insulin. Specifically, adrenergic signaling has a direct mechanism of suppressing in-

sulin release by the pancreas. Thus, we construct a mechanistic model of adrenergic signaling

in the pancreas by combining an adrenergic receptor model [137] with a mechanistic model

of pancreatic β-cell signaling [138]. The model is calibrated using data from rat pancreatic

islets exposed to epinephrine [139]. The model provides qualitatively accurate behavior when

simulating the effects of glucose on pancreatic insulin release and subsequent suppression by

epinephrine as shown in Figure 47.

However, due to the large number of parameters and relatively limited amount of data

for model calibration, the model is ultimately not incorporated into the overall model of

glucose and insulin dynamics. Furthermore, endogenous insulin release is rapidly suppressed

by exogenous infusion of insulin, which occurs frequently in critical care. It is therefore

unlikely that suppressed pancreatic insulin release plays a significant role when exogenous

insulin has been given. Additional mechanistic modeling would be warranted for patients

receiving or prescribed to receive sparse quantities of exogenous insulin (e.g., during the final

days of recovery).

6.2 SUBCUTANEOUS INSULIN

Subcutaneous insulin absorption into the plasma varies by insulin type. Regular insulin

has a hexameric structure that cannot be readily absorbed into the plasma and must be
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Figure 47: different inhibitory effects of a range of epinephrine on insulin release induced at

low (4 mM) and high (10 mM) glucose exposure levels.

broken down (an equilibrium process) into its dimeric and monomeric forms prior to plasma

absorption. Fast-acting insulin analogues, however, have only monomeric structure and are

easily absorbed into the plasma.

Three subcutaneous insulin absorption models have been evaluated in order to capture

the plasma insulin dynamics for regular and fast-acting insulin analogues, for healthy and

type-1 diabetic patients, and CSII and bolus injections. Model selection begins with the

best model (as measured by Akaike Information Criteria (AIC)[114]) from [107]. In [107]

11 different model formulations are evaluated using AIC to select the best model to use.

Starting from this model, we use a combination of literature data sets to further tailor

the model to our requirement: the ability to capture plasma insulin dynamics following

subcutaneous administration of different types of insulin (i.e., regular, fast-acting) using a

single structure, but different parameter values.
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As in [107], the AIC is used to balance model complexity with quality of fit, as quantified

by sum of squared error between model predictions and literature data, for the studied types

of insulin. The model with the lowest AIC score, representing the preferred trade-off of model

complexity and accuracy, captures plasma insulin dynamics for different types of insulin and

various patient conditions. The model can be used in the development of a control algorithm

that will facilitate clinical decision-making for glucose control and insulin delivery in critical

care.

6.3 VIRTUAL PATIENT DEVELOPMENT

6.3.1 Modularity

Mathematical models frequently fall into a the category of being too specific and therefore

difficult to generalize. For a model to be easily extensible beyond the particular system or

dataset for which it was created, it needs a particular structure to enable modularity. In the

previous modeling sections, care was taken to build models that were extensible via modu-

larity; they consist of (a) specific driver(s) of subsystem dynamics followed by an observed

output, where the output becomes potential input to other modules. For subsystems with

complex overlapping inputs or outputs, earlier modules are derived sequentially to reduce

multiple inputs/outputs using their respective input-output module. From these modules

we then form a hierarchical network that can integrate multiple inputs into a systems-level

response.

Modularly designed models are capable of incorporating new data while not requiring

full recalibration of model parameters, instead, specific modules can be refit as needed. In

addition to data, incorporating new mechanistic insight is a fundamental characteristic of

our modules achieved via Hill-type functions, as described below. A first order Hill-function

(Michaelis-Menten) is shown in Equation (6.1) where non-competitive and competitive in-

hibition can be represented by redefining parameters as in Equations (6.2)) and (6.3)), re-

spectively.
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d[X]

dt
=

vapp[U ]

Kapp + [U ]
(6.1)

vapp =
vmax

1 + [Inc]
Knc

(6.2)

Kapp = K(1 +
[Ic]

Kc

) (6.3)

Here, [X], [U ], [Inc], and [Ic] are concentrations of output, input, non-competitive in-

hibitor, and inhibitor, respectively. Parameters vapp and kapp may have been fit originally

to the input/output data set when no inhibition is taken into account. As new mechanistic

information is discovered, for example with a different study, data from the new study can be

used to refit the particular module shown in Equation 6.1 by replacing vapp and/or kapp with

Equations (6.2) and/or (6.3) respectively. Equations (6.2) and (6.3) influence the efficacy

and potency [140], respectively, of [U ] to drive [X]. Depending on the new component to be

added, the additional parameters Kc or Knc are added to the module and fit with the new

data representing the inhibitor dynamics.

It is important to note that newly identified components may not need to be incorpo-

rated if they share linear, temporal dynamics with components already represented in the

module. Such addition would merely break up a single, primary component, term into two

additive terms which would have already been accounted for with a higher original parameter

value. For example, Kapp = K(1 + [Inc]
Knc

) becomes Kapp = K(1 +
[Inc,old]

Knc,old
+ [Inc,new]

Knc,new
) where, if

[Inc,new] = a[Inc,old] then 1
Knc

= 1
Knc,old

+ a
Knc,new

. The importance of having two separate terms

representing each inhibitory component occurs when components do not simultaneously or

linearly influence the output of interest, or, when specific biomarkers are more clinically

available. The approximation of linear, temporal synchronization allows us to model specific

components as modules representing a larger pathway of interest. This is exemplified in

Figure 12 where each major pathway is represented as a primary component: TNF for the

innate immune response and cortisol for the stress response.

The virtual patient cohort provides a critical platform to rapidly test controller perfor-

mance and better understand the dynamics associated with stress hyperglycemia. While

some of the key modules listed in Table 10 were developed in this document, there may be
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additional mechanisms to improve the biological accuracy of the virtual patient. With an em-

phasis on modularity, the virtual patient can be expanded to include additional components

from Table 1.
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APPENDIX

CORE MODEL OF GLUCOSE AND INSULIN DYNAMICS

The core model describing insulin and glucose dynamics from [125] is shown below. The

model includes the effects of free fatty acids on glucose uptake.

dI(t)

dt
= −n(I(t)− Ib) + p5u1(t) (.1)

dX(t)

dt
= −p2(X(t)−Xb) + p3(I(t)− Ib) (.2)

dG(t)

dt
= p1(Gb −G(t))− p4X(t)G(t) + p6(G(t)F (t)−GbFb) +

u2(t)

V olG
(.3)

dF (t)

dt
= p7(Fb − F (t))− p8X(t)F (t) + p9(G)(F (t)G(t)− FbGb) +

u3(t)

V olF
(.4)

p9(G(t)) = 0.00021e−0.0055G(t) (.5)

Variables u1, u2, and u3 are the appearance of insulin, glucose, and free fatty acids in the

plasma, respectively.
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Table 12: Model parameters

Parameter Value Unit

p1 6.8E-2 min−1

p2 3.7E-2 min−1

p3 1.2E-5 min−1

p4 1.3 mLmin−1µmol−1

p5 5.7E-4 mL−1

p6 6.0E-5 min−1µmol−1

p7 3.0E-2 min−1

p8 4.5 mLmin−1µmol−1

k1 2.0E-2 min−1

k2 3.0E-2 min−1

pF2 1.7E-1 min−1

pF3 1.0E-5 min−1

n 1.4E-1 min−1

Gb 98 mgdL−1

Fb 380 µmolL−1

V olG 117 dL

V olF 11.7 L
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