
TACKLING INSIDER THREATS

USING RISK-AND-TRUST AWARE ACCESS

CONTROL APPROACHES

by

Nathalie Baracaldo

Master in Computer Sciences, Universidad de los Andes, 2008

Bachelors in Computer Sciences, Universidad de los Andes, 2006

Bachelors in Industrial Engineering, Universidad de los Andes, 2006

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Nathalie Baracaldo

It was defended on

January 7, 2016

and approved by

Dr. James Joshi, School of Information Sciences, University of Pittsburgh

Dr. Prashant Krishnamurthy, School of Information Sciences, University of Pittsburgh

Dr. Balaji Palanisamy, School of Information Sciences, University of Pittsburgh

Dr. Heiko Ludwig, Research Staff Member and Manager, IBM

Dissertation Director: Dr. James Joshi, School of Information Sciences, University of

Pittsburgh

ii

TACKLING INSIDER THREATS

USING RISK-AND-TRUST AWARE ACCESS CONTROL APPROACHES

Nathalie Baracaldo, PhD

University of Pittsburgh, 2016

Insider Attacks are one of the most dangerous threats organizations face today. An insider

attack occurs when a person authorized to perform certain actions in an organization decides

to abuse the trust, and harm the organization by causing breaches in the confidentiality,

integrity or availability of the organization’s assets. These attacks may negatively impact

the reputation of the organization, its productivity, and may incur heavy losses in revenue and

clients. Preventing insider attacks is a daunting task. Employees need legitimate access to

effectively perform their jobs; however, at any point of time they may misuse their privileges

accidentally or intentionally. Hence, it is necessary to develop a system capable of finding a

middle ground where the necessary privileges are provided and insider threats are mitigated.

In this dissertation, we address this critical issue.

We propose three adaptive risk-and-trust aware access control frameworks that aim at

thwarting insider attacks by incorporating the behavior of users in the access control deci-

sion process. Our first framework is tailored towards general insider threat prevention in

role-based access control systems. As part of this framework, we propose methodologies to

specify risk-and-trust aware access control policies and a risk management approach that

minimizes the risk exposure for each access request. Our second framework is designed to

mitigate the risk of obligation-based systems which are difficult to manage and are partic-

ularly vulnerable to sabotage. As part of our obligation-based framework, we propose an

insider-threat-resistant trust computation methodology. We emphasize the use of monitoring

of obligation fulfillment patterns to determine some psychological precursors that have high

iii

predictive power with respect to potential insider threats. Our third framework is designed

to take advantage of geo-social information to deter insider threats. We uncover some in-

sider threats that arise when geo-social information is used to make access control decisions.

Based on this analysis, we define an insider threat resilient access control approach to man-

age privileges that considers geo-social context. The models and methodologies presented in

this dissertation can help a broad range of organizations in mitigating insider threats.

iv

TABLE OF CONTENTS

PREFACE . xii

1.0 INTRODUCTION . 1

1.1 Limitations of Existing Approaches and Challenges 3

1.2 Overview of the Proposed Research . 5

1.3 Scope of the Dissertation . 11

1.4 Contributions . 12

1.5 Document Organization . 13

2.0 BACKGROUND AND RELATED WORK 14

2.1 Insider Attacks . 14

2.2 Risk . 16

2.3 Trust . 17

2.4 Adaptive role-based access control approaches 17

2.4.1 Background on RBAC, Constraints and Hybrid Hierarchy 18

2.4.2 Related Work on RBAC Extended with Risk and Trust 19

2.5 Obligation-based Access Control . 22

2.5.1 Related Work on Obligations . 22

2.6 Geo-Social Access Control . 23

3.0 REQUIREMENTS AND CONTRIBUTIONS 27

3.1 An Adaptive Risk Management RBAC Framework 27

3.1.1 Requirements . 28

3.1.2 Contributions . 29

v

3.2 Obligation-based Framework to Reduce Risk Exposure and Deter Insider At-

tacks . 30

3.2.1 Requirements . 30

3.2.2 Contributions . 31

3.3 Geo-Social Insider Threat Resilient Access Control Framework 32

3.3.1 System Actors . 33

3.3.2 Insider Threats . 34

3.3.3 Requirements . 35

3.3.4 Contributions . 37

4.0 AN ADAPTIVE RISK MANAGEMENT RBAC FRAMEWORK . . . 38

4.1 Preliminaries . 38

4.1.1 Coloured Petri-net (CP-net) . 39

4.2 The Proposed Framework . 39

4.2.1 Overview of the Framework . 39

4.3 Risk and Trust Thresholds . 42

4.3.1 Risk Associated with Permissions . 42

4.3.2 Risk Associated with Role Sets . 43

4.3.2.1 Inference Threat and Activation History 43

4.3.2.2 Calculating The Role Set Risk 45

4.3.3 Trust Thresholds Associated with Role Sets 45

4.3.4 Trust of Users . 46

4.4 Minimizing the Risk Exposure . 47

4.4.1 Trust-and-Risk Aware Role Activation 47

4.4.2 Role Activation Algorithm . 49

4.4.2.1 Proof of Correctness of the Algorithm 51

4.5 Inference Threat Analysis and Administration 53

4.5.1 Finding Inferred Permissions . 53

4.5.2 Finding Active Inference Threats . 58

4.5.2.1 Simulating users’ behavior to identify active inference threats . 58

4.5.2.2 Refinement of the inference CP-net 60

vi

4.5.3 Managing Active Inference Threats 63

4.6 Implementation Results . 67

4.7 Chapter Summary . 71

5.0 OBLIGATION-BASED FRAMEWORK TO REDUCE RISK EXPO-

SURE AND DETER INSIDER ATTACKS 73

5.1 Why using a posteriori obligations as an indicator? 73

5.2 Proposed Framework . 74

5.2.1 The Core TB-RBAC Model . 74

5.2.2 Risk-and-Trust Obligation Framework 78

5.3 Trust computation . 79

5.3.1 Trust Methodology . 81

5.4 Administration Module . 87

5.4.1 Clustering Algorithms . 87

5.4.2 Process to Find Patterns of Misbehavior 88

5.5 Evaluation . 89

5.6 Chapter Summary . 94

6.0 AN INSIDER ATTACK RESILIENT GEO-SOCIAL ACCESS CON-

TROL SYSTEM . 96

6.1 Social Predicates and Spatial Scopes . 96

6.2 Overview of the proposed G-SIR . 97

6.3 G-SIR Access Control Model . 100

6.3.1 Geo-social Contracts . 102

6.3.2 Vicinity Constraints . 103

6.3.3 Geo-Social Obligations . 106

6.3.4 Geo-Social Trace Constraints . 107

6.3.5 Well-Formed Policy . 108

6.3.6 Role Activation . 109

6.4 G-SIR Risk Management . 110

6.5 Enforcement Algorithm . 114

6.6 Experimental Evaluation . 117

vii

6.6.1 Experiment Setup . 117

6.6.1.1 Generation of social graph and user mobility 117

6.6.1.2 Generation of policy, access requests and threats 118

6.6.2 Analysis of Results . 122

6.6.3 Limitations of the Experiments . 131

6.7 Chapter Summary . 132

7.0 CONCLUSIONS, LIMITATIONS AND FUTURE WORK 133

7.0.1 Limitations and future work . 134

APPENDIX. ENTROPY AND PURITY OF CLUSTERING SOLUTIONS 137

BIBLIOGRAPHY . 139

viii

LIST OF TABLES

1 Comparison of types of geo-social policies supported by existing RBAC based

models. 25

2 Experiment parameters for the policy generation for the risk-and-trust RBAC

framework. 67

3 Notation for Chapter 5 (obligations). 82

4 Comparison between clustering algorithms . 94

5 Function specifications for G-SIR. 101

6 Example utility values for two different contexts. 112

7 Default experiment parameters. The number of users is used to scale the size

of the evaluated policies. 120

ix

LIST OF FIGURES

1 Conceptual view of the proposed frameworks. 6

2 Overview of the integrated frameworks. 10

3 Risk-and-trust RBAC architecture. 41

4 Policy for example 2. 46

5 CP-net graphical representation. 54

6 Managing active inference threats. 64

7 Inference simulation results. 66

8 Comparison of selection heuristics for different types of hierarchy proportions. 68

9 Comparison of granted requests for different percentage of misbehaving users. 70

10 Risk exposure using our algorithm (min. risk) compared to the risk of tradi-

tional role activation algorithm (min. num. of roles) when all relations are of

type IA. 71

11 Architecture of the risk-and-trust obligation framework. 79

12 Processing flow of an access request. 80

13 Effect of ρ on the historic trust (Definition 17) considering that all the obliga-

tions have the same criticality. 83

14 Procedure to find the patterns of misbehavior. 88

15 Evolution of trust values when the percentage of violated obligations increases,

with α = 0.4, γ1 = 0.01, γ2 = 0.03 and ρ = 0.9. 90

16 Trust values comparison for: scenario 1 : α = 0.4, γ1 = 0.01 and γ2 = 0.03 and

scenario 2 : α = 0.4, γ1 = 0.01 and γ2 = 0.3. 91

x

17 User redemption after having a trust value of 0.5. Parameters used: α = 0.4,

γ1 = 0.01, γ2 = 0.03 and ρ = 0.9. 92

18 Example. The boxes in the dendongram represent cohesive clusters. 93

19 Overview of the proposed G-SIR framework 100

20 Comparisons between the proposed G-SIR and the baseline (Geo-Social RBAC).121

21 G-SIR proximity threat results. 125

22 Collusion threats captured by G-SIR. 127

23 Effect of geo-social contracts on the number of threats captured. 128

24 Effect of the estimation error, ε, of the inference technique used on the number

of threats captured by G-SIR. 129

25 Average time as the policy size increases. 131

xi

PREFACE

These past few years have been an amazing journey that has finally concluded with the

completion of this dissertation. I would like to thank those who helped me through this

journey and have made possible this milestone.

First, I would like to thank my adviser for his guidance, feedback and support through-

out my Ph.D. studies. I also would like to thank my committee members, Dr. Prashant

Krishnamurthy, Dr. Balaji Palanisamy and Dr. Heiko Ludwig, for their valuable insights

and support of my research. I am also thankful for the career advise they have provided me.

I would also like to thank Dr. Marek Druzdzel for sharing his knowledge and being avail-

able to discuss about utility theory, Bayesian networks and other probabilistic models. Our

discussions helped shape the utility decision model that is part of the geo-social framework

presented in this dissertation. I would like to thank all faculty members, especially Dr. Paul

Munro, who pointed me in the right direction when I was looking for a graduate program. I

would like to thank my LERSAIS lab mates and school friends for making my Ph.D. experi-

ence more productive and enjoyable. I would like to thank Amirreza Masoumzadeh, Xuelian

Long, Jesus Gonzales, Yue Zhang, Lei Jin, Hassan Takabi, Saman Taghavi-Zargar, Leila

Karimi, Runhua Xu, Chao Li, Xu Jinlai and Marcela Gomez. I also would like to acknowl-

edge all the administrative stuff, especially Mary Stewart and Kelly Shaffer, who went out of

their ways to help me out. I would also like to thank Milton Quiroga, my master’s adviser,

for getting me interested in the security field and Jody Glider for sharing his wisdom and

teaching me the importance of pragmatism and real world applicability.

I am especially thankful to my husband, Santiago Bock. Thanks for surrounding me

with love, for being my number one supporter and for always making everything feel right.

Without you, this journey would not have been as much fun! You are my sunshine! Last

xii

but not least, I would like to thank my parents and family. I would not be here without

their support. I would like to thank them for their unconditional love, for always believing

in me, for teaching me to dream big, work hard and pursue my dreams with passion and

confidence. Siempre están en mi corazón, gracias!

This research has been supported by the US National Science Foundation award IIS-0545912.

xiii

1.0 INTRODUCTION

“The year 2013 may be the year of the insider threat. Recent incidents of intellectual
property theft, exfiltration of sensitive intelligence, and international espionage concerns
have risen to the legal and regulatory forefront, quickly becoming a matter of political
debate and public speculation. These incidents highlight the need to improve the ability of
organizations to detect, deter, and respond to insider threats”.
Computer Emergency Response Team (CERT), January 2014 [52].

An insider attack is carried out by people who are legitimately authorized in the system to

perform certain tasks. Without a doubt, the data exfiltration performed by Edward Snowden

has been one of the most publicized insider incidents in recent history [64]. Snowden, while

working as a governmental contractor, leaked an estimate of 200,000 classified documents

from the US National Security Agency (NSA). This incident illustrates the significant damage

that can be inflicted by insiders and the urgent need for new solutions to mitigate this type

of threat.

Snowden’s insider attack is not an isolated incident. Insider threats have occurred across

all public and private sectors. According to the US State of Cybercrime Survey, insider

attacks accounted for 28% of the total incidents reported in 2014 [29]. Additionally, 32% of

the respondents reported that insider attacks were more damaging than attacks performed

by outsiders and 31% of the respondents in that survey reported incidents that could not

be attributed with certitude to insiders or outsiders. This indicates a lack of accountability

and possibly more incidents caused by insiders. The consequences of insider attacks may

be devastating, and may include financial losses, negative impact on the reputation, loss of

customers, among others. According to the CERT [81], the monetary losses due to insider

attacks ranged from five hundred dollars to tens of million of dollars, around 75% of the

organizations had an adverse impact on their business operations, and 28% experienced a

1

negative impact on their reputation. Moreover, according to the same survey, 60 % of the

respondents reported monetary losses caused by non-malicious insiders. These statistics

show that it is not wise to trust insiders blindly. For this reason, dealing with insider threats

has become one of the most important issues in information security.

Deterring insider attacks and unintentional damage is a daunting task. In contrast to

external adversaries, insiders already have some access to the system and have preliminary

knowledge about existing defenses and about what data is valuable. Hence, these threats

cannot be adequately mitigated using defenses against outsiders. Additionally, while it

is necessary to provide privileges to employees so they can perform their jobs efficiently,

providing too many privileges may backfire when users accidentally or intentionally abuse

their privileges. Hence, finding a middle ground, where the necessary privileges are provided

and malicious usages are avoided, is necessary.

Some of the insider attacks could be prevented if users are monitored to identify suspi-

cious activities [81]. In particular, insider attack incidents could be prevented if the system

had a monitoring module to evaluate how trusted a user is with respect to technical and

psychological precursors used to predict insider attacks. Some of the technical precursors

include download and use of hacker tools, failure to create backups, unauthorized access

to customers’ or coworkers’ systems, system access after termination, inappropriate Internet

access at work, and the setup or use of backdoor accounts [81]. Among the psychological pre-

cursors, insider attackers have shown the following symptoms: disgruntlement, bad attitude

towards feedback, lack of dependability and absenteeism [58].

Despite the evidence of the predictive value of technical and psychological precursors,

they are often overlooked [81], only manually examined [27, 61] or analyzed only for forensic

purposes after the damage has already been done [36, 102, 88, 65, 109]. Some of the existing

solutions to deter insider attacks aim at specifying and enforcing least privilege by uniquely

providing the minimum set of required permissions to complete a task at a particular point of

time, and separation of duty to avoid conflicts of interests that may allow fraudulent activities

or personal gain [56]. Although it is crucial to enforce these security principles, they are not

enough by themselves. In fact, access control systems such as role-based access control

(RBAC) [50], Bell LaPadula [19], obligation-based systems [22], among others, typically

2

incorporate these principles, yet do not adapt to negative changes in users’ behavior. In

these systems, as long as users can prove they have the necessary set of credentials, the

access is granted – for instance, if a user can prove he works as an engineer, he can get all

associated privileges, even if his behavior suggests he is attacking the system! These access

control systems are appropriate in environments where users are well-behaved and can be

trusted to perform actions according to their credentials. Unfortunately, as the statistics

show, insiders do perform attacks. Furthermore, even if users could be trusted, malware can

be inadvertently installed and a user account compromised. Thus, it is necessary to include

the behavior of the users in the access control loop.

This suggests that having a more adaptive enforcement system that considers the behav-

ior of users to make access decisions would help prevent insider attacks. In such a dynamic

system, users’ behavior should dictate how trusted they are. When a user’s behavior falls

out of the expected pattern in a suspicious manner, the trust the system has on him should

be reduced. If a user is no longer trusted, the system should adapt by denying access to key

resources. A different trust value needs to be enforced for each resource depending on the

resource’s inherent criticality and the potential risk of the resource being misused.

1.1 LIMITATIONS OF EXISTING APPROACHES AND CHALLENGES

Several researchers have recognized the advantages of having more dynamic access control

models, e.g., [30, 49, 46, 84]. We refer to these as adaptive access control systems. Adding

trust helps the system adapt to changes in the behavior of users. A trust threshold is typically

used to limit access to resources based on their importance to the organization. However,

existing approaches do not provide a comprehensive solution to address insider threats. We

identify the following shortcomings in existing approaches that we propose to address as part

of this research effort:

• It is not well understood how to adequately model the risk exposure during the access

control decision-making process. Often, risk management techniques such as Octave [7],

or the NIST risk management methodology [108] are used to determine which threats

3

need to be mitigated and which need to be accepted. As a result of risk management

analysis, the technical controls and procedures that need to be in place are identified.

However, it is not well understood how to integrate risk analysis results into an access

control framework, nor how to aggregate the risk exposure that occurs when an access to

a set of resources is granted. Current approaches do not provide a comprehensive analysis

to determine how risky an access is and simply assume this information is available in

the form of a trust threshold. There is a need to provide clear methodologies to model

the risk exposure of an access request.

• Current adaptive access control systems lack procedures to enforce automatically the

access control policy while minimizing the risk exposure associated with each access

request, limiting the power of the system to mitigate insider attacks. Salim et. al

[99] propose a system that relies on users to minimize the risk exposure by themselves.

However, in the context of insider threats, we believe that it is not wise to trust users in

this respect. Furthermore, humans are known to have bounded rationality [38]; therefore,

their solutions are most likely suboptimal. To close this gap, it is necessary to define

a system to minimize automatically the risk exposure every time an access request is

received.

• Access control policies are prone to errors and misconfigurations that result in a danger-

ous false sense of security. Research in this area has produced methodologies to analyze

policies and discover, detect and resolve policy misconfigurations, e.g., [107, 69, 54, 16,

44, 17, 104]. However, these works have focused on analyzing policies of non-adaptive

access control systems. For this reason, their methodologies are not fully applicable to

adaptive systems. In particular, they do not cover some of the caveats that arise when

policy constraints for insider threat mitigation are in place. More research in this area

is needed.

• The recent proliferation of mobile devices and social media has created newer opportuni-

ties to design an adaptive access control approach that is better suited for the mitigation

of insider threats. Despite the availability of geo-social information and techniques to

analyze it (e.g., [35, 78, 5, 40]), there have been few research efforts that focus on leverag-

ing geo-social information to mitigate insider threats. Nonetheless, valuable information

4

such as interaction or relationship between users and places they frequently visit has not

been considered by existing adaptive access control systems. We believe that geo-social

information can help capture the risk exposure added by users in the vicinity and can

also assist in analyzing patterns of misbehavior. These risk factors should influence the

access control decision process to prevent insider threats.

A few recent approaches incorporate geo-social context of users as part of the access

control policy [76, 63, 14]. However, they are not designed to take into consideration

suspicious user behavior and thus they fail to prevent some insider attacks. We need

to have a better understanding of how to use geo-social information in access control

policies and how including this information impacts the security of the system. Thus,

new approaches to fully leverage geo-social information for insider threat mitigation are

in need.

• Despite the great predictive value of psychological indicators for insider threat detection

[58], they are often overlooked because they require human input and hence are difficult

to acquire and maintain up to date. Furthermore, collecting such information may violate

employee’s privacy [58, 111, 73]. Hence, new ways to collect this type of indicators are

needed.

With these limitations in mind, in the following, we present the objectives of our research.

1.2 OVERVIEW OF THE PROPOSED RESEARCH

The hypothesis of this study is that some insider attacks and undesirable incidents can be

avoided by designing an access control system that is able to adapt to negative changes on

users’ behavior as well as contextual information. In particular, we hypothesize that enhanc-

ing access control systems by including factors such as the inference of critical unauthorized

information, obligation management, geo-social contextual information, collusion indicators,

among other technical and psychological precursors can help evaluate the risk exposure of

each access request and mitigate it accordingly. We believe that including risk management

techniques that incorporate the previously mentioned enhancement components into the ac-

5

Geo-Social	Insider	Threat	Resilient	
Access	Control	Framework	 (G-SIR)

Obligation-based	Framework	to	
Reduce	Risk	Exposure	and	Deter	

Insider	Attacks	

An	Adaptive	Risk	Management	RBAC	
Framework

• Privilege	misuse
• Inference	of	unauthorized	

information	
• Inference	policy	misconfiguration

• Sabotage	of	a	posteriori	
obligations

• Misconfiguration	of	obligation	
policy

• Proximity	threats
• Collusion
• Social	engineering	attacks
• Inadequate	policy	enforcement
• Privilege	misuse
• Sabotage	of	geo-social	obligations

Figure 1: Conceptual view of the proposed frameworks.

cess control decision process is a natural way to model the problem as different assets need

different degrees of protection. We also argue that access control systems are an appropriate

place to perform risk management because they are the main component controlling who

can access different information, assets or resources of the system.

Towards proving our hypothesis, we develop the three frameworks depicted in Figure 1.

Each of the proposed frameworks is designed to mitigate a different set of insider threats. A

detailed description of these threats is presented in Chapter 3. We now briefly describe the

objectives and research questions of each of the proposed frameworks.

1. An Adaptive Risk Management RBAC Framework

This framework is designed for general insider threat mitigation in systems that use

RBAC. We focus on extending the RBAC model because it is widely adopted and has

been proven to be a promising approach for different types of organizations, as docu-

mented in [95, 85]. Our objective is to develop an adaptive risk management framework

6

for RBAC systems to proactively incorporate the most recent behavior of users as a fac-

tor for making an authorization decision. This risk-and-trust aware framework should

provide a comprehensive risk aggregation methodology and manage risk automatically

for every access request.

The key research questions that we address while designing this framework are the fol-

lowing: How should an adaptive RBAC-based system be modeled to mitigate insider

attacks? How should we model and compute the risk of granting an access? Can we

define an optimization problem to minimize automatically the risk exposure while en-

forcing the access control policy? How can we help system administrators mitigate the

risk exposure caused by inference of unauthorized information?

2. An Obligation-based Framework to Reduce Risk Exposure and Deter Insider Attacks

The second proposed framework aims to mitigate insider threats in obligation-based

access control systems. Obligation-based access control systems have emerged as an

important approach to perform privilege management in multiple application domains

[91, 66], for example, in health care information systems [86], digital right management

[75] and privacy aware systems [18]. These systems are particularly risky because they

incorporate a posteriori obligations. Such an obligation is an action imposed on users

after an access is granted. Because the access is already granted, there is no guarantee

that users will fulfill a posteriori obligations assigned to them, opening the door to costly

threats of sabotage1.

Our objective is to reduce the risk exposure introduced by a posteriori obligations. Here,

we aim to answer the following research questions : Can we reduce the risk exposure

caused by a posteriori obligations during access control? How should we model a risk-

and-trust aware obligation-based system to adequately reduce this risk? Can we use a

posteriori obligations as a way to determine how trusted a user is and what would be an

appropriate methodology to do so? Are a posteriori obligations a good way to determine

whether a user is about to become an insider attacker? How can we use the logs of the

system to identify policy misconfigurations and misbehaving users?

1For example, violations of the Health Insurance Portability and Accountability Act, which requires the
fulfillment of multiple obligations from part of the personnel of health care entities, may carry a maximum
penalty of $50,000 per violation, with an annual maximum of $1.5 million [2]

7

This framework can be used independently with non-RBAC or RBAC based systems. It

can also be integrated with the Adaptive Risk Management RBAC Framework proposed

in this dissertation to achieve a more comprehensive insider threat prevention solution.

3. A Geo-Social Insider Threat Resilient Access Control Framework (G-SIR)

We propose G-SIR to take advantage of the increasing availability of geo-social infor-

mation to deter insider threats. This framework is tailored towards organizations that

want to adapt to users’ geo-social contexts during the access control process. Examples

of organizations where geo-social controls may be useful to prevent insider threats are

hospitals, research laboratories, critical infrastructure, cloud providers and any other or-

ganizations where users may not wander to certain places and where social and location

information can provide indications of potential insider threats.

The research questions that we address to develop this framework are the following: How

can we use geo-social information to regulate access to critical privileges? What policy

constraints are useful when geo-social information is available? Does using geo-social

information to regulate accesses introduce new insider threats? Can we manage the risk

of colludig communities and proximity threats using geo-social information? Can we use

geo-social behavior to determine how trusted users are? If so, what mitigation techniques

are appropriate?

The first two proposed frameworks, the adaptive RBAC framework and the obligation-

based framework, provide orthogonal solutions that can be integrated or used separately.

The first framework assumes the existence of an RBAC system with features that may in-

clude separation of duty, cardinality constraints and hybrid hierarchy. Our focus in designing

this framework is to provide an approach that allows the automatic reduction of risk expo-

sure for each access request received. Our obligation framework is primarily focused on

mitigating the risk introduced by the presence of a posteriori obligations. The proposed

approach provides a way to identify suspicious users based on their patterns of violation and

fulfillment of obligations. Another differentiating factor between these frameworks is that

the obligation-based framework does not require the use of RBAC. Hence, any access control

model that includes a posteriori obligations can adopt the methodologies proposed as part

of the obligation-based framework. The two frameworks can be integrated whenever an or-

8

ganization needs to perform insider threat mitigation by using both the RBAC mechanism

and obligations.

Our third framework, G-SIR, differs from the previous two in that it focuses on the new

opportunities and challenges that using geo-social information in the access control system

brings to the picture. We define and design several geo-social policy constraints that may

be useful to a variety of organizations with the capability of collecting geo-social informa-

tion. Neither of the first two frameworks incorporate geo-social information to make access

control decisions. In Figure 1, the proposed G-SIR is depicted on top of the adaptive and

obligation-based framework because it makes use of some of their methodologies and con-

structs. In particular, G-SIR makes partial use of the enforcement approaches designed for

the adaptive RBAC framework to minimize the risk of each access request. Thus, achieving

a full integration between these two frameworks is relatively simple. One of the six types of

policy constraints that we define as part of G-SIR are geo-social obligations. This kind of

policy constraint is different from a posteriori obligations; however, they can be managed

through the same trust methodology presented in the obligation-based framework. More-

over, the trust methodology proposed as part of the obligation-based framework can be used

to monitor the behavior of insiders concerning the compliance of the G-SIR policy. The

obligation-based framework and G-SIR can be integrated to control the risk of each access

request considering relevant geo-social aspects as well as the assignment of possible a posteri-

ori obligations. Next, we present the system architecture that integrates the three proposed

frameworks.

Integrated System Architecture: Figure 2 presents the system architecture that inte-

grates all three proposed frameworks. It consists of a Risk-and-Trust Aware Access Control

Module, a Monitoring, Context and Trust Module, and an Administration Module. The Risk-

and-Trust Aware Access Control Module is responsible for making access control decisions

that manage the risk exposure. To perform this task effectively, this module considers the

current context of users in the system as well as how trusted they are. This information

comes from the Monitoring, Context and Trust Module. The latter consists of a Monitoring

Module that collects data about the user’s activities in the system, which are later analyzed

9

Monitoring,	Context	and	Trust	Module

Integrated	System	Architecture

PEP:= Policy Enforcement Point
PDP:= Policy Decision Point
PIP:= Policy Information Point

PIP

Trust
Repository	

Obligation	
State	

Repository
Trust	Module

System
Admin.

User

Risk-and-Trust	Aware	Access	Control	
Module

PDP
Obligation	
Handler

Risk	
Module

Administration	Module

Report	
Module

Obligation
Management

Module
Policy	
Editor

Inference	Threat	
Management	

Module

Monitoring	
Module

Context	
Module

PEP

Geo-Social	
Module

Social	Network
Service

Location
Service

Monitored	
Data	&
Context	

Repository

Figure 2: Overview of the integrated frameworks.

10

and correlated by the Context Module to identify the context of a user at a particular time.

In this dissertation, we assume that these two modules are in place and work adequately. The

Trust Module uses the monitored information to compute a value that reflects how trusted a

user is given his behavior. All data produced by the Monitoring, Context and Trust Module

is stored in the trust and monitored data and context repositories, respectively.

The Risk-and-Trust Aware Access Control Module works as follows. The policy enforce-

ment point (PEP) intercepts all access requests, all requests are evaluated at the policy

decision point (PDP) which grants or denies accesses according to the policy stored in the

policy information point (PIP). For this purpose, all the information related to how trusted a

user is, the current context and the risk exposure is used to make an authorization decision.

The latter value is computed by Risk Module, which determines how risky an access request

is. With all the relevant information, the access control system determines whether an au-

thorization request should be granted. The decision is made to ensure that the risk exposure

is under control. Thus, the Risk-and-Trust-aware module is in charge of minimizing the

risk exposure. The last component of the architecture is the Administration Module. This

component is designed to specify access policies as well as help administrators find policy

problems and misconfigurations.

1.3 SCOPE OF THE DISSERTATION

In this dissertation, we make the following assumptions. We assume that all accesses are

mediated by a reference monitor, the PEP in Figure 2. Attacks that bypass the PEP or that

manage to subvert it, for example, by taking advantage of software vulnerabilities, are out

of the scope of this dissertation. We focus on the mitigation of threats where the behavior

of insiders change before committing an attack. With respect to the collection of geo-social

information, we assume that it is possible to obtain accurate geo-social information from

users when they are in their working spaces.

11

1.4 CONTRIBUTIONS

As part of this dissertation, we propose three frameworks. Their detailed contributions are

presented in Chapter 3. In the following, we overview the key contributions of our work:

• We develop a risk-and-trust RBAC framework that utilizes a novel risk aggregation

methodology, which includes the risk exposure caused by inference of unauthorized infor-

mation. We also define an optimization problem to automatically and optimally minimize

the risk exposure of an organization every time the system receives an access request,

and propose an algorithm to solve it. Additionally, we provide a methodology to identify

user-to-role assignments in the policy that lead to undesirable inference risks.

• We propose an obligation-based access control model that manages risk exposure caused

by unfulfilled obligations. To the best of our knowledge, such an obligation-based ap-

proach is the first of its kind. We propose to use obligations as a way to determine the

mood of employees –a psychological indicator– without introducing subjective informa-

tion or violating users’ privacy. We further develop a trust methodology to determine

when it is too risky to allow an access that has obligations associated with it. We also

provide a methodology that helps identify obligation-based policy misconfiguration and

misbehaving users.

• Little work exists in geo-social access control and existing ones do not consider the in-

tricacies of incorporating geo-social information as part of the access control system for

insider threat prevention. We uncover threats that are enabled by existing geo-social

access control systems. Then, we propose insider threat mitigation techniques using

geo-social access control policies. To the best of our knowledge, this is the first research

effort to analyze geo-social access control systems with the objective of protecting a sys-

tem against insider threats. Based on this analysis, we propose our Geo-Social Insider

Threat Resilient Access Control Framework (G-SIR) which is the first to capture ac-

ceptable and unacceptable geo-social behavior and incorporate it into the access control

decision process. G-SIR includes new types of geo-social constraints and protects against

proximity attacks, collusion attacks and some attacks that can be launched by the access

requester.

12

1.5 DOCUMENT ORGANIZATION

The remainder of the dissertation is organized as follows. In Chapter 2, we present the

background and related work. In Chapter 3, we present the detailed motivation and require-

ments that have led to the design of the three frameworks that are part of this dissertation.

We also highlight the detailed contributions of each of the three proposed frameworks. In

Chapter 4, we present the proposed adaptive risk management RBAC framework. Then, in

Chapter 5 we present the proposed obligation-based framework. In Chapter 6 we present our

geo-social insider threat resilient access control framework. Finally, in Chapter 7, we present

the conclusions and future work.

The work presented in Chapter 4 has been previously published in [11, 12]. The material

in Chapter 5 was previously published in [13]. Some of the content used in our geo-social

framework was previously published in [14].

13

2.0 BACKGROUND AND RELATED WORK

In this Chapter, we present the background information and the related work of our research.

We begin by presenting background on insider attacks (section 2.1). Then, we present risk

and trust definitions and related work in these areas (sections 2.2 and 2.3). After that, we

present RBAC basics and related work that include risk and trust (section 2.4). Then, we

present the state of the art of obligation-based access control systems (section 2.5). Finally,

we introduce some background information on geo-social access control approaches (section

2.6).

2.1 INSIDER ATTACKS

Insider threats have been broadly classified as intentional and unintentional threats [112]

which are defined as follows.

1. Intentional insider threats: We define intentional insider attackers as individuals who

have legitimate access to the resources of an organization and decide to attack the organi-

zation by disrupting its availability and compromising confidentiality or integrity of assets

owned by the organization. The motives of insider attackers vary from highly calculating

individuals motivated by personal gain (e.g., steal intellectual property) to disgruntled em-

ployees aiming to hurt the organization (e.g., sabotage the operations). In [56, 58], several

incidents have been documented.

Modeling insider attacks successfully requires the identification of important indicators

that may be used to determine if a user is misbehaving. If an employee is accused unfairly, he

14

may worsen his performance, increase his level of disgruntlement, reduce his trust towards the

organization and in the worst case, become an actual attacker. Technical and psychological

precursors discussed in [81] are often used to identify misbehaving users. The set of technical

precursors utilized is highly dependent on the type of system that is modeled. In particular,

depending on which access control model is used, different indicators may be available.

For instance, in a role based system, it is possible to profile users based on their behavior

with respect to the behavior of all other users that share the same role [21, 37]. Several

methodologies have been proposed to monitor different aspects of users’ behavior that include

monitoring their search behavior for files [98], the content of emails [111], among others,

e.g., ([47, 115, 25]). A survey on insider threat detection can be found in [97]. To integrate

all available anomaly detection data, situation-aware systems such as the one proposed in

[27, 73] can be used.

Situation-aware systems should also include psychological precursors to boost their pre-

diction value. However, including these indicators is a challenging task. Among the psy-

chological precursors, insider attackers generally show the following symptoms: disgruntle-

ment, bad attitude towards feedback, anger management issues, disengagement, disregard

for authority, performance decrease, stress, confrontational behavior, personal issues, self-

contentedness, lack of dependability and absenteeism [58]. Although psychological indicators

may allow early detection of insider threats, monitoring users can be challenging because

of privacy and legal concerns. Several of the indicators proposed in [58] are related to psy-

chological and physical characteristics that are usually seen as private information. For

instance, monitoring the health of an individual is not well regarded; indeed, the Health In-

surance Portability and Accountability Act (HIPPA) protects individuals’ right to medical

privacy [86]. Hence, including psychological and physical monitoring of a user would breach

the HIPPA legislation and other privacy related legislation. Therefore, new techniques to

measure these indicators without violating the privacy of the employees are needed.

Greitzer et. al [61] propose to find these indicators using human input, which is subjec-

tive in nature and may be biased due to interpersonal relationships. For instance, asking

an insider to evaluate these indicators will inevitably lead to a subjective evaluation based

on how he sees his co-workers. Another approach is to ask employees to report suspicious

15

behavior. This is not usually a successful practice as people tend not to report such in-

formation for fear of incriminating a co-worker who is possibly innocent or because they

think someone else is going to report the suspicious behavior [92]. Existing practices to mea-

sure the employee’s psychosocial state usually result in outdated information. For example,

360-performance evaluation methodology is typically completed once a year [58].

Ideally, a system should identify the psychological state of users without including sub-

jective opinions or compromising their privacy and at the same time, it should include this

information as quickly as possible. By doing so, it is possible to take advantage of the high

predictability factor of psychological indicators [9, 60].

2. Unintentional insider threats: Recently, unintentional insider threats have been

defined as threats that occur “through action or inaction without malicious intent that causes

harm or substantially increases the probability of future serious harm to the confidentiality,

integrity, or availability of the organization’s information or information systems” [112].

Social engineering attacks, phishing, fatigue-related incidents, among others are classified as

part of unintentional insider threats.

In this dissertation, our primary focus is to mitigate intentional insider threats. However,

for our obligation-based and geo-social framework, we also include some design elements that

aim at preventing unintentional insider attacks.

2.2 RISK

Risk is the cornerstone of the proposed research. Risk is defined by the likelihood of a

hazardous situation and its consequences if it occurs [83]. To identify the impact of an event

we use a probabilistic risk analysis as defined by Kaplan et. al in [74], where risk can be

calculated using the expected value formula. First, all possible outcomes are found and

quantified and then each outcome is weighted by its probability.

In information security, risk assessment methodologies such as the NIST risk management

methodology [108], Octave [7], [4], among others, allow organizations to identify threats and

16

evaluate their risks to determine an appropriate course of actions. The ultimate objective

is to determine if it is appropriate to reduce the likelihood of occurrence of a particular

threat through the implementation of policies, controls and mechanisms in the system. When

controls are implemented the risk is said to be mitigated. Otherwise, it is said to be accepted.

The risk exposure after all the controls and mechanisms are in place is called residual risk,

and ideally, it is the risk that the organization is willing to accept. These methodologies

usually focus on high level assets and are often performed once a year. Complementary

risk mitigation techniques are needed to allow a more frequent and automatic prevention of

insider attacks.

2.3 TRUST

Trust is another key concept in our research. Several definitions of trust have been provided

in the literature [71, 82, 57, 87]. We adopt the following trust definition: “Trust is a sub-

jective expectation an agent has about another’s future behavior based on the history of their

encounters” [82]. Trust may depend on the context in which the interaction between entities

takes place. For instance, the type of service and the network connection used by the user

may define a context. Our framework requires the use of methodologies to find trust values

for users given their current and historic behavior. Several approaches for calculating trust

in different domains have been proposed. A comprehensive survey of trust methodologies

can be found in [34]. In Chapter 5.3 we show that existing trust methodologies are not

directly applicable for obligation-based risk management.

2.4 ADAPTIVE ROLE-BASED ACCESS CONTROL APPROACHES

Because all access control models studied as part of this research corpus extend the Role-

Based Access Control (RBAC) model, we begin by presenting an overview of RBAC model.

Then, we present the related work on RBAC, risk and trust and we point out the limitations

17

of existing work that we propose to address as part of this dissertation.

2.4.1 Background on RBAC, Constraints and Hybrid Hierarchy

Role Based Access Control (RBAC) model [50] has multiple benefits. It encompasses dis-

cretionary and mandatory access control models and supports organization or user-specific

requirements. In addition, RBAC uses roles, which are a natural abstraction for most orga-

nizations, and it provides organizations with economic benefits due to the reduction of the

administration cost [95].

In RBAC, permissions are assigned to roles, and roles are assigned to users. In order

to obtain the permissions authorized for a role, users need to activate the role in a session.

Sets U , R, and P represent the set of users, roles and permissions in the system, respec-

tively. Separation of duty constraints (SoD) are used to avoid fraudulent activities within

an organization by preventing a unique user from assuming two or more conflicting roles.

There are two types of SoD constraints: Static (SSoD) and the Dynamic (DSoD). SSoD

restricts the authorization of users to conflicting roles [6]. Each constraint is denoted as

ssod(RS, k) ∈ SSoD, where RS ⊆ R with 2 ≤ k ≤ n. This constraint states that a user can

be authorized to at most k−1 roles in RS. Similarly, a DSoD constraint dsod(RS, k) ∈ DSoD

states that a user can activate at most k − 1 roles in RS simultaneously.

There are two types of cardinality constraints. An activation cardinality constraint re-

stricts the number of users that can activate a particular role in a system simultaneously.

To denote that a role r can be activated at the same time by at most k− 1 users, we use the

notation card(r, k). An assignment cardinality constraint restricts the number of users that

can be assigned to a role. This is denoted as cardA(r, k).

Roles can be hierarchically organized using hybrid hierarchy [101]. Roles r1 and r2 can

be hierarchically related in one of the following ways. (1) I-hierarchy (r1 ≥I r2) where r1

inherits the permissions of r2. (2) A-hierarchy (r1 ≥A r2) where users assigned to r1 can

activate r2. (3) IA-hierarchy (r1 ≥IA r2), in this case, r1 is I-senior and A-senior of r2. The

hybrid hierarchy allows the enforcement of different types of policies such as DSoD when

roles are hierarchically related [101].

18

2.4.2 Related Work on RBAC Extended with Risk and Trust

Although RBAC has several benefits, it cannot automatically revoke access to users that

are not behaving properly. For this reason, several approaches have incorporated trust [30,

49, 46]. However, existing approaches do not present a comprehensive analysis of the way

in which trust thresholds should be assigned, do not include separation of duty constraints

nor specify how to enforce such policies or reduce the risk exposure automatically. In [30],

roles are associated with trust intervals, and trust intervals are assigned to users. Users are

assigned to roles according to their trust levels. This model does not capture the intuitive

nature of RBAC systems in which users are assigned to roles according to their organization’s

functions, not trust levels. In [49], users are assigned to roles based on trustworthiness and

context information. A similar approach was proposed in [46], where role thresholds are a

function of the risk of the operations. If the trust of the user offsets the risk of the action,

the access is granted. However, none of these works provide a clear framework to compute

trust thresholds and do not reduce the risk the organization faces at runtime by selecting

roles with minimum risk exposure.

In [80], each role is assigned a minimum level of confidence and each user a clearance level.

Based on these values, the risk associated with a user activating a role is calculated. Objects

and actions are assigned a value according to their importance and criticality. However, this

work does not mitigate insider threats as the trust levels of users is a static value that does

not depend on users’ behavior. In addition, Ma et. al [80] do not consider role hierarchy in

their work and do not present experimental results.

In [84, 8, 32], the main focus is also to reduce the risk exposure. In [84], a risk based

analysis is proposed to ensure that system administrators assign permissions to the roles

considering the risk inherent to those permissions. Each permission is assigned a risk value,

and the role hierarchy is organized based on these risk values. This may not be appropriate,

as it is more intuitive to organize the role hierarchy according to the employee’s structure.

We argue that maintaining a role hierarchy that matches the organization’s hierarchy is

more intuitive for security administrators. Additionally, this work does not reduce the risk

exposure of the organization during the role activation process. In [8], a model that modifies

19

the policy to minimize the risk exposure as systems evolve is proposed. This model results in

a difficult to manage policy in which the administrator does not know the current status of

the policy; making it cumbersome to modify it and prone to errors. Chen et. al [32] propose

a model in which the risk associated with a role is calculated using the trustworthiness of the

user, the degree of competence he has to activate a role, and the degree of appropriateness

of the permission-role assignments. Each permission is assigned a mitigation strategy, which

is a list of risk thresholds and an associated obligation pair. When a user wants to obtain

a set of permissions, the role with minimum risk is selected. Then, the system consults

the mitigation strategy to see which action is more appropriate: to deny the access or to

allow the access imposing an obligation. Chen et. al do not consider SoD constraints,

which is crucial for addressing insider attacks. Additionally, they do not account for the

context as an important component to define the risk threshold that should be enforced.

Chen et. al use the appropriateness of permission to role assignment as part of the risk

computation. We believe this makes the semantics of permission to role assignment complex,

as the appropriateness value becomes a functional input for such assignments. This may

result in too many inappropriate assignments -although they will likely be captured through

risk computation. Hence, this causes unnecessary complexity in the administration of the

policy. Additionally, Chen et. al do not provide an algorithm to enforce the policy to reduce

the risk exposure during the role activation process.

Salim et. al propose to assign costs of access to permissions depending on the risk of

their operations, and to assign to each user a budget in [99]. Users are assigned to roles, but

being assigned or not does not necessarily determine whether or not a user should be allowed

to activate a role. If the user accesses permissions that he can obtain through an authorized

role, the cost is reduced. In case a user is not authorized to a role, the cost of activating the

role is taxed. Nonetheless, if the user has enough budget to make the operation, he can access

the permissions. Salim et. al [99] claim that this mechanism incentivizes users to spend their

budget cautiously, activating low cost (low risk) roles. However, this scheme exacerbates the

risk of insider threats. Users can use their budget to perform unauthorized accesses without

being detected; e.g., if a disgruntled employee wants to quit the organization, he would not

mind expending all his budget performing a malicious action.

20

Many commercial products also incorporate risk in their solutions; e.g., SAP [102], Oracle

[88], IBM [65] and Beta Systems [109]. These products mitigate risk by closely monitoring

and auditing the usage of risky permissions. The risk values, however, are not used to make

access control decisions, missing the opportunity to incorporate the overall known behavior

of the users to prevent insider threats.

The threat of inference of unauthorized information is particularly relevant in the insider

threat context. This threat occurs when through what seems to be innocuous informa-

tion, a user is capable of inferring information that he should not have access to. In existing

approaches to deal with inference threat [26, 45, 23], when a user is about to infer some unau-

thorized information, the system prevents it by either denying access or providing scrambled

data. This is not adequate for all types of organizations. We believe that real organizations

may need to provide access to multiple pieces of information to a single employee even if

they result in undesirable inference. Existing RBAC extensions do not consider the risk of

inferred information. New ways to mitigate the inference risk in RBAC-based systems are

needed.

In summary, to the best of our knowledge, none of the related work has provided an

analysis of the way the roles should be activated to mitigate risk of insider threats. For

this purpose, there is need to have a comprehensive methodology to identify how risky an

access is. In addition, current literature often does not include hybrid hierarchy, SoD and

cardinality constraints or enforce least privilege. These constructs are crucial to provide

flexibility during policy specification as well as reducing the risk exposure caused by insider

threats. Another limitation of existing approaches is that they do not mitigate the risk

of inference of unauthorized information. Finally, none of these works provides tools for

administrators to validate policy correctness. This research avenue has been explored in

non-adaptive access control systems e.g., [107, 69, 54], however it has been neglected in risk

and trust-aware access control systems despite their increased policy specification complexity.

21

2.5 OBLIGATION-BASED ACCESS CONTROL

Many application domains, including healthcare information systems, require the inclusion of

obligations as part of their access control policies [86, 91, 66]. An obligation is an action that

needs to be performed before a deadline passes [67]. The Health Insurance Portability and

Accountability Act (HIPAA) provides some examples of obligations, e.g., “when a patient

sends a request to access her protected health information, the doctor must respond to that

request within 30 days”. Here the deadline is 30 days and the action is to respond to the

patient’s request. When an obligation is completed before the stipulated deadline, it is said

to be fulfilled. Otherwise it falls into a violated state. We distinguish between user-based and

system-based obligations. In system-based obligations, the system is in charge of performing

the obligations while in user-based obligations the user is in charge of fulfilling the obligation.

We further classify obligations in three categories based on when they need to be performed,

these are: a priori obligations and a posteri obligations. A priori obligations need to be

performed before an access to a resource takes places while a posteriori obligations need to

be performed after an access takes place.

In this dissertation, we focus on user-based a posteriori obligations because they are very

challenging to enforce as there is no guarantee that users will fulfill them. Additionally, they

are particularly prone to sabotage threats. In what follows, we present the related work to

obligations.

2.5.1 Related Work on Obligations

To the best of our knowledge, none of the existing work has recognized that not fulfilling an

obligation has an inherent risk for organizations. Most existing work related to obligations

focus on providing accountability in the system [36, 67]. The idea is to assign a posteriori

obligations to the users in such a way that the only reason for the obligation to fall into

a violated state is user’s incompetence. Li et. al [79] propose an XACML extension to

specify obligations as state machines. In [120], an RBAC policy augmented with obligations

is presented. None of these works include risk management as part of the decision making

22

process to assign an a posteriori obligation to a user.

Bettini et. al propose calculating a reliability value based on the history of fulfillment

of obligations in [22]. However, the work limits itself to providing a syntax to include this

value into the obligation policy and does not provide a methodology to calculate it. Their

approach assumes a trust methodology is available to identify users’ intentions. Additionally,

no methodology to find policy misconfigurations, colluding and suspicious users is provided.

Other approaches have tried to reduce the risk exposure through the use of system obligations

(e.g., [32]), which are obligations performed by the system itself. These obligations are meant

to mitigate the risk, e.g., an obligation may consist of having the system close a file after a

low trusted user has accessed it. System obligation are a valuable approach to deter insider

threats, but they do not mitigate the risk associated with a posteriori obligations.

Although several approaches combine access control with risk and trust [72, 103, 11,

100], to the best of our knowledge none of them considers risk when assigning a posteriori

obligations to users nor provides a trust based methodology to do so. In [72], an abstract

model for incorporating the concept of risk in Usage Control (UCON) [90] is presented.

They consider risk coming from components such as the user, object, operations, connection

used as well as the provenance of attribute certificates. However, they do not include the

obligations as part of the risk components. We believe that it is relevant to incorporate a

posteriori obligations in the risk assessment as obligations are inherently risky.

2.6 GEO-SOCIAL ACCESS CONTROL

Several works have extended RBAC to include the context of the user such as the location

and temporal constraints as part of the access control decision [20, 31, 114, 41, 94]. We

broadly classify the existing RBAC literature into two categories namely RBAC extensions

that support location-based decisions [20, 31, 114, 94] such as Geo-RBAC [20] and LoT-

RBAC [31] and models that extend RBAC with proximity constraints that include other

user’s proximity as part of the access control policies such as Prox-RBAC [76, 63]. In Table

1, we compare existing approaches with our previously proposed Geo-Social RBAC [14] based

23

on the following types of constraints:

1. Pure location constraints: these constraints only take the location of users into ac-

count, e.g., to access a confidential file, a user may need to be in a particular room.

2. Geo-social constraints: these constraints consider both the location and the social

dimensions of the users in the policies. These are further classified as follows. (i)Geo-

social graph-based constraints which are based on the social graph structure, e.g., to enter

into a room a person needs to be in company of at least two friends that work there and

are present. (ii)Geo-social tag-based constraints which capture the types of relationships

between the users in the social graphs in addition to the location and social constraints.

For example, a child can only access a pay-per-view movie if he is in the presence of his

parent or a nanny.

3. Trace-based constraints: These constraints are based on user’s trajectory and whether

the user has been physically co-located with a particular set of individuals. These include:

• Location trace-based constraints: which capture the past location traces of a user as

part of the access control policies. For instance, consider a silicon chip manufacturer

company where even a minimum amount of dust may ruin an entire production

batch. If an operator has been in known dusty rooms of the factory, he cannot

enter the sterile chip production room unless he has previously passed through the

cleaning room. This is a location trace policy as the previous whereabouts of the

user determine whether or not he would be able to obtain the requested access.

• Geo-social trace-based constraints: which capture both the location history and the

social dimensions of the users. For example, in a company, if a visitor has entered into

the rooms used for induction of new employees accompanied by an administrator,

he can also access the welcome package files and the internal directory web pages.

As shown in Table 1, existing models do not support many geo-social constraints that

our previously proposed Geo-Social-RBAC incorporates. For this reason, in the remaining

of this dissertation, we focus on this model. In the remainder of this subsection, we examine

more closely approaches that have included the geo-social context as part of access control

systems [76, 63]. Prox-RBAC model [76] extends the Geo-RBAC model to include proximity

24

Table 1: Comparison of types of geo-social policies supported by existing RBAC based

models.

Policy RBAC extended
with location
[20, 31, 114, 94]

RBAC extended
with proximity
[76, 63]

Our Approach:
Geo-Social-RBAC
[14]

Pure location constraints Yes Yes Yes

Geo-social graph-based constraints No Yes Yes

Geo-social tag-based constraints No No Yes

Location-trace-based constraints No No Yes

Geo-social-trace-based constraints No No Yes

of other individuals as part of the policy in indoor environments. In Prox-RBAC valid

proximity constraints are based on the role of the access requester and the roles of other

individuals in proximity of the requester. This model does not allow the specification of

geo-social constraints based on social graphs. Gupta et. al [63] extended Prox-RBAC by

providing formal definitions to determine the proximity between locations, users, attributes

and time, each of which is referred to as a realm. The access control model does not include

hybrid realm policies. Additionally, their work does not allow the specification of some of

the policies presented in Table 1.

Other non-RBAC based models have been proposed in the literature [113, 53, 28, 110].

Besides not being RBAC-based, none of them are designed to protect against insider threats.

TMAC [113] is a model to establish policies that require team cooperation. Fong present

ReRAC [53] where decisions are based on the relationship between the resource owner and

the access requester. Carminati et al. [28] propose an access control model where policies

are expressed based on user-user and user-resource relationships. In [110], access control

decisions are made based on the location of the resource owner, the resource requester and

possibly other co-located individuals. Their model assumes that individuals own the re-

sources and it is not based on RBAC, making it less suitable for company settings. Also, it

does not consider trace-based constraints.

To the best of our knowledge, none of the existing approaches have been designed to

25

capture the intricacies of creating a geo-social access control model capable of mitigating

insider threats. In particular, they do not include risk and trust as part of the access control

decision making process. As part of this dissertation, we present some insider threats that

arise when existing geo-social models are used. We also provide policy constraints and

enforcement mechanisms to mitigate these threats.

26

3.0 REQUIREMENTS AND CONTRIBUTIONS

In this chapter, we present the requirements and contributions of each of the three frameworks

proposed as part of this dissertation. We begin by our RBAC-based framework in Section

3.1, followed by our obligation-based framework in Section 3.2 and conclude the chapter with

our G-SIR framework in Section 3.3.

3.1 AN ADAPTIVE RISK MANAGEMENT RBAC FRAMEWORK

The proposed framework aims to reduce the attacks and misuses performed by insiders when

using an RBAC-based access control system. We envision a model simple enough to abstract

the fact that information to assess how trusted a user is may be coming from multiple sources.

Failing to hide this complexity or to avoid having multiple sources of information to determine

how trusted a user is would render the model unusable. No previous assumptions on trust

levels of the users should be made based on their rank or on fixed security clearances such

as top secret, secret, non-confidential, etc., to allow flexibility and applicability to multiple

types of organizations.

This framework needs a risk a methodology to assess the risk exposure of each access

request. Recall that in RBAC, to acquire a permission, it is necessary to activate a role that

has the permission assigned to it in a session. Each permission may have a different risk

value associated with it; hence, we need to design a suitable risk aggregation methodology

to determine the risk exposure of an organization if a particular access request that requires

the activation of a set of roles is to be granted. The risk aggregation methodology should be

designed to account for different ways in which acquiring multiple privileges simultaneously

27

may be used to attack the system. We consider two factors. The first factor is the risks

associated with the permissions acquired through the roles. The second factor is the risk due

to inference of unauthorized objects, which we call inference risk and is caused by multiple

accesses. The inference risk arises when providing a set of permissions to a user allows

him to infer information that, in principle, he should not have access to. Although ideally,

this should never be the case, given the limited number of users in organizations, security

administrators may specify access control policies that often enable undesirable inference

of information [15, 43]. For this reason, the aggregation methodology should account for

inference risk to manage it appropriately.

3.1.1 Requirements

We identify the following requirements.

1. The access control model should allow the specification and enforcement of separation

of duty, cardinality constraints as well as the hybrid hierarchy to support fine-grained

access control policies. The importance of these components for insider threat prevention

was outlined in Chapter 2.

2. The system should detect suspicious activities. This process should be automatic and

should be able to establish to which level each user is to be trusted by the system.

3. It should be possible to associate different trust values for a user depending on the user’s

and system’s context. We stress the importance of including the context in which the

access is taking place. For example, the risk of a user accessing a confidential file from a

machine without connection to the Internet is less compared to the risk associated with

the same access using a personal device from a remote location.

4. Since different permissions may have different risks associated with them, the system

should be able to react to suspicious changes in the behavior of users by removing access

to riskier permissions quickly, and if the misuse continues, to other permissions as well.

5. The framework should include a risk aggregation methodology to determine the risk as-

sociated with the activation of a set of roles by a particular user. The risk associated

should include the imminent risk associated with the permissions acquired through the

28

roles, and the risk due to inference of unauthorized objects. The risk exposure should be

automatically reduced, minimizing the impact of possible attacks.

6. The system should provide the security administrator the ability to identify the active

inference threats associated with a particular policy, so he can decide whether the pol-

icy needs to be modified to reduce the risk exposure due to inference of unauthorized

information.

In this dissertation, we focus on requirements 1, 3, 4 and 5. For requirement 2, anomaly

detection solutions, such as those presented in Chapter 2, can be used to monitor the behavior

of users and calculate how trusted they are.

3.1.2 Contributions

The details of our proposed risk-and-trust aware RBAC framework are presented in Chap-

ter 4. The following are the contributions associated with the proposed Adaptive Risk

Management RBAC Framework.

• We propose a model that includes risk and trust in RBAC systems that adapts to anoma-

lous and suspicious changes in users’ behavior.

• We propose a comprehensive approach to calculate the risk values associated with per-

missions and roles. In particular, we introduce the notion of inference of unauthorized

permissions when calculating the risk of activation of a set of roles. For this purpose, we

present a formulation of a Coloured Petri-net (CP-net) [70] to identify when a particular

user may infer unauthorized permissions, and subsequently adjust the trust threshold

required to activate needed roles.

• We propose a refinement methodology to reduce the amount of information stored and

the performance of the CP-net used to identify the risk exposure due to inference of

unauthorized information.

• We formulate an optimization problem to enforce the policy and reduce the risk exposure.

To the best of our knowledge, this is the first work that attempts to reduce the risk

exposure in this way.

29

• We present a role activation algorithm to solve the optimization problem, and evaluate

its performance using well-formed policies and prove its correctness.

• In order to improve the risk management process related to inference threats, we propose

a simulation strategy that allows administrators to identify active inference threats before

a policy is deployed. In addition, an administrator can determine the effects of adding

a user-to-role assignment before he modifies the access control policy in the production

system. This methodology helps reduce undesirable inference threats.

3.2 OBLIGATION-BASED FRAMEWORK TO REDUCE RISK

EXPOSURE AND DETER INSIDER ATTACKS

At the core of this framework is a methodology to find users’ trust values based on patterns of

violation and fulfillment of their assigned obligations. Such a methodology should withstand

powerful adversaries. We propose the following threat model with two types of adversaries

that are representative of possible insider attackers:

1. Näıve users: These are insiders who know the system is monitoring if they have fulfilled

or violated a particular obligation. However, they do not know the details of how their

trust values and trust thresholds to access resources are computed by the system.

2. Strategic users: These are insiders who have knowledge about the system’s mechanism

to compute trust values. This information gives them the power to try to maintain

their trust levels within the expected thresholds to avoid being flagged as suspicious by

controlling their behavior in a smart way.

In chapter 5.3, we show that the existing approaches do not withstand this adversarial model.

Having defined our adversarial model, we now present the requirements of this framework.

3.2.1 Requirements

The proposed obligation-based framework should address the following requirements for

detecting and mitigating the risk exposure of unfulfilled a posteriori obligations.

30

1. The associated access control model should capture the criticality of obligations. A

criticality value represents the severity of the impact of not fulfilling an obligation for

the organization.

2. Reduce risk of users not fulfilling obligations by considering their trust values and the

criticality of a posteriori obligations associated with the permissions being requested.

The system should deny access requests to users whose trust values are below a pre-

specified threshold associated with a posteriori obligations that would be triggered by

the requested accesses.

3. Develop a methodology to compute the obligation related trust value of a user based on

the history of fulfilling or defaulting on a posteriori obligations as well as his performance

with respect to his peers. The trust value should detect when a user is an outlier;

e.g., when the user is the only one defaulting on a particular obligation. The proposed

methodology should be reliable against both strategic and näıve adversaries.

4. Provide a methodology that allows an administrator to detect policy misconfigurations

related to a posteriori obligations by identifying patterns of violation of a posteriori

obligations. The patterns can serve to identify when a particular obligation is not being

fulfilled by a large number of users. This may be due to different factors. It is possible

that the policy is not updated, but there is a verbal or implicit agreement to ignore it

or the users that are assigned those obligations are too busy or lazy. The system should

also detect when a user is the only one continuously violating an obligation, which may

imply he is sabotaging the operation. The knowledge of these patterns can be used to

reduce the risk and identify policy misconfigurations.

5. Identify when a user is misbehaving, which in turn indicates that he poses a high risk of

becoming an insider attacker, without invading users’ privacy.

3.2.2 Contributions

The proposed Obligation-based Framework to Reduce Risk Exposure and Deter Insider At-

tacks is presented in Chapter 5. The contributions of this framework are as follows:

• We emphasize and show that a posteriori obligations have an inherent criticality level and

31

propose a comprehensive framework to reduce the risk exposure faced by organizations

every time a user is assigned critical obligations. To the best of our knowledge, this is

the first work that has integrated the inherent criticality of a posteriori obligations and

the obligation-based trust values in the authorization decision-making process.

• We propose and evaluate a methodology to calculate the obligation-based trust values

for each user. The methodology is resilient against users who know how the system

computes the trust values and try to exploit this knowledge. Our methodology is also

able to discern among users who accidentally do not fulfill an obligation, maliciously

avoid the fulfillment of obligations and those who strategically oscillate their behavior to

maintain their trust values within an acceptable threshold to later launch an attack.

• We propose the use of a clustering-based methodology to identify policy misconfigura-

tions, users colluding to avoid performing particular obligations and users whose behavior

is worse than their peers (e.g., users that systematically avoid fulfilling an a posteriori

obligation). This information can be used by the system administrator to take necessary

actions, such as updating the policy or monitoring more closely certain users.

• Finally, the proposed framework provides a technique to detect insider threats by moni-

toring users without invading their privacy (e.g., other methodologies used for this pur-

pose scan users’ personal emails) or including subjective measures.

3.3 GEO-SOCIAL INSIDER THREAT RESILIENT ACCESS CONTROL

FRAMEWORK

Geo-social information can significantly help to deter insider threats. When an organization

establishes a geo-social access control system, it creates a unique opportunity to use the

information collected by the infrastructure to account for users’ behavior and make ade-

quate access control decisions. These types of controls help prevent some insider attacks.

For example, a user who is often at places that he is not supposed to frequent should be

flagged as suspicious and actions to restrict his access to highly critical information should

be automatically performed. This behavioral information should be considered at the time

32

access control decisions are evaluated.

However, designing a system that uses this information without increasing the risk ex-

posure is a challenging task. Before outlining the concrete challenges and showing where

existing techniques fall short, we introduce the relevant actors and components of the pro-

posed system.

3.3.1 System Actors

A geo-social access control system has a social network graph, where nodes represent users

and edges represent relationships among them. These relationships are annotated with labels

that represent the types of social relationships, e.g., boss. Additionally, a geo-social system

has access to the location where users are at any particular time. Users may issue access

requests and a policy can be defined to determine if an access request should be granted or

denied. Geo-social access control systems also consider where the requester is located and

who the users in the vicinity are. This information is very useful because it helps determine

when the access request context is not adequate to grant a requested access.

We classify users in the vicinity in three classes: enablers, inhibitors or neutral users

according to the way in which they impact the risk exposure associated with granting an

access request. Enablers are users that may actually bootstrap and/or enhance the trust of

an access request by vouching for the requester due to their social relationship. Inhibitors

on the other hand, are users whose presence increases the risk of granting an access and

neutral users are those whose presence does not increase or reduce the risk of a request. For

example, consider a policy that requires a parent or a nanny to be in the same room with a

child requesting an access to a pay-per-view movie. Here, the parent or nanny are enablers

and the child is the requester. In contrast, inhibitors increase the risk of granting access to

a request. An example of an inhibitor is a consultant trying to access sensitive information

in presence of another consultant working for a competing company.

33

3.3.2 Insider Threats

A geo-social adaptive system to deter insider attacks should be able to determine the risks

associated with these actors whenever an access request is evaluated. The risk exposure

increases with respect to adaptive access control systems because enablers can influence the

access control decisions as indicated by the following threats.

1. Collusion: The requester and enablers may decide to collude and probe the system to

try to access information that they would not ordinarily have access to. Ways to collude to

probe the system include changing the current location or trying to modify the social graph

to gain more accesses.

These types of collusion attacks are new and have not been considered by existing adap-

tive access control models. Although existing geo-social access control models make use of

statically defined and enforced geo-social cardinality constraints to reduce the risk of col-

lusion, these constraints are not enough. A geo-social cardinality constraint is a rule that

helps establish how many people need to be at a particular location for a user to be able

to exercise a privilege [76, 63, 14]. Even if there is evidence that suggests a group of peo-

ple is colluding, existing geo-social cardinality constraints disregard this information. As a

consequence, colluding users may gain access to critical information despite availability of

evidence of their malicious efforts.

2. Social engineering attacks: Social engineering attackers convince other users to

perform an action that they should not perform under normal circumstances. For instance,

an enabler may be tricked by a malicious requester through a social engineering attack to

move to a location to allow his request to be granted. Similarly, the requester may be tricked

to enter into a particular place and access some information.

3. Proximity threats: Users in the vicinity create multiple risks based on the groups to

which they belong (e.g., conflicting projects, or being part of social communities that are

undesirable for a particular access). When a user in the vicinity poses too much risk, she

is classified as an inhibitor. A framework for insider mitigation needs to be able to specify

that whenever there are one or more inhibitors, the access control system should deny the

access.

34

4. Inadequate policy enforcement: Although existing geo-social access control systems

specify policies that control access to some privileges based on the geo-social context of a

user, they do not account for negative geo-social behavior. Undesirable behavior may not

be prevented by an access control policy for reasons that include high costs of enforcement,

inconvenience, and people working around enforcement mechanisms in place, as the following

example illustrates. A user may enter a restricted area (e.g., by door piggybacking), where he

should not be; however, he does not request any access while in the forbidden place. In this

scenario, current geo-social access control systems are blind to the fact that the user entered

into a forbidden place. Although it is understood that the user’s behavior is inappropriate,

no enforced access control policy is impacted by her behavior. Thus, current geo-social access

control policies are not enough to detect negative geo-social behavior when it is not linked

to an access request. As a result, dangerous behavior may not be captured.

Given this inability to enforce desired policies, often users are informed of the geo-social

behavior they are expected to fulfill and are blindly trusted to do so. Such desirable behav-

ior can be enforced through social contracts [24], which are a tacit or verbal understanding

between interested parties about each other’s expected behavior. We are interested in social

contracts that specify the whereabouts and relationships that are appropriate or inappropri-

ate for the role that users play within an organization.

Preventing inappropriate geo-social behavior is a daunting task, and new techniques need

to be devised to capture violations of social contracts. Although it is difficult to enforce,

through proper monitoring, it is possible to identify inappropriate behavior and raise an

alert.

5. Privilege misuse threats: These threats occur when a requester decides to abuse his

privileges. Our framework should also mitigate them by using historical behavior.

3.3.3 Requirements

Towards addressing these insider threats, we now discuss the requirements for the proposed

Geo-Social Insider Threat Resilient Access Control Framework :

1. Provide policy constructions to classify users in the vicinity according to the risk they

35

impose given an access request into enablers, inhibitor or neutral users.

2. Define policy constraints to capture geo-social behavior relevant to access control deci-

sions. In particular, the system should allow the specification of the following types of

policy constraints.

i) geo-social contracts, which specify places and people that a user cannot visit by

virtue of being assigned to a role in an organization,

ii) geo-social obligations, which are geo-social actions that a user needs to perform after

an access has been granted. Geo-social actions include visiting or refraining from

visiting a particular place or person, and

iii) trace-based constraints, which reflect expected paths that users need to complete

before being granted an access.

3. Restrict accesses where the requester or any of the enablers are violating any of his social

contracts.

4. Monitor and analyze the behavior of users with respect to the fulfillment of geo-social

policy constraints. Users violating policy constraints more often than their peers are

suspected of disregard of authority and, hence, should be trusted less. Therefore, the

estimated probability of the requester being an attacker should include geo-social policy

violations.

5. Mitigate the risk of colluding users by identifying communities of colluding users and

restricting accesses where there is a strong indication that the enablers and the requester

are colluding.

6. Ensure that the access control system can adapt to negative changes in behavior of users

by restricting critical privileges to users who do not behave properly. The decision to

grant or deny an access should consider the risk exposure. G-SIR should minimize the

risk exposure caused by the requester, users in the vicinity and potential collusion among

enablers and the requester.

36

3.3.4 Contributions

We propose a Geo-Social Insider Threat Resilient Access Control Framework (G-SIR). G-

SIR is capable of deterring insider attacks by considering users’ geo-social context, their

behavior and the risks associated with granting access to a set of permissions. In Chapter 6

we present in detail G-SIR. The contributions related to this framework are summarized

as follows:

• To the best of our knowledge, this is the first research effort to analyze geo-social access

control systems with the objective of protecting a system against insider threats. We

present threats that are enabled by current geo-social access control systems.

• To mitigate these threats, we propose an access control model that includes a set of

geo-social constraints to capture acceptable and unacceptable geo-social behavior. The

proposed constraints include geo-social contracts, geo-social obligations, traces and vicin-

ity constraints.

• We propose a risk management framework that incorporates geo-social behavior of the

users and adaptably tunes the access control decision to minimize the risk. As part

of this process, G-SIR monitors users who violate geo-social constraints to improve ac-

countability and determine how trustworthy users are. The risk management procedure

considers: i) how trustworthy the system considers the user is with respect to his geo-

social behavior, ii) the user’s current geo-social context, iii) the context of relevant social

relationships, iv) existing indications of collusion among individuals in the vicinity, and

v) other users in the vicinity who may compromise the security of accessed information.

• Finally, we evaluate G-SIR through simulations to demonstrate its effectiveness and

feasibility.

In the following chapter, we present first and most general framework to deter insider

threats.

37

4.0 AN ADAPTIVE RISK MANAGEMENT RBAC FRAMEWORK

In this chapter, we present the proposed Adaptive Risk Management RBAC Framework.

We begin by presenting some preliminaries in Section 4.1. In Section 4.2, we present the

requirements of the system and an overview of the proposed framework. The details of the

risk calculations are presented in Section 4.3. The formal definition of the role activation

problem and the proposed algorithm is presented in Sections 4.4. In section 4.5, we present

a CP-net based technique to find and manage the inference risk. Finally, we show the

experimental results in Section 4.6.

4.1 PRELIMINARIES

In this section, we present the notation and concepts used through this chapter. In our

risk-and-trust aware RBAC model, we incorporate hybrid hierarchy introduced in Chapter

2. We use function Pau(r ∈ R) to denote the set of permissions that can be acquired through

r; this includes the permissions directly assigned to r and those inherited through I and IA

hierarchical relations. Similarly, Pau(Rc ⊆ R) returns the authorized permissions of all the

roles in Rc. Function authorized(u ∈ U) returns the roles in R that are authorized for u (if

u is authorized for role r, it means he can activate r). Function activated(r ∈ R) returns

the number of sessions that contain role r. Finally, we denote the set of contexts as C.

38

4.1.1 Coloured Petri-net (CP-net)

We model the history of accesses as a Coloured Petri-net (CP-net) [70]. Here, we provide

the basic concepts of CP-nets, and in Section 4.3.2.1, we present the proposed CP-net. A

CP-net is a bipartite graph that contains two types of nodes: places (W) and transitions

(T). Places and transitions are connected through arcs (F ⊆ (W × T) ∪ (T ×W)). No arc

can exist between two nodes of the same type. Tokens (V) live in places, and move around

in the CP-net when transitions fire. Usually, tokens represent objects and their attributes,

which are called colors or types. Not all types of tokens are accepted in all the places.

Υ(w ∈ W) denotes the type of accepted tokens in place w. Each transition t ∈ T has a

boolean guard that evaluates a condition based on tokens V ′ ⊆ V located in the input place;

a guard is represented by G(t ∈ T, V ′ ⊆ V). If the guard evaluates to true, the transition

fires. Otherwise, the transition does not fire. If a transition fires, it consumes the tokens that

made the guard evaluate to true and collocates a new token in the output place(s). This is

represented by the function λ : t ∈ T × V ′ ⊆ V → vo ∈ V , where G(t, V ′) = true and vo is

the token produced by the transition. We use mo to denote the initial placing of tokens in

the CP-net. Finally, a CP-net in its initial state is defined by tuple 〈W,T, F, V,Υ, λ,mo〉.

4.2 THE PROPOSED FRAMEWORK

4.2.1 Overview of the Framework

We consider RBAC systems with hybrid hierarchy, cardinality and SoD constraints. We

extend this model by adding the following components (a detailed explanation of each of

them is provided in Section 4.3).

• Each user is associated with a trust value that is a function of his behavior under a

particular context. We denote this as trust(u ∈ U, c ∈ C).

• Each permission is assigned a risk value within a particular context. We denote this as

rs(p ∈ P, c ∈ C).

39

• The policy contains a set of inference tuples I, which allows the calculation of the risk

exposure due to inference of unauthorized information.

• When a set of roles RS is to be activated, first its combined risk value is computed

(rs(RS ⊆ R, c ∈ C, u ∈ U)) based on (i) the permissions it is authorized for, (ii) the

inference risk associated with those permissions, (iii) the context, and (iv) the trust

value of the user trying to activate the roles.

• Similarly, when a set of roles RS is to be activated simultaneously by a user, a trust

threshold is computed based on the risk of RS. This threshold is denoted as τ(RS ⊆

R, c ∈ C, u ∈ U).

A user can activate a set of roles in a session if and only if (i) he is assigned to all the

roles in the set, (ii) their activation does not violate any constraint, and (iii) he possesses a

trust value greater than or equal to the trust threshold required for those roles. We formalize

this notion in Section 4.4. In RBAC, only the first two conditions need to be fulfilled for a

user to be able to activate a role. In our model, we also consider the trust value of the user,

which allows the system to adapt to misbehaving users.

The proposed system architecture is shown in Figure 3. The Monitoring Module monitors

the users in the system. The Trust and Context Module (TCM) uses the monitored infor-

mation to identify the context, and calculate the trust value of each of the users accordingly.

These trust values are stored in the Trust Repository.

The Access Control Module is composed of the Enforcement Module the Administration

Module and the Policy Information Point (PIP). The policy of the system is stored in the

PIP. The Enforcement Module is in charge of evaluating access requests and has several

components, the Policy Enforcement Point (PEP), the Policy Decision Point (PDP), the

Risk Module and the Inference Module. An access request consists of the set of permissions a

user wants to acquire. The PEP intercepts all these requests, and ensures that the resources

of the system can be accessed only if the policy authorizes it. The access requests are

intercepted by the PEP, which sends them to the PDP. The PDP evaluates the policy

according to the trust the system has on the user, the context, and the inference risk. The

inference risk is computed by the Inference Module and the computations related to trust

thresholds are performed in the Risk Module. In case the trust value of a user decreases

40

Access Control Module

Monitoring
Module Users

Resources
Trust &
Context
Module

Administrator

Admin. Module

Inference Threat
Management Module

Policy Editor

Trust
Repository

PIP

PDP

PEP

Inference
Module

Risk
Module

Enforcement Module

Figure 3: Risk-and-trust RBAC architecture.

while a user has a session open, the TCM sends a notification to the PDP, which re-evaluates

whether the privileges the user is exercising should be revoked. In this way, the system is

able to deny access to misbehaving users before they can perform extensive damage to the

system.

The Administration Module enables the administrator to define, refine and analyze the

policy. It is composed of two modules. The Policy Editor allows the specification of the

policy and the Inference Threat Risk Management Module produces informs that identify

the active inference threats of a particular policy configuration. Using this information, an

administrator may iteratively modify the policy to reach the desired risk exposure. In this

way, the administrator can identify the ideal policy, with respect to inference risk, before he

realizes the policy in the production system. We discuss in detail this procedure in Section

4.5.

41

4.3 RISK AND TRUST THRESHOLDS

In this section, we present the proposed methodology to calculate the risk exposure of an

organization. We show how the risk is calculated for different roles that a user wants to

activate based on the risk of the permissions they can acquire. Finally, we show how to

compute the trust threshold.

4.3.1 Risk Associated with Permissions

A permission is a tuple 〈obj, act〉 where the obj is an asset in the organization such as a file or

other resource, and the act corresponds to the action that a user can perform on the object.

Objects are susceptible to different threats. Among these are object’s loss of integrity,

loss of confidentiality, and loss of availability. Intuitively, different objects have different

security requirements that depend on the business functions of a particular organization.

For instance, some objects require that their integrity be well guarded, other objects are

sensitive (their leakage would result in a lot of damage to the business), while others may be

critical and sensitive simultaneously. Hence, the risk exposure of the organization depends

on the action that is performed on the object and the relevance of the object.

The risk value of a permission p is the likelihood that p is misused multiplied by the

corresponding damage cost. We are interested in the residual risk which means that the

likelihood of a particular misuse depends on the mitigation mechanisms and controls that

the organization has in place to reduce the vulnerabilities that can lead to the misuse.

Definition 1. The risk of permission p = 〈obj, act〉 ∈ P in context c ∈ C, written as rs(p, c),

is defined as follows:

rs(p, c) =
∑

xp∈MaliciousUsagec

Pr[xp| c] ∗ cost(xp)

Where MaliciousUsagec is a set of possible events in context c that can lead to a misuse

of object obj through the action act, Pr[xp| c] is the probability of occurrence of a particular

malicious usage of object obj through action act given c, and cost(xp) is its associated cost.

42

Example 1. For simplicity, in this example, we only consider one context: users are ac-

cessing the system through the intranet. Consider an organization that produces soaps. To

calculate the risk associated with permission p1 = 〈listOfProviders, read〉, the organization

performs the following analysis. The provider’s list is considered to be sensitive, as its infor-

mation provides the organization a competitive advantage. The organization calculates that

its leakage would cost around $30,000. According to their system’s configuration, the proba-

bility of occurrence of this event is 0.1. This results in a total risk of $3,000. Permission p2,

corresponds to writing the number of orders to be placed. The concern related to this object

is its integrity. In case this number is overwritten maliciously, the organization would face

problems. They may either run out of materials before planned or they would be paying for

a large unnecessary inventory. The company estimates that having a large inventory would

cost them around $500 and an insufficient inventory $2,000, for a total cost of $2,500. The

probability of those events is 0.1. Therefore, the total risk of p2 is $250. Permission p3

allows halting the machines that produce soaps. If this permission is maliciously used, the

entire factory would be stopped and serious consequences may occur. The organization may

not be able to fulfill its contracts, may lose money, and in the worst case, clients. The cost

of this event is estimated to be $20,000. However, in order to use it, three administrators

need to authorize the operation. Hence, the probability of this misuse is estimated to be very

low: 0.005, for a total risk of $100.

4.3.2 Risk Associated with Role Sets

Intuitively, the risk associated with a set of roles is a function of the risk of the permissions

that can be accessed through those roles. When calculating such risk values, we include the

risk of the permissions that can be explicitly acquired through those roles, as well as those

that can be inferred from them. We first show how we model the inference problem, and

then we present how to calculate the risk of activating a set of roles.

4.3.2.1 Inference Threat and Activation History An Inference threat exists when a

user is able to infer unauthorized sensitive information through what seems to be innocuous

43

data he is authorized for.

Definition 2. An Inference Tuple 〈PS, px〉 consists of a set of permissions PS ⊂ P , and

an inferred permission px = 〈x, read〉 ∈ P , for which the following conditions hold:

1. PS does not contain the inferred permission: px /∈ PS.

2. Once a user has acquired all the permissions in PS, he has all the information required

to infer object x.

3. The set PS is a minimal set of permissions that allows the inference of object x.

We denote the set of all inference tuples by I.

Note that in the above definition, an object may be inferred through more than one set

of permissions. For instance, it may be possible to infer object x through two different sets

of permissions PS1 and PS2; which results in two inference tuples: 〈PS1, px〉 and 〈PS2, px〉.

It is also possible that the same set of permissions can be used to infer different objects, e.g,.

〈PS3, pi〉 and 〈PS3, pj〉. These inference tuples can be found automatically using techniques

such as those described in [33, 118].

To determine when a user has acquired all the permissions necessary to be able to infer

unauthorized information, we need to keep track of his access history because the user

may accumulate over time information to perform the inference. We denote the history

of access of user u as Hu and use two functions. Function permInferred(Hu) returns the

set of permissions the user would be able to infer given his previous accesses, and function

permExercised(Hu) returns the set of permissions the user has exercised.

Definition 3. Given a user u, his history of access Hu and a set of roles R′ that he is

authorized for, function inferred(Hu, u, R
′) returns the set of unauthorized permissions that

u can infer uniquely after activating R′:

inferred(Hu, u,R
′) = {px | 〈PS, px〉 ∈ I ∧ px /∈ authorized(u)

∧ permExercised(Hu) ∪ Pau(R′) ⊇ PS
∧ px /∈ permInferred(Hu) }

44

Note that in the above definition, because of the last condition, only permissions that

the user would not be able to infer without activating R′ are included. In section 4.5, we

present in detail a methodology to find inferred(Hu, u, R
′) using a CP-net.

4.3.2.2 Calculating The Role Set Risk The risk exposure of providing access to a

set of roles R′ ⊆ R to a user u depends on the state of the CP-net. The following formula

provides the risk exposure.

Definition 4. The risk exposure of the system if user u activates a set of roles R′ ⊆ R in

context c is given by

rs(R′, c, u) =
∑
p∈℘

rs(p, c)

where ℘ = Pau(R
′) ∪ inferred(Hu, u, R

′).

When no inference occurs due to the activation of R′, inferred(Hu, u, R
′) = ∅; and the

risk exposure is given by the risk of the authorized permissions Pau(R
′). On the contrary,

when one or more roles in R′ allow the user to infer unauthorized information, the risk

includes the risk of directly acquired permissions and the risk of the inferred permissions

in inferred(Hu, u, R
′). In Example 3, Section 4.5.1, we show how inferred(Hu, u, R

′) is

computed and used.

4.3.3 Trust Thresholds Associated with Role Sets

The trust threshold associated with a set of roles represents how trusted a user needs to be

in order to use those roles. Intuitively, this threshold needs to reflect the risk exposure of

the organization when the roles are activated by a user. We define the trust threshold as

follows.

Definition 5. The trust threshold of the set of roles R′ ⊆ R, in context c for user u is

defined as follows:

τ(R′, c, u) =
rs(R′, c, u)∑
p∈P

(rs(p, c))

45

r1 r2

r4

p2

p1

p4r3p3

r5

r6

p5

p6

r7 p7

Conventions
Roles
Permissions	
A-hierarchy	
I-hierarchy	
IA-hierarchy

Permission
(pi)

Risk of	permissions	
rs(pi,c)

Role	
(ri) Pau(ri)

p1 $3,000	 r1 {p1,p2,p4}
p2 $250	 r2 {p1}
p3 $100	 r3 {p3}
p4 $50	 r4 {p4}
p5 $1,500	 r5 {p1,p5,p6}
p6 $500	 r6 {p6}
p7 $500	 r7 {p7}

Figure 4: Policy for example 2.

Where 0 ≤ τ(R′, c, u) ≤ 1. When τ(R′, c, u) = 0, it means that user u does not need to

be trusted to activate R′ in context c; when τ(R′, c, u) = 1, it means that user u needs to be

completely trusted in order to activate R′ in context c.

Example 2. Consider the policy presented in Figure 4 where roles are represented by cir-

cles and permissions by rectangles. Roles are organized hierarchically as shown in the fig-

ure. In the table, the risk of each permission and the set of authorized permissions per

role are listed. Let inferred(Hu, u, R
′) = ∅ and assume that user u is assigned to roles

r1, r5 and r6. (a) Suppose that u wants to activate role set {r1, r6} under context c. Given

that Pau({r1, r6}) = {p1, p2, p4, p6} and according to Definition 4, the risk exposure is equal to

rs({r1, r6}, c, u) = rs(p1, c)+rs(p2, c)+rs(p4, c)+rs(p6, c). Hence, rs({r1, r6}), c, u) = $3, 800

and τ({r1, r6}, c, u) = $3,800/$5,900 = 0.64, where $5,900 corresponds to the sum of the risk

of all the permissions. (b) Now suppose that u requests the activation of r5 under context c.

Here Pau(r5) = {p1, p5, p6}, rs({r5}), c, u) = {rs(p1, c) + rs(p5, c) + rs(p6, c)} = $5,000 and

τ({r5}, c, u)=0.85. Role {r5} grants access to permissions that are very critical, more than

the ones granted by {r1, r6}; therefore its trust threshold is higher.

4.3.4 Trust of Users

We assign each user in the system a trust level. The trust for a user u in context c is denoted

by trust(u, c) and is defined in the interval [0, 1], where 1 means the user is fully trusted and

46

0 means the user is totally untrusted. The Trust and Contexts Module in Figure 3 considers

the behavior of users over time and the context to calculate the trust value for each user;

e.g., if the user is using an untrusted connection, the trust in the user may be reduced. The

details of this process are out of the scope of this dissertation. Solutions such as [21, 37] can

be used to construct profiles and latter calculate a trust value based on the behavior of a

user.

4.4 MINIMIZING THE RISK EXPOSURE

To make sure that our system enforces a policy correctly, we provide the definition of a

well-formed policy that establishes a baseline of the types of accepted policies.

Definition 6. A well-formed policy is defined as follows:

1. No roles in a DSoD constraint are allowed to have any I or IA-seniors:

∀ r ∈ R, dsod(RS, k) ∈ DSoD @r′ ∈ R : (r′ ≥I r) ∨ (r′ ≥IA r)

2. User to role assignments should respect SSoD:

∀u ∈ U, ssod(RS, k) ∈ SSoD : |authorized(u) ∩RS| < k

3. User to role assignments should respect the cardinality constraints:

∀u ∈ U, cardA(r, k) ∈ CARDA : |authorized(u) ∩RS| < k

Condition 1 states that the roles involved in a DSoD constraint may only have A-senior

roles. As explained in [101], this condition allows the system to enforce DSoD constraints.

Condition 2 establishes that all SSoD constraints are enforced in presence of hybrid hierarchy.

Finally, condition 3 ensures that the user assignment fulfills the cardinality constraints.

When a policy fulfills all these conditions, it is possible to enforce it during runtime.

4.4.1 Trust-and-Risk Aware Role Activation

The role activation process is instrumental in our framework. It is in charge of identifying

when a user should be denied to activate roles due to lack of trust or other policy constraints.

47

It also allows us to minimize the risk exposure by selecting the roles that have less risk in

the system. First, we present the problem statement.

Problem Statement: A user u in context c with a trust value trust(u, c) requests the

system to activate a permissions set PS ⊆ P in a single session. The system responds to

the user’s request by either accepting it and determining the proper roles to be activated or

rejecting it. If the access is granted, the roles selected to be activated should minimize the

risk exposure of the organization.

A request of a user u ∈ U in context c for permissions PS ⊆ P is granted if a set of

roles Rq ⊆ R can provide the permissions in PS, and the following conditions hold: (1) The

user is authorized for all the roles in Rq. (2) The user’s trust level (trust(u, c)) is greater or

equal to the trust threshold of the set of roles Rq. (3) The DSoD and cardinality constraints

are not violated when roles in Rq are activated simultaneously. The following optimization

problem captures the Trust-and-Risk Role Activation problem.

Definition 7. The Trust-and-Risk Aware Role Activation Optimization Problem for a query

q = 〈u, PS, c〉, consists of finding a solution, Rq, such that:

min
Rq⊆authorized(u)

rs(Rq, c, u)

s.t.

∀ dsod(RSi, ki) ∈ DSoD : |Rq ∩RSi| < ki (a)

∀ card(rc, k) ∈ CARD ∧ rc ∈ Rq : activated(rc) + 1 ≤ k − 1 (b)

trust(u, c) ≥ τ(Rq, c, u) (c)

Pau(Rq) ⊇ PS (d)

The system grants a request only if the entire set of requested permissions can be autho-

rized to the user, as we assume that the permissions in PS need to be used simultaneously.

In addition, we only require that Pau(Rq) ⊇ PS. This means that the selected roles may

provide additional permissions than those requested by the user. We argue that selecting

the roles that minimize the risk is better than providing the roles that minimize the number

of extra permissions. To see why, let us consider two possible solutions. The first solution

48

contains one role that provides one additional permission, with a risk of $10, whereas the

second solution contains a role that provides two extra permissions with a risk of $1. In this

case, the algorithm selects the second solution because, even though the number of additional

permissions is higher, the total risk exposure is reduced.

4.4.2 Role Activation Algorithm

We propose Algorithm 1 to find a solution for the Trust-and-Risk Aware Role Activation

Problem. Our algorithm assumes that the policy is well formed, as per Definition 6. The

algorithm first removes from the search space the roles that cannot be activated due to trust

issues (line 4). The current best solution is stored in the set Rq, which initially is empty.

The function selectRolesMinimumRisk(Prem, Ravail, Rsel, u, c) finds candidate solutions,

and compares them to select the best one. This function is recursive and it starts by checking

the base case. This occurs when a candidate solution provides all the permissions requested

(line 16). If the candidate solution is less risky than the current best solution, it becomes the

new best solution. If both solutions have the same risk, the algorithm selects the one that has

lesser number of roles. Otherwise, it keeps the original solution. Before the algorithm reaches

the base case, it prunes the search space by removing the roles that cannot be activated due

to DSoD and cardinality constraints (lines 25 and 28). Roles that do not provide the missing

permissions in the candidate solution are also removed (line 32). These pruning steps take

place before any role is added to a candidate solution, ensuring that candidate solutions do

not contain roles that violate the constraints of the policy. In case no candidate roles are left

after the pruning (line 34), the algorithm backtracks as that search path did not lead to a

valid solution. Otherwise, the next role to be added to the candidate set is chosen in line 36;

this function only selects a role r if adding it to Rsel fulfills τ(Rsel ∪ {r}, c, u) ≤ trust(u, c)

(line 44). We evaluate two heuristics to perform this step in Section 4.6. The selected role

is denoted as rbest. The algorithm evaluates the two possible paths i) a candidate solution

where rbest is added (line 40) and ii) a candidate solution that does not contain rbest (line

41).

49

Algorithm 1 Trust-and-Risk Aware Role Activation
Precondition: The policy is well-formed (Definition 6).
Postcondition: Rq contains the solution of the problem specified in Definition 7.

1: findTrustAndRiskAwareActivationSet(u, PS, c)
2: Ravail ← authorized(u) {Candidate roles}
3: for all r ∈ Ravail do
4: if τ(r, c, u) > trust(u, c) then
5: Ravail ← Ravail \ r {Pruning based on user’s trust}
6: Rsel ← ∅ {Selected roles so far}
7: Prem ← PS {Set of permissions that haven’t been found}
8: Rq ← ∅ {Global variable, stores the best found solution}
9: selectRolesMinimumRisk(Prem, Ravail, Rsel, u, c)

10: if Rq 6= ∅ then
11: return Rq {Request accepted, activate Rq}
12: else
13: return ∅ {Request denied}
14: ———

15: selectRolesMinimumRisk(Prem, Ravail, Rsel, u, c)
16: if Prem = ∅ then
17: if Rq = ∅ then
18: Rq ← Rsel
19: else
20: if rs(Rq, c, u) > rs(Rsel,c,u) then
21: Rq ← Rsel
22: else if (rs(Rq, c, u) = rs(Rsel, c, u))∧ | Rq |>| Rsel | then
23: Rq ← Rsel
24: return {Found candidate solution}
25: for all dsod(RS, k) ∈ DSoD do
26: if | Rsel ∩RS |= (k − 1) then
27: Ravail ← Ravail \ [RS \ (Rsel ∩RS)]
28: for all card(rc, k) ∈ CARD ∧ rc ∈ Ravail do
29: if activated(rc) + 1 = k − 1 then
30: Ravail ← Ravail \ rc
31: for all ri ∈ Ravail do
32: if Prem ∩ Pau(ri) = ∅ then
33: Ravail ← Ravail \ ri
34: if Ravail = ∅ then
35: return
36: rbest ← nextRole(Prem, Ravail,H, u,Rsel)
37: if rbest =⊥ then
38: return
39: Ravail ← Ravail \ rbest
40: selectRolesMinimumRisk(Prem \ Pau(rbest), Ravail, (Rsel ∪ {rbest}) , u, c)
41: selectRolesMinimumRisk(Prem, Ravail, Rsel, u, c)
42: ———
43: nextRole(Prem, Ravail,H, u,Rsel)
44: select r ∈ Ravail such that τ(Rsel ∪ {r}, c, u) ≤ trust(u, c){We evaluate selection heuristics in

Section 4.6}
45: return if found r otherwise return ⊥

50

4.4.2.1 Proof of Correctness of the Algorithm We now prove that Algorithm 1 is

correct with respect to Definition 7. Algorithm 1 has the following pre and post conditions.

Precondition: The policy is well-formed as per Definition 6. Postcondition: If Rq = ∅, no

solution was found otherwise, Rq solves the problem specified in Definition 7.

Theorem 1. (Correctness of Algorithm 1) Given an authorization query q = 〈u, PS, c〉 and

a well-formed policy PL, as per Definition 6, Algorithm 1 finds Rq with the minimum risk

value, rs(Rq, c, u) that satisfies the problem specified in Definition 7.

Proof. Note that the postcondition of the algorithm is fulfilled if the set of roles Rq returned

by function selectRolesMinimumRisk constructs the set appropriately. Hence, we focus on

that function. Let us begin by presenting the invariants of Algorithm 1.

• Invariant 1: At any time during the execution of the algorithm, Rq satisfies all the

constraints (a), (b), (c) and (d) specified by Definition 7.

• Invariant 2: At any time during the execution of the algorithm, Rq contains the best

solution explored so far (less risky), as specified by Definition 7.

We divide the proof into three parts for clarity. We first show that the solution found

respects the constraints of the policy, that is, invariant 1 is fulfilled. Then, we prove invariant

2 and show that the algorithm terminates. Finally, we prove that the algorithm always finds

the best solution.

1) Invariant 1 is fulfilled: Rq is only updated in lines 18, 21 and 23, and in each case,

Rq is assigned roles that are in Rsel. Thus, for Rq to fulfill the invariant, Rsel also needs to

fulfill the constraints of Definition 7. We prove that this is the case by induction.

Base case: The first time the function is called in line 9, Rsel = ∅. It is clear that

constraints (a), (b) and (d) are respected. Since τ(∅, c, u) = 0, constraint (c) is also respected.

Induction case: Assume that Rsel received as parameter by the function respects invariant

1. Let R′sel be the parameter used by the function when it invokes itself recursively in lines

40 and 41; we now show that R′sel also fulfills the invariant. The invocation in line 41

trivially fulfills the invariant as R′sel = Rsel. The invocation in line 40 contains R′sel = Rsel ∪

rbest. Constraint (c) is trivially fulfilled as in line 44, rbest is selected explicitly to fulfill this

condition. Note that the roles from which rbest has been selected have been pruned to avoid

51

violating constraints (a), (b) and (d). After line 27, ∀ dsod(RS, t) ∈ DSoDRsel, r ∈ Ravail :

@ Rsel : |Rsel∪{r}∩RS| = k− 1. Therefore, Rsel∪ rbest respects constraint (a). Similarly, in

line 30 the roles of Ravail are pruned so that adding one to Rsel does not violate constraint

(b). After this pruning ∀card(rc, k) ∈ CARD ∧ rc ∈ Ravail : activated(rc) + 1 ≥ k − 1.

Finally, in line 33 the roles that do not contribute to the coverage of permissions are pruned

so that ∀r ∈ Ravail : Pau(r) ∩ Prem 6= ∅. Hence, in line 36 no matter what role is selected to

be added to Rsel, it is sure that it will not violate invariant 1.

2)Invariant 2 is fulfilled: Rq is only updated when: (i) no solution has been found

up to that point (line 18), in this case, a solution is better than no solution and hence the

invariant is fulfilled, (ii) the risk of the candidate solution is smaller (line 21) or (iii) a solution

with the same risk, but less number of roles is found (line 23). It is clear that invariant 2 is

always fulfilled in these three cases.

3) The algorithm always terminates:

Algorithm 1 terminates if the recursive function selectRolesMinimumRisk terminates.

The function selectRolesMinimumRisk returns when (i) a solution has been found (line 24),

(ii) the algorithm backtracks because there are no roles in Ravail (line 35) or because the

inference risk is too high (line 38).

In the worst case, no solution is found and hence, the algorithm terminates when Ravail =

∅. The first time the function selectRolesMinimumRisk is invoked, Ravail contains the roles

user u is authorized for (line 2) minus the ones he cannot activate because they require a

larger trust value (line 4). In the worst case, Ravail contains all the roles authorized for u

when the recursive function selectRolesMinimumRisk is called.

The algorithm terminates because:

• The set Ravail is bounded by the total amount of roles existing in the policy R.

• No element is ever added to Ravail.

• Every time the function is invoked recursively, at least one role is removed from Ravail

with which it was invoked.

Ravail is reduced in function selectRolesMinimumRisk in lines 25, 32 and 39. In the worst

case, no role is removed from Ravail due to policy constraints or already covered permissions

52

(lines 25, 28 and 32). However, in line 39 there is always a deterministic reduction of the

set Ravail in which a role is always removed from Ravail and added to the solution. For this

reason, the next time the function is called in lines 40 and 41, Ravail always contains one less

role. Therefore, the algorithm terminates.

4) The algorithm always finds the set of roles with minimum risk exposure:

Since invariants 1 and 2 hold, it suffices to prove that the algorithm explores all the possible

valid solutions. In line 40), rbest is selected. The algorithm follows a depth-first strategy: it

first explores the solution where rbest is added and later where it is not (41). Thus, all valid

solutions are explored, and hence, the algorithm always finds the best solution.

The previous proof demonstrates the correctness of Algorithm 1. In Section 4.6, we

experimentally evaluate its performance. Before doing so, in the following section, we present

in detail the inference threat analysis and administration module.

4.5 INFERENCE THREAT ANALYSIS AND ADMINISTRATION

In this section, we present a CP-net based methodology to find the information a user may

infer after a particular access, and a technique to manage inference threats associated with

a particular policy. We begin by presenting the CP-net we propose to find an access inferred

permissions as specified in Definition 3. Then we present a simulation methodology to find

active inference threats. We show how the simulation results can be used to refine the CP-net

reducing its complexity. Finally, we present a methodology that allows an administrator to

manage the risk of active inference threats.

4.5.1 Finding Inferred Permissions

In Definition 2, the set of inference tuples, I, that are applicable to an organization were

defined. We begin by specifying the terminology we use to refer to the components of I.

Definition 8. Given a set of inference tuples I, we define the set of risk inference objects

OI, and the set of inference permissions PI as follows:

53

ws

BelongTo
Tuple1

BelongTo
Tuplei

BelongTo
Tuplek

wf

… …

…

Completed
Tuple1

Completed
Tuplei

Completed
Tuplek

wend

InitialSetup

1 i k
… …

…

(a) General structure of the CP-net, as per Def-
inition 9.

ws

BelongTo

<{p1,p2,p3}, p10>

BelongTo
<{p1,p5,p6}, p11>

wf

1 2

Completed
tuple1

Completed
tuple2

wend

InitialSetup

(b) Example 3.

Figure 5: CP-net graphical representation.

OI = {o | 〈PS, 〈o, r〉〉 ∈ I} and PI =
⋃

〈PS,p〉∈I

PS

To identify if a user has obtained all information needed to infer a particular object, we

model the role activation history using a CP-net. The inference tuples in I determine the

specific structure of the CP-net. The general structure of the proposed CP-net is presented

in Figure 5a.

In the following discussion, we assume that each inference tuple in I has been enumerated

from 1 to k. That is, there are k inference tuples in the system, and 〈PSi, pxi〉i refers to the

ith inference tuple. For each inference tuple 〈PSi, pxi〉i, two transitions BelongToTuple i and

CompletedTuple i, and a place βi are created. Each user has tokens positioned in different

places of the CP-net; the placement of tokens reflects the access history of each user. We use

function tokensAt(u ∈ U,w ∈ W) to retrieve the set of tokens of user u at place w. In what

follows, we formally define the CP-net and then explain how it works and show an example.

54

Definition 9. Given a policy a PL = 〈R,U, P, I, C,DSoD, SSoD〉, we define an Inference

CP-net as a tuple H = 〈PL,W, T, F, V,Υ, λ,mo〉 where:

1. Places (W): For each 〈PSi, xi〉i ∈ I, a place βi is created. Let B = {β1, ..., βk}, then:
W = {ws, wf , wend} ∪B.

2. Transitions (T): For each 〈PSi, xpi〉i ∈ I, a pair of transitions BelongToTuplei and
CompletedTuplei are created. Let
D1 = {BelongToTuple1, ..., BelongToTuplek},
D2 = {CompletedTuple1, ..., CompletedTuplek}. Then:
T = {InitialSetup} ∪D1,∪D2

3. Arcs (F): Let E = {〈BelongToTuplei, βi〉 : ∀i 1 ≤ i ≤ k} ∪{〈βi, CompletedTuplei〉 : ∀i 1 ≤
i ≤ k}. Then,
F = {< ws, InitialSetup>}, <InitialSetup, wf > ∪ {wf} ×D1∪ E ∪ D2 × {wend}

4. Token Types (V): Let u ∈ U , R′ ⊆ R, PR′,I ⊆ PI , and px ∈ PI , we have:
V = {〈R′, u〉, 〈PR′,I , R

′, u〉, 〈u, px〉}.
5. Accepted Types of Tokens (Υ): Υ(ws) = 〈R′, u〉,

Υ(wf) = Υ(βi) = 〈PR′,I , R
′, u〉, for all 1 ≤ i ≤ k and

Υ(wend) = 〈u, px〉.
6. Firing rules (G and λ):

InitialSetup: Given token 〈R′, u〉 placed at ws:
G(InitialSetup,〈R′, u〉) = true
λ(InitialSetup, 〈R′, u〉) = 〈PR′,I , R

′, u〉,
where PR′,I = Pau(R′) ∩ PI

BelongToTuplei (1 ≤ i ≤ k): Given token 〈PR′,I , R
′, u〉 placed at wf , and tuple 〈PSi, pxi〉i:

G(BelongToTuplei, 〈PR′,I , R
′, u〉) = [(PSi ∩ PR′,I) 6= ∅ ∧ pxi /∈ Pau(authorized(u))]

λ(BelongToTuplei, 〈PR′,I , R
′, u〉) = 〈PR′′,I , R

′′, u〉 where PR′′,I = Pau(R′)∩PSi and R′′ = {r|r ∈
R′ ∧ Pau(r) ∩ PSi 6= ∅}

CompletedTuplei (1 ≤ i ≤ k): Given a set of tokens V ′ = tokensAt(u, βi) of type 〈PR′,I , R
′, u〉:

G(CompletedTuplei, V
′) = [

⋃
〈PR′,I ,R

′,u〉∈V ′

PR′,I] = PSi

λ(CompletedTuplei, V
′) = 〈u, pxi〉, where pxi is the inferred permission of tuple i.

7. Initial State (m0): Initially, no tokens have been placed.

The CP-net works as follows. When a user u initially tries to activate a set of roles R′ ⊆ R

for which he is authorized, a token 〈R′, u〉 is placed in ws. Then, transition InitialSetup fires,

consuming the token in ws and placing a token of a different color at wf . Changing colors

enables us to keep track of relevant attributes. In this case, it is important to know which

of the permissions acquired through R′ would allow an inference. We denote this set of

permissions as PR′,I = Pau(R
′) ∩ PI . Hence, when InitialSetup fires, token 〈PR′,I , R

′, u〉 is

placed at wf . Tokens placed at wf are evaluated in parallel by the BelongToTuple transitions.

55

A transition BelongToTuple i fires when at least one of the permissions in PR′,I belongs to

the corresponding set of inference PSi, and when the user cannot legitimately acquire pxi.

If the transition fires, the token at wf is consumed and a token is placed at βi. Note that it

is possible that a token placed at wf fires several transitions of the type BelongToTuple i. If

at some point of time, a place βi contains all the tokens that for the same user complete the

entire set of permissions PSi required to infer object xi, transition CompletedTuple i fires. In

other words, CompletedTuple i is triggered when a user has acquired all the permissions in

PSi of inference tuple 〈PSi, pxi〉i. Transition CompletedTuple i consumes all the tokens that

show user u has acquired enough information to infer pxi, and places token 〈u, pxi〉 at wend.

Hence, the history of accesses is provided by the places where the tokens are stored in

the Inference CP-net; as roles are activated by users, the tokens move around the CP-net.

Tokens placed in wend represent information that the user may be able to infer given his

previous accesses.

In Algorithm 2, we show the procedure to find the possible new permissions P ′ a user u

may infer after activating a set of roles R′ as per Definition 3. First, in line 2, the current

inferred permissions of the user are saved in M . Thus, M contains the set of tokens inferred

by user u before activating R′. Then, we place one token 〈R′, u〉 at ws. After the transitions

fire, and all tokens are in a place different than ws, we check the state of the CP-net. We

denote this new state as H′. Then, in line 5, we store in N all the tokens placed at wend.

Since we only need to identify the permissions that u will be able to infer if he activated R′,

in line 6, Q is initialized to contain only newly inferred information. Finally, in line 7, we

extract from Q the set P ′ of newly inferred permissions.

We first prove that P ′ contains the newly inferred permissions as per Definition 3, and

then we show an example of how the Inference CP-net works.

Theorem 2. Given a user u, an Inference CP-net H that contains the history of access of

user u, and a set of roles R′ that user u can activate, Algorithm 2 finds the set of inferred

permissions P ′, such that P ′ = Inferred(Hu, u, R
′) as per Definition 3.

Proof. To prove that the set of permission P ′ returned by Algorithm 2 follows Definition 3,

we need to ensure that the four conditions of that definition are fulfilled. The conditions (1)

56

Algorithm 2 Given an Inference CP-net H, a user u ∈ U and a set of roles R′ that he can

activate, return the set of inferred permission P ′, as per Definition 3.

1: findInferredPermissions(H, u,R′)
2: M ← H.tokensAt(u,wend) {Save old inferences}
3: H.place(〈R′, u〉, ws)
4: Wait for H to distribute the tokens. We referred to this new state as H′.
5: N ← H′.tokensAt(u,wend)
6: Q← Tokens in N that are not contained in M .
7: P ′ = {px |< u, px >∈ Q}
8: return P ′

and (2) are trivially fulfilled as they are explicitly checked by the guards of the firing rules

of type BelongToTuple i for (1 ≤ i ≤ k). Because transitions of type CompleteTuple i, for

(1 ≤ i ≤ k), are only fired when the entire set of permissions PS is acquired, tokens placed

at wend correspond to inferences that the users would be able to perform, hence condition (3)

is fulfilled. Finally, condition (4) is also fulfilled because of the processing performed in line

6, where only newly inferred permissions are assigned to Q. Therefore, the set of inferred

permissions P ′ returned by Algorithm 2 are equal to P ′ = Inferred(Hu, u, R
′) in Definition

3.

Example 3. Suppose I = {〈{p1, p2, p3}, p10〉, 〈{p1, p5, p6}, p11〉}. The corresponding CP-net

is shown in Figure 5b; initially there are no tokens. User u1 activates roles R1 = {r1, r2}

for which Pau(R1) = {p1, p2, p8, p9, p15}. A token v1 = 〈u1, {r1, r2}〉 is placed at ws. After

transition InitialSetup fires, v1 is consumed and a token 〈u1, {p1, p2}, {r1, r2}〉 is placed at

wf . Since R1 acquires p1 which is part of both inference tuples and u1 is not authorized for

p10 or p11, the token at wf is removed, and two tokens are placed at β1, and β2. The tokens

placed contain this information: 〈u1, {p1, p2}, {r1, r2}〉. Since none of the inference tuples is

completed by R1, there are no new tokens at wend, and findInferredPermissions(H, u1, R1)

returns ∅. Thus, in context c, rs(R1, c, u1) = rs(p1, c) + rs(p2, c) + rs(p8, c) + rs(p9, c) +

rs(p15, c), which does not contain any inferred risk. We denote the new state of the CP-net by

H′. After a while, assume u1 activates role r3, where Pau(r3) = {p3, p4}. Token 〈u1, {r3}〉 is

placed at ws. Transition BelongTo〈{p1, p2, p3}, p10〉 fires and token 〈u1, {p3}, {r3}〉 is placed at

β1. At that point, transition CompletedTuple1 fires because two tokens that belong to u1, and

57

complete the inference tuple are at β1. This time findInferredPermissions(H′, u1, {r3})

returns {p10}. Hence, the risk in context c of rs(r3, c, u1) = rs(p3, c) + rs(p4, c) + rs(p10, c),

which includes the risk of the inferred permission p10.

4.5.2 Finding Active Inference Threats

In this section, we propose a methodology to improve the performance of the Inference CP-

net presented in Definition 9. We assume that I contains all the existing inference threats.

Note that the set of inference tuples I does not depend on the user-to-role or the permission-

to-role assignments. Inference tuples are uniquely dependent on the types of objects that

exist on the organization (this is the case for existing methodologies to find automatically

inference tuples [33, 118]). Although it would be possible to include in I uniquely the active

inference threats for a particular user-to-role and permission-to-role assignments, we argue

that this would be undesirable. The reason is that if I contains all the existing inference

tuples, even if the user-to-role and the permission-to-role assignments change, the framework

can still capture the risk exposure due to inference threats. In contrast, if I only contains

the tuples for a particular policy configuration, for each possible policy modification, the

administrator would need to verify and possibly include or remove new tuples in the set I.

Since the tuples in I are independent of the user-to-role and the permission-to-role

assignments, there is some room for refinement during the deployment of the Inference CP-

net. This refinement consists in finding the active inference threats for a given policy and

uniquely including the relevant inferences tuples in the deployed Inference CP-net.

4.5.2.1 Simulating users’ behavior to identify active inference threats To find

the active inference threats, we take advantage of the existing properties of CP-nets. In

particular, using a CP-net we can simulate the behavior of the system to determine its

properties and to understand how the system will behave in the long term (stable state); e.g.,

whether a place in the CP-net is unreachable for a particular set of tokens. The simulations

consist of placing a set of tokens in the starting place of the CP-net and allowing the CP-net

to distribute those tokens according to its transition rules. Depending on the input that is

58

used, the results may differ and different conclusions may be drawn.

To determine if in the long term there are any users that will be able to infer unautho-

rized information, we modify the Inference CP-net to verify specific properties of the policy

in the system. We want to identify whether a policy configuration will provide any user

enough information to perform an inference attack. Our objective is also to identify the

user-to-role assignments that create an inference threat so that an administrator can decide

if it is necessary to modify the policy to mitigate this risk. The Inference CP-net in Defi-

nition 9 was not designed to maintain this information. For this reason, for the simulation

purposes, we create a similar CP-net that additionally stores the set of roles that led to the

inference. The simulation CP-net is defined as follows.

Definition 10. Given a policy PL = 〈R,U, P, I, C,DSoD, SSoD〉, we define a Simulation

CP-net as tuple Hs = 〈PL,W, T, F, V,Υ, λ,mo〉 where:

1. Places W , transitions T and arcs F are defined as in the Inference CP-net in Definition 9.

2. Token Types (V): Let u ∈ U , R′ ⊆ R, PR′,I ⊆ PI , and px ∈ PI , we have: V =
{〈R′, u〉, 〈PR′,I , R

′, u〉, 〈R′, u, px〉}.
3. Accepted Types of Tokens (Υ): Υ(wend) = 〈R′, u, px〉, while Υ(ws), Υ(wf) and Υ(βi) are

defined as in Definition 9.

4. Firing rules (G and λ):
InitialSetup and BelongToTuplei for 1 ≤ i ≤ k are defined as per Definition 9.

CompletedTuplei (1 ≤ i ≤ k): Given a set of tokens V ′ = tokensAt(u, βi) of type 〈PR′′,I , R
′′, u〉:

G(CompletedTuplei, V
′) = [

⋃
〈PR′′,I ,R

′′,u〉∈V ′

PR′′,I] = PSi

λ(CompletedTuplei, V
′) = 〈R, u, pxi〉,

where R = {r | 〈PR′′,I , R
′′, u〉 ∈ V ∧ r ∈ R′′} and pxi is the inferred permission of tuple i.

The main difference between the Simulation CP-net (Definition 10) and the Inference

CP-net (Definition 9) is the amount of information they store. In Definition 10, the last

place wend stores the roles responsible for the inference of a permission. For this purpose,

transition rules of type CompletedTuple i for 1 ≤ i ≤ k are also redefined to create a token

of type 〈R, u, pxi〉. This token contains the set of roles R that is responsible for the possible

inference of permission pxi by user u.

The complete process to identify active inference threats is shown in Algorithm 3. Its

input is the policy that is going to be tested, PL, and its output is the list of users that

59

are able to infer unauthorized information and the user-to-role assignments that allow the

inference. This list is stored in a variable lstActive which contains tuples that show the

inference 〈R, u, px〉, where u is the user that infers permission px through role set R. This

list is initialized in line 2. The set of active inference tuples that we denote as Iy is initialized

as an empty set in line 3. Then, a simulation CP-net Hs is generated according to Definition

10. Because several users may have exactly the same roles assigned to them, which we call

having the same profile, we can perform the analysis only once for each profile. In line 5, we

create a representative user for each profile. We assume that each representative user will

activate at some point of time all the roles that he is authorized for. For this reason, in line

10 for each user u ∈ Up, we generate a set of tokens that aim at simulating the behavior of

the user throughout the life of the system. For each of the authorized roles a token is created

in line 10 and added to the list of tokens of that user. Then, the simulation is run for several

combinations of roles. In line 12 all the possible permutations of the way in which roles

can be activated are found. Later, Hs is inspected to see whether the system allowed any

inferences. For this purpose, in line 15, we verify if each user was able to infer information,

and if so, we store the inference in the variable lstActive. Finally, to know which is the

inference tuple that was activated, in line 18 we use the method identifyInferencePath()

that identifies the path through which a token arrived to wend. Then, the tuple identified is

added to Iy. Several CP-net simulations tools exist; we used CNP tools [42] to perform the

simulations.

4.5.2.2 Refinement of the inference CP-net We use the results of the simulation

(Algorithm 3) to improve the performance of the system. Knowing which of the users

may have in fact the power to infer information before the system is deployed, allows us

to maintain uniquely the information of the Inference CP-net for the relevant users. This

may reduce the amount of data that is actually stored by the system. Additionally, the

simulation may reveal that not all of the tuples in I are in fact a feasible threat given a

policy configuration. These may also be removed from the system to reduce the time required

to calculate the risk exposure of activating a set of roles, and hence, minimize the time it

takes to answer an access control request.

60

Algorithm 3 Find active inference threats given a policy configuration PL =

〈R,U, P, I, C,DSoD, SSoD〉
1: findActiveInferenceThreats(PL)
2: lstActive←⊥ {List with active inferences, initially empty. Each element in this list is a tuple

that represents an active inference 〈R, u, px〉 where u is the user that infers permission px
through role set R}

3: Iy ← ∅ {Initialize active inference tuples as an empty set.}
4: Hs = createCPNet(PL) {According to Definition 10}
5: UP = sameProfile(U)
6: for all u ∈ Up do
7: Ru = authorized(u)
8: lstTokensu ←⊥
9: for all r ∈ Ru do

10: t=createToken(〈r, u〉)
11: lstTokensu.add(t)
12: for all Γ ∈ nextPermutation(lstTokens) do
13: Hs.placeAt(ws,Γ) {Place each token t ∈ Γ at ws in Hs}
14: runSimulation()
15: if Hs.tokensAt(u,wend) 6= ∅ then
16: for all t = 〈R, u, px〉 ∈ Hs.tokensAt(u,wend) do
17: lstActive.add(t)
18: I = identifyInferencePath()
19: add I to the set of active inference tuples Iy
20: return 〈lstActive, Iy〉

61

Let PL denote a policy that has k = |I| inference tuples. After Algorithm 3 is run

for PL, no user was able to infer the permission associated with the inference tuples in

In = I \ Iy. As a consequence, it is not necessary to consider the inference tuples in In, and

the system uniquely has q = |Iy| active inference tuples for the current policy configuration

PL. The CP-net constructed for the production system (Definition 9) needs only to contain

the inference tuples Iy. Additionally, we can reduce the storage required by not maintaining

information of the users, Un that cannot infer information under the policy PL. The set of

users Un is defined as follows.

Definition 11. Given a policy PL and the list of tokens lstActive created by Algorithm 3 for

that policy, the set of users that cannot infer information under PL is computed as follows:

Un = U \ {u | 〈R, u, px〉 ∈ lstActive}

With this information, we can now define a Refined Inference CP-net as follows.

Definition 12. Given a policy PL and its Inference CP-net H = 〈PL,W, T, F, V,Υ, λ,mo〉,

its correspondent Refined Inference CP-net is created according to Definition 9 for a modified

policy PL′ such that PL′ = 〈R,U \ Un, P, Iy, C,DSoD, SSoD〉, where Un is the set of users

who are not able to infer unauthorized information as per Definition 11 and Iy contains the

active inference threats found through Algorithm 3 for the original PL. A Refined Inference

CP-net, does not stored information for any of the users in Un.

Theorem 3. Given a policy with k = |I| inference tuples, q = |Iy| active inference tuples,

and a set of users, Un, that are not able to infer unauthorized information, a Refined Inference

CP-net improves the performance with respect to the corresponding non-refined Inference CP-

net as follows:

• It decreases the number of created places in q and created transitions 2q.

• For each user Un and s of his requests, there is a reduction of s verifications of the CP-net

state.

• For each user in Un, there is a reduction of the number of tokens placed in the interval

[s, s ∗ k] where s is the number of access requests he issues to the system.

62

Proof. We begin by proving the reduction on the components needed by the Refined Inference

CP-net. Then, we prove the reduction on the storage required. (i) Reduction of components

of the Refined CP-net: Let us first compute the number of components for Inference CP-

net constructed based on I. The total number of transitions is |T | = 2k while the total

number of places is |W | = k, as k = |I|. In contrast, a Refined CP-net created using Iy
has |T | = 2(k − q) transitions and |W | = k − q places. This is because for each of the

non-active inference tuples, the CP-net does not contain its correspondent BelongToTuple

and CompletedTuple transitions. Similarly, there is a total reduction of q created places, as

a place of type β is no longer required for each of the inference tuples in In. Hence, there

is a decrease of q places and 2q transitions needed when the refined version is used. (ii)

Reduction of the information stored: In addition, the results of the simulation can be used

to avoid maintaining the state of the CP-net for users that are not able to infer information

given the current policy PL. This means that the system does not have to store the tokens

for these users and does not need to verify whether there is an inference risk associated with

any request for those users. This saves space and computations. Suppose that user un ∈ Un
makes s authorization requests to the system. If the system is not fine tuned to avoid

maintaining the state of un in the CP-net, the system will be storing unnecessary tokens.

For each of the s requests the system does not place 1 tokens in ws. Hence, for s requests,

the lower bound of the tokens placed is s. The upper bound of the stored tokens that would

be maintained by the system for a user is s∗k. This occurs when all of the s tokens placed at

ws manage to trigger all the transitions of type BelongToTuple, creating s ∗ k tokens where

k is the number of inference tuples with which the CP-net was created. Therefore, for s

queries, the system will be storing a number of tokens in the interval [s, s ∗ k].

These reductions are especially important when the number of users that are not posing

an inference threat and when the non-active inference tuples are large.

4.5.3 Managing Active Inference Threats

Having identified the active inference threats of a particular policy through Algorithm 3,

we can provide additional information to administrators so they can manage the inference

63

Find active

inference threats
for policy PL

Modify PL

No Mitigate
inference

risk?

Refine

Inference
CP-net

 Yes

Deploy
policy

Generate report

Figure 6: Managing active inference threats.

risk. Figure 6 shows the process. Once the active inference threats are identified, the system

generates a report indicating the factors in the policy that are creating the existing active

inference threats. With this information, the administrator can decide whether the current

policy provides adequate protection against inference threats or whether it is necessary to

modify it to reduce the risk exposure due to inference of information. This procedure can

be run offline iteratively until the administrator finds an acceptable level of risk exposure.

Once the desired level of risk exposure is achieved the administrator can release the particular

policy configuration to the production system.

In an effort to help the administrator understand the risk exposure of the organization

due to active inference threats, we present the results in categories. Each inference threat is

categorized as high, medium or low according to the severity of the risk exposure depending

on the risk associated with the inferred permissions. Recall that in the policy, each permission

is assigned a quantitative risk (rs(p, c)), so providing a qualitative measure of the impact

requires some internal processing. We transform the risk of the inferred permissions from

the qualitative measure provided in the policy definition to a quantitative one. We perform

this transformation to provide an easier way for the administrator to interpret the results

and prioritize the possible actions. A simple threshold based categorization does not grantee

a good transformation. Since different organizations may have different distributions of the

64

risks, a different set of thresholds would need to be selected for each of them. Furthermore,

establishing where to make the division between observations may be challenging and may

require human input. For these reasons, we cluster the permissions based on their risk using

k-means clustering technique with k equal to three which will group all the permissions in

one of the three categories according to how risky they are. Before feeding the data to the

clustering algorithm, some preprocessing of the data is required. First, we need to decide

which of the risk associated with a permission p we are going to show to the administrator,

e.g., the risk associated with p may be different in different contexts, we need to decide which

risk should be considered. We use the maximum of all the risks associated with a permission,

which is given by max
∀c∈C

rs(p, c). It is also possible to use the average, the minimum or other

statistical measure of all the risks associated with a permission. However, we decided to use

the maximum because it does not underestimate the risk exposure, whereas an average may

provide a false sense of security.

Definition 13. The standardized risk value of an inference threat associated with permission

p is defined as follows:

rsp,s =
rs(p)− max

∀pi∈P
(rs(pi))

max
∀pi∈P

rs(pi)− min
∀pi∈P

(rs(pi))

where rs(p) = max
∀c∈C

rs(p, c) denotes the maximum risk associated with permission p.

In the previous formula, each of the permissions in the system is considered when the stan-

dardized version of the permissions associated with active inference threats are computed.

With this standardized information, the clustering algorithm is run and the permissions are

classified. The following example shows an output presented to the administrator.

Example 4. Figure 7 presents an example of an output shown to the administrator after the

simulation process. The first and second columns show the users that may infer information

and the permission (〈object, read〉) that the user may be able to infer. The third column

shows the severity of the inference threat. Then, the inference tuple that allows the inference

and the roles that are activated for this purpose are presented. Finally, the average trust

value of the user is presented if it is available (this value is the average trust in all context).

The administrator can use this information to make an informed decision as follows.

65

Users

Active
Inference

Threat
Risk

Associated
Responsible

Inference Tuple

Roles
responsible for

inference

Average
trust of

user

u1 p1 Low <{p2,p4,p8},p1> r1,r5 0.9

u1 p3 High <{p4,p5,p9},p3> r4,r5,r15 0.9

u1 p69 Low <{p5,p6},p69> r5,r20 0.9

u3 p3 High <{p4,p5,p9},p3> r5,r20 0.5

u55 p22 Low <{p3,p4,p5},p22> r2,r5 0.3

u122 p50 Medium <{p1,p8},p50> r25 0.5

Figure 7: Inference simulation results.

The report shows that u1 is able to infer permissions p1, p3 and p69. According to the

risk associated with each threat, the inference of p1 and p69 is not too critical. However, the

possible inference of permission p3 is important. This may lead the administrator to modify

the policy. The simulation results show that the inference arises because u1 is assigned to

roles r4, r5, r15.

The output also allows the administrator to focus on the inference threats that are more

severe to prioritize his actions. In this case u1 and u3 may infer p3 which has a high risk.

The administrator may also notice that in average u3 seems to maintain a lower trust value

than u1. Based on this information, he may prioritise to modify the policy for u3. The report

shows the set of roles responsible for the inference threat; the administrator may remove the

authorization one or more of them to u3 to eliminate the inference threat.

In this way, an administrator can have an overview of the existing inference threats and

prioritize his actions. If the administrator judges appropriate, he may modify the user-to-role

assignment to mitigate the risk of inference. In some cases, the reduced number of employees

may lead to the acceptance of inference risks, whereas in others, the organization may take

steps to avoid those inferences.

66

Table 2: Experiment parameters for the policy generation for the risk-and-trust RBAC

framework.

Ratio of number of roles to number of users 1:1

Ratio of number of roles to number of users assigned to roles 6:1

Ratio of number of roles to directly assigned permissions 1:5

Ratio of number of roles to constraints 5:1

Ratio of number of roles to active inference tuples 10:1

Ratio of number of requested permissions to maximum user assignment multiply by
directly assigned permissions per role

1:2

Maximum number of junior roles 3

Number of contexts 1

4.6 IMPLEMENTATION RESULTS

In order to evaluate the proposed algorithm, we generated synthetic well-formed policies,

as per Definition 6. The policies were generated randomly according to the ratios shown

in Table 2, which were chosen to match the ones used in [116]1. The risk assigned to

each permission in the policy was randomly assigned a value in the interval [0,100] using

a uniform distribution. The users’ trust thresholds were also randomly assigned using a

uniform distribution. Each point in our figures represents the average time of running the

algorithm for 30 different policies. Requests were randomly generated. The time required to

process requests that could not be granted was very low. For this reason, we only present

the results for granted requests.

Comparing Selection Heuristics: Our first experiment contrasts the performance

of the algorithm under two different heuristics to select the next role in line 36. Heuristic

1 selects a role that provides the minimum risk (min risk), and heuristic 2 selects a role

that provides the maximum number of permissions in the request set that have not been

covered by previously selected roles (max perm). In order to compare these heuristics, the

1Since their experiments did not include hybrid hierarchy and risk, we had to adapt slightly the parame-
ters. For instance, the ratio of permissions directly assigned for a roles in [116] is the same ratio of authorized
permissions for a role in our experiment to account for the effect of hierarchical relations.

67

0

5

10

15

20

25

20 40 60 80 100

Ti
m

e
(M

ill
is

ec
s)

Number of Roles

Min Risk

Max perm

(a) I:A:IA = 0:0:1

0

0.5

1

20 40 60 80 100

Ti
m

e
(M

ill
is

ec
s)

Number of Roles

Min Risk

Max perm

(b) I:A:IA = 1:0:0

0

20

40

60

20 40 60 80 100

Ti
m

e
(M

ill
is

ec
s)

Number of Roles

Min Risk Min Risk & Max Perm

(c) I:A:IA = 0:1:0

0

5

10

15

20 40 60 80 100

T
im

e
 (

M
ili

se
cs

)

Number of Roles

Min Risk

Max Perm

(d) I:A:IA = 1:1:1

Figure 8: Comparison of selection heuristics for different types of hierarchy proportions.

68

same policy and requests were used for both algorithms. The performance of the heuristics

depends on the proportion of I, IA and A-hierarchy relations. As shown in Figure 8a, when

all the hierarchical relations were of type IA, the max perm heuristic is faster. Figure 8b

presents the results of having all the relations of type I. There, 61% of the times the max

perm heuristic behaved better than the other heuristic. In contrast, when all the relations

in the hierarchy are of type A, as shown in Figure 8c, the results of the two heuristics are

equivalent. We also compared the results for policies that contain the same number of I, A

and IA relations. Figure 8d shows that min risk heuristic is slower for all the policy sizes.

Our results suggest that when the amount of A-hierarchy relations is greater than the other

two types of hierarchical relations, the two heuristics behave similarly. However, when the

proportions are different, the max perm heuristic is consistently faster than the min risk

heuristic. In all the experiments, the min risk heuristic never outperformed the max perm

heuristic. For that reason, in the following experiments, we only present the results for the

max perm heuristic.

The time required to find a solution for policies of the same size, but with different

proportions of I, A, and IA hierarchical is very similar for policies with less than 75 roles (it

took less than 0.2 milliseconds in all cases). For bigger policies the results change. The time

required for finding a solution for policies where all relations are of type I, is smaller than

for policies with all hierarchy relations of type A. This difference occurs because the number

of roles users can activate increases when the hierarchy relations are of type A (e.g., the

search space includes the roles the user is assigned to and all their junior roles). In contrast,

when all the relations are of I -type, the number of roles users can activate are uniquely those

directly assigned to them. When all the relations are of type IA, the algorithm takes more

time than when they are all of type I, but it takes less time than when the relations are all

of type A. The time required to find a solution when all the relations are of type IA is very

similar to the cases where the proportion of the three hierarchy types is the same.

Comparing Percentage of Granting Requests for Different Proportions of Mis-

behaving Users: This experiment shows how the system behaves as the percentage of users

that misbehave increases, and their trust thresholds are reduced. Initially, we randomly gen-

erated policies, and requests that were all granted. This is represented by the line of 0% users

69

0%

20%

40%

60%

80%

100%

25 35 45 55 65 75 85 95 %
 o

f
R

eq
u

e
st

s
G

ra
n

te
d

Number of Roles

0% Misbehaving users

20% Misbehaving users

40% Misbehaving users

60% Misbehaving users

Figure 9: Comparison of granted requests for different percentage of misbehaving users.

misbehaving in Figure 9. For the same policies and requests, we randomly selected some

users, and reduced - randomly again - their trust thresholds; then we ran the experiments

again to see how many requests were denied because of decreases in trust of some users. The

results for 20%, 40% and 60% of users misbehaving are shown in Figure 9. As the number

of misbehaving users increases, the number of requests granted decreases. The lines are not

flat, as the number of requests denied depends on the trust threshold of the selected roles, as

well as the random reduction of the user’s trust value. The results of this experiment show

that our framework is able to deny access to misbehaving users, thus adapting to prevent

possible insider attacks.

Comparing Objective Functions: We compared the risk exposure when two different

objective functions are used to select the roles to be activated. The objective functions

compared are as follows. (1) Our proposed objective function: minimize the risk which is

presented in lines 20 to 23; we refer to it as objective min risk, and (2) The traditional

objective function used in RBAC systems which consists on minimizing the number of roles

to be activated; we refer to it as objective min num roles. When all the hierarchical relations

are of type IA, the objective min num roles always found riskier solutions, as shown in Figure

10. Similarly, when the ratios of I, A and IA hierarchies were proportional, 95% of the time

the objective min num roles provided riskier solutions. The objective min num roles was also

70

100

200

300

400

500

600

24 34 44 54 64 74 84 94

Ri
sk

Number of Roles

Min risk (aver. risk) Min num roles(aver. risk)

Figure 10: Risk exposure using our algorithm (min. risk) compared to the risk of traditional

role activation algorithm (min. num. of roles) when all relations are of type IA.

riskier in 51% of the cases when all the relations were of type I. Interestingly, for policies in

which all the hierarchical relations were of type A, the risk of the solutions found by both

objective functions were the same. This is because there are no permissions directly acquired

by any role that can reduce the number of roles to be selected. The time required to find

a solution for both objective functions were very similar, and the number of roles selected

by both approaches were always the same for all hierarchy ratios. Hence, we believe our

objective function and the proposed algorithm is appropriate, as it reduces the risk and does

not augment the number of selected roles. Finally, our results suggest that the time required

to answer an authorization query is acceptable.

4.7 CHAPTER SUMMARY

In this chapter, we presented our most general framework for insider threat prevention.

As part of this framework, we provided a methodology to determine the risk exposure of

activating a set of roles. This methodology considers the risk of inference of unauthorized

permissions. To manage this risk, we provided a CP-net based-approach. Additionally, we

71

formulated an optimization problem to minimize the risk exposure of each access request.

To solve this problem, we proposed an algorithm and evaluated two different heuristics. We

showed that the risk exposure is reduced with respect to standard RBAC-based enforcement

algorithms. Finally, we provided a simulation methodology to identify active inference risks

that arise given a particular access control policy. The resulting simulation results can be

used by administrators to mitigate inference risks.

In the next chapter, we present our second framework, which aims at mitigating the risk

of a posteriori obligations.

72

5.0 OBLIGATION-BASED FRAMEWORK TO REDUCE RISK

EXPOSURE AND DETER INSIDER ATTACKS

In this chapter, we present our research on risk management for obligation-based access

control systems. We begin by explaining the reasons that support the use of obligations as

a valid indicator to identify if a user is about to launch an attack in Section 5.1. Then, we

present our framework in Section 5.2. The detailed methodology to compute users’ trust

values is presented in Section 5.3. The methodology to identify policy misconfigurations and

outliers is presented in Section 5.4. Finally, we evaluate our approach in Section 5.5.

5.1 WHY USING A POSTERIORI OBLIGATIONS AS AN INDICATOR?

Although psychological precursors may allow early detection of insider threats, monitoring

users can be challenging because of privacy and legal concerns. To tackle this problem, we

propose to monitor and evaluate the users’ behavior towards a posteriori obligations as a way

to determine two highly relevant psychological indicators: these are disregard of authority

and lack of dependability [61]. As part of the disregard of authority, the employee ignores

rules, authority or policies, and feels above the rules or that they only apply to others.

Greitzer et. al [60] classified this indicator as the second most important psychological

precursor. As part of lack of dependability an employee is unable to keep commitments

and is unworthy of trust. When users stop fulfilling their a posteriori obligations, they are

disregarding authority and they may be less dependable. This may be due to lack of interest

and the fact that they may be occupying their time with other activities such as preparing

an attack.

73

Monitoring and evaluating users’ patterns of fulfilling and violating obligations has sev-

eral advantages with respect to existing approaches to collect psychological precursors, which

were outlined as part of the challenges in Chapter 1. The rate of fulfillment of obligations can

be used as one of the metrics to assess the employees’ performance that does not introduce

any subjective information in the system. Since employees are being paid to perform their

jobs, using performance metrics is a well-accepted practice [58]. An additional advantage of

this methodology is its ability to include up-to-date information of a user’s behavior. Recall

that traditional ways to measure the employee’s psychosocial state usually are incorporated

slowly into the system. Therefore, we argue that the obligation-based trust values are an

objective measure of the actual, up-to-date performance of the users and hence capture their

real behavior.

5.2 PROPOSED FRAMEWORK

In this section, we present our proposed framework. First, we present the policy definition

model that we call Trust-and-oBligation based Core RBAC model (Core TB-RBAC Model).

This model extends the standard RBAC model [51]. We note that the methodology we

propose to evaluate the trust can be used for any access control system that includes a

posteriori obligations. Then, we present the architecture of the system.

5.2.1 The Core TB-RBAC Model

We extend the standard core RBAC model with obligations, risk and trust; it includes the

following components.

• U is the set of users, R is the set of roles, P is the set of permissions defined as P =

OPS × OBJ , where OPS is the set of operations and OBJ is the set of objects in the

system.

• B is the set of a posteriori obligations as defined in Definition 14 below and S is the set

of sessions.

74

• UA ⊆ U ×R is the user to role assignment, as in standard RBAC.

• BP ⊆ P ×2B is obligation-aware permission set, where, bp ∈ BP is a tuple 〈p ∈ P,BS ⊆

B〉 that indicates that once p has been exercised all the obligations in BS need to be

fulfilled.

• PBA ⊆ R×BP is the assignment of obligation-aware permissions to roles. Permissions

associated with different roles can have different obligations associated with them. This

function replaces permission to role assignment (PA) of traditional RBAC.

• Function session user : S → U maps a session onto the corresponding user and function

session roles : S → 2R maps a session onto a set of roles.

• Each user u ∈ U is assigned an obligation-based trust value, trust(u, t) ∈ [0,1] at time

t. If trust(u, t) = 0, the user is not trusted. When trust(u, t) = 1 the user is completely

trusted to perform a posteriori obligations. This value is automatically updated by the

framework every time the user fulfills or violates an obligation.

• Pau : (r ∈ R)→ PS ⊆ P is a function that returns the permissions PS assigned to role

r. Formally, Pau(r ∈ R) = {p | (r, 〈p,BS〉) ∈ PBA ∧ 〈p,BS〉 ∈ BP}.

• Bau : (r ∈ R) → B ⊆ B is a function that returns the set of obligations that would be

assigned to the user that activates role r. Formally, Bau(r ∈ R) = {b | (r, 〈p,BS〉) ∈

PBA ∧ 〈p,BS〉 ∈ BP ∧ b ∈ BS}.

We define an a posteriori obligation as follows:

Definition 14. An a posteriori obligation b is defined as a tuple b = 〈A ⊆ OPS ×

OBJ, D, ϕ〉 where

1. A is a set of actions that need to be performed to fulfill the obligation. The user assigned

to b needs to perform all a ∈ A in order to fulfill the obligation.

2. D specifies how much time a user has to fulfill the obligation after the obligation is

assigned to him.

3. 0 ≤ ϕ ≤ 1 indicates how critical it is for the organization that the obligation is performed

in time; where ϕ = 1 means that it is very critical and ϕ = 0 means that the obligation

is not critical at all.

In order to refer to a particular component of obligation b ∈ B, we use the dot notation.

75

For instance, b.ϕ returns the criticality value of the obligation.

Obligation Instantiation: Obligations are assigned to users when they activate asso-

ciated roles, as follows.

Definition 15. When user u activates role r in a session, for each a posteriori obligation

b associated with r, the system instantiates the obligation creating the tuple: 〈u, b, τ, S〉

where:

1. u is the user that needs to fulfill the obligation.

2. b is the obligation that needs to be fulfilled by u.

3. τ is the time when the obligation is acquired by user u.

4. S is the state of the obligation which is initially set to pending.

Once an a posteri obligation has been triggered, it can be in one of the following states:

pending, fulfilled or violated. The interval within which the obligation needs to be fulfilled

is [τ, τ + b.D]. The obligation is pending when the user has not performed the actions

required by the obligation and the deadline to perform it has not passed. The obligation is

fulfilled when the user performed the required actions within the stipulated time interval.

Conversely, the obligation is violated when the user does not perform the required actions

during the valid interval of time.

Access control decision process: To obtain the permissions authorized for a role,

users need to activate the role in a session. Hence, a user u requesting a permission set

PS ⊆ P is granted access to PS if the following conditions hold:

1. ∃ RS ⊆ R ∧ PS ⊆
⋃
r∈RS

Pau(r) ∧ (∀r ∈ RS : (u, r) ∈ UA), which means that there is a

set of roles RS that can provide all the permissions in PS and all of the roles in RS are

assigned to user u.

2. The system trusts the user enough to perform all the a posteriori obligations that would

be acquired by activating the set of roles RS:

∀ r ∈ RS,BS ⊆ Bau(r), b ∈ BS : trust(u, t) ≥ b.ϕ

In this dissertation, we do not specify how to select RS so that they respect the least

privileged principle; however, this can be easily done using one of the algorithms presented

in [119].

76

In the following example, we illustrate how different obligations have different criticality

values associated with them.

Example 5. Consider a manufacturing organization. When a new supply container arrives,

the employee in charge needs to access the system and register it; this in turn triggers obliga-

tion b1. This obligation corresponds to updating the inventory state after reviewing an order

of a component to produce their most sold product. If the user fails to fulfill this obligation

on time and the ordered supplies have defects, the entire operation of the organization would

be negatively impacted. In case the defect is difficult to notice and nobody recognizes the

lack of quality of the supplies, the organization would manufacture defective products. This

may lead to a decrease on the goodwill of the organization and may also result in fines and

additional product repairing costs for the enterprise. In a second scenario, the defect of the

supply is noticed by a different employee during production and the operation is stopped due

to the lack of available materials. In this case, the production line is stopped and orders may

not be fulfilled on time causing delays, fines and loss of goodwill. Since the entire operation

of the organization may be severely affected due to the lack of fulfillment of b1, its criticality

for the organization is high, so we assign a value of b1.ϕ = 0.9.

Obligation b2 requires the obliged user to review a report of expenditures by the end of the

week. This obligation aims at identifying discrepancies every week. However, an accountant

reviews the report at the end of each month, so the discrepancy would be found eventually.

The impact of violating this obligation is medium because not performing the obligation does

not have long-term repercussions for the organization. Only in the short term the discrepancy

would exist. Hence, we assign b2.ϕ = 0.5. Finally, when a user registers a new sale, obligation

b3 is triggered requiring the user to update the internal review file with comments regarding

the interaction with the client. This obligation has low impact because not updating the file

does not affect the operations of the organization. Thus, we can assign b3.ϕ = 0.3.

The above example shows that the criticality of an obligation depends on the impact

of its violation. The risk exposure an organization faces when an a posteriori obligation is

assigned to a user is a function of the criticality of that obligation and the likelihood that

the user will default on it. The larger the trust value of the user, the less likely he would

77

default on an obligation. We use the criticality value of an obligation as a threshold that

indicates how trusted a user needs to be in order to be assigned to a particular a posteriori

obligation. Note that the criticality of the obligations can be expressed qualitatively and

later mapped to a quantitative measure. Hence, the policy specifier can use any of the

existing risk assessment methodologies (e.g., [108, 7]) to assign these values.

5.2.2 Risk-and-Trust Obligation Framework

Figure 11 presents the architecture of our framework. First, we describe the functionality of

each of the modules in the system and then we show the steps followed when a user’s access

request arrives at the system. The Obligation-based Trust Module monitors the users of the

system and is in charge of determining the trust values associated with all of them. The

trust values are stored in the Trust Repository.

The Administration Module generates alerts of possible policy misconfigurations related

to a posteriori obligations and suspicious users. The Clustering Module finds the patterns

of misbehavior and the Report Module generates the corresponding alert reports for the

administrator. This process is explained in Section 5.4.

In addition, the framework contains the Enforcement Module which consists of the Policy

Enforcement Point (PEP), the Policy Decision Point (PDP) and the Obligation Handler. The

Obligation Handler is responsible for maintaining the state (pending, fulfilled or violated)

of the instantiated obligations in the system up-to-date. This information is stored in the

Obligation State Repository. Every time an obligation changes its state to fulfilled or violated,

the system informs the Obligation-based Trust Module of the new information, which in turn

updates the trust value of the corresponding user. The PEP is in charge of intercepting all

the access requests of the users in the system and it passes them to the PDP, which evaluates

the request according to the policy stored at the Policy Information Point (PIP). The PDP

returns the grant or deny decision to the PEP, which enforces the decision.

Figure 12 presents the process that is followed by the system to determine whether an

access request is granted or denied. When a request is received by the PEP, it forwards

the request to the PDP, which retrieves the set of roles that need to be activated to grant

78

PIP

Trust
Repository

Enforcement Module

PEP PDP

Obligation
State

Repository

Obligation
Handler

Obligation-based Trust
Module

User

Administration Module

System Admin.

Clustering Module Report
Module

Figure 11: Architecture of the risk-and-trust obligation framework.

the access. If the system cannot find such a set, the request is denied as the user is not

authorized for roles that provide the requested permissions. If the roles that provide the

privileges are found, the system evaluates whether activating them would create any a pos-

teriori obligations for the user. If so, the PDP retrieves the trust value of the user and

determines whether the value offsets the criticality of the obligations that would be assigned

to the user. When the user is trusted enough to complete successfully such obligations, the

access is granted and the Obligation Handler instantiates them according to Definition 15.

In case the user is not trustworthy enough to fulfill one or more of the obligations that would

be assigned to him, the system denies the access request.

5.3 TRUST COMPUTATION

In this section, we present the methodology to compute the trust of a user. As noted by

Greitzer et. al [59], one of the limitations of threshold-based approaches is the fact that

smart attackers would try to stay within the threshold to avoid being detected. Hence, the

79

Receive request for permissions

Find appropriate set of roles

Denied
access

Would access create a
posteriori obligations?

Grant access

No

Enough trust to
perform a posteriori

obligations?

Yes

No

Yes

Appropriate set of
roles found?

Yes

No

Figure 12: Processing flow of an access request.

trust computation mechanism needs to account for strategically controlled variations on the

user’s behavior. Strategic changes in behavior occur when a user first constructs a good

level of trust and then starts misbehaving. In addition, the trust value should provide a way

to discern when the user accidentally does not perform an obligation. We want to reduce

the trust value to account to the bad behavior, but give the opportunity to users to redeem

themselves if they have defaulted obligations by mistake. In addition, the trust value should

include a group factor to determine whether the evaluated user is the only one among the

users assigned to a particular obligation, who is repetitively violating the obligation.

Our trust model considers the following aspects to find the obligation-based trust value

(trust(u, t)):

1. His recent behavior.

2. His historical behavior, which shows how many times he has fulfilled or defaulted on

assigned obligations.

80

3. His sudden changes in the behavior, which allows the system to penalize the user for

negative changes in behavior.

4. His performance with respect to other users.

Our trust model is inspired by that of Srivatsa et. al presented in [106], where the

first three components are included; however, we compute the trust values differently. In

addition, to capture the overall group behavior and its relation to that of an individual

user, we include the drift from the group. In Section 2.5.1, we discuss in further detail the

differences between our approach and the one presented in [106].

5.3.1 Trust Methodology

An observation o of a user’s behavior consists of a fulfilled or violated obligation (o =

〈u ∈ U, b ∈ B, final status〉). We assume a user’s observations are ordered based on their

generation timestamps and that they are grouped in what we call observation groups. Each

observation group contains a fixed maximum number of observations x. If at a particular

time instant there are m logged observations, there would be n = dm/xe groups. We denote

observation groups as T1, ..., Ti, ...Tn, where, group Tn contains the most recently logged

observations and T1 contains the oldest observations. Each group Ti for 2 ≤ i ≤ n is

guaranteed to contain x observations while T1 may contain less than x observations. The

groups are recalculated every time a new observation is logged to the system. For instance,

suppose that the fixed maximum number of observations per group is set to three (x = 3),

and that, at time t19, the system has logged six observations o1, ..., o6, where o1 is the first

and o6 the last observation logged, respectively. At t19 there are two groups T1 and T2, where

T1 contains [o1, o2, o3] and T2 contains observations [o4, o5, o6]. Suppose that at t22 another

observation o7 is generated; it causes a re-grouping of observations as follows: a new group

T3 is created containing the most recent observations [o5, o6, o7], T2 contains [o2, o3, o4]

and T1 contains the oldest observation o1. Hence, T3 contains the most recent behavior of

the user. In this way, at time instant t the observation groups are created according to the

observations available and each group represents the behavior of a user in a period of time.

Table 3 contains the notation that we use in the rest of the dissertation. We use multisets

81

Table 3: Notation for Chapter 5 (obligations).

m(M, b) Function that returns the multiplicity (number of elements of type b) contained in
multiset M .

B Set of obligations in the system

GBT
u Multiset that contains the obligations fulfilled by user u in observation group T

BBT
u Multiset that contains the obligations violated by user u in observation group T

TGBT Multiset that contains the obligations fulfilled by all users in observation group T

TBBT Multiset that contains the obligations violated by all users in observation group T
totalRisk(u, T) Function that returns the total risk of the obligations fulfilled and violated in obser-

vation group T by user u

to refer to the observations in each group. A multiset is a collection in which each element

may appear more than once. For instance, a multiset of obligations M = {b1, b2, b3, b1}

contains obligation b1 twice. The multiplicity is a function that returns the number of times

an element appears in a multiset and is defined as m : Multiset × element → int. In the

previous example m(M, b1) = 2 as obligation b1 appears two times.

Definition 16. The raw trust RTu[T] of user u in observation group T is calculated using

the following expression:

RTu[T] =

∑
b∈B

b.ϕ ∗m(GBT
u , b)∑

b∈B

b.ϕ ∗m(GBT
u , b) +

∑
b∈B

b.ϕ ∗m(BBT
u , b)

The raw trust captures the behavior of user u in period defined by the observation

group T and it is a weighted average of the number of obligations fulfilled over the total

number of obligations assumed by the user. The weights are determined by the importance

of the obligations themselves (ϕ). In this fashion, an obligation that is very critical to the

organization has a heavier impact on the raw trust, than one that is not so critical. A user

that has violated all his acquired obligations has a raw trust equal to zero. In contrast, when

the user has promptly fulfilled all his assigned obligations, his raw trust is equal to one.

Definition 17. The historical trust of user u for observation group Tn, Hu[Tn], is computed

82

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W
ei

gh
ts

Weights for rho=0.9

Weights for rho=0.5

Weights for rho=1

Recent history Old history

Weights for =0.9

Weights for =0.5

Weights for =1

Figure 13: Effect of ρ on the historic trust (Definition 17) considering that all the obligations

have the same criticality.

as follows:

Hu[Tn] =
n−1∑
k=1

RTu[Tn−k] ∗ wk

where wk is the weight of observation group Tn−k which is calculated as follows:

wk =
ρk−1 + totalRisk(u, Tn−k)∑n−1
i=1 (ρi−1 + totalRisk(u, Tn−i))

where 0 ≤ ρ ≤ 1.

When the weight of recent events is much higher than those of previous observations, the

system allows the users to improve their trust values rather quickly because it prioritizes the

most recent behavior. The weight wk has two components, decay of historical information

and the criticality of the observation groups. The first one is provided by ρk−1 and allows

the system administrator to change the importance of each historical observation group.

Figure 13 depicts the effect of ρ on wk. When ρ = 1, all the observation groups have the

same weight; hence all the periods that contribute to the historical trust have the same

importance. In this case, the historical trust is equivalent to the average of the raw trust.

When ρ = 0.5, some of the older observations do not have much weight and we would be

83

losing some information. In contrast, when ρ = 0.9 there is a desirable effect in which all the

historical observations are considered, but the more recent ones have more weight than the

older ones. We prefer to have ρ nearby 0.9 to maintain freshness of the observations while

considering all the historical information available.

The second component of the weight wk corresponds to the total criticality of the obli-

gations that are included in observation group Tn−k. This component allows us to provide a

higher weights to observation groups that contain obligations with higher criticality values

and inhibits strategic users from improving their trust values by fulfilling only low criticality

obligations.

Definition 18. The trust fluctuation Du[T] of user u in observation group T is defined as

follows:

Du[T] = RTu[T]−Hu[T]

which represents the variation of the current trust with respect to the historical trust.

When Du[T] ≥ 0, the user has improved or maintained his behavior with respect to his

historical trust. In contrast, when Du[T] < 0, the user behavior has worsened.

It is also desirable to discover when a user does not fulfill a particular obligation more

frequently than his peers, which may represent attempts to sabotage the operation. We

capture it using the notion of group drift.

Definition 19. The group drift, Gb
u[T], of obligation b ∈ B for user u in observation group

T is defined as follows:

If m(BBT
u , b) = 0, then Gb

u[T] = 0. Otherwise:

Gb
u[T] =

m(BBT
u , b)

m(TBBT , b)
− m(BBT

u , b) +m(GBT
u , b)

m(TBBT , b) +m(TGBT , b)

Here, 0 ≤ Gb
u[T] ≤ 1. If the user has not violated any obligation of type b, his group drift

is zero. In addition, the group drift is zero if user u is the only one that has been assigned

to obligation b, as there is no evidence that shows his behavior is drifting from the group

(in fact, there is no group). When the number of users assigned to b increases, there is more

evidence as to how far apart from the group the user is. When Gb
u[T] = 0.5, it means that

half of the total assigned obligations (fulfilled and violated in observation group T) were

84

violated by u. A Gb
u[T] close to one implies that user u is the only person in a large group

that has violated the obligation.

A big drift from the average may actually predict attempts to sabotage the opera-

tion. This is especially relevant when an obligation that has a large criticality value (ϕ) is

consistently violated. This behavior is suspicious and is penalized as follows.

Definition 20. The benchmark penalization of user u in observation group T , PGu[T], is

calculated as follows:

PGu[T] =
∑

∀b:Gb
u[T]>χb

δb

where 0 ≤ χb ≤ 1 is a threshold for obligation b ∈ B that specifies how far apart from

the group a user needs to be in order to be penalized and δb is the penalization received for

drifting from the group substantially.

In the previous definition, when Gb
u[T] > χb, user u is an outlier that does not fulfill

obligation b, and should be penalized by an amount of δb. Note that the penalization and

the threshold of each violated obligation b ∈ B (δb and χb) may have different values in the

system depending on the importance of the obligation (b.ϕ). Finally, we compute the total

obligation-based trust values for user u at time t, which is equivalent to finding the trust

value for observation group Tn (remember that the most recent observation group is denoted

by Tn).

Definition 21. The individual obligation-based trust

trust(u, Tn) of user u in observation group Tn is calculated as follows:

trust(u, Tn) =


trust(u, Tn−1) if γ(Du[Tn]) = 0

0 if T ≤ 0

T otherwise

where

T = α×RTu[Tn] + β ×Hu[Tn] + γ × (Du[Tn])− PGu[Tn] and α + β + γ = 1.

Here, α represents the weight of the current behavior, β represents the weight of the

historical information and γ the weight of sudden changes of behavior. We use two possible

85

values for this latter weight, γ1 and γ2, to be able to penalize heavily negative changes in

behavior while allowing users to regain trust slowly for positive changes. Letting γ1 < γ2,

when Du[Tn] ≥ 0, we use γ1 and when Du[Tn] < 0 (the user behavior has worsened), we use

γ2. In this way, the user takes longer to regain trust than to lose it. We show the effect of

these weights in Section 5.5.

In Definition 21, if the user does not change his behavior his trust value remains un-

changed with respect to the previous interval of time. When the γ ∗ Du[Tn] − PGu[Tn] is

too small making T negative (recall that γ ∗ Du[Tn] is negative when a negative change of

behavior occurs), the new trust value is zero, which is the minimum possible. Finally, when

none of these two cases happen, the trust is updated according to the current and historical

behavior, the behavior fluctuations and the benchmark penalization.

Contrasting our trust computation approach: Our proposed trust computation

methodology is an extension of the trust computation methodology presented by Srivatsa et.

al in [106]. We decided to base our methodology on their approach because of its strengths

[34]. Srivatsa et. al approach was designed for decentralized overlay networks. In their

work, the final trust value of a node is based on its current and historical behavior and

sudden changes of behavior. This methodology is not adequate for measuring how trusted

a user is to fulfill a particular obligation because adversaries that know how their trust

values are computed may try to manipulate the system in the following ways. (i) In [106],

all the failures or good behaviors have the same weights. In the case of obligations, this

assumption is not valid as each obligation has its own criticality value. An adversary that

wants to avoid detection would maintain an adequate trust value by fulfilling only non-critical

obligations while violating critical obligations. (ii) Similarly, their historical value does not

include the criticality of the obligations to prevent strategic users from manipulating the

trust computation by fulfilling only low-criticality obligations. (iii) Their approach does

not include group behaviors as part of the metrics to determine how trusted a user is.

However, including group drift would allow us to identify users trying to sabotage particular

operations by avoiding the fulfillment of one or more obligations. For these reasons, current

methodologies are not adequate to measure how trusted a user is to fulfill a particular

obligation.

86

We evaluate our trust methodology in Section 5.5. In the following section, we present

the Administration Module which is in charge of detecting policy misconfigurations.

5.4 ADMINISTRATION MODULE

An important consideration for monitoring systems is the fact that some of the suspicious

behaviors may, in fact, be due to factors other than insider attacks and incompetence. For

instance, if it is informally agreed that an obligation is no longer required, but the policy is not

up to date, users may be ignoring that particular obligation in accordance with the informal

agreement. To find the patterns of misbehavior, we incorporate clustering techniques within

the administrative module. These patterns can be used by the policy administrator to review

whether a particular obligation should cease to exist or to see why those employees are not

performing them (e.g., the reasons could include: the obligations may no longer be necessary

for the business process, users are too busy, the obligation should be assigned to other roles,

etc.). In addition, during this process, users that are not fulfilling a particular obligation

more often than their peers are also identified. In what follows we explain the process

followed by this module, but first we provide some background on clustering algorithms.

5.4.1 Clustering Algorithms

Clustering is an unsupervised machine learning technique that aims to discover similar groups

and outliers in datasets with unknown characteristics. We refer to [68] for a comprehensive

review. Each observation being compared is represented by a vector that contains informa-

tion about different characteristics. Clustering algorithms use a distance measure to identify

how far apart the observations being clustered are. Different distance metrics exist in the lit-

erature, e.g., Euclidian, Manhattan distances. There are two types of clustering algorithms:

hierarchical and partitional. Partitional methods require the specification of the number of

clusters to be found; given this number, they output a solution with that number of clusters.

In contrast, hierarchical algorithms do not need as input the number of clusters to be found

87

Violation log
…………………
…………………

b1 …. bn
u1

uk

x1,1 …. x1n

xk,1 …. xkn

 …
. Hierarchical

Clustering

Multiscale
Bootstrap

Resampling

Misbehavior
patterns
report

Cleaned Similarity Matrix

Figure 14: Procedure to find the patterns of misbehavior.

and output several possible clusters. The hierarchical clustering algorithms begin by placing

each observation into a separate cluster. Then, they verify the distances between all the

observations and put together the two most similar ones in a new cluster. Existing methods

to perform hierarchical clustering mainly vary on the way they compute the similarity be-

tween clusters; among them are Ward, single-link and mean/average methods. A detailed

discussion on the differences among them can be found in [68].

The output of hierarchical clustering algorithms is a set of possible clusters, however,

they do not assess the strength of the relation between the grouped observations. Multiscale

bootstrapping resampling [105] is a methodology that allows us to overcome this downside by

computing p-values for each of the clusters found by the hierarchical clustering algorithm.

The methodology indicates the clusters that have high cohesion, which allows the data

analyst to focus his attention in those relevant patterns.

5.4.2 Process to Find Patterns of Misbehavior

The process to find patterns of misbehavior is illustrated in Figure 14 and should be per-

formed periodically. We use a clustering technique to detect patterns of misbehavior and

outliers. We utilize hierarchical clustering, as it does not require the specification of the num-

ber of clusters to be found. This is appropriate since administrators do not know whether

the users in the system have similar misbehaviors, whether they can be grouped or how many

groups would result. The only parameter that needs to be specified is the distance metric

to compare individuals and clusters. We use Ward hierarchical algorithm with Manhattan

88

distance, as it finds better clusters for our purpose. We evaluate different algorithms in

Section 5.5.

In order to use the algorithm, the logged information is set up in a similarity matrix

M|U |×|B|, which has one row for each of the users and one column for each obligation of

the system. Each cell xi,j in the matrix contains the total number of obligations of type bj

that user ui has violated. The information included can have as much historical information

as the administrator desires. Then, the matrix is cleaned by removing users that have not

misbehaved, as there is no point in trying to find patterns of misbehavior for them.

The cleaned similarity matrix is used as input for the clustering algorithm, which outputs

a set of possible clusters. Then, the system performs a multiscale bootstrapping resampling

that establishes which of the clusters are cohesive. Cohesive clusters may represent policy

misconfiguration or users colluding not to perform an obligation. This information can be

used by the administrator to take corrective measures. For instance, he may decide to in-

vestigate why a cluster of users is not fulfilling an obligation and if appropriate, he may

remove the obligation from the policy. On the other hand, outliers with a high number of

obligation(s) violated may represent lazy, absent users or employees that may have higher

risk of becoming insider attackers. This information can be used to further monitor their

performance. Figure 18a presents an example. The dendogram was generated by the cluster-

ing algorithm and it shows all the possible clusters. The multiscale bootstraping resampling

method created the rectangles that show the cohesive clusters that represent different pat-

terns of misbehavior. Note that u10 is an outlier; if the number of obligations violated is

high, he is flagged as suspicious.

5.5 EVALUATION

In this section, we begin by evaluating our proposed trust methodology presented in Section

5.3. Then, we present the assessment of the procedure to find patterns of misbehavior

presented in Section 5.4.

Evaluation of the trust methodology: We evaluated our system under different

89

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t0 t10 t20 t30 t40 t50 t60 t70 t80 t90 t100

RT[t] HT[t] Drift[t] trust(u,t) %violated

Figure 15: Evolution of trust values when the percentage of violated obligations increases,

with α = 0.4, γ1 = 0.01, γ2 = 0.03 and ρ = 0.9.

users’ behaviors. We generated synthetic data to test our approach. In each iteration, a

user could fulfill or violate one of 15 a posteriori obligations. The criticality values of the

obligations were assigned using the following distribution: 10% of obligations were set to

high (0.9), 60% were set to medium (0.6) and the remaining were set to low (0.3) criticality.

The number of observations in each period was set to 10. Each of the points in the following

experiments was found every time a new observation was generated. In our experiments,

we used ρ = 0.9 to compute the historical trust (Definition 17), for the reasons explained in

Section 5.3. Our implementation was done in java.

Misbehaving users: To verify that our methodology is able to identify when a user is

misbehaving, we examined three different cases. Figure 15 presents the results for a user that

initially was completely trusted trust(u, t0) = 1, but later starts misbehaving, as it is shown

by the percentage of violated obligations per period. As the number of violated obligations

increases, the obligation trust value, trust(u, t), of the user is reduced. In addition, the

historical and raw trust values also decrease as the misbehavior continuous. Consider an

90

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t0 t30 t60 t90

Drift[t] scenario 1 trust(u,t) scenario 1 Drift[t] scenario 2
trust(u,t) scenario2 % violated

Figure 16: Trust values comparison for: scenario 1 : α = 0.4, γ1 = 0.01 and γ2 = 0.03 and

scenario 2 : α = 0.4, γ1 = 0.01 and γ2 = 0.3.

obligation with a high criticality of 0.9. If the user attempts to access a permission that

would require the fulfillment of that particular obligation, he would not be able to obtain

the privilege after t5. Around t17, he would lose accesses that require a trust value higher

than 0.6.

If the administrator desires the system to adapt faster to unfavorable changes in behavior,

the weight γ2 can be set up higher to increase the punishment for negative drifts on user’s

behavior. For the same user we presented in the previous experiment, Figure 16 shows how

the system increases its sensitivity to negative behaviors. Scenario 1 presents a conservative

γ2 weight while scenario 2 shows the results for a bigger γ2 value. The obligation trust value

of the user decreases faster for scenario 2 than for scenario 1 resulting in a faster revocation

of highly critical privileges. This is due to the amplified effect of a negative drift, which is

also shown in the figure. For scenario 1, the drift is almost zero, while for scenario 2, the

negative effect is substantially smaller, which according to Definition 18 results in a smaller

obligation-based trust value. Hence, the larger γ2, the faster the system adapts to negative

behaviors.

91

0

0.2

0.4

0.6

0.8

1

1.2

t0 t15 t30 t45 t60 t75 t90 t105 t120 t135 t150

RT[t] HT[t] TV[t] %Droped trust(u,t) % violated

Figure 17: User redemption after having a trust value of 0.5. Parameters used: α = 0.4,

γ1 = 0.01, γ2 = 0.03 and ρ = 0.9.

Redemption: We also evaluated the results of the system when a user improves his

behavior. This is relevant, as it is possible that the user was not able to fulfill his obligations

due to legitimate reasons (e.g., absence caused by sickness), hence, the system should allow

the user to improve his trust value based on his new behavior. At the same time, it is

important that the trust increases slowly, otherwise attackers would be able to increase their

trust value too fast. Figure 17 shows the results of a scenario in which the user’s initial trust

values are set to 0.5, but after t7 he starts fulfilling all the assigned obligations. Since the

user fulfills all the obligations (from t7 onwards), RT [T] is always equal to one and the drift

is always zero. The user requires twenty periods of spotless behavior before he improves his

trust to 0.8 (with the parameters of scenario 1). Because the good behavior continues, the

user’s trust value also continues the improvement trend.

Evaluation of the methodology to find patterns of misbehavior: We created

several logs with different patterns of misbehavior, outliers and noise. A misbehaving pattern

consists of several users not fulfilling a particular obligation, as if there was a legitimate

informal agreement not to perform that obligation. Outliers are users who did not fulfill

92

(a) Ward with Manhattan (b) Single-link with Euclidean

Figure 18: Example. The boxes in the dendongram represent cohesive clusters.

continuously a particular obligation and hence had a larger number of violations for that

obligation than the average of the users. In addition, we included random accidents which

represented obligations not fulfilled, unintentionally e.g., once someone missed a deadline.

These observations can be considered as noise. The maximum number of obligations in the

system was set to 15, the maximum number of users to 30 and we generated a total of 10

logs. We used R [93] to run cluster algorithms and the bootstrapping sampling method (with

a significance level of 0.95) on the data and verified how many of the expected observations

were classified correctly. We compared three hierarchical clustering algorithms: Ward, single-

link and mean with two distances Euclidean and Manhattan. Since we know the existing

patterns in the data tested, we can compare the solutions of the algorithms. The expected

patterns in the data, are referred to as classes ; they represent the ground truth. For example,

class1 = {u0, u1} represents the users that violated obligation b4, class2 = {u2, u3} represents

the users who violated obligation b6, class3 = {u4, u5} represents the users violating b8 and

class4 = {u6, u7, u8, u9} represents those violating obligation b12. Figure 18 presents two

solutions; one found by Ward with Manhattan and the other by Single-link with Euclidean.

The rectangles around the users represent cohesive clusters. For the Ward output, the three

93

Table 4: Comparison between clustering algorithms

Method Average Entropy Average Purity
Ward Euclidean 0.28 0.68
Ward Manhattan 0.19 0.70
Average Euclidean 0.32 0.64
Average Manhattan 0.28 0.67
Single Euclidean 0.33 0.62
Single Manhattan 0.26 0.67

expected classes were found. In contrast, the Single-link algorithm created one cluster for

all the elements in classes 3 and 4, failing to identify the existing misbehaving pattern. In

this case, Ward with Manhattan outperformed Single-link with Euclidean.

To compare clustering algorithms purity and entropy are typically used [121]. Entropy

is a function of the distribution of classes in the resulting clusters and purity is a function of

the relative size of the largest class in the resulting clusters. The details of how to calculate

these metrics are provided in Appendix . Both entropy and purity are in the interval [0,1].

Solutions with higher purity are preferred, while solutions with small entropies are preferred.

Table 4 presents the comparisons among the algorithms. Ward in combination with

Manhattan distance provides the most reliable results according to both of the metrics

used, as clusters found most of the time represented the existing classes. The worst results

were found for single-link in combination with Euclidean distance. In addition, when the

algorithms used Euclidean distance to measure difference among users, the results were

consistently worse than when they used Manhattan distance. The empirical validation shows

that the best option is to use Ward with Manhattan.

5.6 CHAPTER SUMMARY

In this chapter, we presented an access control framework to mitigate the risk exposure

caused by a posteriori obligations. We incorporated the criticality value of violating an obli-

94

gation into its definition to monitor users’ violation patterns, prevent sabotage threats and

unintentional damage. Additionally, we presented an obligation-based trust methodology

that is resilient to näıve and strategic users. This methodology can be integrated into any

access control model with a posteriori obligations. Through experimental evaluations, we

showed that our methodology can effectively identify suspicious behavior as well as allow

users to recover their trust values slowly. We also showed that based on previous work on

psychological precursors a posteriori obligations can be used to identify suspicious users.

Finally, we provided an approach to identify patterns of misbehavior, suspicious users and

policy misconfigurations.

In the next chapter, we present our third framework, G-SIR, which incorporates geo-

social information into the access control decision making process to deter insider threats.

95

6.0 AN INSIDER ATTACK RESILIENT GEO-SOCIAL ACCESS

CONTROL SYSTEM

In this chapter we present our proposed Geo-Social Insider Threat Resilient Access Control

Framework (G-SIR). First, we present the notions of spatial scopes and social predicates

in Section 6.1. Then, in Section 6.2, we present an overview of the proposed framework.

The detailed specification of our proposed G-SIR model is presented in Section 6.3. The risk

management procedure is presented in 6.4. The proposed enforcement algorithm is presented

in Section 6.5. Finally, we conclude the chapter in Section 6.6 where we present the system

evaluation.

6.1 SOCIAL PREDICATES AND SPATIAL SCOPES

G-SIR makes use of the notions of social predicates and spatial scopes introduced in Geo-

Social RBAC model [14]. They are defined as follows.

Social Predicates: A social graph can be represented as G = 〈V,E〉 where V is a set

of vertices that represent users and E is a set of edges that represent the existence of a

social relation between users1. These edges may be also labeled to refine further the types

of relationships between users. Let W be a set of social relation labels (e.g., nanny, spouse,

etc.) that may be organized in a hierarchy. W(i,j) represents the set of labels of edge (i, j),

for example, W(i,j)={nanny, schoolmate} shows that user i is the nanny and schoolmate of

user j.

1Our model may also be used with graphs built from available information such as tweets, retweets,
among other data.

96

Additionally, there is a set of social functions to evaluate the social relations between

users. Examples of these functions include areFriends(vi, vj), haveSocialRelation(label, vi, vj),

socialDistanceLessEqualTo(vi, vj , k), isSuperior (vi, vj), haveCommonNeighbor (vi, vj), areIn-

Clique(vi, vj), formAClique(vi, V
′ ⊆ V), among others. Functions belongsToCommunity(u,

comm), and assignedToRole(u, r) are useful for our framework and are defined in Table

5. Let F be the set of social functions such as those mentioned above. We define a Social

Predicate S as2 S ::= S ∧ S|S ∨ S|f |¬f , where f ∈ F .

To specify social predicates we use ur to denote the requesting user and u? to denote a

user in the vicinity that is instantiated at the time of evaluation of the policy.

Spatial Scopes: A Spatial Scope, SC, defines a place of interest. It is defined as SC = 〈h, `〉,

where h is a feature and ` is a location function. A feature is a place of interest in the space,

e.g., room 410, x-y coordinate or hallway. The geometry of these features are defined ac-

cording to the Open GeoSpatial consortium geometric model [1]. Function ` evaluates where

with respect to feature the user needs to be located. For example, SC = 〈room420, in〉,

defines as spatial scope being inside room420 and SC = 〈radiusAround(u, 5feet), in〉, de-

fines a circle with a radius 5 feet around the current position of user u. Function ` can also

be overlap, touch, cross, in, contains, equal, and disjoint [1], and may also be defined using

more refined proximity functions as the ones defined by Gupta et. al in [63].

6.2 OVERVIEW OF THE PROPOSED G-SIR

At the core of the proposed G-SIR framework there is an access control policy specification

and enforcement mechanism designed to leverage users’ geo-social behavior. The access

control component captures current and historic geo-social interactions to determine whether

an access should be granted or denied. Our framework extends RBAC; hence, users need

to fulfill constraints that are assigned to roles they play in an organization. A role may be

subject to the following constraints.

• Spatial scope: A role may have a spatial scope that defines a set of locations where it

2For simplicity, parenthesis are omitted to avoid distracting readers from the main issues

97

can be activated by users assigned to it.

• Geo-Social Contracts: These constraints indicate places that users assigned to the con-

strained role cannot visit and people they cannot frequently meet.

• Vicinity constraints: These constraints impose restrictions on people that may or may

not be at a certain distance from the requester at the time of an access. There are two

types of vicinity constraints: inhibiting and enabling constraints.

Inhibiting constraints specify that a requested permission needs to be denied when certain

inhibiting users are in the vicinity. They are designed to avoid potential proximity

attacks, such as shoulder surfing attacks. For this, a spatial scope where inhibitors

cannot be located is defined.

Enabling constraints are designed to verify the validity of an access request by leveraging

the trust on other users in the vicinity. These constraints specify who and how many

people should be in a spatial scope of interest. To enforce them, it is important to ensure

that the enablers and the requester are not colluding to prevent insider attacks. We refer

to this as collusion-free enforcement.

• Geo-social trace based constraints: These constraints require a user to follow a particular

geo-social path before he can be authorized to access a particular resource. They are often

useful to ensure that users do not access a resource without proper previous interactions.

• Geo-social obligations: These are geo-social actions that users need to fulfill after they

have been granted an access.

The proposed constraints are useful in two ways. First, they help capture inappropriate

geo-social context and subsequently deny accesses that violate the access control policy.

Secondly, monitoring the fulfillment of these constraints provides a way to identify users’

whose geo-social behavior is frequently questionable and outside of the expected patterns.

When users violate their geo-social contracts, do not fulfill their obligations or traces,

G-SIR flags them as suspicious. Because some of the constraints may be more important

than others, their violation has a criticality value. The observations of suspicious geo-social

behavior are used to obtain the likelihood of insider attacks and, ultimately, to determine

the risk exposure of granting an access.

98

Figure 19 presents the architecture of G-SIR. All monitoring and likelihood computations

described take place in the Monitoring, Context and Inference Module. The Context Module

determines the context of a user, which includes information such as the current device used

by the user, type of connection used, etc.

The Access Control Module is in charge of making the access control decisions. To

determine if an access request should be granted, all applicable geo-social constraints are

verified. Additionally, this module verifies if the risk exposure of granting access to a set

of requested permissions is tolerable to allow the access. To manage the risk exposure, at

the time of policy specification, the system administrator should perform a utility elicitation

process. During this process, described in detail in Section 6.4, the possible costs of misuse of

granting a malicious access, the cost of denying a non-malicious access and gain of allowing

a non-malicious access are analyzed. Through this analysis, a threshold that determines the

maximum tolerable probability of attack is found. If the probability of attack is too high

according to the risk management procedure, the access is denied. Otherwise it is granted.

The steps performed by the Access Control Module are as follows. Each access request,

Qu = 〈u, P ′〉, where u denotes the user requesting permission set P ′, is received by the Policy

Enforcement Point (PEP). Then, it forwards them to the Policy Decision Point (PDP) which

evaluates the policy stored in Policy Enforcement Point (PIP). An access request is granted

by the PDP if all of the following conditions are satisfied; otherwise it is denied:

• User u is assigned to a role set, R′, required to obtain the requested permissions P ′.

Additionally, the current location of u allows the activation of R′ and does not violate

any of u’s geo-social contracts.

• All trace-based constraints associated with R′ are fulfilled by u.

• No inhibitors are located in the vicinity.

• There are enough enablers, not suspected of colluding, to fulfill all enabling constraints

associated with R′ and the current locations of the possible enablers do not violate any

of their geo-social contracts.

• Finally, the risk management procedure that considers the historic geo-social behavior

of the user permits the access.

99

In the next section, we present the proposed access control model.

Monitoring,	Context	and	Inference	Module

Geo-Social	Insider	Threat	Resilient	Access	Control	
Framework

PEP:= Policy Enforcement Point
PDP:= Policy Decision Point
PIP:= Policy Information Point

PIP

Inference
Repository	

Geo-Social	
Obligation	
RepositoryInference

Module

User

Access	Control	Module

PDP
Obligation	
Handler

Risk	
Module

Monitoring	
Module

Context	
Module

PEP

Geo-Social	
Module

Social	Network
Service

Location	Service

Monitored	Data	
&	Context	
Repository

Geo-Social	
Trace	

Repository

Figure 19: Overview of the proposed G-SIR framework

6.3 G-SIR ACCESS CONTROL MODEL

The G-SIR access control model consists of sets of roles R, users U , actions A, objects O

and sessions S. Permissions are defined as P = A×O. Users are assigned to roles, and roles

are assigned permissions.

100

Table 5: Function specifications for G-SIR.

Function Meaning

assigned(u ∈ U) Returns the set of roles that u is assigned to.

Pau(r ∈ R) Returns the set of permissions assigned to r.

Pau(R′ ⊆ R) Returns the set of permissions assigned to all roles in
R′.

validLocation(u, r) Returns true if the current location of u satisfies the
spatial scope of r.SC.

vicinity(SC) Returns a set of users located in the place specified by
spatial scope SC.

PrCollusion(Uc ⊆ U) Function that determines the probability that users in
Uc are colluding.

belongsToCommunity(u ∈ U , comm) Given a user u and a community name comm, returns
true if the user is part of comm.

assignedToRole(u ∈ U , r ∈ R) Given a user u and a role r, returns true if u is assigned
to r.

fulfillSocialPredicate(ur, uc,S) Returns true if users uc and ur fulfill social predicate
S.

fulfillContracts(u ∈ U) Returns true if user u ⊆ U currently satisfies all his
contracts. It evaluates the union of all contracts as-
signed to roles in assigned(u).

inhibitors(ur ∈ U, r ∈ R) Given a requester ur and a role r, returns a set of
users that are classified as inhibitors according to the
inhibiting constraints r.I.

enablers(ur ∈ U, r ∈ R) Given a requester ur and a role r, returns a set Ue ⊆ U ,
if it exists, that satisfies all enabling constraints r.E
according to Definition 26. Otherwise it returns ∅. If
r.E = ∅, it returns ∅.

completeTraces(r ∈ R, u ∈ U) Returns true if user u has completed traces r.W.

traceContains(w ∈ W, node) Returns true if trace w contains node as part of its
spatial scope w.SC.

disjoint(SCi, SCj) Given two spatial scopes SCi and SCj , returns true if
the SCi is disjoint in SCj .

fulfillO(u ∈ U, r ∈ R) Returns true if user u satisfies obligations r.B and all
his geo-social contracts.

101

Let X be a set of contexts dynamically associated with users. The context of user u is

denoted as Xu. Let E be a set of enabling constraints and I be a set of inhibiting constraints.

Additionally, let GC and B be the sets of geo-social contracts and geo-social obligations,

respectively. Finally, let W be a set of geo-social traces. All these constraints are formally

defined later.

Definition 22. A role r ∈ R in G-SIR access control model is associated with a constraint

vector CVR = 〈SC, E ,W ,GC,B〉 where:

• SC is the spatial scope of a role (places where the role can be activated).

• E ⊆ E and I ⊆ I represent the constraints enforced over the users in the vicinity, where

E defines the required enablers, and I defines inhibitors.

• W ⊆W is a set of geo-social trace constraints.

• GC ⊆ GC is a set of geo-social contracts.

• B ⊆ B is a set of geo-social obligations.

To refer to a constraint of a role, we use the dot notation, e.g., r.SC returns the spatial

scope of role r and r.I returns its inhibiting constraint. In section 6.3.6, we specify how a

role can be activated in a session to exercise the permissions associated with it. We make use

of the functions presented in Table 5. We also use the dot notation to refer to components

of tuples. We now define the constraints that can be assigned to roles.

6.3.1 Geo-social Contracts

Geo-social contracts are used to establish acceptable and unacceptable geo-social behavior

for different roles. Geo-social contracts are assigned to a user when he is assigned to a role.

These contracts need to be constantly fulfilled.

Definition 23. A Geo-Social Contract gc ∈ GC is defined as gc = 〈ω, ϕ〉 where

• ω = 〈SC,S〉, here SC represents a spatial scope (place that users subject to gc are not

allowed to visit), and S is a social predicate that defines undesirable acquaintances. When

a component in ω is set to ⊥, (e.g., ω.SC = ⊥), it indicates that it is not considered

during the enforcement.

102

• 0 ≤ ϕ ≤ 1 represents how critical it is for the organization if a user violates the contract.

Here, ϕ = 1 means that it is very critical while ϕ = 0 means not critical at all.

If user u is assigned to a role set Ru ⊆ R, to be allowed to activate any role in Ru, he

needs to fulfill all geo-social contracts associated with each role in Ru.

Example 6. (a) Consider a user Bob who is assigned to role secretary; by being assigned to

this role, he cannot access a laboratory where highly reactive chemicals are located because he

is not trained to deal with dangerous chemicals. If Bob accesses the lab, there is an inherent

risk of mishandling substances that may lead to accidents and loss of lives and intellectual

property. For this reason, a violation of this contract will result in a high risk for the organi-

zation. This constraint can be expressed as follows: gc1 = 〈〈〈chemicalLab, in〉,⊥〉, 0.9〉. (b)

Consider a consulting firm that may have projects from multiple competing companies, say

X and Y . The consulting firm needs to ensure that the projects are completely compartmen-

talized to be able to offer a quality consulting service. Besides enforcing separation of duty

–where no user can be assigned both roles, namely consultant for X, rx, and consultant for Y ,

ry – it is desirable that people belonging to conflicting projects are not together to avoid leak-

age of information. Contractors that have multiple clients often require this type of control.

These constraints can be expressed as follows: gc2 = 〈〈⊥, assignedToRole(u?, rx)〉, 0.5〉 and

gc3 = 〈〈⊥, assignedToRole(u?, ry)〉, 0.5〉. gc2 is associated with role ry and gc3 is associated

with role rx.

As the previous scenarios show, not all contracts are the same in terms of risk exposure.

An untrained person entering a lab that has a lot of volatile chemicals poses higher risk

compared to the same person entering into a meeting room reserved for a team working in a

classified advertisement (e.g., an untrained individual may cause a serious accident). Hence,

gc1.ϕ > gc2.ϕ.

6.3.2 Vicinity Constraints

Inhibiting and enabling constraints are designed to classify users in the vicinity as enablers,

inhibitors or neutral.

Definition 24. An Inhibiting Constraint ci ∈ I is defined as tuple 〈X,SC,S, α〉 where

103

• X ⊆ X is a subset of contexts where the inhibiting constraint is applicable,

• SC defines the spatial scope where the inhibiting constraint is evaluated,

• S defines the predicate used to classify users in the vicinity as inhibitors and

• α is a threshold to determine the minimum level of confidence needed to decide if a user

should be made part of the inhibiting group.

We say that if there is a set of one or more users Uci in location ci.SC, who fulfill social

predicate ci.S with a minimum confidence level of α, the constraint is not satisfied and the

access should be denied to prevent information leakage.

At the policy evaluation time, G-SIR verifies if the requester’s context is one of the

context specified in X. If it is, the inhibiting constraint is evaluated otherwise it is ignored.

This helps specify policies where the device the user is utilizing may influence the size of the

spatial scope evaluated as illustrated in the following example.

Example 7. Assume smartphone, laptop and presenter are context of interest. Consider re-

questing user ur who is assigned to role r1 with inhibiting constraints r1.I = {ci1, ci2}, where

ci1= 〈{laptop, smartphone}, 〈radiusAround(ur, 5feet), in)〉, belongToCommunity(u?,BadGuys), 0.95〉 and

ci2= 〈{presenter}, 〈conferenceRoom, in〉, belongToCommunity(u?,BadGuys), 0.95〉.

When ur is using a laptop or smartphone, ci1 is evaluated to verify the presence of

inhibitors within a 5feet radius. If ur is using a presenter (e.g., ur is making a presentation),

ci2 is evaluated to verify that no inhibitors are present in the conference room. In both ci1

and ci2, users in the vicinity are classified as inhibitors if they belong to the community

BadGuys with a confidence level of 0.95 or more.

Definition 25. An Enabling Constraint ce ∈ E is defined as a tuple 〈SC, k,S, τc〉 such that

SC is a spatial scope where k users who fulfill social predicate S with respect to the requester

need to be located, and 0 ≤ τc ≤ 1, is a threshold that defines the maximum tolerance for

colluding users.

Here, ce.τc is the maximum acceptable probability of collusion and should be specified

based on the risk of an access. A larger ce.τc reflects more tolerance to collusion behavior.

In fact, if ce.τc = 1, the collusion indicators are not considered at all. In contrast, when

ce.τc = 0 any suspicion of collusion results in invalidating a set of enablers.

104

Threshold ce.τc provides a way to determine when a set of potential enablers cannot

be trusted. It is compared with the value obtained by function PrCollusion. Consider a

candidate set of enablers Ue, if PrCollusion(Ue) > ce.τc, the candidate enablers are rendered

untrustworthy.

ce.S may be evaluated based on uncertain information. For example, a social graph may

be evaluated to identify if users belong to dangerous communities through algorithms such as

those presented in [78, 5, 40]. These algorithms output a set of communities and a confidence

level of the result. ce.α determines the minimum confidence level required to classify a user

as part of a community. In contrast, when ce.S is evaluated based on information that is

well-established, ce.α can be set to one.

Example 8. Consider role r2 with a set of enabling constraints r2.E = {ce1}. Enabling

constraint ce1 is defined as: 〈〈conferenceRoom,in〉, 4, areFriends(u?, ur), 0.8〉. ce1 requires

four users who are friends of the requester to be in the conference room and for them to be

non-colluding with a probability of 0.8 or more.

Definition 26. Given a requester ur, an enabling constraint ce = 〈SC, k,S, τc〉 is said to be

satisfied if and only if there exists a set of enablers Ue such that ∀ ue ∈ Ue :

1. ue ∈ vicinity(ce.SC) .

2. fulfillSocialPredicate(ur, ue, ce.S)

3. PrCollusion(Ue ∪ ur) ≤ ce.τc

4. fulfillContracts(ue)

5. |Ue| ≥ ce.k

In the previous definition, the risk of including invalid enablers is controlled in two ways.

i) by verifying that the probability of collusion between the set of enablers is less than the

specified confidence threshold and ii) by verifying that none of the enablers is violating any of

his contracts. This mitigates potential social engineering attacks where an enabler is tricked

into going to the required spatial scope ce.SC to satisfy enabling constraint ce. It similarly

thwarts attacks where the requester and enablers probe the system to see what accesses they

can obtain.

105

Conflict Resolution: Because inhibiting and enabling constraints are evaluated dynam-

ically –based on who is located in the vicinity at the time of the access request, it is possible

that one or more users in the vicinity may be classified as both inhibitor and enabler. We call

this a vicinity conflict. It arises when for a given role, inhibitors(ur, r)∩enablers(ur, r) 6= ∅.

For ce ∈ r.E and ci ∈ r.I, recall that ce.S specifies social relations of the users, whereas

ci.S specifies users in the vicinity suspected of belonging to dangerous communities for an

access. Hence, a user may be related to another and at the same time be suspected of par-

ticipating in a non-desirable community according to ci. This may occur for instance, when

a user is suspected of being a spy. By design, this conflict is resolved in G-SIR through deny

overrides : if a user is classified as inhibitor, the access request is denied.

6.3.3 Geo-Social Obligations

Geo-social obligations establish that after activating a role, the requester needs to visit or

cannot visit a particular place or interact with people within a predefined period of time.

Definition 27. A Geo-Social Obligation b ∈ B is defined as 〈dir,D, ϕ〉 where

• dir is the directive that users subject to b need to fulfill. dir ∈ {〈+meet,S〉, 〈+visit, SC〉,

〈−meet,S〉, 〈−visit, SC〉}. +meet, means that the user should meet a targeted person or

group as defined by social predicate S, while -meet means that the user should not meet

the person or population. Similarly, +visit means a user needs to visit spatial scope SC

and -visit that he cannot visit it.

• D is a time duration that specifies how much time a user has to fulfill the obligation after

the obligation is triggered and assigned to him.

• 0 ≤ ϕ ≤ 1 is a value that represents how critical it is for the organization if a user

violates the obligation. Here, ϕ = 1 means that it is very critical and ϕ = 0 means it is

not critical at all.

At the time of activation, our framework instantiates each triggered obligation and creates

a record to monitor its state. Suppose user u activates role r, which has associated with it

obligation b ∈ r.B. The framework creates a record that contains the user who triggered the

obligation, the obligation triggered, b, the time t when the activation took place, and the

106

state of the obligation, which can be pending, fulfilled or violated. The obligation should be

fulfilled within the interval [t, t+b.D]. The obligation’s state is pending when user u has not

fulfilled it and the deadline has not passed. The state changes to fulfilled if u successfully

fulfills b and to violated if the user does not complete the required condition before b.D

elapses.

Example 9. After activating a role, r, users may not enter the server room where the

tenant’s machines are stored and cannot meet people associated with community Y. b1 =

〈〈−visit, 〈serverRoom, in〉〉, 1month, 0.7〉 and b2 = 〈〈−meet, belongsToCommunity(u?, Y)〉,

1year, 0.5〉. And r.B = {b1, b2}.

6.3.4 Geo-Social Trace Constraints

Geo-social traces specify the locations and social interactions that are required before acti-

vating a role. When a user wants to activate a geo-social role, his traces are evaluated to see

if they match the expected ones. If they do not match, the access request is denied.

Definition 28. A Geo-Social Trace Constraint w ∈W is a tuple w = 〈lst,D, ϕ〉 where

• lst = 〈〈SC1,S1〉1, ...〈SCn,Sn〉n〉 is a list of places and/or people that the requester needs

to visit and/or meet. SCi represents a spatial scope and Si a social predicate that defines

people that the requester needs to meet. When SCi or Si is set to ⊥, it indicates that

that component needs no consideration.

• D is the duration that defines how long ago with respect to the current time in the recent

past the trace should have been satisfied.

• 0 ≤ ϕ ≤ 1 is the criticality associated with not completing the trace as expected.

In the previous definition w.D specifies that only recent traces are relevant. If a user

is requesting access to a role that requires the fulfillment of w.D at time t, the user should

have completed the trace within [t− w.D, t].

Recall that a single role may have one or more geo-social trace constraints; for a role

r the set of geo-social traces is denoted as r.W . We use function completeTraces(r, u) to

verify if u’s traces satisfy all the geo-social trace constraints w ∈ r.W associated with r.

107

Example 10. Consider a medical doctor who is required to go to the Sanitizing Facility

before entering into the Neo-natal Unit where new babies are born. This constraint can be

expressed as w1=(〈〈Sanitizing Facility, in〉,⊥〉, 15minutes, 0.8), which is a trace constraint

that requires the doctor to go to the Sanitizing Facility before being able to activate the role

that allows him to enter into the Neo-natal Unit. If the user tries to gain access to a new-born

unit without passing through the Sanitizing Facility, the impact of his actions may be severe

because of the germs that he may be bringing to the newly born babies who are especially

susceptible to infectious diseases. Hence, the criticality of the obligation is large, w1.ϕ = 0.8.

At the verification time, say t, the system verifies that the requester completed the trace

within the past 15 minutes. If they do not, completeTraces(r, u) returns false and the role

cannot be activated.

6.3.5 Well-Formed Policy

For G-SIR to work properly, it is necessary to ensure that the policy specification is consis-

tent. Contracts are rules that forbid some interactions and movements; if they are violated

access is denied. Hence, they should not conflict with any of the other constraints. Addition-

ally, users should not be subjected to contradictory constraints. Therefore, it is necessary to

ensure the policy is well-formed.

Definition 29. A policy is said to be well-formed iff ∀u ∈ U, ri, rj ∈ assigned(u):

1. @ gc ∈ ri.GC : disjoint(gc.SC, rj.SC)

2. @ b = 〈〈+visit, SC〉, D, ϕ〉 ∈ ri.B, gc ∈ rj.GC :

disjoint(b.dir.SC, gc.SC)

3. @ b ∈ ri.B, gc ∈ rj.GC : b.S = gc.S

4. @ w ∈ ri.W , gc ∈ rj.GC : traceContains(w, rj.SC) ∧ @〈SCi,Si〉 ∈ w.lst : Si = gc.S

In the previous definition, condition 1 states that no user should be assigned to a role that

requires him to go to a place to obtain certain privileges while at the same time prohibiting

him from going to that place according to his social contracts. Conditions 2 and 3 state that

a user should not be asked to avoid places or people, while at the same time, he is required to

108

visit and/or meet them to fulfill their obligations. Condition 4 states that contracts should

not conflict with traces that the user needs to fulfill to gain access.

Whenever a new role is created or a user is assigned to a role, these properties should

be verified. If one or more conditions in Definition 29 is not satisfied, it is necessary to

re-evaluate the assignment and/or policy.

6.3.6 Role Activation

With all the geo-social constraints specified, we now define how to make access control

decisions in G-SIR.

Definition 30. A role r with constraint vector CVr = 〈SC, E , I,W ,GC〉 is said to be fulfilled

for user ur, fulfilled(ur, r), iff the following conditions are satisfied:

1. r ∈ assigned(ur)

2. validLocation(ur, r)

3. completeTraces(r, ur)

4. fulfillContracts(ur)

5. inhibitors(ur, r.I) = ∅

6. If r.E 6= ∅, then enablers(ur, r) 6= ∅

Otherwise r is not-fulfilled for ur.

We now define how the system decides to grant or deny an access request Qu.

Definition 31. An access request Qu = 〈ur, P ′〉 is granted under context Xu, if and only if

there exists a set of roles R′ ⊆ R such that all of the following conditions are fulfilled:

1.
⋃
r∈R′

Pau(r) ⊇ P ′ (Roles in R′ provide the requested permissions),

2. ∀ r ∈ R′ : fulfilled(ur, r) (Definition 30)

3. RiskMan(Qu,Xur) = true

The last condition specifies that for Qu to be granted, its associated risk should be

acceptable according to RiskMan. In the next section, we present the methodology used to

obtain RiskMan.

109

6.4 G-SIR RISK MANAGEMENT

In this section, we present how to compute RiskMan. Because utility theory has been

recognized as a useful methodology to make decisions under uncertainty [39], we utilize it

to formulate our decision-making process. A utility value represents the preferences of a

decision maker. It is often useful to think of utility as a measure of satisfaction. Hence, a

higher utility indicates a higher preference for an outcome and in combination, utility values

reflect the preferred order of different outcomes. As it is customary, we define the utility

value as a number between 0 to 100.

Consider an access request Qu = 〈ur, P ′〉 and let R′ ⊆ R be a set of roles that could

satisfy the access request for ur. We denote by A the uncertain event of Qu being issued to

compromise the system (an attack) and Ā the complementary event (Qu is a non-malicious

request). We denote the probability of event A (attack) as q, hence the probability of event Ā

(no-attack) is (1− q). Similarly, let G represent allowing access and Ḡ represents the decision

to deny access.

The utility depends on the context of the user Xu and the permissions that ur would

obtain through R′3. Because we are interested in preventing insider attacks, the following

analysis assumes that the utilities are defined to reflect the interests of the organization

implementing G-SIR. There are four possible outcomes of granting or denying Qu. Hence,

there are four utilities of interest; these are:

1. UR
′,Xu

Ḡ/A represents the utility of denying access to roles R′ under context Xu given that the

access request is an attack,

2. UR
′,Xu

Ḡ/Ā represents the utility of denying access to R′ under context Xu given that the

access request is not an attack,

3. UR
′,Xu

G/A represents the utility of granting access to R′ under context Xu given that the

access request is an attack, and

3It is necessary to consider the permissions granted by R′ rather than the permissions requested P ′ to
analyze the risk exposure for the following reason. In RBAC, permissions cannot be acquired individually;
they need to be acquired through the activation of roles. That is why in Definition 31 we allow for extra
permissions to be granted: Pau(R′) may have additional permissions that are not in P ′. Hence, the risk
exposure depends on all permissions granted rather than the permissions in P ′.

110

4. UR
′,Xu

G/Ā the utility of granting the access when it is not an attack.

Henceforth, we do not explicitly indicate the request being evaluated Qu, the set of roles

R′ and current context Xu to simplify the notation (unless it is not clear what request or

context we are referring to); however, note that the utility depends on the context of the

user and permissions being requested. The expected utility (EU) of denying and granting

access is computed as follows:

EU(Ḡ) = q ∗ UḠ/A + (1− q) ∗ UḠ/Ā (1)

EU(G) = q ∗ UG/A + (1− q) ∗ UG/Ā (2)

An access request should be granted when EU(Ḡ) ≤ EU(G), otherwise it should be

denied. Therefore, the threshold to decide when an access should be granted or denied can

be computed by equalizing equations (1) and (2), obtaining:

q ∗ UḠ/A + (1− q) ∗ UḠ/Ā = q ∗ UG/A + (1− q) ∗ UG/Ā (3)

The only unknown value in equations (3) is q. By solving equation (3) for q, we can find

the threshold value for an access. The solution of this equation is provided in the following

definition.

Definition 32. Given the utility values UḠ/A, UḠ/Ā, UG/A and UG/Ā for context Xu, request Qu

for which a set of roles R′ are enabled for ur provided the risk management procedure allows

it, the decision-making threshold is defined as follows:

τ(R′,Xu) =
UG/Ā − UḠ/Ā

UḠ/A + UG/Ā − UG/A − UḠ/Ā

If τ > 1 then τ = 1 and if τ < 0 then τ = 0.

The utility values depend on the context and request; hence, a different threshold is used

for each context and request. The risk management procedure is defined as follows.

Definition 33. Let R′ be a set of roles enabled for ur that satisfies request Qu under context

Xu. The risk management decision-making process is as follows:

RiskMan(R′,Xu) =

true if τ(R′,Xu) > Pr[A | Xu, R′]

false if τ(R′,Xu) ≤ Pr[A | Xu, R′]

where Pr[A | Xu, R′] is the probability of Qu being an attack given Xu and R′.

111

Table 6: Example utility values for two different contexts.

Utility for Qu, R’

Context UG/A UG/Ā UḠ/Ā UḠ/A τ

Xu1 (emergency room) 0 90 5 15 0.85

Xu2 (remote access) 0 70 10 25 0.71

Example 11. Consider a doctor trying to access a patient’s record in two different con-

texts. Suppose that a set of roles R′ could satisfy the doctor’s request, Qu, provided the risk

management procedure allows it. In context Xu1, he is trying to access from an emergency

room and in context Xu2 he is requesting the same record from his home. The utility val-

ues for both contexts and the threshold values are presented in Table 6. Because the utility

is a measure of satisfaction, the utility of granting access in an emergency room is larger

than denying the access when the doctor is at home when there is no attack. This is true

considering that granting access to a patient’s data from the emergency room may save the

patient’s life. Similarly, UR
′,Xu1

Ḡ/Ā < U
R′,Xu2

Ḡ/Ā , because we would be less satisfied to have an access

denied in the emergency room than in the other context. Given these utilities, the thresholds

are computed according to Definition 32. Suppose Pr[A | Xu1, R
′] = Pr[A | Xu2, R

′] = 0.8.

In this case, we have τ(R′,Xu1) = 0.85 > 0.8, so the access is granted. Note that this is

equivalent to finding the expected utilities in equations (1) and (2), for which the analysis

shows that EU(G,Xu1) = 18 and EU(Ḡ,Xu1) = 13. Since the expected utility of granting is

greater than the utility of denying the access, in this case, the best decision is to grant the

access. In context Xu2, τ(R′,Xu2) = 0.71 < 0.8, so the access is denied. Again, using the

threshold values is equivalent to computing the expected utilities, which are EU(G,Xu2) = 14

and EU(Ḡ,Xu2) = 22; it also results in denying the access. Hence, when the access is from

home, Xu2, the system requires a larger assurance that the request is not an attack, whereas

in a more critical type of access such as Xu1, the system is more tolerable to the risk of attack

because the associated utility values allow a riskier behavior.

Obtaining Utility Values: Utility values are subjective in nature and, therefore, each

organization should elicit them. An in-depth review of the widely studied utility elicitation

112

process can be found in [39]. In what follows, we provide some guidelines to help the policy

administrator find these values.

• Utility values should be in the interval between zero and one hundred, where a higher

value reflects a higher preference for a particular outcome.

• Additionally, utility values should satisfy the following relations to be correct. First,

UG/A < UG/Ā, because an organization would be clearly more satisfied if an access request

is granted and it turns out to be a legitimate access request, than if granting the access

results in an attack. Similarly, UḠ/A < UḠ/Ā, because an organization is more satisfied if

an access request that aims to attack the organization is denied than if a non-malicious

access is denied.

• To find the utilities associated with a request Qu that requires the activation of R′, one

needs to consider the permissions that would be obtained by the requesting user, Pau(R
′),

and the inferred purpose of the request. To define a value for UR
′,Xu

G/A , all possible misuses

of the permissions authorized by R′ should be considered. Similarly, to define U
R′,Xu

G/Ā

the perceived benefit of granting access to R′ should be considered. This may change

according to the context of the user, which is often intertwined with the purpose of the

access, as example 11 illustrates. Another example of the perceived benefit associated

with granting a legitimate access is the benefit associated with the completion of a critical

transaction.

Estimating the Probability of Attack and Probability of collusion: G-SIR esti-

mates the probability of events A and Ā. We use the following methodology to find those

probabilities. The probability of attack depends on the behavior exhibited by the requester.

To compute it, all available information such as browsing history, email transfer, geo-social

behavior, among others can be aggregated. Geo-social information can also be included

as part of the information aggregated. Our previously proposed methodology presented in

Chapter 5 can be used to analyze the deviations from users’ observed behavior with respect

to geo-social contracts, geo-social obligations and geo-social trace constraints. Whenever a

user violates a contract, attempts an access without completing required traces or violates

an obligation, G-SIR creates a record that is later analyzed to determine how trustworthy

113

the user is. To aggregate all such available information, several existing information fusion

approaches can be used (e.g., Bayesian networks [60, 61]). These information fusion ap-

proaches are dependent on the data available and the organization that is implementing it,

and they are out of the scope of this dissertation.

The probability of collusion is also an input for G-SIR (function PrCollusion). Depending

on the domain, collusion characteristics may vary. As a result indicators and methodologies

to find colluding users may change. Methodologies such as the ones presented in [89, 96]

may be used to determine the value of PrCollusion.

6.5 ENFORCEMENT ALGORITHM

To enforce the G-SIR policy, we propose Algorithm 4. The inputs to the algorithm are the

requester ur, a set of requested permissions P ′, the location of the requester Lu and his

context Xu. The algorithm looks for a set of roles R′ to satisfy the access request. If at

the end of the execution R′ is empty, the access is denied. Otherwise, it is granted. First,

the algorithm verifies if the requester ur is violating any contract in line 2, and if he is, the

access is denied.

Candidate role selection: Next, in line 4 the set of candidate roles Ravail is found using

function getCandidateRoles (presented in line 11). First, in line 12, the function verifies if

all permissions in P ′ can be obtained through the roles assigned to ur. If not, the request

cannot be granted because there are no roles assigned to ur that provide P ′. In which case,

an empty set of available roles is returned and the access is denied. Otherwise, the function

continues its execution initializing variables Ravail and Ri. Ravail is a set used to store roles

assigned to ur that have all its constraint vectors fulfilled according to Definition 30. Ri is

a set variable used to store roles that provide one or more permissions in P ′. Both Ravail

and Ri are initially empty. In line 15, all roles assigned to ur are evaluated and only those

that provide requested permissions are added to Ri. Then, in line 18 all roles in Ri are

verified to see if their constraint vectors are satisfied. This verification consists in evaluating

the following conditions (line 19): that ur’s current location allows the activation of r, that

114

Algorithm 4 Geo-Social Decision Making Process

Input: ur:= requesting user, P ′:= Permissions requested, Lu:= location of ur, Xu:= context of ur.
Output: R′:= set of roles that fulfill Definition 31. If R′ 6= ∅, the access is denied. Otherwise,
roles R′ can be activated to grant the access request.

1: findGeoSocialRoleActivationSet(ur, P
′,Lu,Xu)

2: if ¬fulfillContracts(ur) then
3: return ∅ {Request denied}
4: Ravail ← getCandidateRoles(ur, P

′,Lu) {Candidate roles}
5: if Ravail = ∅ then
6: return ∅ {Request denied}
7: Rsel ← ∅ {Selected roles so far}
8: Prem ← P ′ {Set of permissions that haven’t been found}
9: R′ ← selectRolesMinimumRisk(Prem, Ravail, Rsel, ur,Xu) {See Chapter 4, Algorithm 1}

10: ———————————————————————————————————————–
11: getCandidateRoles(ur, P

′,Lu)
12: if (P ′ \ Pau(assigned(ur))) 6= ∅ then
13: return ∅ {Authorized roles cannot provides P ′}
14: Ravail, Ri ← ∅
15: for all r ∈ assigned(ur) do
16: if (Pau(r) ∩ P ′ 6= ∅) then
17: Ri ← Ri ∪ {r}
18: for all r ∈ Ri do
19: if validLocation(ur, r) ∧ completeTraces(r, ur)

∧ (inhibitors(ur, r) = ∅) then
20: if enoughNonColludingEnablers(r, ur) then
21: Ravail ← Ravail ∪ {r}
22: if (P ′ \ Pau(Ravail)) 6= ∅ then
23: return ∅ {Roles in Ravail cannot provides P ′}
24: return Ravail
25: ———————————————————————————————————————–
26: enoughNonColludingEnablers(r, ur)
27: for all ce ∈ r.E do
28: Uavail ← ∅
29: Uv ← vicinity(ce.SC) \ur
30: if |Uv| < ce.k then
31: return false
32: for all uv ∈ Uv do
33: if fulfillContracts(uv)

∧ fulfillSocialPredicate(ur, uv, ce.S) then
34: Uavail ← Uavail ∪ {uv}
35: if ce.k ≤ |Uavail| then
36: found← false
37: while Ua ⊆ combinations(Uavail, ce.k) ∧ ¬found do
38: if PrCollusion(Ua ∪ {ur}) < ce.τ then
39: found← true
40: if ¬found then
41: return false {Couldn’t find enablers for ce}
42: else
43: return false {Not enough users in Uavail}
44: return true {All enabling constraints are satisfied.}

115

ur has completed the traces required for the activation of r and that there are no users in

the vicinity who conflict with r’s inhibiting constraint. If these conditions are satisfied, the

function proceeds to evaluate if the enabling constraints associated with r are also fulfilled.

For this purpose, in line 20 a function that verifies r’s enabling constraints is invoked (we

discuss this function later). If r’s constraint vector is satisfied, r is added to Ravail in line

21. Hence, Ravail only contains roles with fulfilled constraint vector. Because Ravail may be

a subset of Ri, one last verification is performed. In line 22, roles in Ravail are verified to see

if they can provide all the permissions in P ′. If they cannot, the function returns an empty

set and the access is denied. Otherwise, Ravail is returned in line 24.

Finding non-colluding enablers: To find the set of non-colluding enablers function enough-

NonColludingEnablers is invoked in line 20. This function is presented in line 26. Variable

Uavail is initially empty and is used to store users who are potential enablers. For each

enabling constraint ce associated with role r (line 27), the set of users in the vicinity are

retrieved and stored in Uv (line 29). Users in Uv are examined to determine if they are vio-

lating their contracts or do not fulfill the required social predicate (line 33). Only users who

are not violating their contracts and fulfill ce’s social predicate are added to Uavail. After

that, if Uavail does not have the required ce.k the function returns false to show that there

are no valid enablers for r (line 43). Otherwise, groups of size k are evaluated in line 37. If

none of the groups evaluated are collusion free, the function returns false to show that there

are no valid enablers for ce. If a group Ua is found to be non-colluding with the required

probability, ce is satisfied and variable found is set to true to show that there is no need to

continue examining other groups. It is necessary to ensure that all enabling constraints in

r.E are satisfied; hence, the function continues evaluating all constraints (for loop line 27).

If after all constraints ce ∈ r.E have been evaluated and a set of collusion free enablers has

been found for each ce, the function returns true in line 44.

Selection of roles to activate with minimum risk: After Ravail is found, it is guaranteed to

have uniquely roles assigned to ur for which constraint vectors are fulfilled. If Ravail is empty,

there are no roles and the access is denied (line 6). Otherwise, the algorithm proceeds to

find the roles to be activated. There may be multiple subsets of roles in Ravail that could

satisfy the request. To select the set of roles to be activated, we leverage on Algorithm

116

1 presented in Chapter 4, which selects the set of roles that minimizes the risk exposure.

This function, selectRolesMinimumRisk, is called in line 9. The only caveat is that the

threshold used in the algorithm is computed differently. Letting τ be the threshold found

through Definition 32 and τx be the threshold used in the algorithm presented in Chapter

4, when implementing function selectRolesMinimumRisk the following replacement should

be performed: τx = 1− τ . This follows because utility-based risk methodology proposed in

this chapter is built so that a request with higher risk has a smaller τ while τx follows the

opposite relation. After function selectRolesMinimumRisk is invoked, it returns the set of

roles with minimum risk exposure that can be activated by ur to satisfy the request. If the

function returns an empty set, no role can be activated to satisfy the access request and the

access is denied. Otherwise, the access is granted by activating R′.

6.6 EXPERIMENTAL EVALUATION

We evaluate the proposed system using a discrete indoor simulator implemented in Java.

We describe the experimental setup and then the experimental results.

6.6.1 Experiment Setup

6.6.1.1 Generation of social graph and user mobility For simulating user mobility,

we randomly generated a map where the assumed organization is located, as follows. First,

we specified a size of a Cartesian rectangle. Then, we randomly selected the points where

places are located on the map. These places were also randomly connected according to the

parameters specified in Table 7. In our implementation, we used a graph abstraction where

vertices represent the places on the map and edges represent connections between places (for

e.g., corridors).

At the beginning of the simulation, all users were randomly placed on the map. Each

policy was evaluated at multiple time instants, and at every time instance users could move

around the map to adjacent places or stay in their current positions. The speed of the users

117

was set to be 5 feet per second.

Social graphs were generated using the Jung API provided in [3]. We evaluated the

effect of representative types of network topologies on the system. The topologies evaluated

include preferential attachment [10] small world [77], power law [48] and a fully connected

network. These topologies are commonly observed in different social networks. All graphs

evaluated were undirected.

6.6.1.2 Generation of policy, access requests and threats Policies were randomly

generated using the parameters presented in Table 7. We ensured that all policies used

in the experiments were well-formed according to Definition 29. We selected the values of

the parameters inspired by previous works such as [11, 117], which evaluate RBAC policy

enforcement. Geo-social policies have not been evaluated in previous work. Hence, we

adjusted some parameters and included new ones to incorporate unique geo-social features.

In the following experiments, we test different values for those parameters to show their effect.

Role’ activation thresholds (which represent the maximum tolerable probability of attack,

Definition 32) were randomly assigned between 0 and 0.5 because it is only justifiable to use

roles with spatial scope and other geo-social constraints when the information protected is

valuable. The probabilities of attack used for the risk management procedure were randomly

generated for each user and assumed to be accurate. Initially, the probabilities of attack

were set to 0.01. Throughout the simulation, the probabilities of attack for each user were

randomly updated.

To generate inhibiting constraints, we created three classes of confidential data and

assigned to each class a color that represents the type of individuals who should not be

allowed to access it. When a role was generated with an inhibiting constraint, one color

was randomly selected. At the beginning of the simulation, we randomly selected inhibiting

users and tainted them with a random color.

Enabling constraints were randomly generated to required k users related by friendship

to the requester in the spatial scope of the role to be activated. Colluding communities were

randomly generated. We considered two parameters, the number of colluding communities

and the number of members per colluding community. For each community, we randomly

118

selected a user and marked him as colluding and then, continued choosing some of his friends

as colluding until the number of colluding users per community was reached.

Trace constraints were generated randomly verifying that the path required to arrive at

the place of access did indeed exist. The number of previous places users needed to visit was

set as 2. The time required to fulfill the constraint (Definition 28) was generated considering

the distance between places and the speed of users to allow enough time.

Request generation, events counted as threats and measure of improvement: To

generate access requests, every time a user stepped into a place where there was a role with

spatial scope, a request was issued on his behalf. We consider the following as potential

insider threats:

(a) Not authorized for role: A user issues a request to obtain access to information he is not

authorized for.

(b) Inhibiting users: A user issues an access request, but there are inhibiting users in the

vicinity that may launch a proximity attack, e.g., if an access request is evaluated for a

role with color red, if any user tainted red is in the vicinity, he is classified as inhibitor.

(c) Lack of enablers: A request is issued, but there are not enough enablers at the required

place to authorize the request.

(d) Colluding users: A user issues an access request that requires enablers and the only

people who could serve as enablers are colluding according to the collusion threshold.

(e) Enablers violating contracts: A user issues a request for which all potential enablers are

violating their contracts (they are in places where they should not be).

(f) Suspicious requester: A user issues a request for which the probability of attack is too

high compared to the role’s activation threshold.

(g) Incomplete traces: A user issues a request without completing the required traces.

Each access request was only classified in a single category according to the order of constraint

evaluation in Algorithm 4.

To evaluate our proposed approach, we use as a baseline the Geo-Social RBAC model

introduced in Chapter 2, section 2.6. Some of our experiments aim to measure the percentage

of threats detected by our framework in comparison to the baseline. Our objective is to

119

Table 7: Default experiment parameters. The number of users is used to scale the size of

the evaluated policies.

Parameter Value

Ratio of total number of places to total number of
users

1:3

User speed 5 feet per second

Map coordinates (size of Cartesian map) (300 feet x 300 feet)

Ratio of number of users to roles 4:1

Ratio of roles assigned per user to number of roles 1:2

Inhibiting constraints per role 1

Percentage of roles with inhibiting constraints 50%

Number of inhibitors 3 types of inhibiting users (colors),
40% of users were assigned a random
color.

Enabling constraints per role 1

Range of k [1, 3]

Required social relation Friendship

Collusion threshold 0.9

Number of colluding communities 5% of number of users

Number of colluding users per community 5

Roles with trace-based constraints 5%

Roles with geo-social contracts 40%

Simulation time 8 hours

120

1
10
100

1000
10000

100000
1000000

10000000

Not	
authrorized	
for	role

Lack	of	
enablers

Incomplete	
traces

Suspicious	
requester

Enablers	
violating	
contracts

Inhibiting	
users

Colluding	
users

Number	
of	threats	
prevented

Comparison	of	Threats	Detected

G-SIR

Geo-SocialRBAC	
(baseline)

(a) Detailed comparison between the threats prevented by the proposed approach G-SIR and the baseline
Geo-Social RBAC. Plot in logarithmic scale.

0

200

400

600

800

1000

250 350 450 550 650 750 850 950

Number
of	Requests	
Granted

(Thousands)

Policy	Size
(Number	of	Users)

Comparison	of	Requests	Granted	
Geo-Social	RBAC
G-SIR
Benign	requests

33%						 32% 32% 33% 33% 33% 33% 33%

Percentage of	requests	
granted	by	Geo-Social	
RBAC	successfully
denied	by	G-SIR

Number of
legitimate
requests

(b) Comparison between the number of requests granted.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

8% 16% 24% 32% 40% 48% 56%

Percentage	
of	additional

threats	
captured

Percentage	of	roles	assigned	 to	users

Effect	of	different	role	assignments	on	the	threats	captured	by	G-SIR	
that	are	not	captured	by	the	baseline Completely	

random	requests

Requests	
generated	for	
users'	authorized	
roles

5%

4%

3%

2%

1%
Geo-Social RBAC

(G-SIR)

(G-SIR)

(improvement)

(c) Percentage of threats not captured by the baseline, which are prevented by our framework (the line
in 0% represents the baseline).

Figure 20: Comparisons between the proposed G-SIR and the baseline (Geo-Social RBAC).

121

present an overall picture of the effect of including a relevant policy constraint in G-SIR

with respect to the baseline. We refer to this number as improvement and it is computed

as follows4: improvement =

[
nproposed
nbaseline

]
− 1, where nproposed is the number of potentially

malicious access requests (threats) detected by G-SIR which is equal to the sum of all

previously described threats (a) to (g) and nbaseline is the number of threats detected by the

baseline, which is the addition of threats of type (a), (c) and (g). In the following figures,

we show the improvement as a percentage.

6.6.2 Analysis of Results

In this subsection, we discuss and analyze the results of our various experiments. Each

reported experimental measurement is the average of running the simulation 30 times (each

time a different randomly generated policy was used). The results presented were found using

30 randomly generated OSNs, 10 of each topology. The number of users in the simulation

were fixed at 250. Some experiments change the policy size; this value is determined by the

number of users according to the parameters in Table 7.

Baseline Comparisons: First, we present an overview of the types of attacks prevented

by the proposed G-SIR with respect to the baseline, Geo-Social RBAC. Figure 20a shows the

number of threats detected by G-SIR that could not be captured by the baseline. The first

column in the figure presents the number of access requests denied because the requester was

not authorized for a role; hence, this number is the same for both approaches. The second

and third columns show the number of requests denied due to lack of enablers and incom-

plete traces, this is slightly larger for the baseline, because our approach finds other policy

violations first, according to the order presented in Algorithm 4. Geo-Social RBAC does not

capture any of the remaining violations: suspicious requester, enablers violating contracts,

inhibiting users and colluding users. We note that there may be some misclassifications in

the counts of suspicious requester and colluding users. This is caused by the uncertainty in

the estimation of the probability of attack and the probability of collusion, respectively. We

present the number of false positives and false negatives in a later experiment. In this exper-

4This formula is typically used to determine the percentage of new features captured by a proposed
approach with respect to a baseline.

122

iment, we assume that these two values are accurate. Given this assumption, the proposed

G-SIR mitigates more threats.

Figure 20b presents the number of requests granted by the baseline and our proposed

approach. In the x-axis, we show the results for multiple policy sizes. The dotted line

represents the number of requests granted that are legitimate. All requests that are above

that line are malicious ones and should not have been granted. The table below the figure

contains the exact percentage of malicious requests granted by the baseline that G-SIR was

successfully able to deny. Overall, the results show that the baseline granted around 33%

of malicious requests irrespective of the policy size. The policy size uniquely influenced the

total number of requests granted. Overall, G-SIR was able to identify 33% more policy

violations than the baseline.

The percentage of additional threats captured by G-SIR depends on the type of policy

enforced, in particular, the number of roles assigned to each user. Figure 20c presents the

improvement measured as the percentage of threats detected by our framework in comparison

to the baseline Geo-Social RBAC. In the x-axis of Figure 20c, we show the percentage of roles

assigned to users. The bars represent the percentage of threats detected by the proposed

system that are not detected by the baseline5. We present the percentage of threats for

two simulation techniques. The first one, when access requests are completely randomly

generated, and the second one, when requests are randomly generated but users only issue

requests for their authorized roles. Figure 20c shows that the improvement increases as the

percentage of roles assigned to users also increases. This is the case because, for smaller

percentage of role assignments, the majority of access requests denied are denied because

users are not authorized for roles. Since both the baseline Geo-Social RBAC and the proposed

G-SIR detect this type of threat, the improvement in comparison to the baseline is smaller.

For this reason, the percentage of new threats captured by our framework is larger when we

run the simulation such that users only request an access if they are authorized for a role. As

it can be seen, the improvement increases with respect to the results shown for completely

random requests.

5We found this number using the improvement formula previously presented in this sub-section; hence,
the line 0% represents Geo-Social RBAC.

123

We note that the difference between the percentage of threats captured in Figure 20b and

the malicious request granted by Geo-Social RBAC in 20b is due to the difference between

the number of requests generated by the simulator that were granted and the number of

requests that were denied. The number of requests denied due to the lack of assigned role,

and lack of enablers is substantially larger than all other types of requests (Figure 20a)

including the number of granted requests. Hence, the improvement reported is greater than

when only the number of granted requests is considered.

In the following, we present the effect of increasing both the percentage of attacks that

are addressed by G-SIR and the different types of constraints in the system. Unless explicitly

mentioned, parameters are maintained to their default values (Table 7).

Proximity Attacks: In Figure 21a we present the percentage of threats prevented by

G-SIR that were not captured by the baseline as the number of inhibiting users increases. In

this figure, the baseline is represented by the line in 0%. When only 10% of the users were

inhibitors, G-SIR was able to capture 3.5% more threats than the baseline. While a system

where 90% of the users cannot learn some information (recall that there are three colors),

resulted in an improvement of 5.9% of threats captured. Figure 21a, was built for a policy

where 80% of roles had an inhibiting constraint.

Figure 21b presents the effect of environments with a different number of inhibiting users

under policies with various number of roles with inhibiting constraints. As the number of

roles with inhibiting constraints increases, there are more confidentiality leaks prevented.

Similarly, as the number of inhibitors in the vicinity increases, the number of leaks of con-

fidential information due to proximity attacks is also higher. Since the baseline does not

prevent this type of attacks, the overall number of threats prevented by G-SIR increases.

When 100% of users are assigned an inhibiting color and all roles have an inhibiting con-

straint associated with them, the number of threats mitigated goes up to 6.8%.

In our next experiment, we counted as a confidentiality threat an attempt to do any

of the following: i) when a user tries to access a role that he is not assigned to and the

role has an inhibiting constraint that conflicts with the color of the user, ii) when there are

inhibitors in the vicinity, iii) when there is a collusion to access confidential information and

iv) when there is a contract violation and the violating user is trying to serve as an enabler.

124

3.5%
4.2%

4.8%
5.3%

5.9%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

10% 30% 50% 70% 90%

Percentage	of	
additional

threats	captured
(improvement)

Percentage	of	Inhibiting	Users	

Percentage	of	Threats	Prevented	by	G-SIR
not	Captured	by	Geo-Social	RBAC

G-SIR
Geo-Social	RBAC

(a) Effect of inhibiting users on the overall number of threats captured by
G-SIR that are not captured by Geo-Social RBAC.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

10% 30% 50% 70% 90%

Percentage	
of	new	threats	

captured
(improvement)

Percentage	of	Inbihiting	Users

Effect	of	Inhibiting	Users	and	Inhibiting	Constraints	

40%	roles	with	
inhibiting	 constraints
60%	roles	with	
inhibiting	 constraints
80%	roles	with	
inhibiting	 constraints
100%	roles	with	
inhibiting	 constraints
Geo-Social	RBAC

(b) Effect of different ratios of roles with inhibiting constraints over the number of
threats captured for different number of inhibiting users.

0%

20%

40%

60%

80%

100%

10% 30% 50% 70% 90%

Confidentiality	
Threats

Percentage	of	Inhibiting	Users

Comparison	of	Confidentiality	Threats	Prevented

Geo-Social	RBAC	

G-SIR

Total	
Confidentiality	
Threats

92%
83% 77% 74% 72%

(c) Percentage of confidentiality threats prevented by G-SIR in contrast to Geo-
Social RBAC.

Figure 21: G-SIR proximity threat results.

125

Using this classification, in Figure 21c, we present a comparison between the percentage of

confidentiality threats detected by G-SIR in contrast to Geo-Social RBAC. In this experi-

ment, the proposed G-SIR captures more confidentiality threats than those captured by the

baseline (Geo-Social RBAC). Geo-Social RBAC only captures confidentiality threats of type

i). As the percentage of inhibiting users increases, the number of all types of confidentiality

violation attempts enumerated before also increases; including those of type i). That is why

we see that the percentage of confidentiality threats captured by Geo-Social RBAC does

increase with the number of inhibiting users. However, there is always a large percentage

of threats that are not detected by Geo-Social RBAC. Figure 21c was generated for policies

where 60% of roles have inhibiting constraints. For these policies, the percentage of threats

not captured by Geo-Social RBAC vary between 92% to 72%. For policies with a higher

number of roles with inhibiting constraints, the number of threats not captured by Geo-

Social RBAC that are captured by our G-SIR is larger. For instance, when all roles have

inhibiting constraints and there are 90% of inhibiting users, the percentage of threats not

captured by the baseline captured by G-SIR increases to 76%. This corresponds to 4% more

than the same data point in Figure 21c. These experiments show that G-SIR is effective

capturing proximity and confidentiality threats.

Collusion Attacks: Figure 22 presents the effect of increasing the number of colluding

users per community (x-axis) and the number of colluding communities. Colluding attacks

are not prevented by the baseline, hence all the lines in the figure represent attacks thwarted

by G-SIR. The results reported were generated for policies with enabling constraints that re-

quired one enabler (k = 1). In this experiment, we assumed that the colluding communities

and users were known. Hence, all attacks presented in Figure 22 can be prevented by G-SIR.

In a real system, the accuracy depends on the accuracy of the community detection algo-

rithms used, e.g., [89, 96]. Figure 22 shows that the number of colluding attacks prevented

by G-SIR increases with the number of communities. This follows because the probability

of detecting an attack when more communities exist is larger. Similarly, as the number of

colluding members per community increases, the probability of a collusion attack increases

and the number of collusion threats increases.

Geo-Social Contract Violations: Figure 23 presents the number of contract violations

126

0

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 6 7 8 9 10 11

N
um

be
r	o

f	C
ol
lu
sio

n	
At
ta
ck
s	

Number	of	users	per	colluding	community

Collusion	Attacks	Detected	by	G-SIR

10	colluding	communities
9	colluding	communities
8	colluding	communities
7	colluding	communities
6	colluding	communities
5	colluding	communities
4	colluding	communities
3	colluding	communities
2	colluding	communities
1	colluding	community

Figure 22: Collusion threats captured by G-SIR.

stopped by G-SIR as the percentage of roles with contract constraints increases. Note that

the baseline does not prevent any of these attacks. In Figure 23a, we present the overall

increase on the number of threats uniquely prevented by G-SIR and Figure 23b the absolute

number of contract violations. In both figures, as the number of geo-social contracts in the

policy increases, the threats captured by the G-SIR also increases. This implies that for

organizations that require more protection against users wandering through unauthorized

places, G-SIR performs better. Recall that policies randomly generated by our simulator

are well-formed and all roles have a spatial scope assigned to them. Hence, the number

of contract violations uniquely contains threats where a potential enabler is violating a

contract. Had we used policies that contain conflicts, the number of violations reported

would be larger, as the verification in line 2 of Algorithm 4 never evaluated to true during

our simulations. Therefore, these figures uniquely show attacks that aim at using enablers

that are not qualified to be in the required spatial scope. These figures show a clear trend

where the number of attacks stopped increases as the roles with contracts is incremented.

The fluctuations shown, reflect users’ random movements.

127

3.3%

4.4%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Im
pr
ov
em

en
t:	
N
ew

	T
hr
ea
ts

De
te
ct
ed
	b
y	
G-
SI
R	

Percentage	of	roles	with	contracts

Effect	of	Contract	Verification	on	the	Overall	
Improvement	on	Threat	detection	

(a) Effect of contract enforcement in the overall
threat detection.

0

10000

20000

30000

40000

50000

0% 20% 40% 60% 80%N
um

be
r	o

f	c
on
tr
ac
t	v
io
la
tio

ns

Percentage	of	roles	with	contracts

Contract	Violations	Detected	by	G-SIR

(b) Contract violations detected by G-SIR.

Figure 23: Effect of geo-social contracts on the number of threats captured.

Sensitivity and specificity analysis: G-SIR takes as input the estimated probability

of attack. In this experiment, we measure the effect of using estimation methodologies with

different values of average error, ε, on the number of threats detected by G-SIR. For this

purpose, we generated synthetic data as follows. We randomly selected a probability of

attack, q, for each user; this value was considered as the ground truth. Then, the estimated

probability, q̂, was randomly selected in the interval [q− ε/2, q+ ε/2]. We changed the value

of ε between 0.1 and 0.8. The observations generated by the simulation runs were classified

according to Figure 24a as true positives (TP), false negatives (FN), false positives (FP) and

true negatives (TN).

Figure 24 presents the results of this experiment, which include the average number of TP,

FN, FP and TN as well as the average sensitivity and specificity. Figure 24b shows that the

number of TP decreases very little as the estimation error increases. In the worst case, when

ε=0.8, the number of TP is reduced on average by four observations which is relatively small

compared to the total number of observations. As expected, the number of FN increases with

the increase in the average estimation error as shown in Figure 24c. The average number of

FN for the largest estimation error (ε=0.8) is 5.4 which is relatively small in comparison to

the total number of observations. These results indicate that G-SIR is capable of stopping

128

Classification Ground truth Decision

True Positive (TP) Attacker Deny

False Negative (FN) Attacker Grant

False Positive (FP) Legitimate Deny

True Negative (TN) Legitimate Grant

(a) Classification of observations

123700
123705
123710
123715
123720
123725
123730

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TP

Estimation	error
(b) True positives

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FN

Estimation	error
(c) False negatives

0
1000
2000
3000
4000
5000
6000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TN

Estimation	error
(d) True negatives

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FP

Estimation	error
(e) False positives

0.00
0.20
0.40
0.60
0.80
1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Estimation	error

Sensitivity	and	Specificity

Sensitivity

Specificity

(f) Sensitivity and Specificity

Figure 24: Effect of the estimation error, ε, of the inference technique used on the number

of threats captured by G-SIR.

129

most threats generated by the simulator even when the performance of the information

module is not good. This is the case because not all access request decisions are based on

inferred information. Hence, access decisions that do not require inferred information are

correctly made even if the inference module predictions are inadequate. Additionally, in our

simulation, the thresholds related to roles reflect the fact that only valuable information

is protected with geo-social policies. In Figure 24d as the estimation error increases, the

number of TN decreases. The effect of the estimation error can be seen on the average FP

shown in Figure 24e. This indicates that under poor estimation methodologies, the number

of requests denied to legitimate users increases; however, in real systems, the estimation

error in most cases should be small.

Sensitivity and specificity are measures that provide an overview of all the previous results

and are shown in Figure 24f. Sensitivity represents the percentage of attackers who are

correctly identified as attackers while specificity shows the percentage of legitimate insiders

who are correctly identified as not being a threat. The sensitivity measure shows that

G-SIR is good in capturing attacks even when the estimation error increases. This is a

consequence of the following two facts. First, some of the policy constraints that are part of

G-SIR do not depend on the inferred input data, so they can be enforced correctly without

any influence of the estimation error. Secondly, the thresholds used in the simulation were

selected to ensure that, as in real policies, only relevant information would be protected by

G-SIR policies. Thus, when the inferred probability of attack is too high, even under certain

error, the enforcement mechanism will deny access to the most important information. The

specificity shows that as the estimation error increases, the number of honest insiders that

are denied access to very critical resources increases as well. This shows that G-SIR does

capture imminent insider threats even under suboptimal input.

Runtime overhead: In Figure 25, the difference between the time required by Geo-

Social RBAC and G-SIR is shown for policies of multiple sizes. Our proposed G-SIR intro-

duces some additional runtime overhead due to the extra verifications performed. However,

the overhead is acceptable in comparison to Geo-Social RBAC.

130

0

20000

40000

60000

80000

100000

250 350 450 550 650 750 850 950

Ti
m
e	
(n
an

os
ec
on

ds
)

Policy	Size

Time	Required	to	Make	an	Access	Decision

Geo-Social	RBAC

G-SIR

Figure 25: Average time as the policy size increases.

6.6.3 Limitations of the Experiments

Evaluating insider threat mitigation systems is a challenging task given the lack of ground

truth data, standard metrics or methods to assess new approaches [62]. Furthermore, the

abnormalities in the patterns of mobility of users during working hours have not been studied

previously. Hence, there is not a well-known way to introduce insider attacks of this type into

our simulation. In the previous experiments, we worked around this problem by randomly

generating threats. The same randomly generated threats were used to compare G-SIR

and Geo-Social RBAC. By randomly generating the threats, we tried to reduce as much as

possible biasing the results. To better understand how the model would work under different

circumstances, we run experiments under multiple parameter configurations.

In some experiments, we assumed that the inference module was accurate. This module

is in charge of finding the colluding communities that lead to the computation of function

PrCollusion as well as finding the probability of attack Pr[A | Xu, R′] used by the risk man-

agement procedure. These probabilities are an estimation and hence they have an associated

uncertainty. The false positives and false negatives that result due to the enforcement of our

model do depend on the error associated with the methodologies to estimate these proba-

bilities. Despite the difficulty of using estimation methodologies as part of this simulation,

we run the experiment presented in Figure 24 to understand how robust G-SIR is under dif-

ferent estimation errors. This experiment shows that the G-SIR is robust preventing insider

131

threats.

Other types of attacks that were not included in our simulation, but that certainly may

impact a real production system include the following. We assumed that the locations of all

users were known with high accuracy during the simulation. In real systems, the location

may not be known with 100% accuracy for reasons that include technological limitations,

malicious insiders tampering equipment or using other ways to spoof their location. Other

attacks that may influence the security of the system are tampering or manipulation of

the social graph. In our simulation, social graphs were generated at the beginning and

did not change throughout the simulation. Hence, this threat was not measured by our

simulation. Despite these limitations, we believe the experimental results show that the

proposed framework can mitigate threats that existing approaches fail to prevent.

6.7 CHAPTER SUMMARY

In this chapter, we presented G-SIR. As part of this framework, we developed several pol-

icy constraints that can serve to specify appropriate and inappropriate geo-social behavior.

These constraints include geo-social contracts, geo-social obligations, inhibiting, enabling and

trace-based constraints. Their enforcement can help understand the context of a requester

and subsequently deny accesses that impose too high of a risk. Additionally, by monitoring

G-SIR policy compliance logs, it is possible to identify users whose geo-social behavior is

questionable, dangerous or suspicious. We also presented a utility-based decision making

approach to make access control decisions. Finally, we evaluated our approach through sim-

ulations and showed that enforcing the proposed G-SIR policy can help capture some threats

that cannot be prevented using existing techniques.

In the next chapter, we present the conclusions, limitation and future work related to

this dissertation.

132

7.0 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

As part of this dissertation, we have presented three complementary frameworks that aim at

mitigating insider threats and unintentional damages in systems that use RBAC, obligations

and Geo-Social information to perform access control.

We have presented an approach to perform access control considering the behavior of the

users, and the risk exposure that an organization is ready to accept when granting access to

certain roles in the system. Our approach adapts to negative behaviors of users by denying

access to permissions whose misuse would negatively impact an organization. In this way,

our approach is able to mitigate possible attacks when there are technical precursors that

indicate a user is behaving maliciously. In order to reduce the risk exposure further, we have

also defined an optimization problem, and an algorithm that reduces the risk exposure. We

have presented experimental results for different types of policies. We believe the features

offered by our framework make it difficult for insider attackers to misuse their privileges.

Additionally, we have proposed a framework to control the risk exposure caused by a

posteriori obligations. As part of this framework, we proposed and evaluated a methodology

to identify how trustworthy a user is to fulfill a posteriori obligations. Our methodology con-

siders the latest, historical and sudden changes on users’ behavior as well as users’ behavior

compared to his peers. The obligation-based trust value associated with each user is used

to decide whether to grant or deny accesses that create a posteriori obligations. When a

user is not considered trusted enough to fulfill a posteriori obligations, accesses that require

the assignment of highly critical obligations are denied. In this way, our framework reduces

the risk exposure caused by a posteriori obligations and identifies and deters insider threats

without compromising the privacy of the users. In addition, we proposed a clustering-based

methodology to find patterns of misbehavior and outliers in the system. Our methodology

133

can serve to identify policy misconfigurations and suspicious users. This information allows

the system administrator to take appropriate measures.

Our trust methodology can be integrated into any access control model that includes a

posteriori obligations (e.g., UCON) and risk aware role activation mechanisms (e.g., [11]).

We believe that considering the inherent risk of a posteriori obligations can help the systems

better understand a user’s intentions and mood as well as reduce the risk exposure of an

organization.

Our third proposed framework is designed to take advantage of the increasing availabil-

ity of geo-social information to prevent insider attacks. Few approaches have incorporated

geo-social information into the access control decision-making process and none of them

have considered the intricacies of incorporating geo-social information as part of the ac-

cess control system for insider threat mitigation. First, we performed an analysis of insider

threats that arise when geo-social information is used to perform access control decisions. To

capture these new threats, we proposed Geo-Social Insider Threat Resilient Access Control

Framework (G-SIR). To the best of our knowledge, this is the first effort to use geo-social in-

formation to deter insider threats by incorporating it into the access control mechanism. We

proposed an access control methodology that includes several novel policy constraints that

include geo-social contracts, geo-social risk aware trace constraints, inhibiting constraints,

enabling constraints, and geo-social obligations. Enforcing these constraints helps in reducing

the risk of proximity and social engineering attacks. Additionally, monitoring the fulfillment

of these constraints may help identify suspicious users. We proposed an enforcement algo-

rithm and presented simulation results to evaluate the proposed framework. We believe that

as a result of our proposed research, organizations with geo-social security requirements will

be more likely to embrace the advantages that geo-social access control systems offer.

7.0.1 Limitations and future work

There are two limitations related to the proposed work. First, we assume that all insiders

access the system through a reference monitor (the PEP in Figure 2). Any attack vectors

that subvert or circumvent the PEP cannot be detected by our approach. Examples of

134

these vectors include exploiting vulnerabilities in the operating systems, physical attacks to

unencrypted disks, among others. Hence, complementary measures are necessary to protect

against these threats.

Secondly, our framework uses a threshold-based approach to adapt to negative changes in

behavior. The threshold may be computed based on multiple anomaly detection indicators

and anomaly detection techniques. For this reason, there are certain types of attacks that

cannot be prevented using our approach. In particular, we distinguish between two types

of attacks. i) Threshold manipulation: Carefully crafted insider attacks may not be noticed

if the insider manages to maintain a profile that is not recognized as suspicious by the

predictive system. Although we have proposed a methodology to find obligation-based trust

values that is difficult to manipulate by powerful adversaries (Chapter 5), there may be

multiple sources of information used to calculate the thresholds used by our first and third

framework. Attack vectors to achieve this effect may include patiently training the anomaly

detection systems to trick them to believe the actions of insider attackers are legitimate [55].

Another way to achieve this effect is by colluding with other users to modify the profile.

ii) Rage attacks: Similarly, users whose previous behavior is exemplary and in a moment of

rage decide to perform an attack that requires a single or few accesses that cause a great

deal of damage may not be prevented by our proposed solution. We have proposed the

use of enabler constraints and geo-social contracts as part of our work; these may help to

deter some of these attacks. Albeit, they may not be enough. Therefore, complementary

mitigation techniques are necessary to ensure that these types of attacks are prevented.

As it is the case with any interesting problem, there is a great deal of future work that

remains to be done in this area. With respect to the prevention of inference of unauthorized

information, there are some interesting research directions. As part of this dissertation, we

proposed a model that assumes the existence of inference tuples. Inference tuples capture

what we believe is a significant portion of inferences. However, there might be more complex

inference patterns of interest or there may be multiple insiders colluding to infer unauthorized

information. Future research work includes developing approaches to capture more complex

inference threats.

With respect to data collection, our frameworks require monitoring users’ behavior. This

135

information is fed to a probabilistic system to determine the probability of an access request

resulting in an attack. In this dissertation, we assumed that it is possible to obtain and

analyze this information without constraints. However, to apply this system in real en-

vironments, it is necessary to consider several issues along the legal, privacy and ethical

dimensions. Future work may include the design of technical solutions that provide privacy

guaranties for users. Additionally, techniques to ensure that geo-social data is not spoofed

are needed.

With respect to policy specification, future work includes designing graphical interfaces

to specify risk-and-trust policies as well as performing usability studies to help select inter-

faces that reduce policy specification errors.

Finally, we believe that the methodologies, approaches and analysis presented in this

dissertation are important to understand and prevent insider threats. Our proposed research

is useful for multiple types of organizations.

136

APPENDIX

ENTROPY AND PURITY OF CLUSTERING SOLUTIONS

Entropy and Purity are two measures typically used to evaluate the quality of clustering

solutions when the ground truth (classes) are known [121]. Entropy is a function of the

distribution of classes in the resulting clusters. The entropy for each cluster Sr of size nr is

defined as:

E(Sr) = − 1

log(q)

q∑
i=1

nir
nr
log

nir
nr

where q is the number of classes in the data set, and nir is the number of users of the class

ith that were assigned to the rth cluster. The entropy of the entire solution is computed as

follows:

Entropy =
k∑
r=1

nr
n
E(Sr)

where n is the total number of users in each cluster and k is the number of found clusters.

An algorithm that provides a perfect solution, according to the entropy metric, will result

in clusters that contain users from a single class, in which case Entropy = 0. The smaller

the entropy the better.

Purity is a function of the relative size of the largest class in the resulting clusters. The

purity of cluster Sr is defined as

P (Sr) =
1

nr
maxi(n

i
r)

137

which is the number of users of the largest class in a cluster divided by the cluster size. The

total purity of a clustering solution is the weighted average of the clusters’ purities:

Purity =
k∑
r=1

nr
n
P (Sr)

A higher purity represents a better solution.

138

BIBLIOGRAPHY

[1] Opengis simple features specification for sql, technical report ogc 99-049. Technical
report, OpenGIS Consortium, 1999.

[2] American Medical Association, http://www.ama-assn.org, 2015.

[3] Jung: Java universal network/graph framework. http://jung.sourceforge.net, 2015.

[4] J. O. Aagedal, F. d. Braber, T. Dimitrakos, B. A. Gran, D. Raptis, and K. Stølen.
Model-based risk assessment to improve enterprise security. In Proceedings of the 6th
International Enterprise Distributed Object Computing Conference, Washington, DC,
USA, 2002. IEEE Computer Society.

[5] J. Adibi, H. Chalupsky, E. Melz, A. Valente, et al. The kojak group finder: Connecting
the dots via integrated knowledge-based and statistical reasoning. In Proceedings of
the national conference on Artificial Intelligence, pages 800–807. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004.

[6] G.-J. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM
Trans. Inf. Syst. Secur., 3:207–226, November 2000.

[7] C. Alberts, S. Behrens, R. Pethia, and W. Wilson. Operationally critical threat, asset,
and vulnerability evaluation (octave), 1999.

[8] B. Aziz, S. N. Foley, J. Herbert, and G. Swart. Reconfiguring role based access control
policies using risk semantics. In Journal of High Speed Networks: Special Issue on
Managing Security Policies, Modelling Verification and Configuration, 2006.

[9] S. R. Band, D. M. Cappelli, L. F. Fischer, A. P. Moore, E. D. Shaw, and R. F. Trzeciak.
Comparing insider it sabotage and espionage: A model-based analysis, 2006.

[10] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[11] N. Baracaldo and J. Joshi. A trust-and-risk aware rbac framework: tackling insider
threat. In Proceedings of the 17th ACM symposium on Access Control Models and
Technologies, SACMAT ’12, pages 167–176, New York, NY, USA, 2012. ACM.

139

[12] N. Baracaldo and J. Joshi. An adaptive risk management and access control framework
to mitigate insider threats. Computers & Security, 39:237–254, 2013.

[13] N. Baracaldo and J. Joshi. Beyond accountability: using obligations to reduce risk
exposure and deter insider attacks. In Proceedings of the 18th ACM symposium on
Access control models and technologies, pages 213–224. ACM, 2013.

[14] N. Baracaldo, B. Palanisamy, and J. Joshi. Geo-social-rbac: A location-based socially
aware access control framework. In In Proc. of the 8th International Conference on
Network and System Security (NSS 2014), NSS ’14. Springer, 2014.

[15] D. Basin, S. J. Burri, and G. Karjoth. Optimal workflow-aware authorizations. In
Proceedings of the 17th ACM symposium on Access Control Models and Technologies,
pages 93–102. ACM, 2012.

[16] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfig-
urations in access-control systems. ACM Transactions on Information and System
Security (TISSEC), 14, 2011.

[17] L. Bauer, Y. Liang, M. K. Reiter, and C. Spensky. Discovering access-control mis-
configurations: New approaches and evaluation methodologies. In Proceedings of the
second ACM conference on Data and Application Security and Privacy, pages 95–104.
ACM, 2012.

[18] M. Beiter, M. C. Mont, L. Chen, and S. Pearson. End-to-end policy based encryp-
tion techniques for multi-party data management. Computer Standards & Interfaces,
36(4):689 – 703, 2014. Security in Information Systems: Advances and new Challenges.

[19] D. Bell. The bell-lapadula model. Journal of computer security, 4(2):3, 1996.

[20] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. Geo-rbac: a spatially aware
rbac. In Proceedings of the tenth ACM symposium on Access control models and tech-
nologies, pages 29–37. ACM, 2005.

[21] E. Bertino, E. Terzi, A. Kamra, and A. Vakali. Intrusion detection in rbac-administered
databases. In Computer Security Applications Conference, 21st Annual, 2005.

[22] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Obligation monitoring in pol-
icy management. In Policies for Distributed Systems and Networks, 2002. Proc. 3rd
International Workshop on, pages 2 –12, 2002.

[23] J. Biskup. History-dependent inference control of queries by dynamic policy adaption.
In Proceedings of the 25th annual IFIP WG 11.3 conference on Data and applications
security and privacy, DBSec’11, pages 106–121, Berlin, Heidelberg, 2011. Springer-
Verlag.

[24] D. Boucher and P. Kelly. The social contract from Hobbes to Rawls. Routledge, 2003.

140

[25] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and N. Ducheneaut.
Proactive insider threat detection through graph learning and psychological context.
In Security and Privacy Workshops (SPW), 2012 IEEE Symposium on, pages 142–149,
May 2012.

[26] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: constraints, inference chan-
nels, and monitoring disclosures. Knowledge and Data Engineering, IEEE Transactions
on, 12(6):900 –919, nov/dec 2000.

[27] J. Buford, L. Lewis, and G. Jakobson. Insider threat detection using situation-aware
mas. In Information Fusion, 2008 11th International Conference on, pages 1–8, 2008.

[28] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thuraisingham. A
semantic web based framework for social network access control. In Proceedings of
the 14th ACM symposium on Access control models and technologies, pages 177–186.
ACM, 2009.

[29] CERT. 2014 us state of cybercrime survey.
https://resources.sei.cmu.edu/asset files/Presentation/2014 017 001 298322.pdf,
2014.

[30] S. Chakraborty and I. Ray. Trustbac: integrating trust relationships into the rbac
model for access control in open systems. In Proceedings of the eleventh ACM sym-
posium on Access control models and technologies, SACMAT ’06, pages 49–58, New
York, NY, USA, 2006. ACM.

[31] S. M. Chandran and J. B. Joshi. Lot-rbac: A location and time-based rbac model. In
Web Information Systems Engineering–WISE 2005, pages 361–375. Springer, 2005.

[32] L. Chen and J. Crampton. Risk-aware role-based access control. In Proc. of the 7th
International Workshop on Security and Trust Management., 2001.

[33] Y. Chen and W. Chu. Protection of database security via collaborative inference
detection. Knowledge and Data Engineering, IEEE Transactions on, 20(8):1013 –1027,
aug. 2008.

[34] J.-H. Cho, A. Swami, and I.-R. Chen. A survey on trust management for mobile ad
hoc networks. Communications Surveys Tutorials, IEEE, 13:562 –583, 2011.

[35] Y.-S. Cho, A. Galstyan, P. J. Brantingham, and G. Tita. Latent self-exciting point
process model for spatial-temporal networks. arXiv preprint arXiv:1302.2671, 2013.

[36] O. Chowdhury, M. Pontual, W. H. Winsborough, T. Yu, K. Irwin, and J. Niu. Ensuring
authorization privileges for cascading user obligations. In Proceedings of the 17th ACM
symposium on Access Control Models and Technologies, SACMAT ’12, pages 33–44,
New York, NY, USA, 2012.

141

[37] C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse detection system for database
systems. In In Proceedings of the Integrity and Internal Control in Information System,
pages 159–178, 1999.

[38] R. Clemen. Making Hard Decisions: An Introduction to Decision Analysis. Duxbury
Press, 1991.

[39] R. Clement. Chapter 13: Risk attitudes, utility function assessment. In Making Hard
Decisions, An Introduction to Decision Analysis. Duxbury Press, second edition edi-
tion, 1995.

[40] C. D. Corley, D. J. Cook, A. R. Mikler, and K. P. Singh. Text and structural data
mining of influenza mentions in web and social media. International journal of envi-
ronmental research and public health, 7(2):596–615, 2010.

[41] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, and G. D. Abowd.
Securing context-aware applications using environment roles. In Proceedings of the
Sixth ACM Symposium on Access Control Models and Technologies, SACMAT ’01,
pages 10–20, New York, NY, USA, 2001. ACM.

[42] CPN. Cpn tools, 2013. http://cpntools.org/.

[43] J. Crampton and G. Gutin. Constraint expressions and workflow satisfiability. In
Proceedings of the 18th ACM symposium on Access control models and technologies,
pages 73–84. ACM, 2013.

[44] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting access control
misconfigurations. In USENIX Security Symposium, pages 161–176, 2010.

[45] H. S. Delugach and T. H. Hinke. Using conceptual graphs to represent database
inference security analysis. Jour. Computing and Info. Tech., 4(4):291–307, 1994.

[46] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using trust and
risk in role-based access control policies. In In Proceedings of the Ninth ACM Sympo-
sium on Access Control Models and Technologies SACMAT’04. ACM Press, 2004.

[47] N. Einwechter. Preventing and detecting insider attacks using ids, Nov. 3 2002.

[48] D. Eppstein and J. Wang. A steady state model for graph power laws. arXiv preprint
cs/0204001, 2002.

[49] F. Feng, C. Lin, D. Peng, and J. Li. A trust and context based access control model for
distributed systems. In Proceedings of the 2008 10th IEEE International Conference
on High Performance Computing and Communications, HPCC ’08, pages 629–634,
Washington, DC, USA, 2008. IEEE Computer Society.

142

[50] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
nist standard for role-based access control. ACM Trans. Inf. Syst. Secur., 4:224–274,
August 2001.

[51] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
nist standard for role-based access control. ACM Trans. Inf. Syst. Secur., 4:224–274,
August 2001.

[52] L. Flynn, G. Porter, and C. DiFatta. Cloud service provider methods for managing
insider threats: Analysis phase ii, expanded analysis and recommendations. Technical
report, Computer Emergency Response Team (CERT), 2014.

[53] P. W. Fong. Relationship-based access control: protection model and policy language.
In Proceedings of the first ACM conference on Data and application security and pri-
vacy, pages 191–202. ACM, 2011.

[54] D. Garg, L. Jia, and A. Datta. Policy auditing over incomplete logs: theory, implemen-
tation and applications. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 151–162, New York, NY, USA, 2011. ACM.

[55] C. Gates, N. Li, Z. Xu, S. Chari, I. Molloy, and Y. Park. Detecting insider information
theft using features from file access logs. In Computer Security - ESORICS 2014, vol-
ume 8713 of Lecture Notes in Computer Science, pages 383–400. Springer International
Publishing, 2014.

[56] V. D. Gligor and C. S. Chandersekaran. Surviving insider attacks: A call for system
experiments. In S. J. Stolfo, S. M. Bellovin, A. D. Keromytis, S. Hershkop, S. W. Smith,
and S. Sinclair, editors, Insider Attack and Cyber Security, volume 39 of Advances in
Information Security, pages 153–164. Springer US, 2008. 10.1007/978-0-387-77322-3 9.

[57] T. Grandison and M. Sloman. A survey of trust in internet applications, 2000.

[58] F. Greitzer, D. Frincke, and Z. M. Social/ethical issues in predictive insider threat
monitoring, 2011.

[59] F. Greitzer and R. Hohimer. Modeling human behavior to anticipate insider attacks,
2011.

[60] F. Greitzer, L. Kangas, C. Noonan, A. Dalton, and R. Hohimer. Identifying at-risk
employees: Modeling psychosocial precursors of potential insider threats. In System
Science (HICSS), 2012 45th Hawaii International Conference on, pages 2392–2401,
2012.

[61] F. Greitzer, P. Paulson, K. L., L. Franklin, T. Edgar, and F. D. Predictive modeling
for insider threat mitigation, 2009.

143

[62] F. L. Greitzer and T. A. Ferryman. Methods and metrics for evaluating analytic insider
threat tools. In Proceedings of the 2013 IEEE Security and Privacy Workshops, SPW
’13, pages 90–97, Washington, DC, USA, 2013. IEEE Computer Society.

[63] A. Gupta, M. S. Kirkpatrick, and E. Bertino. A formal proximity model for rbac
systems. Computers & Security, 2013.

[64] M. Hosenball. Nsa chief says snowden leaked up to 200,000 secret doc-
uments. http://www.reuters.com/article/2013/11/14/us-usa-security-nsa-
idUSBRE9AD19B20131114, 2013.

[65] IBM. Resource access control facility (racf), 2012. http://www-
03.ibm.com/systems/z/os/zos/features/racf/.

[66] K. Irwin, T. Yu, and W. Winsborough. Assigning responsibility for failed obligations.
In Trust Management II, pages 327–342. Springer Boston, 2008.

[67] K. Irwin, T. Yu, and W. H. Winsborough. On the modeling and analysis of obligations.
In Proceedings of the 13th ACM conference on Computer and communications security,
CCS ’06, pages 134–143, New York, NY, USA, 2006. ACM.

[68] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.
Surv., 31(3):264–323, Sept. 1999.

[69] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin. Automatic
error finding in access-control policies. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11, pages 163–174, New York, NY,
USA, 2011. ACM.

[70] K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin / Heidelberg, 1987.
10.1007/BFb0046842.

[71] A. Jsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online
service provision, 2006.

[72] S. Kandala, R. Sandhu, and V. Bhamidipati. An attribute based framework for risk-
adaptive access control models. In Proceedings of the 2011 Sixth International Confer-
ence on Availability, Reliability and Security, ARES ’11, pages 236–241, Washington,
DC, USA, 2011. IEEE Computer Society.

[73] M. Kandias, V. Stavrou, N. Bozovic, L. Mitrou, and D. Gritzalis. Can we trust this
user? predicting insider’s attitude via youtube usage profiling. In Ubiquitous Intelli-
gence and Computing, 2013 IEEE 10th International Conference on and 10th Interna-
tional Conference on Autonomic and Trusted Computing (UIC/ATC), pages 347–354.
IEEE, 2013.

144

[74] S. Kaplan and B. J. Garrick. On the quantitative definition of risk. Risk analysis,
1(1):11–27, 1981.

[75] S. Kenny and L. Korba. Applying digital rights management systems to privacy rights
management. Computers & Security, 21(7):648–664, 2002.

[76] M. S. Kirkpatrick, M. L. Damiani, and E. Bertino. Prox-rbac: a proximity-based
spatially aware rbac. In Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 339–348. ACM,
2011.

[77] J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 2000.

[78] J. Kubica, A. Moore, J. Schneider, and Y. Yang. Stochastic link and group detection. In
Proceedings of the national conference on Artificial Intelligence, pages 798–806. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002.

[79] N. Li, H. Chen, and E. Bertino. On practical specification and enforcement of obliga-
tions. In Proceedings of the second ACM conference on Data and Application Security
and Privacy, CODASPY ’12, pages 71–82, New York, NY, USA, 2012. ACM.

[80] J. Ma, K. Adi, M. Mejri, and L. Logrippo. Risk analysis in access control systems. In
Privacy Security and Trust (PST), 2010 Eighth Annual International Conference on,
pages 160 –166, aug. 2010.

[81] A. Moore, D. Cappelli, and T. R. The “big picture” of insider it sabotage across u.s.
critical infrastructures, 2008. CERT, http://www.cert.org/insider threat.

[82] L. Mui and M. Mohtashemi. A computational model of trust and reputation. In In
Proceedings of the 35th Hawaii International Conference on System Science (HICSS),
2002.

[83] R. Murray-Webster et al. Management of risk: guidance for practitioners. The Sta-
tionery Office, 2010.

[84] N. Nissanke and E. J. Khayat. Risk based security analysis of permissions in rbac. In
Proceedings of the 2 nd International Workshop on Security In Information Systems,
Security In Information Systems, pages 332–341. INSTICC Press, 2004.

[85] NIST. 2010 economic analysis of role-based access control, 2010.

[86] U. D. of Health and H. Services. The health insurance portability and accountability
act (hipaa), 1996.

[87] D. Olmedilla, O. F. Rana, B. Matthews, and W. Nejdl. Security and trust issues
in semantic grids. In In Proceedings of the Dagsthul Seminar, Semantic Grid: The
Convergence of Technologies, page 05271, 2005.

145

[88] Oracle. Application access controls governor, 2012.
http://www.oracle.com/us/solutions/corporate-governance/access-
controls/index.html.

[89] G. K. Palshikar and M. M. Apte. Collusion set detection using graph clustering. Data
Mining and Knowledge Discovery, 16:135–164, 2008.

[90] J. Park and R. Sandhu. The uconabc usage control model. ACM Trans. Inf. Syst.
Secur., pages 128–174, 2004.

[91] S. Pearson and A. Charlesworth. Accountability as a way forward for privacy protection
in the cloud. In M. Jaatun, G. Zhao, and C. Rong, editors, Cloud Computing, volume
5931 of Lecture Notes in Computer Science, pages 131–144. Springer Berlin Heidelberg,
2009.

[92] S. Perreault and S. Brennan. Criminal victimization in canada, 2009, 2010.

[93] R. Project. Package for hierarchical clustering with p-values (pvclust), 2012.

[94] I. Ray, M. Kumar, and L. Yu. Lrbac: a location-aware role-based access control model.
In Information Systems Security, pages 147–161. Springer, 2006.

[95] Q. M. S. Osborn, R. Sandhu. Configuring role-based access control to enforce manda-
tory and discretionary access control policies. In ACM Transaction on Information
and System Security, 2000.

[96] A. S. Sabau et al. Survey of clustering based financial fraud detection research. Infor-
matica Economica, 16(1):110–122, 2012.

[97] M. B. Salem, S. Hershkop, and S. J. Stolfo. A survey of insider attack detection
research. In Insider Attack and Cyber Security, pages 69–90. Springer, 2008.

[98] M. B. Salem and S. J. Stolfo. Modeling user search behavior for masquerade detection.
In Recent Advances in Intrusion Detection, pages 181–200. Springer, 2011.

[99] F. Salim, J. Reid, E. Dawson, and U. Dulleck. An approach to access control under
uncertainty. In Availability, Reliability and Security (ARES), 2011 Sixth International
Conference on, pages 1 –8, aug. 2011.

[100] F. Salim, J. Reid, U. Dulleck, and E. Dawson. Budget-aware role based access control.
Computers and Security, 2012.

[101] R. Sandhu. Role activation hierarchies. In In Proceedings of 3rd ACM Workshop on
Role-Based Access Control, pages 33–40. ACM, 1998.

[102] SAP. Access risk management, 2012. www.sap.com/solutions/sapbusinessobjects/
large/governance-risk-compliance/accessandauthorization/index.epx.

146

[103] R. Shaikh, K. Adi, and L. Logrippo. Dynamic risk-based decision methods for access
control systems. Computers and Security, 31(4):447 – 464, 2012.

[104] A. Sharifi, P. Bottinelli, and M. V. Tripunitara. Property-testing real-world authoriza-
tion systems. In Proceedings of the 18th ACM symposium on Access control models
and technologies, pages 225–236. ACM, 2013.

[105] H. Shimodaira. Approximately unbiased tests of regions using multistep-multiscale
bootstrap resampling, 2004.

[106] M. Srivatsa, L. Xiong, and L. Liu. Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks. In Proceedings of the 14th interna-
tional conference on World Wide Web, WWW ’05, pages 422–431, New York, NY,
USA, 2005. ACM.

[107] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient policy analysis
for administrative role based access control. In Proceedings of the 14th ACM conference
on Computer and communications security, CCS’07, pages 445–455, New York, NY,
USA, 2007. ACM.

[108] G. Stoneburner, A. Goguen, and A. Feringa. Risk management guide for informa-
tion technology systems, recommendations of the national institute of standards and
technology, 2002.

[109] B. Systems. Identity and access governance, 2012.
http://www.betasystems.com/en/portfolio/identityaccessgovernance/index.html.

[110] E. Tarameshloo and P. Fong. Access control models for geo-social computing systems.
In SACMAT, 2014.

[111] P. J. Taylor, C. J. Dando, T. C. Ormerod, L. J. Ball, M. C. Jenkins, A. Sandham,
and T. Menacere. Detecting insider threats through language change. Law and human
behavior, 37(4):267, 2013.

[112] C. I. T. Team. Unintentional insider threats: A foundational study. Technical report,
2013.

[113] R. K. Thomas. Team-based access control (tmac): a primitive for applying role-based
access controls in collaborative environments. In Proceedings of the second ACM work-
shop on Role-based access control, pages 13–19. ACM, 1997.

[114] M. Toahchoodee, I. Ray, and R. M. McConnell. Using graph theory to represent
a spatio-temporal role-based access control model. International Journal of Next-
Generation Computing, 1(2), 2010.

[115] J. S. Valacich, J. L. Jenkins, J. F. Nunamaker Jr, S. Hariri, and J. Howie. Identi-
fying insider threats through monitoring mouse movements in concealed information

147

tests. In HICSS-46 Symposium on Credibility Assessment and Information Quality in
Government and Business, 2013.

[116] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li. An efficient framework for user
authorization queries in rbac systems. In Proc. of the 14th ACM SACMAT technologies,
SACMAT ’09, pages 23–32. ACM, 2009.

[117] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li. An efficient framework for user
authorization queries in rbac systems. In Proc. of the 14th ACM SACMAT technologies,
SACMAT ’09, pages 23–32. ACM, 2009.

[118] R. Yip and E. Levitt. Data level inference detection in database systems. In Computer
Security Foundations Workshop, 1998. Proceedings. 11th IEEE, pages 179 –189, jun
1998.

[119] Y. Zhang and J. B. D. Joshi. Uaq: a framework for user authorization query processing
in rbac extended with hybrid hierarchy and constraints. In Proc. of the 13th ACM
SACMAT, SACMAT ’08, pages 83–92. ACM, 2008.

[120] G. Zhao, D. Chadwick, and S. Otenko. Obligations for role based access control. In
Proceedings of the 21st International Conference on Advanced Information Networking
and Applications Workshops - Volume 01, AINAW ’07, pages 424–431, Washington,
DC, USA, 2007. IEEE Computer Society.

[121] Y. Zhao and G. Karypis. Criterion functions for document clustering experiments and
analysis. Mach. Learn., 55(3):311–331, June 2002.

148

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Comparison of types of geo-social policies supported by existing RBAC based models.
	2. Experiment parameters for the policy generation for the risk-and-trust RBAC framework.
	3. Notation for Chapter 5 (obligations).
	4. Comparison between clustering algorithms
	5. Function specifications for G-SIR.
	6. Example utility values for two different contexts.
	7. Default experiment parameters. The number of users is used to scale the size of the evaluated policies.

	LIST OF FIGURES
	1. Conceptual view of the proposed frameworks.
	2. Overview of the integrated frameworks.
	3. Risk-and-trust RBAC architecture.
	4. Policy for example 2.
	5. CP-net graphical representation.
	(a). General structure of the CP-net, as per Definition 9.
	(b). Example 3.

	6. Managing active inference threats.
	7. Inference simulation results.
	8. Comparison of selection heuristics for different types of hierarchy proportions.
	(a). I:A:IA = 0:0:1
	(b). I:A:IA = 1:0:0
	(c). I:A:IA = 0:1:0
	(d). I:A:IA = 1:1:1

	9. Comparison of granted requests for different percentage of misbehaving users.
	10. Risk exposure using our algorithm (min. risk) compared to the risk of traditional role activation algorithm (min. num. of roles) when all relations are of type IA.
	11. Architecture of the risk-and-trust obligation framework.
	12. Processing flow of an access request.
	13. Effect of on the historic trust (Definition 17) considering that all the obligations have the same criticality.
	14. Procedure to find the patterns of misbehavior.
	15. Evolution of trust values when the percentage of violated obligations increases, with =0.4, 1=0.01, 2=0.03 and =0.9.
	16. Trust values comparison for: scenario 1: =0.4, 1=0.01 and 2=0.03 and scenario 2: =0.4, 1=0.01 and 2=0.3.
	17. User redemption after having a trust value of 0.5. Parameters used: =0.4, 1=0.01, 2=0.03 and =0.9.
	18. Example. The boxes in the dendongram represent cohesive clusters.
	(a). Ward with Manhattan
	(b). Single-link with Euclidean

	19. Overview of the proposed G-SIR framework
	20. Comparisons between the proposed G-SIR and the baseline (Geo-Social RBAC).
	(a). Detailed comparison between the threats prevented by the proposed approach G-SIR and the baseline Geo-Social RBAC. Plot in logarithmic scale.
	(b). Comparison between the number of requests granted.
	(c). Percentage of threats not captured by the baseline, which are prevented by our framework (the line in 0% represents the baseline).

	21. G-SIR proximity threat results.
	(a). Effect of inhibiting users on the overall number of threats captured by G-SIR that are not captured by Geo-Social RBAC.
	(b). Effect of different ratios of roles with inhibiting constraints over the number of threats captured for different number of inhibiting users.
	(c). Percentage of confidentiality threats prevented by G-SIR in contrast to Geo-Social RBAC.

	22. Collusion threats captured by G-SIR.
	23. Effect of geo-social contracts on the number of threats captured.
	(a). Effect of contract enforcement in the overall threat detection.
	(b). Contract violations detected by G-SIR.

	24. Effect of the estimation error, , of the inference technique used on the number of threats captured by G-SIR.
	(a). Classification of observations
	(b). True positives
	(c). False negatives
	(d). True negatives
	(e). False positives
	(f). Sensitivity and Specificity

	25. Average time as the policy size increases.

	PREFACE
	1.0 INTRODUCTION
	1.1 Limitations of Existing Approaches and Challenges
	1.2 Overview of the Proposed Research
	1.3 Scope of the Dissertation
	1.4 Contributions
	1.5 Document Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Insider Attacks
	2.2 Risk
	2.3 Trust
	2.4 Adaptive role-based access control approaches
	2.4.1 Background on RBAC, Constraints and Hybrid Hierarchy
	2.4.2 Related Work on RBAC Extended with Risk and Trust

	2.5 Obligation-based Access Control
	2.5.1 Related Work on Obligations

	2.6 Geo-Social Access Control

	3.0 REQUIREMENTS AND CONTRIBUTIONS
	3.1 An Adaptive Risk Management RBAC Framework
	3.1.1 Requirements
	3.1.2 Contributions

	3.2 Obligation-based Framework to Reduce Risk Exposure and Deter Insider Attacks
	3.2.1 Requirements
	3.2.2 Contributions

	3.3 Geo-Social Insider Threat Resilient Access Control Framework
	3.3.1 System Actors
	3.3.2 Insider Threats
	3.3.3 Requirements
	3.3.4 Contributions

	4.0 AN ADAPTIVE RISK MANAGEMENT RBAC FRAMEWORK
	4.1 Preliminaries
	4.1.1 Coloured Petri-net (CP-net)

	4.2 The Proposed Framework
	4.2.1 Overview of the Framework

	4.3 Risk and Trust Thresholds
	4.3.1 Risk Associated with Permissions
	4.3.2 Risk Associated with Role Sets
	4.3.2.1 Inference Threat and Activation History
	4.3.2.2 Calculating The Role Set Risk

	4.3.3 Trust Thresholds Associated with Role Sets
	4.3.4 Trust of Users

	4.4 Minimizing the Risk Exposure
	4.4.1 Trust-and-Risk Aware Role Activation
	4.4.2 Role Activation Algorithm
	4.4.2.1 Proof of Correctness of the Algorithm

	4.5 Inference Threat Analysis and Administration
	4.5.1 Finding Inferred Permissions
	4.5.2 Finding Active Inference Threats
	4.5.2.1 Simulating users' behavior to identify active inference threats
	4.5.2.2 Refinement of the inference CP-net

	4.5.3 Managing Active Inference Threats

	4.6 Implementation Results
	4.7 Chapter Summary

	5.0 OBLIGATION-BASED FRAMEWORK TO REDUCE RISK EXPOSURE AND DETER INSIDER ATTACKS
	5.1 Why using a posteriori obligations as an indicator?
	5.2 Proposed Framework
	5.2.1 The Core TB-RBAC Model
	5.2.2 Risk-and-Trust Obligation Framework

	5.3 Trust computation
	5.3.1 Trust Methodology

	5.4 Administration Module
	5.4.1 Clustering Algorithms
	5.4.2 Process to Find Patterns of Misbehavior

	5.5 Evaluation
	5.6 Chapter Summary

	6.0 AN INSIDER ATTACK RESILIENT GEO-SOCIAL ACCESS CONTROL SYSTEM
	6.1 Social Predicates and Spatial Scopes
	6.2 Overview of the proposed G-SIR
	6.3 G-SIR Access Control Model
	6.3.1 Geo-social Contracts
	6.3.2 Vicinity Constraints
	6.3.3 Geo-Social Obligations
	6.3.4 Geo-Social Trace Constraints
	6.3.5 Well-Formed Policy
	6.3.6 Role Activation

	6.4 G-SIR Risk Management
	6.5 Enforcement Algorithm
	6.6 Experimental Evaluation
	6.6.1 Experiment Setup
	6.6.1.1 Generation of social graph and user mobility
	6.6.1.2 Generation of policy, access requests and threats

	6.6.2 Analysis of Results
	6.6.3 Limitations of the Experiments

	6.7 Chapter Summary

	7.0 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
	7.0.1 Limitations and future work

	APPENDIX. ENTROPY AND PURITY OF CLUSTERING SOLUTIONS
	BIBLIOGRAPHY

