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Merkel cells are mechanosensory cells found in mammalian epidermis that are important for the 

detection of texture, size and shape. These epidermally-derived cells are present in both glabrous 

and hairy skin, are innervated by slowly adapting type 1 (SA1) afferents, and express the 

transcription factor Atoh1 from their specification into maturity. In this dissertation I sought to 

identify and characterize the generation and maintenance of the Atoh1+ Merkel cell lineage 

using transgenic mice. I found that embryonic Atoh1+ cells are proliferatively capable and 

unipotent, generating only mature Merkel cells. Contrary to previous estimates, these embryonic-

born Merkel cells persist into late adulthood in both hairy and glabrous skin, making them the 

longest-lived post-mitotic cell present in mammalian epidermis. Despite this, production of 

Merkel cells in adulthood can be induced by mechanical abrasion caused by repeated skin 

shaving. Unlike embryonic Merkel cells, these de novo Merkel cells do not arise from Atoh1+ or 

K14+ progenitors and have a decreased probability of survival compared to original Merkel cells. 

Furthermore, ectopic Atoh1 expression is sufficient to induce production of ectopic Merkel cells 

outside the touch dome boundaries. These ectopic Merkel cells express multiple canonical 

Merkel cell markers and a small percentage that reside in the hair follicle bulge can persist for at 

least 3 months post-induction. Competency of keratinocytes to respond to Atoh1 varies by skin 

location, developmental age and hair cycle stage. Also, the Notch signaling pathway plays an 

instructive role in epidermal cell responsiveness to Atoh1 expression. Together, these 

experiments provide novel insight into Merkel cell genesis and maintenance as well as illustrate 

two mechanisms by which Merkel cells production can be initiated in adulthood. They also 

suggest that the skin cancer, Merkel cell carcinoma, is more likely to arise from epidermal 

keratinocytes than the Merkel cell lineage. 
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1.0  INTRODUCTION  

1.1 MERKEL CELL DISCOVERY AND EARLY CHARACTERIZATION 

A renowned anatomist of his time, Friedrich Sigmund Merkel was the first to observe and 

describe the cells that were to be given his name (Kopera & Holubar, 1994; Merkel, 1875; 

Weissmann & Camisa, 1982). Their presence in highly sensitive skin areas and close proximity 

to nerves led Merkel to infer that they were likely important for the sense of touch and thus 

termed these cells tastzellen, or touch cells. He noted that only some tastzellen appeared to make 

close contact with nerves and specifically named those Tastkörperchen, or “little touch bodies”. 

Decades later, the ultrastructure within which these touch cells were found in hairy skin was 

described by Felix Pinkus who named them haarscheibe, or hair discs (Pinkus, 1902). Many 

factors contributed to the elusiveness of this cell population, not the least of which is their 

difficult identification with routine hematoxylin and eosin staining. Work by many scientists in 

years since has improved our ability to identify and characterize these cells with alternative 

fixation, sectioning, and staining techniques. The names by which these cells have been referred 

has also evolved throughout this time, culminating today in our study of Merkel cells within 

touch domes of hairy skin (Camisa & Weissmann, 1982). While putative Merkel cells (cells that 

share ‘Merkel cell’ characteristics) are also found in many other anatomical locations including 

the oral mucosa, whisker follicles, and glabrous skin of the hands, feet, and lips, their niche 

within touch domes is most frequently studied as it is a well-characterized model system 

common in multiple species (Boulais & Misery, 2007).  

Merkel’s captivation with microscopy no doubt played an instrumental role in his 

discovery of these enigmatic cells, which he first observed in the epithelia of ducks, geese, and 

moles using a long osmic acid fixation followed by a methylene blue stain (Camisa & 

Weissmann, 1982; Merkel, 1875; 1880; Weissmann & Camisa, 1982). This type of fixation was 
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the best of its time to identify and study Merkel cells, but precluded the analysis of potential 

innervation, as staining for neurites required formalin fixation (Munger, 1977). It is now much 

easier to find these cells in hairy skin by first locating touch domes, which appear as epidermal 

thickenings both in sectioned tissue and in whole mount human skin (Smith, 1970). Merkel cells 

can be distinguished using light microscopy by their positioning below the touch dome columnar 

epithelia, large lobulated nuclei, orientation parallel to the skin surface, and very light staining 

properties relative to other surrounding skin cells (Halata et al., 2003). However, these qualities 

can be similar to those used to identify melanocytes and Langerhans cells. Electron microscopy 

has surfaced as the classical method to confirm Merkel cell identity. This technique allows for 

the visualization of Merkel cell-specific characteristics including small villi on their apical side 

that penetrate between overlying keratinocytes, the desmosomes between touch domes 

keratinocytes and Merkel cells, the abundance of intermediate cytokeratin filaments, and large 

lobulated nuclei (Halata et al., 2003). Perhaps most importantly for Merkel cell identification are 

the electron-dense core granules concentrated near their basal side. An axon terminal with 

synaptic membrane specialization is closely apposed Merkel cells on this side, together 

comprising the Merkel disc or Merkel cell-neurite complex (Iggo & Muir, 1969; Smith, 1970). 

The neurite not only makes contact with Merkel cells, but actually has an elaborate terminal 

ending that conforms to the shape of their basal side (Munger, 1965).  

The cytokeratin profile of Merkel cells is distinct from that of the surrounding epithelia. 

The development of cytokeratin-specific antibodies combined with immuno-electron microscopy 

determined that Merkel cells are unique in their mature expression of the simple and low 

molecular weight cytokeratins (K) 8, 18, 19, and 20 (Moll et al., 1993; Saurat, 1984). This is 

distinct from the overlying touch dome keratinocytes that express K17 and the interfollicular 

epidermal keratinocytes that express K5 and K14 (Moll et al., 1993). This cytokeratin profile is 

consistent between Merkel cells of multiple species, though K20 is believed to be the most 

specific marker (Moll et al., 1995;1996a). Today the TROMA-1 antibody specific for K8 is most 

routinely used to identify and characterize Merkel cells, as this cytokeratin has robust expression 

in maturity and is one of the first to be expressed during Merkel cell development (Perdigoto et 

al., 2014a; Saurat, 1984).  
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1.2 DEBATE OF MERKEL CELL ORIGIN 

In addition to a unique cytokeratin profile, Merkel cells also express many other distinct proteins 

including the transcription factors Atoh1, Sox2, Gfi1, and Pax6 (Ben-Arie et al., 2000; Lesko et 

al., 2013; Parisi & Collinson, 2012; Wallis et al., 2003), various synaptic proteins including 

Rab3c, VGLUT2, and piccolo (Haeberle et al., 2004; Hitchcock et al., 2004), and neuroactive 

peptides such as vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), and 

serotonin (Cheng Chew & Leung, 1993; Nordlind, et al., 2008; Tachibana & Nawa, 2005). This 

complex and distinct expression profile incited an exhaustive debate surrounding the embryonic 

origin of Merkel cells. The two prevailing opinions concerning Merkel cell development were 

that Merkel cells either derived from migrating neural crest progenitors, or from resident 

epidermal progenitors in the skin. The techniques available to investigate this question early on 

were limited, and scientists depended on gleaning information from snapshots of Merkel cells at 

varying stages of their development. These scientists studied a wide array of tissue types in many 

different model systems and mounted a wealth of indirect supporting evidence for both sides of 

the argument.  

The location of Merkel cells during animal development and maturity was often cited as 

evidence for either side of this debate. While mature Merkel cells are found at the epidermal-

dermal border in touch domes or at rete ridges of palmar and plantar skin, reports of their 

existence within the dermis led scientists to infer that they could be migrating from a non-

keratinocyte origin (Breathnach, 1978; Saxod, 1978). This idea was reinforced by the similarities 

that Merkel cells share with neurosecretory cells, supporting the hypothesis that Merkel cells 

were derived from the neural crest (Taira, et al., 2002; Winkelmann, 1977). However, as pointed 

out by Dr. Kathleen English, these cells were never exclusively found in the dermis at an age 

prior to their being present in the epidermis, and one cannot infer in which direction the cells 

were traveling based on their location (English, 1977).  

Around the same time, other scientists were beginning to describe a population of cells 

present in the epidermis termed ‘transitional cells’, which shared both Merkel cell and 

keratinocyte characteristics (English, 1974; 1977; Saxod, 1978; Tachibana & Nawa, 1980). It 

was thought that these cells were putative Merkel cell progenitors undergoing early stages of 

differentiation and maturation. Transitional and mature Merkel cells were identifiable before the 
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presence of other migrating neural-crest derivatives, and before the afferent terminals of their 

innervating neurons (Boulais & Misery, 2007). Combined with the presence of desmosomes and 

light keratin filaments in mature Merkel cells, many scientists believed that resident epidermal 

progenitors within the touch dome compartment were responsible for generating Merkel cells. 

A handful of transplant and surgical studies in different model systems sought to directly 

test Merkel cell origin. In an early study, all presumptive neural crest cells and their derivatives 

were removed from the larvae of mole salamanders (Tweedle, 1978). Merkel cells formed even 

in these aneurogenic salamanders, indicating that Merkel cells of amphibian species arose from 

non-neural crest progenitors. A couple decades later, Moll et al. performed a transplant study 

with human fetal palmar and plantar skin xenografted into the subcutaneous tissue of adult nude 

mice and analyzed 4-8 weeks later (Moll et al., 1990). Human fetal tissue was taken and 

transplanted between 8 and 11 weeks of gestational age, before and during the time at which 

Merkel cells are first observed in the skin. Regardless of the age or tissue source, large numbers 

of Merkel cells of human origin were seen in the xenografts at the time of tissue analysis, 

indicating an epidermal origin of mammalian Merkel cells or Merkel cell progenitors derived 

from another cell population were brought along. Consistent with that finding, cultured 

keratinocyte sheets from humans lack Merkel cells in culture, but Merkel cells can be found after 

grafting, indicating their derivation from epithelial progenitors (Compton et al., 1990).  

In contrast to that work, Halata and Grim grafted the leg bud of quail embryos into the 

leg bud space of chick embryos (and vice versa) and analyzed the Merkel cell and keratinocyte 

populations in the grafted areas after animal development (Grim & Halata, 2000; Halata et al., 

1990). Cells were characterized as being of quail or chick origin on the basis of variable 

heterochromatin structure between the species (Le Douarin, 1969). They found that Merkel cells 

in the grafted areas had heterochromatin structures most like that of the host embryo, while all 

epidermal cells had heterochromatin structures like that of the grafted species (Grim & Halata, 

2000; Halata et al., 1990). The authors infer that avian Merkel cells must have migrated from a 

non-keratinocyte source, likely the neural crest.  

Many differences exist between these studies, most notable of which is the analyzed 

species. Merkel cell ultrastructure as judged by electron microscopy is seemingly similar 

between avian and mammalian systems and the cells also have similar protein expression 

profiles (Grim & Halata, 2000). However, their location differs, as mammalian Merkel cells are 
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found in the basal layer of the epidermis while avian Merkel cells are found in the dermis 

(Munger, 1977; Saxod, 1978). It is unclear whether these experiments demonstrate a true species 

divergence in Merkel cell origin, or if these discrepancies are due to differing technical 

approaches.  

With the advent of sophisticated genetic techniques offered by transgenic mice, fate-

mapping and conditional gene deletion approaches have greatly advanced our understanding of 

mammalian Merkel cell development. Using Cre-loxP technology, Szeder et al. fate mapped the 

neural crest lineage with Wnt1Cre mice crossed to a ROSALacZ reporter (Szeder et al., 2003). In 

this system, the Wnt1+ lineage irreversibly expresses the reporter gene LacZ, which codes for the 

enzyme β-galactosidase (β-gal). The authors analyzed whisker follicles of embryonic day 

(E)16.5 Wnt1Cre;ROSALacZ mice and found β-gal positivity in the areas of K8+ Merkel cells 

(Szeder et al., 2003). A complicating factor to this analysis is the very close proximity of Merkel 

cells to their innervating afferents, which are known to derive from the Wnt1+ neural crest 

lineage (Le Douarin & Kalcheim, 1999). Presented images were insufficient to determine the 

precise localization of β-gal as either in the Merkel cell or the innervating afferent, and therefore 

these experiments could not provide incontrovertible support for a neural crest origin of Merkel 

cells. 

A clear and direct demonstration of Merkel cell origin came in 2009, 134 years after 

Merkel cells were first described. Using similar Cre-loxP technology, Morrison et al. 

conditionally deleted the transcription factor Atoh1 from the Wnt1+ (neural crest) or K14+ 

(epidermal) lineages (Morrison et al., 2009). Atoh1 is necessary for Merkel cell development and 

its absence precludes K8+ cell formation (Maricich et al., 2009). In P0 Wnt1Cre;Atoh1CKO mice 

that lack Atoh1 specifically in the neural crest lineage, K8+ Merkel cells were formed in touch 

domes and whisker follicles. However, loss of Atoh1 from the epidermal lineage in 

K14Cre;Atoh1CKO mice led to an absence of K8+ Merkel cells from touch domes, whisker 

follicles, and paws (Morrison et al., 2009). This was independently verified by Van Keymeulen 

et al. who also found no K8+ Merkel cells in K14Cre;Atoh1CKO mice (Van Keymeulen et al., 

2009). They also performed additional fate-mapping experiments with Pax3Cre (neural crest), 

Wnt1Cre, and K14Cre mice crossed to a ROSAYFP reporter, demonstrating that K8+ cells were all 

YFP+ only in K14Cre;ROSAYFP  mice (Van Keymeulen et al., 2009). Likewise, K18+ Merkel cells 

in K14Cre;Ezh1/2CKO mice were found to lack H3K27me3 histone methylation, similar to other 
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epithelial-derived tissues, while tissues of all other origins retained this methylation signature 

(Bardot et al., 2013). Together, these experiments incontrovertibly demonstrate the epidermal 

origin of mammalian Merkel cells.   

1.3 GENETIC REGULATION OF MERKEL CELL DEVELOPMENT 

As mentioned above, discovery of the basic helix-loop-helix (bHLH) transcription factor Atoh1 

in Merkel cells was instrumental to our understanding of Merkel cell development. While Atoh1 

expression in the skin is limited to Merkel cells, many other cell types in the body also rely on its 

expression. This includes cerebellar granule cells and their progenitors (Akazawa et al., 1995; 

Ben-Arie et al., 1996), neurons in the retrotrapezoid nucleus (Rose et al., 2009), precursor cells 

of the D1 class of commissural interneurons in the spinal cord (Akazawa et al., 1995; Ben-Arie 

et al., 1996), inner ear hair cells (Ben-Arie et al., 2000), and secretory cells of the intestinal 

epithelia (Yang et al., 2001). With the exception of Merkel cells and intestinal secretory cells, all 

of these cell types lose Atoh1 expression after differentiation and maturity.  

Atoh1 is a single exon gene whose bHLH motif allows it to heterodimerize with other 

HLH proteins and bind to E-box DNA consensus sequences to regulate gene expression (Cai & 

Groves, 2014; Massari & Murre, 2000). The 3’ coding region for Atoh1 also contains this E-box 

sequence, allowing for Atoh1 to autoregulate its own expression levels (Helms et al., 2000). 

Atoh1 also has numerous serine residues available for phosphorylation and has been thought to 

undergo cytoplasmic shuttling during cell differentiation, indicating potential post-transcriptional 

regulation of its function (Akazawa et al., 1995; Cai et al., 2013; Camisa & Weissmann, 1982). 

This transcription factor is known to play multiple roles during lineage allocation and maturation 

in inner ear hair cells, illustrating a complex wealth of responsibility (Cai et al., 2013; Chonko et 

al., 2013). 

While Atoh1 is currently the single most important transcription factor known to regulate 

Merkel cell development, Merkel cells also express several other developmental transcription 

factors whose roles have been recently studied, including Sox2, Isl1, and Pax6. Embryonic Sox2 

expression is initiated almost concurrently with that of Atoh1 in the epidermal compartment 

where Merkel cells arise (Lesko et al., 2013). However, when conditionally ablated from the 
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epidermis in K14Cre;Atoh1GFP;Sox2flox/flox mice, Merkel cells still form and express Atoh1 (as 

indicated by GFP) and K8 (Bardot et al., 2013). While there is no difference in the density of 

guard hairs or K8+ clusters in these mice, they have 50% fewer K8+ cells per touch dome at P0 

and Atoh1+ cells are absent by P35 (Bardot et al., 2013; Lesko et al., 2013). These Merkel cells 

express the synaptic functional markers VGLUT2, Rab3c, piccolo, and Cav2.1 but fail to express 

K18 and K20 (Bardot et al., 2013; Lesko et al., 2013). Given this data, it seems likely that Sox2 

is functioning as a Merkel cell maturation and/or survival factor, but is not necessary for their 

initial specification.  

Epigenetic regulation of Sox2 expression by the Polycomb repressive complex (PRC), 

plays a role in Merkel cell lineage allocation, as has been studied in in K14Cre;Ezh1/2CKO mice. 

The PRC is composed of multiple proteins that are recruited to chromatin where they methylate 

histones and subsequently alter their epigenetic structure. Ezh1 and Ezh2 are two histone 

methyltransferases responsible for catalyzing this histone mark. In their absence, the PRC is 

unable to repress Sox2 expression within K14-lineal cells of K14Cre;Ezh1/2CKO mice, resulting in 

increased numbers of K18+ and K20+ Merkel cells at P0 and P90 (Bardot et al., 2013). This 

phenotype is a direct effect of Sox2 expression, as Merkel cell numbers are attenuated back to 

that of control mice when Sox2 is removed in P0 K14Cre;Ezh1/2CKO;Sox2CKO mice (Bardot et al., 

2013). This indicates that ectopic Merkel cell formation in K14Cre;Ezh1/2CKO mice was 

dependent on Sox2, and that Sox2 can regulate Atoh1 expression. It is postulated that removal of 

PRC repression directly from Sox2 and possibly Atoh1 permits the allocation of greater numbers 

of Merkel-lineal cells. It is unclear whether these events happen concomitantly, or if Sox2 or 

Atoh1 is expressed first, as they are both initially seen at the same embryonic age and are able to 

regulate expression of the other (Bardot et al., 2013). It is unlikely that the PRC represses Atoh1 

expression, as removal of Sox2 in a K14Cre;Ezh1/2CKO mouse was in itself sufficient to bring 

Merkel cell number back to control averages. If Atoh1 was de-repressed in this model, it is likely 

that higher Merkel cell numbers would still be present even without Sox2. Also, gene expression 

data in Ezh1/2-null epidermal stem cells did not indicate a role for PRC in Atoh1 regulation 

(Ezhkova et al., 2011). 

There appears to be a functional redundancy in the role some of these transcription 

factors play during Merkel cell development. Within the skin Isl1 is another transcription factor 

whose expression is limited to Merkel cells and is involved in the development and maintenance 
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of other cell lineages (Habener et al., 2005; Laugwitz et al., 2008; Perdigoto et al., 2014a). Loss 

of Isl1 alone in K14Cre;Isl1CKO mice had no effect on Merkel cell number or expression profile at 

P0 or in adulthood. However, when combined with loss of Sox2 in K14Cre;Isl1CKO; Sox2CKO 

mice, the average number of Merkel cells was lower than that of K14Cre;Sox2CKO mice. While 

this is an interesting phenomenon, likely due to gene redundancy, it is perhaps more interesting 

to note that many Merkel cells persist in the absence of both of these transcription factors and 

that these cells continue to express Atoh1, as indicated by GFP presence in 

K14Cre;Atoh1GFP:Sox2CKO;Isl1CKO
 mice (Perdigoto et al., 2014a). While these recent studies have 

greatly advanced our understanding of the genetic controls underlying Merkel cell formation, a 

great deal is still unknown about the signaling pathways involved in allocating the Merkel cell 

lineage from other skin lineages. 

1.4 SKIN AS A SENSORY ORGAN 

Skin is our largest organ, working simultaneously to regulate our body temperature, protect us 

from environmental assaults, and inform us about the tactile world around us. The Merkel cell-

neurite complex is one of a range of sensory receptors present in the skin responsible for 

detecting tactile stimuli. Each type of somatosensory receptor is specially tuned to respond 

optimally to specific forms of physical stimuli ranging from innocuous forms of skin stretch, 

vibration, and indentations to mechanically-induced pain (Abraira & Ginty, 2013). 

Somatosensory receptors transduce mechanical stimuli into electrical signals propagated along 

the peripheral axons of sensory neurons. The cell bodies of these somatosensory afferents reside 

in the dorsal root ganglia (DRG) and their central axons project into the dorsal horn of the spinal 

cord where they split and synapse on local interneurons and projection neurons. The electrical 

summation of these peripheral mechanical stimuli is sent to the brain, which then creates a 

percept of our environment. Somatosensory receptors can be classified based on a number of 

criteria, including the thickness of their myelination, their corresponding conduction velocities, 

peripheral end organs, response properties to varying stimuli, and cell soma size. The 

mammalian DRG houses the cell bodies of all these afferents in a seemingly-random order, 

making it exceedingly difficult to capture the full anatomical, physiological, and innervation 
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profile of individual cutaneous afferents. The advent of transgenic mice has become a powerful 

tool with which to label and study specific somatosensory afferent subtypes, greatly enhancing 

our understanding of the circuitry for cutaneous touch and pain. This enhanced knowledge of 

afferent identity is assisting with the creation of tools for further manipulation and understanding 

of how these receptors develop, function, and are maintained. 

Mechanically sensitive sensory afferents are split into two categories based upon their 

response thresholds. High threshold mechanoreceptors (HTMRs) are thought to transduce 

noxious mechanical stimuli, while low threshold mechanoreceptors (LTMRs) transduce 

innocuous stimuli (Abraira & Ginty, 2013). Conduction velocities are used to further classify 

LTMRs into C (slow), Aδ (intermediate), and Aβ (fast) fibers. C and Aδ fibers innervate hairy 

skin and form lanceolate endings primed to detect deflection of awl-auchene and zigzag hair 

follicles (Horch et al., 1977; Li et al., 2011). The Aβ fibers comprise rapidly and slowly adapting 

somatosensory receptors that have particularly unique end organs and response properties 

specific to different forms of stimuli. The rapidly adapting (RA) LTMRs include Meissner 

corpuscles, lanceolate endings around guard hair follicles, and Pacinian corpuscles. These RA-

LTMRs respond preferentially to skin movement, hair follicle deflection, and vibration, 

respectively, and fire action potentials exclusively at the onset and removal of stimuli (Knibestöl, 

1973; Vallbo & Johansson, 1984). In contrast, slowly adapting (SA) LTMRs fire throughout the 

duration of stimulus presence and include the Merkel cell-neurite complex and Ruffini endings. 

The SA response is composed of an early dynamic phase at the onset of stimulus presentation 

followed by a static phase that lasts until stimulus removal (Iggo & Muir, 1969). SA2 fibers are 

thought to innervate Ruffini endings (though this has not been directly demonstrated) and have a 

regular firing pattern during the static phase (Chambers, Andres, Duering, & Iggo, 1972). SA1 

fibers are those that contact Merkel cells, and are characterized by an irregular firing pattern 

during the static phase and preferential activation to skin indentation (Wellnitz et al., 2010). 

Similar to the uncertainty concerning Merkel cell origin, considerable debate was held 

surrounding the cellular site of mechanotransduction within the Merkel cell-neurite complex. It 

was thought that the SA1 fiber, the Merkel cell, or both were responsible for receiving and 

transducing mechanical stimuli. Cell ablation by a UV laser led to conflicting results, as it was 

difficult to determine if either the SA1 afferent terminals were truly left undamaged and/or if 

Merkel cells were completely ablated in these models (Diamond et al., 1988; Ikeda et al., 1994; 
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Senok et al., 1996). Transgenic mouse models provided the tools necessary to accurate test this 

question. The first clear demonstration of Merkel cell requirement for SA1 signaling occurred in 

2009, when Hoxb1Cre;Atoh1CKO mice that lack Merkel cells in their body skin were shown to 

have no canonical SA1 responses (Maricich et al., 2009). Moreover, K14Cre;Atoh1CKO mice 

which similarly lack Merkel cells in all body regions have deficiencies in their ability to 

discriminate between textured surfaces, indicating a functionally significant requirement for 

Merkel cells (Maricich et al., 2012). A triad of recent papers illustrated that both components are 

independently mechanosensitive and likely contribute to the unique firing pattern of SA1 

afferents (Ikeda et al., 2014; Maksimovic et al., 2014; Woo et al., 2014). Moreover, it has been 

shown that cells of the keratinocyte lineage are able to stimulate firing of somatosensory 

afferents (Baumbauer et al., 2015).  The current working model of Merkel cell-neurite 

mechanotransduction is that mechanically activated channels on Merkel cells are activated, 

causing Merkel cell depolarization and subsequent opening of voltage gated calcium channels. 

This calcium influx stimulates the release of a heretofore unknown neurotransmitter from Merkel 

cells that binds to appropriate ligand-gated channels on the SA1 terminal. Concurrently, 

mechanosensitive channels on the SA1 afferent are also stimulated to open. It is thought that 

Merkel cells continue to fire for the duration of stimuli presence, resulting in the continued SA1 

response (Maksimovic et al., 2014). The fast initial, dynamic phase is therefore a result of the 

mechanically gated channels on the SA1 afferent, while the later static phase is a result of 

Merkel cell firing and continuous activation of the SA1 fiber.  

However, a confounding factor to the work done by Maksimovic et al. is that in their 

K14Cre;Atoh1CKO transgenic mouse model, the SA1 afferent was not allowed to develop normally 

before Merkel cell removal. While the SA1 afferent innervates touch domes and survives even in 

the absence of Merkel cells in these K14Cre;Atoh1CKO mice, recent data demonstrates a critical 

role for Merkel cells in the development of SA1 molecular identity and function (Reed-Geaghan, 

et al. in press). A more accurate approach would have been to genetically ablate Merkel cells 

during adulthood, after the Merkel cell-neurite complex had been formed and matured. 

Therefore, the response properties of unmanipulated SA1 fibers permitted to properly develop is 

still up for investigation. 

Merkel cell-neurite complexes are found in both glabrous and hairy skin, and though their 

organization in these locations differs, their response properties are largely similar. The 
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organization and density of this mechanoreceptor also varies between mice and humans, likely 

reflecting the different needs for tactile acuity in varying body areas between these species. 

Worth noting though, is that the morphology of individual Merkel cells look remarkably similar 

between these species. In the hairy skin of mice, Merkel cells are most frequently found at the 

epidermal-dermal border of guard hairs within touch domes, though they are also found around 

hair follicles in the dorsal hairy skin of paws and surrounding the outer root sheath of whisker 

follicles (Moll et al., 1995). Guard hairs are regularly spaced throughout the body skin and each 

associated touch dome has between ~3-80 Merkel cells (Cheng et al., 2014). Individual SA1 

fibers innervate either one or multiple touch domes, and each touch dome is typically innervated 

by a single SA1 fiber, though perhaps not exclusively (Iggo & Muir, 1969; Lesniak et al., 2014; 

Reinisch & Tschachler, 2005; Woodbury & Koerber, 2007). Many innervated Merkel cells are 

also found in the glabrous skin of paws either singly or in small clusters with the greatest density 

on the fingertips and touch pads. In mice, the largest density of Merkel cells though is found in 

the buccal pad, where hundreds of Merkel cells wrap around the outer root sheath of individual 

whisker follicles. This high density likely reflects the significance of whisking for mouse tactile 

acuity and the use of this structure for awareness of and interaction with their environment. 

While mice are most apt to explore their tactile environment using their whiskers, 

humans predominantly interact with our physical environment with our hands. A single human 

hand has an average of over 460 Merkel cells per mm2, an incredible density when compared to 

the hairy regions of the body (~12 Merkel cells/mm2, which varies by location) or even the entire 

sole of a foot (~220 Merkel cells/mm2) (Lacour et al., 1991). Other body regions with high 

tactile acuity (skin of the face, lips, oral mucosa) also have relatively high Merkel cell density. 

Contrary to what is observed in mouse skin, Merkel cells are not believed to be primarily located 

within touch domes of human skin, but instead are much more loosely arranged. It should be 

noted that these counts were performed on epidermal sheets of cadaver skin 65-91 years of age. 

Therefore, these may be lower estimates, as Merkel cell number is thought to decrease with age 

(Ulfhak et al., 2002), and Merkel cells may have adhered to the dermal side of skin during tissue 

preparation. 

Touch dome density is irregular in human samples of hairy skin and not always found in 

association with hair follicles (Smith, 1970). Merkel cells in human hairy skin are not 

exclusively associated with touch dome structures, but instead tend to be interfollicular or 
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associated with the outer root sheath or hair bulb (Lacour et al., 1991). Some mention has been 

given to dermally located Merkel cells, which are readily present during embryogenesis, but not 

as well described in adulthood (Moll et al., 1986;1984). In humans, Merkel cells are first seen in 

glabrous and hairy skin as early as gestational week 8 where their density increases until 

gestational weeks 24-30 and then decreases by birth, though it is unclear if this is due to Merkel 

cell loss or tissue expansion without addition of more Merkel cells (Moll & Moll, 1992; Moll et 

al., 1984).  

Merkel cells in hairy skin of mice form as early as E14.5 and begin to be innervated by 

E16.5, with essentially full innervation achieved by P0 (Pasche et al., 1990). It is unclear what 

percentage of Merkel cells remain innervated in animal maturity, though recent data estimate 

~85% (Lesniak et al., 2014). It is also unclear if this innervation status is static or dynamic 

during an animal’s lifespan, rendering possible a pliability of the SA1 afferent to remodel and 

innervate different Merkel cells over time. The ability of SA1s to reinnervate touch domes after 

injury indicates a certain degree of flexibility within the mechanosensory unit, but how this 

regeneration and targeting occurs has yet to be comprehensively studied. The specific 

organization of Merkel cells to branched SA1 neurites can drastically influence the sensitivity 

and firing pattern of individual touch domes (Lesniak et al., 2014). Whether or not individual 

touch domes tune this organization throughout development and maturity has yet to be 

investigated, but may provide an additional layer of complexity and plasticity to this 

somatosensory receptor. 

1.5 MERKEL CELL CARCINOMA 

 

For the first century after Merkel cells were initially discovered and described, analysis of their 

function and development was focused on their probable somatosensory and/or neuroendocrine 

functions. However, the potential relevance of Merkel cells to the skin cancer Merkel cell 

carcinoma (MCC) has provided a new perspective and incentive to understanding their cellular 

maintenance. The incidence rate of MCC increased by ~8% between 1986 and 2001, and though 

this rise could be an artifact of greater awareness and more prevalent diagnosis, the prognosis for 
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patients with advanced disease is still very poor (PDQ Adult Treatment Editorial Board, 2002; 

Saavedra & Batich, 2010). Current treatment options involve surgical excision followed by 

adjuvant radiation therapy, though recurrence is frequent and correlative of a poorer prognosis 

for survival. While MCC is still relatively rare, the severity of this carcinoma combined with 

limited therapeutic options underscores the incredible need for more targeted approaches in 

combating this cancer. It is hoped that a greater understanding of Merkel cell development and 

maintenance may help in the identification of these desired targeted therapeutic approaches. 

 Originally described by Cyril Toker in 1972, MCC skin tumors were initially termed 

trabecular carcinoma of the skin (Toker, 1972). These forms of tumors have since gone by many 

different names, owing to their heterogeneity and unknown cell of origin, including the Toker 

tumor, primary small cell carcinoma of the skin, primary cutaneous neuroendocrine carcinoma, 

and malignant trichodiscoma, though MCC is used most commonly now (Schwartz & Lambert, 

2004). The most appropriate name for these tumors is still unclear and the subject of debate, as 

much is still unknown about the cellular origin and progression of these skin tumors (Schwartz & 

Lambert, 2004; Toker, 1972).  

The gross morphology of MCC tumors is widely variable, though most tumors are 

nodular, red to violet in coloring, and their primary sites occur most frequently in UV-exposed 

areas of skin on older, immunocompromised individuals (PDQ Adult Treatment Editorial Board, 

2002). Biopsy of the lesion is required for a positive diagnosis, and though no single specific 

marker of MCC is known, the presence of dense core neurosecretory granules, cytoplasmic 

processes, and intermediate filaments are positive indicators (Eng et al., 2007). MCC can be 

distinguished from other metastasizing small round cell tumors such as melanomas and small 

cell carcinoma of the lung (SCLC) by a trending host of distinct expression patterns including an 

absence of S100 and thyroid transcription factor-1 (TTF-1) expression, and the presence of K20, 

BDNF, and neuron specific enolase (Bobos et al., 2006; Gele et al., 2004; Kuwamoto, 2011). 

However, the presence or absence of any one of these markers are insufficient for diagnosis, as a 

minority of MCC and SCLC tumors express TFF-1 and CK20, respectively (Buresh et al., 2008; 

Byrd-Gloster et al., 2000; Hanly et al., 2000).  

Recently the discovery of Merkel cell polyomavirus (MCPyV) and its frequent 

association with MCC tumors has provided additional potential insight into the etiology of some 

forms of MCC (Feng et al., 2008). A high viral load of MCPyV is found in ~70-80% of MCC 
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tumors where it is often monoclonally integrated into the host genome, indicating clonal 

expansion early after integration. Though almost the entire adult human population has 

detectable levels of MCPyV in their skin microbiome, even the highest viral loads are 60X less 

than that seen in MCC biopsies (Loyo et al., 2010; Schowalter et al., 2010). Interestingly, 

MCPyV+ tumors are associated with decreased levels of p53 and a better prognosis (Bhatia et 

al., 2010a; 2010b; Laude et al., 2010; Sihto et al., 2009), while MCPyV- tumors have a higher 

rate of regional metastasis (Sihto et al., 2009). Slight histological differences may also exist, with 

MCPyV+ tumors having more round nuclei compared to the polygonal nuclei found in MCPyV- 

tumors that also contain a qualitatively lighter and larger cytoplasm (Becker et al., 2009; Katano 

et al., 2009). It is thought that these two types of MCC have different etiologies, leading to 

differing prognoses, though their cell of origin is believed to be the same. 

Many MCC tumors have expression profiles resembling neuroendocrine cells of the skin, 

and Toker was the first to hypothesize that Merkel cells and/or their derivatives may in fact be 

their cell of origin (Tang & Toker, 1978). This prediction gained further support when the human 

ortholog of Atoh1 (Hath1) was found in a subset of MCC tumors (Leonard et al., 2002), leading 

to the thought that resident Merkel cell progenitors in mammalian skin may be the MCC site of 

origin. This hypothesis has been under a great deal of scrutiny, as proliferative Merkel cells have 

not been detected in adult skin (Mérot & Saurat, 1988; Moll et al., 1996b; Vaigot et al., 1987), 

many MCC tumors are found mixed with other carcinomas (Gould et al., 1988; Iacocca et al., 

1998; Szadowska et al., 1989), and the expression profiles of the MCC and normal Merkel cells, 

while similar, have many discrepancies (Tilling & Moll, 2012). Nonetheless, identification and 

characterization of resident skin cells capable of producing cells with Merkel cell phenotypes 

may provide insight their formation and maintenance, potentially lending new therapeutic targets 

for MCC tumors. 
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2.0  MERKEL CELLS ARISE FROM AN ATOH1+ PROGENITOR IN 

EMBRYOGENESIS  

The experiments described in this section are part of a published manuscript co-first authored by 

Dr. Erin Reed-Geaghan and myself (Wright et al., 2015). 

My contributions: 

-Discussing experimental design and data analysis with Drs. Reed-Geaghan and Maricich. 

-Writing the manuscript, with edits from Drs. Reed-Geaghan and Maricich. 

-Design and production of all figures, including acquisition of the majority of the images. 

-Generating animals, tissue processing, and quantifications in Figures 2, 3, and 5.  

Contributions from other authors: 

-Figure 1 - Dr. Reed-Geaghan generated animals, processed tissue, and performed cell counts. 

-Figure 4 - Alexa Bolock processed tissue and performed cell counts. 

-Drs. Fujiyama and Hoshino generated and kindly provided the Atoh1CreER-T2/+mice. 

 

2.1 INTRODUCTION 

Mammalian hairy skin comprises multiple sub-structures including hair follicles, sebaceous 

glands, sweat glands, interfollicular epithelia, and touch domes. The complex interplay of many 

signaling cascades during embryogenesis sum together to generate these unique cell populations 

from a single layer of homogeneous and multipotent epithelial progenitors (Fuchs, 2007). One of 

these sub-structures, the touch dome, is found exclusively around guard hairs and can be 

identified by distinct columnar epithelial cells called touch dome keratinocytes. Touch domes 

also house the Merkel cell-neurite complex, a mechanoreceptor responsible for light touch 
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detection.  

Merkel cells have a complex and unique array of characteristics, leading to their common 

classification as a ‘neuroendocrine’ cell and inspiring a century long debate into their 

developmental origin. Several independent lines of evidence in the last decade have clarified this 

controversy, with newly available genetic techniques demonstrating an epidermal origin for 

mammalian Merkel cells (Bardot et al., 2013; Morrison et al., 2009; Van Keymeulen et al., 

2009). These and other studies have started to detail the genetic cascades that lead to Merkel cell 

specification and maturation in embryogenesis. However, the identity of the specific progenitor 

cell responsible for generating and maintaining Merkel cells was not yet determined.  

The basic helix-loop-helix transcription factor Atoh1 is required for Merkel cell 

specification and is the earliest known marker of the Merkel cell lineage (Ben-Arie et al., 2000; 

Maricich et al., 2009). As other post-mitotic Atoh1+ cell populations in the body are generated 

by Atoh1+ progenitors (Akazawa et al., 1995; Helms & Johnson, 1998; Yang et al., 2001), we 

wondered if this was the same for Merkel cells as well. Using transgenic mice that allow us to 

identify and fate-map the Atoh1+ skin lineage, we sought to investigate the proliferative capacity 

of Atoh1+ skin cells in embryogenesis. 

2.1.1 Mice 

Atoh1GFP (JAX 013593; The Jackson Laboratory; (Lumpkin et al., 2003)), ROSAtdTomato 

(JAX 007914; (Madisen et al., 2010)), K14CreER (JAX 005107; (Vasioukhin, Degenstein, Wise, 

& Fuchs, 1999)), and Atoh1CreER-T2 (Fujiyama et al., 2009) mice were maintained in 

accordance with International Animal Care and Use Committee guidelines at the Case Western 

Reserve University and the Children’s Hospital of Pittsburgh of the University of Pittsburgh 

Medical Center. For embryonic ages, the plug date was designated as E0.5.  
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2.1.2 Tamoxifen and EdU Administration 

Tamoxifen (Sigma-Aldrich) was dissolved in a 9:1 corn oil/ethanol solution at a 1% or 5% 

concentration. Mice were briefly anesthetized with isoflurane, and tamoxifen was administered 

by oral gavage. For lineage tracing, tamoxifen was administered as a single dose of 0.4 mg 

(~10mg/kg; low-dose), or 250mg/kg (high dose) on either a consecutive 1 or 3 days. EdU (5-

ethynyl-2’-deoxyuridine, Invitrogen) was dissolved in sterile PBS at a 10mM concentration and 

administered as a single 50mg/kg dose by intra-peritoneal injection to pregnant females.  

2.1.3 Tissue processing 

Mice were euthanized by cervical dislocation, and skin was dissected into cold PBS. Embryos 

were removed from pregnant dams and decapitated before tissue dissection. Skin processed for 

immunohistochemistry was fixed in 4% paraformaldehyde (PFA) for 30 min (dissected 

embryonic skin) or overnight (whole embryos), washed in PBS, and cryopreserved in 30% 

sucrose/PBS. Skin for Xgal staining was fixed in cold 4% PFA for 15 min, washed in cold PBS, 

and stained in Xgal overnight at 37°C. Embryonic skin and whisker follicles were dissected 

before incubation in Xgal. Tissue was washed and post-fixed for 2 hrs in 4% PFA before 

imaging. Tissue was also prepared for cryosectioning and counterstained with Nuclear Fast Red 

(Sigma-Aldrich).  

2.1.4 Histology 

Tissue was embedded in optimum cutting temperature (O.C.T.; Thermo Fisher Scientific) and 

serially sectioned on a cryostat (1950M; Leica) at 25μm. Slides were vacuum dried, rehydrated 

in PBS, and blocked with 5% normal donkey serum or 3% nonfat dry milk in 0.3% PBS-T (PBS 

with Triton X-100). EdU was detected with an imaging kit (Click-iT EdU; Invitrogen). Slides 

were incubated overnight in blocking solution containing dilutions of the following primary 

antibodies: chicken anti-GFP (1:1,000; GFP-1010; Aves Labs), rabbit anti-Ki67 (1:500; RM-

9106-S1; Thermo Fisher Scientific), rat anti-K8 (1:20; TROMA-1; Developmental Studies 
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Hybridoma Bank), chicken anti–βGal (1:1,000; BGL-1010; Aves Labs), rabbit anti-K14 

(1:1,000; PRB- 155P; Covance), and rabbit anti-phospho–histone H3 (1:500; 06–570; EMD 

Millipore). Antigen retrieval was performed before Ki67 immunostaining by either heat-induced 

epitope retrieval with citrate buffer or proteolytic-induced epitope retrieval with trypsin. For 

heat-induced epitope retrieval, rehydrated tissue sections were incubated in sub-boiling 10mM 

citrate buffer solution for 7 min followed by 10 min at room temperature. For proteolytic-

induced epitope retrieval, rehydrated tissue sections were incubated at 37°C for 10 min in pre-

warmed 0.0125% trypsin in PBS. After primary antibody incubation, sections were washed and 

incubated for 30 min at room temperature in blocking solution containing the appropriate 

secondary antibodies obtained from Jackson ImmunoResearch Laboratories, Inc. (1:500): Alexa 

Fluor 488–conjugated donkey anti–rat (712-545-150), Alexa Fluor 488–conjugated donkey anti–

chicken (703-545-155), Cy3-conjugated donkey anti–rabbit (711-165-152), Cy3-conjugated 

donkey anti–rat (712-165-150), Alexa Fluor 647–conjugated donkey anti–rabbit (711-605-152), 

and Alexa Fluor 647–conjugated donkey anti–rat (712- 605-150). Sections were stained with the 

nuclear probe DAPI (1:1,000; Thermo Fisher Scientific) to visualize nuclei and mounted in 

ProLong gold (Invitrogen). Whole-mount immunostaining was performed by modifying 

previously published protocols (Li et al., 2011) for hairy skin. Fixed skin was dissected into 

small pieces, and the underlying adipose tissue was removed and washed for 5–8hrsin 0.3% 

PBS-T. Tissue was incubated with primary antibodies for 4 days, washed for 5–8hrsin 0.3% 

PBS-T, and then incubated with secondary antibodies for 2 days, all at room temperature. 

Antibodies were diluted in 20% dimethyl sulfoxide/5% normal donkey serum/0.3% PBS-T. 

Confocal images were acquired with an inverted microscope (Axio Observer; Carl Zeiss) on a 

spinning-disc confocal (UltraVIEW VoX; PerkinElmer) with a C-Apochromat 40X, 1.1 NA 

water immersion objective, a camera (C9100-13; Hamamatsu Photonics), and Volocity software 

(PerkinElmer). Images presented here are maximum intensity projections of a z-series or single 

z-slices (as noted in the figures) consisting of 1μm optical slices collected every 0.35μm. Non-

confocal images were acquired with a fluorescent scope (DM5500 B; Leica) using an HCX Plan 

Apochromat 40X, 1.25 NA and an HC Plan Apochromat 10X, 0.4 NA objective, camera 

(DFC420; Leica), and Leica Acquisition Software v4.2. Images were cropped, and brightness 

and contrast were enhanced for publication quality with Photoshop and/or Illustrator (Adobe).  
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2.1.5 Cell counts 

Cell counts of Atoh1GFP mice (n = 2/age) were performed on a microscope (DM5000 B) with a 

dual red/green fluorescent filter using an HCX Plan Apochromat 40X, 0.75 NA objective at 

room temperature. All GFP+ cells from one whisker pad were counted per animal, amounting to 

>500, >1,700, >6,000, >1,000, and >1,500 GFP+ cells for each mouse at E14.5, E15.5, E16.5, 

E17.5, P0, and P21, respectively. GFP+ cells from hairy skin were counted from a total of 15 

slides/mouse from three different body levels, amounting to >40, >75, >2,500, >3,500, >3,000, 

and >250 GFP+ cells for each mouse at E14.5, E15.5, E16.5, 17.5, P0, and P21, respectively. 

Greater than 1,500 and >250 GFP+ cells were counted in the whisker follicles and hairy skin, 

respectively, for each Atoh1GFP mouse at 3 and 6 mo of age. Together, we analyzed >95,000 

GFP+ cells in these experiments. Cell counts from all other mice were performed at room 

temperature on a fluorescent microscope (DM5500 B) using an HCX Plan Apochromat 40X, 

1.25 NA objective. 20 touch domes from 3–6 mice/time point were counted in embryonic 

Atoh1CreER-T2/+;ROSAtdTomato mice, amounting to >2,500 and >2,900 tdTomato+ cells at E16.5 and 

E18.5, respectively. In our embryonic EdU incorporation experiment, >200 tdTomato+ 

cells/mouse were counted each in the body skin and whisker follicles (n = 2 mice), amounting to 

~1,500 tdTomato+ cells. 20 touch domes from two mice per age were counted in embryonic 

K14CreER;ROSAtdTomato mice, amounting to >1,000 K8+ cells. Cell counts were compared using 

independent sample two-tailed t-tests (Excel; Microsoft) or one- or two-way ANOVA with post-

hoc Tukey’s multiple comparisons test (Prism 6; GraphPad Software). 

2.2 RESULTS 

2.2.1 A subset of Atoh1+ cells in hairy skin express mitotic markers 

The transcription factor Atoh1 is the earliest known marker of the Merkel cell lineage (Ben-Arie 

et al., 2000). To determine if any Atoh1-expressing cells in the skin were proliferative, we 

analyzed the Merkel cell population for presence of the proliferative marker, Ki67 (Scholzen & 
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Gerdes, 2000), in Atoh1GFP mice. These mice express green fluorescent protein (GFP) under the 

control of Atoh1 promoter elements, faithfully recapitulating Atoh1 expression in the skin and 

allowing for us to easily visualize the Merkel cell lineage (Lumpkin et al., 2003). Hairy skin and 

whisker follicles from E14.5, E15.5, E16.5, E17.5, P0, and P21 Atoh1GFP mice was 

immunostained for GFP and Ki67, and GFP+Ki67+ cells were present at all ages. The 

percentage of GFP+ cells that were also Ki67+ peaked at E14.5 in whisker follicles and at E16.5 

in hairy skin and then decreased as the animals aged, reaching ~1% at P21 (>500 

cells/region/mouse, n=2 mice/age; Figure 1A-D).  

To determine where proliferative Atoh1+ cells were located, whisker follicles were 

divided into four equal segments and the number of GFP+/Ki67+ cells counted in each quadrant 

(Figure 1E). The vast majority of GFP+/Ki67+ cells were found in the most superficial 25% of 

the whisker follicle and never in the bottom 50% (Figure 1F). Similarly, GFP+/Ki67+ cells in 

guard hair follicles of the body skin were found mostly in the infundibulum (Figure 1C’ and 

C’’). These data suggest that proliferative Atoh1+ cells are located in specific hair follicle 

regions.  

To expand upon these findings the Atoh1+ population was analyzed for a second marker 

of proliferation, the M-phase marker phosphohistone 3 (PH3). A subset of GFP+ cells in 

Atoh1GFP mice was found to also express PH3 (Figure 2A-A’’’). To further confirm these 

markers, tamoxifen was administered to Atoh1CreER-T2/+;ROSAtdTomato embryos at E15.5 

(250mg/kg) to label all Atoh1 lineage cells with tdTomato, then the nucleoside analogue 5-

ethynyl-2’-deoxyuridine (EdU; 50mg/kg) administered at E16.5 and skin harvested 4hrs later to 

identify actively dividing cells. In the whisker follicles and body skin 0.9 ± 0.1% and 1.1 ± 1.1% 

of tdTomato+/K8+ cells incorporated EdU, respectively (>200 tdTomato+ cells/region/mouse, 

~1,500 tdTomato+ cells total; n=2 mice; Figure 2B–B’’’). These data indicate that embryonic 

Atoh1+ cells are mitotically active.  
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Figure 1. A subset of Atoh1+ cells in hairy skin express the proliferative marker Ki67. (A-

C’’) Confocal images of an E14.5 whisker follicle (A-A’’’) and E16.5 touch dome (C-C’’’) from 

Atoh1GFP mice immunostained for GFP (A’ and C’, green) and Ki67 (A’’ and C’’, red), 

counterstained with DAPI (A and C). Whisker (A-A’’’) and guard hair (C-C’’’) follicles are 

outlined with dashed lines. Crosshairs are over double-labeled cells, which are also indicated by 

arrows. Percentages ± SEM of GFP+Ki67+ cells are shown in A’’’ and C’’’. (B and D) The 

percentages of GFP+Ki67+ cells within the GFP+ population changed from E14.5 to P21. Error 

bars show SEM. (N=2 mice/age.) (E) Cross section of E14.5 Atoh1GFP whisker follicle 

illustrating how follicles were divided into quadrants. The dotted yellow line outlines a single 

whisker follicle. (F) GFP+Ki67+ cells are clustered at the top of whisker follicles (n=2 

mice/age). Scale bars: 50μm. 
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Figure 2. A subset of Atoh1+ cells express the proliferative marker PH3 and incorporate 

EdU.  (A-A’’’) Single confocal z-slice image of an Atoh1GFP E16.5 whisker follicle 

immunostained for GFP (A’, green) and PH3 (A’’, red), counterstained with DAPI. Inset shows 

double-labeled cell. (B-B’’’) Single confocal z-slice of a touch dome from a E16.5 Atoh1CreER-

T2/+;ROSAtdTomato mouse given tamoxifen at E15.5, EdU at E16.5, and tissue retrieved 4 hrs 

after EdU administration. EdU (B’, green), tdTomato (B’’, red), K8 (B’’’, cyan), and merge 

(G’’’’) are shown. Insets show a K8+tdTomato+K8+ cell. Scale bars: (main images) 50μm; (A-

A’’’ insets) 10μm; (B-B’’’’ insets) 5μm. 

2.2.2 Proliferative Atoh1+ cells give rise only to Merkel cells 

While it was clear that a subset of Atoh1+ cells were proliferating, we wanted to confirm that 

they were actively generating new cells, and identify who those new cells were. To determine 

this, Atoh1+ cells were lineage traced using Atoh1CreER-T2/+;ROSAtdTomato embryos. 

Recombination was limited to the day of tamoxifen administration by administering a single low 

dose (10mg/kg) to pregnant dams at E15.5 and then tissue harvested 1 (E16.5) or 3 (E18.5) days 

later. We found ~71% more tdTomato+ cells/touch dome at E18.5 than at E16.5 (18.0 ± 1.2 vs. 

10.5 ± 0.6; n=20–30 touch domes/embryo from 3–6 embryos/age; P=4x10-4, t-test; Figure 3B–
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D), suggesting that Atoh1+ cells proliferated between these ages (Figure 3A). As expected, 

immunostaining for K8 demonstrated that the mean number of Merkel cells per touch dome also 

increased between E16.5 and E18.5 (13.8 ± 0.7 and 21.3 ± 0.8, respectively; P=5.9x10-6, t-test). 

The proportion of K8+ cells co-expressing K20 also increased between E16.5 and E18.5 (22.9 ± 

0.7% and 46.8 ± 2.6%, respectively; n=3 mice/age; P=9.3x10-4, t-test; Figure 4B–C’’’). 

Importantly, all tdTomato+ cells were also K8+ and/or K20+, demonstrating that proliferative 

Atoh1+ cells are unipotent and only give rise to Merkel cells. These data demonstrate that some 

Atoh1+ cells present at E15.5 are mitotically active and continue to divide after E16.5.  
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Figure 3. Embryonic Merkel cell precursors express Atoh1 and are unipotent.  (A) 

Experimental paradigm, outcomes, and interpretations. (B-C’’) Whole-mount immunostaining 

for K8 (B and C, green), endogenous tdTomato signal (B’ and C’, red), and merged images (B’’ 

and C’’) in E16.5 (B-B’’) and E18.5 (C-C’’) Atoh1CreER-T2/+;ROSAtdTomato embryonic 

body skin. (D) K8+ and tdTomato+ cell numbers increased from E16.5 to E18.5 (n=3-6 

mice/age, t test). Error bars show SEM. Scale bars: 50μm. 
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Figure 4. Embryonic K8+ Merkel cells co-express K20. Back skin from E16.5 (A-A’’’) and 

E18.5 (B-B’’’) mice immunostained for K8 (A’, B’, green) and K20 (A’’, B’’, red), 

demonstrating co-expression (arrows). Scale bar: 50μm. 

2.2.3 The Atoh1+ lineage separates from K14+ skin lineages in late embryogenesis   

Embryonic Atoh1+ cells are derived from the K14 lineage (Morrison et al., 2009; Van 

Keymeulen et al., 2009). Very soon after their specification, Atoh1+ Merkel cells lack K14 and 

begin to express the cytokeratins 8, 18, and 20 (Perdigoto et al., 2014b). Given our data 

suggesting that the Atoh1+ population expanded between E16.5 and E18.5, we wondered when 

Atoh1- skin precursor cells stopped producing Atoh1+ Merkel cell precursors. To verify the 

absence of K14 in Atoh1+ cells, I immunostained for K14 in the body skin and whisker follicles 

of E16.5 Atoh1GFP mice and found no GFP+K14+ cells (Figure 5A-A’’’). To determine if 

Atoh1-K14+ cells contributed to Merkel cell generation after E16.5, tamoxifen was administered 

to E16.5 and E17.5 K14CreER;ROSAtdTomato embryos and the Merkel cell population analyzed at 

E18.5. No K8+tdTomato+ cells were found (>250 hairy skin and >500 whisker follicle K8+ cells 

counted/mouse, n=2 mice/age; Figure 5B–B’’). Tamoxifen administration at E14.5, when 

Atoh1+ cells first arise from the K14 lineage, did yield a subset of K8+/tdTomato+ cells at E18.5 

(Figure 5C-C’’). These data suggest that the full complement of Atoh1+ Merkel cell progenitors 

are created in a 2–3 day period beginning with the appearance of the first Atoh1+ cells in the skin 

at E14.5.  
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Figure 5. Embryonic Atoh1+ cells separate from the K14 lineage very early. (A-A’’’) Single 

confocal z-slice of a touch dome immunostained for GFP (A’, green) and K14 (A’’, red) in the 

body skin of an E16.5 Atoh1GFP mouse. (B-B’’) Single confocal z-slice of touch dome whole-

mount preparation from an E18.5 K14CreER;ROSAtdTomato mouse given tamoxifen at E16.5 and 

immunostained for K8 (B) shows that the two signals are not co-localized. (C-C’’) Confocal 

image of a whole mount touch dome from an E18.5 K14CreER;ROSAtdTomato mouse given 

tamoxifen at E14.5 and immunostained for K8 (C). Arrows mark double-labeled cells. Scale 

bars: 50μm. 
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2.3 DISCUSSION 

We have identified a novel, Atoh1+ progenitor population located in the infundibulum of guard 

hairs and whisker follicles that produces only Merkel cells during embryogenesis. These 

progenitors are allocated from the K14+ lineage very early in skin development and are found at 

all embryonic ages after E14.5 in both whisker follicles and body skin.  

The epidermal placodes that give rise to whisker follicles in the snout and tylotrich (guard 

hair) follicles in the hairy skin develop at E12.5 and E14.5, respectively, whereas Atoh1 

expression is first seen in these regions at E14.5 (Ben-Arie et al., 2000; Morrison et al., 2009; 

Richardson et al., 2009; Vielkind et al., 1995). Our present results demonstrate that these early 

born Atoh1+ cells are mitotically active and that they give rise only to Merkel cells, suggesting 

that they form a self-renewing population of Merkel cell progenitors. The first appearance of 

these cells at E14.5–E15.5 in hairy skin makes the Merkel cell lineage one of the first committed 

lineages within the hair follicle, with specification taking place at the same time or before that of 

multipotent stem cells that inhabit the bulge region (Nowak et al., 2008; Vidal et al., 2005). 

Merkel cell progenitor commitment also occurs several days before specification of other 

unipotent progenitors such as those of the sebaceous gland lineage (Horsley et al., 2006). Thus, 

from the earliest times, the Atoh1+ lineage is a separate skin lineage.  

Our group and many others have clearly demonstrated that Merkel cells derive from 

K14+ progenitors (Bardot et al., 2013; Morrison et al., 2009; Van Keymeulen et al., 2009). We 

show here that K14 expression is immediately down-regulated in newly specified Atoh1+ Merkel 

cells and their progenitors, both by fate-mapping in K14CreER;ROSAtdTomato mice and with 

immunostaining in Atoh1GFP and Atoh1CreER-T2;ROSAtdTomato mice. As predicted, we did find 

K8+tdTomato+ cells in K14CreER;ROSAtdTomato mice treated with tamoxifen at E14.5 when 

Atoh1+ cells first arise from the K14 lineage (Morrison et al., 2009; Vielkind et al., 1995), 

suggesting that our findings were not secondary to a technical issue. Notably, a microarray 

experiment conducted on early postnatal skin also failed to detect K14 expression in purified 

Merkel cells (Haeberle et al., 2004). Other labs have reported K14 protein in Atoh1+ cells by co-

immunostaining (Van Keymeulen et al., 2009), which we were unable to replicate. It is likely 

that either K14 signal from an adjacent Atoh1-K14+ cell was mistaken for K14-expression in the 
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Atoh1+ cell, or that K14 protein persists for a short time after its expression has ended. These 

possibilities are not mutually exclusive.  

Our study does not identify the factors that control the initial specification of Atoh1+ cells 

from the K14 lineage. Recent work suggests that the transcription factor Sox2 is a direct, positive 

regulator of Atoh1, whereas the Polycomb repressive complex negatively regulates Merkel cell 

specification through repression of Sox2 (Bardot et al., 2013; Lesko et al., 2013). Deletion of 

Sox2 in the developing skin reduces the number of Merkel cells in embryonic mice but does not 

preclude their production nor their expression of multiple canonical markers (Bardot et al., 2013; 

Lesko et al., 2013). Sox2 and Atoh1 are expressed concomitantly in the epidermis starting at 

E14.5; however, the genetic cascades and signaling molecules necessary for the initiation of 

Atoh1 and Sox2 expression are unknown. Future experiments are required to determine which 

Atoh1- cells in the developing skin ultimately give rise to the Merkel cell lineage.  
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3.0  MOST MATURE MERKEL CELLS ARE MADE IN EMBRYOGENESIS AND 

ARE INFREQUENTLY REPLACED IN ADULTHOOD 

The experiments described in this section are part of a published manuscript co-first authored by 

Dr. Erin Reed-Geaghan and myself (Wright et al., 2015) and a second manuscript currently in 

preparation.  

My contributions: 

-Discussing experimental design and data analysis with Drs. Reed-Geaghan, Maricich and Greg 

Logan. 

-Writing the manuscript, with edits from Drs. Reed-Geaghan and Maricich. 

-Design and production of all figures, including acquisition of the majority of the images (with 

the exception of Figures 19, 20, and 21). 

-Generating animals, tissue processing, and quantifications in Figures 6, 8, 9, 10, 13, 14, 15, 17, 

18, 22, 23. 

Contributions from other authors: 

-Figure 7 - Alexa Bolock processed tissue and performed quantifications. 

-Figure 11 - Dr. Reed-Geaghan generated the mice for and processed the tissue. I performed the 

cell counts. 

-Figure 12 – Alexa Bolock processed tissue and performed cell counts for embryonic and early 

postnatal time points. I generated all mice, processed tissue and performed cell counts for adult 

time points. 

-Figure 16 – I generated all mice; Alexa Bolock and Julie Hemphill processed the tissue; Julie 

Hemphill performed cell counts; Alexa Bolock took images. 

-Figures 19, 20, 21 – Greg Logan imaged all mice; Greg and I each did 50% of the 

quantifications; Greg performed the statistical analysis and made the figures.  
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3.1 INTRODUCTION 

Mammalian skin is a dynamic organ that provides protection against a variety of environmental 

insults. Damage to the skin caused by these stressors must be repaired through constant skin cell 

replacement in adulthood. Skin integrity is maintained by a heterogeneous population of resident 

progenitor cells capable of self-renewal and production of diverse cell types that make up hair 

follicles, glands, and interfollicular epidermis (Breathnach, 1978; Fuchs, 2007; Ghazizadeh & 

Taichman, 2001; Mayumi Ito et al., 2005; Jaks et al., 2010; Saxod, 1978; Solanas & Benitah, 

2013).  

In addition to its role as a barrier, skin also houses multiple somatosensory receptors, 

each tuned to detect different forms of mechanical stimuli. The Merkel cell–neurite complex is 

one such receptor located at the epidermal–dermal border of mammalian skin around whisker 

follicles, in hairy skin within specialized structures called touch domes and in glabrous (non-

hairy) skin of the hands and feet (Halata et al., 2003; Taira et al., 2002; Winkelmann, 1977). This 

somatosensory receptor is unique in its composition of two distinct cell types; an epidermally-

derived Merkel cell and a neural crest-derived afferent.  

Adult Merkel cells are postmitotic (Boulais & Misery, 2007; Moll et al., 1995). However, 

quantitative, morphological, and fate-mapping studies suggest that Merkel cell numbers in adult 

hairy skin oscillate with the hair cycle and are entirely replaced multiple times over throughout 

an animals lifespan (Moll et al., 1996a; Nafstad, 1987; Nakafusa et al., 2006; Tweedle, 1978; 

Van Keymeulen et al., 2009).  This ‘Merkel cell renewal hypothesis’ has led to an exhaustive 

search to identify the elusive Merkel cell progenitor in adult mice. Mitotically active progenitors 

are the likely source of new Merkel cells, as a small percentage of Merkel cells are labeled 

several days after administration of nucleotide analogues (Mérot & Saurat, 1988; Mérot et al., 

1987; Moll et al., 1990; Vaigot et al., 1987; Woo et al., 2010). Recent work in hairy skin has 

suggested that these progenitors are either multipotent stem cells located in the hair follicle bulge 

region or bipotent progenitors found among the touch dome keratinocytes (Compton et al., 1990; 

Doucet et al., 2013; Van Keymeulen et al., 2009; Woo et al., 2010). Accurate identification of 

Merkel cell progenitors is crucial because of the potential for these cells to act as the cellular 

origin of Merkel cell carcinoma (MCC), a rare but potentially devastating disease that currently 
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has no targeted therapies (Kuwamoto, 2011; Sidhu et al., 2005; Tilling & Moll, 2012).  

Here, we sought to test the central hypothesis that Merkel cells are frequently and entirely 

replaced in adult mice during normal skin homeostasis. We used multiple techniques to 

investigate the kinetics of Merkel cells replacement during adulthood and to quantify the lifespan 

of individual Merkel cells. We found that touch dome Merkel cell number is constant throughout 

maturity, that Merkel cells born in embryogenesis persist into late adulthood, that new Merkel 

cells are infrequently generated during adult skin homeostasis, and that these few nascent Merkel 

cells are derived from an Atoh1-K14- progenitor. These experiments also uncovered a 

phenomenon by which repeated skin shaving induces an increased production of new Merkel 

cells. 

3.2 MATERIALS AND METHODS 

3.2.1 Mice 

C57BL/6J (JAX 000664; The Jackson Laboratory), Atoh1CreER-T2 (Fujiyama et al., 2009), 

Atoh1GFP (JAX 013593; The Jackson Laboratory; (Lumpkin et al., 2003)) ROSALacZ (JAX 

003474; The Jackson Laboratory; (Soriano, 1999)), ROSAtdTomato (JAX 007914; The Jackson 

Laboratory; (Madisen et al., 2010)), ROSAYFP (JAX 006148; The Jackson Laboratory; (Srinivas 

et al., 2001)),  ROSADTA (JAX 009669; The Jackson Laboratory; (Voehringer et al., 2008)), 

K14CreER (JAX 005107; The Jackson Laboratory; (Vasioukhin et al., 1999)), and K18CreER-T2 

(JAX 017948; The Jackson Laboratory; (Van Keymeulen et al., 2009)) mice were maintained in 

accordance with International Animal Care and Use Committee guidelines at the Case Western 

Reserve University and the Children’s Hospital of Pittsburgh of the University of Pittsburgh 

Medical Center. For embryonic ages, the plug date was designated as E0.5.  



 32 

3.2.2 Tamoxifen and EdU administration 

Tamoxifen (Sigma-Aldrich) was dissolved in a 9:1 corn oil/ethanol solution at a 1% or 5% 

concentration. Mice were briefly anesthetized with isoflurane and tamoxifen administered by 

oral gavage. For lineage tracing, tamoxifen was administered at a dose of 250mg/kg once daily 

for three consecutive days or as a single dose of 0.1mg (5mg/kg; low-dose). For embryonic 

administration, EdU (Invitrogen) was dissolved in sterile PBS at a 10mM concentration and 

administered by intraperitoneal injection at a dose of 10mg/kg to pregnant females. For adult 

administration, EdU was dissolved in ddH2O water at a 0.2mg/ml concentration and provided ad 

libitum for five weeks.  

3.2.3 Tissue processing 

Adult mice were euthanized by cervical dislocation, their skin shaved with an electric razor, 

depilated with surgicream, and dissected into cold PBS. Embryos were removed from pregnant 

dams and decapitated prior to tissue dissection. Skin processed for immunohistochemistry was 

fixed in 4% PFA for 30-60 minutes (adult tissue) or overnight (whole embryos, P0, and P3 mice) 

and washed in PBS. Tissue for cryosectioning was cryopreserved in 30% sucrose/PBS.  

3.2.4 Histology 

Tissue was embedded in optimum cutting temperature (O.C.T.; Thermo Fisher Scientific) and 

serially sectioned on a cryostat (1950M; Leica) at 25μm. Hair cycle stage was determined in 

hematoxylin and eosin–stained sectioned skin by analyzing hair follicle dimensions, depth into 

the subcutaneous tissue, and the shape and size of the dermal papilla and hair bulb as previously 

described (Maricich et al., 2009; Müller-Röver et al., 2001). Slides were vacuum dried, 

rehydrated in PBS, and blocked with 5% normal donkey serum in 0.3% PBS-T (PBS with Triton 

X-100). EdU was detected with an imaging kit (Click-iT EdU; Invitrogen). Slides were 

incubated overnight in blocking solution containing dilutions of the following primary 

antibodies: chicken anti-β-Gal (1:1000;BGL-1010; Aves Labs), chicken anti-GFP (1:1,000; 



 33 

GFP-1010; Aves Labs), goat anti-TrkB (1:200; AF1494; R&D Systems), mouse anti-cytokeratin 

20 (1:100; 182200; Life Technologies), rabbit anti-Ki67 (1:500; RM-9106-S1; Thermo Fisher 

Scientific), rat anti-K8 (1:20; TROMA-1; Developmental Studies Hybridoma Bank), rabbit anti-

K14 (1:1,000; PRB- 155P; Covance), and rabbit anti–cytokeratin 17 (1:1,000; ab53707; Abcam). 

Antigen retrieval was performed before Ki67 immunostaining by either heat-induced epitope 

retrieval with citrate buffer or proteolytic-induced epitope retrieval with trypsin. For heat-

induced epitope retrieval, rehydrated tissue sections were incubated in sub-boiling 10mM citrate 

buffer solution for 7 min followed by 10 min at room temperature. For proteolytic-induced 

epitope retrieval, rehydrated tissue sections were incubated at 37°C for 10 min in pre-warmed 

0.0125% trypsin in PBS. After primary antibody incubation, sections were washed and incubated 

for 30 min at room temperature in blocking solution containing the appropriate secondary 

antibodies obtained from Jackson ImmunoResearch Laboratories, Inc. (1:500): Alexa Fluor 488–

conjugated donkey anti–rabbit (711-545-152), Alexa Fluor 488–conjugated donkey anti–rat 

(712-545-150), Alexa Fluor 488–conjugated donkey anti–chicken (703-545-155), Cy3-

conjugated donkey anti–chicken (703-095-155), Cy3-conjugated donkey anti–goat (705-165-

003), Cy3-conjugated donkey anti–mouse (715-165-150), Cy3-conjugated donkey anti–rabbit 

(711-165-152), and Cy3-conjugated donkey anti–rat (712-165-150). Sections were stained with 

the nuclear probe DAPI (1:1,000; Thermo Fisher Scientific) to visualize nuclei and mounted in 

ProLong gold (Invitrogen). Whole-mount immunostaining was performed by modifying 

previously published protocols (Li et al., 2011) to use hairy skin. Fixed skin was dissected into 

small pieces, the underlying adipose tissue removed, and the skin washed for 5–8 hrs in 0.3% 

PBS-T. Tissue was incubated with primary antibodies for 4 days, washed for 5–8 hrs in 0.3% 

PBS-T, and then incubated with secondary antibodies for 2 days, all at room temperature. 

Antibodies were diluted in 20% dimethyl sulfoxide/5% normal donkey serum/0.3% PBS-T. 

Confocal images for Atoh1CreER-T2/+;ROSALacZ adult fate-mapping experiments were acquired 

with a laser-scanning confocal microscope (LSM 510 META; Carl Zeiss) using a 40X C-

Apochromat, NA 1.2, water immersion objective. Images presented here are maximum intensity 

projections of a z-series consisting of 1μm optical slices collected every 0.5μm (optimal interval 

setting determined by LSM 510 software, AIM 4.2). All other confocal images were acquired 

with an inverted microscope (Axio Observer; Carl Zeiss) on a spinning-disc confocal 

(UltraVIEW VoX; PerkinElmer) with a C-Apochromat 40X, 1.1 NA water immersion objective, 



 34 

a camera (C9100-13; Hamamatsu Photonics), and Volocity software (PerkinElmer). Images 

presented here are maximum intensity projections of a z-series or single z-slices (as noted in the 

figures) consisting of 1μm optical slices collected every 0.35μm. Images in Figure 8G–H’’’ are 

stitched from z-stacked 4X images. Multiple 3D images were acquired for the desired region of 

interest with 10% overlap between adjacent images. Images were compiled and stitched using 

Volocity software with the standard brightness correction. For in vivo imaging of Atoh1GFP touch 

domes, mice were placed on a specially designed platform with their belly skin on a coverslip. A 

10X objective with 1.6 optivar was used to capture Z-stacks of 120μm thickness. Presented 

images are projections of the entire Z-stack. Non-confocal images were acquired with a 

fluorescent scope (DM5500 B; Leica) using an HCX Plan Apochromat 40X, 1.25 NA and an HC 

Plan Apochromat 10X, 0.4 NA objective, camera (DFC420; Leica), and Leica Acquisition 

Software v4.2. Images were cropped, and brightness and contrast were enhanced for publication 

quality with Photoshop and/or Illustrator (Adobe).  

3.3 RESULTS 

3.3.1 The Atoh1 skin lineage is maintained into late adulthood 

Several lines of evidence suggested that mature Merkel cells have a finite lifespan, implying 

their replacement by precursor cells located in the skin (Doucet et al., 2013; Moll et al., 1996a; 

Nakafusa et al., 2006; Van Keymeulen et al., 2009). To more accurately estimate the lifespan of 

Atoh1+ cells in the skin, Atoh1+ cells were lineage traced in postnatal day 21–28 (P21–P28) 

Atoh1CreER-T2/+;ROSALacZ mice by administering tamoxifen (250mg/kg) for 3 consecutive days 

during the growth phase (anagen) of the first hair cycle and analyzing the K8+ population 3 and 

9 mo later. Xgal+ (5-bromo-4-chloro-indolyl-β-d-galactopyranoside) cells were found only in the 

expected locations for Merkel cells in the hairy skin and whisker pads both 3 (n=3) and 9 (n=1) 

mo after tamoxifen administration (Figure 6A–B’), allowing for the completion of multiple hair 

cycles (Alonso & Fuchs, 2006). To confirm that these β-galacosidase (β-Gal)+ cells were Merkel 

cells, we co-immunostained for β-Gal and the Merkel cell marker K8 (Figure 6C–D’’’; 
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(Vielkind et al., 1995)). Three months after tamoxifen administration, 93.5 ± 1.7% and 99.2 ± 

0.4% of K8+ cells in hairy skin and whisker follicles co-expressed β-Gal, respectively; these 

percentages were 91.5% and 98.1% at 9 mo (≥200 hairy skin and ≥500 whisker follicle K8+ cells 

counted/ mouse; Figure 6E). All β-Gal+ cells were also K8+, and nearly all K8+ cells (99.0 ± 

0.4%, ≥150 K8+ cells/mouse, n = 3 mice) were also Keratin 20+ (K20; Figure 7), in agreement 

with other studies (Eispert et al., 2009; Lesko et al., 2013). 

As a complementary approach to assay Merkel cell turnover, we next assayed how 

frequently new Merkel cells were made. The Atoh1+ population was genetically ablated by 

administering tamoxifen (250mg/kg) for 3 consecutive days to P28 Atoh1CreER-T2/+;ROSADTA 

mice and Atoh1CreER-T2/+;ROSA+ littermate controls. We used only Atoh1CreER-T2/+;ROSA+ mice as 

controls because they have slightly fewer K8+ cells per touch dome than their Atoh1+/+ siblings 

(18.1 ± 1.0 and 25.3 ± 1.8, respectively; >600 K8+ cells/ mouse; n = 5 mice/genotype; P = 0.007, 

t-test). Back and belly skin and whisker pads were harvested 1, 3, and 6 mo after tamoxifen 

administration (n=2 mice/genotype/time point). Touch domes in the hairy skin were identified by 

immunostaining for TrkB, which we serendipitously found to be a reliable marker of touch dome 

keratinocytes (Figure 8A–B’’). Skin from Atoh1CreER-T2/+;ROSADTA mice and Atoh1CreER-

T2/+;ROSA+ littermate controls had similar densities of touch domes (56.5 ± 2.8 vs. 53.7 ± 3.4 

touch domes per 1cm2 of hairy skin, respectively; F(2,6)=0.55, P = 0.6, two-way ANOVA; 

Figure 8C).  

Ablation of the K8+ Merkel cell population was confirmed at 1 mo post-tamoxifen in 

Atoh1CreER-T2/+;ROSADTA mice, as 64% of their touch domes lacked any Merkel cells. This was 

verified on tissue sections double labeled with K8 and K17 (Figure 8E and F). The average 

number of K8+ cells per touch dome was significantly lower in Atoh1CreER-T2/+;ROSADTA mice 

relative to their control littermates (0.6 ± 0.4 vs. 14.4 ± 1.5 K8+ cells/touch dome, respectively, P 

= 6.0 × 10-4). At 3 and 6 mo post-tamoxifen administration, still 65% and 60% of touch domes in 

Atoh1CreER-T2/+;ROSADTA mice had no Merkel cells, respectively; Mean numbers of K8+ cells per 

touch dome were also still significantly decreased (F(1,6) = 183.7, P < 0.0001, two-way 

ANOVA) 3 (0.6 ± 0.2 vs.10.1 ± 0.01, P = 4.5 × 10-3) and 6 (0.8±0.1vs.11.3±2.0,P=2.6×10-3) mo 

after tamoxifen administration (Figure 8D). The same was true in whisker follicles, in which 

Atoh1CreER-T2/+;ROSADTA mice had fewer K8+ cells/follicle than Atoh1CreER-T2/+;ROSA+ littermate 

controls (≥6 follicles/mouse; F(2,6) = 15.45, P = 4.0x10-3, two-way ANOVA) 1 (127.4 ± 14.6 vs. 



 36 

499 ± 24.3; P = 5.8x10-3, Tukey’s post-hoc multiple comparisons test), 3 (1.6 ± 1.0 vs .530 ± 

12.9; P=6.0x10-4), and 6 (8.37 ± 7.6 vs. 529.8 ± 22.2; P=2.0x10-3) mo later (Figure 8G–I). Thus, 

deletion of Atoh1+ cells led to a persistent deficit in Merkel cells numbers. This suggests one of 

two possibilities. Either a unipotent Atoh1+ progenitor is regularly dividing to maintain the 

Merkel cell population at a still unknown rate, or Merkel cells are replaced exceedingly 

infrequently during normal tissue homeostasis and persist through to late adulthood. 
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Figure 6. The Atoh1+ skin lineage is continuous in adulthood  (A-B’)  Xgal staining of hairy 

skin (A and B) and whisker follicles (A’ and B’) shows the presence of labeled cells 3 (A and 

A’; n=3 mice) and 9 (B and B’; n=1 mouse) mo after tamoxifen. Insets in A and B are individual 

touch domes. (A’ and B’) Counterstain is Nuclear Fast Red. (C-D’’’) Touch domes (C-C’’’) and 

whisker follicles (D-D’’’) immunostained for K8 (C’, D’, green) and β-Gal (C’’, D’’, red). (E) 

Percentages of K8+ cells that co express β-Gal at 3 (n=3) and 9 (n=1) mo after tamoxifen 

(TMX). Error bars show SEM. Scale bars: (A and B, main images) 1mm; (A and B, insets) 

100μm; (C-D’’) 50μm.  
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Figure 7. All postnatal K8+ Merkel cells co-express K20.  (A-A’’’) Back skin from postnatal 

mice immunostained for K8 (A’, green) and K20 (A’’, red), demonstrating co-expression 

(arrows) Scale bar: 50μm. 
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Figure 8. Merkel cells are not replaced after genetic ablation of all Atoh1+ skin cells  (A–

B’’) Whole-mount skin preparations immunostained for K8 (A and B, green) and TrkB (A’ and 

B’, red) show presence of touch domes 6 mo after tamoxifen (TMX) treatment in Atoh1CreER-

T2/+;ROSA+ and Atoh1CreER-T2/+;ROSADTA mice. (C) Mean numbers of touch domes in Atoh1CreER-

T2/+;ROSA+ and Atoh1CreER-T2;ROSADTA mice per 1cm2 of body skin (n=2 mice/genotype/time 

point, two- way ANOVA). (D) Mean numbers of K8+ cells per touch dome were markedly 

decreased in Atoh1CreER-T2/+;ROSADTA mice relative to Atoh1CreER-T2/+;ROSA+ littermate controls 

at all time points (n=2 mice/genotype/time point, two-way ANOVA). (E and F) Cryosectioned 

hairy skin immunostained for K8 and K17 reveals touch domes that lack Merkel cells in 
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Atoh1CreER-T2/+;ROSADTA mice. (G–H’’) Stitched images of cryosectioned whisker follicles 

immunostained for K8. (I) Mean numbers of K8+ cells per whisker follicle were decreased in 

Atoh1CreER-T2/+;ROSADTA mice relative to Atoh1CreER-T2/+;ROSA+ littermate controls at all time 

points (n=2 mice/genotype/time point, two-way ANOVA). **, P < 0.01; ***, P < 0.001. Error 

bars show SEM. Scale bars: 50μm.  

3.3.2 Atoh1+ cells do not express K14, but a subset does express K17 

Though embryonically derived from the K14 lineage, mature Merkel cells do not express K14 

(Moll et al., 1993; Rose et al., 2009). However, other investigators reported that Merkel cells 

were maintained by K14+ progenitors (Akazawa et al., 1995; Ben-Arie et al., 1996; Van 

Keymeulen et al., 2009). To determine whether Atoh1+ Merkel cells and potential Merkel cell 

progenitors retained K14 expression, K14 immunostaining was performed in hairy skin and 

whisker follicles from tamoxifen-treated adult Atoh1CreER-T2/+;ROSAtdTomato mice. All Atoh1+ 

cells were K14 negative (>250 GFP+ or tdTomato+ hairy skin and whisker follicle cells/mouse, 

n=2 mice; Figure 9A-A’’’). We postulated that K14 could be expressed in the Atoh1 lineage, but 

at low protein levels undetectable by immunostaining. To examine this possibility, we 

conditionally fate mapped the K14 lineage in adulthood by administering high-dose tamoxifen 

for a consecutive 3 days to P28 K14CreER/+;ROSAtdTomato mice and then harvested tissue 1 and 4 

weeks later. Immunostaining for K8 revealed that all K8+ cells were tdTomato negative (>250 

hairy skin and >500 whisker follicle K8+ cells counted/mouse, n=2 mice/age; Figure 9B–B’’). 

Collectively with our data from embryonic K14CreER/+;ROSAtdTomato (Figure 5), Atoh1CreER-T2/, 

this indicates that Atoh1+ cells do not express K14 at embryonic or postnatal ages.  

A second study suggested that bipotential K17+ progenitor cells located in touch domes 

give rise to touch dome keratinocytes and Merkel cells (Ben-Arie et al., 2000; Doucet et al., 

2013). To determine whether K17 was expressed by cells committed to the Merkel cell lineage, 

we co-immunostained adult C57BL/6J mouse hairy skin for K8 and K17. We found that 28.4 ± 

6.0% and 9.2 ± 2.6% of K8+ cells in touch domes and whisker follicles, respectively (>250 hairy 

skin and >500 whisker follicle K8+ cells counted/mouse, n=2–3 mice), were also K17+ (Figure 

10A-B). Because all K8+ cells are also Atoh1+ (Figure 10C–D’’), this demonstrates that some 
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Atoh1+ cells co-express K17, though it does not prove that potential Atoh1+ progenitors are 

K17+. 
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Figure 9. The adult Atoh1+ lineage does not express K14 (A-A’’’) All tdTomato+ cells in 

adult Atoh1CreER-T2/+;ROSAtdTomato mouse touch domes are K14-. (B-B’’) Single confocal z-slice 

image of a whole-mount touch dome preparation from a P60 K14CreER;ROSAtdTomato mouse given 

tamoxifen (TMX) at P28 and immunostained for K8 (C). There is no signal co-localization.  

Scale bars: 50μm. 
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Figure 10. All Atoh1+ cells are K8+ and a subset of K8+ cells co-express K17  (A-A’’’) 

Whisker follicles from an adult C57Bl/6J mouse immunostained for K17 (A’, green) and K8 

(A’’, red). Insets show one K8+K17+ cell (as indicated by asterisks). (B) Single confocal z-slice 

images of touch dome from back skin of an adult C57BL/6J mouse immunostained for K8 and 

K17 showing signal co-localization. (C-D’’) Hairy skin from a tamoxifen-treated P28 Atoh1CreER-

T2/+;ROSAtdTomato mouse immunostained for K8 (n=3 mice). tdTomato+ cell (arrows) that appears 

to be K8- at exposure times that identify other K8+ cells (C–C’’) in fact expresses low levels of 

K8 (D–D’’). Scale bars: (main images) 50μm; (insets) 10μm. 
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3.3.3 Atoh1+ cells rarely express proliferative markers in adulthood  

We next examined 3 (n=4) and 6 (n=2) mo old adult Atoh1GFP mice to determine whether 

GFP+Ki67+ cells were present and whether the numbers of these cells changed during the 

natural hair cycle. Three of these mice were in the growth phase of the hair cycle (anagen), and 

three were in the resting phase (telogen). GFP+ cells in the body skin (250–500/mouse, ~1,700 

GFP+ cells total) and whisker follicles (1,500–5,000/mouse, ~11,000 GFP+ cells total) were 

analyzed. We found one GFP+/Ki67+ cell in the body skin of a 3 mo old mouse whose skin was 

in telogen (Figure 11A-A’’’) and one GFP+/Ki67+ cell in the whisker follicle of a 6 mo old 

mouse (Figure 11B–B’’’). No K8+EdU+ cells were found in the whisker follicles or back skin 

of P19–P24 mice (n=3; >400 K8+ cells/mouse/region) after administration of EdU (50mg/kg) 

and tissue harvest 4 hrs later. Together with our previous data, this suggests that Atoh1+ 

progenitors are either very infrequently active or that Atoh1+ progenitors do not maintain the 

Merkel cell population. 
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Figure 11. Very few Atoh1+ cells express mitotic markers in adulthood  (A-B’’’) Adult 

Atoh1GFP touch dome (A-A’’’) and whisker follicles (B-B’’’) immunostained for GFP (A’, B’, 

green) and Ki67 (A’’, B’’, red). Insets show GFP+KI67+ cells. These were the only two 

K8+Ki67+ cells found in >11,000 K8+ cells examined. Scale bars: (main images) 50μm; (insets) 

10μm. 

3.3.4 Merkel cell number decreases over early postnatal life and does not oscillate with 

the adult hair cycle 

Previous studies had reported a correlation of touch dome Merkel cell number with the hair 

cycle, showing higher Merkel cell numbers while during hair follicle growth (anagen) followed 

by decreases during hair follicle regression (catagen). However, those studies were performed on 

sectioned mouse skin after hair cycle induction or on epidermal sheets of rat skin, both 

techniques that can limit visualization of entire touch domes. To conclusively determine if there 

was a relationship between touch dome Merkel cell number and hair follicle stage in mouse skin, 

we immunostained for the Merkel cell marker K8 in whole-mount back and belly skin from 

female B6 mice during hair follicle genesis (E17- P21), the first hair cycle, (P21-P52), and after 

the second and third hair cycles (12 and 20 weeks of age, respectively) (>20 touch domes/mouse, 

n=3-5 mice/age; Figure 12). Tissue was also retrieved, sectioned, and H&E stained to validate 

hair cycle stage (Muller-Rover et al., 2001; Figure 13). The average number of K8+ cells per 

touch dome increased through embryogenesis to peak at 27.0±2.2 in back and 35.0±2.7 in belly 
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skin at E18.5, after which it decreased during early postnatal life until P14. From P14 until 20 

weeks of age, there was no difference between ages in average number of K8+ cells per touch 

dome, as the numbers remained stable with a slow decrease over time (One Way ANOVA, Back 

Skin F=2.78, p=0.02, post-hoc Scheffe test- no significant difference between ages; Belly Skin 

F=1.67, P=0.14). 

We also tested the influence of hair cycle induction on touch dome Merkel cell number. 

P22 female B6 mice were anesthetized with ketamine/xylene and the right half of their back skin 

shaved and depilated with surgicream to induce hair cycle initiation. The left half of their back 

skin was left unmanipulated. Skin from these mice was retrieved 0, 3, 5, 12, and 18 days post-

hair cycle induction, hemotoxylin & eosin stained for hair cycle stage characterization and whole 

mount immunostained for K8 to quantify touch dome Merkel cell number (n=3 mice/time point). 

Hair cycle induction with this method was confirmed, as skin that had been shaved and depilated 

entered into anagen and cycled into catagen sooner than unmanipulated skin on the same animal 

(Figure 14). However, no difference in K8+ Merkel cell number within touch domes was seen at 

any time point between induced and naturally cycling back skin (Figure 15). Together this 

indicates a lack of correlation between touch dome Merkel cell number and the growth and 

regression phases of the natural or induced hair cycle. It also suggests that either there is no hair 

cycle stage at which Merkel cell progenitors are preferentially active or that Merkel cells are not 

replaced with great frequency in mature animals during normal tissue homeostasis. 
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Figure 12. Mean touch dome K8+ cell number peaks at E18.5 and stays constant during 

adulthood  Average K8+ cell number per touch dome was quantified (n=3-5 mice/age) and 

plotted over time in back (A) and belly (B) skin. SEMs are shown by bars. Scale bar: 50μm. 
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Figure 13. Confirmation of hair cycle progression in B6 mice.  Cryosectioned back (A-L) and 

belly (M-X) skin in naturally cycling female B6 mice H&E stained and hair cycle stage 

categorized at E17.5, E18.5, P0, P3, P14, P21, P28, P35, P42, P51, 12 weeks of age, and 20 

weeks of age. Scale bar: 50μm. 
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Figure 14. Hair cycle staging after induction in B6 female mice.  Cryosectioned back skin 

during normal progression (A-E) or after hair cycle induction (F-J) H&E stained and hair cycle 

stage categorized for mice at 0, 3, 5, 12, and 18 days post-induction. Scale bar: 50μm. 
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Figure 15. No change in average K8+ cell number after hair cycle induction.  Average K8+ 

cell number per touch dome was quantified (n=3 mice/time point) and plotted over time in back 

skin that progressed naturally (gray line) or was induced (green line). SEMs are shown by bars.  

3.3.5 K18+ Merkel cells of murine whisker follicles are not replaced  

Another piece of evidence indicating Merkel cell turnover was fate-mapping performed in 

K18CreER;ROSAYFP mice that demonstrated loss of labeled cells in the whisker over three weeks 

of pulse-chase (Van Keymeulen et al., 2009). We repeated this experiment with K18CreER mice 

crossed to both a ROSAYFP and a more sensitive ROSAtdTomato reporter. Tamoxifen was 

administered as a single dose of 5mg/mouse and tissue retrieved 1, 3, or 9 weeks later (Figure 

16). One week post-tamoxifen administration the recombination of K8+ Merkel cells was 

5.7±1.3% YFP+K8+/K8+ and 48.4±1.3% tdTomato+K8+/K8+ (>500 K8+ cells/mouse; n=2 

mice; Figure 16). This proportion was maintained at 3 (5.9±2.4% YFP+K8+/K8+ and 43.0±4.9% 

tdTomato+K8+/K8+) and 9 (6.1±1.2% YFP+K8+/K8+ and 35.1±0.7% tdTomato+K8+/K8+) 

weeks post-tamoxifen (>500 K8+ cells/mouse; n=2-3 mice/time point; YFP: F=0.01, p=0.99; 

tdTomato: F=3.23, p=0.1255 Figure 16). We were therefore unable to independently provide 

evidence of Merkel cell turnover in the whisker follicles with this model. We were also unable to 

perform this experiment in body skin, as this mouse demonstrated robust recombination in K18- 

cells of the skin. This was also seen in the whisker follicles, but more sparsely.  
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Figure 16. K18+ cells are not replaced by K18- cells in the murine whisker follicle  

K18CreER;ROSAYFP/tdTomato mice were generated and administered tamoxifen at P28. (A-A’’’’) 

Whisker follicles 9 weeks after tamoxifen administration immunostained for, YFP (A’, green), 

K8 (A’’’, magenta), endogenous tdTomato (A’’, red), and counter stained with DAPI (A, blue). 

Green arrow indicates a YFP+K8+ cell; blue arrow indicates a tdTomato+K8+ cell; white arrow 

indicates a tdTomato+YFP+K8+ cell; red arrow indicates a tdTomato+K8- cell; yellow arrow 

indicates a YFP+K8- cell. (B) Quantification of the average percent of tdTomato+K8+/K8+ cells 

(±SEM). (C) Quantification of the average percent of YFP+K8+/K8+ cells (±SEM). Scale bar: 

50μm. 

3.3.6 Embryonic Merkel cells persist into late adulthood and nascent Merkel cells are 

rarely made during adult skin homeostasis 

We employed a birth-dating approach with the modified nucleoside 5-ethynyl-2'-deoxyuridine 

(EdU) to estimate the lifespan of embryonic-born Merkel cells. This nucleoside is incorporated 

into cells during DNA synthesis and is retained for the lifespan of the cell. Cells lose EdU 
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positivity either by cell death or signal dilution after multiple cell divisions. We administered 

10mg/kg EdU by intraperitoneal injection once daily to B6 pregnant females at E14.5, E15.5, 

and E16.5, the ages at which most Merkel cells are generated. EdU given at higher 

concentrations (50mg/kg) resulted in a greater proportion of K8+ cells incorporating EdU but led 

to animal mortality (data not shown). Therefore, this 10mg/kg once-daily dose is not intended to 

label all Merkel cells born between E14.5-E16.5, but instead to label a subset whose proportion 

can be followed over time. Mice were retrieved at P0 and 9 mo of age to determine the 

proportion of K8+ cells that initially incorporated EdU (P0) and persisted into maturity (9 mo) 

(n=4 mice/age). At P0 42.3±4.9 %, 42.2±0.6 %, and 46.3±3.1 % of K8+ cells had incorporated 

EdU in the body skin, whisker follicles, and forepaws, respectively (Figure 17A-A’’’, C-C’’’, E-

E’’’). In the whisker follicles of 9 mo old animals this proportion was maintained (42.5±4.7% of 

K8+EdU+/K8+ cells, P=0.95 t-test). The percentage of EdU+K8+ cells in body skin and 

glabrous skin of the paw decreased slightly at 9 mo of age, though importantly a large proportion 

of K8+ cells retained EdU incorporation (21.1±3.1% and 20.7±3.2% of K8+EdU+/K8+ cells, 

respectively). This indicates a lack of complete Merkel cell turnover in these regions. 

To determine if new Merkel cells were formed in adulthood in body skin, whisker 

follicles, and/or glabrous paw skin, we performed a more chronic paradigm of EdU exposure by 

administering 0.2mg/mL EdU in the drinking water of mice beginning at P21 and extending for 5 

weeks, at which time tissue was retrieved and processed for K8 and EdU (Figure 18; n=3 mice). 

Consistent with the lack of K8+ turnover in the whisker follicles suggested in our prior 

experiment, no K8+ cells were found to have incorporated EdU in the whisker follicles, 

indicating a lack of Merkel cell generation during this time (Figure 18B-B’’’; >250 K8+ 

cells/mouse; n=3 mice). In body skin and glabrous paw skin only a very small proportion of K8+ 

cells were EdU+ after 5 weeks of EdU exposure (1.8±0.5% and 1.1±0.2%, respectively, >100 

K8+ cells/mouse, n=3 mice, Figure 18A-A’’’). This small population of nascent Merkel cells 

indicates that while new Merkel cells are generated as part of normal skin homeostasis, it is at an 

incredibly slow rate.  
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Figure 17. K8+ cells born in embryogenesis persist to 9 months of age.  Sectioned body skin 

(A-B’’’), whisker follicles (C-D’’’), and glabrous forepaw skin (E-F’’’) from B6 mice that 

received EdU at E14.5, 15.5, and 16.5 and were retrieved at P0 (A-A’’’, C-C’’’, E-E’’’) or 9 

months of age (B-B’’’. D-D’’’, F-F’’’) processed for EdU detection (A’, B’, C’, D’, E’, F’, 
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green) and K8 immunostaining (A’’, B’’, C’’, D’’, E’’, F’’, red). Yellow arrows indicate 

EdU+K8+ cells; red arrows indicate EdU-K8+ cells. The proportion of K8+EdU+/K8+ cells 

within each tissue at each age is given in the bottom left hand corner of all merge panels 

(n=4/age). Scale bar: 50μm. 

 

 
Figure 18. Very few nascent Merkel cells are made during skin homeostasis  Sectioned body 

skin (A-A’’’), whisker follicles (B-B’’’) and glabrous forepaw skin (C-C’’’) from P56 B6 mice 

that received 0.2mg/mL EdU in their drinking water for five weeks processed for EdU detection 

(A’, B’, C’, green) and K8 immunostaining (A’’, B’’, C’’, red). Yellow arrows indicate 

EdU+K8+ cells; red arrows indicate EdU-K8+ cells. Scale bar: 50μm. 

3.3.7 In vivo visualization of touch dome maintenance 

To visualize the dynamics of touch dome homeostasis we devised a strategy to repeatedly image 

the same touch domes over many months in living adult animals. Young Atoh1GFP mice were 

anesthetized with ketamine/xylazine (100mg/kg and 10mg/kg) and their belly skin shaved with a 

straight razor to permit visualization of the skin. A square was drawn with India Ink on the belly 
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skin to provide landmarks allowing us to return to the same touch domes over time (Figure 19A). 

Mice were placed on a specially-designed platform with their belly skin over a cover slip and 

imaged on an inverted spinning disc confocal microscope. Z-stacks of individual touch domes 

were taken and mapped within the previously drawn square. Mice were repeatedly shaved and 

imaged once a week for 13-21 weeks, at which time they were sacrificed, tissue retrieved and 

immunostained for GFP and NF200 (week 13) or GFP and K8 (week 21).  

 Between 7 and 12 touch domes were mapped per mouse (n=4 mice, n=37 total touch 

domes, n=2,530 total GFP+ cells) and individual Merkel cells traced within these touch domes 

from week to week (Figure 20A-G’). We found that during the first 8 weeks of imaging (the 

previously estimated Merkel cell lifespan) 64.3±3.6% of Merkel cells that were found at the first 

week of imaging (original Merkel cells) remained stable. This demonstrates that mature Merkel 

cells persist for at least two months and the entire cell population does not turn over (Figure 

20H). However, we were surprised to observe the generation of many new GFP+ cells during 

this time. While overall the average number of Merkel cells per touch dome stayed constant 

(Figure 19B, C, D, E; Figure 20I), an average of 3.14±0.6 nascent cells were added per touch 

dome each week (Figure 20J). No GFP+ cells were observed outside of touch domes. Cells 

arose consistently throughout the imaging period, with no clear temporal correlation with age or 

hair cycle stage as judged by skin appearance (Figure 19B’, C’, D’, E’). These nascent cells had 

a lower probability of survival relative to original cells that had been imaged from the very first 

week prior to skin shaving (median survival, original: 84 days, nascent: 21 days)(Figure 20K, 

Figure 21). About half of all nascent cells were gone within the first two weeks after being born, 

but the ones that survived after 2 weeks appeared to have an equal likelihood of survival relative 

to original cells (Figure 20K). At the time of tissue retrieval, fewer nascent cells were innervated 

by NF200+ nerve endings than original cells (75.9% vs 91.0%, respectively; Figure 20L). 

Within those nascent cells, there was a trend for nascent cells that had persisted for >2 weeks to 

have a higher likelihood of being innervated than those that had been arisen <2 weeks prior 

(84.9±5.2% vs 71.1±7.5%, respectively, p=0.11). Together this suggests a positive correlation of 

cell survival with innervation status. After 21 weeks of imaging 100% and 92% of original and 

nascent GFP+ cells were K8+, respectively, confirming Merkel cell identity. This in vivo 

analysis illustrates the persistence of Merkel cells during adulthood. 
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Figure 19. Average number of Merkel cells in touch domes for individual mice  (A) Image 

of belly skin for mouse #1145 prior to imaging each week for 13 weeks showing hair regrowth 

during anagen. (B, C, D, E) Average number (±SEM) of Merkel cells per touch dome through 

the imaging period. Gray bars denote anagen. Red graph is the same mouse illustrated in panel 

A. (B’, C’, D’, E’) Average number (±SEM) of nascent Merkel cells added to touch domes over 

time. 



 57 

 
Figure 20. In vivo imaging of touch domes in Atoh1GFP mice over months  Adolescent 

Atoh1GFP mice were shaved and imaged once weekly to enable tracking of individual touch 

domes over time. (A-G’) Atoh1GFP+ cells of the same touch dome at Week 1 (A, A’), Week 3 (B, 

B’), Week 5 (C, C’), Week 7 (D, D’), Week 10 (E, E’), Week 12 (F, F’) and post-mortem (G, 

G’) immunostained for GFP (green) and NF200 (red). Panels A’, B’, C’, D’, E’, F’, and G’ 

indicate individual cells tracked over these weeks. (H) The percent of stable original Atoh1GFP+ 

cells (blue) and stable nascent cells (red) over 8 weeks of imaging. (I) The average number 

(±SEM) of GFP+ cells per touch dome over 13 weeks of imaging. (J) The average number 

(±SEM) of GFP+ cells added per touch dome over the 13 week imaging period. (K) Average 



 58 

survival curves for original (blue) and nascent (red) Atoh1GFP+ cells. (L) Percent of original 

(blue) and nascent (red) Atoh1-GFP+ cells contacted by NF200+ nerve terminals at the end of 

the imaging period. (M) Percent of >2 week old nascent (old nascent) and <2 week old nascent 

(new nascent) cells contacted by NF200+ nerve terminals at the end of the imaging period. Scale 

bar: 60μm. 

 

 

 
Figure 21. Survival curves for original and nascent Merkel cells in Atoh1GFP mice.  

Individual survival curves for original (blue) and nascent (red) Atoh1-GFP+ cells over the 

imaging period. (A, B) Mice #1141 and #1142 were imaged for 21 weeks. (C, D) Mice #1145 

and #1146 were imaged for 13 weeks.  
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3.3.8 Repeated shaving induces production of new Merkel cells 

The high number of nascent Merkel cells observed in imaged Atoh1GFP mice was not easily 

accounted for in our EdU birth-dating studies. We were concerned that the repeated shaving 

performed for touch dome visualization had induced non-homeostatic skin conditions not 

representative of typical touch dome maintenance. To test if new Merkel cells arose at the same 

rate in shaved and unmanipulated skin, we administered EdU in the drinking water (0.2mg/mL) 

to B6 female mice that were shaved once weekly, mirroring the protocol to expose skin for live 

imaging (Figure 22). Beginning at P21, a section of back and belly skin was shaved with a 

straight razor once weekly for four weeks, followed by tissue retrieval and processing for EdU 

and K8 one week after the last skin shave (P56). This length of EdU exposure is also identical to 

that of the unmanipulated B6 mice in Figure 18. Shaved back and belly skin had 7.75±2.7% of 

K8+ cells present that had incorporated EdU, a much higher proportion than in unmanipulated 

skin (Figure 22B-D; p=0.0325; n=2 mice; >150 K8+ cells/mouse). Therefore, shaving of murine 

body skin stimulated an increased production of touch dome-associated Merkel cells relative to 

the very low rate during typical skin homeostasis. Our in vivo imaging studies of Atoh1GFP mice 

therefore illustrate touch dome maintenance in a non-homeostatic environment and 

serendipitously exposed a mechanism driving Merkel cell production in adult mice. 
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Figure 22. Shaving stimulates additional Merkel cell production  Single z-slice confocal 

images of sectioned body skin from B6 mice that were shaved once weekly or left 

unmanipulated while receiving EdU for five weeks processed for EdU detection (A’, B’, green) 

and K8 immunostaining (A’’, B’’, red).  Yellow arrows indicate EdU+K8+ cells. (C) Average 

percentage of K8+EdU+/K8+ cells per mouse (mean±SEM). Scale bar: 50μm. 

3.3.9 Nascent Merkel cells come from neither Atoh1+ or K14+ progenitors 

To determine if these nascent cells came from Atoh1+ progenitors, we ablated the Atoh1+ 

population by administering tamoxifen (250mg/kg for 3 consecutive days) to Atoh1CreER-

T2/+;ROSADTA mice as has been done previously (Figure 8). Consistent with our previous 

experiments, 28 days after tamoxifen administration Atoh1CreER-T2/+;ROSADTA mice (n=2) had far 

fewer K8+ cells per TrkB+ touch dome than Atoh1CreER-T2/+;ROSADTA mice that did not receive 

tamoxifen (0.42±0.1 vs 16.53±1.5 K8+ cells/TD, respectively; p=0.002 t-test; n=2-4 

mice/genotype). With this experimental paradigm, there is no recovery of K8+ cell number out to 

six months post-tamoxifen administration (Figure 8). To test if nascent K8+ cells were derived 

from an Atoh1+ progenitor, or required the presence of mature Merkel cells for their production, 
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littermates from this cohort of Atoh1CreER-T2/+;ROSADTA mice treated with tamoxifen (n=3 mice) 

had their back and belly skin shaved once a week for four weeks (as described above) and skin 

retrieved one week after the last day of shaving. The average number of K8+ cells per touch 

dome was significantly elevated relative to mice that were unmanipulated (3.29±0.5 K8+ 

cells/TD; p=0.015, t-test) (Figure 5A-C). The presence of these new cells indicates that they 

arose from an Atoh1- progenitor, and that signals from original Merkel cells are not necessary for 

the production of new cells.  

We next asked whether these nascent Merkel cells arose from K14+ epidermal cells. P28 

K14CreER;ROSAtdTomato mice were administered tamoxifen (250mg/kg for 3 consecutive days) and 

their back and belly skin shaved as described above or left unmanipulated (n=3 mice/treatment). 

Skin was retrieved, immunostained for K8, and imaged for K8 and tdTomato. Since there was 

such a high density of tdTomato positivity in the skin with this paradigm, Z-stack confocal 

images were taken to accurately determine whether tdTomato was in the K8+ cells. If nascent 

Merkel cells arose from K14+ progenitors, we would expect to see K8+tdTomato+ cells. Ten 

touch domes from each back and belly skin were analyzed per mouse, and no K8+ cells were 

found to be tdTomato+ in either shaved or unmanipulated skin (Figure 5D-D’’; n=6 mice, >400 

K8+ cells/mouse). Therefore, no adult-born K8+ cells in adult mice derive from K14+ 

progenitors. 
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Figure 23. Nascent Merkel cells arise from neither Atoh1+, or K14+ progenitors  (A-B’’) 

Confocal z-stack projection images of whole mount body skin from tamoxifen-treated 

Atoh1CreER-T2/+;ROSADTA mice that were shaved once weekly or left unmanipulated 

immunostained for K8 (A, B, green) and TrkB (A’, B’, red). (C) Average number of K8+ cells 

per TrkB+ touch dome quantified (mean±SEM). (D-D’’) Single z-slice confocal image of 

K14CreER;ROSAtdTomato mouse treated with tamoxifen at P28 and shaved once weekly 

immunostained for K8 and imaged for endogenous tdTomato. Scale bars: 50μm. 
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3.3.10 Shaving induces production of nascent Merkel cells adjacent to the manipulated 

region  

To test if the increased production of nascent Merkel cells was limited only to the area of direct 

manipulation, we counted the number of EdU+K8+/K8+ cells present in body skin adjacent to 

the shaved area in B6 mice shaved once weekly for 5 weeks (Figure 22). We found that 

4.9±2.0% of K8+ cells in adjacent body skin were EdU+, a proportion intermediate to that of 

fully unmanipulated (1.8±0.5) and directly shaved (7.7±2.7) skin. Furthermore, adjacent body 

skin in Atoh1CreER-T2/+;ROSADTA mice shaved once weekly for five weeks also had a recovery of 

K8+ cells (0.9±0.3) intermediate to that of fully unmanipulated (0.4±0.1) and directly shaved 

(3.3±0.5) skin (Figure 23). This indicates that the effect of increased Merkel cell production is 

not limited to the directly shaved area. 

3.4 DISCUSSION 

Here we present multiple lines of evidence opposing the prevailing view of ‘Merkel cell renewal’ 

in adult skin homeostasis. We show that touch dome Merkel cell number does not oscillate 

during natural or induced hair cycles, Merkel cells born in embryogenesis persist out into late 

adulthood, and new Merkel cells are infrequently generated during normal skin homeostasis. 

Moreover, we serendipitously revealed that the mechanical influence of repeatedly shaving 

mouse body skin stimulates an increased production of nascent Merkel cells, an effect not 

limited to the area of manipulation. These cells arise from a progenitor population that is neither 

Atoh1+ nor K14+. This is the also first study to utilize live imaging for repeated visualization of 

touch domes in vivo, providing a clear illustration of their persistence through adulthood.  

Merkel cells are first seen in embryonic skin at E14.5, where they are identifiable by 

Atoh1, Sox2, and K8 expression (Lesko et al., 2013). Their number steadily increases through 

late embryogenesis and peaks prior to birth, with the highest number of K8+ Merkel cells per 

touch dome occurring at E18.5. This correlates well with our prior analysis of Atoh1+Ki67+ 

cells in embryonic body skin in which the highest proportion of proliferative Atoh1+ progenitors 

is at E16.5 and E17.5 (Figure 2). Interestingly, this population of Merkel cells is not fully 
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maintained, as average touch dome K8+ cell number decreases from P0 through early postnatal 

life. Therefore, Atoh1+ embryonic Merkel cell progenitors appear to produce more K8+ Merkel 

cells than the touch dome compartment can either sustain or require. It is likely that K8+ cell 

attrition is a result of Merkel cell competition for nerve-derived trophic support. Consistent with 

this hypothesis, mice that have increased branching of the SA1 afferent fiber (and therefore 

likely more opportunity for trophic support) secondary to cutaneous overexpression of 

neurotrophin-3 (NT3-OE) maintain a higher average number of Merkel cells per touch dome 

(Albers, 1996; Krimm et al., 2004). This increased number of adult Merkel cells in adult NT3-

OE mice is similar to the number of Merkel cells we see in E18.5 wildtype mice. It is therefore 

likely that these supernumerary Merkel cells are the result of increased Merkel cell survival, and 

not increased Merkel cell production. Moreover, denervation in both wildtype and NT3-OE mice 

leads to drastic touch dome Merkel cell loss to the same level, indicating that both normal and 

supernumerary Merkel cells are dependent on the nerve for survival, not cutaneous NT3 

expression (Krimm et al., 2004). Further experiments are necessary to test this hypothesis. This 

study further defines the period of Merkel cell genesis, though it is still unclear what signaling 

cascades initiate and halt Merkel cell progenitor proliferation at this time. Epigenetic regulation 

of Atoh1 and Sox2 chromatin structure is likely involved, though additional experiments are 

required to more comprehensively describe how this is initiated (Bardot et al., 2013; Lesko et al., 

2013). 

The oscillation of touch dome Merkel cell number with the growth and regression phases 

of the adult hair cycle has been the strongest pillar of evidence for adult Merkel cell turnover 

(Moll et al., 1996a; Nakafusa et al., 2006). However, technical limitations likely prevented 

analysis of full touch domes on whole skin pelts in those previous studies. Moll, 1996 performed 

their counts on a small amount of serially sectioned mouse skin, a technique that can easily 

provide a skewed representation of Merkel cell number (Lacour et al., 1991). Nakafusa, 2006 

dissected rat skin into epidermal sheets prior to immunostaining for the Merkel cell marker K8. It 

is possible that the high and low numbers of Merkel cells on the epidermal side from which they 

counted was an artifact of stronger Merkel cell adhesion to either the epidermis or basement 

membrane at varying hair cycle stages. Our analysis in five mice per age at multiple stages of the 

first hair cycle and into late adulthood provides a clear demonstration of average touch dome 

Merkel cell number remaining constant throughout adulthood. We also saw no change in touch 
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dome Merkel cell number after the hair cycle had been experimentally induced by chemical 

depilation, indicating that Merkel cell maintenance is independent of hair follicle stem cell 

activation. These data are consistent with experiments in hairless mice in which hair follicles 

form but degenerate during the first hair cycle. In these mice, Merkel cells are maintained 

throughout adulthood, indicating a lack of dependence on cycling hair follicles for their 

homeostasis (Xiao et al., 2015). 

As a skin cell, Merkel cells are remarkably distinct from surrounding keratinocytes in 

their expression profiles, innervation by afferent neurons, and extended lifespans (Haeberle et al., 

2004; Halata et al., 2003; Moll et al., 1995). The exact amount of time that Merkel cells persist 

after their genesis and the identity and proliferative capacity of their progenitor has been the 

subject of multiple independent investigations. Our fate-mapping and conditional cell ablation 

experiments indicate that these cells either all persist through late adulthood and are rarely 

replaced, or that Atoh1+ progenitors are responsible for their adult maintenance (Figure 6, Figure 

8). To estimate lifespan, we therefore had to go back to Merkel cell lineage formation in 

embryogenesis, where we labeled cells with a modified nucleoside as they were born. We found 

that these label-retaining embryonic-born Merkel cells continued to persist into late adulthood, 

far beyond the expected lifespan of any other post-mitotic epidermal cell, and therefore many 

embryonic-born Merkel cells likely exist for the lifetime of the mouse.  

To directly visualize Merkel cell homeostasis, we developed a system to image the belly 

skin of Atoh1GFP mice in vivo and used it to image the same touch domes from week to week. 

This powerful approach is the first sequential analysis of Merkel cells in single specific touch 

domes over multiple months. Consistent with our previous experiments, many Atoh1GFP+ 

Merkel cells were present throughout the entire imaging period (13-21 weeks), indicating that 

these cells lived for much longer than had been previously projected. However, there was a great 

deal of Merkel cell turnover in this system not reflected in our fate-mapping and birth-dating 

experiments. We confirmed that this was an effect of repeated skin shaving, as mice whose skin 

was shaved had 4.3 times more new K8+EdU+ cells than mice whose skin had been 

unmanipulated. We are currently testing approaches to enable touch dome visualization without 

altering normal skin homeostasis.  

The mechanical influence of repeated skin shaving caused the touch dome compartment 

to generate more Merkel cells than during normal skin homeostasis (Figure 20, Figure 22). It is 
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likely that this approach manipulates the skin similarly to the common methods for mild abrasion 

such as sandpaper-rubbing or tape-stripping, in which the epidermal barrier is compromised 

while the dermis is left unaffected (Bertsch et al., 1976; Hardy et al., 2003). In these mild wound 

systems, keratinocyte proliferation peaks 24-72 hours post-injury and returns to baseline at 7 

days (Ekanayake-Mudiyanselage et al., 1998; Hardy et al., 2003). This is also characterized by a 

transient increase in keratin 6 (K6) and involucrin expression paired with a decrease in K5 and 

K14 expression in the areas affected by abrasion (Hardy et al., 2003) We are currently testing if 

these expression profiles and proliferative alterations occur after our shaving protocol. We are 

also currently working to identify the signaling pathways stimulating Merkel cell progenitor 

activity in this wounding paradigm.  

We were surprised that this effect on Merkel cell number from shaving was not limited to 

directly shaved skin, as skin adjacent to the shaved region also had an increased number of 

nascent Merkel cells. This phenomenon of secondary effects on adjacent, unmanipulated touch 

domes has been described before, in which the skin of cats was exposed to small tattoos that 

injured touch domes (English, 1974). Many touch domes that were not tattooed, but within 3-

7mm, or even as far way as 1cm, from tattooed touch domes had profound morphological 

changes. These changes were similar to that seen in denervation studies and included loss of both 

Merkel cells and their overlying touch dome keratinocytes. It is unclear how these signals are 

propagated between touch domes, as it could be transmitted through keratinocytes, circulating 

immune cells, or the SA1 afferent. Further studies are required to test which signaling pathways 

instruct this change in Merkel cell number across the skin, and particularly to test the 

involvement of the SA1 afferent in disseminating this signal.  

In this study we were limited in our ability to distinguish between mechanically-induced 

nascent Merkel cells and Merkel cells that arose through normal tissue homeostasis. Therefore, it 

is unclear if there are any differences in the gene expression profiles, function, and/or lifespan of 

these two nascent Merkel cell types. Moreover, we cannot determine if shaving induces 

expanded proliferation of the same progenitor responsible for Merkel cell generation during 

normal homeostasis, or if an alternative progenitor population was recruited to adopt a Merkel 

cell fate. This fate-switching of skin progenitor populations has been shown to occur after skin 

wounding, in which hair follicle bulge progenitor cells migrate and differentiate as part of the 

interfollicular epidermis instead of contributing solely to the hair follicle (Levy et al., 2007). 
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Some K8+EdU+ cells appeared columnar and within the boundaries of touch dome keratinocytes 

(Figure 22B-B’’’), suggesting that they may arise from K17+Gli1+ touch dome progenitors, as 

has been previously suggested (Doucet et al., 2013; Woo et al., 2010; Xiao et al., 2015). We can 

say with certainty that neither type of nascent Merkel cells derive from a K14+ progenitor, as 

fate-mapping the K14+ lineage in shaved and unmanipulated K14CreER;ROSAtdTomato mice 

resulted in no tdTomato+K8+ cells (>1,200 K8+ cells from 3 mice; Figure 23). However, it is 

possible that the Atoh1+ progenitors responsible for Merkel cell generation in embryogenesis 

continue generate new Merkel cells during tissue homeostasis, but that a separate progenitor is 

stimulated to produce Merkel cells in this wounding paradigm. We are currently testing this 

possibility.  

Our findings have potential implications for understanding the genesis of MCC, a rare 

and potentially devastating form of skin cancer for which there are no truly effective treatments 

aside from surgical excision. Although the cell type of origin of MCC tumors is unknown 

(Tilling and Moll, 2012), evidence that MCC arises from Merkel cells or their precursors comes 

from expression of Hath1, the human Atoh1 homologue, in MCC tumor lines and primary tumor 

cells, along with other Merkel cell markers such as K20, chromogranin A, synaptophysin, and 

neuron-specific enolase (Leonard et al., 2002; Heiskala et al., 2010). Here we demonstrate that 

although touch dome Merkel cells are infrequently generated, their production is increased 

following mild superficial skin wounds. It is therefore possible that the stimulation of Merkel 

cell progenitor proliferation, combined with other factors such as Merkel cell polyomavirus 

and/or UV radiation may trigger unregulated cell proliferation. Identification and further 

characterization of the progenitors responsible for Merkel cell production will therefore continue 

to lend potential insight into the pathogenesis of MCC. 
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4.0  ECTOPIC ATOH1 EXPRESSION DRIVES MERKEL CELL PRODUCTION IN 

EMBRYONIC, POSTNATAL, AND ADULT EPIDERMIS 

The experiments described in this section are part of a published manuscript co-first authored by 

Dr. Stephen Ostrowski and myself (Ostrowski et al., 2015). 

My contributions: 

-Design and production of all main figures and some supplementary figures, including 

acquisition of the majority of the images. 

-Discussing experimental design and data analysis with Drs. Maricich and Ostrowski. 

-Editing and some writing of the manuscript. 

-Tissue processing and quantifications in Figure 27A-B’’’, E-H’’’.  

-Generating animals, tissue processing, and quantification in Figure 31. 

-Generating animals, tissue processing, and classification of hair cycle stage in Figure 32. 

-Tissue processing and quantifications in Figure 33E. 

-Tissue processing and quantifications in Figure 34B-I. 

4.1 INTRODUCTION 

Merkel cells are specialized skin cells found at the dermal/epidermal border in mammalian hairy 

and glabrous skin. Mature Merkel cells contact slowly adapting type I (SA1) nerve fibers and act 

as mechanotransducers important for detecting certain forms of light touch Ikeda et al., 2014; 

Maksimovic et al., 2014; Maricich et al., 2009; 2012). Merkel cells express the primitive 

epithelial intermediate filament proteins K8, K18 and K20; also known as Krt8, Krt18, and 

Krt20, respectively (Moll et al., 1995; Moll et al., 1984), as well as mechanosensitive ion 

channels, a variety of neuropeptides and presynaptic machinery components such as the synaptic 
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vesicle protein Rab3c and the vesicular glutamate transporter 2 (VGLUT2; also known as 

SLC17A6) (Alvarez et al., 1988; Cheng Chew & Leung, 1991; English et al., 1992; Fantini & 

Johansson, 1995; Garcia-Caballero et al., 1989; Haeberle et al., 2004; Hartschuh and Weihe, 

1989; Hartschuh et al., 1989; 1979; 1983). These markers have been used to reliably identify 

Merkel cells in a variety of species ranging from fish to humans (Moll et al., 1984; Saxod, 1973; 

Whitear, 1989). 

Merkel cells arise from the epidermal lineage, and Merkel cell production requires the 

basic helix-loop-helix transcription factor Atoh1 (Maricich et al., 2009; Morrison et al., 2009; 

Van Keymeulen et al., 2009). Atoh1 is also important for cell fate determination of brainstem 

neurons, hair cells of the inner ear and neurosecretory cells of the intestinal epithelium (Ben-Arie 

et al., 1996; Bermingham et al., 1999; Wang et al., 2005; Yang et al., 2001). Moreover, ectopic 

overexpression of Atoh1 is sufficient to convert inner ear supporting cells into hair cells and 

intestinal enterocytes to neurosecretory cells (Kelly et al., 2012; VanDussen & Samuelson, 2010; 

Zheng & Gao, 2000). Whether Atoh1 expression is sufficient to direct Merkel cell specification 

within the epidermal lineage is unknown.   

Using transgenic mice that allow inducible epidermal overexpression of Atoh1, we show 

that Atoh1 expression alone is sufficient to convert epidermal cells into ectopic Merkel cells as 

identified by expression of numerous Merkel cell markers. We show that epidermal competency 

to respond to Atoh1 varies by age, skin region and hair cycle stage. Furthermore, epidermal 

competency was limited by Notch signaling, which has been shown in other systems to 

antagonize endogenous and exogenous Atoh1 function (Golub et al., 2012; Kim & Shivdasani, 

2011; Yamamoto et al., 2006; Zheng et al., 2000; Zine et al., 2001). These data establish the 

sufficiency of Atoh1 to control Merkel cell lineage specification in the skin. 

4.2 MATERIALS AND METHODS 

4.2.1 Mice 

K14Cre (Jax #004782)(Dassule et al., 2000), ROSArtTa, eGFP (Jax #005572)(Belteki et al., 2005), 

ROSAtdTomato (Jax #007914) (Madisen et al., 2010) and TetAtoh1 mice (a generous gift of Dr. Ping 
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Chen, Emory University, Atlanta, GA, USA) (Kelly et al., 2012) were maintained on a congenic 

C57BL/6J genetic background. We verified a report (Kelly et al., 2012) that eGFP fluorescence 

in ROSArtTa,eGFP mice is undetectable without immunostaining (data not shown), and we refer to 

this allele as ROSArtTa because it was used only for rtTa expression. K14CreER (Jax #005107) 

(Vasioukhin et al., 1999) and RBPjflox mice (Han et al., 2002) were maintained on mixed genetic 

backgrounds. All animal work was conducted in accordance with Case Western Reserve 

University and University of Pittsburgh Institutional Animal Care and Use Committee 

guidelines. At least 3 mice/genotype were analyzed for each of the experiments unless otherwise 

stated. 

4.2.2 Tamoxifen Administration 

For induction of Rpbj deletion in the keratinocyte lineage, tamoxifen (250mg/kg; Sigma) 

dissolved in a 1:9 ethanol:corn oil solution was administered to P18-P24 mice by oral gavage 

every other day for 3 doses, followed by doxycycline administration for indicated durations (see 

below). 

4.2.3 Doxycycline Administration 

Doxycycline-containing chow (200mg/kg; BioServ) was provided ad libitum to transgenic and 

control pregnant dams from E14.5-E18.5 (plug date designated at E0.5) for embryonic 

experiments or to P22-P26 mice for 24 or 96 hours for adolescent/adult experiments. For early 

postnatal ages, doxycycline (1mg in 100mL of 100% ethanol) was applied to the entire back and 

flank skin of pups twice per day for 3 days (P2-P4). 

4.2.4 FM dye injections 

Fixable FM1-43 dye (4mg/kg; FM® 1-43FX; Life Technologies) was injected intraperitoneally 

and mice were sacrificed 24 hrs later (Meyers et al., 2003). 
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4.2.5 Tissue harvest 

Embryos (E18.5), and pups were euthanized by decapitation, tails collected for genotyping, and 

skin dissected. Adolescent/adult mice were euthanized by cervical dislocation and skin was 

shaved and depilated with Surgicream. Skin was dissected and either snap frozen in OCT or 

immersion fixed for 1 hr in ice-cold 4% paraformaldehyde. Skin for wholemount 

immunostaining was washed and stored in 1X PBS, whereas skin for sectioning was 

cryoprotected in 30% sucrose, embedded in OCT, and cryosectioned onto Fisher Superfrost Plus 

slides at 10 or 20μm using a Leica CM1950 cryostat. 

4.2.6 Immunostaining 

We used the following primary antibodies: rat anti-keratin 8 (TROMA1, DSHB) 1:20, mouse 

anti-keratin 18 (clone RGE53, Millipore) 1:200, mouse anti-keratin 20 (clone Ks20.8, Life 

Technologies) 1:100, rabbit anti-VGLUT2 (Synaptic Systems, cat #135402) 1:3000, rabbit anti-

Rab3c (Genetex, cat #GTX13047) 1:1000, rabbit anti-keratin 14 (Covance, PRB-155P) 1:1000, 

rabbit anti-Islet 1 (Abcam, cat #AB109517) 1:200, rabbit anti-Sox2 (Millipore, cat #AB5603) 

1:400, and chicken anti-chicken Atoh1 (generous gift of Drs. Tom Coates and Matthew Kelley, 

NIDCD/NIH; 1:10,000). Secondary antibodies (Jackson ImmunoResearch) were used at a 

dilution of 1:250. 

Wholemount immunostaining was carried out using a published protocol (Li et al., 2011) 

with modifications. Adipose tissue was removed and the skin cut into 2x2mm pieces, rinsed in 

1X PBS, washed with 1X PBS/0.3% Triton X-100 (0.3% PBST) every 30 minutes for 5-8 hrs, 

then incubated with primary antibodies in 0.3% PBST/5% goat or donkey serum/20% DMSO at 

room temperature for 3-5 days. Samples were washed with 0.3% PBST every 30 minutes for 5-8 

hrs, transferred to secondary antibodies in 0.3% PBST/5% goat or donkey serum/20% DMSO 

and incubated at room temperature for 2-4 days, washed with 0.3% PBST every 30 minutes for 

5-8 hrs then mounted on Fisher Superfrost Plus slides using Prolong Gold (Invitrogen). 

For sectioned tissue, slides were washed in 1XPBS, blocked in 5%NDS for 30 minutes, 

and incubated in primary antibody diluted in blocking solution overnight at 4°C. Slides were 

washed in 1XPBS, incubated in secondary antibody diluted in blocking solution for 30 minutes 
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at room temperature, washed in 1XPBS, counterstained with DAPI (4’6’-diamidino-2-

phenylindole dihydrochloride; Fisher, 1:1000), and mounted in Prolong Gold. 

Immunostaining for Sox2 and Islet1 required antigen retrieval consisting of slide 

immersion in sub-boiling 10mM citrate buffer for 10 minutes, followed by 30 minutes at room 

temperature. Slides were then stained as described above. 

4.2.7 Image acquisition 

Fluorescent images were acquired with a Leica DM 5500B epifluorescence microscope using 

HCX PL-APO 40x 1.25 NA, HCX PL-APO 20x 0.70 NA and HC PL-APO 10x 0.4 NA 

objectives, Leica DFC420 camera and Leica Acquisition Software v4.2. Confocal images were 

acquired with an inverted Zeiss Axio Observer on a PerkinElmer UltraVIEW VoX spinning disc 

confocal with C-APO 40X 1.1 NA water immersion objective, Hamamatsu C9100-13 camera 

and Volocity software. Images were further processed using Adobe Photoshop. 

4.2.8 Cell counts 

In wholemount preparations of back skin (n=2-5 mice/time point), K8+ cells within (n=10-25 

touch domes/mouse) and outside of (1cm2 area of skin/mouse) touch domes were counted except 

for the 4 day time point, for which the high density of ectopic K8+ cells necessitated counting 

two 200μm2 areas from each mouse and extrapolating to ectopic K8+ cells/cm2. In sectioned 

tissue, at least 100 ectopic (non-touch dome-associated) K8+ cells were counted per mouse per 

time point/age and scored for co-labeling with the designated marker (n=3 mice/time point or 

age). Examining a similar number of slides from littermate controls confirmed the absence of 

ectopic K8+ cells.  

 

Follicular and interfollicular Ki67+ cell number in P29 mice and K8+ cell number in 

E18.5 and P4 mice were determined in tissue sections. Five representative follicles were imaged 

at 20X and all Ki67+ or K8+ cells in each field of view were counted within the hair follicle 

(follicular) and in the epidermis around the follicle (interfollicular), then averaged for each 
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mouse (n=2-3 mice/genotype/age). Cell counts were compared by one-way ANOVA followed by 

Scheffe pairwise comparison testing or Students t-test as indicated. 

4.3 RESULTS 

4.3.1 Inducible Atoh1 expression produces ectopic K8+ cells in glabrous and hairy skin 

In mouse skin, Atoh1 is normally expressed exclusively by Merkel cells located in foot pads, 

touch domes of hairy skin and whisker follicles (Figure 24B-B’’’, G-H’’’, M-M’’’). To induce 

Atoh1 expression in other skin regions, we crossed mice that express Cre recombinase in the 

epidermal lineage (K14Cre) (Dassule et al., 2000), mice that express a Cre-activated reverse 

tetracycline transactivator (ROSArtTa) (Belteki et al., 2005), and mice with a tetracycline-

inducible Atoh1 transgene (TetAtoh1) (Kelly et al., 2012). These triple transgenic 

K14Cre;ROSArtTa;TetAtoh1 mice allow inducible Atoh1 expression throughout the epidermal lineage 

for the duration of doxycycline administration (Figure 24A).  

Adolescent [postnatal(P)22-26] K14Cre;ROSArtTa;TetAtoh1 mice that received doxycycline 

for 24 hrs prior to sacrifice produced Atoh1 protein throughout the foot pad epidermis, hairy skin 

follicular and interfollicular epidermis, and in epidermal cells within whisker follicles (Figure 24. 

C’, D’, I’, J’, N’). However, only a fraction of the ectopic Atoh1+ cells located in whisker 

follicles but not body skin or glabrous paw skin co-expressed low levels of the early Merkel cell 

marker K8 (Vielkind et al., 1995) (Figure 24C’’, D’’, I’’, J’’, N’’). Doxycycline administration 

for 96 hours resulted in greater numbers of ectopic Atoh1+ cells in all regions (Figure 24. E-F’’’, 

K-L’’’, O-O’’’). This longer induction paradigm also led to K8 expression throughout the paw 

epidermis, but in hairy skin and whisker pads K8 expression was limited to ectopic Atoh1+ cells 

confined to hair follicles (Figure 24E’’, F’’, K’’, L’’, O’’). We never found ectopic Atoh1+ or 

K8+ cells in any skin region in control littermates (Figure 24B-B’’’. G-H’’’, M-M’’’; Fig. 2A, 

D-D’’, G). These data suggest that keratinocytes in different skin regions exhibit differential 

competence to respond to Atoh1 expression. Unfortunately, K14Cre;ROSArtTa;TetAtoh1 mice 

undergoing induction for more than 24 hrs experienced severe weight loss, probably secondary 
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to degeneration of the tongue epithelium causing decrease oral intake (Figure 25A-C). Therefore, 

we used the 24 hrs doxycycline administration paradigm for the rest of our experiments. 

To determine how long ectopic K8+ cells survived, we induced Atoh1 expression by 

administering doxycycline for 24 hrs to adolescent K14Cre;ROSArtTa;TetAtoh1 mice and harvesting 

skin 4 days, 2 weeks, 6 weeks and 3 mo after doxycycline was withdrawn (Figure 26). In 

glabrous paw skin and whisker follicles, ectopic K8+ cells were present 4 days after doxycycline 

administration, but very few remained 2 weeks after doxycycline administration (Figure 26A-

F’’). These cells were not studied further. By contrast, ectopic K8+ cells were found in body skin 

hair follicle epidermis at all time points, but their numbers decreased between 4 days and 6 

weeks post-doxycycline, then remained constant through 3 mo post-doxycycline (Figure 26G-K). 

Co-immunostaining for K8 and cleaved caspase-3 4 days post-doxycycline revealed that 

1.3±0.8% of ectopic K8+ cells were caspase-3+, suggesting that the decline in ectopic K8+ cell 

number occurred secondarily to apoptosis (Figure 27A-A’’) Rare Atoh1+K8- cells were also 

found at these time points, but the vast majority of Atoh1+ cells co-expressed K8 (Figure 26L-

M’’’). At 4 days post-doxycycline, ectopic K8+ cells were found throughout the hair follicle 

epidermis (Figure 26L-L’’’) but were restricted to hair follicle bulb and bulge regions from 2 

weeks post-doxycycline onward (Figure 26M-M’’’; data not shown). These data indicate that the 

majority of ectopic K8+ cells disappear over time, but that a small subset survives for at least 3 

mo post-Atoh1 induction. 

Embryonic Atoh1+ cells undergo mitosis (Figure 2, Figure 3) so we wondered whether 

ectopic Atoh1-expressing cells were proliferative. No ectopic K8+ cells expressed the 

proliferation marker Ki67 in K14Cre;ROSArtTa;TetAtoh1 mice 4 days post-doxycycline, indicating 

that ectopic K8+ cells were not mitotically active (Figure 27B-B’’’). Furthermore, 

K14Cre;ROSArtTa;TetAtoh1 mice did not manifest skin malformations or overt changes in epidermal 

structure at any time point, and numbers of Ki67+K8- epidermal cells were similar in 

K14Cre;ROSArtTa;TetAtoh1 mice and control littermates 4 days post-doxycycline (interfollicular: 

28.5±2.4 versus 25.8±7.6 Ki67+ cells/20X field of view, p=0.7; follicular: 34.3±4.4 versus 

25.9±0.4 Ki67+ cells/20X field of view, p=0.42; t-test). 

Merkel cells are derived from the K14 lineage, so our transgenic Atoh1 overexpression 

paradigm must have driven Atoh1 overexpression in normal Merkel cells. However, Atoh1 

induction did not affect touch dome Merkel cell morphology or numbers (Figure 28). This 
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suggests that Atoh1 overexpression was not toxic to Merkel cells and that it did not drive excess 

production of K8+ cells in touch domes. 

We also studied whether ectopic K8+ cells had detectable levels of Atoh1 protein. About 

twice as many ectopic K8+ cells co-expressed Atoh1 at 4 days compared to 2 weeks post-

doxycycline, and these cells had qualitatively stronger Atoh1 immunofluorescence at the 4 day 

time point (Figure 27C-D’’’). These data suggest that transient transgenic Atoh1 expression 

induced Atoh1 expression from the endogenous locus that was maintained for at least 2 weeks, 

and that endogenous expression levels subsequently decreased over time. 
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Figure 24. Inducible Atoh1 expression produces ectopic K8+ cells in glabrous and hairy 

skin of adolescent K14Cre;ROSArtTa;TetAtoh1 mice  Experimental induction paradigms are shown 

at the top of the figure. (A) Schematic of K14Cre;ROSArtTa;TetAtoh1 mouse alleles. Cre is produced 

in K14-expressing cells, which then removes the floxed stop allele upstream of rtTa at the ROSA 

locus. Upon administration of doxycycline, rtTa binds to Tet to drive Atoh1 expression. (B-O′′′) 

Sectioned back skin (B-F′′′), whisker pads (G-L′′′) and glabrous paw skin (M-O′′′) 

immunostained for Atoh1 and K8 of littermate control (B-B′′′,G-H′′′,M-M′′′) and 

K14Cre;ROSArtTa;TetAtoh1 mice (C-F′′′,I-L′′′,N-O′′′) treated with doxycycline for 24 or 96 hrs. 

Asterisks denote ectopic Atoh1+ (white) and Atoh1+K8+ (yellow) cells in the interfollicular 

epidermis (IFE) and hair follicles of the back skin and whisker pads. Brackets (J′-J′′′) mark the 

position of ectopic Atoh1+ cells that co-express low levels of K8. Dashed lines in D-D′′′ indicate 
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hair follicle boundaries. Dashed lines in L-L′′′ separate normal Merkel cells (left) from ectopic 

K8+ cells (right). Dashed lines in M-N′′′ mark position of normal Merkel cells; this delineation 

was difficult in O-O′′′ owing to the large number of ectopic cells. Skin surface is at the top (B-

F′′′, G-G′′′ ,I-I′′′ ,K-K′′′ ,M-O′′′) or right (H-H′′′, J-J′′′ ,L-L′′′) of panels. Hairs autofluoresce in the 

green channel. Boxes denote regions shown at higher magnification in insets. Scale bars: 50μm.  
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Figure 25. Excessive ectopic Atoh1 over-expression damages the skin.  (A) Weight of P24-

P28 K14Cre;ROSArtTa;TetAtoh1 (n=7) and control (n=7) mice treated for 2 or 4 days with 

doxycycline. K14Cre;ROSArtTa;TetAtoh1 (n=2) mice but not littermate controls (n=2) allowed to 

age past day 4 required euthanasia on day 9 due to emaciation. (B, C) Hematoxylin and eosin 

(H&E)-stained tongue tissue sections from P28 control littermate (B) and 

K14Cre;ROSArtTa;TetAtoh1 mice (C) that received doxycycline for 4 days reveals acantholysis and 

epidermal loss in the latter. (D, E) H&E staining of skin from E18.5 control littermate (D) and 

K14Cre;ROSArtTa;TetAtoh1 (E) embryos given doxycycline from E14.5-E18.5 demonstrates 

acantholysis and epidermal loss in the latter. Scale bars: 50μm. 
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Figure 26. Ectopic K8+ cells persist in glabrous and hairy skin of K14Cre;ROSArtTa;TetAtoh1 

mice  Experimental induction paradigm is shown at the top of the figure. (A-J) Wholemount 

glabrous paw skin (A-C), sectioned whisker follicles (D-F′′) and wholemount back skin (G-J) of 

control (A,D-D′′,G) and K14Cre;ROSArtTa;TetAtoh1 mice four days (B,E-E′′,H), two weeks (C,F-

F′′,I) and three mo (J) post-doxycycline immunostained for K8. Dotted lines outline paw skin 

touch pads (A-C) and whisker follicles (D-F′′). Bracket (B) and asterisks (C,E-F′′,J) indicate 

ectopic K8+ cells. TD indicates normal Merkel cells within touch domes, which are sometimes 

out of focus because they are in a different focal plane than ectopic cells. (K) Ectopic Merkel cell 

density in back skin (n =2-3 mice/time point). Numbers above bars are mean±SEM ***P<0.001 

versus 4 day time point; ##P<0.01 versus 2 week time point (ANOVA with Tukey’s pair-wise 

post-hoc testing). (L-M′′′) Sectioned K14Cre;ROSArtTa;TetAtoh1 mouse back skin four days (L-L′′′) 

and 2 weeks (M-M′′′) post-induction immunostained for Atoh1 and K8 shows ectopic 

Atoh1+/K8− (green arrows), Atoh1−/K8+ (red arrows) and Atoh1+/K8+ (yellow arrows) cells in 

hair follicles. Dotted lines outline hair follicle, and boxes denote regions shown at higher 

magnification in insets. Scale bars: 50μm.  
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Figure 27. Ectopic K8+ cells express Atoh1, Sox2 and Isl1, some express caspase-3, but 

none are mitotically active  Experimental induction paradigm is shown at the top of the figure. 

(A-H′′′) Sectioned back skin of adolescent K14Cre;ROSArtTa;TetAtoh1 mice showing ectopic K8+ 
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cells in hair follicles four days (A-C′′′, E-E′′′ ,G-G′′′) and 2 weeks (D-D′′′, F-F′′′, H-H′′′) post-

induction. Sections were co-immunostained for cleaved caspase-3 (A′), Ki67 (B′) Atoh1, (C′, 

D′), Sox2 (E′, F′), Isl1 (G′, H′) and K8 (A′′, B′′, C′′, D′′, E′′, F′′, G′′, H′′). Yellow arrows indicate 

double-positive cells. Red arrows indicate K8+ cells not expressing the marker of interest. All 

images were taken using the same exposure settings, demonstrating greater fluorescence 

intensity of each transcription factor at 4 days versus 2 weeks post-doxycycline. The average 

percentage of ectopic K8+ cells (±SEM) co-expressing each marker is shown (n=100-200 K8+ 

cells from each of three mice). Scale bars: 10μm.  

4.3.2 Ectopic K8+ cells acquire Merkel cell marker expression over a time course similar 

to that seen during normal Merkel cell development 

Ectopic K8+ cells in hair follicles of K14Cre;ROSArtTa;TetAtoh1 mice looked morphologically 

similar to Merkel cells found in touch domes of control mice (Figure 28). We wondered whether 

ectopic Atoh1 expression drove expression of Merkel cell markers other than K8. We looked 

first at expression of Sox2 and Isl1, two transcription factors expressed early in Merkel cell 

development (Bardot et al., 2013; Lesko et al., 2013; Perdigoto et al., 2014a). The vast majority 

of ectopic K8+ cells co-expressed Sox2 and Isl1 at 4 days and 2 weeks post-doxycycline (Figure 

27E-H’’’), demonstrating that Atoh1 expression was sufficient to induce long-lasting expression 

of these transcription factors. As with Atoh1 itself, the immunofluorescence levels of these 

proteins appeared to decrease over time. Four days after a 24 hrs doxycycline pulse nearly all 

ectopic K8+ cells co-expressed the Merkel cell markers K18 and K20 (Figure 29B-C’’’; Table 

1), but very few expressed the synaptic vesicle protein Rab3c or the vesicular glutamate 

transporter Vglut2 (Table 1). By contrast, two weeks post-induction ectopic K8+ cells co-

expressed all four markers (Figure 29E-F; Table 1). Co-expression of these markers was 

maintained at the 6 week and 3 month survival times (data not shown). In addition, the majority 

of ectopic K8+ cells were labeled by systemic administration of the styryl dye FM1-43 at 4 days 

and 2 weeks post-induction (Figure 29D-D’’’; Table 1), suggesting that they possessed 

mechanosensitive ion channels (Meyers et al., 2003). However, NF-200 immunostaining 

demonstrated that ectopic K8+ cells were not innervated at any time point (data not shown). 
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These data demonstrate that Atoh1 is sufficient to direct a subset of follicular keratinocytes to 

adopt several key features of Merkel cells. 

Mature Merkel cells do not express keratinocyte markers (Haeberle et al., 2004; Moll et 

al., 1995), and we wondered whether ectopic Atoh1 expression in keratinocytes altered normal 

marker expression in these cells. Four days post-induction, we found no cells that co-expressed 

Atoh1 and the general keratinocyte marker K14 (Figure 29A-A’’’). This suggests that Atoh1 

expression downregulates K14 expression as it drives these cells to switch fate away from the 

keratinocyte lineage. We next sought to determine whether acquisition of Merkel cell-specific 

marker expression in ectopic Atoh1+ cells occurred in a time course similar to that seen during 

normal Merkel cell development. Merkel cells first appear in hairy skin at embryonic day 14.5 

(E14.5) (Pasche et al., 1990), so we examined P0 and P7 control (K14Cre and TetAtoh1;ROSArtTa) 

mice to approximate the 4 day and 2 week time points following Atoh1 induction. At P0, the 

majority of K8+ cells co-expressed K18 and K20, and also took up FM1-43 (Figure 30A-C’’’; 

Table 1). However, very few Merkel cells in P0 mice co-expressed Rab3c or Vglut2 (Table 1). 

By contrast, most K8+ cells co-expressed all of these markers at P7 (Figure 30D-E’’’; Table 1). 

These data indicate that the time course of marker expression in ectopic Merkel cells in 

K14Cre;ROSArtTa;TetAtoh1 mice closely approximates that of normal Merkel cells during postnatal 

development, suggesting that the maturational programs controlled by Atoh1 are similar in the 

two populations. 
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Figure 28. Atoh1 induction does not affect Merkel cell morphology or number in touch 

domes, ectopic K8+ cells have typical Merkel cell morphology  K8 immunostaining in 

wholemount back skin 2 weeks post-doxycycline shows touch dome (A, B) and ectopic (C) K8+ 

cells in adult littermate control (A) and K14Cre;ROSArtTa;TetAtoh1 (B, C) mice. Boxed regions are 

shown at higher magnification to the right of each panel. Scale bars: 50μm. 
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Figure 29. Ectopic K8+ cells express mature Merkel cell markers but not Keratin 14  

Experimental induction paradigm is shown at the top of the figure. (A-F′′′) Sectioned back skin 

of adolescent K14Cre;ROSArtTa;TetAtoh1 mice showing ectopic K8+ cells in hair follicles 4 days 

(A-D′′′) and 2 weeks (E-F′′′) post-induction immunostained for or labeled with K14 (A′), Atoh1, 

(A′′), K18 (B′), K20 (C′), FM1-43 (D′), Vglut2 (E′), Rab3c (F′) and K8 (B′′, C′′ ,D′′ ,E′′ ,F′′). 

Asterisks indicate Atoh1+ K14− cells; yellow arrows indicate double-positive cells. Co-

expression data is quantified in Table 1. Scale bars: 10μm.  
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Figure 30. Developmental time course of touch dome Merkel cell marker expression        

(A-E′′′) Sectioned back skin showing touch domes of wild-type C57Bl/6J P0 (A-C′′′) and P7 (D-

E′′′) mice immunostained for or labeled with K18 (A′), K20 (B′), FM1-43 (C′), Vglut2 (D′), 

Rab3c (E′) and K8 (A′′, B′′, C′′, D′′, E′′). Yellow arrows indicate double-positive cells; red 

arrows indicate K8+ cells that do not express the marker of interest. Co-expression data is 

quantified in Table 1. Scale bars: 10μm.   
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Table 1. Ectopic K8+ cells in K14Cre;ROSArtTa;TetAtoh1 mice express Merkel cell markers in a time course similar to 

that seen during normal development 

 Ectopic K8+ cells in 

K14Cre;ROSArtTa;TetAtoh1 mice 

Touch dome K8+ cells in 

C57BL/6J mice 

4 days post-

doxycycline 

2 weeks post-

doxycycline 

P0 P7 

K8+K18+/K8+ 100±0 100±0 97±0.9 100±0 

K8+K20+/K8+ 94±0.8 95±3.9 87±3.2 99±0.3 

K8+FM1-43+/K8+ 91±5.3 100±0 98±0.6 94±5.9 

K8+VGLUT2+/K8+ 10±2.6 94±2.0 13±3.2 95±1.0 

K8+Rab3c+/K8+ 5±1.5 69±4.3 3±1.8 83±4.1 

 

4.3.3 Keratinocyte competency to respond to ectopic Atoh1 is linked to hair cycle stage in 

adolescent mice 

Previous reports suggest that Merkel cell number changes during the hair cycle in rodents (Moll 

et al., 1996a; Nakafusa et al., 2006) so we wondered whether hair cycle stage might affect the 

competency of keratinocytes to respond to Atoh1 induction. Atoh1 induction for 24 hrs during 

anagen I at P24-26 followed by tissue harvest 4 days or 2 weeks later resulted in production of 

~55 times (p=0.011, t-test) and ~100 times (p=0.004, t-test) more ectopic K8+ cells, respectively, 

than induction at P19-20 during telogen I (Figure 31). We verified hair cycle stage at time of 

induction and time of collection on Hematoxylin and Eosin-stained tissue sections (Figure 32). 

These data suggest that factors that vary during the hair cycle control responsiveness of 

keratinocytes to ectopic Atoh1 expression. 
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Figure 31. Keratinocyte competency to respond to ectopic Atoh1 varies by hair cycle stage 

Experimental induction paradigms are shown at the top of the figure. (A-D) Wholemount back 

skin from K14Cre;ROSArtTa;TetAtoh1 mice induced during telogen (P19; A, C) or anagen (P24; B, 

D), taken 4 days (A, B) or 2 weeks (C, D) post-induction and immunostained for K8. Asterisks 

denote individual or groups of ectopic K8+ cells. Numbers indicate average densities of ectopic 

K8+ cells (±SEM; n=3 mice/hair cycle stage). TD, touch dome. Scale bar: 50μm.  

 



 89 

 
Figure 32. K14Cre;ROSArtTa;TetAtoh1 mouse hair cycle stages following induction during 

telogen I and anagen I.  H&E staining of sectioned back skin from K14Cre;ROSArtTa;TetAtoh1 

mice at the time of (A, D), four days (B, E) and two weeks (C, F) post- doxycycline 

administration. Hair cycle stage and age at time of tissue harvest are indicated in each panel. 

Scale bar: 100μm. 

4.3.4 Keratinocyte competency to respond to ectopic Atoh1 decreases over developmental 

time 

To determine whether keratinocyte competency to respond to Atoh1 expression was related to 

developmental age, we administered doxycycline to pregnant dams for 5 days from E14.5-E18.5, 

then harvested K14Cre; ROSArtTa; TetAtoh1 embryos and littermate controls at E18.5 (n=5 and n=4 

from two litters, respectively). Atoh1+ and K8+ cells were present throughout hairy skin 

follicular and interfollicular epidermis of K14Cre; ROSArtTa; TetAtoh1 embryos, while Atoh1 and 
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K8 were detected only in touch domes of littermate controls (Figure 33A, B, E-E’’’). This 

widespread ectopic Atoh1 expression caused acantholysis of the epidermis, which sloughed from 

the dermis in treated E18.5 K14Cre;ROSArtTa;TetAtoh1 embryos (Figure 25D, E). Induction of 

Atoh1 in utero, even for periods as short as 24 hrs, resulted in embryonic or early postnatal 

lethality of transgenic pups, and this prevented us from studying postnatal ages with this 

paradigm. 

We next evaluated the effects of Atoh1 induction during early postnatal development by 

treating K14Cre;ROSArtTa;TetAtoh1 mice with doxycycline from P2-4 and examining the skin at P4 

(n=6 mice/genotype). As in adolescent mice, Atoh1+ cells were detected throughout the 

follicular and interfollicular epidermis of K14Cre;ROSArtTa;TetAtoh1 mice, but K8+ cells were seen 

only within the follicular epidermis and the associated infundibulum (Figure 33D, E, G-G’’). 

Atoh1+ and K8+ cells were confined to touch domes of P4 control littermates (Figure 33C). 

Ectopic K8+ cell densities were significantly different from one another compared with those 

observed at E18.5 and when different locations were compared (two-way ANOVA F=29.18, 

P=0.0006; post-hoc pairwise Scheffe test: E18.5 interfollicular versus P4 interfollicular, 

P=0.002; E18.5 follicular versus P4 interfollicular, P=0.001; P4 interfollicular versus P4 

follicular, P=0.006). These data indicate that epidermal competency to respond to Atoh1 

expression is widespread during embryogenesis, but restricted to hair follicle epidermis shortly 

after birth. 
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Figure 33. Keratinocyte competency to respond to ectopic Atoh1 decreases as animals age 

Experimental induction paradigms are shown at the top of the figure. (A-I′′′) Wholemount (A-D) 

and sectioned (F-I′′′) back skin immunostained for K8 (A-D, F′′, G′′, H′′, I′′) and Atoh1 (F′, G′), 

K18 (H′) or K20 (I′) from E18.5 (A, B, F-F′′′, H-I′′′) and P4 (C, D, G-G′′′) 

K14Cre;ROSArtTa;TetAtoh1 mice (B, D, F-I′′′) and control littermates (A, C) given doxycycline for 

the indicated times. (E) Ectopic Merkel cell number in follicular and interfollicular skin (K8+ 

cells per 20X field ±SEM; n=2-3 mice/age). ***P<0.001 versus E14.5-E18.5 follicular; 

##P<0.01 versus E14.5-E18.5 interfollicular (two-way ANOVA with post-hoc pairwise Scheffé 

test). Hair follicles are outlined with dashed lines and interfollicular skin indicated with brackets. 
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Red arrows indicate K8+ cells and yellow arrows K8+K18+ or K8+K20+ cells; percentages 

(±SEM) of double-labeled cells are shown (n=100-200 K8+ cells from each of three mice). TD, 

touch dome. Scale bars: (A-G′′′) 50μm; (H-I′′′) 10μm.  

4.3.5 Notch signaling regulates keratinocyte competency to respond to Atoh1 induction 

In the cochlea, deletion of the Notch effector proteins Hes1 and Hes5 increases hair cell 

production, and inhibition of Notch signaling expands support cell competency to respond to 

ectopic Atoh1 expression (Kelly et al., 2009; Zheng et al., 2000; Zine et al., 2001). To test 

whether Notch signaling similarly affected the competency of the epidermal lineage to respond 

to Atoh1, we conditionally deleted the universal Notch effector gene RBPj in 

K14CreER;ROSArtTa;TetAtoh1;RBPjflox mice. We used the tamoxifen-inducible K14CreER allele 

(Vasioukhin et al., 1999) rather than the constitutively-expressed K14Cre allele because 

constitutive ablation of RBPj in the epidermis causes perinatal lethality (Blanpain et al., 2006). 

The K14CreER allele directs efficient recombination within the interfollicular epidermis while 

causing only limited recombination within follicular epidermis (Peterson et al., 2015; Wong & 

Reiter, 2011; Zhang et al., 2009) (Figure 34A-A’’), which limited the amount of ectopic Atoh1 

expression that was driven in hair follicles. 

 K14CreER;ROSArtTa;RBPjflox/flox, K14CreER;ROSArtTa;TetAtoh1;RBPj+/+, K14CreER;ROSArtTa; 

TetAtoh1;RBPjflox/+ and K14CreER;ROSArtTa;TetAtoh1;RBPjflox/flox mice (n=2-3/genotype/age) were 

given 3 doses (250 mg/kg) of tamoxifen via oral gavage between P19 and P24 to activate 

K14CreER, followed by Atoh1 induction with doxycycline for 4 days from P24-28 and tissue 

harvested on P28 or 3 mo later (n=2-3 mice/genotype/time point). A few ectopic K8+ cells were 

present in K14CreER;ROSArtTa;RBPjflox/flox mice, demonstrating that RBPj ablation alone was 

sufficient to allow their production (Figure 34B). Because mosaic recombination occurred in hair 

follicles, at P28 only relatively small numbers of K8+ cells were present in the hairy skin of 

K14CreER;ROSArtTa;TetAtoh1;RBPj+/+ mice (Figure 34C). By contrast, K14CreER;ROSArtTa; 

TetAtoh1;RBPjflox/+ and K14CreER;ROSArtTa;TetAtoh1;RBPjflox/flox had larger numbers of K8+ cells in 

follicular epidermis (Figure 34D, E), suggesting that acute ablation of Notch signaling greatly 

enhanced the epidermal competency to respond to Atoh1 overexpression. These differences were 

statistically significant across genotypes (one-way ANOVA F=8.27, p=0.022; post-hoc pairwise 
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Scheffe tests: K14CreER;ROSArtTa;RBPjflox/flox versus K14CreER;ROSArtTa;TetAtoh1;RBPjflox/flox 

p=0.05 and K14CreER;ROSArtTa;TetAtoh1;RBPj+/+ versus K14CreER;ROSArtTa;TetAtoh1;RBPjfloxflox 

p=0.042). As in K14Cre;ROSArtTa;TetAtoh1 mice, all ectopic K8+ cells were present in follicular 

epidermis and were not innervated in any of the four genotypes (data not shown). We found no 

difference in the number of touch dome K8+ cells between K14CreER;ROSArtTa;RBPjflox/flox, 

K14CreER;ROSArtTa;TetAtoh1;RBPj+/+, K14CreER;ROSArtTa;TetAtoh1;RBPjflox/+, K14CreER;ROSArtTa; 

TetAtoh1;RBPjflox/flox mice (19±2.0, 17±0.4, 17±0.4, and 17±0.2 K8+ cells/touch dome, 

respectively; one-way ANOVA F=0.21, P=0.8873). Three mo post-induction (P140), 

K14CreER;ROSArtTa;RBPjflox/flox and K14CreER;ROSArtTa; TetAtoh1;RBPjflox/flox mice had K8+ cells, 

but whether these were ectopic or part of touch domes was impossible to determine because of 

hair loss with near-complete destruction of hair follicles, skin thickening and cutaneous cyst 

formation similar to that reported following Rbpj deletion using a K15CrePR1 allele (Demehri and 

Kopan, 2009). K14CreER;ROSArtTa;TetAtoh1;RBPj+/+ and K14CreER;ROSArtTa;TetAtoh1;RBPjflox/+ mice 

had K8+ cells only in touch domes (Figure 34G,H). These data demonstrate that Notch signaling 

regulates competency to respond to ectopic Atoh1 expression in the skin of juvenile mice. 
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Figure 34. Loss of Notch signaling enhances epidermal competency to respond to Atoh1 

Experimental induction paradigms are shown at the top of each panel set. (A-A′′) Sectioned back 

skin from an adolescent K14CreER;ROSAtdTomato mouse that received tamoxifen for three 

consecutive days shows patchy expression of tdTomato in hair follicles (outlined with dotted 

line). (B-I) Adolescent K14CreER;ROSArtTa;RBPjflox/flox, K14CreER;ROSArtTa;TetAtoh1;RBPj+/+, 

K14CreER;ROSArtTa;TetAtoh1;RBPjflox/+ and K14CreER;ROSArtTa;TetAtoh1;RBPjflox/flox mice were dosed 

with tamoxifen and doxycycline as indicated, then back skin harvested and immunostained for 
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K8 immediately (B-E) or 3 mo later (F-I). Boxes indicate areas shown at higher magnification in 

insets. Quantifications indicate Merkel cell density. TD, touch dome. Scale bars: 50μm.  

4.4 DISCUSSION 

Our data demonstrate that ectopic Atoh1 expression is sufficient to drive K8+ cell production in 

the embryonic and postnatal mammalian epidermis. These ectopic cells exhibit multiple 

characteristics of mature Merkel cells, including morphology, marker expression and FM1-43 

dye uptake. In addition, they acquire these characteristics in a time frame comparable to that of 

Merkel cells during normal touch dome development, suggesting that the developmental 

programs controlled by Atoh1 expression are similar in both populations. These data indicate that 

Atoh1 expression is sufficient to direct epidermal cells to become Merkel cells. These findings 

are reminiscent of those seen in the ear and intestine, where ectopic Atoh1 expression drives 

production of supernumerary hair cells and secretory/endocrine cells, respectively (Kelly et al., 

2012; Lin et al., 2011; VanDussen & Samuelson, 2010).  

Cellular competency to respond to the robust doxycycline-induced ectopic Atoh1 

expression seen in K14Cre;ROSArtTa;TetAtoh1 mice varied by age, location and hair cycle stage 

(Figure 24, Figure 26, Figure 31, Figure 33). Developmental and geographical differences in 

competency also occur in the developing ear, where ectopic Atoh1 expression drives new hair 

cell production within and outside of the sensory epithelium of neonatal mice, only in the 

sensory epithelium of slightly older mice, and not at all in juvenile mice (Kelly et al., 2012). In 

both systems, variations in cellular responses are likely to be secondary to a multitude of factors 

that include epigenetic alterations, co-expression of transcription factors that act as activators or 

repressors, signaling through various genetic pathways (i.e. BMP, SHH, Wnt, etc.) and 

potentially even cell-cycle stage. In the ear, competency depends upon Sox2 expression in the 

target tissue, which occurs throughout the sensory epithelium and Kölliker’s organ at early ages 

but becomes restricted to supporting cells as mice age (Hume et al. 2007; Kelly et al., 2012). 

This is unlikely to be the case in the skin because Sox2 is expressed only by developing and 

mature Merkel cells and not by other epidermal cells (Bardot et al., 2013; Lesko et al., 2013). 

Instead, we have identified Notch signaling as one of the factors that regulates epidermal 
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competency to respond to Atoh1. Coupling conditional deletion of the universal Notch effector 

Rbpj with Atoh1 transgene induction in K14CreER;ROSArtTa;TetAtoh1;RBPjflox/flox mice caused a 

marked increase in the number of ectopic K8+ cells (Figure 34), a finding consistent with the 

antagonistic relationship between Atoh1 and Notch signaling in the ear and intestine during 

normal development and in the setting of Atoh1 overexpression (Golub et al., 2012; Kelly et al., 

2012; Kim & Shivdasani, 2011; Lanford et al., 2000; Zheng et al., 2000; Zine et al., 2001). 

Interestingly, Rbpj deletion in the absence of Atoh1 transgene expression was itself sufficient to 

create a few ectopic K8+ cells, suggesting that the Notch pathway normally represses Atoh1 

expression in at least a subset of epidermal cells. Variations in Notch pathway signaling occur 

during development and during different phases of the hair cycle, which might help to explain 

why Atoh1 induction produces more ectopic K8+ cells in embryos than in adult mice and in 

anagen versus telogen (Ambler & Watt, 2010; Favier et al., 2000; Powell et al., 1998). 

Furthermore, Notch1 is expressed by most Merkel cell carcinomas (MCCs) (Panelos et al., 

2009), but whether Atoh1/Notch antagonism participates in MCC pathogenesis has not been 

investigated. Future studies will address the role of Notch signaling in regulating endogenous 

Atoh1 expression in both normal Merkel cell development and MCC.  

The density of ectopic K8+ cells in the hairy skin of K14Cre;ROSArtTa;TetAtoh1 mice 

decreased substantially from 4 days to 3 mo post-induction, probably secondary to apoptotic cell 

death (Figure 26, Figure 27A-A′′′). Previous reports suggest that mature Merkel cells live ∼7-8 

weeks (Doucet et al., 2013; Van Keymeulen et al., 2009), a time frame too long to explain the 

large decrease in cell numbers seen between 4 days and 2 weeks post-induction. Ectopic K8+ 

cell numbers also decreased dramatically between 2 and 6 weeks post-induction, at which point 

the density of ectopic K8+ cells remained constant up to 3 mo (Figure 26K). These long-lived 

ectopic K8+ cells were confined to deep regions (bulge and bulb) of hair follicles from 2 weeks 

post-doxycycline onwards, suggesting that these locations are permissive niches that facilitate 

survival. In normal touch domes, Merkel cell survival depends upon SA1 innervation (Burgess et 

al., 1974; English et al., 1983) and is influenced either directly or indirectly by neurotrophins 

(Cronk et al., 2002; Fundin et al., 1997). Ectopic K8+ cells in our system were never innervated 

regardless of location or time after Atoh1 induction, suggesting that nerve-derived factors were 

unlikely to maintain them. However, neurotrophins such as BDNF, NGF, NTF3 (NT-3) and 

NTF4 (NT-4) are all produced by the follicular epidermis and play roles in hair follicle 
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morphogenesis and hair cycle control (Botchkarev, et al., 1998a,; 1998b; 1999; Botchkareva et 

al., 2000). Whether these or other hair follicle-derived factors facilitate ectopic K8+ cell survival 

requires further study.  

Mature Merkel cells are post-mitotic (Moll et al., 1995), but quantitative, morphological 

and fate-mapping studies suggest that Merkel cells turnover throughout an organism’s lifespan 

(Doucet et al., 2013; Moll et al., 1996a; Nafstad, 1987; Nakafusa et al., 2006; Van Keymeulen et 

al., 2009). These data imply the existence of a Merkel cell precursor that gives rise to new 

Merkel cells. We recently showed that embryonic Merkel cell precursors express Atoh1 and are 

unipotent (Figure 2, Figure 3). However, three lines of evidence suggest that ectopic K8+ cells 

created by ectopic Atoh1 expression are post-mitotic. First, no ectopic K8+ cells expressed the 

proliferative cell marker Ki67 (Figure 27B-B′′′). Second, ectopic K8+ cell numbers remained 

constant between 6 weeks and 3 mo post-induction, suggesting that there was neither cell death 

nor replication (Figure 26K). Third, clusters of K8+ cells were never observed at these time 

points, suggesting that clonal expansion of individual cells did not occur (Figure 26). Therefore, 

ectopic Atoh1 expression alone is insufficient to produce Merkel cell precursors from the 

keratinocyte lineage, demonstrating that other factors in addition to Atoh1 are required for 

Merkel cell precursor production. Furthermore, our data suggest that Atoh1 expression in basal 

epidermal keratinocytes, which are normally proliferative, removes their ability to divide without 

affecting proliferation of surrounding Atoh1– cells. This provides more supportive evidence that 

Atoh1 expression induces a cell-autonomous cellular fate switch away from the keratinocyte fate 

to that of a true mature Merkel cell fate.  

Our data also shed light on the relationship between Atoh1 and Sox2, which is expressed 

from early stages of Merkel cell development (Bardot et al., 2013; Lesko et al., 2013). Ectopic 

Atoh1 expression in K14Cre;ROSArtTa;TetAtoh1 mice was sufficient to initiate persistent Sox2 and 

Isl1 expression, providing in vivo evidence that both genes are downstream of Atoh1. This is 

consistent with the observation that Sox2+ epidermal cells are absent from the skin of Atoh1-null 

mice (Perdigoto et al., 2014a). Upregulation of Sox2 and Isl1 combined with Atoh1 

autoregulation might contribute to maintained Atoh1 expression seen following Atoh1 transgene 

silencing. Further studies are necessary to determine whether maintained Sox2 and Isl1 

expression depends upon continuous Atoh1 expression.  
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Finally, our results are potentially relevant for understanding MCC ontogeny. MCC has 

long been thought to derive from Merkel cells or their precursors because tumor cells exhibit 

immunohistochemical and ultrastructural similarities to normal Merkel cells and often express 

HATH1, the human Atoh1 homolog (Heiskala et al., 2010). However, over 50% of MCC tumors 

and cell lines do not express HATH1 (Gele et al., 2004; Leonard et al., 2002), and other lines of 

evidence suggest that MCC might arise from keratinocytes, skin stem cells or even immune B 

cells (Hausen et al., 2013; Hewitt et al., 1993; Youker, 2003). The existence of K14+ MCC 

tumor cells (Lemasson et al., 2012) and mixed MCC/squamous cell carcinoma with or without 

eccrine differentiation (Gould et al., 1988; Iacocca et al., 1998; Szadowska et al., 1989) further 

suggest a non-Merkel cell origin for MCC. Ectopic expression of Atoh1 in our system failed to 

produce skin tumors regardless of age of induction or survival time, supporting the viewpoint 

that Atoh1 acts as a tumor suppressor in the skin (Bossuyt et al., 2009). However, our 

demonstration that ectopic Atoh1 expression alone was sufficient to drive expression of multiple 

Merkel cell markers suggests that MCC need not arise from the Merkel cell lineage, but that 

marker expression in these tumors might be driven solely by Atoh1 expression. Therefore, 

driving ectopic HATH1 expression in human skin, coupled with dysregulated cell division, could 

potentially cause MCC. One potential mechanism for this could be infection by the Merkel cell 

polyoma virus (MCpV), whose small T-antigen drives oncogenic transformation (Verhaegen et 

al., 2015). Further work is necessary to determine whether this mechanism operates in MCC.  
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5.0  GENERAL DISCUSSION 

5.1 SUMMARY AND INTERPRETATION 

 

Our interaction with the world around us stems from our ability to detect, transmit, and perceive 

stimuli in our surrounding environment. This process is accomplished by our sensory systems, 

enabling us to see, hear, smell, taste, and touch the world around us. These sensory systems each 

translate their specific received environmental stimuli into the electrical language of our nervous 

system, providing our brain the information with which to generate an accurate and complete 

percept of our surroundings. Somatosensation is unique among the sensory systems in its 

multimodality, being able to detect temperature, noxious chemicals, and mechanical stimuli. Our 

perception of touch, in particular, is the summation of the multiple somatosensory receptors, 

each tuned to detect particular forms of stimuli from their peripheral endings that innervate the 

skin. Of these, the SA1 afferent is distinctive in that it innervates a specific type of skin cell, the 

Merkel cell, as its end organ. The relationship between and distinguishing characteristics of SA1 

afferents and Merkel cells has been an enigmatic question discussed and studied by scientists for 

well over a century. The experiments outlined in this dissertation complement and expand upon 

the work pioneered by those scientists, bringing greater clarity to the developmental 

characteristics of this mechanoreceptor. 

Specifically, the central focus of my dissertation has been to characterize how and when 

Merkel cells are made. To investigate these elements surrounding Merkel cell homeostasis, my 

thesis work has focused on two specific hypotheses: 

 

Hypothesis 1: Mature Merkel cells are formed by Atoh1+ embryonic progenitors and can persist 

for the lifetime of the animal.  
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Hypothesis 2: Atoh1 in keratinocytes is sufficient to induce Merkel cell fate. 

 

In Chapter 2, we assayed the proliferative capability of Atoh1+ cells in the body skin and 

whisker follicles during embryogenesis. These experiments were performed in Atoh1GFP mice to 

enable our visualization of all Atoh1-expressing cells, as antibody labeling for this transcription 

factor has proven notoriously difficult. Our results demonstrated that: 

1. A subset of embryonic Atoh1GFP+ cells expressed the mitotic markers Ki67 and PH3, 

as well as incorporated the modified nucleoside EdU. 

2. These proliferative Atoh1+ cells only gave rise to Merkel cells. 

3. While originally derived from the K14+ lineage, the Atoh1+ lineage is entirely 

separate by late embryogenesis. 

 These experiments demonstrate an early allocation of the Atoh1+ Merkel cell lineage 

from their surrounding keratinocytes, making them among the very first fully differentiated skin 

cells. While likely only dividing a small number of times after Atoh1 expression is initiated, 

these progenitors only ever gave rise to cells that expressed the Merkel cell marker K8, 

indicating their unipotent capacity. This led us to hypothesize that a subpopulation of Atoh1+ 

cells may continue to proliferate in adulthood. We also wondered for how long these embryonic-

born Merkel cells persisted. With these two questions in mind, our results in Chapters 2 and 3 

demonstrated that: 

1. The Atoh1+ lineage remained by-and-large separate from that of the surrounding 

keratinocytes through late adulthood.  

2. While Atoh1+ cells did not express K14, a subset was found to express K17, 

suggesting a genetic distinction from interfollicular keratinocytes and slight overlap with 

touch dome keratinocytes. 

3. Adult Atoh1+ cells very rarely expressed proliferative markers. 

4. Average touch dome Merkel cell number peaks at the end of embryogenesis, decreases 

in early postnatal life, and remains stable throughout adulthood, regardless of natural or 

induced hair cycle stages. 

5. Many embryonic-born Merkel cells persist into late adulthood. 

6. Few Merkel cells are made during unmanipulated skin homeostasis. 
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 These results were hugely important in demonstrating the limited turnover of Merkel 

cells during adulthood and indicate that Merkel cell progenitors are mitotically active very 

infrequently. Prior to these experiments, murine Merkel cells had a predicted lifespan of 7-8 

weeks, significantly less than what we demonstrated here. While 9 months of age is the oldest we 

analyzed for persistence of embryonic-born Merkel cells, I suspect that the lifespan of these cells 

would extend to the lifetime of the animal. Consistent with this, very few Atoh1+ cells were 

found to express proliferative markers when examined at multiple postnatal ages. However, fate-

mapping and genetic ablation experiments suggested that the Atoh1 lineage remained distinct 

from that of other keratinocytes, again up to 9 mo of age. The tamoxifen-inducible Cre model 

used for these experiments has a recombination rate of ~97%, which was the percentage of cells 

labeled 9 mo post-tamoxifen administration in Atoh1CreER-T2/+;ROSALacZ mice and the 

approximate percentage of cells remaining in Atoh1CreER-T2/+;ROSADTA mice 6 mo post tamoxifen 

administration. It is likely that the addition of adult-born Merkel cells after tamoxifen 

administration in these models was not detected due to their infrequent generation and decreased 

likelihood of survival. These genetic and nucleotide-incorporation models provided snapshots of 

time that demonstrated the persistence of embryonic-born Merkel cells, which was further 

supported by our chronic in vivo live imaging experiments. These experiments also 

demonstrated that: 

1. Many Merkel cells persisted over the entire imaging period. 

2. Many Merkel cells were generated and lost over this imaging period, unrelated to hair 

cycle stage. 

3. The repeated shaving performed for visualization of the skin induced a superficial 

wound that stimulated the production of more nascent Merkel cells than arise through 

normal skin homeostasis. 

4. These nascent Merkel cells arose from neither Atoh1- or K14-expressing progenitors.  

 The powerful approach provided by in vivo confocal imaging clearly illustrated the 

persistence of many Atoh1+ touch dome Merkel cells through once-weekly imaging. Both 

unfortunately and serendipitously, the necessity for repeated skin shavings to expose skin for 

imaging prompted the touch dome environment to produce more nascent Merkel cells and lose 

more original Merkel cells than unmanipulated skin. This wounding paradigm is similar to others 

previously described (Hardy, 2003; Bertsch, 1976; Ekanayake 1998) and presumably stimulates 
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the activity of capable Merkel cell progenitors. The identity of this progenitor and its potential 

activity and contributions during homeostatic conditions has yet to be determined. 

 In closing on Hypothesis 1, our experiments have demonstrated that Atoh1+ progenitors 

are active in embryogenesis and the mature Merkel cells they generated persist into late 

adulthood. Merkel cells do continue to be made in postnatal life, though very infrequently and by 

a still unidentified progenitor population. Repeated skin shavings activate either these or other 

skin progenitors to produce more nascent Merkel cells than during normal skin homeostasis. 

 In Chapter 4 we tested the hypothesis that the transcription factor Atoh1 is sufficient for 

Merkel cell production. To test this, we expressed Atoh1 conditionally within the skin by 

administering doxycycline to K14Cre;ROSArtTa;TetAtoh1 mice (Figure 24).  Results demonstrated 

that: 

1. Ectopic K8+ cells were produced after Atoh1 expression was induced in glabrous and 

hairy skin. 

2. These ectopic K8+ cells acquired Merkel cell markers in a time course similar to that 

of normally developing Merkel cells. 

3. Competency of keratinocytes to respond to Atoh1 expression was linked to hair cycle 

stage, developmental age, and the influence of Notch signaling. 

Together these experiments confirmed our hypothesis that Atoh1 expression is sufficient 

to transform keratinocytes into Merkel-like cells. While the vast majority of these cells died or 

lost expression of Merkel cell markers within weeks, a small subset in the hair follicle bulge 

persisted in this permissive niche for at least 3 months. We predict that these permissive niches 

provide Merkel cells with a trophic factor that enables their survival. It is likely that this trophic 

factor works similarly on these ectopic Merkel cells as the SA1 maintains Merkel cell survival in 

touch domes. When the SA1 is removed by surgical ligation, many (though not all) Merkel cells 

die as a result, leading to the hypothesis that the SA1 releases a trophic factor necessary for 

Merkel cell survival (Nurse et al., 1984). It would be intriguing to know the identity of the 

trophic factors in these two scenarios.  

The transformation of keratinocytes into ectopic Merkel cells was led by a step-wise 

inheritance of Merkel cell-specific factors in a time course similar to that of embryonic Merkel 

cells. The developmental program of embryonic Merkel cell specification therefore seems to be 

led primarily by Atoh1 expression. In this model, Atoh1 was only expressed transiently for 24 
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hours, which was sufficient for Merkel cell production. The subsequent activation of 

transcription factors Sox2 and Isl1 provide further developmental instruction for Merkel cell 

maturation in embryogenesis (Perdigoto et al., 2014a), a phenomenon recapitulated in the 

ectopically induced cells in this model.  

While touch dome-associated Merkel cell production is independent of hair follicle 

cycling, ectopic Merkel cells were more readily produced when the hair follicles were actively 

growing during anagen than during hair follicle stasis in telogen. This could be attributed to 

greater keratinocyte number present during anagen, when the hair follicle is longer, greater 

competency of keratinocytes to respond to Atoh1 signaling, or a combination of the two. Given 

the greater responsiveness of keratinocytes to Atoh1 during earlier ages, it seems likely that cells 

are more able to respond to genetic instruction and change fate during the hair growth.  

Notch signaling was also found to impact keratinocyte responsiveness, regardless of 

animal age. It is possible that natural changes in Notch signaling factor into cell responsiveness, 

as discussed above. However, it is also possible that Notch signaling is not active in normal 

touch dome development and maintenance, but that the result of its manipulation is revealing no 

physiologically relevant developmental or maintenance pathways. Further investigation into 

Notch signaling during embryonic development will best answer this possibility.  

5.2 INTERPRETING DISCREPANCIES BETWEEN PUBLISHED STUDIES: WHO 

IS THE ADULT MERKEL CELL PROGENITOR? 

 

Within the past eight years at least five independent groups of investigators have committed an 

incredible amount of time and resources to identifying and characterizing the activity of adult 

Merkel cell progenitors. The identification of Merkel cells as an epidermally-derived, Atoh1-

lineal cell population (Maricich et al., 2009; Morrison et al., 2009; Van Keymeulen et al., 2009) 

together with the expansion of novel genetic techniques for lineage tracing and selective gene 

excision provided the necessary springboard for this search. A seemingly straightforward 

question has turned into a cacophony of potentially contradictory experimental outcomes and 

interpretations that I will outline and bring into greater clarity (Table 2).   
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Table 2. Overview of studies investigating the identity of adult Merkel cell progenitors 

Manuscript Tissue 
Analyzed Brief Relevant Experimental Summary Authors Interpretation 

Van Keymeulen et 
al., 2009  

Body Skin n/a n/a 

Whiskers   

K18CreER;ROSAYFP mice given pulse chase of 
tamoxifen. Percent of labeled YFP+K8+/K8+ 
cells decreases from 7-21 days post-tamoxifen 

The K18+ Merkel cell population is replaced by a 
K18- progenitor. 

K15CrePR;ROSAYFP mice given RU486 for 5 or 21 
days. The percent of YFP+K8+/K8+ cells 
increases from 5 to 21 days post-tamoxifen 

The K8+ Merkel cell population is replaced by a 
K15+ progenitor. 

BrdU administered for 10 days. All Merkel cells 
are BrdU-. K8+ cells are quiescent during homeostasis. 

Paws  

BrdU administered for 10 days. All Merkel cells 
are BrdU-. 
K14CreER;ROSAYFP mice were given tamoxifen 
every 3 days for 30 days. 25% of K8+ cells were 
YFP+ at the end of 30 days. 

K8+ Merkel cells are replaced by a K14+ progenitor. 

Woo et al, 2010 

Body Skin  

1 or 6 EdU administrations for 1hr, 24 hrsr, or 3-8 
days. K8+ cells only EdU+ with 6 EdU injections 
after 3-8 days. 

K8+ cells arise from a resident multipotent touch 
dome progenitor. 

Touch dome versus interfollicular keratinocyte 
isolation and transplant into nude mice. Only TD 
transplants made new K8+ cells. 

The touch dome compartment houses a progenitor 
uniquely capable of producing Merkel cells. 

Whiskers n/a n/a 

Paws n/a n/a 

Doucet et al., 2013 

Body Skin  

K17CreER;ROSAYFP mice administered tamoxifen in 
adolescence. The percent of YFP+K8+/K8+ cells 
increases over time to ~80% at 7 weeks post-
TMX. K17+ progenitors maintain adult Merkel cells and the 

entire K8+ Merkel cell population turns over in ~7-8 
weeks. 

K17CreER;ROSA-iDTR mice administered tamoxifen 
followed by diptheria toxin. K17+ cells were 
ablated 24 hrs after diptheria toxin administration 
ended, while Merkel cells were still present, 
though their innervating afferents were 
degenerating. 

Whiskers 

K17CreER;ROSAYFP mice administered tamoxifen in 
adolescence. No K8+YFP+ cells at 24 hours, by 
12 weeks post-TMX many YFP+K8+ cells were 
found. K17+ progenitors maintain adult Merkel cells. 

Paws 

K17CreER;ROSAYFP mice administered tamoxifen in 
adolescence. No K8+YFP+ cells at 24 hours, by 7 
weeks post-TMX many YFP+K8+ cells were 
found. 

Xiao et al., 2015 

Body Skin  

Gli1CreER;ROSAYFP mice administered tamoxifen 
at P26. <10% of K8+ cells were YFP+ at both 9 
days and 2 months post-tamoxifen. A Gli1+ progenitor replaces Merkel cells only during 

anagen. Merkel cell population turnover dependent on 
hair cycle. Gli1CreER;ROSAYFP mice were depilated and 

tamoxifen administered in adolescence. >90% of 
K8+ cells were YFP+ 3 months post-tamoxifen. 

Whiskers n/a n/a 

Paws n/a n/a 
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5.2.1 Van Keymeulen et al., 2009 - Epidermal progenitors give rise to Merkel cells during 

embryonic development and adult homeostasis  

The first group to perform fate-mapping experiments aimed at identifying resident adult Merkel 

cell progenitors was led Dr. Cedric Blanpain (Van Keymeulen et al., 2009). Published almost 

concomitantly with a paper from our lab(Morrison et al., 2009), experiments outlined in 

Blanpain’s manuscript used complementary approaches to ours that demonstrated an epidermal 

origin for Merkel cells. While his embryonic fate-mapping and conditional gene deletion studies 

are consistent with ones we conducted, I have been unable to replicate their adult fate-mapping 

experiments (Figure 5, Figure 9, Figure 16, Figure 23).  

Merkel cells of adult whisker follicles and paws were the primary focus of their fate-

mapping studies, though their interpretations are also extended to Merkel cells of the body skin. 

In an attempt to estimate Merkel cell turnover, this group generated K18CreER mice and crossed 

them to a ROSAYFP reporter. Adolescent mice from this cross were subjected to a tamoxifen-

induced pulse-chase study in which tamoxifen was administered once at day 0 and tissue 

analyzed 7 or 21 days later. K18 is a cytokeratin that in adult skin is exclusively expressed in 

Merkel cells where it overlaps ~100% with K8+ (Figure 30; Table 1)(Perdigoto et al., 2014a). In 

this way, the experiment was designed to label as many mature Merkel cells as possible and then 

estimate how long these Merkel cells persisted, providing an approximate rate of Merkel cell 

replacement. Recombination is inefficient in this system, with only 17% of whisker follicle K8+ 

cells expressing YFP 7 days after administration of a relatively high dose of tamoxifen (15 

mg/mouse). Twenty-one days after tamoxifen was administered, the authors quantified a 

decrease in the proportion of K8+YFP+/K8+ cells (9%) with no change in overall Merkel cell 

number. Their ensuing interpretation was that K18+ whisker follicle Merkel cells are lost and 

replaced by a K18-progenitor. I did not observe this replacement with either my Atoh1CreER-

T2/+;ROSALacZ fate-mapping or Atoh1CreER-T2/+;ROSADTA cell ablation experiments (Figure 6, 

Figure 8), and this rate of replacement is inconsistent with the EdU incorporation studies I 

performed (Figure 17; Figure 22). These mice became commercially available, allowing us to 

directly test this inconsistency by crossing them to both ROSAYFP and ROSAtdTomato reporters. I 

quickly noted a aberrant expression of both YFP and tdTomato reporter in this system; many 

K18- cells were YFP+ and/or tdTomato+, respectively. This can actually be seen in images 
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presented by Van Keymeulen et al., as two YFP+ cells can be seen outside the Merkel cell 

boundaries, contrary to the author’s claim. Expression of these reporters was dependent on 

tamoxifen administration, indicating that Cre expression is unfaithful to its intended driver. In 

the body skin this expression was robust enough to preclude distinguishing apart individual cells 

in K18CreER;ROSAtdTomato mice, limiting my analysis to the whisker follicles. Even so, I did not 

register a statistically significant decrease in K8+tdTomato+/K8+ or K8+YFP+/K8+ cells at the 

time points they performed (7 and 21 days) or even when extended to 9 weeks (Figure 16). 

Incredible variability between mice may have attributed to the significant difference they noted, 

as well as incomplete quantification. Their analysis involved grouping all K8+ cells from 

multiple mice together, instead of quantifying the proportion of reporter-expressing K8+ cells for 

each individual and taking that average. For these reasons, most significant of which is the 

unfaithful K18-Cre expression in this model, this experiment is insufficient to demonstrate 

turnover of whisker follicle K18+ cells. 

Hair follicle bulge stem cells were hypothesized by Van Keymeulen et al. to be the likely 

progenitor population replacing whisker follicle Merkel cells, which they tested by fate-mapping 

K15CrePR;ROSAYFP mice. Unlike their experimental approach with K18CreER mice, application of 

the Cre-inducer RU486 was given chronically for either 5 or 21 days, not as a pulse chase. An 

increase in K8+YFP+/K8+ cells was noted from 5 days (4.5%) to 21 days (22.3%) during this 

exposure to RU486. While K15 is not expressed at significant levels in Merkel cells (Haeberle et 

al., 2004; Moll et al., 1993; Van Keymeulen et al., 2009), it is possible that small amounts of the 

transcript are made, inducing recombination and YFP expression. This would be difficult to 

detect by K15 immunostaining and could easily be missed in gene expression studies. If this is 

the case, the increase in YFP+K8+ cells in K15CrePR;ROSAYFP mice over time could be attributed 

to recombination of more original K8+ Merkel cells, instead of their replacement. A pulse-chase 

study of K15CrePR;ROSAYFP mice and/or a more sensitive gene expression analysis for K15 

transcript in Merkel cells would be required to verify this possibility. 

In support of this possibility are results from modified nucleoside incorporation 

experiments performed in this same manuscript by Van Keymeulen et al. BrdU was administered 

to mice for 10 days and Merkel cells of the whisker follicle and glabrous skin of the paw 

analyzed for its incorporation. No K8+BrdU+ cells were found after this exposure paradigm, 

consistent with my EdU incorporation data (Figure 17; Figure 22) and indicating that not only 
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are K8+ cells quiescent, they were not replaced by any progenitor during this period of time. 

Therefore, the 4.5% of K8+YFP+/K8+ cells observed in K15CrePR;ROSAYFP mice only 5 days 

post-initial RU486 exposure cannot be the result of their replacement by K15+K8- cells.  

As K15+ hair follicle progenitors are not present in glabrous skin of the paw, Van 

Keymeulen et al. hypothesized that the replacement of these Merkel cells is the responsibility of 

resident K14+ epidermal progenitors. Similar to their approach with K15CrePR;ROSAYFP
 mice, 

K14CreER;ROSAYFP mice were generated and given persistent exposure to tamoxifen, specifically 

by its injection once every 3 days for 30 days. Within the glabrous skin of the paws, 25% of K8+ 

Merkel cells were noted to be YFP+ after this extended tamoxifen treatment. I have performed 

extensive fate-mapping with these K14CreER mice crossed to the more sensitive and robust 

ROSAtdTomato reporter and have been unable to demonstrate the presence of any tdTomato 

expression in K8+ Merkel cells past E14.5 (Figure 5; Figure 9; Figure 23). However, my 

analysis has been primarily focused on Merkel cells of the hairy skin. While it is possible that the 

maintenance of glabrous paw Merkel cells is different than that of hairy skin, this is unlikely 

considering the infrequency of Merkel cell production in adulthood (Figure 22). A careful 

analysis of the image presented by Van Keymeulen et al. illustrating a K8+YFP+ cell raises 

concern and a possible explanation. K8+ Merkel cells are entirely surrounded by K14+ 

epidermal cells and their close cellular membrane association may lead to the false appearance of 

YFP+K8+ co-localization. This is brought into greatest relief when the most basal side of the 

K8+ Merkel cell depicted is scrutinized, as it is not directly adjacent to any K14+ cell and is 

significantly less yellow (which denotes K8+Cy3 and YFP+ co-localization) than the other 

cellular boundaries. I am concerned that the double-labeled cells quantified may therefore be 

inaccurate. Repeating this experiment with K14CreER mice crossed to a nuclear-localized reporter 

would provide a much cleaner and crisp image to demonstrate cellular recombination. 

While the embryonic fate-mapping and conditional gene deletion studies performed in 

this manuscript were of great importance to assist with our understanding of Merkel cell genesis, 

the experimental approaches and interpretations performed in adulthood are less satisfying. 

Touch dome Merkel cells were analyzed only in embryonic studies and are conspicuously and 

unfortunately absent in their adult experiments. For the reasons described above, I am 

unconvinced that adult Merkel cells arise from either K15+ or K14+ progenitors or are replaced 

with the frequency they suggest. 
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5.2.2 Woo et al., 2010 - Identification of epidermal progenitors for the Merkel cell lineage 

In contrast to the focus of whisker follicle and paw Merkel cells in Van Keymeulen et al., this 

paper from Dr. Owens’ lab studied the contribution of epidermal progenitors to maintenance of 

touch dome Merkel cells (Woo et al., 2010). Here, Woo et al. performed skin grafting 

experiments combined with K14-lineage tracing to compare the skin regeneration contributions 

of touch dome keratinocytes and their progenitors to that of interfollicular keratinocytes. Their 

findings are the first of a small handful that demonstrate the unique potential of keratinocyte 

progenitors within the touch dome compartment.  

Expanding on modified nucleoside incorporation experiments performed by Van 

Keymeulen et al., these authors performed a variety of different EdU incorporation experimental 

paradigms to assay proliferation in the touch dome compartment. The first very quick pulse of 

EdU (taken 1hr after a single administered dose) resulted in labeling of only ‘basal’ touch dome 

keratinocytes (TDKCs), with no ‘suprabasal’ TDKCs or Merkel cells being EdU+. The authors 

do not illustrate their classification of ‘basal’ versus ‘suprabasal’, it is fair to presume that basal 

includes only keratinocytes directly above Merkel cells, while suprabasal refers to keratinocytes 

of the touch dome epithelia not in contact with Merkel cells. EdU is found in subrabasal TDKCs 

starting at three days after this single injection, though all Merkel cells are still BrdU-. Only after 

six EdU injections over three days followed by a 3-8 day chase are any K8+ Merkel cells found, 

which the authors attribute to proliferation of basal TDKCs. The actual number of Merkel cells 

counted in these analysis is unclear, as cell counts are presented as number of touch domes that 

have BrdU incorporation, without indicating the number of individual cells or animals 

represented at each time point. Between 30-100+ touch domes were counted at each time point, 

but since this is in sectioned skin and not in whole mount it is unclear if single touch domes are 

represented multiple times in these counts or how many cells were labeled in each touch dome. 

These data therefore make it difficult to interpret the frequency with which basal TDKCs 

proliferate. Also, since touch dome keratinocytes are not the only actively proliferating skin cell, 

it is possible that these nascent Merkel cells migrated from elsewhere, potentially the hair follicle 

bulge. Though the raw number and proportion of EdU+K8+/K8+ cells is not stated, it is likely 

that only 2 K8+ cells were found to incorporate EdU in all of these counts. All said, this set of 

EdU incorporation experiments supports the very slow rate of touch dome Merkel cell turnover I 
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propose, but does not independently pinpoint the progenitor responsible for Merkel cell 

generation. 

Using a variety of touch dome and interfollicular epidermis (IFE) markers, the authors 

next sorted keratinocytes from K14Cre;ROSALacZ mice into TD (touch dome) and IFEΔTD 

(interfollicular epidermis minus touch dome) populations and then implanted them into the 

dorsal fascia of Nude mice. This approach allowed for the identification of graft (β-Gal+) versus 

host (β-Gal-) derived cells and analysis of touch dome specific progenitor contributions to skin 

regeneration. Both TD and IFEΔTD populations contained proliferative progenitors and were 

therefore able to reconstitute a grafted epidermis. Only grafts from TD populations contained β-

Gal+K8+ Merkel cells, indicating that general IFEΔTD skin populations were not instructed to 

form Merkel cells as part of their regeneration. The authors concede that Merkel cells could have 

been included as part of the TD population grafts, and may not have been newly generated. 

Again, their presented quantifications complicate independent interpretations as they only report 

the number of touch domes seen in a certain number of sections, not the raw number of K8+ 

cells observed or the number of animals represented. Based on my EdU incorporation studies I 

find their interpretation likely, in that touch dome keratinocytes have a unique capacity to 

generate Merkel cells. Their experimental paradigms are probably much more reminiscent of a 

wounding response than of skin homeostasis, similarly to the shaving paradigm I described 

earlier.  

These experiments illustrate the unique potential of touch dome keratinocyte progenitors 

to form Merkel cells in skin grafts after 4 weeks of transplantation. However, it remains 

unanswered whether these cells are also responsible for producing Merkel cells as part of skin 

homeostasis. Also unclear are how many progenitor populations exist within the boundaries of a 

touch dome and whether or not their generative potentials vary between homeostatic and injury 

states. There could be a handful of unipotent progenitors, each designated to produce a specific 

cell type; a bipotent progenitor, generating Merkel cells and touch dome keratinocytes; or 

multipotent progenitor(s), generating touch dome keratinocytes, Merkel cells, and interfollicular 

and/or follicular keratinocytes. These possibilities are not mutually exclusive. More targeted 

fate-mapping with touch dome-specific Cre-drivers would be necessary to distinguish between 

these possibilities. 
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5.2.3 Doucet et al., 2013 - The touch dome defines an epidermal niche specialized for 

mechanosensory signaling 

This second paper from Dr. Owens’ lab sought to answer the question of touch dome 

keratinocyte contribution to Merkel cell maintenance during skin homeostasis. His group 

generated K17CreER-T2 mice that allowed for selective manipulation of the touch dome 

keratinocyte lineage. Very similarly to the fate-mapping and selective cell ablation experiments I 

performed with the Atoh1+ Merkel cell lineage, Doucet et al. performed pulse-chase lineage 

tracing and selective cell ablation experiments with these mice, analyzing the contribution of 

K17+ cells to Merkel cell maintenance in body skin, whisker follicles, and glabrous paw skin. 

Doucet et al. were unable to find appreciable levels of K17 protein in K8+ Merkel cells 

by immunostaining and performed their experiments with the understanding that no K8+ cells 

co-expressed K17. K17CreER-T2;ROSAYFP mice were administered 2mg of tamoxifen once daily 

for four days and tissue retrieved 24 hrs, 1, 3, 7, or 12 weeks later. Twenty four hours after the 

last day of tamoxifen administration, 10.7% (3/28) of K8+ cells were already YFP+. This 

percentage increased incrementally to 33%, 50%, 81%, and 95%, respectively, at the proceeding 

time points. As 80% is the approximate recombination rate that they quantified in their K17+ 

touch dome keratinocytes, the authors concluded that Merkel cells persist for approximately 7-8 

weeks, after which the entire Merkel cell population has been replaced. This linear increase in 

recombination also suggests a constant rate of replacement, independent of age or hair cycle 

stage. Moreover, the authors state that while few to no K8+YFP+ cells were found in the whisker 

follicles or glabrous paw skin of tamoxifen-treated K17CreER-T2;ROSAYFP mice at 24 hrs, many 

were ‘routinely found’ at 7-12 weeks. 

The stark contrast of the interpretations from Doucet et al. to the conclusions drawn in 

this dissertation is confounding. The regular and complete turnover of K8+ Merkel cells in 7-8 

weeks is inconsistent with my EdU incorporation studies demonstrating limited loss of 

embryonic-born Merkel cells and only slight production of nascent Merkel cells during adult 

skin homeostasis. Personal communications with authors of this manuscript confirm that there 

was no experimental manipulation (ex. skin shaving, depilation, or wounding) that could easily 

reconcile these differences. K17CreER-T2 mice are not commercially available, so I have 

unfortunately been unable to independently repeat this experiment.  
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It seems most likely that these differences arose from technical issues. As stated above, it 

can be difficult to distinguish YFP expression as being present in adjacent keratinocytes or 

within K8+ cells. The images presented in this manuscript make clear the difficulty that was 

likely had while imaging and quantifying this sectioned tissue. Moreover, the quantifications 

themselves are relatively small, with only between 28-92 total K8+ Merkel cells quantified at 

each time point (n=3 mice/time point). This is far below the standard 100-500 K8+ Merkel cells 

per mouse I routinely quantify for co-localization experiments (n=2-4 mice/time point). If there 

were variable recombination efficiencies between mice, this may easily skew their data. A 

nuclear-localized reporter would assist with easier cell counts. 

Prior to my EdU incorporation studies we interpreted our Atoh1 fate-mapping data under 

the lens of this experiment. With an expected lifespan of 7-8 weeks, this suggested that Merkel 

cells were replaced in adulthood by Atoh1+ progenitors, and indeed I found a subpopulation of 

K8+ Merkel cells that co-expressed K17, albeit at much lower levels than the overlying 

keratinocytes (Figure 10). We inferred that a unipotent, likely Atoh1+K17+, progenitor was 

responsible for Merkel cell homeostasis. The recently acquired EdU birth-dating studies now 

make this an unlikely possibility. It is possible that all K8+ Merkel cells express K17, albeit at 

low protein levels that are difficult to detect, possibly lending a potential explanation if any leak 

is present in these K17CreER-T2;ROSAYFP mice. Vehicle-treated mice were analyzed for YFP 

expression in the absence of tamoxifen only at the 24 hrs time point, where no YFP+ cells were 

reported. These mice may become more prone to aberrant YFP expression as the animals age, an 

untested possibility that could account for the incremental increase in recombined cells if 

reporter leak was present.  

5.2.4 Xiao et al., 2015 - Neural Hedgehog signaling maintains stem cell renewal in the 

sensory touch dome epithelium 

Led by Dr. Isaac Brownell, Xiao et al. describe the touch dome as a unique Hedgehog (Hh) 

responsive niche in murine interfollicular epidermis. The authors use the active Hh signaling 

reporter Gli1 to mark and fate map the contributions of these touch dome keratinocytes during 

skin homeostasis. This is remarkably similar to the experiments performed by Doucet et al., as 

K17 and Gli1 appear to display complete overlap in touch dome keratinocytes. 
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Gli1CreER;ROSAYFP mice were generated and 200mg/kg tamoxifen administered for 3 days to 

activate YFP reporter expression.  

Two different experimental paradigms were performed in this fate-mapping model. First, 

Gli1CreER;ROSAYFP mice were administered tamoxifen during early anagen (P23-P26) and tissue 

retrieved 9 days or 2 months later. At both time points, less than 10% of K8+ cells were YFP+. If 

there is complete overlap of the K17 and Gli1 cell populations in the touch dome, this data 

contradicts that described in Doucet et al., as they quantify >80% of K8+YFP+/K8+ cells by this 

time. Xiao et al. attribute the lack of increase in K8+YFP+ cell proportion in 

Gli1CreER;ROSAYFPmice in this model due to the animals not having yet reached their next anagen 

(mice were P82 at the 2 month retrieval time point; the next anagen begins at P84). This data is 

consistent with mine, demonstrating limited turnover of the K8+ population during adulthood.  

In their second fate-mapping experiment, Gli1CreER;ROSAYFP and Gli1CreER;ROSALacZ 

mice of 2 to 4 months of age were administered tamoxifen as described above in addition to 

having their skin depilated. Tissue was retrieved at 3 months and 2 years post-depilation and 

>90% of the K8+ Merkel cell population was found to be reporter positive at both of these time 

points. The authors interpret this to be an effect of anagen induction, with new Merkel cells 

arising from Gli1+ touch dome keratinocytes only during hair follicle growth. The depilation 

procedure used in this particular experiment was aggressive; hair follicles were manually 

plucked from the skin followed by wax-strip depilation. As this procedure happened 

concomitantly with tamoxifen administration, it’s likely that this wounding response either 

stimulated the production of K8+ Merkel cells from Gli1+ progenitors, consistent with what I 

observe with shaved skin, and/or this manipulation activated Hh signaling in Merkel cells, 

causing them to be Gli1+ without being replaced. If intermediate time points prior to 3 months 

post-induction had been analyzed, these possibilities could be distinguished. Likewise, the 

authors’ interpretation of anagen induction initiating Merkel cell production could have been 

more cleanly tested by allowing Gli1CreER;ROSAYFP mice that had not undergone depilation to 

pass through their next natural anagen. I would predict that the ~10% of K8+YFP+/K8+ cells 

stays constant all through adulthood, regardless of natural hair cycle stage. These experiments 

support the limited turnover of K8+ touch dome Merkel cells during early adulthood and 

potentially illustrate the contribution of touch dome keratinocytes to Merkel cell replacement 

after superficial skin injury.  
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5.2.5 Summary 

The manuscripts described above performed a wide variety of experiments aimed to characterize 

progenitors replacing Merkel cells during adult skin homeostasis. Many inconsistencies existed 

between these reports, as Merkel cell progenitors have been described as K14-, K15-, K17-, Gli1- 

and/or Atoh1-expressing, but no epidermal cell type in the skin (yet found) has been shown to 

express all these factors. Though the full complement of reasons why these inconsistencies arose 

is not entirely apparent, a partial contributing factor was likely the central supposition that 

Merkel cells have finite lifespans. This hypothesis was supported by data suggesting oscillation 

of Merkel cell number with the hair cycle, a phenomenon that would presuppose the addition and 

subtraction of a large proportion of the Merkel cell population.  

Having challenged and refuted the premise of Merkel cell number oscillation in 

adulthood, the work described here in my thesis demonstrates instead a relative stasis of Merkel 

cells within mammalian whisker follicles, paws, and body skin. Moreover, discovering that this 

rate of replacement can be increased following even mild skin injury lends some insight into how 

these discrepancies arose in the literature. Two specific variables should be carefully controlled 

for future experiments seeking insight into Merkel cell maintenance. First, investigators should 

be cautious with the manipulations done to the skin of their transgenic mouse models, as we 

show that even the slight injury of repeated skin shaving changes Merkel cell responsiveness in a 

way that no longer models normal skin homeostasis. Secondly, fate-mapping experiments 

performed on tissues whose cell bodies lie in very close apposition, such as skin, would benefit 

from reporters whose localization permits clearer boundaries to more easily distinguish between 

labeled and non-labeled cells. For example, a nuclear-localized reporter would enable easier 

discrimination of fluorescent signal between adjacent cells, a difficult task for even confocal 

microscopy when fluorescent reporters permeate entire cell bodies. 
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5.3 LOSS OF PROLIFERATIVE POTENTIAL IN ATOH1+ LINEAL CELLS  

Virtually all Atoh1+, K8+, K18+, and K20+ cells of the adult skin can be defined as fully 

differentiated and mature Merkel cells, which have been repeatedly demonstrated to be non-

proliferative (Mérot & Saurat, 1988; Moll et al., 1996b; Vaigot et al., 1987; Woo et al., 2010). 

During embryogenesis however there exists a heterogeneity of skin Atoh1-lineal cells, which 

contain both mature and proliferative cell populations. Our embryonic fate-mapping and 

proliferative marker analyses are the first to demonstrate a proliferative capability of some 

Atoh1-lineal cells in the skin. It is still unclear whether all or only a subpopulation of Atoh1+ 

cells proliferate during embryogenesis, as well as the signaling pathways that initiate and 

terminate this capability. 

Instrumental to our fate-mapping of Atoh1+ embryonic progenitors was titrating a dose 

of tamoxifen to persist for only 24 hrs after administration. This was tested by administering low 

doses of tamoxifen to E13.5 or E14.5 (prior to and at the onset of Atoh1+ expression in the skin, 

respectively) Atoh1CreER-T2/+;ROSALacZ mice and analyzing the Merkel cell population for LacZ 

expression at E18.5. No K8+βGal+ cells were found in mice that received tamoxifen at E13.5 

with a 10mg/kg dose of tamoxifen, confirming that this paradigm only labeled cells present 

within 24 hrs of exposure. Interestingly, many K8+βGal+ cells were found in the body skin of 

mice that received tamoxifen at E14.5, but in low densities. Labeled touch domes only had 

between 1-4 βGal+ cells per group, all of which were K8+. This suggests that the proliferative 

capacity of embryonic Atoh1+ progenitors is low, and possibly limited to only one or two cell 

divisions at most, but exclusively giving rise to Merkel cells. It is possible that these proliferative 

Atoh1+ cells act as a transit-amplifying population and not as true progenitors, though those 

classifications may be a semantic argument.  

Our analysis using Atoh1GFP mice to label embryonic Atoh1-expressing cells was critical 

in the identification of this proliferative subpopulation, as experiments by other investigators 

utilizing more mature Merkel cell markers (ex. K18) were unable to identify them (Bardot et al., 

2013). It is likely that the initiation of Merkel cell differentiation markers (ex. K18, K20) occur 

in a similar time frame as factors that inhibit cell cycle progression. Expression of the cyclin-

dependent kinase inhibitor p27Kip1 has been associated with withdrawal from the cell cycle and 

differentiation in progenitors of the organ of Corti that form Atoh1-lineal inner ear hair cells 
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(Chen & Segil, 1999). It is probable that Atoh1+ Merkel cell-lineal progenitors undergo a similar 

expression pattern of initiating cell cycle inhibitors soon after lineage specification, thereby 

permitting only limited proliferation of early-specified cells prior to their differentiation. 

The loss of proliferative capacity in adult Merkel cells is likely a result of their lineage 

commitment and cell cycle withdrawal during embryogenesis, preventing any further transit 

amplifying activity. This is supported by experiments with Atoh1CreER-T2/+;ROSAsT mice in which 

the oncogenic small T (sT) antigen of MCPyV is expressed in Atoh1-lineal cells following 

tamoxifen administration (Shuda et al., 2015). The subsequent induction of sT expression in 

Atoh1-lineal cells only stimulated ectopic production of K8+ cells during embryogenesis, 

independently demonstrating a difference in proliferative potential between embryogenesis and 

adulthood. Whether or not a difference in environment may also contribute to the proliferative 

capacity of these Atoh1 lineal cells is unclear, though would not be a mutually exclusive 

possibility. Ectopic expression of Atoh1 did not appear to initiate the proliferation of ectopic 

Atoh1-expressing cells in our transgenic K14Cre;TetAtoh1;ROSArtTa model, indicating that even in 

environmental niches that allow for Merkel cell persistence, proliferation is not induced. 

Our most recent data and that from other labs reinforce the improbability that Atoh1+ 

progenitors persist in adult murine skin. If Atoh1+ cells were mitotically active, one would 

predict that sT expression in Atoh1CreER-T2/+;ROSAsT mice would have resulted in the production 

of many K8+ cells. Even removal of the cell cycle inhibitor p53 was insufficient to induce 

ectopic Atoh1-lineal cell production in combination with sT overexpression (Shuda et al., 2015). 

Nascent Merkel cells made during typical homeostasis in this model therefore likely arose from 

an Atoh1- progenitor. If these nascent cells follow a developmental pathway similar to that of 

embryonic-born Merkel cells, then there is likely a short window of time in which they have yet 

to withdraw from the cell cycle and may be susceptible to sT oncogenic influence. It would be 

interesting to overexpress the sT antigen in a homeostatic Merkel cell progenitor to determine if 

early differentiating Merkel cells retain proliferative potential, similarly to their embryonic 

counterparts. If they are proliferatively capable, a comparison of their progeny with cells of 

MCC tumors would be a noteworthy endeavor, as these cells could hold the potential to be a cell 

of origin for MCC. 
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5.4 IMPORTANCE OF TOUCH DOME ULTRASTRUCTURE 

Touch domes can be readily identified both in sectioned and/or whole mount skin of multiple 

species, generally due to the comparatively large size of their associated guard hairs and 

columnar touch dome keratinocytes. These structures cause touch domes to protrude slightly 

from the plane of the skin, a facet that has been exploited in early research methods to study 

Merkel cell function (Burgess et al., 1974; Smith, 1967). Though guard hairs are the first hair 

type to be specified and their placodes are seen as early as E14.5, touch dome keratinocytes do 

not take their distinctive shape until after birth (Duverger & Morasso, 2009). The genetic and 

signaling cascades required for touch dome keratinocyte development have not been thoroughly 

studied, though more is becoming known about their development and function (Doucet et al., 

2013; Woo et al., 2010; Xiao et al., 2014).  

Touch dome keratinocytes are distinct from interfollicular and follicular keratinocytes as 

well as Merkel cells by their robust expression of K17 in adulthood (Moll et al., 1993). Though a 

subset of Merkel cells also express this cytokeratin, it is at levels appreciably lower than that of 

the overlying keratinocytes (Figure 10). It is possible that K8+K17+ cells represent nascent 

Merkel cells derived from touch dome keratinocyte progenitors during adulthood, or that 

heterogeneous K17-expression is present in the Merkel cell population with no functional effect 

or developmental correlation. Given that 9.2 ± 2.6% of K8+ cells in the whisker follicle co-

express K17, but I found limited evidence of their replacement during adulthood, the latter 

hypothesis is most likely.  

Adult K17+ touch dome keratinocytes are necessary for maintenance and survival of the 

SA1 afferent that innervates Merkel cells within touch domes (Doucet et al., 2013). The trophic 

factor derived from this cell population for SA1 survival is still unknown, as is the age at which 

this survival dependency initiates. SA1 afferents reach the touch dome in embryogenesis around 

the same age as Merkel cell formation, indicating its initial guidance and targeting is independent 

of Merkel cells or touch dome keratinocytes, though likely specific for guard hairs. Merkel cell 

loss in this K17+ conditional cell ablation study was likely due to a secondary effect of SA1 

afferent death. It is therefore unclear whether touch dome keratinocytes also directly provide 

Merkel cell trophic support.  
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Merkel cells begin to form long before touch dome keratinocytes mature, though their 

numbers stabilize around the time of touch dome keratinocyte formation. As demonstrated here, 

Merkel cells are likely the longest-persisting post-mitotic epidermal cell population. 

Environmental stressors require the epidermis to undergo constant renewal, and the exception of 

Merkel cells from this rule is noteworthy.  Merkel cells are positioned at the epidermal-dermal 

border, which is necessary for their mechanosensory function but also puts them in fairly close 

proximity to harmful external elements. It is possible that touch dome keratinocytes serve as a 

supplemental barrier between Merkel cells and the environment, providing a thicker cushion 

from the everyday epidermal stressors that require regular turnover of interfollicular 

keratinocytes. 

In addition to protecting Merkel cells from general wear and tear, touch dome 

keratinocytes may also influence the mechanosensory properties of the Merkel cell-neurite 

complex. Touch dome keratinocytes connect to Merkel cells very tightly through desmosomes 

and must necessarily be the first point of contact for tactile stimuli. Indeed, indirect stimulation 

of Merkel cells by displacement of adjacent cells elicits mechanically activated currents within 

Merkel cells with only slight differences to that of direct stimulation (Ikeda et al., 2014). Though 

the phenotype is not as robust in murine skin, the columnar organization of keratinocytes results 

in the raised nature of touch domes, potentially enhancing the sensitivity of Merkel cell-neurite 

complexes (Burgess et al., 1974; English, 1974; Smith, 1967). 

5.5 POTENTIAL INSIGHT INTO THE MERKEL CELL CARCINOMA CELL OF 

ORIGIN 

Though the experiments in this dissertation still leave unconfirmed the precise identity and 

characteristics of adult Merkel cell progenitors, they illustrate their infrequent proliferation and 

limited Merkel cell replacement. Most importantly, the experiments outlined in Section 4 

demonstrate that expression of Atoh1 is alone sufficient to transform keratinocytes into Merkel 

cell-like cells, and this appears to limit their proliferative capacity. This work also re-emphasizes 

conclusions from previous studies illustrating the post-mitotic nature of Merkel cells. Together, 

these findings support the hypothesis that MCC tumors arise not from Merkel cells, but instead 
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from epidermal stem cells that lack cell cycle control and aberrantly express Atoh1 and its 

downstream factors.  

Soon after Atoh1 expression is initiated, the proliferative potential of Atoh1-lineal cells is 

lost. Even driving the oncogenic small T antigen of MCPyV in combination with loss of p53 

cannot override the post-mitotic nature of mature Merkel cells (Shuda et al., 2015). It still 

remains possible though that Merkel cell progenitors, who are most likely Atoh1- and are 

potentially bi- or multi-potent, have a very small window of time after Atoh1 expression is 

initiated where they maintain proliferative capacity. If the MCPyV was driven in these 

progenitors and during this window cell cycle withdrawal overridden, these cells could still 

remain potential candidates for MCC origin. The heterogeneity of MCC tumors indicate that the 

cells of origin either have a great deal of multipotency and/or that multiple cell of origins may 

exist for this skin cancer. The decreasing likelihood of Merkel cells as the cellular source of 

MCC may also initiate a new discussion as to the most appropriate name for this carcinoma.  
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6.0  FUTURE DIRECTIONS 

6.1 ARE HOMEOSTATIC AND MECHANICALLY-INDUCED NASCENT MERKEL 

CELLS ARISING FROM THE SAME PROGENITOR? 

New touch dome-associated Merkel cells are generated during normal skin homeostasis, though 

at a much slower rate than had been previously estimated. This proportion of nascent Merkel 

cells is increased following skin shaving, likely the result of a response to skin wounding. 

Mitotically active progenitors must be responsible for producing these cells, as they can be 

identified by EdU incorporation. Though a central focus of my thesis has been to identify Merkel 

cell progenitors, this question has been left incompletely answered. Moreover, it is unclear 

whether the production of Merkel cells after skin shaving is the result of increased proliferation 

of homeostatic Merkel cell progenitors, or if a different progenitor population is recruited to also 

generate Merkel cells.  

6.1.1 What is the contribution of Gli1+ progenitors to Merkel cell production? 

Nascent K8+EdU+ Merkel cells in touch domes of mice that received EdU in their drinking 

water for 5 weeks were often found oriented perpendicular to the skin surface, wedged between 

the touch dome keratinocytes that sit above K8+ cells. These cells also had appreciably lower 

levels of K8 expression, indicating that they were recently specified. Skin that had been shaved 

or left unmanipulated both had cells of this appearance, indicating their presence is not the result 

of a wounding response in the skin. This suggests that touch dome keratinocyte progenitors may 

be at least one mitotically active source for Merkel cell maintenance. 

To test this possibility, I am currently generating Gli1CreER;ROSAYFP mice, as had been 

done by Xiao et al. (see section 5.2.4). Adolescent mice (beginning at P28) will receive EdU in 
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their drinking water for 5 weeks. One cohort (n=3 mice) will have their belly skin shaved with a 

straight razor once weekly, while the second cohort (n=3 mice) will be left unmanipulated. At 

the end of 5 weeks, skin from these mice will be retrieved and processed for YFP and EdU.  

If Gli1+ touch dome keratinocytes contribute to the generation of Merkel cells during 

normal skin homeostasis, YFP+EdU+K8+ cells should be present in both shaved and 

unmanipulated Gli1CreER;ROSAYFP mice. If Gli1+ touch dome keratinocytes only contribute to 

the generation of Merkel cells during normal skin homeostasis, but not to mechanically-induced 

Merkel cell production, YFP+EdU+K8+ cells should be present in similar proportions in both 

shaved and unmanipulated Gli1CreER;ROSAYFP mice, while a number of YFP-EdU+K8+ cells 

would only be present in shaved belly skin. However, if Gli1+ touch dome keratinocytes do not 

contribute to the generation of Merkel cells during normal skin homeostasis, but only to 

mechanically-induced Merkel cell production, YFP+EdU+K8+ cells should only be present in 

shaved belly skin, while unshaved belly skin would have YFP-EdU+K8+ cells.  

6.1.2 What is the contribution of hair follicle bulge progenitors to Merkel cell 

production? 

Fate-mapping results from Van Keymeulen et al. suggest that K15+ hair follicle bulge 

progenitors contribute to Merkel cell production during homeostasis (see section 5.2.1). Though 

their results were limited to whisker follicles, they projected their interpretations to maintenance 

of Merkel cells around touch domes surrounding guard hairs. We saw no evidence of K8+EdU+ 

cells migrating from below the touch dome during adult maintenance or in a response to skin 

shaving. It is possible though that K8 expression could be initiated after cell migration.  

To analyze the contribution of hair follicle bulge progenitors to Merkel cell maintenance, 

we obtained Hairless mice that lack hair follicle bulge progenitors, resulting in their loss of 

cycling hair follicles. Adolescent (P28) Hairless mice were administered EdU in their drinking 

water for 5 weeks and one group of mice had their belly skin shaved once weekly (n=3 mice) 

while the second group was left unmanipulated (n=2 mice). Tissue was retrieved after 5 weeks of 

exposure to EdU. This portion of the experiment has been completed, though tissue not yet 

analyzed. 
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If hair follicle bulge progenitors contribute to the generation of Merkel cells during 

normal skin homeostasis, EdU+K8+ cells should be absent in both shaved and unmanipulated 

Hairless mice. If hair follicle bulge progenitors only contribute to the generation of Merkel cells 

during normal skin homeostasis, but not to mechanically-induced Merkel cell production, 

EdU+K8+ cells should be present in similar proportions in both shaved and unmanipulated 

Hairless mice. However, if hair follicle bulge progenitors do not contribute to the generation of 

Merkel cells during normal skin homeostasis, but only to mechanically-induced Merkel cell 

production, EdU+K8+ cells should only be present in shaved belly skin, while unshaved belly 

skin would have no EdU+K8+ cells. If hair follicle bulge progenitors have no contribution to 

Merkel cell generation or maintenance, there should be approximately the same percentage of 

K8+EdU+/K8+ cells in shaved and unmanipulated mice that we saw with similarly treated B6 

mice, as described in Figure 22.  

6.1.3 What is the contribution of Atoh1+ cells to homeostatic Merkel cell production? 

Our original interpretations from Atoh1CreER-T2/+;ROSALacZ fate-mapping and Atoh1CreER-

T2/+;ROSADTA selective cell ablation experiments indicated that Atoh1+ progenitors produce 

Merkel cells during skin homeostasis. Though it is clear from our subsequent experiments with 

Atoh1CreER-T2/+;ROSADTA mice whose skin was shaved that mechanically-induced Merkel cells do 

not arise from Atoh1+ progenitors, it is still possible that production of Merkel cells during 

normal skin homeostasis may be from Atoh1+ cells.  

To test this possibility, I am generating Atoh1CreER-T2/+ mice crossed to ROSA reporter 

lines (either ROSAYFP, ROSAmCherry, or ROSAZsGreen) and administering EdU in the drinking water 

for 5 weeks. The intent with testing these three reporter lines is to determine which one is most 

faithful to tamoxifen-induced Cre activity and is easiest to visualize. One cohort of mice (n=3 

mice) will have their belly skin shaved once weekly while a second cohort of mice will be left 

unmanipulated (n=3 mice). Tissue will be retrieved after 5 weeks of exposure to EdU. 

If Atoh1+ progenitors contribute to Merkel cell maintenance during skin homeostasis, 

reporter+K8+EdU+ cells should be present in the belly skin of unmanipulated mice. If this is true 

and normal proliferative activity is maintained even in the presence of shaving, the same 
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proportion of reporter+K8+EdU+ cells should be present in the belly skin of unmanipulated 

mice, as well as a larger proportion of reporter-K8+EdU+ cells. 

6.2 WHAT SIGNALING PATHWAYS ARE REGULATING MECHANICALLY-

INDUCED MERKEL CELL PRODUCTION? 

Though we repeatedly demonstrate that skin shaving stimulates an increased production of 

Merkel cells in body skin, the precise mechanism governing this event is unclear. We also have 

not verified that shaving skin is stimulating any inflammatory or wound response. Mild abrasive 

skin treatments with sandpaper and tape-stripping have been shown to initiate an inflammatory 

response that leaves the dermis unaffected in Hairless mice (Ekanayake-Mudiyanselage et al., 

1998; Hardy et al., 2003). Specifically, investigators found an acute effect of increased 

proliferation, downregulation of K14, and upregulation of K6 and involucrin 24-48 hours 

following rubbing skin with sandpaper. To test if these expression and proliferative changes 

occur following our skin shaving paradigm in both B6 and Hairless mice, I took n=2 adolescent 

mice of each background and shaved their belly skin with a straight razor, as described 

previously. These mice also received EdU in their drinking water from the time of shaving until 

24 hours later when mice were sacrificed and tissue retrieved. The tissue has yet to be analyzed, 

but I predict that shaved skin will have a higher percentage of cells incorporating EdU, lower 

expression of K14, and higher expression levels of involucrin and K6. This experiment will 

verify if skin shaving is inducing an inflammatory response. 

Secondly, we hope to identify the exact signaling mechanism inducing this increase in 

Merkel cell production. To investigate this, a cohort of Atoh1GFP mice will have their belly 

shaved once weekly for four weeks (as described previously), while a second will remain 

unmanipulated. Using GFP to identify Merkel cells, multiple touch domes will be microdissected 

from mice and digested. RNA Seq will be performed on pooled touch domes and an expression 

analysis done between the two cohorts. Genes upregulated in shaved skin relative to 

unmanipulated skin will be candidates for signaling pathways regulating Merkel cell production. 

Localization of the source of these factors can be done by sorting Merkel cells (Atoh1GFP mice) 

or touch dome keratinocytes (Gli1CreER;ROSAYFP mice) prior to digestion and RNA Seq. Gene 
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candidates for increasing Merkel cell production will first be verified by immunostaining or in 

situ in shaved touch domes, and then their expression can be manipulated in touch domes with 

available transgenic mice or viral gene silencing. 

6.3 HOW CAN WE PERFORM LIVE IMAGING WHILE MAINTAINING TRUE 

HOMEOSTATIC SKIN CONDITIONS? 

The live imaging experiments described in this dissertation all involve shaving of belly skin with 

a straight razor to expose touch domes for imaging. While this approach allowed for the 

serendipitous demonstration of putative abrasive skin wounds influencing Merkel cell 

production, it creates a problem for the usefulness of this tool in our in vivo analysis of Merkel 

cells and their afferents during normal skin homeostasis. Specifically, we aim to use this 

technique to visualize the interaction between Merkel cells and SA1 neurites after denervation 

and conditional gene deletion in these two cell populations Additional attempts have been and 

are being made at visualizing the skin with limited interruption to skin homeostasis. Other 

investigators use a chemical depilatory cream to remove hair from above the ear for similar in 

vivo imaging (Pineda et al., 2015). I have tested two different brands of depilatory agents, 

Surgicream and Nair. Both creams are effective for hair removal and enable visualization of 

GFP+ cells in Atoh1GFP mice. However repeated application resulted in robust skin inflammation 

and even epidermal peeling. Touch dome visualization became very difficult as a result of this 

skin inflammation, though experiments are ongoing to determine whether this alters Merkel cell 

homeostasis. Another option for these depilatory agents would be to test them at varying 

dilutions in water to find a concentration that was sufficient for hair removal but did not induce 

skin inflammation after multiple exposures. 

To enable touch dome visualization with no required skin manipulation, we are currently 

crossing transgenic mice with fluorescent reporters in Merkel cells (Atoh1GFP) and the SA1 

afferent (Thy1CreER-EYFP) to Hairless mice. These mice form body hair normally and then undergo 

progressive hair loss in adolescence, exposing the skin while hopefully presumptively 

undergoing normal touch dome maintenance. These mice should be generated and available for 

testing within the next 4 months.  
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7.0  CONCLUSION 

A unique and intriguing population of skin cells, Merkel cells have puzzled scientists for 

decades. My thesis has comprehensively studied the role of Atoh1 lineal cells in the formation 

and maintenance of embryonic and adult Merkel cells, culminating in my conclusion that 

embryonic Atoh1+ progenitors produce Merkel cells that independently persist for the lifetime of 

an animal. I tested many discrepancies in the literature that would refute this theory and have 

shown that their results and interpretations were often limited by technical approaches. The work 

described here provides additional and valuable insight into the developmental profile of this 

enigmatic cell population. 
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APPENDIX A 

THE ROLE OF ATOH1 IN MERKEL CELL DEVELOPMENT 

Work from our lab and others have demonstrated that the transcription factor Atoh1 plays 

multiple roles during its period of expression in inner ear hair cells (Cai et al., 2013; Chonko et 

al., 2013). Inner ear hair cells share many characteristics to Merkel cells including their 

mechanotransductive properties and overlapping expression of some developmentally required 

genes, including Atoh1. Though the role for Atoh1 in hair cell specification was well established 

(Bermingham et al., 1999), additional and separable roles for hair cell survival and 

differentiation after lineage specification were also shown to exist. New genetic tools for 

conditional gene excision studies enabled the identification of these later roles that had 

previously been hidden by the earlier requirement of Atoh1 for lineage specification. With these 

same tools I have begun to test the possibility of differential requirements for Atoh1 during 

Merkel cell lineage specification, differentiation, and survival. 

A.1 ROLE OF ATOH1 IN MERKEL CELL DEVELOPMENT DURING 

EMBRYOGENESIS 

To test if Merkel cells have differential requirements for Atoh1 after their specification, I 

selectively ablated Atoh1 after lineage specification with Atoh1CreER-T2/flox;ROSAtdTomato 

(Atoh1CKO) mice. The intent with these experiments was to administer tamoxifen at later stages 
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of Merkel cell lineage development and selectively ablate Atoh1 in Merkel cells after lineage 

specification, while Merkel cells are maturing and being maintained.  

Tamoxifen was administered to pregnant females at E15.5, after Atoh1+ Merkel cells are 

first seen in the skin, and embryos retrieved at E18.5 or P3. Recombined Atoh1-lineal cells here 

are identifiable by expression of the ROSA reporter tdTomato. At E18.5 and P3, many 

tdTomato+ cells were still present in touch domes of the skin, indicating their persistence for 3 

days after Atoh1 was conditionally deleted (Figure 35B, C). Atoh1CKO mice had fewer 

tdTomato+ cells per touch dome than their Atoh1CreER-T2/+;ROSAtdTomato siblings (E18.5: 14.4 vs 

26.4±0.5 tdTomato+ cells/TD; P3: 8.3±1.5 vs 18.1±2.2 tdTomato+ cells/TD; n=1-2 

mice/genotype; Figure 35A-C). Atoh1 is therefore not required for cell survival after 

specification. It is unclear whether this slight decrease in cell number is due to fewer Atoh1+ 

cells being specified and/or lack of proliferation of Atoh1+ progenitors. To test the hypothesis 

that Atoh1-lineal cells cannot divide without Atoh1 expression we have similarly generated 

Atoh1CKO mice that received tamoxifen at E15.5 and administered EdU at E16.5. Mice were 

retrieved 4 hrs later, and the percentage of tdTomato+EdU+ cells will be quantified. If Atoh1 is 

required for progenitor proliferation, we should see an absence of tdTomato+EdU+ cells in 

Atoh1CKO mice.  

Immunostaining for the early Merkel cell marker K8 revealed that tdTomato+ cells in 

Atoh1CKO mice were all K8+, similarly to their control siblings. K8+ signal intensity was much 

lower in cells of Atoh1CKO mice and the morphology of these persisting Atoh1-lineal cells was 

noticeably different, with cells having many long cytoplasmic extensions and smaller, less 

rounded cell bodies (Figure 35A-B’’). These morphometric differences are currently being 

quantified. Interestingly, the developmental transcription factor Isl1 is still expressed in Atoh1-

lineal cells of Atoh1CKO;ROSAtdTomato mice at E18.5 (Figure 35D-E’’’). Though a downstream 

target of Atoh1, it is possible that Isl1 regulation becomes independent of Atoh1 after initial 

specification. Together these experiments illustrate that Atoh1 is not required for Merkel cell 

survival, but does play a role in cell differentiation during late embryogenesis. We have flow-

sorted and performed RNA sequencing on tdTomato+ cells from Atoh1CKO;ROSAtdTomato and 

Atoh1CreER-T2/+;ROSAtdTomato mice to more carefully determine the genetic consequences of Atoh1 

excision during Merkel cell lineage maturation. 
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Figure 35. Atoh1 is necessary for Merkel cell differentiation but not survival after lineage 

specification  Atoh1CKO and Atoh1CreER-T2/+mice received tamoxifen at E15.5 and were retrieved 

at E18.5 or P3. Whole mount skin immunostained for K8 (A’, B’, green) merged with 

endogenous tdTomato fluorescence (A, B, C red) in Atoh1CreER-T2/+;ROSAtdTomato (A-A’’, control) 

and Atoh1CreER-T2/flox;ROSAtdTomato (B-C, CKO) mice at E18.5 (A-B’’) and P3 (C). Sectioned 

whisker follicles of E18.5 Atoh1CKO and Atoh1CreER-T2/+mice immunostained for Isl1 (D’, E’, 

green) and K8 (D’’, E’’, red) counterstained for DAPI.  
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A.2 ROLE OF ATOH1 IN MERKEL CELLS DURING ADULTHOOD 

To determine if Atoh1 plays a role in Merkel cell survival and/or maintenance during adulthood 

we used the same conditional deletion approach with Atoh1CKO mice. Tamoxifen was 

administered at P28 to CKO and control (Atoh1CreER-T2/+) mice (250mg/kg for 3 days) and tissue 

retrieved one week, 6 weeks, 3 months, and 9 months post-tamoxifen administration (n=1-3 

mice/genotype/time point). Atoh1 excision was confirmed by immunostaining at 3 months post-

tamoxifen administration (>100K8+ cells/mouse, n=1 mouse/genotype; Figure 36A-B’’’). There 

was no sizeable decrease in the number of K8+ Merkel cells per touch dome out of the range of 

normal variability at one week post-tamoxifen administration, nor any over difference in cell 

morphology (Back: 11.3±0.8 vs 11.1 K8+ cells/TD; Belly: 19.7±0.8 vs 14.6 K8+ cells/TD, CKO 

vs control). Three months post-tamoxifen administration the average number of K8+ cells per 

touch dome significantly decreased to 37±5.0% and 63±1.4% of control mice in back and belly 

skin, respectively (Back: 4.3±0.8 vs 11.5±0.3 K8+ cells/TD; Belly: 11.7±0.3 vs 18.3±1.4 K8+ 

cells/TD, CKO vs control). At nine months post-tamoxifen administration this subpopulation of 

K8+ Merkel cells was maintained and did not undergo a further decrease, still at 38±5.7% and 

72±10.9% of control mice in the back and belly skin, respectively (Back: 4.0±0.4 vs 10.4 K8+ 

cells/TD; Belly: 7.8 vs 5.7±0.9 K8+ cells/TD, CKO vs control). Therefore, two subpopulations 

of Merkel cells appear to exist that vary on their dependence for continued Atoh1 expression.  

To determine if Atoh1 was required for the expression of canonical Merkel cell markers 

during adult cellular maintenance we immunostained for various markers in the body skin of 

CKO and control mice three months post-tamoxifen administration. K8+ Merkel cells retained 

expression of K18, the vesicular glutamate transporter VGLUT2, remained innervated by 

NF200+ afferents, and incorporated the small styryl dye FM1-43 (Figure 37). This indicates that 

Atoh1 is no longer required for the expression of these markers or maintenance of innervation in 

adult Merkel cells. It remains to be tested whether or not these Merkel cell-neurite complexes are 

functional in the absence of Atoh1, though the decrease of Merkel cell density in touch domes 

may be a complicating factor in determining the role of this transcription factor in Merkel cell 

function as a mechanoreceptor. 
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Figure 36. A subpopulation of K8+ Merkel cells persist after Atoh1 excision  P28 Atoh1CKO 

and Atoh1CreER-T2/+mice were administered tamoxifen on 3 consecutive days and tissue retrieved 

7 days, 3 months, or 6-9 months later. Efficient gene excision was confirmed by immunostaining 

for K8 (A’, B’, green) and Atoh1 (A’’, B’’, red) and counterstained with DAPI. (C-D’’) Whole 

mount back and belly skin was immunostained for K8 (C, D, green) and merged with 

endogenous tdTomato fluorescence (C’, D’, red). (E) The average number of K8+ cells per touch 

dome was quantified and given as a percent of control mice at these time points (mean ±SEM, 

n=1-3 mice/genotype/age).  
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Figure 37. Persisting K8+Atoh1- cells still retain expression of multiple canonical Merkel 

cell markers and remain innervated  Body skin from P28 Atoh1CKO and Atoh1CreER-T2/+mice 

administered tamoxifen on 3 consecutive days and tissue retrieved 7 days or 3 months later were 

co-immunostained for K8 (A’’, B’’, C’’, D’’, E, F, G, H) and K18 (A’, B’), VGLUT2 (E’, F’), 

and NF200 (G’, H’). The styryl dye FM1-43 (C’, D’) was also administered and shown to be 

present in mice of both genotypes (C-D’’’).  
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