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Glaucoma is an optic neuropathy that is the second leading cause of blindness worldwide. The 

disease is characterized by damage to the retinal ganglion cells, resulting in irreversible vision 

loss. While the exact pathogenesis remains unclear, damage due to glaucoma is believed to first 

occur at the lamina cribrosa (LC), a collagenous meshwork in the optic nerve head through 

which all retinal ganglion cell axons pass on their way to the brain.  

The mechanical theory of glaucoma postulates that elevated intraocular pressure deforms 

the LC, leading to a biological cascade resulting in retinal ganglion cell death. However, the 

interaction between intraocular pressure and glaucoma is complex; a substantial heterogeneity 

exists in the intraocular pressure at which a given patient experiences glaucoma. Recent studies 

have identified that perhaps intracranial pressure, which acts posterior to the LC, may play an 

important role in the disease process.  

Given the complex 3D microstructure of the LC, in vivo studies thus far have been 

limited to assessment of changes in its surface. However, because the axons are traversing 

through the entire volume of the LC, the axonal damage can occur at any level of the LC, rather 

than only at its surface.  Therefore, full understanding of the damage caused by glaucoma 

requires systematic characterization of the 3D LC microstructure.  

In order to better characterize the 3D LC microstructure, we demonstrate here a novel 

automated 3D LC segmentation method that is reproducible and capable of accurately detecting 
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the LC microstructural component. Using our segmentation analysis, we find in a primate model 

that the LC microstructure deforms according to both intraocular pressure as well as intracranial 

pressure, with significant interaction between the two. We then move to the translational aspect 

of our study to characterize the healthy LC in human eyes and identify a number of structural 

and biomechanical differences in the LC microstructure compared to glaucoma eyes. Our 

findings demonstrate that a novel automated 3D assessment of the LC microstructure is capable 

of 1) identifying in vivo difference in the LC microstructure and LC biomechanics in glaucoma 

eyes and 2) improving our understanding of glaucoma pathogenesis. 
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3D – three-dimensional 

A-scan – axial scan 

B-scan – cross sectional scan 

C-mode – coronal section of volume 

ICP – intracranial pressure 

IOP – intraocular pressure 

TLPD – translaminar pressure difference (IOP – ICP) 

LC – lamina cribrosa 

OCT – optical coherence tomography 

SD-OCT – spectral domain optical coherence tomography 

SS-OCT – swept source optical coherence tomography 

AIC – Akaike Information Criterion 
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1.0  INTRODUCTION 

1.1 GLAUCOMA 

First paragraph. Glaucoma is an optic neuropathy that is the second leading cause of blindness 

worldwide.[1] An estimated 61 million people suffer from glaucoma, and of those, 8.4 million 

are bilaterally blind from the disease.[2] As glaucoma is still primarily a disease of aging, [3], [4] 

disease prevalence is expected to increase in the coming years due to general aging of the 

world’s population.[5] This impending increase in disease burden strongly argues for the need to 

identify as well as improve our understanding of the disease.  

 

Figure 1. (A) Cross sectional diagram of the eye. Blue box indicates the location of the optic nerve head. 

Black box indicates the zoomed in region of (B). (B) Outflow pathway (blue dashed line) is altered in open angle 

glaucoma while in angle closure glaucoma (red dashed line), the outflow pathway is occluded and aqueous humor 

access to the trabecular meshwork is blocked. Adapted from nei.nih.org. 
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While initially thought of only as a disease of elevated intraocular pressure, [6] the 

definition of glaucoma has evolved considerably since its discovery. Presently, glaucoma is 

defined as a range of disorders resulting in characteristic damage to the optic nerve of the eye 

(Figure 1A). [7] The optic nerve is a region in the posterior eye where all retinal ganglion cell 

axons from the entire eye converge on their way to the brain. Damage to the optic nerve due to 

glaucoma results in loss of the retinal ganglion cell axons that send the visual input the brain. 

This clinically manifests as visual field loss that gradually worsen along the course of the 

disease. In all types of glaucoma, it is believed that intraocular pressure is the main culprit for 

damage to the optic nerve.  

The intraocular pressure causing damage to the optic nerve in glaucoma is controlled in 

the front of the eye. As seen by the blue dashed line in Figure 1B, the ciliary body secretes 

aqueous humor, which flows to the anterior chamber through the pupil. The aqueous humor 

leaves the anterior chamber via the trabecular meshwork, Schlemm canal and episcleral veins.  

Glaucoma is typically divided into two major categories: open-angle glaucoma [8], [9] 

and closed angle glaucoma. [10] In open angle glaucoma, the aqueous humor has free access to 

the trabecular meshwork, which drains the fluid out of the eye (Figure 1). Despite having free 

access to the trabecular meshwork, there is still damage to the optic nerve head of the eye, with a 

wide variability in terms of pressure at which damage occurs. While there are no externally 

visible abnormality of the trabecular meshwork, this elevation in pressure is caused by poorly 

functioning trabecular meshwork, [11] clogged materials in the meshwork [12] or loss of 

trabecular meshwork cells, [13] as well as potential defects in the downstream drainage system. 

In closed angle glaucoma, the access to the trabecular meshwork is blocked leading to an 

increase in intraocular pressure (Figure 1). Closed angle glaucoma is typically more common in 
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East Asian ancestry. [14] While both types of glaucoma lead to optic neuropathy and visual 

fields loss, their pathogenesis and clinical presentation are quite distinct. 

1.2 LAMINA CRIBROSA 

While glaucoma result in pathologic changes throughout the eye [11] and visual system, [15], 

[16] the primary focus of this thesis is in assessing the optic nerve head of the eye. There exists 

considerable evidence that the lamina cribrosa within the optic nerve head play an important role 

in the pathogenesis of glaucoma. [17] It is a fenestrated connective tissue meshwork that 

provides mechanical support and nourishment for the retinal ganglion cell axons on their way 

from the eye to the brain. It is also a mechanical weak point in the eye and is thought to be the 

primary site of glaucomatous damage.[18] Early studies have demonstrated mitochondrial 

accumulation at the level of the optic nerve head in experimental glaucoma, which could indicate 

that mechanical choking of axoplasmic flow occurs at the optic nerve head.[19], [20]  More 

recently, it has been shown in a number of animal models that axonal transport is disrupted at the 

level of the optic nerve head, more specifically at the lamina cribrosa.[19], [21]–[23] 
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Figure 2. Characterization of the connective tissue changes of the optic nerve head and lamina cribrosa 

with glaucoma. (A) A healthy optic nerve head, with the lamina cribrosa beams and pores. Note the detailed 

microstructure of the lamina cribrosa. (B) Glaucoma damage results in thinning, excavation and posterior insertion 

of the lamina cribrosa. Adapted from Quigley et al. [24] 

 

The lamina cribrosa (LC) was first described by Wilcek et al [25] in 1947 and has been 

studied extensively using histology due to its role in glaucoma. Quigley et al. had published a 

number of studies in 1980s forming the basis of our understanding of how the LC is altered by 

glaucoma (Figure 2). [24], [26], [27] Histology showed that eyes with glaucoma tend to have a 

characteristic cupping and excavation of the optic nerve head and LC. Furthermore, damage 

from glaucoma resulted in thinning of the LC. More recent studies of primate experimental 

glaucoma demonstrate that there is enlargement of the LC connective tissue, perhaps due to 

remodeling,[28] as well as posterior movement of the LC due to disinsertion, recruitment or 

migration.[29] Furthermore, biological studies suggest that astrocytes may play an important role 

in remodeling of the LC extracellular matrix as a result of the initial insult caused by elevated 
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intraocular pressure.[30] All these findings indicate that the LC is a complex structure 

undergoing dynamic changes in response to IOP related insults. Therefore, a full characterization 

of the LC microstructure changes is critical in understanding its relationship to the glaucomatous 

process. 

1.3 THE ROLE OF INTRAOCULAR PRESSURE AND INTRACRANIAL 

PRESSURE 

As alluded to earlier, the definition of glaucoma has undergone a tremendous change since it was 

first described.[6] Elevated intraocular pressure (IOP) is no longer an integral part of the 

definition of glaucoma due to considerable variability in pressure at which any given individual 

will develop clinically significant symptoms or signs of the disease.[8] Many patients develop 

typical glaucoma despite having IOP within population-derived normal ranges (also known as 

normal tension glaucoma) of 10mmHg – 21 mmHg[31] while others have elevated IOP without 

evidence of optic nerve damage during their lifetime (ocular hypertension).[32] Ocular 

hypertension is more prevalent than primary open angle glaucoma, and a third of people with 

primary chronic glaucoma have normal tension glaucoma.[33], [34] In fact, epidemiologic 

studies indicate that the vast majority of open angle glaucoma patients in Asian countries such as 

Japan[35] and China[36] have normal tension glaucoma.  

Despite such variability in disease susceptibility, intraocular pressure still plays a critical 

role in the diagnosis and management of glaucoma. High intraocular pressure is predictive for 

both development[37] and progression of disease.[38], [39] Furthermore, those with normal 

tension glaucoma still benefit from additional pressure reduction, even though their IOP is within 
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normal range.[40] Despite these factors, intraocular pressure is the only modifiable risk factors in 

glaucoma.[41] Medical as well as surgical management of the disease primarily involve lowering 

IOP by decreasing aqueous humor production or increasing aqueous humor outflow.[42]   

Considerable variation in the IOP at which an individual develops disease has led for a 

search for other variables that may influence the disease process. [43] Studies have looked to 

identify biological, vascular as well as biomechanical factors affecting one’s susceptibility to 

disease.[17] All these factors could contribute to the wide variation in the pressure at which 

retinal ganglion cells undergo apoptosis which resulting in glaucoma. Recent studies have 

demonstrated that intracranial pressure (ICP), which acts posterior to the LC, may play a crucial 

role in the disease process (Figure 3). [44], [45] Berdahl et al reported that the intracranial 

pressures of eyes with glaucoma were significantly lower compared to those of healthy eyes.[44] 

The same study also showed that ICP was elevated in patients with ocular hypertension. As such, 

a number of authors have hypothesized that the translaminar pressure difference, which is the 

difference between IOP and ICP, may play an important role in determining whether one will 

develop glaucoma.[46], [47]  
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Figure 3. Diagram of the optic nerve head demonstrating the location at which intraocular pressure (IOP – 

light blue) and intracranial pressure (ICP – red) acts on the lamina cribrosa. While IOP acts anteriorly to the optic 

nerve head, the ICP acts posteriorly and circumferentially. 

 

Findings from studies investigating the relationship between ICP and glaucoma 

demonstrated that high ICP may have a protective effect against glaucoma damage, potentially 

by modulating the translaminar pressure difference across the LC. [44], [48], [49] For example, 

in normal tension glaucoma patients with normal IOP, low ICP can cause the translaminar 

pressure difference to remain elevated, making those eyes prone to glaucoma damage. On the 

other hand, in cases of ocular hypertensive patients, the translaminar pressure difference remains 

normal because their high IOP is counterbalanced by their high ICP. Prospective human studies 

have shown that the translaminar pressure difference is elevated in patients with normal tension 

glaucoma as well as primary open angle glaucoma. [48] 

Controlled modulation of the ICP is mainly accomplished through invasive procedures 

and therefore all experimental setups to alter ICP are performed in animal models. Studies have 

indicated a close correlation between ICP and the pressure in the posterior nerve. [47] Morgan et 

al show that the optic nerve head moves in accordance to the gradient between intraocular and 
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intracranial pressures, acting to oppose one another.[50] However, the Morgan et al study only 

assess the surface of the optic nerve head, without any consideration for how the LC or LC 

microstructure are affected. Furthermore, in a primate model with fixed IOP, extended ICP 

decrease is shown to result in glaucoma-like structural damage in half of the subjects.[51] 

However, these animal studies did not assess the effects of IOP or ICP on LC microstructure. 

Furthermore, the translaminar pressure difference (TLPD) may oversimplify the biomechanics of 

the local environment. As can be seen in Figure 3, IOP and ICP act in different regions of the 

LC. Therefore, further investigation is required to assess whether they truly cancel each other 

out. The interaction between IOP and ICP are likely complex and require further investigation. A 

systematic characterization of acute in vivo responses of the LC to changes in IOP and ICP is 

necessary to understand how these pressure changes may be a potential cause for axonal 

disruption. 

1.4 OPTICAL COHERENCE TOMOGRAPHY 

In vivo imaging of how the LC changes in different conditions is now possible using optical 

coherence tomography (OCT). OCT was a culmination of early work based on optical 

coherence-domain reflectometry, which was initially proposed as a one-dimensional ranging 

technique. [52]–[54]  OCT was first described in the seminal Science paper by Huang et al in 

1991,[55] which built on the early work on one-dimensional ranging by moving the scanning 

head to build a 2D image now commonly referred to as a B-scan.  
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Figure 4. Diagram of time-domain OCT device. Adapted from Marschall et al. [56] 

 

In early versions of OCT, commonly referred to as time-domain OCT, depth was 

encoded by translation of the reference mirror in time (Figure 4).[57] This greatly limited 

scanning speed to around 400Hz as each individual A-scan required moving the scanning 

reference mirror through the entire depth of the sample before moving the A-scan position. This 

limited the acquisition of 3D images in vivo due to motion artifacts in longer scans.[58] Imaging 

speed was drastically improved later on using spectral domain OCT, which allowed the time 

delay to be encoded as a spectrum, thereby eliminating the need for the moving reference mirror 

(Figure 6).[59] Over time, there has been drastic increases in both the scanning speed as well as 

resolution of OCT devices since they were first described.[57] Commercial spectral domain OCT 

devices for human imaging have scan rate between 27kHz (Cirrus HD-OCT, Zeiss) to 40kHz 

(Spectralis OCT, Heidelberg Engineering). The increase in scan speed allows the acquisition of 

3D scan volumes now being the norm. 3D acquisition is done by putting together a series of 

adjacent B-scans (Figure 5). 
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Figure 5. Description of the scan patterns used in this study. (A) A-scans are an individual scan down the 

depth of the tissue, red line indicate a graphical representation of the reflectivity along an individual A-scan. (B) B-

scans represent a linear collection of adjacent A-scans and is typically used for cross-sectional visualization of 

tissue. (C) A 3D volume is generated by putting together a series of consecutive B-scans. (D) A C-mode or en-face 

image, is generated by reslicing the volume at a given plane (blue rectangle). 

 

A key feature of OCT is its high axial and lateral resolution, permitting detailed 3D 

characterization of tissue structure. Lateral resolution is limited by the numerical aperture of the 

scanning device, as well as aberrations within the scanning media for posterior pole imaging. 

Numerical aperture of OCT devices is typically lower than conventional microscopy, due to the 

need for imaging across a larger scan depth. The lateral resolution of OCT is limited to around 

15μm, which is worse than the theoretical diffraction-limited resolution (around 3μm) due to 

aberrations within the scanning media and air. This limitation can be overcome using adaptive 

optics [60], [61], which improves the lateral resolution to approximately 5μm. The axial 
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resolution of OCT system is more easily controlled and is described in Equation 1. Since the 

device is an interferometer, it is dependent on both the bandwidth of the light source as well as 

the central wavelength. The choice of central wavelength in OCT imaging is limited to those that 

minimize water absorption and penetrate well into the eye. For conventional posterior pole 

imaging, this means selecting central wavelengths around 830-840nm, as well as 1μm. However, 

axial resolution can be increased using a broadband light source, or a combination of multiple 

light sources. 

 

 

Equation 1: Theoretical axial resolution of OCT system. Axial resolution, ; Center wavelength, ; 

Bandwidth, . 

 

 

Figure 6. Diagram of spectral-domain OCT. Adapted from Marschall et al. [56] 
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Figure 7. Diagram of swept source OCT system. Adapted from Marschall et al. [56] 

 

Another iteration of the OCT technology used in this project is the swept source (SS-) 

OCT. Swept source OCT (Figure 7) is very similar in concept to spectral domain OCT (Figure 

6). In both cases, depth is encoded by the Fourier transform of the spectrometer reading. 

However, unlike spectral domain OCT, which uses a broad-band light source, swept source OCT 

uses a swept wavelength tunable laser to target all the individual frequencies. This allows the 

device to reduce the signal roll-off with depth present in spectral domain OCT devices, 

improving the ability to acquire high quality images from deep structures of the eye. [62] This 

has the advantage of significantly increasing coherence length, imaging speed, and signal to 

noise. Despite being described in the late 1990s by Chinn et al,[63] SS-OCT was not readily 

available due to lack of fast, high quality and low cost swept laser sources until recently.[57] The 

presence of swept source has once again dramatically increased the scanning speed. Commercial 

machines scanning at 100kHz A-scans are now available and experimental systems have reached 

scan speeds of up to 1MHz.[64], [65] 
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1.5 IN VIVO ASSESSMENT OF THE LAMINA CRIBROSA 

With new developments in OCT technology, many research groups have recognized the 

capability for OCT to assess the lamina cribrosa. Imaging of the detailed LC microstructure was 

first demonstrated using spectral domain OCT by Kagemann et al in 2008.[66] Since then, 

numerous studies have appeared in the literature describing the LC and how it changes with 

disease.[67]–[69] Several studies demonstrated an overall LC thinning with glaucoma 

corresponding with earlier histology studies.[24], [67] Furthermore, a few studies have 

demonstrated the presence of LC defects corresponding to the location of vision loss in the optic 

nerve.[70]–[72]  

One area of deficit in the current field of studying the lamina cribrosa is the lack of 

microstructure analysis. Much of the work is limited to analyzing macroscopic features such as 

local surface defects in the anterior LC[72] and total LC thickness[67], without regards to the 

complex collagenous meshwork that makes up the LC (Figure 4, Figure 8).  Without analysis of 

LC microstructure, a crucial information is missing considering that the retinal ganglion cell 

axons have to go through the pores within the lamina for the entire thickness of the lamina in 

their way to the brain. Localized axonal damage may occur in isolated regions of the LC, causing 

focal blockage of axoplasmic flow and ganglion cell damage which would be missed if only 

macroscopic analysis was performed. Furthermore, because IOP and ICP are affecting the optic 

nerve from different directions (Figure 3), the anterior LC may reacts to stress differently than 

the posterior LC. Therefore, a method to analyze the full 3D LC microstructure would improve 

our understanding of glaucoma pathogenesis, provide a novel diagnostic tool for glaucoma and 

new direction for treatment option. 
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Figure 8. (A) Sagittal sections showing LC anterior surface (red dashed line) and posterior LC surface 

(yellow dashed line). Current in vivo studies involve manually analyzing these sections for macrostructural features 

such as total thickness. (B) Coronal sections showing LC microstructure. 

 

OCT offers a number of advantages and disadvantages in assessment of the LC compared 

to other imaging modalities. Conventional whole body imaging devices, such as computed 

tomography (CT) and magnetic resonance imaging (MRI), do not have adequate resolution to 

resolve the fine structure of the LC. Even the state-of-the-art experimental devices, using high 

magnetic fields and large amounts of ionizing radiation are still almost an order of magnitude 

worse in resolution. However, both MRI and CT offers the advantage of high tissue penetration, 

allowing the assessment of the entire optic nerve region, including the posterior sections often 

not visible on OCT. Even high frequency ultrasound designed for the eye [73] suffer from depth 

of penetration problems in the posterior eye. Thus, OCT represents the best tool for in vivo 

assessment of the LC. 
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1.6 PROJECT AIMS 

The aim of this project is to use OCT to perform the first detailed in vivo assessment of the LC 

microstructure. The overall hypothesis of this thesis is that OCT can be used to assess LC 

microstructure which will provide critical information for glaucoma diagnosis and pathogenesis. 

In order to test this hypothesis, the project was separated into three Aims, as outlined below. 

1.6.1 Aim 1: To develop and evaluate a semi-automated method of segmentation and 

analysis of LC microstructure 

Due to the complexity of LC microstructure, current work on the LC primarily involves manual 

segmentation of LC macrostructure. [67] Since manual segmentation of the 3D LC 

microstructure is prone to measurement variability related to the subjective delineation as well as 

being time-consuming and clinically infeasible, we aim to develop and validate a method to 

semi-automated and robust method for segmentation and quantification of the LC microstructure. 

1.6.2 Aim 2: To evaluate the effects of acute modulation of both intraocular and 

intracranial pressure on the primate LC  

Numerous studies have suggested that ICP may modulate the effect of IOP in the optic nerve. 

However, the mechanical deformations resulting in this effect is not currently known. 

Understanding how these pressures can influence glaucomatous damage requires a systematic 

characterization of the acute response of the LC microstructure to changing IOP and ICP. We 
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will utilize the tools developed in Aim 1 to assess how LC microstructure deforms in vivo due to 

pressure. 

1.6.3 Aim 3: To characterize the effects of glaucoma on the human LC  

In Aim 3, we will take the knowledge gained from animal studies in Aim 2 to improve our 

assessment of human glaucoma. Histological studies have shown changes in LC microstructure 

in glaucoma, but post-mortem tissue changes raise concerns about the applicability of the 

findings in living eyes.[24], [26] We will characterize in vivo the 3D structure of healthy human 

LC and then compare it with glaucoma eyes. Furthermore, we will determine the association 

between LC microstructure features with disease severity.  

Taken together this project will provide innovative information crucial for understanding 

the role of the LC as the primary target of the glaucomatous process. 
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2.0  RECRUITMENT OF HUMAN SUBJECTS 

We enrolled healthy, glaucoma-suspect and glaucoma subjects from the UPMC Eye Center 

(Pittsburgh, PA). All studies were conducted in accordance with the tenets of the Declaration of 

Helsinki [74] and the Health Insurance Portability and Accountability Act. The institutional 

review board of the University of Pittsburgh approved these studies, and all subjects gave a 

written consent prior to participation. Healthy eyes were defined as those with normal 

appearance of the optic nerve head and retinal nerve fiber layer, IOP <21mmHg, full visual 

fields, and no other ocular pathologies. Glaucoma suspects eyes had abnormal appearing optic 

nerve, asymmetrical optic nerve cupping, or IOP>21mmHg, all accompanied by normal VF test 

results. The non-symptomatic eye of unilateral glaucoma patients were also considered as 

glaucoma suspect. Glaucomatous eyes had characteristic optic nerve head cupping, retinal nerve 

fiber layer defect, and reproducible glaucomatous visual field defect.  

2.1 INCLUSION CRITERIA 

All men and women aged 18 and older that meeting the above criteria were and included in the 

study.  
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2.2 EXCLUSION CRITERIA 

Exclusion criteria for the study included subjects with 1) non-glaucomatous ocular diseases, 2) 

neurologic and non-glaucomatous causes for visual field damage, and 3) intraocular surgery 

other than non-complicated cataract or glaucoma surgery. Subjects with refractive error greater 

than ±6.00 Diopters and cylinder power >3.00 Diopters. These exclusion criteria were used to 

limit the effect of potential confounders on structural imaging. 

2.3 TESTING PROTOCOL 

All subjects underwent a comprehensive ophthalmic evaluation, including intraocular pressure 

(IOP), VF testing, commercial spectral domain-OCT (Cirrus HD-OCT), and swept source-OCT 

imaging of the LC, all acquired within 6-month window.  

IOP measurement was performed using Goldmann applanation tonometry, which is 

widely considered to be the gold standard in IOP measurement. Goldmann applanation 

tonometry is based on the Imbert Frick principle, which dictates that the pressure inside a 

perfectly elastic sphere is equal to the force applied divided by the area of flattening.   

VF testing was performed using standard achromatic perimetry, 24-2 Swedish interactive 

threshold algorithm standard (Humphrey Field Analyzer; Zeiss, Dublin, CA). VF testing with 

greater than 30% fixation loss, false-positive or false negative responses were excluded from the 

study. 
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3.0  DESCRIPTION OF DEVICES 

The following section describes the tools used in this study to assess the eye. 

3.1 OPTICAL COHERENCE TOMOGRAPHY 

3.1.1 Spectral Domain Optical Coherence Tomography 

3.1.1.1 Bioptigen SD-OCT 

A commercial SD-OCT, the Bioptigen SD-OCT (Bioptigen, Research Triangle, NC) was used 

for all our animal studies. The device uses the commercial patient scanner and optics engine 

coupled a modified light source with a broadband superluminescent diode (Superlum, Dublin, 

Ireland; λ=870 nm, Δλ=200 nm). This achieved an estimated axial resolution of 2μm (limited by 

the spectrometer, as the theoretical limit is 1.6μm) and a 15μm transverse resolution. The device 

offers significantly higher axial resolution compared standard commercial devices, due to its 

very high bandwidth light source. Furthermore, Bioptigen SD-OCT allows full control of all 

scanning parameters, including scan size, sampling density and scan type, which is typically not 

available on human scanners. The device was demonstrated to be capable of imaging the human 

LC microstructure in early studies by Kagemann et al. [66]  
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3.1.1.2 Cirrus HD-OCT 

A commercial SD-OCT, Cirrus HD-OCT (Zeiss, Dublin, CA), was used for standard assessment 

of retinal nerve fiber layer thickness. It features an 840 nm center wavelength, achieving an 

estimated axial resolution of 5μm and 15μm transverse resolution. The device has a scan rate of 

27,000Hz. Despite a number of other potential SD-OCT devices to choose from, the Cirrus was 

chosen due to its wide use in clinical ophthalmology, well characterized parameters [75], [76] 

and throughout isotropic 3D sampling of optic nerve head.    

All subjects were scanned a 6.0 mm x 6.0 mm x 2.0 mm (200 x 200 x 1024 samplings) 

region centered on the optic nerve head. The quality of the SD-OCT images were judged 

subjectively by evaluating the OCT fundus images for eye movements and missing areas. OCT 

data with signal strength below 7 (manufacturer’s recommended cutoff) were excluded. The 

automated segmentation routine from the manufacturer was used to measure the retinal nerve 

fiber layer thickness in a 3.4 mm-diameter circle centered around the optic nerve head. [58] 
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Figure 9. Commercial spectral domain OCT scan of the optic nerve by Cirrus HD-OCT. The analysis show 

thinning of the retinal nerve fiber layer in both the right and left eye, slightly more prominent in the left. The 

summary measurement used was average retinal nerve fiber layer thickness (black box). 

 

3.1.2 Swept Source Optical Coherence Tomography 

The swept source-OCT device used in this study is a prototype device manufactured by our 

collaborators at the Massachusetts Institute of Technology (Cambridge, MA). The device 

features 100 kHz scan rate and a light source centered at 1050 nm, resulting in a 5μm axial 

resolution and a 20μm lateral resolution. The device is described in greater detail in a previous 

publication by Grulkowski et al [77].  

All eyes were scanned in a 3.5 mm x 3.5 mm x 3.64 mm (400 x 400 x 896 samplings) 

volume centered on the LC and optic nerve head. This scan size was chosen to maximize our 

ability to capture both the LC and the surrounding optic nerve tissue. The focus depth of the 
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device was set at the level of the LC to maximize image quality within the area of interest. Two 

orthogonally oriented scan volume (horizontal and vertical orientation raster) were co-registered 

to remove motion artifacts.[78] This registration algorithm has been previously shown to remove 

minor motion artifacts and improve signal to noise ratio of the resulting co-registered scan.[78] 

Scans with large eye movements causing failure of the registration algorithm were excluded 

from the study, as were the scans without visible LC microstructure from which no useful data 

could be obtained. 

 

3.2 VISUAL FIELD TESTING 

Visual field testing is one of the primary method of assessing functional visual deficits in 

glaucoma. The most commonly used method of visual field testing is standard automated 

perimetry, with a white stimulus projected on a white background. The ability of the patient to 

identify stimulation of different regions of their visual field is used to create a visual map of 

locations where the subjects performed comparably to an age-adjusted average of healthy 

population. The most commonly used testing algorithm is the Swedish Interactive Threshold 

Algorithm (SITA), [79] which was developed to shorten the test and improve efficiency. While 

visual loss in glaucoma is complex, different visual field patterns often emerge. These findings 

can be summarized in visual field mean deviation (VF MD), reflecting the depression of the 

patient’s threshold sensitivity compared to age-matched healthy subjects. Lower VF MD (more 

negative) indicates worse performance on the visual fields, and VF MD near 0 indicate normal 

visual fields. 
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4.0  DEVELOPMENT AND EVALUATION OF LAMINA CRIBROSA 

SEGMENTATION 

High-speed OCT systems permit rapid acquisition of the LC in 3D, capturing the fine details of 

lamina cribrosa microstructure.[66], [80] Yet, in vivo LC analysis in current glaucoma research 

is still performed on single 2D cross-sectional scans using manual segmentation[67], [72], [81] 

due to the complexity of the LC microstructure. It is very important to create and test a semi-

automated segmentation method that would capture the 3D microstructure of the LC. In order to 

be clinically viable, the algorithm needs to be fast and perform at a level similar to a manual 

observer, which is used as a gold standard. We hypothesize that a semi-automated segmentation 

algorithm of LC microstructure will have high sensitivity and specificity to delineate LC 

microstructure compared to manual delineation. 

4.1 EXPERIMENT 1-1: TO CREATE A SEMI-AUTOMATED SEGMENTATION 

AND ANALYSIS METHOD OF THE LC MICROSTRUCTURE 

Automated tools have played a critical role in the development of OCT technology and its rapid 

adoption into clinical and research in ophthalmology. Automated segmentation of the retina [82] 

and optic nerve head [83] are frequently done for assessment of both glaucoma as well as other 

ophthalmic pathologies. These segmentation tools helped clinicians to interpret the result and 
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played a large part in the commercial success of the machines. As such, in order for LC 

microstructure analysis to have potential clinical relevance, the first step is to develop an 

automated segmentation and analysis method of LC microstructure. Furthermore, automated 

segmentation would allow quantification of a complex structure that is otherwise extremely 

difficult to assess. The hypothesis of this experiment is that an automated segmentation 

algorithm will segment the LC microstructure with high sensitivity and specificity.  

 

4.1.1 Methods 

OCT images of the LC were typically noisy and featured an uneven background (Figure 10). 

There were significant variations in image intensity, ranging from dark shadows behind blood 

vessels to highest reflectivity pixels in the center of the optic nerve where the prelaminar tissue is 

thinnest and only a few blood vessels to block the OCT light. Thus, it was not possible to use a 

global threshold for segmentations due to the variations in intensity. With this in mind, the 

following describes the steps used in the developed segmentation algorithm: 

Step 1: Image was smoothed using 3D Gaussian filter with a 3 pixel σz and a 1 pixel σx, y 

to reduce high frequency noise (Figure 10). OCT is partly degraded by the presence of speckle 

noise, caused by the limited bandwidth of the interference signal.[84] While speckle noise is 

similar to salt and pepper noise, which is most optimally removed by median filtering,[85] we 

chose to use Gaussian filters due to their simplicity and speed. 

Step 2: Contrast limited adaptive histogram equalization was performed to enhance the 

image quality. [86] The parameters include: 1) Block size – the local region over which the 

histogram equalization is applied and 2) Slope – degree of contrast stretching over the block size. 
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Figure 10. Initialization of the images. (1) The series of B-scans are first resliced (white dashed line) to 

look at (2) a series of C-mode slices. (3) A Gaussian filter is applied to remove image noise. 

 

Step 3: An automated local thresholding technique developed by Niblack [87] was used 

to binarize the image, differentiating pores in the C-mode slice from the surrounding LC 

structure (Fig. 2.3).  The local thresholding algorithm follows the equation below. As seen in this 

equation, there were significant complexities within the different parameters. We performed a 

thorough analysis of all parameters and compared them to the gold standard manual delineations. 

The top performing parameters were then selected and compared subjectively to ultimately select 

the top performing parameter. 
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Equation 2: Niblack local thresholding. Block size – the region over which local thresholding is applied. I 

– Pixel intensity at current pixel. μ – Mean pixel intensity in the block centered on the current pixel. σ – The 

standard deviation within the local block. k – Pixel intensity standard deviation 

 

Step 4: A 3D median filter was passed over the segmented volume with 1 × 1 × 3 kernel 

size (Fig. 2.4).  The z filtering removed segmented pixels due to intensity drops in a single C-

mode.  This allowed the automated algorithm to account for 3D continuity.   

Step 5: A manually defined mask was applied to the region peripheral to the LC, 

restricting the segmented components to those within the region of interest (Fig. 2.4).  Full 

processing took approximately 1 second per image. 

 

 

Figure 11. Automated segmentation of the LC microstructure. After (1) de-noising the image, the entire 

stack underwent contrast limited adaptive histogram equalization (CLAHE) and (3) local thresholding and masking 

to identify the pores. (4) Segmentations of the pores were overlaid on top of the original image. 

 



 27 

Segmentation was also manually performed by two experienced observers masked to one 

another, clinical information, and the outcome of automated segmentation. While the 

segmentation works in 3D, a single frame was chosen per eye due to the time consuming nature 

of delineating all pores in a 3D stack. Frames for manual segmentations underwent the same 

smoothing and local contrast enhancement as those performed for the automated segmentation to 

ensure comparable conditions for analysis. After such preprocessing, the human observers 

manually demarcated regions of the image that appeared to be pores using the TrakEM2 feature 

of the ImageJ image analysis software.[88] When necessary, adjacent C-mode slices were 

consulted to discriminate pores from noise, by observing the continuity of local regions of low 

pixel intensity through the stack. The same peripheral mask used in the automated segmentation 

was applied to the manual segmentations.  Manual delineation took on average approximately 18 

minutes per image, which equated to nearly 6 hours for a single volume scan.  

The pore segmentation was compared between the automated and manual methods, first 

qualitatively and then quantitatively by calculating sensitivity and specificity using pixels 

classified as pores on a per-pixel basis. The gold standard pore segmentations were taken as the 

pixels both observers agreed upon within the boundary of a pore. In addition, the following 

parameters were measured using ImageJ, and then compared using a measurement error model: 

pore number, average pore area, average pore aspect ratio, average pore thickness, and average 

beam thickness. Pore area and aspect ratio were calculated by considering each segmented pore 

as a particle and averaging over all particles in the frame. Aspect ratio refers to the ratio of the 

major axis to minor axis of an ellipse fitted to each pore. Beam thickness is taken as the average 

thickness of the region inverse to the pores within the boundaries of the LC surface, while pore 

thickness is a radial thickness measurement of segmented pores. Thicknesses were computed by 
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expanding circles from each point within the segmented region until the boundary was first 

reached. Each point was assigned a value corresponding to the radius of the largest circle 

containing that point, from which a global mean ‘thickness’ could be calculated.[89], [90] The 

connective tissue volume fraction (CTVF) is a ratio of the segmented laminar beams to total LC 

area within a slice. 

The measurement error model estimated the latent “true” value for each parameter within 

a subject and calculated the bias (systematic error) and imprecision (random error) component 

for each observer and the automated technique based on the set of values within the population. 

In order to allow for comparison between imprecisions, the computed values were adjusted for 

the scale bias. R Language and Environment for Statistical Computing program, was used for the 

statistical analysis (version 2.15.1; R Foundation for Statistical Computing, Vienna, Austria; 

http://www.R-project.org)[91]–[93]. 

4.1.2 Results 

The study included 14 healthy and 16 glaucoma subjects with an average age of 55.2±18.6 years, 

and an average visual field mean deviation (MD) of -6.39±5.95 dB amongst glaucoma subjects. 

Subjective evaluation of the automated segmentation method determined that there were 

no pores that were obviously misclassified (Figure 12). Subjective comparison of pore 

segmentation showed strong agreement between segmentation methods in regions of the lamina 

with good signal strength. Segments of the image with poorer signal corresponded with the 

regions of disparity between the segmentation methods (Figure 12).  However, there appeared to 

be as much disagreement between observers as there was between an observer and automated 

segmentation. 
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Figure 12. The unprocessed C-mode slice (a) and corresponding segmentation (b) for a scan of a healthy 

eye taken with the SS-OCT device. For pores identified by both automated and manual segmentations, the 

automated pores are colored red and the manual ones are colored blue, so that overlapping segmentation appears as 

purple. Pores identified only by the automated method are colored yellow and those seen solely in the manual 

segmentation are colored green. Pores detected only by manual segmentation were mostly located adjacent to blood 

vessel shadow margins. 

 

Using manual segmentation as gold standard, average sensitivity and specificity of the 

automated segmentation was 82.3% and 91.0%. The inter-observer agreement constituted 85.5% 

of segmented pixels. Table 1 summarizes the measurements values, as well as the imprecision 

for the two graders and the automated segmentation. The estimated imprecisions, once the scale 

bias of the parameters are accounted for, are similar when comparing between manual 

segmentations and when comparing between manual and automated segmentations. Due to the 

small number of observations, there were no difference in the imprecisions between manual and 

automated methods, and confidence intervals on imprecision values could not be reliably 
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established. None of the parameter averages or imprecision values showed statistically 

significant differences between the manual and automated methods. 

 

Table 1. Average measurement and imprecision estimate for each segmentation method using SS-OCT. Obs – 

Observer. CTVF – Connective Tissue Volume Fraction. 

Parameter Average Imprecision 

Auto Obs. 1 Obs. 2 Auto Obs. 1 Obs. 2 

Pore number 99.7 94.1 87.8 19.04 20.40 21.59 

Pore area (pixels2) 201.2 211.4 268.9 42.0 29.3 42.9 

Pore aspect ratio 2.05 1.77 1.71 0.096 0.118 0.100 

Pore Thickness (pixels) 11.19 12.81 15.36 0.61 0.45 0.00 

Beam Thickness (pixels) 20.29 22.53 22.62 1.51 0.54 0.53 

CTVF 0.748 0.748 0.693 0.02 0.03 0.02 
 

4.1.3 Discussion 

In this experiment, we demonstrate an automated method of segmenting LC microstructure. 

When comparing to the gold standard manual segmentation, we find that the automated 

segmentation has excellent sensitivity and specificity. Furthermore, the imprecision of the 

automated segmentation is no different than that of the two manual observers.  

The excellent and quick performance of the segmentation algorithm means that we will 

be able to perform automated analysis of LC microstructure in future experiments. This is 

significantly faster than the manual methods, enabling the technology to be clinically useful for 

assessing LC microstructure. 
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The automated LC segmentation analysis we propose includes multiple steps. A local 

contrast enhancement is chosen because the average image intensity varied through individual B-

scans in the 3D volume. However, our primary interest is in quantifying pores, which have local 

drops in intensity. The local enhancement provides better pixel-scale contrast that aids 

visualization of pore edges without substantially changing the appearance of global features. The 

Gaussian filter adequately removes noise, improving the overall image quality. The 3D median 

filter with a large Z radius discriminates local intensity drops in isolated C-mode slices from 

those present in multiple sequential slices and more likely to be classified as pores by a human 

observer. Taken together, the performance of the automated segmentation is subjectively judged 

to adequately delineate the LC microstructure using swept source OCT.  

The disagreement between observers for manual segmentation reveals the difficulty with 

subjective assessment as a gold standard for LC segmentation (Figure 12, Table 1).  

Nevertheless, acceptable sensitivity and specificity of the automated method is noted. The 

automated analysis tends to provide lower pore thickness values and an overall more elliptical 

shape of the pores (higher aspect ratio) than manual segmentations. Such finding may be a result 

of our human observer’s intrinsic expectation of pores being small round objects. The difference 

in aspect ratio may also be due to the automated method connecting adjacent pores separated by 

low contrast connective tissue, which human subjects are more capable of differentiating. This 

may also contribute to the relatively low pore thickness values, since connections tend to be 

thinner than the pores they connect. It may seem counterintuitive that pore thickness decreases as 

two pores are merged since pore area increases. However, if one considers an hourglass-shaped 

pore, each end will have greater thickness (as defined in the methods) than the connecting 
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bottleneck, and the overall mean thickness would be reduced by including this connection in 

calculating the average thickness.   

Pore segmentations are filtered in the Z-direction to remove noise due to intensity drops 

in single slices. This may result in the merging or splitting of pores, which bifurcate and merge 

with depth as they pass through the LC.  The depth position of a split or merge varies 

subjectively, and the decision of observers sometimes disagreed with the outcome of the 

automated method. Pore number, size, and aspect ratio are sensitive to the splitting and merging 

of pores, and to a lesser degree so are beam and pore thickness. Ratio measurements provide a 

macroscopic look at the fine structure without over-weighing pixels with indefinite 

classifications.  Nevertheless, measurement imprecision or variability is similar for manual and 

automated analysis, with values within 4.0% of one another (compared to 3.7% between 

observers). When combined with the favorable outcome of subjective evaluation, the similarity 

in imprecision and lack of statistically significant difference in any of the parameters indicated 

that the automated method is an effective tool for LC segmentation. 

A limitation of this study is the relatively small number of scans that were analyzed.  The 

heavily labor-intensive and time-consuming nature of manually delineating numerous pores in 

each scan restricted the feasibility of a larger cohort. As a result, confidence intervals on 

imprecision values could not be reliably established. In fact, this limitation highlights the 

necessity of such an automated technique, particularly when used on a dense 3D volume 

routinely and rapidly acquired by OCT. Furthermore, the segmentation has poorer performance 

in regions of poor image quality, especially in the peripheral LC and near blood vessels. As such, 

these regions are typically excluded from analysis, unless small observable local drops in 

intensity are present. 
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In this experiment, the performance of the proposed segmentation algorithm was 

compared to manual segmentation in 2D images. Yet, it should be emphasized that this 

segmentation method is fully operational on 3D scans, providing a novel method for 

microstructural segmentation of 3D OCT scans of the LC. The method is also applicable to other 

imaging modalities (including some commercial devices) visualizing LC microstructure. 

However, differences in image size, contrast, and noise characteristics should be considered in 

order to attain good segmentation performance and tuning of the parameter will be required. 

4.2 EXPERIMENT 1-2: TO ASSESS THE REPRODUCIBILITY OF A SEMI-

AUTOMATED SEGMENTATION METHOD OF LC MICROSTRUCTURE 

In the previous experiment, we described an automated method of segmenting and analyzing the 

3D microstructure features of the LC from OCT imaging, which significantly reduced the time to 

analyze the LC.[94] In order for the segmentation algorithm to be of value for clinical and 

research use, it must be reproducible as well as fast and accurate. Because it is impossible to 

compare in vivo measurements acquired with OCT with ground truth physical measurements, 

assessing the reproducibility is the standard step in validating the efficacy of new segmentation 

algorithms.[76], [95], [96] Any tool with high inter-scan variability will make it difficult to 

assess change in a given subject and decrease its relevance. In this experiment, we assessed the 

reproducibility of the automated segmentation of in vivo LC 3D microstructure scanned using 

OCT that we developed in Experiment 1-1. We hypothesize that a semi-automated segmentation 

analysis will offer high measurement reproducibility. 
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4.2.1 Methods 

A total of 49 eyes (8 healthy, 19 glaucoma suspect, 12 glaucoma) from 39 subjects representing 

the range of healthy and diseased eyes typically seen in glaucoma practice, were enrolled to the 

study. Disease status and clinical examination were performed as described in the Recruitment of 

Human Subjects section. 

4.2.1.1 Image Acquisition and Processing with Swept Source-OCT 

All subjects underwent 2 swept source-OCT scans of the optic nerve head. The two OCT scans 

were taken within approximately one minute of each other, with the focus and OCT machine 

readjusted after each scan. The scans were processed using ImageJ [97] segmentation tool 

(http://rsbweb.nih.gov/ij/), as previously described in Experiment 1-1. [94]  

In order to examine the effect of scanning angle on LC microstructure measurements, a 

single OCT volume was rotated ±10° with respect to the slow scanning axis using ImageJ. [97] 

4.2.1.2 Statistical Analysis 

Reproducibility was assessed by determining the imprecision SD of repeated 

measurements using a measurement error model, accounting for the use of both eyes from some 

of the subjects. [92] The imprecision SD measures the typical size of the random error made by 

the device when a measurement is made, assuming a bias of 1 since the same method is used to 

analyze the repeated scans.[98] Relative imprecision was calculated by dividing the imprecision 

by the measurement’s average. Low imprecision between two scans indicated high 

reproducibility. Statistical analysis was performed using R Language and Environment for 

Statistical Computing program (version 2.15.1). [91] 
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4.2.2 Results 

Average age for all subjects was 57 ± 14 years with an average visual field mean deviation of -

0.4 ± 0.9 dB for healthy (n = 8), -0.6 ± 1.3 dB for glaucoma suspects (n = 19), and -4.5 ± 7.5 dB 

for glaucoma subjects (n = 12). Automated segmentation of two different scans of the same eye 

is shown in Figure 13. Observable differences between automated segmentation of the two scans 

primarily occurred due to differences in region of the LC included in the analysis (Figure 14). 

Some of the differences could be explained by a small alteration in scan angle between images 

creating distortions in the region of LC within a plane (C-mode) and along a cross-section (B-

scans) (Figure 15). 
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Figure 13. Two consecutive optical coherence tomography scans of the lamina cribrosa of the same eye. 

Original C-mode (left) and segmentation overlain (right) where beams (green) and pores (red) are marked. 

Differences in segmentations between the two scans primarily existed due to local disparities in regions analyzed. 
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Figure 14. Two consecutive optical coherence tomography scans of the lamina cribrosa of the same eye. 

Original C-mode (left) and segmentation overlain (right) where beams (green) and pores (red) are marked. 

Differences in segmentations between the two scans (red arrows) primarily existed due to local disparities in regions 

analyzed. 
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Figure 15. Shifts in the scanning angle alter B-scan (A) and C-mode (B) images and alter the 

microstructure seen on a single frame from the center of the volume. The scan angle changes were simulated using 

image processing software (ImageJ). 

 

Despite these edge effects, 3D view of the visible LC appeared highly repeatable (Figure 

16). The average number of C-mode slices over which pores were measured was 69 ± 13 slices 

per eye (range: 38 - 101). This corresponds to a physical depth of 281 ± 54μm. 
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Figure 16. 3D view of lamina cribrosa beams demonstrated the similarity of the microstructural features 

(same eye as Figure 13). 

 

The relative imprecision of all LC microstructural parameters using data from all eyes 

was ≤4.2 (Table 2). When comparing the relative imprecision between the diagnostic categories 

there was no significant difference with the exception of pore diameter, which was higher in 

healthy eyes compared to glaucoma eyes (Table 3). 

 

Table 2. Average and imprecision for lamina cribrosa parameters. 

Parameters Average (SD) Imprecision Relative Imprecision (%) 
Pore Diameter (μm) 24.2 (1.9) 0.4 1.8 
Pore Diameter SD (μm) 9.8 (0.8) 0.2 2.0 
Pore Aspect Ratio 2.00 (0.11) 0.04 1.8 
Pore Area (μm2) 1660 (206) 50 3.0 
Beam Thickness (μm) 48.8 (2.7) 1.0 2.0 
Beam Thickness SD (μm) 16.1 (1.7) 0.7 4.2 
Beam Thickness to Pore 
Diameter Ratio 2.0 (0.1) 0.1 1.8 
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Table 3. Relative imprecision of lamina cribrosa parameters in relation to clinical diagnosis. 

Parameters Healthy  
(n = 8) 

Glaucoma Suspect  
(n = 19) 

Glaucoma  
(n = 12) 

Pore Diameter (μm) 2.8% 1.5% 1.2% 
Pore Diameter SD (μm) 2.7% 1.6% 2.2% 
Pore Aspect Ratio 2.1% 1.7% 1.8% 
Pore Area (μm2) 3.0% 2.4% 4.2% 
Beam Thickness (μm) 2.0% 2.2% 1.8% 
Beam Thickness SD (μm) 4.7% 4.7% 2.7% 
Beam Thickness to Pore Diameter Ratio 1.9% 1.9% 1.4% 

 

4.2.3 Discussion 

In this experiment, we demonstrated that an automated 3D LC segmentation analysis tool we 

developed in Experiment 1-1 provided highly reproducible information on the 3D LC 

microstructure in a cohort representing the typical mixture of subjects handled in glaucoma 

service. The relative imprecision of all parameters was no larger than 4.2%. 

Conceptually, we expected that parameters generated by 3D analysis (beam thickness, pore 

diameter, and beam thickness to pore diameter ratio) would show better reproducibility than 

those generated by averaging across sequential C-mode slices (pore aspect ratio and pore area). 

Whereas averaging across all sequential C-mode slices does represent the entire visible LC, the 

measurement could vary due to small shifts in scan angle. For example, shadows due to blood 

vessels might cause pores to appear in one scan angle, but not another. Therefore, parameters 

highly dependent on the scanning angle, such as pore count, are not reliable in OCT studies of 

the LC. Nevertheless, we demonstrated that both 3D and averaging across sequential C-mode 

provide robust and reproducible measurements of the LC microstructure (Table 2). 
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  Differences in regions of analyzed LC between two different C-mode scans were noted in 

some of the eyes (Figure 14). The analysis tool was designed conservatively in determining the 

analyzable LC to insure that the segmented region was indeed part of the LC, and not noise. 

However, while the LC outlines might be slightly different in consecutive scans, the global 3D 

microstructure of the LC was still preserved (Figure 16).  

The pore area and aspect ratio reported in this study were nearly identical to those 

reported by Ivers et al. from a small cohort of healthy subjects, where adaptive optics (AO-) SLO 

was used and the pores were segmented manually.[99] Akagi et al., reported similar aspect ratio 

but larger pore area using manual segmentation of AO-SLO images of both healthy and 

glaucomatous eyes.[100] Both previously described studies were limited by 2D analysis, as SLO 

has poor axial resolution, which may explain differences between studies. Furthermore, 

differences between the studies might be related to the different disease severity between the 

studies, analyzable LC, pore selection, and definition of the pore margin. Pore area, as measured 

in vivo in our study, was slightly larger than the area reported in histologic studies (~1460 and 

920 μm2), which might be related to the tissue shrinking during histological processing, the 

quantification of the surface pores only or due to the fact that both histologic studies included 

only healthy eyes. [101], [102] The LC parameters reported in Experiment 1-2 are all within 

10% of the ones reported in Experiment 1-1.[94]  

  The relative imprecision varied between the diagnostic classes (Table 3). In general, there 

was a tendency of highest imprecision in the healthy group and lowest in the glaucoma suspects, 

though for most parameters the range was small. Only the imprecision for pore diameter was 

significantly higher in healthy compared to glaucoma eyes. The higher imprecision in the healthy 
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subjects may be due to the thicker prelaminar tissue in these subject, which decreases the scan 

quality and segmentation reliability at the level of the LC.   

  The main limitation of this study, similar to most other in vivo imaging studies analyzing 

the LC, was related to the ability to capture the entire LC, which was highly dependent on the 

characteristic of the blood vessels and prelaminar tissue overlying the LC. This inevitable 

limitation was related to the complex structure of the LC region and the physical properties of 

the OCT technology. Yet, the low imprecision reported in this study confirmed that the 

differences in the various parameters between consecutive scans for a given eye was small and 

therefore microstructural changes could be detected reliably. 

In conclusion, automated segmentation for assessing 3D LC microstructure demonstrated 

low imprecision and high reproducibility. This analysis method represented a useful tool for 

future 3D analysis of the LC in vivo. 

4.3 SUMMARY 

We have demonstrated here that we were able of developing an automated segmentation 

algorithm that significantly reduces the time it takes to perform LC microstructure analysis. The 

analysis was completed over 100x faster than manual segmentation and performed at the same 

level as a manual observer. Furthermore, high repeatability in the analysis means that this 

technique would be useful in both cross sectional as well as longitudinal studies. As such, it sets 

the foundation for a technique of automated analysis of LC microstructure.  

The ability to automatically quantify in vivo human 3D LC had several important 

advantages and implications. First, it is important to note that in vivo assessment offers some 
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advantages over assessment of LC microstructure in histology. In vivo imaging does not suffer 

from distortions due to the loss of pressure (intraocular pressure, intracranial pressure, or blood 

pressure), distortions in tissue during histology preparation or tissue degradation after death. 

Second, in vivo imaging also permitted repeated scanning and longitudinal analysis, as well as 

studies comprising of a more representative population than those who donate their eyes. Third, 

3D analysis enabled thorough quantification of the complex 3D structure of the LC, which was 

more comprehensive than 2D or surface-projection studies performed so far in vivo. Fourth, 

automated segmentation analysis helped remove the subjectivity of manual segmentation and 

permitted rapid investigation of a large number of eyes. Finally, in vivo assessment would allow 

us to identify dynamic changes in the LC microstructure, such as pressure change, without being 

affected by post mortem changes. 
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5.0  EFFECT OF INTRAOCULAR AND INTRACRANIAL PRESSURES ON THE 

LAMINA CRIBROSA MICROSTRUCTURE 

There still lacks an understanding of how IOP and ICP affects the LC microstructure of the eye, 

if at all. As there exists no method of non-invasively controlling and recording ICP in humans, 

we will be using an animal model to understand the acute effect of IOP and ICP changes on the 

LC microstructure of the eye, using the tools developed in Aim 1.  

5.1 EXPERIMENT 2-1: ASSESSING THE EFFECTS OF ACUTE IOP AND ICP 

CHANGE ON LC MICROSTRUCTURE 

It is crucial to first understand how the LC microstructure is altered due to pressure in an animal 

model before moving on to human studies, where there exist more confounding variables (race, 

co-morbidities etc.) as well as the ethical implications of invasively altering ICP. A primate 

model allows us to test how a large number of IOP and ICP combinations affect the LC 

microstructure of the eye in a controlled fashion, providing a fundamental understanding of the 

interaction between the pressures and the LC. As there exists no present knowledge on how IOP 

and ICP affects LC microstructure in vivo, it is be important to assess whether changes in IOP or 

ICP affect LC microstructure at all; the only animal previous animal study assessing the effects 

of both IOP and ICP on the eye looked only the changes in the optic nerve surface.[50]  
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The rationale behind performing this study in vivo is that traditional tissue testing such as 

tensile stretch are difficult for the small and inaccessible structures of the posterior human eye, 

such as the LC microstructure. [103], [104] Furthermore, examination of ex-vivo eyes can 

impact both tissue property as well as change the environment experienced by the eye (no ocular 

blood pressure, temperature change, cell death, inflammation etc.). The findings of this study 

will allow us to determine whether IOP or ICP actually affect the LC microstructure and allow us 

to translate those findings into human subjects. 

By choosing a wide range of IOP and ICP conditions, our findings are applicable to a 

range of conditions that lead to vision loss, including ones other than primary open angle 

glaucoma. For example, investigating the acute effect of IOP rise on the LC microstructure 

improves our understanding of acute angle closure glaucoma, where blockage of the trabecular 

meshwork outflow can lead to a sudden rise in IOP. [105] Furthermore, investigating the effect 

of ICP on the eye improves our understanding of a range of diseases that can cause vision loss by 

elevating ICP, such as sleep apnea[106], idiopathic intracranial hypertension[107], [108] and 

brain tumors. We hypothesize that increasing IOP will cause beam thinning and increases in pore 

diameter and that increasing ICP will cause beam thickening and decreases in pore diameter. 

Paragraph. 

5.1.1 Animals and Methodology 

5.1.1.1 Animals 

Five healthy, adult, macaque monkeys were used for this experiment. All procedures in this 

study were approved by the University of Pittsburgh’s Institutional animal care and use 

committee (IACUC) and adhered to both the guidelines set forth in the National Institute of 
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Health’s Guide for the Care and Use of Laboratory Animals [109] and the Association of 

research in vision and ophthalmology (ARVO) statement for the use of animals in ophthalmic 

and vision research. This cohort included two females (Monkey 1 - age 12 years, Monkey 2 – 

age 15) and three males (Monkey 3 – age 14 years, Monkey 4 – age 8.5, Monkey 5 – age 8). 

Both eyes of monkey 5 were used to examine the association between eyes in the same primate. 

 

5.1.1.2 Anesthesia 

Animals were anesthetized with ketamine (20-30 mg/kg) and midazolam (0.25 mg/kg) and then 

intubated and maintained with isoflurane anesthesia (2%) for the duration of the experiment. 

Prior to imaging, animals were paralyzed using vecuronium bromide (2mg/hr) to reduce ocular 

movements during scanning, and were artificially ventilated to maintain an end-tidal CO2 of 

35mmHg. Animals were scanned with their body in the prone position and head held upright and 

facing the OCT device. 

5.1.1.3 Pressure Control 

IOP was controlled via gravity-based perfusion through a 27-gauge needle inserted into the 

anterior chamber after thorough irrigation of the cannula to remove all air bubbles. A saline 

reservoir was raised above the height of the globe to set the IOP (5, 15, 30, and 40mmHg). The 

lateral ventricle was cannulated with a lumbar catheter (Medtronic, Minneapolis, MN), also 

attached to a saline reservoir and thoroughly irrigated, to control ICP. The height of the reservoir 

was adjusted to achieve a target ICPs of 5, 10, 25 and 40mmHg, although it was not always 

possible to reach those exact target ICPs. ICP was simultaneously and continuously measured 

with a fiber-optic pressure sensor inserted into the parenchyma of the brain (ICP EXPRESS 
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monitoring system; DePuy Synthes, Raynham, MA). The pressure transducer was zeroed at eye 

level while submerged in saline solution. 

5.1.1.4 Experimental Setting 

The animals were anesthetized and OCT scans of the ONH region were acquired at baseline and 

at each pressure setting (Figure 19). ICP was adjusted and then IOP was modulated in the 

various pressure settings while acquiring OCT images at each setting. A minimum of 5 minutes 

were given after changing pressure to reduce the viscoelastic effect on the eye. [110] After 

completing all IOP modulations, ICP was adjusted to a different pressure and the IOP 

modulation was repeated. 

 

Figure 17. (A) Experimental setup. Intraocular pressure (IOP) and intracranial pressure (ICP) were 

controlled using a gravity-based perfusion system. OCT imaging of the lamina cribrosa (LC) (red box) was 

performed 5 minutes after altering IOP and ICP. At every given ICP, IOP was altered and the OPTIC NERVE 

HEAD was imaged after 5 minutes at every IOP condition. After completing all IOP conditions, a new ICP was set 

and the IOP conditions repeated. 
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5.1.1.5 OCT Imaging 

The pupils were dilated using tropicamide for ease of image acquisition. A rigid gas permeable 

contact lens (Boston EO, Boston, MA) was fitted to each scanned eye to improve image quality. 

The eyes were kept open using a wire speculum and the cornea was kept moist with artificial 

tears every 5 minutes. At every IOP and ICP condition, 4 OCT scans of the LC were taken. All 

eyes were scanned in a 5mm x 5mm x 2mm volume (512 x 512 x 1024 samplings in both 

scanning settings) centered on the optic nerve and LC using the Bioptigen spectral domain OCT. 

 

5.1.1.6 Image Analysis 

Images were subjectively inspected and those where no LC microstructure was detected were 

discarded from analysis. Qualified images were segmented using the segmentation method 

presented in Aim 1, to quantify beam thickness, pore diameter and beam thickness to pore 

diameter ratio.[94], [111], [112] 

The remaining images were subjectively graded for segmentation quality based on pores 

and beams visibility. An experienced observer masked to the experimental setting in which the 

images were acquired determined the image quality on a scale from 1-3, with 1 being the worst 

and 3 being the best quality (Figure 18). 
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Figure 18. Assessment of segmentation quality. Examples of images rated as 1, 2, and 3. 

 

` Because the visible LC varied between images acquired in the various pressure settings, 

we limited the analysis only to regions visible in all images to prevent the confounding effect 

related to quantification of different areas of the LC. Images were registered by rigid-body 

translation and rotation in 3D to align the LC microstructure (Figure 19). A volume of the LC, 

visible on all scans, was used for analysis in order to determine the change in 3D LC 

microstructure on a corresponding region.   
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Figure 19. Image analysis procedure. (A) Images were adjusted for isotropic dimensions, (B) and rotated to 

match the angle of Bruch membrane opening (BMO). (C) Images were translated in the axial direction to match the 

axial height of the BMO. (D) The microstructures were aligned manually via 3D rotation and translation. (E) Visible 

LC was denoted and a common overlapping region (white color region) was used for analysis. 

 

 

5.1.1.7 Reproducibility 

The reproducibility of the segmentation analysis and quality grading was assessed by measuring 

the imprecision standard deviation of repeated measurements using a measurement error model. 

[98] The relative imprecision was computed by dividing imprecision standard deviation by the 
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average measurement. Low imprecision indicated high reproducibility in the segmentation as 

well as the quality grading. 

 

5.1.1.8 Statistical Analysis 

Random intercept linear mixed effects models were used to determine the effect of either IOP or 

ICP and image quality on LC microstructure, while the other pressure remained at baseline (IOP 

=  15mmHg and ICP = 10 mmHg).[91] The linear mixed model allowed us to account for the use 

of both eyes in some primates.   

5.1.2 Results 

Images were acquired from six eyes of the five animals and scans with non-visible LC were 

removed from the analysis. Worse image quality tended to occur at the extreme IOP conditions 

(5 – 10 mmHg and 40 – 50 mmHg), as well as extremely high ICP (Figure 20). 
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Figure 20. Image quality metrics. Histogram of (A) IOP setting per image quality and (b) ICP setting per 

image quality (C) image quality per monkey. 
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5.1.2.1 Repeatability 

The repeatability of measurements was excellent, with all LC microstructure parameters having a 

relative imprecision SD less than 5%, with beam thickness and pore diameter performing better 

than beam-pore ratio. The manual delineation of quality had a larger relative imprecision, close 

to 10%. However, it is important to note that the quality difference never exceed 1 between the 

two graders. 

5.1.2.2 How LC Microstructure Changed with IOP 

We could not detect a statistically significant association between IOP and LC microstructure at 

baseline ICP (10mmHg). However, the subjective grading for image quality was associated with 

the LC microstructure parameters, with higher quality associated with smaller beams thickness, 

larger pore diameter and decrease beam thickness to pore diameter ratio. (Table 4) 

 

Table 4. Estimate of the effect of intraocular pressure (IOP) and image quality on lamina cribrosa (LC) 

microstructure. Bold font marked statistically significant effect. Au – arbitrary units. 

LC Parameter Parameter Effect Size Standard Error P 

Beam thickness (pixels/mmHg) 
IOP -0.005 0.006 0.488 

Quality -0.305 0.131 0.025 
     

Pore Diameter (pixels/mmHg) 
IOP -0.007 0.006 0.226 

Quality 0.284 0.114 0.018 
     

Beam Pore Ratio (Au/mmHg) 
IOP 0.000 0.001 0.856 

Quality -0.042 0.014 0.004 
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5.1.2.3 How LC microstructure changed with ICP 

We could not detect a statistically significant association between ICP and LC microstructure at 

baseline ICP. Furthermore, we did not detect a statistically significant association between 

quality and LC microstructure when assessing between ICP and LC microstructure. (Table 5) 

 

Table 5. Estimate of the effect of intracranial pressure (ICP) and image quality on lamina cribrosa (LC) 

microstructure. Bold font marked statistically significant effect. 

LC Parameter Parameter Effect Size Standard Error P 

Beam 
thickness 

ICP 0.006 0.009 0.537 
Quality -0.004 0.154 0.981 

     

Pore Diameter 
ICP -0.009 0.007 0.232 
Quality 0.168 0.122 0.178 

     
Beam Pore 
Ratio 

ICP 0.001 0.001 0.371 
Quality -0.015 0.014 0.284 

 

5.1.3 Discussion 

This study represents the first in vivo characterization of the acute effects of IOP and ICP on the 

3D LC microstructure. We demonstrate the ability to visualize and quantify in vivo LC 

microstructure changes as a result of altered IOP and ICP. While previous studies provide 

epidemiologic evidence of a potential link in the role of IOP and ICP with disease,[44], [48], 

[113], [114] our study represents the first attempt to assess in an in vivo model that the LC 

microstructure acutely deforms in accordance under the influence of both IOP and ICP. 

Unfortunately, when assessing how IOP or ICP alone deformed LC microstructure while 

keeping the other pressure normal, we did not find a statistically significant difference in how 
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IOP or ICP alone deformed LC microstructure. This is illustrated in the slope of how LC 

microstructure change from IOP and ICP being non-significantly different from 0. Despite this, it 

is clear subjectively that there are indeed changes occurring at the level of the LC microstructure, 

with larger pores seen in some of the higher IOP conditions. 

While these findings are disappointing, it is likely due to the limited data provided by 

only 5 monkey at either baseline IOP or baseline ICP. This results in a maximum of 8 data points 

per eye, with most being less than 8 due to poor image quality at the extreme ends of IOP and 

ICP. Therefore, it will be necessary to include all the available data in a more comprehensive 

model, as will be discussed in Experiment 2-2, to fully understand how the LC microstructure 

deforms to a combination of IOP and ICP.   

The effect of quality on the LC microstructure is an important aspect to consider when 

analyzing how LC microstructure change. As can be seen in Table 4, better quality 

segmentations were associated with increased pore diameter, deceased beam thickness and 

increased beam thickness to pore diameter ratio. This is logical as poorer image quality leads to 

blur the LC, resulting in poorly defined beams and pore structures. The blurriness tends to reduce 

the size of smaller pores, making them poorly defined. This results in segmentations which 

overestimates the beam thickness and underestimates pore size, resulting in the findings seen 

here. The fact that LC microstructure was associated with quality when assessing IOP, but not 

ICP, is likely a result of the fact that small ICP changes is not expected to degrade the ocular 

media through which OCT images. 
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5.2 EXPERIMENT 2-2: ASSESSING THE RESPONSE OF LC MICROSTRUCTURE 

TO BOTH IOP AND ICP 

Due to the complex anatomy at the level of the optic nerve head of the eye, especially given the 

regions over which IOP and ICP act, additional models are required to understand the behavior 

of the LC microstructure. Specifically, it will be important to not look at IOP or ICP separately, 

but to combine together in a model to understand how they work with one another.  

One important consideration not addressed in Experiment 2-1 is the idea that the effect of 

IOP on the eye may depend on the current ICP level, with the opposite being true as well. This 

can be seen intuitively in Figure 21, where despite both having the same TLPD, represent very 

different conditions for the eye. In this case, it would critical to understand how ICP interacts 

with the effect of TLPD on the eye. 

 

 

Figure 21. Diagram demonstrating the optic nerve under two different pressure conditions. In both cases, 

the translaminar pressure difference would be 5mmHg. 

 

While a simple linear model is useful to identify change, it is unlikely that a simple linear 

model as outline in Experiment 2-1 would capture the full effect of both IOP and ICP on the eye. 
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The effect of IOP and ICP are likely to be complex. For example, most biological materials are 

not linear elastic and would not be expected to have a linear stress-strain curve.[115] There 

already exists evidence of non-linearity in mechanical response in the eye; scleral biomechanics 

in monkey eyes show distinct anisotropic and non-linear mechanical response to changes in 

IOP.[116]  

Therefore, there are three major questions we are interested in addressing the Experiment 

2-2. First, we want to see whether including both IOP and ICP in the same model improved our 

ability to assess change in the LC microstructure. Second, we want to we want to see whether the 

addition of interaction component to our models will improve our models. Finally, we want to 

examine the effect of adding a non-linear quadratic component to IOP and ICP. We hypothesize 

that there will be significant interactions between IOP and ICP on the eye and that the eyes 

behaved non-linearly with respect to pressure. 

5.2.1 Animals and Methodology 

The animals were the same as described in Experiment 2-1. The methodology remained the same 

as Experiment 2-1 until the statistical analysis. 

5.2.1.1 Statistical Analysis – Model 1, Linear Models 

The models used assessed how IOP, ICP, translaminar pressure difference (TLPD; IOP-ICP), 

and image quality affected LC microstructure. The models can be seen in Table 6, which the 

specific equation for IOP + ICP + quality shown in Equation 3. 
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Table 6. List of model name as well as the parameters used inside the model. 

Linear Models Tested 
TLPD + quality 
IOP + ICP + quality 

 

 

 

Equation 3: Generalized form of the linear mixed effect models for assessment of LC microstructure with 

both TLPD and ICP components. The specific model written here is TLPD + ICP + quality. Red outlines the 

variables and green outlines the estimates of the slope for that particular variable. 

 

Akaike information criterion (AIC), a numerical method of balancing between model fit 

and model complexity, was used to select the best model where the model with lower AIC being 

superior. A p<0.05 was considered as statistically significant. R Language and Environment for 

Statistical Computing program (version 3.1.1), was used for the statistical analysis. [91] 

5.2.1.2 Statistical Analysis – Model 2, Interaction Model 

In order to test the interaction between the various pressure conditions, interactions were added 

to the models tested earlier, as well as from Experiment 2-1. The specific models tested is shown 

in Table 7 and an example of the linear mixed effect model for TLPD * ICP + quality is shown 

in Equation 4. Note that the interaction models have their base effects, both TLPD and ICP 

individually, as well as the interaction between the two. The rationale behind using models 

where TLPD interact with ICP is because TLPD alone may not fully describe the relationship 

between IOP and ICP, as illustrated in Figure 21. 
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Table 7. List of interaction models tested as part of the analysis. 

Interaction Models 
IOP + quality + (IOP x quality) 
ICP + quality + (ICP x quality) 

TLPD + ICP + quality + (TLPD x ICP) 
TLPD + ICP + quality + (TLPD x ICP ) + (ICP x quality) +  (TLPD x ICP x quality) 

IOP + ICP + quality + (IOP x ICP) 
IOP + ICP + quality + (IOP x ICP) + (ICP x quality) + (IOP x ICP x quality) 

TLPD + IOP + quality + (TLPD x IOP) 
 

 

 

Equation 4: Generalized form of the linear mixed effect models for assessment of LC microstructure with 

interaction between the variables. The specific model written here is TLPD * ICP + quality. Red outlines the 

interaction variables and green outlines the non-interaction variables. 

5.2.1.3 Statistical Analysis – Model 3, Quadratic model 

In order to assess non-linear effects, an additional quadratic component was added to the best 

model from the interaction models. The generalized form of the model can be seen in Equation 5. 

Similar to Experiment 2-1, AIC was used to select the better model, with the model with lower 

AIC being superior. It is important to note that due to the complexity of the model, p-values on 

the individual component of the linear mixed effect model are not as meaningful. Therefore, all 

the effects were plotted to comprehend how LC microstructure changed with IOP and ICP. R 

Language and Environment for Statistical Computing program (version 3.1.1), was used for the 

statistical analysis. [91] 
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Equation 5: Generalized form of the linear mixed effect models, with quadratic components (red) and 

interactions (green), for assessment of LC microstructure with interaction between the variables. 

 

5.2.2 Results 

5.2.2.1 Model 1 – TLPD and Quality 

When assessing the effect of TLPD on the LC parameters, the linear mixed effect models 

showed a trend for decreased beam thickness, increased pore diameter, and decreased beam to 

pore ratio with increased TLPD (Figure 6). Modeling the effect of TLPD and scan quality on LC 

parameters have shown that both TLPD and scan quality were statistically significantly 

associated with each of the LC parameters (Table 8). Larger TLPD was associated with reduced 

beam thickness, increase in pore diameter and decrease in beam-pore ratio. Despite the 

dependence on quality, the trend of LC microstructure vs. TLPD was consistent regardless of the 

signal quality cutoff that was used. 
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Table 8. Estimate of the effect of translaminar pressure difference (TLPD) and image quality on lamina cribrosa 

(LC) microstructure. Bold font marked statistically significant effect. Au – arbitrary units. 

LC Parameter Parameter Effect 
Size 

Standard 
Error P 

Beam Thickness TLPD (μm/mmHg) -0.033 0.016 0.036 
Quality (μm/au) -0.801 0.376 0.037 

     

Pore Diameter TLPD (μm/mmHg) 0.019 0.009 0.045 
Quality (μm/au) 1.160 0.221 0.000 

     

Beam Pore Ratio TLPD (μm/mmHg) -0.002 0.001 0.004 
Quality (μm/au) -0.079 0.016 <0.001 

 

5.2.2.2 Model 1 – IOP, ICP and Quality 

Models that included IOP, ICP and image quality as predictors for LC microstructure parameters 

demonstrated a statistically significant negative effect for IOP on beam thickness and beam-pore 

ratio (Table 9). ICP was not significant in any of the models whereas image quality had a 

significant effect on all three parameters. 
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Table 9. Estimate of the effect of intraocular pressure (IOP), intracranial pressure (ICP) and image quality on lamina 

cribrosa (LC) microstructure. Bold font marked statistically significant effect. Au – arbitrary units. 

LC Parameter Parameter Effect 
Size 

Standard 
Error 

P 

Beam Thickness 
IOP (μm/mmHg) -0.043 0.020 0.033 
ICP (μm/mmHg) 0.018 0.025 0.479 
Quality (μm/au) -0.861 0.384 0.029 

     

Pore Diameter 
IOP (μm/mmHg) 0.020 0.012 0.103 
ICP (μm/mmHg) -0.018 0.015 0.240 
Quality (μm/au) 1.165 0.227 0.000 

     

Beam Pore Ratio 
IOP (μm/mmHg) -0.0023 0.0009 0.011 
ICP (μm/mmHg) 0.0017 0.0011 0.125 
Quality (μm/au) -0.0798 0.0165 <0.001 

 

5.2.2.3 Model 2 – Interaction models 

As a number of models were assessed, it was not possible to list all the AIC values for each of 

the different model. However, in general, the models including interaction between the variables 

tend to be worse (higher AIC) compared to the models without interactions between the 

variables. However, in every case, there were specific interaction models that performed 

significantly better than the non-interaction models. The performance of the models for beam 

thickness (Table 10), pore diameter (Table 11) and beam thickness to pore diameter ratio (Table 

12) were listed below. 
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Table 10. Comparison of the various models with interactions for beam thickness. Lower AIC denotes the better 

model. * denotes interaction effect between the variables. Bold denotes best performing model as judged by AIC. 

Model AIC 
Best non-interaction model  
      TLPD + quality 617.3 
Interaction models  
      IOP + quality + (IOP x quality) 618.8 
      ICP + quality + (ICP x quality) 620.6 
      TLPD + ICP + quality + (TLPD x ICP) 615.4 
      TLPD + ICP + quality + (TLPD x ICP ) + (ICP x quality)  
          +  (TLPD x ICP x quality) 620.3 

      IOP + ICP + quality + (IOP x ICP) 620.6 
      IOP + ICP + quality + (IOP x ICP) + (ICP x quality)  
          + (IOP x ICP x quality) 624.2 

      TLPD + IOP + quality + (TLPD x IOP) 619.6 
 

 

The best model, judged via the lowest AIC for beam thickness (Table 10) was TLPD * 

ICP + quality, with TLPD + quality coming close as a second option (less than 2 AIC 

difference). However, it is important to note that the models did not always improve with an 

additional interaction term. In fact, the worst model was the one with the most variables: TLPD * 

IOP * quality. 
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Table 11. Comparison of the various models with and without interactions for pore diameter. Lower AIC denotes 

the better model. * denotes interaction effect between the variables. Bold denotes best performing model as judged 

by AIC. 

Model AIC 
Best non-interaction model  
      TLPD + quality 574.1 
Interaction models  
      IOP + quality + (IOP x quality) 575.0 
      ICP + quality + (ICP x quality) 576.0 
      TLPD + ICP + quality + (TLPD x ICP) 567.7 
      TLPD + ICP + quality + (TLPD x ICP ) + (ICP x quality)  
          +  (TLPD x ICP x quality) 571.4 

      IOP + ICP + quality + (IOP x ICP) 570.9 
      IOP + ICP + quality + (IOP x ICP) + (ICP x quality)  
          + (IOP x ICP x quality) 575.6 

      TLPD + IOP + quality + (TLPD x IOP) 575.3 
Best non-interaction model 580.8 

 

 

For pore diameter, the best model was TLPD * ICP + quality, without any other model 

within 2 AIC from it (Table 11). Finally, for beam thickness to pore diameter ratio, the best 

model was also TLPD * ICP + quality, without any other model that were comparable. 
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Table 12. Comparison of the various models with and without interactions for beam thickness to pore diameter 

ratio. Lower AIC denotes the better model. * denotes interaction effect between the variables. Bold denotes best 

performing model as judged by AIC. 

Best non-interaction model AIC 
      TLPD + quality -293.7 
Interaction models  
      IOP + quality + (IOP x quality) -291.4 
      ICP + quality + (ICP x quality) -291.2 
      TLPD + ICP + quality + (TLPD x ICP) -300.8 
      TLPD + ICP + quality + (TLPD x ICP ) + (ICP x quality)  
          +  (TLPD x ICP x quality) -297.4 

      IOP + ICP + quality + (IOP x ICP) -290.1 
      IOP + ICP + quality + (IOP x ICP) + (ICP x quality)  
          + (IOP x ICP x quality) -286.8 

      TLPD + IOP + quality + (TLPD x IOP) -289.7 
Best non-interaction model  
      TLPD + quality -284.6 

 

 

As the interaction terms increased the complexity of the model, the interpretation of the 

findings of the model were interpreted graphically. The plots showing how beam thickness 

(Figure 22), pore diameter (Figure 23), and beam thickness to pore diameter ratio (Figure 24) 

was altered as a function of IOP and ICP. In all cases, there were strong interactions, which can 

be seen by the contour map as well as the sampled points at specific IOP and ICP. Furthermore, 

all 3 plots show a region at around 10mmHg – 20mmHg ICP, where increasing IOP results in 

minimal deformation on LC microstructure. 
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Figure 22. Change in LC beam thickness to pore diameter ratio with intraocular (IOP) and intracranial 

(ICP) pressure. (A) Contour plot showing change in beam pore ratio as a function of IOP and ICP. Black lines 

indicate the contour line at a particular value. Transparent gray dots indicate points sampled in the dataset. A sample 

of the contour plot at a set of (B) ICP (ICP = 10mmHg, light green; ICP = 40mmHg, dark green) and (C) IOP (IOP 

= 10mmHg, purple, IOP = 45mmHg) demonstrate the complex interaction between IOP and ICP on beam thickness. 
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Figure 23. Change in LC pore diameter with intraocular (IOP) and intracranial (ICP) pressure. (A) Contour 

plot showing change in beam pore ratio as a function of IOP and ICP. Black lines indicate the contour line at a 

particular value. Transparent gray dots indicate points sampled in the dataset. A sample of the contour plot at a set of 

(B) ICP (ICP = 10mmHg, light green; ICP = 40mmHg, dark green) and (C) IOP (IOP = 10mmHg, purple, IOP = 

45mmHg) demonstrate the complex interaction between IOP and ICP on pore diameter. 
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Figure 24. Change in LC beam thickness to pore diameter ratio with intraocular (IOP) and intracranial 

(ICP) pressure. (A-C) Contour plot showing change in beam thickness as a function of IOP and ICP. Black lines 

indicate the contour line at a particular value. Transparent gray dots indicate points sampled in the dataset. A sample 

of the contour plot at a set of (B) ICP (ICP = 10mmHg, light green; ICP = 40mmHg, dark green) and (C) IOP (IOP 

= 10mmHg, purple, IOP = 45mmHg) demonstrate the complex interaction between IOP and ICP on beam thickness 

to pore diameter ratio. 

5.2.2.4 Model 3 – Quadratic Model 

The addition of quadratic components to the best model from the interaction models significantly 

improved the AIC of two of the model (> 2 decrease), but not for pore diameter (Table 13). 

Overall, the trend of how IOP and ICP affected the LC microstructure did not change. 
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Table 13. Comparison of AIC of models with only interactions with models with interactions and quadratic 

components. 

LC microstructure parameter Interaction only 
model 

Interaction + quadratic 
model 

Beam thickness 615.4 605.3 
Pore diameter 567.7 571.3 
Beam thickness to pore diameter ratio -300.8 -306.3 

 

 

 

Figure 25. Quadratic model of how IOP and ICP influence beam thickness. (A) Heat map of how IOP and 

ICP affect the beam thickness, red indicates lower values, while yellow indicate higher value. Blue dots indicate the 

points with actual data in the results. Lines indicates the samplings taken to create plot (B) and (C). (B) Beam 

thickness to pore diameter as an influence of IOP, with two separate ICP shown (10 – brown, 45 – green). (C) Beam 

thickness to pore diameter as an influence of ICP, with two separate IOP shown (10 – purple, 45 – teal). 
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Figure 26. Quadratic model of how IOP and ICP influence pore diameter. (A) Heat map of how IOP and 

ICP affect the beam thickness, red indicates lower values, while yellow indicate higher value. Blue dots indicate the 

points with actual data in the results. Lines indicates the samplings taken to create plot (B) and (C). (B) Beam 

thickness to pore diameter as an influence of IOP, with two separate ICP shown (10 – brown, 45 – green). (C) Beam 

thickness to pore diameter as an influence of ICP, with two separate IOP shown (10 – purple, 45 – teal). 
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Figure 27. Quadratic model of how IOP and ICP influence beam thickness to pore diameter ratio. (A) Heat 

map of how IOP and ICP affect the beam thickness to pore diameter ratio, red indicates lower values, while yellow 

indicate higher value. Blue dots indicate the points with actual data in the results. Lines indicates the samplings 

taken to create plot (B) and (C). (B) Beam thickness to pore diameter as an influence of IOP, with two separate ICP 

shown (10 – brown, 45 – green). (C) Beam thickness to pore diameter as an influence of ICP, with two separate IOP 

shown (10 – purple, 45 – teal). 

 

5.2.3 Discussion 

This experiment represents the first in vivo report of how both IOP and ICP alter the LC 

microstructure. It enables us to identify that both IOP and ICP act together to affect the LC, with 
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a complex interaction between IOP and ICP. Furthermore, we find that a non-linear model is a 

better fit for assessing how beam thickness and beam thickness versus pore diameter ratio are 

affected by changes in IOP and ICP. 

5.2.3.1 Model 1 – Linear Models 

Using AIC analysis, we demonstrate that models with TLPD are more informative than those 

having the IOP and ICP separately. This finding is in agreement with a previous study that 

demonstrated that TLPD is a better predictor of optic disc surface changes than either IOP or ICP 

alone.[50] This emphasizes the importance of considering both IOP and ICP when aiming to 

accurately characterize the microstructure response to pressure. This finding has to be cautiously 

interpreted as it might be confounded by the relatively small sample size (which favors simpler 

models when assessing AIC). 

In normal physiological situations, IOP is higher than ICP, resulting in a TLPD of 

approximately 5mmHg.[51], [117] Therefore, a TLPD much higher than 5mmHg represent a 

glaucomatous phenotype, while lower TLPD much lower than 5mmHg represent an intracranial 

hypertension phenotype. In cases of high TLPD, we identified beam thinning and pore 

enlargement. There are a variety of mechanisms through which beam thinning and pore 

enlargement could result in disease. First, the pore expansion could result in stretching and 

activation of the astrocytes along with biological responses such as extracellular matrix 

remodeling. [118], [119] Second, damage from acute deformation may also have a vascular 

component. Capillaries pass through the LC beams, nourishing the axonal bundles passing 

through. [120] Beam strain and thinning can compromise perfusion and nourishment to the axon 

bundles, especially given the expansion of axonal pores. 
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Low TLPD, representing situations with elevated intracranial pressure, are associated 

with beam thickening and shrinking of the pores, which may be explained by ICP acting 

concentrically in the sub-arachnoid space around the optic nerve (Figure 3). These 

microstructural changes can lead to strangulation of the axoplasmic flow, consistent with 

previous models demonstrating impaired axoplasmic transport at the level of the LC in animal 

models of papilledema. [121] These changes may contribute to the swelling and substantial 

deformation of the ONH tissues associated with intracranial hypertension. [122]  

When we model the effect of IOP and ICP on LC parameters, only IOP was significantly 

associated with LC microstructure (Table 2). This is a bit counterintuitive as one might 

hypothesize that ICP itself would have a direct effect on LC microstructure, as elevated ICP in a 

concentric ring around the optic nerve would cause compression of the LC, leading to beam 

thickening and reduced pore diameter. While the results for ICP are compatible with these 

trends, they are not significant and weaker than the effect of IOP. These results suggest that ICP 

acts to modulate the effect of IOP, but may not strongly deform LC microstructure by itself. The 

effect of acute ICP and IOP modulation on the ONH surface [50] and the LC surface [123] has 

been previously reported. However, it is important to recognize that the cited studies assessed 

surface changes, which is not necessarily indicative of what is occurring in the LC 

microstructure. 

The microstructural changes in LC we reported, are in the same magnitude as previously 

modeled.[124] As expected, a marked difference in the response to pressure modulations was 

noted between animals, which may reflect the individual biomechanical properties of each 

primate LC. This highlights the importance of analyzing eye specific response to changes in 

pressure, rather than pooling across animals, and of developing methods to determine 
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biomechanical properties of individual eyes. [103] The variability of the LC microstructure’s 

response to changes in IOP and ICP may help explain the variability in response to these 

pressures in diseases such as glaucoma [33] and intracranial hypertension. [125] 

5.2.3.2 Model 2 – Interactions model 

As per our initial hypothesis, there is a significant interaction between how IOP and ICP affected 

LC microstructure. It is critical to note that not just any interactions improved the AIC. In fact, 

adding interactions generally made the models worse. This makes sense when considering the 

definition of AIC, which balances both model fit and model complexity. Models which only add 

complexity, without improving fit, were penalized.  

The TLPD * ICP + quality model is substantially better than any other model, with or 

without interactions. The strength of the model can be seen in that it was the best model for 

assessing all three LC microstructure parameters. This model has all the characteristics we would 

hypothesize to be important: a significant interaction between TLPD and ICP, as well as the 

presence of both IOP (in the form of TLPD) and ICP information. Again, we can go back to our 

diagram in Figure 21, a TLPD of 5mmHg at an ICP of 10mmHg (IOP = 15mmHg) is a very 

different clinical situation than a TLPD of 5mmHg at an ICP of 30 (IOP = 45mmHg). Therefore, 

it would be critical to have ICP interacting with TLPD. 

Looking on the plots gives a sense of the complexities of the results. While the linear 

models (Model 1) show that beams decrease in thickness and pores increase in diameter with 

increased TLPD, the interaction analysis shows a much more complex trend. The trend seen in 

the linear models only appeared at high ICP levels. Furthermore, at very low ICP levels, there 

appears to be a trend towards increasing beam thickness and decreasing pore diameter with 

increases in IOP. These findings demonstrate the importance of adding the interaction term, as 
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the effect of IOP was highly dependent on the ICP level. Potential explanation for these findings 

include that at high ICP, there is large amount of circumferential pressure to constrict the LC. 

Therefore, the LC had more room to stretch with increasing IOP, causing the beams to thin and 

pores to increase in size with IOP.  

Interestingly, there is a region around 10-20mmHg ICP (as well as even lower), where 

there is relatively little change in LC microstructure with IOP. This ICP range is normal or 

slightly above normal in the primates based on the opening cerebrospinal fluid pressure. This 

may represent an optimal ICP where IOP changes have limited influence on the eye, and help 

explain the clinical findings of healthy subjects have higher ICP compared to glaucoma. [48] 

Furthermore, it is important to note that this region didn’t occur at too high of an intracranial 

pressure, where there would be significant concern for vision loss via intracranial hypertension 

and papilledema.  

The relative stable reaction to increased translaminar pressure difference at slight above 

normal ICP could also indicate that the eye is better suited for increases in intraocular pressure 

rather than intracranial pressures. This may be due to the exposure of the eye to frequent 

occasions of elevated intraocular pressure, such as from blinking, rubbing of the eyeball, and 

other natural causes of elevated IOP. However, as ICP rises, increases in IOP or TLPD results in 

much greater deformation at the level of the LC microstructure. 

5.2.3.3 Model 3 – Quadratic Model 

The lower AIC shown by the quadratic model, despite being more complex than the earlier 

models, further demonstrates that the effect of IOP and ICP on the eye are non-linear. This 

means that even while maintaining ICP, an increase in IOP from 10 to 30mmHg result in a 

different deformation change than an increase in IOP from 30 to 50mmHg.  
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It is promising to see that the overall trend in how LC microstructure is deformed by IOP 

and ICP remains unchanged in the nonlinear model compared to the interaction model. There 

still remains a watershed zone around an ICP of 10-20mmHg over which we see less change in 

LC microstructure with increasing IOP. Interestingly, pore diameter is the only LC parameter 

that did not improve with the addition of the quadratic model. It is possible that the pores, which 

has very different biomechanical properties compared to beams (pores are composed of the 

axons of the retinal ganglion cell as well as supporting cells), deform differently from the beams 

under different pressure conditions. 

Finally, we would like to note that more complex models are possible. Especially ones 

that include material properties regarding the eye. However, more complex models will tend to 

lower AIC in a small population of subjects due to the large number of variables. Future work 

will be required to investigate specific material properties such as hysteresis, creep and elastic 

moduli. 

5.3 SUMMARY 

We demonstrate in this Aim, for the first time in vivo, that both intraocular pressure and 

intracranial pressure deform the LC microstructure. Furthermore, the effect of IOP and ICP on 

the LC microstructure is non-linear and interacts strongly with one another. It is therefore 

important to consider both IOP and ICP when accurate investigation of the LC response to either 

pressure is sought. 
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6.0  CHARACTERIZATION OF THE EFFECT OF GLAUCOMA ON HUMAN 

LAMINA CRIBROSA 

In the third aim of this proposal, we are taking the tools we developed in Aim 1 and the 

knowledge from our animal studies in Aim 2 and to apply them in vivo to humans. Here, we seek 

to understand how the LC microstructure differs with glaucoma. Our goal is to assess a number 

of features, including (1) whether the LC microstructure changes with disease, (2) whether the 

path LC pores take through the LC change with disease, and (3) whether glaucoma influences the 

biomechanics of the LC as reflected in the LC microstructure response to acute changes in IOP.  

Identification of LC microstructure parameters that is altered in the disease enables us to 

use the segmentation analysis to identify patients with glaucoma. Furthermore, as there exists 

little work characterizing how LC microstructure is altered in vivo with disease, it enables 

improved understanding of glaucoma pathogenesis and the resulting findings in the LC. First 

paragraph. The figure below is inserted so that there is an item in the sample List of Figures. 

6.1 3-1: COMPARING LC MICROSTRUCTURE IN HEALTHY AND 

GLAUCOMATOUS EYES 

The LC macrostructure has been studied extensively using both histology as well as in vivo 

using OCT. [24], [80], [101], [126], [127] However, little information exist about how the LC 
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microstructure differs between healthy and glaucoma eyes. The goal of this experiment is to 

establish for the first time, in vivo, the difference in LC microstructure in healthy compared to 

diseased eyes, as well as determining the association between LC microstructure and functional 

measures of ocular health. We hypothesize that subjects with glaucoma will demonstrate thicker 

LC beams and thinner LC pores in comparison with healthy controls as a result of tissue 

remodeling and axonal loss. 

6.1.1 Methods 

Sixty-eight eyes (19 healthy and 49 glaucomatous) of 47 subjects were scanned using swept 

source OCT. The LC was automatically segmented using the software described in Aim 1. The 

parameters analyzed were verified in the previous experiments and include: pore count, pore 

area, pore aspect ratio, pore diameter and beam thickness, lamina area, lamina volume and 

lamina volume fraction. Lamina volume was computed as the entire volume of the visible lamina 

and lamina area represents the maximum intensity projection of the volume in the A-scan 

direction. Lamina volume fraction was computed as the ratio of lamina beam volume to total 

lamina volume. 

6.1.1.1 Statistical Analysis 

Linear mixed effects models were constructed to assess the effect of age, clinical diagnostic 

group and disease severity, using visual field mean deviation (VF MD) as a surrogate indicator, 

with the LC parameters. Statistical analysis was performed using R Language and Environment 

for Statistical Computing program (version 2.15.1; http://www.R-project.org).[91] P-values < 

0.05 were considered statistically significant. 
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6.1.2 Results 

The average age of healthy and glaucoma subjects were 40.9±11.3 and 70.9±9.4 years, 

respectively. Average VF MD was -0.50±0.08dB for healthy eyes and -7.84±8.75dB for 

glaucomglaucomatous eyes. A sample of C-mode slices through the LC of healthy and glaucomatous 

eyes are shown in Figure 28A-D. 

Figure 28. Lamina cribrosa C-mode of healthy (A-B) and glaucomatous (C-D) eyes. No systematic 

differences are subjectively apparent between healthy and glaucomatous eyes. 
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Differences in LC microstructure between glaucomatous and healthy eyes are not 

subjectively obvious. An example of a processed image of the LC in multiple levels of C-modes 

is shown in Figure 29A-D to illustrate the performance of the segmentation analysis in 3D. 

 

 

Figure 29. Segmentation examples. (A) C-mode stacks of the LC of a healthy eye stepping down 50 μm 

slices. (B) The same slices after segmentation with laminar beams in green and laminar pores in red. 3D 

reconstruction of the LC (C) beams and (D) pores. 

 

None of the LC microstructure parameters showed statistically significant association 

with age. Comparing the LC microstructure parameters between healthy and glaucomatous eyes, 

only beam thickness to pore diameter ratio and pore diameter standard deviation were 

statistically significantly higher in glaucomatous eyes (Table 14). However, examining the LC 

microstructure as a function of VF MD demonstrated significant relationship for several 

parameters (Table 15). Average beam thickness, pore diameter SD and beam thickness to pore 
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diameter ratio increased with worsening VF MD. Average pore diameter decreased with 

worsening VF MD. 

 

Table 14. Difference in LC microstructure between healthy and glaucomatous eyes. The fixed effect represents the 

linear mixed effect model of the difference between healthy and glaucomatous eyes. Positive fixed effect indicates 

an increase in the parameter with disease. Statistically significant parameters are marked with bold font. 

LC Parameters Healthy (SD) Glaucoma 
(SD) 

Fixed effect  
(95% CI) P 

Pore count 37.0 (18.8) 57.4 (24.7) 3.31 (-11.7, 18.3) 0.67 
Pore density 
(pores/mm2) 80.5 (23.5) 78.6 (22.5) -3.69 (-20.0, 12.6) 0.66 

Pore area (μm2) 1970 (310) 1800 (330) -94.9 (-312, 122) 0.40 

Pore volume (mm3) 0.0238 
(0.0161) 

0.0319 
(0.0183) 0.010 (-0.012, 0.001) 0.90 

Pore diameter 
average (μm) 24.6 (2.56) 22.5 (2.3) -1.32 (-2.88, 0.25) 0.11 

Pore diameter SD 
(μm) 0.405 (0.022) 0.433 (0.022) 0.022 (-0.008, -0.036) <0.0

1 
Pore aspect ratio 2.06 (0.14) 2.04 (0.11) 0.00015 (-0.076, 0.076) 0.99 
Beam thickness 
average (μm) 46.7 (3.2) 50.0 (3.4) 1.80 (-0.38, 3.99) 0.11 

Beam thickness SD 
(μm) 0.337 (0.013) 0.348 (0.017) 0.0095 (-0.0025, 0.022) 0.13 

Beam thickness to 
pore diameter ratio 1.91 (0.21) 2.25 (0.31) 0.20 (0.019, 0.38) 0.04 

Lamina area (mm2) 0.684 (0.284) 1.220 (0.54) 0.53 (-0.13, 0.20) 0.24 
Lamina volume 
(mm3) 0.147 (0.071) 0.235 (0.124) 0.098 (-0.051, 0.023) 0.54 

Lamina volume 
fraction 0.841 (0.055) 0.857 (0.050) -0.0109 (-0.0256, 0.0474) 0.56 
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Table 15. Structure function relationship between LC microstructure and visual fields mean deviation (VF MD). 

The fixed effect represents the linear mixed effect model of change per VF MD. Positive fixed effect indicates an 

increase in the parameter with worsening disease. Bold indicates statistically significant results. 

  Fixed effect (95% confidence interval) P-value 
Pore count 1.30 (0.72, 1.89) <0.01 
Pore density (pores/mm2) 0.429 (-0.258, 1.116) 0.22 
Pore area (μm2) -11.8 (-22.1, 1.5) 0.03 
Pore volume (mm3) 0.000435 (-0.00005, 0.000928) 0.09 
Pore diameter average (μm) -0.0907 (-0.1648, -0.0167) 0.02 
Pore diameter SD (μm) 0.000731 (0.000022, 0.001440) 0.05 
Pore aspect ratio 0.000833 (-0.003104, 0.004770) 0.67 
Beam thickness average (μm) 0.162 (0.056, 0.267) <0.01 
Beam thickness SD (μm) -0.0000764 (-0.0006102, 0.0004573) 0.78 
Beam thickness to pore 
diameter ratio 0.0182 (0.0095, 0.0266) <0.01 

Lamina area (mm2) 0.0184 (0.0046, 0.0323) 0.01 
Lamina volume (mm3) 0.00310 (-0.00033, 0.00653) 0.08 
Lamina volume fraction -0.000250 (-0.001854, 0.001355) 0.76 

 

6.1.3 Discussion 

In this experiment, we quantify in vivo 3D LC microstructure non-invasively in healthy and 

glaucomatous eyes using OCT. While most published in vivo studies are limited to assessing 

surface features and macroscopic characteristics such as local surface abnormalities and total LC 

thickness, our study is the first to automatically quantify in vivo the LC microstructure in 

3D.[67], [81], [128] This feature is crucial for comprehensive evaluation of glaucoma associated 

changes in the LC as the axons trespassing the lamina are prone to the deleterious glaucomatous 

effect throughout the entire LC, not just at the surface. Moreover, because the microstructure 

differences between glaucoma and healthy eyes are not readily apparent in a complex structure 

such as the LC, an automated quantification method is required in order to identify difference 

that may not be obvious. Using the segmentation method described in Experiment 1-1, we 
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identified several structural features that were significantly different between healthy and 

glaucomatous eyes. 

6.1.3.1 Age Related Changes 

We did not detect a statistically significant effect of age on the LC microstructure parameters. 

This is in agreement with prior histology and imaging work showing that although the LC 

stiffens with age [129] and increases in total thickness, [130] the microstructure are not 

significantly altered. [102] This is surprising since many other collagenous structures of the 

body, such as tendons [131], [132] and skin [133], [134] experience tremendous changes in their 

mechanical properties as well as ability to respond to stress as part of the aging process. 

However, it is important to note that this study featured a limited number of healthy eyes with 

suboptimal age distribution and therefore this finding require further examination in a larger 

cohort. 

6.1.3.2 Comparing Healthy and Glaucomatous Eyes 

Our results show an association between certain LC microstructure and glaucoma diagnosis 

(Table 14). We demonstrate a significant increase in beam thickness to pore diameter ratio in 

glaucoma compared to healthy eyes. While this result does not show causation as our data 

acquired in a cross-sectional study, it may represent LC remodeling due to the elevated IOP, 

creating thicker laminar beams to distribute the increased stress. Axonal loss as well as 

remodeling contribute to smaller LC pores, creating a change in beam thickness to pore diameter 

ratio with disease. We also observe a significant increase in pore diameter standard deviation in 

glaucomatous eyes. This may represent focal damage in glaucoma causing some pores to change 

in size. 
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In our study, we did not detect a difference in pore aspect ratio between healthy and 

glaucoma eyes. Previous studies report slanted pores with increased pore aspect ratio in 

glaucomatous eyes as assessed by fundus photography. [135] However, fundus photography only 

represents a projection image or the sum of all reflections along the axis of the detector. 

Therefore, fundus photography is not taking into account the 3D nature of the LC. Pores oriented 

in a diverging or converging manner would appear elongated on projection view even if they 

experienced no physical elongation. 

6.1.3.3 Microstructure Parameters and Functional Damage 

Several more parameters were statistically significant when comparing LC microstructure 

parameters and the continuous variable of VF MD (Table 15). The advantage of using VF MD is 

that we are no longer dichotomizing the study population into healthy and glaucoma. Instead, we 

are able to compare LC microstructure with a range of disease severity and are better able to 

capture significant changes. Similar to the results of the comparison between the diagnostic 

groups, both beam thickness to pore diameter ratio and pore diameter standard deviation were 

increased with more advanced disease severity (lower VF MD). This suggests that in advanced 

disease, more remodeling in the LC occurred, causing further beam thickening relative to pores. 

The increase in pore count and lamina area with advanced disease is likely due to the exposure of 

the lamina in enlarged cupping with larger loss of pre-laminar tissue. This likely contributed to 

the borderline significance in the lamina volume as well. The decrease in pore area with more 

severe disease reflects the shrinking pores due to axonal loss. 

While the results of this experiment initially appear to contradict our findings in 

Experiment 2, the difference between the experiments could be explained by the chronicity of 

the findings. In the present study, we reported that glaucomatous eyes had thicker beams and 
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smaller pores compared to healthy eyes. However, Experiment 2 showed a decrease in beam 

thickness and an increase in pore diameter under increase in pressure. The increased beam 

thickness to pore diameter ratio found here likely reflect remodeling of the LC over time or even 

LC collapse under chronic pathologic levels of strain. Therefore, while the eyes might acutely 

have decreased beam thickness and increase pore size under IOP elevation, eventual remodeling 

and thickening of the beams to resist the pressure in the eye and the axonal loss lead to reduced 

pores size. These findings emphasize the importance of assessing the pressure effect on the LC 

both in acute and chronic models to better characterize the changes occurring in this region over 

the course of the disease. 

6.2 EXPERIMENT 3-2: DIFFERENCES IN INDIVIDUAL LC PORE PATH 

BETWEEN HEALTHY AND GLAUCOMATOUS EYES 

Deformation of the LC with the ensuing disturbance to the axoplasmic flow has been long 

suggested as the potential mechanism for glaucomatous damage leading to impaired delivery of 

nutrients and survival factors to retinal ganglion cell axons. [23],[136], [137] Experimental 

models have demonstrated an accumulation of axonal material, including mitochondria and 

survival factors at the level of the LC.[137], [138] However, despite its hypothesized 

mechanism, there have been few studies assessing how the axons travel through the LC.[139]  

Characterization of individual pore paths is now possible using the segmentation analysis 

developed in previous experiments. The next step in utilizing this technique is to use the 3D 

quantification to trace individual pores and to characterize how they traverse the LC. The 
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purpose of this experiment was to investigate in vivo the hypothesis that the axons of 

glaucomatous eyes take a more tortuous path through the LC compared to healthy eyes. 

6.2.1 Methods 

72 subjects (10 healthy, 23 glaucoma suspect, 48 glaucoma eyes) were recruited for this study 

and scanned using swept source OCT and underwent visual field testing as stated under the 

recruitment of human subjects. 

6.2.1.1 Tracking Analysis 

LC pore microstructure was automatically segmented using the method described in Aim 1. The 

images were made isotropic (4.065μm/pixel in all dimensions) prior to proceeding with the 

analysis. 

Pore path was traced automatically in ImageJ using a particle tracking algorithm 

(MTrack2; http://valelab.ucsf.edu/~nstuurman/ijplugins/MTrack2.html), which allowed tracing 

of individual pores through the LC volume. To improve identification of pore paths from one C-

mode to the next, the tracings were constrained such that pores could move a maximum of 20μm 

in the transverse direction between consecutive C-modes (spaced 4μm apart). This value was 

chosen because it is smaller than a typical pore diameter (around 25μm), ensuring that adjacent 

pores were not selected for tracing. This value is large enough to allow some translational 

movement in the pores, but not enough to erroneously identify adjacent pores. Only pores that 

could be traced for a distance of at least 60μm in the z-direction were selected for analysis. Pore 

paths were subjectively assessed in 3D to ensure proper tracing (Figure 30) prior to inclusion in 

the analysis. The average depth of pores tracked in each eye was recorded. 
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Figure 30. (A) Original C-mode view of the lamina cribrosa. Red outline represented the region that is 

zoomed in part (C). (B) Pore paths were traced with respect to depth via the centroid of the segmented pores. (C) 3D 

view of a tracing from a subset of pores (27 out of 81). 

 

6.2.1.2 Assessment of Pore Trajectory Relative to the Disc 

In order to characterize pore trajectory within the LC, we first determined the center of the optic 

nerve as the centroid of the Bruch membrane opening (BMO). The trajectory was defined as the 

distance to pore moved towards the center of the optic nerve using the method described in 

Figure 31. Our convention was that a positive value implies a LC pores path towards the center 

of the optic nerve as it traversed the LC from anterior to posterior. A negative value implies that 
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the pores path goes from the periphery towards the center. The change in distance was computed 

for each pore and averaged across all pores for a given eye. This distance was normalized based 

on the depth of pore path, as it was expected that pores that were traced for longer depth would 

have more movement in the x-y direction compare to pores that are successful traced only for a 

relatively short depth. 

 

 

Figure 31. (A) Method of identification of pore path relative to the center of the optic nerve. Two sample 

paths: one moving towards the optic nerve center (path 1, blue) and was defined as a positive value and one moving 

away from the center (path 2, green) and defined as a negative value. (B) Example of LC identified to have pores 

going towards the optic nerve center (vertical red line) and (C) away from the center (vertical red line). 
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6.2.1.3 Assessment of Pore Tortuosity 

Pore tortuosity was assessed by dividing the distance along the pore centroid path divided by the 

hypothetical straight path connecting the most anterior pore centroid to the most posterior pore. 

All tortuosity values must be 1, or greater and the larger the value the more tortuous pore path. 

6.2.1.4 Statistical Analysis 

A one sample Kolmogorov-Smirnov test was used to determine each eye’s tortuosity distribution 

in order to assess the measurement distribution. A linear mixed effect analysis was used to 

determine 1) pore depth, 2) pore path towards the center and 3) pore tortuosity as dependent on 

diagnosis and VF MD. The linear mixed effect models were random intercept models, with the 

random effect of each eye accounting for the expected autocorrelation between eyes. 

6.2.2 Results 

6.2.2.1 Depth of LC Pore Path Tracking 

The average depth LC pore were tracked was 157±16μm, 159±15μm and 140±14μm for healthy, 

glaucoma suspect and glaucoma eyes, respectively. Glaucomatous eyes had statistically 

significantly shorter lower depth tracked compared with healthy (p=0.002) and glaucoma 

suspects (p<0.001). 

6.2.2.2 Pore Trajectory Relative to the Disc 

Both pore path change and pore tortuosity were normally distributed. Thus, it was appropriate to 

average the distributions within each eye to have a summary value. Average pore paths within 

the LC traversed toward the ON center for a distance of 22.9±2.8μm between the anterior and 
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posterior surfaces of analyzable LC, which was statistically significant from 0 (p<0.001). 

Average pore path change was 87±114μm, 87±111μm, and 97±85μm for healthy, glaucoma 

suspect and glaucoma eyes, respectively. We did not detect a significant difference in average 

LC pore path change. We did not detect a statistically significant difference amongst the 

diagnostic categories after normalizing by the average depth of pores traced. 

 

 

Figure 32. (A) Schematic demonstration of examples of negative path change (pores path travel away from 

ON center going from anterior to posterior) and positive path change (pores path travel towards the ON center). (B) 

Boxplot of pore path change with respect to diagnosis (H – healthy, GS – glaucoma suspect, GL – glaucomatous 

eyes) and (C) scatter plot of pore path change with visual field mean deviation. 

6.2.2.3 Pore Tortuosity 

Pore tortuosity in glaucomatous eyes (1.46±0.08) was significantly higher than in healthy 

(1.40±0.04, p=0.03) and glaucoma suspect eyes (1.39±0.07, <0.01) (Figure 33C). Glaucomatous 

eyes also had larger variance compared to healthy and glaucoma suspect (p=0.02, <0.01, 



 91 

respectively) (Figure 33D). Glaucoma severity, as determined by VF MD, did not affect the pore 

tortuosity (Figure 33E). 

 

 

Figure 33. (A) Pore tortuosity was defined by dividing the distance traveled by the pore centroid (yellow 

line) by the shortest distance between the top and bottom pores (purple line). (B) Schematic showing examples of 

low tortuosity (green) and high tortuosity (red). (C) Boxplot of tortuosity as a function of diagnosis (H – healthy, GS 

– glaucoma suspect, GL – glaucomatous eyes). (D) Probability density distribution of pore tortuosity as a function of 

disease (Red – healthy, Blue – glaucoma suspect, Red – glaucomatous eyes). (E) Pore tortuosity as a function of 

visual field mean deviation, with the green lines denoting the 95% confidence interval of the healthy eyes. 

6.2.3 Discussion 

We demonstrate in Experiment 3-2 that glaucoma eyes have more tortuous pores compared to 

healthy eyes. This is a previously undescribed phenomenon, either in vivo or in histology, which 
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potential implications in both assessing glaucoma as well as understanding the disease. 

Characterization of how individual pores traverse the LC represents an examples of the type of 

analysis that can be completed using the tools developed in this thesis.  

The ability to characterize the LC pore path in vivo in comparison with histology have 

several advantages and disadvantages that should be considered. While characterizing these 

structures in histology would allow the tracing of individual axons with depth, cryosectioning the 

LC could alter the microstructure and the path of the axons. Furthermore, in histology, tortuosity 

would be influenced by how adjacent sections are registered to one another in the 3D 

reconstructions, which can influence results as this is done post-hoc. OCT has the advantage of 

acquiring detailed 3D imaging of the LC without external perturbation that could alter the 

tortuosity of the microstructure. While the limited transverse resolution of conventional OCT 

(~15-20um) does not permit characterization of individual axons, it does allow the 

characterization of the path of pores which reflects the path of the axons. These pore paths can 

serve as a surrogate for the path of axons, as previous histology studies have demonstrated that 

the vast majority of axons follow their LC pore path.[139] In addition, due to the limitations of 

OCT technology, we can only assess visible LC microstructure that is not obstructed by blood 

vessel or thick prelaminar tissue. As such, interpretations of these studies must always keep these 

advantages and disadvantages in mind. 

 

6.2.3.1 Depth of LC Pore Path Tracking 

There are significant differences between diagnostic categories with respect to the average depth 

of LC pores tracked. Previous histological[24] and in vivo studies[68], [140], [141] demonstrate 

significantly thinner LC in glaucoma eyes, and find that thinner LC was associated with lower 
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visual field mean deviation. Therefore, the decreased depth tracked in our glaucomatous eyes is 

likely related to their clinical status. However, the depth LC pores are tracked is approximately 

20% lower than the average LC thickness in other studies.[68], [141] This is probably due to the 

fact that while it is possible to see the posterior LC on B-scans, it is difficult to achieve adequate 

imaging of the posterior LC to perform segmentation on LC microstructure. Therefore, we 

expect that the average depth tracked to be lower than that of analyses of OCT macrostructure on 

individual B-scans. 

6.2.3.2 Pore Trajectory 

Regardless of diagnostic categories, the pore trajectory analysis demonstrate that pore path tends 

to converge towards the center of the optic nerve between the anterior and posterior aspects of 

the LC. This may be a result of bottlenecking of the retinal ganglion cell axons at the level of the 

optic nerve canal opening, causing the axons to converge towards the center.  

We also expect that there is a difference in how much central movement is expected 

between healthy and glaucoma eyes. However, even after normalizing the distance traveled by 

the pore path towards the optic nerve center by the length of the pore path that is tracked, we did 

not detect a statistically significant difference between diagnostic categories.  

Due to limitations of OCT, it is often not possible to image the pore path in the most 

posterior LC. In the posterior regions, image quality decreases such that it is difficult to 

determine the boundary of LC pores compared to beams. If it is possible to image deeper, we 

may expect that axonal paths begin to move peripherally once again as the optic nerve diameter 

increases due to myelination. While each eye in this study is summarized with an average pore 

tortuosity, more detailed analysis on how individual pore change tortuosity is possible. The 

characteristics of individual pores could be identified using a histogram to determine change. 
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6.2.3.3 Pore Tortuosity 

While a number of histological studies demonstrate the blockage of axoplasmic flow at the level 

of the LC, [137], [138], [142] this study is the first to identify in vivo a potential mechanical 

reason for the blockage of flow. The increased tortuosity we observe in glaucomatous eyes may 

reduce axoplasmic flow and contribute to the symptoms of glaucoma. The increased tortuosity is 

likely a result of non-uniform strain and stress experienced by the LC, which has been identified 

even in models that don’t consider its complex microstructure. [143] It is likely that these factors 

cause the axons to experience strains in different directions as the axons traverse the LC. 

Our initial expectation is to find a progressive increase in tortuosity as glaucoma damage 

worsened. However, our results indicate that elevated tortuosity occurs at early stage of the 

disease (Figure 33E). It is possible that increased tortuosity is one of the first steps in glaucoma 

pathogenesis, which leads to axonal loss as axoplasmic flow is reduced. Being a cross-sectional 

study, we cannot determine the causality and additional longitudinal studies are required to 

elucidate whether the increase tortuosity is an early marker for disease, or even predispose 

patients to disease. In addition, there appears to be two categories of glaucoma eyes based on 

pore tortuosity, those who remained at the tortuosity level of healthy eyes (within the dashed 

green lines, Figure 35E) and those outside of it. Further studies are required to elucidate how 

these groups differ.  

 This experiment represents a first step towards characterizing the pore path and indirectly 

the axonal path within the LC. The ability to determine how the trajectory of these axons change 

with disease has the potential to improve our understanding of glaucoma pathogenesis, as well as 

improve glaucoma diagnosis. 
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6.3 EXPERIMENT 3-2: DIFFERENCES IN INDIVIDUAL LC PORE PATH 

BETWEEN HEALTHY AND GLAUCOMATOUS EYES 

As we demonstrate in Aim 2 in a primate model, OCT imaging now permits the assessment of in 

vivo biomechanics of the LC, specifically the deformation of the LC under stress. In order to 

build on the knowledge gained in Aim 2, this experiment translates the findings of our animal 

studies to humans. This allows an understanding of how the human LC microstructure reacts to 

stress as well as whether LC microstructure biomechanics changes with disease. Assessing tissue 

biomechanics is important because changes in the mechanical properties of the LC 

microstructure can significantly alter the amount of force experienced by the axons passing 

through the LC, even with no structural changes. Furthermore, even if there exists no change in 

LC biomechanical response with disease, it is important to understand the distribution of strain 

within the LC to identify regions most likely at risk. Since astrocyte activation and remodeling 

due to IOP changes occur very early in the disease process [30], [118], how LC microstructure 

reacts to increase IOP is critical to quantify. In fact, if we are able to identify LC microstructure 

biomechanical responses that predisposes to damage, altered reaction of the LC microstructure 

has potential to serve as a marker for eyes that are especially vulnerable to pressure-related 

damage. We hypothesize that acute IOP elevation in humans will result in enlargement of LC 

pores and thinning of LC beams in humans, similar to the acute IOP elevation in primates in Aim 

2. Furthermore, we expect that glaucoma eyes will experience reduced deformations compared to 

healthy eyes, due to the increased stiffness in their eyes. 
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Figure 34. C-mode scans (top row) at baseline (left column) and elevated IOP (right column). 

Magnification (middle row) shows changes in LC beam and pore microstructure with elevated IOP, such as altered 

pore size (green arrow). Segmented images (bottom row) with the automated outline overlain in purple. 

6.3.1 Methods 

6.3.1.1 Total Lamina Cribrosa Assessment 

We enrolled 21 subjects (5 healthy, 5 glaucoma suspects, and 11 glaucoma) from the UPMC Eye 

Center cohort. All subjects had the same requirements as outlined in section C.1. To reduce the 

risk of IOP elevation, eyes with intraocular surgery within the last 6 months, as well as glaucoma 
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eyes with filtration surgery, were excluded from the study. One randomly selected eye per 

subject underwent acute IOP elevation using an ophthalmodynamometer (Figure 35) applied to 

the temporal sclera. The ophthalmodynamometer is a clinical tool routinely used in neuro-

ophthalmic examination. The device applies a known force on the eye, measured in Grms, which 

is correlated with IOP, and used to be used to measure blood pressure in the central retinal artery. 

Swept source-OCT scans centered on the optic nerve head were acquired at (1) baseline, (2) with 

force equal to 30Grms (corresponds to approximately 30mmHg) applied to the eye, (3) 50Grms 

(corresponds to approximately 50mmHg) and (4) recovery. Based on the manufacturer’s data 

and our own work, a bailliart ophthalmodynamometer scale (Grms) of 30 and 50 Grms 

corresponds approximately to an IOP of 30mmHg and 50mmHg, respectively. The IOP elevation 

induced by the ophthalmodynamometer is confirmed by measuring IOP with the gold standard 

Goldmann’s tonometry. The scanning pattern used is identical to the one described in Section 2. 

 

 

Figure 35. Ophthalmodynamometer. The head of the device (left) is applied to the eye to elevated 

intraocular pressure.  Adapted from Kagemann et al. [144] 
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Visible LC region are manually segmented for all scans: baseline, 30Grms, 50Grms and 

recovery. Scans without visible LC were discarded from further analysis. The scans were 

registered as a rigid body by aligning the BMO and then the LC microstructure, as described in 

Experiment 2-1 (Figure 19). Only regions of the visible LC overlapping in all pressure settings 

were automatically segmented and analyzed according to the protocol designed in experiment 1-

1. The relative change in LC microstructure parameters were compared to baseline for all 

subsequent statistical analysis. 

A linear mixed effect model was used to determine whether there was a difference in 

change in LC microstructure per IOP change between healthy, glaucoma suspect and 

glaucomatous eyes. Furthermore, a linear mixed effect model was used whether the change in 

LC microstructure per IOP change differed based on visual field mean deviation. 

6.3.1.2 Individual Pore Analysis 

In addition to overall analysis of changes in LC microstructure, we had also developed an 

automated method of matching in vivo individual LC pores under varying conditions, which was 

used in this project to evaluate changes in varying IOP conditions. This tools has broader 

application than just IOP elevation alone, as it could also be used to identify how LC pores 

change with time as well as with disease. In order to accomplish this, we had to identify the 

correct pore under baseline and IOP elevated conditions using a particle tracking algorithm 

(MTrack2; http://valelab.ucsf.edu/~nstuurman/ijplugins/MTrack2.html). The following limits 

were implemented given the typical pores size identified in Experiment 3-1 to ensure accurate 

identification of pores: 1) The tracings were constrained such that pores could move a maximum 

of 20μm in the transverse direction under IOP elevation. 2) A minimum and maximum pore area 

change of 25% and 400%, respectively, was set to improve the performance of matching pores. 
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3) Finally, pores smaller than 400μm2 were excluded from subsequent analysis, as smaller pores 

tended to be noise or poorly matched LC pores. Examples of the matching process in one C-

mode from a volume is shown in Figure 36. 

 

 

Figure 36. Automated identification of corresponding pores at baseline pressure (left) and at elevated 

pressure (right). The matching pores between the two scans were numbered so that they correspond to the number in 

the elevated IOP scan. Note that even in scans with bad quality, accurate identification of pores were achieved. 

 

Due to the effect of noise and other potential artifacts affecting segmentation, smaller pores 

could experience more relative change in pore size compared to larger pores. Therefore, a model 

was created to simulate an increase or decrease in the pore perimeter (Figure 37). This model 

bases its assumption on the typical pore size and reproducibility characterized in Experiment 1-2. 

There, we find that the reproducibility for an average pore size of 1660μm2 is 50μm2. Assuming 

a round shape, this means that the typical loss of outer pixel boundary is approximately 1/3 of a 

pixel radius. Therefore, the theoretical bound of change was assumed to be either an entire pixel 

perimeter more or less from the baseline area. The percentage of pores exceeding this limit was 

assessed to determine the change under IOP elevation. 
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Figure 37. Method for determining range of maximum and minimum pore size change due to chance. The 

actual pore size (black circle) is allowed to increase (red circle) or decrease (blue circle) in size 1 full pixel thickness 

all the way around the pore. This full thickness increase is significantly larger than the imprecision of the 

measurement. This is used to create a boundary beyond which pore size change is unlikely to have occurred due to 

chance. 

 

The pore area change was defined by the pore area under IOP elevation divided by pore 

area at baseline. This value was then converted to binary logarithm (log2) for the purpose of 

setting doubling in pore area equivalent to halving pore area in term of area change. All 

subsequent analysis using change in pore area use the log2 change, where 0 indicates no change, 

positive values indicate increase in area and negative value indicate decrease in area (Figure 40). 

When assessing average pore area change, the log2 change was average before being unlogged 

to get an average percentage change in area. 
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Figure 38. Assessment of individual pore area change. (A) Examples of a series of pores at baseline (left) 

and under elevated IOP (right). Pores that increase in size was colored red, while pores that decreased in size in blue. 

(B) Plot of how change in pore area was dependent on the original pore area. Green represents no change in pore 

area, which results in a log base 2 change of 0. 

 

In a subset of 6 eyes, a single C-mode from the matched volumes were selected and 

manual traced to identify the matching pore sets. The manual tracing was considered as gold 

standard and the sensitivity and specificity of the automated selection process was quantified by 

comparing to the manual tracing. 
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Figure 39. One LC C-mode (out of 61) under two pressure conditions showing the identification of 

individual LC pores at baseline and with elevated pressure. Matching pores are identified by individual number. 

Areas near blood vessels and with poor visibility were excluded from analysis. 

 

6.3.2 Results 

We scanned a total of healthy and glaucoma eyes. Average age of healthy, glaucoma suspect and 

glaucoma patient is 28.5±11.6, 54.1±12.2, and 59.0±11.6 years, respectively. Average visual 

field mean deviation was -1.1±1.4, -1.3±1.2, and -1.0±1.9 dB, respectively. Average IOP at 30 

Grms was 32.0±3.5 mmHg and 50 Grms was 48.7±6.4 mmHg. 

6.3.2.1 Total Lamina Cribrosa Assessment 

IOP elevation to 30Grms induced an average beam thickness, pore diameter, and beam thickness 

to pore diameter ratio change from baseline of -0.14±5.80, -0.77±4.61 and 0.85±7.41%, 

respectively. IOP elevation to 50Grms induced an average beam thickness, pore diameter, and 

beam thickness to pore diameter ratio change from baseline of -0.02±8.30%, -3.91±6.94% and -

0.49±4.11%, respectively. The microstructural response to pressure modulation divided by the 
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clinical diagnostic groups is presented in Figure 40. No statistically significant difference was 

detected amongst the diagnostic categories in the LC microstructure response to 30 Grms or 50 

Grms. Considering the wide variability in the diagnostic categories, it was unlikely additional 

patients would have resulted in statistically significant difference amongst the groups. 

 

 

Figure 40. Boxplots of (A) beam thickness, (B) pore diameter and (C) beam thickness to pore diameter 

ratio changes between baseline to 30 Grms. Changes from baseline to 50 Grms are presented in D – F. 
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There was a statistically significant correlation between the change in LC microstructure 

at 30 Grms and 50 Grms (Figure 40). It showed a linear trend with p < 0.001 for all three 

parameters. 

 

 

Figure 41. Scatterplot of (A) beam thickness, (B) pore diameter and (C) beam thickness to pore diameter 

ratio change under a force of 30 Grms compare to the change under at a force of 50 Grms. Black line is the equality 

line. Green – healthy, blue – glaucoma suspects, red – glaucoma. 

 

6.3.2.2 Individual Pore Analysis 

The sensitivity and specificity of identifying matching pores across pressure conditions, using 

the manual matching as the gold standard, was 97.7±2.3% and 84.9±6.1%, respectively.  

There were significant variations within a given eye in individual pores response to 

pressure modulation with some pores becoming larger while other becoming smaller. At elevated 

IOP, average change in individual pore area was 9.3±3.0%, 12.1±4.0% and 1.3±4.8% for 

healthy, glaucoma suspect, and glaucoma eyes, respectively (Figure 45). The change in 

glaucomatous eyes was significantly smaller compared with both healthy and glaucoma suspects 

(both p<0.01). 
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Figure 42. Boxplot of percent change in pore area under IOP elevation between the diagnostic categories. 

H – healthy, GS – glaucoma suspect, GL – glaucoma. 

 

When assessing pore area change, it was noted that the change was dependent on the 

initial area. Smaller pores experienced more relative change in pore size compared to larger 

pores. However, there were no difference in absolute pore size change as pore area increased. 

(Figure 43) 
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Figure 43. Individual LC pores change as a function of pore area at baseline with most changes occurring 

in smaller pores and the moving average is consistently above zero.  

 

6.3.3 Discussion 

This study represents the first in vivo assessment of LC microstructure biomechanical response 

in human eyes. As seen in this final study, there is significant variations in how certain 

individuals react to change in IOP. We cannot detect a significant difference in how the total LC 

microstructure change with respect to diagnostic categories. However, by matching pores at 

baseline and under elevated IOP, we are able to identify that pore area generally increase, with 

the increase being significantly more prominent in healthy eyes compared to glaucoma eyes. 

These findings emphasize the importance of individualized biomechanical testing of the LC, 

especially on a pore by pore level, as significant heterogeneity exists within diagnostics 

categories, as well as eyes. 
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6.3.3.1 Total Lamina Cribrosa Assessment 

We did not detect a difference in the acute LC microstructure response of glaucomatous eyes 

compared with healthy eyes. Our initial expectation was that glaucomatous eyes would 

experience a decrease in beam thickness and increase in pore diameter, with the eye being 

stretched by the elevated IOP. However, it was clear that there were a number of both healthy 

and glaucoma eyes whose beams thickened and pores decreased in diameter in response to IOP 

elevation. Furthermore, it is important to note that the assessment represents an overall 

assessment, which is based on averaging all the beam and pore changes. This may average out 

localized changes, which are expected to occur in any complex 3D biomechanical structure. 

Thus, it is especially important to begin to develop and utilize tools that can identify localized 

changes, such as the individual pore analysis described here. 

We demonstrated that the trend of microstructure changes occurring at 30 Grms is similar 

to the trend occurring at 50 Grms. This finding suggest that the vast majority of the changes 

occurred between baseline to 30 Grms. It may be a result of collagen fibers being almost fully 

stretched at 30 Grms, with relatively small changes beyond this level. These results are in 

agreement with pervious study showing that the ONH surface deforms similarly at 30 mmHg and 

50 mmHg. [50] However, our study is the first to demonstrate the effect on LC microstructure in 

vivo. 

Finally, there were no significant correlations between global LC microstructure 

deformation and various glaucoma parameters (visual field mean deviation, retinal nerve fiber 

layer thickness, central corneal thickness and IOP). We had expected to find a relationship with 

respect to central corneal thickness [145], which has been associated with optic nerve size, and 

age, which is known to cause changes in collagen. [146] However, the lack of association 
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between central corneal thickness and LC microstructure change may reflect that the 

biomechanics of the optic nerve is complex and depend on additional factors beside the collagen. 

6.3.3.2 Individual Pore Analysis 

In order to alleviate one of the main limitations of the global LC analysis, we developed an 

automated method of matching in vivo individual LC pores under varying conditions. We used 

this method to analyze the individual pore deformations in response to IOP modulation. Previous 

study used deformable registration to identify change under pressure, [147] but it does not have 

the ability to identify and trace individual pores changes. Our study is the first in vivo analysis of 

individual pores change under pressure nodulation. We would like to emphasize that as we move 

forward, it will be increasingly important to use these type of localized analysis, as glaucoma 

damage is typically localized to certain locations. Furthermore, this method can be useful for 

assessing changes in individual pores as part of aging, along the course of glaucoma, etc. 

The individual pore matching demonstrated excellent performance in identifying 

matching pores under IOP elevation, with high sensitivity (98%). Although the specificity is 

lower (85%), it is important to remember that this parameter is less of a concern in these studies. 

While we would ideally like to identify all matching pores, it is far better to identify fewer 

accurately matching pores, rather than a large number of non-matching pores. Non-matching 

pores could significantly skew the data, especially with large variations in pore size (if a large 

pore was mistakenly paired with a small pore). 

In the study, we reported that LC pores of glaucoma eyes deformed less than those of 

healthy eyes. The reduced deformation in the glaucoma indicates that those eyes are stiffer than 

those of healthy eyes. This may be due to intrinsic damage caused by glaucoma, repeated 

exposure to periods of elevated IOP causing remodeling to stiffen the beams. Yet, our glaucoma 
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group was substantially older than our healthy group which might exaggerate the reduction in in 

deformation as it has been shown that aging causes stiffening the LC. [133], [146]  

The finding of smaller pores experiencing more change in area than larger pores under 

IOP elevation has a number of ramifications. Assuming that large distortions and strains have 

deleterious effect on axons, our results indicate that smaller pores are at higher risk of causing 

damage compared to larger pores. The functional implication of this finding should be tested in 

future longitudinal studies. 

6.4 SUMMARY 

We have identified in this Aim that there are significant differences in LC microstructure 

between healthy and glaucomatous eyes, with the later having thicker beams and smaller pores 

compared with healthy eyes. The finding of increase tortuosity in the eyes of glaucoma eyes is 

especially intriguing. This may represent a mechanical change in the path of the axons that is 

prone to the obstruction of axoplasmic flow. Further investigation into these finding could 

potentially identify as a very early manifestation of glaucoma damage, before permanent damage 

has already occurred. Finally, we have demonstrated the first finding of in vivo differences in the 

biomechanics of LC microstructure between healthy and glaucoma only captured when 

evaluating the effect on individual pore level.  
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7.0  DISSERTATION SYNOPSIS 

This thesis represents the first in vivo assessment of 3D LC microstructure, demonstrating 

findings that would not be possible without modern day OCT imaging. These experiments have 

established that a novel automated assessment of the LC microstructure is feasible and 

demonstrate its use in assessment of glaucoma as well as improving our understanding of 

glaucoma pathogenesis.  

In Aim 1, we demonstrate the feasibility of using automated segmentation to analyze the 

LC. After developing the automated LC segmentation tool, we find that the automated 

segmentation performed similar to that of manual human controls. The segmentation algorithm is 

also highly reproducible, with an imprecision between scans of the less than 5% across the 

board.  

In Aim 2, we utilize the segmentation tools developed in Aim 1 to identify LC 

microstructure deformation in response to alterations in both IOP and ICP. We demonstrate 

significant interactions between the two, indicating that both pressures should be considered for 

accurate evaluation of LC microstructure response to pressure. Furthermore, the experiments 

indicate the importance of considering both IOP and ICP for thorough evaluation of glaucoma. 

In Aim 3, we use the lessons gleamed from our animal model to identify changes in LC 

microstructure in humans. We identify differences in LC microstructure in glaucomatous eyes 

compared to healthy. Glaucomatous eyes have larger beam thickness and smaller pores, likely a 
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result of remodeling and axonal loss. These result are the opposite of what is seen under acute 

pressure elevation, likely reflecting the difference between acute and chronic effects. 

Furthermore, we demonstrate that pores of glaucoma eyes were more tortuous compared to 

healthy eyes, providing a potential mechanism for blockage of axoplasmic flow at the level of 

the LC. Finally, we identify that there was significant difference in the response to an increase in 

IOP at the individual pore level between healthy and glaucomatous eyes, and that smaller pores 

are specifically prone to larger changes compared to larger pores.  

7.1 LIMITATIONS 

While LC microstructure analysis has the potential to significantly improve our understanding of 

glaucoma, there are technical limitations that must be considered when interpreting the results of 

our experiments as well as future assessments of LC microstructure. Furthermore, there remains 

significant hurdles to be overcome before LC microstructure analysis can be implemented in the 

clinical setting. 

A main limitation of this study, similar to most other in vivo imaging studies analyzing 

the LC, is related to the ability to capture the entire LC, which is highly dependent on the 

characteristic of the blood vessels and prelaminar tissue overlying the LC. This inevitable 

limitation is related to the complex structure of the optic nerve head region and the physical 

properties of the OCT technology. Due to the vascular pattern at the optic nerve, the region best 

visualized is the temporal LC, with less analyzable LC in other regions. Despite the temporal 

region being less sensitive to glaucomatous damage than superior or inferior regions, [148] our 

study still has sufficient power to demonstrate significant changes in the LC of glaucomatous 
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eyes compared to healthy eyes. OCT development to improve our ability to visualize larger 

regions of the LC would enhance the utility of LC microstructure assessment.   

While our experiments in primates and humans demonstrate significant changes in LC 

microstructure with IOP and ICP, it is important to remember that these are acute changes only. 

Considering that glaucoma is a chronic progressive disease, the acute experiments create the 

foundation for future projects that would assess the chronic effect where apoptosis and 

remodeling has an important role. Comparing the acute and chronic effects will allow us to 

determine the contribution of these biological factors to the disease process. 

7.2 FUTURE WORK 

This thesis represents a first step towards both assessing the LC microstructure clinically, as well 

as understanding how LC microstructure is altered in glaucoma. Given the novelty of the 

technique, there exists a number of potential avenues for investigation of the LC microstructure. 

One of main limitations of the present technique is the requirement of having clearly visible LC 

microstructure. In doing so, we are limited to only regions without thick prelaminar tissue or 

vessel covering the anterior LC. Future work may incorporate compensation techniques to 

improve contrast in regions of low signal to noise. [149] This may enable the visualization of 

structure previously unseen and less visible regions and permit a more compressive analysis of 

LC microstructure. 

As glaucoma is a slowly progression chronic disease, it is critical to identify how the LC 

is remodeling after modifying both IOP and ICP. Specifically, it is important to identify whether 

IOP over time will result in thickening of the beams due to remodeling to sustain the IOP.  
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While both Aim 3 feature experiments assessing individual LC pores changes with IOP 

modulation, it is critical to not limit ourselves only to this analysis. Assessment of how 

individual pores change is especially promising for longitudinal studies, where we can identify 

how certain LC pores change and remodel over time. It will provide information on aging effects 

on the LC, to help differentiate glaucoma damage from age-related changes. It will be especially 

interesting to follow the progression of LC pore change, as well as progression of glaucoma. For 

example, we could answer whether there exists specific LC microstructure features that more 

predisposes a patient to progression, allowing us to identify patients especially prone to disease. 

7.3 CONCLUSION 

We have developed a novel method for in vivo automated assessment of LC microstructure. In 

doing so, we have identified that it is critical consider both IOP and ICP when assessing the LC 

microstructure, as they both deform the LC, with significant interaction between them. 

Furthermore, we have identified a number of LC microstructure differences in healthy and 

glaucomatous eyes, which may reflect axonal loss as well as remodeling with disease. The 

assessment of LC microstructure using OCT holds great promise for both glaucoma diagnosis 

and improving our understanding of disease pathogenesis. 
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