Evaluating the Efficacy of Prosody-lab Aligner for a Study of Vowel Variation in Cantonese

Andrew Peters (彭浩軒) & Holman Tse (謝浩明)

abpeters@yorku.ca hbt3@pitt.edu

University of Pittsburgh

Workshop on Innovations in Cantonese Linguistics (WICL-3)

The Ohio State University

Columbus, OH

March 12, 2016

HTTP://PROJECTS.CHASS.UTORONTO.CA/NGN/HLVC

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Presentation Goals

- To demonstrate the use of Prosodylab Aligner as a tool for a large scale project examining vowel variation and change in Toronto Heritage Cantonese
- To address the effectiveness of Prosody-lab aligner for this purpose
- To assess the best source for training new Models
 - Data from all speakers together (ALL)?
 - Data from each generational group separately (GEN)?
 - Data from each speaker individually (SOLO)?

- Large-scale project investigating variation and change in Toronto's heritage languages.
- Includes sociolinguistic interview data from 7+ heritage languages spoken by immigrants and 2 or 3 generations of their descendants
- The corpus makes it possible to investigate contact effects on a wide variety of variables across all languages using the same methodology

Conseil de recherches en sciences humaines du Canada

A Sample of Linguistic Variables

	Cantonese	Faetar	Italian	Korean	Polish	Russian	Ukrainian
VOT	1		1	1		1	1
Ø-subject	1	1	1		1	1	
Borrowing	1	1					
Classifiers	WICL-1/3			WICL-3			
Vowels	WICL-3						

GEN 1	GEN 2
Born and raised in HK, Immigrated to Canada as adults	Grew up in Toronto
L1 Cantonese, Some L2 English	Simultaneous (Early) Bilingual in Cantonese and Toronto English

Methodological Issues

- Hour-long interviews (spontaneous speech) from each of ~ 40 speakers
 - 40 speakers X 8 vowels X 6 tones X 10+ tokens/each = 19200!!!

- Forced Alignment Tools
 - FAVE (Rosenfelder et al 2011)
 - Now widely used for sociolinguistic studies of English dialects
 - But only works on English
 - Prosodylab-Aligner (Gorman et al 2011)
 - Can train new models from raw data making it customizable for any language
 - However, its efficacy for Cantonese unknown

More About Prosodylab

- ProsodyLab (Gorman et al. 2011) is based on the Hidden Markov Toolkit (HTK), a speech recognition toolkit based on Hidden Markov Models, developed at Cambridge University
- Requires
 - Python 2.6 or above
 - SoX (Sound Exchange)
 - HTK (Hidden Markov Model Toolkit)
- Can be downloaded from
 - <u>https://github.com/kylebgorman/Prosodylab-Aligner</u>
 - More info
 - <u>http://prosodylab.org/tools/aligner/</u>

What is Forced Alignment?

- Forced alignment automates the process of time-aligning transcription with audio signal
- Permits automated measure of variable, e.g. formant values

About Acoustic Models

- Uses machine-learning to perform transcript to audio time-alignment
- Speech models map phone lists to audio signal
- Will vary in how well they fit the data, how well they demarcate boundaries etc. Hence our study!

Questions

- Is Prosody-lab aligner effective at producing sufficiently accurate transcript alignment to permit automated measurement of vowel data?
- What is the best data source for training models?
 - All speakers together (ALL)?
 - More robust model, but does it work as well with the variation present in a HL variety
 - Each generational group separately (GEN)?
 - Tse (2015) suggest inter-generational phonological differences
 - Each speaker individually (SOLO)?
 - Requires a large percentage of data, but would it be as accurate?

Pre-processing

- 1. Interviews transcribed by native speakers of Cantonese using Jyutping Romanization in ELAN
 - Manual sentence-level alignment

2. To create input readable by Prosodylab-Aligner, PRAAT script used to create smaller .wav files with matching .txt files for each annotation.

PRAAT Script (Labber)

Forced alignment needs a custom dictionary

<u>Orthography</u>	<u>Phonemes</u>
GU1	GU
GU2	GU
GU3	G U 🦛
GU4	GU
GU5	GU
GU6	GU
TUB	TAH1 B
TUBA	TUW1 BAHO
TUBAL	TUW1 BAHO L
TUBB	TAH1 B
TUBBS	TAH1 B Z
TUBBY	TAH1 BIYO
TUBE	TUW1 B
TUBE	TYUW1B

To train an acoustic model:

- pronouncing bilingual dictionary (~ currently 3.6 MB)
- important b/c program can't run when there are unrecognized words in the transcript
- program needs to convert orthography to phonemic segment as established by custom dictionary

Training and Evaluation

0	Θ	CAN_dict_4.txt
ZUNG3	Z U NG	
ZUNG4	Z U NG	
ZUNG5	Z U NG	
ZUNG6	7 U NG	
7UT1	7 II T	
ZUT2	7 II T	
ZUT3	7 II T	
71174	7 II T	
ZUTS	Z U T	
ZUT6	7 U T	
ZYU1	Z YU	
ZYU2	Z YU	
ZYU3	Z YU	
ZYU4	Z YU	
ZYU5	Z YU	
ZYU6	Z YU	
ZYUN1	Z YU N	
ZYUN2	Z YU N	
ZYUN3	ZYUN	
ZYUN4	Z YU N	
ZYUN5	Z YU N	
ZYUN6	Z YU N	
ZYUT1	Z YU T	
ZYUT2	Z YU T	
ZYUT3	Z YU T	
ZYUT4	Z YU T	
ZYUT5	Z YU T	

• .wav files and matching .lab files put in a Training directory

 Prosodylab-aligner uses Training directory and **dictionary** to build an acoustic model

Custom dictionary in the format of The CMU Pronouncing Dictionary

Our 3 Models of Training With 50% of data from each speaker:

- Solo-trained model: trained only on data for speaker evaluated 1
- Generation-trained model: Data from all speakers of each Gen. Combined 2. in Training directory
- "All"-trained model: Data from all speakers combined in Training directory 3.

More Training Data (Hours of speech) \rightarrow Better Model **Therefore: More speakers data used in training = Less data lost** from each speaker to training

Output of Prosodylab-Aligner: Time-aligned Textgrid

Assessing Accuracy

- Assessment based on 10 speakers (four GEN 1 and six GEN 2)
- Examined first 10 usable textgrids for each speaker

Gold Standard: Manually identify vowel boundaries for all CAN monophthongs

Assessing Accuracy Procedures

- Record "Gold Standard" vowel boundaries
- Record Auto-aligned vowel boundaries

Assessing Accuracy

	Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R
1	Speaker	Timestam	Vowel	traini	Man. Left	Man. right	Auto left	Auto right	left diff.	right diff.	ABS Left Diff	ABS right diff	Left diff ^2	Right Diff ^2	V IN TARGET?	V. Length - Manual	V. Length - Auto	V. Length Diff.
92	C1F78A	15854	F(U)1	solo	3.53	3.65	3.54	3.67	-0.0100	-0.0200	0.0100	0.0200	0.0001	0.0004	1	0.120000	0.130000	0.010000
93	C1F78A	15897 l	L(OE)NG5	solo	0.35	0.42	0.35	0.46	0.0000	-0.0400	0.0000	0.0400	0.0000	0.0016	1	0.070000	0.110000	0.040000
94	C1F78A	15897 (G(O)3	solo	0.53	0.62	0.53	0.63	0.0000	-0.0100	0.0000	0.0100	0.0000	0.0001	1	0.090000	0.100000	0.010000
95	C1F78A	15897	NG(U)K1	solo	1.64	1.7	1.64	1.7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	0.060000	0.060000	0.000000
96	C1F78A	15897 \$	S(A)N1	solo	2.1	2.17	2.11	2.18	-0.0100	-0.0100	0.0100	0.0100	0.0001	0.0001	1	0.070000	0.070000	0.000000
97	C1F78A	15897 (G(AA)1	solo	2.3	2.48	2.3	2.54	0.0000	-0.0600	0.0000	0.0600	0.0000	0.0036	1	0.180000	0.240000	0.060000
98	C1M59A	18070	H(AA)6	solo	2.87	2.95	1.9	1.93	0.9700	1.0200	0.9700	1.0200	0.9409	1.0404	0	0.080000	0.030000	-0.050000
99	C1M59A	18070	G(O)2	solo	3.67	3.75	3.67	3.8	0.0000	-0.0500	0.0000	0.0500	0.0000	0.0025	1	0.080000	0.130000	0.050000
100	C1M59A	18070	G(O)3	solo	3.84	3.92	3.84	3.95	0.0000	-0.0300	0.0000	0.0300	0.0000	0.0009	1	0.080000	0.110000	0.030000
101	C1M59A	18070	G(E)3	solo	4.03	4.24	4.04	5.44	-0.0100	-1.2000	0.0100	1.2000	0.0001	1.4400	0	0.210000	1.400000	1.190000
102	C1M59A	18140	D(I)1	solo	0.35	0.43	0.34	0.4	0.0100	0.0300	0.0100	0.0300	0.0001	0.0009	1	0.080000	0.060000	-0.020000
103	C1M59A	18140	L(E)K1	solo	0.66	0.74	0.67	0.85	-0.0100	-0.1100	0.0100	0.1100	0.0001	0.0121	0	0.080000	0.180000	0.100000
104	C1M59A	18140	G(E)3	solo	0.9	0.98	0.92	0.98	-0.0200	0.0000	0.0200	0.0000	0.0004	0.0000	1	0.080000	0.060000	-0.020000
105	C1M59A	18140	J(A)N4	solo	1.22	1.35	1.24	1.32	-0.0200	0.0300	0.0200	0.0300	0.0004	0.0009	1	0.130000	0.080000	-0.050000
106	C1M59A	18140	C(E)NG2	solo	3.44	3.5	3.14	3.25	0.3000	0.2500	0.3000	0.2500	0.0900	0.0625	0	0.060000	0.110000	0.050000
107	C1M59A	18140	J(A)N4	solo	3.6	3.62	3.45	3.49	0.1500	0.1300	0.1500	0.1300	0.0225	0.0169	0	0.020000	0.040000	0.020000

- Manual ("Gold Standard") Measurements taken of left & Right boundaries of Monopthongs
- Compared to Auto boundaries: Differential on left & right, ABS of diff., diff. of total length

Т	U	V	W	Х	Y	
Solo Model Met	rics	Gen Model Metr	ics	All Model Metrics		
RMSD - LEFT Boundary	0.18527152	RMSD - LEFT Boundary	0.193158	RMSD - LEFT Boundary	0.213991	
RMSD - RIGHT Boundary	0.18690933	RMSD - RIGHT Boundary	0.197117	RMSD - RIGHT Boundary	0.207087	
No. Vowels in Target	383	No. Vowels in Target	368	No. Vowels in Target	382	
% Vowels in Target	81.84%	% Vowels in Target	78.63%	% Vowels in Target	81.62%	
Avg. Auto V. Length	0.126816	Avg. Auto V. Length	0.123650	Avg. Auto V. Length	0.132073	
Avg. V. Length deviation	0.013920	Avg. V. Length deviation	0.010753	Avg. V. Length deviation	0.019176	

- Root-Mean-Square-Deviation taken of each boundary (Chen et al 2004)
- Average Length of vowels for each model
- % of vowels' centres (by "Gold Standard") which fall within the autoaligned boundaries

$$\text{RMSD} = \sqrt{\frac{\sum_{t=1}^{n} (\hat{y}_t - y)^2}{n}}.$$

Transcription Issues

Entirety of "O5 Lam2 Jiu3" within "Gong2" boundaries

Same file: The aligner "Catches up" and aligns later sections with excellent accuracy

Modeling Silence

Aligner places "Hei2 Maa5" audio signal within silence

- The effect is more common in Solo-aligned textgrids
- Hypothesis: Silence modelling is better with more data for model training

Syllable Fusion Issues

Fusion of Seng-Jat--> Set

Fusion of Mei-Je --> Me

Fusion of Za-Hai --> Zei

- Some rare examples cause problems: Seng Jat
- However, when we use a closer transcription, the aligner does well

Wong (2006)

Results Table

In spite of problems, quite accurate:

	SOLO	GEN	ALL
Root Mean Square Deviation – Left Boundary	0.185	0.193	0.214
Root Mean Square Deviation – Right Boundary	0.187	0.197	0.207
# of Vowels in Target	383	368	382
% Vowels in Target	81.84%	78.63%	81.62%
Avg. Auto V. Length	0.127s	0.124s	0.132s
Avg. V. Length Deviation	0.014s	0.011s	0.019s

- Solo-trained model has the lowest deviation from gold-standard boundaries
- All-trained model predicts longer vowels: hence higher % of vowel centres within boundaries, despite high deviation
- Overly-long segment prediction would be bad for studies of length, VOT, etc.

Summary

- Is Prosody-lab aligner effective at producing sufficiently accurate transcript alignment to permit automated measurement of vowel data? YES
- What is the best baseline to start with
 - All speakers together (ALL)?
 - Each generational group separately (GEN)?
 - Each speaker individually (SOLO)?

Discussion

- Is Prosody-lab aligner effective at producing sufficiently accurate transcript alignment to permit automated measurement of vowel data?
 - Yes, Overall, 80% accuracy for all three models
 - Can still be a useful tool in facilitating the vowel measurement process with a preliminary estimate of where the vowel boundaries are
 - Boundaries can be manually adjusted later.

Discussion

- What is the best baseline to start with
 - ALL
 - More data used, but model overgenerates → resulted in high RMSD
 - SOLO
 - Slightly more accurate and smaller RMSD than ALL and GEN models, but not much data / too much data lost to training
 - GEN
 - A reasonable compromise between amount of data used in training vs. general accuracy

Conclusion

- The GEN model works better than ALL (contrary to expectations) possibly because of significant inter-generational differences (cf. Tse 2015)
- Yet, even with as much variation as present, it is still generally accurate, and can be a useful tool for Cantonese corpus-based studies.
- Useful for any study that requires segmental boundary information
 - Ex: VOT, vowel length, vowel formant measures, tone, consonants, etc

감사합니다**дякую Grazie molto ^{Спасибо} 多謝** gratsiə namuor:ə

HLVC RAs:

Cameron Abma Vanessa Bertone Ulyana Bila Rosanna Calla Minji Cha Abigail Chan Karen Chan Joanna Chociej Sheila Chung Tiffany Chung **Courtney Clinton Rachel Coulter** Radu Craioveanu Marco Covi Zahid Daudjee **Derek Denis** Tonia Djogovic Joyce Fok

Paolo Frasca Matt Gardner **Rick Grimm** Dongkeun Han Natalia Harhaj Taisa Hewka Melania Hrycyna Michael Jannozzi Diana Kim Janyce Kim Iryna Kulyk Mariana Kuzela Ann Kwon Alex La Gamba Carmela La Rosa Natalia Lapinskaya Kris Lee Nikki Lee Olga Levitski

Arash Lotfi Samuel Lo Paulina Lyskawa Rosa Mastri Timea Molnár Jamie Oh Maria Parascandolo Rita Pang Tiina Rebane Hoyeon Rim Will Sawkiw Maksym Shkvorets Vera Richetti Smith Anna Shalaginova Konstantin Shapoval Yi Qing Sim Mario So Gao Awet Tekeste Josephine Tong

Sarah Truong Dylan Uscher Elaine Wang Ka-man Wong Junrui Wu Olivia Yu Minyi Zhu Collaborators: Yoonjung Kang Alexei Kochetov Naomi Nagy James Walker Funding: SSHRC, University of Toronto, Shevchenko

Foundation

References

Chen, L., Liu, Y., Harper, M. P., Maia, E., & McRoy, S. (2004). Evaluating Factors Impacting the Accuracy of Forced Alignments in a Multimodal Corpus. In LREC. Retrieved from https://www-new.comp.nus.edu.sg/~rpnlpir/proceedings/lrec-2004/pdf/307.pdf

Gorman, K., Howell, J., & Wagner, M. (2011). Prosodylab-aligner: A tool for forced alignment of laboratory speech. Canadian Acoustics, 39(3), 192–193.

Nagy, N. (2011). A Multilingual Corpus to Explore Variation in Language Contact Situations. Rassegna Italiana Di Linguistica Applicata, 43(1/2), 65–84.

Rosenfelder, I., Fruehwald, J., Evanini, K., & Yuan, J. (2011). FAVE (Forced Alignment and Vowel Extraction) Program Suite. Retrieved from <u>http://fave.ling.upenn.edu</u>

Wong, Wai Yi Peggy. 2006 "Syllable Fusion in Hong Kong Cantonese Connected Speech." Ph.D. Dissertation. The Ohio State University.

- Slides will be available at http://www.pitt.edu/~hbt3/presentations.html
- Thank you!
- 多謝晒!

HERITAGE LANGUAGE VARIATION AND CHANGE IN TORONTO HTTP://PROJECTS.CHASS.UTORONTO.CA/NGN/HLVC