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OPTIMIZING VACCINE CLINIC OPERATIONS IN LOW AND MIDDLE

INCOME COUNTRIES

Maryam Hasanzadeh Mofrad, PhD

University of Pittsburgh, 2016

This dissertation focuses on two open questions in operating vaccination clinics in low

and middle income countries. First, as a result of limited “open vial life,” clinicians face

difficult tradeoffs between opening a multi-dose vial to satisfy a potentially small immediate

demand versus retaining the vial to satisfy a potentially large future demand. Second, in

low and middle income countries, governmental health organizations face tradeoffs between

locating (additional) clinics or conducting outreach trips to vaccinate patients in remote

locations.

To answer the first question, we formulate Markov decision process models that deter-

mine when to conserve vials as a function of the time of day, the current vial inventory,

and the remaining clinic-days until the next replenishment. The objective is to minimize

“open-vial waste” while administering as many vaccinations as possible. For the base model,

we analytically establish that the optimal policy is of a threshold type; conduct extensive

sensitivity analysis on model parameters; develop a practical heuristic policy; suggest oper-

ational approaches that do not overly inconvenience patients; define metrics for determining

appropriate operating hours and sessions per inventory replenishment cycle; and study the

impact of random vial yield. We then generalize the base model by considering a positive

probability of return for patients who are not vaccinated on their first visit and incorporating

non-stationary arrival rates. To study these enhancements, we perform extensive numerical

experiments at the clinic level for a single replenishment cycle and then extrapolate to mul-
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tiple clinics and the entire world on an annual basis. The results indicate potential savings

on the order of millions of doses per year.

To answer the second question, given a network of population centers we develop a

mixed integer linear programming model that determines clinic locations and outreach ac-

tivities. The model minimizes cost over a specified period of time subject to constraints

on coverage, trip distance, trip size, trip frequency and patient travel. We address demand

uncertainty; perform sensitivity analysis on key model parameters; compare the performance

of the optimal solution to heuristic policies; and conclude that while counterintuitive it is

often suboptimal to locate clinics in the largest population centers.
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1.0 DYNAMICALLY OPTIMIZING THE ADMINISTRATION OF

VACCINES FROM MULTI-DOSE VIALS

1.1 INTRODUCTION

The prevalence of infectious diseases is a grave, global concern and millions of individuals –

both children and adults – remain at risk for diseases that are preventable through immu-

nization. According to the most recent World Health Organization (WHO) publication on

the state of the world’s vaccines and immunization [56], in 2007, “24 million children...did

not get the complete routine immunizations scheduled for their first year of life.” This prob-

lem is most acute in developing countries, but is of interest to a variety of stakeholders (e.g.,

the developing countries themselves, vaccine manufacturers, non-profit organizations such

as WHO and UNICEF that assist these countries, as well as more wealthy countries that

support vaccine dissemination in these locations).

The Expanded Program on Immunization (EPI) was launched by the WHO in 1974 [55]

with the goal of vaccinating children throughout the world, and in 1999, the Global Alliance

for Vaccines and Immunization (GAVI) was created specifically to extend the EPI program

throughout the poorest countries in the world. The primary goal of these programs is to

maximize the number of children who are vaccinated against common vaccine-preventable

diseases such as measles, hepatitis, yellow fever, meningitis, etc. A key step in achieving this

goal is to reduce the large amount of vaccine “wastage,” i.e., doses that are manufactured

and shipped, but then not administered while still viable, in developing countries. WHO

[54] estimates the overall global vaccine wastage rate to be a staggering 50% which varies

with vial size, vaccine type, location, etc. More specifically, a recent study conducted in

Bangladesh [16] reports average wastage rates of 85.1% for BCG (tuberculosis), 71.2% for
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measles, 36.6% for TT (tetanus) and 44.2% for DPT (diphtheria, pertussis and tetanus

combination). Reducing wastage has been mandated by WHO [54] and identified as a key

factor in maintaining the financial sustainability of immunization programs in the world’s

poorest countries [19] and in increasing the delivery of vaccines to patients. In the overall

effort to improve vaccine coverage rates, it is critical that clinics manage vaccine supplies

efficiently in the field to minimize wastage and maximize the number of immunizations

administered.

The primary driver of vaccine wastage is the fact that many vaccines are manufactured

in large, multi-dose vials, which are more economical to produce than single-dose vials due

to their lower production, transportation and storage costs; however, they result in so-called

“open-vial” waste [16]. Vaccines used in worldwide immunization programs are typically

manufactured in two forms: a liquid form that can be directly administered and a freeze-

dried powder that must be reconstituted with a diluent before administration. In the powder

form, the primary concern prior to reconstitution is the shelf life of the vaccine; it determines

the expiration date of the vaccine. After reconstitution, the remaining lifetime of the vaccine

is called open vial life, which is considerably shorter than shelf life. For example, a 10-dose

vial of MMR vaccine has a 48-month shelf life, but only an 8-hour open vial life [4]. When

a multi-dose vial is reconstituted or “opened,” but not completely used during its open vial

life, the unused doses are discarded. This type of vaccine wastage is called open vial waste

(OVW) [7].

A number of issues must be considered in designing an effective immunization program

with low wastage. The majority of these issues are addressed at higher levels of decision

making within governmental immunization organizations, e.g., determining the best vial size;

designing the distribution chain; setting storage capacities, replenishment frequencies, and

order quantities at various levels of the vaccine supply chain; and deciding on transportation

modes and their capacities. Vial size and inventory considerations in particular have been

examined in several previous studies. For example, [36, 24, 23] and [60] perform economical

analysis to determine the appropriate vial size. More specifically, Parmar et al. in [36]

estimate the potential wastage cost associated with different vial sizes in various countries.

Lee et al. in [24] show that the most economical vial size is a function of mean daily demand

2



(i.e., vials with a greater number of doses produce less OVW as the mean daily demand

increases). Lee et al. in [23] determine a threshold on the mean daily demand for the adoption

of a specific vial size; they also argue that using single-dose vials (which are physically larger

on a per-dose basis) can severely constrain transportation capacity in the vaccine distribution

supply chain and result in increased risk of vial breakage. Lastly, Yang et al. in [60] investigate

the economical impact of vial size using empirical data. Related to this work, Assi et al. in

[1] study the impact of different vial sizes on the vaccine supply chain. Lastly, Dhamodharan

& Proano in [7] integrate an optimization model and simulation to simultaneously determine

vial size and ordering policy under the assumption of 100% coverage. Regardless of how vial

size and replenishment frequency are determined, questions surrounding the downstream

issue of how to best administer doses from multi-dose vials remain open.

The administration policy most commonly used in practice is to never turn away a patient

as long as the required vaccine is available. Thus, vials are typically opened and vaccines

administered in a “greedy” fashion with no consideration of long-term consequences, resulting

in high open-vial wastage rates and frequent stockouts or “downtime”, i.e., sessions at the

end of the replenishment cycle on which the clinic cannot open at all. Clearly, however, a

tradeoff exists between opening a vial to satisfy a potentially small immediate demand (and

likely subjecting a significant number of doses to open-vial waste) versus retaining the vial

to satisfy a potentially large future demand. For example, when the last dose in a vial is

administered late in the day, should the clinic discontinue service for the rest of the day?

Indeed, some clinics recognize this tradeoff and, as Hutchins [18] explains, incorporate the

practice of “not opening a multidose vaccine vial for a small number of persons to avoid

vaccine wastage...”

We seek to find the optimal balance between these competing factors such that the

vaccination rate is maximized. More specifically, we take a Markov decision process (MDP)

approach in which the decision of whether or not to remain open is made as a function of time

of day, current vial inventory and the remaining sessions until the next replenishment. The

resulting dynamic policies, compared to the greedy approach, optimally spread the clinic

downtime throughout the replenishment period so that a significantly greater fraction of

demand can be met.

3



There is a limited body of work on open-vial waste [7, 9, 16, 23, 24]. This majority of

this literature focuses on either quantifying current open-vial waste rates [16] or developing

simple cost models to quantify the economic impact of open-vial waste. In performing

the latter, Drain et al. [9] assume that the open-vial waste rate is known. In contrast, the

spreadsheet model in [24] does not make this assumption, although, unlike our approach, Lee

et al. [24] assume fixed clinic hours and that every arriving patient is immunized; the model

is used to calculate expected cost figures for various (vaccine, vial size) combinations and

determine thresholds on the mean demand above which increases in vial size are economical

for each type of vaccine considered. Lee et al. [23] also consider open-vial waste in their

examination of how vial size affects vaccine availability and coverage, but their focus is on

supply chain functions such as shipping frequency and storage capacity rather than vaccine

administration. Similarly, Dhamodharan et al. [7] also focus on the question of vial size, but

in an optimization context. They seek an optimal vial size, order quantity (in vials) and

reorder point to minimize expected procurement, holding and open-vial wastage costs while

satisfying 100% of the demand.

The vaccine administration problem considered here can also be viewed as a novel per-

ishable inventory control problem (see surveys in [20] and [33]) involving batch “ordering”

decisions for a perishable product from a finite supply to satisfy as much stochastic demand

as possible over a finite horizon with zero lead time and discontinuous hours of operation.

The “ordering” decisions correspond to opening a vial; the reason they are “batch” orders is

because each vial contains some fixed number of doses. The “inventory level” corresponds to

the number of doses in the currently open vial. The doses are perishable because they only

last a matter of hours once opened. The supply is finite because the planning horizon is the

time between replenishments, the lead time is zero because the doses are already on hand

and the “ordering” decision is really an “opening” decision, and service is not continuous

because the clinics open and close each day. To the best of our knowledge, the combina-

tion of finite supply and discontinuous operation is previously unexplored in the context

of perishable inventory control. A few studies consider products that, similar to vaccines

that are prone to “open-vial” waste, start to decay not once they arrive, but once they are

“unpacked” [41, 48]. These studies, however, focus on the non-zero lead time case for con-

4



tinuously operating systems with infinite supply and therefore seek an optimal reordering

policy that minimizes cost.

The remainder of this chapter is organized as follows. In Section 1.2, we present an

MDP formulation of the problem and a recursive expression to evaluate the greedy policy.

In Section 1.3, we analytically establish the threshold type structure of the optimal policy

and present an insightful numerical example. In Section 1.4, we perform sensitivity analysis

on each of the model parameters and investigate two easy-to-implement heuristic policies.

In Section 1.5, we conclude and comment on future work.

1.2 MODEL FORMULATION

In this section, we present an MDP model that determines when to discontinue service given

that each vial contains a fixed number of doses and has a limited shelf-life after opening. We

assume that: (i) the maximum number of clinic hours per session is equal to the shelf life of an

open vial (i.e., doses cannot expire midday), (ii) the daily demands are iid, (iii) the minimum

number of working hours per session is fixed a priori, (iv) opting to discontinue service

does not affect the demand distribution on subsequent sessions and (v) the replenishment

schedule is fixed. Although assumption (i) may not hold for some vaccines with shorter

open vial lifetimes (e.g., six hours) in clinics with longer sessions (e.g., eight hours), many

clinics only vaccinate for six or fewer hours per day. Overall, this assumption allows us to

cover a large proportion of clinic environments while capturing the most important problem

dynamics without considering the age of the currently open vial when making decisions; we

leave this generalization for future work. Assumption (iv) may also be violated, i.e., service

interruptions may impact demand, however, service interruptions are already commonplace

in many locations due to stockouts at the end of the replenishment cycle. Therefore, this

assumption is not overly restrictive and we leave its relaxation for Chapter 3.

Although from an implementation perspective this problem is viewed as one of deciding

when to close the clinic for the day, we take a different, but equivalent, modeling approach.

More specifically, we formulate a model to determine whether or not to open a vial when
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a patient arrives, no vial is currently open and the clinic has already met the prespecified

minimum number of working hours for the day. We divide the session into η timeslots of

length τ such that the maximum number of arrivals per timeslot is 1. Let ĥ be the minimum

number of working timeslots, i.e., the earliest time that service may be discontinued. The

equivalence between the approaches can then be seen by noting that if it is optimal not to

open a vial when a patient arrives after timeslot ĥ and no vial is open, then it would have

been optimal for the clinic to close for the day if no patient arrived in the previous timeslot.

In Sections 1.3, we present the optimal policy in this latter form.

Let T be the number of sessions between replenishments, Q be the replenishment quan-

tity, i.e., the initial inventory in vials, and z be the number of doses per vial. (We assume

T > 1 throughout because when T = 1 acting “greedily” is optimal.) Let h be the timeslot

of the arrival prompting the current decision, h = 1, 2, . . . , η. We assume that (i) vaccine

demand (if any) occurs at the beginning of each timeslot, (ii) the earliest the first patient

can arrive is at time zero, which corresponds to the beginning of timeslot h = 1, (iii) the

latest the last patient can arrive is time (η − 1)τ , which corresponds to the beginning of

timeslot h = η and (iv) the latest the clinic may close is after it administers a vaccine at

time (η − 1)τ to the last patient (if any).

Let the patient interarrival times (measured in timeslots) be iid geometric(p) random

variables and let X denote the arrival time (slot) of the first arrival. Hence,

pX(x) =







p(1− p)x−1, x = 1, . . . , η,

(1− p)η, x = η + 1,
(1.1)

and the daily demand, D, is a binomial (η, p) random variable. (Note that for η large and p

small, D is approximately Poisson.) Let Dh be the total demand in timeslot h through the

end of the day given an arrival in timeslot h, i.e.,

pDh
(d) =







(

η−h
d−1

)

p(d−1)(1− p)(η−h−(d−1)), d = 1, . . . , η − h + 1; h = 1, . . . , η,

0, otherwise.
(1.2)
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Lastly, let Yh be the timeslot in which the zth arrival after timeslot h occurs and let Yh = η+1

denote the case in which the number of arrivals after timeslot h before the end of the day is

less than z. Note that Yh is a shifted negative binomial random variable, i.e.,

pYh
(y) =



















0, y < h+ z,
(

y−h−1
z−1

)

pz(1− p)y−h−z, y = h+ z, h + z + 1, . . . , η,

1−
∑η

i=h+z pYh
(i), y = η + 1.

(1.3)

The state of the process at the time of an arrival when there are currently no open vials

is given by (t, q, h) where t is the number of sessions (including the current session) until the

next replenishment arrives, q is the number of vials on hand and h is the current timeslot.

In Figure 1 we depict a schematic representation of the replenishment cycle in which we also

indicate the state of the process. Let V (t, q, h) denote the maximum expected number of

vaccines administered prior to the next replenishment starting from state (t, q, h). Hence,

for t > 0, q > 0, h ≤ η,

V (t, q, h) =

{

g(t, q, h), h ≤ ĥ, (1.4a)

max {ν(t− 1, q), g(t, q, h)} , h > ĥ, (1.4b)

where

g(t, q, h) ≡

η
∑

y=h+z

(

z + V (t, q − 1, y)

)

pYh
(y) +

z
∑

d=1

(

d+ ν(t− 1, q − 1)

)

pDh
(d), (1.5)

and

ν(t, q) ≡

η+1
∑

h=1

V (t, q, h)pX(h). (1.6)

Expression (1.4a) corresponds to the situation in which a new vial must be opened

because a patient arrives at or before timeslot ĥ and no vial is currently open. The first term

on the right-hand-side of Equation (1.5) corresponds to the case in which a vial is opened

and the rest of the day’s demand (including the current arrival) exceeds z. The second term

corresponds to the opposite case in which a vial is opened, but is not used completely before

the end of the day.
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Figure 1: Replenishment cycle timeline.

Expression (1.4b) specifies the maximum expected number of vaccines administered prior

to the next replenishment given that an arrival occurs in timeslot h > ĥ and no vial is cur-

rently open. In this situation, clinicians must decide between opening a new vial (Equation

(1.5)) and discontinuing service for the day (Equation (1.6)). Equation (1.6) is simply the

maximum expected number of vaccinations to go at the beginning of the tth session until

replenishment (i.e., prior to the first arrival) when there are q vials on hand.

Clearly, if there is no demand on any given session, then there is no decision to be made

and V (t, q, η+ 1) = ν(t− 1, q). Similarly, if the vial inventory is exhausted, then there is no

more reward to be earned, i.e., V (·, 0, ·) = 0. Lastly, because the problem horizon is defined

as the replenishment interval, we also have V (0, ·, ·) = 0.

As described in Section 1.1, current practice is typically to immunize every patient as long

as inventory is on hand. Let Ṽ (t, q, h) denote the expected number of vaccines administered

prior to the next replenishment when starting from state (t, q, h) under this policy. We can

evaluate this “greedy policy” by removing the option not to open a vial from Equation (1.4).

Hence for t > 0, q > 0, h ≤ η,

Ṽ (t, q, h) =

η
∑

y=h+z

(

z + Ṽ (t, q − 1, y)

)

pYh
(y) +

z
∑

d=1

(

d+ ν̃(t− 1, q − 1)

)

pDh
(d), (1.7)
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where

ν̃(t, q) ≡

η+1
∑

h=1

Ṽ (t, q, h)pX(h). (1.8)

The boundary cases are treated the same as in the MDP formulation, i.e., Ṽ (t, q, η + 1) =

ν̃(t− 1, q), Ṽ (·, 0, ·) = 0 and Ṽ (0, ·, ·) = 0.

1.3 A NUMERICAL EXAMPLE AND POLICY STRUCTURE

In this section, we first present a numerical example for which the optimal policy exhibits

intuitive structure. We then analytically establish that this structure holds in general. Sub-

sequently, we compare the performance of the optimal policy to that of the greedy policy in

terms of the percentage of demand vaccinated and the expected number of doses lost due to

OVW.

Consider a problem instance for which T = 20 sessions, η = 480 timeslots per session and

ĥ = 0 (i.e., there is no restriction on the minimum number of working hours per session).

Suppose the expected daily demand is µ = 11 patients/session so that p = µ
η
= 0.0229 (this

value falls within the range of values seen in many catchment areas, e.g., Bangladesh [16]),

and that z = 10 doses per vial. Further, suppose that the initial inventory level equals the

total expected demand, i.e., Q = (11 × 20)/10 = 22 vials. We implement the backward

induction algorithm [38] to solve for the optimal policy using Equation (1.4) as well as to

evaluate the greedy policy using Equation (1.7).

For this example, the optimal policy exhibits intuitive structure. More specifically, for

each session t and inventory level q, there exists a timeslot h∗(t, q) such that for h > h∗(t, q),

V (t, q, h) = ν(t − 1, q). That is, if when timeslot h∗(t, q) occurs there is no vial open, it

is optimal to discontinue service for the day. Alternatively, if when timeslot h∗(t, q) occurs

there is a vial open, it is optimal to discontinue service when all of its doses have been

administered or at the end of the day, whichever occurs first.

Figure 2 plots h∗(t, q) as a function of q for t ∈ {5, 10, 15, 20}. As expected, the optimal

policy is more conservative when the vial inventory is low; that is, h∗(t, q) decreases in q for
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a given t so that given a lower inventory of vials, it is optimal to discontinue service earlier

in the day. Starting from timeslot zero with t sessions remaining and some vial inventory q,

a sample path would move down and to the left as vaccines are administered until it hits the

corresponding threshold at which point it is optimal to discontinue service immediately or

when the vial currently open is emptied. That is, for all (h, q) pairs below the curve h∗(t, q)

in Figure 2, opening a new vial is suboptimal. A sharp change in h∗(t, q) occurs when the

number of vials remaining equals the number of sessions remaining, which is intuitive for

this example in which the daily demand and the vial size are approximately equal. For this

example with η = 480, if the maximum length of a session is eight hours (e.g., 8am-4pm),

then each timeslot is one minute long and corresponds to the right-hand vertical axis.
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Figure 2: Optimal threshold, h∗(t, q), as a function of t and q for the numerical example.

Proposition 1 establishes that the policy structure observed in Figure 2 holds in general.

For ease of notation, let a∗(t, q, h) be the optimal action in state (t, q, h) in response to

the arrival at time h, where action ‘0’ corresponds to not opening a vial and action ‘1’

corresponds to opening a vial.

Proposition 1. For every (t, q) pair, t ∈ {0, 1, . . . , T} and q ∈ {0, 1, . . . , Q}, there exists an

h∗(t, q) such that for every h > h∗(t, q), a∗(t, q, h) = 0.
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Proof: If ĥ = η, then the optimal policy is equivalent to the greedy policy and h∗(t, q) = η

for all (t, q). Now consider ĥ ≤ η − 1. Because ν(t, q) is independent of h, it is sufficient to

show that g(t, q, h) is monotone nonincreasing in h. We proceed by induction, but first note

that
z
∑

i=1

pDh
(i) +

η
∑

y=h+z

pYh
(y) = 1. (1.9)

Second, note that Dh and Dh+1 are (shifted) binomial random variables and satisfy the con-

ditions of Theorem (1.a) in [21] which implies that Dh+1 ≤st Dh, or that for all nondecreasing

functions γ,

E[γ(Dh+1)] ≤ E[γ(Dh)]. (1.10)

As a result,

g(t, 1, h+ 1) =

η
∑

y=h+z+1

zpYh+1
(y) +

z
∑

d=1

dpDh+1
(d)

=

η−h
∑

y=z+1

zpDh+1
(y) +

z
∑

d=1

dpDh+1
(d) (1.11)

≤

η−h+1
∑

y=z+1

zpDh
(y) +

z
∑

d=1

dpDh
(d) (1.12)

=

η
∑

y=h+z

zpYh
(y) +

z
∑

d=1

dpDh
(d) (1.13)

= g(t, 1, h),

where (1.11) and (1.13) follow from (1.9), and (1.12) follows from (1.10) with γ defined as

γ(d) =







d, 1 ≤ d ≤ z,

z, z ≤ d ≤ z − h + 1.
(1.14)

Now, assume that g(t′, q′, h) is nonincreasing in h for all t′ > 0 and q ≤ q′. By definition,

11



g(t′, q′ + 1, h+ 1)

=

η
∑

y=h+z+1

(

z + V (t, q′, y)

)

pYh+1
(y) +

z
∑

d=1

(

d+ ν(t− 1, q′)

)

pDh+1
(d)

=

η
∑

y=h+z+1

V (t, q′, y)pYh+1
(y) + ν(t− 1, q′)

z
∑

d=1

pDh+1
(d) + z

η
∑

y=h+z+1

pYh+1
(y) +

z
∑

d=1

dpDh+1
(d)

=

η−1
∑

y=h+z

V (t, q′, y + 1)pYh
(y) + ν(t− 1, q′)pYh+1

(η + 1) + z

η−h
∑

d=z+1

pDh+1
(d) +

z
∑

d=1

dpDh+1
(d)

(1.15)

≤

η−1
∑

y=h+z

V (t, q′, y)pYh
(y) + ν(t− 1, q′)

(

pYh
(η) + pYh

(η + 1)

)

+ z

η−h+1
∑

d=z+1

pDh
(d) +

z
∑

d=1

dpDh
(d)

(1.16)

≤

η
∑

y=h+z

V (t, q′, y)pYh
(y) + ν(t− 1, q′)pYh

(η + 1) + z

η−h+1
∑

d=z+1

pDh
(d) +

z
∑

d=1

dpDh
(d) (1.17)

=

η
∑

y=h+z

V (t, q′, y)pYh
(y) + ν(t− 1, q′)

z
∑

d=1

pDh
(d) + z

η
∑

y=h+z

pYh
(y) +

z
∑

d=1

dpDh
(d) (1.18)

=g(t′, q′ + 1, h),

where (1.15) follows from the fact that pYh+1
(y + 1) = pYh

(y) and Equation (1.9); (1.16)

follows from the induction assumption, inequality (1.10) and Equation (1.9); (1.17) follows

from the fact that, by definition, V (t′, q′, η) ≥ ν(t′ − 1, q′) for ĥ ≤ η − 1; and (1.18) follows

from Equation (1.9).

Hence, g(t, q, h) is nonincreasing in h for all t and q, which implies the existence of

h∗(t, q) ≥ ĥ for all (t, q) pairs.

We can exploit the structure established in Proposition 1 computationally by tailoring

the backward induction algorithm to only consider policies of this form. That is, we can

tailor the algorithm to consider timeslots in increasing order for each (t, q) pair until the first

a∗(t, q, h) = 0 is observed at which point we know that h∗(t, q) = h and can set a∗(t, q, h′) = 0

for all h′ > h.

Table 1 summarizes the resulting policy performances for the same numerical example

introduced at the beginning of this section. Because the greedy policy is likely to stock out
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near the end of the replenishment cycle, the optimal policy outperforms the greedy policy

by nearly 36 vaccinations, or 16.2% of the total expected demand. Furthermore, as shown

in the last column of Table 1, the expected amount of time that the clinic is closed under

the greedy policy (5.6 sessions per cycle) is more than double the expected amount of time

that the clinic is closed under the optimal policy (2.4 sessions per cycle).

Table 1: Performance of the optimal and greedy policy for the numerical example.expected number ofvaccinations percentage ofdemand vaccinated expected open vialwaste (doses) expected number of closedtimeslots (sessions)greedy policy 157.9 71.8% 62.1 5.6optimal policy 193.6 88.0% 26.0 2.4
Table 1 also reports the expected amount of OVW, in doses, over the problem horizon.

Let W (T,Q) denote this quantity under the optimal policy. We calculate W (T,Q) by first

calculating the expected number of vials that are opened and then calculating the difference

between the corresponding number of doses and the expected number of doses administered.

Let N(T,Q) denote the total expected number of vials opened under the optimal policy

and N(t, q, h) be the analogous quantity starting from state (t, q, h). Hence, N(T,Q) can be

computed recursively using the fact that for all t and q, analogous to Equation (1.6),

N(t, q) =

η+1
∑

h=1

N(t, q, h)pX(h), (1.19)

where

N(t, q, h) =























∑η
y=h+z

(

1 +N(t, q − 1, y)

)

pYh
(y)+

∑z
d=1

(

1 +N(t− 1, q − 1)

)

pDh
(d),

h ≤ h∗(t, q),

N(t− 1, q), h > h∗(t, q).

The first expression in Equation (1.20) corresponds to an arrival in timeslot h, h ≤ h∗(t, q),

when there is no vial currently open. In this case, one new vial is opened immediately and

the expected number of additional vials opened is N(t, q − 1, y) if another decision is faced
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today in timeslot y, and N(t − 1, q − 1) otherwise. The second expression corresponds to

the opposite case in which no new vial is opened and service is discontinued for the day.

Therefore, the expected OVW in doses is given by

W (T,Q) = zN(T,Q)− ν(T,Q). (1.20)

Note that the sum of W (T,Q) and the expected number of vaccines administered may be

less than the initial inventory level of zQ doses; the difference corresponds to the expected

number of doses that are never reconstituted, i.e., those that are left over in unopened vials

at the end of the problem horizon. For the numerical example considered in this section,

this value is 220 − (193.6 + 26) = 0.4 doses under the optimal policy. The expected OVW

under the greedy policy is computed similarly.

1.4 NUMERICAL RESULTS

In this section, we present the results of our numerical experimentation. In Section 1.4.1, we

briefly explore the impact of different values of ĥ, which dictates the minimum number of

working hours per session. In Section 1.4.2, we examine the effect of using different values

of η, the number of timeslots per session. In Section 1.4.3, we conduct sensitivity analyses

on the model parameters T , Q and z. Finally, in Section 1.4.4, we construct some intuitive,

easy-to-implement heuristic policies and compare their performance to that of the optimal

policy and the greedy policy. Throughout this section, we consider variants of the base

case parameter values used in Section 1.3, namely T = 20 sessions, Q = 22 vials, z = 10

doses/vial, µ = 11 patients/session.

To facilitate the discussion, we introduce several metrics. Let φ(T,Q) be the expected

percentage of demand vaccinated under the optimal policy, i.e.,

φ(T,Q) =
ν(T,Q)

µT
. (1.21)
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Recall that W (T,Q) is the expected OVW (in doses) as defined by Equation (1.20) and let

ω(T,Q) be the expected percentage of doses wasted during the problem horizon under the

optimal policy, i.e.,

ω(T,Q) =
W (T,Q)

ν(T,Q) +W (T,Q)
. (1.22)

Let φ̃(T,Q), W̃ (T,Q) and ω̃(T,Q) represent the analogous quantities under the greedy policy.

1.4.1 Minimum Number of Guaranteed Timeslots Per Session, ĥ

The larger the value of ĥ, the greater the number of guaranteed clinic-hours per Session.

However, constraining the problem in this way leaves less room for optimization, which is

the main focus of our analysis. Therefore, in the remainder of this section, we set ĥ = 0.

First, however, to briefly investigate the effect of varying ĥ we assume a maximum

eight-hour workday divided into 480 timeslots of length 1 minute and vary ĥ from 0 (the

“unrestricted” policy) to 480 (the greedy policy) in increments of 30 timeslots for the base

case outlined at the beginning of Section 1.4. Figure 3 plots the percent loss in the expected

number of vaccinations for the unrestricted policy compared to the restricted policy as a

function of ĥ. For example, if the clinic is required to remain open for a minimum of 360

timeslots (i.e., a minimum of 6 hours), then the total expected number of vaccinations would

be approximately 4% less than if no requirement were imposed.

For this example, the percent loss in the expected number of vaccines administered is neg-

ligible when the required number of working hours per session is less than approximately 5

hours, or 62.5% of the maximum number of working hours, and then increases sharply. This

behavior indicates that under the optimal policy, the clinic rarely discontinues service before

its fifth hour of operation.

1.4.2 Number of Timeslots, η

The larger the value of η, the greater the number of timeslots in a session and hence the

more justifiable the assumption of at most one arrival per timeslot. However, increasing η

also increases the problem size. To investigate the effect of varying η, we assume a maximum

eight-hour workday and consider intervals of τ ranging from 30 minutes (η=16) to 15 seconds
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Figure 3: Percentage loss in the expected number of vaccinations between the unrestricted

and restricted policy.

(η=1920). We also adjust the value of p corresponding to each value of η such that the

expected demand over a session is the constant µ = ηp. Specifically, we consider (η, p) ∈

{(16, 0.6875), (32, 0.3438), (96, 0.1146), (480, 0.0229), (960, 0.0115), (1920, 0.0055)} for T =

20, Q = 22, z = 10 and µ = ηp = 11. Table 2 presents the values of the performance metrics

for each value of η.

Table 2: Sensitivity analysis on the number of timeslots.

= 16p = 0.6875

= 32p  = 0.3438

= 96p  = 0.1146

 = 480p  = 0.0229

 = 960p  = 0.0115

 = 1920p  = 0.0055ØT 220 220 220 220 220 220

(T,Q ) 199.8 196.3 194.3 193.6 193.5 193.4

(T,Q ) 90.8% 89.2% 88.3% 88.0% 87.9% 87.9%W
(T,Q ) 19.9 23.2 25.2 26.0 26.1 26.1

(T,Q ) 9.1% 10.6% 11.5% 11.8% 11.9% 11.9%

Note that as η increases, we decrease p to maintain constant daily demand, and hence the

variability of the daily demand, ηp(1−p), increases in η. Therefore, as expected, the average
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percentage of demand met, ν(T,Q), decreases in η as shown in Table 2. While the results

corresponding to larger values of η are in general more “accurate,” i.e., closer to continuous

decision making, from Table 2 it is clear that there is little to be gained by increasing the

value of η beyond 480. Therefore, we use this value (corresponding to τ = 1 minute) for

the number of timeslots per session for all of our subsequent analysis. In other words, we

assume at most one patient arrives per minute throughout each session.

1.4.3 Parameters T , Q and z

One important factor that significantly affects coverage rates is the number of sessions be-

tween two successive replenishments, T . Examining this parameter has practical value as

well, given that the policies for EPI vaccinations vary widely by country: clinics in some

locations vaccinate patients every day of the week, others only once a week, and yet others

only once a month. In this section, we first analyze the relationship between the number of

sessions between replenishments and the expected number of vaccinations. In our compar-

isons, we vary T , but adjust p such that demand remains constant, i.e., we consider (T, p)

∈ {(20, 0.0229), (16, 0.0286), (12, 0.0382), (8, 0.0573), (4, 0.1146), (1, 0.4583)}. The first five

pairs of values correspond to 5, 4, 3, 2 and 1 sessions per week, respectively; the last pair of

values corresponds to one session per month.

For each of these values of T , Figure 4 plots the percentage of demand satisfied, φ(T,Q),

and the percentage of vaccines wasted, ω(T,Q), under the optimal policy and the greedy

policy using the same baseline parameter values (Q = 22 vials, z = 10 doses/vial, η = 480).

As Figure 4 indicates, if there are fewer sessions between successive replenishments, then the

optimal policy is able to fulfill a greater proportion of the total demand. This observation

validates the observation in the field [24] and in other contexts, that in general, consolidating

the same total demand into fewer discrete time periods results in less OVW and hence greater

coverage rates.

Although the results in Figure 4 favor a scenario in which the clinic is open for fewer

sessions per replenishment period, it does so under the assumption that the total demand

within the replenishment period is insensitive to the number of sessions per period. An
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Figure 4: Percentage of demand vaccinated and percentage of doses wasted as a function of

the number of sessions per replenishment cycle.

argument could be made, however, that this assumption is not necessarily true because

reducing the number of sessions that the clinic is open may create an inconvenience for

some patients. This phenomenon is especially likely to be true in countries with dispersed

populations and poor infrastructure, and indeed, is one of the arguments offered in favor

of keeping clinics open more often. If as T decreases, the expected demand per session

decreases, then the advantage from consolidation will be offset by a decrease in the total

number of vaccinations because of decreased overall demand. Thus, the total number of

vaccinations corresponding to the values plotted in Figure 4 is likely to overstate the true

number of vaccinations.

For this reason, for each value of T we also determine the maximum amount by which

demand could decrease without resulting in poorer performance than the base case with

T = 20 sessions. From Table 2 (in the column for η = 480), the expected number of

vaccinations over the problem horizon is 193.6 out of an expected total demand of 220. Let

δT be the maximum amount by which the total mean demand can decrease (in which case

the daily expected demand is 220−δT
T

) under value T , and yet result in no fewer than 193.6

vaccinations on average.
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Figure 5 plots the values of δT
T
×100% as a function of T . As the figure indicates, switching

from 5 to 4 sessions requires almost no change in demand in order to be worthwhile, whereas

switching from 5 to 3 sessions would require a decrease of more than 6% in the daily demand

rate for the consolidation to be unattractive. Under a just one vaccination session per

month policy, a reduction in demand of up to 12% would achieve at least the same number

of vaccinations as in the base case. Note that the corresponding values of φ(T, 22) are given

by ( 193.6
220−δT

)100% and these values are all greater than the values plotted in Figure 4. In

summary, Figure 5 allows policy makers to weigh the pros and cons of reducing the number

of sessions per period based on their estimates of any corresponding reductions in demand

and the targeted expected number of vaccinations.

0%2%4%6%
8%10%12%14%

1 4 8 12 16 20percent agech angei n
d ail yd emand

number of sessions per rep lenishment cycle, T
Figure 5: Sensitivity analysis on number of sessions per replenishment cycle.

In our analysis thus far, the initial inventory, Q, has been set equal to µT , the total

expected demand over the problem horizon. Next, we relax this assumption and analyze the

effect of carrying buffer stock. Let α be the percentage of the initial inventory that is buffer

stock, i.e.,

α =

(

Qz − µT

µT

)

100%.

Assuming the baseline values of T = 20 sessions, µ = 11 patients/session, η = 480 per

session and z = 10 doses/vial, we examine values ofQ ∈ {22, 23, . . . , 44}, which correspond to
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α ∈ {4.6%, 9.1%, . . . , 100%}, respectively. It is worth mentioning that theWHO recommends

that clinics use a buffer of 25% when setting their order-up-to levels. Figure 6 displays the

results and, as expected, indicates that a higher initial inventory results in higher coverage.

Also, the greater the buffer, the better the greedy policy performs compared to the optimal;

this observation is intuitive because having more vaccine on hand renders the myopic nature

of the greedy policy closer to optimal.

On the other hand, as seen in Figure 6, it is interesting that the percentage of vaccines

wasted increases in α under the optimal policy, ω(T,Q), but is constant in α under the greedy

policy, ω̃(T,Q). This observation can be explained by the fact that the greedy policy does

not depend on the number of sessions remaining until replenishment. That is, on average, the

wastage rate under the greedy policy is the same every session until the initial inventory is

exhausted, at which point there is no additional wastage. Under the optimal policy, however,

a larger buffer results in less conservative actions, resulting in greater wastage. Overall, the

optimal policy requires smaller buffers to achieve the same level of service as the greedy

policy, but with less wastage.
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Figure 6: Percentage of demand vaccinated and percentage of doses wasted as a function of

buffer stock.
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Finally, we examine the effect of varying the vial size, z. Vaccine manufacturers often

produce vials of various sizes, and the question of an “optimal” vial size remains open [23, 24].

Vials containing fewer doses result in less OVW, but in general, they also tend to be more

expensive to manufacture on a per-dose basis and take up more cold storage space in the

vaccine supply chain. We examine the effect of various values of z between 1 and 25 doses

under three scenarios. Figure 7 graphs demand fulfillment, φ(T,Q), and wastage, ω(T,Q),

as a function of z for: (i) T = 4 sessions (one session per week), µ = 55 patients/session, (ii)

T = 12 sessions (3 sessions per week), µ = 18.33 and (iii) T = 20 sessions (5 sessions per

week), µ = 11 patients/session. Ideally, each case considered would have the same constant

buffer size (e.g., α = 0), however, because the number of doses per vial is discrete, rounding

is necessary to maintain an integer value of Q. This rounding results in the slightly bumpy

nature of the curves in Figure 7.
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Figure 7: Percentage of demand vaccinated and percentage of doses wasted as a function of

vial size.

As shown in Figure 7, smaller values of z result in less wastage and a greater percentage

of demand fulfilled. It is worth noting that for each T , there exists a threshold close to µ

(daily demand) for the number of doses per vial such that values above this threshold sharply

reduce coverage and increase waste. This result stems from the fact that if there are fewer
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than T vials on hand at the beginning of the replenishment period, then unless there are

sessions with no demand, stocking out is almost certain. Furthermore, with fewer sessions,

the benefits of smaller vial sizes are less pronounced.

1.4.4 Heuristic Policies

In this section, we consider two heuristic policies to investigate the degree to which the

greedy approach may be improved upon without resorting to the complexities involved in

implementing the optimal policy. These heuristics are based on the insights gained through

the numerical experimentation, but are simpler in form in that they do not depend on the

time of day.

First, consider the following heuristic: if at the beginning of the session the current stock

level is not sufficient to serve the expected demand over the remaining sessions (not including

the current session), then the clinic remains closed. Otherwise the clinic opens and serves all

of the daily demand, as the greedy policy would. Let V̂ (t, q, h) denote the expected number

of vaccines administered prior to the next replenishment starting from state (t, q, h) under

this heuristic policy. Then, for t > 0, q > 0, h ≤ η,

V̂ (t, q, h) =

η
∑

y=h+z

(

z + V̂ (t, q − 1, y)

)

pYh
(y) +

z
∑

d=1

(

d+ V̂ (t− 1, q − 1, 0)

)

pDh
(d), (1.23)

where

V̂ (t, q, 0) =



















V̂ (t− 1, q, 0), q ≤ (t−1)µ
z

,

∑η
x=1 V̂ (t, q, x)pX(x) + V̂ (t− 1, q, 0)pX(η + 1), q > (t−1)µ

z
,

(1.24)

corresponds to the total expected number of vaccines to be administered over t sessions when

starting the current session with q vials.

Somewhat surprisingly, this heuristic performs nearly identically to the greedy policy.

The reason behind this observation is that both policies result in roughly the same number

of open sessions (on which they both attempt to serve all of the demand and hence both

result in approximately the same expected volume of OVW) and the same number of closed

sessions. The only difference is that under the greedy policy, the closed sessions all occur at
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the end of the replenishment cycle, whereas under the heuristic policy, the closed sessions

are scattered throughout the planning period. For this reason, we do not report results for

this heuristic.

Instead, we examine a modified version of this heuristic under which the decision of

whether or not to open the clinic at the beginning of each session is made using the same

rule. However, under the modified heuristic, once the decision is made to open the clinic,

not all of the session’s demand is necessarily fulfilled. Rather, whenever a vial is emptied,

the current inventory is compared to the expected demand over the remaining sessions (not

including the current session) and if the inventory is less than or equal to this value, then

the clinic closes for the day; otherwise, the clinic remains open. Figure 8 depicts this time-

independent modified heuristic policy graphically for t = 10 and t = 20 sessions remaining

(the solid lines). For the sake of comparison, Figure 8 also includes the corresponding optimal

time-dependent thresholds from Figure 2.
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Let V̌ (t, q, h) denote the expected number of vaccines administered prior to the next

replenishment starting from state (t, q, h) under this modified heuristic policy. Then for
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t > 0, q > 0, h ≤ η,

V̌ (t, q, h) =























ν̌(t− 1, q), q ≤ (t−1)µ
z

,
∑η

y=h+z

(

z + V̌ (t, q − 1, y)

)

pYh
(y) +

∑z
d=1

(

d+ ν̌(t− 1, q − 1)

)

pDh
(d),

q > (t−1)µ
z

,

(1.25)

where

ν̌(t, q) ≡

η+1
∑

x=1

V̌ (t, q, x)pX(x) (1.26)

is the total expected number of vaccines to be administered over t sessions when starting the

current session with q vials. Table 3 compares the performance of the modified heuristic, the

greedy policy and the optimal policy for the baseline set of parameter values presented in

Section 1.3. The results show that the modified heuristic yields a considerable improvement

in performance over the greedy policy and is quite comparable with the optimal policy, while

being easier to implement than the optimal policy.

Table 3: Policy performance.

expected number of 

vaccinations

percentage of demand 

vaccinated

greedy policy 157.9 71.8%

modified heuristic policy 190.0 86.4%

optimal policy 193.6 88.0%

Lastly, in Figures 9 and 10, we present results of three policies for two different vial sizes

(z = 10 and z = 20, respectively) for various values of the daily demand. We consider the

baseline values of T = 20 sessions, η = 480 per session and α = 0%. If the mean daily

demand, µ, is significantly less than z, then as µ increases there is a steep increase in the

percentage of demand that is satisfied; this result can be explained by the fact that it is

beneficial to have a value of µ closer to z than to zero, because there is less of a chance

of wasting a portion of a vial that is opened. However, this effect diminishes, particularly
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Figure 9: Sensitivity analysis of policies over daily demand for z = 10.
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Figure 10: Sensitivity analysis of policies over daily demand for z = 20.

for the greedy heuristic, as µ approaches z because the probability that the daily demand

will slightly exceed z begins to increase, which results in a large amount of waste under

the greedy policy. This effect becomes less pronounced as µ assumes larger values between

integer multiples of z. As expected, all three policies perform better when µ is an integer

multiple of z.
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1.5 CONCLUSION

In Chapter 1, we address the problem of how to optimally conserve multi-dose vaccines

in remote locations in order to minimize OVW while administering as many vaccinations

as possible. We analytically establish that the optimal policy is of a threshold type. The

problem is a significant one, especially in lower and middle-income countries administering

vaccines as part of the WHO-EPI program, but it is also of interest to other stakeholders in

the vaccine delivery process. Policies that dynamically determine optimal clinic hours are

derived using a novel MDP approach. Sensitivity analysis lends insight into the benefits of

consolidating demand on fewer sessions between replenishments, adopting different buffer

stock strategies and using different vial sizes. Lastly, a simple heuristic is shown to provide

significant improvement over existing practice and perform competitively with the optimal

policy. Although the current approach assumes that each patient demands only one type

of vaccine, the results can be used in settings where patients require multiple vaccines if

decisions for each type of vaccine can be made separately, i.e., the optimal policies for each

type of vaccine can be implemented in parallel.

We implement several extensions to the model. For example, we relax the assumption

that the number of doses per vial is a known constant, i.e., treating the vaccine yield from

each vial as a random variable in Section 2.5. In practice, this variability often occurs,

and for example, a 20 dose vial might not yield exactly 20 doses. Another extension which

is considered in Chapter 3, is incorporating the option of delaying service and/or asking

patients to return at a later time/session rather than assuming that an unserved patient is

always lost. Delaying service, for example, could be captured by assuming that if a patient

arrives to find the clinic closed that patient will return to the clinic the following session

with some given probability.
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2.0 CUSTOMIZING IMMUNIZATION CLINIC OPERATIONS TO

MINIMIZE OPEN VIAL WASTE

2.1 INTRODUCTION

The existing literature on multi-dose vials is rather limited, and primarily focuses on the

economic implications of single- vs. multi-dose vials. In contrast, in Chapter 1, we address

another means for controlling OVW, namely that of vaccine administration from multi-

dose vials, using a rigorous mathematical approach. In this chapter we consider the same

decision making problem and evaluate operating strategies that maximize patient coverage

by controlling open vial waste, whereas, the focus in Chapter 1 is on model formulation,

policy structure and limited sensitivity analysis under the single objective of maximizing the

mean number of vaccinations administered.

The contributions of this chapter are five-fold. First, we pair combined analysis of the

MDP model with simulation to perform descriptive analysis of the distribution of session

duration induced by an optimal administration policy. We examine this novel metric of

policy performance because a coverage-maximizing/ waste-minimizing administration policy

that induces large variability in a clinic’s hours of operation may inconvenience patients and

lead to undesirable long-term consequences. Second, we explore means by which a clinic can

directly control patient convenience by imposing a minimum number of guaranteed hours

per session or increasing the session frequency. We explore how these two means of control

interact with each other as well as when the latter can counterintuitively affect coverage

and wastage. Third, we propose a novel, easy to implement static heuristic policy that

induces zero variability in session duration and compare its performance to that of two other

heuristic policies. Fourth, we introduce the concepts of random vial-yield and vial failures to
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this problem setting and assess their impact on the performance of the optimal and heuristic

policies. Lastly, we use data available for three countries to perform novel costs analyses for

a single vaccine over all GAVI countries, which suggest potential savings on the order of $4.6

million.

The remainder of this chapter is organized as follows. In Section 2.2, we provide a new

simulation model created to evaluate additional performance metrics of interest. In Section

2.3, we conduct extensive computational analyses to generate insights on the relationships

between day-to-day clinic operations and the vaccine administration policy. In Section 2.4,

we present our heuristic policy analysis. We then, in Section 2.5, study the performance

of the optimal policy and the heuristic policies in the presence of vial failures and random

vial yield. In Section 2.6, we summarize the results in the form of some general operational

recommendations based on the analysis in Sections 2.3 and 2.5 and estimate the procurement

cost savings realized by switching to the optimal policy. Lastly, in Section 2.7, we discuss

limitations of the work and possible future extensions.

2.2 SIMULATION MODEL

In this section, we present a simulation model used to assess the performance of a given

vaccine administration policies generate by the MDP model developed in Section 1.2. This

model simulates a clinic that administers one type of vaccine over one replenishment cycle.

Similar to the MDP model, sessions are divided into η = 480 timeslots, and arrivals occur

at the beginning of each timeslot according to a Bernoulli distribution with probability µ
η
.

A flowchart of the simulation model is shown in Figure 11. In each replication, the clinic

starts at the beginning of the replenishment cycle with Q vials on hand. Arrivals occur

randomly in each timeslot and h denotes the current timeslot. Whenever an open vial is

available, clinicians vaccinate arriving patients. Whenever an arrival occurs and no vial is

open, the decision to open a new vial is made according to the vaccine administration policy,

h∗(t, q). Hence, clinicians discontinue service at the first timeslot greater than h∗(t, q) when

no open vial is available. As mentioned in Section 1.2, unserved patients are lost and leave
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the system with no effect on future demand. Note that the simulation of each session extends

beyond the time that the clinic discontinues service so that the number of unserved patients

can be tallied.

I sth er e op env ial? v accin at e th ep at ienth | h*(t ,q) v accin at e th ep at ient
P at ientarr iv al?
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Figure 11: Simulation model flowchart.

2.3 IMPACT OF CLINIC OPERATIONS ON POLICY PERFORMANCE

As explained in Section 1.2, the MDP model maximizes the expected number of vaccinations

under a given set of parameter values. In this section, we analyze how the parameters

under the clinic’s control (the number of vaccination sessions per replenishment cycle and

guaranteed hours per session) interact with parameters that the clinic does not typically
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control (e.g., vial size, replenishment interval and initial inventory) to determine policy

performance. We assess these relationships and their inherent trade-offs as a function of

coverage rate, OVW and additional new metrics (e.g., closing time distribution, prediction

intervals on the number of open hours, and percentage gain/loss compared to benchmark

vaccine administration policies).

More specifically, in Section 2.3.1, we analyze session duration under the simplest form of

the optimal policy (i.e., one with no set number of guaranteed hours). That is, we evaluate,

via simulation, how session duration changes as a function of the number of sessions per

cycle and observe that in some cases, considerable variation exists from session to session

within a replenishment cycle. Such variability could create operational challenges. Hence,

in Section 2.3.2, with the aim of preventing discontinuation of vaccine administration “too

early” during a session, we consider imposing some minimum number of working hours per

session and propose a metric for determining the most desirable duration of these guaranteed

hours. In Section 2.3.3, we evaluate the effect of the number of sessions per replenishment

cycle on the performance of the optimal policy while operating the clinic for a specified

number of guaranteed hours (i.e., using the results of Section 2.3.2). In doing so, we focus on

determining the appropriate number of sessions per replenishment cycle in order to achieve a

coverage target under an optimal policy with guaranteed hours. The goal is to offer as many

sessions as possible to facilitate patient access to the clinic, without compromising coverage.

The main criterion used to evaluate the performance of a vaccine administration policy

is the expected number of vaccinations per cycle, i.e., coverage rate which is introduced in

Equation 1.21 in Section 1.4. By coverage rate, we mean the expected percentage of patients

who arrive and are vaccinated.

Throughout this section, we consider values of T ∈ {4, 8, 12, 16, 20}, which are equivalent

to 1-5 sessions per week for a one-month replenishment cycle; values of z ∈ {1, 5, 10, 20}

which represent the most common vial sizes; and set the initial inventory to:

Q = 1.25
µT

z
, (2.1)

which corresponds to a 25% buffer stock, i.e., the clinic starts each replenishment cycle

with 25% more doses than the expected cycle demand, µT . These ranges represent values
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commonly seen in practice [24, 10]. Furthermore, consistent with Chapter 1, in the remainder

of this section we assume that the number of sessions per cycle does not significantly affect the

distribution of the demand between two stock replenishments. That is, in comparing different

values of T , we assume that µ scales accordingly so that µT remains constant. We consider

two values for the expected number of arrivals per cycle, namely µT = 96 and µT = 288.

These are typical values observed in practice for medium-size and large clinics, respectively,

for a two-dose vaccine schedule (see Section 2.6.2). Note that to maintain consistency in

buffer stock across all of the problem instances considered, both of these values always result

in an integer value for Q, the initial vial inventory, as defined by Equation (2.1).

2.3.1 Session Duration

We refer to the optimal vaccine administration policy with no requirements on the minimum

number of working hours per session (i.e., ĥ = 0, where ĥ is the earliest timeslot in which

the clinic may elect to discontinue service) as the “unrestricted policy.” In this section, we

first analyze the frequency with which it is optimal to discontinue service early under the

unrestricted policy as a function of the number of sessions per cycle for various vial sizes.

We then investigate the effect of the number of sessions per cycle on the full distribution of

the closing time and the variability of the number of operating hours per session under the

unrestricted policy.

Based on 10, 000 replications of the simulation model, the black regions in Figure 12

indicate the percentage of sessions that terminate before the end of the scheduled operating

hours under the unrestricted policy. As can be seen, a larger vial size generally results in

a higher frequency of early termination. This behavior can be explained by the fact that,

on average, a smaller vial size results in less OVW, and therefore higher inventory levels

throughout the replenishment cycle, which permits the clinic to remain open longer. (The

exception to this observation is the (z = 20, T = 20) case compared to the (z = 10, T = 20)

case. Note, however, that the z = 20, T = 20 case is somewhat extreme in that the initial

inventory is so low compared to the number of sessions that the clinic is unable to open a

vial in each of the 20 planned sessions.)
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Figure 12: Percentage of sessions that terminate before the end of the scheduled operating

hours (zQ = 360, µT = 288 and ĥ = 0).

Interestingly, however, Figure 12 suggests that the frequency of early closure is not

necessarily monotone in the number of sessions per cycle. For z = 20, the percentage of

sessions that terminate early is larger for T = 12 than for T ∈ {8, 16, 20}. This behavior

is somewhat counterintuitive because increasing the number of sessions generally increases

opportunities for OVW and hence entices the clinic to act more conservatively by closing

early. To explain this behavior, consider the ratio Q
T
, i.e., the “number of vials per session” if

the vials are divided equally across the sessions. Intuitively, the vaccine administration policy

is expected to result in fewer early closures when this ratio is large (plenty of inventory)

and/or close to an integer value (an integral number of vials are needed per session, in

expectation). For example, for z = 20 in Figure 12, the number of vials per session is 1.5 for

T = 12 sessions, whereas the number of vials per session is 1.1 for T = 16 sessions. Although

offering 4 more sessions, when T = 16 a smaller percentage of these sessions terminate early

because each session is likely to need one (and only one) vial to satisfy demand. When

T = 12, on the other hand, there is a good chance that each session will need a second vial,

but that much of this vial will go unused if opened, resulting in the optimal policy dictating

more frequent early closures.
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Based on the same simulation data, Figure 13 explores the entire distribution of the

closing time, as opposed to simply whether or not the closing time occurs before the scheduled

session end time, under the unrestricted policy. Because a large percentage of the simulated

sessions operate for the fully planned duration (see Firgure 12), Figures 13(a) and 13(b) plot

the closing time distribution conditional on terminating the vaccination session before the

end of the scheduled operating hours.
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Figure 13: Closing time distribution conditional on discontinuing service before the end of

the scheduled operating hours.
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Based on Figures 13(a) and 13(b), the closing time distribution increases monotonically

in the time of day for fewer sessions per cycle, whereas this behavior is not monotonic for a

greater number of sessions per cycle. For example, in Figure 13(a), for T = 20 the frequency

of closing early becomes significant after timeslot 360 (e.g., 2pm for an 8am-4pm session).

After timeslot 360, the distribution increases up to timeslot 450 (e.g., 3:30 pm for an 8am-

4pm session), at which point it attains its highest value and then decreases. That is, early

closing times tend to occur earlier in the day (though generally less often) when the number

of sessions per cycle is larger. This non-monotonic behavior occurs because at the beginning

of the cycle under larger T , there is a higher chance that preserving vials for future use

results in a larger number of vaccinations in the subsequent sessions. Therefore, the optimal

policy is more conservative regarding opening the last vial at the beginning of replenishment

cycle and as a result, an earlier closing time occurs more frequently. Indeed, for the extreme

case (T = 20) in which the initial number of vials is less than the number of sessions in

Figure 13(b), very early closures are not uncommon. Very early closures occur when the

first arrival occurs relatively late in the day, in which case it is optimal to retain all vials

for later sessions in which the first arrival is likely to occur earlier in the day resulting in a

higher chance of vaccinating more patients.

Next, we consider the variability of the hours of operation under the unrestricted policy

by constructing prediction intervals. Clearly, larger variability is undesirable from a patient

perspective. The number of hours open is bounded above by the maximum number of hours

per session. Therefore, to characterize the variability of the operating hours we construct a

99% one-sided prediction interval based on 10,000 replications of the simulation. Figure 14

reports the resulting prediction intervals for several problem scenarios. Generally speaking,

the mean (respectively, the variance) of the number of operating hours decreases (respec-

tively, increases) in the number of sessions per cycle. Therefore, for a larger number of

sessions, the closing time is less predictable, which results in potentially more inconvenience

for patients. In Figure 14(a), the variability is strictly increasing in the number of sessions

per cycle, whereas in Figure 14(b), the variability is not monotonic. In addition to having a

higher percentage of sessions that terminate before the end of the scheduled operating hours

(see Figure 12), the T = 12 scenario in Figure 14(b) has more variability in the conditional
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number of hours open than T = 8 and T = 16. That is, for the case with Q
T
= 1.5, not only

does the optimal policy result in more frequent early closures, but these early closure times

are more erratic. (The dramatic increase in the width of the prediction interval for T = 20

is again due to the fact that for this scenario, the initial number of vials is less than the

number of sessions, resulting in at least two sessions with zero operating hours.)

01234
56789

0 4 8 12 16 20 24numb erofh oursopenp
ersessi on

sessions per replenishment cycle, Tmeanlower prediction limit
maximum number of working hours per session

(a) z = 5, Q = 24, µT = 96, ĥ = 0.
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56789
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maximum number of working hours per session

(b) z = 20, Q = 18, µT = 288, ĥ = 0.

Figure 14: 99% prediction interval on the number of hours open per 8-hour session, condi-

tional on discontinuing service before the end of scheduled operating hours.

Unpredictable closing times can be inconvenient, especially in a developing country in

which travel logistics to reach a vaccination site can be difficult for a large portion of the
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population. This unpredictability motivates the need to define a fixed minimum number

of working hours per session during which clinicians vaccinate unconditionally. In the fol-

lowing section, we investigate the impact of imposing such guaranteed hours on the vaccine

administration policy.

2.3.2 Guaranteed Hours per Session

In Section 1.2, we introduce the concept of a minimum number of working hours or “guaran-

teed hours” per session, i.e., an earliest closing time, in order to decrease the inconvenience

associated with unpredictable operating hours. The analysis of this parameter in Section

1.4.1, however, is limited in scope. Hence, in this section, we analyze the performance of the

“restricted policy” (i.e., the optimal vaccine adminstration policy under a required minimum

number of working hours per session) as a function of the number of guaranteed hours per

session. We also propose a metric that can be used to determine an appropriate number of

guaranteed hours per session based on an acceptable percentage drop in the performance of

the restricted policy versus the unrestricted policy.

Let ν(T,Q, ĥ) be the expected number of vaccinations administered between two stock

replenishments over T sessions, with Q initial vials and ĥ guaranteed hours per session

(expressed in timeslots, e.g., η = 480 corresponds to the maximum number of working hours

per session, say 8, in which case ĥ = 240 corresponds to a minimum of four hours per session).

Furthermore, let γ(T,Q, ĥ) be the percentage gain in the expected number of vaccinations

under the restricted vaccine administration policy versus the greedy policy (as described in

Section 2.1) over T sessions, with Q initial vials and ĥ guaranteed hours per session, i.e.,

γ(T,Q, ĥ) =
ν(T,Q, ĥ)− ν(T,Q, η)

ν(T,Q, η)
× 100. (2.2)

Figure 15 parts (a) and (b) report the percentage gain as a function of guaranteed hours

per session based on the expected number of vaccinations as determined by the MDP model.

As seen in these figures, a sharp drop occurs in the performance of the restricted policy

for large ĥ. This drop in performance is caused by the fact that imposing a large number

of guaranteed hours may require clinicians to open new vials close to the end of the day,
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which are then not used completely. Prior to this point, however, the curves are relatively

flat, indicating that offering patients the convenience of a reasonable number of guaranteed

hours does not significantly degrade policy performance. Furthermore, as anticipated based

on Figure 12, imposing guaranteed hours does not significantly affect the performance of

the vaccine administration policy for smaller vial sizes because the optimal policy does not

typically stop vaccinating until the end of the session as planned. When larger vial sizes are

used, defining the number of guaranteed hours is more critical, as doing so can negatively

impact the performance of the vaccine administration policy.

0 .0%0 .5%1.0%1.5%2 .0%2 .5%3 .0%3 .5%4 .0%
0 30 60 90 120 150 180 2 10 240 270 300 330 360 390 420 450 4 80�

(T ,Q , �)
guaranteed hours (timeslot), �

T = 20 T = 16 T = 12T = 20 T = 16 T = 12
(a) z = 10, Q = 36, µT = 288.

0%2%4%6%
8%10%12%

0 30 60 90 120 150 180 2 10 240 270 300 330 360 390 420 450 4 80�

(T ,Q , �)
guaranteed hours (timeslot), �

T = 20 T = 16 T = 12 T = 8T = 20 T = 16 T = 12 T = 8
(b) z = 20, Q = 18, µT = 288.

Figure 15: Percentage gain in expected number of vaccinations versus the greedy policy as

a function of guaranteed hours.
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A reasonable value of the minimum number of working hours per session would guar-

antee acceptable performance of the vaccine administration policy without eroding patient

convenience. To explore this trade off, let

ĥ∗(T,Q, α%) = max

{

30

⌊

ĥ

30

⌋

:
γ(T,Q, 0)− γ(T,Q, ĥ)

γ(T,Q, 0)
≤ α%, 0 ≤ ĥ ≤ η

}

. (2.3)

That is, let ĥ∗(T,Q, α%) be the greatest number of guaranteed hours per session (rounded

down to the nearest 30 minute increment to avoid unnatural closing times) that results in

at most an α% drop in performance compared to the unrestricted vaccine administration

policy. The dashed circles in Figure 15 indicate ĥ∗(T,Q, 1%) for each scenario considered.

For example, in Figure 15(a), ĥ∗(16, 36, 1%) = 360, i.e., an earliest closing time of 2pm for

a clinic that operates from 8am-4pm. Throughout the remainder of Chapter 2, we suppress

dependence on T , Q and α for notational convenience and let ĥ∗ ≡ ĥ∗(T,Q, 1%).

In Figure 16, we plot ĥ∗ as a function of the number of sessions per replenishment cycle.

The value of ĥ∗ generally decreases in T because the arrival rate per timeslot decreases in

T and to prevent high OVW, it is optimal to discontinue vaccination earlier in the day.

However, there are ranges of T over which ĥ∗ is nonmonotone (e.g., T = 5-10 for z = 20)

because the ratio Q
T

becomes far an integer value and the optimal policy is such that it

is likely to close early in the day. Therefore, smaller values of ĥ satisfy the inequality in

Equation (2.3). Finally, as vial size increases, ĥ∗ decreases because a larger vial size results

in higher OVW and, consequently, requires a more flexible guaranteed hours policy.

2.3.3 Vaccination Session Frequency

Next, we investigate the degree to which the number of sessions per cycle can be increased,

providing more days of clinic access to patients, without significantly impacting the coverage

rate. Note that similar analysis can be performed to find the number of sessions per cycle

that minimizes OVW; because our results indicate that these two values of T are typically

close if not the same, we present the results for coverage only.

To evaluate the effect of the number of sessions per cycle on the coverage rate, we define

the criterion β(T,Q, ĥ) as the percentage loss in the expected number of vaccinations admin-

istered over T sessions with Q vials initially on hand and ĥ guaranteed hours (in timeslots),
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Figure 16: Value of ĥ∗ as a function of number of sessions per replenishment cycle (zQ = 360

and µT = 288).

as compared to that under the administration policy with the same initial inventory, but

only one session per replenishment cycle (i.e., T = 1) and guaranteed hours of η, i.e.,

β(T,Q, ĥ) =
ν(1, Q, η)− ν(T,Q, ĥ)

ν(1, Q, η)
× 100. (2.4)

That is, β(T,Q, ĥ) compares the performance of the optimal restricted vaccine administration

policy to the idealized policy where the clinic is open for exactly one full session between two

stock replenishments. For a fixed demand per cycle, the latter policy has the highest coverage

rate of all values of T and the lowest OVW. Similar to Equation (2.3) for determining the

number of guaranteed hours, this criterion can be used to determine the greatest number

of sessions that results in an at most α% loss in coverage as compared to the single-session

case, denoted T̂ (Q, ĥ, α%), using

T̂ (Q, ĥ, α%) = max

{

T : β(T,Q, ĥ) ≤ α%, 0 ≤ T ≤ T̄

}

, (2.5)

where T̄ is the number of calendar days between two replenishments. For example, in Figure

17(b), for z = 20, T̂ (18, 390, 1%) = 9 sessions per cycle.

Figure 17 plots the percentage loss as defined in Equation (2.4) as a function of the

number of sessions based on the expected number of vaccinations as determined by the
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MDP model. Note that the percentage loss is not necessarily monotone in the number of

sessions. This complicated behavior is related to the ratio of the initial inventory over the

number of sessions, as defined in Section 2.3.1. In Figure 17(b), for z = 20 (Q = 18), the

percentage loss increases considerably for 9 < T ≤ 12 and then decreases up to T = 18,

after which there is a sharp rise. In the range 9 ≤ T ≤ 12 the difference between the ratio Q
T

and its nearest integer increases; in the range 12 ≤ T ≤ 18, this difference decreases. Lastly,

for z = 20 and more than 18 sessions, the performance of the vaccine administration policy

drops quickly, because the number of initial vials is less than the number of sessions.

0%10%2 0%30%4 0%50%60%70%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0�

(T ,Q , �)
sessions per replenishment cycle, T

Ser ies3 Ser ies1 Ser ies2z = 5 z = 10 z = 20
(a) µT = 96, Qz = 120, ĥ = ĥ∗.

0%1%2%3%4%5%
6%7%8%9%10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0�

(T ,Q , �)
sessions per replenishment cycle, T

z = 5 z = 10 z = 20
(b) µT = 288, Qz = 360, ĥ = ĥ∗.

Figure 17: Percentage loss in the expected number of vaccinations administered β(T,Q, ĥ)

as a function of number of sessions per cycle.
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The better performing ratios of Q
T
correspond to problem instances that strike a balance

between minimizing expected OVW and having additional vials to satisfy peak demands.

For example, the coverage for T = 17 is higher than for T = 16 because there is less expected

lost coverage for each period in which exactly one vial is opened. The benefit of T = 16

having two additional vials to meet peak demand days, versus the one additional vial of

T = 17, is not enough to overcome the expected lost coverage on the other 14 days when

only one vial can be used.

Next, we study the impact of the initial inventory or equivalently the buffer stock, on

T̂ (Q, ĥ∗, 1%). To do so, for a fixed set of initial inventories, we first compute ĥ∗ for potential

values of T and then find the corresponding value of T̂ (Q, ĥ∗, 1%). In Figure 18, we plot

T̂ (Q, ĥ∗, 1%) and the total number of guaranteed hours (in timeslots) as a function of the

initial inventory. AsQ increases, T̂ (Q, ĥ∗, 1%) increases because more buffer stock is available

to mitigate the increased OVW associated with a larger number of vaccination sessions. On

the other hand, although increasing the number of sessions results in fewer guaranteed hours

per session, the total number of guaranteed hours over the replenishment cycle generally

increases in Q.
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Figure 18: The value of T̂ (Q, ĥ∗, 1%) and its corresponding number of guaranteed hours

per replenishment cycle as a function of initial inventory (z = 10, µT = 288, T̄ = ∞ and

ĥ = ĥ∗).
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Additionally, in Figure 19 we plot the “most convenient” pair of (ĥ, T̂ (Q, ĥ, α%)) values,

i.e., that which results in the maximum total number of guaranteed hours per replenishment

cycle, as a function of Q. In contrast to Figure 18 in which we fix ĥ to ĥ∗, to generate

Figure 19 we determine T̂ (Q, ĥ, α%) for all values of ĥ in the set {240, 300, 360, 420, 480}

using Equation (2.5), and then select the pair (ĥ, T̂ (Q, ĥ, α%)) that results in the maximum

guaranteed hours per replenishment cycle. (Note that we restrict T̂ (Q, ĥ, α%) ≤ 20.) The

resulting pairs are the most favorable ones from the patient perspective (in terms of operation

hours per cycle) which simultaneously result in at most α% loss in coverage. In Figure 19,

the value of T̂ (Q, ĥ, α%) increases in Q and α. Increasing Q or α provides more buffer stock

and, consequently, a greater number of sessions becomes acceptable. Interestingly, as seen in

Figure 19, 7 hours (i.e., 420 timeslots) is almost consistently the best choice for the number

of guaranteed hours.
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Figure 19: Maximum number of guaranteed hours per replenishment cycle and its corre-

sponding pair of (ĥ, T̂ (Q, ĥ, α%)) as a function of Q (z = 10, µT = 288, 1 ≤ T̂ ≤ 20 and

ĥ ∈ {240, 300, 360, 420, 480}).

Another metric by which we can evaluate the performance of a vaccine administration

policy is the expected amount of OVW (in doses) per cycle, i.e., wastage rate which is

introduced in Equation (1.22), Section 1.4. In other words, by wastage rate we mean the
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expected percentage of doses that are reconstituted and discarded. In Figure 20, we visually

assess the relationship between wastage, coverage and the number of sessions. Specifically,

Figure 20 shows the wastage rate versus the coverage rate as a function of the number of

sessions for three vial sizes. That is, each point corresponds to a different value of T , as

labeled. For smaller vial sizes, the relationship between wastage and coverage is monotone

in T , i.e., the fewer the number of sessions, the lower the wastage rate and the higher the

coverage rate. When the vial size is 20, however, the relationship is not monotone, i.e.,

fewer sessions does not necessarily result in lower wastage or higher coverage. For example,

compared to T = 8, T = 7 reduces waste, but also reduces coverage. As marked by the light

grey points, some values of T may actually be dominated by others and should therefore not

be considered for adoption. More specifically a value of 16 sessions performs so well that

it dominates T ∈ {10, 11, 12, 13, 14, 15}. That is, compared to T ∈ {10, 11, 12, 13, 14, 15},

T = 16 offers more frequent sessions while producing less wastage and providing higher

coverage.

The unexpected behavior in Figure 20(c) (highlighted in gray) can be explained through

the average number of vials available per session, Q
T
, introduced in Section 2.3.1. The frac-

tional part of Q
T
represents vials which theoretically should be shared between two or more

sessions although it is impossible to do in practice. As a result, if the fractional part is

farther from 0 or 1 then a larger number of open doses may be discarded. In Figure 20(c)

although we decrease the number of sessions from 16 to 11, lower coverage and higher OVW

are seen because Q
T

moves farther from an integer value as T decreases and given that the

vial size is large (20 vs. 5 and 10), the number of unused doses which are discarded at the

end of a session is more substantial.

Lastly, we consider the variability of the number of vaccinations under the optimal re-

stricted policy. Variability analysis provides insight into the unpredictability of the number

of vaccinations and facilitates worst case analysis. Based on 10,000 replications of the sim-

ulation model, we compute a 99% prediction interval on the number of vaccinations admin-

istered. Figure 21 shows the prediction interval for the number of vaccinations under the

optimal restricted vaccine administration policy. The variance associated with the number

of vaccinations per cycle is rather large due to the high variability in the arrival process,
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Figure 20: Open vial wastage rate vs. coverage rate as a function of T .

e.g., in Figure 21(b), for T = 1, the standard deviation of the number of arrivals is 10.7

patients. Furthermore, the variability does not appear to be very sensitive to the number of
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sessions, especially for larger vial sizes. Depending on the number of sessions, the widths of

the 99% prediction intervals range from (approximately) 50 to 75 vaccinations when using

larger vials (z = 20), to 35 to 50 vaccinations when using smaller vials (z = 5).
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Figure 21: Prediction interval for the number of vaccinations as a function of the number of

sessions per cycle.
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2.4 HEURISTIC POLICIES

In this section, we consider two heuristic vial administration policies. The first is the dynamic

heuristic policy proposed in Section 1.4.4 under which a new vial is opened after guaranteed

hours as long as the number of vials remaining is at least as large as the number of vials

required to satisfy the expected demand in the remaining sessions. The second is a static

heuristic policy that specifies a fixed cutoff time after which clinicians do not open new vials.

More specifically, this static heuristic approach evaluates all possible cutoff times using the

policy evaluation algorithm in [38] and selects the one that results in the maximum expected

number of vaccinations per replenishment cycle. The resulting static policy is easier to

implement than the dynamic heuristic policy proposed in Section 1.4.4 because the same

cutoff time is used in each session as opposed to the optimal policy where cutoff points

would be different. However, determining the cutoff point of the static heuristic policy

requires considerably more computational effort.

The results suggest that the static heuristic performs very close to the optimal policy and

in some cases outperforms the dynamic heuristic. To evaluate the quality of the heuristics,

in Table 4 we report the percentage of the gap between the optimal and greedy policies that

is covered by the heuristic policies for several problem instances, i.e.,

percentage of gap covered =
vh − vg
v∗ − vg

, (2.6)

where v∗ is the expected number of vaccinations under the optimal policy (with ĥ = ĥ∗),

vg is the expected number of vaccinations under the greedy policy and vh is the expected

number of vaccinations under the heuristic policy. As seen in Table 4, a large portion of the

gap is often covered by these policies. For example, for the case in which T = 12 and µ = 8

the percentage of the gap covered by the static and dynamic heuristics is approximately 71%

and 66%, respectively. In Section 2.5, we study the behavior of these policies more deeply

in the presence of random vial yield.
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Table 4: The percentage of the gap between the optimal and greedy policies covered by the

static and dynamic heuristics (z = 10, Q = 12, µT = 96, ĥ = ĥ∗).static heuristic dynamic heuristic1 480 480 0.0% 0.0%4 390 480 0.0% 72.4%8 240 420 71.2% 65.9%12 240 300 94.5% 56.2%16 90 180 76.9% 62.8%20 75 120 84.5% 64.5%
percentage of gap coveredcutoff point(staticheuristic)�*T

2.5 IMPACT OF VIAL-YIELD ON POLICY PERFORMANCE

The MDP model proposed in Section 1.2 generates an optimal policy under the simplifying

assumption of perfect vial yield, i.e., a 5-dose vial yields exactly 5 doses. However, in practice,

the number of doses per vial is a random variable due to clinician variation, syringe type

and spoilage (i.e., a yield of zero) prior to reconstitution [14]. In this section, we study the

impact of random vial yield on the performance of the optimal policy as well as that of the

two proposed heuristic policies defined in Section 2.4. The results in this section are obtained

using the simulation model detailed in Section 2.2.

Let the random variable Z be the number of doses yielded by a multi-dose vial. To

analyze the impact of vial yield, we construct a set of stochastically ordered distributions

shown in Figure 22. To generate these probability distributions, we consider a fixed set of

expected vial yields, E[Z] ∈ {7, 8, 9, 10, 11}, and a base probability distribution function from

[44]. To generate the probability distribution associated with each E[Z], we raise the base

cumulative distribution function to the power of the positive number such that it equates to

the expected value under the new cumulative distribution and E[Z].

In Figure 23, we present the coverage and wastage rates under the optimal policy, the

two heuristic policies and the greedy policy for three different vial sizes (z = 10, 9, and 8)
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Figure 22: Cumulative distribution functions of vial yield.

as a function of the vial yield distributions shown in Figure 22. We set z = 10, 9 and 8 for

the optimal and two heuristic policies because the expected vial yield usually falls between

8 and 10. First, as seen in Figure 23(a), the optimal and two heuristic policies derived for

a vial size closer to the expected vial size result in a larger coverage rate. For example in

Figure 23(b), the coverage rate of the optimal policy with vial size 10 increases from 89.3%

to 97.8% as E[Z] increases from 8 to 10. However, regardless of the expected vial yield, as

the vial size decreases the optimal and heuristic policies become more conservative which

results in lower wastage rates.

Second, the performance of the static and dynamic heuristic policies falls between that

of the optimal and greedy policies for z = 10 and lower than the optimal policy for z = 9

and 8. The greedy policy does not account for vial yield so its performance drops as the

expected vial yield decreases. The drop in the performance happens because fewer doses are

available and the greedy policy does not adapt to this effective change in the vial size as well

as the optimal policy does for a smaller expected vial size than the nominal vial size.

Next, let p be the probability of vial failure due to spoilage. Figure 24 shows the coverage

and wastage rate of the optimal policy, the heuristic policies and the greedy policy as a

function of the probability of vial failure, p. First, as seen in Figure 24, as the probability

of vial failure increases, the coverage (wastage) rate of all policies decreases (increases),

because a smaller number of vials is available. Second, the wastage rate of the greedy and
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Figure 23: Coverage and wastage rate as a function of vial yield distribution in Figure 22

(µT = 288, T = 20, Q = 36, z = 10, ĥ = ĥ∗).

static heuristic policy are nearly constant as the probability of vial failure increases because

these policies have a fixed cutoff time after which clinicians do not open new vials and are

therefore independent of the number of vials remaining and subsequently the probability of

vial failure. While the optimal and dynamic heuristic policies can better adapt to the loss

of vials due to vial failure because in these policies, clinicians make the decision based on

the remaining number of vials. Third, the gap between the coverage and wastage rate of

the optimal and greedy policies increases in the probability of vial failure. Having a smaller

number of vials available results in a more conservative optimal policy, but has no impact
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on the greedy policy. Therefore, the greedy policy performance deteriorates more rapidly as

the probability of failure increases.
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(a) Coverage rate.
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(b) Wastage rate.

Figure 24: Coverage and wastage rate as a function of the probability of vial failure (µT =

288, T = 20, Q = 36, z = 10, ĥ = ĥ∗).
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2.6 DISCUSSION AND COST IMPLICATIONS

In this section, we begin (Section 2.6.1) with some general recommendations derived from

our analysis of the optimal policy in Sections 2.3 and 2.5. In Section 2.6.2, we estimate

the potential reduction in vaccine procurement costs under an optimal policy in three GAVI

countries (Mozambique, Benin and Kenya) and then extrapolate these results to the set of

all GAVI countries.

2.6.1 Operational Insights

Clearly, offering more frequent vaccination sessions and guaranteeing longer hours during

these sessions is desirable from a patient perspective. However, doing so can also result

in more vaccine wastage and lower overall coverage. The analysis in Section 2.3 shows that

these two factors interact with each other, and that the nature of this interaction depends on

the vial size and demand rate. Focusing on service to a fixed catchment population, a smaller

number of sessions per cycle generally decreases the likelihood of discontinuing service before

the end of each session and increases the expected number of vaccination hours per session

(although not always, as illustrated by Figures 12, 14(a) and 14(b)).

In Section 2.3.1, we show that a clinic is more likely to have full length sessions when

the average number of vials allocated per session (Q
T
) slightly exceeds an integer value. If

this fraction is less than one, then the clinic will be forced to skip at least one entire session;

therefore, clinic administrators should consider the initial number of vials that they receive

during each cycle (Q) to be an upper bound on the number of sessions per cycle. Furthermore,

choosing T such that Q
T
is slightly larger than a small integer helps maintain longer sessions,

even when they are terminated early.

In terms of planned session hours, adopting a large number of guaranteed hours, although

desirable from a service perspective, constrains the clinic and can result in poor coverage.

The analysis in Section 2.3.2 shows that there is a relatively clear threshold for guaranteed

vaccination hours based on the expected gain in coverage over the greedy policy, especially

for larger vial sizes. However, as seen in Figures 15(a) and 15(b), the threshold value can
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vary widely, ranging from 300−400 minutes for typical parameter values during a 480-minute

session. Forcing the clinic to guarantee hours beyond this threshold can lead to degradation

in coverage, however, guaranteeing fewer hours does not significantly improve coverage.

As discussed in Section 2.3.3, although having a larger number of sessions can increase

patient convenience, it can also decrease the coverage rate. The “best” scenario in terms of

maximizing coverage would be a single session per cycle that all patients in the catchment

area attend. Of course, this scenario is not practical; however, it does provide an upper

bound on the expected coverage. Increasing the number of sessions per cycle can therefore

be evaluated with respect to this bound in terms of the percentage loss in the expected

number of vaccinations, and clinicians can increase the number of sessions as long as this

loss is not unacceptably large. It should be mentioned that trying to predict the exact

number of vaccinations that a clinic can provide for a given vial size and a given number of

sessions per replenishment cycle is difficult. There can be considerable variability, especially

when using larger vial sizes. Thus, clinicians should not be alarmed if they see some variation

with respect to the number of vaccinations provided across different replenishment cycles.

Furthermore, in Section 2.3.3, we study the impact of guaranteed hours per session and

number of sessions per cycle, simultaneously, on the policy performance. We choose patient

convenience to determine the best pair while an acceptable deviation from the maximum

coverage is achieved. Interestingly, as seen in Figure 19, in majority of cases it appears that

the most desirable pair corresponds to the cases with lower number of sessions but with

larger guaranteed hours per session.

Finally, in Section 2.5, we show that in the presence of random vial yield, implementing

the optimal policy for a vial size close to the expected vial yield results in better coverage

than merely using the nominal vial size value (Figure 23).

Though we have been able to provide some general guidelines for vaccine administration,

our computational results also indicate that the operating strategies that maximize vaccine

coverage often depend heavily on the characteristics of the clinic. Therefore, we have devel-

oped a decision support tool to permit users to conduct analysis similar to that performed in

Sections 2.3 and 2.5 for their particular setting. The tool is called the Vaccine Clinic Recon-

stitution Optimizer (VaCRO). VaCRO develops a vaccine adminstration policy based on the
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MDP model in Section 1.2. We have made VaCRO freely available online for download [51]

and promoted it via The Technical Network for Strengthening Immunization Services [47], an

on-line forum for global health logisticians and others interested in improving immunization

programs and their effectiveness.

2.6.2 Cost Analysis

In this section, we estimate the reduction in procurement costs associated with switching

from the greedy policy to an optimal vial allocation policy. To do so, we use available data

for the annual birth rate of clinics in three GAVI countries - Mozambique, Benin and Kenya.

Because of the large variation in the clinic birth rates across these countries, we divide the

clinics into three sizes - small, medium, and large. Clinics with less than 365 births per year

(i.e., one birth per day) are classified as small clinics, clinics with at least 365 births per year

and at most 1095 births per year (i.e., 3 births per day) are classified as medium clinics and

the remaining clinics are classified as large clinics. We assume a constant birth rate over the

year; monthly replenishment in all clinics; and as an illustrative vaccine, we choose measles,

which requires 2 doses per child. We then estimate the monthly demand using the average

monthly birth rates of the clinics in the middle 80% of each size group. In Table 5, we report

the estimated monthly demand for each clinic size.

Table 5: Average number of arrivals per replenishment cycle in Mozambique, Benin and

Kenya for a two-dose measles vaccine schedule.small clinic s medium clinics largeclinicsMozambique 114 31.4 95.5 284 .8Benin 658 43.1 97 .9 260 .7Kenya 2733 34 .3 94 .4 348.9
averagenumber of arrival sper monthtotal number ofclinicscountry
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To compare the performance of the greedy and optimal policy, we set the minimum

coverage rate to be 95% and compute the required initial inventory under each policy using

the monthly demand data presented in Table 5 and parameter values stated in Table 6. We

then compute the reduction in the procurement cost per vaccination realized by switching to

the optimal policy. Finally, using a weighted average based on the proportion of patients who

fall into each clinic size in each country, we compute the average reduction in the procurement

cost per vaccination for each country. The resulting reduction in procurement costs per

vaccination in Mozambique, Benin and Kenya are approximately $0.051/administered dose,

$0.033/administered dose and $0.031/administered dose, respectively, which are equivalent

to 13.8%, 9.1% and 8.7% of the procurement cost per vaccination under the greedy policy.

Table 6: Parameter values used in the cost analysis of the optimal and greedy policy (ĥ = ĥ∗).

� Q z T h� � Q z T h � � Q z T h �Mozambique 7 .85 4 7 .96 12 12 240 14 .24 33 345Benin 10 .78 6 8.16 13 12 255 13.03 31 330Kenya 8.58 5 7 .87 12 12 255 17 .44 39 375Mozambiqu e 7 .85 5 7 .96 14 14 .24 37Benin 10 .78 7 8.16 14 13.03 34Kenya 8.58 5 7 .87 14 17 .44 42
bufferstock small ¦siz eclinicsvaccinationpolicy country 25%25% 2401010

largeÁsize clinic soptimalpolicy 4 20480 480 480204 1010 12 1010
mediumÁsize clinic s

gr eedypolicy
Next, we extrapolate these results to all GAVI countries. To do so, we first estimate the

average reduction in the procurement cost per vaccination when the optimal policy is adopted

in all GAVI countries using a weighted average of the reductions in Mozambique, Benin and

Kenya. More specifically, we use the newborn rate of each country as its corresponding weight

and estimate (51826×$0.051+371022×$0.033+1516221×$0.031
51826+371022+1516221

≈) $0.032/administered dose reduction

in procurement costs on average in all GAVI countries. We then estimate a (72, 952, 312×

$0.032 × 2 ≈) $4.6 million reduction in procurement costs per year across all the GAVI

countries given that 2 doses are required per child and the total birth cohort of all GAVI
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countries is approximately 73 million [12]. It is important to note that this cost reduction is

computed for measles which is a relatively inexpensive vaccine; other types of vaccines are

often 10 times (or more) as expensive. Therefore, this $4.6 million savings is a conservative

estimate of the reduction in procurement costs per vaccine type.

2.7 LIMITATIONS

In this section, we address some of the limitations of our analysis and present directions

for future work. From a modeling perspective, the MDP model in Section 1.2 assumes

that arrival rates during and across sessions are stationary and that patients who are not

vaccinated are lost. Modeling these types of nonstationarities, patient returns and other

adaptive behaviors of patients, adds considerable complexity to the MDP model and is

explored in Chapter 3.

Due to data scarcity, we evaluate proposed recommendations and criteria using repre-

sentative problem instances. Although the parameter values selected are representative of

values observed in practice, performing empirical studies regarding patient arrival patterns

would allow us to gain better understanding on how to inform the models and generate

recommendations. Additionally, we focus on in-clinic vaccine administration in isolation.

In reality, in-clinic operations and outreach strategies are often linked together by a shared

supply of vaccines and healthcare workers.
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3.0 MULTI-DOSE VIAL ADMINISTRATION WITH NON-STATIONARY

DEMAND AND DELAYED SERVICE

3.1 INTRODUCTION

In this chapter, we formulate a new model by relaxing the limiting demand-related assump-

tions imposed in Section 1.2. More specifically, we (i) consider non-stationarities in the

within-day arrival rate, (ii) consider non-stationarities in the mean daily demand through-

out the replenishment cycle and (iii) allow unvaccinated patients to possibly return. These

are important, practical generalizations because (i) establishing guaranteed hours in which

all patients are vaccinated unconditionally, incentivizes patients to arrive earlier in the day;

(ii) implementing a non-greedy vaccine administration policy, which uses vials more conser-

vatively near the end of each replenishment cycle, incentivizes patients to arrive earlier in the

month to increase their chances of being vaccinated; and (iii) discontinuing service before

the end of a session may result in increased demand in the following session because some

portion of the patients denied service are likely to return, especially if guaranteed vaccination

upon return.

The non-stationary demand considerations in generalizations (i) and (ii) appear often in

the inventory and queuing literature (e.g., [13, 25, 26, 46]). However, the focus of this section

is vaccine administration policies, not ordering policies; moreover, queue formation need not

be considered here because service times are negligible in comparison to the arrival rates.

Furthermore, although multi-dose vials are a perishable product after reconstitution, our

focus is on how to optimally consume this product rather than on replenishment decisions,

which is the focus of the majority of the perishable inventory control literature [20]. The

multi-period newsvendor literature (e.g., [2, 28]) deals with seasonal or perishable inventory
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over multiple periods, however, here, unopened vials can be carried over from day to day

and again, the focus is not on replenishment decision making.

Generalization (iii), i.e., explicitly modeling second attempts at service, is similar in

spirit to the concept of an “orbit” in the retrial queueing literature [59]. In retrial queueing

systems, customers who arrive to the system and observe that the server is busy, enter the

orbit and reattempt service at a later time. Similarly, we assume that patients who arrive

after vaccinations have been suspended for the day are invited to return during guaranteed

hours in the following session, but may or may not actually return.

The remainder of this chapter is organized as follows. In Section 3.2, we present a new

MDP formulation of the problem and explain the methods used to incorporate the non-

stationarities in the mean daily demand and the arrival rate. In Section 3.3, we evaluate the

impact of the generalizations on the performance of the optimal policy. In Section 3.4, using

field data, we estimate the potential improvements realized by implementing the optimal

policy in the sate of Bihar, India (and beyond) over a one-year period. Finally, in Section

3.5, we summarize and discuss general recommendations to improve vaccine administration

policy performance.

3.2 MODEL FORMULATION

In this section, we first (Section 3.2.1) formulate an MDP model to maximize the expected

number of vaccinations during a replenishment cycle given a limited supply of multi-dose

vials. We assume that incoming patients who arrive before some prespecified point in time

during the day, i.e., during “guaranteed hours,” are always vaccinated by clinicians as long

as vaccines are available. Patients arriving after guaranteed hours are also vaccinated as long

as a vial is already open. Otherwise, the MDP model determines whether to open a new

vial or discontinue service for the remainder of the session as a function of time of day, the

current vial inventory and the remaining number of sessions until the next replenishment.

That is, clinicians discontinue service for the rest of day when the last dose in a vial is

administered and the optimal policy indicates that it is optimal to suspend service until the
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beginning of the next session. Patients who do not receive service are assumed to return

with some probability during guaranteed hours in the following session. Similar to Section

1.2, we assume that (i) the maximum number of clinic hours per day is equal to the shelf

life of an open vial (i.e., doses cannot expire midday) and (ii) the replenishment schedule is

fixed.

In Section 3.2.1, we formally describe the model and identify several special cases of

interest. In Section 3.2.2, we explain the methods used to model non-stationarities in both

the mean daily demand across the replenishment cycle and the within-day arrival rate.

3.2.1 MDP Model

Let T be the number of sessions per replenishment cycle. We divide each session into η

timelots and let ĥ be the timeslot after which guaranteed hours end in each session. Let

the symbolsˆ andˇ correspond to the parameters associated with timeslots during and after

guaranteed hours, respectively. We assume a maximum of one arrival per timeslot and that

the arrival rate during each of the intervals [0, ĥ] and [ĥ + 1, η] is constant. Let p̂t and

p̌t, respectively, be the probability of arrival per timeslot before and after ĥ where t is the

number of sessions (including the current session) remaining until the next replenishment.

Consequently, the patient interarrival times (measured in timeslots) for those who arrive

(for the first time) before and after ĥ are iid geometric random variables with parameter p̂t

and p̌t, respectively. Lastly, let ρ be the probability that each patient who is not vaccinated

on his\her first attempt accepts the invitation and returns during guaranteed hours in the

following session.

As seen in Figure 25, we consider two types of non-stationarities, resulting in four versions

of the MDP model. The simplest case of the MDP model, the SS-MDP model, does not

consider any non-stationarities, in which case p̂t and p̌t are equal and constant in t; the MDP

model developed in Section 1.2 is a special case of the SS-MDP model in which it is also

assumed that the probability of return for unvaccinated patients is zero, i.e., ρ = 0. If the

arrival rate varies across sessions, but not within each session, then p̂t and p̌t are equal, but

nonconstant in t; this model is referred to as the SN-MDP model. If the arrival rate varies
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only within each session, then p̂t and p̌t are not equal, but constant in t; this model is referred

to as the NS-MDP model. In the remainder of this section, we focus on most general case,

namely the NN-MDP model, in which both the within-day arrival rate and daily demand

are non-stationary and unvaccinated patients return with some positive probability.

SSÈMDP modelpÒ t= pÕ t= p SNÈMDP modelp× t= pØ t= p tNSÈMDP modelp× t= p×pØ t= pØ NNÈMDP modelp× t > pØ t > 0
0Û Ü Û 1 stat ionary nonÈstat ionary

non çst ati onarys
t ati onary

daily demand
wi thi n çd ayarri val rat e

Figure 25: Special cases of the MDP model.

For model simplicity, similar to model developed in Section 1.2, we define the decision

epochs, i.e., the points in time at which decisions are made to either open a vial or suspend

service for the day, to be the timeslots greater than ĥ in which an arrival occurs and no vial

is open. In implementing the resulting policy, however, the clinician would not wait for an

arrival to occur before discontinuing service for the day; service would be discontinued when

no vial is currently open and the policy indicates that it is not optimal to open another vial

in the current session regardless of the time of the next arrival.

Let Q be the initial inventory and z be the vial size, i.e., number of doses per vial. The

state of the process is (t, q, h) where t ∈ {0, 1, . . . , T} is the number of sessions remaining

(including the current session) until the next replenishment, q ∈ {0, 1, . . . , Q} is the number

of vials on hand and h ∈ {ĥ+1, ĥ+2 . . . , η+1} is the current timeslot. Let V (t, q, h) be the

maximum expected number of vaccinations prior to the next replenishment starting from

state (t, q, h) given that an arrival occurs at timeslot h. Hence, for t > 0, q > 0, η ≥ h > ĥ,
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V (t, q, h) = max

{

g1(t, q, h), g2(t, q, h)

}

(3.1)

determines whether to open a new vial or discontinue vaccinations for the rest of day where

g1(t, q, h) corresponds to the maximum expected number of vaccinations to go until the

next replenishment if the clinician opens a new vial and g2(t, q, h) corresponds to the same

quantity if vaccinations are suspended for the remainder of the current session.

Next, let Y̌k,t be the number of timeslots until the kth arrival after ĥ, given that at least

k arrivals occur after ĥ, when there are t sessions remaining, i.e.,

pY̌k,t
(y) =







0, y < k,

p̌tBy−1,p̌t(k − 1), y = k, k + 1, . . . , η,
(3.2)

where Bn,p(k) corresponds to a binomial pmf with parameters n and p. Hence,

g1(t, q, h) =

η−h
∑

j=z

(

z+V (t, q−1, j+h)

)

pY̌z,t
(j)+

z
∑

i=1

(

i+ν0(t−1, q−1)

)

Bη−h,p̌t(i−1), (3.3)

and

g2(t, q, h) =

η−h+1
∑

ȳ=1

νȳ(t− 1, q)Bη−h,p̌t(ȳ − 1), (3.4)

where νȳ(t, q) is the expected number of vaccinations to go when there are t full sessions

remaining, q vials on hand and ȳ patients that went unvaccinated in the previous session

due to service suspension, i.e.,

νȳ(t, q) =

ĥ
∑

ŷ1=0

(

ȳ
∑

ŷ2=0

(

ŷ +

d̂
∑

i=0

(

i+ ν0(t− 1, q̂)
)

Bη−ĥ,p̌t
(i) (3.5)

+

η−ĥ
∑

h=d̂+1

(

d̂+ V (t, q̂, ĥ+ h)
)

pY̌
d̂+1,t

(h)

)

Bȳ,ρ(ŷ2)

)

Bĥ,p̂t
(ŷ1),

where

ŷ = min(ŷ1 + ŷ2, zq), (3.6)

q̂ ≡ q −

⌈

ŷ

z

⌉

, (3.7)

d̂ ≡ z

⌈

ŷ

z

⌉

− ŷ. (3.8)

60



In Equation (3.3) the first term on the right hand side corresponds to the case in which the

rest of the current session’s demand exceeds z and the second term corresponds to the case in

which there are fewer than z arrivals over the remainder of the session. Note that we assume

that ȳ is fully observable in each session; because administering vaccinations is just one of

many services provided by a clinic, clinics are typically open until the end of their working

hours and able to observe patient arrivals after vaccinations have been suspended and invite

these patients to return during guaranteed hours in the following session. In Equations (3.5)

and (3.6), ŷ1 and ŷ2 are the number of arrivals during guaranteed hours from the general

population (i.e., for the first time) and from the previously unvaccinated patients (i.e., for

the second time), respectively; ŷ is the number of patients vaccinated during guaranteed

hours, which cannot exceed the number of doses available at the beginning of session. In

Equation (3.5), q̂ is the remaining number of unopened vials at the end of guaranteed hours

and and d̂ is the remaining number of unused doses in the most recently opened vial at the

end of guaranteed hours. On the right hand side of Equation (3.5), the inner two summations

compute the expected number of additional vaccinations after guaranteed hours through the

end of the replenishment cycle. More specifically, the first summation corresponds to the

case in which the rest of the current session’s demand does not exceed d̂, whereas the second

summation is associated with the opposite case.

Obviously, if no arrival occurs after guaranteed hours when there are t − 1 sessions to

go, then V (t, q, η + 1) = ν0(t− 1, q). Similarly, if the vial inventory is exhausted, then there

is no more reward to be earned, i.e., V (·, 0, ·) = 0. Lastly, because the problem horizon is

defined as a single replenishment interval, ν(0, ·, ·) = 0.

3.2.2 Modeling Non-Stationarity

We consider two types of non-stationary demand behavior: variation in the mean daily

demand over the course of the replenishment cycle and variation in the arrival rate within

each session. First, consider the variation in the mean daily demand. This variability

is a consequence of having a limited number of vials available during the replenishment

cycle, which encourages patients to arrive in earlier sessions to increase their chance of
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being vaccinated; consequently, the mean daily demand decreases as the end of the cycle

approaches. We model this behavior by fixing the percent reduction in the mean daily

demand from session to session. More specifically, let µ0 be the base mean daily demand

value, i.e., the mean daily demand if the total cycle demand is evenly distributed across the

sessions, µt be the mean daily demand when there are t sessions to go and γ be the coefficient

of proportionality between two consecutive sessions. Hence, fixing the total expected cycle

demand at µ0T , i.e., assuming
∑T

t=1 µt = µ0T ,

µ1 =







µ0T (1−γ)
1−γT , 0 ≤ γ < 1,

µ0, γ = 1,
(3.9)

µt = γ · µt−1, t = 2, 3, . . . , T. (3.10)

For example, Figure 26 plots the mean daily demand over the replenishment cycle for different

values of γ when µ0T = 220 patients are expected to arrive during the replenishment cycle.

As seen in Figure 26, even with a small reduction in the value of γ, we observe a substantial

decrease in the mean daily demand from the beginning of the cycle to the end of the cycle.

0510
152025
30

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1meand ail yd emand number of sessions to go, t
� = 0.900 � = 0.925 � = 0.950 � = 0.975 � = 1.000

Figure 26: Mean daily demand as a function of t and γ for µ0 = 11 and T = 20.

62



Next, consider the variation in the arrival rate within each session. This variability is a

consequence of establishing guaranteed hours, which encourages patients to arrive earlier in

the day to guarantee their vaccinations. It is also natural to assume that as ĥ approaches

zero or η, its impact on the arrival rate decreases. That is, when the window of guaranteed

hours is very narrow or very wide, a smaller portion of the arrivals shift to guaranteed

hours than when the window closes midday. To capture these properties, we assume that

there is a directly proportional relationship between p̂t and p̌t. Let β be the coefficient of

proportionality between p̂t and p̌t, i.e.,

p̂t = βp̌t, (3.11)

where

p̌t =
µt

η + ĥ(β − 1)
and 1 ≤ β ≤







η−ĥ

µt−ĥ
, µt − ĥ > 0,

∞, µt − ĥ ≤ 0.
(3.12)

Based on Equation (3.12), when there are no guaranteed hours of operation, i.e., ĥ = 0, the

arrival rate during the session is stationary and equal to µt

η
. As ĥ increases, the arrival rate

after the guaranteed hours, p̌t, decreases. Therefore, because of the proportional relationship

between p̌t and p̂t, p̂t is inversely related to ĥ. For example, Figure 27 plots the percentage

of patients who arrive during guaranteed hours as a function of ĥ and β. As seen in Figure

27, as β and ĥ increase, the percentage of arrivals during guaranteed hours increases. As

intended, the impact of β on the proportion of arrivals during guaranteed hours is smaller

for more extreme values of ĥ.

In summary, based on the values of γ and β, we can easily specify the special cases of

the MDP model established in Figure 25. Setting γ ∈ (0, 1) and β = 1 allows for non-

stationarity in the daily demand across the replenishment cycle only and corresponds to the

SN-MDP model. If γ = 1 and β ∈ (1,∞), then only the arrival rate within each session is

non-stationary, which corresponds to the NS-MDP model. The SS-MDP model corresponds

to the completely stationary case in which γ = β = 1. Setting γ ∈ (0, 1) and β ∈ (1,∞)

corresponds to the most general model, NN-MDP, in which both types of non-stationarities

are present.
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Figure 27: Proportion of patients who arrive during guaranteed hours as a function of ĥ and

β for problem instances with η = 480 and γ = 1.

3.3 POLICY PERFORMANCE

In this section, we analyze how the presence of a non-stationary arrival rate within each

session (β > 1), non-stationary demand across sessions (γ < 1) and the possibility that

unvaccinated patients will return during guaranteed hours in the following session (ρ > 0)

impacts the performance of the optimal vaccine administration policy. To do so, we define

the following five mutually exclusive categories of patients, where the associated φ value

denotes the fraction of patients that fall into that category:

Category 1: Patients vaccinated on their first attempt, φ.

Category 2: Patients not vaccinated on their first attempt because the inventory is ex-

hausted (and hence do not make a second attempt), φ′.

Category 3: Patients not vaccinated on their first attempt because vaccinations have been

suspended and who do not make a second attempt, φ
′′

.

Category 4: Patients who make a second attempt (during guaranteed hours), and are vac-

cinated on that attempt, φ̂.
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Category 5: Patients who make a second attempt, but are not vaccinated on that attempt

because the inventory is exhausted, φ̂
′

.

To compute the percentage of patients in each category we use the simulation model

developed in Section 2.2. This model simulates a clinic that implements the optimal vaccine

adminstration policy over one replenishment cycle for one type of vaccine. For each problem

instance, we run 10,000 replications of the simulation and compute the percentage of patients

in each category. In the remainder of this section, rather than reporting φ′ and φ̂′ individually,

we report their sum, which represents the total percentage of patients who are not vaccinated

due to stock outs (although in all of the instances we simulated, φ̂
′

≈ 0).

In every problem instance considered, we set T = 20 days, z = 10 doses per vial, η = 480

timeslots and ĥ = 240 timeslots. The remaining parameters vary within the ranges reported

in Table 7. The values of α presented in Table 7 correspond to buffer stock and are the closest

achievable values under z = 10 to the values 10%, 15% and 25%, respectively. Additionally,

for computational ease we limit the maximum number of arrivals during each session. More

specifically, we define y̌∗1(h) to be the maximum number of arrivals after timeslot h (> ĥ)

and let

y̌∗1(h) ≡ min

{

y

∣

∣

∣

∣

η−h
∑

i=y

Bη−h,ρ̌2(i) < 0.01

}

. (3.13)

Equation (3.13) computes the minimum number of arrivals for which the cumulative proba-

bility of arrival is larger than 0.99.

Table 7: Parameter values used in Section 3.3.Parameter Value Parameter Value
� 20 � 1, 2, 3, 4, 5
� 10 � 0 .9, 0 .925, 0 .95, 0.975, 1
� 480 � 0, 0 .25, 0 .5, 0 .75, 1
�� 240 	 9.1%, 18 .2%, 27 .3%

� 11

�
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3.3.1 Impact of Non-Stationarity

In this section, we investigate the impacts of different types of non-stationarities in the

patient arrival process (i.e., both during and across sessions) on the performance of the

optimal vaccine administration policy.

3.3.1.1 NS-MDP Model First, consider arrival rate variability within each session only,

i.e., the case in which β > 1, but γ = 1, or the mean demand per session is constant over

the replenishment cycle, and the MDP model given by Equation (3.1) reduces to the NS-

MDP model (Figure 25). We refer to the corresponding optimal vaccine administration

policy as the NS-policy. Figure 28 shows the performance of the NS-policy under different

combinations of β, ρ and Q. For a fixed probability of return, ρ, as the difference between

the arrival rates during and after guaranteed hours increases (i.e., as β increases), the total

coverage, φ + φ̂, decreases. As the difference in arrival rates increases, we can expect to

open more vials during guaranteed hours. As a result, there is less of an opportunity for the

NS-policy to optimize the vaccine administration process.

Furthermore, as the difference between the arrival rates increases, the number of arrivals

after guaranteed hours decreases (Figure 27) and consequently, the NS-policy favors earlier

closing times to ensure better use of the last vial opened during the session (Figure 29). In

addition, the percentage of second attempt vaccinations also decreases. That is, even though

the optimal policy favors earlier closing times when we have a larger difference between the

arrival rate during and after the guaranteed hours, the percentage of patients who arrive

after vaccinations have been discontinued for the rest of the day, i.e., φ′′ + φ̂ + φ̂′, does

not increase. This behavior indicates that the model is able to adequately respond to the

reduction in the arrival rate after guaranteed hours. For example, in Figure 29, for Q = 24

and ρ = 0.5, as β increases and the number of patients arriving after guaranteed hours

drops, the total expected number of hours closed over the replenishment interval increases

from approximately 18 hours to 34 hours while φ′′ + φ̂+ φ̂′ decreases from 10.6% to 3.5%.

Under a fixed probability of return (ρ), the percentage of patients vaccinated on their

first attempt, φ, does not follow a predictable pattern with respect to within-day variations
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Figure 28: Proportion of patients in each category under the NS-policy as a function of β, ρ

and Q for the problem instance defined in Table 7 with µ0 = 11 and γ = 1.
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Figure 29: Expected percentage of hours closed under NS-Policy as a function of β and ρ

for the problem instance defined in Table 7 with µ0 = 11, Q = 24 and γ = 1.

in the arrival rate. For example, in Figure 28, for Q = 26 and ρ = 0.75, as β increases, φ first

increases from 91.1% to 91.9% and then decreases to 91.4% whereas for ρ = 0.25 it decreases

from 93.9% to 92.5%. Also evident in Figure 28 is the fact that larger total coverage rates

do not always coincide with a greater percentage of vaccinations on the first attempt. For

example, for Q = 24 and ρ = 0.75, the total coverage rate increases from 91.8% to 95.7%

as β decreases from 3 to 1 while φ decreases from 87.0% to 85.2%. If a clinician’s main

priority is vaccinations on the first attempt, increasing initial inventory is an option; based

on Figure 28, increasing Q results in a larger portion of patients being vaccinated on their

first attempt, because the NS-policy is more willing to open vials close to the end of a session

when a greater amount of buffer stock is available.

Next, consider the roles played by the probability of return and within-day arrival rate

variation in determining the required buffer stock to reach a predefined coverage proportion

on the first attempt. Let αx be the buffer stock required to reach a minimum first attempt

coverage proportion of x, i.e., αx = min{α|φ > x}. Figure 30 demonstrates, for x = 90%,

that when the probability of return increases, α90 also increases. However, the relationship

between α90 and within-day arrival rate variation is not monotonic. As the probability of
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return increases, the NS-policy becomes more conservative regarding opening a new vial

as the end of each session approaches and as a result, a larger proportion of patients are

vaccinated on their second attempt. Therefore, when the probability of return is higher,

having more buffer stock increases the number of vaccination-hours per session, which in

turn leads to a larger percentage of vaccinations on the first attempt. When the probability

of return is very large (ρ close to one) and the within-day arrival rate variation is very small (β

close to one), larger buffer stock is required to reach φ = 90% than under other combinations

of ρ and β, because under these conditions a relatively large number of patients arrive after

guaranteed hours and may experience discontinued vaccination. Therefore, if determining

precise values of ρ and β is not possible, to reach a specific minimum fraction vaccinated on

the first attempt, x, a conservative buffer stock level would be the αx value corresponding

to the case in which all unvaccinated patients return for a second attempt and the arrival

rate is stationary within each session.

84% 86% 88% 90% 92% 94% 96% 98% 100%percentage

;;<; "; '+;< '
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Figure 30: Proportion of patients in each category under NS-Policy as a function of β and

ρ for the problem instance defined in Table 7 with µ0 = 15.125, γ = 1 and α = α90.
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3.3.1.2 SN-MDP Model Next, we explore the effect, in isolation, of non-stationary

mean daily demand on the performance of the vaccine administration policy by assuming

that the arrival rate within each session is constant, i.e., β = 1. Consequently, the MDP

model given by Equation (3.1) reduces to the SN-MDP model (Figure 25). We refer to the

corresponding optimal vaccine administration policy as the SN-policy.

Figure 31 reports the performance of the SN-policy as a function of γ (mean daily de-

mand variation) and ρ for base demand values µ0 ∈ {9.165, 11, 15.125}. These values are

chosen because to evaluate the performance of the SN-policy, it is important to consider base

demands that are both smaller and larger than the vial size, z = 10, and because we choose

base demands with equivalent buffer stock percentages so as not to confound the results.

That is, maintaining a buffer stock of 9.1%, as is the case for µ0 = 11 and Q = 24, requires

µ0 values of 9.165 and 15.125 under initial inventory levels 20 and 33, respectively.

As seen in Figure 31, for different values of the base demand, µ0, but a fixed probability of

return, ρ, as the variation in the mean daily demand increases, i.e., as γ decreases, different

patterns emerge in the total coverage rate. For example, for µ0 = 11 and ρ = 0.25, as

the mean daily demand variation across sessions decreases the coverage rate decreases from

92.6% to 90.3%, whereas for µ0 = 15.125 and ρ = 0.25, the coverage rate first increases from

94.1% to 95.0% and then decreases to 94.6%. However, for a fixed base demand, the impact

of day-to-day mean daily demand variation on the coverage rate is similar across different

values of ρ. For example, for µ0 = 11, as day-to-day mean demand variation increases,

the coverage rate increases consistently across different values of ρ (Figure 31). It should

be noted, too, that the greedy policy performs better as demand variation across sessions

increases regardless of the value of base demand (Figure 31) because under the greedy policy,

clinics usually run out of vials at the end of the cycle, which coincides with the time when

the mean daily demand is low.

3.3.1.3 NN-MDP Model Finally, we consider the most general form of the MDP model

in which both types of arrival non-stationarities (within and between days) are considered

simultaneously, namely the NN-MDP. We refer to the corresponding optimal vaccine admin-

istration policy as the NN-policy.
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Figure 31: Proportion of patients in each category under SN-policy as a function of γ, ρ and

µ0 for the problem instance defined in Table 7 with α = 9.1% and β = 1.
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Figure 32 reports the performance of the NN-policy as a function of β, γ and ρ. First, ob-

serve that the coverage rate decreases as the arrival rate variation within a session increases,

regardless of the variation across sessions (consistent with Figure 28). That is, larger dif-

ferences in the arrival rates during and after guaranteed hours result in poorer performance

of the vaccine administration policy. Second, similar to the observation in Section 3.3.1.2,

when the arrival rate is stationary within a session, variation in mean demand across ses-

sions within the cycle has a similar impact, regardless of the probability of return, ρ (e.g.,

for µ0 = 11, as γ increases, the coverage rate increases). Finally, we see that the impact of

day-to-day mean daily demand variation (γ) on performance when there is variation in the

within-day arrival rate, i.e., β > 1, is inconsistent for different values of ρ. For example, for

β = 3 and 0 ≤ ρ ≤ 0.5, as γ increases, the coverage rate increases, whereas for 0.75 ≤ ρ ≤ 1,

the coverage rate first increases and then decreases.

3.3.2 Impact of Delayed Service

Overall, under the optimal vaccine administration policy with a positive probability of return

(ρ > 0), although clinicians sometimes discontinue vaccinations earlier in the day (Figure

29), they always vaccinate more patients compared with the policy in Chapter 1. That is, an

increase in the probability of return increases the coverage rate because a portion of unvac-

cinated patients return during the following session, and thus, clinicians can vaccinate more

patients by possibly discontinuing vaccinations earlier on certain days. The improvement in

the performance of the vaccine administration policy is evident in Figures 28, 31 and 32.

For example, in Figure 28, for Q = 24 and β = 2, as the probability of return increases

from 0 to 1, the coverage rate increases from 91.3% to 95.1%. An increase in ρ decreases the

percentage of patients vaccinated on their first attempt, φ. For example, in Figure 28, for

Q = 24 and β = 2, as ρ increases from 0 to 1, φ decreases from 91.3% to 85.2%. However,

the increase in the percentage of patients vaccinated on their second attempt, φ̂, is larger

than the reduction in the first attempt percentage. Lastly, for instances with a probability

of return close to 1, it is often optimal to suspend vaccinations, which increases the number

of hours closed (Figure 29). However, the overall coverage rate is still higher (as explained in
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Figure 32: Proportion of patients in each category under NN-Policy as a function of β, ρ

and γ for the problem instance defined in Table 7 with µ0 = 11 and Q = 24.

Section 3.3.1.1). In contrast to the optimal vaccine administration policy, the greedy policy

is unable to take advantage of the fact that a patient turned away on one day has a positive

probability of returning the next day because all patients are vaccinated as long as inventory

is on hand.

In summary, the computational results presented in Section 3.3 demonstrate three main

relationships. First, if there is significant variation within a day (large β), then most of

73



the patients arrive during the guaranteed hours and must be served, hence the optimal

policy performs similarly to the greedy policy because there are fewer decision opportunities.

Second, the effects of demand variation between days in the replenishment cycle (γ) are very

problem specific. Changes in γ can increase or decrease coverage. An increase in the value

of γ generally improves the performance of the greedy policy because there are fewer arrivals

at the end of the month when the inventory of vials is most likely to be exhausted. Third,

as ρ increases, patients can be pooled (patients from late in the day on day i are asked to

return on day i+1) to reduce OVW. Therefore, although fewer patients might be vaccinated

on their first attempt, the overall coverage increases.

3.4 EXTRAPOLATING BEYOND A SINGLE CLINIC

Whereas Section 3.3 examines the performance of the optimal policy under different sets of

parameter values for a single replenishment cycle in a single clinic, in this section we explore

the performance of the optimal policy on a broader scale. More specifically, we estimate

the expected number of additional vaccinations that could be administered (along with the

corresponding percentage reduction in OVW) across multiple clinics over the course of an

entire year if the current policy is replaced by the optimal policy. We then extrapolate these

results to estimate the potential benefits across all developing countries supported by the

Global Alliance for Vaccines and Immunization (GAVI).

Currently, 53 countries are eligible for support from GAVI based on having a Gross

National Income per capita below US $1, 570. As an illustrative example from this list we

choose India, with a population of approximately 1.27 billion and an annual birth cohort

of approximately 25.5 million [12]. We focus on the state of Bihar with an annual birth

cohort of approximately 3 million. To obtain an estimate of the improvement in Bihar over

a one-year period (the year 2015), we assume that the birth rate is constant throughout the

year and that all clinics are identical. We also assume a monthly replenishment cycle, as is

most common in practice, and that there are 20 sessions per replenishment cycle (equivalent

to the clinic being open 5 days a week). As an illustrative vaccine, we choose measles. Under
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the EPI schedule, each child requires two doses of measles vaccine, which is manufactured in

10-dose vials. To estimate the average number of arrivals per session we consider 160 clinics

in Bihar for which we have data on the infant population (age 0-11 months) covered by each

clinic; these clinics vaccinate approximately 31.8% of the Bihar infant population. In 2013,

the total number of infants age 0-11 months in these 160 clinics in Bihar was approximately

858,800 and approximately 25% of them, or 214,700 infants, were vaccinated in clinics; the

remaining 75% were vaccinated through outreach sessions. The infant population for 2015

is estimated to increase by 2.01% (two years of a 1% annual growth rate in India [49])

over that of 2013. Thus, the expected number of daily arrivals for measles vaccination

at each clinic is 858800×2×0.25×(1+0.0201)
160×12×20

= 11.41 patients per session. Unfortunately, we do

not have reliable data on the day-to-day and within-day arrival patterns, nor do we have

estimates of the likelihood that a patient would return the next day when denied vaccination

on a given day. Therefore, we evaluate the gains realized under the optimal policy across

a range of values for the corresponding parameters. In particular, the following sets of

parameters values are considered: β ∈ {1, 1.5, 2, 2.5, 3, 5}, γ ∈ {0.9, 0.925, 0.95, 0.975, 1} and

ρ ∈ {0, 0.25, 0.5, 0.75, 1}.

Table 8 summarizes the improvements in the state of Bihar over a one-year period

achieved by implementing the optimal policy as opposed to a greedy policy. We consider two

different levels of buffer stock, a standard value of 27% and a reduced value of 10%. (Ideally,

we would choose the WHO recommendation of 25% for the standard value, but because vials

can only be ordered in discrete quantities, 27% is the closest achievable value to 25%.) For

each case, we evaluate the improvement for each of the 6×5×5 = 150 possible combinations

of values considered for β, γ and ρ. Table 8 reports the maximum (best case), minimum

(worst case) and average values across all of these combinations for (i) the coverage rate

under the optimal policy, (ii) the number of additional vaccinations administered and (iii)

the reduction in open vial waste. Several observations may be drawn from the results.

First, under 27% buffer stock, the optimal policy results in over 72,000 more vaccinations

annually than the greedy policy when averaged across all parameter values; this corresponds

to approximately 5.3% of the total demand. With only 10% buffer stock, the improvement is

even more dramatic with over 146,000 additional vaccinations on average (slightly more than
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10% of the total demand). Second, in the best case scenario there are situations in which

implementing the optimal policy can result in approximately 99.99% vaccination coverage,

and in the worst case scenario, even with just 10% buffer stock, the optimal policy yields

above 88% coverage in all cases while the greedy policy never yields more than 85% coverage.

The potential number of additional vaccinations is even more astonishing on a global

level. With a 27% buffer, based on Table 8 and an annual birth cohort in Bihar of 2,997,369,

25% of which is vaccinated in clinics, the worst-case rate of additional vaccinations per year

is 31,260
0.25×2,997,369

× 100% = 4.2%. For a birth cohort in the remaining states of India and

the other GAVI countries of 69,956,943 [12], even under the assumption that only 25% of

the population is vaccinated through clinics and extrapolating from the worst-case increase

in coverage in Bihar, the results suggests that implementing the optimal policy worldwide

would result in more than 69,956,943 × 25% × 4.2% ≈ 730 thousand additional measles

vaccinations at no additional cost. In reality, far more than 25% of patients worldwide

are vaccinated through in-clinic operations; if we assume this percentage is (for example)

80%, implementing the optimal policy would result in more than approximately 2.3 million

additional measles vaccinations. Furthermore, there are many combinations of parameter

values for which the increase is much more than the conservative estimate of 4.2%, in which

case the corresponding increase in the number of vaccinations would be significantly higher.

Implementing the optimal policy also reduces OVW and therefore decreases the vacci-

nation cost per child. For the Bihar data, as seen in Table 8, the percent reduction in OVW

averaged across all parameter combinations is approximately 6% for the 27% buffer stock

case and approximately 10% for a buffer stock of 10%. At a cost of US $3.0 per 10-dose

vial [49], with buffer stocks of 27% and 10%, the cost per vaccination under the optimal

policy is US $0.38 and US $0.35, respectively, whereas under the greedy policy, these costs

are approximately US $0.41 and US $0.40 per vaccination. Although the measles vaccine is

relatively inexpensive, this reduction in OVW can result in significant savings for other, more

expensive vaccines (e.g., Hib, Haemophilus Influenzae Type B). In summary, when viewed

from a world-wide perspective, the benefits of using an optimal policy could be tremendous

in terms of coverage as well as cost savings.
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Table 8: Summarized results of implementing the optimal policy in Bihar, India.10% 27%maximum 98.6% 99.99%average 92.4% 98.1%minimum 88.3% 96.4%maximum 271,154 122,431average 146,273 72,412minimum 64,074 31,260maximum 20.0% 12.7%average 10.0% 5.7%minimum 4.3% 2.0%

coverage rate under optimalpolicy buffer stock
expected number of additionalvaccinations per year(versus the greedy policy)

reduction in OVW rate
3.5 CONCLUSIONS

Limited supplies of (lyophilized, multi-dose) vials in remote clinics gives rise to difficult

vial-opening decision problems. In Chapter 1, we address these problems, but under three

simplifying assumptions: (i) demand is stationary within each session, (ii) demand is sta-

tionary across sessions in each replenishment cycle, and (iii) patients who are turned away

because it is suboptimal to open a new vial at the time of their arrival, are lost. In this

chapter we formulate a new MDP model that relaxes these assumptions. This more general

model determines how to optimally administer vaccines from multi-dose vials when nonsta-

tionary demand and patient returns are possible, thereby outperforming current practice

and the policies in Chapter 1.

We perform an extensive numerical study to evaluate the impact of the probability of

return and demand variation on the performance of the optimal vaccine administration pol-

icy. As expected, higher coverage is gained as the probability of return increases; hence,
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motivating unvaccinated patients to return in the following session by guaranteeing vacci-

nating can improve overall performance. If the vast majority of patients arrive during the

guaranteed hours then there is less decision making opportunity to optimize vial usage and

the optimal coverage rate is reduced. Variation in the daily demand across the days of the

month has a complicated effect on the optimal policy, sometimes increasing coverage and

sometimes decreasing coverage, that depends on other factors such as the expected daily

demand and the number of sessions between replenishments. Finally, we use data from the

state of Bihar, India as a case study to estimate the increase in the expected number of vac-

cinations over a one-year period under the optimal policy; extrapolating these results to the

other GAVI countries around the world suggests that behaving optimally has the potential

to significantly increase coverage and reduce waste.
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4.0 OPTIMAL DESIGN OF FIXED AND OUTREACH VACCINATION

SERVICES

4.1 INTRODUCTION

The World Health Organization (WHO) operates the Expanded Program on Immunization

(EPI) with the objective of maximizing the number of children who are immunized against

many vaccine-preventable diseases including measles, hepatitis and polio. The WHO places

special emphasis on lower and middle income countries that have low vaccination budgets,

limited resources and often inadequate infrastructure. After launching the EPI, the coverage

rate for core vaccines such as diphtheria, tetanus and pertussis (DTP), Bacille Calmette-

Gurin (BCG), polio and measles increased significantly from less than 5% in the 1970s

to more than 85% in 2014 [35]. For DTP and measles alone this has helped to prevent

approximately 2 to 3 million additional deaths each year and has protected many more

people from illness and disability [58].

Despite these efforts there are still a large number of children (1.5 million in 2013 [58])

who die from vaccine-preventable disease each year. Moreover, as reported by UNICEF [50]

in 2014, more than 30 million children did not receive recommended vaccinations. UNICEF

cites poorly managed or inaccessible health services as one of the main reasons for such a

large volume of uncovered children. Indeed, in many countries (e.g., Niger, Ethiopia, Kenya),

a substantial fraction of the population lives in remote locations without access to private or

public transportation and hence have limited access to clinics [3]. This problem is particulary

acute during the wet season and under severe weather conditions. Consequently, transporting

vaccines to hard-to-access areas (i.e., outreach) can significantly improve vaccination coverage

[57].
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To alleviate these barriers to coverage, in 2002 the WHO, UNICEF and other partners

introduced the “reaching every district” (RED) strategy [52]. One of the operational com-

ponents of RED is “reaching targeted populations,” which focuses on developing a vaccine

delivery strategy for remote areas with poor access to health services. Trips made from

clinics to these remote areas to provide vaccination are referred to as outreach trips.

When using strategies involving outreach, government health organizations face a tradeoff

between establishing clinics and performing outreach. Daskin et al. [6] state poorly located

facilities or the use of too many or too few facilities can result in unnecessary costs and/or

degraded customer service. In the content of clinic and outreach trip trade-off, establishing

more clinics is desirable from a coverage and patient perspective because it provides every-

day vaccination opportunities for patients in traveling-distance locations as long as there is

inventory on-hand. However, the high cost associated with facilities, salaried laborers and

equipment makes it impractical to establish clinics in all locations and requiring patient to

travel to a clinic negatively influences coverage (e.g., [3, 29, 34]). In contrast outreach can

be more affordable than establishing a clinic and eliminates patient travel, but provides a

limited number of vaccination opportunities. Moreover, outreach trips from a single clinic

cannot cover all locations due to constraints on outreach trip size and distance. Therefore,

we propose a mechanism to find the best combination of clinic locations and outreach trips

from these clinic locations to cover an entire set of locations over a given time horizon.

Considerable research has been done on various healthcare facility location problems;

see Daskin and Dean [6] for a review of single-level models in this area, Rahman et al. [39]

for a review specific to developing countries and the more recent review by Rais et al. [40]

for problems in providing adequate and proper healthcare service. However, to the best of

our knowledge, [15, 45, 53, 27] are the only works which incorporate the fact that requiring

patients to travel to a vaccination site negatively influences coverage in healthcare facility

location problems. These studies focus on finding the optimal clinic locations only whereas

we simultaneously consider planning outreach trips which expand a clinic’s area of influence.

That is, the combination of clinic location and outreach planning has not been previously

studied.
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The actual demand in population centers is usually unknown, which implies that demand

uncertainty must be considered in healthcare facility location problem as well. A variety of

approaches are proposed to deal with the demand uncertainty involved in facility location

problems and these are summarized in [43]. We use a chance-constrained programming ap-

proach to model the uncertainty that exists in the demand by imposing a minimum coverage

requirement at each location individually, similar to [30].

Combining clinic location and outreach planning is challenging due to the operational

constraints associated with outreach trips, the most influential of which are the upper bounds

on (i) the travel distance (trips typically have to be completed in a single-day), (ii) the

number of outreach trips performed during a specific period of time (due to budget and

manpower limitations), and (iii) the number of potential doses of vaccine per outreach trip

(as result of vaccine carrier capacity).

The outreach trip planning problem from a given location(s) has not received much at-

tention in the literature despite its critical role in improving coverage for hard-to-access

populations. Lim et al. [27] are the only ones who develop a mathematical framework to

model outreach coverage. Lim et al. in [27] develop multiple models to plan outreach trips

for one or a given set of clinic locations and compare their performance. In each model,

they consider different types of outreach coverage as a function of traveling distance, e.g.,

binary coverage, step-wise coverage (decreasing function of traveling distance) and partial

coverage from multiple locations. Similar to outreach planning, the mobile healthcare fa-

cilities planning problem [8, 17] aims to improve accessibility to health care facilities by

performing trips to hard-to-access areas. However, mobile facility location planning con-

siders trips longer than a single day that include multiple destinations, whereas outreach

involves single-day trips to one destination.

The problem we considered can also be reviews as a set covering problem (SCP). SCPs

find the optimal set of facility locations that minimizes the cost or required number of

facilities to cover a set of locations. A considerable amount of work has been done in this

area and comprehensive literature reviews [31, 42] exist on the SCP. Most of the SCP work in

the literature, is on the uncapacitated problem [11]; our problem, however, is a capacitated

SCP [5]. Limitations on the size and number of outreach trips restrict the number of patients
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and consequently the number of locations that could be covered by a clinic. Our problem is

unique among existing capacitated SCP models for several reasons. First, a clinic’s area of

influence can be extended by performing outreach trips, which adds considerable complexity

to the problem. Second, we consider capacity restrictions on outreach trips, which indirectly

imposes capacity restrictions on the clinics. Finally, outreach trips have their own area of

influence, which is a function of outreach size and existing demand within traveling distance

of their destination.

Our problem can also be considered as a location-routing problem (LRP) because a

clinic can perform outreach trips to remote locations. LRPs are facility location problems

that simultaneously take into consideration routing aspects. Because of the interrelation

between the facility location and the routing problem, interest in this type of problem has

been growing in recent years and much work has been done in this area. Detailed literature

reviews on the LRP are provided in [22, 32] and [37]. Our problem is a special case of an LRP

problem because outreach trips are performed daily and restricted to just one destination in

contrast to the general routing problem in which multiple destinations are visited in one trip.

However, our problem is distinct from the existing literature because (i) demand cannot only

be covered by an outreach trip but also by clinics, (ii) one outreach trip can simultaneously

cover any subset of locations that are within traveling distance of the outreach location (it

is a function of the outreach trip size), and lastly (iii) because of the trip size constraint,

outreach trips can result in partial coverage and consequently, one location may covered

through multiple outreach trips from different origins.

The remainder of this chapter is organized as follows. In Section 4.2, we first develop a

mixed integer linear model which determines the appropriate clinic locations and plans the

outreach trips from each location. We then discuss how to incorporate demand uncertainty

into the model. In Section 4.3, we solve a small numerical example and explore its optimal

solution. In Section 4.4, we perform sensitivity analysis on the primary model parameters.

In Section 4.5, we propose two alternative heuristic approaches to obtain benchmarks and

compare their performance with that of the proposed model. Finally, in Section 4.6, we

discuss the limitations of our approach and provide some summary remarks.
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4.2 MODEL FORMULATION

4.2.1 MILP Model

Consider a set of locations with known demand that must be vaccinated within a specified

time horizon (we relax the known demand assumption in Section 4.2.2). We set the length

of the time horizon based on dosage-schedule requirement, i.e., the frequency required to

deliver vaccines to outreach locations [57], e.g., if each location is required to be visited

twice a year then the time horizon is 6 months. The model formulated in this section

determines the optimal set of clinic locations among these potential locations and their

corresponding outreach activities. More specifically, the mixed integer linear programming

(MILP) model minimizes the costs associated with operating the clinics, performing outreach

trips and requiring patient travel, while simultaneously enforcing limits on outreach trip size

and travel distance for both outreach trips and patients. To develop this model, we make

the following assumptions:

1. There are upper bounds on the number of outreach trips per clinic and the number of

potential vaccinations per outreach trip.

2. Under any given solution, the total required number of doses for the entire horizon can

be made available at each clinic location at no cost.

3. The distance between all locations is fixed and known.

4. Round trip outreach trips must be performed within a single day. That is, only locations

within daily travel distance of a clinic can be covered through outreach trips from that

clinic.

5. There is a limit on the distance that patients are willing to travel to get vaccinated.

6. Patients within traveling distance of multiple clinics travel to the closest clinic.

7. In locations within traveling distance of at least one clinic, the entire demand is covered in

the least costly way, i.e., either at the closest clinic or via outreach trips to the location.

That is, patients do not travel to an outreach destination if there is a clinic within

traveling distance of the location.

83



Accordingly, as seen in Figure 33, each location is covered in one of five ways: (i) an on-site

clinic (location 0), (ii) patient travel to a clinic within traveling distance (location 1), (iii)

a direct outreach trip(s) (locations 2, 3, 4 and 5), (iv) an indirect outreach trip(s) (locations

6 and 8), i.e., patients travel to a nearby location that is an outreach trip destination site,

or (v) a combination of direct and indirect outreach trips (location 7).clinic locationoutreach triptraveling patient
4

1
652

73 0
8

Figure 33: Different ways locations may be covered.

We don’t model the timing of the outreach trips during the planning horizon. That is,

given a feasible number of trips to perform, we assume that each clinic spreads the trips out

in a roughly even fashion. Beyond the first time horizon, we implement the same solution

unless drastic change in the population observed in locations. In this case, we may resolve

considering the fixed set of clinic locations.

Let n be the number of locations, ρi be the known demand in location i and dij be the

travel distance between location i and j. Let ∆ be the maximum patient travel distance

and Si be the set of locations within ∆ distance units of location i, i.e., Si = {j|dij ≤ ∆}.

Similarly, let ∆̂ be the maximum outreach travel distance and Ŝi be the set of locations

within ∆̂ distance units of location i, i.e., Ŝi = {j|dij ≤ ∆̂}.
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We consider two types of outreach vehicles, motorbikes and four-wheel vehicles. Four-

wheel vehicles have 3-4 times the capacity of motorbikes, but also have a higher cost per

unit of distance traveled. For the sake of model simplicity, we assume that only one type of

vehicle is available in each clinic, however, we can easily relax this assumption. Let δM and

δF be the maximum number of vaccinations per outreach trip performed by a motorbike and

four-wheel vehicle, respectively.

Let xi be a zero-one decision variable that equals 1 when there is a clinic at location i

and 0 otherwise. Based on Assumption (7), if location i is within traveling distance of at

least one clinic, it is covered through either traveling-distance clinic or direct outreach trips.

Let x̂i and x̌i be zero-one decision variables which determine whether the entire population

in location i travels to a traveling-distance clinic or clinicians perform direct outreach trips

to location i. That is, x̂i equals 1 if the entire population in location i travels to a traveling-

distance clinic and 0 otherwise as opposed to x̌i which equals 1 if the entire population in

location i is covered by outreach and 0 otherwise.

The optimization model consists of 5 sets of constraints. To better describe the model,

we first present each set of constraints individually and then combine them into a single

optimization model. Constraints (4.1a)-(4.1g) determine how each location that is within

traveling distance of at least one clinic is covered:

xi + x̂i + x̌i ≤ 1, i = 1, . . . , n, (4.1a)

x̂i + x̌i ≤
∑

j∈Si\{i}

xj , i = 1, . . . , n, (4.1b)

xj ≤ xi + x̂i + x̌i, j = 1, . . . , n, i ∈ Sj\{j}, (4.1c)
∑

i∈Sk\{k}

κik = x̂k, k = 1, . . . , n, (4.1d)

κik ≤ xi, k = 1, . . . , n i ∈ Sk\{k}, (4.1e)

d̂k ≤ ∆(1− xi) + dikxi, k = 1, . . . , n, i ∈ Sk\{k}, (4.1f)
∑

i∈Sk\{k}

dikκik ≤ d̂k, k = 1, . . . , n. (4.1g)

Let define κik to be a binary variable that equals 1 when the closest clinic within traveling

distance of location k is in location i and 0 otherwise. If a clinic is located in location i then
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constraint (4.1a) forces x̂i and x̌i to 0. Similarly, if there is no clinic within traveling distance

of location i then constraint (4.1b) forces x̂i and x̌i to 0. If there is a clinic in location j (i.e.,

xj = 1) then, for each location within the traveling distance of location j, constraint (4.1c)

guarantees coverage either through an on-site clinic (i.e., xi = 1), a traveling-distance clinic

(i.e., x̂i = 1), or direct outreach (i.e., x̌i = 1), but there is no indirect outreach in this case.

If multiple clinics are within traveling distance of a location, we assume that the patients

in that location travel to the closest clinic unless the location is covered by a direct outreach

trip. Let d̂k be the minimum travel distance from location k to a clinic within traveling

distance of location k, i.e.,

d̂k =







mini∈Sk\{k}{dik|xi = 1}, Sk\{k} 6= ∅,

0, Sk\{k} = ∅.

We determine d̂k through constraints (4.1d)-(4.1g). Specifically, constraints (4.1d) and (4.1e)

select a clinic in the traveling distance of location k if location k is covered by a clinic within

traveling-distance (i.e., x̂k = 1). Simultaneously, constraints (4.1f) and (4.1g) force the clinic

selected by constraints (4.1d) and (4.1e) to be the closest one to location k and determine

the minimum traveling distance, d̂k.

Generally, a limited number of clinicians are available in a clinic and are required to be

present for in-clinic operation. Therefore, increasing the number of outreach trips above a

threshold (e.g., one outreach trip per week) requires hiring more clinicians which increases

the outreach cost per trip. Hence, let θ̌ be the number of outreach trips after which the

outreach cost increases and θ̂ be the maximum number of outreach trips per clinic (θ̌ and θ̂

can readily be extended to be location-specific parameters θ̌i and θ̂i). Obviously, if θ̌ = θ̂,

no such threshold exists. Let decision variables y̌ijl be the number of low-cost outreach trips

from location i to j with a vehicle of type l and ŷijl be the analogous number of high-cost

outreach trips.

Because, we consider indirect outreach as a means of coverage, we need to determine the

number of patients that we plan to vaccinate from locations within traveling distance of each

outreach destination. To do so, let sk,k′ be a decision variable that indicates the number of

patients from location k′ (that is within traveling distance of location k) whom we plan to
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vaccinate through direct outreach trips to location k. We assume that patients in location

k′ that need to travel to location k for vaccination are notified in advance.

The second set of constraints, which enforce outreach operational constraints, are as

follows:

∑

j∈Ŝi\{i}

y̌ijl ≤ θ̌x̄il, i = 1, 2, . . . , n, l ∈ {M,F}, (4.2a)

∑

j∈Ŝi\{i}

ŷijl ≤
(

θ̂ − θ̌
)

x̄il, i = 1, 2, . . . , n, l ∈ {M,F}, (4.2b)

∑

l∈{M,F}

x̄il ≤ xi, i = 1, 2, . . . , n, (4.2c)

∑

k′∈Sk\{k}

sk′k ≤ (1− x̌k)ρk, k = 1, 2, . . . , n, (4.2d)

∑

k′∈Sk\{k}

skk′ ≤ (1− x̂k)
∑

k′∈Sk

ρk′, k = 1, 2, . . . , n, (4.2e)

where x̄il is a zero-one variable that determines the type of outreach vehicle (l) in location

i. Constraints (4.2a) and (4.2b) restrict the total number of outreach trips per clinic to θ̂

while bounding low-cost outreach trips by θ̌. Constraints (4.2a)-(4.2c) determine the type

of outreach vehicle in location i. Constraint (4.2d) prevents any coverage resulting from

indirect outreach trips to locations within traveling distance of at least one clinic. Finally,

constraint (4.2e) prevents outreach to locations covered by a traveling-distance clinic.

Next, constraint (4.3) guarantees full coverage in all locations as follows:

∑

i∈Ŝk\{k}

∑

l∈{M,F}

δl
(

y̌ikl + ŷikl
)

+
∑

k′∈Sk\{k}

(

sk′k − skk′
)

+ ρk

(

xk + x̂k

)

≥ ρk, k = 1, . . . , n.

(4.3)

Constraint (4.3) forces the model to cover demand in location k by direct outreach trips,

indirect outreach trips, an on-site clinic or a traveling-distance clinic. The first term on the

left hand side of constraint (4.3) corresponds to the maximum number of vaccinations that

can be performed through direct outreach trips to location k. The second term assigns the

extra outreach capacity in location k to other locations and vice versa. Finally, the last term

on the left hand side inactivates constraint (4.3) if either a clinic is located in location k or
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its patients travel to a traveling-distance clinic; that is, no outreach is required to satisfy the

demand in location k.

To restrict patients in locations to which outreach trips are made from seeking vaccination

elsewhere (when an adequate number of doses is available), we add the following constraint:

∑

k′∈Sk\{k}

skk′ ≤ max
{

∑

i∈Ŝk\{k}

∑

l∈{M,F}

δl
(

y̌ikl + ŷikl
)

− ρk(1− xk − x̂k), 0
}

,

where the first term on the right-hand side inside the maximization corresponds to the total

direct outreach capacity for location k and the second term is associated with the total

demand in location k which is not covered by an on-site or a traveling-distance clinic. This

constraint is linearized using auxiliary binary variables βk, k = 1, 2 . . . , n and real-valued

variables ŵk, k = 1, 2 . . . , n as follows:

∑

i∈Ŝk\{k}

∑

l∈{M,F}

δl
(

y̌ikl + ŷikl
)

− ρk(1− xk − x̂k) = wk − ŵk, k = 1, . . . , n, (4.4a)

∑

k′∈Sk\{k}

skk′ ≤ wk, k = 1, . . . , n, (4.4b)

wk ≤ βk

n
∑

k′=1

ρk′, k = 1, . . . , n, (4.4c)

ŵk ≤ (1− βk)ρk, k = 1, . . . , n. (4.4d)

We assume that clinic operation costs are a function of the number of patients served in

the clinic. Initially, increasing the number of walk-in patients does not considerably change

clinic operation costs. However, clinic operation costs increase if the number of walk-in

patients grows significantly such that the clinic needs to acquire more resources. We assume

that clinic operation cost is initially fixed until the number of walk-in patients hits a specific

level and then increases linearly as a function of additional walk-in patients. Let s be the

threshold for the number of walk-in patients after which the clinic operation cost increases

and zi be the number of additional walk-in patients vaccinated in the clinic in location i.

The following constraint determines the value of zi :

zi ≥ ρixi +
∑

k∈Si\{i}

ρkκik − s, i = 1, . . . , n. (4.5)
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With simple modifications in constraint (4.5), we can model any kind of piecewise linear

function representing clinic operation costs.

Let c be the fixed cost of clinic operation over the planning horizon, c̃ be the cost of clinic

operation per patient when the number of walk-in patients exceeds the existing immunization

resource, and λ be the patient travel cost per unit of distance. We assume clinics are not

built from scratch; rather immunization activities are added to existing clinic functions and

the fixed costs correspond to extra resources required for these activities (e.g., additional

equipment, staff, transport, etc.). We also assume these fixed costs are identical at all clinics

which can easily be relaxed by considering different fixed cost across locations. Let čijl

represent the cost of an outreach trip for the first θ̌ outreach trips and ĉijl represent the

analogous cost after θ̌ outreach trips. Hence, the entire model formulation can be expressed

as:

min z =

n
∑

i=1

(

cxi + c̃zi
)

+

n
∑

i=1

∑

j∈Ŝi\{i}

∑

l∈{M,F}

(

čijly̌ijl + ĉijlŷijl

)

+

n
∑

k=1

2λ

(

ρkd̂k+

∑

k′∈Sk\{k}

dk′ksk′k

)

s.t. Constraints (4.1a)-(4.1g)

Constraints (4.2a)-(4.2e)

Constraint (4.3)

Constraints (4.4a)-(4.4d)

Constraint (4.5)

xi, x̂i, x̌i, βi, γi, κij ∈ {0, 1}, i = 1, . . . , n, j ∈ Si\{i},

d̂i, yijl, sij, zi ∈ N, i = 1, . . . , n, j ∈ Ŝi\{i}, k ∈ Sj\{i, j}, l ∈ {M,F},

wk, ŵk ≥ 0, k = 1, . . . , n, k′ ∈ Sk\{k}.

The first and second terms in the objective function correspond to the cost of clinic operation

and outreach trips, respectively. The last term is associated with the patient travel cost to

either a traveling-distance clinic or outreach trip destination. In this model, we assume

identical patient travel cost for all locations, but this assumption can easily be relaxed. For
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example, we can set a higher value of λ for harder to access locations; consequently, those

locations would be more probable to be a clinic location or an outreach destination.

4.2.2 Demand Uncertainty

The model formulated in Section 4.2.1 is a deterministic optimization model. It generates

an optimal solution which specifies clinic locations and outreach trips to cover a known

set of demands. However, demand is not always known and its estimation involves uncer-

tainty. Hence, the model may generate suboptimal or infeasible solutions. In this section,

we proposed a method to incorporate demand uncertainty into the optimization model.

The point estimate of demand at each location, ρi, appears in many constraints in the

optimization model. To capture uncertainty in these estimates we divide the constraints into

two groups. The first group includes constraints (4.2d), (4.2e), (4.4c) and (4.4d) in which

we set ρi to be sufficiently large such that these four constraints are never tight. Therefore,

we set ρi to an upper bound and this does not impact solution optimality and feasibility.

The second group of constraints includes constraints (4.3), (4.4a) and (4.5), in which

underestimating demand can result in low coverage and/or larger distances traveled by pa-

tients, whereas overestimating demand can increase clinic operation and outreach costs. Let

the demand in location k be a positive random variable Vk which follows a log-normal dis-

tribution similar to [30] with parameters µk and σk, i.e., Vk = eµk+Zσk where Z ∼ N(0, 1).

Furthermore, let ρ∗k(τ) be such that Pr
(

Vk ≥ ρ∗k(τ)
)

= τ . That is, ρ∗k(τ) is the 100(1− τ)th

percentile of the demand distribution in location k. We substitute ρ∗(τ) for ρ in constraints

(4.3), (4.4a) and (4.5) and we can control the coverage by determining the appropriate

value of τ . Given that the demand in location k, Vk, follows a log-normal distribution with

parameters µk and σk, ρ
∗
k(τ) is given by:

ρ∗k(τ) = eµk+Φ−1(1−τ)σk . (4.7)

Based on Assumption (2), in locations covered with an on-site clinic or a walking-distance

clinic, the entire demand is guaranteed to be vaccinated. Based on constraint (4.3), in

locations covered by direct and/or indirect outreach trips, at most ρ∗k(τ) patients can be
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vaccinated due to the constraint on the size of outreach trips. Therefore, let ϕk(τ) be the

coverage rate (i.e., the fraction of patients who are vaccinated) in location k given that we

vaccinate at most ρ∗k(τ) patients. We can compute the expected value of ϕk(τ) as follows

E[ϕk(τ)] = 1− E
[(Vk − ρ∗k(τ))

+

Vk

]

(4.8a)

= 1− Pr
(

Vk ≥ ρ∗k(τ)
)

E
[

1−
ρ∗k(τ)

Vk

∣

∣

∣
Vk ≥ ρ∗k(τ)

]

(4.8b)

= 1− τ

(

1− ρ∗k(τ)E
[ 1

Vk

∣

∣

∣

1

Vk

≤ ρ∗−1
k (τ)

]

)

(4.8c)

= 1− τ + τρ∗k(τ)e
−µk+σ2

k
/2
Φ
(

ln
(

ρ∗−1
k

(τ)
)

+µk−σ2
k

σk

)

Φ
(

ln
(

ρ∗−1
k

(τ)
)

+µk

σk

)

(4.8d)

= 1− τ + τρ∗k(τ)e
−µk+σ2

k
/2
Φ
(

− Φ(1− τ)− σk

)

Φ
(

− Φ(1 − τ)
) (4.8e)

= 1− τ + eσk

(

Φ−1(1−τ)+σk/2
)

(

1− Φ
(

Φ−1(1− τ) + σk

)

)

, (4.8f)

where Equation (4.8b) follows from the law of total expectation and the fact that E
[ (Vk−ρ∗

k
(τ))+

Vk
|Vk <

ρ∗k(τ)
]

= 0; Equation (4.8d) follows from the fact that, if V ∼ lnN(µ, σ2), then 1
Vk

∼

lnN(−µ, σ2) and E
[

V
∣

∣V ≤ v
]

=
Φ
(

ln(v)−µ−σ2

σ

)

Φ
(

ln(v)−µ

σ

) eµ+σ2/2; and Equation (4.8f) follows from

Φ
(

− Φ−1(α)
)

= 1 − α and Equation (4.7). Interestingly, the expected coverage rate in

location k only depends on the values of τ and σk.

Moreover, let ϕα
k (τ) be the 100αth percentile of the coverage rate in location k given that

we vaccinate at most ρ∗k(τ) patients. We can compute the value of ϕα
k (τ) as follows:

ϕα
k (τ) =

ρ∗k(τ)

ρ∗k
(

α
) = eσk

(

Φ−1(1−τ)−Φ−1(1−α)
)

, (4.9)

which follows from the fact that for 0 ≤ ε ≤ 1,

Pr(ϕk(τ) ≥ ε) = Pr
((Vk − ρ∗k(τ))

+

Vk
≤ 1− ε

)

(4.10a)

= Pr

(

Vk − ρ∗k(τ)

Vk
≤ 1− ε

∣

∣

∣

∣

Vk ≥ ρ∗k(τ)

)

Pr
(

Vk ≥ ρ∗k(τ)
)

+ Pr
(

Vk < ρ∗k(τ)
)

(4.10b)

= Pr

(

Vk ≤
ρ∗k(τ)

ε

∣

∣

∣

∣

Vk ≥ ρ∗k(τ)

)

τ +
(

1− τ
)

(4.10c)
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=
Pr
(

ρ∗k(τ) ≤ Vk ≤
ρ∗
k
(τ)

ε

)

Pr
(

Vk ≥ ρ∗k(τ)
) τ +

(

1− τ
)

(4.10d)

=

(

1−
Pr
(

Vk ≥
ρ∗
k
(τ)

ε

)

τ

)

τ +
(

1− τ
)

(4.10e)

= Pr
(

Vk <
ρ∗k(τ)

ε

)

= Φ
( ln
(ρ∗

k
(τ)

ε

)

− µk

σk

)

. (4.10f)

Equation (4.10b) follows from the law of total probability; and Equation (4.10f) follows from

the fact that, if V ∼ lnN(µ, σ2), then Pr(V < x) = Φ
(

ln(x)−µ
σ

)

. Similar to the expected

value in Equation (4.8f), the percentile of the coverage rate in location k only depends on

the values of τ , α and σk.

4.3 NUMERICAL EXAMPLE

In this section, we present a small numerical example and explore its corresponding optimal

solution generated by the MILP model. To evaluate its performance, we develop a simulation

model which simulates the vaccination demand in each location according to the underlying

demand distributions discussed in Section 4.2.2. Consider a problem instance that consists

of 15 locations with the coordinates, population mean, and variance reported in Table 9. All

of the locations are potential clinic locations as well as outreach destinations and they are

connected through a road network. We compute the travel distance between two locations

connected by a road using a Euclidean distance metric and set di,j to the shortest travel

distance between location i and j considering the existing road network.

Over a 6 month time horizon, let the fixed cost of clinic operation, c, be $500 for the

capacity to see at most 3600 walk-in patients (s = 6 months ×20 days/month ×30 pa-

tients/day) and the variable cost per extra patient, c̃, be $0.5/patient. Let λ = $0.02/km,

∆ = 10 km, ∆̂ = 5 km, θ̌ = 24 outreach trips, θ̂ = 120 outreach trips, δM = 25 vaccina-

tions/outreach trip and δF = 100 vaccinations/outreach trip. Let τ = 0.5 and subsequently,

ρk = ρ∗k(0.5) patients for each location k.
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Table 9: Location specificationsk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
� k 400 100 300 200 100 200 350 150 200 500 100 300 250 100 200
� 2 k 66.7 16.7 50.0 33.3 16.7 33.3 58.3 25.0 33.3 83.3 16.7 50.0 41.7 16.7 33.3Coordinates (1,2) (1,6) (3,4) (9,1) (3,1) (3,7) (5,9) (5,11) (7,8) (12,6) (12,3) (12,13) (16,4) (17,14) (18,10)
One approach to compute the outreach cost is to decompose it into a fixed and a variable

cost which are functions of the number of outreach trips and the vehicle type used, respec-

tively. Let the fixed cost of an outreach trip be čf for the first θ̌ outreach trips and then let

it increase to ĉf . This increase in fixed costs is due to the need for additional resources such

as the cost of hiring additional staff. Let the variable cost per unit of distance traveled by a

vehicle of type l (∈ {F,M}) be cvl . Consequently, čijl = čf +2cvl dij and ĉijl = ĉf +2cvl dij. For

further clarification, in Figure 34, we plot the different types of outreach trip costs according

to the proposed structure.

02040
6080100120

0 1 2 3 4 5 6 7 8 9 10o ut reach cost travel distance, dij
motorbikemotorbikefouræwheel vehiclefouròwheel vehiclemotorbikefour�wheel vehiclefirst

�� outreach tripsafter
�� outreach trips���
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���
	

��

	

1km
1km

Figure 34: Outreach trip cost structure.
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In the numerical example, we let the fixed cost of an outreach trip for the first 24 outreach

trips be $10 which increases to $30 per outreach trip after 24 outreach trips. Finally, we

set the variable cost of motorbikes and four-wheel vehicles, cvM and cvF , to be $0.15/km and

$0.5/km, respectively.

Figure 35 demonstrates the optimal clinic locations and outreach trips to cover the entire

region. In Figure 35, we set the node size proportional to the population mean and use

straight lines and curved lines to draw the network of roads and outreach trips, respectively.

As seen in Figure 35, in the optimal solution we put clinics in locations 3 and 15 and assign

four-wheel vehicles to both clinics. The clinic in location 3 performs 6 outreach trips to

location 10, 4 outreach trips each to locations 1 and 7, 2 outreach trips each to locations

4 and 9, and one outreach trip to location 8. Outreach trips to location 8 partially cover

the location and its remaining patients travel to location 7. Furthermore, outreach trips to

location 10 simultaneously cover locations 10 and 11. The clinic in location 3 directly covers

locations 2, 5 and 6 which are within traveling distance of location 3. The clinic in location

15 performs 3 outreach trips each to locations 12 and 13 and one outreach trip to location

14.

Table 10 summarizes the performance of the optimal solution considering metrics such

as the expected coverage rate (i.e., the expected fraction of vaccinated patients) and the

expected travel distance per walk-in patient using the simulation model. Even though we

set τ = 0.5 (i.e., ρ∗k(0.5) = eµk , ∀k), the optimal solution exceeds a 95% expected coverage

rate and 15.7% of all patients travel an expected distance of 5.8 km to the vaccination site.

4.4 SENSITIVITY ANALYSIS

In this section, we perform sensitivity analysis on key problem parameters using the problem

example in Section 4.3. In Section 4.4.1, we investigate the relationship between τ and the

performance of the optimal solution, and discuss determining an appropriate value for τ .

In Sections 4.4.2 and 4.4.3, we explore how the values of λ, i.e., the patient travel cost or

94



clinic location (four-wheel)

clinic location (motorbike)

served by clinic

outreach

travel to outreach

1

2

3

45

6

7

8

9

10

11

12

13

14

15

4

2

4

1

2
6

3

3

1

50

100

= 0 02 Φ−1 = 0 Total Cost=1504 64 Clinic Cost=1441 32

Figure 35: Optimal clinic locations and outreach trips for the numerical example (τ = 0.5).

Table 10: Summary of the numerical example performance (τ = 0.5).Expected numberof vaccinations Expectedcoverage rate Expected fraction ofpatients who travel Expected totaltravel distance Expected travel distancepertravelingpatient3295 95.6% 15.7% 3135 5.8
willingness to travel, and δF , i.e., the number of vaccinations per outreach trip, impact the

cost of clinic operations, outreach and patient travel.

4.4.1 Probability of Underestimating Demand, τ

The smaller the value of τ , the more conservative the solution and hence the higher the

expected coverage. However, decreasing the value of τ increases the number of clinics and

outreach trips, and consequently requires more resources. In this section, we compute the
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expected coverage rate and percentiles derived in Section 4.2.2 as a function of τ in order to

identify an appropriate value for τ .

As τ decreases, ρ∗k increases and consequently, under the optimal solution more vaccina-

tion opportunities are provided by clinics in locations which are covered by direct and/or

indirect outreach trips. However, the appropriate value of τ depends on the extent of im-

provement in the coverage rate, which can be explored through the expected value and

percentiles in Figure 36. The expected coverage rate and percentiles are equal for all loca-

tions because in the numerical example we set σk = 0.1655 for all k. Based on Figure 36, we

consider values of τ = 0.5 and τ = 0.1 and suggest picking τ ∈ {0.1, 0.5} based on how con-

servative we wish the solution to be. The value of τ = 0.5 corresponds to the median which

results in an expected coverage rate of 94% at individual locations while its corresponding

1st and 5th percentiles are 76% and 68%, respectively. Likewise, for τ = 0.1, the expected

coverage rate for each location individually is 99.3%; and its 1st and 5th percentiles are 94%

and 84%, respectively. Both values of τ result in reasonably high expected coverage, while

the variation around the coverage rate is lower for τ = 0.1, i.e., the percentiles are closer to

the expected coverage rate.

0%10%20%30%40%50%60%70%80%90%100%
co veragerat eat on
el ocati on

degree of demand underestimation, �
expected coverage rate5th percentile of the coverage rate1st percentile of the coverage rate

Figure 36: Expected coverage rate and 1st and 5th percentiles of the coverage rate as a

function of τ .
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4.4.2 Patient Travel Cost, λ

The parameter λ prevents the model from generating a solution that imposes a major travel

burden on patients. In particular, λ specifies the amount that patients are willing to pay

per unit of distance traveled to a vaccination site. We can also interpret λ as the patients’

willingness to travel. High values imply a reduced willingness to travel. In this section, we

investigate the impact of λ on the optimal solution.

Figure 37 shows the expected total travel distance and travel distance per patient (among

traveling patients) as a function of λ for τ = 0.5 and 0.1. As expected, larger values of λ result

in smaller values of the expected total travel distance to avoid the high cost associated with

patient travel. This decrease is the result of relocating clinics and outreach trip destinations,

increasing the number of outreach trips and in some cases, increasing the number of clinics.

For example, in Figure 37(b), by increasing λ above $0.27/km, the number of clinics increases

from 2 to 3 while the number of outreach trips decreases from 41 to 35.

There is a threshold on the patient travel cost above which we reach an optimal solution

with no traveling patients. Under this solution, vaccinations are provided at all locations

either by an on-site clinic or by performing direct outreach trips. For example, in Figure

37(a), in the optimal solution for λ ≥ $0.635/km, the entire population is covered by estab-

lishing 3 clinics at locations 3, 10, and 12, and performing 25 direct outreach trips to the

remaining locations.

In addition, the expected travel distance per patient generally decreases as λ increases.

However, there are exceptions. For example, in Figure 37(b), as λ increases from $0.060/km

to $0.065/km, the expected travel distance per patient increases from 6.0 km/patient to 8.2

km/patient. This increase is the result of relocating clinics and replanning outreach trips

so that a smaller fraction of patients have to travel, but the travel distances are longer on

average. For example, as seen in Figure 37(b), the fraction of traveling patients drops from

14.6% to 7.6% as λ increases from $0.06/km to $0.065/km.

Figure 38 plots the clinic operations and outreach costs as well as the expected patient

traveling cost as a function of λ. As λ increases, the optimal solution reduces the distance

traveled by patients. This reduction is achieved by establishing more clinics and performing
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Figure 37: Expected total patient travel distance and expected travel distance per traveling

patient as a function of λ.

more, and longer, outreach trips. Consequently, the total costs of clinics and outreach

increase.

Furthermore, as seen in Figure 37, increasing λ from 0 by a small amount considerably

reduces the expected total patient travel distance, while Figure 38 shows that the total cost of

clinics and outreach does not increase significantly. For example, in Figure 38(a), increasing

λ from 0 to 0.025 decreases the expected patients travel distance from 12,147 km to 773

km (a 94% decrease) but the cost increases from $1,375 to $1,512 (an increase of only 10%).
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Figure 38: Cost of clinics, outreach and travel as a function of λ.

Similarly, in Figure 38(b), increasing λ from 0 to 0.095 decreases the expected patients travel

distance from 1,2132 km to 1,208 km (a 90% decrease) but the cost increases from $1,494

to only $1,855 (a 24% increase). Consequently, in cases under which decreasing the clinic

operations and outreach cots is our first priority, by setting λ to a very small positive value,

we can achieve a more practical solution.
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4.4.3 Maximum Outreach Trip Size

In this section, we perform sensitivity analysis on δF which provides insight on the impact

of cold-box capacity. While the capacity of a motorbike is limited, four-wheel drive vehicles

are capable of carrying significantly larger volumes. Determining an appropriate capacity

for these vehicles, δF , that is, the size of the cold box, is of importance. A small value of δF

can increase the total distance traveled by patients or lead to numerous outreach trips. On

the other hand, a large value of δF might increase the costs of equipment (i.e., cold boxes)

and maintenance; it can also result in a higher risk of vaccine wastage as a consequence of

cold-box failure.

Figure 39 demonstrates the impact of δF on the cost of clinic operations, outreach and

patient travel, and indicates the corresponding number of clinics and outreach trips. As seen

in Figure 39, initially, a slight increase in the value of δF decreases total cost considerably

and also decreases the required number of outreach trips. For example, in Figure 39(b), if

we increase δF from 50 to 150, the required number of outreach trips decreases from 43 to 20

and the total cost decreases from $1,911 to $1,380. Similarly, in Figure 39(b) the required

number of outreach trips decreases from 54 to 27 and the total cost decreases from $2,226 to

$1,457. However, larger values of δF have less influence because at least one outreach trip is

required to vaccinate each remote location. For example, in Figure 39(a), the costs and the

number of outreach trips do not change significantly for values of δF above 350. Moreover,

in this example, δF does not influence the optimal number of clinic and therefore, the clinic

cost.

4.5 HEURISTIC COMPARISONS

In this section, we compare the performance of the MILP model proposed in Section 4.2.1

with two benchmark heuristic approaches, H1 and H2. An intuitive approach to locating

clinics is to place them in highly populated centers to minimize patient travel and perform

less outreach. Hence, in the first heuristic, H1, we propose a simple algorithm that prioritizes

100



30% 16% 12% 9% 12% 9% 7% 9% 13% 13% 13% 13%(2,43) (2,26) (2,20) (2,16) (2,14) (2,12) (2,12) (2,11) (2,10) (2,9) (2,9) (2,9)
05001000150020002500

50 100 150 200 250 300 350 400 450 500 550 600
cost

maximum number of vaccinations per four3wheel outreach trip, �F
expected patient traveling costoutreach trip costclinic operation cost

percentage of patientswho travel
(number of clinics, number of outreach trips)

(a) τ = 0.5.30.7%17.5% 3.3% 3.7% 2 .9% 4 .4% 5.0% 3.7% 3.1% 2 .9% 2 .9% 7.2% 7.2% 7.2% 7.2%
(2 ,54)(2 ,32)(2 ,2 7) (2 ,22) (2 ,18) (2 ,17) (2 ,14) (2 ,13) (2 ,13) (2 ,13) (2 ,13) (2 ,12)(2 ,11) (2 ,11) (2 ,11)

05001000150020002500
50 100 150 200 2 50 300 350 400 4 50 500 550 600 650 700 750cost

max imum number ofvaccinat ionsp er four ªwheel outr each tr ip ,
�F

expected patient traveling costoutreach trip costclinic operation cost
percentage of patientswho travel

(number of clinics, number of outreach trips)
(b) τ = 0.1.

Figure 39: Cost of clinics, outreach and travel as a function of δF .

locating clinics in highly populated locations. To determine how much better we perform by

simultaneously locating clinics and specifying outreach trips, we propose the second heuristic

approach. The second approach, H2, is a combination of a linear integer programming model

(which determines the minimum number of clinics required to cover all locations) and an

outreach planning algorithm that first determines the clinic locations and then plans outreach

trips.

In the first heuristic approach, H1, we follow the steps below:

Step 1: Place a clinic in the most populous uncovered location.
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Step 2: Cover all locations within its traveling distance and remove any outreach trips from

other clinics to destinations within traveling distance of the most recently added clinic.

Step 3: Assign outreach trips to uncovered locations starting from the closest location not

within traveling distance of the most recently added clinic.

Step 4: Fully cover as many locations as possible through outreach trips subject to con-

straints on the outreach distance, size (minimum outreach size, δM ) and frequency (θ̂).

Step 5: Repeat Steps 1-4 if there is any uncovered location, otherwise, go to Step 6.

Step 6: Determine the outreach vehicle type at each clinic location based on the number of

patients covered by outreach from each clinic.

Step 6.a If in a clinic the population covered through outreach is above a specific level

(≤ θ̂δM)), e.g., θ̌δM , then assign a four-wheel vehicle to that clinic location, other-

wise, a motorbike.

Step 6.b If a four-wheel vehicle is assigned to a clinic then recalculate its corresponding

number of outreach trips.

Figure 40 illustrates the heuristic solution for the numerical example in Section 4.3. For

the H1 solution, clinics are located at locations 1, 10 and 15 and the remaining locations are

covered by performing a total of 33 outreach trips. Motorbikes are assigned to locations 1

and 15 and a four-wheel vehicle is assigned to location 10. In the optimal solution only 2

clinics with four-wheel vehicles are located in locations 3 and 15 and the set of all locations

is covered by a smaller number of outreach trips. The optimization model generates a more

effective solution than the H1 approach by locating a clinic in location 3. Specifically, the

clinic in location 3 covers all locations which are covered by 1 and 10 in the H1 solution

except location 13 which is within the outreach distance of the clinic in location 15.

For the second approach, H2, instead of simultaneously determining clinic locations and

planning outreach trips, they are done sequentially. First we solve a simple optimization

problem to specify clinic locations and then determine vehicle type, outreach destinations

and frequency based on these clinic locations. Let vij be a zero-one variable which equals

1 if a clinic is assigned to location i and covers location j and 0 otherwise and hij be the

required number of outreach trips from location i to location j. The following set covering
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Figure 40: Clinic locations and outreach trips based on the H1 approach.

model determines the clinic locations that minimize the number of clinics needed to cover

all locations through travel-distance proximity and outreach:

min z =
n
∑

i=1

vii

s.t. vii +
∑

j∈Ŝi\{i}

vji = 1, i = 1, 2, . . . , n, (4.11a)

∑

j∈Ŝi\{i}

vij ≤ nvii, i = 1, 2, . . . , n, (4.11b)

ρjvij ≤ δFhij, i = 1, 2, . . . , n, j ∈ Ŝi\Si, (4.11c)
∑

j∈Ŝi\Si

hij ≤ θ̂, i = 1, 2, . . . , n, (4.11d)

vij ∈ 0, 1, i, j = 1, . . . , n,

hij ∈ N, i = 1, 2, . . . , n, j ∈ Ŝi\Si.

Constraint (4.11a) guarantees coverage through either an on-site clinic or a clinic within out-

reach distance. Constraint (4.11b) requires that we cover locations within outreach distance
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of location i if there is a clinic in location i, i.e., vii = 1. Constraint (4.11c) determines the

required number of outreach trips to location j and finally constraint (4.11d) restricts the

outreach capacity to be θ̂ in location i.

In the second step of H2, if a location is within traveling distance of at least one clinic,

its patients travel to the closest clinic; otherwise, the location is covered via outreach by the

clinic to which it is assigned by the optimization model. We then determine the outreach

vehicle type. Similar to the heuristic approach, we allocate a four-wheel vehicle to a clinic

if the population covered by its outreach trips exceeds a specific level, e.g., θ̌δM . Otherwise,

we assign a motorbike to the clinic. Lastly, we compute the required number of outreach

trips to cover each location.

Figure 41 represents the H2 solution for the numerical example in Section 4.3. In the

H2 solution, 3 clinics are located at locations 3, 10 and 15 and the remaining locations are

covered by performing a total of 38 outreach trips. Motorbikes are assigned to locations 3 and

15 and a four-wheel vehicle is assigned to location 10. Although, the H2 approach minimizes

the number clinics, it locates one more clinic than the optimal solution (Figure 35). Higher

number of clinics in the H2 solution is the result of restricting coverage to an on-site clinic,

a traveling-distance clinic or direct outreach trips. Specifically, in the H2 solution, clinics in

locations 3 and 15 can cover all locations except location 11 which is not in their outreach

distance. Therefore, t locates three clinics. While, the optimal solution instinctively cover

location 11 by indirect outreach trip.

Moreover, in Figure 42, we compare the performance of the optimal solution with the

heuristc solutions for τ = 0.5 and 0.1. In contrast to the heuristic approaches, the optimal

solution depends on the value of λ, hence, in Figure 42, we include the optimal solutions

corresponding to all possible values of λ. We find all optimal solutions by gradually increasing

λ with a step size of 0.05 from 0 up to a solution in which all patients are covered by either

an on-site clinic or a direct outreach trip. Interestingly, in Figure 42(a), regardless of the

value of λ, the cost of establishing clinics and performing outreach trips under the optimal

solution is lower than that of the heuristic solutions. Even when λ ≥ 0.635, in which case

it is optimal for no patient to travel, the optimal solution results in a lower total cost. As

expected, we achieve a lower combined cost for clinic and outreach trips than the heuristic

104



clinic location (four-wheel)

clinic location (motorbike)

served by clinic

outreach

1

2

3

45

6

7

8

9

10

11

12

13

14

15

16

8

4

2

2

3

3

= 0 02 Φ−1 = 0 Clinic Cost=2022 84 Patient travel Distance=3790 31

Figure 41: Clinic locations and outreach trips based on the H2 approach.

solutions while achieving almost the same expected patient travel distance. For example, in

Figure 42(a), the optimal solution corresponding to 0.015 ≤ λ ≤ 0.02 has lower cost than

the two-step optimization approach with almost the same patient travel distance.

Lastly, the H2 approach can result in higher patient travel distance than the H1 approach

because it minimizes the number of clinics required to cover the entire region. While, the

H1 approach can result in more clinics in high population locations which can reduce the

total patient travel distance. Thus, overall, the proposed methodology outperforms both

heuristics and generates different solutions depending on the value placed on patient travel.

4.6 CONCLUSIONS AND LIMITATIONS

In this chapter, we address the problem of simultaneously determining clinic locations and

outreach trips with the objective of minimizing the total costs of clinic operation, outreach

and patient travel. Our model incorporates demand uncertainty and we provide insight on
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Figure 42: Cost of clinic and outreach trips versus expected total travel distance.

how to manage the uncertainty. We investigate the impact of key parameters including

patient travel cost and outreach trip size on the optimal solution. Our results suggest

that modest increases in patient travel cost can substantially improve the performance of

the optimal solution from the patient perspective (i.e., travel distance), however, there are

marginally diminishing returns. Similarly, initial increases in outreach trip capacity decrease

the total cost much more significantly than additional increases. We also found that it is

not always best to locate clinics in the largest population centers. Finally, we compare the

optimal solution found by our method with those found by two heuristic approaches.
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There are limitations which could be modified or considered as possible future research

directions. Our model currently determines optimal clinic locations and outreach trips for a

blank region (i.e., a region without any vaccination clinics). However, we can simply modify

the model to fix a set of pre-existing clinic locations and determine additional clinic locations

(and/or possibly close or relocate existing ones) along with determining the optimal set of

outreach trips. Second, in the current model we do not consider how population can change

over time or seasonal migration patterns. Third, we assume that patients within traveling

distance of a clinic are covered by that clinic regardless of the distance. Future research could

consider coverage functions that are more explicitly dependent on patient travel distance.

Fourth, we cannot draw any strong general conclusions based on our limited numerical

experimentation, therefore, future work might include executing a designed experiment over

a larger set of problem instances. Finally, future work could explore the solution time for

large-scale problems and potential scalability issues in more detail.
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