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ON THE DYNAMICS OF A RIGID BODY WITH CAVITIES

COMPLETELY FILLED BY A VISCOUS LIQUID

Giusy Mazzone, PhD

University of Pittsburgh, 2016

This thesis deals with the dynamics of a coupled system comprised of a rigid body containing

one or more cavities entirely filled with a viscous liquid. We will present a rigorous math-

ematical analysis of the motions about a fixed point of this system, with special regard to

their asymptotic behavior in time.

In the case of inertial motions and motions under the action of gravity, we will show that

viscous liquids have a stabilizing effect on the motion of the solid. The long-time behavior of

the coupled is characterized by a rigid body motion, and in particular a permanent rotation

in the case of inertial motions, and the rest state in the case of a liquid-filled heavy pendulum.

Some questions about the attainability and stability of the equilibrium configurations are

also answered.

Furthermore, we will investigate the time-periodic motions performed by the coupled

system liquid-filled rigid body when a time-periodic torque is applied on the solid.

Keywords: Liquid-filled cavity, Navier-Stokes equations, rigid body, inertial motions, pen-

dulum, attainability, stability, periodic motions.

iii



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 MOTIONS OF A LIQUID-FILLED RIGID BODY ABOUT A FIXED

POINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 MATHEMATICAL FORMULATION AND RELEVANT APPLICATIONS 7

2.1.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Some relevant applications . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.1 An application in Geophysics. . . . . . . . . . . . . . . . . . . 10

2.1.2.2 An application in Space Engineering. . . . . . . . . . . . . . . 12

2.2 THE EQUATIONS OF MOTION IN A MOVING FRAME . . . . . . . . . 13

2.3 NOTATION AND USEFUL INEQUALITIES . . . . . . . . . . . . . . . . . 17

3.0 HISTORICAL BACKGROUND AND PREVIOUS CONTRIBUTIONS 27

4.0 NUMERICAL SIMULATIONS AND PHYSICAL EXPERIMENTS . 36

4.1 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Effect of the viscosity on the long-time behavior of the coupled system 39

4.1.2 Effect of the initial rotation on the final angular velocity . . . . . . . . 41

4.1.3 The “flip-over” effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 EXPERIMENTAL TESTS: A LIQUID-FILLED GYROSCOPE . . . . . . . 47

5.0 A DYNAMICAL SYSTEMS APPROACH . . . . . . . . . . . . . . . . . . 49

5.1 SOME PRELIMINARY RESULTS . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Large-time properties of weak solutions . . . . . . . . . . . . . . . . . 57

5.1.2 Existence of the Ω−limit set and its preliminary characterization . . . 60

iv



5.2 INERTIAL MOTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 The Ω-limit set for inertial motions . . . . . . . . . . . . . . . . . . . 65

5.2.2 Attainability and stability of permanent rotations . . . . . . . . . . . 74

5.3 LIQUID-FILLED PHYSICAL PENDULUM . . . . . . . . . . . . . . . . . . 83

5.3.1 Long-time behavior of a liquid-filled pendulum . . . . . . . . . . . . . 84

5.3.2 Attainability and stability of the equilibrium configurations. . . . . . . 91

6.0 FURTHER RESULTS: THE TIME-PERIODIC MOTIONS . . . . . . . 94

6.1 EXISTENCE OF PERIODIC WEAK SOLUTIONS . . . . . . . . . . . . . 99

6.2 EXISTENCE OF STRONG PERIODIC SOLUTIONS . . . . . . . . . . . . 106

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

v



LIST OF TABLES

1 Dependence of the (numerically estimated) time to reach equilibrium on the liquid

kinematic viscosity. The initial rotation is ω0 = (6.2697, 0.4109, 0). . . . . . . . . . 41

vi



LIST OF FIGURES

1 Geometrical configuration of the cavity C used for the numerical experiments. . . . 38

2 Dynamics of the liquid-solid system for decreasing values of the viscosity. . . . . . 40

3 Dynamics of the liquid-solid system in the case 5.54 = A < B = C = 6.76. . . . . . 42

4 Dynamics of the liquid-solid system for different initial angular velocity. . . . . . . 43

5 Dynamics of the liquid-solid system for different values of initial kinetic energy for

the liquid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Visualization of the “flip-over” effect. The orientation of the final rotation changes,

when moving form ν = 0.0375 to ν = 0.035. . . . . . . . . . . . . . . . . . . . . 46

7 A liquid-filled gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Dependence of the orientation of a body filled with a viscous liquid on the initial

angle θ(0) between e3 and KG: θ(0) < π/2 (left); θ(0) > π/2 (right). . . . . . . . 83

vii



PREFACE

I would like to express my gratitude to Professor Giovanni P. Galdi for accepting me as his

graduate student, for his precious academic advising and mentorship in these five years of

collaboration. I owe him all my knowledge on the mathematical theory of the Navier-Stokes

equations, fluid/solid interaction problems and many other things of life.

I am extremely grateful to my parents for their trust in all the choices I make, for their

precious support and advices. No word can fully express my gratitude for their understanding

in all the situations, their unconditional love and their sacrifices. I owe them my life, and if all

my dreams are becoming true it is because they taught me to never suppress my ambitions.

I would like to thank Dr. Mahdi Mohebbi for being a unique colleague, and most impor-

tantly, a friend for life.

I am obliged to my brother Enzo for looking after our parents and overcoming my physical

absence back home.

Many thanks go to my friends and colleagues here and spread around the world, and in

a special way to Annalisa Pellegrini for her twenty-five years long friendship.

This thesis is dedicated to my parents: to my mother, the strongest woman I know, and

the role model I will always tend to, and to my father, the first man I loved in my life, no

man will ever take his place.

viii



1.0 INTRODUCTION

In this thesis, I will present a comprehensive study of the dynamics of a rigid body containing

one or more cavities entirely filled by a viscous fluid (simply called liquid), whose motion is

governed by the Navier-Stokes equations.

The main focus of this work is centered around a number of problems that I have inves-

tigated in collaboration and under the supervision of Dr. G. P. Galdi in the past years.

Specifically, consider a rigid body B, which is constrained to move (without friction)

about a fixed point in the physical space. Assume that, inside B, there is a hollow cavity, C,

completely contained in the solid, and entirely filled by a viscous liquid. The assumption of

only one cavity within B is not restrictive. In fact, all the results shown in this thesis still

apply in the case of more than one cavity.

The long-time behavior of this coupled system liquid-filled rigid body is expected to be

peculiar. In fact, after an initial interval of time, whose length depends on the size of initial

data and viscosity of the liquid, where the motion has a typically “chaotic” nature, the

coupled system eventually reaches a more orderly configuration, due to the combined effect

of viscosity and incompressibility (see Chapter 3 and Chapter 4 ). This feature was first

pointed out in 1885, for the simple case of inertial motions (i.e. when no external forces are

applied on the system), by N. Ye. Zhukovskii, who stated that the asymptotic behavior of

a liquid-filled rigid body is characterized by a rigid body motion, and precisely a uniform

rotation (here called permanent rotations) with the liquid at rest relatively to the solid,

no matter the physical and geometrical properties of both liquid and solid, and the initial

movement imparted on the system (Theorem, 3.0.6). This property has to contrasted with

the case of an empty cavity. Indeed, the dynamics of a rigid body undergoing inertial motions

are quite rich: permanent rotations can occur if and only if the (uniform) angular velocity
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is directed along one of the principal axes of inertia of B. Whereas, time-dependent motions

can be very involved depending on the mass distribution of the solid. Regular precessions

furnish an example of these time-dependent motions which fall in the more general class of

motions à la Poinsot (see [35]).

In a similar fashion, experimental and theoretical studies show that a physical pendulum

with a cavity completely filled with a liquid, that is initially at rest, eventually reaches the

equilibrium configuration which is the rest state, with the center of mass at its lowest position

(see Chapter 3 and Section 5.3). The behavior is the same as for a classical pendulum

immersed in a liquid, although the global dynamics is quite different in both cases (see

Section 5.3). The conclusion is that the liquid is able to reduce the (otherwise undamped)

oscillations that a heavy pendulum executes when it rotates frictionless about a fixed axis.

Summarizing, a liquid which completely fills a cavity within a rigid body has the property

of stabilizing the motion of the solid. In the particular case of a pendulum, this feature

can be viewed as an internal damping for the system. This is a remarkable property if one

thinks about possible uses in the Applied Sciences. In fact, this stabilizing effect has been

largely used (even when a rigorous mathematical proof was still lacking) in the Applied

Sciences, and in particular for geophysical problems in the research of sources generating

the geomagnetic field (see Subsection 2.1.2.1, more details can be found in [50]), for military

purposes in the study of the dynamics of fuel-filled projectiles ([46]), and for applications

in Space Engineering where, just as example, passive dampers constituted by a circular ring

entirely filled by a liquid are analyzed in order to stabilize the motion of spacecrafts when they

undergo some “wobbling” motions, i.e. precessional motions of the spin axis caused either

by mechanical maneuvers or by external disturbance (like the presence of a magnetic field),

we refer the reader to the Subsection 2.1.2.2 and to [5] for the details. Besides the interests

for the applications, the problem of the motions of liquid-filled rigid bodies have caught the

attentions of many mathematicians too. In this respect, I would like to mention the works

by Stokes, [51], Zhukovskii, [55], Hough, [24], and the most recent contributions by Sobolev,

[49], Rumyantsev, [41, 40, 42, 43], Chernousko, [12], Smirnova, [48], and Kopachevsky and

Krein, [26]. An account of these results is presented in Chapter 3; one can see there that

these results are rarely of an exact nature, either due to the approximate models or else due
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to an approximate mathematical treatment. The primary goal of this thesis is to perform a

rigorous mathematical analysis of the motions about a fixed point of a rigid body with an

interior cavity completely filled by a viscous liquid, with special regard to their asymptotic

behavior in time. I have studied the following problems:

a) Motions about a fixed point of rigid bodies with liquid-filled cavities under given constant

forces (Chapter 5). In particular, I have considered:

a1) Inertial motions about the center of mass of a rigid body with a hollow cavity

completely filled by a Navier-Stokes liquid (Section 5.2).

a2) Motions of a physical pendulum containing a cavity completely filled by a viscous

liquid (Section 5.3).

b) Motion of the coupled system liquid-filled rigid body under the action of a time-periodic

torque applied on the solid (Chapter 6).

Concerning the inertial motions about the center of mass of the whole system, we have

rigorously shown that Navier-Stokes liquids indeed have a stabilizing effect on the motion of

the solid. More precisely, we have proved that weak solutions (à la Leray-Hopf) corresponding

to initial data having arbitrary but finite total energy, as time approaches to infinity, converge

(in a proper topology) to a state of motion characterized by zero relative velocity of the fluid

with respect to the rigid body and constant angular velocity. This means that, eventually, the

coupled system fluid-filled rigid body moves as a single rigid body with constant rotation,

thus proving Theorem 3.0.6 conjectured by Zhukovskii in 1885. The method we use to

show the above results utilizes tools from classical Dynamical System theory. The main

difficulty here is the convergence of weak solutions to the corresponding Ω-limit set, which is

characterized by zero relative velocity of the liquid and a constant angular velocity about the

principal axes of inertia of the whole system. This is achieved by proving that the Ω-limit set

is positively invariant in the class of weak solutions. From the Dynamical Systems theory, it is

known that the invariance property requires the uniqueness (and more generally, continuous

dependence upon initial data) of the solutions. This latter property is not yet available in

my case, as the weak solutions posses (in their liquid variable) the same peculiarities as

the three-dimensional weak solutions to the Navier-Stokes equations. Nevertheless, since
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the relative velocity decays to zero as time approaches to infinity (see (5.12) and (5.17)), I

have recovered the invariance property by demonstrating that weak solutions become strong

(and therefore unique) for sufficiently “large” times, with no restriction on the size of initial

data (Proposition 5.1.5). This is by no means a trivial property in my case, due to the

presence of a, in principle, large “conservative” components of my equations, given by the

conservation of the total angular momentum of the whole system. Theorem 5.2.4 furnish a

rather complete description of the asymptotic behavior in time of the coupled system solid-

liquid. However, this theorem is silent about which axis the “final” permanent rotation is

attained. We have then investigated the attainability of permanent rotations. This is not an

obvious problem. In fact, due to the coupling with the Navier-Stokes equations, our weak

solutions may lack uniqueness; in principle, we may have two different solutions with the

same initial data generating, asymptotically, two permanent rotations around different axes.

In this regards, I have have shown that, for initial data in a suitable range, the coupled

system tends eventually to reach the state of minimal motion; in other words, it chooses

to rotate around the axis where the spin is a (non-zero) minimum (Theorem 5.2.7). Using

these attainability results, I furnish necessary and sufficient conditions for the stability (in the

sense of Lyapunov) for the full nonlinear problem without any approximation or assumptions

on the shape of the cavity (Theorem 5.2.10). This analytical study has been enriched by

targeted numerical and experimental tests. The numerical ones simulate the inertial motions

of rigid body with a quasi-ellipsoidal cavity entirely filled by a viscous liquid. The physical

experiments investigate the motions of a liquid-filled gyroscope (Chapter 4). Both numerical

and physical experiments agree with the theoretical findings and furnish useful insights

for questions which are still open. In particular, accordingly to Theorem 5.2.7, the final

permanent rotation occurs around the principal axis corresponding to the largest moment

of inertia, and, at least under suitable “smallness” assumptions, having same or opposite

orientation as the initial angular momentum KG given to the system. Numerical tests show

a flip-over phenomenon triggered by the viscosity of the liquid. Precisely, as the kinematic

viscosity coefficient ν is decreased from a “sufficiently large” value -all other data being kept

fixed- there is a critical value νc such that the orientation of the final rotation and KG are

the same or opposite according to whether ν > νc or ν < νc.
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Next, I have considered the motions of a liquid-filled physical pendulum, i.e. a heavy

rigid body constrained to rotate (frictionless) around a horizontal axis, in such a way that

the center of mass of the whole system moves on a plane orthogonal to the axis of rotation,

and containing a cavity completely filled by a viscous liquid. For the long-time behavior of

this coupled system, one can show the convergence, for large times, of the weak solutions to

the rest state (zero velocities for both solid and liquid), no matter the shape of the cavity,

the physical properties of the solid and the liquid, and the initial conditions imposed on the

whole system (Theorem 5.3.3). Moreover, I show the existence of a broad class of initial

data, corresponding to which the rest state with the center of mass at its lower position is

attained (Theorem 5.3.5). Concerning the stability, Theorem 5.3.6 infers that the rest state

with the centre of mass of the system occupying its lowest position is always stable (in the

sense of Lyapunov). Whereas, the rest state with the center of mass at its highest position

is always unstable (in the sense of Lyapunov). All the results concerning the attainability

and the stability of the equilibrium configurations hold with no further assumption and/or

restriction on the shape of the cavity.

Finally, I will present a rigorous study of the motions under the action of a time-periodic

torque applied on the solid. Specifically, I have investigated whether the coupled system

executes a time-periodic motion in a moving frame with origin at the center of mass of the

whole system and axes directed along the principal axes of inertia of the system. This kind

of motion is possible if the torque is directed along a constant direction with respect to

an inertial frame, and has a time-periodic magnitude with zero average. The existence of

time-periodic weak solutions to the relevant equations of motion can be proved (Theorem

6.1.1). Moreover, if the magnitude of the torque is essentially bounded by a sufficiently small

norm, then the solution is strong and the equations of motion are satisfied almost everywhere

in space-time (Theorem 6.2.1). The proof of existence of weak and strong solutions can be

achieved by an appropriate combination of the Galerkin method with a fixed point argument

for triangulable manifolds based on Lefschetz-Hopf Theorem.

Here is the plan of my thesis. In Chapter 2, the problem of motions of a liquid-filled

rigid body about a fixed point is introduced in both an inertial and a moving frame. Some

applications in the Applied Sciences are presented in order to motivate our interest in this
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kind of problems. Moreover, notation and well-known inequalities are recalled to create a self-

contained treatment. In Chapter 3, I give an account of the historical background and some of

the previous mathematical contributions. In Chapter 4, numerical and physical experiments

are presented. In Chapter 5, I exploit a dynamical system approach to investigate the

motions of a liquid-filled rigid body which undergoes inertial motions about its center of

mass and motions around a fixed axis when gravity is applied on the system. The numerical

and analytical results presented in Chapters 4 and 5 first appeared in [20], a detailed account

of them can be found in [13]. For the motions of a liquid-filled physical pendulum we refer

to [17]. Some preliminary results as well as technicalities can also be found in my thesis [33].

In Chapter 6, I investigate the periodic motions of a rigid body with a liquid-filled cavity

in a moving frame, when a time-periodic torque is applied on the body. These results have

been published in [18].
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2.0 MOTIONS OF A LIQUID-FILLED RIGID BODY ABOUT A FIXED

POINT

In this chapter, the problem of motions about a fixed point of a rigid body with a cavity

completely filled by a viscous liquid is introduced. The mathematical formulation of the

problem is given in an inertial and a moving frame, respectively. Moreover, we present some

applications in the Applied Sciences, in particular for geophysical and engineering problems.

We will conclude this chapter by introducing the mathematical notations used throughout

this thesis, and some well-known results of the Mathematical Analysis aimed to make this

thesis self-contained.

2.1 MATHEMATICAL FORMULATION AND RELEVANT

APPLICATIONS

In this section, we introduce the equations governing the motions about a fixed point of a

rigid body with a liquid-filled cavity when external forces and torques are applied on the

system. Moreover, applications in Geophysics and Space Engineering are presented.

2.1.1 Mathematical formulation

Consider a rigid body, B, with a cavity, C, completely filled with a viscous liquid of constant

density, ρ. In mathematical terms, B := Ω1 \ Ω2 and C := Ω2, where, for i = 1, 2, Ωi

are simply connected, bounded domains in R3. Throughout this thesis, we shall make the

following two assumptions:
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H1. The coupled system S := B ∪ C is constrained to move (without friction) about a fixed

point O ∈ B, which is at rest with respect to an inertial frame at all times.

H2. The center of mass, G, of the coupled system S belongs to one of the principal axes of

inertia, a, of S with respect to O 1.

The equations of motion for the coupled system S with respect to an inertial frame of

reference I ≡ {O; ẽ1, ẽ2, ẽ3}, with its origin at the fixed point O and coordinate axes ẽ1, ẽ2

and ẽ3, are given by

divw = 0

ρ
dw

dt
= divT + ρF

T = T T

 (x, t) ∈
⋃
t>0

C(t)× {t},

d(JB ·Ω)

dt
= M−

∫
∂C(t)

(x− xO)× T · n dσ.

(2.1)

Here w = w(x, t) denotes the Eulerian absolute velocity of the liquid and Ω = Ω(t) is the

angular velocity of the body. JB = JB(t) is a positive definite, symmetric tensor, denoting

the inertial tensor of the rigid body written with respect to O. n is the unit outer normal to

∂C, and T = T (w,Π) is the Cauchy stress tensor with Π = Π(x, t) the Eulerian pressure

of the liquid. Furthermore, F = F(x, t) and M = M(t) are the total body force (i.e. the

total external force per unit volume) acting on (an infinitesimal volume of) the liquid and

the total external torque with respect to O applied on the body. It is worth emphasizing

that, when the equations of motion are written with respect to an inertial frame, also the

volumes B and C are time dependent. Finally,

divu :=
∂ui
∂xi

, divT :=
∂Tij
∂xi

ẽj ,

where the components are taken with respect to the coordinate axes ẽ1, ẽ2 and ẽ3 of I.

From the physical point of view, (2.1)1 represents the conservation of mass for the liquid;

it reduces to the incompressibility constraint since the density of the liquid is assumed to be

constant. Moreover, (2.1)2 and (2.1)3 express the balance of linear and angular momentum

for the liquid, respectively; here, the pressure field, Π, is the Lagrange multiplier due to

1In the case of motions about the center of mass, i.e. in the case G ≡ O, hypothesis H2. is automatically
satisfied.
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the incompressibility constraint. Finally, equations (2.1)4 represent the balance of angular

momentum of the body with respect to O. In particular, the integral term in (2.1)4 represents

the total torque exerted by the liquid on the body.

We notice that (2.1) is a system of 10 scalar equations in 13 scalar unknowns given by

{w,Π,Ω,T }. This mismatch between number of equations and number of unknowns can

be easily resolved by the following simple physical fact: we have not yet introduced the

class of liquids that we want to work with. In the language of Continuum Mechanics, this

means that we have to add a constitutive equation for the stress. We adopt the Newtonian

incompressible stress model

T := −Π1 + 2µD(w), (2.2)

where µ is the (constant) shear viscosity coefficient of the liquid and

D(w) :=
1

2

(
∇w + (∇w)T

)
,

is the stretching tensor. Here, 1 is the identity tensor, ∇· denotes the gradient operator,

∇· ≡
(
∂ ·
∂x1

,
∂ ·
∂x2

,
∂ ·
∂x3

)
,

and T denotes the transpose operator. We note that (2.1)1,2,3 together with (2.2) reduce to

the well known Navier-Stokes equations. Finally, for what concerns the boundary conditions,

we append the no-slip condition of the liquid at the bounding wall of the cavity

w = Ω× (x− xO) on
⋃
t>0

∂C(t)× {t}. (2.3)

Taking into account (2.2) and (2.3), the equations of motion for the coupled system S,

in the inertial frame I, read as follows

divw = 0

ρ
dw

dt
= −∇Π + µ∆w + ρF

 (x, t) ∈
⋃
t>0

C(t)× {t},

d(JB ·Ω)

dt
= M−

∫
∂C(t)

(x− xO)× T · n dσ,

w = Ω× (x− xO) on
⋃
t>0

∂C(t)× {t}.

(2.4)

Here, ∆· denotes the Laplace operator

∆· :=
3∑
i=1

∂ ·
∂xi

.
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2.1.2 Some relevant applications

Equations (2.4) have been largely used for several problems arising in Mechanics. Gyroscopes

or pendulums with an interior cavity entirely filled with a liquid are just two examples of

mechanical systems modeled by (2.4). More complicated liquid-filled rigid bodies have been

studied for several applications in different fields of the Applied Sciences spanning from

Geophysics to Space Engineering, and also for military research. In the following, a couple

of applications are presented.

2.1.2.1 An application in Geophysics. In [50], Stewartson and Roberts consider the

motion of an incompressible liquid which fills completely an oblate cavity of a precessing

rigid body. More specifically, here the motion of the body is prescribed, and initially S is

rotating as a whole rigid body about its center of mass, G, with a constant angular velocity

ω̄. At time t = 0, the symmetry axis is impulsively set in a rotation, with a “small” constant

angular velocity Ω̄, around a fixed axis in the space. Let a and b be the semi-axes of the

cavity, and α be the angle between the precessional axis and the symmetry axis. Consider

the frame of reference {G, e1, e2, e3} with e2 parallel to ω̄ × Ω̄ and e3 parallel to ω̄. The

authors show that, if the following quantities are “large” enough

R1 :=
a2 − b2

Ω̄a2
ω̄, R1R2 =

ω̄ρ(a2 − b2)

µ
, R3 =

ω̄ρa2

µ
,

then, the long-time behavior of the liquid is described by a steady state which is composed

of a primary rigid body motion of the whole system,

w1 =
2Ω̄a2b2 sinα

a2 − b2

( z
b2
e2 −

y

a2
e3

)
, all x = xe1 + ye2 + ze3 ∈ C,

and a secondary motion which, outside a boundary layer of thickness of order
√
µ/
√
ρω̄, is

characterized by closed elliptical streamlines lying on a plane orthogonal to ω̄ × (ω̄ × Ω̄),

and with uniform vorticity. For this specific problem, the Eulerian absolute velocity of the

liquid is given by

w = V + (ω̄ + Ω̄)× x, all x ∈ C,
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where V := w − (ω̄ + Ω̄)× x denotes the relative velocity of the liquid with respect to the

solid. In a non-inertial frame rotating with precessional angular velocity Ω̄ and with respect

to which both the precessional axis and the symmetry axis are fixed, the equations of motion

(2.4) become (see [33] Chapter 1, or next section for more details on its derivation)

divw = 0,

ρ

(
∂w

∂t
+ (V + ω̄ × x) · ∇w + Ω̄×w

)
= µ∆w −∇Π,

 in C × (0,∞),

w = (Ω̄ + ω̄)× x, on ∂C.

The treatment relies on finding exact solutions to the corresponding linearized equations of

motion for the inviscid case. These equations read as follows

divV = 0,

ρ

(
∂V

∂t
+ 2ω̄ × V − (ω̄ × x)× curlV + x× (ω̄ × Ω̄)

)
= −∇Π̃,

 in C × (0,∞)

V · n = 0, on ∂C,

where Π̃ is the “generalized pressure” 2. Then, the authors notice that their “inviscid so-

lution” satisfies also the equations for the viscous case, with the exception of the no-slip

boundary conditions on the cavity surface. This leads them to calculate the boundary layer

where possible “adjustments” in the tangential components of velocity can happen. The re-

sults found in [50] have great significance because of their applications in Geophysics. Direct

calculations made by the authors show that, for the Earth, the quantities R1, R1R2 and R3

given above satisfy the conditions stated in their paper, and the consequent results can have

great relevance in theories about the source generating the geomagnetic field. Some of these

theories indeed suggest that the motion of the Earth core (which is also due to the luni-solar

precession) might produce the geodynamo (see [9]). Sharper bounds for R1, R1R2 and R3

are found by the same authors in [38] by assuming that α� 1.

Other applications to geophysical problems can be found also in [10], [11] and [52].

2All the details on how to get these equations from the previous ones are given in [50]; in particular, see
equations (2.5) and (2.6) therein contained.
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2.1.2.2 An application in Space Engineering. Bhuta and Koval, in [5], present and

analyze a passive damper constituted by a circular ring with circular cross-section, entirely

filled by a liquid and installed on a plane parallel to the spin axis of a satellite. The aim

is to stabilize the motion of spacecrafts when they undergo some “wobbling” motions, i.e.

precessional motions of the spin axis. Separation from the booster, maneuvers to reorient

satellites or even external disturbance (like the presence of a magnetic field) are some of

the possible causes for “wobbles”. The advantages of having internal passive dampers are

manifold. Most importantly, they are efficient and reliable, since they eliminate the need of

sensors, power sources and extra moving parts within the spacecraft.

The authors analyze the damping properties of the damper by determining the energy dissi-

pation in the case of a liquid contained in an infinite long straight tube with “small” circular

cross-section, when the motion is driven only by a periodic motion of the boundary. The

motion of the liquid is considered 2-dimensional and fully developed along the axis of the

tube. Specifically, in a cylindrical coordinate system, {er, eθ, ez}, with ez along the tube

axis, they consider w = u(r, t)ez for the absolute velocity of the liquid. Within these as-

sumptions, the pressure gradient is independent of the z-coordinate, and the Navier-Stokes

equations reduce to

ρ
∂u

∂t
= µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, for 0 ≤ r < a, t > 0,

u(a, t) = U1 cos(ω̄t), t > 0,

u(r, 0) = 0, 0 < r ≤ a,

(2.5)

where a is the radius of the tube, U1 is the magnitude of the liquid fluctuation and ω̄ is the

frequency of the prescribed periodic motion of the boundary. Multiplying the first equation

by u and integrating the resulting equation over each cross-section of the tube, one can then

find the rate of change of the energy per unit length, E, of the liquid

dE

dt
= 2πµa

∂u

∂r
(a, t)u(a, t)− 2πµ

∫ a

0

r

(
∂u

∂r

)2

dr.

The last term in the latter displayed equation is considered to be the rate of change of the

“energy dissipated per unit length along the axis of the tube”. This energy dissipation can

be explicitly calculated from the solution to the equations of motion (2.5), and computed as
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function of what the author call “wobble Reynolds number”, Re := ω̄a2ρ/µ. The authors

performed some numerical and experimental tests to validate their theoretical computations;

this allowed them to apply their results to the realistic situation of the wobble damping of a

satellite and to present a preliminary design of the damper. The performance of the damper

can be analyzed by the “energy sink approximation”, for which the dissipation of the energy

of the liquid is considered as a “sink” for the total kinetic energy of the satellite. The authors’

results show that the “wobbling” angle eventually decays to zero with an exponential rate.

For other applications in Space Engineering, we refer the interested reader to the work

of Abramson in [1], where the dynamics of the propellant in spacecrafts are examined.

Moreover, the papers by Boyevkin et al. ([6]), Sarychev ([44]), and Alfriend and Spencer

([3]) offer further applications in Space Technology. Finally, in [46], Scott investigates the

free flight of liquid-filled shells with applications to fuel-filled projectiles. In this direction,

we would like to cite also the experimental results obtained by Karpov in [25].

Besides the interests for the applications in Applied Sciences, there have been numerous

contributions also aimed at furnishing a rigorous mathematical analysis of the motions of

liquid-filled rigid bodies. These contributions span from the early works by Stokes, [51],

Zhukovskii, [55], and Hough, [24], to more recent ones by Sobolev, [49], Chernousko, [12],

and Kopachevsky and Krein, [26]. In Chapter 3, we will present an overview of some of these

previous mathematical results.

Next, we present more details about the mathematical model that we are going to work

with and some of its related features.

2.2 THE EQUATIONS OF MOTION IN A MOVING FRAME

In order to better understand the dynamics of the coupled system S, it turns out to be

useful to consider the time evolution of the total angular momentum, aO, of the whole

system calculated with respect to the fixed point O. To this end, let us consider

aO := JB ·Ω +

∫
C
ρ(x− xO)×w. (2.6)

13



If {w,Ω,Π} is a solution to (2.4), by the Leibniz-Reynolds transport theorem, we find that

{w,aO,Π} has to satisfy the following equation

daO
dt

=
d

dt
(JB ·Ω) +

∫
C

d

dt
[ρ(x− xO)×w]

= M−
∫
∂C

(x− xO)× T · n dσ +

∫
C
ρ(x− xO)× divT +

∫
C
(x− xO)× (ρF).

Next, we notice that the first two integrals on the right-hand side of the latter displayed

equation cancel out since T is a symmetric tensor. In fact, with respect to the inertial frame

I

ẽi ·
∫
C
ρ(x− xO)× divT =

∫
C
εijk(xj − xOj)

∂T`k
∂x`

=

∫
∂C
εijk(xj − xOj)Tk`n` dσ −

∫
C
εi`kT`k

= ẽi ·
∫
∂C

(x− xO)× T · n dσ.

In the previous calculations, we have used the Einstein notation for the summation over

dummy indexes and an integration by parts. Moreover, εijk denotes the permutation symbol;

it is then clear that εi`kT`k = 0 for all i = 1, 2, 3, since T is a symmetric tensor. In conclusion,

we have just shown that if {w,Ω,Π} is a solution to (2.4), then {w,aO,Π} is a solution to

divw = 0

ρ
dw

dt
= −∇Π + µ∆w + ρF

 (x, t) ∈
⋃
t>0

C(t)× {t},

daO
dt

= mO,

w = Ω× (x− xO) on
⋃
t>0

∂C(t)× {t},

aO = JB ·Ω +
∫
C ρ(x− xO)×w,

(2.7)

where

mO := M +

∫
C
(x− xO)× (ρF)

denotes the total external torque applied on S and calculated with respect to O. Retracing

backward the calculations just performed, we can then conclude that (2.4) and (2.7) are two

equivalent formulations for the equations of motion of the system liquid-filled rigid body.

In this thesis we will focus on the following types of motions that the coupled system S

can perform about a fixed point O.
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a) Inertial motions: neither external forces nor torques are applied on S, which moves about

its center of mass G driven by its inertia, after an initial angular momentum is imparted

on the whole system. Thus, in this case, O ≡ G and F = M ≡ 0.

b) Motions of liquid-filled heavy rigid bodies: the total body force applied on S is constant

in space and time. In particular, we will consider the case of motions under the action

of the gravity force. Thus, F ≡ g and mO ≡ (G− O)× (Mg), where M is the mass of

S and g is the acceleration of gravity vector.

c) Time periodic motions: the total external torque applied on S is of the typemO ≡ f(t)h,

where f = f(t) is a time periodic function with period T (i.e. f(t + T ) = f(t) for all

t ≥ 0), and h is a time-independent vector.

One of the features of (2.7) is that the volumes B and C are time dependent, thus making

the mathematical treatment more involved. This can be overcome by rewriting the equations

of motion in a non-inertial frame of reference, F := {O, e1, e2, e3}, with origin at the fixed

point O, e1 ≡ a (from hypothesis H2.), and e2 and e3 directed along the remaining principal

axes of S with respect to O. In mathematical terms, we introduce a proper orthogonal

transformation Q = Q(t), Q ·QT = QT ·Q = 1, detQ = 1, such that

y := QT · (x− xO)

denotes the position vector of a generic point, P ∈ R3, with respect to the new frame F.

Moreover, we assume that Q(0) = 1. In a similar fashion as in [33] (Section 1.2), it can be

easily shown that Ω is the adjoint vector of the tensor Q̇ ·QT , i.e.

Q̇ ·QT · a = Ω× a, for all a ∈ R3.

Since ei = QT ·ẽi, i = 1, 2, 3, for all a, b ∈ R3, their representation in F is given byQT ·a and

QT · b, respectively. Since detQ = 1, it then follows that QT · (a× b) = (QT ·a)× (QT · b).

Let us consider the following fields

u(y, t) := QT (t)w(Q(t) · y + xO, t), ω(t) := QT (t) ·Ω(t),

v(y, t) := u− ω × y, AO := QT (t) · aO(t),

p(y, t) := p̃(y, t)− 1

2
(ω × y)2, p̃(y, t) := Π(Q(t) · y + xO, t).

(2.8)
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In particular, v = v(y, t) represents the relative velocity of liquid in the frame F, while p =

p(y, t) is the generalized pressure field. With respect to the non-inertial frame F, equations

(2.4) become

divu = 0,

ρ

(
∂u

∂t
+ v · ∇u+ ω × u

)
= µ∆u−∇p̃+ ρQT ·F

 in C × (0,∞),

IB · ω̇ + ω × IB · ω = −
∫
∂C
y × T (u, p̃) dσ +QT ·M,

Q̇ = Q · A(ω),

u = ω × y on ∂C,

(2.9)

where IB := QT · JB ·Q is the inertial tensor of the solid calculated with respect to O, and

T := QT ·T ·Q is the Cauchy stress tensor in the frame F. Moreover, A is a (bijective) map

from R3 to the space of all skew-symmetric 3× 3 matrices such that, for each b ∈ R3, A(b)

is the skew-symmetric matrix having b as its adjoint vector. The need of an equation for Q̇

is due to the fact that, although external forces and torques are given data in the inertial

frame, they become unknown when they are rewritten in the non-inertial frame F, as the

orthogonal transformation Q is an unknown function of time.

In a similar fashion, equations (2.7) can be rewritten as follows in F (see also [33] and

[13])

div v = 0

ρ

(
∂v

∂t
+ ω̇ × y + v · ∇v + 2ω × v

)
= −∇p+ µ∆v + ρQT ·F

 in C × (0,∞),

dAO

dt
+ ω ×AO = QT ·mO,

Q̇ = Q · A(ω),

v = 0 on ∂C.
(2.10)

From (2.6) and (2.8), we notice that

AO = I · ω +

∫
C
ρy × v, (2.11)

where I is the total inertial tensor of S with respect to O; it is time-independent, and

a · I · b = a · IB · b+

∫
C
ρ(y × a) · (y × b), all a, b ∈ R3. (2.12)
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2.3 NOTATION AND USEFUL INEQUALITIES

In this section, we will present the basic functional spaces and related inequalities that will

be used throughout this thesis.

Given a vector a = (a1, a2, a3) ∈ R3, the modulus of a is indicated by

|a| :=

(
3∑
i=1

a2
i

)1/2

.

Moreover, S1 and S2 denote the unit sphere in R2 and R3, respectively.

Let V ⊂ R3. For any k ∈ N, the partial derivative of order k of a vector function

w : V → R3 is denoted by Dkw; it is a tensor of order k + 1 with components

∂|α|wi
∂xα1

1 ∂x
α2
2 ∂x

α2
3

,

for every multi-index α = (α1, α2, α3) such that |α| = k, and all i = 1, 2, 3. In particular,

when k = 1, with respect a Cartesian coordinate system {e1, e2, e3}, the gradient of w is

∇w := D(w) =
∂wj
∂xi

ei ⊗ ej, divw :=
∂wi
∂xi

,

where ⊗ stays for the tensor product. Moreover, when k = 2, the second partial derivatives

of w are given by
∂2wk
∂xi∂xj

, all i, j, k = 1, 2, 3,

and the Laplacian of w is then defined as

∆w =
∂2wk
∂xi∂xi

ek.

Ck(V) denotes the linear space of all vector fields w defined on V which are k-times contin-

uously differentiable. Whereas, C∞(V) :=
⋂
k≥0C

k(V). We define Ck(V) to be the linear

space of all functions φ ∈ Ck(V) such that Dαφ is bounded and uniformly continuous on V

for 0 ≤ |α| ≤ k. Ck(V) is a Banach space if equipped with the following norm

‖·‖Ck := max
0≤|α|≤k

sup
y∈V
|Dα · |.
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Moreover, C∞0 (V) is the linear subspace of C∞(V) of all vector fields having compact support

in V . In a similar fashion, Lp(V), and W k,p(V), W k,p
0 (V), k ∈ N, p ∈ [1,∞] denote the usual

Lebesgue and Sobolev spaces for vector fields defined on V 3. Moreover,

(·, ·) : a, b ∈ L2(V) 7→ (a, b) :=

∫
C
a · b ∈ R

is the usual L2-inner product, and

‖·‖2 :=
√

(·, ·) =

(∫
C
| · |2

)1/2

.

Finally,

‖·‖p :=

(∫
C
| · |p

)1/p

for 1 ≤ p <∞, ‖·‖∞ := ess sup
V
|w|

and

‖·‖k,p :=

 ∑
0≤|α|≤k

‖Dα·‖pp

1/p

for 1 ≤ p <∞, ‖·‖k,∞ := max
0≤|α|≤k

‖Dα·‖∞ .

In the last norms, Dα has to be understood in the distributional sense.

If (X, ‖·‖X) is a Banach space and I ⊂ R is an interval, we write f ∈ Ck(I;X) if f is

k-times differentiable with values in X and

max
t∈I

∥∥∥∥∂`f(t)

∂t`

∥∥∥∥
X

<∞, all ` = 0, 1, ..., k.

Moreover, f ∈ Cw(I;X) means that the map t ∈ I 7→ Φ(f(t)) ∈ R is continuous for all

bounded linear functionals Φ defined on X.

Let q ∈ [1,∞), we denote by Lq(I;X) (respectively W k,q(I;X), k ∈ N), the space of

functions f : I → X, such that

(∫
I

‖f(t)‖qX dt

)1/q

<∞

(
resp.

k∑
`=0

(∫
I

∥∥∥∥∂`f(t)

∂t`

∥∥∥∥q
X

dt

)1/q

<∞

)
.

3We will use the same symbol for spaces of scalar, vector and tensor functions. Moreover, in the integrals
we usually omit the infinitesimal element of integration.

18



When concerned with periodic functions, we will use the following spaces defined for

T > 0, q ∈ [1,∞], and k ∈ N:

LqT (R) : = {u ∈ Lqloc(R)| u(t) = u(t+ T ), for a.a. t ∈ R}

Ck
T (R) : = {ξ ∈ Ck(R)| ξ(t) = ξ(t+ T ), for all t ∈ R} .

Let us now introduce the basic function spaces of Hydrodynamics. We set

D(V) := {w ∈ C∞0 (V) : divw = 0}.

We denote by H(V) the completion of D(V) in the L2-norm, and

G(V) := {w ∈ L2(V) : w = ∇p, for some p ∈ W 1,2(V)}.

Moreover, D1,2
0 (V) := H(V) ∩W 1,2

0 (V). The following decomposition of L2(V) holds.

Theorem 2.3.1 (Helmholtz-Weyl decomposition). H(V) and G(V) are orthogonal spaces

in L2(V), and

L2(V) = H(V)⊕G(V). (2.13)

Moreover, if V is a bounded, locally Lipschitz domain in R3 with outer normal n, then

H(V) ≡ {u ∈ L2(V) : divu = 0 in V , u · n = 0 on ∂V}. (2.14)

A proof of the previous theorem can be found in [16], Theorem III.1.1 and Theorem

III.2.3. Finally, the decomposition (2.13) implies the existence of a projection operator, i.e.

a unique bounded, linear, idempotent operator

P : L2(V)→ H(V) (2.15)

such that Range(P) = H(V) and Ker(P) = G(V).

In the following, we will collect some well-known inequalities that will be frequently used

in this thesis. Let a, b ∈ R, and p, q ∈ (1,∞) such that 1/p+ 1/q = 1. Then, for all ε > 0

ab ≤ εap

p
+ ε−q/p

bq

q
, (2.16)
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this is the Young inequality. From this, the following important inequalities can be easily

derived (see Chapter 2 in [2] for their proofs). Let q ∈ [1,∞] and consider p ∈ [1,∞] such

that
1

p
+

1

q
= 1.

Then, the Hölder inequality holds: ∫
V
|uw| ≤ ‖u‖q ‖w‖p , (2.17)

for all real-valued functions u ∈ Lq(V) and w ∈ Lp(V). A corollary to this inequality is given

by the following

‖uw‖r ≤ ‖u‖p ‖w‖q (2.18)

which holds for all u ∈ Lp(V), w ∈ Lq(V), 1 ≤ p, q, r ≤ ∞ such that 1/p+ 1/q = 1/r. In the

case q = p = 2, (2.17) is often referred as Cauchy-Schwarz inequality. The Hölder inequality

can be generalized as follows∫
V
|u1u2 . . . uN | ≤ ‖u1‖q1 ‖u2‖q2 . . . ‖uN‖qN (2.19)

where ui ∈ Lqi(V), 1 ≤ qi ≤ ∞ for all i = 1, . . . , N , and
∑N

i=1 q
−1
i = 1. Moreover, we recall

the interpolation inequality:

‖u‖q ≤ ‖u‖
θ
r ‖u‖

1−θ
p , (2.20)

which holds for all u ∈ Lp(V) ∩ Lr(V) with 1 ≤ p ≤ q ≤ r ≤ ∞ and θ ∈ [0, 1] such that

θ

r
+

1− θ
p

=
1

q
.

Next, we recall some embedding theorems referring to [2], Chapter 2 and Chapter 4, for

the proofs. If 1 ≤ p ≤ q ≤ ∞ and V is a bounded domain in R3, then

Lq(V) ↪→ Lp(V). (2.21)

For what concerns the Sobolev spaces, we have the following theorem.

Theorem 2.3.2 (The Sobolev embedding Theorem). Let V ⊂ R3 be a bounded domain, and

consider 1 ≤ p <∞ and an integer m ≥ 1. We have the following cases.

1. If mp > 3 or m = 3 and p = 1, then Wm,p(V) ↪→ Lq(V) for all p ≤ q ≤ ∞.
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2. If mp = 3, then Wm,p(V) ↪→ Lq(V) and Wm,p
0 (V) ↪→ Lq(V) for all p ≤ q <∞.

3. If mp < 3, then Wm,p(V) ↪→ Lq(V) and Wm,p
0 (V) ↪→ Lq(V) for all p ≤ q ≤ p∗, where

p∗ :=
3p

3−mp
.

We will also use the Sobolev inequality:

‖u‖r ≤
p√

3(3− p)
‖∇u‖p , for 1 ≤ p < 3, r =

3p

3− p
. (2.22)

Finally, we would like to recall the following compact embeddings

1. If p > 3, then W 1,p
0 (V) ↪→↪→ C(V̄).

2. If p = 3, then W 1,p
0 (V) ↪→↪→ Lq for 1 ≤ q <∞.

3. If 1 ≤ p < 3, then W 1,p
0 (V) ↪→↪→ Lq for 1 ≤ q < 3p/(3− p).

which hold for every bounded domain, V , in R3.

The Poincaré inequality is also very useful in hydrodynamic problems; for completeness

we recall it here

‖u‖2 ≤ Cp ‖∇u‖2 , for all u ∈ W 1,2
0 (V), (2.23)

where Cp is a positive constant depending only on the bounded domain V .

Consider the Stokes problem on a bounded domain
divw = 0,

∆w = ∇p+ f ,

w = 0, on ∂V .

Interior and boundary estimates for the previous problem imply the following inequality (see

[16], Section IV.6)

‖w‖2,2 ≤ C ‖P∆w‖2 (2.24)

which holds for all w ∈ W 2,2(V) ∩ D1,2
0 (V), and where C is a positive constant independent

of w.

For the study of problems concerning liquid-filled rigid bodies, the equation of balance

for the kinetic energy of the whole system S plays a fundamental role. We then premise

the following results which will be useful to identify an appropriate energy functional for
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our problem (see [26], Chapter 1, Sections 7.2.2 and 7.2.3, for their proofs). We start by

considering the linear space E3 := {ϕ ∈ L2(C) : ϕ(y) = c×y, for some constant vector c ∈

R3}. E3 is a finite dimensional subspace of L2(C) with basis fields bi := ei × y, for all

i = 1, 2, 3. We then consider the operator

B : ψ ∈ H(C) 7→ B ·ψ ∈ E3 ⊂ L2(C) (2.25)

such that

(B ·ψ)(y) = ρI−1 ·
(∫
C
y ×ψ

)
× y. (2.26)

The following lemma holds.

Lemma 2.3.3. The operator B defined by (2.25) and (2.26) is non-negative and self-adjoint.

Moreover, 1−B is a non-negative operator with a bounded inverse.

Proof. The proof of this lemma can be found in [26], Section 7.2.3, we include it here for

completeness.

By (2.26), the symmetry of I−1, and the property

[(a× b)× c] · d = (a× b) · (c× d), for all a, b, c,d ∈ R3,

we infer that

(B · u,v) =

∫
C

{[
ρI−1 ·

(∫
V
x× u

)
× y

]
· v
}

= ρI−1 ·
(∫
V
x× u

)
·
(∫
C
y × v

)
= ρ

(∫
V
y × u

)
· I−1 ·

(∫
C
y × v

)
, all u,w ∈ H(C).

Using again the symmetry of I−1, we find that B is self-adjoint. Moreover, since I−1 is

positive definite,

(B · u,u) = ρ

(∫
V
y × u

)
· I−1 ·

(∫
C
y × u

)
≥ 0, all u ∈ H(C),

that is, B is a nonnegative operator.

For all u ∈ H(C), let us denote

a := −ρI−1 ·
(∫
C
y × u

)
.
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Then,

ρ((1−B) · u,u) = ρ(u,u)− ρ(B · u,u) = ρ(u,u)− a · I · a

= ρ(u+ a× y,u+ a× y)− ρ(a× y,a× y)− 2ρ(u,a× y)− a · I · a

= ρ ‖u+ a× y‖2
2 − ρ(a× y,a× y) + 2a · I · a− a · I · a

= ρ ‖u+ a× y‖2
2 − ρ(a× y,a× y) + a · I · a

= ρ ‖u+ a× y‖2
2 + a · IB · a ≥ 0.

We have used (2.12) to get last equality, and the positive definiteness of IB to obtain the

displayed inequality. Thus, the operator 1−B is nonnegative. Furthermore, we claim that

((1 −B) · u,u) = 0 iff u ≡ 0. The “if” part is obviously true. To show the “only if” part

of the claim, we observe that

ρ((1−B) · u,u) = ρ ‖u+ a× y‖2
2 + a · IB · a ≥ a · IB · a.

If ((1−B) · u,u) = 0, necessarily a · IB · a = 0, and so a = 0 since IB is positive definite.

By (2.26), the latter implies that B · u = 0. Thus, from the above calculations,

0 = ρ((1−B) · u,u) = ρ(u,u)− ρ(B · u,u) = ρ ‖u‖2
2

implies that u ≡ 0.

Summarizing, 1 − B is a nonnegative operator that is zero at zero only, and B is a

bounded operator with image contained in a finite dimensional space. Therefore, B is a

linear, continuous, compact operator and λ = 1 is not an eigenvalue of B. We can then

apply Fredholm Alternative Theorem (see Proposition 19.16 in [54]) to conclude that 1−B

has a bounded inverse operator, and this concludes the proof of the lemma. �

23



The functional

〈·, ·〉 : (u,v) ∈ L2(C)× L2(C) 7→ 〈u,v〉 := ((1−B) · u,v) ∈ R, (2.27)

defines a scalar product in L2(C) with the associate norm

‖w‖B := 〈w,w〉1/2 = ((1−B) ·w,w)1/2,

which is equivalent to the norm ‖ · ‖2. Indeed, since, by Lemma 2.3.3, B is non-negative and

1−B admits a bounded inverse, we find

((1−B) ·w,w) = ‖(1−B) ·w‖2
2 + (B ·w,w) ≥ c2 ‖w‖2

2

where, c = c(C) > 0. Furthermore, again using the fact that B is non-negative, we deduce

((1−B) ·w,w) ≤ (w,w),

so that

c ‖w‖2 ≤ ‖w‖B ≤ ‖w‖2 , (2.28)

or in a more explicit form:

c ‖w‖2
2 ≤ ‖w‖

2
2 −

(∫
C
ρ y ×w

)
· I−1 ·

(∫
C
y ×w

)
≤ ‖w‖2

2 (2.29)

for all w ∈ H(C).

We conclude this chapter by proving the following Gronwall-type Lemmas.
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Lemma 2.3.4. Consider y ∈ L∞(0,∞), y ≥ 0, and satisfying the following inequality

y(t) ≤ y(s)− k
∫ t

s

y(τ) dτ +

∫ t

s

F (τ, y) dτ

for a.a. s ≥ 0, including s = 0, and all t ≥ s. Here, k > 0 is a constant and F (t, w)

is continuous in t and Lipschitz continuous in w, F (t, w) ≥ 0 for a.a t ≥ 0 and all w ∈

L∞(0,∞). Moreover, ∫ ∞
a

|F (t, w)|q dt <∞,

for some a > 0 and q ∈ [1,∞), and for all w ∈ L∞(0,∞). Then,

lim
t→∞

y(t) = 0.

Moreover, if in particular F ≡ 0, then

y(t) ≤ y(s)e−k(t−s), for all t ≥ s.

Proof. By assumption, F (t, y) is continuous in t and Lipschitz continuous in y; by Lemma

2.1 in [45] and subsequent remarks, this implies that y(t) ≤ z(t) where z(t) satisfies the ODE

dz

dt
= −kz(t) + F (t, z), y(0) = z(0).

If F ≡ 0, the last part of the statement immediately follows by integrating the latter displayed

equation.

If F (t, z) > 0 for a.a t ≥ 0, using the hypotheses∫ ∞
a

|F (t, z)|q dt <∞,

we can then apply Lemma 5.2.1 in [33] to conclude that necessarily z(t) → 0 as t → ∞.

Since 0 ≤ y(t) ≤ z(t), the statement of the lemma is completely proved by passing to the

limit as t→∞ in the latter displayed inequalities. �

Lemma 2.3.5. Let y : [t0, t1) → [0,∞), t1 > t0 ≥ 0, be an absolutely continuous function

satisfying for some a, b, c, δ > 0 and α > 1,

(i) y′ ≤ −a y + b yα + c in (t0, t1) ;
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(ii)

∫ t1

t0

y(τ) dτ <
δ2

4c
, y(t0) <

δ√
2

.

Then, if k := −a+ b δα−1 < 0, we have

y(t) < δ , for all t ∈ [t0, t1) . (2.30)

Moreover, if t1 =∞ we have also

lim
t→∞

y(t) = 0 . (2.31)

Proof. Setting Y := y2, from (i) we get

Y ′ ≤ −2a Y + 2b Y β + F , t ∈ [t0, t1) , (2.32)

where β := (α+ 1)/2, F := 2c y. In view of the second condition in (ii), contradicting (2.30)

means that there exists t∗ ∈ (t0, t1) such that

Y (t) < δ2 , for all t ∈ [t0, t
∗) ; Y (t∗) = δ2 . (2.33)

Using this information back in (2.32) we find for all t ∈ [t0, t
∗)

Y ′(t) ≤ 2(−a+ bδα−1)Y (t) + F (t) ,

which in view of the assumptions, after integration from t0 to t∗, furnishes

Y (t∗) <
δ2

2
+

∫ t1

t0

F (t) dt < δ2 .

However, the latter is at odds with (2.33), and we thus conclude the proof of the first part

of the lemma. In order to show the second part, we observe that from (2.30) and (2.32) we

deduce

Y ′ ≤ −2a Y + 2(bδα + c)y ,

so that (2.31) follows from the first condition in (ii) and Lemma 2.3.4. �
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3.0 HISTORICAL BACKGROUND AND PREVIOUS CONTRIBUTIONS

In Chaper 2, we have presented some applications of the study of liquid-filled rigid bodies

in the Applied Sciences, and precisely in Space Engineering and Geophysics (Subsections

2.1.2.2 and 2.1.2.1, respectively). Besides, these practical applications, in the past century

and decades, the problem of rigid bodies with cavities containing liquids have gained a lot

of attention also from the theoretical point of view. There is a vast mathematical literature

on this subject which goes back to the early contributions of Stokes in [51], and Zhukovskii

in [55], at the end of the 19th century. In particular, Zhukovskii focused his attention

on the motions of a rigid body having a cavity entirely filled with an ideal, irrotational,

incompressible liquid. Under these assumptions, Zhukovskii looked for potential-like solutions

for the liquid absolute velocity, u. In fact, assuming that u ≡ ∇φ, then φ = φ(y, t) can be

found by solving

∆φ = 0, in C × (0,∞), ∇φ · n = (ω × y) · n, on ∂C,

which correspond to incompressibility together with boundary conditions. The function

φ = φ(y, t) can be found as a linear combination of the components of ω. Specifically,

φ(y, t) =
3∑
i=1

ωi(t)ϕi(y),

where ϕi = ϕi(y) satisfy

∆ϕ1 = 0 in C, ∇ϕ1 · n = (y × n) · e1 on ∂C,

∆ϕ2 = 0 in C, ∇ϕ2 · n = (y × n) · e2 on ∂C,

∆ϕ3 = 0 in C, ∇ϕ3 · n = (y × n) · e3 on ∂C.

(3.1)
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The functions ϕi depend only on the geometric properties of the cavity, they are called

Zhukovskii potentials (see [55] and [14]). Once these potentials are found, in the same fashion

as for the case of a body immersed in an ideal, irrotational, incompressible liquid, one can

then evaluate the total torque exerted by the liquid on the body, for each given cavity, as

−
∫
∂C
y × (p̃n)dσ ≡ Ia · ω̇,

where Ia is the tensor of virtual mass, it is a symmetric tensor depending only on the liquid

density and on the shape of the cavity; it takes into account the inertia added to the liquid

due to the acceleration of the body. The components of Ia are given by

Ia,ij = −ρ
∫
∂C
ϕj∇ϕi · n dσ, all i, j = 1, 2, 3.

Thus, the system of equations (2.10) governing the motion of the whole system S can be

decoupled by solving the three boundary value problems (3.1) first, and then, after evaluating

the tensor of virtual mass, by solving a system of ODEs, which reads as follows

(Ia + IB) · ω̇ + ω × IB · ω = m,

where m is the total external torque applied on the solid in the moving frame F.

Other results concerning ideal liquid contained in a cavity within a solid were obtained

by Hough ([24]), Poincaré ([36]) and Sobolev ([49]). Some of these authors analyzed the

stability properties of the coupled system liquid-filled rigid body either by considering small

oscillations in the case of a solid with an ellipsoidal cavity filled by an ideal liquid in ap-

proximately uniform rotation ([24]) or by examining the linearized equations of motion for

a heavy symmetric top containing an ideal liquid ([49]).

The case of a viscous fluid turns out to be more delicate than the ideal one. In the

simplest case of inertial motions, Zhukovskii conjectured the following concerning the long-

time behavior of the solutions to (2.10).

Theorem 3.0.6 (Zhukovskii’s Conjecture, [55], p. 152). The motions of S (about its center

of mass) will eventually be rigid motions and, precisely, permanent rotations, no matter the

size and shape of the cavity, the viscosity of liquid, and the initial movement imparted on the

system.
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This intriguing property shown by liquid-filled rigid bodies has to be contrasted with the

case of no liquid contained in the cavity. In this latter case, the equations of motion (2.10)

reduce to the well-known Euler equations for a rigid body:

IB · ω̇ + ω × IB · ω = 0. (3.2)

The dynamics of B described by the latter displayed equations is very rich (see [35], Ch-

pater VII and Chapter VIII). Permanent rotations (i.e. rigid body motions with constant

angular velocities) are solutions to (3.2); they may occur if and only if the angular velocity

ω is directed along one of the principal axes of inertia, and the latter must align with the

given initial total angular momentum. Time-dependent motions may be very complicated

depending on the mass distribution of B. In mathematical terms, this can be expressed by

conditions on the principal moment of inertia of B, A, B, and C (i.e. the eigenvalues of IB

with corresponding eigenvectors e1, e2 and e3, respectively). For example, if A = B 6= C,

then the most general motion of B about G is a regular precession, where B performs a

permanent rotation around the axis parallel to e3 and passing through G, while the latter

rotates uniformly around the direction of the initial (given) angular momentum. Therefore,

what Zhukovskii suggested is that the liquid has a stabilizing effect on the motion of the rigid

body when no external forces and torques are applied on the coupled system (F = mO ≡ 0).

This property has, indeed, a simple heuristic explanation. Because of the liquid viscosity,

the velocity field of fluid relative to solid must eventually vanish, so that the coupled system

S will eventually move by rigid motion. Under this condition, from the equation (2.10)2 and

by (2.8)2, we derive that the pressure gradient of the liquid, ∇p̃, must balance the centrifugal

forces:

ρ(ω̇ × y + ω × (ω × y)) = ∇p̃. (3.3)

Thus, taking the curl of both sides of the equation we get ω̇ = 0, which shows that only

permanent rotations may occur. The previous argument is purely heuristic and takes for

granted the following two facts: the liquid goes to rest (relative to a moving frame) as time

goes to infinity, and the long-time dynamics of S are governed by (3.3). Unfortunately,

neither of these properties is obvious from a rigorous viewpoint. As we will see later in this

thesis, even though the total energy of S is a decreasing function of time, the dissipation is
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in terms of the liquid relative velocity only, and there is a (in principle large) conservative

component in the motion of S given by its total angular momentum. In fact, let us formally

dot-multiplying (2.10)3 by AO, we find that

d|AO|2

dt
= 0.

Thus, the fact that the velocity of the liquid relative to the body must eventually vanish,

especially when the initial data are such that the magnitude of the total angular momentum

is arbitrary large, is not so evident. Furthermore, admitting that the asymptotic dynamics

of S are governed by (3.3) implies, in terms of Dynamical Systems, that the Ω-limit set of a

generic trajectory is not empty and invariant in the class of solutions to (2.10). This latter

statement is not so clear since the equations (2.10) involve the Navier-Stokes equations.

Finally, even assuming the validity of both of the above statements, it is still obscure why

the angular velocity of the coupled system should tend to a specific constant value. Even

though never rigorously proved right or wrong, Zhukovskii’s statement is often presented as

a theorem mainly by Russian authors (see e.g. [12], [34]).

We are not aware of any new or substantial contribution on the problem of motions of

rigid bodies with liquid-filled cavities in the years immediately after Zhukovskii. This lack in

the mathematical and engineering literature lasted till the beginning of the Cold War, when

the United Staes and the Soviet Union intensified their missiles race and began the so called

space race, a competition aimed to show their technological superiority. The race to space

foresaw the launch of artificial satellites and space probes to explore other planets or the

Moon, and the attempt to perform the first human space flights. It is in this scenario that

we find some of the contributions in Space Engineering cited in Chapter 2 (e.g. [5], [1], [6],

[44], [3], [25] and [46]). From the mathematical point of view, Rumyantsev has extensively

studied the stability of motion of a rigid body with a cavity partially or entirely filled by ideal

and viscous liquids (see [41]–[43], [14], and also [34]). The author investigates the problem

of stability with respect to a finite number of variables: the components, ωi, of the angular

velocity and some integral functions of the liquid absolute velocity, u,

Gs(t) =

∫
C

Φ(t,u), for i ≤ s ≤ N,
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for some N ∈ N. If one considers N = 3, a possible choice for the functions Gs is given by

Gs(t) = es ·
∫
C
ρ(y × u), for s = 1, 2, 3,

i.e. the projections of the liquid angular momentum with respect to O, in the moving frame

F. The idea is to construct suitable Lyapunov functionals, V = V (t), which depend only

on (G,ω). The stability properties are then found by a suitable modification of Lyapunov

Stability Theorem for V (see [41]). For the case of inertial motions of S about its center of

mass, G, Rumyantsev shows that any permanent rotation about the principal axes of inertia

corresponding to the largest moment of inertia of S is stable with respect to the variables

(G,ω). Stability conditions are obtained also for a heavy rigid body filled with a viscous

liquid about a fixed point O ([40], [34]). It has to be noticed that the quantities Gs do

not completely characterize the motion of the liquid, as the liquid velocity belongs to an

infinite dimensional space. So, Rumyantsev’s results concern only conditional stability of

the liquid variable. Moreover, Rumyantsev’s analysis is still formal, because it lacks of a

suitable corresponding existence theorem for the relevant equations.

Also Chernousko investigated the motion of a rigid body with a cavity entirely filled by

a viscous liquid ([12]). For certain type of motions, corresponding to total external torques

and angular momentum of the liquid “small” compared to ω · I · ω, the author is able to

separate the problem of the motion of S into two parts that can be solved independently. The

first part consists of solving a hydrodynamic problem described by boundary value problems

which depend only on the shape of the cavity; moreover, they are independent of the motion

of the solid. This enables Chernousko to calculate suitable “coefficients” which determine the

effect that the liquid has on the body. The second part of the problem deals with a system

of ODEs governing the dynamics of the rigid body. Let us develop Chernousko’s arguments

in some details. For the problem in hand, a suitable choice for a Reynolds number is given

by

Re :=
`

Tν
,

where ` is a characteristic length scale for the cavity, T is a characteristic time scale (say, T

is of order |ω|−1), and ν is the coefficient of kinematic viscosity for the liquid (ν := µ/ρ).
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Assume that Re << 1, and without loss of generality, ` ≡ 1 and T ≡ 1. Chernousko looks

for a solution to (2.10)1,2,5 (augmented with suitable initial conditions) of the form

v = v∗ + ṽ, p = p∗ + p̃,

where

v∗(y, t) =
∞∑
n=1

ν−nv∗n(y, t), p∗(y, t) =
∞∑
n=0

ν−np∗n(y, t)

and, for τ = νt,

ṽ(y, τ) =
∞∑
n=1

ν−nṽn(y, τ), p̃(y, τ) =
∞∑
n=0

ν−np̃n(y, τ).

The field v∗ will eventually converge to a steady solution. Whereas, ṽ represents the “tran-

sient” part of the liquid relative velocity, it will decay to zero as time approaches to infinity.

Replacing (v∗, p∗) in (2.10)1,2,5, one finds that the n−th approximation (v∗n, p
∗
n) has to satisfy

div v∗n = 0,

∆v∗n = ∇p∗n − F n,

 in C × (0,∞),

v∗n = 0 on ∂C,

(3.4)

where F n depends on the previous approximations (v∗0, p
∗
0), . . . (v∗n−1, p

∗
n−1). In particular,

F 0 ≡ 0, thus the following system of PDEs

div v∗0 = 0, ∆v∗0 = ∇p∗0 in C × (0,∞), v∗0 = 0 on ∂C

admits v∗0 ≡ 0 as unique solution (see [28]). Moreover,

div v∗1 = 0, ∆v∗1 = ∇p∗1 − F 1 in C × (0,∞), v∗1 = 0 on ∂C, (3.5)

where

F 1 = ω̇ × y + 2ω × v∗0 +
∂v∗0
∂t

+ v∗0 · ∇v∗0 +QT ·F = ω̇ × y +QT ·F .
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Replacing (v∗ + ṽ, p∗ + p̃) in (2.10)1,2,5, we find that n−th approximation (ṽn, p̃n) has to

satisfy

div ṽn = 0,

∂ṽn
∂t

= ∆ṽn −∇p̃n +Gn,

 in C × (0,∞),

ṽn = 0 on ∂C,

ṽ0(y, 0) = v0, ṽn(y, 0) = −v∗n(y, 0),

(3.6)

where v0 is the (given) initial relative velocity of the liquid, and Gn depends on the previous

approximations (ṽ0, p̃0), . . . (ṽn−1, p̃n−1). In particular, G0 ≡ 0. The existence and unique-

ness of solutions to (3.4) and (3.6) for given F n and Gn is guaranteed by classical results in

the mathematical theory of viscous fluids (see [28]). In particular, one can show that

‖ṽ0‖2 , ‖ṽ1‖2 ≈ exp(−cνt)

for some positive constant c. Therefore, for sufficiently “large” times, and with an accuracy

of order ν−2, the relative velocity of the liquid is “small” (it is of order ν−1), and

v ≈ ν−1v∗1,

where v∗1 satisfies the linear stationary problem (3.5). If F ≡ 0, then Chernousko shows

that

v(y, t) ≈ ν−1ω̇i(t)V i(y),

where, for all i = 1, 2, 3, V i = V i(y) with the corresponding pressure fields qi = qi(y) satisfy

the following boundary value problems which depend only on the shape of the cavity, and

they are independent of the motion of the solid:

divV i = 0, ∆V i = ∇qi + ei × y in C, V i = 0 on ∂C.

Thus, the kinematic angular momentum of the liquid can be approximated as follows∫
C
ρ y × v ≈ ρν−1P · ω,
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P is a symmetric, positive definite tensor, which depends only on the geometric properties of

cavity. The equation (2.10)3 is then properly modified to obtain a system of ODEs of the same

order as the corresponding equations governing the dynamics of a frozen liquid. Chernousko

also proves that, under all the above mentioned assumptions, permanent rotations about the

principal axis of inertia of S corresponding to the largest moment of inertia are stable in the

sense of Lyapunov. Moreover, permanent rotations of S about the principal axes of inertia

of S corresponding to the mean and least moment of inertia are both unstable. The case of

high Reynolds numbers is also studied in [12]; the techniques involve the linearization of the

Navier-Stokes equations and the construction of a solution by the boundary layer method.

We will not go further into the details of this latter case, as it goes far beyond the purpose

of this thesis. A detailed account of the previous results and their applications can be found

in [34].

In the more recent years, the mathematical literature on the problem of rigid bodies with

liquid-filled cavities has been focused on the stability and instability properties of the motions

of S. In this direction, we would like to mention the work by Smirnova (in [48]), in which the

author confirms the stability and instability properties obtained by Chernousko, but with less

assumptions. We would like to cite also the papers by Lyashenko ([32]) and Kostyuchenko

et al. ([27]), and the book by Kopachevsky and Krein ([26]) in which the authors consider

the linearized equations for the perturbed motion around an equilibrium configuration, and

analyze the spectrum of the corresponding evolution operator. Even though these results

are interesting from the mathematical point of view, they need not be valid for the original

nonlinear problem due to the lack, to date, of a linearization principle that may validate the

above findings at the nonlinear level. In Chapter 5, we will present necessary and sufficient

conditions for stability (in the sense of Lyapunov) for the full nonlinear problem, without any

approximation or assumptions on the shape of the cavity. These conditions contain those of

[43] as a particular case, and extend those of [12],[27] and [48] to the nonlinear level.

Finally, in [47] and [33], the problem of liquid-filled rigid body is treated with the more

modern techniques of energy methods. [33] represents the starting point of the mathematical

analysis of the motions of solids with liquid-filled cavities presented in Chapter 5. Concerning

the inertial motions, in [33], the existence of a dynamical system in the 2D case is proved.
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In particular, the existence of weak solutions is shown in detail; the proof is given both

in the 2D and 3D case along with all the properties of weak solutions and the uniqueness

results. Moreover, the existence of strong solutions for the coupled system in two and three

dimensions is also studied. Local strong solutions for any initial data (provided that the

initial motion has finite kinetic energy) and global strong solutions for initial data which

are “sufficiently small” are proved to exist. Moreover, it is shown that, within the class of

global strong solutions corresponding to “small” initial data, the long-time dynamics of a

liquid-filled rigid body is completely characterized by a rigid body motion with the liquid at

rest relatively to the solid. This rigid body motion is a permanent rotation about one of the

principal axis of inertia if S has a “symmetric mass distribution”, that is when the inertial

tensor of the whole system is a multiple of the identity tensor.
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4.0 NUMERICAL SIMULATIONS AND PHYSICAL EXPERIMENTS

In this Chapter, we would like to present some numerical simulations and physical experi-

ments that we have performed in order to obtain insights and further informations on the

behavior of coupled system S. We are mostly interested in the long-time behavior of solutions

to (2.9) in the case of inertial motions of S about its center of mass G (F ≡M ≡ 0). These

tests represent the starting point for some ongoing numerical and physical experiments, and

they also complement some of the analytical results described in Chapter 5.

We will start by presenting some results of numerical tests simulating the inertial motions

of a liquid-filled rigid body. These simulations have been performed in collaboration with

Professor P. Zunino1. The results first appeared in [20]; an account of them can be found in

our joint paper [13].

4.1 NUMERICAL SIMULATIONS

As we will see in Chapter 5, conservation of angular momentum and energy balance will

play a fundamental role in the analysis of the system at hand. It is, therefore, essential that

the time discretization method accurately preserves the invariants of the system. At the

level of numerical approximation this is not a trivial task, even when we restrict ourselves

to the analysis of the motion of the body solely, i.e. equations (2.9)3. We have employed

the following time discretization algorithm for the coupled system liquid-filled rigid body

whose motion is governed by (2.9). For the time integration of the body dynamics, we

use the θ-method. In particular, we adopt the implicit midpoint integration rule, θ =

1Department of Mathematics, Politecnico di Milano. Email: paolo.zunino@polimi.it
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1
2
, because of its good properties as a geometric integrator. This turns out particularly

useful since the midpoint rule exactly satisfies the conservation of momentum for simple

Hamiltonian systems. For the Navier-Stokes equations, we apply the implicit Euler time

advancing scheme in order to guarantee the stability of the algorithm. At each time step,

we use sub-iterations to uncouple the solution of the discrete body and liquid problems and

to linearize the corresponding equations. The convergence to the approximated solution is

achieved through a fixed point argument. The combination of these techniques gives rise to

the following algorithm:

Given u0, ω0 and a partition of the interval (0, T ] in evenly distributed time steps tn = nτ

with τ > 0, for n = 1, 2, 3, . . . find un, p̃n, ωn in the following way:

Set u0
n = un−1, ω

0
n = ωn−1. For k = 1, 2, 3, . . . solve the sub-problems:

Body problem: find ω∗n such that,

τ−1IB·
(
ω∗n − ωn−1

)
+ θ
[
ωk−1
n ×

(
IB · ωk−1

n

)
+

∫
∂C
y × T (uk−1

n , p̃k−1
n ) · n

]
+ (1− θ)

[
ωn−1 ×

(
IB · ωn−1

)
+

∫
∂C
y × T (un−1, p̃n−1) · n

]
= 0. (4.1)

Relaxation: given σ ∈ (0, 1], set ωkn = σω∗n + (1− σ)ωn−1.

Liquid problem: find ukn, p̃
k
n such that,



ρ
(
ukn − un−1

)
+ ρωkn × ukn + ρv(uk−1

n ,ωkn) · ∇ukn

− divT (ukn, p̃
k
n) = 0 in C,

divukn = 0, in C,

ukn = ωkn × y, on ∂C,

(4.2)

where we recall that v(uk−1
n ,ωkn) = uk−1

n − ωkn × y.

Convergence test: given ε small enough, if ‖ωkn − ωk−1
n ‖ < ε then set

un = ukn, p̃n = p̃kn, ωn = ωkn.
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Since our numerical tests involve relatively simple geometrical configurations, moderately

refined meshes will be applied, see for instance Figure 1 that shows the geometrical model

for the cavity and the corresponding computational mesh, Ch. A mesh sensitivity analysis,

not reported here, confirms that the qualitative behavior of the system does not change

when the computational mesh of the liquid cavity is refined. Furthermore, we point out that

the simulations are insensitive to the geometric representation and discretization of the solid

shell, because the tensor of inertia IB and consequently its eigenvalues A,B,C are prescribed

as parameters of the numerical algorithm.

Figure 1: Geometrical configuration of the cavity C used for the numerical experiments.

The liquid problem (4.2) is solved by the finite element method ([22, 23, 39]). In order to

achieve a stable discretization of the divergence-free constraint, we use inf-sup stable mixed

finite elements, such as P2−P1 approximation of the velocity and pressure fields, respectively.

Here Pk denotes the space of all polynomials in R3 of degree less or equal to k, for k = 1, 2

(see [22, 8]). The variational formulation of the problem in terms of velocity and pressure

variables reads as follows∫
C
ρ
[
τ−1(ukn − un) · vh + (ωkn × ukn) · vh +

(
v(uk−1

n ,ωkn) · ∇ukn
)
· vh
]

+ µ∇ukn :∇vh

−
∫
C
[qh divukn + p̃kn div vh] = 0,

for all vh ∈ Vh, qh ∈ Ph, where

Vh := {vh ∈ C0(C) : vh|T ∈ P2 for all T ∈ Ch},

Ph := {qh ∈ C0(C) : qh|T ∈ P1 for all T ∈ Ch}.
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The system of algebraic equations arising from the discretization scheme is solved by means

of direct techniques, which turn out to be an effective option since the number of degrees of

freedom is not excessively large.

4.1.1 Effect of the viscosity on the long-time behavior of the coupled system

We study the dynamics of a system where the cavity has the (quasi-ellipsoidal) shape shown

in Figure 1, and the rigid body is characterized by an inertial tensor of inertia with eigenvalues

A = 5.54, B = 6.73, C = 6.76 (which corresponds to depositing a layer of uniform material

of constant thickness around the cavity). At the initial time, the motion of B is identified

by the angular velocity ω0 = 2π(cos(θ), cos(φ) sin(θ), sin(φ) sin(θ)) with θ = π/48, φ = 0,

while the relative velocity of the liquid is v0 = 0 everywhere in C. In Figure 2 we visualize

the plots of ω(t) = (p(t), q(t), r(t)) for decreasing values of the kinematic viscosity of the

liquid, namely ν = µ/ρ. The numerical simulations show that, for moderately large values

of the viscosity (ν = 0.1), the system quickly reaches a steady state which is a permanent

rotation around the central axis of inertia corresponding to the largest moment of inertia.

As expected, the trend through which the rotational equilibrium is reached is extremely

sensitive to the viscosity. Indeed, for ν = 0.001 the rotation of the liquid-solid system is

“chaotic”, at least for the timescale used in the case of large viscosity. Only when the

timespan of simulation is significantly extended, the numerical experiments show that the

steady rotation is eventually recovered (Figure 2, bottom panel).

The numerical simulations enable a more quantitative analysis of the effect of the viscosity

on the time required to reach equilibrium. Let us denote by tc the instant at which the

following condition is satisfied for the first time,

tc :
‖ω(t)− ω(∞)‖
‖ω0 − ω(∞)‖

< 0.1

For the viscosities ν = 0.1, 0.05, 0.02, 0.01 we have calculated tc and the corresponding

ω(tc). The results are reported in Table 1. From these data, it is possible to estimate how

tc depends on ν. We begin by postulating a power law dependence such as tc ' να. Then,

in the range ν ∈ (0.01, 0.1) the value of α that best fits the data is α = −0.305. This result
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ν = 0.1, ω0 = [6.2697, 0.4109, 0], v0 = 0, t ∈ (0, 80)

ν = 0.001, ω0 = [6.2697, 0.4109, 0], v0 = 0, t ∈ (0, 80)

ν = 0.001, ω0 = [6.2697, 0.4109, 0], v0 = 0, t ∈ (0, 1200)

Figure 2: Dynamics of the liquid-solid system for decreasing values of the viscosity.

40



confirms the inverse dependence of the time required to reach equilibrium on the magnitude

of the viscosity.

ν p(tc) q(tc) r(tc) tc

0.1 -0.4018 0.4558 4.8682 50.8

0.05 0.4908 -0.568 4.7584 63.3

0.02 -0.4887 -0.4171 -4.5768 75.2

0.01 0.6319 0.4658 -4.3192 99.8

Table 1: Dependence of the (numerically estimated) time to reach equilibrium on the liquid kine-
matic viscosity. The initial rotation is ω0 = (6.2697, 0.4109, 0).

The numerical results presented here provide a rather complete description of the asymp-

totic behavior in time of a liquid-filled rigid body for the cases A ≤ B < C, and A = B = C.

Moreover, Figure 3 shows the dynamics of S when A = 5.54 and B = C = 6.76. We see

that, also in this case, the motion of coupled system S will reach a steady state which is a

permanent rigid rotation about the central axis of inertia corresponding to the large moment

of inertia. We will see in Chapter 5, specifically Theorem 5.2.4 and Remark 5.2.5, that the

analytical proof of the latter numerical results is still open.

4.1.2 Effect of the initial rotation on the final angular velocity

We have also found some numerical verifications of the analytical results about the attain-

ability and the stability of permanent rotations, for which the main analytical result are

Theorem 5.2.7 and Theorem 5.2.10, respectively. The numerical experiments are particu-

larly helpful to test the validity of the analysis beyond the restrictions on the initial data

stated in Theorem 5.2.7.

In these cases, the liquid kinematic viscosity is set to ν = 0.1. We begin with a problem

configuration where the condition (5.76) is not satisfied because of large initial rotational

speed,

9.6860 =
A

2B
(B − A)p2(0) >

C

2B
(C −B)r2(0) = 0.1310.
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ν = 0.1, ω0 = (6.2697, 0.4109, 0), t ∈ (0, 80)

Figure 3: Dynamics of the liquid-solid system in the case 5.54 = A < B = C = 6.76.

The computed plots of ω(t) reported in Figure 4 (top panel) show that, for “large” initial

data, the conclusions of Remark 5.2.11 are no longer valid. In particular, we observe that

in this case r(0) > 0 > r, which differs from the predicted behavior for small data, while

p = q = 0 as proved in the analysis. In other words, sufficiently large p(0), q(0) may trigger a

flip-over effect. In Figure 4 (bottom panel) we investigate a similar situation, where p(0) and

q(0) are sufficiently small. In this case, the validity of condition (5.76) is restored and the

results of Remark 5.2.11 (i.e. r(0) and r share the same sign) are reproduced, as expected,

by the numerical simulation.

Numerical experiments also elucidate the behavior of the system when the initial relative

velocity of the liquid with respect to the rigid body is varied. More precisely, we compare

two cases that only differ in the initial liquid energy, EF (0). In one case the initial relative

velocity of the liquid is initialized to v = 0 in C, as a result EF (0) = 0. In the other case we

define v as a nonzero compatible velocity field, such that v = 0 on ∂C and div v = 0 in C,

such that EF (0) � 1. In particular, at the initial time the (absolute) liquid velocity can be

expressed in the following form u0 = f(‖x‖)ω0×x. Since f(‖x‖) 6= 1, then v 6= 0. For this

numerical experiment we consider a different tensor of inertia, A = 4.99, B = 4.99, C = 5.54.
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ν = 0.1, ω0 = [4.44, 3.14, 3.14], v0 = 0

ν = 0.1, ω0 = [0.444, 0.314, 3.14], v0 = 0

Figure 4: Dynamics of the liquid-solid system for different initial angular velocity.
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For these initial data, we observe that (5.74) is not satisfied because

3.0393 =
C

A
(C − A)r2(0)� EF (0) = 170.8

The corresponding results are shown in Figure 5. We see that the qualitative behavior of the

system is substantially unaffected. This test shows that the thesis of Theorem 5.2.7, case

(a), may be verified also when condition (5.74) is violated. This fact may be interpreted

observing that for large viscosities, the liquid quickly adjusts its motion to satisfy v = 0

everywhere in the cavity and in the same process, the initial angular momentum of the liquid

is transferred to the solid. After this transition, the previous considerations relative to the

sensitivity on the initial angular velocity apply.

4.1.3 The “flip-over” effect

We conclude this section by discussing how, besides the magnitude of the initial rotation

along the unstable axes, the viscosity can also trigger the flip-over effect, in some particular

configurations. As is discussed in Remark 5.2.11, if A ≤ B < C and r(0) = 0, the analysis

is not sufficient to determine the orientation of the final rotation along the stable axis,

namely e3. The numerical simulations reflect this type of uncertainty and suggest that the

determining factor is the liquid viscosity. More precisely, a careful analysis of Table 1 shows

that, when r(0) = 0, changing the viscosity of the liquid not only affects the time to reach

equilibrium, but also the orientation of the final rotation, namely sign(r). Indeed, jumping

from ν = 0.05 to ν = 0.02, the component r(tc) changes its sign, while the modulus is almost

invariant. Figure 6 illustrates this effect with more details. For these tests, we consider the

case A = 5.54, B = 6.73, C = 6.76 and the initial rotation ω0 = [6.2697, 0.4109, 0]. Figure

6 shows that, for fixed initial conditions, the sign of r is sensitive to the liquid viscosity.

On the basis of numerical experiments, we believe there exists a precise transition point at

which the orientation of the rotation is flipped. For the particular configuration considered

here, using Figure 6, we estimate that the transition point is ν∗ ∈ (0.035, 0.0375).
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ν = 0.1, ω0 = [4.44, 3.14, 3.14], EF (0) = 0

ν = 0.1, ω0 = [4.44, 3.14, 3.14], EF (0) = 683.2

Figure 5: Dynamics of the liquid-solid system for different values of initial kinetic energy for the
liquid.
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ν = 0.0375, ω0 = [6.2697, 0.4109, 0], EF (0) = 0

ν = 0.035, ω0 = [6.2697, 0.4109, 0], EF (0) = 0

ν = 0.0325, ω0 = [6.2697, 0.4109, 0], EF (0) = 0

Figure 6: Visualization of the “flip-over” effect. The orientation of the final rotation changes, when
moving form ν = 0.0375 to ν = 0.035.
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4.2 EXPERIMENTAL TESTS: A LIQUID-FILLED GYROSCOPE

We have supervised some physical experiments for a gyroscope with a cavity entirely filled

with a viscous liquid. These experiments have been conducted by several groups of un-

dergraduates students for their Senior Design Project at the Department of Mechanical

Engineering and Materials Science, University of Pittsburgh.

The device is the one shown in Figure 4.2.

Figure 7: A liquid-filled gyroscope

The liquid container has a cylindrical shape, and it is machined from 6061 T6 aluminum

stock: the end caps from a 0.250 inches-thick plate, and the sleeve from a 4.5 inches outer

diameter pipe (0.120 inches wall thickness). Between stainless steel and aluminum as possible

choices for the materials, aluminum was ultimately selected because of its significantly lower

density in comparison to stainless steel. The axles of the liquid container were machined out

of anodized aluminum precision shafting. Hex-shaped heads machined onto the ends of the

axles provide a mechanism for torque transmission.

The frame brackets are made of low carbon steel. The inner frame has a dimeter of 12

inches and a weight of 2.38 pounds; whereas the outer frame is 17 inches in diameter and

3.21 pounds of weight. Finally, in order to reduce the friction during the motion, we chose

acetyl polymer bearings with glass rolling elements. They are constructed of very lightweight
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plastic, featured an open design (with no dust shields impinging upon rolling elements), and

required no viscous lubricant. These attributes brought substantial reductions in mass and

friction. Lightweight cast aluminum housings were selected to attach the bearings to the

frames.

The system was mainly tested with a viscous solution made of 20% water and 80%

glycerine. The experiments plan was to accelerate the liquid container for about 60 seconds

in the direction of the principal axis of the container corresponding to smallest moment

of inertia. The acceleration was accomplished by applying a hand drill to the hex head

machined into the end of the axle. An experiment sample can be viewed on https://www.

youtube.com/watch?v=wXlD_yPbla8&feature=youtu.be.

The experiments show that after an interval of time where the motion of the system

appear to be “chaotic”, the liquid container attains a rotation about the axis corresponding to

the largest moment of inertia that eventually decreases to zero, taking the whole system to the

rest state. We notice that these experiments were not performed in the vacuum in contrast

with the general settings for the numerical and analytical investigations. Nevertheless, the

behavior of the liquid-filled gyroscope is in agreement with the numerical tests presented

in this chapter and the analytical findings reported in Section 5.2, regarding the stabilizing

effect that a liquid has on the motion of a rigid body: due to viscous effects, the velocity of

the liquid relative to solid eventually vanishes, so the pressure gradient in liquid balances the

centrifugal forces, and the system reaches a steady state which is a permanent rotation around

the axis where the spin is a (non-zero) minimum (at least for suitable initial conditions).

When initial experiments were made with cavity filled with air only, the system rotated

quickly about all axes for an extended period of time - spin times in excess of 90 seconds

were attained. The system had a long-lasting “chaotic” motion, and it did not attain any

rotation about one axis before going to rest. Moreover, given the choice of the physical and

geometric properties of the liquid-filled gyroscope, and the initial motion imparted on the

system, these experiments are in agreement with the numerical results reported in Figure 3

for the dynamics of S when A < B = C, and for which an analytical proof is still missing

(see Theorem 5.2.4 and Remark 5.2.5).
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5.0 A DYNAMICAL SYSTEMS APPROACH

In this chapter, we will present a comprehensive and rigorous mathematical analysis of the

inertial motions and the motions under the action of gravity of a rigid body with a liquid-

filled cavity. We are mainly interested in the long-time behavior of the coupled system S. In

particular, we shall show that, provided C is sufficiently regular, all motions of S described

within a very general class of solutions to the relevant equations (weak solutions), must tend

to a steady state for large times, with the liquid at rest relatively to the solid, and S behaving

as a whole rigid body, no matter the shape of C, the physical characteristics of the body and

the liquid, and the initial conditions imparted to S. Moreover, we will answer some question

regarding the attainability and the stability of some equilibrium configurations.

The method we use borrows tools from classical Dynamical System theory. The adap-

tation of these tools to our problem is not trivial in that we deal with weak solutions (à

la Leray-Hopf) where the uniqueness property is not guaranteed. Some preliminary results

which include the dynamical system approach for the problem at hand will be presented in

the next section.

5.1 SOME PRELIMINARY RESULTS

Throughout this section, we will consider the motions of the coupled system S about a fixed

point O, and satisfying the hypotheses H1. and H2. when an external force per unit volume

g0h is acting on the center of mass of both liquid and solid. Here, g0 is a constant and h

is a (given) time-independent unit vector in the inertial frame I. From the physical point

of view, in the case G ≡ O and g0 ≡ 0, the coupled system performs inertial motions about
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its center of mass. If G 6= O and g0 ≡ g, where g is the acceleration of gravity, then we are

considering the motions of a heavy rigid body with a liquid-filled cavity about a fixed point,

this includes the case of motions about a fixed axis, like in the case of a liquid-filled physical

pendulum. These cases will be treated in details in the sections 5.2, and 5.3.

The external force per unit volume acting on the fluid is given by F = g0h. Whereas,

the total external torque applied on S, and calculated with respect to O in the inertial frame

I, is given by

mO = (G−O)× (Mg0h),

where M is the total mass of S. Following Section 2.2, we introduce

γ(t) := QT (t) · h.

γ is a unit vector denoting the direction of the external force applied on S; it is an unknown

function of time since the equations of motion are written with respect to the non-inertial

frame of reference F := {O, e1, e2, e3}, with origin at the fixed point O, e1 ≡
−→
OG/|

−→
OG|

(from hypothesis H2.), and e2 and e3 directed along the remaining principal axes of S with

respect to O. In F, the total external torque mO becomes

QT ·mO = β2e1 × γ,

where β2 := Mg0` and ` := |
−→
OG|. Moreover,

0 =
dh

dt
=
d(Q · γ)

dt
= Q̇ · γ +Q · γ̇.

Thus, (2.10)4 can be replaced by

γ̇ + ω × γ = 0.

We introduce the following vector fields

a := −ρI−1 ·
∫
C
y × v, ω∞ := ω − a. (5.1)
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So, A0 = I · ω∞, and (2.10) can be equivalently rewritten as follows

ρ

(
∂v

∂t
+ v · ∇v + (ω̇∞ + ȧ)× y + 2(ω∞ + a)× v

)
= µ∆v −∇p+ ρg0γ

div v = 0


on C × (0,∞),

I · ω̇∞ + (ω∞ + a)× I · ω∞ = β2e1 × γ in (0,∞),

γ̇ + (ω∞ + a)× γ = 0,

v = 0 on ∂C.

(5.2)

Our investigation on the motions of a liquid-filled rigid body constrained to move around

a fixed point is carried out in a considerably large class of solutions to (5.2) having finite

total energy. Before introducing this class of solutions, let us formally derive the balance of

the total energy.

The energy balance is given by

d

dt
(E + U) + 2µ ‖∇v‖2

2 = 0 (5.3)

where we have denoted by

E(t) := EF (t) + ω∞ · I · ω∞ and U(t) := −2β2γ · e3,

the kinetic and potential energy of S, respectively. Specifically, we have defined

EF (t) := ρ ‖v‖2
2 − a · I · a, (5.4)

and by (2.29), it satisfies

c1 ‖v‖2
2 ≤ EF (t) ≤ c2 ‖v‖2

2 , (5.5)

for some positive constants c1 and c2. In order to formally obtain (5.3), let us first take the

inner product in L2(C) of (5.2)1 by v, we get

1

2
ρ
d

dt
‖v‖2

2 + ρ

∫
L

[(ω̇∞ + ȧ)× y] · v + µ ‖∇v‖2
2 = 0. (5.6)
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Next, we notice that

ρ

∫
L

[(ω̇∞ + ȧ)× y] · v = ρ(ω̇∞ + ȧ) ·
∫
L
y × v

= −ω̇∞ · I · a−
1

2

d

dt
(a · I · a) = (ω∞ × I · ω∞) · a− β2(e1 × γ) · a− 1

2

d

dt
(a · I · a),

where, in the last equality, we have used (5.2)3 dot multiplied by a. Moreover, let us take

the dot product of (5.2)3 by ω∞, we have

1

2

d

dt
(ω∞ · I · ω∞) = −ω∞ · (a× I · ω∞) + β2(e1 × γ) · ω∞.

Therefore,

ρ

∫
L

[(ω̇∞ + ȧ)× y] · v = −ω∞ · (a× I · ω∞)− β2(e1 × γ) · a− 1

2

d

dt
(a · I · a)

=
1

2

d

dt
(ω∞ · I · ω∞)− β2(e1 × γ) · (ω∞ + a)− 1

2

d

dt
(a · I · a)

Finally, by taking the scalar product of (5.2)4 by e3, we get

d

dt
(γ · e3)− (ω∞ + a) · (e1 × γ) = 0,

and then

ρ

∫
L

[(ω̇∞ + ȧ)× y] · v =
1

2

d

dt
(ω∞ · I · ω∞)− β2 d

dt
(γ · e3)− 1

2

d

dt
(a · I · a). (5.7)

Taking into account (5.6) and (5.7), we finally obtain (5.3).

In order to give a weak formulation to the problem (5.2), let us dot-multiply both sides

of (5.2)1 by ψ ∈ D1,2
0 (C), and integrate by parts over C × (0, t), we deduce

(ρv(t),ψ) + ρ(ω∞(t) + a(t)) ·
∫
C
y ×ψ +

∫ t

0

{ρ(v · ∇v,ψ) + 2ρ((ω∞ + a)× v,ψ)}

+

∫ t

0

µ(∇v,∇ψ) = (ρv(0),ψ) + ρ(ω∞(0) + a(0)) ·
∫
C
x×ψ , (5.8)

for all ψ ∈ D1,2
0 (C) and all t ∈ (0,∞). Moreover, integrating (5.2)3 and (5.2)4 over (0, t) we

get

I · ω∞(t) = I · ω∞(0)−
∫ t

0

[
(ω∞ + a)× (I · ω∞)− β2(e1 × γ)

]
(5.9)

and

γ(t) = γ(0)−
∫ t

0

(ω∞ + a)× γ , for all t ∈ (0,∞). (5.10)
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Definition 5.1.1. We will say that the triple (v,ω∞,γ) is a weak solution to (5.2) if it

satisfies the following conditions:

(a) v ∈ Cw([0,∞);H(C)) ∩ L∞(0,∞;H(C)) ∩ L2(0,∞;W 1,2
0 (C));

(b) ω∞ ∈ C([0,∞)) ∩ C1(0,∞), γ ∈ C1([0,∞); S2);

(c) (v,ω∞,γ) satisfies (5.8), (5.9) and (5.10);

(d) the Strong Energy Inequality:

E(t) + U(t) + 2µ

∫ t

s

‖∇v(τ)‖2
2 dτ ≤ E(s) + U(s) (5.11)

holds for all t ≥ s and a.a. s ≥ 0 including s = 0.

In the next proposition, we show that this class is, in fact, not empty, provided that the

initial motion imparted to the system has finite total energy.

Proposition 5.1.2. Let C be a bounded domain in R3. Then, for every v0 ∈ H(C),ω∞0 ∈ R3

and γ0 ∈ S2, there exists at least one weak solution, (v,ω∞,γ), to (5.2) such that

lim
t→0+
‖v(t)− v0‖2 = lim

t→0+
|ω∞(t)− ω∞0| = lim

t→0+
|γ(t)− γ0| = 0.

Moreover,

lim
t→∞
‖v(t)‖2 = 0. (5.12)

Proof. The proof of existence of at least one weak solution can be accomplished with a

combination of the classical Galerkin method with a priori estimates of the energy. This

proof is analogous (up to some minor changes and adaptations) to the one given in [33],

Chapter 3. So, we will omit its proof.

To show (5.12), let us notice that, from the strong energy inequality (5.11), for all t ≥ s

and a.e. s ≥ 0, including s = 0 one has

EF (t) + 2µ

∫ t

s

‖∇v(τ)‖2 dτ ≤ EF (s) + F (t, s),

where

F (t, s) = ω∞(s) · I · ω∞(s)− ω∞(t) · I · ω∞(t) + 2β2(γ(t)− γ(s)) · e1.
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By Poincaré inequality and (5.5), we find that

EF (t) + µC0

∫ t

s

EF (τ) dτ ≤ EF (s) + F (t, s),

for all t ≥ s and a.e. s ≥ 0, including s = 0. Let us estimate F . By (5.9), we find that

ω∞(s) · I · ω∞(s)− ω∞(t) · I · ω∞(t) = −2

∫ s

t

[
ω∞ · (a× I · ω∞)− β2ω∞ · (e1 × γ)

]
.

Moreover, from (5.10),

2β2

∫ s

t

ω∞ · (e1 × γ) = 2β2(γ(s)− γ(t)) · e1 − 2β2

∫ s

t

a · (e1 × γ).

Taking into account the last two displayed equations, we can estimate F as follows

|F (t, s)| =
∣∣∣∣∫ t

s

ω∞ · (a× I · ω∞) + 2β2

∫ t

s

a · (e1 × γ)

∣∣∣∣ ≤ C1

∫ t

s

‖∇v‖2 ,

where, in the last inequality, we have used (5.1)1 and Poincaré inequality. Moreover, C1 is a

positive constant depending on the initial conditions. In fact, by the strong energy inequality

(5.11) with s = 0, by (5.5), and since |γ| = 1 at all times, it follows that

|a(t)|, |ω∞(t)|, ‖v(t)‖2 ≤ k(|ω∞0|+ ‖v0‖2), (5.13)

where k is positive constant depending only on the physical and geometric properties char-

acterizing the body and the liquid, and not on the initial motion imparted on the system.

Therefore,

EF (t) + µC0

∫ t

s

EF (τ) dτ ≤ EF (s) + C1

∫ t

s

‖∇v‖2 , all t > 0.

Since, by the strong energy inequality,∫ t

0

‖∇v(τ)‖2
2 dτ <∞, all t > 0,

we can then apply Lemma 2.3.4 and find that EF (t) → 0 as t → ∞. Thus, (5.12) follows

from (5.5). �

Remark 5.1.3. With standard arguments, one can show that if (v,ω∞,γ) is sufficiently

smooth to allow for integration by parts on C × (0,∞), then there exists a pressure field

p = p(x, t) such that (5.2)1,2,3,4 are satisfied a.e. in space and time.
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Due to the coupling with the Navier-Stokes equations, also for this problem, it is an open

problem whether weak solutions constructed in Proposition 5.1.2 are unique, or more if they

continuously depend upon the initial data. Nevertheless, as in the classical Navier-Stokes

case, one can prove that the above property holds for any weak solution possessing a further

regularity.

Proposition 5.1.4. Let (v,ω∞,γ), (v∗,ω∗∞,γ
∗) be two weak solutions corresponding to

initial data (v0,ω0,γ0) and (v∗0,ω
∗
0,γ

∗
0), respectively. Suppose that there exists a time T > 0

such that

v∗ ∈ Lp(0, T ;Lq(C)), 2

p
+

3

q
= 1, for some q > 3.

Then, the following two statements hold:

1. There exists a constant c > 0, depending only on maxt∈[0,T ] |ω∗∞(t)|, ‖v∗(t)‖L∞(0,T ;L2(C)),

and ‖v∗‖Lp(0,T ;Lq(C)), such that for all t ∈ [0, T ]

‖v(t)− v∗(t)‖2 + |ω∞(t)− ω∗∞(t)|+ |γ(t)− γ∗(t)|

≤ c (‖v0 − v∗0‖2 + |ω0 − ω∗0|+ |γ0 − γ∗0|) . (5.14)

2. If (v0,ω0,γ0) ≡ (v∗0,ω
∗
0,γ

∗
0), then (v,ω∞,γ) ≡ (v∗,ω∗∞,γ

∗) a.e. in [0, T ]× C.

Moreover, the energy equality holds:

E(t) + U(t) + 2µ

∫ t

s

‖∇v‖2
2 = E(s) + U(s) for all 0 ≤ s ≤ t ≤ T.

Proof. We show here the formal estimates that lead to (5.14), a rigorous proof of the above

statements can be obtained using similar techniques as in the proof of Theorem 3.4.2 in [33].

Let ṽ := v − v∗, ω̃∞ := ω∞ − ω∗∞, γ̃ := γ − γ∗, and correspondingly ã := a− a∗. Let

Ẽ = ρ ‖ṽ‖2
2 − ã · I · ã+ ω̃∞ · I · ω̃∞,
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which is positive definite by (5.5). Then, the triple (ṽ, ω̃∞, γ̃) has to satisfy (formally)

Ẽ(t) + |γ̃(t)|2 + 2µ

∫ t

0

‖∇ṽ(τ)‖2
2 ≤ Ẽ(0) + |γ̃(0)|2

+ 2ρ

∫ t

0

{∫
C

[(ṽ · ∇ṽ) · v∗ + 2[(ω̃∞ + ã)× ṽ] · v∗]
}

+ 2

∫ t

0

{(ω∗∞ + a∗) · [(ω̃∞ + ã)× I · ω̃∞]

+β2(e3 × γ̃) · (ω̃∞ + ã) + β2[(ω̃∞ + ã)× γ̃] · γ∗
}
.

(5.15)

Let us estimate the nonlinear term. By the generalized Hölder inequality (2.19), the inter-

polation inequality (2.20) with θ = 3/q, the Sobolev inequality (2.22) and Young inequality

(2.16), we find that

∫
C
(ṽ · ∇ṽ) · v∗ ≤ ‖ṽ‖2q/(q−2) ‖∇ṽ‖2 ‖v

∗‖q ≤ ‖ṽ‖
1−θ
2 ‖ṽ‖θ6 ‖∇ṽ‖2 ‖v

∗‖q

≤ c1 ‖ṽ‖1−θ
2 ‖∇ṽ‖1+θ

2 ‖v∗‖q ≤
µ

2ρ
‖∇ṽ‖2

2 + c2 ‖ṽ‖2
2 ‖v

∗‖pq ,

where c1 and c2 are positive constants. Using these estimates and (5.5) in (5.15), we get

Ẽ(t) + |γ̃(t)|2 + µ

∫ t

0

‖∇ṽ(τ)‖2
2 ≤ Ẽ(0) + |γ̃(0)|2

+c3

∫ t

0

[
‖v∗(τ)‖pq + ‖v∗(τ)‖2 + |ω∗∞(τ)|+ 1

]
(Ẽ(τ) + |γ̃(τ)|2).

(5.14) then follows from the latter displayed inequality, Gronwall Lemma, (5.5) and the fact

that I is a positive definite, symmetric tensor. �
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5.1.1 Large-time properties of weak solutions

Weak solutions constructed in Proposition 5.1.2 satisfy the additional property of becoming

strong after a sufficiently large time, in the sense of next proposition.

Proposition 5.1.5. Let C ⊂ R3 be a bounded domain of class C2, and s := (v,ω∞,γ) be a

weak solution corresponding to some initial data of finite energy, in the sense of Proposition

5.1.2. Then, there exists t0 = t0(s) > 0 such that for all T > 0

v ∈ C0([t0, t0 + T ];W 1,2
0 (C)) ∩ L2(t0, t0 + T ;W 2,2(C)),

vt ∈ L2(t0, t0 + T ;H(C)), ω∞ ∈ W 1,∞(t0, t0 + T ), γ ∈ W 2,∞(t0, t0 + T ; S2). (5.16)

Moreover, there exists p ∈ L2(t0, t0 + T ;W 1,2(C)), all T > 0; such that (v,ω∞,γ, p) satisfies

(5.2) a.e. in (t0,∞). Finally,

lim
t→∞
‖v(t)‖1,2 = 0. (5.17)

Proof. Let S be the set of all times τ ∈ [0,∞) at which the strong energy inequality

(5.11) holds. Since v ∈ L2(0,∞;W 1,2
0 (C)), we can find an increasing, unbounded sequence

{tm}m∈N ⊂ S such that for any ε > 0 , there exists k̄ ∈ N such that

‖∇v(tk)‖2 < ε, for all k ≥ k̄.

Moreover, for the same reason as above, for any η > 0 there exists t̄ > 0 such that∫ ∞
t̄

‖∇v‖2
2 < η.

Thus, for any ε, η > 0 there exists t0 = t0(ε, η, s) > 0 (by considering t0 ≡ tk∗ where k∗ ≥ k̄

and tk∗ ≥ t̄) such that

‖∇v(t0)‖2 < ε,

∫ ∞
t0

‖∇v‖2
2 < η. (5.18)

Next, we consider (v(t0),ω∞(t0),γ(t0)) as initial condition for a local strong solution s̃ ≡

(ṽ, ω̃∞, γ̃) in the interval [t0, t0 + T ∗), for some T ∗ > 0. The existence of such local strong

solution can be accomplished again by a combination of the Galerkin method with suitable

energy estimates. We refer to [33] for a rigorous proof and all technical details for similar

results; here, we will only formally derive the main estimates.
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Let us dot-multiply (5.2)1 by ∂v/∂t and integrate by parts over C. Using (5.2)3, we find

µ

2

d

dt
‖∇v‖2

2 + ρ

∥∥∥∥∂v∂t
∥∥∥∥2

2

− ȧ · I · ȧ = −ρ
∫
C
(v · ∇v) · ∂v

∂t

− ȧ ·
[
(ω∞ + a)× I · ω∞ − β2e1 × γ

]
− 2ρ

∫
C
[(ω∞ + a)× v] · ∂v

∂t
.

Using (5.5), Cauchy-Schwarz and Young inequalities, from the previous equality, we get

µ

2

d

dt
‖∇v‖2

2 + C1

∥∥∥∥∂v∂t
∥∥∥∥2

2

≤ C2(‖v · ∇v‖2
2 + 1), (5.19)

where C2 is a positive constant depending on the physical properties of S and on the initial

data of the weak solution s by (5.13).

Moreover, let us take the L2-inner product of (5.2)1 with P∆v, where the projection operator

P has been defined in (2.15), and use (5.2)3,

µ ‖P∆v‖2
2 =

(
ρ

(
∂v

∂t
+ v · ∇v + ȧ× y − I−1 · [(ω∞ + a)× I · ω∞]× y

+β2I−1 · (e1 × γ)× y + 2(ω∞ + a)× v
)
,P∆v

)
.

By Cauchy-Schwarz and Young inequalities, we have the following estimate

µ ‖P∆v‖2
2 ≤ C3

(∥∥∥∥∂v∂t
∥∥∥∥2

2

+ ‖v · ∇v‖2
2 + 1

)
(5.20)

where also C3 is a positive constant depending on the physical properties of S and on the

initial data of the weak solution s by (5.13).

Since C is a bounded domain of class C2, by (2.24),

C4 ‖v‖2
2,2 ≤ ‖P∆v‖2

2 . (5.21)

Multiplying both sides of (5.20) by C1/(2C3) and adding the resulting equation to (5.19),

then using (5.21), we find that ‖∇v‖2
2 has to satisfy the following differential inequality

d

dt
‖∇v‖2

2 + C5

∥∥∥∥∂v∂t
∥∥∥∥2

2

+ C6 ‖v‖2
2,2 ≤ C7(‖v · ∇v‖2

2 + 1). (5.22)
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Thus, it remains to estimate the nonlinear term. By Hölder inequality (2.17), Sobolev

embedding Theorem (2.3.2), interpolation and Young inequalities, we get

‖v · ∇v‖2
2 ≤ ‖v‖

2
6 ‖∇v‖

2
3 ≤ C8 ‖∇v‖3

2 ‖v‖2,2 ≤ C9 ‖∇v‖6
2 + λ ‖v‖2

2,2 (5.23)

for arbitrary λ > 0 and with C9 → 0 as λ → ∞. Considering λ = C6/(2C7), we conclude

that
d

dt
‖∇v‖2

2 + C5

∥∥∥∥∂v∂t
∥∥∥∥2

2

+ C10 ‖v‖2
2,2 ≤ C11(‖∇v‖6

2 + 1). (5.24)

The last displayed equation guarantees the existence of a time T ∗ > 0 and continuous

functions G1 and G2 defined on [t0, t0 + T ∗), such that

‖v(t)‖1,2 ≤ G1(t),

∫ t

t0

(∥∥∥∥∂v∂τ
∥∥∥∥2

2

+ ‖v‖2
2,2

)
≤ G2(t). (5.25)

These estimates, combined with the Galerkin method, ensure the existence of a strong solu-

tion s̃ ≡ (ṽ, ω̃∞, γ̃) corresponding to initial data (v(t0),ω∞(t0),γ(t0)), such that

ṽ ∈ C0([t0, t0 + τ ];W 1,2
0 (C)) ∩ L∞(t0, t0 + τ ;W 1,2

0 (C)) ∩ L2(t0, t0 + τ ;W 2,2(C))
∂ṽ

∂t
∈ L2(t0, t0 + τ ;H(C)), ω̃∞ ∈ W 1,∞(t0, t0 + τ)

γ̃ ∈ W 2,∞(t0, t0 + τ), for all τ ∈ (0, T ∗).

(5.26)

Moreover, by Sobolev embeddings, ṽ ∈ L2(t0, t0+T ∗;L∞(C)); thus, we can apply Proposition

5.1.4 to conclude that s̃ ≡ s on [t0, t0 + T ∗).

Let T ∗ be relabeled as the maximal time for s̃ to exist. We have the following blow-up

criterion: either T ∗ = +∞ or

lim
t→T+

1

‖∇v(t)‖2 = +∞, T1 := t0 + T ∗. (5.27)

The latter is shown by a classical argument. In fact, suppose there is a sequence {tm} ⊂

[t0, T1) with tm → T+
1 and such that

‖∇ṽ(tm)‖2 ≤M , (5.28)

where M independent of m. Setting z := ‖∇ṽ‖2
2 + 1, from (5.24) one shows

z′(t) ≤ C12 z
3(t) , (5.29)
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which in turn furnishes

z2(t) ≤ z2(tm)

1− C12z2(tm)(t− tm)
.

Using this inequality and (5.28), it immediately follows that z2(t) ≤ C13, for t ∈ [tm, tm+M1],

where M1 independent of m, which, by taking m sufficiently large, proves ‖∇ṽ(t)‖ ≤ C14

for all t ∈ [tm, T2] with T2 > T1. By employing the method previously described we can then

extend the solution in the class (5.26) to a time interval [0, T2], with T2 > t0 + T ∗, which

contradicts the assumption that [t0, t0 + T ∗) is maximal with T ∗ <∞.

We shall now show that, by choosing t0 appropriately, (5.27) does not hold for s, thus

implying T ∗ = ∞, which completes the proof of the proposition. In fact, by (5.24), ‖∇v‖2
2

satisfies
d

dt
‖∇v‖2

2 ≤ −C15 ‖∇v‖2
2 + C11(‖∇v‖6

2 + 1). (5.30)

Choosing ε and η in (5.18), in such a way that condition (ii) of Lemma 2.3.5 is satisfied,

then (5.27) can not occur, and T ∗ = +∞. Moreover, Lemma 2.3.5 and Poincaré inequality

imply also (5.17). �

From the previous propositions, next corollary immediately follows.

Corollary 5.1.6. Let C be a bounded domain of class C2 in R3. Let s = (v,ω∞,γ) be a

weak solution to (5.2). Then, there exists t0 > 0 such that

1. s is unique in the class of weak solutions to (5.2) in [t0,∞);

2. s depends continuously upon the data in [t0,∞), in the class of weak solutions, in the

sense of Proposition 5.1.4.

5.1.2 Existence of the Ω−limit set and its preliminary characterization

We are now in positions to introduce the main tools from Dynamical System theory.

Let s = (v,ω∞,γ) be a weak solution to (5.2), and set H := H(C) × R3 × S2, endowed

with its natural topology. We define the Ω-limit set of s:

Ω(s) := {(u,ω, q) ∈ H : there exists tk ≥ 0, tk ↗∞ s.t.

lim
k→∞
‖v(tk)− u‖2 = lim

k→∞
|ω∞(tk)− ω| = lim

k→∞
|γ(tk)− q| = 0}.
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For all t ≥ 0, we denote by w(t; z) a weak solution to (5.2) corresponding to the initial

data z ∈ H, in the sense of Proposition 5.1.2.

Definition 5.1.7. Ω(s) is positively invariant if the following implication holds:

y ∈ Ω(s) ⇒ w(t; y) ∈ Ω(s), all t ≥ 0,

and for all weak solutions w(t; y).

It is well known that invariance typically requires (at least) the uniqueness of the solution,

a feature that, in the present case, is not available due to the coupling with the Navier-

Stokes equations 1. Nevertheless, using the fact that the velocity field of the liquid decays

asymptotically to zero, to infer invariance we only need a sort of “asymptotic uniqueness”

and “asymptotic continuous data dependence”, properties that are ensured by Proposition

5.1.5. Intact, in [17] (Proposition 1.4.2), we have proved that if a weak solution s(t; s0) is

asymptotically regular, then Ω(s) is positively invariant in the class of weak solutions.

Proposition 5.1.8. Let s(t; s0) be a weak solution to (5.2). Suppose that there exists t0 > 0

such that the following properties hold.

(i) Asymptotic Uniqueness:

s(t+ τ ; s0) = s(t; s(τ ; s0)), for all τ ≥ t0 and t ≥ 0.

(ii) Asymptotic Continuous Data Dependence:

{tk}k∈N ⊂ [t0,+∞) with s(tk; s0)→ y in H

⇒ s(t; s(tk; s0))→ w(t; y) in H, all t ≥ 0.

Then, Ω(s) is positively invariant.

1In the specific case of the Navier–Stokes equations, the uniqueness request can be relaxed to an a priori
weaker condition like, for example, continuity in the “energy” norm [4], which, however, it is still an unproved
property for weak solutions.
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Proof. Let y ∈ Ω(s) and let w(t; y) be a corresponding weak solution. We have to show that

for each t ≥ 0 there is {τn} ⊂ R+ unbounded and such that

s(τn; s0)→ w(t; y) in H . (5.31)

We observe that, by definition,

s(tn; s0)→ y in H , (5.32)

for some unbounded sequence {tn} ⊂ R+. Now, let n̄ be such that tn ≥ t0, for all n ≥ n̄ and

set τn := t+ tn, for all n ≥ n̄, and t ≥ 0. By (i) we thus have

s(τn; s0) = s(tn + t; s0) = s(t; s(tn; s0)) , (5.33)

whereas, by (ii) and (5.32) we also have

s(t; s(tn; s0))→ w(t; y) in H .

Consequently, (5.31) follows from the latter and (5.33). �

We are now in a position to give the following characterization of the Ω-limit set of any

weak solution to (5.2)

Proposition 5.1.9. Let s = s(t; s0) := (v,ω∞,γ) be a weak solution to (5.2), with C of class

C2, and initial data, s0, of finite total energy in the sense of Proposition 5.1.2. Then, Ω(s) is

non-empty, compact, connected, and it is positively invariant in the class of weak solutions

to (5.2). Moreover,

Ω(s) ⊂ {(v̄, ω̄, γ̄) ∈ H : v̄ ≡ 0, ω̄ × I · ω̄ = β2e1 × γ̄, ω̄ × γ̄ = 0}. (5.34)
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Proof. The strong energy inequality (5.11) and Proposition 5.1.5 ensure the uniform bound-

edness and continuity of the trajectory, implying that Ω(s) is non-empty, connected and

compact.

By Corollary 5.1.6 and Proposition 5.1.8, it immediately follows that Ω(s) is left invariant

in the class of weak solutions to (5.2).

Let us show (5.34). By Proposition 5.1.5, in particular by (5.17), and from (5.8)–(5.10),

we can infer that the dynamics on Ω(s) is governed by the following set of equations

v ≡ 0, ρ

∫
C
(ω̇∞ × y) ·ψ = 0 for all ψ ∈ D1,2

0 (C),

I · ω̇∞ + ω∞ × I · ω∞ = β2e1 × γ,

γ̇ + ω∞ × γ = 0.

(5.35)

From (5.35)2, it easily follows that

ω̇∞ × y = ∇φ, (5.36)

with φ a suitable smooth scalar field. Thus, operating the curl · on both sides of (5.36), we

get that ω̇∞ = 0. Thus, (5.35)3 becomes ω∞ × I ·ω∞ = β2e1 × γ, and it also implies that

e1 × γ̇ = 0, (ω∞ × γ) · e1 = 0. (5.37)

Dot-multiplying (5.35)4 by e1, and using the latter displayed equation, we can conclude that

e1 · γ̇ = 0. Therefore, γ̇ ≡ 0, and the proof of the proposition is then complete. �

With this result in hand, we are now able to provide a further refinement of the structure

of the Ω−limit set. This refinement depends on the physical problems at hand. In order to

accomplish it, we will specialize our results to the problems of inertial motions of liquid-filled

rigid body, and motions of a liquid-filled physical pendulum.
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5.2 INERTIAL MOTIONS

In this section, we will focus on the inertial motions of a rigid body with a cavity entirely

filled by a viscous fluid. Here, no external forces and torques are applied on the coupled

system S, which moves by inertia after an initial angular momentum is imparted on the

whole system.

With the same notations as in the previous section, taking g0 = β2 ≡ 0, and noticing

that, in this case, (5.2)4 is redundant as no forces are applied on the coupled system, (5.2)

now reads as follows

ρ

(
∂v

∂t
+ v · ∇v + (ω̇∞ + ȧ)× y + 2(ω∞ + a)× v

)
= µ∆v −∇p

div v = 0

 on C × (0,∞),

I · ω̇∞ + (ω∞ + a)× I · ω∞ = 0 in (0,∞),

v = 0 on ∂C.

(5.38)

The energy balance is given by

d

dt
(EF + ω∞ · I · ω∞) + 2µ ‖∇v‖2

2 = 0. (5.39)

We recall here the definition of weak solutions.

Definition 5.2.1. We will say that the couple (v,ω∞) is a weak solution to (5.38) if it

satisfies the following conditions:

(a) v ∈ Cw([0,∞);H(C)) ∩ L∞(0,∞;H(C)) ∩ L2(0,∞;W 1,2
0 (C));

(b) ω∞ ∈ C([0,∞)) ∩ C1(0,∞);

(c) (v,ω∞) satisfies the following equations:

(ρv(t),ψ) + ρ(ω∞(t) + a(t)) ·
∫
C
y ×ψ +

∫ t

0

{ρ(v · ∇v,ψ) + 2ρ((ω∞ + a)× v,ψ)}

+

∫ t

0

µ(∇v,∇ψ) = (ρv(0),ψ) + ρ(ω∞(0) + a(0)) ·
∫
C
x×ψ , (5.40)

for all ψ ∈ D1,2
0 (C) and all t ∈ (0,∞), and

I · ω∞(t) = I · ω∞(0)−
∫ t

0

[(ω∞ + a)× (I · ω∞)] . for all t ∈ (0,∞). (5.41)
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(d) the Strong Energy Inequality:

E(t) + 2µ

∫ t

s

‖∇v(τ)‖2
2 dτ ≤ E(s) (5.42)

holds for all t ≥ s and a.a. s ≥ 0 including s = 0.

All the results in Section 5.1 continue to hold for this problem. Moreover, (v,ω∞) is a

weak solution to (5.38), then the following invariant is satisfied at all times:

|I · ω∞(t)| = |I · ω∞(0)|, all t ∈ (0,∞), (5.43)

it represents the conservation of the magnitude of the total angular momentum of S.

5.2.1 The Ω-limit set for inertial motions

We denote, as customary, by A,B, and C the eigenvalues of I, and by e1, e2, and e3 the

corresponding (orthonormalized) eigenvectors, and set

ω∞ = p e1 + q e2 + r e3 .

The following property holds.

Lemma 5.2.2. Let (v,ω∞) be a weak solution to (5.38). Suppose A = B < C and r(t)→ 0

as t→∞. Then, there are constants c1, c2 > 0 such that

‖v(t)‖2 ≤ c1 e−c2 t ,

for all sufficiently large t > 0.
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Proof. Let us begin to show that, under the given assumptions,

EF (t) >
C(C − A)

A
r2(t) , all t large enough. (5.44)

In fact, assume by contradiction that there is a (sufficiently large) t̄ such that

EF (t̄) ≤ C(C − A)

A
r2(t̄) . (5.45)

By Proposition 5.1.4 (2.), we have that (v,ω∞) obeys the energy equation

EF (t) + A(p2(t) + q2(t)) + Cr2(t) + 2µ

∫ t

t̄

‖∇v(s)‖2
2 ds

= EF (t̄) + A(p2(t̄) + q2(t̄)) + Cr2(t̄) . (5.46)

Moreover, in view of (5.43), we deduce the following

A2(p2(t) + q2(t)) + C2r2(t) = A2(p2(t̄) + q2(t̄)) + C2r2(t̄) . (5.47)

So that from (5.46) and (5.47) we conclude

AEF (t) + C(A− C) r2(t) + 2µA

∫ t

t̄

‖∇v(s)‖2
2ds = AEF (t̄) + C(A− C) r2(t̄) (5.48)

As a consequence, passing to the limit t → ∞ in the latter relation and assuming (5.45)

would lead to a contradiction. We next set

G(t) := AEF (t) + C(A− C)r2(t)

and observe that, by what we have just proved, G(t) > 0 for all sufficiently large t. We also

notice that, by Poincaré inequality and (5.5),

2A‖∇v(s)‖2
2 ≥ 2CpA EF (s) ≥ 2CpG(s) .

Employing this inequality back in (5.48), with the help of Gronwall Lemma we thus conclude,

in particular,

G(t/2) ≤ G(t/4) e−
Cp µ

2
t ≤M e−

Cp µ

2
t , all large t , (5.49)
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where we have used the uniform boundedness of G in time. We now go back to (5.48) with

t̄ = t/2 (keep in mind that (5.48) holds for all t ≥ t̄, for all large t̄) and show the following

inequality ∫ t

t/2

‖∇v(s)‖2
2ds ≤ C e−

Cp µ

2
t . (5.50)

At this point, we recall (5.17) and choose t so large as

‖∇v(t)‖4
2 <

C15

2C11

,

so that (5.30) furnishes
d

dt
‖∇v(t)‖2

2 ≤ −k1‖∇v(t)‖2
2 + k2 . (5.51)

Putting y := ‖∇v‖4
2 from (5.51) it follows that

dy

dt
≤ −2k1 y + 2k2‖∇v‖2

2 ,

for some k1, k2 > 0. Multiplying both sides of the latter displayed equation by e2k1t and

integrating the resulting equation over (t/2, t), we show

y(t) ≤ y(t/2) e−k1t + 2k2

∫ t

t/2

e−2k1(t−s)‖∇v(s)‖2
2ds ≤ y(t/2) e−k1t + 2k2

∫ t

t/2

‖∇v(s)‖2
2ds .

Since, by Proposition 5.1.5, ‖∇v(t)‖2 is uniformly bounded in t for all large t, by (5.50) and

the latter displayed equation we infer

‖∇v(t)‖2 ≤ k3 e−k4t , all large t ,

and the lemma follows from this and the Poincaré inequality. �

We are now in position to prove the following result.

Proposition 5.2.3. Let s = (v,ω∞) be a weak solution corresponding to initial conditions

s0 = (v0,ω∞0) ∈ H, and let Ω(s) be the corresponding Ω−limit set. Moreover, let A,B and C

be the eigenvalues of the inertia tensor I, with corresponding (orthonormalized) eigenvectors

e1, e2, e3, respectively, and suppose, without loss of generality, A ≤ B ≤ C. Then

Ω(s) = {0} × A

where A satisfies the following properties.
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(a) A = {0} if and only if ω∞0 = 0;

(b) If A ≤ B < C, or A = B = C, then A = {ω̄}, for some ω̄ ∈ R3;

(c) If A < B = C, then either

A = {p0e1} ,

or

A ⊆ {q0e2 + r0e3}

where

|p0| =
|I · ω∞0|

A

(q2
0 + r2

0)
1
2 =
|I · ω∞0|

C
.

(5.52)

Proof. We begin to observe that in view of Proposition 5.1.9, and by (5.43),

Ω(s) = {0} × A,

where A is a non-empty, compact, connected subset of R3 such that

A ⊆ {ω̄ ∈ R3 : |I · ω̄| = |I · ω∞0| =: M0, ω̄ × I · ω̄ = 0}. (5.53)

From (5.53) we at once deduce that ω̄ = 0 if and only if ω∞0 = 0, and property (a) is

demonstrated. In the following, we can then assume ω̄ is an eigenvector of I, which is

equivalent to M0 6= 0. To show (b), we suppose first A < B < C. The above then implies

that

A ⊂ {±p0 e1} ∪ {±q0 e2} ∪ {±r0 e3}

where p0 = M0/A, q0 = M0/B, and r0 = M0/C. However, A is connected, so that (b) follows

when A < B < C. Next, suppose A = B < C. In that case, also using (5.53), we deduce

A ⊂ {p0 e1 + q0 e2} ∪ {r0 e3} ∪ {−r0 e3} =: A1 ∪ A2 ∪ A3 ,

where

r0 =
|I · ω∞0|

C
, (p2

0 + q2
0)

1
2 =

M0

A
.
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However, since A is connected, we must have

A ⊂ Ai , for some i = 1, 2, 3.

If A ⊂ Ai, i = 2, 3, the proof is completed. So, assume

A ⊂ A1 , (5.54)

and let ω∗ ∈ A. This is equivalent to say that for any unbounded sequence {tn}, we may

select a subsequence (still denoted by {tn}) and find p∗, q∗ ∈ R (in principle, depending on

the particular sequence) such that ω∗ = p∗e1 + q∗e2, namely,

lim
n→∞

p(tn) = p∗ , lim
n→∞

q(tn) = q∗,

lim
n→∞

r(tn) = 0 .
(5.55)

Our objective is to show that, in fact, p∗ and q∗ are independent of the particular sequence.

In the first place we notice that, by the arbitrariness of the sequence {tn}, from (5.55) it

follows that r(t) → 0 as t → ∞. Thus, Lemma 5.2.2 ensures that there are c1, c2 > 0 such

that

‖v(t)‖2 ≤ c1e−c2 t , for all t large enough. (5.56)

Pick ϕ ∈ C∞0 (C) with
∫
C ϕ = 1, and set φi = ϕ ei, i = 1, 2, 3. Proceeding as in [33, p. 129],

we dot multiply both sides of (5.38)1 by curlφi and integrate by parts over C to obtain for

t sufficiently large and i = 1, 2, 3, 2

2ω̇∞ i =− (vt, curlφi) + (v ⊗ v,∇(curlφi))− (ȧ× y, curlφi)

− 2((ω∞ + a)× v, curlφi) + µ(v,∆(curlφi)) .
(5.57)

Integrating both sides of (5.57) between two arbitrary instants of time, t1 and t2 suffi-

ciently large and employing Cauchy-Schwartz inequality, we show with τ1 = min{t1, t2},

τ2 = max{t1, t2},

|ω∞ i(t2)− ω∞ i(t1)| ≤ C
[
‖v(t2)‖2 + ‖v(t1)‖2 +

∫ τ2

τ1

(‖v(s)‖2
2 + ‖v(s)‖2) ds

]
,

2Recall that, by Proposition 5.1.5, the weak solution is regular for all large times.
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where we also have used (5.13). In view of (5.56), the right-hand side of the latter equation

can be made small for i = 1, 2, 3, by taking t1, t2 large enough, which proves that

lim
t→∞

ω∞(t)

exists and concludes the proof of (b) when A = B < C. To complete the proof of the

statement in (b), it remains to show it in the case A = B = C =: λ. From (5.9) (recall that

here g0 = β2 ≡ 0), and Definition 5.2.1 (b), we have that

d

dt
(ω∞ · I · ω∞) = 0.

Using the latter together with (5.5), the strong energy inequality (5.42) becomes

EF (t) + c0µ

∫ t

s

EF (τ) dτ ≤ EF (s),

for all t ≥ s and a.a. s ≥ 0 including s = 0. The Gronwall-type Lemma 2.3.4 and (5.5) then

imply that there exist two positive constants, c1 and c2, such that

‖v(t)‖2 ≤ c1 ‖v(0)‖2 e−c2µt for all t > 0. (5.58)

Furthermore, from the strong energy inequality (5.42) with s = 0, we derive

|ω∞(t)| ≤M, (5.59)

with M depending only on the initial data and physical and geometric properties of S.

Therefore, under the above assumption on I, by (5.59) and (5.41) we show that

|ω∞(t)− ω∞(s)| ≤M

∫ t

s

|a(τ)| , for all t ≥ s ≥ 0 .

From the latter inequality, (5.59) and (5.58), it follows that there exists ω̄ ∈ R3 such that

|ω∞(t)− ω̄| ≤ c3 e−c2 µ t , all t > 0 . (5.60)

Finally, to prove the property (c), it is enough to observe that, by (5.53), the eigenvector ω̄

is either of the form ±p∗ e1, with |p∗| = M0/A, or else ω̄ = q0 e2 +r0 e3, with q0, r0 satisfying

(5.52). The statement in (c) then follows from this and from the fact that A is connected.

�
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We are now in a position to provide a rather complete description of the asymptotic

behavior in time of the coupled system solid-liquid.

Theorem 5.2.4. Let S be the coupled system constituted by a rigid body with an interior

cavity C of class C2 completely filled with a Navier-Stokes liquid. Suppose that no external

forces act on S.

Let (v,ω∞) be any weak solution, in the sense of Definition 5.2.1, to the initial-boundary

value problem (5.38), governing the motion of S, and corresponding to initial data (v0,ω∞0).

Also, let A,B,C, and {ei} be as in Proposition 5.2.3.

Then,

lim
t→∞
‖v(t)‖1,2 = 0 , (5.61)

whereas

lim
t→∞

ω∞(t) = 0 , (5.62)

if and only if ω∞0 = 0.

Moreover, if ω∞0 6= 0, the following holds. If A ≤ B < C or A = B = C, there exists

ω̄ ∈ R3 \ {0} such that

lim
t→∞

ω∞(t) = ω̄ . (5.63)

In particular, when A = B = C,

‖v(t)‖2 + |ω∞(t)− ω̄| ≤ c1 e−c2t , all t > 0 ,

‖∇v(t)‖2 ≤ c1 e−c2t , all sufficiently large t > 0 ,
(5.64)

for some c1, c2 > 0.

In any case, the vector ω̄, is parallel to e ∈ {ei}. Also,

ω̄ =
1

λ
KG (5.65)

where λ is the eigenvalue of I associated with e, representing the moment of inertia of S

with respect to e, and KG ≡ I ·ω∞0 is the (constant) angular momentum of S with respect

to G.

71



Therefore, under the stated assumptions on A,B, and C the asymptotic motion of S is

a constant rigid rotation around a central axis of inertia of S that aligns with the direction

of the constant total angular momentum.

Finally, if A < B = C, then either (5.63) holds with ω̄ = p0 e1, |p0| = |KG|/A or else

lim
t→∞

dist(ω∞(t),R) = 0

where

R =
{
q0 e2 + r0 e3 : (q2

0 + r2
0)

1
2 = |KG|/C

}
.

Proof. In view of the results proved in Proposition 5.1.5 and Proposition 5.2.3 we only have

to show the asymptotic property (5.64), and (5.65). As for the latter, we observe that, by

the conservation of angular momentum,

I · ω∞(t) =
3∑
i=1

λiω∞i(t)ei(t) = KG , all t ≥ 0 ,

where, we recall, λi is an eigenvalue of I and ei the corresponding eigenvector, i = 1, 2, 3.

Consequently, by passing to the limit t → ∞ in the latter relation and taking into account

(5.63) and that ω̄ is an eigenvector of I, we show the validity of (5.65). It remains to prove

the exponential decay, under the assumption that I = λ1, λ > 0. To this end, we notice

that we have proved the validity of (5.64)1 in the proof of Proposition 5.2.3 (see (5.58) and

(5.60)). Moreover, by Cauchy-Schwartz inequality and (5.58),

|a(t)|+ ‖v(t)‖2 ≤ c1 e−c2t . (5.66)

By (5.66) we also obtain

|ω̇∞(t)| ≤ c3 e−c2t , all t > 0 . (5.67)

Let us dot-multiply (5.38)1 by ∂v/∂t and integrate by parts over C. Using (5.38)3, we find

µ

2

d

dt
‖∇v‖2

2 + ρ

∥∥∥∥∂v∂t
∥∥∥∥2

2

− ȧ · I · ȧ = −ρ
∫
C
(v · ∇v) · ∂v

∂t

− ȧ · [a× I · ω∞]− 2ρ

∫
C
[(ω∞ + a)× v] · ∂v

∂t
.
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Using (5.5), Young inequality and (5.66) on the right-hand side of the previous equality, we

get
µ

2

d

dt
‖∇v‖2

2 + c4

∥∥∥∥∂v∂t
∥∥∥∥2

2

≤ c5(‖v · ∇v‖2
2 + e−2c2t). (5.68)

Moreover, let us take the L2-inner product of (5.38)1 with P∆v, and use (5.38)3,

µ ‖P∆v‖2
2 =

(
ρ

(
∂v

∂t
+ v · ∇v + ȧ× y − I−1 · [(ω∞ + a)× I · ω∞]× y

+β2I−1 · (e1 × γ)× y + 2(ω∞ + a)× v
)
,P∆v

)
.

By Young inequality and (5.66), we have the following estimate

µ ‖P∆v‖2
2 ≤ c6

(∥∥∥∥∂v∂t
∥∥∥∥2

2

+ ‖v · ∇v‖2
2 + e−2c2t

)
. (5.69)

Multiplying both sides of (5.69) by c4/(2c6) and adding the resulting equation to (5.68),

then using (2.24) we deduce, for all sufficiently large t,

d

dt
‖∇v‖2

2 + c7‖v‖2
2,2 ≤ c8

(
e−2c2t + ‖v · ∇v‖2

2

)
. (5.70)

Next, by Hölder and Sobolev inequalities,

‖v · ∇v‖2 ≤ c9 ‖v‖
1
4
2 ‖∇v‖

3
4
2 ‖v‖

1
4
1,2‖v‖

3
4
2,2 ,

so that using Poincaré inequality, and recalling that by Proposition 5.1.5, ‖∇v(t)‖2 is uni-

formly bounded for sufficiently large t we infer for all such times

‖v · ∇v‖2
2 ≤ c10‖v‖

1
2
2 ‖v‖

3
2
2,2 ≤ c11 ‖v‖2

2 +
c7

2c8

‖v‖2
2,2 ,

where, in the last step, we made use of the Young inequality. From the latter relation, (5.66),

and (5.70) we thus derive, in particular,

d

dt
‖∇v‖2

2 ≤ c12 e−2c2t . (5.71)

Integrating (5.71) over (t,∞) and taking into account (5.61) we show

‖∇v(t)‖2
2 ≤ c13 e−2c2t , all sufficiently large t > 0 ,

which, once combined with (5.66) and (5.60) completes the proof of the property. �
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Remark 5.2.5. The previous theorem gives a full rigorous proof of Zhukovskii’s conjecture

(Theorem 3.0.6) in a very general class of solutions, and for sufficiently smooth cavities, under

either assumption A ≤ B < C or A = B = C. The proof of the conjecture when A < B = C

remains thus open. Numerical tests suggest that Zhukovskii’s conjecture is true also in this

latter case. Figure 3 shows the dynamics of S when A = 5.54 and B = C = 6.76; also in

this case, the motion of coupled system S will reach a steady state which is a permanent

rigid rotation.

Remark 5.2.6. From the previous theorem it follows, in particular, that (5.62) holds if

and only if KG = 0. Notice that the latter condition is not physically relevant. Actually,

it is satisfied either by identically vanishing initial data, in which case the rest is the only

corresponding weak solution, or else, more generally, for initial data able to produce, at time

t = 0 an angular momentum of the liquid (relative to the rigid body) that is exactly the

opposite of that of the rigid body, a circumstance that is very unlikely to happen. We also

recall that, by (5.43), if KG = 0 every weak solution must have ω∞(t) = 0 for all t ≥ 0.

With the help of (5.5) and Gronwall Lemma, the strong energy inequality implies, in turn,

‖v(t)‖2 ≤ c1‖v(0)‖2 e−c2t, for some c1, c2 > 0 and all t ≥ 0, thus re-obtaining, in a simpler

way, the result of [47, Theorem 5.6].

5.2.2 Attainability and stability of permanent rotations

By Theorem 5.2.4, the system S, under the stated assumptions on A,B, and C, will eventu-

ally perform a permanent rotation, as a single rigid body, around one of the central axes of

inertia. However, our result does not specify around which axis this rotation will be attained.

This issue assumes even more significance if we keep in mind that weak solutions may lack

of uniqueness and therefore, in principle, we may have two different solutions with the same

initial data generating, asymptotically, two permanent rotations around different axes. One

of our next objectives is therefore to analyze this problem in some details. In particular, we

shall prove that, if the initial data satisfy certain sufficiently general conditions, the perma-

nent rotation will always occur along that central axis with the largest moment of inertia;

see Theorem 5.2.7.
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The other related objective concerns the stability of such permanent rotations. We will

show necessary and sufficient conditions for stability for the full nonlinear problem, without

any mathematical approximation or assumptions of the shape of the cavity. These conditions

contain those of [43] as a particular case, and extend those of [27, 12, 48] to the nonlinear

level.

In order to show all the above, we recall that from the physical viewpoint, the eigenvalues

A, B and C of I are the moments of inertia of S around the axes passing through G and

parallel to their corresponding eigenvectors e1, e2, and e3, respectively (central moment of

inertia). As before, we set

ω∞ = p e1 + q e2 + r e3 .

Our approach to attainability and stability is quite straightforward and relies upon the

following three ingredients: (i) Theorem 5.2.4, (ii) balance of energy, and (iii) conservation

of angular momentum. To this end, we begin to observe that the strong energy inequality

(5.11) can be written as follows

EF (t) + Ap2(t)+Bq2(t) + Cr2(t) + 2µ

∫ t

0

‖∇v(τ)‖2
2

≤ EF (0) + Ap2(0) +Bq2(0) + Cr2(0) , all t ≥ 0 ,

(5.72)

where the “energy” EF is defined in (5.4). Furthermore, by dot-multiplying both sides of

(5.38)3 by I · ω∞ we obtain the following equation representing the conservation of (the

magnitude of) angular momentum

A2p2(t) +B2q2(t) + C2r2(t) = A2p2(0) +B2q2(0) + C2r2(0) . (5.73)

The next result concerns the attainability of permanent rotations. Without loss of gen-

erality, we continue to assume throughout A ≤ B ≤ C.

Theorem 5.2.7. The following statements hold.3

3We assume ω∞(0) 6= 0, otherwise the motion of the coupled system is physically irrelevant; see Remark
5.2.6. Moreover, we also exclude that the initial data (v0,ω∞0) are of the type (0, p0e1), (0, q0e2), or
(0, r0e3), (p0, q0, r0) ∈ R3, since the corresponding motion (weak solution) will then reduce simply to a rigid
rotation of S around one of the central axes.
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(a) Suppose A = B < C. Then, if

EF (0) ≤ (C − A)C

A
r2(0) , (5.74)

necessarily

lim
t→∞

p(t) = lim
t→∞

q(t) = 0

lim
t→∞

r(t) = r̄ 6= 0 .
(5.75)

(b) Suppose A < B < C. Then, if

EF (0) +
A

B
(B − A)p2(0) ≤ C

B
(C −B)r2(0) ,

0 < EF (0) ≤ B

A
(B − A)q2(0) +

C

A
(C − A)r2(0) ,

(5.76)

necessarily (5.75) follows.

(c) Suppose A < B = C. Then, if

EF (0) ≤ B(B − A)

A
(q2(0) + r2(0)) , (5.77)

necessarily

lim
t→∞

p(t) = 0 . (5.78)

Proof. We commence by proving the properties stated in (a) and (b). To this end, we notice

that from Theorem 5.2.4 we know that

lim
t→∞

ω∞(t) = p̄e1 + q̄e2 + r̄e3 , lim
t→∞
EF (t) = 0 , (5.79)

for some p̄, q̄, r̄ ∈ R. Thus, passing to the limit t→∞ on both sides of (5.72) and (5.73) we

deduce

Ap̄2 +Bq̄2 + Cr̄2 + 2µ

∫ ∞
0

‖∇v(t)‖2
2 ≤ EF (0) + Ap2(0) +Bq2(0) + Cr2(0)

A2p̄2 +B2q̄2 + C2r̄2 = A2p2(0) +B2q2(0) + C2r2(0) .

(5.80)
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In order to prove (a), we observe that again by Theorem 5.2.4 either p̄ = q̄ = 0 or r̄ = 0. Let

us show that the latter cannot occur. In fact, multiplying both sides of (5.80)1 by A (=B),

subtracting (5.80)2, side by side, to the resulting inequality and taking r̄ = 0, we deduce

2Aµ

∫ ∞
0

‖∇v(τ)‖2
2 ≤ AEF (0) + C(A− C)r2(0) ,

which cannot hold under the assumption (5.74). We next demonstrate (b), namely, p̄ = q̄ =

0. Suppose p̄ 6= 0. Then by Theorem 5.2.4, q̄ = r̄ = 0. We thus multiply both sides of

(5.80)1 by A and subtract to the resulting inequality equation (5.80)2, side by side, to get

2Aµ

∫ ∞
0

‖∇v(t)‖2
2 ≤ AEF (0) +B(A−B)q2(0) + C(A− C)r2(0) , (5.81)

which is contradicted by (5.76)2. Suppose, instead, q̄ 6= 0. Then, again by Theorem 5.2.4,

p̄ = r̄ = 0. Thus, multiplying both sides of (5.80)1 by B and subtracting to the resulting

inequality equation (5.80)2, side by side, we infer

2Bµ

∫ ∞
0

‖∇v(t)‖2
2 ≤ BEF (0) + A(B − A)p2(0) + C(B − C)r2(0) . (5.82)

However, (5.82) is in contrast with (5.76)1, and the proof of (b) is completed. It remains

to show statement (c). By Theorem 5.2.4, we know that the limit in (5.78) is either 0, as

claimed, or it is not. In the latter case, again by Theorem 5.2.4, we must have

lim
t→∞

q(t) = lim
t→∞

r(t) = 0 .

We may then use again (5.81) which is at odds with (5.77), and the proof of the theorem is

completed. �
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Remark 5.2.8. As we mentioned earlier on, the above theorem assumes great relevance

when the coupled system S has gyroscopic structure around the e3 axis (say), that is,

A = B 6= C. In such a case, our result ensures, in particular, that if the liquid is initially

at rest with respect to the rigid body (that is, the relative velocity field of the liquid is zero

at t = 0), eventually, the final motion of S will be a permanent rotation occurring along

the axis of the gyroscope, {G, e3} := a, if and only if the moment of inertia with respect to

that axis is larger than those around the other two. As an illustration of this fact, consider

the case where the body B is a hollow cylinder (like a metal can), completely filled with

a viscous liquid. In this situation, a coincides with the axis of the cylinder. We assume

that the central moments of inertia of B are negligible compared to those of the liquid.

Then combining Theorem 5.2.4 and Theorem 5.2.7, we may state that for any rigid motion

impressed initially to the coupled system S, the asymptotic motion will be a permanent

rotation around a if and only if the cylinder is “flattened” enough. More precisely, let h and

R be height and radius of B, respectively. Taking into account that

A = B =
M

12
(3R2 + h2) , C =

1

2
MR2 ,

with M mass of the liquid, the final motion will be a rotation around a if and only if h <
√

3R.

Remark 5.2.9. Results proved in Theorem 5.2.7 require the initial data to be in a certain

range (see (5.74), (5.77), and (5.76)). However, the numerical tests reported in Section

4.1, suggest that such a requirement might be unnecessary. The question of whether this

restriction can be removed analytically is at the moment open.

With the help of Theorem 5.2.7 we are now able to derive the following results, which

ensure stability of permanent rotations of the coupled system around the central axis with

the largest moment of inertia, and instability in the other cases.

Theorem 5.2.10. Let S perform a permanent rotation around the central axis {G, e}, say,

v ≡ 0, ω∞ ≡ ω0e, e ∈ {e1, e2, e3}. Assume that, at time t = 0, this state is perturbed, and

denote by v = v(y, t), ω̃∞(t) = (p̃(t), q̃(t), r̃(t)) the corresponding perturbation fields.

The following properties hold.
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(a) If A < B = C, then the permanent rotation with e ≡ e1 is unstable in the sense of

Lyapunov, i.e. there exists ε > 0 such that for every δ > 0, if EF (0) + p̃2(0) + q̃2(0) +

r̃2(0) < δ, then there exists t̄ > 0 such that

EF (t̄) + p̃2(t̄) + q̃2(t̄) + r̃2(t̄) > ε.

(b) If A ≤ B < C, then the permanent rotation with e being either e1 or e2 is unstable in

the sense of Lyapunov. If, however, e ≡ e3, then the corresponding permanent rotation

is stable. Precisely, for any ε > 0 there is δ > 0 such that

EF (0) + p̃2(0) + q̃2(0) + r̃2(0) < δ =⇒ EF (t) + p̃2(t) + q̃2(t) + r̃2(t) < ε , (5.83)

for all t ≥ 0. Moreover, there is γ = γ(A,B,C, ω0) > 0 such that if

EF (0) + p̃2(0) + q̃2(0) + r̃2(0) ≤ γ , (5.84)

it results4

p̃(t), q̃(t)→ 0 , r̃(t)→ r∗, as t→∞ , (5.85)

where

r∗ = −ω0 ±
√

1

C2
(A2p̃2(0) +B2q̃2(0)) + (r̃(0) + ω0)2 , (5.86)

and where we take + or − according to whether ω0 > 0 or ω0 < 0.

(c) If A = B = C, the permanent rotation corresponding to arbitrary e is stable in the sense

of Lyapunov, namely, (5.83) holds for all t ≥ 0.

Proof. We begin to notice that (v,ω∞ ≡ ω̃∞ + ω0e) must satisfy (5.72) and (5.73), and,

consequently, we may apply Theorem 5.2.7. In order to show the property in (a), take initial

conditions for the perturbed field satisfying E(0) = q̃(0) = r̃(0) = 0, and p̃(0) non-zero and

as small as we please. Thus, in particular, (5.77) is satisfied. As a consequence, by (c) of

Theorem 5.2.7,

lim
t→∞

p(t) = 0, (5.87)

4Recall that, by Theorem 5.2.4, EF (t)→ 0, as t→∞ regardless of the “size” of the initial conditions.
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and by Theorem 5.2.4, there is a positive, unbounded sequence {tk} such that

lim
k→∞

q(tk) = q̄ , lim
k→∞

r(tk) = r̄ ,

with at least one of q̄, r̄ being nonzero. Thus, evaluating (5.73) along this sequence, passing

to the limit k →∞, and using (5.87) we must have

B2(q̄2 + r̄2) = A2(ω0 + p̃(0))2 .

Since (ω0 + p̃(0))2 ≥ 1
2
ω2

0− p̃2(0), then, for all p̃(0) sufficiently small, there exists k̄ such that

B2(q̃2(tk̄) + r̃2(tk̄)) > A2(ω0 + p̃(0))2 − A2p̃2(0) ≥ A2

(
1

2
ω2

0 − 2p̃2(0)

)
.

Thus, for all p̃(0) sufficiently small and satisfying p̃2 < 1
8
ω2

0, there is t̄ > 0, such that

(q̃2(t̄) + r̃2(t̄)) > ε, where ε := 1
4
(A2ω2

0/B
2), and this furnishes the desired instability result.

Next, to prove the first property stated in (b), we take (in both cases e = e1, e2)

E(0) = p̃(0) = q̃(0) = 0 and r̃(0) arbitrarily small, and notice that (5.74) and (5.76) is

satisfied. By a completely analogous reasoning to the one employed previously we then show

r̃2(t) ≥ 1
2
(A2ω2

0/C
2) for all sufficiently large t, thus proving instability.

To show the other statement in (b), we multiply both sides of (5.72) by C, and subtract

to the resulting inequality (5.73), side by side. We deduce, in particular,

CEF (t) +A(C −A)p̃2(t) +B(C −B)q̃2(t) ≤ CEF (0) +A(C −A)p̃2(0) +B(C −B)q̃2(0) ,

which, in turn, implies

EF (t)+ p̃2(t)+ q̃2(t) ≤ m
[
EF (0)+ p̃2(0)+ q̃2(0)

]
, m :=

max{C,A(C − A), B(C −B)}
min{C,A(C − A), B(C −B)}

.

(5.88)

Thus, given ε > 0, we have

EF (0) + p̃2(0) + q̃2(0) <
δ1

m
=⇒ EF (t) + p̃2(t) + q̃2(t) < δ1 , for all δ1 ∈ (0, ε/2) . (5.89)

Next, we want to show that for a suitable choice of δ2 > 0, the following property holds

r̃2(0) < δ2 =⇒ r̃2(t) <
ε

2
. (5.90)
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Without loss of generality, we take

ε = 2η2ω2
0 , (5.91)

with η arbitrarily fixed in (0, 1), and choose δ2 < ε/2. Assume (5.90) is not true. In view of

the continuity of r(t), let t̄ > 0 be the first instant of time such that r̃2(t̄) = ε/2. Thus, by

(5.73) and (5.91) we deduce

±C2ω2
0η(2± η) = A2p̃2(0) +B2q̃2(0) + C2r̃(0)(r̃(0) + 2ω0)− A2p2(t̄)−B2q̃2(t̄) . (5.92)

Recalling that A ≤ B, η ∈ (0, 1) and using (5.89), from (5.92) we show

C2ω2
0η ≤ B2

(
m+ 1

m

)
δ1 + C2

√
δ2

(√
δ2 + 2|ω0|

)
.

Employing in the latter relation the inequality 2
√
δ2|ω0| ≤ 2δ2/η+ηω2

0/2, and recalling again

that η ∈ (0, 1), we get

C2ω2
0η ≤ 2B2

(
m+ 1

m

)
δ1 + 6C2 δ2

η
. (5.93)

However, (5.93) cannot be true as long as we pick δ1, δ2 such that (for instance)

0 < δ1 <
mC2ω2

0

2(m+ 1)B2

η

4
≡ mC2|ω0|

8(m+ 1)B2

√
ε√
2
, 0 < δ2 < ω2

0

η2

24
≡ ε

48
.

As a consequence, (5.83) follows, provided we choose

δ < min
{ ε

48
,
ε

2m
,
mC2|ω0|

8(m+ 1)B2

√
ε√
2

}
.

Let us now show the last property stated in (b). From Theorem 5.2.7, we know that the

asymptotic property (5.85) is valid whenever the initial conditions of the motion (v, ω̃∞ +

ω0e) satisfy (5.74) and (5.76). Recalling that A ≤ B < C, one shows that both conditions

are certainly met if

EF (0) +
A

B
(B − A)(q̃2(0) + p̃2(0)) ≤ C

B
(C −B)(ω0 + r̃(0))2 .

However, since (r̃(0) + ω0)2 ≥ 1
2
ω2

0 − r̃2(0), we see that the latter is satisfied provided EF (0),

and p̃(0), q̃(0), and r̃(0) obey (5.84), for a suitable definition of γ. However, by taking γ even

smaller if necessary, from the stability property proved above we know that |r̃(t)| < |ω0|,

for all t ≥ 0. Consequently, (5.86) follows from this consideration, by passing to the limit
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t→∞ in (5.73). It remains to show property (c). In this regard, we observe that from our

hypothesis and (5.38)3 we deduce

˙̃ω∞ + a× (ω̃∞ + ω0e) = 0 , (5.94)

from which it follows that

|ω̃∞(t) + ω0e| = |ω̃∞(0) + ω0e| . (5.95)

From (5.94) and (5.95) we thus obtain

|ω̃∞(t)| ≤ |ω̃∞(0)|+ |ω̃∞(0) + ω0e|
∫ ∞

0

|a(t)| . (5.96)

Using Schwartz inequality and (5.58) in (5.96) allow us to conclude

|ω̃∞(t)| ≤ |ω̃∞(0)|+ c |ω̃∞(0) + ω0e| ‖v(0)‖2 ,

and the property stated in (c) immediately follows from this last inequality and (5.58). �

Remark 5.2.11. Combining Theorem 5.2.7 and Theorem 5.2.10 we derive the following

interesting consequence. Suppose C > A ≥ B, EF (0) = 0, p(0), q(0) sufficiently “small”,

and r(0) 6= 0. Then, the asymptotic motion of the coupled system - which we know is a

permanent rotation around e3 - will have angular velocity ω̄ = r̄e3, where r̄ has the same

sign as r(0). Observing that ω̄ = κKG, κ > 0, this property implies that {G, e3} has to

keep (asymptotically) the same orientation with KG that it had at time t = 0; see Figure

5.2.2. Stated differently, this means that, at least under the above conditions, the axis e3

cannot (eventually) flip-over. This property is confirmed by the numerical tests presented

in Section 4.1; see Figure 4, bottom panel. These tests also show, however, that the above

property is no longer valid for initial data of finite size; see Figure 4, top panel. Similar

experiments prove, in addition, that if r(0) = 0, a change of viscosity of the liquid may

trigger such an effect as well. In other words, it is found that in some range of viscosities the

orientation of e3 and KG is the same, whereas in another range it is opposite; see Section

4.1. It will be the object of future work to investigate the analytical aspect of this interesting

phenomenon.
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Figure 8: Dependence of the orientation of a body filled with a viscous liquid on the initial angle
θ(0) between e3 and KG: θ(0) < π/2 (left); θ(0) > π/2 (right).

Remark 5.2.12. The instability result in Theorem 5.2.10 should be contrasted with their

“classical” counterpart when the cavity in the gyroscope is empty. In fact, in such a situation,

as is well known, permanent rotations about the gyroscope axis are stable in both cases

A,B <
>C; see [35]. Whereas, if the cavity is filled with a viscous liquid, this permanent

rotation is (axially) stable if and only if C > A,B.

5.3 LIQUID-FILLED PHYSICAL PENDULUM

In this section, we will consider a liquid-filled (physical) pendulum, i.e. a coupled system, S,

characterized by a heavy rigid body, B, containing a cavity, C entirely filled with a viscous

liquid, and constrained to rotate (without friction) around a horizontal axis, a, so that its

center of mass G satisfies the following properties:

(i) the distance, `, between G and its orthogonal projection O on a (point of suspension),

does not depend on time;

(ii) G always moves in a plane orthogonal to a.
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Experimental evidence shows that the liquid will have a stabilizing effect on the motion

of the pendulum, by reducing the amplitude of oscillations. A most remarkable application

of this property occurs in Space Engineering, where tube dampers filled with a viscous liquid

are used to suppress oscillations in spacecraft and artificial satellites; see Subsection 2.1.2.2,

and also [5, 1, 6, 44, 3] with the literature there cited.

Objective of this section is to provide a rigorous analysis of the motion of the coupled

system S. In particular, we shall show that, provided C is sufficiently regular, all motions of

S described within a very general class of solutions to the relevant equations (weak solutions),

must tend to a rest state for large times, no matter the shape of C, the physical characteristics

of B and the liquid, and the initial motions imparted to S. We show that, as expected, the

rest state is realized by only two equilibrium configurations of S, namely, those where the

velocity field of the liquid is zero, and the center of mass G of S is in its lowest, Gl, or

highest, Gh, position; see Theorem 5.3.3.

We then further prove that for a broad set of initial data, the final state must be the one

with G ≡ Gl. This set includes the case when the system S is released from rest; see Theorem

5.3.5. In physical terms, the latter translates into the following interesting property, namely,

that a pendulum with a cavity filled with a viscous liquid that is initially at rest eventually

reaches the equilibrium configuration where the center of mass is at its lowest point, exactly

like it happens to a classical pendulum immersed in a viscous liquid. However, it must be also

observed that the global dynamics can be quite different in the two cases. In fact, while in

the latter the amplitude of oscillations may gradually decrease from the outset till it reduces

to zero, in the former, in analogy to similar problems of solids with liquid-filled cavity, see

Sections 5.2 and 4.1 (and also [29, 20, 13]), the damping of the oscillations may take place

only after an interval of time [0, T ], say, where, possibly, a motion of “chaotic” nature occurs,

with T depending on the magnitude of the kinematic viscosity ν.

5.3.1 Long-time behavior of a liquid-filled pendulum

Let F ≡ {O, e1, e2, e3} be a frame attached to B, with the origin at O, e1 ≡
−→
OG/|

−→
OG| and

e3 directed along a. Then, the motion of S in F is governed by the following set of equations
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(as from (5.2))

ρ

(
∂v

∂t
+
(
ȧ+ β2γ2

)
e3 × x+ v · ∇v + 2ω e3 × v

)
= µ∆v −∇p

div v = 0

 in C × (0,∞),

v(x, t)|∂C = 0,

ω̇ − ȧ = β2γ2 ,

γ̇ + ω e3 × γ = 0 .

(5.97)

Here, the angular velocity of the solid is given by ω e3; whereas γ = (γ1 ≡ cosϕ, γ2 ≡

− sinϕ, 0) denotes the direction of the gravity in the non-inertial frame F, ϕ is the angle

between e1 and the gravity g. Furthermore,

a := − ρ
C
e3 ·

∫
C
x× v , (5.98)

where C is the moment of inertia of S with respect to a, and

β2 = M g |
−→
OG|/C ,

with M mass of S.

The energy balance (5.3) now reads as follows

d

dt

[
ρ ‖v‖2

2 − C a2 + C (ω − a)2 − 2Cβ2γ1

]
+ 2µ ‖∇v‖2

2 = 0 . (5.99)

In this equation, the quantity

E = ρ ‖v‖2
2 − C a2 + C (ω − a)2 (5.100)

represents the total kinetic energy of S, while

U = −2Cβ2γ1 (5.101)

is its potential energy. By (2.29), it follows that there is a positive constant c0 ≤ 1, such

that

c0

(
ρ ‖v‖2

2 + C (ω − a)2
)
≤ E ≤

(
ρ ‖v‖2

2 + C (ω − a)2
)
. (5.102)

As for the inertial motions, our study on the asymptotic behavior in time of the coupled

system S is carried out in the very general class constituted by weak solutions (à la Leray-

Hopf) to (5.97). To this end, we specialize Definition 5.1.1 to the problem at hand. All the

results in Section 5.1 continue to hold for this problem.
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Definition 5.3.1. The triple (v, ω,γ) is a weak solution to (5.97) if it meets the following

requirements:

(a) v ∈ Cw([0,∞);H(C)) ∩ L∞(0,∞;H(C)) ∩ L2(0,∞;W 1,2
0 (C)) ;

(b) ω ∈ C0([0,∞)) ∩ C1(0,∞) , γ ∈ C1([0,∞); S1) ;

(c) Strong Energy Inequality:

E(t) + U(t) + 2µ

∫ t

s

‖∇v(τ)‖2
2 dτ ≤ E(s) + U(s) (5.103)

for all t ≥ s and a.a. s ≥ 0 including s = 0 ;

(d) (v, ω,γ) satisfies the following equations:

ρ(v(t),ψ) + ρa(t)

∫
C
(e3 × x) ·ψ +

∫ t

0

{
ρ[(β2γ2e3 × x+ v · ∇v,ψ) + 2ρ(ωe3 × v,ψ)

}
+

∫ t

0

µ(∇v,∇ψ) = (ρv(0),ψ) + ρa(t)

∫
C
(e3 × x) ·ψ (5.104)

for all ψ ∈ D1,2
0 (C) and all t ∈ (0,∞). Moreover,

ω(t)− a(t) = ω(0)− a(0) + β2

∫ t

0

γ2(τ) dτ (5.105)

and

γ(t) = γ(0)−
∫ t

0

ωe3 × γ , for all t ∈ (0,∞). (5.106)

We are now in a position to give the following characterization of the Ω-limit set of any

weak solution to (5.97) following Proposition 5.1.9.

Proposition 5.3.2. Let s ≡ (v, ω,γ) be a weak solution to (5.97), with C of class C2, and

initial data of finite energy in the sense of Proposition 5.1.2. Then, the corresponding Ω-limit

set admits the following characterization: either

Ω(s) = {(0, 0, e1)} ,

or

Ω(s) = {(0, 0,−e1)} .
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Proof. In view of Proposition 5.1.9, the dynamics on Ω(s) is governed by the following set of

equations

v ≡ 0 , γ2 = 0, ω e3 × γ = 0 . (5.107)

The latter two equations imply that ω γ1 = 0. Taking into account that |γ| ≡ 1, from all

the above we then conclude ω = 0 and γ1 = ±1. Consequently,

Ω(s) ⊂ {(0, 0, e1)} ∪ {(0, 0,−e1)} .

However, again by Proposition 5.1.9, Ω(s) is connected, and the proof of the proposition is

therefore completed. �

We are now ready to give a complete description of the asymptotic behavior of weak

solutions to (5.97).

Theorem 5.3.3. Let (v, ω,γ) be a weak solution to (5.97) with C of class C2, and initial

data of finite energy in the sense of Proposition 5.1.2. Then,

lim
t→∞

(
‖v(t)‖2,2 +

∥∥∥∥∂v(t)

∂t

∥∥∥∥
2

)
= 0 , (5.108)

so that, in particular,

lim
t→∞

(max
x∈C
|v(x, t)|) = 0 . (5.109)

Moreover,

lim
t→∞
|ω(t)| = 0 , lim

t→∞
|γ(t)− α e1| = 0 , (5.110)

where α = 1 or α = −1.

Proof. We commence by observing that, as a result of the classical embedding inequality

max
x∈C
|w(x)| ≤ c1‖w‖2,2 , all w ∈ W 2,2(C) ,

property (5.109) follows from (5.108). Next, we notice that in view of this and Proposition

5.3.2, to prove the theorem completely we only have to prove the validity of (5.108). This

can be achieved by the following procedure. By virtue of Proposition 5.1.5, our weak solution
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must have v(t) ∈ W 2,2(C), for a.a. t ∈ [t0,∞). For simplicity, and without loss of generality,

we assume

v(t0) ∈ W 2,2(C) . (5.111)

Next, we formally take the time derivative of both sides of (5.97)1, dot-multiply both sides

of the resulting equation by ∂v/∂t and integrate by parts over C. By taking into account

(5.97)2,3,5 and (5.98), we easily show that (ν := µ/ρ and vt := ∂v/∂t)

1

2

dE1

dt
= −C β2ȧ ω γ1 − 2ω̇ (e3 × v,vt)− (vt · ∇v,vt)− ν‖∇vt‖2

2 , (5.112)

where

E1 := ‖vt‖2
2 −

C

ρ
ȧ2 .

Notice that, by (2.29),

c0 ‖vt‖2
2 ≤ E1 ≤ ‖vt‖2

2 . (5.113)

Employing Young inequality (2.16) and Poincaré inequality (2.23), and recalling that |γ| = 1

together with (5.97)4, we deduce

dE1

dt
+ C1‖∇vt‖2

2 ≤ C2

(
−(vt · ∇v,vt) + ω2 + ‖v‖2

2 + ‖v‖2 ‖vt‖2
2

)
. (5.114)

Applying Hölder inequality (2.17), the interpolation inequality (2.20), Sobolev inequality

(2.22), and Young inequality (2.16), in the order, we infer

|(vt · ∇v,vt)| ≤ ‖vt‖2
4‖∇v‖2 ≤ ‖vt‖

3
2
6 ‖vt‖

1
2
2 ‖∇v‖2 ≤ C3 ‖∇vt‖

3
2
2 ‖vt‖

1
2
2 ‖∇v‖2

≤ C1

2C2

‖∇vt‖2
2 + C4

(
‖vt‖6

2 + ‖∇v‖6
2

)
. (5.115)

Taking into account (5.13), we may combine the latter displayed equation with (5.114), to

get
dE1

dt
+
C1

2
‖∇vt‖2

2 ≤ C5 + C6

(
‖vt‖6

2 + ‖∇v‖6
2

)
. (5.116)

From (5.116), (5.113), and (5.24) to show, in particular, the validity of (5.29) with z :=

‖∇v‖2
2 +E1 + 1. Integrating the differential inequality thus obtained and using again (5.24),

(5.113), and (5.116), we prove, in addition to the bounds (5.25), the following ones:

‖vt(t)‖2 ≤ G3(t) ,

∫ t

t0

‖∇vτ (τ)‖2 dτ ≤ G4(t) , (5.117)
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with Gi, i = 3, 4, continuous functions in the interval [t0, t0 + T ∗), where

T ∗ ≥ C7

‖∇v(t0)‖4
2 + ‖vt(t0)‖4

2 + 1
,

and C7 > 0 independent of t0. We now go back to (5.97)1, dot-multiply both sides by vt and

integrate over C. We get

ρ ‖vt‖2
2 − C ȧ2 =

C β2

ρ
γ2 ȧ− ρ (v · ∇v,vt)− 2ω(e3 × v,vt) + µ(∆v,vt) .

Exploiting in this relation Young inequality, (5.113), (5.13), and (5.23) we show (formally)

‖vt(t0)‖2 ≤ C8(‖v(t0)‖3
2,2 + ‖v(t0)‖2,2 + 1) , (5.118)

which implies, on the one hand, by (5.111) that ‖vt(t0)‖2 is well-defined, and, on the other

hand, that

T ∗ ≥ C9

D(‖v(t0)‖2,2) + 1

where D = D(σ) is a polynomial satisfying D(0) = 0. Collecting all the above informations,

we may thus employ the standard Galerkin method and show the existence of a solution

(ṽ, ω̃, γ̃) with data (v(t0), ω(t0),γ(t0)) that, besides (5.26), satisfies also

ṽt ∈ L∞(t0, t0 + τ ;H(C)) ∩ L2(t0, t0 + τ ;W 1,2
0 (C)) , all τ ∈ (0, T ∗) ;

see, e.g., [33, Chapter 4] for technical details. However, by the uniqueness property of

Proposition 5.1.4, this solution must coincide with the given weak solution on [t0, t0 + T ∗).

We can then show that, in fact, T ∗ = ∞. Actually, if T ∗ < ∞, it easily follows that

necessarily ‖v(t)‖2,2 must become unbounded in a left-neighborhood of t0 +T ∗. Let us show

that such a situation cannot occur. To this end, we begin to observe that, by what just shown,

the given weak solution satisfies (5.114) in (t0, t0 + T ∗). Now, by Hölder inequality (2.17),

interpolation inequality (2.20), Sobolev embedding Theorem 2.3.2, and Young inequality

(2.16), in the order, we obtain

|(vt · ∇v,vt)| = |(vt · ∇vt,v)| ≤ ‖vt‖4‖v‖4‖∇vt‖2 ≤ ‖vt‖
3
4
6 ‖vt‖

1
4
2 ‖v‖4‖∇vt‖2

≤ C10 ‖∇vt‖
7
4
2 ‖vt‖

1
4
2 ‖∇v‖2 ≤

C1

2C2

‖∇vt‖2
2 + C11‖vt‖2

2‖∇v‖8
2 .
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Replacing this inequality back into (5.114) we deduce

∂E1

∂t
+
C1

2
‖∇vt‖2

2 ≤ C12

[
ω2 + ‖v‖2

2 + (‖v‖2 + ‖∇v‖8
2) ‖vt‖2

2

]
, (5.119)

However, v and ω must satisfy (5.16), so that, integrating both sides of (5.119) over (t0, t0 +

T ∗) and using (5.111), (5.113), and (5.117) we infer

vt ∈ L∞(t0, t0 + T ∗;H(C)) . (5.120)

Furthermore, as a consequence of (2.24), (5.20), and (5.23) with λ = µ/(2C C3), we have

‖v(t)‖2,2 ≤ C13 (‖∇v(t)‖3
2 + ‖vt(t)‖2 + 1) , for a.a. t ∈ [t0, t0 + T ∗) . (5.121)

Therefore, this inequality along with (5.120) allows us to conclude

v ∈ L∞(t0, t0 + T ∗;W 2,2(C)) ,

which, in turn, implies T ∗ =∞. We now go back to (5.119) - valid for all t ∈ (t0,∞) - and

use (2.23) to show

∂E1

∂t
+ C14

[
1− (‖v‖2 + ‖∇v‖8

2)
]
‖vt‖2

2 ≤ C12

(
ω2 + ‖v‖2

2

)
. (5.122)

By (5.17) we may find t1 ≥ t0 such that

C14

(
1− ‖v‖2 − ‖∇v‖8

2

)
≥ C15 , for all t ≥ t1 ,

which, once replaced into (5.122), with the help of (5.113) delivers

∂E1

∂t
+ C15E1 ≤ F (t) , (5.123)

where F (t) := C12 (ω2(t) + ‖v(t)‖2
2). Notice that, by Proposition 5.1.5 and Proposition 5.3.2

lim
t→∞

F (t) = 0 . (5.124)
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Multiplying both sides of (5.123) by eC15t and integrating the resulting equation over (t/2, t),

using again (5.113) we get, for all t ≥ 2t1, 5

‖vt(t)‖2
2 ≤ C16

(
‖vt(t/2)‖2

2 e−C15t/2 +

∫ t

t/2

e−C15(t−s)F (s)ds

)
.

Employing in this relation (5.120) (valid with T ∗ = ∞) and (5.124) we then show that for

any ε > 0 there is t̄ > 0 such that

‖vt(t)‖2
2 ≤ C17 e−C15t/2 + ε

C16

C15

, for all t ≥ t̄ ,

namely,

lim
t→∞
‖vt(t)‖2 = 0 . (5.125)

As a result, (5.108) follows from (5.17), (5.121) (valid with T ∗ = ∞), (5.110), and (5.125).

This concludes the proof of the theorem. �

Remark 5.3.4. From Theorem 5.3.3 and (5.97)4,5 it also follows that

lim
t→∞
|ω̇(t)| = lim

t→∞
|γ̇(t)| = 0 .

5.3.2 Attainability and stability of the equilibrium configurations.

The results proved in Theorem 5.3.3 imply that the coupled system solid-liquid S will even-

tually reach an equilibrium configuration where the liquid is at rest, and the center of mass G

of S is on the vertical axis passing through the point of suspension O. However, the theorem

does not specify whether G lies above O (i.e., γ = −e1), or below O (i.e., γ = e1). The

objective of this subsection is to show that, under suitable conditions on the initial data, S

will reach the equilibrium configuration where G is in its lowest position (i.e., γ = e1). It is

worth observing that if S is initially released from rest, the above conditions are certainly

satisfied. More specifically, we have the following.

5Observe that by (5.112) and the property just shown, it follows that the function t → ‖vt(t)‖2 is
absolutely continuous for all “large” t.
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Theorem 5.3.5. Let C be of class C2, and let (v0, ω0,γ0) ∈ H(C)× R× S1 be given with

ρ ‖v0‖2
2 + C (ω0 − a(0))2 < 2C β2 (1 + γ1,0) . (5.126)

Then all weak solutions corresponding to initial data (v0, ω0,γ0) tend to the equilibrium

configuration (v ≡ 0, ω ≡ 0,γ ≡ e1), namely, the one where the center of mass lies in its

lowest position.

Proof. Suppose, by contradiction, that the final equilibrium position is, instead, (v ≡ 0, ω ≡

0,γ ≡ −e1). Then, passing to the limit t→∞ in the energy inequality (5.103) with s = 0,

and taking into account Theorem 5.3.3, we find, in particular,

2Cβ2 + 2µ

∫ ∞
0

‖∇v(t)‖2
2dt ≤ ρ‖v0‖2

2 + C(ω0 − a(0))2 − 2Cβ2γ1,0 ,

which cannot be true whenever the initial data satisfy (5.126). �

Also with the help of the previous result, we may prove the following one.

Theorem 5.3.6. Suppose C of class C2. Then the equilibrium configuration c1 := (v ≡

0, ω ≡ 0,γ ≡ −e1), namely, the one where the center of mass lies in its highest position, is

unstable in the sense of Lyapunov in the class of weak solutions, whereas the configuration

c2 := (v ≡ 0, ω ≡ 0,γ ≡ e1), where the center of mass lies in its lowest positionis stable.

Proof. Consider a weak solution corresponding to the initial data v(0) = 0, ω(0) = 0 and

γ(0) = − cos δe1 + sin δe2, δ 6= 0. Since these data satisfy (5.126), any corresponding weak

solution will tend to the equilibrium (v ≡ 0, ω ≡ 0,γ ≡ e1), no matter how close δ to zero,

namely, no matter how close the initial conditions to the configuration c1. This shows the

claimed instability property.

Next, let (v, ω,γ ′) denote a perturbation to the configuration c2 in the class of weak

solutions. This means that (v, ω, e1 + γ ′) is a weak solution to (5.97) corresponding to

initial data, say, (v0, ω0, e1 + γ ′0). From the strong energy inequality (5.103) and (5.102) we

at once deduce that, for all t ≥ 0,

c0

[
ρ‖v(t)‖2

2 + C(ω(t)− a(t))2
]
− 2Cβ2γ′1(t)

≤
[
ρ‖v0‖2

2 + C(ω0 − a(0))2
]
− 2Cβ2γ′1,0 . (5.127)
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Moreover, from the condition |e1 + γ ′(t)|2 = 1, all t ≥ 0, we find

−2γ′1(t) = (γ′1(t))2 + (γ′2(t))2 , all t ≥ 0 . (5.128)

From (5.127) and (5.128), and recalling (5.98), we immediately deduce that c2 is stable in

the sense of Lyapunov, namely, for any given ε > 0 there is δ(ε) > 0 such that

‖v0‖2 + |ω0|+ |γ ′0| < δ =⇒ ‖v(t)‖2 + |ω(t)|+ |γ ′(t)| < ε , for all t > 0 .

The proof of the theorem is completed. �

We have shown that a physical pendulum containing an interior cavity entirely filled

with a viscous (Navier-Stokes) liquid must eventually go to an equilibrium state where the

liquid is at rest and the center of mass of the system occupies its highest (configuration c1)

or lowest (configuration c2) position. Moreover, we have proved that the former is unstable,

while the latter is stable, and also attainable provided the initial data satisfy (5.126).

The following two interesting questions are, however, left open.

(i) We do not know the rate at which the equilibrium configuration c2 will be reached, at

least for sufficiently large times. In fact, in analogy with similar problems of rigid bodies

with a liquid-filled cavity, it is expected that the motion would be “chaotic” for some

interval of time, but then, once the velocity of the liquid becomes “sufficiently small” (the

latter, all other parameters kept fixed, depending on the magnitude of the viscosity), it

is conjectured that the system should go to the equilibrium configuration at a very fast

pace, possibly, even of exponential type.

(ii) The second open question regards whether condition (5.126) on the initial data is indeed

necessary for the proof of attainability of the equilibrium configuration c2. Actually, given

the instability property of c1, we conjecture that c2 should be reached from “almost all”

initial data (of finite energy).
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6.0 FURTHER RESULTS: THE TIME-PERIODIC MOTIONS

Objective of chapter is to give a detailed analytical study of the motions of the coupled

system liquid-filled rigid body about its center of mass under the action of a time-periodic

torque.

With the same notations used in Chapter 2, here we suppose that O ≡ G and, with

respect to an inertial frame I ≡ {G, ẽ1, ẽ2, ẽ3}, a time-periodic torque, M, acts on B:

M = fi(t) ẽi(t) , (6.1)

where fi, i = 1, 2, 3, are given T -periodic scalar functions of time t, i.e. fi(t+ T ) = fi(t), for

all t ∈ R.

In the wake of analogous classical problems formulated in absence of liquid, we propose

to investigate whether, under the given assumptions, the coupled system S will execute a

T -periodic motion in the non-inertial frame F introduced in Chapter 2, Section 2.2.

In order to handle the above question, it appears necessary to impose some restrictions

on the functions fi in (6.1), as we shall show next.

We begin to observe that, as we have seen in Section 2.2, in the frame F, the torque M

can be rewritten as follows

m := QT (t) ·M = fi(t)Q
>(t) · ẽi , (6.2)

whereQ = Q(t) is the (unknown) one-parameter family of elements of the special orthogonal

group, SO(3), associated with the change of frame I → F, and introduced in Section 2.2.
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We recall that Q has to satisfy (2.10)4:

dQT

dt
= A(ω) ·QT , QT (0) = 1 , A(ω) :=


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (6.3)

Assuming the motion of S in the frame F to be T -periodic implies, in particular, that both

ω and m have to be T -periodic as well. From (6.3) and standard Floquet theory it follows

that Q(t) has the following representation [53, Theorem 1]

QT (t) = P (t) · etS , t ∈ R , (6.4)

where S is a real, skew-symmetric matrix, and

P (t) ∈ SO(3) , P (t+ T ) = P (t) , for all t ∈ R . (6.5)

From the latter and from (6.2) (taken component by component), we then deduce that for

m to be a T -periodic function we must have

eTS · ẽi = ẽi , i = 1, 2, 3 ,

namely, ẽi must be parallel to the eigenvectors corresponding to the eigenvalue λ = 0 of S.

Since, in general, λ = 0 is simple, the existence of a T -periodic solution in the moving frame

F requires, in general, that M is directed along a constant direction. We thus have

M = f(t)h , (6.6)

where h is a unit, time-independent vector in I, and f is a T -periodic function.

We next observe that, denoting by KG the total angular momentum of S with respect

to G, the balance of angular momentum in the frame I requires

d

dt
KG = f(t)h , (6.7)

from which we at once deduce that |KG(t)| is T -periodic if and only if f has a zero average

over a period: ∫ T

0

f(t) dt = 0 . (6.8)

95



In fact, if f has a zero average over a period, from the balance of the total angular momentum,

it follows that KG(t) is T -periodic, thus implying that also its modulus is T -periodic. To

show that (6.8) is a necessary condition for the T -periodicity of |KG(t)|, let us argue by

contradiction, and assume that ∫ T

0

f(t) dt = c 6= 0.

Integrating (6.7) over [0, nT ], with n ∈ N, and taking the modulus of the resulting equation,

using the fact that h is a unit, time-independent vector together with the Triangle Inequality,

we find that

n|c| =
∣∣∣∣h ∫ nT

0

f(t) dt

∣∣∣∣ = |KG(nT )−KG(0)| ≤ |KG(nT )|+ |KG(0)|.

The contradiction then arises by taking the limit as n→∞ in the latter displayed inequality.

However, |KG(t)| is invariant by the frame change I → F, so that the searched T -periodicity

of the motion of S with respect to the frame F requires that f obeys (6.8). As a consequence

of what just shown, we shall then suppose that the torque M acting on B satisfies (6.6)–(6.8).

Under these assumptions, the main goal of this chapter consists in proving the existence

of a motion of the coupled system S that is time-periodic with respect to the moving frame

F. It is worth remarking that in F the direction of the torque becomes a function of time

given by H(t) := QT (t) · h, and since Q is not known, H becomes a further unknown of

the problem at hand. From the physical viewpoint, the latter circumstance means that, in

order to perform such a periodic motion, the body has to find an “appropriate orientation”

with respect to the direction of the given torque M.

We thus show that, under the hypothesis that f is T -periodic and square-summable over

a period, the problem admits a corresponding (suitably defined) T -periodic weak solution.

If, moreover, f is essentially bounded with a sufficiently small norm, then the solution is

strong and the relevant equations are satisfied almost everywhere in space-time.
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Under the above mentioned hypotheses, the equations of motions of S, (2.10), now read

as follows

div v = 0

ρ

(
∂v

∂t
+ ω̇ × y + v · ∇v + 2ω × v

)
= −∇p+ µ∆v

 in C × (0,∞),

dA

dt
+ ω ×A = f(t)H ,

dH

dt
+ ω ×H = 0,

v = 0 on ∂C,

v(t+ T ) = v(t), ω(t+ T ) = ω(t), H(t+ T ) = H(t), all t ≥ 0.

(6.9)

We recall that A has been defined in (2.11) (in this case O ≡ G, and we have dropped the

dependence on the pole in the notation):

A = I · ω +

∫
C
ρy × v, (6.10)

and I is the total inertial tensor of S with respect to G.

Using (6.10) we can then eliminate ω and write the relevant equations only in terms of

the unknowns v, p,A, and H . Thus, observing that

ω = I−1 ·A− I−1 ·
(∫
C
ρy × v

)
, (6.11)

the system of equations (6.9) with (6.10) becomes (see also [26]):

(1−B) · ∂v
∂t

+

(
I−1 · dA

dt

)
× y + v · ∇v + 2

(
I−1 ·A

)
× v

−2

[
I−1 ·

(
ρ

∫
C
y × v

)]
× v + 1

ρ
∇p− ν∆v = 0

div v = 0,


in C × [0, T ] ,

v(x, t) = 0 on ∂C × [0, T ] ,

dA

dt
+ (I−1·A)×A− ρI−1·

(∫
C
y × v

)
×A = f(t)H

dH

dt
+ (I−1·A)×H − ρI−1·

(∫
C
y × v

)
×H = 0

 in [0, T ] ,

(6.12)
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where the operator B has been defined in (2.25)-(2.26), it satisfies Lemma 2.3.3 along with

the properties following it. We recall that ν = µ/ρ is the coefficient of kinematic viscosity

of the liquid.

Our problem can be then formulated as follows: given a sufficiently smooth T -periodic

function f , find a corresponding T -periodic solution to (6.12). Our investigation will be

carried out in the very general class of weak solutions to (6.12), defined in the following

definition.

Definition 6.0.7. A triple (v,A,H) is a T -periodic, or simply periodic weak solution to

the problem (6.12), (2.25)–(2.26) if it satisfies the following conditions.

1. v ∈ L2(0, T ;H1(C)) ∩ L∞(0, T ;H(C)), A,H ∈ CT (R);

2. (v,A,H) satisfies the following equations∫ T

0

[
〈v,ψ〉+A · I−1 ·

(∫
C
y ×ψ

)]
dξ(t)

dt
dt

= −
[
−2ρ

∫ T

0

(∫
C
y × v

)
· I−1 ·

(∫
C
v ×ψ

)
ξ(t) dt

+ 2

∫ T

0

(∫
C
A · I−1 · (v ×ψ)

)
ξ(t) dt

+

∫ T

0

(v · ∇ψ,v)ξ(t) dt− ν
∫ T

0

(∇v,∇ψ)ξ(t) dt

]
,

(6.13)

for all ψ ∈ D(C), ξ ∈ C∞T (R) ; and for all t ∈ [0, T ]

A(t) = A(0)−
∫ t

0

(I−1 ·A)×A dτ+ρI−1 ·
∫ t

0

(∫
C
y × v

)
×A dτ+

∫ t

0

f(τ)H dτ, (6.14)

H(t) = H(0)−
∫ t

0

(I−1 ·A)×H dτ + ρI−1 ·
∫ t

0

(∫
C
y × v

)
×H dτ. (6.15)

Remark 6.0.8. A weak solution has, in fact, more regularity in time than the one stated

in the above definition. In fact, on the one hand, from (6.14) and (6.15) we deduce A, H ∈

W 1,r(0, T ) , provided f ∈ LrT (R), r ∈ [1,∞]. On the other hand, proceeding in a similar

fashion as in [15, Lemma 2.2], and [21], one can show that v(·, t) is continuous in [0, T ] weakly

in L2(C), and strongly in H−1(C). As a consequence, with the help of (6.13) it follows that

v is indeed periodic in time in the sense of the above topologies.
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Remark 6.0.9. If (v,A,H) is a periodic weak solution to (6.12), then the corresponding

angular velocity is defined via (6.11) and belongs to CT (R); see also Remark 6.0.8.

Remark 6.0.10. If (v,A,H) is a periodic weak solution to (6.12) and is sufficiently regular

then, by a standard procedure one shows that there exists a scalar field p = p(y, t) such that

v, p, and A satisfy (6.12)1 a.e. in space and time.

6.1 EXISTENCE OF PERIODIC WEAK SOLUTIONS

Objective of this section is to show the existence of a periodic weak solution to (6.12) under

suitable assumptions on f . This will be achieved by combining the Faedo-Galerkin method

with a fixed point argument. Specifically, we have the following.

Theorem 6.1.1. Let f ∈ L2
T (R) satisfy (6.8), and let C be a domain of R3. Then, there

exists at least one periodic weak solution, (v,A,H), to (6.12).

Proof. Let {ψn}n∈N be a denumerable subset of D(C) whose linear hull is dense in H1(C),

and let us normalize it as 〈ψn,ψm〉 = δnm
1. We look for “approximate solutions” of the

type

vn(y, t) :=
n∑
k=1

cnk(t)ψk(y), An :=
3∑
i=1

c̃ni(t)ei, Hn :=
3∑
j=1

ĉnj(t)ek.

The coefficients cnk, c̃ni and ĉnj are found by solving the following system of ordinary differ-

ential equations:

d

dt

[
〈vn,ψr〉+An · I−1 ·

(∫
C
y ×ψr

)]
= −2ρ

(∫
C
y × vn

)
· I−1 ·

(∫
C
vn ×ψr

)
+ 2

∫
C
An · I−1 · (vn ×ψr) + (vn · ∇ψr,vn)− ν(∇vn,∇ψr),

dAn

dt
= −(I−1 ·An)×An + ρI−1 ·

(∫
C
y × vn

)
×An + f(t)Hn,

dHn

dt
= −(I−1 ·An)×Hn + ρI−1 ·

(∫
C
y × vn

)
×Hn,

(6.16)

1The scalar product 〈·, ·〉 has been defined in (2.27).
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which, in terms of cnk, c̃ni and ĉnj reads as follows

dcnr
dt

+
dc̃ni
dt
ei · I−1 ·

(∫
C
y ×ψr

)
= −2ρ

(∫
C
y ×ψk

)
· I−1 ·

(∫
C
ψm ×ψr

)
cnkcnm

+ 2

[∫
C
ei · I−1 · (ψk ×ψr)

]
c̃nicnk + (ψk · ∇ψr,ψm)cnkcnm − ν(∇ψk,∇ψr)cnk,

dc̃ni
dt
ei = −c̃nic̃nj(I−1 · ei)× ej + cnkc̃niρI

−1 ·
(∫
C
y ×ψk

)
× ei + f(t)ĉnjej,

dĉnj
dt
ej = −c̃niĉnj(I−1 · ei)× ej + cnkĉnjρI

−1 ·
(∫
C
y ×ψk

)
× ej.

(6.17)

By replacing the second equation in the first one, we get

dcnr
dt

=
[
(I−1 · ei)× ej

]
· I−1 ·

(∫
C
y ×ψr

)
c̃nic̃nj

− ρ
[
I−1 ·

(∫
C
y ×ψk

)
× ei

]
· I−1 ·

(∫
C
y ×ψr

)
cnkc̃ni

− f(t)ej · I−1 ·
(∫
C
y ×ψr

)
ĉnj

− 2ρ

(∫
C
y ×ψk

)
· I−1 ·

(∫
C
ψm ×ψr

)
cnkcnm

+ 2

[∫
C
ei · I−1 · (ψk ×ψr)

]
c̃nicnk

+ (ψk · ∇ψr,ψm)cnkcnm − ν(∇ψk,∇ψr)cnk.

Setting

brij :=
[
(I−1 · ei)× ej

]
· I−1 ·

(∫
C
y ×ψr

)
,

drki := −ρ
[
I−1 ·

(∫
C
y ×ψk

)
× ei

]
· I−1 ·

(∫
C
y ×ψr

)
,

frj(t) := −f(t)ej · I−1 ·
(∫
C
y ×ψr

)
,

grkm := −2ρ

(∫
C
y ×ψk

)
· I−1 ·

(∫
C
ψm ×ψr

)
,

srki := 2

[∫
C
ei · I−1 · (ψk ×ψr)

]
,

prkm := (ψk · ∇ψr,ψm), prk := −ν(∇ψk,∇ψr)cnk,
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equation (6.17)1 becomes

dcnr
dt

= brij c̃nic̃nj + drkicnkc̃ni + frj(t)ĉnj + grkmcnkcnm + srikc̃nicnk + prkmcnkcnm + prkcnk,

(6.18)

where here and in the rest of the proof i, j, ` vary in the set {1, 2, 3}, whereas r, k,m in the

set {1, . . . , n}. Concerning (6.17)2 and (6.17)3, taking the dot product of each side of both

with e`, and setting

u`ij := −
[
(I−1 · ei)× ej

]
· e`, w`kj := ρe` · I−1 ·

(∫
C
y ×ψk

)
× ej,

we deduce
dc̃n`
dt

= u`ij c̃nic̃nj + w`kicnkc̃ni + f(t)ĉn`, (6.19)

and
dĉn`
dt

= u`ij c̃niĉnj + w`kjcnkĉnj, (6.20)

respectively. Following [37] we shall next prove that there exist initial data such that the

system of ordinary differential equations (6.18), (6.19), and (6.20) admits a corresponding

solution (cnr, c̃n`, ĉn`) such that cnr(0) = cnr(T ), c̃nr(0) = c̃nr(T ) and ĉnr(0) = ĉnr(T ). To

reach this goal, let

vn,0 ∈ span{ψ1, . . . ,ψn} , An,0 ∈ R3 , Hn,0 ∈ S2 ,

and set cnr(0) = cnr,0 := 〈vn,0,ψr〉, c̃n`(0) = c̃n`,0 := An,0 · e`, and ĉn`(0) = ĉn`,0 := Hn,0 · e`.

Since f, fr,j ∈ CT (R), by Picard theorem, there exists a unique solution, (cnr, c̃n`, ĉn`), to

the Cauchy problem associated to (6.18), (6.19) and (6.20) with cnr, c̃n`, ĉn` ∈ C1(0, T ′),

r = 1, . . . , n, ` = 1, 2, 3, where 0 < T ′ ≤ T . Multiplying both sides of (6.18) by cnr,

summing over r = 1, . . . , n, and noticing that the terms corresponding to drki, grkm, srki and

prkm vanish, we get

1

2

d

dt
‖vn‖2

B +ν ‖∇vn‖2
2 = ρ

[
(I−1 ·An)×An

]
·I−1 ·

∫
C
y×vn −f(t)Hn ·I−1 ·

∫
C
y×vn .

(6.21)
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Next, multiplying both sides of (6.19) by c̃n`, summing over ` = 1, 2, 3, and taking into

account that the terms corresponding to u`ij and w`kj vanish, it follows that

1

2

d|An|2

dt
= f(t)Hn ·An. (6.22)

Finally, multiplying both sides of (6.20) by ĉn` and summing over ` = 1, 2, 3, similarly as

above, we get
d|Hn|2

dt
= 0 , (6.23)

which implies |Hn(t)| = |Hn,0| = 1. Thus, from (6.22) and (6.23) we infer

d|An|
dt

≤ |f(t)| (6.24)

and

|An(t)| ≤ |An,0|+
∫ T

0

|f(τ)| dτ, for all t ∈ [0, T ′), n ∈ N . (6.25)

Moreover, by Poincaré, Schwarz, and Young inequalities, from (6.21) we deduce, on the one

hand,
1

2

d ‖vn‖2
B

dt
+ C1p ‖∇vn‖2

2 ≤ C1|An|4 + C2|f(t)|2, (6.26)

and, on the other hand, using one more time Poincaré inequality in conjunction with (2.28),

1

2

d ‖vn‖2
B

dt
+ C2p ‖vn‖2

B ≤ C1|An|4 + C2|f(t)|2, (6.27)

where Cip = Cip(C, ν) > 0, while Ci = Ci(C,B, ν) > 0, i = 1, 2. Using Gronwall Lemma in

(6.27) furnishes,

exp(C3t) ‖vn(t)‖2
B ≤ ‖vn,0‖

2
B + C1

∫ t

0

exp(C3τ)|An(τ)|4 dτ + C2

∫ t

0

exp(C3τ)|f(τ)|2 dτ

which, by (6.25), implies

|cnr(t)|2 = ‖vn(t)‖2
B ≤ exp(−C3t) ‖vn,0‖2

B + C1 exp(−C3t)

∫ t

0

exp(C3τ)|An(τ)|4 dτ

+ C2 exp(−C3t)

∫ t

0

exp(C3τ)|f(τ)|2 dτ

≤ exp(−C3t) ‖vn,0‖2
B + C4 sup

t∈[0,T ]

|An(t)|4 + C2

∫ T

0

|f(τ)|2 dτ,

(6.28)
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with C3 and C4 positive constants depending, at most, on C, B and ν. As a result, from

(6.23), (6.25), and (6.28) we conclude T ′ = T . In order to build our periodic solution, we

will use a suitable fixed point argument. Let us multiply both sides of (6.19) by ĉn` and sum

over ` = 1, 2, 3, then multiply (6.20) by c̃n` and sum over ` = 1, 2, 3, and finally add the two

resulting equations. We get

d(Hn ·An)

dt
= f(t)|Hn|2 = f(t).

Since f has zero average by assumption, it follows that

Hn,0 ·An,0 = Hn(T ) ·An(T ). (6.29)

Taking the cross product of (6.16)2 by Hn on the left, and then that of (6.16)3 by An on

the left, and summing the two equation so obtained, we deduce

d(Hn ×An)

dt
= ωn × (Hn ×An),

where ωn is given by (6.11). It then follows that

1

2

d|Hn ×An|2

dt
=

1

2

(
d|An|2

dt
− d(Hn ·An)2

dt

)
= 0

where we have also used the fact that |Hn| = 1. From the last displayed equation and (6.29),

we conclude that

|An,0| = |An(T )|. (6.30)

We next fix R1 > 0 and take |An,0| ≤ R1. By (6.30), we obtain |An(T )| ≤ R1. Combining

(6.28) and (6.25), we infer

‖vn(T )‖2
B ≤ exp(−C3T ) ‖vn,0‖2

B + C5

(
|An,0|4 + ‖f‖4

L1(0,T ) + ‖f‖2
L2(0,T )

)
≤ exp(−C3T ) ‖vn,0‖2

B + C5R
4
1 + C6,

(6.31)

where C5 = C5(C,B, ν) > 0, and

C6 := C5

(
‖f‖4

L1(0,T ) + ‖f‖2
L2(0,T )

)
.
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Thus, choosing

R2
2 ≥

C5R
4
1 + C6

1− exp(−C3T )
, (6.32)

from (6.31) we show that if ‖vn,0‖2
B ≤ R2

2, then ‖vn(T )‖2
B ≤ R2

2. Set B := BR2 × BR1 × S2,

where BRi denotes the ball of radius Ri in R3, i = 1, 2. Let Φ : B→ B be the map that takes

any (vn,0,An,0,Hn,0) ∈ B to (vn(T ),An(T ),Hn(T )) ∈ B, where (vn(T ),An(T ),Hn(T )) is

the solution to (6.16) at time T . By a straightforward calculation (see e.g. [37]), one shows

that Φ is continuous. Moreover, Φ is homotopic to the identity by the following homotopy

H : B× [0, 1]→ B

H(vn,0,An,0,Hn,0, s) := (vn(sT ), sAn(T ) + (1− s)An(0),Hn(sT )).

Notice that H is well defined, since by similar calculations which lead to the estimate (6.32),

we show that vn(sT ) ∈ BR2 for all s ∈ [0, 1].2 Since the Euler characteristic of B is given by

χ(B) = χ(BR2)χ(BR1)χ(S2) = 1 · 1 · 2 6= 0

(see [7]), by the Lefschetz-Hopf fixed-point theorem (see [7, Chapter IV, Section 23], ), Φ has

at least one fixed point, from which it follows that there exist (vn,0,An,0,Hn,0) such that

the solution to (6.16), (vn,An,Hn), starting from (vn,0,An,0,Hn,0) satisfies

vn(·, T ) = vn,0(·), An(T ) = An,0, Hn(T ) = Hn,0.

Now, multiplying (6.16)1 by ξ ∈ C∞T (R) and integrating over [0, T ], we show that vn satisfies

the following∫ T

0

[
〈vn,ψr〉+An · I−1 ·

(∫
C
y ×ψr

)]
dξ(t)

dt
dt

=

[
2ρ

∫ T

0

(∫
C
y × vn

)
· I−1 ·

(∫
C
vn ×ψr

)
ξ(t) dt

− 2

∫ T

0

(∫
C
An · I−1 · (vn ×ψr)

)
ξ(t) dt

−
∫ T

0

(vn · ∇ψr,vn)ξ(t) dt− ν
∫ T

0

(∇vn,∇ψr)ξ(t) dt

]
,

(6.33)

2The same argument does not work for An, i.e. the solution map does not necessarily lie in BR1 for all
times t ∈ [0, T ]. This is the reason for which we have used the linear homotopy for the An component.
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for all r = 1, . . . , n, and all ξ ∈ C∞T (R). Likewise, integrating (6.16)2,3 over [0, t], t ∈ [0, T ],

we deduce that An and Hn satisfy

An(t) = An(0)−
∫ t

0

(I−1 ·An)×An dτ + ρI−1 ·
∫ t

0

(∫
C
y × vn

)
×An dτ +

∫ t

0

f(τ)Hn dτ,

(6.34)

and

Hn(t) = Hn(0)−
∫ t

0

(I−1 ·An)×Hn dτ + ρI−1 ·
∫ t

0

(∫
C
y × vn

)
×Hn dτ, (6.35)

respectively. With standard techniques (see [19, Theorem 4.1] for all the details), one can

finally show the existence of subsequences of {vn}n∈N, {An}n∈N and {Hn}n∈N (still denoted

by {vn}n∈N, {An}n∈N, {Hn}n∈N), and functions (v,A,H) such that

v ∈L2(0, T ;H1(C)) ∩ L∞(0, T ;H(C)), A,H ∈ C([0, T ]),

vn→ v strongly in L2(0, T ;H(C)),

vn→ v weakly in L2(0, T ;H1(C)),

vn(t)→ v(t) weakly in L2(C), uniformly in t ∈ [0, T ],

An→ A uniformly in t ∈ [0, T ],

Hn→H uniformly in t ∈ [0, T ].

(6.36)

Since An(0) = An(T ) and Hn(0) = Hn(T ), from (6.36) we can conclude also that A,H ∈

CT . Finally, again employing (6.36) and taking into account the properties of {ψn}n∈N, we

can then pass to the limit in (6.33), (6.34), and (6.35) and conclude that (v,A,H) possesses

all the properties of a periodic weak solution to (6.12). �

Remark 6.1.2. For future reference, we observe that the choice of the radius R1 in the proof

of the previous theorem is completely arbitrary, provided, of course, R2 is taken appropriately

according to (6.32). This follows from the fact that |An(t)| is T -periodic regardless of the

choice of R1; see (6.30).
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6.2 EXISTENCE OF STRONG PERIODIC SOLUTIONS

In this section we will show existence of a strong solution, provided that the data are suffi-

ciently small.

Theorem 6.2.1. Let f ∈ L∞T (R) satisfy (6.8), and assume C of class C2. There is a positive

constant κ = κ(C,B, C, T ) such that if

‖f‖L∞(0,T ) ≤ κ (6.37)

then there exists a periodic weak solution (v,A,H) that, in addition, enjoys the following

properties

v ∈ C([0, T ], L2(C)), ∂v

∂t
∈ L2(0, T, L2(C)), ∇v ∈ L2(0, T ;W 1,2(C)) ∩ C([0, T ], L2(C)),

A ∈ W 1,∞(0, T ;R3) , H ∈ C([0, T ]; S2) ∩W 1,∞(0, T ;R3).

Finally, there is p ∈ L2(0, T,W 1,2(C)), such that (v,A,H , p) satisfies (6.12) almost every-

where in C × [0, T ].

Proof. The last statement is an immediate consequence of classical results about the existence

of the pressure field for Navier-Stokes equations once the above properties of v and A

have been established; see, e.g., [15]. To show the latter we will use the same Galerkin

method employed in the proof of Theorem 6.1.1, the only difference being that this time

we choose as orthonormal base of H(C), again denoted by {ψn}n∈N, the one constituted by

the eigenfunctions of Stokes operator, with corresponding eigenvalues denoted by {λn}n∈N;

see, e.g., [28, Chapter 2., Section 4]. As in the proof of Theorem 6.1.1, we can thus prove

the existence of approximate periodic solutions (vn,An,Hn) satisfying (6.28), (6.25) and

Hn(t) ∈ S2 for all t ∈ [0, T ]. Next, we shall show some further estimates that will lead to

the improved regularity properties of the weak solution stated in the theorem. In the rest

of the proof we shall denote by Ci, i ∈ N, positive constants depending at most on C, B, R2

and T , where R2 is defined in (6.32). Moreover, we set F := ‖f‖L∞(0,T ).
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We begin by considering the magnitude of both sides of (6.17)2 and then use Hölder,

Schwarz, and Young inequalities. Taking into account (2.28), estimates (6.28), (6.25), the

fact that |Hn(t)| = 1, and that |An,0| ≤ R1, we thus obtain∣∣∣∣dAn

dt

∣∣∣∣ ≤ C1 (R2
1 +R1 + F 2 + F ) =: C1DR1,F . (6.38)

Similarly, considering the magnitude of (6.17)3, we show that∣∣∣∣dHn

dt

∣∣∣∣ ≤ C2 (R1 + F + 1). (6.39)

We next multiply (6.17)1 by dcnr/dt and sum over r = 1, . . . , n, to get∥∥∥∥∂vn∂t
∥∥∥∥2

B

+
ν

2

d

dt
‖∇vn‖2

2 = −dAn

dt
· I−1 ·

∫
C
y × ∂vn

∂t
− 2An · I−1 ·

∫
C
vn ×

∂vn
∂t

+ 2ρ

(∫
C
y × vn

)
· I−1 ·

(∫
C
vn ×

∂vn
∂t

)
−
∫
C
(vn · ∇vn) · ∂vn

∂t
.

(6.40)

Let us estimate each term on the right-hand side of this equation. By (6.38), and Cauchy-

Schwarz inequality we have

−dAn

dt
· I−1 ·

∫
C
y × ∂vn

∂t
≤ C3 +D2

R1,F

∥∥∥∥∂vn∂t
∥∥∥∥2

2

. (6.41)

Again by Cauchy-Schwarz inequality and (6.25) we get

−2An · I−1 ·
∫
C
vn ×

∂vn
∂t
≤ C4 + (R1 + F )2

∥∥∥∥∂vn∂t
∥∥∥∥2

2

(6.42)

By the same token, we show

2ρ

(∫
C
y × vn

)
· I−1 ·

(∫
C
vn ×

∂vn
∂t

)
≤ C5

2ε
+ ε

∥∥∥∥∂vn∂t
∥∥∥∥2

2

, (6.43)

and

−
∫
C
(vn · ∇vn) · ∂vn

∂t
≤ 1

2ε
‖vn · ∇vn‖2

2 + ε

∥∥∥∥∂vn∂t
∥∥∥∥2

2

, (6.44)

where ε is an arbitrary positive number. As for the first term on the right-hand side of the

previous inequality, by (5.23),

‖vn · ∇vn‖2
2 ≤ K ‖∇vn‖6

2 + ε ‖vn‖2
2,2 ,
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for arbitrary ε > 0, K = K(C, ε) > 0, and with K → 0 as ε → ∞. Combining the latter

with (6.44) we then conclude

−
∫
C
(vn · ∇vn) · ∂vn

∂t
≤ K1 ‖∇vn‖6

2 + ε
(
‖vn‖2

2,2 +

∥∥∥∥∂vn∂t
∥∥∥∥2

2

)
, (6.45)

where K1 = K1(C, ε) > 0. Taking into account (6.40)–(6.43), the last displayed equation,

and (2.28), from (6.40) we deduce that

[
C−D2

R1,F
− (R1 +F )2−3ε

] ∥∥∥∥∂vn∂t
∥∥∥∥2

2

+
ν

2

d

dt
‖∇vn‖2

2 ≤ C6 +K1 ‖∇vn‖6
2 + ε ‖vn‖2

2,2 . (6.46)

As a result, if we choose ε < C/6 and take R1 ≡ F (see Remark 6.1.2), from (6.46) it follows

that there is a constant κ1 = κ1(C) > 0 such that if

‖f‖L∞(0,T ) ≤ κ1 , (6.47)

then

C

∥∥∥∥∂vn∂t
∥∥∥∥2

2

+ ν
d

dt
‖∇vn‖2

2 ≤ C7 + 2K1 ‖∇vn‖6
2 + 2ε ‖vn‖2

2,2 . (6.48)

Let us handle the term ε ‖vn‖2
2,2. Let us multiply (6.17)1 by λrcnr and sum over r = 1, . . . , n.

Proceding in a way completely analogous to that leading to (6.41)–(6.43), and (6.45), using

also (2.24), we can show that, under an assumption similar to (6.47), the following estimate

holds

‖vn‖2
2,2 ≤ C ‖P∆vn‖2

2 ≤ C8 +K2

(∥∥∥∥∂vn∂t
∥∥∥∥2

2

+ ‖∇vn‖6
2

)
, (6.49)

where K2 = K2(C, µ, ρ) > 0 and C8 depends also on µ. Let us multiply both sides of (6.49)

by 4ε, and then add side by side the resulting inequality and inequality (6.48). If we take ε

sufficiently small we thus arrive at

K3

(
‖vn‖2

2,2 +

∥∥∥∥∂vn∂t
∥∥∥∥2

2

)
+
d

dt
‖∇vn‖2

2 ≤ C9 +K4 ‖∇vn‖6
2 (6.50)

where, Ki = Ki(C, µ, ρ) > 0, i = 3, 4, and C9 depends also on µ. At this point, we observe

the following facts. Recalling that R1 ≡ ‖f‖L∞(0,T ) and that f satisfies (6.47), from (6.32)

we deduce that the radius R2 may be chosen as a function of C, B, C, and T only. As a

consequence, the constant C9 in (6.50) depends only on the same quantities and ρ. In view
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of all the above, from (6.50), we conclude that y := ‖∇vn‖2
2 satisfies the following differential

inequality

y′ ≤ −K3y +K4y
3 + C9

Our next objective is to show that y = y(t) obeys the hypothesis of Lemma 2.3.5 provided f

satisfies a restriction of the type (6.37). To this end, we observe that integrating both sides

of (6.26) between 0 and T and using the T -periodicity of vn, along with (6.25) we show

∫ T

0

‖∇vn(t)‖2
2 dt ≤ k1

(
|An,0|4 + ‖f‖4

L1(0,T ) + ‖f‖2
L2(0,T )

)
≤ k2

(
R4

1 + ‖f‖4
L∞(0,T ) + ‖f‖2

L∞(0,T )

)
≤ k3

(
‖f‖4

L∞(0,T ) + ‖f‖2
L∞(0,T )

)
,

(6.51)

where ki = ki(C,B, C, T ) > 0, i = 1, 2, 3, and in the last step we used the fact that R1 =

‖f‖L∞(0,T ). From (6.51), the integral mean-value theorem, and the T -periodicity of vn we

deduce

‖∇vn(t̄)‖2
2 +

∫ t̄+T

t̄

‖∇vn(t)‖2
2 dt ≤ 2k3

(
‖f‖4

L∞(0,T ) + ‖f‖2
L∞(0,T )

)
, (6.52)

for some t̄ ∈ (0, T ). From (6.52), Lemma 2.3.5 and again the T -periodicity of vn we then

derive that there is κ2 = κ2(C,B, C, T ) > 0 such that if

‖f‖L∞(0,T ) ≤ κ2 (6.53)

it follows

‖∇vn(t)‖2 < δ for all t ∈ [0, T ], (6.54)

where δ > 0 depends also on ‖f‖L∞(0,T ). Moreover, integrating (6.50) over a period, and

taking into account (6.54) we also conclude

∫ T

0

‖vn(t)‖2
2,2 dt+

∫ T

0

∥∥∥∥∂vn(t)

∂t

∥∥∥∥2

2

dt ≤ k4. (6.55)

where k4 = κ4(C,B, C, T ) > 0. Therefore, we conclude that setting κ = min{κ1, κ2}, κ1,

κ2 defined in (6.47) and (6.53), respectively, under the hypothesis (6.37) the approximating

T -periodic solutions (vn,An,Hn) constructed in the proof of Theorem 6.1.1 satisfy, in ad-

dition, the uniform bounds (6.38), (6.39), (6.54) and (6.55).
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As a consequence, the limiting fields (v,A,H) defined through (6.36) satisfy all the proper-

ties stated in the theorem (in particular, the continuity property of ∇v follows from classical

interpolation results; see, e.g., [30, Théorème 2.1]). The theorem is thus completely proved.

�
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