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Bone fractures are an extremely common injury, with over six million occurring each year in the 

U.S. Roughly one third of these fractures require internal fixation devices, such as plates and 

screws, to facilitate bone healing. Traditionally, internal fixation devices have been made with 

permanent metals like titanium alloys, which can cause long-term complications and even 

require surgical removal. To circumvent these problems, resorbable polymeric devices have been 

developed; however their mechanical limitations render them inadequate for many load bearing 

applications. Unlike permanent metals and resorbable polymers, degradable magnesium alloys 

provide a balance of degradation and strength. Recent investigations with magnesium alloys 

have begun demonstrating their promise as orthopedic biomaterials; however, additional work 

remains to fully assess their efficacy. 

For these reasons, we conducted in vivo studies to better understand the biological effects 

of magnesium degradation. To begin, two subcutaneous implant models were developed 

incorporating human stem cells and magnesium implants. Using these models, we measured 

gradual magnesium degradation, and observed human cells and osteogenic protein expression 

around the implant-tissue interface. These results supported subsequent assessments of 

magnesium as fixation plates and screws using an ulna fracture model. With pure magnesium 

devices, we observed gradual implant degradation and fracture healing similar to that of 

clinically-used titanium devices. In addition, we observed abundant new bone formation around 
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the degrading magnesium devices. Interestingly however, when testing faster degrading 

magnesium alloy devices, we observed localized cortical bone loss. This dichotomy in 

observations emphasizes the biological sensitivity to magnesium implants based on their 

degradation rate and composition. Taken together, our results demonstrate preliminary efficacy 

of pure magnesium fixation devices and support their continued development; however, 

additional investigations should be conducted to fully understand the mechanisms of 

magnesium’s effect on bone biology and long-term safety. 
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1.0  INTRODUCTION 

1.1 BONE 

1.1.1 Composition and formation 

Bone is a highly dynamic and complex organ, composed of organic (40% by dry weight, 50% by 

volume) and inorganic (60% by dry weight, 50% by volume) constituents [1-3]. The organic 

portion of bone predominantly consists of a type I collagen matrix. The fibrils of this matrix are 

organized as parallel layered sheets, providing tensile strength and a template for mineralization. 

Also within the matrix are proteoglycans and non-collagenous proteins such as osteocalcin (OC), 

dentin matrix protein 1 (DMP1), and osteopontin (OPN). These proteins are secreted by bone 

forming osteoblast cells and regulate mineralization by facilitating collagen alignment, cell 

adhesion, and hydroxyapatite deposition (data accessible at NCBI GEO database [4, 5].  

Hydroxyapatite serves as the inorganic, mineral portion of bone. As it is deposited into 

the collagen matrix, the tissue hardens and immature bone is formed. Throughout this process, 

many osteoblasts localize at the leading edge of mineralization known as the osteoid layer. In 

addition, some osteoblasts remain within the mineralizing matrix, becoming osteocytes. Though 

these mature bone cells reside in individual lacunae, they are thought to play a role in ongoing 

bone remodeling by communicating with neighboring cells through canaliculi [1, 3]. 
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This ornate bone formation process occurs endlessly, but is balanced by the work of bone 

eroding osteoclasts. These cells dissolve adjacent mineral through acidification by hydrogen ion 

release. In doing so, osteoclasts can tunnel deep into bone, providing an entry way for other cells 

and blood vessels. This delicate balance of osteoblast and osteoclast activity is necessary to 

maintain healthy bone turnover, with perturbations potentially leading to bone diseases like 

osteoporosis and osteopetrosis. 

 

Figure 1. Schematic of bone cells involved in bone formation and resorption [6]. 

1.1.2 Structure 

Macroscopically, two types of bone exist in the adult skeleton: cortical (compact) and trabecular 

(spongey). Cortical bone is highly dense and forms the strong outer edge of mature long bones, 

encasing the bone marrow cavity. This compact bone has a high stiffness and compressive 

strength, facilitating the skeleton’s load bearing capabilities. In contrast, trabecular bone is less 

dense, with a spongey morphology and high surface area to weight ratio. This bone is most 

commonly found in vertebrae, flat bones, and the center and ends of long bones. Though it has a 

lower strength than cortical bone, it contributes to the overall stability of long bones and is 
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thought to remodel in response to mechanical loading. Importantly, trabecular bone serves as a 

reservoir for blood cell producing red bone marrow, as well as stem and osteogenic cells [7]. 

The external surfaces of bone are covered in a non-mineralized periosteum. This 

connective tissue is highly vascularized and contains undifferentiated, pluripotent mesenchymal 

stem cells (MSCs) which may be recruited upon injury to aid in bone healing and remodeling. 

For instance, upon bone fracture, MSCs from an uninjured periosteum can be induced to 

differentiate into chondroblasts, fibroblasts, and osteoblasts to facilitate callus formation and 

fracture union [8]. Furthermore, stem cells from the periosteum play important roles in bone 

formation and growth. 

1.1.3 Growth 

Bone growth can occur through endochondral or intramembranous ossification. Endochondral 

ossification begins with cartilage which becomes the primary site of ossification. Chondrocytes 

within this region undergo hypertrophy while an outer periosteal layer is formed. This periosteal 

layer contains undifferentiated MSCs which later differentiate into osteoblasts and form a boney 

collar. As bone growth perpetuates, chondrocytes cease secreting collagen and proteoglycans and 

begin secreting alkaline phosphatase (ALP). This ALP secretion causes additional mineralization 

of the matrix, which is further remodeled by osteoclasts to form a central medullary cavity for 

bone marrow. As this process continues, the bone is further elongated through endochondral 

ossification at secondary sites within the bone’s epiphyses [9]. This growth mechanism is 

common for weight bearing long bones; however, craniofacial bones undergo growth through 

intramembranous ossification. 
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Unlike endochondral ossification, intramembranous ossification does not involve 

cartilage. Instead, intramembranous ossification begins with a cluster of MSCs which 

differentiate into osteoblasts and secret a matrix of type I collagen. This matrix becomes 

mineralized as previous described, resulting in newly formed bone [9].  

1.1.4 Repair 

When a bone is damaged or fractured, it undergoes three main stages of healing: 1) reactive 

(inflammation), 2) reparative, and 3) remodeling [10].  

 

Figure 2. Phases of bone healing and their relative durations [11]. 

 

During the reactive phase, the injured site experiences blood clotting, inflammation, and 

initiation of debriding bone resorption. In addition, granulation tissue forms. Fibroblasts within 

this tissue, as well as stem cells from the adjacent periosteum and bone marrow, then 

differentiate into chondroblasts and form hyaline cartilage. This cartilage is later replaced with 

bone through endochondral ossification as previously described. In addition, some periosteal 

stem cells differentiate into osteoblasts to form a callus of woven bone over the injured site. 
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Throughout the remodeling stage, the woven bone is transformed into stronger lamellar bone, re-

establishing the bone’s mechanical integrity.  

In addition to repair through endochondral ossification, intramembranous ossification can 

occur when the fracture is subject to low strain (< 2%). For instance, if a long bone fracture is 

stabilized with a rigid internal plating system, the strain on the fractured bone is reduced, 

promoting healing through intramembranous ossification [12, 13]. Similarly, craniofacial bones 

which naturally reside in low load bearing and subsequently low strain environments typically 

repair their fractures via intramembranous ossification. 

1.2 BONE FRACTURE MANAGEMENT 

Despite bone’s sophisticated self-repairing capabilities, nearly one third of all fractures require 

additional support from internal fixation devices to facilitate healing [14]. These devices include 

hardware such as pins, nails, plates, and wires, which are implanted to re-align and stabilize bone 

fragments throughout healing (Figure 3). Traditionally, these devices have been made with 

permanent metals; however, resorbable polymeric devices have also been developed. 

1.2.1 Permanent metal fixation devices 

Currently, permanent metals such as titanium (Ti) alloys are the gold standard material for 

internal fixation devices [15]. These metals were originally selected for their strength and 

biocompatibility, but have been shown to cause long term complications including interference 

with pediatric skeletal growth, pain, tissue irritation, metallosis, infection, wear debris 
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accumulation in the liver and kidney, weakening and necrosis of surrounding bone, and bone re-

fracture [15-18]. To avoid these complications, devices may be removed through a second 

invasive surgery, further increasing patient burden and risk, increasing total procedural costs, and 

draining valuable hospital resources [15, 19]. 

 

Figure 3. Schematic of long bone fracture with fixation plate and screws [20]. 

1.2.2 Resorbable polymer fixation devices 

To circumvent problems associated with permanent implants, resorbable polymers such as 

poly(lactic-co-glycolic acid) (PLGA) have been utilized [21-23]. Although the resorbable 

property of these materials conveys a unique advantage over permanent metals, their mechanical 

limitations render them inadequate for many load bearing applications such as mandibular and 

long bone fixation [15, 24-26]. Additionally, studies have reported long term foreign body 

complications associated with these materials, likely a result of their highly acidic degradation 

products [21-23]. For these reasons, there remains a need to develop novel biomaterials for 

fracture fixation applications. 

1.3 MAGNESIUM ALLOYS 

Unlike permanent metals and resorbable polymers, degradable magnesium (Mg) alloys can 

provide an ideal balance of degradation and strength. In aqueous environments such as the body, 
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Mg alloys degrade through an electrochemical process in which Mg forms a Mg hydroxide 

passivation layer on the surface of the implant, and Mg ion and hydrogen gas are released 

(Figure 4). 

 

Figure 4. Schematic of Mg degradation process in vivo. 

 

In physiological solutions, this process is accelerated by an abundance of chloride ions which 

readily react with Mg hydroxide to form highly soluble Mg chloride. This process disrupts the 

corrosion-protecting oxide layer, enabling pitting corrosion to occur [27]. 

This degradation process can be exploited to produce degradable metallic fixation 

devices which reduce the risk of long term complications and eliminate the need for removal 

surgeries. In addition, device degradation may be advantageous for bone healing. For instance, 

device corrosion may promote bone remodeling by providing a gradually increasing load to the 

healing bone [28]. Furthermore, local alkalization caused by Mg degradation elicits calcium and 

phosphate precipitation which can improve integration with surrounding tissue [26, 28-30]. 

Unlike permanent metal ion generation which can lead to long term infection, Mg ion is one of 

the most abundant cations found naturally in the body, half of which is stored in bone [15, 16, 

31]. Mg ion is a cofactor for hundreds of enzymatic processes and plays a key role in energy 

metabolism. Excess Mg that cannot be stored in bone or muscle is routinely excreted by the 
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kidney, maintaining low levels (1% of total body Mg) of Mg in blood serum and interstitial body 

fluids [32, 33]. 

In addition to these biological advantages, Mg alloys can be developed to have optimal 

mechanical properties for bone fixation. For example, Mg alloys have a low density, high 

fracture toughness, and compressive strength similar to cortical bone ( 

Table 1) [16, 26, 34]. These bone-like properties have the potential to reduce adverse 

stress shielding effects and make Mg alloys suitable for a broad range of clinical applications 

including load bearing fixation. Furthermore, these alloys can be tailored to match desired 

mechanical and degradation properties through variations in composition, processing, and post-

processing techniques [16, 26, 29]. Taken together, Mg alloys have the potential to not only 

support, but enhance fracture healing by providing necessary stability while avoiding 

complications associated with permanent implants. 

 

Table 1. Mechanical properties of craniofacial and orthopedic implant materials and bone [15]. 

Material 
Density 

(g/cm3) 

Elastic Modulus 

(GPa) 

Compressive 

Yield Strength 

(MPa) 

Fracture 

Toughness 

(MPa*m¼) 

Bone 1-2 3-20 130-180 3-6 

Mg Alloys 1-2 41-45 65-100 15-40 

Ti Alloys 4-4.5 110-117 758-1117 55-115 

Stainless Steel 7-8 189-205 170-310 50-200 

1.3.1 Prior work with Mg alloys 

The concept of using Mg for orthopedic applications originated over 100 years ago. These early 

attempts used Mg implants for joint arthroplasty and inspired subsequent work investigating uses 
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as orthopedic fixation plates, pins, nails, and wires. Unfortunately however, these early attempts 

were ultimately unsuccessful clinically due to Mg’s rapid degradation [35]. Researchers 

observed that despite low instances of infection, Mg’s uncontrolled corrosion caused rapid gas 

pocket formation. However, recent advancements have shown that with proper corrosion control, 

Mg alloys may be suitable for many orthopedic and craniofacial applications [30, 36-39]. 

To better understand the biological response to these degrading materials, numerous in 

vitro and in vivo studies have been conducted. Several studies have reported the formation of a 

calcium and phosphate precipitate on degrading alloys. This layer is thought to provide corrosion 

protection, promote cell adhesion, and improve osteointegration and osteoconductivity [15, 16, 

26, 35]. Furthermore, studies assessing Mg rods in bone have shown high mineral apposition 

rates, increased bone mass [26], and enhanced neo-formation of bone tissue [28] surrounding the 

implants. These results suggest that degrading Mg alloys can induce bone cell activation and 

enhance mineralization in vivo. Furthermore, studies assessing Mg alloys in vivo have shown 

good biocompatibility and minimal inflammation for slow and fast degrading alloys alike [26, 

28, 30, 40]. These results demonstrate that many Mg alloys are biocompatible and capable of 

promoting localized bone remodeling. Overall, these studies have begun demonstrating the 

potential for Mg alloys as orthopedic biomaterials.  

1.3.2 Challenges studying Mg alloys 

Despite the rise in recent interest in Mg alloys for medical applications, numerous challenges 

remain studying them in vitro and in vivo. One significant challenge lies in that their degradation 

behavior is highly dependent on their local environment. For example, Witte et al compared the 

corrosion behavior of Mg alloys AZ91D and LAE442 in vitro and in vivo [29]. They observed 
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corrosion rates four orders of magnitude higher in vitro than in vivo. These results showed that in 

vivo corrosion behavior cannot be accurately predicted by traditional indirect in vitro testing, 

such as those outlined by the American Society for Testing and Materials (ASTM) standards. 

Furthermore, in a separate study Witte et al observed differences in Mg screw corrosion 

depending on its local tissue environment in vivo [41]. After implanting Mg alloy AZ31 screws 

into the hip bone of sheep, they observed accelerated corrosion of screw heads (surrounded by 

soft tissue) when compared to screw shafts/threads (surrounded by bone). These studies 

demonstrated the sensitivity of Mg to its immediate local environment and suggested that 

increased fluid flow and chloride ion concentration accelerates corrosion, while passivation layer 

protection decelerates corrosion. 

Due to these complexities, there remains no consistent correlation between in vitro and in 

vivo corrosion behavior and subsequent biological response for Mg alloys. For these reasons, in 

vivo testing is often necessary to provide the most clinically relevant assessments of material 

behavior and biological effect. 

1.4 IN VIVO MODELS FOR MATERIAL AND DEVICE TESTING 

Numerous in vivo models exist for studying novel biomaterials such as Mg alloys. For instance, 

subcutaneous and boney models can provide clinically relevant environments for performing in 

vivo material verification and device validation testing.  
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1.4.1 Subcutaneous model 

The subcutaneous model is commonly used in rodents such as mice and rats to study material 

behavior and biological response, including biocompatibility and toxicity. In this model, 

implants are placed beneath the skin, where they are exposed to a moderate amount of blood 

flow and biological fluids. Alternatively, intramuscular implantation may be performed when 

additional exposure to blood flow is desired [42]. 

Subcutaneous implants often consist of a combination of test materials, scaffolds, cells, 

and/or growth factors. These implants are often tested as regenerative therapies; however, in the 

present dissertation, we use subcutaneous implants to study the in vivo behavior various Mg 

alloys and their effect on an implanted human stem cell population (human bone marrow stromal 

cells, hBMSCs). To do so, we utilize immunocompromised mice. These mice lack a thymus and 

cannot produce T-cells, thus unable to fully develop an acquired immune response (Charles 

River Laboratories, Wilmington, MA). This model, coupled with the naturally 

immunomodulating behavior of MSCs allows us to study the cells after allogenic transplantation 

[10, 43]. 

1.4.1.1 Bone marrow stromal cells 

Bone marrow stromal cells (BMSCs) are multipotent stem cells derived from the stroma of bone 

marrow [44, 45]. In vivo, bone marrow stroma supports local hematopoietic cells by providing 

signaling factors as well as a mechanical support system. In addition, cells within the stroma 

serve as a reservoir of osteogenic progenitors to aid in bone growth and repair [44]. When 

exposed to the appropriate cues, BMSCs can form multiple skeletal tissues including bone, 

cartilage, and fat. Furthermore, large numbers of BMSCs can be readily obtained from relatively 
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small amounts of bone marrow with little variation among bone source [44-47]. For these 

reasons, BMSCs are commonly studied for various hard tissue regeneration applications [48, 49]. 

For instance, poly(glycerol sebacate) (PGS) scaffolds seeded with BMSCs have been used to 

regenerate large segmental defects in rabbit ulna [50]. In addition, autologous BMSCs are being 

tried clinically with scaffolds such as hydroxyapatite, beta-tricalcium phosphate (β-TCP), and 

fibrin glue to treat various bone defects [48, 49]. 

 In the present dissertation, we utilize hBMSCs as a clinically relevant cell population to 

study the effects of in vivo Mg degradation. In order to implant the hBMSCs and maintain them 

around the alloys, we utilize scaffold-based and scaffold-less approaches. 

1.4.1.2 Scaffolds 

Historically, scaffolds have been considered a critical component of tissue engineering by 

providing a three dimensional architecture for cell adhesion and growth, as well as mechanical 

support for load bearing applications. Numerous scaffold materials have been used, each 

uniquely tailored for their specific tissue engineering application. For instance, within the bone 

engineering field, an array of metals, polymers, ceramics, hydrogels, and composites have been 

explored [51]. Typically, these materials are used in concert with cells and growth factors to 

stimulate and/or support tissue growth and regeneration. However, in the present dissertation, we 

utilize scaffolds (without the addition of growth factors) to transplant hBMSCs around Mg alloys 

into subcutaneous pockets in mice. This model allows us to study effects of the degrading alloys 

on the surrounding hBMSC population within an in vivo environment. 
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1.4.1.3 Scaffoldless constructs 

An alternative approach to using scaffolds is to create scaffoldless constructs. Scaffoldless 

constructs can be formed from many cell types by allowing them to produce endogenous matrix. 

The matrix can then be manipulated to form various three dimensional structures such as sheets, 

rods, and spheres [52-55]. This scaffoldless approach has been adopted for various clinical 

applications including regeneration of bone, dentin, skin, and cornea, and has been shown to 

provide several advantages over traditional scaffold-based techniques [55]. For instance, 

scaffoldless constructs allow cells to create a preferred three dimensional architecture, naturally 

optimized for their communication, growth, and survival. In addition, scaffoldless constructs 

eliminate the potential for unwanted scaffold interactions on cell behavior, and can provide an 

abundant cell population without requiring complex cell seeding methodologies [52, 54, 55]. 

 Similar to scaffolds, scaffoldless constructs have predominantly been explored for tissue 

regeneration applications. However, in the present dissertation we explore the potential for these 

constructs to serve as a model for studying the biological response to degrading Mg alloys in 

vivo. With this model, we are able to study the effects of alloy degradation on hBMSCs in vivo 

without the use of scaffolds. 

1.4.2 Ulna fracture model 

The subcutaneous model can provide an adequate environment to study Mg alloys as basic 

materials; however, it is also necessary to assess these metals as functional devices in their 

intended biological setting. For these studies, bone defect models are used [56]. In the present 

dissertation, we utilize rabbit ulna fracture models to assess Mg alloys as fixation plates and 
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screws. These models allow us to examine fixation devices in a semi-load bearing environment, 

studying their degradation and effect on bone healing and new bone formation. 

In the ulna fracture model, an osteotomy (0.5-1 mm thick) is created through the ulna, 

while the adjacent radius is left intact. A fixation device is then secured into the ulna to provide 

fracture alignment and reduction. In this manner, the limb’s load bearing is distributed between 

the uninjured radius and the fractured ulna, providing a semi-load bearing environment for the 

implanted devices. This model is advantageous for testing novel degradable devices; however, 

more mechanically rigorous models can also be pursued. For example, a fracture model in which 

the full thickness of both the radius and ulna are cut would provide a full load bearing 

environment for implanted devices. 
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2.0  SPECIFIC AIMS 

The overall goal of this dissertation is to assess Mg alloys and their preliminary efficacy as bone 

fixation devices in vivo. We hypothesize that Mg alloys can serve as ideal bone fixation device 

materials by providing a unique combination of material degradation and fracture stabilization. 

To test this hypothesis, we will study Mg alloys in vivo as materials as well as fixation devices 

through the following specific aims. 

 

2.1. Specific Aim 1: Develop and assess a 3D model to study Mg alloy degradation and 

effect on human stem cell behavior and differentiation. A 3D model will be developed to 

study alloy degradation and effect on cells and tissue. The model will consist of a collagen 

scaffold seeded with hBMSCs containing a central Mg alloy rod. Scaffolds will be implanted in 

vivo (mouse subcutaneous) and assessed for degradation, mineral formation, and cell localization 

and differentiation using microCT, histology, and immunohistochemistry. Different alloy 

compositions will be compared. We hypothesize that hBMSCs seeded in a collagen sponge will 

provide an efficient system to study Mg alloys in vivo. Furthermore, we hypothesize that Mg 

alloys will undergo gradual degradation, without inhibiting hBMSC localization or effect on 

osteogenic differentiation.  
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2.2. Specific Aim 2: Develop a scaffoldless model from hBMSCs to study Mg alloy 

degradation and effect on human stem cell behavior and differentiation. Scaffoldless 

constructs will be created from hBMSCs and formed around Mg alloys. Constructs will be 

implanted in vivo (mouse subcutaneous) and assessed for degradation, mineralization, and cell 

localization and differentiation using microCT, histology, and immunohistochemistry. We 

hypothesize that scaffoldless constructs will provide an efficient model to study Mg alloys while 

eliminating the potential for scaffold interference. 

 

2.3. Specific Aim 3: Develop and assess novel degradable Mg fixation plates and screws in a 

semi-load bearing fracture model. Fixation devices will be developed to stabilize ulna 

fractures in rabbits. Preliminary device efficacy will be assessed by degradation, fracture healing, 

and new bone formation. Commercially available pure Mg, a novel Mg alloy, and clinically-used 

Ti devices will be compared. We hypothesize that in the presence of ongoing degradation, Mg 

fixation devices will provide adequate fracture reduction and facilitate physiological healing. 
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3.0  AN IN VIVO MODEL TO ASSESS MAGNESIUM ALLOYS AND THEIR 

BIOLOGICAL EFFECT ON HUMAN BONE MARROW STROMAL CELLS 
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3.2 ABSTRACT 

Magnesium alloys have many unique qualities which make them ideal candidates for bone 

fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy 

production and research, there remains no standardized system to assess their degradation or 

biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model 
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to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a 

collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg 

alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after 8 weeks. 

Alloy degradation and biological effect were determined by microcomputed tomography 

(microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater 

volume loss for pure Mg compared to AZ31 after 8 weeks in vivo. Histological analysis showed 

that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, IHC showed the 

expression of DMP1 and OPN around both pure Mg and AZ31 with implanted hBMSCs. In 

addition, histological sections showed a thin mineral layer around all degrading alloys at the 

alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants 

are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results 

demonstrate that this model can be used to efficiently assess the biological effect of corroding 

Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell 

types and clinical applications. 

3.3 INTRODUCTION  

Each year, there are approximately six million bone fractures in the United States, often 

requiring the use of fixation devices to facilitate healing [58]. Traditionally, bone fixation 

devices have been made with permanent metals such as Ti alloys. Unfortunately, these materials 

can cause numerous long term complications and may ultimately require removal through a 

second surgery [15, 17, 59-62]. To circumvent these issues, resorbable polymers have been 

developed [63]; however, their lack of mechanical stability has rendered them inadequate for 



 19 

many load bearing applications such as mandibular and long bone fixation [64]. In addition, 

composite materials such as hydroxyapatite or bioglass contained polyetheretherketone (PEEK) 

are under development [65]; however, long term foreign body reactions to resorbable polymers 

have been reported [66-68]. For these reasons, there remains a need to develop novel materials 

for fracture fixation applications. 

Unlike permanent metals and resorbable polymers, degradable Mg alloys can provide an 

ideal balance of degradation and strength. Mg alloys are biocompatible [26, 40, 69-72], have 

initial strength and mechanical properties similar to bone [15], and have demonstrated good 

osteointegration [73, 74]. Furthermore, studies have shown that Mg2+ (herein referred to as Mg 

ion) a product of Mg degradation, may enhance bone formation [15, 26, 75]. For example, a 

recent study by Yoshizawa et al highlighted the connection between Mg ion and signaling 

pathways involved in bone formation, emphasizing the potential for these materials in 

craniofacial and orthopedic applications [76]. For these reasons, numerous Mg alloys are being 

developed; however, to our knowledge there is no method described in the literature to assess 

Mg alloy degradation and their cytotoxic or osteogenic behavior on human cells in vivo.   

Traditionally, alloy corrosion has been studied with in vitro systems; however, in vitro 

corrosion is often not indicative of in vivo behavior [77-79]. Similarly, the biological effect of 

degrading Mg alloys is often tested in vitro through direct or indirect assays. Unfortunately, these 

systems are usually not suitable for studying long term effects. Furthermore, the observed in 

vitro cellular response may vary significantly from in vivo tissues [69, 78]. For these reasons, we 

have established a new system to study Mg alloys and their biological effect in vivo.   

Although this work focuses on the effect of Mg alloys on hBMSCs, this model system 

could be adapted for other cell types and clinical applications. Previous studies have compared 
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the cellular reaction of cell line (human osteosarcoma cell line MG63) and primary cultured cells 

(human umbilical cord perivascular cells HUCPV) to Mg alloys. Results showed a significant 

difference in biological response between these cell types, emphasizing that primary cells should 

be used for more clinically relevant analyses [80]. Furthermore, hBMSCs have shown to form 

bone tissue in vivo when transplanted with certain biomaterials, such as hydroxyapatite [81], silk 

scaffold [82], collagen sponge [83], or even cell sheets without scaffold [54]. For these reasons, 

we identified hBMSCs as an ideal cell population to study the biological effects of Mg alloys for 

orthopedic and craniofacial bone regeneration. 

To maintain hBMSCs around Mg alloys, a commercially available collagen sponge 

(Infuse® Bone Graft), without additional growth factors, was used as a scaffold (although other 

biocompatible scaffold could be used). Cells were pre-seeded in the sponge and transplanted 

with Mg rods into subcutaneous pockets of immunocompromised mice. We hypothesized that 

this model would allow us to closely study the effect of alloy degradation on cell behavior and 

osteogenic differentiation. Importantly, these observations allow us to make informed 

conclusions regarding alloy potential for craniofacial and orthopedic applications.  

3.4 MATERIALS AND METHODS 

3.4.1 Cell culture 

Human bone marrow cells were provided by Dr. Albert Donnenberg (University of Pittsburgh) 

as previously described [84]. All procedures were approved by the University of Pittsburgh 

Committee on Research Involving the Dead. Cells were plated at 4x105 /cm2 on plastic culture 
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dishes, and colony forming cells were collected and used as hBMSCs. These cells were 

characterized for CD105, CD73, CD34, CD90, CD117, CD133, CD45, and CD44 expression by 

FACS analysis, and cultured in 20% fetal bovine serum (Atlanta Biologicals, Flowery Branch, 

GA) contained α-minimal essential medium (α-MEM, Life Technologies, Grand Island, NY) 

with 1% penicillin and streptomycin (Life Technologies, Carlsbad, CA) and 1% L-glutamine 

(Life Technologies). Cells were subcultured to passage 4, and 6x106 cells per sample were 

prepared for implantation.   

3.4.2 Scaffold and alloy preparation 

Collagen sponges (Infuse® Bone Graft, Medtronic, Minneapolis, MN) were cut into 7x7x3 mm 

cubes, and a central hole for the Mg alloy was punched using a 3 mm diameter Dermapunch™ 

(Figure 5). The collagen sponges were soaked in culture medium, blotted dry with filter paper, 

and immediately transferred to cell containing medium at 37ºC for 30 minutes to facilitate cell 

adhesion. Two types of Mg alloys were assessed in this study, 99.9% pure Mg and AZ31 (3% Al 

and 1% Zn; Goodfellow, Coraopolis, PA). Alloys were machined as 3x3 mm cylinders, heat 

treated at 205°C for 1.5 hours, and furnace cooled. Alloys were then washed by sonication in 

pure acetone and ethanol for 10 minutes each, and sterilized under UV light for 2 hours on all 

sides. All alloys were kept sterile until implantation. Mg alloys with collagen sponges without 

hBMSCs were similarly prepared and used as controls. 
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Figure 5. Schematic of scaffold containing collagen sponge with Mg rod and hBMSCs. 

Schematic shows degradation of Mg causing Mg ion release into surrounding scaffold and cell population. 

3.4.3 Surgical procedure 

All protocols for animal experiments were approved by the Institutional Animal Care and Use 

Committees at the University of Pittsburgh. Eight to ten week old immunocompromised mice 

(BALB/C nude) were purchased from Charles River Laboratories International (Wilmington, 

MA). A 2 cm central dorsal incision was made and subcutaneous pockets were created by blunt 

dissection. Samples were transplanted into individual pockets and incisions were closed with 

surgical clips. Samples were harvested after 8 weeks, dissected with surrounded tissue, and 

formalin fixed for subsequent analysis. 

3.4.4 MicroCT 

Mg alloys were scanned by microCT (VivaCT 40, Scanco Medical AG, Brüttisellen, 

Switzerland) before implantation and after dissection. Scans were performed at 55 kV, 72 μA, 

with an integration time of 139 ms (10.5 μm isotropic voxel). After scanning, alloys were 

segmented from background and soft tissue using adaptive thresholding as previously described 
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[85, 86]. Thresholds were defined for each sample based on distinct density differences between 

the Mg alloy and surrounding soft tissue. VivaCT 40 software was then used to analyze alloy 

morphology and quantify volume. 

3.4.5 Histological assessment 

Dissected samples were embedded in Technovit 9100 New® (Heraeus Kulzer, Hanau, Germany), 

allowing sectioning of alloys and mineralized tissue without decalcification. Samples were 

sectioned at 6-8 μm and stained with Hematoxylin and Eosin, von Kossa, and Alizarin Red. 

hBMSCs were identified by in situ hybridization using human specific Alu probe with In Situ 

Hybridization and Detection Kit (Rembrandt, Amsterdam, Netherland) according to 

manufacturer’s instruction. Bone protein expression was analyzed by IHC using primary 

antibodies against human and mouse DMP1 (SC-6551, Santacruz, Santa Cruz, CA) and human 

and mouse OPN (SC-10593, Santacruz) with IgG Alexa Fluor® 594 secondary antibody (Life 

Technologies, Carlsbad, CA). Bright field and fluorescent images were obtained using a Nikon 

Eclipse TE2000-E microscope (Nikon Instruments, Melville, NY). The inflammation in the 

surrounding tissue of transplants was analyzed by a pathologist. 

3.4.6 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 19 (IBM, Armonk, NY). Alloy 

volume loss was compared between material groups (n=4 per group) using a Student’s t-test. 

Graphical representations reflect mean ± standard deviation. 
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3.5 RESULTS 

3.5.1 Mg degradation behavior 

Four samples of each alloy were scanned by microCT before implantation and after 8 weeks to 

quantify volume changes due to corrosion in vivo. MicroCT 3D reconstructions showed that both 

pure Mg and AZ31 underwent pitting corrosion; however, pure Mg samples showed larger voids 

(<0.2 mm diameter) (Figure 6 A). Alloy volume quantification showed significantly greater 

volume loss for pure Mg compared to AZ31 after 8 weeks in vivo (Figure 6 B). Pure Mg 

degradation yielded a net decrease in volume of 1.4 mm3, while AZ31 yielded a net decrease of 

0.5 mm3.  

 

Figure 6. MicroCT showing volume loss of pure Mg and AZ31 after 8 weeks. 

MicroCT 3D renderings and volume quantification show significantly greater volume loss for pure Mg 

compared to AZ31 after 8 weeks in vivo. MicroCT reconstructions show corrosion of pure Mg and AZ31 

after 8 weeks (A). Net volume loss was quantified from reconstructed volumes before implantation and after 8 

weeks in vivo (B). Averages presented as mean values ± standard deviations (* p < 0.05). Scale bars are 1 mm. 
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3.5.2 Biological response to implant degradation 

Mg alloys and surrounding tissue were embedded in Technovit 9100 New®. Blocks were 

sectioned perpendicular to the long axis of the Mg rod for visualization of the alloy-tissue 

interface. Most Mg alloy sections were not retained during the sectioning or staining processes; 

however, their original location remained clearly visible and has been indicated with asterisks 

throughout. Hematoxylin and Eosin (H&E) staining showed normal tissue morphology and 

cellularity around all Mg alloys (Figure 7 A-D). 
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Figure 7. H&E and in situ hybridization showing cellularity around Mg alloys. 

H&E stained sections of pure Mg and AZ31 with hBMSCs (A & B) and without hBMSCs (C & D) show cell 

localization around implants. In situ hybridization with human specific Alu probe on pure Mg (E) and AZ31 

(F) identifies human cells within the surrounding cell population. hBMSCs were observed directly 

surrounding Mg alloys, within fibrous tissue. * indicates implant location. Scale bars are 100 µm.   

 

An appropriate inflammatory response was observed for all samples, including fibrous capsule 

formation (Supplemental Figure 1). For pure Mg, a mixture, but predominately low intensity 
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inflammatory infiltrate comprised of predominately lymphocytes, plasma cells, and macrophages 

was seen. For AZ31, a low to moderate intensity inflammatory infiltrate comprised of a mixture 

of predominately lymphocytes, plasma cells, and macrophages was seen. No multinucleated 

giant cells were seen in sections analyzed. hBMSCs were identified by in situ hybridization 

using human specific Alu probe, and were observed surrounding and often directly in contact 

with the Mg alloys (Figure 7 E-F). hBMSCs appeared flat and formed multiple layers around the 

alloys. 

Mineral formation was analyzed by von Kossa and Alizarin Red. In all samples, a thin (5-

20 μm) layer containing calcium and phosphate was present at the alloy-tissue interface (Figure 

8). In some samples, this mineral layer appears separated from surrounding tissue due to 

sectioning artifact caused by the separation of the Mg alloy during sectioning. 

 

Figure 8. Alizarin Red and von Kossa staining showing mineral around Mg alloys. 

Alizarin Red staining of pure Mg and AZ31 with hBMSCs (A & B) and without hBMSCs (C & D), and von 

Kossa staining of pure Mg and AZ31 with hBMSCs (E & F) and without hBMSCs (G & H) reveal a calcium 

and phosphate rich layer at the alloy-tissue interface. * indicates implant location. Scale bars are 100 µm. 
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3.5.3 Osteogenic protein expression around Mg 

Osteogenic protein expression was analyzed by IHC. For alloys implanted with hBMSCs, DMP1 

(Figure 9) and OPN (Figure 10) expression was observed a short distance (~100 μm) from the 

alloy-tissue interface. In contrast, for alloys implanted without hBMSCs, no bone marker protein 

expression was observed. Although no quantitative analysis was performed, the AZ31 group 

appeared to have slightly higher expression of DMP1 and OPN. 

 

Figure 9. Immunofluorescent staining showing DMP1 expression around Mg alloys. 

DMP1 expression was observed a short distance from the alloy-tissue interface for pure Mg and AZ31 

samples with hBMSCs. DMP1 expression was not observed around alloys implanted without hBMSCs. * 

indicates implant location. Scale bars are 100 µm. 
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Figure 10. Immunofluorescent staining showing OPN expression around Mg alloys. 

OPN expression was observed a short distance from the alloy-tissue interface for pure Mg and AZ31 samples 

with hBMSCs. OPN expression was not observed around alloys implanted without hBMSCs. * indicates 

implant location. Scale bars are 100 µm.   

3.6 DISCUSSION 

Due to their unique combination of biocompatibility, degradation, and mechanical strength, Mg 

alloys are being studied for numerous craniofacial and orthopedic applications. As an increasing 

number of alloys are created, there is a growing need to develop a model to assess the biological 

effect of alloy degradation on human cells in a cost efficient rodent model. Importantly, studies 

have shown that many traditional in vitro assays cannot accurately predict in vivo behavior [77-

79], suggesting that an in vivo assessment model is necessary. 

In the current study, we used commercially available 99.9% pure Mg and AZ31 to 

elucidate appropriate analysis methods for Mg alloys. AZ31 contains 3% Al and 1% Zn, and was 
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originally produced to improve corrosion resistance for industrial applications. However, its 

corrosion resistance and biocompatibility suggests its promise as a candidate biomaterial for 

bone fixation [70]. Although, excess amounts of Al have shown to be toxic and associated with 

neurological disorders [87], recent in vivo studies using sheep suggest that the amount of Al 

released by degrading AZ31 bone fixation screws is within the safe range [88]. For this reason, 

we identified AZ31 as an appropriate slow degrading alloy to compare with faster degrading 

pure Mg.  

To begin assessing the implanted alloys, we evaluated in vivo corrosion behavior. 

Currently, several methods are used to study alloy corrosion in vitro and in vivo, including 

weight measurements [78, 89]. This method is largely destructive, requiring surrounding tissue 

and corrosion products to be chemically removed, therefore inhibiting the ability to study 

corrosion product production or the alloy-tissue interface. For these reasons, we chose to use 

high resolution microCT to study changes in alloy volume [78, 85]. To do so, net alloy volume 

change was observed visually and quantified. Our data show that pure Mg rods underwent 

significantly greater volume loss than AZ31 after 8 weeks in vivo. Interestingly, it was 

previously reported that the corrosion rate of 99.99% pure Mg and AZ31 are similar in a rat 

subcutaneous implant model (99.99% pure Mg: 0.221 mm/year, and AZ31: 0.223 mm/year after 

21 days) [90]. This suggests a significant difference in the degradation behavior of 99.9% and 

99.99% pure Mg; with 99.9% Mg degrading faster than highly pure 99.99% Mg in vivo. This 

difference in corrosion rate is likely attributed to microgalvanic corrosion acceleration caused by 

impurities in the 99.9% pure material [91].   

Both pure Mg and Mg alloys are prone to localized pitting corrosion [78, 91]. During 

degradation, a thin corrosion resistant layer forms on the alloy surface; however this layer is 
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easily disrupted due to Mg’s reactivity with chloride in the body. Disruption of this layer allows 

corrosion to perpetuate, causing surface particles to break off. This localized corrosion spreads 

across the alloy surface and may eventually cover the entire alloy [91]. This type of corrosion 

changes the shape of alloys in vivo, and subsequently affects their mechanical properties. This 

corrosion behavior, along with hydrogen-assisted cracking and transgranular cracking could 

ultimately cause Mg alloy fracture [92]. For these reasons, understanding alloy corrosion 

behavior is crucial while studying Mg alloys for load-bearing devices. Preference should be 

given to alloys which display corrosion behavior most similar to surface corrosion, thereby 

avoiding premature catastrophic device failure.  

Another key characteristic of degrading alloys is their biological effect. Traditionally, the 

biological effect of Mg alloys has been studied in vitro by seeding cells directly on Mg alloys 

[69-71]. However, cells often behave differently in vivo due to protein deposition, long term 

material exposure, and changes in extracellular matrix [77]. In addition, the degradation rates of 

Mg alloys vary in vitro and in vivo. For these reasons, in vivo models are often preferred, such as 

calvarial or femoral defects [93, 94]. These functional models allow assessments of biological 

responses such as bone regeneration and osseointegration; however, they are typically limited to 

accommodating a small number of implants per animal, and do not allow us to analyze effects on 

clinically relevant human cells.  

In contrast, our subcutaneous model described herein utilizes a commercially available 

collagen sponge seeded with hBMSCs and a central Mg rod. Collagen sponges have been used 

for bone regeneration for decades due to their excellent biocompatibility, cell infiltration 

capacity, and degradation property [95-97]. In this study, the collagen sponge served as an ideal 

carrier to maintain cells around degrading alloys. We recognize that this model cannot fully 
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replicate a functional model (such as those previously described) due to variations in local tissue 

environment and subsequent Mg alloy corrosion rate; however, it provides many advantages to 

traditional tissue culture methods. In addition, it utilizes a relatively inexpensive lower rodent 

model while facilitating clinically relevant assessments of the effect on human cells. 

Since Mg alloys exhibit potential as bone fixation devices, we have chosen to study the 

effect of their degradation on hBMSCs. Specifically, we have focused on assessing 

mineralization and osteogenic differentiation of cells surrounding the alloys. In situ hybridization 

and histological sections showed that hBMSCs and host cells remained around the degrading 

implants, demonstrating the efficacy of this model as a relatively low cost approach to assessing 

hBMSCs in vivo. 

Around the alloys, detailed histologic analysis revealed a low to moderate local 

inflammatory response, as has been similarly shown with other degradable Mg alloys [40], 

including fibrous capsule formation. In addition, von Kossa and Alizarin Red staining identified 

a calcium and phosphate rich layer surrounding all samples. This observation is consistent with 

several other reports of mineral formation around degrading Mg alloys [26, 70-72, 98]. In the 

present study, this mineral layer was observed around all alloys, suggesting there was no effect 

of the implanted hBMSCs on this mineral layer formation. Interestingly however, we did observe 

differences in bone marker protein expression based on the presence of hBMSCs. IHC of 

established bone marker proteins DMP1 and OPN showed expression surrounding degrading 

alloys implanted with hBMSCs. Since no bone protein expression was observed in samples 

without hBMSCs, we speculate that these proteins are either secreted from hBMSCs or hBMSCs 

influenced secretion of these proteins from host mouse cells. Interestingly, protein expression 

was observed approximately 100 μm away from the Mg implants. This expression pattern could 
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suggest that as the Mg alloys degraded, a gradient of Mg ion was diffused into surrounding 

tissue. Based on our previous in vitro study, we hypothesize that this gradient stimulated the 

cells’ osteogenic activity when it reached a certain, optimal concentration [76]. These findings 

might also explain the higher expression of proteins around AZ31 (slower corroding) compared 

to pure Mg (faster corroding). 

3.7 CONCLUSION 

In this study, we have developed and tested a novel model to study the biological effect Mg 

alloys on human cells in a mouse model. We have demonstrated the effectiveness of our model 

in assessing Mg alloys based on their degradation behavior and subsequent biological effect on 

both host tissue and implanted hBMSCs in vivo. These data will allow us to more accurately 

identify Mg alloys which are well suited for bone fixation devices. Uniquely, this model may 

also be tailored to analyze the biological effect of Mg release from alloys on various cell types. 
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4.0  A SCAFFOLDLESS MODEL TO ASSESS DEGRADABLE MAGNESIUM 

ALLOYS IN VIVO 
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4.2 ABSTRACT 

Recent investigations have revealed promise for Mg alloys as orthopedic biomaterials. As new 

alloys are developed, a model is needed to assess their degradation behavior and effect on cells 

and tissue in vivo. Previously, we have developed and tested a scaffold-based model for 

assessing Mg alloys in rodents subcutaneously (“An in vivo model to assess magnesium alloys 

and their biological effect on human bone marrow stromal cells”). This model utilized a collagen 

sponge to maintain human stem cells around central Mg implants. As such, we were able to 

assess Mg degradation and effect on the implanted human cells. However, this model required a 
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collagen scaffold which has the potential to influence cell behavior. For this reason, we have 

refined our scaffold-based model to incorporate scaffoldless constructs. 

Scaffoldless constructs were formed from hBMSCs and wrapped around Mg rods. These 

constructs were then implanted into mice subcutaneously and assessed after 4 and 8 weeks. 

MicroCT analysis showed gradual Mg volume loss overtime with surface corrosion product 

formation. The rate of Mg corrosion was shown to decrease in rate overtime, likely a result of 

surface passivation. Histological staining as well as SEM and EDX identified Mg, Ca, and P 

within the corrosion layer. Adjacent to this layer, both mouse and human cells were identified 

after 4 and 8 weeks. Interestingly, immunohistochemistry revealed OC and OPN expression 

around the degrading Mg implants in all groups. These results suggest that the Mg degradation 

and/or corrosion product formation affected cell behavior and triggered osteogenic protein 

secretion. Additional work is needed to fully understand the mechanism of this effect; however, 

this study shed important light on the potential role of the corrosion layer in the biological effect 

of Mg implants in vivo. 

4.3 INTRODUCTION 

Due to their desirable combination of mechanical strength, in vivo degradation, and 

biocompatibility, Mg alloys are being extensively studied for various clinical applications 

including bone fixation. In turn, numerous alloys are being developed to meet application-

specific mechanical and degradation behavior needs. Traditionally, in vitro tests have been used 

to evaluate novel materials; however, studies have demonstrated a mismatch between in vitro 

and in vivo behavior for Mg alloys [29, 77, 99]. For these reasons, in vivo testing is often desired 



 36 

to provide a more clinically accurate representation of Mg alloy behavior and associated host 

response.  

Previously, we established a model for assessing Mg alloys which consisted of Mg rods 

within a collagen sponge seeded with hBMSCs [57]. Using this model, we studied the effects of 

Mg degradation on the surrounding human cell population through microCT and histology. This 

model served as an effective method of studying Mg alloys for bone fixation and could be 

adapted to accommodate other materials and clinical applications. However, one drawback of 

this approach is that it requires the use of a scaffold to maintain human cells around the Mg 

implants. Though scaffolds are commonly used in regenerative medicine, they may not be ideal 

for studies assessing the cellular response to a test material since the introduction of a scaffold 

can cause unwanted complications. For instance, scaffolds have the potential to influence cell 

behaviors such as survival, migration, and differentiation [100-103]. In addition, scaffolds can 

pose further complications due to difficulty achieving efficient cell seeding [104-108]. Since our 

focus is to assess the response of the surrounding cell population, it is critical that ample cell 

seeding is achieved. 

To circumvent these potential complications, a scaffoldless approach can be used. This 

method eliminates the use of a scaffold by allowing cells to form their own 3D structures and 

maintain a more biomimetic environment with enhanced cell-cell communication and 

extracellular matrix production. In addition, scaffoldless constructs can remodel freely without 

inhibition by a scaffold material. Furthermore, scaffoldless constructs eliminate the risk of carrier 

interaction on cell behavior or potential toxicity from scaffold degradation products [55]. For 

these reasons, scaffoldless constructs are being used for numerous research applications, 

including bone tissue engineering [52].  
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In the present study, we have refined our previously described model to eliminate the use 

of a cell carrier and alternatively allow hBMSCs to form scaffoldless constructs. We have 

engineered these constructs to be wrapped around Mg alloys, enabling contact between the cells 

and degrading Mg. We hypothesize that this method will allow us to study Mg alloys for bone 

fixation, including their in vivo degradation behavior and effect on a clinically relevant human 

stem cell population. Furthermore, we view this scaffoldless approach as a platform model which 

can be tailored to accommodate alternative test materials and cell types. 

4.4 MATERIALS AND METHODS 

4.4.1 Magnesium implants 

Commercially available 99.9% Mg (Goodfellow, Coraopolis PA) was used for this study. Mg 

implants were machined as 3 x 3 mm rods and subsequently cleaned by sonicated washes in 

acetone and ethanol, followed by gamma sterilization (2 x 106 cGy, 23.5 Gy/min, cesium 137 

source, Mark I 68, JL Shepherd and Associates, San Fernando, CA). 

4.4.2 Scaffoldless construct formation 

Human bone marrow stromal cells were obtained from the Tulane Center for Gene Therapy / 

Institute for Regenerative Medicine at Scott & White. Cells were expanded according to the 

provider’s recommendations and used to form scaffoldless constructs as previously described 

[52, 54]. Cells were cultured in 10 cm dishes with αMEM (Life Technologies, Grand Island, NY) 
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with 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA), 1% penicillin and 

streptomycin (Life Technologies, Carlsbad, CA), and 1% L-glutamine (Life Technologies) until 

confluent sheets were formed. Cell sheets were then carefully detached from the dishes using a 

cell scrapper and gentle agitation. Cell sheets were wrapped around sterile Mg rods (Figure 11) 

and kept in cell culture medium until implantation. Mg rods without scaffoldless wrappings were 

also prepared and used as controls. 

 

Figure 11. Schematic of scaffoldless constructs with Mg rod. 

As the central Mg alloy degrades, the surrounding cell population (within the scaffoldless sheets as well as 

surrounding host tissue) is exposed to Mg degradation products such as Mg ion. 

4.4.3 Surgical procedure 

All protocols for animal experiments were approved by the University of Pittsburgh’s 

Institutional Animal Care and Use Committees. Eight to ten week old immunocompromised 

mice (BALB/C nude) were used for this study (Charles River Laboratories International, 

Wilmington MA). A 2 cm central dorsal incision was made and subcutaneous pockets were 

created by blunt dissection. Constructs were transplanted into individual pockets and the incision 

was closed with sutures. Animals were euthanized 4 and 8 weeks post-operative for further 

analysis. 
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4.4.4 MicroCT 

MicroCT was used to study Mg degradation. Rods were scanned prior to implantation and after 4 

and 8 weeks post-operative with a VivaCT 40 (Scanco Medical AG, Brüttisellen, Switzerland, 

10.5 μm voxel, 55 kVp, 72 μA). In addition, live animal scanning was performed every 2 weeks 

(30 μm voxel, 70 kVp, 114 μA). Using Scanco software, Mg alloys were segmented from 

surrounding soft tissue based on distinct density differences, and 3D renderings were created 

showing alloy morphology. Some samples (n=4 per group) were also scanned with a SkyScan 

1172 (Bruker-MicroCT, Kontich, Belgium, 6.9 μm voxel, 59 kVp, 167 μA) after 4 and 8 weeks 

to quantify degradation as previously described [109, 110]. High resolution and contrast allowed 

underlying Mg and surface corrosion product volumes and surface areas to be quantified 

separately using Skyscan CTAn software. These volume and surface area values were then used 

to calculate the corrosion rates of both materials from 0 to 4 weeks, and 4 to 8 weeks. 

4.4.5 Histological assessment 

Dissected samples were formalin fixed and embedded in Technovit 9100 new® (Heraeus Kulzer, 

Hanau, Germany). Samples were sectioned at 7-10 μm and stained with Hematoxylin and Eosin, 

von Kossa, and Alizarin Red. Human cells were identified by in situ hybridization using human 

specific Alu probe with In Situ Hybridization and Detection Kit (Rembrandt, Amsterdam, 

Netherland). Furthermore, bone protein expression was analyzed by IHC with primary antibodies 

against OC (sc-30044, Santacruz, Santa Cruz, CA) and OPN (sc-10593, Santacruz, Santa Cruz, 

CA), with Alexa Fluor® 488 and 594 secondary antibodies (Life Technologies, Carlsbad, CA). 
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Bright field and fluorescent images were obtained for analysis (Nikon Eclipse TE2000-, Nikon 

Instruments, Melville, NY). 

4.4.6 Scanning electron microscopy and energy dispersive x-ray spectroscopy 

One sample per group underwent scanning electron microscopy (SEM, JEOL JSM-6610, JEOL 

Ltd., Tokyo, Japan) and energy dispersive x-ray spectroscopy (EDX, EDAX Genesis, Mahwah, 

NJ) to further assess the formation and elemental composition of the corrosion layer. For each 

sample, three separate areas containing corrosion layer around the alloy-tissue interface were 

studied on three separate histological sections.  

4.4.7 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 19 (IBM, Armonk NY). For 

degradation assessments, Mg volumes were compared across time points (0, 4, and 8 weeks) 

using ANOVA and Students t-tests (n=4 per time point). For corrosion rate assessments, samples 

were compared between two time frames (0 to 4 weeks and 4 to 8 weeks) using Student’s t-test. 

All graphical representations reflect mean ± standard deviation. 
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4.5 RESULTS 

4.5.1 Mg degradation behavior 

The in vivo degradation of 99.9% Mg was evaluated with microCT. In general, remaining Mg 

volume was reduced over time while corrosion product was formed at the surface (Figure 12). 

Based on Mg volume loss, corrosion rates were calculated to be 0.63 ± 0.21 and 0.60 ± 0.02 

mm/yr for 0 to 4 weeks and 4 to 8 weeks, respectively. A Student’s t-test revealed a significant 

decrease in corrosion rate over time (Figure 13). 

 

Figure 12. MicroCT showing Mg degradation overtime. 

Medium resolution scans (30 μm voxel) were performed and 3D volumes were generated to visualize 

corrosion (A). High resolution scans (10.5 μm  voxel) were performed before implantation and after 

explantation. Areas of Mg and corrosion product were quantified separately. 
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Figure 13. Corrosion rates of Mg overtime. 

Corrosion rates were determined from microCT volume loss quantifications from 0 to 4 weeks and 4 to 8 

weeks (* p=0.016). 

4.5.2 Corrosion layer formation 

Corrosion layer formation surrounding the alloys was first evaluated with Alizarin Red (Figure 

14) and von Kossa (Figure 15) stainings. These stainings revealed a Ca and P rich layer 

surrounding all degrading materials. This layer was also observed by microCT as a lower density 

ring at the periphery of the Mg alloys. In addition, SEM and EDX revealed the presence of Ca, P, 

and Mg within the corrosion layer of all degrading alloys (Figure 16). 
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Figure 14. Alizarin Red staining showing Ca around Mg. 

Alizarin Red (dark orange/red) shows calcium-rich layer surrounding Mg implants after 4 and 8 weeks post-

op. * indicates original location of Mg implant. 

 

 

Figure 15. Von Kossa staining showing P around Mg. 

Von Kossa (dark brown/black) shows phosphate-rich layer surrounding Mg implants after 4 and 8 

weeks post-op. Discontinuity of the stained layer reflects sectioning artifact only. * indicates original location 

of Mg implant. 
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Figure 16. SEM and EDX showing corrosion layer around Mg. 

SEM and EDX were used to study the corrosion product formed around degrading alloys. SEM shows a 

dense mineral deposition at the alloy-tissue interface (A, white arrows). EDX elemental mapping reveals Mg, 

Ca, and P within the layer of corrosion product. * indicates original location of Mg implant. 

4.5.3 Cellularity surrounding Mg implants 

Hematoxylin and Eosin staining showed normal tissue morphology and cellularity surrounding 

the implants (Figure 17 A). Human cells were identified using in situ hybridization targeting the 
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human specific Alu sequence. hBMScs were identified around implants, near the alloy-tissue 

interface, after 4 and 8 weeks (Figure 17 B). 

 

 

Figure 17. Cellularity around Mg. 

 Tissue morphology and cellularity were assessed with H&E staining (A). In situ hybridization with human 

Alu probe was used to identify hBMSCs within adjacent tissue (B, blue/black). * indicates original location of 

Mg implant. 

 

4.5.4 Osteogenic protein expression around Mg 

OC and OPN expression was assessed by immunofluorescence staining. OC (Figure 18) and 

OPN (Figure 19) were observed at the interface of the degrading Mg rod and surrounding tissue 

for all samples. No qualitative differences were observed in the expression of these proteins in 

constructs with or without hBMSCs. 
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Figure 18. Immunofluorescent staining showing OC expression around Mg. 

 OC expression was observed at the Mg alloy-tissue interface for all samples (green, white arrows). * indicates 

original location of Mg implant. 

 

 

Figure 19. Immunofluorescent staining showing OPN around Mg. 

OPN expression was observed at the Mg alloy-tissue interface for all samples (red, white arrows). * indicates 

original location of Mg implant. 
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4.6 DISCUSSION 

Previously, we presented a model to study Mg alloys in vivo that utilized a scaffold seeded with 

human stem cells [57]. This model allowed us to study alloy degradation and subsequent effect 

on human cell behavior in vivo. However, one drawback of this system is that it required the use 

of a collagen sponge as a cell scaffold. In the present study, we have refined our original model 

to utilize scaffoldless constructs in the place of collagen scaffolds. This model allowed us to 

assess clinically relevant human stem cells in contact with degrading Mg implants. We 

hypothesized that this model would allow us to study alloy degradation and stem cell behavior, 

while providing a clinically relevant cellular environment and eliminating risk of unwanted 

scaffold influence on cell behavior. 

Scaffoldless constructs are being studied for a wide range of clinical applications, 

including hard tissue regeneration [53-55, 111-113]. For instance, Akahane et al formed 

scaffoldless constructs from MSCs and studied their osteogenic potential subcutaneously in rats 

[54]. This work demonstrated the ability to form scaffoldless constructs from MSCs, as well as 

the potential for these constructs to serve a role in bone regeneration applications. Scaffoldless 

constructs have also been used to study dental pulp regeneration as an endodontic therapy. In one 

study, Syed-Picard et al formed scaffoldless constructs from dental pulp cells (DPCs). These 

constructs were positioned within the canal of human tooth root segments and implanted 

subcutaneously in mice where their pulp regenerative potential was assessed [53]. These studies 

highlight the potential for scaffoldless constructs to be used for tissue regeneration; however, to 

our knowledge, scaffoldless constructs have not yet been used to study the effects of novel 

materials (e.g. degradable Mg alloys) on a surrounding cell population. With this approach, we 
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are able to study a clinically relevant human cell population in a relatively low cost animal 

model, thus providing an efficient method of evaluating Mg implants in vivo. 

In the present study, we began evaluating the Mg implants by measuring their 

degradation behavior using microCT. Unlike traditional weight loss methods, microCT is non-

destructive and does not disrupt the alloy-tissue interface [27, 57, 72]. Through microCT we 

observed a reduction of underlying Mg volume accompanied by corrosion product formation at 

the surface. These observations are consistent with previous work by our group and others 

assessing Mg alloys in subcutaneous, intramuscular, and boney environments [15, 16, 26, 57, 72, 

86, 109, 110]. The formed corrosion layer provides relatively weak surface passivation when 

compared to that of other corroding metals [27, 114]; however, in the present study we observed 

a significant reduction in Mg corrosion rate overtime. We hypothesize that this corrosion 

protection was caused not only by the oxide layer formation, but also by Ca and P precipitation 

on the surface. This precipitation occurs as the pH around the degrading Mg implants rises, 

drawing Ca and P from circulating fluids [27]. Unlike the Mg oxide layer, this CaP deposition is 

relatively stable and can inhibit further Mg degradation.  

In addition to surface passivation, corrosion layer formation facilitates protein and cell 

adhesion. In the present study, we observed mouse and human cells at the alloy-tissue interface, 

adjacent to the corrosion layer. In addition, we observed expression of osteogenic proteins. 

Osteogenic proteins such as OC, OPN, and DMP1 play important roles in matrix mineralization 

and are commonly used as markers of osteogenic differentiation. Expression of these proteins 

was previously assessed using our scaffold-based model [57]; however, in the present study we 

observed differences in protein expression and localization. For instance, in our previous work 

we observed OC and DMP1 approximately 100 μm away from the degrading alloys. 
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Furthermore, these proteins were only observed in samples with implanted hBMSCs and not in 

samples without hBMSCs. We speculated that these observations indicated a role of the 

hBMSCs in the observed OC and DMP1 expression. However, in the present study we observed 

OC and OPN expression directly at the alloy-tissue interface. In addition, this protein expression 

was observed within all samples, including those without hBMSCs. These results suggest that 

the hBMSCs are not necessary to facilitate osteogenic protein expression by native cells in 

contact with degrading Mg alloys within the subcutaneous space. Furthermore, these 

observations shed light on the possible role of the corrosion layer in the overall biological 

response to Mg implants. 

Previously, we speculated that the biological effects of Mg implants were primarily a 

result of Mg ion release into surrounding tissue. Various in vitro studies have been performed to 

simulate this scenario using Mg extracts and salts such as MgSO4. These studies have revealed 

important effects of Mg on cell behaviors such as proliferation and differentiation [70, 71, 76, 

115, 116]; however, less is known about effects of the corrosion layer on cell behavior. To better 

understand these effects, we must consider the corrosion layer composition. Several studies have 

investigated the degradation behavior and corrosion product formation of various Mg alloys. 

Among the corrosion products identified is Mg(OH)2. Janning et al began investigating the in 

vivo response to Mg(OH)2 in rabbit bone [117]. Using Mg(OH)2 implants, they observed a local 

increase in bone mass around the slowly degrading Mg(OH)2. These results indicated that 

Mg(OH)2 plays a role in the enhanced bone growth observed around Mg alloys in vivo. 

However, Janning et al also acknowledged the potential influence of local alkalosis on bone 

formation. This rise in pH is a result of Mg degradation and can cause Ca and P deposition, as 

was observed in the present study [26, 27, 57, 118]. Detailed assessments of this deposition have 
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demonstrated that various phases of CaP can be formed on Mg alloys [119, 120]. For instance, 

while studying the degradation behavior of Mg alloy AZ31B, Jang et al noted octacalcuim 

phosphate (OCP) and HA deposition on the alloys. Furthermore, they observed that at a higher 

pH, HA was formed, while OCP was formed at a lower pH [119]. In the present study, the phase 

of deposited CaP was not evaluated; however, it is possible that this precipitation affected local 

cell differentiation. 

Interestingly, we have previously observed CaP precipitation on Mg implants without 

subsequent osteogenic differentiation of native mouse cells [57]. The dichotomy in observations 

obtained with the collagen scaffold model (previously reported) and the scaffoldless model 

(presented herein) suggests that the cellular environments studied (collagen sponge versus 

endogenous ECM) can significantly affect cellular behavior. For instance, in the present study 

both the implanted hBMSCs and native mouse cells were in contact with the degrading Mg and 

corrosion product. Alternatively, with our scaffold-based model it is possible that the collagen 

partially impeded cell contact with the Mg and corrosion product. As such, the surrounding cell 

populations were likely exposed to a gradient diffusion of soluble factors. In the present study, 

the surrounding cell populations were exposed to the Mg and corrosion product by direct contact 

as well as a diffusion of soluble factors. This difference in cellular environment and material 

exposure could be responsible for the differences in our observations of cell differentiation. 

Although the osteoinductive potential of Mg ion is unknown, the osteoconductivity and 

osteoinductivity of CaPs have been widely studied [3, 118, 121-123]. Typically, this 

osteoinduction process involves stem cell adhesion to the material surface (2-4 weeks), cell 

proliferation and differentiation (3-5 weeks), matrix formation (4-6 weeks), matrix 

mineralization (6-8 weeks), and bone formation and remodeling (8-10 weeks) [3]. In the present 
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study, we observed osteogenic differentiation after 4 and 8 weeks, with no signs of subsequent 

bone formation. These results suggest that the degrading Mg and/or CaP layer is capable of 

affecting cell differentiation; however, its delayed effect indicates that its osteoinductive 

potential is relatively low. 

Although the time course of this study was too short to observe possible bone formation, 

other studies have demonstrated osteoinduction following in vivo deposition of CaPs [121, 122]. 

For instance, early investigations of polyhydroxyethylmethacrylate (polyHEMA) sponges 

subcutaneous in pigs revealed heterotopic bone formation following Ca deposition [122]. In 

addition, osteoinduction has been reported with Ti implants which illicit apatite layer formation 

in vivo [121]. These results demonstrate that a broad range of inert materials can induce bone 

cell differentiation following CaP deposition. For these reasons, researchers have engineered 

various CaP coatings for inert materials to enhance their osteoinductive potential [124-126]; 

however, the effectiveness of these coatings is often dependent on their dissolution rate and 

microstructure. For these reasons, more detailed assessments of the Mg corrosion layer should be 

conducted to better understand its osteogenic potential. 

4.7 CONCLUSION 

We have developed and tested a model for assessing Mg implants in vivo which utilizes 

scaffoldless constructs formed from hBMSCs. In addition, we have demonstrated the efficacy of 

using this model to evaluate Mg implant degradation behavior and associated biological response 

within a clinically relevant human stem cell population. We observed gradual surface corrosion 

and a reduction in corrosion rate over time which corresponded with the formation of a 
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passivating corrosion layer at the Mg implant surface. Furthermore, we observed that hBMSCs 

were retained around the implants after 4 and 8 weeks. Interestingly, we observed the expression 

of bone proteins OC and OPN around all samples, suggesting the ability of the degrading Mg 

and/or corrosion layer to affect local cell behavior. Although this model was presently used to 

assess Mg implants for orthopedic applications, we believe it could serve as a platform which 

can be adapted to evaluate a broad range of materials (degradable and non-degradable), cell 

types, and clinical applications. 
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5.0  FRACTURE HEALING USING DEGRADABLE MG FIXATION PLATES AND 

SCREWS 
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5.2 ABSTRACT 

Internal bone fixation devices made with permanent metals are associated with numerous long 

term complications and may require removal surgeries. We hypothesized that fixation devices 

made with degradable Mg alloys could provide an ideal combination of strength and degradation, 

facilitating fracture fixation and healing, while eliminating the need for implant removal 

surgeries. 
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To test this hypothesis, fixation plates and screws were machined from 99.9% pure Mg 

and compared to Ti devices in a rabbit ulna fracture model. Mg device degradation and effect on 

fracture healing and bone formation was assessed after 4 weeks. Fracture healing with Mg device 

fixation was compared to that of Ti devices using qualitative histological analysis and 

quantitative histomorphometry. 

MicroCT showed device degradation after 4 weeks in vivo. In addition, 2D microCT 

slices and histological staining showed that Mg degradation did not inhibit fracture healing or 

bone formation. Histomorphology revealed no difference in bone bridging fractures fixed with 

Mg and Ti devices. Interestingly, abundant new bone was formed around Mg devices, suggesting 

a connection between Mg degradation and bone formation. Taken together, our results 

demonstrate potential for Mg fixation devices in a loaded fracture environment. Furthermore, 

these results suggest that Mg fixation devices may enhance fracture healing by encouraging 

localized new bone formation. 

5.3 INTRODUCTION 

Bone fractures are extremely common, with over 6 million occurring each year in the U.S. [127]. 

These fractures arise from various causes such as trauma, birth defects, sports injuries, and 

osteoporosis. With the large aging population and high prevalence of osteoporosis, incidences of 

bone fractures are projected to rise in coming years [127, 128]. For these reasons, fracture 

treatment remains a key clinical focus within the bone tissue engineering field. 

Fracture treatment often requires internal fixation devices such as plates and screws to 

align and stabilize bone fragments throughout healing. These devices are typically made from 



 55 

inert, non-degradable metals including Ti alloys [129]. These metals were originally selected for 

their strength and biocompatibility, but have been shown to cause long term complications 

including interference with pediatric skeletal growth, pain, tissue irritation, metallosis, infection, 

wear debris accumulation in the liver and kidney, weakening and necrosis of surrounding bone, 

and bone re-fracture [17, 61, 129, 130]. To avoid these complications, devices may be removed 

through a second surgery, further increasing patient risk and total procedural cost [129, 131]. 

To circumvent problems associated with permanent metals, degradable polymers have 

been tried. Although the resorbable property of these materials conveys a unique advantage over 

permanent implants, their mechanical limitations render them inadequate for load bearing 

applications such as mandibular and long bone fixation [24, 26, 129, 132]. Additionally, studies 

have reported foreign body complications associated with these materials, likely as a result of 

their acidic degradation products [22, 133, 134]. 

Unlike permanent metals and resorbable polymers, degradable Mg alloys can provide an 

ideal balance of degradation and strength. The degradation of these alloys reduces risk of long 

term infection, eliminates the need for removal surgeries, and may promote healing through Mg 

ion release and gradually increasing load to the healing bone [26, 74, 79, 135]. Unlike permanent 

metal ion generation which can lead to long term infection, Mg ion is found naturally in the 

body, half of which is stored in bone [61, 129, 136]. Compared to currently used permanent 

metals, Mg alloys have a low density, high fracture toughness, and compressive strength more 

similar to cortical bone [15, 26, 34, 61]. These bone-like properties reduce adverse stress 

shielding effects, and make Mg alloys suitable for a broad range of clinical applications 

including load bearing mandibular fixation. Furthermore, through variations in processing 

techniques, these alloys can be engineered to match desired mechanical and degradation 
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properties [26, 61, 79]. Taken together, Mg alloy fixation devices have the potential to not only 

support, but enhance fracture healing while avoiding long term complications.  

Recent investigations of Mg alloys in vivo have highlighted their potential as bone 

fixation materials. For example, studies have shown high mineral apposition rates, increased 

bone mass [26], and enhanced neo-formation of bone tissue [135] surrounding Mg alloy rods 

implanted in bone. These results suggest that degrading Mg alloys may induce bone cell 

activation in vivo. Recently, this mechanism was explored in a study performed by our group 

showing the effect of Mg on signaling pathways involved in bone formation [137]. Furthermore, 

studies assessing Mg alloys in vivo have shown good biocompatibility and minimal 

inflammation for both slow and fast degrading alloys [26, 40, 74, 135]. Overall, these studies 

suggest that Mg alloys have the ability to serve as ideal materials for fracture fixation devices; 

however, to our knowledge there have been no reported studies testing these materials in a 

fracture environment. For this reason, we have conducted a study to evaluate the effects of 

degrading Mg fixation plates and screws on fracture healing in a load bearing rabbit ulna. In this 

study, degradable Mg devices were compared to clinically used Ti devices. Device degradation, 

fracture healing, and new bone formation were assessed. 

5.4 MATERIALS AND METHODS 

5.4.1 Device development 

Mg plates and screws were designed and machined from 99.9% pure Mg (Goodfellow, 

Coraopolis PA). Titanium plates and screws were obtained from a Leibinger CMF Modular 
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Mandibular Plating System kit (Stryker, Kalamazoo MI). Prior to implantation, Mg devices were 

cleaned through sonicated washes in pure acetone and ethanol for 10 minutes each, and sterilized 

with gamma radiation (2x106 cGy, 23.5 Gy/min, cesium 137 source, Mark I 68, JL Shepherd and 

Associates, San Fernando CA) [138]. Titanium devices were sterilized using steam sterilization. 

5.4.2 Surgical procedure 

All animal studies were approved by the University of Pittsburgh’s Institutional Animal Care and 

Use Committee. Five skeletally mature New Zealand White rabbits were used for this study. 

Prior to surgery, animals were anesthetized with isoflurane. Forearms were shaved and 

disinfected, and ulnae were exposed through sharp dissection. Two ulnar osteotomies were 

created using a hand-held rotating saw (0.5-1 mm thick) approximately 15 mm apart. The central 

bone fragment was briefly removed to ensure complete osteotomies. This bone fragment was 

then re-aligned, and secured at the proximal and distal ends with either a Ti or Mg plate and 

screw set. Each plate and screw set consisted of 1 plate and 2 screws. Sets were placed carefully 

to ensure complete separation without device contact. After fixation, incisions were closed in 

layers and left un-casted. 

5.4.3 X-ray and MicroCT 

All animals received biweekly x-rays to monitor device fixation and fracture healing (Ultra HF 

Generator, Vetel Diagnostics, San Luis Obispo CA). Animals were sacrificed after 4 weeks, and 

their forearms were extracted and scanned using microCT (VivaCT40, Scanco Medical AG, 

Brüttisellen Switzerland). Scans were performed with an x-ray voltage of 70 kV, anode current 
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of 114 μA, and integration time of 250 ms (25 μm isotropic voxel). MicroCT analysis was 

performed using Scanco software. Mg devices were segmented from surrounding tissue based on 

distinct density differences which were identified as inflection points within the voxel mineral 

density histogram as previously described [109]. These inflection points were used to define 

upper and lower thresholds for the Mg devices, and were verified by visual inspection. 2D slices 

and 3D reconstructions were created to evaluate fracture healing, device degradation, and new 

bone formation. 

5.4.4 Histological assessment 

All samples were formalin fixed and embedded in Technovit® 9100 New plastic (Heraeus 

Kulzer, Hanau Germany) to allow sectioning and histological analysis without decalcification or 

Mg device removal. After polymerization, embedded samples were carefully cut in half to 

separate the Mg and Ti devices. Titanium plates and screws were carefully removed from the 

bone by deacrylating the plastic covering the devices. After Ti device removal, screw holes and 

exposed bone were re-embedded with Technovit® 9100 New. All samples were then trimmed 

and sectioned using a Leica RM2255 microtome (Leica, Buffalo Grove IL) with tungsten-

carbide blade. Samples were stained with Masson’s Trichrome to visualize bone morphology and 

quantify new bone formation.  

5.4.5 Histomorphometry 

Histomorphometry was used to quantify newly formed bone at the osteotomy sites beneath the 

fixation devices. Stained sections were imaged using a Nikon Eclipse TE2000 bright field 
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microscope (Nikon, Mellville NY). Images were imported using ImageScope (Aperio, Vista CA) 

and extractions were made containing the fracture sites. The amount of new bone between the 

proximal and distal cortical bones was then quantified using BioQuant (BioQuant Image 

Analysis Corporation, Nashville TN). Pre-existing cortical bone was identified using polarized 

light microscopy and excluded from these calculations to ensure quantification of new bone only. 

5.4.6 Statistical analysis 

Groups were compared using a student’s t-test. Graphical representations reflect mean ± standard 

deviation. 

5.5 RESULTS 

5.5.1 Device implantation and fracture fixation 

Mg fixation plates and screws were designed and machined from 99.9% pure Mg, and compared 

to clinically used Ti devices of a similar size (Figure 20 A). These devices (5 Ti and 5 Mg) were 

used to secure 10 ulnar fractures in New Zealand White rabbits. All radii were left intact during 

surgery, providing a load bearing environment throughout healing. X-rays showed that all 

fixation devices provided adequate re-approximation and reduction of bone fragments 

throughout healing. Due to Mg’s relatively low density, healing fractures and re-aligned bone 

fragments were clearly visible underneath Mg plates through x-ray (Figure 20 B). 
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Figure 20. Mg and Ti devices before and after implantation. 

Mg and Ti plates and screws prior to implantation (A). X-ray 1 week after implantation showing fixation with 

a Mg device (B) and radio-opaque Ti device (C). White arrows indicate location of osteotomies. 

5.5.2 Device degradation 

MicroCT was used to assess Mg device degradation. Devices were scanned before implantation 

and after removal, and 3D renderings were produced to visualize changes in volume as a result 

of corrosion (Figure 21). MicroCT 3D renderings showed an overall volume loss of Mg plates 

and screws after 4 weeks in vivo. Increased volume loss was observed in the threaded screw 

shaft region. Minimal plate volume loss was observed. Mg device degradation was also observed 

through localized gas accumulation. This gas accumulation was observed as small pockets 

surrounding degrading Mg devices (Figure 22). These gas pockets did not cause tissue swelling 

or inflammation, and did not inhibit fracture healing or new bone growth. 
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Figure 21. MicroCT 3D renderings of Mg devices before and after implantation. 

Original plate and screws prior to implantation (A) and degraded plate and screws after four weeks (B). 

 

 

Figure 22. MicroCT 2D view of Mg plate and screw in bone showing gas generation. 

White arrows show gas as a result of ongoing device degradation. 
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5.5.3 Fracture healing 

All devices were well tolerated by the rabbits. All animals resumed normal ambulatory function 

without casting after surgery, providing a load bearing environment for the healing fractures. X-

ray, microCT, and histological analyses showed uninhibited fracture healing in the direct 

presence of degrading Mg devices. After 4 weeks, all fractures showed bone bridging the 

fracture site and healing cortical bones. Histomorphometry revealed no significant difference in 

the amount of new bone at fracture sites fixed with Mg or Ti devices (Figure 23). 
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Figure 23. Histological staining and microCT showing fracture healing with Mg devices. 

Low magnification images of Masson’s Trichrome stained sections show newly formed bone bridging 

fractures sites fixed with Mg (A) and Ti (B) after 4 weeks (cracking shown reflects histological artifact). 

Higher magnification images of Mg (C) and Ti (D) devices show osteocytes and active osteoid within new 

bone at the fracture sites. MicroCT 3D renderings provide an alternative visualization of new bone bridging 

fracture sites fixed with Mg (E) and Ti (F) devices after 4 weeks. Due to its high density, Ti and surrounding 

bone appear brighter through microCT than Mg; however, similar rates of bone bridging were observed. 

Histomorphometry of bone bridging at fracture sites shows no difference between Mg and Ti groups (G). 
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5.5.4 New bone formation 

Interestingly, large areas of new bone were observed above and around degrading Mg devices. In 

many cases, this new bone formation nearly encased the Mg device, with high levels of bone-

device contact. Histological staining showed mature osteocytes and active osteoid throughout 

these regions. This overgrowth of bone was not observed around Ti devices (Figure 24). 

 

Figure 24. MicroCT and histological staining showing new bone formation around Mg devices. 

A 3D rendering of the ulna with Mg and Ti devices shows new bone growth (black arrows) on and around the 

degrading Mg device (A). A Masson’s Trichrome stained section shows bone overgrowth (black arrows) 

around a Mg device (B). Dotted lines depict approximate location of plate and screws not retained during 

sectioning. Higher magnification images show osteocytes and osteoid within this region (C & D). 
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5.6 DISCUSSION 

Due to long term complications associated with permanent implants, there is a growing interest 

in degradable metals for bone fixation. However, to our knowledge there have been no reported 

studies evaluating these materials as fixation plates and screws in vivo. For this reason, we 

investigated Mg plates and screws using a rabbit ulnar osteotomy model. This model has 

previously been used to study bone repair and effects of implants on fracture healing [139-141]. 

Using this model, we assessed the preliminary efficacy of Mg fixation devices in a load bearing 

fracture environment. We hypothesized that degradable Mg fixation devices would provide 

adequate stabilization to facilitate physiological healing despite ongoing device degradation. 

In order to evaluate device degradation, microCT was performed. This non-destructive 

technique has previously been used to study the volume loss of Mg implants in vivo [109, 135]. 

By segmenting Mg devices from surrounding tissue, we were able to observe degradation 

throughout the devices in 2D and 3D. Interestingly, volume loss appeared greater for screws than 

plates, which is possibly attributed to the high surface area, particularly within the threaded shaft 

region. Device degradation was also observed through small gas pocket formation around the Mg 

devices. This gas formation is a known product of Mg degradation and has been shown to 

closely follow Mg implant volume loss [27]. For instance, Kraus et al used microCT to study gas 

formation and Mg pin degradation in rat femora [135]. They observed gas pocket formation 

through 12 weeks post-operative; however this gas was largely resorbed by surrounding tissue, 

and did not cause adverse effects on bone healing. Similarly, in the present study gas pocket 

formation did not interfere with fracture healing or new bone formation. We hypothesize that 

overtime, this gas formation would slow as the rate of Mg device degradation plateaued.  
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Importantly, in the presence of ongoing device degradation and Mg release, our results 

showed no inhibition of fracture healing or new bone formation. Based on microCT, histological 

staining, and histomorphometry, we observed similar healing outcomes for fractures fixed with 

Mg and Ti devices alike. Samples from both groups included newly formed bone with mature 

osteocytes and active osteoid. In addition, some samples also showed connective tissue and 

hypertrophic cartilage at the fracture site, indicative of immature healing. However, these 

observations are expected 4 weeks post-operative, with full union of simple rabbit fractures 

typically not occurring until six to eight weeks post-operative [140].  

In addition to fracture healing, we observed abundant new bone formation above 

degrading Mg, but not Ti, plates and screws. Increased bone formation and bone density have 

previously been reported by other groups using Mg-based rods and pins [26, 74, 129, 135]. For 

example, after implanting two types of Mg pins in rat femora, Kraus et al observed enhanced 

local bone formation during cortical bone healing. This bone growth later slowed as the Mg pins 

degraded [135]. In the present study, we observed new bone formation not only adjacent to the 

healing cortical layer, but also above and around Mg devices. In most cases, this bone growth 

nearly encased the Mg device, with high levels of bone-device contact. In contrast, no new bone 

growth was observed over Ti plates and screws. 

Taken together, our observations of fracture healing and new bone growth around Mg 

fixation devices suggest that degrading Mg may positively affect bone formation. Previously, 

other groups have linked Mg with increased osteoblastic activity, ultimately leading to increased 

mineral apposition in vivo [26, 74]. Though the mechanism of Mg induced bone formation is not 

yet fully understood, recent investigations have highlighted the important role Mg in activating 

osteogenic signaling pathways [137]. These mechanistic data established additional roles of Mg 
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in bone biology, and support the use of these materials in craniomaxillofacial and orthopedic 

applications. 

5.7 CONCLUSION 

This study provided important insight into the ability of degradable Mg alloys to serve as bone 

fixation devices. We demonstrated that pure Mg fixation plates and screws not only facilitated 

physiological fracture healing, but supported new bone formation around the degrading devices. 

These biological evaluations support the use of Mg in craniomaxillofacial and orthopedic 

applications, providing a load bearing therapy which reduces risk of long term complication and 

eliminates the need for device removal. 
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6.2 ABSTRACT 

Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current 

devices, like plates and screws, are made with permanent metals or resorbable polymers. 
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Permanent metals provide strength and biocompatibility, but cause long-term complications and 

may require removal. Resorbable polymers reduce long-term complications, but are unsuitable 

for many load-bearing applications. To mitigate complications, degradable Mg alloys are being 

developed for craniofacial and orthopedic applications. Their combination of strength and 

degradation make them ideal for bone fixation. Previously, we conducted a pilot study 

comparing Mg and Ti devices with a rabbit ulna fracture model. We observed Mg device 

degradation, with uninhibited healing. Interestingly, we observed bone formation around 

degrading Mg, but not Ti, devices. These results highlighted the potential for these fixation 

devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% 

Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and 

bone formation were evaluated using microcomputed tomography, histology and biomechanical 

tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40 ± 0.04 

mm/year after eight weeks. In addition, we observed fracture healing by eight weeks, and 

maturation after 16 weeks. In accordance with our pilot study, we observed bone formation 

surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no 

difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data 

suggest that Mg devices provide stabilization to facilitate healing, while degrading and 

stimulating new bone formation. 
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6.3 INTRODUCTION 

Each year there are over 6 million bone fractures reported in the U.S. [142], approximately one 

third of which require internal fixation devices to help facilitate healing [14]. Currently, 

permanent and inert metals like Ti alloys and stainless steel remain the gold standard for internal 

fixation devices; however, these materials are associated with various long-term complications 

such as interference with skeletal growth (particularly for pediatrics), tissue irritation, infection, 

interference with radiological imaging, and unfavorable aesthetics (primarily for craniofacial 

implants) [15-18, 70]. For these reasons, permanent fixation devices may necessitate invasive 

removal surgeries, increasing patient burden and risk, and draining valuable hospital resources 

[59, 60]. To mitigate these concerns, resorbable polymer devices have been developed; however 

their mechanical properties often limit them as viable options for load-bearing applications [27]. 

Furthermore, studies have reported long-term foreign body reactions associated with polymeric 

device degradation, likely due to their acidic degradation products [23, 70, 143]. For these 

reasons, there remains a need to develop novel fracture fixation devices which mitigate long-

term complications and eliminate the need for removal surgeries. 

Unlike permanent metals and resorbable polymers, degradable Mg alloys provide a 

unique combination of strength and degradation. For these reasons, Mg alloys are being explored 

for various craniofacial and orthopedic applications. Interestingly, Mg alloys were first attempted 

as orthopedic devices over a century ago. Early Mg-based devices proved to be biocompatible, 

with low rates of infection; however, rapid degradation of Mg that is characteristic and to be 

expected with the current metallurgical knowledge known to date caused excessive hydrogen gas 

formation which ultimately prevented their clinical success [35, 99]. Since these initial 

investigations, numerous advancements in alloying and corrosion control have been achieved. 
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These advancements allow Mg and its alloys to be tailored to accommodate the desired 

mechanical properties and degradation behavior. 

Numerous in vitro and in vivo studies have demonstrated the biocompatibility and 

osteoconductivity of these materials. Indirect assays, in which cells are exposed to media treated 

with Mg corrosion products, have shown cell viability with low concentrations of degradation 

product [70, 71, 99]. Similarly, direct assays, in which cells are cultured directly on Mg alloys, 

have shown cytocompatibility in the presence of ongoing Mg degradation [70, 71, 99]. 

Importantly, studies assessing Mg implants in endosseous sites, such as guinea pig [26], rat [28], 

and rabbit femora [72] have shown biocompatibility and normal foreign body response for 

various Mg alloys. In addition, several studies have shown high mineral apposition rates and 

increased bone mass and mineral density surrounding Mg implants in bone [26, 27, 117, 144]. 

These data support the use of Mg implants as orthopedic devices; however there remains 

a lack of in vivo data assessing these materials as actual fixation plates and screws. For these 

reasons, we previously conducted a pilot study to evaluate Mg fixation plates and screws using a 

rabbit ulna fracture model [145]. In the pilot study, we compared 99.9% Mg plates and screws to 

clinically-used Ti devices, studying the effect of Mg degradation on fracture healing. Our pilot 

study results showed no significant difference in healing of fractures fixed with Mg or Ti 

devices. Interestingly, we also observed bone formation above the Mg, but not Ti, plates and 

screws.  

In order to validate this pilot study data, we have conducted a more thorough follow-up 

assessment presented herein. In the present study, we aim to test our hypothesis that ongoing Mg 

device degradation will continue to stimulate osteogenic differentiation of local cell populations 

such as hBMSCs and/or periosteal cells. In turn, this differentiation will result in local bone 
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formation, providing additional fracture stabilization. Through this process, it is anticipated that 

Mg devices will be gradually replaced by bone growth, mitigating risk of long-term 

complications and device removal surgeries. To test this hypothesis, we have performed a 

thorough assessment of the degradation behavior and biological effect of Mg fixation devices. 

Specifically, we have designed and tested Mg fixation plates and screws in a rabbit ulna fracture 

model. Our results have confirmed our pilot study observations of new bone formation around 

Mg devices, especially above the devices where the periosteum and muscle tissue was present. In 

addition, we observed no inhibition of fracture healing.  Mechanical testing demonstrated that 

healed fractures fixed with Mg devices responded similarly to healthy controls when subject to 

three point bending. Taken together, these data demonstrate the efficacy of Mg fixation devices 

in a load bearing fracture site. 

6.4 MATERIALS AND METHODS 

6.4.1 Device development 

Fixation devices (Figure 25) were machined with 99.9% pure Mg (Goodfellow, Coraopolis, PA). 

All devices were designed to accommodate rabbit ulnar geometry. Plates were 20x4.5 mm with a 

thickness of 1-1.5 mm. Screws were 7 mm in length, with a shaft outer diameter of 1.75 mm and 

shaft inner diameter of 1 mm. Prior to implantation, devices were cleaned by sonicated washes in 

pure acetone and ethanol, followed by sterilization with gamma radiation (2x106 cGy, 23.5 

Gy/min, cesium 137 source, Mark I 68, JL Shepherd and Associates, San Fernando, CA). 
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Figure 25. Mg fixation plate and screws before implantation. 

Digital image shows devices before implantation (A). Schematic shows device placement in fractured ulna (B). 

6.4.2 Surgical procedure 

All animal experiments were approved by the University of Pittsburgh’s Institutional Animal 

Care and Use Committee. 12 New Zealand White rabbits (19 weeks of age, 3.5±0.2 kg) were 

used in this study. Both ulnae (right and left) of all animals were used, providing a total of 24 

surgical sites. Each time point consisted of 6 rabbits (12 surgical sites). Prior to surgery, animals 

were anesthetized and forearms were shaved and disinfected. A 2 cm incision was made over the 

ulna. Overlying skin and muscle was carefully retracted to expose the ulna. A complete ulnar 

osteotomy (0.5-1 mm thick) was created using a hand held drill. A fixation device consisting of 

one plate and four screws was then placed to stabilize the fracture. The incision was closed in 
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layers with sutures and left un-casted. Animals were monitored daily for general behavior, 

movement, and food and water intake. In addition, forearms were checked thoroughly by visual 

inspection and gentle palpation for signs of infection or subcutaneous gas pocket formation. 

Based on consultation with the University of Pittsburgh’s Division of Laboratory Animal 

Resources, observable gas pockets were removed with a sterile syringe. All gas pocket 

formations and removals were documented throughout the study. 

6.4.3 X-ray imaging 

X-ray imaging was used to monitor device placement and fracture healing throughout the study. 

All animals received x-rays immediately following surgery and every 2 weeks thereafter. 

6.4.4 Three point bend testing 

A three point bend test was used to evaluate the relative strength of the ulnae after 16 weeks (n=9 

ulnae). Prior to testing, forearms were carefully dissected and overlying soft tissue was removed. 

For all samples, the radius and ulna were fused, preventing us from accurately separating the 

bones for testing. To exclude radial contributions from the test, two transverse cuts were created 

on either side of the fracture site and remaining device (4 cm apart) using a low speed saw and 

diamond blade (Buehler USA, Lake Bluff, IL) as previously described [50]. An Instron 5564 

(Instron USA, Norwood, MA) with 2 kN load capacity was used for testing. For each sample, the 

radius and ulna were positioned on the same horizontal plane on two lower stabilizing points 

positioned 5 cm apart. The fracture site and radial cuts were centered within these points. One 

upper moving point was positioned at the center of the two lower points. Test parameters were 
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modified from previous studies, including a 1 N pre-load, loading speed of 5 mm/min, and stop 

point of 0.5 mm flexural extension (previously determined to be non-destructive) [50]. The 

flexural load at 0.5 mm extension was recorded for each sample. Intact ulnae were similarly 

prepared and used as healthy controls. 

6.4.5 MicroCT 

High resolution microCT was used to evaluate device degradation and new bone formation. 

Devices were scanned before implantation with a VivaCT40 (Scanco Medical AG, Bruttisellen, 

Switzerland) and 10.5 μm voxel size (55 kV, 72 μA). In addition, devices were scanned after 8 

and 16 weeks (n=4 per time point) using a SkyScan1172 (Bruker-MicroCT, Kontich, Belgium) 

scanner with a 10 μm voxel size, 79 kV tube potential and 125 μA tube current. 3D volumes of 

the scanned samples were generated from acquired 2D lateral projections using Reconn software 

(Bruker-MicroCT, Kontich, Belgium). For analysis, scanned bone volumes were digitally 

reoriented using the SkyScan DataViewer software, and user-defined remaining Mg and 

corrosion product regions of interest were generated using the SkyScan CTAn software (version 

1.13.5.1) as previously described [23, 24]. Mg devices were segmented from surrounding soft 

and hard tissues based on the absorption coefficient (equivalent to mineral density) of remaining 

Mg and corrosion product. The relative x-ray absorption coefficients within each of these two 

layers are distinctly different, generating a clear interface between the two, as well as between 

the corroded product and background as previously described [89]. These interfaces were 

identifiable as inflection points within the distribution of mineral densities histogram from a 

region of interest including both remaining Mg and corrosion product. These inflection points 
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were used to define thresholds for the Mg and corrosion product, and were verified by visual 

inspection. 

Following segmentation, volume quantifications were obtained to evaluate device 

degradation and bone formation. Corrosion rate was calculated through the microCT-evaluated 

Mg volume loss using Equation 1, where CR is corrosion rate in mm/yr, ∆V is change in Mg 

volume in mm3, A is surface area in mm2, and t is time in years [25]. Devices were considered in 

their entirety, and also divided into head and shaft regions with respective regions of interest 

defined. The head region was defined as any area of the screw above the bottom edge of the 

plate, while the shaft region was defined as any area of the screw below the bottom edge of the 

plate. 

In addition to device volume change, new bone formation around the devices, as well as 

bone-device contact was assessed though microCT. New bone around the devices was defined as 

any bone above the bottom of the plate. Importantly, this region originally contained only muscle 

and soft tissue; therefore, any bone observed within this region is newly formed. Bone contact 

throughout the screw shafts was calculated as the intersection surface area between Mg and bone 

using CTAn. 

CR = ∆V/(At)            (1) 

6.4.6 Histological assessment 

Samples were formalin fixed and embedded in Technovit 9100 New® (Heraeus Kulzer, Hanau, 

Germany). Samples were sectioned and stained with Toluidine Blue to visualize bone 

morphology at the fracture site, device-tissue interface, and within areas of newly formed bone. 
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6.4.7 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 19 (IBM, Armonk, NY). All 

groups were compared using a student’s t-test. For corrosion analysis, screw volumes were 

compared between two time points (0 and 8 weeks, n=8 screws per time point). In addition, 

screw volumes were compared between the head and shaft regions (0 and 8 weeks, n=8 screws 

per region). Plate volumes were similarly compared between two time points (0 and 8 weeks, 

n=2 plates per time point). For mechanical testing analysis, healed ulnae were compared to 

healthy controls at 16 weeks (n=9 ulnae per group). All graphical representations reflect mean ± 

standard deviation. 

6.5 RESULTS 

6.5.1 Overall animal health 

All devices were well tolerated by the animals and did not cause adverse health events. 

Immediately following surgery, animals resumed normal movement and behavior, including 

weight bearing on both forearms. 

6.5.2 Device degradation 

Initial evidence of device degradation was observed through subcutaneous gas pocket formation. 

Interestingly, subcutaneous gas pocket formation was not observed in all animals. Only two 
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animals developed subcutaneous gas pockets over the implant site, which were easily removed 

with a sterile syringe without causing infection or interference with healing. Pockets consisted of 

gas without additional blood or fluid. Gas pocket formation was observed through 5 weeks post-

operative. The largest number of removals, three, was performed during the second week, with 

all other weeks only requiring one removal each. No gas pocket formation was observed after 5 

weeks post-operative.  

High resolution microCT was used to study device degradation (n=8 screws, n=2 plates). 

Based on distinct material density differences, volumes of Mg and corrosion product were 

quantified separately. Volume quantification revealed a net loss of volume for Mg screws after 8 

weeks. Mg volume was reduced by 4.41 ± 0.49 mm3 after 8 weeks. Meanwhile, 3.35 ± 0.60 mm3 

of corrosion product was produced at the surface (Figure 26 A). Based on this change in Mg 

volume, the in vivo corrosion rate of our Mg screws was calculated to be 0.40 ± 0.04 mm/year. 

Interestingly, corrosion behavior varied between different regions of the screws. After 8 weeks, 

the screw head region consisted of 47.09 ± 13.76 volume percent of Mg, and 52.91 ± 13.76 

volume percent of corrosion product. In contrast, the screw shaft region consisted of 75.04 ± 

3.34 volume percent of Mg, and 24.96 ± 3.34 volume percent of corrosion product (Figure 26 B). 

Similar to the screws, the Mg plate volume was also reduced after 8 weeks. Specifically, Mg 

plates corroded at a rate of 0.55 ± 0.02 mm/year, resulting in 19.57 ± 0.66 mm3 of Mg volume 

loss after 8 weeks (Figure 26 C). Due to extensive corrosion product formation and integration 

with the surrounding tissues, accurate device volume quantification after 16 weeks was not 

possible. However, additional Mg volume loss and corrosion product production was observed. 
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Figure 26. Mg plate and screw degradation quantification. 

Screw degradation after 8 weeks was assessed by volume quantification. Due to distinct density differences, 

Mg and corrosion product were quantified separately for a detailed understanding of corrosion behavior. 

Volume quantification shows a Mg volume loss of 4.41±0.49 mm3 (* p<0.01). In addition, 3.35±0.60 mm3 of 

corrosion product was formed at the surface (A). Mg and corrosion product were calculated as percentages of 

total screw volume for the whole screw, the head region, and the shaft region. After 8 weeks, Mg represented 

a significantly smaller percentage of total volume within the head region when compared to the shaft and 

whole screw (B, * p<0.01). Concurrently, corrosion product represented a significantly greater percentage of 

total volume within the head region when compared to the shaft and whole screw (B, * p<0.01). Plate volume 

was reduced by 19.57±0.66 mm3 (* p<0.01). 
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6.5.3 Fracture healing 

Bi-weekly x-rays showed progressive healing throughout the study (Figure 27). These 

observations were confirmed by microCT and histological staining after 8 and 16 weeks. After 8 

weeks, fracture healing was observed as proximal and distal cortical bone union for most 

samples (Figure 28 A). After 16 weeks, more mature healing was observed, with full thickness 

cortical bone bridging at the fracture site (Figure 28 B). Histological staining showed normal 

bone morphology within these regions including osteocytes and osteoid (Figure 28 C-F). 

 

Figure 27. X-rays showing progression of fracture healing and bone overgrowth. 

Fracture healing was observed by 8 weeks with further maturation by 16 weeks post-operative (black 

arrows). In addition, new bone was formed over the entire fixation device. Partial bone covering was 

observed by 8 weeks, with complete covering occurring by 16 weeks post-operative (white arrows). 
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Figure 28. MicroCT and histological staining showing fracture healing. 

MicroCT slices show cortical bone union after 8 weeks (A) with further maturation after 16 weeks (B). High 

magnification images of Toluidine stained sections show normal bone morphology within the healed cortical 

bones at the fracture site after 8 (C, D) and 16 weeks (E, F). 

6.5.4 Bone-device contact 

Bone-device contact was observed through microCT and histological staining. In the presence of 

ongoing corrosion, high levels of bone-device contact were observed after 8 and 16 weeks in 

vivo. Areas of bone-device contact were more prevalent in slower degrading regions, such as 

around the plate and screw heads. New bone growth was often observed around the screw head 
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and within the driver slot, with direct bone-device contact (Figure 29). Bone device contact along 

screw shafts were quantified after 8 weeks, revealing over 25% of the screw shaft surface area in 

contact with bone. 

 

Figure 29. MicroCT and histological staining showing bone-device contact. 

Interfaces of Mg devices (lower density, darker) and bone (higher density, brighter) were observed through 

microCT. A longitudinal slice of a Mg plate (P) and screw (S) show areas of bone contact around the screw 

head, shaft, and plate edge (A). A transverse slice of a Mg screw shaft (S) shows bone contact around screw 

perimeter after 16 weeks (B). Toluidine Blue shows bone at bone-plate (P) interface after 8 weeks (C). 

6.5.5 New bone growth around Mg devices 

New bone was formed over and around all Mg devices. This bone formation was observed 

throughout the study by x-ray, and was further assessed by microCT and histological staining 

after 8 and 16 weeks. After 8 weeks, new bone partially covered all Mg devices (Figure 30 A-C). 

After 16 weeks, this new bone completely covered all Mg devices (Figure 30 D-F). MicroCT 

was used to quantify the amount of new bone formed over the fixation devices. A significant 



 83 

increase in overlying bone formation was observed from 8 to 16 weeks (p=0.001), with 100.20 ± 

33.80 mm3 of new bone formed within this period (Figure 30 G). 

 

Figure 30. MicroCT and histological staining showing bone overgrowth around Mg devices. 

Bone overgrowth (black arrows) was observed around degrading Mg devices. MicroCT 3D rendering after 8 

weeks shows partial bone overgrowth around the degrading Mg device (A). By 16 weeks, bone overgrowth 

completely covered all devices (B). X-ray slices from microCT scanning highlight bone overgrowth over 

screws after 8 (B) and 16 weeks (E). Toluidine Blue stain shows normal bone morphology with osteocytes and 

osteoid within the newly formed bone (C & F). New bone overgrowth was quantified using microCT. 

Conservatively, bone above the plate baseline (marked with a white dotted line) was identified as new bone. A 

significant increase in bone was observed from 8 to 16 weeks (G, *p<0.01). 
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6.5.6 Bend testing 

The relative structural properties of the healed ulnae were assessed by three point bend testing 

after 16 weeks. Bone overgrowth and degraded fixation devices were left in place for testing; 

therefore, results reflect the entire bone-device complex as it would be loaded in vivo. Bend test 

results revealed a slight, though not significant, increase in flexural load for healed ulnae fixed 

with Mg devices compared to intact ulnae controls (Figure 31). 

 

Figure 31. Three point bend test results. 

Bend testing was performed on ulnae after 16 weeks and compared to healthy, un-fractured controls. 

Fixation devices and bone overgrowth were not removed for testing. No significant differences were observed 

between healed ulnae and healthy controls. 

6.6 DISCUSSION 

In the present study, we assessed the efficacy of degradable Mg fixation plates and screws in a 

loaded ulna fracture model. This model has been used to study bone repair and effects of 

implants and therapeutic agents on fracture healing [146-148]. Previously, our group performed a 
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pilot study evaluating the biological effect of Mg plates and screws. This study revealed 

abundant new bone formation around the degrading Mg devices, suggesting a connection 

between Mg degradation and bone formation. To further explore the effect of Mg on fracture 

healing and bone formation, we have conducted a thorough investigation of 99.9% Mg fixation 

plates and screws. We hypothesized that these degradable devices would facilitate fracture 

healing, while stimulating local bone formation. 

As Mg degrades, hydrogen gas is produced. Depending on the implant’s local 

environment and available blood flow, this gas may be cleared from the implant site without 

accumulation. However, rapid corrosion rate and/or insufficient gas removal may lead to 

accumulation. Several studies have documented gas cavity formation associated with Mg 

degradation [27, 42]. Kraus et al used microCT to study gas formation and Mg pin degradation in 

rat femora [28]. They showed gas formation closely followed Mg volume reduction. 

Furthermore, they showed that gas was largely resorbed by the surrounding tissue, and did not 

cause adverse effects on bone healing. In the present study, six gas pockets from two animals 

were observed over the course of the study, indicating that most gas released during device 

degradation was efficiently cleared from the implant site. Furthermore, the observed gas 

accumulation did not disrupt fracture healing, bone formation, or surrounding tissue health. It is 

important to note however, that reducing gas pocket formation is necessary for clinical 

translation. One way to achieve this could be through grain refinement, as has been previously 

demonstrated with Mg alloy LAE442 [149]. In the study by Ullmann et al, LAE442 rods with 

varying grain sizes were implanted into the medullary cavity of New Zealand white rabbits and 

assessed over 6 months. Their results demonstrated that grain size reduction provided slower 

corrosion and improved clinical tolerance. It is likely that grain refinement of the pure Mg used 
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in the present study (average grain size 36.9 µm) would provide similar corrosion improvements. 

For instance, through mechanisms such as improved passive film formation due to increased 

activity of reduced grain size area, and consequently, better adhesion due to increased grain 

boundary density [150]. As a result, gas pocket formation may be likely reduced. 

In addition to hydrogen, degrading Mg produces corrosion product on its surface [27, 

151]. The materials properties of the remaining Mg and corrosion product are expectedly not 

equal, and therefore do not provide equal contributions to device function. For these reasons, we 

assessed device degradation in terms of Mg volume loss and corrosion product volume gain. We 

observed a net volume loss for all devices, with considerable corrosion product formation. 

Interestingly, we observed a greater corrosion rate for the plates than the screws (0.55 ± 0.02 and 

0.40 ± 0.04 mm/year, respectively). We hypothesize that this difference is attributed to the 

devices’ local environment. Unlike the screws, which were largely contained within bone, the 

plates were initially covered by muscle. This tissue has a higher water content and blood flow 

than bone, and therefore likely accelerated plate corrosion [42]. 

Interestingly, we also observed differences in corrosion behavior between screw regions. 

Specifically, our data suggest that corrosion was enhanced for screw heads compared to shafts. 

Similar observations of varied degradation behavior for Mg screws have been previously 

reported [27, 38, 41, 152]. For instance, Willbold et al implanted Mg alloy AZ31 screws into the 

hip bone of sheep. After three and six months, they observed accelerated corrosion of screw 

heads (surrounded by soft tissue) when compared to screw shafts (surrounded by bone) [41]. 

Uniquely, our screws were tested as part of a fixation system, and therefore screw heads were in 

contact with the overlying soft tissue, as well as the fixation plate. Shearing of these components, 

as well as compression during loading, likely contributed to corrosion within the head region [27, 
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153, 154]. A similar effect of compression on corrosion was shown by Denkena et al using 

LAE442 rods in vitro. They observed increased corrosion rate with compressive stress and 

decreased corrosion rate with tensile stress [155]. Despite these observations of accelerated 

corrosion, all devices remained in place and provided sufficient stabilization throughout the 

study. Furthermore, high levels of bone-device contact were observed, revealing osteointegration 

of the devices. 

In the presence of ongoing device corrosion, fracture healing remained uninhibited, and 

cortical bone union matured throughout the study. These observations are in accordance with our 

previous study which demonstrated healing of similar rabbit ulnae fractures after 4 weeks. In the 

present study, we observed more mature healing after 8 weeks, which is consistent with the 

reported healing time of rabbit fractures [147]. These results demonstrate the ability of Mg 

fixation devices to facilitate physiological healing and long-term remodeling in a loaded fracture 

environment. Importantly, this reflects a unique advantage of Mg alloys over resorbable polymer 

devices, which are often not suitable for load bearing applications. 

Uniquely, Mg devices have the potential to not only facilitate fracture healing, but also 

enhance bone formation. Several studies have highlighted this potential by showing increased 

mineral apposition, bone mass, and bone mineral density around Mg implants in bone [26, 30, 

117, 144]. For instance, in a notable study by Witte et al, degradable Mg and polymeric implants 

were placed in the intramedullary space of guinea pig femora [26]. After 6 and 18 weeks, they 

observed a significant increase in mineralization for all groups with Mg implants when compared 

to polymeric controls. Similar results were observed with fast corroding Mg implants in rabbit 

femur [72]. These results highlighted the potential of degrading Mg implants to illicit a positive 

bone growth response, establishing their potential as strong candidates for orthopedic implants. 



 88 

To our knowledge, however, there have been no reported investigations of Mg’s ability to 

encourage bone formation in a traumatic fracture environment. In the present study, we observed 

abundant bone formation over and around all degrading Mg devices. This bone formation 

occurred over the devices, where periosteal and muscle tissue layers are typically present, 

suggesting the ability of Mg ion release from device degradation to affect osteoblastic cell 

differentiation. This observation is in accordance with our previous study in which de novo bone 

formation was observed around Mg plates and screws after 4 weeks [145], as well as a previous 

report of LAE442 screws and plates implanted in intact rabbit tibia [155]. With the present study, 

we have confirmed our pilot study observations, and demonstrated that prolonged exposure to 

Mg degradation can cause progressive bone formation. This bone formation is not typically seen 

with resorbable polymer or permanent metal devices, and therefore highlights a unique 

advantage of Mg fixation devices. In this manner, the degrading fixation device is gradually 

replaced by bone, without compromising fracture healing. 

The mechanism of this bone growth is not yet fully understood, though some in vitro 

studies have been conducted to elucidate mechanisms of Mg’s effect on bone cells [76]. We 

hypothesized that as these devices degrade, Mg is released, and local cells are stimulated to form 

bone (Figure 32). This effect has been demonstrated in vitro by exposing cells to Mg ion and 

assessing their osteogenic response [76, 156]. In addition, various in vivo models have also 

shown a beneficial effect of Mg degradation on bone [26, 30, 117, 144]. Considering the location 

of the newly formed bone observed in the present study, it is likely that the periosteum served as 

a cell source for osteogenic differentiation (Figure 32). Cells within this tissue layer, including 

osteoblasts and pluripotent mesenchymal stem cells, are known to facilitate bone growth and 

repair [8, 157]. It is possible that Mg released from our degrading devices stimulated stem cells 
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within the periosteum to initiate bone formation over the devices. This hypothesis is consistent 

with previous work by Bondarenko et al which demonstrated that fast corroding Mg implants 

enhanced expression of osteocalcin and osteopontin in surrounding bone tissue [158]. It is likely 

that the bone formation observed in the present study then continued as device degradation, and 

subsequent Mg release, persisted over time. 

We hypothesize that this new bone contributes to the structural properties of the ulna, 

helps provide stabilization, and further facilitates weight-bearing activity during healing. 

Through three point bend testing, we observed a similar flexure load response of the healed ulnae 

when compared to healthy, un-fractured controls. Importantly, these results reveal that the 

structural properties of healed bone are similar to native ulnae, and that functional regeneration 

has occurred. 

 

Figure 32. Schematic of proposed mechanism for Mg stimulated bone formation. 
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6.7 CONCLUSION 

In the present study we assessed the efficacy of degradable Mg fixation plates and screws in a 

loaded rabbit ulna model. We have demonstrated that Mg device degradation does not inhibit 

fracture healing and enhances bone formation around the devices. Furthermore, we observed de 

novo bone formation above the devices, suggesting a role of Mg in cell differentiation and bone 

growth. To our knowledge, this is the first study to show the effect of Mg screws and plates on a 

loaded fracture model. These data support the potential use of pure Mg as fracture fixation 

devices. 
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7.0  IN VIVO ASSESSMENT OF MAGNESIUM ALLOY WXQK PLATE AND 

SCREW DEGRADATION AND BONE FRACTURE HEALING 
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7.2 ABSTRACT 

Previously, we reported positive results obtained with 99.9% Mg plates and screws as rabbit ulna 

fracture fixation devices (“In vivo study of Magnesium plate and screw degradation and bone 
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fracture healing”). Specifically, we observed gradual device degradation with no inhibition of 

fracture healing. In addition, we observed new bone formation around the degrading 99.9% Mg 

devices, with high levels of bone-device contact throughout. These results suggested a beneficial 

effect of Mg device degradation on local bone growth, which we postulated was an effect of the 

release of Mg ion into the surrounding tissue. For these reasons, we hypothesized that fixation 

devices made with a Mg alloy would perform similarly in vivo. To test this hypothesis, we 

developed and tested fixation plates and screws made with Mg alloy WXQK using the identical 

surgical procedure and assessment methods as previously used to test 99.9% Mg devices. 

Interestingly, we observed several differences with the WXQK devices when compared 

to 99.9% Mg. For instance, we observed bone overgrowth around the WXQK devices with 

greater intracortical porosity than previously observed with 99.9% Mg. In addition, we observed 

cortical bone loss beneath WXQK devices, which had not been observed previously with pure 

Mg. These observations emphasize the biological sensitivity to Mg devices based on their 

corrosion rate and/or alloy composition, and underscore the importance of continued evaluations 

of these materials in vivo to better understand their corrosion behavior and subsequent biological 

response. 

7.3 INTRODUCTION 

Many recent studies have been conducted demonstrating the potential of Mg and its alloys as 

biomaterials for craniomaxillofacial and orthopedic applications. These studies have revealed 

biological responses to Mg, both in vitro and in vivo, which support bone regeneration and 

healing. For instance, several studies have demonstrated that degrading Mg implants elicit a local 
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increase in bone mineral density and mineral apposition [26, 27, 117, 144]. Furthermore, studies 

have shown an overgrowth of bone around Mg pins, plates, and screws in vivo [28, 109, 155]. 

Indeed, we have also observed new bone formation around 99.9% Mg plates and screws [86, 

110]. In addition, we have conducted in vitro studies which begin to explore the mechanisms of 

Mg’s effect on bone cells [76]. Taken together, we believe that degradable Mg alloys can serve 

as ideal fracture management devices by providing stabilization while actively supporting bone 

growth and healing. However, additional investigations are needed to fully understand the effects 

of degradation rate and alloy composition on the subsequent biological response. For these 

reasons, we are continuing to study Mg alloys as fixation plates and screws to better understand 

the alloy’s effect on bone biology and healing. 

In the present study, we evaluated Mg alloy Mg-1%Y-0.6%Ca-0.25%Ag-0.4%Zr (wt. %, 

denoted henceforth as WXQK with elemental abbreviations according to ASTM B275-05 [159]). 

This alloy was designed to exhibit good bulk workability for extrusion, and demonstrate higher 

stiffness compared to pure Mg. Herein, we describe our unique findings from evaluating WXQK 

as fixation plates and screws in a loaded rabbit ulna fracture model. Using this model, we have 

followed procedures previously described with 99.9% Mg devices [110], allowing us to contrast 

results obtained with the two Mg materials. We hypothesized that the WXQK alloy would 

perform similarly to 99.9% Mg in terms of bone healing and formation; however, we observed 

several differences in the biological response associated with the two materials. These findings 

provide important insight regarding Mg alloy performance in vivo, including possible caveats of 

the biological response dependent on alloy degradation rate and composition. 
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7.4 MATERIALS AND METHODS 

7.4.1 WXQK alloy preparation  

The WXQK alloy consisted of the nominal composition of Mg-1%Y-0.6%Ca-0.25%Ag-0.4%Zr 

in weight percent. Elemental ingots of Mg (US Magnesium Inc., Salt Lake City, UT, 99.97%), Y 

(Alfa-Aesar, Ward Hill, MA, 99.9%), Ca (Alfa-Aesar, 99.5%), and Ag (Alfa Aesar, 99.999%) 

were weighed according to the nominal composition, melted together in a graphite crucible using 

an induction furnace (MTI Corporation, Richmond, CA) purged with ultra-high purity (UHP) Ar, 

and vacuumed to avoid oxidation of the elements. The initial alloy produced by induction 

melting was cleaned thoroughly to remove residue and oxide scale, and was re-melted in a mild 

steel crucible using an electrical resistance furnace (Wenesco Inc., Chicago, IL) under the 

protection of Ar + 1.5% SF6 cover gas. The melting and pouring temperature was 780 °C, and 

once the temperature was reached, Zr was added by adding Zirmax (Mg-33.3% Zr) master alloy 

(Magnesium Elektron Ltd., Manchester, UK). After Zr was added, the melt was stirred for 10 s at 

an interval of 1 min and 5 min to dissolve and disperse the Zr particles uniformly into the melt. 

The melt was held for 30 min and poured into a cylindrical mild steel mold preheated to 500 °C 

with dimensions of 44.5 mm diameter × 82.5 mm length. Appropriate holding and stirring times 

to release Zr particles from Zirmax master alloy is essential to achieve high solubility of Zr in the 

melt and optimal grain refinement [160]. The as-cast samples were solution treated (T4) at 525 

°C for 6 h inside a tubular furnace covered under continuous UHP Ar flow and immediately 

quenched in water. The T4 treated alloy then underwent impact extrusion in which the alloy slug 

was cladded inside an aluminum can. The canned alloy was coated with a graphite-based 

lubricant (Neolube, Huron Industries, Port Huron, MI) and preheated for 1 h at 482°C. Following 
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pre-heating, the canned alloy was impact extruded through a die with an extrusion ratio of ~3. 

This WXQK extruded alloy was compared to as-drawn pure Mg (99.9%, Goodfellow Corp., 

Coraopolis, PA) in later reported tests. 

7.4.2 WXQK phase characterization and microstructure analysis 

In order to determine the phase formation, X-ray diffraction (XRD) was conducted using Philips 

X’Pert PRO diffractometer employing CuKα (λ=1.54056 Å) radiation with a Si-detector 

(X’celerator). The X-ray generator operated at 45 kV and 40 mA at a 2θ range of 10-80°. Peak 

identification was determined using the X’Pert High Score Plus software. 

Microstructure of the WXQK alloy was analyzed by mounting the metal sample in epoxy 

which was then mechanically polished (Tegramin-20, Struers, Ballerup, Denmark) and 

chemically etched in a solution of 5 mL acetic acid, 6 g picric acid, 10 mL water, and 100 mL 

ethanol. The microstructure was observed using optical microscopy (Axiovert 40 MAT, Carl 

Zeiss, Jena, Germany and ) and SEM (JEOL JSM-6610, JEOL Ltd., Tokyo, Japan) with EDX 

(EDAX Genesis, Mahwah, NJ) to conduct elemental analysis. 

7.4.3 Mechanical testing 

Tensile dogbone samples were machined along the long axis of the WXQK alloy as-cast ingot 

and WXQK and pure Mg extruded rods of with dimensions in accordance with ASTM-E8-04 

with a gage area of 3 × 3 mm. Tensile tests were conducted at room temperature using an MTS 

testing system (MTS Systems Corporation, Eden Prairie, MN) with a crosshead speed of 1.3 

mm/min. Tensile yield strength, ultimate tensile strength, Young’s modulus (E), and percent 
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elongation were determined from the resultant stress-strain curves. The ultimate tensile strengths 

of the alloys were determined as the maximum tensile stress from the stress-strain curves. The 

tensile yield strengths were determined as the stress at the yield point during the tensile tests. 

Young’s modulus was calculated as the slope of the linear elastic deformation region of the 

stress-strain curve. Percent elongation was determined from the strain at failure of the test 

samples. An average and standard deviation of at least 3 measurements was taken for each 

group. 

7.4.4 Electrochemical corrosion testing 

To assess the corrosion behavior of the WXQK alloy compared to pure Mg, the potentiodynamic 

polarization technique was used. Samples were connected to a copper wire using silver epoxy 

and mounted in epoxy resin. The mounted samples were mechanically polished, sonicated in 

isopropyl alcohol, and dried in air. The potentiodynamic corrosion study was carried out with an 

electrochemical workstation (CH-604A, CH Instruments, Inc., Austin, TX) at a scanning rate of 

1 mV/s and potential window of 500 mV above and below the open circuit potential. A three 

electrode cell was employed with platinum as the counter electrode, Ag/AgCl as the reference 

electrode, and the sample as the working electrode. The test was performed in Dulbecco’s 

Modified Eagle Medium (DMEM, with 4.5 g/l glucose, L-glutamine, and sodium pyruvate, 

Cellgro, Manassas, VA) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 

and 100 μg/ml streptomycin at pH 7.2 ± 0.2 and held at 37.4 °C. Before each measurement, the 

sample was immersed in the corrosion media to provide stability. The cathodic and anodic 

portions of the generated Tafel plots were fit linearly to allow calculation of corrosion potential 

(Ecorr) and corrosion current density (icorr).  
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7.4.5 Immersion corrosion testing 

Corrosion of the WXQK extruded alloy and pure Mg were also measured using mass loss while 

immersed in a solution of 0.9% NaCl solution with volume to sample surface area ratio of 50 ml 

cm-2. Immersion tests of samples polished to 1200 grit were carried at 37 °C. Samples were 

removed after 10 days of immersion and dried at room temperature. The sample masses were 

measured after samples were cleaned in a solution of 200 g/L of chromic acid and 10 g/L of 

AgNO3 while sonicating for 1 minute to remove corrosion products. The corrosion rate was 

calculated according to ASTM G31-72 [34] with the following equation: 

C = (K × W)/(A × T × D)                (2) 

Where C is the corrosion rate in mm year-1 (mmpy), the constant K is 8.76 x 104, W is the mass 

loss in g, A is the sample area exposed to solution in cm2, T is the time of exposure in h, and D is 

the density of the material in g cm–3. An average and standard deviation of 3 measurements were 

taken for each group. 

7.4.6 Device development 

Device designs followed those previously used by our group (Figure 33, plates: 20x4.5x1-1.5 

mm; screws: 7 mm long, 1.75 mm shaft outer diameter, 1 mm shaft inner diameter) [110]. 

Devices were cleaned with sonicated washes in acetone and ethanol, and sterilized with gamma 

radiation (2x106 cGy, 23.5 Gy/min, cesium 137 source, Mark I 68, JL Shepherd and Associates, 

San Fernando, CA). 
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Figure 33. MicroCT 3D reconstructions of WXQK devices before implantation. 

7.4.7 Surgical procedure 

All animal experiments were approved by the University of Pittsburgh’s Institutional Animal 

Care and Use Committee following procedures, methods, and timelines previously described for 

99.9% Mg [86]. A bilateral defect model was used with 12 New Zealand White rabbits (19 

weeks old, 3.5±0.2 kg), providing 24 surgical sites (12 sites per time point). A 2 cm incision was 

made over the ulna, and overlying soft tissue was carefully retracted. An ulnar osteotomy (0.5-1 

mm thick) was created using a hand held drill and then stabilized with one plate and four screws. 

Forearms were checked daily for signs of subcutaneous gas pocket formation. All observable gas 

pockets were documented and removed with a sterile syringe. Animals were then euthanized 

after 8 and 16 weeks. 

7.4.8 MicroCT 

To assess in vivo device degradation and new bone formation, devices were scanned before 

implantation and after euthanasia including the surrounding tissue. The devices as manufactured 

were scanned before implantation using a VivaCT40 (Scanco Medical AG, Bruttisellen, 

Switzerland) with a 10.5 μm voxel size, 55 kV tube potential, and 72 μA tube current. After 8 
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and 16 weeks of implantation, the device/local tissue complexes (n = 4 per time point) removed 

from the sacrificed animals were imaged using SkyScan1172 (Bruker-MicroCT, Kontich, 

Belgium) with a 10 μm voxel size, 79 kV tube potential, and 125 μA tube current. The CT 

images were digitally reoriented using SkyScan DataViewer. SkyScan CTAn software (version 

1.13.5.1) was used to distinguish the remaining alloy and corrosion product from soft and hard 

tissue as previous described by segmenting based on absorption coefficient relative to mineral 

density [89, 146]. The alloy and corrosion product were discernable from each other due to a 

difference in their relative X-ray absorption coefficients. This was reflected by inflection points 

in the mineral density distribution histogram from which regions of interest could be captured by 

defining thresholds to delineate remaining alloy from corrosion products.  

In addition to calculating the remaining volume of the plates and screws, corrosion rate 

was calculated from the volume of segmentations using the following equation: 

CR = ∆V/(At)                   (3) 

Where CR is corrosion rate in mm/yr, ∆V is change in Mg volume in mm3, A is surface area in 

mm2, and t is time in years [147]. The corrosion rates of the screws and plates were determined 

using the volume remaining in each respective regions of the device. 

Local bone formation and resorption were also assessed by microCT. To quantify the 

amount of bone formed above the degrading devices, regions of interest were generated 

containing all bone located above the bottom of the plate. In addition, the intracortical porosity 

of this newly formed bone was quantified using CTAn software. Bone volume was also 

calculated within the cortical bone layer immediately beneath the plates (proximal layer). These 

cortical bone volumes were then compared to those found from our previous study assessing 

99.9% Mg fixation devices [161]. 
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7.4.9 Three point bend testing of in vivo implants 

The relative strength of the ulnae after 16 weeks was assessed using three point bend testing as 

previously described (pre load: 1 N, loading speed: 5 mm/min, stop point: 0.5 mm flexural 

extension) [50, 86]. The flexural load at max extension was then recorded for each sample. Intact 

ulnae were used as controls. 

7.4.10 Histological assessment 

Samples were preserved with 10% formalin, embedded in Technovit 9100 New® (Heraeus 

Kulzer, Hanau, Germany), and sectioned at 5-10 μm thickness for histological assessments. Prior 

to staining, sections were deacrylated with xylene and 2-methoxyethyl acetate (MEA) for 20 min 

each, followed by gradual rehydration to deionized water. Masson-Goldner Trichrome stain was 

performed according to the manufacturer’s protocol (Electron Microscopy Sciences, Hatfield, 

PA). In addition, sections were stained with Toluidine Blue working solution for 2 min, rinsed in 

water, gradually dehydrated, and mounted for bright field imaging. Osteoclasts were identified 

using tartrate-resistant acid phosphatase (TRAP) staining according to manufacturer’s protocol 

(Sigma-Aldrich, St. Louis, MO). Sections were stained with the TRAP working solution for 1 

hour at 37 ºC, rinsed in water, and mounted for bright field imaging.  

7.4.11 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 19 (IBM, Armonk, NY). To 

determine statistical differences between groups for mechanical tests, one-way ANOVA 
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followed by Tukey’s test was used. For immersion corrosion and in vivo tests, groups were 

compared using a student’s t-test. Device degradation was compared between 0 and 8 weeks 

(n=4 screws, n=2 plates per time point). Cortical bone loss and periosteal bone growth 

quantifications were compared across time points of 8 and 16 weeks (n=4 per group). Flexural 

load response to three point bending was also compared across time points of 8 and 16 weeks 

(n= 6 per time point). Graphical representations reflect mean ± standard deviation.  

7.5 RESULTS 

7.5.1 WXQK phase and microstructure characterization 

The phases of the as-cast and extruded WXQK alloys were characterized by X-ray diffraction as 

shown in Figure 34. The XRD spectra show both conditions of the alloy were composed of hcp 

α-Mg, without detecting the presence of unalloyed Y, Ca, Ag, Zr, or intermetallic phases. The 

microstructure of the extruded alloy is shown in the optical micrographs of Figure 35, 

demonstrating significant grain size reduction after impact extrusion of the as-cast alloy. 
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Figure 34. X-ray diffraction pattern of WXQK in as-cast and extruded forms. 

Peaks of α-Mg are indicated throughout. 

 

 

Figure 35. Optical micrographs showing WXQK microstructure. 

 Conditions shown include as-cast (a), and after impact extrusion with sections taken in the transverse (b) and 

longitudinal (c) planes to the direction of extrusion (arrow indicates direction of extrusion). 

 

SEM and EDX (Figure 36) revealed that the WXQK as-cast and extruded alloys included 

clusters of secondary phase intermetallics which formed by segregation during solidification. 

These particles consisted of the alloying elements Ca, Ag, with elevated amounts of Y, as well as 

impurities of Al and Si (Figure 36 d-e). The bulk grains alloy matrix included Mg, O, and 

dissolved Ca (Figure 36 d region 1, e region 4). Regions at the grain boundaries (Figure 36 d 
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point 3, e point 6) also contained impurity elements of Si and Al, as well as small amounts of 

alloying elements Ca and Ag. After extrusion, while the bright segregations of secondary phase 

intermetallics became aligned in the direction of extrusion as seen in Figure 36 c and f, they 

remained at a relatively similar volume compared to the as-cast material, despite being subjected 

to a T4 solution treatment and extrusion. 

 

Figure 36. SEM images showing WXQK microstructure. 

Microstructure shown at 100x (a-c) and 400x (d-f) magnification: WXQK as-cast (a, d), WXQK extruded 

transverse section (b, e), and WXQK extruded longitudinal section (c, f). Elemental composition as 

determined by EDX in selected regions. In c and f, arrow indicates direction of extrusion. 

7.5.2 WXQK mechanical properties 

Mechanical properties were determined using tensile testing of dogbone shaped samples of the 

Mg alloys. The tensile mechanical properties of the WXQK alloys and pure Mg are presented in 

Table 2. After extrusion, both yield and ultimate tensile strength and strain at failure increased 

significantly for the WXQK alloy. Yield strength was also significantly higher compared to pure 

Mg; however the ultimate tensile strength was similar. Pure Mg possessed a higher elongation 

than the WXQK alloy. 
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Table 2. Tensile mechanical properties of WXQK and pure Mg. 

Yield tensile strength between groups was significantly different (* p<0.001). Ultimate tensile strength 

between WXQK as-cast and other groups was significantly different († p<0.001). Strain at break between 

WXQK as-cast and Pure Mg was significantly different (§ p=0.007). 

 Yield Tensile 
Strength 
(MPa)* 

Ultimate Tensile 
Strength 
(MPa) † 

Strain At Break 
(%) § 

Modulus 
(GPa) 

WXQK as-cast 65.6 ± 2.7 130.0 ± 28.0 4.4 ± 2.7 51.0 ± 8.0 
WXQK extruded 185.5 ± 3.5 217.0 ± 11.3  6.1 ± 5.4 48.7 ± 1.3 
Pure Mg 128.9 ± 14.1 221.6 ± 4.6 13.1 ± 3.1  45.2 ± 16.2 
 

7.5.3 WXQK corrosion properties (in vitro) 

The corrosion rates of the as-cast and extruded WXQK alloys were calculated based on mass 

loss after immersion in 0.9% NaCl solution and by electrochemical corrosion measurements. 

Representative potentiodynamic polarization curves (Figure 37) show the similarities between 

the WXQK alloy’s Tafel plots, whereas pure Mg is clearly shifted to lower corrosion current 

densities. Thus, the corrosion rate of pure Mg was calculated to be lower than that of the alloys 

tested (Table 3). The lower corrosion rate of pure Mg compared to the WXQK alloy held true 

after conducting immersion corrosion in 0.9% NaCl solution (Figure 38). 
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Figure 37. Representative potentiodynamic polarization curves of WXQK. 

As-cast and extruded alloys with transverse and longitudinal sections exposed are shown compared to pure 

Mg conducted in DMEM at 37 °C. 

 

Table 3. Electrochemical conducted in DMEM with 10% FBS at 37 °C of WXQK and pure Mg. 

Material Corrosion potential, 
Ecorr (V) 

Corrosion current 
density,  
icorr  (µA cm-2) 

Corrosion rate, 
mm/year (mmpy) 

WXQK as-cast -1.62 84.22 1.93 
WXQK extruded-
transverse section 

-1.61 64.26 1.48 

WXQK extruded-
longitudinal section 

-1.61 61.71 1.42 

Pure Mg -1.64 7.65 0.17 
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Figure 38. Immersion corrosion rates of WXQK extruded alloy and pure Mg. 

Degradation rate between groups was significantly different (* p=0.001) in 0.9% NaCl solution at 37 °C. 

7.5.4 In vivo device degradation 

Evidence of in vivo device degradation was initially observed through subcutaneous gas pocket 

formation (Supplemental Figure 2). Gas pockets were observed through 6 weeks in 50% of all 

animals. Some animals developed multiple gas pockets, while others developed only one or no 

gas pockets. The largest number of total gas pockets observed in a single week was 6, and no gas 

pockets were observed after 6 weeks. 

Screw degradation after 8 weeks was quantified by 3D microCT (Figure 39). After 8 

weeks, we observed a significant reduction in underlying alloy volume (p=0.002) accompanied 

by the formation of corrosion product at the device periphery. Based on alloy volume change, the 

corrosion rates at 8 weeks were calculated to be 0.45 ± 0.04 mm/year for screws (n=4) and 0.71 

± 0.02 mm/year for plates (n=2). Device degradation after 16 weeks was also assessed with 
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microCT; however due to excessive corrosion and tissue infiltration, volume loss quantifications 

were not performed. 

 

Figure 39. MicroCT quantification of screw degradation. 

Volumes of remaining WXQK and corrosion product were quantified separately as shown. WXQK volume 

was significantly reduced from 0 to 8 weeks (* p=0.002), while corrosion product was formed. Using these 

alloy volumes, corrosion rates were determined to be 0.45 ± 0.04 mm/year for the screws (n=4) and 0.71 ± 0.02 

mm/year for the plates (n=2, not shown) from 0 to 8 weeks. 

7.5.5 Bone overgrowth 

Bone overgrowth was studied using microCT and histology (Figure 40). Progressive periosteal 

bone formation was observed above the degrading devices throughout the course of the study. 

By 8 weeks, 36.61 ± 26.28 mm3 of new bone was formed over the devices, providing partial 

coverage (Figure 40 A, Figure 41 A). By 16 weeks, this bone growth increased significantly 

(p=0.014) to 175.78 ± 62.02 mm3, completely encasing the devices (Figure 40 B, Figure 41 B). 

Histological staining with Masson-Goldner Trichrome showed normal bone morphology within 

this region, including osteocytes and osteoid (Figure 40 C&D). Interestingly however, this newly 

formed bone appeared highly porous. When compared to bone overgrowth observed in a 
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previous study by our group using 99.9% Mg fixation devices [110], the average pore volume at 

16 weeks was significantly larger (p=0.041) with WXQK devices (Figure 41 B). The difference 

in porosity can be observed by comparing Figure 40 with Supplemental Figure 3. 

 

Figure 40. MicroCT and histological staining showing bone overgrowth around WXQK devices. 

3D reconstructions show partial bone overgrowth after 8 weeks (A) and full overgrowth by 16 weeks (B). 

Newly formed bone appeared highly porous, unlike previous observations of smoother and more compact 

bone overgrowth around 99.9% Mg devices (Supplemental Figure 3, [110]). Masson-Goldner Trichrome 

staining showed osteocytes and osteoid within these regions at 8 and 16 weeks (C and D, respectively). 
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Figure 41. MicroCT quantification of bone overgrowth and intracortical porosity. 

By 8 weeks, 36.61 ± 26.28 mm3 of new bone was formed over WXQK devices. This new bone growth 

increased to 175.78 ± 62.02 mm3 by 16 weeks (A, * p=0.014). Total pore volume within the bone overgrowth 

was also quantified using microCT and compared to previously studied 99.9% Mg ([110], n=4 per time 

point). Increased pore volume was found for WXQK compared to 99.9% Mg (B, † p=0.041) at 16 weeks. 
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7.5.6 Cortical bone resorption 

Cortical bone loss was observed by microCT and histology (Figure 42). This bone loss affected 

the cortical bone layer immediately beneath the plates (referred to hereafter as the proximal 

layer) and did not affect the more distant cortical bone layer (referred to hereafter as the distal 

layer). When compared to cortical bone volumes observed previously in a separate study by our 

group using 99.9% Mg fixation devices [110], the average cortical bone volume beneath WXQK 

devices was significantly reduced at 8 (p=0.003) and 16 (p=0.004) weeks (Figure 42 G). TRAP 

staining revealed no differences in the presence of osteoclasts throughout the samples 

(Supplemental Figure 4). Osteoclasts were observed in newly formed bone above the devices, as 

well as within the proximal and distal layers of cortical bone. 



 111 

 

Figure 42. MicroCT and histological staining showing bone healing with WXQK devices. 

Cortical bone loss was observed beneath the plates after 8 (A) and 16 weeks (B). White dotted boxes outline 

areas originally containing the cortical bone layer. The volume of remaining proximal cortical bone was 

quantified and compared to previously studied 99.9% Mg [110]. Significantly less bone remained after 8 (* 

p=0.003) and 16 († p=0.004) weeks for animals with WXQK devices compared to 99.9% Mg devices (E). 

Despite this bone loss, distal cortical bone healing was observed in 77% of samples after 8 weeks (C) and 88% 

of samples after 16 weeks (D). Histological staining of this healed bone showed healthy bone morphology (C 

and D). 
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7.5.7 Fracture healing 

Despite proximal cortical bone loss beneath the plates, distal cortical bone healing was observed 

in 77% of samples after 8 weeks and 88% of samples after 16 weeks through microCT and 

histology. Healed bone within these regions appeared histologically normal through Masson-

Goldner Trichrome staining (Figure 42 E&F). 

7.5.8 Bend testing 

The relative flexural load response of healed ulnae was assessed using three point bend testing. 

After 16 weeks, we observed no difference in flexure load response for healed ulnae when 

compared to healthy, age-matched controls (Figure 43). 

 

Figure 43. Three point bend testing results. 

Three point bend testing was performed to evaluate the flexure load response of healed ulna after 16 weeks. 

No significant difference was found in the flexure load of healed ulnae and healthy un-fractured control ulna 

after 16 weeks. 
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7.6 DISCUSSION 

To reduce the risk of long term complications and eliminate the need for implant retrieval 

surgeries, we are exploring degradable Mg alloys for bone fixation applications. In the current 

study, a high stiffness, as-extruded, biodegradable Mg alloy was tested using a rabbit ulna 

fracture model previously employed by our group [110]. Alloy extrusion is widely used to 

achieve grain refinement. This process has a profound effect on material strength through the 

Hall-Petch relation in which grain boundaries act as pinning points to impede the propagation of 

dislocations [162, 163]. In the present study, WXQK alloy extrusion resulted in a significant 

improvement in material strength compared to as-cast WXQK alloy due to the decreased grain 

size. These results are in accordance with previous work showing that as-cast Mg-Y-Ca-Zr 

retained more refined grains than after solution treatment, resulting in higher mechanical 

properties [70]. We observed that the as-extruded Mg-Y-Ag-Ca-Zr exhibited higher yield 

strength compared to extruded pure Mg, whereas ultimate tensile strength of both materials were 

similar (Table 2). The elemental composition of the WXQK alloy provided theoretical 

advantages over pure Mg. For instance, Y and Ca contribute to grain boundary strengthening of 

Mg alloys [164] and improve corrosion resistance [39, 165, 166]. Zr serves as an effective grain 

refining agent [167], imparting grain boundary strengthening [168] and corrosion resistance 

[169]. Finally, the addition of 0.6 wt. % Ag increases ductility and bulk workability of the alloy 

for extrusion. Furthermore, Mg-Ag alloys have demonstrated antibacterial properties, reducing 

the viability of Staphylococcus aureus and Staphylococcus epidermidis [170].  

Although as-extruded Mg-Y-Ag-Ca-Zr was designed to exhibit corrosion resistance 

comparable to pure Mg, the corrosion rate of Mg-Y-Ag-Ca-Zr was significantly higher than that 

of pure Mg in immersion corrosion measurements conducted in 0.9% NaCl solution at 37 °C 
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(Figure 38). It is possible that the addition of Ag resulted in the observed accelerated corrosion. 

Similar observations have been made with as-cast Mg-Ag alloys in which increasing Ag content 

resulted in more rapid corrosion [170]. In addition, corrosion may have been accelerated due to 

the presence of segregations of alloying elements such as Y (Figure 36), making the beta phase 

more cathodic when the passive layer is not stable [171].  

Despite these observations of accelerated corrosion in vitro, we identified the as-extruded 

WXQK alloy to be a good candidate material to test as fixation plates and screws in vivo due to 

its high yield strength. Previously, we reported encouraging results with 99.9% Mg plates and 

screws for rabbit ulna fracture fixation [86, 110]. In these previous studies, we observed healthy 

bone regeneration in the presence of device degradation, as well as new bone formation around 

the devices. Based on those results, we hypothesized that Mg ion release from degrading Mg 

devices has the ability to influence periosteal stem cells and ultimately enhance bone formation. 

In the present study, we aimed to further explore this phenomenon using the WXQK alloy. 

Interestingly, our results obtained with WXQK devices varied from our prior work with 

99.9% Mg. For instance, in the present study we observed cortical bone resorption beneath the 

plates after 8 and 16 weeks, which has not been observed with 99.9% Mg. Similar observations 

have been reported with other metallic and polymeric plating systems and are typically attributed 

to surgical trauma, stress shielding, and inhibited local blood supply [172-176]. In the present 

study however, we believe it is unlikely that these factors contributed to the observed bone loss. 

The surgical technique used in this study was previously performed by our laboratory without 

complications, making it unlikely that the induced trauma would cause bone resorption. 

Furthermore, the devices used in this study were degradable, gradually decreasing their load-

bearing contribution over time. We anticipate that as these devices degrade, their load is 
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transferred onto the ulnae, thus limiting stress shielding [177, 178]. In addition, device 

degradation would likely reduce compression on surrounding bone, minimizing damage to the 

local vasculature.  

For these reasons, we believe that our observations of bone resorption are a result of 

WXQK alloy degradation. This degradation could affect surrounding tissue through alloying 

element release and/or gas release. By weight percent, the most predominant component of the 

WXQK devices is Mg. Various in vitro and in vivo studies have demonstrated Mg’s 

biocompatibility and positive effect on osteoblasts and mineralization [26, 28, 40, 86]. In 

addition, recent studies have begun to elucidate effects of Mg on osteoclasts [116, 179]. For 

instance, Wu et al used MgCl2 and 99.95% Mg extracts to study effects of Mg on human 

osteoclastogenesis and osteoclast activity in vitro [116]. Using serial dilutions of the Mg extracts, 

they mimicked the theoretical Mg gradient surrounding degrading Mg alloys. Their data showed 

that when exposed to increasing Mg concentrations, cellular metabolic activity and 

differentiation were reduced, while resorption activity per osteoclast was increased. In the 

present study, we also assessed osteoclast presence using TRAP staining; however, we observed 

no differences in osteoclasts based on proximity to our degrading implants. Osteoclasts were 

observed sporadically throughout remodeling bone above the devices and within cortical bone 

beneath the devices. Although the bone loss observed in this study was likely caused by 

osteoclastic activity, it is possible that our time points for histological assessments (8 and 16 

weeks post-op) were too late to observe differences in osteoclasts presence. If we consider gas 

release as a marker of alloy degradation, we would expect the most significant Mg release to 

occur within 2-6 weeks post-op. During this time, the concentration of Mg around the devices 

would increase, potentially affecting osteoclast behavior [116]. However, after 8 weeks, 
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corrosion product formation on the device surfaces may have slowed degradation and subsequent 

Mg release, thereby allowing local Mg concentrations to equilibrate. 

In contrast to resorption of the underlying cortical bone, we observed new bone formation 

on top of the devices. Similar bone growth has previously been reported by our group [86, 110] 

as well as others [26, 28]. Interestingly however, in the present study we observed large 

intracortical pores throughout this bone. It is possible that these pores are the result of rapid gas 

release from accelerated device degradation. Based on our experience with this surgical model, 

bone overgrowth around degrading Mg devices begins before 4 weeks post-op [86, 110]. 

Concomitantly, the plates and screws release gas as they degrade. Similar gas release has been 

observed by other groups in soft tissue and bone marrow adjacent to degrading Mg devices. Over 

time however, this gas was shown to dissipate [26, 28, 39, 180-182]. In the current study, we 

speculate that the rapidly released gas became trapped within the overlying bone during 

mineralization, giving rise to the large pores we observed. Additional long term studies are 

needed to better understand how this morphology will change over time as the bone remodels 

[172]. 

The dichotomy in our observations of bone resorption beneath devices and bone growth 

above devices highlights site-specific biological responses to Mg alloy degradation. Indeed the 

environments above and below the devices are quite different and contain unique cell 

populations. It is possible that alloy degradation and subsequent ion release elicited unique 

responses from the undifferentiated MSCs within the periosteum (above devices) and the 

differentiated cells of the cortical bone (below devices). Recent work by Yoshizawa et al 

explored effects of MgSO4 on undifferentiated hBMSCs and differentiated osteogenic cells in 

vitro [76]. They observed that 10 mM MgSO4 enhanced COL10A1 and VEGF expression; 
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however, they saw an activation of HIF-2α for undifferentiated hBMSCs and PGC-1α for 

differentiated osteogenic cells. These data revealed that the effect of Mg ion on cell behavior can 

vary depending on cell differentiation; however additional investigations are needed to better 

understand these cellular responses. 

In addition to cellular differences, the tissues surrounding the devices maintain different 

vascularity. For instance, the environment above the devices initially consisted of periosteum and 

muscle. Compared to the cortical bone beneath the devices, these tissues are more vascularized 

and capable of providing enhanced buffering of pH and alloying elements released through 

device degradation. It is possible that insufficient buffering capacity, coupled with the increased 

WXQK corrosion rate, caused a local pH increase and subsequent bone resorption beneath the 

devices. A difference in the Mg concentration in these two regions may also result in the varying 

bone response, indicating a threshold of local Mg beyond which may elicit mineralization defects 

[183] and inhibitory effects on osteoblast differentiation and mineralizing activity [184]. The 

addition of Ag may also have had an effect on bone growth surrounding the device, as higher 

concentrations of Ag treatment have been found to inhibit the osteoinductive capability of 

demineralized bone matrix [185]. Ag nanoparticles also exert dose-dependent cytotoxic effects 

on osteoblast and osteoclast differentiation and viability, and may have negative effects on the 

osseointegration of orthopedic implants [186]. Similarly, Y has been shown to have 

concentration-dependent effects on osteoblast proliferation, differentiation, and mineralization 

function [187]. These dose-dependent relationships between alloying elements and the resultant 

bone response generally indicate that higher concentrations of elements result in detrimental 

effects on bone growth, and suggest a controlled alloy degradation profile is preferred. Due to 

the rapid degradation of the WXQK alloy used in this study, bone resorption may have occurred 
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in areas where the concentration of the degradation products reached the threshold to cause 

detrimental effects. 

Despite these concerns of the effects of the elements used in the WXQK alloy, several of 

the components (Mg, Y, Zr) are included in other commercial alloys such as WE43 (Y 4%, Nd 

2.25%, 0.15% Zr) and have been studied in vitro and in vivo, demonstrating good 

biocompatibility [188, 189]. Y and Zr are also included in the MAGNEZIX® compression screw 

for small bone fractures which has obtained CE marking of medical devices for medical 

applications in Europe after a randomized, controlled clinical study was conducted using the Mg 

alloy screw in hallux valgus surgery, demonstrating the safety of the alloying elements in this 

embodiment [190]. Additional work is needed to fully assess the potential toxicity of the WXQK 

alloy used in the current study; however, we observed no signs of systemic toxicity via 

behavioral changes in the animals. Animals resumed normal behavior and weight-bearing 

movement following surgery. Furthermore, despite the observed cortical bone loss, mechanical 

testing demonstrated no significant difference in the flexure load response of ulnae fixed with 

WXQK devices when compared to healthy, intact controls after 16 weeks. 

7.7 CONCLUSIONS 

In this study, we assessed as-extruded WXQK plates and screws as degradable fixation devices. 

We observed in vitro improvements in mechanical strength, however in vitro and in vivo 

corrosion was accelerated when compared to previously studied pure Mg. Unlike observations 

from our previous work with pure Mg, we observed a contrast in the biological effect of WXQK 

degradation above and below the devices. In the present study, we observed highly porous bone 
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growth above the devices and cortical bone loss beneath the devices. These observations 

highlight the importance of controlled device degradation. We speculate that accelerated 

corrosion and insufficient buffering can result in gas and ion accumulation, ultimately leading to 

compromised bone formation or bone loss. Additional studies should be conducted to better 

understand the effects of alloying elements on bone cells. Through an improved understanding of 

these effects, we may better identify optimal degradation profiles and associated concentration 

ranges of alloying elements to promote bone healing and avoid detrimental bone loss.  



 120 

8.0  CONCLUSIONS 

In the present dissertation, degradable Mg alloys were studied for their potential as bone fixation 

devices. We hypothesized that their unique combination of in vivo degradation and mechanical 

strength would allow them to serve as ideal materials for orthopedic fixation devices by 

providing fracture stabilization to facilitate healing while undergoing gradual degradation. 

To study these materials, we utilized multiple in vivo models which can provide more 

clinically relevant results than in vitro testing alone. First, we developed and assessed two unique 

models for material testing in rodents subcutaneously. Our original model consisted of a Mg 

alloy rod contained within a collagen scaffold seeded with hBMSCs (Figure 5). Using this 

model, we obtained qualitative and quantitative results describing alloy degradation and 

subsequent biological effect. Using microCT, we measured an increase in the degradation of 

99.9% Mg compared to Mg alloy AZ31 after 8 weeks (Figure 6). Furthermore, histological 

staining, IHC, and in situ hybridization showed a normal inflammatory response with mouse and 

human cells around the degrading Mg implants (Figure 7). In addition, we observed expression 

of osteogenic proteins DMP1 (Figure 9) and OPN (Figure 10) in samples which contained 

hBMSCs. Alternatively, expression of these proteins was not observed in samples without 

hBMSCs, suggesting an active role of hBMSCs in the observed protein expression. 

These results demonstrated the utility of our model to study effects of Mg degradation on 

a clinically relevant human cell population in vivo. However, we hypothesized that this model 
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could be further refined by replacing the collagen scaffolds with scaffoldless constructs. 

Scaffoldless constructs were formed directly from hBMSCs and wrapped around Mg alloys, 

providing a biomimetic cellular matrix environment (Figure 11). Using this model, we assessed 

the corrosion behavior of 99.9% Mg, as well as its effect on surrounding mouse and human cells. 

MicroCT showed gradual Mg degradation with corrosion product formation on the implant 

surface (Figure 12). Volume change quantifications revealed that the corrosion rate of the Mg 

implants decreased over time, likely a result of surface passivation (Figure 13). More detailed 

assessments of the corrosion layer using histological staining as well as SEM and EDX identified 

Mg, Ca, and P within this region (Figure 14, Figure 15, Figure 16). In the presence of ongoing 

Mg degradation, both mouse and human cells were observed within adjacent tissue. 

Interestingly, we observed expression of OC (Figure 18) and OPN (Figure 19) around the Mg 

implants in all samples, including those without hBMSCs. In contrast with our previous results 

obtained from the scaffold-based study, these observations suggest that the degrading Mg and/or 

corrosion product can trigger osteogenic differentiation of native mouse cells without hBMSCs. 

Taken together, these studies highlight the importance of the cellular microenvironment on cell 

behavior and shed light on the potential role of the corrosion layer in the biological response to 

degrading Mg implants. 

In addition to studying Mg alloys as basic materials, we have developed and assessed 

them as functional fixation plates and screws in vivo. These devices were first tested through a 

pilot study in which we compared devices made with 99.9% Mg to clinically-used Ti (Figure 

20). Through this study, we observed that the Mg devices performed similar to the Ti devices by 

providing fracture reduction and alignment to facilitate physiological bone healing (Figure 23). 

Interestingly however, we observed an abundance of newly formed bone around the degrading 
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Mg, but not Ti, devices after 4 weeks (Figure 24). This striking observation suggested that Mg 

device degradation could increase local bone formation; however, additional assessments were 

needed to verify these observations. 

For these reasons, we conducted a follow-up studies in which we developed and tested 

fixation plates and screws made from 99.9% Mg (Figure 25) and Mg alloy WXQK (Figure 33). 

In these studies, we conducted detailed assessments of device degradation and bone regeneration 

after 8 and 16 weeks. The results obtained with 99.9% Mg devices were extremely positive. We 

observed gradual device degradation (Figure 26), physiologically normal fracture healing (Figure 

28), and integration of the degrading devices with surrounding bone (Figure 29). Furthermore, 

we observed substantial new bone formation around all devices (Figure 30). These data verified 

our pilot study observations and demonstrated the preliminary efficacy of 99.9% Mg fixation 

devices in vivo. 

We hypothesized that the beneficial effects of device degradation were related to Mg ion 

release, and therefore expected the WXQK alloy to perform similarly to 99.9% Mg in vivo. 

However, we observed several differences in the biological response to WXQK devices when 

compared to 99.9% Mg. For instance, we observed substantial bone overgrowth around WXQK 

devices (Figure 40); however, this bone was highly porous with an irregular morphology (Figure 

41). Furthermore, we observed cortical bone loss beneath most WXQK plates after 8 and 16 

weeks (Figure 42). These observations revealed an adverse reaction of local cells and tissue to 

WXQK degradation. We speculate that this adverse reaction was linked to the accelerated device 

degradation through excessive release of Mg ion, alloying elements, and/or gas. However, 

additional investigations, such as detailed mechanistic studies, are needed to clearly identify 
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which degradation effects are responsible for the observed bone loss and changes in newly 

formed bone morphology. 

Despite our variable observations with WXQK, our overall work with degradable Mg 

alloys has demonstrated potential for these materials to be used for bone fixation and 

regeneration applications. By undergoing controlled in vivo degradation, pure Mg devices could 

reduce the risk of long term complications and eliminate the need for removal surgeries. 

Furthermore, when properly controlled, the degradation of pure Mg can enhance local bone 

formation to facilitate osteointegration, support fracture healing, and potentially improve clinical 

outcomes. 
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9.0  FUTURE DIRECTIONS 

In order to exploit the advantageous traits of Mg degradation, such as enhanced local bone 

formation, additional work should be done to understand the mechanisms of these effects. For 

instance, the effect of Mg degradation on differentiated versus undifferentiated cells should be 

explored. These investigations have been initiated by Yoshizawa et al, who revealed a variable 

effect of Mg on hBMSCs depending on their stage of differentiation [76]. Their work showed 

enhanced mineralization, VEGF, and ColX expression when hBMSCs were exposed to 10 mM 

MgSO4. Interestingly, they observed that for undifferentiated hBMSCs, this enhancement was 

linked to activation of the HIF signaling pathway. Alternatively, for differentiated hBMSCs, the 

PGC-1a pathway was activated. This work demonstrated that Mg’s effect on cells may be 

specific to their stage of differentiation; however, additional work is needed to fully understand 

these mechanisms both in vitro and in vivo. 

By understanding the mechanisms of Mg’s biological effects, we may tailor device 

design to maximize bone regeneration, while avoiding bone resorption or other adverse 

reactions. For instance, Mg devices could be designed to meet specific degradation profiles, such 

as initial burst degradation (and Mg2+ release) followed by slower degradation (and sustained 

Mg2+ release). In addition, Mg devices could be designed for specific applications, such as 

craniofacial bone healing. In this anatomical region, bone growth occurs primarily via 

intramembranous ossification which does not require intermediate cartilage formation. It has yet 
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to be determined whether or not the beneficial effects of Mg degradation observed in long bones 

will also occur in craniofacial bones. For these reasons, studies should be conducted testing Mg 

devices in craniofacial defect models. 

In addition to fracture fixation, Mg alloys should be considered for other medical 

applications in which bone growth is desired. For instance, Mg devices may be used to 

regenerate bone after tumor resection or bone loss caused by dental disease such as periodontitis. 

Alternatively, Mg alloys could be used for soft tissue applications, such as stents, sutures, and 

staples [191-193]. 

Regardless of the desired clinical application, rigorous long term studies will be required 

to fully demonstrate the safety and efficacy of Mg devices in vivo. These studies should 

encompass the entire life span of the devices, from implantation through total degradation. In 

addition, studies involving fracture fixation or bone regeneration should be conducted over long 

enough time periods to observe bone remodeling following healing. Throughout these studies, 

device degradation should be carefully monitored, including clearance of associated gas release 

and corrosion products. 
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APPENDIX A 

SUPPLEMENTAL DATA 

A.1 SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1. H&E staining showing appropriate immune response around Mg alloys. 

H&E staining of tissue surrounding pure Mg (A) and AZ31(B). Mild chronic inflammation was observed 

around pure Mg, and mild to moderate chronic inflammation was observed around AZ31. Arrows indicate 

inflammatory cells.  * indicates implant location. Scale bars are 50 µm. 
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Supplemental Figure 2. Quantification of subcutaneous gas pockets. 

Subcutaneous gas pockets were removed per animal care facility guidelines. Gas pockets were observed 

through 6 weeks post-op in 50% of all animals. Some animals required multiple removals per week, while 

others required no removals. No gas pockets were observed after 6 weeks. 

 

 

Supplemental Figure 3. MicroCT showing bone overgrowth around 99.9% Mg devices [110].  

3D reconstructions show partial bone overgrowth after 8 weeks and full overgrowth by 16 weeks. In contrast 

to bone formed around WXQK devices, bone around 99.9% Mg devices appeared smooth and less porous. 
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Supplemental Figure 4. TRAP staining identifying osteoclasts. 

TRAP staining (red/purple) revealed osteoclasts present in all areas of remodeling bone, including newly 

formed bone over the devices, as well as the proximal and distal cortical bone layers at 8 weeks. TRAP 

staining was compared to previously studied 99.9% Mg [110], revealing similar osteoclast expression with 

both materials. Osteoclasts were not observed by 16 weeks post-op (not shown). 

A.2 SUPPLEMENTAL TABLES 

Table 4. 99.9% Mg composition including possible impurities (Goodfellow).  

Mg Alloy Primary Composition Impurities (ppm) 

99.9% Mg (“pure Mg”) 99.9% Mg 
Al 70, Cu 20, Fe 280, Mn 170, 

Ni <10, Si 50, Zn <20 
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