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Neuromuscular electrical stimulation (NMES) can potentially be used to restore the limb 

function in persons with neurological disorders, such as spinal cord injury (SCI), stroke, etc. 

Researches on control system design has so far focused on relatively simple 

unidirectional NMES applications requiring stimulation of single muscle group. However, for 

some advanced tasks such as pedaling or walking, stimulation of multiple muscles is required. 

For example, to extend as well as flex a limb joint requires electrical stimulation of an 

antagonistic muscle pair. This is due to the fact that muscles are unidirectional actuators. The 

control challenge is to allocate control inputs to antagonist muscles based on the system output, 

usually a limb angle error to achieve a smooth and precise transition between antagonistic 

muscles without causing discontinuities. Furthermore, NMES input to each muscle is delayed by 

an electromechanical delay (EMD), which arises due to the time lag between the electrical 
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excitation and the force development in muscle. And EMD is known to cause instability or 

performance loss during closed-loop control of NMES.  

In this thesis, a robust delay compensation controller for EMDs in antagonistic muscles is 

presented. A Lyapunov stability analysis yields uniformly ultimately bounded tracking for a 

human limb joint actuated by antagonistic muscles. The simulation results indicate that the 

controller is robust and effective in switching between antagonistic muscles and compensating 

EMDs during a simulated NMES task. Further experiments on a dual motors testbed shows its 

feasibility as an NMES controller for human antagonistic muscles. 
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1.0  INTRODUCTION 

Neuromuscular electrical stimulation (NMES) is commonly prescribed to treat or recover lost 

muscle function and/or strength in individuals who have upper motor neuron disorders from 

spinal cord injury (SCI), traumatic brain injury, multiple sclerosis, stroke, etc [1]. NMES 

artificially contracts muscle groups by applying external stimulation current. Closed-loop control 

of NMES can be used to generate advanced functional tasks (in this case NMES is also called 

functional electrical stimulation (FES)) such as walking [2, 3], single leg extension [4-9], and 

upper extremity grasping and reaching [10-12].  

Linear control methods are not capable of more advanced and complicated NMES tasks 

and do not guarantee stability due to the presence of uncertainty and nonlinearity in the 

musculoskeletal system, and other causes such as external loads, muscle fatigue, 

electromechanical delay (EMD). Examples of linear control methods include proportional 

integral derivative (PD/PID), linear quadratic Gaussian control, pole placement method, gain 

scheduling control method [13-15]. Nonlinear control methods [4-9, 16-18] have also been 

recently developed for NMES. These nonlinear methods have improved performance over linear 

control methods. Robust nonlinear control of NMES is especially more relevant, and controllers 

have been developed to compensate for the nonlinear and uncertain muscles dynamics [5, 7], 

time-varying phenomena such as muscle fatigue [19], and electromechanical delay [18, 19].  
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Electromechanical delay (EMD) is the time lag between the electrical excitation and the 

force development in muscle. In results such as [4, 6, 19], the EMD was modeled as an input 

delay in the musculoskeletal dynamics. Input delays can cause performance degradation and 

system instability, such as during human stance experiments [20]. Recently, a robust 

compensation control method was developed for an uncertain input delayed system with additive 

disturbances [21] and it suggests that a PD/PID controller can be augmented with a delay 

compensator that contains a finite integral of past control values to transform the delayed system 

into a delay-free system. Modified PD/PID controllers have been extended to compensate for 

EMD during NMES [18, 19].  

However, these controllers are designed for unidirectional limb movements; i.e., only 

quadriceps muscles were stimulated through a single NMES channel to extend the lower leg. The 

antagonist muscle (hamstrings in this case) were not stimulated instead the leg is lowered by a 

controlled reduction in NMES of the quadriceps muscle allowing gravity to help bring the leg 

back towards the equilibrium position. However, in a standing position or during a gait cycle, 

producing knee flexion and extension would require controlled stimulation of both hamstring and 

quadriceps (antagonistic pair). Similarly, upper-limb movements such as elbow or wrist flexion 

and extension would require FES of antagonistic pairs (e.g., biceps and triceps muscles). In 

recent years, iterative learning control (ILC) was used for FES applications for upper limbs [22-

25]. In these studies, the stimulation was applied to triceps and anterior-deltoids muscles. 

However, the closed-loop control of the stimulation allowed only unidirectional joint movement 

like the flexion or extension of the muscles. This implies the controller may not be capable of 

controlling antagonistic muscles to flex as well as extend an upper-limb joint in a smooth and 

relative more efficient way.  
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The field of multi-channel FES control is relatively new. In Downey et al. [9], 

asynchronous NMES control of the multiple muscles in the quadriceps muscle group was 

proposed through four channels. The switching between the channels is based on a fixed time 

periodic signal in order to reduce the onset of muscle fatigue. Again, this switching scheme was 

only proposed for agonist muscles. In addition, the switching signal was periodic and fixed. In 

order to design a controller for multi-channel control of antagonist muscle pairs, the switching 

signal would have to be based on the performance of the controller (i.e., the tracking error). 

The primary focus of this thesis is to develop a closed-loop tracking controller for dual 

control of NMES tasks such as limb extension and flexion. A proportional-derivative (PD)-type 

closed-loop controller with delay compensation (DC) to deal with the EMD was designed for 

stimulating antagonistic muscle pairs in a musculoskeletal system. Unlike previous controllers 

that produce joint flexion with the help of gravity [9, 18, 19] or controlled by correctional forces 

such as robot arms [22, 24], the developed controller will flex and extend a limb joint by 

stimulating agonist and antagonist muscles. The controller is designed to transition smoothly 

between the stimulation of the antagonist muscles. The switching signal is based on the position 

tracking error and can be made arbitrarily fast or slow by adjusting the control gains. Parametric 

uncertainty and additive bounded disturbance were included in the dynamics for the control 

development and subsequent stability analysis. Lyapunov Krasovskii (LK) functionals were 

constructed to cancel the delay terms. The associated Lyapunov-based stability analysis proved 

semi-global uniformly ultimately bounded tracking. 

The thesis is organized as follows: Chapter 1 is a brief introduction to the development of 

FES research and the novelties of the research in this thesis. The second chapter features the 

background information of FES, EMD, and literature review on NMES control design and 
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control methods for antagonistic muscle groups. The musculoskeletal system used for developing 

the controller is discussed in Chapter 3 and in Chapter 4 the design of the antagonistic controller 

with delay compensation is presented and its stability is proved through Lyapunov-based 

stability analysis. The simulation and experiment results are shown in Chapter 5. The last chapter 

concludes the thesis and gives a few ideas for future work. 

The main contributions of this thesis is listed below: 

Chapter 3: Main contribution is to introduce the switching signals for transition 

antagonistic muscle and auxiliary terms to compensate for EMD. 

Chapter 4: Main contribution is to yield that the controller is semi-globally uniformly 

ultimately bounded. 

Chapter 5: Main contribution is to verify the controller through simulations and 

experiments on motor testbed. 
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2.0  BACKGROUND INFORMATION AND LITERATURE REVIEW 

Neuromuscular electrical stimulation (NMES) has been used to recover muscle function in 

individuals, who have partial or complete loss of limb control, due to trauma to upper nervous 

system systems or neurological disorders [1]. It can be used as an assistive therapy for relearning 

motor tasks method or as primary treatment to restore limb function. Some studies and clinical 

reviews have approved its effectiveness to recover motor function [26-28].  

NMES achieves the control of muscle movement by using external low-level electrical 

current. During NMES, the motorization cell’s membrane potential is depolarized, which 

releases calcium ions to be released from the sarcoplasmic reticulum. Causes calcium spark to 

activates the myofilaments, thus allow cross-bridge cycling that produces muscle force [29]. The 

external current is sent via the electrodes to the muscle. Electrodes can be transcutaneous (placed 

on the skin surface), percutaneous (placed within a muscle), epimysial (placed on the surface of 

the muscle), or cuff (wrapped around the nerve that innervates the muscle of interest) [30]. Skin 

surface electrodes are widely adopted in the commercial and clinical environment due to their 

wearability (easy to apply on and take off from the skin) and less invasive characteristic 

compared to other kinds of electrodes [31]. 

One of the most common application for NMES is to restore the motor functions for 

people who suffer from spinal cord injury (SCI), which is caused by either injury or trauma to 

the neurological tissue of the spinal cord. Approximately 400,000 people in America are 
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currently living with SCI and the number is increasing at the rate of approximately 11,000 per 

year [32]. This irreversible damage can result in partial or total loss of sensory function, or 

paralysis, to parts of the body below the level of the injury, which affect patients’ life quality 

dramatically [33]. NMES can be used to improve their motor functions, and thus restore their 

ability to perform daily tasks. 

Another major field of NMES application is for the rehabilitation of stroke patients. 

During stroke the brain cells are damaged or die due to lack of blood supply. The stroke leads to 

the loss of motor function, especially of upper extremity. During 3 to 6 months after stroke, only 

50% of stroke survivors are likely to regain some functional use of their affected upper extremity 

[34].There are several treatment methods for stroke patients to regain the motor function, such as 

Bobath therapy [35], constraint-induced therapy [36], task-specific motor relearning program [37] 

and robotic training [38]. Compared to traditional therapy, NMES methods have proven their 

effectiveness such as increasing movement and activity compared to traditional training alone 

[39]. The effectiveness of NMES in improving the muscle strength and the motor function 

recovery has been widely accepted by both clinical reviews and meta-analyses [27, 40, 41]. 

Besides, when combined with traditional motor training, the clinical NMES treatment will cost 

significantly less than using robotic therapy, the difference can be up to $1,000 per patient while 

achieving the same degree of recovery [42]. 

A variety of NMES devices is commercially available due to its proven effectiveness. 

Most NMES systems in clinics use open-loop or finite state control systems. Foot drop 

correction devices such as L300 from BIONESS, Inc. help patient by monitoring whether the 

user’s heel lifts off the ground through a sensor and stimulate the flexor muscles of the ankle. In 

this way, the user will be able to swing the leg and take a step. 
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Besides open-loop and finite-state NMES systems, closed loop NMES systems are also 

available for more advanced tasks. NMES cycling machine such as the RT300 from Restorative 

Therapies, Inc. and Ergys 2 from Therapeutic Alliances, Inc. implement a closed-loop controller 

to maintain a constant cycling cadence by increasing the stimulation intensity as the muscles 

begin to fatigue.  

 

 

Figure 1. ERGYS 3 Rehabilitation System 

 

Linear control methods for NMES applications include proportional integral derivative 

(PD/PID), linear quadratic Gaussian control, pole placement method, gain scheduling control 

[13-15]. However, because the musculoskeletal system is uncertain and nonlinear, and various 

external disturbances such as loads on muscle, muscle fatigue, and electromechanical delay 

(EMD) could lead the system to instability. These control methods are neither capable of 

advanced and more complicated NMES tasks that require real-time control of the stimulation, 

nor they can guarantee stability.  

In order to achieve better performance than linear closed-loop controller, some nonlinear 

control methods like sliding mode control, neural network, nonlinear model predictive control 
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have been introduced for NMES application. These nonlinear methods were proved to have 

enhanced performance over linear control methods in previous researches [4-9, 16-18]. Among 

these nonlinear control techniques, robust nonlinear control of NMES in [5, 7] is especially more 

relevant given the nonlinear and uncertain muscle dynamics, time-varying phenomena such as 

muscle fatigue [19], and electromechanical delay [18, 19].  

EMD is the time window between electrical excitation of the motor-neurons and 

development of contraction in muscle. It is a function of a number of phenomena including finite 

propagation time of the chemical ions in the muscle, cross-bridge formation between actin-

myosin filaments, stretching of the series elastic components in response to the external electrical 

input, synaptic transmission delays, and others [43], [44]. It is modeled as an input delay in the 

musculoskeletal dynamics in results such as [4, 6, 19]. EMD is a crucial factor in muscle model 

used for NMES controller design since these delays can easily degrade the performance and 

affect the stability of the system, make the whole system unstable. [44] 

Even though the EMD is one of the major problems in NMES control technology, not too 

many researchers had taken EMD into consideration during the controller design process. Few 

mathematical tools exist for compensating input delay; they are Smith predictors [45], finite 

spectrum assignment [46] and Artstein model reduction [47]. Recently, a robust compensation 

control method was developed for an uncertain input delayed system with additive disturbances 

in [21]. The study shows a model-free robust controller that could make the leg shank to track 

the desired trajectory under known constant EMD with a uniformly ultimately bounded error. 

Also, the study suggests a PD/PID controller with a delay compensator that contains a finite 

integral of past control values can transform the delayed system into a delay-free system.  

Modified PD/PID controllers have been extended to compensate for time varying EMD during 
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NMES [18, 19]. In order to achieve precise and efficient controlled contraction in NMES, EMD 

should be taken into account during the control development. Similar to results in [4, 6], in this 

thesis, the EMD is modeled as an input delay in the musculoskeletal dynamics. 

However, controllers mentioned above are all designed for unidirectional limb 

movements and can only deliver current through a single channel; when extending the lower leg 

through NMES, only quadriceps muscles were stimulated through a single NMES channel. 

During the flexing period, the leg is lowered by a controlled reduction in currents to the 

quadriceps muscle, and the gravity of the shank to return to its original position. However, not all 

the situations can make use of the gravity, in a standing position or during a gait cycle, producing 

knee flexion and extension would require controlled stimulation of both hamstring and 

quadriceps (antagonistic pair), these actions are common in real life such as when kicking 

football a smooth and continuous swing movement of the lower limb will be required. Similarly, 

using NMES to achieve upper-limb movements in horizontal plane such elbow or wrist flexion 

and extension would need the participation of antagonistic pairs (e.g., biceps and triceps 

muscles). The need for multi-muscle control for advanced NMES applications has driven the 

developments of multi-channel controllers. 

In recent years, iterative learning control (ILC) was used for FES applications for upper 

limbs [22-25]. In these studies, the stimulation was applied to triceps and anterior-deltoids 

muscles. However, the closed-loop control of the stimulation allowed only unidirectional joint 

movement like the flexion or extension of the muscles, movements in another direction relies on 

the robot arm that was attached to the patient’s upper limb. This implies the controller may not 

be capable of controlling antagonistic muscles to flex as well as extend an upper-limb joint in a 
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smooth and relative more efficient way. Also, no modeling or stability analysis was included in it 

to prove its stability mathematically. 

Downey et al. [9], purposed an asynchronous NMES controller for the multiple muscles 

in the quadriceps muscle group was delivered through four-channels. Its purpose was to reduce 

muscle fatigue caused by high-frequency stimulation when using single channel. The switching 

between the channels is based on a fixed time periodic signal and the switching time window can 

be tuned arbitrarily small by increasing the gain. In a more recent work, Downey et al. [48] 

improved the previous controller by introducing a switched systems analysis to ensure the 

controller to switch between different channels instantaneously without a transition period. The 

switching time window is not preferred in the real application as it made stimulation channels 

overlap and cause muscle fatigue. But these controllers’ objective was to reduce fatigue by 

delivering stimulation between different channels periodically rather to achieve multi-directional 

movement control of antagonist muscle groups. They can only be applied to uni-directional 

NMES-induced movements because switching scheme was only proposed for agonist muscles.  

Because the area of multi-channel control of antagonist muscle pairs is relatively 

untouched, the goal of this thesis is to design an antagonist muscles controller with a delay 

compensator to fulfill the need for advanced NMES tasks. 
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3.0  CONTROLLER DEVELOPMENT 

In this chapter, the musculoskeletal system model is introduced, and the closed-loop tracking 

controller for dual control of NMES tasks such as limb extension and flexion is presented. The 

objective is to achieve smooth and continuous limb extension and flexion movements.  

3.1 MUSCULOSKELETAL SYSTEM 

In order to develop the controller, the first step is to define the musculoskeletal model for the 

design. The uncertain nonlinear musculoskeletal dynamics are modeled similar to [7] and are 

defined as 

 ( ) ( )1 2 ,I e g vM M M M d T t T tτ τ+ + + + = − − −   (3.1) 

where IM ∈  denotes the inertial force about the joint, eM ∈  denotes the elastic effects due 

to joint stiffness, gM ∈  denotes the gravitational forces and vM ∈  denotes the viscous 

effects from damping in the musculoskeletal system. In (3.1), d ∈  represents any bounded 

unknown disturbance and/or unmodeled dynamics, and 1T ∈  denotes torque produced for 

extension while 2T ∈  denotes torque produced for flexion. 
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The inertial effects in (3.1) are modeled as 

 ,IM Jq   (3.2) 

where J +∈  is the moment of inertia of the limb.  

The elastic effects due to joint stiffness are modeled as 

 ( )( )( )1 2 3 ,eM k exp k q q k− −   (3.3) 

where 1 2 3, ,k k k +∈  are unknown parameters. 

The gravitational and viscous effects are modeled as [6]  

 ( ) ( )1 2 3, ,g vM mglsin q M B tanh B q B q− + 
    (3.4) 

where m +∈  is the unknown mass of the limb, l +∈  denotes the unknown distance from the 

joint to the lumped center of mass of the limb, and , ,q q q∈ 
  are the angular position, velocity, 

and acceleration of the limb, respectively. 

The torque produced for extension/flexion is related to musculotendon force that is 

generated by NMES and is defined as 

 , , 1, 2,i i T iT F iς =   (3.5) 

where iς ∈  is the positive moment arm for the corresponding muscle of the limb and ,T iF ∈  

is the musculotendon force generated by the stimulated muscle. 

The musculotendon force ,T iF ∈  in (3.5) is defined as 

 , , 1, 2,T i i iF u iη =   (3.6) 

where , 1, 2i iη +∈ =  denotes an unknown nonlinear function of the force-length/force-velocity 

relationship, and iu ∈  is the normalized applied voltage potential across the muscles. 

The unknown functions in the active dynamics of the muscles are grouped in iΩ ∈  as 
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 , 1, 2,i i i iς ηΩ =   (3.7) 

and can be bounded as 

 , 1, 2,
ii iζΩΩ ≤ =   (3.8) 

where 
i

ζ +
Ω ∈  is a constant. 

Remark: In order to simplify the control design process, the muscle activation dynamics 

were not taken into account.  

The following assumptions were made for the control development and stability analysis: 

Assumption 1: Signals q , q ; which denote the generalized position and velocity are 

measurable. 

Assumption 2: The nonlinear functions ( ),i q qη   and moment arm ( )i qς  are non-zero, 

positive, bounded functions, and their first time derivatives exist and are continuous and bounded 

based on the data. Thus iΩ  is also non-zero, positive bounded and its first time derivative exists, 

is bounded and continuous. 

Assumption 3: The EMD, denoted by τ , is assumed to be a known constant. Factors that 

may cause it to be a time-varying phenomenon such as fatigue are ignored. In addition, the 

EMDs in the opposing muscles are assumed to be equal. 

Assumption 4: The desired trajectory and its time derivatives , ,d d dq qq ∈R   are 

bounded and continuous. 

Notation: A delayed state in the subsequent control development and analysis is denoted 

as ( )x t τ−  or as xτ  while a non-delayed state is denoted as ( )x t  or as x . Any term, X , 

multiplied by the inverse of another term, B , is denoted as a subscript (i.e., BX ). 
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3.2 CONTROL DEVELOPMENT 

The control objective is to develop a tracking controller that could make the limb joint angle of 

the musculoskeletal dynamics in (3.1) track a desired trajectory, dq ∈ . The position tracking 

error, 1e ∈ , and auxiliary tracking error, 2e ∈  , are defined as 

 1 ,de q q−   (3.9) 

 2 1 1 ,ze e e eα β+ −
   (3.10) 

where ,α β +∈  are control gains and the auxiliary signal, ze ∈ , is defined as 

 ( ) .
t

z t
e v d

τ
θ θ

−
= ∫   (3.11) 

After taking the time derivative of (3.10), then multiplying by the moment of inertia of a 

limb J , and utilizing (3.1), (3.2), and(3.5), the open loop error dynamics is expressed as 

 ( )
2 1 1

2 2 1 .
d e g vJe Jq M M M u
u d J e J v v

τ

τ τα β
= + + + −Ω

+Ω + + − −

 



  (3.12) 

To smoothly transition between stimulation of the flexor and extensor muscles, two 

switching signals, 1 2,S S +∈ , are defined as 

 

( )

( )

1
1

1
2

1 tanh
,

2
1 tanh

,
2

e
S

e
S

κ

κ

+
=

−
=

  (3.13) 

and κ +∈  is a control gain that determines the transition rate. 
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The normalized stimulation, iu +∈ , can be expressed as 

 
( ) ( )

( ) ( )

,1
1 1

1

,2
2 2

2

,

,

t

t

v t V
u t S

V
v t V

u t S
V

τ
τ

τ
τ

− −
−

− −
−









  (3.14) 

where , , , 1, 2i s i t iV V V i= − =   and ,s iV +∈  is the saturation voltage which results in the 

maximum contraction and ,t iV +∈  is the threshold voltage which is the minimum voltage 

required to keep the i th muscles in tension. The control input is denoted by v  and will be 

subsequently defined. 

To facilitate the control development an auxiliary input gain function, ,Ω∈  is defined 

as 

 1 2
1 2

1 2

.S S
V V

 Ω Ω
Ω − 

 


 

  (3.15) 

To avoid a singularity when 0Ω = , a constant δ +∈  is added to Ω  in the new auxiliary 

function, χ +∈  defined as 

 , | |,χ δ δ= Ω+ > Ω   (3.16) 

and can be bounded as 

 1 2| | .χ χ χ≤ ≤   (3.17) 

Assumption 5: The unknown disturbance ( )d t  is bounded and its first and second 

derivatives with respect to time exist and are bounded, and based on assumption 1 and 2 the ratio 

( ) ( )/ ,d t q qχ   , is also bounded and its first and second time derivatives exists and are bounded. 

Assumption 6: The ratio ( )/ ,J q qχ   , denote as ( ),J q qχ
+∈   , can be upper bounded as 
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 1 2| | ,J J Jχ< <   (3.18) 

where 1 2,J J +∈  are known constants. 

To facilitate the subsequent stability analysis, the error between β  and ( )1 ,J q qχ
−

 , is 

defined by 

 ,
J
χξ β= −   (3.19) 

where ( ),q qξ +∈   satisfies the following bound: 

 | | ,ξ ξ≤   (3.20) 

and ξ +∈  is a known constant. 

Using (3.14) and (3.16), (3.12) is expressed as 

 
( )

,1
2 1 1

1

,2
2 2 1

2

.

t
d e g v

t

V
Je Jq M M M v S

V
V

S d J e J v v
V

τ

τ

χ

α β

= + + + − + Ω

− Ω + + − −

 







  (3.21) 

Dividing the open loop error system by χ and using (3.19) results in 

 

( )

2

,1 ,2 1
1 1 2 2

1 2

1 .

d e g v

t t

J e J q M M M v
V V

S S v
V V

d J e J v v

χ χ χ χ χ

τ

τ

δ χ

α β

−

= + + + −

 
+ Ω − Ω + 
 

+ + − −

 

 



  (3.22) 

where 

 , , .ge v
e g v

MM MM M Mχ χ χχ χ χ
= = =   (3.23) 

Based on the subsequent stability analysis, the control input v∈  is designed as 

 2 ,v Ke=   (3.24) 
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where K +∈  is a known control gain that can be expanded as 

 1 2 3,K K K K= + +   (3.25) 

where 1K , 2K  and 3K +∈  are known constants. 

After using the control input (3.24), the closed loop error system can be written as 

 ( )
2 2 1

2 2 2
1

1
2

,

J e J e e

Ke KJ e e
v

χ χ

χ τ

τ

ψ ψ

ξ
δ χ −

= − + + −

− − −
+Π +





  (3.26) 

where  

 ,1 ,2 1
1 1 2 2

1 2

,t tV V
S S

V V
χ − 

Π = Ω − Ω 
  

  (3.27) 

and is bounded as  

 1 2
1 ,1 2 ,2

1 1 2 1

| | ,t tS V S V
V V
ζ ζ
χ χ
Ω ΩΠ Π +

 

   (3.28) 

and  ( )1 2, , , ,e e tψ τ  ( ), , , , ,d d dq q q q tqψ ∈R    denote the following auxiliary signals 

 2

1 1

1
2 d e g vJ e J q M M M

J e e

χ χ χ χ χ

χ

ψ

α

+ + + +

+ +








  (3.29) 

 
( ) ( )
( ) ( )
, ,

, , ,
d d d d e d d

g d d v d d

J q q q M q q
M q q M q q
χ χ

χ χ

ψ +
+ +

  


 

  (3.30) 

 , .d d dχψ ψ ψ ψ ψ= − +
   (3.31) 

By applying the Mean Value Theorem, ( )1 2, , ,e e tψ τ  can be upper bounded by state-

dependent terms as 

 ( )|| || || ||,z zψ ρ≤   (3.32) 



 18 

and ( )|| ||zρ ∈  is a positive, globally invertible non-decreasing function and z  is defined as 

 [ ]1 2( ) , , .T
zz t e e e   (3.33) 

The second auxiliary signal, ( ), , , , ,d d dq q q q q tψ    , can be upper bounded as 

 | | ,Sψ ζ≤   (3.34) 

where Sζ
+∈  is a constant. Based on the subsequent stability analysis, LK functionals: 

( ), ,P v t τ ∈  and ( )2 , ,Q e t τ ∈  are defined as 

 ( )( )2 ,
t t

t s
P v d ds

τ
ω θ θ

−
= ∫ ∫   (3.35) 

 ( )
2

21
2 ,

2
t

t

KJ K
Q e d

τ

δξ
χ

θ θ
−

 
+ 

 = ∫   (3.36) 

where ω +∈  is a known constant. 
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4.0  STABILITY ANALYSIS 

Theorem 1. The controller given in (3.24) ensures semi-global uniformly ultimately bounded 

tracking 

 ( ) ( )0 1 2| | exp ,y t t≤ − +     (4.1) 

where 0 1 2, , +∈     denotes constants, provided the control gains α , β   and K   introduced in 

(3.10) and (3.24) are selected according to the sufficient conditions 

 

2 2

2
3 2

1

,
4

2 ,KK K J K

β γα

δω τ ξ
χ

>

> + +
  (4.2) 

where the known positive constants β , δ , 1χ , 2J , K ,ω  are defined in (3.10), (3.16), (3.17), 

(3.18), (3.24) and (3.35), τ  is the input delay and γ +∈  is a subsequently defined constant. 

 

Proof. Let 4( )y t ∈ ⊂   be define as 

 1 2, , , .
T

y e e P Q 
    (4.3) 

A positive definite Lyapunov functional candidate ( ), : [0 )V y t × ∞ →   is defined as  

 2 2
1 2

1 1 ,
2 2

V e J e P Qχ+ + +   (4.4) 

and satisfies the following inequalities 
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 2 2
1 2|| || || || ,y V yλ λ≤ ≤   (4.5) 

where 1λ , 2λ
+∈  are known constants. Taking the time derivative of (4.4), using the Leibniz 

integral rule to differentiate P  and Q , substituting (3.10) and (3.26), and canceling out like 

terms results in 

 ( )

( ) ( )

2 2 2
1 1 2 1

1
2 2 2

2
21 2 2

2 2 .
2

z

t

t

V e Ke e e v

e KJ e e v

KJ K
e e v d

χ τ τ

τ τ

α β ωτ

ψ ψ ξ δ χ

δξ
χ

ω θ θ

−

−

= − − + +

 + + − − +Π + 
 

+ 
 + − − ∫



   (4.6) 

After using (3.8), (3.17), (3.18), (3.20), (3.28), (3.32) and (3.34), (4.6) can be upper 

bounded as 

 ( )

( ) ( )

2 2 2
1 2 2 2 2

2 1 2 2 2
1

2
21 2 2

2 2

( ) | | | |

| | || || || || | || | | || |

.
2

s

z

t

t

V e K J K e v e e

Ke z z e e J K e e

KJ K
e e v d

τ

τ τ

α ξ ωτ ζ

δρ β ξ
χ

δξ
χ

ω θ θ
−

≤ − − − + + + Π

 
+ + + + 

 
 

+ 
 + − − ∫



  (4.7) 

Applying Young's Inequality the following terms in (4.7) can be bounded as 

 
2 2

2 2
1 1 2

1| || | ,
4z ze e e eβ γβ

γ
≤ +   (4.8) 

 2 2
2 2 2 2

1 1| || | ,
2 2

e e e eτ τ≤ +   (4.9) 

where γ +∈  is a known constant that is selected as 

 2 .τγ
ω

>   (4.10) 
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Further, by using the Cauchy Schwarz inequality, the following term in (4.8) can be 

bounded as 

 ( )22 .
t

z t
e v d

τ
τ θ θ

−
≤ ∫   (4.11) 

After adding and subtracting ( )2
2 d

t

t
vγ τ

τ θ θ
−∫  to (4.7) and utilizing (3.24), (3.25) and 

(4.11), (4.7) can be expressed as 

 ( )

( ) ( )

2 2
2 2 2
1 2 2

1

2
22

2
2 2

2
4

1 2 | | || || || ||

| | .

z

t

S t

KV e K K J K e

e e z z

e v d
τ

β γ δα ω τ ξ
χ

τω ρ
τ γ

τζ θ θ
γ −

  
≤ − − − − − −  

   
 

− − + 
 

+ +Π − ∫



  (4.12) 

By using (3.25) and completing the squares, the inequality in (4.12) can be further upper 

bounded as 

 
( )

( )

2
22

2
1

2

2

(|| | |) || ||
4

,
4

t

t

S

zV z v d
K

K

τ

ρ τ θ θ
γ

ζ

−

 
≤ − − − 

 

+Π
+

Λ ∫

  (4.13) 

where 

 

2 2
2

3 2
1

2

min , 2 ,
4

1 2 .

KK K J Kβ γ δα ω τ ξ
χ

τω
τ γ


Λ − − − −


 

−  
 



  (4.14) 

Since 

 
( )

( )

2 2

[ , ]

2

( ) sup ( )

,

t t t

t s ss t t

t

s

v d ds v d

v d

τ τ
θ θ τ θ θ

τ θ θ

− ∈ −

 ≤   

=

∫ ∫ ∫

∫
  (4.15) 
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and after utilizing (3.35), (3.36), and (4.3) the inequality in (4.13) can be rewritten as 

 

( )

2 2
2

21
2

1

2

2
2

(|| ||) || ||
4

1 .
2 4

S

z KV z Q
K KJ K

P
K

ρ τ
δγ ξ
χ

ζ
ωγ

 
≤ − Λ − −     + 

 

+Π
− +



  (4.16) 

Using the definition of ( )z t  in (3.33) and (t)y  in (4.3), the expression in (4.16) can be 

upper bounded as 

 ( ) ( )22
2 2

1 2

|| ||
|| || || || ,

4 4
S

z

z
V y e

K K
ζρ +Π 

≤ −ϒ − Λ − + 
 

   (4.17) 

where (|| ||)z +ϒ ∈  is 

 
( )2 2

2
21

2
1

1min , ,
4 2

z K
K KJ K

ρ τσ
ωγδγ ξ

χ

 
 
 ≤ ϒ Λ −
  

+  
   

   (4.18) 

for some σ +∈ .  

By further utilizing (4.5), the inequality in (4.17) can be expressed as 

 
( )2

2 2

.
4

SV V
K

ζσ
λ

+Π
≤ − +   (4.19) 

Consider a set S  defined as 

 

( )

( ) ( )

4

21
11

2 2 1

| (0)

21, 2 ,

S y t R y

Kmin K W
J

λ τ ρ
λ ξ δχ

−
−


 ∈ <



   Λ −  
+    



  (4.20) 
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( )2

2

.
4
SW
K

ζ
σ

+Π
=   

The linear differential equation in (4.19) can be solved as 

 ( ) ( )
2 2

2
2

2

0 1 ,
4

t tSV V e e
K

σ σ
λ λζ λ

σ

− − +Π
≤ + − 

  
  (4.21) 

provided the control gains α  and K  are selected according to the sufficient conditions in (4.2). 

The result in (4.1) can now be obtained from (4.21). Based on the definition of (t)y , the result in 

(4.21) indicates that ( ) ( )1 2,e t e t ∞∈  in S . Given that ( ) ( ) ( ) ( )1 2, , ,d de t e t q t q t ∞∈   in S , (3.9), 

(3.10), and (3.24) indicates that ( ) ( ) ( ), ,q t q t v t ∞∈   in S . 
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5.0  SIMULATIONS & EXPERIMENTS 

In order to test the performance of the designed controller in the previous chapters, simulations 

were conducted and followed by experiments on a testbed composed of electric motors to 

simulate antagonist muscle pairs. In the following section, the procedure and the results of the 

simulations and experiments are presented. 

5.1 SIMULATIONS 

In the SIMULINK simulation, a general single joint one-degree of freedom musculoskeletal 

system in the horizontal plane, (i.e., gravity cannot drive the limb in the opposite direction), was 

considered for testing the performance of this controller. The delay values were chosen as 80ms 

for both the flexor and extensor muscles and was added in the muscle model. The Simulink 

block diagram for the controller is shown in Appendix A. 

The simulation results including the trajectory, stimulation output, error, and control 

input plot are shown in Figure 2 and Figure 3. The root mean squared error (RSME) for tracking 

the desired trajectory was calculated to be 2.58 .o   
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Figure 2. Trajectory and Normalized Stimulation (u1,u2) Plots from Simulation 

 

Figure 3. Normalized Error and Control Input (ν) Plots from Simulation 
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From the simulation results, it can be observed that despite the effects of the EMD, the 

controller is capable of driving the single joint musculoskeletal system in both directions (flexion 

and extension) in a smooth manner and maintain tracking to the desired trajectory.  

Also, from the normalized stimulation plot, it can be observed that when switching 

occurs (transition between flexion and extension), there is a slight overlap causing co-

contractions of antagonistic muscles. During the flexion period, the co-contraction continue to 

exist due to the oscillation caused by time delay, the activation of the extension muscle helped 

the limb to follow the desired trajectory with overshoot. It can also be seen that the extension 

stimulation magnitude is higher than the flexion, this is due to the different muscle parameters 

used for the flexor and extensor muscles in the musculoskeletal system.  

During the process of the stability analysis, we assumed that EMD is known and has a 

precise number. During NMES application, EMD values can vary related to the muscle 

contraction type, characteristics of the subject such as gender, age, and the joint angle that the 

contraction needs to achieve. Previous research done by [43] reports that when receiving external 

electrical stimulation, the EMD could be ranging from 7ms to 20ms. In [18], the EMD is 

measured to be ranging from 80ms to 110ms. The variation of EMD values can be altered not 

only by the factors mentioned above but also can cause by methodological differences in 

experimental and measurement methods. 

To examine the robustness to the variations in EMD values, the value of EMD in the 

delay compensation component of the controller were set to 75ms and 85ms whereas the EMD in 

the musculoskeletal system remained as 80ms. The results are shown in Figure 4 - Figure 7 

below. 
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Figure 4. Trajectory and Normalized Stimulation (u1,u2) Plot from Simulation (75ms) 

 

Figure 5. Normalized Error and Control Input (ν) Plot from Simulation (75ms) 
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Above is the simulation results when the value of EMD in the delay compensation 

component is set to 75ms. The RMSE is slightly increased compared to the previous simulation 

when the EMD value is matched between musculoskeletal system and delay compensator.  

The results of simulation when the EMD value was set to 85ms are shown in Figure 6 

and Figure 7. 

 

 

Figure 6. Trajectory and Normalized Stimulation Plot (u1,u2) from Simulation (85ms) 
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Figure 7. Normalized Error and Control Input (ν) Plot from Simulation (85ms) 

 

Table 1. RMSE of Simulation with Different EMD Value 

Estimated EMD Value (ms) RMSE (deg.) 

80 (Matched) 2.58 

75 2.97 

85 2.70 

 

Table 1 above provides RMSE comparison between different EMD values used in the 

delay compensator. From the data above it can be observed that when the EMD value is drifting 

from the system’s exact delay value, the RMSE of trajectory tracking increased slightly (0.1 - 

0.4deg). More oscillation appeared during the stimulation when estimated EMD is different from 

actual EMD and co-contraction appeared during flexion period, This can be caused by the 
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derivative part of the controller and variation of EMD value between delay compensator and 

musculoskeletal system. Overall, the system maintains stability and the tracking performance is 

still acceptable, which demonstrates the robustness of the controller. 

5.2 EXPERIMENTS 

An alternative approach was used for conducting the experiments before testing on human 

subjects. The testbed used an electric motors set-up to simulate the extensor and flexor muscle of 

a human musculoskeletal system. In the first part of the experiments, a single motor was used to 

test the performance of the controller. Later two motors were used and were combined to move 

in opposite direction to represent the extensor muscle and flexor muscle. 

LPA-17 compact precision servo motors were used in the experiments. The motor has 

embedded encoders and can withstand high moment and axial loads due to the pre-loaded double 

row angular contact bearing. These motors were combined with DEP-090-18 digital servo drive 

to provide precise velocity control of the motor. Control input from the controller was given to 

the motor drive and based on the control input, the drive then produces amplified voltage to drive 

the motor. Encoder signal was buffered in the drive and transmitted to the controller.  

5.2.1 Single Motor Experiment 

The first part of the experiment was to use a single motor to represent both the flexor muscle and 

extensor muscle; the controller provided control output to the motor drive and motor to make it 

follow the desired trajectory.  
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The SIMULINK block diagram is shown in Appendix A. A time delay was added to the 

system to represent EMD, and was set to 80ms. The experiment results are shown in Figure 8 

and Figure 9.  

 

 

Figure 8. Trajectory and Motor Input (u1,u2) Plot from Single Motor Experiment 
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Figure 9. Error and Control Input Plot (ν) from Single Motor Experiment 

 

The root mean squared error (RSME) of tracking the desired trajectory was calculated to 

be 2.79o , which is slightly higher than the results from simulation. By increasing the gain κ  in 

the hyperbolic tangent function in (3.13), the switching time window became relatively short as 

observed in the figures above. 

Similar to the simulation, the EMD value was set to 80 5± ms to examine the robustness 

of the controller.  
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Figure 10. Trajectory and Motor Input (u1,u2) Plot from Single Motor Experiment (75ms) 

 

 

Figure 11. Error and Control Input Plot (ν) from Single Motor Experiment (75ms) 
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Figure 12. Trajectory and Motor Input (u1,u2) Plot from Single Motor Experiment (85ms) 

 

 

Figure 13. Error and Control Input Plot (ν) from Single Motor Experiment (85ms) 
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Table 2. RMSE of Single Motor Experiments with Different EMD Value 

Estimated EMD Value (ms) RMSE (deg.) 

80 (Matched) 2.79 

75 3.03 

85 3.06 

 

From results above, it can be observed that when the EMD value in the compensator was 

not matched exactly to the EMD in the system, the RMS error will increase slightly similar to the 

simulation. Oscillations can be observed in the motor input, error and controller output plot. The 

controller still has acceptable performance even when EMD value for the delay compensator was 

not estimated precisely. 

To further simulate the human musculoskeletal system to examine the controller’s 

performance, the next move was to set up dual motors experiments and use separate motor to 

represent flexor and extensor muscles.   

5.2.2 Dual Motors Experiment  

In order to obtain results closer to the experiments on the human subject, the following 

experiments utilized two identical motors that were used in the previous experiment and each of 

them to represent the flexor muscle or extensor muscle, they were linked together to simulate a 

general single joint one-degree of freedom musculoskeletal system.  
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Figure 14. Dual Motors Experiment Testbed 

 

Unlike the previous single motor experiment, in this experiment, each motor only moved in one 

direction and opposite to each other. When one motor moved towards one direction, no input 

was given to another motor and was dragged by the contralateral motor.  

The experimental results are shown in Figure 15 and Figure 16. 
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Figure 15. Trajectory and Motor Input (u1,u2) Plot from Dual Motors Experiment 

 

 

Figure 16. Error and Control Input (ν) Plot from Dual Motors Experiment 
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The RMSE of tracking for the dual motors experiment is 2.84o . It is larger than the 

experiment result from single motor. More oscillation occurs in the plots due to nonlinearity and 

disturbances, the difference in amplitude of the motor input is caused by the variations of the 

performance of each motor. 

Again, the robustness of the controller was examined in dual motors situation, the EMD 

values were set to 80 5± ms while actual EMD remained at 80ms. 

 

 

Figure 17. Trajectory and Motor Input (u1,u2) Plot from Dual Motors Experiment (75ms) 
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Figure 18. Error and Control Input (ν) Plot from Dual Motors Experiment (75ms) 

 

 

Figure 19. Trajectory and Motor Input (u1,u2) Plot from Dual Motors Experiment (85ms) 
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Figure 20. Error and Control Input (ν) Plot from Dual Motors Experiment (85ms) 

 

Table 3. RMSE of Experiments and Simulations with Different EMD Value 

Estimated EMD Value (ms) RMSE (deg.) 

Dual 

RMSE (deg.) 

Single 

RMSE (deg.) 

Simulation 

80 (Matched) 2.84 2.79 2.58 

75 3.05 3.03 2.97 

85 3.13 3.06 2.70 

 

Table and plots above demonstrated the performance of the controller when applying to 

the dual motors testbed. The RMSE values increased compared to the simulations and single 

motor tests. Oscillations also occur as previous single motor tests when EMD in the compensator 

and the system are matched. Similar to the previous simulations and experiments, when the EMD 

value are not precisely matched with the time delay of the system, RMSE rose slightly, but still 
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in a relatively small range, and the system remains stable. From the results, it can be concluded 

that this controller has satisfactory tracking performance when applying to the dual motors tests. 
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6.0  CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION  

In this thesis, a novel NMES switching controller with a predictive term that could compensate 

for EMDs is designed for antagonistic muscles. Lyapunov-based stability analysis proved semi-

globally uniformly ultimately bounded tracking for the musculoskeletal system. The controller 

provided an arbitrary short transition period when two antagonistic muscles are simultaneously 

activated to ensure that there will be no discontinuities in muscle response so that the limb could 

flex and extend smoothly. The simulation result indicates that the controller is robust and could 

switch between opposing muscles without affecting the tracking performance. Further 

experiments using single servo motor and dual servo motors proved its performance when un-

modeled nonlinearity and disturbance were introduced into the system. 

6.2 FUTURE WORK  

Future studies will focus on experimentally validating the newly developed controller on the 

human subjects. Figures below are demonstrations of the future human NMES experiment.   
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Figure 21. Demonstration of Planned Human NMES Experiments 1  

 

 

Figure 22. Demonstration of Planned Human NMES Experiments 2 
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Besides experiments on human subjects, future work also includes making improvements 

to the controller. In this thesis, the controller is a PD-DC controller. Although it gave satisfactory 

tracking performance, improvements could be made to achieve lower RMS error. In [18], the 

PID-DC controller was demonstrated to give better tracking ability in unidirectional limb 

movements. The controller in this thesis can be improved by introducing an integral component 

just like in PID-DC controller into the system. 

Another direction for future work is the compensation for unknown varying EMDs, as the 

EMD will increase as muscle fatigues and the NMES tends to induce significant fatigue rather 

than volitional contractions [49]. Results such as [49-51], have presented some methods for 

compensating varying unknown delay. The performance of the antagonist muscle controller will 

be further improved if techniques for compensating varying delays could be adapted to it. 



 45 

APPENDIX A 

SIMULINK BLOCK DIAGRAMS FOR SIMULATIONS & EXPERIMENTS 

 

Figure 23. Simulink Block Diagram of Controller 
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Figure 24. Simulink Block Diagram for Simulation 
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Figure 25. Simulink Block Diagram for Single Motor Experiment 



 48 

 

Figure 26. Simulink Block Diagram for Dual Motors Experiment 
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