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A STUDY OF BRAIN NETWORKS ASSOCIATED WITH SWALLOWING

VIA ELECTROENCEPHALOGRAPHY SIGNALS

Iva Jestrovic, PhD

University of Pittsburgh, 2016

Swallowing and swallowing disorders have garnered continued interest over the past sev-

eral decades. While physiological origins of the swallowing activity are well understood, it

remains uncertain how this activity affects the central nervous system and brain activity.

Electroencephalography (EEG) systems can enable our study of cerebral activation patterns

during the performance of swallowing tasks, and can also possibly allow us to make infer-

ences about the nature of abnormal neurological conditions causing swallowing difficulties.

EEG also lends itself to techniques for analysis which provide insight into the interactions

between brain regions, and enables the measuring and analysis of functional interactions be-

tween different brain regions by way of the graph theoretical and signal processing on graph

approach. In this dissertation we provided better insight into the neurology of swallowing

by focusing our research towards the three main areas of investigation. First, we showed

that the EEG signals during the swallowing can be considered as non stationary. These

findings provided an answer about choosing an appropriate technique for forming connectiv-

ity brain networks. Second, using graph theory and signal processing on graphs we showed

that there are differences between swallowing in the neutral and chin-tuck head positions,

between swallowing of different stimuli, between normal swallowing and swallowing with a

distraction, and between consecutive swallows. Lastly, we improved an algorithm used to

calculate the vertex-frequency information from the signals on graph that we used in our

investigation. Particularly, we overcame the limitations of the computational complexity

and the fixed window size associated with the windowed graph Fourier transform.
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1.0 INTRODUCTION

1.1 MOTIVATION

1.1.1 Dysphagia - definition and occurrence

Dysphagia (swallowing difficulties) refers to any swallowing disorder [1], typically occurring

in patients who suffer from a variety of neurological conditions (stroke [2], cerebral palsy [3],

Parkinson’s disease and other neurodegenerative diseases [4]), head and neck cancer and its

treatment [5], and iatrogenic conditions or trauma [6]. Dysphagia can also occur due to

genetic predispositions or congenital craniofacial syndromes [7]. The signs and symptoms

of dysphagia include subjective difficulty in swallowing food or liquids, choking or coughing

before, during, or after swallowing due to impaired clearance of swallowed material from the

throat into the digestive system, which can cause malnutrition [8], dehydration [9], failure

of the immune system [10], psycho-social degradation, [11, 12] and in general, a decreased

quality of life [13]. A major consequence of dysphagia is aspiration of food and liquids into

the airway past the vocal folds and into the respiratory system which often leads to airway

obstruction, pneumonia, and on increased risk of mortality resulting from both [14,15].

1.1.2 Prevalence and costs of the treatment

According to the American Speech Language Hearing Association (ASHA), there are ap-

proximately 15 million people suffering from dysphagia. Dysphagia is especially prevalent

among the elderly. For instance, studies suggest that up to 75% of nursing home residents

experience some degree of dysphagia, and that almost the half of all Americans over 60 will

experience dysphagia at some point after this age [16]. 50% to 75% of stroke patients and

1



60% to 70% of patients who undergo radiation therapy for head and neck cancer have dys-

phagia [17,18]. Also, dysphagia is prevalent in 20% to 40% of the patients with Parkinson’s

disease, and over 30% of individuals with multiple sclerosis experience swallowing prob-

lems [4, 19]. In addition, over 60,000 people yearly die from complications associated with

swallowing dysfunctions [20].

Complications that are caused by dysphagia increase the costs of healthcare. Emergency

room visits, extended hospital stays, the need for long-term institutional care, and the need

for expensive respiratory or nutritional support are common extra expenses that follow dys-

phagia [21]. The cost of managing a patient with a feeding tube is reported to average over

$31,000 per patient per year [22]. The total annual cost for enteral feeding supplies was

more than $670 million, in a year period [23]. Overall, together with the costs incurred by

hospitals, costs of dysphagia in the healthcare care system exceed billion dollars per year,

and are increasing rapidly. According to a recent study, the prevalence of feeding tube usage

is also rising steadily [24].

1.2 ANATOMY AND PHYSIOLOGY

1.2.1 Normal deglutation and stages of deglutition

In humans, swallowing is an essential motor activity by which food, liquids, and saliva pass

from the oral cavity to the stomach. It is considered one of the most complex adrodigestive

sensorimotor activities due to the high level of coordinated efforts needed to accomplish the

swallowing task over a very short period of one to two seconds, and the multiple central

and peripheral subsystems it involves. The system that plans, coordinates and executes the

oropharyngeal swallowing sequence actively targets muscle groups in the head and neck and

upper thorax via activation of a broad range of regions in the brain and brainstem [25,26].

In an effort to discretely describe the numerous sensorimotor events that occur during the

relatively short duration of an oropharyngeal swallow, Logemann [1] described four distinct

swallowing phases that occur in a somewhat overlapping temporal sequence (Figure 1).
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Figure 1: Four swallowing phases: (a) oral preparatory phase; (b) oral transit phase; (c)

pharyngeal phase; (d) esophageal phase.

The first swallowing phase, the oral preparatory phase, is entirely voluntary, while the

oral transit phase, is initiated voluntarily and completed involuntarily. During the oral

preparatory phase, solid food is reduced into a swallowable form by being chewed, mixed

with saliva, and formed into a cohesive bolus, while tactile, kinesthetic, proprioceptive, and

taste sensory input are delivered to brainstem and cortical centers [27]. Meanwhile, lingual

and palatal musculature contain the bolus in the oral cavity in varying manners, preventing

inadvertent gravity-dependent flow of material from the oral cavity to the pharynx [28].

Depending on the information collected by sensory receptors about the food or liquid being

prepared, these receptors generate signals that stimulate activation of salivatory nuclei in

the pons and medulla to produce salivation in the oral cavity, and motor nuclei that produce

masticatory motor activity in the head and neck. Furthermore, the signals generated by

the sensory receptors elicit limbic-mediated emotions related to the act of feeding while

this cumulative sensory afferent information is processed in the pontomedullary swallowing

centers in preparation for the subsequent phases of swallowing [29].
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During the oral transit phase, intrabolus pressure generated by the tongue propels the

bolus posteriorly by compressing the bolus against the palate, while the posterior lingua-

palatal valve is opened to enable transfer of the pressurized bolus into the pharynx [30,31]. In

healthy young individuals, the onset of the next phase, the pharyngeal phase, begins before

the leading edge (head) of the bolus enters the pharyngeal cavity, while in older individuals

pharyngeal motor activity is observed after the bolus head enters the pharynx [27]. The

duration between the entrance of the bolus head into the pharynx and the onset of pharyn-

geal motor activity is referred to as the duration of stage transition [32]. After processing,

this information is received by the trigeminal and solitary nuclei and associated reticular

formation, and a motor plan is produced by the swallowing central pattern generator, after

which the muscles involved in the pharyngeal phase are automatically activated [33].

The third phase, the pharyngeal phase, is nearly entirely a combination of voluntary

and involuntary activity that involves numerous biomechanical events, which continuously

transfer intrabolus pressure to the inferior pharynx, inhibiting resting closure pressure of

the upper esophageal sphincter (UES), displacing the unprotected airway out of the path of

the oncoming bolus, covering the inlet to the airway, sealing the superior nasopharynx at

the velopharyngeal port, and applying the necessary traction forces on the UES to enable

adequate duration and diameter of opening for complete bolus clearance into the digestive

system.

The fourth phase, the esophageal phase, is a totally involuntary process mediated by vagal

efferents and a somewhat internal esophageal nervous system that produces propulsive se-

quential superior to inferior motor activity, propelling the bolus toward the lower esophageal

sphincter, which then momentarily relaxes and enables clearance into the stomach [34].

1.2.2 Neurological origins of swallowing and dysphagia

Historically, it was believed that only the brainstem centers were responsible for controlling

swallowing; however, later studies emphasized the importance of the cerebral cortex during

swallowing [35]. Other parts of the brain which later demonstrated activity during swallowing

include: the facial areas of the sensorimotor cortices, the premotor cortex, the anterior
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cingulate cortex, the insular cortex, the frontal operculum, the cerebellum, etc. [36–41]. It

is well known that swallowing is mediated by both cerebral cortical and brainstem activity.

However, recent studies have produced evidence emphasizing the importance of the role

of cerebral cortex in both the involuntary and voluntary parts of the swallow [38], which

demonstrates neuronal activation of different parts of the cerebral cortex, namely the sensory

and motor cortices, the cingulate gyrus and the insula [37,42].

Neurogenic dysphagia is primarily caused by lesions in disparate cortical and subcortical

regions [9], and these lesions occur most frequently in people who are suffering from neuro-

logical conditions such as stroke [2], brain injuries [43], cerebral palsy [3], Parkinson’s and

other neurodegenerative diseases [4]. Even though many different specific cortical lesions

that produce dysphagia have been identified [44, 45], one previous study showed that the

insular cortex is the most common cerebral lesion site in patients with stroke-related dys-

phagia [46], and conjectured accordingly that the insular cortex may be the most important

region of the brain activated during swallowing in general.

1.3 TECHNIQUES FOR STUDYING OF THE NEUROLOGICAL ORIGINS

OF SWALLOWING AND DYSPHAGIA

Advanced techniques, such as functional magnetic resonance imaging (fMRI), positron emis-

sion tomography (PET), magnetoencephalography (MEG), and electroencephalography (EEG)

provide significant insight into brain activity during swallowing. Since fMRI and PET pro-

vide good spatial representations of brain changes, they are considered to be the gold stan-

dards for investigating central neural activation during swallowing.

fMRI provides a safe, noninvasive method for exploring how the human cerebral cortex

processes information during a certain task. In particular, fMRI allows a detailed investiga-

tion of the functional neuroanatomy of the human brain with a spatial resolution of 2 mm or

less [36]. The underlying principles behind fMRI relate to the sensitivity of detecting slight

physiological alterations in neuronal activation via a complex function of changes in blood

flow, blood volume, and blood oxygenation [47]. The magnetic resonance signal changes
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depend predominantly on the concentration of blood deoxyhemoglobin, which acts as an

intravascular contrast agent. Even though this technique is very precise in providing infor-

mation about spatial brain structure, its high price makes it unavailable to many smaller

hospitals [48].

PET is another imaging modality that is commonly used in studies investigating brain

activity during certain tasks [49]. Although PET does not provide a direct measure of neural

activity, it offers a correlate in the form of haemodynamic and metabolic changes locally

within the brain tissue by detecting the radioactive signal from a suitable radiolabelled tracer.

This radiotracer might be water as a surrogate marker of blood flow, or fluorodeoxyglucose,

which provides an image of the rate of regional glucose metabolism. As the local rate of

energy metabolism or blood flow is believed to be coupled to neural activity, these surrogate

changes are thus used to assess cortical activation and produce functional brain images. A

drawback of this technique is high price, and it is considered as invasive since radionuclide

must be injected into a subject’s veins [50,51].

Even though there are few documented studies about characterization of EEG during

swallowing, EEG is considered as one of the few possible techniques that can be used for

evaluating cortical brain activity during swallowing [52, 53]. EEG records electrical activity

in the brain [54]. Neural activity in the brain generates electrical signals, which can be

recorded by electrodes (i.e., sensors) placed on the surface of scalp [55]. Brain EEG waves

form sinusoidal shapes where certain frequencies are more dominant depending on the brain

activity during different tasks [56,57]. Using sophisticated computerized analysis tools, it is

possible to determine brain mapping for specific activities from the EEG time series [58]. This

is called quantitative EEG [58]. With quantitative EEG, it is possible to determine spatial

structures and localize areas with brain activity and abnormality [59,60]. Even though this

spatial representation is characterized by bad resolution, EEG has some advantages, such as

low price and high temporal resolution, which makes this technique very attractive for use

both in clinic and in research.
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1.3.1 Evaluating data obtained by techniques for studying of the neurological

origins of swallowing and dysphagia

Traditionally, techniques such as fMRI, PET, or EEG were very useful for gaining the in-

formation about which part of the brain is involved in a swallowing task. Very good fMRI

and PET image representation of the brain enabled examination of brain anatomy, and de-

termined precisely which part of the brain is handling critical functions such as thought or

movement, while EEG with high temporal performance was able to identify brain regions

involved in short and fast brain activation, such as in sensation. Thus, studies have provided

consistent evidence that swallowing is a complex human function, which transports food from

the oral cavity via pharynx and esophagus to the stomach, and involves many parameters

that cause activity across several regions of the central nervous system [36,38,61–65].

After defining the brain regions involved in the swallowing activity, an important step

forward would be understanding the relationships and interactions among brain regions dur-

ing swallowing. The concept of brain connectivity (how brain regions communicate with

each other) during swallowing is central to understanding the organized behavior of brain

regions, even beyond the simple mapping of their activity. The human brain exhibits specific

functional interconnection patterns linking different brain regions or individual cortical neu-

rons [66]. These interconnections form a complex network consisting of highly interconnected

processing regions. Since there are many different brain regions involved in swallowing activ-

ity, analyzing the brain network could provide a better understanding of brain specialization

and pathways of integration during swallowing. A graph theoretical approach and signal

processing on graphs recently shown promise as methods for the analysis of neuroanatomical

networks [67–71], and therefore these methods could usher in the next level of understanding

swallowing.

The first of the two popular methods used for analyzing neuroanatomical networks is the

graph theoretical approach [67–69]. Graph theory mathematically describes the relation-

ships between and among vertices (i.e., nodes) [72]. Studies have shown that graph theory

is suitable for analyzing functional connectivity in the human brain network [73], and it has

been widely used in different human and animal neuroscience studies, as it facilitates easier

7



analysis of the differences and similarities of brain networks [74–77]. Thus, the graph theoret-

ical approach could be useful for investigating neuroanatomical networks during swallowing.

Interconnections between vertices are accomplished by edge connections whose strength de-

pends of synchronization between nodes (brain regions). For functional interactions between

different brain regions, graph theory provides an opportunity to determine the connective

relationships between and among neighborhoods of vertices, providing information about

topological properties of the network. The difference in the topological properties between

networks that are formed during various swallows could provide important insight into the

core of human brain function during swallowing.

Signal processing on graphs, the second of the two popular methods for analyzing neu-

roanatomical networks, is an extension of the classical graph theory approach, which enables

deeper insight into the structure of the graphs and provides advanced information exceeding

the information about the topological properties of the graph. Signal processing on graphs is

useful for the representation, processing, and analysis of structured datasets represented by

graphs. In the signal processing on graph notation, besides information about the strength

of connection between nodes, a graph also carries information about the values of the nodes.

These values of the nodes represent signals on a graph. At a high level, solving problems of

such structures can be adopted to in a signal processing context [70,71]. Since swallowing is

one of the most complex human functions [25, 26], brain networks that are formed with the

signals during swallowing will most likely have complex and irregular structures. Signal pro-

cessing on graphs enables spectral graph analysis, providing deep insight into these complex

structures.

Spectral graph analysis is very similar to classical signal processing notation [70, 71].

The Laplacian matrix enabled the implementation of basic signal processing operations in

graph settings (i.e., the Fourier transform on graphs, signal filtering on graphs, and signal

shifting [70, 71]). Thus, this approach also enables vertex-frequency analysis of the signals

on graph, providing information about the changes of the signal frequency among the nodes.

Vertex-frequency analysis can lead to advanced graph analysis, such as finding a specific sub-

graph in a larger graph [78], detecting very dense or frequently-occurring sub-graphs [79,80],

or detecting a certain behavioral pattern [81].
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Analyzing data sets using signal processing on graphs has already been demonstrated

in clinics to detect anomalies in graphs [82–84]. Thus, signal processing on a graph could

likewise be worthwhile for analyzing brain networks formed during swallowing activities. In

the future, signal processing on graphs could establish ways for finding abnormalities in the

brain networks of a dysphagic population, and potentially lead to the development of new

diagnostic and screening techniques.

1.4 DIRECTIONS AND GOALS

Nearly 15 million Americans are affected by the swallowing disorder dysphagia [1, 85]. As

many as 40,000 people die each year in the United States from aspiration pneumonia, a

medical complication strongly associated with dysphagia [20]. This leads us to conclude that

early diagnosis and an appropriate treatment is paramount. Studies showed that therapy

and rehabilitation of patients with neurogenic dysphagia is highly correlated with the brain’s

plasticity and ability to reorganize the sensory and motor cortex after events such as stroke

[86]. Consequently, to obtain good diagnoses and treatment methods, we should have a

better understanding of swallowing and swallowing therapy techniques from the prospective

of brain activity.

Even though fMRI and PET are considered the gold standard for investigating central

neural activation during swallowing, these two modalities have some drawbacks. fMRI and

PET machines are expensive (i.e. $500,000 to $3 million depending on the resolution) [87,88].

Also, the average cost of PET and fMRI scans (i.e., technical scan and professional charges)

ranges from approximately $900 to $1400 [89]. This means that smaller hospitals cannot

likely provide this equipment, and also people with small or no income could not afford

the necessary care. Apart from the high price, the poor temporal resolution of fMRI and

PET fails to clearly recognize the difference between the motor component and sensory

feedback during swallowing. Another drawback of fMRI and PET is that although fMRI

gives information about changes in the blood flow [90], and PET gives information about

metabolic activity [91], which are both indirect markers of brain activity, both of these
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techniques are highly sensitive to contamination by foreign metal objects being placed in the

scanner with the subject. Additionally, another significant drawback of fMRI and PET is

that during testing, the patient is required to be in the supine position, which is a dangerous

and unnatural position for dysphagic patients to assume while swallowing.

EEG demonstrates some advantages when compared with other techniques. The price

of the EEG equipement is around $30,000 to $80,000 [92], which is significantly cheaper

than fMRI and PET machines. Besides having good temporal resolution, EEG records

neural brain activation, which is considered to be the direct link to brain activity. Another

advantage of EEG is that it is not sensitive to interactions or proximity to any material,

and it also enables patients to remain in a natural body position during testing. Several

studies have already used EEG to identify brain regions that are involved in swallowing

control [52,53,93,94]. Therefore, we believe that EEG is a worthwhile technique for analyzing

cortical activation while a person is swallowing.

Besides identification of the brain regions involved in the swallowing activity , we believe

that using the EEG time series for investigation of the interactions between brain regions

during swallowing by graph theory and signal processing on graph approach could give im-

portant insight into the neurological origins of swallowing. At this moment, similar studies

have yet to be conducted on the EEG data during swallowing. Thus, in order to provide

a better understanding of brain activity during swallowing using the graph theoretical and

the signal processing on graph approach, a number of questions remain and must be an-

swered. For example, what are the EEG signals’ stationarity characteristics during various

swallows? Then, depending on the EEG signals’ stationarity, what is the best method for

forming the graphs which represent the swallowing brain network? How are topological prop-

erties different between various swallowing brain networks? How do therapeutic techniques

affect swallowing brain networks? How can we extract information about the identity of

the signals on graphs from the swallowing brain network? How can we improve methods

for extracting information about this identity? How are signals on graphs different between

various swallowing brain networks? The goal of this investigation is to provide some of the

answers to these questions.
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1.5 DISSERTATION SCOPE

In order to have the most reliable results it is important to choose an appropriate method

for forming connectivity brain networks during the swallowing. There are several methods

that are commonly used for forming connectivity matrices from the data obtained with

the EEG time series (e.g., coherence, directed transfer function, adaptive directed transfer

function, synchronization likelihood, time-frequency based phase synchrony measure, etc.

[95–99]). The choice of method will mostly depend on the signals’ stationarity characteristics.

Therefore, one of the first steps in our study should be investigation of the EEG signal

stationary characteristics during swallowing.

After investigation of the EEG signals’ stationary characteristics and choosing the method

for forming the brain networks, an important part of the investigation is to determine how

various swallows influence the brain networks formed with the EEG signals. Particularly we

want to know how common therapeutic techniques, such as the swallowing of the thicker

liquids and swallowing in the chin-tuck head position, influence topological properties of

the brain networks formed from the EEG signals. Also, we want to know what the char-

acteristics of the swallowing brain network are during conditions that influence swallowing

activity, such as compromised attention. Studies showed that increasing the bolus viscosity

and swallowing in the chin-tuck position eliminates aspiration 50% of the time [100, 101].

Defining the characteristics of the brain networks formed during these commonly employed

therapeutic techniques could potentially demonstrate whether there is a central explanation

for the limited efficacy of this technique at eliminating aspiration. Also studies showed that

patients who had altered attention or impaired cognitive functions due to some brain damage

such as stroke, often manifested changes in the swallowing action [102, 103]. Defining and

understanding the difference between brain networks for normal swallows and for swallowing

with distraction could potentially lead to the development of better rehabilitation strategies

for dysphagia patients who also have altered attention or impaired cognitive functions due

to some neurological disorder.

In addition we want to investigate the differences between consecutive swallows. These

findings could potentially explain why some dysphagic patients have a higher risk of as-
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piration after a few swallows [104–106]. Since the classical graph theory approach cannot

recognize differences between consecutive swallows (Section 9.1), we want to employ signal

processing on graphs in order to analyze the structural properties of the swallowing brain

networks. Signal processing on graphs could provide information about identity of the brain

network that exceeds information about topological properties of the network. A previous

study developed a vertex-frequency analysis technique based on the windowed Fourier trans-

form from classical signal processing [107]. The windowed graph Fourier transform (WGFT)

has been shown to be a useful method for extracting frequency information from the signals

on a graph. Applied to our data, the WGFT could provide convenient information about

signals’ oscillations on the graphs, which are formed with the swallowing EEG signals. How-

ever, lack of the window size choice, computational complexity, and required computational

time make this technique not very efficient. Therefore, developing a method for automatic

choice of the best window size, as well as decreasing the required computational time, could

provide a significant contribution towards the study of neural origins of the swallowing.

1.6 MAIN CONTRIBUTIONS

To address these goals we will make the following contributions:

• Investigate stationarity of the EEG signals during various swallowing tasks.

• Investigate difference in brain network between swallowing in neutral and chin-tuck po-

sition, and between different fluid viscosities.

• Develop the fast WGFT .

• Develop a method for optimizing window size for the WGFT and investigate differences

among consecutive swallows.

• Investigate differences in brain networks during normal swallowing and swallowing with

distractions.
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1.7 DISERTATION ORGANIZATION

Chapter 2 details the background information necessary (i.e., EEG and EEG studies related

to swallowing) to understand the principles discussed in later chapters . Chapter 3 describes

open questions to be addressed throughout our investigation of swallowing using the EEG

modality. Chapter 4 - 8 describe our results and discussions of the proposed studies. And

finally, future work and the proposed research will be described in Chapter 9.

13



2.0 BACKGROUND

With kind permission of Journal of Neural Engineering, this chapter was excerpted in entirety

from the following journal article:

Jestrović, I., Coyle, J.L., Sejdić, E. (2015). “Decoding human swallowing via electroen-

cephalography: a state-of-the-art review.” Journal of Neural Engineering, vol. 12, no. 5,

pp. 1-15, 2015 The homepage of Journal of Neural Engineering is located at this page. The

publisher’s copyright information can be found at Copyright Clearance Center, Inc.. This

article can be found on the publisher’s website by clicking here.

2.1 ELECTROENCEPHALOGRAPHY (EEG)

2.1.1 Definition and reasons for investigation

EEG is a time domain acquisition modality that records neural electrical activation along

the interface of the scalp [55], with electrodes positioned according to the 10 − 20 interna-

tional electrode system [108] (Figure 2). As a noninvasive and affordable technique, EEG is

broadly used in both clinics for diagnosing and investigating a wide range of diseases and

also in research [109–113]. Jordan described five important reasons for using EEG in the

monitoring of brain activity [111]. EEG describes temporal and spatial representations of

the cortical excitatory potential and the inhibitory potential, as well as their interaction

with and influence on the cerebral metabolism. This means that EEG can directly describe

the immediate outcomes associated with cerebral metabolic activity. Normal human EEG

representation has a histological pattern, and this representation is very sensitive to cerebral
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changes and cerebral abnormalities, such as injuries, ischemia, or hypoxia. The 10 − 20 in-

ternational system for EEG electrode placement provides a consistent correlation with brain

topography. Another advantage of EEG is that it can register neural abnormalities when

they are still at a reversible stage.

Figure 2: Example of international 10-20 electrode system placement (64 electrodes).

The EEG power spectrum is controlled by the brain’s homeostatic system, which pro-

duces rhythmic electrical activity of various frequencies controlled by population of neurons

and the neurotransmitters [114–116]. Pacemaker neurons located throughout the thalamus

are known to oscillate in the frequency range 7.5 − 12.5 Hz. Efferent projections located

throughout the cortex produce electrical activity in the range 8− 16 Hz, which is known as

the Alpha range. This Alpha range is most dominant when a healthy person is in a resting
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state. When neurons from the thalamus hyperpolarize due to the effects of neurotransmitter

gamma-aminobutyric acid, the dominant frequency range of the brain’s electrical activity

becomes 4 − 8 Hz, which is known as the Theta range. Oscillation of the neurons in the

deep cortical layers and in the thalamus produce low frequency electrical activity up to 4 Hz;

this low frequency band is known as the Delta range. Brain activity precipitated by specific

information processing produces the fastest brain activity in the Beta range from 16 − 32

Hz [117].

Event related potentials (ERP) are positive and negative voltage deflections, which are

observed as positive and negative changes or excursions in the waveform. ERP waveforms are

very often investigated in EEG studies. ERP is made of averaged ongoing EEG signals which

are time-locked to the response event, and ERP gives information about discharges of large

populations of neurons related to some cognitive or sensory-motor processes [118]. Portions

of an ERP waveform can be classified as either positive (P) or negative (N). Using this

polarity classification (i.e., positive or negative), the name designator for an ERP waveform

can be constructed in two possible ways: by order of occurrence, or by mean latency in

milliseconds (e.g., see ”Findings” in Table 2). For example, the first positive-polarity ERP

waveform with a mean latency of 130 ms takes on the name ”P1” when designating the

waveform according to its order of occurance (i.e., ”1” corresponds to the first occurrence).

If the same positive-polarity ERP waveform were to be classified according to mean latency,

its name would be ”P310”. Different ERP are qualified and quantified depending on their

latency and maximum amplitude, observed from the pre-stimulus baseline. An example of

an observed ERP is shown in Figure 3. Three separate time ranges/windows (i.e., the three

vertical rectangular boxes shown to exist between roughly 100 − 300 ms in Figure 3) each

capture respectively the peak of one of the three EEG signals. However, the aforementioned

description is, of course, specific to the set-up. ERP waveforms can be different depending

on the design of the experiment, stimuli type, and cognitive task being performed.

Bereitschafts potential (BP) and movement-related cortical potentials (MRCP) are char-

acteristic features of EEG signals which describe the cortical activity associated with motor

response. Kornhuber and Deecke [119] explained the BP as the negative potential which

occurs 1 − 2 seconds before the voluntary motor action, and that it is possible to record
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BP along the scalp. The amplitude of the BP potential depends on the motor demands

of the task. The first of two components in the BP occur symmetrically on both brain

hemispheres, and these components happen 1− 1.5 seconds before motor action onset. The

second of two components occurs 0.5 seconds before the motor action, and this component

of the BP is positioned contralaterally to the activated hemisphere, depending on the move-

ment [120–122]. Previous studies showed that the first component of the BP is generated

mostly in the supplemental motor area, while the second component is generated in the

primary motor cortex [123]. Furthermore, this BP component of MRCP has been shown

to be a valuable tool for investigations in the field of swallowing, such as the initiation of

deglutitive behavior [52].

The MRCP is used for investigating cortical activation during movement activities (e.g.,

swallowing) [119,121,124]. MRCP contains two components: the BP and the negative slope

(Figure 4). Because of the high signal-to-noise ratio of electrical activity in the brain neurons,

cortical activations recorded from the scalp enable the investigation and evaluation of the

MRCP. The contingent negative variation (CNV) is a negative cortical potential with a slow

drop, which occurs between two successively instructed tasks [125, 126]. CNV and MRCP

have functional differences in the cognitive process which occurs at the beginning of the

movement. Studies showed that MRCPs are generated in the primary sensorimotor cortex,

supplementary motor area proper, and pre-supplementary motor area [127–130], while CNVs

are generated in the prefrontal cortex [131].
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2.2 EEG STUDIES RELATED TO SWALLOWING

2.2.1 Smell

Previous studies reported that EEG signals are sensitive to changes in odor, suggesting that

EEG is suitable for investigating and analyzing brain activity during olfaction [132–134].

Most of the olfactory EEG studies reported changes in signals for different stimuli. The

reported observed changes in EEG signals were not ubiquitous across all of the EEG olfactory

studies due to differences in employed investigation methodologies. Moncrieff published one

of the earliest studies to report these EEG signal changes due to olfactory stimuli [135].

Moncrieff used five subjects with eight bilaterally placed electrodes on each subject. The

results of his study showed changes in the alpha band of the signals for almost all stimuli.

Moncrieff used anachronistic EEG recording procedures, and a large number of stimuli. Also,

the experimental conditions were not very well controlled, which accounts for the differing

results observed in recent studies.

Even though recent studies have improved the standards for experimental control, dif-

fering results exist among the reported studies. Loring et al. [136] and Klemm et al. [134]

found no changes in the alpha activity, while Loring et al. [137] later reported a reduction

in the alpha power activity for different stimuli. Also, other studies reported conflicting

results: a reduction [133, 138] and an increase [134] of the theta activity for differing odor

stimuli. In one portion of their study, Loring et al. [136] found that for different stimuli,

alpha and theta activity exhibited changes along different brain hemispheres. Reasons for

these observed differences could include environmental conditions during recording sessions,

the specific odor stimuli used, the number of electrodes, and that the recording durations all

differed among studies. One study by Martin [139] investigated the influence of food’s odor

on the EEG signals. Martin found that theta activity was significantly reduced for chocolate

stimuli in comparison to both almond and cumin stimuli. He also found similar results (i.e.,

reduced theta activity) for spearmint when compared with the control (i.e., no odor). These

results could be attributed to psychological experience of the pleasant odor property. The

results of these studies are summarized in Table 1.
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2.2.2 Taste and texture

Recent EEG studies that investigated the gustatory brain waveform concentrated on in-

vestigating the ERP. The first positive (P1) gustatory ERP peak for a salt stimulus was

reported by Mizoguchi et al. [140] and Wada [141], and the P1 gustatory ERP peak for

electric taste (applying an electrical current to the participants’ tongue) was reported by

Olha et al. [142, 143]. Each of these studies reported the P1 gustatory ERP peak between

latencies spanning 130 and 150 ms. In these studies, the P1 deflection was higher for frontal

electrodes, where this deflection is assumed to have origins in the insula, the middle tem-

poral gyrus, and the anterior cingulate cortex [143]. The first negative (N1) deflection for a

latency time of 200 ms was reported by Olha et al. [142, 143] for an electric taste stimuli in

the regions of the cranial vertex and bilateral insula. Mizoguchi et al. [140] reported the N1

deflection for salt at a latency of 256 ms in the region of the cranial vertex. Early ERP stud-

ies that focused on ERP deflection (i.e., Min and Sakamoto [144], and Franken et al. [145])

were hindered by gustatory and tactile stimulation, which influenced their interpretation of

the reported results. These studies were not concentrated on brain regions where deflection

occurred, but rather on the difference in potential between different tastes. It was found that

sweetness in stimuli influenced the evoked potential. P1 deflection at latencies higher than

500 ms was reported by Funakoshi and Kawamura [146], Kobal [147], Plattig et al. [148],

Hummel et al. [149], and Singh et al. [150]. However, it is not known if these late peaks

have origins from the same process that produces early peaks, nor is it known whether their

origins are due to variations in the administration of different stimuli. The results of these

studies are summarized in Table 2.

2.2.3 Cortical pre-motor ativation in swallowing

The supplementary motor area is not frequently the focus for analysis during swallowing,

but it is known that the supplementary motor area is involved in the planning and initiation

of the voluntary movement phases in swallowing [151]. Knowing this leads us to the inves-

tigation of MRCP in the case of volitional swallowing. This investigation could provide us
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information about sequential cerebral processing, and it could also enable us to distinguish

between cortical motor preparation, cortical control of swallowing execution, and cortical

swallowing regulation. However, Yoshida et al. [152] has shown the importance of MRCP

in the diagnosis of oral motor dysfunction, and their results could be instrumental in the

treatment of dysphagia. CNV gives information about cognitive functions in the case of swal-

lowing activities initiated by a command, and together with MRCP, CNV gives important

information about brain activity.

In the analysis of MRCP, it was assumed that the MRCP can provide information about

cortical motor planning. Similar assumptions were used in the case of analyzing volitional

activity such as finger movement. Huckabee et al. [52] were the first to use the EEG tech-

nique in a swallowing study, and they investigated the role of the cerebral cortex in the motor

planning of swallowing as well as the initiation of swallowing. They found the BP before the

onset of volitional swallowing at the supplementary motor cortex. The same study by Huck-

abee et al. also claimed that, contrary to other volitional activities, the primary motor cortex

is not involved in the volitional swallowing task. Satow et al. [93] later reported BP activity

in both hemispheres (i.e., the central area of the cranial vertex with additional involvement

of the cerebral cortex) during a swallowing activity. They found that the role of the cerebral

cortex during a swallowing activity is very similar to its role involving tongue movement.

This difference in results between Huckabee et al. and Satow et al. could be attributed to

the choice of stimuli which were used in each of the two studies. Huckabee investigated dry

swallowing (i.e., saliva swallowing), while Satow used water as a stimulus. Hiraoka [53] later

documented differences in cortical activation during saliva and water swallows. He showed

that the amplitude of the positive potential is significantly higher for water swallowing com-

pared with that in saliva swallowing. This can be attributed to the bolus size used in the

study. In this study it was assumed that the saliva bolus was smaller than the water bolus.

These results signify that information registered with different types of receptors in the oral

cavity and oropharynx activates different cortical processes, where the particular activated

cortical process depends on the type of information registered by the receptors. With these

results, he claimed that the cortical preparatory process greatly depends on the type of the

swallowing task.
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Satow also found the BP in the case of swallowing and tongue movement. There was

not a difference in the BP’s amplitude between these two tasks. However, in the case of

swallowing activities, the BP occurred earlier than in the case of tongue movement. Several

years after Satow, Nonaka et al. [94] investigated brain activity in the case of volitional

and command swallowing. He compared CNV waveforms during the command swallowing

task with the MRCP during the volitional swallowing task. He found that the CNV, in

the case of the command swallowing task, had both larger amplitude and longer duration

when compared with the volitional swallowing task. This finding was observed from the Cz

electrode signal, which reflects the activity of the supplementary motor area. This means

that supplementary motor area activation starts earlier and has greater activation in the

case of complex motor tasks. The results of these studies are summarized in Table 3.
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Figure 3: ERP activation across different time ranges.

Figure 4: Scheme of MRCP.
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Table 1: Summary of published studies which investigated the human response to odor using

EEG.

Study Number of subjects Stimuli Electrodes Findings

Moncrieff (1962) [135] 5 Floral perfume, alco-
hol, lavender, methyl
antrhrantilate, lemon-
grass oil, cinnamon,
citral, pyridine, ammo-
nium sulphide

4 on the left side
and 4 on the right
side

Changes in alpha band
activity

Stacher et al. (1979)

[138]

16 Chives placed on bread
and butter, frying but-
ter, eggs, bacon

F7, F8, T5, T6 Reduction in theta
band activity

Lorig et al. (1988) -

first part [136]

13 Spiced apple, eucalyp-
tus, lavender

Cz Reduction in theta
band activity

Lorig et al. (1988) -

second part [133]

10 Five fragrances diluted
with distilled water

F7, F8, T5, T6 Increase or decrease of
alpha and theta ac-
tivity along different
hemispheres

Loring et al (1991)

[137]

16 Different concentra-
tions of spiced apple,
lavender oil

F7, F8, T5, T6 Reduction in alpha
band activity

Klemm et al. (1992)

[134]

16 Birch tar, galbanum,
jasmine, heliotropine,
lavender, lemon, pep-
permint, room-air

FP1, FP2, F3, F4,
F7, F8, C3, C4, T3,
T4, T5, T6, P3,
P4, O1, O2, Fz, Cz,
Pz

Increase in theta band
activity

Martin (1998) [139] -

first part

21 Chocolate, spearmint,
almond, strawberry,
vegetable, garlic,
onion, cumin

FP1, FP2, F3, F4,
F7, F8, C3, C4, T3,
T4, T5, T6, P3,
P4, O1, O2, Fz, Cz,
Pz

Reduction in theta
band activity
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Table 2: Summary of published studies which investigated the human response to taste using

EEG.

Study Number of subjects Stimuli Electrodes Findings

Kobal (1985) [147] 5 acetic acid 12 electrodes P300, N410, P660,
N860

Plattig et al. (1988)

[148]

21 NaCl, tartaric acid,
sucrose, quinine HCl,
Water

Cz N1000, P2300 for
NaCl; P2300 for tar-
taric acid; N2300 for
quinine HCl

Min and Sakamoto

(1998) [144]

10 NaCl, sucrose, tartaric
acid, quinine HCl, arti-
ficial saliva

Cz P50, P180

Mizoguchi et al.

(2002) [140]

5 NaCl Fz, Cz, Pz, T3, T4 P127, N263, P432

Wada (2005) [141] 11 glucose, NaCl, artificial
saliva

Cz P72197 for glucose,
P84188 for NaCl

Olha et al. (2009)

[142]

17 11.5 µA electrogusta-
tory stimuli

64 electrodes P130, N220, P390

Olha et al. (2010)

[143]

17 11.5 µA and 360.5 µA
electrogustatory stim-
uli

64 electrodes P134, N219, P390 for
11.5 µA; P124, N186,
P347 for 360.5 µA

Hummel et al. (2010)

[149]

17 70% acetic acid, 100%
acetic acid

Cz, Fz, Pz N390, P601 for 100%
acetic acid

Singh et al. (2011)

[150]

17 NaCl, MSG Fz, Cz, Pz, C3, C4 N506, P718 for NaCl
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Table 3: Summary of published studies which investigated the human response to odor using

EEG.

Study Number of subjects Stimuli Electrodes Findings

Huckabee at all.

(2003) [52]

20 saliva swallowing Cz, FCz, FC1z,
FC2z

BP at the supplemen-
tary motor cortex

Satow at al. (2004)

[93]

8 Water swallowing Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3,
Cz, C4, T4, T5,
P3, Pz, P4, T6, O1,
O2

BP in both hemi-
spheres at the central
area of the cranial
vertex; Activation of
cerebral cortex

Hiraoka (2004) [53] 7 saliva swallowing, wa-
ter swallowing

C3, Cz, C4 higher positive poten-
tial amplitude for wa-
ter swallowing com-
pared with saliva swal-
lowing

Nonaka et al. (2009)

[94]

10 Command saliva swal-
lowing, volitional saliva
swallowing

Fz, Cz, Pz, C3, C4 higher amplitude and
longer duration of the
CNV for the command
swallowing task com-
pared to the MRCP
for volitional swallow-
ing task
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3.0 AREAS OF INVESTIGATION

Based on the literature review, six open problems have been identified as described in the

next six subsections. For each of the problems we provided motivation to address this

problem, and the action plan of how to address it.

3.1 THE EFFECTS OF INCREASED FLUID VISCOSITY ON

STATIONARY CHARACTERISTICS OF

ELECTROENCEPHALOGRAPHY SIGNALS IN HEALTHY ADULTS

3.1.1 Motivation

Stationarity describes whether a signal’s statistical behavior from the future is the same

as the statistical behavior from its past. In recent years, evidence reporting the weak but

significant non-stationary properties of EEG signals and their interdependencies was pub-

lished [153–155]. However, it is still unknown whether EEG signals during swallowing can

be characterized as stationary or non-stationary. Answering this question will provide im-

portant directions for our future investigations of brain activity during swallowing.

One way EEG signals are analyzed is by investigating brain networks. There are several

methods currently used for constructing brain networks from EEG signals [98, 99, 156–158],

which in essence measure the synchronization between signals from two EEG electrodes.

Choice of the method depends of the behavior of the EEG signals. Therefore, we must first

assess the stationarity of EEG signals produced during swallowing activity, before we can

implement the appropriate network building method.
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On the other hand, investigating the stationarity of EEG signals during swallowing ac-

tivity may also hold clinical significance. The stationarity of a signal could change due to

the effects of a pathological condition. These changes may contain certain tell-tale patterns

(e.g., different types of background activity) that elucidate the underlying nature of neuro-

genic dysphagia, and becoming familiar with these patterns could provide a pathway to new

intervention strategies for neurogenic dysphagia caused by abnormal brain activity during

swallowing. By monitoring the post-processed EEG waveforms it could be possible to rec-

ognize these clinically significant changes through visual inspection or another, automated

method. In order to test the viability of such a screening tool, we have also investigated if

EEG signal stationarity would be significantly affected by sex, age, different brain regions,

and by the viscosity of the swallowed liquids.

3.1.2 Plan of action

The data acquisition process has been done as a part of the previous study, and the data

are available for use. The study was approved by The Institutional Review Board at the

University of Pittsburgh. 55 healthy adults (28 males and 27 females), aged 18 to 65,

participated in the data acquisition process. Each participant signed consent forms, and they

provided information about age and gender. EEG signals were recorded while participants

performed four different types of swallowing tasks, each with a unique viscosity fluid. Saved

data were pre-processed. Pre-processing involved some standard pre-processing steps such

as: downsampling of the signal, filtering of the signal, removing DC offset, and removing

artifacts. Artifacts were removed using Independent Component Analysis [159]. From the

pre-processed signal, stationarity will be tested with surrogates, which is a time-frequency

approach proposed by Borgnat et. al [160] for testing wide-sense stationarity. The essence

of this approach is to compare the local spectra statistics of each signal with the global

spectrum of that signal. Depending on the results of this comparison, the stationarity of the

time scale can be determined.

27



3.2 DIFFERENCE IN BRAIN NETWORK BETWEEN SALIVA

SWALLOWING IN NEUTRAL AND CHIN-TUCK HEAD POSITION

3.2.1 Motivation

Performing a swallow in the chin-tuck position is the most common method of compensating

for specific swallowing abnormalities [161,162]. It has been reported to eliminate aspiration

approximately 50% of the time in patients who aspirate thin liquids due to delay onset of

the pharyngeal response, provided that aspirated material did not originate in the hypopha-

ryngeal recesses that lie beside and behind the inlet to the larynx (pyriform sinuses) [101].

When the head is in the chin-tuck position, the tongue is drawn forward due to gravity,

and the valleculae expands. A larger valleculae pushes the tongue base closer and the flexed

posture moves the posterior pharyngeal to the tongue base which provides better swallow-

ing control [163]. Studies showed that these anatomical changes have been very helpful in

protecting the airway for some patients [1, 162,164].

While studies have given a physiological explanation of anatomical changes in the phar-

ynx during chin-tuck swallows, it remains unclear how this maneuver affects brain activity.

It is hypothesized that the chin-tuck maneuver operates via one of two pathways. Physically,

it may simply modify the configuration of the oropharyngeal mechanism, and as a result,

the swallowing profile. Alternatively, it may affect the activation of the muscles involved in

swallowing caused by a transformation in cerebral function prompted by the postural change.

The neurological conditions that cause dysphagia are not necessarily localized conditions.

The areas damaged by the underlying pathology may also damage the brain regions involved

in the control of the chin-tuck maneuver. Defining characteristics of the brain network

and defining brain regions involved in these commonly deployed compensatory maneuvers

could potentially explain whether there is a single explanation for the limited efficacy of

this technique at eliminating aspiration. Therefore, we hypothesize that the brain network

changes its configuration when swallowing in either a neutral or chin-tuck position.
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3.2.2 Plan of action

The data acquisition process has been done as a part of the previous study, and the data are

available for use. From each participant, EEG brain activity was recorded during swallowing

in the neutral and chin-tuck head positions. After standard pre-processing of the EEG time

series, connectivity matrices will be formed for each frequency band of interest from the

EEG time series using the time-frequency based phase synchrony measure [99]. Matrices

formed like this will be weighted undirected connectivity matrices. Constructed weighted

undirected connectivity matrices are thresholded in order to form binary networks. For a

binary undirected network, aij refers to the connection between node i and node j. If a

connection exists between two nodes (i.e., node i and node j), then aij = 1, but if aij = 0,

then there exists no connection between two nodes (i.e., node i and node j). When comparing

network measures, only matrices containing the same number of edges can be considered.

Because there is no single accepted method for choosing a threshold value, we chose to

form binary networks by thresholding the weighted networks according to the percent of

their density of connections (e.g., if a threshold is set to 10%, then this means that 10%

of the strongest connections in the connectivity matrix will be assigned a value of 1 while

the remaining 90% connections will be assigned a value of 0). For each of the constructed

networks, network measures (e.g. clustering coefficient, characteristic path length, local

efficiency, small-worldness) will be calculated and then compared to extracted differences

and similarities between swallowing in the neutral and chin-tuck head positions.

3.3 EFFECTS OF FLUID VISCOSITY ON THE BRAIN NETWORK

DURING SWALLOWING

3.3.1 Motivation

Previous studies indicated that thicker liquids can reduce the amount of material that is

aspirated when certain individuals aspirate thinner liquids while swallowing [100]. There are

several clinical explanations for this trend. For example, with higher viscosity liquids, it is

29



known that the duration of the contact between tongue base and pharyngeal wall increases,

oral and pharyngeal transit time is longer, pharyngeal delay time decreases, duration of the

peristalic waves is longer, the upper esophageal segment opening is longer, etc. However,

thicker liquids can also subjectively improve swallowing symptoms in some individuals who

have dysphagia with ordinary liquids.

While we are familiar with anatomical changes during swallowing performance of higher

viscosity fluids, it is still unknown how those diet changes affect brain activity. We still do not

know if better control of swallowing for higher viscosity fluids is due to anatomical control

of the larynx or due to better communication between brain regions for this swallowing

task. Understanding the changes in brain activation with healthy people during swallowing

of different viscosity fluids could potentially allow us to apply this information to existing

neurogenic dysphagia treatment methods.

Furthermore, a patient’s neurological disorder may also damage brain regions that affect

swallowing control. Therefore, it would be informative to determine whether the effects of

increased fluid viscosity on swallowing signal characteristics produce useful information that

might add value to brain networks as a screening method.

3.3.2 Plan of action

Data from the previous study, where EEG signals were recorded while participants performed

3 different types of swallowing (i.e., water swallowing, nectar-thick swallowing, and honey-

thick swallowing) in the neutral and chin-tuck head positions, are available for use. Pre-

processing of the EEG signals, forming connectivity matrices, thresholding, and extraction

of the network measures will be done as is described in Section 3.2.2. Extracted network

measures will be calculated and then compared between different conditions.
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3.4 INFLUENCE OF ATTENTION AND BOLUS VOLUME ON BRAIN

ORGANIZATION DURING SWALLOWING

3.4.1 Motivation

In order to provide better rehabilitation for the dysphagia patient, it is important to under-

stand events that can influence swallowing activity. Studies showed that patients who have

altered attention or impaired cognitive functions due to brain damage, such as those caused

by stroke, often manifest changes in the swallowing action [102, 103]. This means that the

swallowing process may require certain attentional and cognitive resources involved in this

motor behavior. However, this area of study has not been well explored. Thus, there are still

open questions regarding the influence of attention and cognitive demands on the swallowing

activity. In order to understand how attention influences swallowing activity, we should com-

pare brain organization during normal swallowing and swallowing with distraction. These

findings could potentially lead to the development of better rehabilitation strategies with

dysphagia patients who also have altered attention or impaired cognitive functions due to

neurological disorders.

3.4.2 Plan of action

Data will be collected from 15 healthy male subjects, aged from 18 to 35. All participants

will provide informed consent, and information about age, height, and weight. After the

participants give consent, first, EEG electrodes will be attached to the scalp using noninvasive

surface recording electrodes, then the accelerometer will be attached to the ventral side of

the subject’s neck using surgical tape. Participants will be asked to consume ten 1ml water

swallows, ten 5ml water swallows, and ten 10ml water swallows. Then, participants will

be asked to do the same thing, but this time while they watching a video which occupies

their attention and involves cognitive demands. All stimuli will be served chilled (3-5C) in

separate cups, and participants will be instructed to consume stimuli in their self selected

time base between each swallow. Pre-processing of the EEGs, forming connectivity matrices,
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thresholding, and extraction of the network measures will be done as is described in section

3.2.2. Extracted network measures will be calculated and then compared between among

conditions.

3.5 FAST WINDOWED GRAPH FOURIER TRANSFORM

3.5.1 Motivation

Even though topological properties of the swallowing brain network could provide important

insight into the neurological origins of the swallowing, in some cases we need a more advanced

approach. For example, we have shown that the classic graph theoretical approach could not

find the difference between consecutive swallows (Section 9.1). Therefore, employing signal

processing on a graph could provide deeper insight into the functional brain network during

the swallowing.

Previously, the WGFT [107] has been shown as a convenient method for extracting

vertex-frequency content from the signals on graphs. However, one disadvantage of the

WGFT is its computational complexity, particularly for big graphs. A more efficient al-

gorithm for computing the windowed Fourier transform would make EEG analysis more

attractive as a potential screening tool for dysphagia. Therefore, we aim to develop a faster

algorithm for computing the windowed Fourier transform.

3.5.2 Plan of action

Data from the last study are available for use in this study, which will enable testing the new

and fast algorithms for calculating the WGFT . The algorithm will be developed following

the idea proposed in [165]. Essentially, the required computational time will be decreased

by operating on the Fourier spectrum of the signal on a graph, and also operating on the

Fourier spectrum of the window used for calculating the WGFT .
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3.6 DIFFERENCE IN THE BRAIN NETWORK BETWEEN

CONSECUTIVE SWALLOWS

3.6.1 Motivation

In order to have a better understanding of swallowing we should also understand the differ-

ences between consecutive swallows. The differences between consecutive swallows have not

been considered much in previous swallowing studies, even though it could possibly influence

swallowing control for the people who have impaired clearance of swallowed material from

the throat, or impaired muscles that are involved in swallowing control. For example, due

to fatigue in the muscles of the larynx involved in swallowing or due to residue in pharynx,

patients with dysphagia could have higher risk of unsafe swallowing immediately after com-

pleting a swallowing action [104–106, 166–168]. Therefore, investigation of the differences

between consecutive swallows could lead us to better understanding of swallowing neurology

and improve swallowing therapy.

It was already mentioned that the classical graph theory approach cannot register dif-

ferences in the brain networks between the first, second, and third swallows (Section 9.1).

Therefore, for this investigation we want to employ signal processing on graphs. Signal

processing on graphs enables the extraction of distinctive features, such as vertex-frequency

content from the graphs. This information could be extracted using the WGFT [107]. How-

ever, like in classical signal processing, the WGFT has a limitation regarding the fixed

window size. Choosing too wide or too narrow a window can result in poor resolution of the

representation of the graph’s frequency content. Therefore we want to implement a method

which will calculate the optimal window for extracting frequency information from signals on

a graph. Calculating optimal window size automatically will enable more efficient extraction

of the frequency content from the graphs formed during swallowing.
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3.6.2 Plan of action

Data from healthy subjects are available for this study. After standard pre-processing of

the EEG signals, connectivity networks will be formed from each swallow using the time-

frequency based phase synchrony measure [99]. Weighted undirected connectivity networks

will correspond to the connection between nodes, while the mean value from each EEG

electrode will be attributed to each node. From such data sets, the graph Laplacian will

be formed. Using the graph Laplacian, it is possible to define some basic signal processing

operations on graphs, such as the graph Fourier transform, translation, modulation, as well

as WGFT [107]. The optimal window for the WGFT will be calculated using an algorithm

based on concentration measure, which will optimize size of the window. The algorithm for

calculating an optimal window for WGFT will be used for calculating the vertex-frequency

representation brain network during swallowing. These vertex-frequency representations will

then be compared between the consecutive swallows.

34



4.0 THE EFFECTS OF INCREASED FLUID VISCOSITY ON

STATIONARY CHARACTERISTICS OF ELECTROENCEPHALOGRAPHY

SIGNALS IN HEALTHY ADULTS

With kind permission of Elsevier, this chapter was excerpted in entirety from the following

journal article:

Jestrović, I., Coyle, J.L., Sejdić, E. (2015). “The effects of increased fluid viscosity on

stationary characteristics of EEG signal in healthy adults.” Brain Research, vol. 1589, no.

1, pp. 45-53, 2014 The homepage of Brain Research is located at this page. The publisher’s

copyright information can be found at Copyright Clearance Center, Inc.. This article can be

found on the publisher’s website by clicking here.

4.1 MOTIVATION

Recognizing a non-stationary process in the EEG and identification of the components that

are responsible for affecting the signal’s stationarity could be important for different rea-

sons. For example, by monitoring the post-processed EEG waveforms, it could be possible

to recognize clinically significant changes that may influence the treatment of patients with

neurogenic dysphagia, either by visual inspection or even by some other automatic method

(i.e., software tools for automatic detecting of changes). On the other hand, these com-

ponents may contain certain telltale patterns (e.g., different types of background activity)

that elucidate the underlying nature of neurogenic dysphagia, and becoming familiar with
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these patterns could provide a pathway to new intervention strategies for neurogenic dys-

phagia caused by abnormal brain activity during swallowing. Additionally, it could provide

information about appropriately selecting techniques which should be used for forming brain

connectivity matrices.

4.2 METHODS

4.2.1 Data acquisition from participants

55 healthy adults (28 males and 27 females), aged 18 to 65, participated in the data ac-

quisition process. Each participant signed consent forms, and they provided information

about age, gender, height, and weight. The Institutional Review Board at the University of

Pittsburgh approved this study.

EEG data was collected with a 64 channel system, arranged according to the 10-20

international electrode system [108], using actiCAP active electrodes and an actiCHamp

amplifier (BrainProducts, Germany). The impedance of each electrode was below 15 kΩ,

and the electrode marked P1 was chosen as the reference electrode. All data was recorded

with the PyCorder acquisition software, which provided a 10 kHz sampling rate on each

channel. In order to determine the swallowing segments (i.e., the starting and ending points

of the swallow), the EEG signal was recorded during swallowing simultaneously while dual

axis accelerometer sensor attached to the anterior side of the participants’ necks overlying

the larynx recorded vibratory signals associated with laryngeal movement that occurs during

swallowing. The methods describing the implementation of the accelerometer, pre-processing

steps, and swallowing segmentations are described in a previous study [169].

After appropriately affixing the accelerometer and EEG cap along with the rest of the

system (Figure 10), participants were asked to perform five swallows with fluids of four

different viscosities. Fluids were served chilled (between 3 ◦ − 5 ◦C) in individual cups filled

to approximately 30 ml. Participants were instructed, after the instructor signaled for the

participant to begin the swallowing task, to then pause 2-3 seconds between each swallow.
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Figure 5: The experimental setups used in the study.

The order of presentation of the four conditions was not randomized. Each participants

swallowed five saliva boluses, followed by five water boluses (viscosity of water is 1 cP),

followed by five mildly thick (nectar-thick, Nestlé Health Care Inc., Florham Park, N.J.)

liquid boluses with a viscosity of 150cP, and followed finally by five moderately thick (honey-

thick, Nestlé Health Care Inc., Florham Park, N.J.) liquid boluses (400cP). Bolus volume

was not controlled for or measured, and participants were asked to consume a comfortable

bolus volume as there are sex based differences in a comfortable bolus size [170].

4.2.2 Pre-processing steps

Pre-processing of the EEG signals were performed using the EEGlab [171] toolbox running

on MATLAB Version 2013a. The first step in pre-processing of the EEG signals began

with downsampling the signal to 256Hz. Next, the signal was filtered using a short band-

pass elliptical IIR filter with a cutoff frequency between 0.1Hz to 100Hz. To remove power

supply noise, the EEG signal was filtered with a short notch elliptical IIR filter with a

bandwidth between 58Hz to 62Hz. Next, the signal was segmented into separate swallows
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using segmentation points based on the accelerometer signal. Lastly, artifacts were removed.

Previous studies have shown that independent Component Analysis (ICA) [172] implemented

in EEGlab is a convenient method for removing EEG artifacts [159,173,174]; therefore, this

same method was used to remove artifacts in the EEG signals collected in this study. Only the

channels, which were contaminated with artifacts, were considered for the ICA algorithm.

ICA components corresponding to artifacts were identified by visual inspection and then

removed.

4.2.3 Stationarity and time-frequency approach test

Assume that each EEG channel is represented as separate discrete time series of the length

n, X(t) = {x1, x2, ..., xn}. In this case X(t) is a family of real-valued random variables and t

is an integer (t ∈ Z). If the statistical properties of the given data series are shift-invariant,

fXt1 ,Xt2 ,...,Xtn (x1, x2, ..., xn) = fXt1+h ,Xt2+h ,...,Xtn+h (x1, x2, ..., xn), (4.1)

where h ∈ Z, then we would say that this time series is strongly or strict-sense stationary

[175]. However, if only the first two moments of the series are time-invariant,

E(Xt1) = E(Xt1+h), (4.2)

Cov(Xt1Xt2) = Cov(Xt1+h , Xt2+h), (4.3)

then the time series would have a weakly or wide-sense stationarity.

Testing stationarity with surrogates is a time-frequency approach proposed by Borgnat

et al. [160] for testing wide-sense stationarity. The essence of this approach is to compare

the local spectra statistics of the signal with the global spectrum of the signal. Depending

on the result of this comparison, the stationarity of the time scale can be determined. The

local spectra of the signal is calculated using the multitaper spectrogram, which is defined

as:

Sg,K(t, f) =
1

K

K∑
k=1

S(hk)
g (t, f), (4.4)
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where S
(hk)
g is the spectrogram computed with the k-th Hermite function, and is defined as:

S(hk)
g (t, f) =

∣∣∣∣∫ g(s)hk(s− t)e−i2πfsds
∣∣∣∣2 , (4.5)

where hk(t) is k-th Hermite function of the length Th.

A surrogate data set is formed by multiplying the amplitude of the Fourier transform of

the original signal by independent identically distributed phase sequence. After this multi-

plication, the inverse Fourier transform is applied to the result. A total of J of realizations is

obtained. After obtaining J different surrogate realizations, the distance between the local

spectra and the global spectrum (GS) is calculated. Mathematically, GS can be expressed

as:

GS = E[sg,K(t, f)]t =
1

T

T∑
i=1

Sg,K(i, f) (4.6)

The distance between the local spectra and the global spectrum are defined as [176]:

DKL(L,G) =

∫
Ω

(L(f)−G(f))log
L(f)

G(f)
df, (4.7)

DLSD(L,G) =

∫
Ω

∣∣∣∣log L(f)

G(f)

∣∣∣∣ df, (4.8)

respectively, where L(f) is the local spectrum and G(f) is the global spectrum, and f is the

frequency variable over the space Ω. Next, the distance of our interest is computed as:

D(L,G) = DKL(L̃, G̃) · (1 +DLDS(L,G)) (4.9)

where L̃ and G̃ are the normalized parameters for L and G, respectively. For the original

signal and each surrogate signal, N distances between N local spectra and GS were calcu-

lated. Furthermore, from this set of N distances, the variance was calculated. The variance

for the distances of the original signal is indexed as Θ1, while the variance for the distances

of each surrogate is indexed as vector Θ0. Since elements of the vector Θ0 has Gamma

distribution [160], it enables determination of the value for threshold γ. This means that for

all values above γ the null hypothesis is rejected.
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d =

1 if Θ1 > γ : ”non stationary”

0 if Θ1 < γ : ”stationary”

In the case when null hypothesis is rejected, we can calculate the index of non-stationarity

(INS), which is defined as:

INS :=

√
Θ1

E[γ]
, (4.10)

where E[γ] is the average value of the random variable. This value is approximated as the

average value from the vector Θ0. In the case of stationary signals, INS is close to one, while

non-stationary signals have higher INS values. As the signal gets more non stationary, INS

increases.

4.2.4 Data analysis

In order to determine statistical difference between stationarity of different conditions, sta-

tistical tests were applied on indices of non-stationarity. The Kruskal-Wallis test [177] was

used for testing the statistical differences between each type of swallowing task (i.e., saliva,

water, nectar-thick, and honey-thick). Next, the Wilcoxon rank-sum test [178] was used

for determining the statistical differences of the index of non-stationarity between different

fluids, genders, and different brain regions (left frontal, right frontal, left back, and right

back). A standard linear regression was used to examine the effects of age on percent of

stationarity test statistic values [179].
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4.3 RESULTS

We examined the stationarity of 64209 EEG channel signals using the time-frequency ap-

proach with surrogates. Figure 6 shows the percentage of non-stationarities in EEG for

different stimuli. Figure 7 shows boxplots with the distribution of index of non-stationarity

values for different types of fluids. According to our results, it can be seen that saliva

swallowing contained more non-stationarity than other stimuli.

Figure 6: Percentage of non-stationary in EEG signals for the different fluid stimuli.

Statistical tests failed to show differences for the index of non-stationarity only between

nectar-thick and honey-thick swallows (p = 0.63). All other pairwise comparisons between

different stimuli (i.e., saliva and water; saliva and nectar-thick; saliva and honey-thick; water

and nectar-thick; water and honey-thick) showed significant differences (p << 0.01). Sex

differences were absent only for water swallows (p = 0.44), while male participants exhibited

a higher non-stationarity for all other swallows (p << 0.01). Comparisons between the left

and right frontal sides, as well as comparisons between left and right back sides (Figure 8.)

did not show statistical difference (p > 0.05) for each respective comparison pair. However,
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both the left and right frontal sides have a higher index of non-stationarity than both the

left and right back sides (p << 0.01). According to the linear regression, age did not affect

the percent of stationarity test statistic values (p = 0.65).

Figure 7: Distribution of the index of non-stationarity for different fluid stimuli.

According to Figure 9 most of the non-stationarity can be attributed to a change in the

mean over time (50− 60%). Less than 10% of EEG demonstrated time-dependent variance

alone. Changes in both mean and variance significantly contributed to the non-stationarity

(i.e., 15 − 25%), as well as unknown causes (15 − 21%). However, the time-varying mean

was a major cause of non-stationarity.

4.4 DISCUSSION

Our hypotheses, that sex, liquid viscosity, and brain region would significantly affect the

EEG signals stationarity, were supported in most comparisons, while our hypothesis that

age affects the EEG signals stationarity was not supported. The fact that swallowing is one

42



Figure 8: Distribution of the index of non-stationarity for each brain region for different fluid

stimuli.

of the most complicated tasks performed by the central nervous system [38, 180], led us to

intuitively expect non-stationarities in its EEG representation. EEG signals tend to be more

non-stationary with increasing fluid viscosity. This means that the collected EEG signals

during swallowing tasks using thicker liquids contain more changes in mean and variance

along the signal sample duration [175]. Studies that have investigated brain activity related

to eating have discovered neurons that are capable of responding to either the viscosity or

the taste of food, and to both the viscosity and the taste [181]. The neuronal responses to

increasing fluid viscosity during swallowing tasks manifest as modulations of the response
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Figure 9: Distribution of the index of non-stationarity for each brain region for different fluid

stimuli.

from the neurons (i.e., the increase or decrease), or even as activation thresholding where

neurons respond only for a range of fluid viscosities [182]. The cumulative effect of neuronal

activity in a given area of the cortex will proportionally change the behavior of the EEG

signal and subsequently affect the number of stationary test statistic values [55].

Additionally, our results reported that sex affects the stationary test statistic values.

Even though there exists little documented information about sex differences in brain activity

for food stimuli [183], there is evidence of sex differences regarding the ability to inhibit brain

activation elicited by food stimulation [184]. In women, it was shown that the brain regions

responsible for processing visual and taste sensations showed greater activity to food stimuli

than the same brain regions for men [185]. Food stimuli are associated with greater activity

in the orbitofrontal cortex and prefrontal dorsolateral cortex regions of the brain; these

regions are responsible mostly for emotions/rewards with regard to decision making and

memory, respectively. It is known that the frontal cortex is associated with the presence of
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sex hormone levels during the menstrual cycle during a memory task in women [186, 187].

This leads to the conclusion that modulation of brain activity (i.e., when recording with

EEG equipment) during a swallowing task (i.e., food) in these regions is correlated with sex

and explains our result. This means that one of our future investigations could focus on the

characterization of swallowing EEG signals with females at known points in the menstrual

cycle and testing for differences. Also, this difference in stationarity between sex could be

attributed to bolus size. It was shown that comfortable bolus sizes are different between men

and women [170]. Men have significantly larger self-determined bolus volume than women.

This difference may produce different brain activation patterns during swallowing activity.

There is also evidence of possible sex differences in certain aspects of peripheral swallowing

kinematics and physiology including the duration of laryngeal closure during the swallow

in both healthy adults and those with dysphagia [188–191]. However it remains uncertain

whether these are actual sex differences caused by anatomic and physiologic differences

between adult females and males, or rather artifacts of experimental design that did not

correct for proportional differences in average adult female and male aerodigestive tract

caliber and size.

One of the challenges in the investigation of swallowing’s neural origins is determining

the brain regions involved in swallowing activities. Advanced imaging techniques, such as

fMRI, PET, and MEG, provided significant contributions to the swallowing field and were

used to identify many different origins of swallowing within the brain [36–41]. Our findings

showed differences in stationarity between the frontal and the back part of the brain. Luan

et al. [192], in their fMRI studies related to swallowing, summarize 23 different brain regions

that are activated during swallowing activities. According to their report, it can be seen

that the brain regions involved in swallowing are mostly concentrated in the frontal portion.

This explains the statistical difference for stationarity in our data.

Stationarity describes whether a signal’s statistical behavior from the future has the same

statistical behavior from the past. Our investigation of stationarity determined that EEG

signals during swallowing can be considered as non-stationary, and changes in mean of the

signal are mostly responsible for producing the non-stationarities. Studies that investigated

artifacts in EEG signals showed that swallowing activities produce a burst of brain activity
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with higher frequency content (compared with the baseline) and a differing amplitude varia-

tion (again, compared to the baseline) [193]. This variation of the amplitude explains origins

of non-stationarities related to changes in the mean. This provides us an answer which al-

lows us to appropriately select which technique and which signal duration length we should

use in future analyses of EEG (i.e., the wavelet-based approach [194], time-frequency based

phase synchrony measure [99], which are suitable for analysis of non-stationary signals).

Clinically, choosing the appropriately technique for analysis is very important, because the

proper choice can significantly reduce the number of false-positive and false-negative detec-

tions of swallowing abnormalities. The major future goal for this research and for all future

investigations is to obtain a faster and more efficient method to determine abnormalities in

patients with dysphagia. It is our aim to reduce the clinical burden associated with dys-

phagia screening and diagnosis, and increase its accuracy and efficiency. To expound on the

direction of our aims, further investigation would determine and recognize exact components

which cause non-stationarity and their origins. Furthermore, these investigations would aim

to determine if those components are repeating and to what extent (i.e., does the signal

have a noticeable pattern or are the patterns random), and also determining whether these

components are important, or rather need to be removed from our EEG signals.

The clinical implications of this line of research may lead to yet unexplored avenues

of intervention for people with swallowing disorders. Currently, revived interest in the af-

ferent/sensory portion of the sensorimotor systems subserving swallowing function. Early

research investigating peripheral stimulation of sensory receptors produced equivocal evi-

dence of a transient increase in motor output in dysphagic patients after high doses of stim-

ulation [195–198]. However, only recently are methods of measuring the central effects of

peripheral stimulation increasingly available. Electroencephalography, a relatively portable

and noninvasive procedure, may offer significant value in the treatment of neurogenic dys-

phagia, if researchers could elucidate whether central plasticity can be shown to occur as a

result of sensorimotor treatments, and if manipulation of the process of reorganization might

improve clinical outcomes.
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A shortcoming of our study is that the volume of swallowed boluses was not controlled for,

so the possibility that bolus volume affected signal stationarity cannot be excluded. Also, in

this study, swallowing tasks are administered in a specific order (saliva, water, nectar-thick,

honey-thick) which leaves an open question about the influence of order on our results. In

order to eliminate these limitations, a future study could include investigations with specific

bolus size, and also randomize the order of administered stimuli.

4.5 CONCLUSION

In this study we investigated the stationarity of EEG signals during swallowing activities.

Swallowing EEG signals were collected from 55 healthy adults who performed four different

types of swallowing tasks, each with a unique viscosity fluid. We demonstrated that the

EEG during swallowing tasks, can be considered as non-stationary. Additionally, we found

that the viscosity of the fluids, sex, and different brain regions, all affect the index of non-

stationarity values. Lastly, we found that the origins of non-stationarities were mainly due

to variations in the mean.
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5.0 DIFFERENCE IN BRAIN NETWORK BETWEEN SWALLOWING IN

NEUTRAL AND CHIN-TUCK HEAD POSITION

This chapter was excerpted partly or in entirety from the following journal article: Jestrović,

I., Coyle, J.L., Sejdić, E. (2015). “Characterizing functional connectivity patterns during

saliva swallows in different head positions.” Journal of NeuroEngineering and Rehabilitation,

vol. 12, no. 1, pp. 61-72, 2015

As an author of an article published in Journal of NeuroEngineering and Rehabilitation

I retain the copyright of my article and I am free to reproduce and disseminate my work.

The homepage of Journal of NeuroEngineering and Rehabilitation is located at this page.

The publisher’s copyright information can be found at the BioMed Central copyright policy

and license agreement. This article can be found on the publisher’s website by clicking here.

5.1 MOTIVATION

Swallowing in the chin-tuck position (head and neck flexion) is one of several different pos-

tural techniques that allow some patients with specific swallowing abnormalities to swallow

more safely [161, 162]. The chin-tuck maneuver involves flexing the head and neck approxi-

mately forty-five to sixty degrees, approximating the chin to the anterior upper chest while

swallowing. This posture has been shown to produce several biomechanical advantages dur-

ing swallowing, for patients who have impaired ability to maintain posterior containment of

food and liquids in the oral cavity until he or she is ready to swallow, or who have delayed

onset of the pharyngeal stage of the swallow. Both of these conditions expose the unpro-

tected airway to aspiration. This posture also repositions the posterior wall of the pharynx in
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closer proximity to the tongue base, which narrows the pharynx and subsequently the inlet

to the laryngeal vestibule, thereby reducing aspiration risk and increasing airway protec-

tion [1, 162–164]. In the first study of its efficacy, swallowing in the chin-tuck head position

eliminated aspiration in 50% of patients who were aspirating liquids due to a delayed onset of

the pharyngeal stage of swallowing [199]. However, studies showed that therapy and rehabil-

itation of patients with neurogenic dysphagia is highly correlated with the brain’s plasticity

and ability to reorganize sensory and motor cortex after events such as stroke [86]. This

neural reorganization produce compensatory changes in the swallowing sensory and motor

subsystems [200, 201]. Therefore, efforts to better understand the potential central nervous

system effects of therapeutic interventions used to restore swallow function, might elucidate

how maneuvers like the chin-tuck posture influence cerebral plasticity for swallowing after

stroke and other neurological diseases.

We seek to investigate whether there are differences in brain networks when individuals

swallow while in these two postures. While studies have given a physiological explanation of

anatomical changes in the pharynx during swallowing in the chin-tuck position, it remains

unclear whether or how this maneuver affects brain activity. Investigating this brain activity

during swallowing could explain whether better control of swallowing in the chin-tuck posi-

tion is simply due to the artificially modified configuration of the oropharyngeal mechanism

caused by the change in posture, or if is due to alterations in muscle activity caused by a

transformation in cerebral function prompted by the postural change itself. Areas of brain

damage induced by neurological pathologies that cause dysphagia may overlap with the brain

regions involved in the control of swallowing in the chin-tuck position. Defining character-

istics of the brain network and defining brain regions involved in these commonly deployed

compensatory maneuvers could potentially explain whether there is a central explanation

for the limited efficacy of this technique at eliminating aspiration.

In a brain network, vertices refer to brain regions of interest, while edges are solely the

functional connections between two brain regions. The position of the vertices and edges

in networks define the topological structure of the brain network. Topological structures

will determine whether synchronization of neural activity between brain regions is organized

more regularly or more randomly. Regular and random networks have different local clus-
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tering and interconnection path length characteristics. Regular networks are characterized

by higher local clustering and longer path length between brain regions. This organization

provides greater functional connectivity among the brain regions; however, communication

efficiency is reduced between brain regions. Random networks have a lower local clustering

and shorter path length between any two connected brain regions, which provides efficient

communication between brain regions, but poorer overall functional connectivity in the brain.

Brain regions which are optimally organized have so-called small-world architecture topolog-

ical properties. Small-world architecture topologies share some characteristics with regular

networks as well as with random networks [73]. Networks characterized by small-worldness

have strong local clustering (a characteristic of regular networks) and a short path length

connecting any two brain regions (a characteristic of random networks). Modeling stud-

ies have shown that neural networks with small-world properties are characterized by more

efficient communication between neurons [202, 203] , which correlates to optimally synchro-

nized neural activity between different brain regions within a brain network. Investigation of

small-worldness is of particular interest for analysis in dysphagia research, because it could

explain how neural reorganization occurs after cerebral injury, and lead researchers to inter-

ventions to both speed and optimize recovery from stroke and other neurological diseases.

The small-word properties of constructed brain networks and the differences in these brain

networks for each of the two head positions will also form the basis of our research. We

aim to determine if better small-world properties of the brain networks for swallowing in

chin-tuck position provides a neurological explanation as to why the chin-tuck head position

is an effective therapeutic technique for treating dysphagia. Therefore, we hypothesized that

brain networks in both the neutral and the chin-tuck head positions have small-world pro-

prieties, and that the brain network is different for swallowing in the neutral head position

than when compared with the brain network for swallowing in the chin-tuck head position.
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5.2 METHODOLOGY

5.2.1 Data acquisition from participants

Data was collected from 55 healthy subjects aged from 18 to 65, all of whom provided

informed consent, as well as information about age, gender, height, and weight. The protocol

was approved by the Institutional Review Board at the University of Pittsburgh.

In this study, signals were collected from 64 EEG electrodes positioned according to the

10-20 international electrode system [108]. Electrode positioning was accomplished using ac-

tiCAP active electrodes (BrainProducts, Germany), and signal amplification was performed

using an actiCHamp amplifier (BrainProducts, Germany). The P1 electrode was chosen as

the reference (i.e., EEG voltage potentials are referenced to P1). During the entire course

of the data collection, the electrode impedance was below 15 kΩ. The PyCorder acquisition

software provided a 10 kHz sampling frequency, and this software was also used for saving

collected data on a computer hard drive. During EEG recording, a dual-axis accelerom-

eter was used to record vibratory correlates of pharyngeal motor activity associated with

individual swallows. It also provided temporal evidence regarding the beginning and end of

each swallowing event, which was then used to enable segmentation of the EEG signals into

swallow-specific data sets. It was positioned on the anterior aspect of the neck at the level of

the cricoid cartilage of each participant. The method for determining swallowing segments

with the dual-axis accelerometer is described in detail in one of our previous studies [169].

After proper set-up of all EEG equipment was complete, participants were asked to perform

five saliva swallows in their self selected time base between each swallow, first in the neutral

head position and then five saliva swallows in the chin-tuck head position (Figure 10).

5.2.2 Pre-processing steps

Collected data was pre-processed with the EEGlab MATLAB toolbox [171]. All signals

were downsampled to 256 Hz, and then band-pass filtered from 0.1 Hz to 100 Hz with an

elliptical infinite impulse response (IIR) filter. Next, in order to remove noise associated

with the power supply, all signals were filtered with an elliptical IIR notch filter with cut-
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Figure 10: The experimental procedure used in this study.

off frequencies at 58 Hz and 62 Hz. Individual swallows were identified according to the

segmentation points provided by the accelerometer signal. Segmented swallows were then

visually inspected for the presence of possible artifacts, which could be produced by electrode

activation from any source which is not cerebral activity (e.g., noisy nearby equipment and

instruments, bodily movement, etc. that can produce undesirable artifacts in the EEG

signal) [204]. All present artifacts were removed using the Independent Component Analysis

(ICA) algorithm [172]. EEG data samples that containing an artifact that could not be

removed by the ICA algorithm without significantly damaging the signal were excluded

from the study. Less than 5% of EEG data samples were excluded due to excessive artifact.

5.2.3 Network constructions

Pre-processed signals were filtered with an elliptic band-pass filter into the commonly used

frequency bands: Delta (< 4Hz), Theta (4− 7Hz), Alpha (8− 15Hz), Beta (16− 31Hz),

and Gamma (> 32Hz). The time-frequency based phase synchrony measure was used for

computing connectivity matrices for each of the bands of interest.
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5.2.4 Time-frequency based phase synchrony measure

Since we have shown that EEG signals during swallowing activity are non-stationary [205],

connectivity matrices were formed using time-frequency based phase synchrony measure

proposed by Aviyente et al. [99]. This method is called a reduced interference Rihaczek

distribution.

Synchronization between any two signals can be estimated as the instantaneous phase

of the signals around a certain desired frequency point. The signal in the time-frequency

domain can be represented as:

X(t, ω) = a(t)exp(j(ωt+ φ(t))), (5.1)

where a(t) is amplitude and φ(t) is the phase of the signal. From the vantage point of

the time domain for a desired frequency, the organization of two signals, x and y, can be

estimated by the difference in their phase:

Φxy(t) = |nφx(t)−mφy(t)| (5.2)

where n and m are ratios of the locking frequencies, and φx and φy are phases of the signals,

x and y, respectively.

In the event that we have a signal able to be presented as a sum of independent signals,

such as, s(t) = s1(t) + s2(t), the Rihaczek time-frequency distribution is defined as:

C(t, ω) =
1√
2π

(s1(t)S∗1(ω)e−jωt+s2(t)S∗2(ω)e−jωt+s1(t)S∗2(ω)e−jωt+s2(t)S∗1(ω)e−jωt) (5.3)

where S(ω) is the Fourier transform of the signal. The last two terms in the equation (5.3) are

the cross-terms. The problem associated with cross terms is that they exist at the same time

points as original signal, and furthermore, that these cross terms occupy the same frequency

bands occupied by the original signal. In order to remove the cross-terms, the Choi-Williams

(CW) kernel function, which is defined as φ(θ, τ) = exp(−(θτ)2/σ), is applied to the Rihaczek

distribution [206] . As a result, we obtained the reduced interference distribution of Rihaczek

distribution which can be written as:

C(t, ω) =

∫∫
e(−(θτ)2/σ)e(j(θτ)/2)A(θ, τ)e−j(θt+τω)dτdθ (5.4)
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where A(θ, τ) =
∫
s(u + (τ/2))s∗(u − (τ/2))ejθudu. The A(θ, τ) term is the ambiguity

function of the original signal, and the e(j(θτ)/2) term is the kernel corresponding to the

Rihaczek distribution.

After defining the time-varying phase spectrum, the phase difference between two signals

is computed as:

Φ12(t, ω) = arg

[
C1(t, ω)C∗2(t, ω)

|C1(t, ω)||C2(t, ω)|

]
(5.5)

Calculated values for the phase difference between signal pairs are used for calculating the

phase locking value (PLV). PLV is a measure of the phase difference between signal pairs,

and is defined as:

PLV (t, ω) =
1

N

∣∣∣∣∣
N∑
k=1

exp(jΦk
12(t, ω))

∣∣∣∣∣ (5.6)

where N is the number of trials. PLV values are in range from 0 to 1, inclusive. PLV values

tend to be higher when the phase difference does not vary significantly between trials..

5.2.5 Network measures

Formed weighted undirected connectivity matrices are typically converted into binary undi-

rected matrices. This study considers the use of binary undirected networks for the purpose

of calculating network measures. Constructed weighted undirected connectivity matrices are

thresholded in order to form binary networks. For a binary undirected network, aij refers to

the connection between node i and node j. If a connection exists between two nodes (i.e.,

node i and node j), then aij = 1, but if aij = 0, then there exists no connection between two

nodes. When comparing network measures, only matrices containing the same number of

edges can be considered. Because there is no single accepted method for choosing a threshold

value, we chose to form binary networks by thresholding the weighted networks according to

the percent of density of their connections (e.g., if a threshold is set to 10%, then this means

that 10% of the strongest connections in the connectivity matrix will be assigned a value of

1 while the remaining 90% connections will be assigned a value of 0). In this study, binary

networks were constructed by thresholding from 5% (i.e., sparse connections) to 100% (i.e.,

full connections) of the connections using increments of 5%. For each of the constructed net-

works, network measures were calculated and then compared in order to extract differences
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and similarities between swallowing in the neutral and chin-tuck head positions. We used

the Brain Connectivity Toolbox (BCT) [207] running in MATLAB to calculate each of the

discussed network measures:

• The degree of the node, Di, is the number of the edges that node i has with the rest

of the nodes in the graph. The degree parameter is one of the fundamental network

parameters in graph theory. Degree distribution is the summation of the degrees of all

nodes from the network, while the mean degree is the average of all of the degrees of all

nodes in the network.

D =
1

N

∑
i∈N

Di, (5.7)

where N is the number of nodes.

• The clustering coefficient of the i-th node is Ci. The clustering coefficient is a measure

that describes the ratio between the number of existing edges between the nearest neigh-

bor of the node and the maximum number of possible edges [208]. For a binary network,

the clustering coefficient is calculated as:

Ci =
2Ei

Di(Di − 1)
, (5.8)

where Ei is the number of existing edges between adjacent nodes of node i, and Di is

the degree of the i-th node. In the case of a random network, the clustering coefficient

is relatively low, whereas a higher clustering coefficient is found in networks containing

more densely connected clusters [209]. The mean clustering coefficient is defined as:

C =
1

N

N∑
j=1

Cj. (5.9)

• Shortest path length, Li, is the minimum number of edges needed for one node to be con-

nected to another node [210,211]. The mean shortest path length is the average shortest

length between all possible combinations of only two nodes in the graph. Mathematically,

the mean shortest path length between two nodes is defined as:

Li,j =
1

N(N − 1)

∑
i,j∈N,i6=j

di,j, (5.10)
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where di,j the shortest path length between node i and node j.

Furthermore, the mean characteristic path length is calculated as the average of all of

the shortest path lengths:

L =
1

N

∑
i∈N

Li. (5.11)

• The local efficiency, Elocal, is defined as the mean of the efficiencies of the subgraphs

which are formed from the neighborhoods of each node [212]. The local efficiency can be

calculated as:

Elocal =
1

N

∑
i∈N

E(Gi), (5.12)

where E(Gi) is the efficiency of the subgraph, Gi.

Clustering coefficient, C, and mean characteristic path length, L, are the two parameters

used to describe small-worldness. A network is considered to have small-world proprieties

if it is characterized by a high clustering coefficient and short characteristic path length.

Networks with small-world proprieties will have high formations of clustered subnetworks

[213]. Mathematically, small-world attributes should satisfy two conditions:

γ =
C

Crandom
� 1, (5.13)

and

λ =
L

Lrandom
≈ 1, (5.14)

where Crandom and Lrandom are the mean clustering coefficient and the mean characteris-

tic path length of the random network, respectively. Random networks are characterized

by a low clustering coefficient and a long characteristic path length. Crandom and Lrandom

are calculated by generating many random networks for each considered network using the

Markov-chain algorithm [77,214]. Finally, small-worldness is calculated as:

S =
C/Crandom
L/Lrandom

, (5.15)

where the network can be said to possess small-world proprieties if S > 1.
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5.2.6 Data analysis

To determine the categorical statistical differences between features in different head posi-

tions, the Wilcoxon rank-sum test was used [178].

5.3 RESULTS

We analyzed 252 swallows in the neutral head position, and 233 swallows in the chin-tuck

head position. Results of the network measures are presented as a mean value ± standard

deviation, as the function of percent of network connections.

Figure 11 summarizes the mean value for clustering coefficient for different connection

densities (i.e., from 5% to 100%). The clustering coefficient did not exhibit statistically signif-

icant differences between different head positions for the Delta, Theta, and Beta frequency

ranges (p > 0.05). Swallowing in the chin-tuck head position showed a higher clustering

coefficient for a 30% connection density in the Alpha frequency range (p = 0.02) when com-

pared to swallowing in the neutral head position. Furthermore, swallowing in the chin-tuck

head position showed a higher clustering coefficient for connection densities of 40%, 45%,

and 50% in the Gamma frequency range (p < 0.03) when compared with swallowing in the

neutral head position.

Figure 12 summarizes the mean value for characteristic path length for different connec-

tion densities. For connection densities of 20%, 30%, 35%, 40%, 45%, 50%, 55%, and 60%

in the Alpha frequency range, swallowing in the chin-tuck position showed a higher mean

value for characteristic path length than did swallowing in neutral head position (p < 0.05).

In all other frequency bands (i.e., Delta, Theta, Beta and Gamma bands) there were no

significant differences between different head positions (p > 0.05).
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Figure 11: The value of mean clustering coefficient, C, for different threshold percentages

and for different frequency bands.

Figure 13 summarizes the mean local efficiency, and Figure 14 summarizes the mean

normalized clustering coefficient, γ, and mean normalized characteristic path length, λ,

for different connection densities. None of these parameters showed statistically significant

differences in different head positions. However, it should be noted from Figure 14 that the

swallowing activity in both head positions has the small-world proprieties.

5.4 DISCUSSION

Our hypothesis, that the constructed brain network for swallowing in the neutral and chin-

tuck head positions has small-world properties, was supported by our results. However, our

hypothesis, that the brain network is different for the swallowing in the neutral head position

58



Figure 12: The value of mean characteristic path length, L, for different threshold percent-

ages and for different frequency bands.

compared with the brain network constructed for the swallowing in chin-tuck head position,

was partly supported for only some of the features (i.e., clustering coefficient and shortest

path length).

Studies which previously investigated the origins of the EEG frequency bands suggested

that the Alpha EEG band is associated with inhibitory control required for efficient perfor-

mance of cognitive and motor tasks [215–217], while the Gamma EEG frequency band is

associated with preforming cognitive and motor tasks [55,218,219]. Our results showed differ-

ences in the Alpha and Gamma EEG bands. These results could be attributed to the higher

cognitive demand and inhibition of the swallowing task in the chin-tuck head position. Even

though the chin-tuck postural technique is considered a comfortable maneuver for a patient,

performing swallowing in the chin-tuck position is not natural. The unnatural position used
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Figure 13: The value of local efficiency, El, for different threshold percentages and for dif-

ferent frequency bands.

when performing the chin-tuck technique results in changes in pharyngeal dimensions [220].

These pharyngeal dimensional changes affect the attention and evoke inhibition of the per-

son who is performing swallowing in the chin-tuck position as well as potentially altering

afferent and resultant efferent signals emanating from cerebral centers involved in processing

the sensorimotor activities involved in each of the two conditions. While most aspects of

normal swallowing in healthy people occur spontaneously (i.e., with no conscious effort),

swallowing in the chin-tuck position demands additional cognitive contributions compared

with neutral swallowing. Chin-tuck position swallowing recruits additional neural regions in

the brain because this type of swallowing carries a higher cognitive demand and attention to

swallowing activity and a higher degree of inhibition, which explains the differences in our

results.
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Figure 14: The value of mean normalized clustering coefficient γ, and the mean normalized

characteristic path length, λ, for different threshold percentages and for different frequency

bands.

A higher clustering coefficient for swallowing in the chin-tuck head position in the

Gamma EEG frequency band could also be attributed to changes in muscle recruitment

for this position. The Gamma EEG frequency band is well known to be modulated by

muscular recruitment demands [55, 218, 219]. During swallowing in the chin-tuck position,

the various regional muscles exhibit different pre-contraction length, which can produce a

change in the resultant force of their contraction [55, 164]. This change leads to a possible

explanation of the differences we found in the Gamma EEG band between these two head

positions. This means that decreased muscular recruitment in the chin-tuck head position

correlates to greater functional connectivity in the brain, as evidenced by a higher cluster-

ing coefficient for the Gamma EEG frequency band when compared with the neutral head

position. That is to say, changes in posture that reduce muscular control for a swallowing

task may increase the central functional motor control for the swallowing task in the brain.
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A shortcoming of this study is that participants were instructed to perform five consec-

utive swallows in quick succession, which limits the amount of saliva that can accumulate

between swallows. It is possible that saliva-bolus volumes differed as a result of the allotted

time for re-accumulation of saliva during the data collections for swallowing tasks. We also

did not counterbalance the order of the two experimental, chin-tuck and control (neutral

posture) positions when participants were swallowing. In order to overcome these limita-

tions, future studies should investigate swallowing activities with other fluids with a specific

bolus volume, and consistency (i.e., water, nectar-thick, honey-thick juice), or sufficiently

allow saliva to re-accumulate to a specific range of volume, as well as imposing a random

or counterbalanced order of presentation of these conditions. Furthermore, a future study

could also investigate differences in the brain networks constructed for each of the consecutive

swallows.

5.5 CONCLUSION

In this study we investigated the differences between the constructed brain networks during

saliva swallowing in both the neutral and chin-tuck head positions. Swallowing EEG signals

were collected from 55 healthy adults, each of whom performed five saliva swallows in both of

these head positions. We demonstrated that the constructed brain networks during these two

tasks exhibit small-world properties. We also demonstrated that there exists a difference be-

tween swallowing in neutral and chin-tuck position within the Alpha and Gamma frequency

bands; therefore, this difference should be considered in future investigations concerning

swallowing.
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6.0 INFLUENCE OF VISCOSITY ON BRAIN NETWORK

CHARACTERISTICS

This chapter was excerpted partly or in entirety from the following submitted journal article:

Jestrović, I., Coyle, J.L., Perera S., Sejdić, E., “Functional connectivity patterns of normal

human swallowing: difference among various viscosity swallows in normal and chin-tuck head

positions,” Experimental Brain Research, submitted in March, 2016. This article is currently

under review with Experimental Brain Research.

6.1 MOTIVATION

Previous studies indicated that thicker liquids can reduce the amount of material that is as-

pirated when individuals aspirate thin liquids while swallowing [100] or subjectively improve

swallowing symptoms in some individuals who have dysphagia with ordinary liquids. During

the pharyngeal swallowing stage, the pharynx generates pressure in order to drive the bolus

further into the pharynx. This pressure increases as the bolus viscosity increases. Thus,

the viscosity of the bolus can change oropharyngeal swallowing coordination by utilizing a

greater pressure to clear the thicker food from the pharynx, which provides safer swallowing.

There are a number of studies that have investigated the influence of viscosity on swallow-

ing characteristics using different techniques, in attempt to provide deeper insight into the

physiology of this therapeutic technique [31, 169, 182, 221, 222]. However, we still do not
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understand how swallowing of the various fluid viscosity affects brain activity. Therefore, we

are interested in analyzing difference in the brain network structure between swallowing of

the various viscosity fluids. Our findings could give better explanation for the neurological

origins that provide safer swallowing using this technique (i.e., increasing fluid viscosity).

6.2 METHODOLOGY

6.2.1 Data acquisition from participants

The study was approved by the Institutional Review Board at the University of Pittsburgh.

55 healthy people, aged from 18 to 65, participated in the data acquisition process. All of

them signed a consent form and provided information about age, gender, height, and weight.

Setup of the data collection process is described in the section 5.2.1.

After setting up all devices, participants were instructed to perform three different tasks

in two different head positions. They were first asked to keep their head in neutral position

and to perform five water swallows, then five nectar-thick apple juice swallows (nectar-

thick, Nestlé Health Care Inc., Florham Park, N.J.), and then five honey-thick apple juice

swallows (honey-thick, Nestlé Health Care Inc., Florham Park, N.J.). Later, they were asked

to repeat the same series of swallows in the chin-tuck head position. The unit for measuring

viscosity was centipoise (cP), where 1 cP corresponds to the viscosity of water. Nectar-thick

apple juice with a viscosity of 150cP is considered as mildly thick, while honey-thick apple

juice with a viscosity of 400cP is considered as moderately thick. All bolus stimuli were

served chilled (3-5C) in separate cups, which approximately one bolus per cup. Since there

are difference between the sexes regarding comfortable bolus size [170], bolus volume was

not measured, but participants were instructed to consume a comfortable amount of bolus

volume. Saved data were preprocessed as is described in section 5.2.2.
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6.2.2 Network constructions

Connectivity networks were constructed with time-frequency based phase synchrony mea-

sures, applied to data filtered in several frequency bands of interest: Delta (< 4Hz),

Theta (4 − 7Hz), Alpha (8 − 15Hz), Beta (16 − 31Hz), and Gamma (> 32Hz). Time-

frequency based phase synchrony measure is described in section 5.2.4.

6.2.3 Network measures

For analysis of the differences between two networks, it is important that they have the

same number of connections. Therefore, in this study, the threshold is chosen such that

the connectivity networks have the same density of connections. From the formed networks,

we calculated network measures (i.e., clustering coefficient, characteristic path length, and

small-worldness). In addition, the network measures were compared between swallowings of

fluids of different viscosities, as well as swallowing between in head positions. Thresholding

of the weighted networks and network measures used in this study are described in details

in the section 5.2.5.

6.2.4 Data analysis

For all statistical analysis we used SAS R© version 9.3 (SAS Institute, Inc., Cary, North Car-

olina). We fit a series of linear mixed models with each of the network parameters as the

dependent variable; head position, viscosity, and gender, both individually and simultane-

ously, as fixed effect factors of interest; and a subject random effect to account for multiple

measurements from the same set of participants. Appropriately constructed means contrasts

were used to obtain pairwise differences. We used false discovery rate methodology to adjust

the p-values for multiplicity correction. Finally, we repeated the entire analysis five times,

once for each of the 5 bandwidths.
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6.3 RESULTS

Results of the network measures are presented as a mean value ± standard deviation, as the

function of percent of network connections. For analyzing the pairwise comparison among

various swallowing conditions, we considered in neutral head position: 245 water (thin liquid)

swallows, 233 nectar-thick liquid swallows, and 228 honey-thick liquid swallows, while in the

chin-tuck head position, we analyzed: 229 water swallows, 216 nectar swallows, and 217

honey swallows.

Figure 15: The value of mean clustering coefficient, C, for different threshold percentages

and for different frequency bands, of three liquid viscosities swallows, in the 5 EEG frequency

bands.

Figure 15 contains five figures. Each figure summarizes the mean value for the cluster-

ing coefficient as a function of connection densities (i.e., from 5% to 100%) in each of the

five EEG frequency bands. Each colored line indicates a different bolus viscosity. Pairwise

comparison between nectar-thick and honey-thick swallows did not exhibit significant dif-
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ferences in Gamma frequency band for the viscosity dependence, nor for the multivariable

dependence of network parameters on head position, viscosity or sex (p > 0.05). However,

nectar-thick swallows had a significantly higher clustering coefficient than did water swallows

in the Delta (5% - 65%), Theta (15% - 90%), Alpha (5% - 90%), Beta (5%, 20% - 45%,

55%), and Gamma (20% - 35%) ranges (p < 0.0167) for the viscosity dependence alone as

well as for multivariable dependence (p < 0.05). Also, honey-thick swallows had a signifi-

cantly higher clustering coefficient than water swallows in all five frequency ranges for the

viscosity dependence alone (Delta (5% - 25%), Theta (10%, 15%), Alpha (10%, 15%), Beta

(5% - 20%, 40% - 85%), and Gamma (5% - 20%, 35% - 75%)) and for the multivariable

dependence (Delta (5% - 25%), Theta (10%, 15%), Alpha (10%, 15%), Beta (5% - 15%,

40% - 85%), and Gamma (10% - 20%, 40% - 75%)) (p < 0.05). Furthermore, honey-thick

swallows had a significantly higher clustering coefficient than nectar-thick swallows in the

Delta (40% - 75%), Theta (25% - 60%), Alpha (25% - 75%), and Beta (25%, 30%) ranges

for the viscosity dependence alone, and in Delta (40% - 70%), Theta (45%), and Alpha (25%

- 75%) ranges for multivariable dependence (p < 0.05).

Figure 16 contains five figures. Each figure summarizes the mean value for the character-

istic path length as a function of connection densities (i.e., from 5% to 100%) in one of the

five EEG frequency bands. Each colored line indicates a different bolus viscosity. Pairwise

comparison between nectar-thick and honey-thick swallows did not exhibit significant differ-

ences in Beta and Gamma frequency bands for viscosity dependence, nor for multivariable

dependence of network parameters on head position, viscosity and sex (p > 0.05). However,

water swallows had a significantly higher characteristic path length than nectar-thick swal-

lows in Delta (20% - 40%), Theta (15% - 50%), Alpha (20% - 50%), Beta (35% - 50%),

and Gamma (40% - 50%) ranges for the viscosity dependence alone, and in Delta (20%),

Theta (20% - 50%), Alpha (20% - 50%), Beta (35% - 55%), and Gamma (40% - 50%)

ranges for the multivariable dependence (p > 0.05). Also, water swallows had a significantly

higher characteristic path length than honey-thick swallows in all five frequency ranges for

the viscosity dependence alone (Delta (5% - 25%, 35% - 75%), Theta (10%, 15%, 30% -

50%), Alpha (5% - 15%, 35% - 70%), Beta (15%, 20%, 30% - 60%), and Gamma (20%,

25%, 40% - 55%)) and for the multivariable dependence (Delta (5% - 25%, 35% - 75%),
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Figure 16: The value of mean characteristic path length, L, for different threshold percent-

ages and for different frequency bands, of three liquid viscosities swallows, in the 5 EEG

frequency bands.

Theta (10%, 15%, 30% - 50%), Alpha (5% - 20%, 30% - 70%), Beta (15%, 20%, 30% - 60%),

and Gamma (20%, 25%, 40% - 55%)) (p < 0.05). Furthermore, nectar-thick swallows had

a significantly higher characteristic path length than honey-thick swallows in Delta (30%

- 45%), Theta (20% - 25%), and Alpha (20% - 25%) ranges for the viscosity dependence

alone, and in the Delta (30%), Theta (20% - 25%), and Alpha (20% - 25%) ranges for the

multivariable dependence (p < 0.05).

Figure 17 contains five figures. Each figure summarizes the mean value for the small-

worldness as a function of connection densities (i.e., from 5% to 100%) in one of the five EEG

frequency bands . Each colored line indicates a different bolus viscosity. Pairwise compari-
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Figure 17: The value of mean small-worldness, S, for different threshold percentages and for

different frequency bands, of three liquid viscosities swallows, in the 5 EEG frequency bands.

son between nectar-thick and honey-thick swallows did not exhibit significant differences in

Theta, Alpha, Beta, and Gamma frequency band for the viscosity dependence alone as well

as for the multivariable dependence of network parameters on head position, viscosity and

sex (p > 0.05). However, nectar-thick swallows had a significantly higher small-worldness

than water swallows in Delta (15% - 60%), Theta (15% - 85%), Alpha (5% - 85%), Beta (5%

- 65%), and Gamma (15%, 35% - 50%, 60%) ranges for the viscosity dependence alone, as

well as for the multivariable dependence (p > 0.05). Also, honey-thick swallows had a signif-

icantly higher characteristic path length than water swallows in all five frequency ranges for

the viscosity dependence alone (Delta (10% - 20%, 45% - 80%), Theta (5%, 10%, 20%, 25%,

50% - 85%), Alpha (5% - 20%, 70% - 80%), Beta (5% - 80%), and Gamma (5% - 65%)) and

for the multivariable dependence (Delta (10% - 20%, 50% - 80%), Theta (5%, 10%, 20%,
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25%, 50% - 85%), Alpha (5% - 20%, 70% - 80%), Beta (5% - 80%), and Gamma (5% - 65%))

(p < 0.05). Furthermore, honey-thick swallows had a significantly higher small-worldness

than nectar-thick swallows in the Delta (20% - 55%) range for the viscosity dependence

alone, and in the Delta (30% - 40%) range for the multivariable dependence (p < 0.05).

Furthermore, we compared features extracted from the different head positions. Small-

worldness did not show statistical difference between two head positions (p > 0.05). Also,

the characteristic path length and clustering coefficients exhibited no significant difference

between swallowing in neutral and chin-tuck head positions in Delta and Theta frequency

ranges (p > 0.05). However, swallowing in chin-tuck head position had higher clustering

coefficient than did swallowing in neutral head position in the Alpha (25% - 85%), Beta

(5%, 10%, 20% - 90%), and Gamma (5%, 10%, 25%, 30%, 50% -80%) frequency ranges

for the head position dependence alone, and in Alpha (5%, 25% - 85%), Beta (5%, 10%,

20% - 90%), and Gamma (5%, 10%, 25%, 30%, 50% -80%) (p < 0.05). Also, swallowing

in chin-tuck head position had smaller characteristic path length than swallowing in neutral

head position in the Alpha (10$ - 20%, 45% - 55%, 70%), Beta (10%, 70% - 80%), and

Gamma (5%, 10%, 75%) frequency ranges for the head position dependence alone, and in

Alpha (10% - 20%, 45% - 55%, 70%), Beta (10%, 70% - 80%), and Gamma (10%, 75%)

(p < 0.05).

6.4 DISCUSSION

Our hypothesis, that swallowing with various fluid viscosities has small world properties in

the neutral and chin-tuck head position, was supported by our results. Our other hypothesis

that the brain network is different among swallowing of various fluid viscosities, as well as

between swallowing in the neutral and chin-tuck head positions, were also supported by our

results.
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It has been reported that the Delta, Theta, and Alpha frequency bands exhibit changes

in activation during sensory stimulation [223–225]. Swallowing is a complex process that

involves different types of sensory stimulation such as smell, taste, temperature, and touch

in the oral areas. Stimuli that are used in the study are characterized by different viscosities

(i.e., water, nectar-thick, and honey-thick) and different tastes (i.e., water and apple juice)

that affect the sensory receptors responsible for touch and the sensory receptors responsible

for taste. In the previous studies, changes in the Theta [133,138,226], Delta [226], and Alpha

[134] frequency bands during these sensory components of the swallowing were reported.

Thus, changes in these three frequency bands (Delta, Theta, and Alpha) could be attributed

to the evoked sensation that stimuli from the study produced.

Besides activation during sensory stimulation, it has been reported that the Alpha fre-

quency band is also associated with the inhibition control [215–217]. Our results showed

a higher clustering coefficient in the Alpha frequency band than for the swallowing in the

chin-tuck head position. Swallowing in the chin-tuck position exhibits changes in the pha-

ryngeal dimensions, owing to an unnatural execution of performing a swallow [220]. As a

consequence, swallowing in the chin-tuck position exhibit reduced muscular recruitment in

the pharyngeal dimensions when compared with swallowing in neutral head position [?].

Therefore, we can attribute changes in the alpha frequency band to the inhibition which is

responsible for the reduced muscular recruitment in chin-tuck head position.

Studies that investigated cortico-muscular synchronization suggested that the Beta EEG

frequency band is correlated to attention during certain sensorimotor tasks [227–229]. Even

though consuming the thicker liquids and using the chin-tuck postural technique are consid-

ered comfortable therapeutic techniques for a patient, swallowing under these conditions is

not natural. Thus, these swallows will require more of the subject’s attention and a higher

awareness of the swallowing task. Therefore, changes in the Beta EEG frequency band

during swallowing of thicker liquids and swallowing in the chin-tuck head position could

be attributed to the reallocation of cognitive resources towards these otherwise relatively

automatic sensorimotor motor tasks.
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A number of studies reported activation of the Gamma EEG frequency band during dif-

ferent muscular recruitment demands [55, 218, 219]. During swallowing, the tongue imparts

pressure on the hard palate to propel the bolus [230, 231]. When swallowing thicker liq-

uids, studies have shown, increased submental muscles activity, which was associated with a

higher pressure on the palate during oral propulsion [232]. Also, changes in the pharyngeal

dimensions during swallowing in the chin-tuck head position are associated with changes in

the muscle recruitment involved in swallowing [55, 164]. Therefore, changes in the Gamma

frequency band during the swallowing of thicker fluids and swallowing in the chin-tuck posi-

tion could be attributed to changes in the muscle recruitment during these two therapeutic

techniques.

Significant differences for the small-world parameter have been found among swallowing

of various viscosities in the Delta, Theta, and Alpha. This means that the evoked sensations

during swallowing of thicker liquids will have an important role in providing better commu-

nication between brain neurons. Also, significant differences for the small-world parameter

have been found between swallowing in the normal and chin-tuck positions in the Alpha,

Beta, and Gamma frequency bands. These results indicate that central nervous system

resource reallocation, as well as changes in muscle recruitment, will be involved in providing

better communication among the brain regions for swallowing in the chin-tuck position.

Studies showed that small-world properties correspond to easier communication be-

tween neighboring nodes as well as a more efficient communication between far apart re-

gions [202, 203]. A greater small-world parameter for both the swallowing of thicker liquids

and for swallowing in the chin-tuck position indicates that there is the possibility that a

greater functional connectivity in the brain network during these therapeutic techniques

contributes to better swallowing safety with the some dysphagic patients. However, The

specific physiologic abnormalities that are ameliorated or facilitated by these techniques are

still not clearly understood. Therefore, in order to understand how greater neural organiza-

tion contributes to the better swallowing control during these therapeutic techniques, similar

study should be performed on those patients that benefit from these techniques.

A limitation of our study is that the volume of the boluses was not controlled. Thus, there

is a possibility that bolus volume, which has been shown to influence peripheral kinematics,
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could affect the brain networks. Also, the order of consumed stimuli in this study was

specified and not randomized which also could have influenced our result. Another limitation

is that swallowing components responsible for sensation such as: taste, bolus size, shape,

and speed of motion of the liquids being processed were not strictly controlled even though

they can possibly influence results of the measurements. EEG signals are very sensitive to

the artifacts. Chin-tuck head posture most likely would introduce artifacts that are due to

head movement. Even though we used ICA for artifacts removal, it is possible that some

of the unwanted components were not removed after applying ICA algorithm. Therefore,

future investigations should include measurement of the bolus size, randomizing the order of

the administered stimuli, as well as investigate separately swallowing components that evoke

sensation.

6.5 CONCLUSION

In this study we have investigated differences in the brain network between swallowing of

various fluid viscosities in the neutral and chin-tuck head positions. Swallowing EEG signals

were collected from 55 healthy adults who performed five water swallows, five nectar-thick

apple juice swallows, and five honey-thick apple juice swallows, in both the neutral and chin-

tuck head positions. Our results showed differences in the brain networks between swallowing

of different stimuli for all frequency bands of interest (i.e., Delta, Theta, Alpha, Beta, and

Gamma). Also, our results demonstrated difference between swallowing in the neutral and

chin-tuck head positions for the Alpha, Beta, and Gamma frequency bands. Additionally,

we showed that the functional brain network has small-world properties during swallowing.
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7.0 INFLUENCE OF ATTENTION AND BOLUS VOLUME ON BRAIN

ORGANIZATION DURING SWALLOWING

This chapter was excerpted partly or in entirety from the following submitted journal article:

Jestrović, I., Coyle, J.L., Perera S., Sejdić, E., “Influence of attention and bolus volume on

brain organization during swallowing,” Brain Structure and Function, submitted in March,

2016. This article is currently under review with Brain Structure and Function.

7.1 MOTIVATION

In order to provide better rehabilitation for dysphagia patients, it is important to understand

events that can influence swallowing physiology. Studies have shown that patients who have

altered attention or impaired cognitive functions due to brain damage caused by stroke often

manifest changes in their swallowing function [102,103]. This means that increased cognitive

demands can influence swallowing activity and potentially lead to compromised swallowing

safety. For example, Brodsky et al. [233] reported significantly longer reaction time during

the anticipatory swallowing stage in the case of swallowing elicited by an auditory stimulus.

The longer reaction time may be explained by the compromised neurological system’s need

for more time to process information. In addition, one previous study has shown that addi-

tional cognitive demands can influence swallowing safety in dysphagic patients [234]. These

findings suggest that swallowing physiology, and consequently swallowing safety as reflected

by airway protection, could be compromised when employing higher cognitive demands dur-

ing swallowing tasks. Even though previous studies have provided evidence of changes in

the swallowing physiology under conditions of additional cognitive demand such as those

74



imposed by external distractions, much remains to be understood regrading how additional

cognitive demands influence brain activity during swallowing. Therefore, it is germane to

the investigation of neurogenic dysphagia and the effects of behavioral treatment of dyspha-

gia, in which patients must perform volitional augmentation of oropharyngeal activities, to

investigate the effects of external distraction on brain activity during swallowing.

In this study, we hypothesize that the brain network is different between no-distraction

swallowing and swallowing with distraction. Brain damage induced by neurological disorders

responsible for impaired cognitive function may involve the brain regions involved in swal-

lowing control. Characterizing the brain networks during swallowing with distraction could

potentially explain the reason for higher risk of aspiration within some groups of dysphagic

patients [235, 236]. Also, these findings could potentially lead to the development of better

rehabilitation strategies for dysphagia patients who also have altered attention or impaired

cognitive function resulting from neurological disorders.

7.2 METHODOLOGY

7.2.1 Data acquisition from participants

Data was collected from 15 healthy male subjects, aged from 18 to 35. All participants

provided informed consent, and also information about age, height, and weight. Setup of

the data collection process is described in the section 5.2.1. The protocol was approved by

the Institutional Review Board at the University of Pittsburgh.

After setting up all devices, participants were asked to consume ten 1ml water swallows,

ten 5ml water swallows, and ten 10ml water swallows. Then, participants were asked to do

the same thing, but this time while they watching a video which occupies their attention

and involves cognitive demands. All stimuli were served chilled (3-5C) in separate cups, and

participants were instructed to consume stimuli in their selfselected time base between each

swallow. Saved data were preprocessed as is described in section 5.2.2.
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7.2.2 Network constructions

Connectivity networks were constructed using time-frequency based phase synchrony mea-

sure, applied to data filtered in several frequency bands of interest: Delta (< 4Hz), Theta (4−

7Hz), Alpha (8− 15Hz), Beta (16− 31Hz), and Gamma (> 32Hz). Time-frequency based

phase synchrony measure is described in the section 5.2.4.

7.2.3 Network measures

We used the Brain Connectivity Toolbox (BCT) [207] running in MATLAB to calculate each

of the discussed network measures:

• The clustering coefficient describes the ratio between the number of existing edges be-

tween the nearest neighbor of the node and the maximum number of possible edges [208].

In the case of the weighted network, the clustering coefficient is calculated as:

Ci =
1

Si(Di − 1)

∑
j,k

wij + wik
2

aijaikajk, (7.1)

Where the parameter Si(Di − 1) normalizes the clustering coefficient to be in the range

0 < CW
i < 1. aij, aik, and ajk all have a value of one in a case of connection between two

nodes. The mean clustering coefficient is defined as:

C =
1

N

N∑
j=1

Cj. (7.2)

• The characteristic path length is the average shortest path length that connects every

pair of nodes. [210, 211]. The characteristic path length contains information about

connection strength between node i and node j [207], and is defined as as:

Li =
1

N(N − 1)

∑
i,j∈N,i6=j

di,j, (7.3)

Furthermore, the mean characteristic path length is equal to:

L =
1

N

∑
i∈N

Li. (7.4)
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• The small-worldness describes the optimal organization in the network that would pro-

vide the most efficient communication between nodes [213]. The small-world network

should satisfy two conditions:

γ =
C

Crandom
� 1, (7.5)

where γ is the normalized clustering coefficient, and

λ =
L

Lrandom
≈ 1, (7.6)

where λ is the normalized characteristic path length. Crandom is the mean clustering

coefficient of the random network, and Lrandom is mean characteristic path length of the

random network. Crandom and Lrandom are calculated as the average mean clustering co-

efficient and average mean characteristic path length from from the 100 random networks

generated using the Markov-chain algorithm [77,214]. Finally, we can say that a network

has small-world properties if its ratio:

S =
C/Crandom
L/Lrandom

(7.7)

is higher than one (S > 1).

7.2.4 Data analysis

To examine differences in swallowing brain networks based on volume (1/5/10 ml) and task

(neutral/distraction), we fit a series of linear mixed models with each network characteris-

tic as the dependent variable (i.e. volume, task and volume by task interaction) as fixed

effects of interest, and a participant random effect to account for multiple measurements

from the same participant. We appropriately constructed means contrasts to make pairwise

comparisons between different volumes for a given task, and between different tasks for a

given volume. Next, to examine whether participant age was associated with network char-

acteristics, we fit another set of linear mixed models stratified by task and volume. We used

each network characteristic as the dependent variable, and we used age as the fixed-effect

independent variable, and a participant random effect to account for multiple trials of the

same participant. We used SAS R© version 9.3 (SAS Institute, Inc., Cary, North Carolina)

for all statistical analysis.
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7.3 RESULTS

We analyzed 900 swallows of various volumes in the no-distraction condition and during

the distraction. Results of the network measures are presented with the mean values (±

standard deviation) of the network measure on the vertical axis, and the frequency bands

on the horizontal axis. Results are presented in colored bars that are paired based on

bolus volume (blue = 1mL, red = 5mL, green = 10mL) and experimental conditions (left

bar = no-distraction condition, right bar = distraction condition). Black dots on the plots

represent statistically significant differences between no-distraction condition swallowing and

swallowing with distraction within the frequency bands of interest.

7.3.1 Distraction effects on brain networks

Figure 18 summarizes the mean value of the clustering coefficient for various bolus volumes

consumed during the two different states. No-distraction swallowing of all bolus sizes (1 ml,

5 ml, and 10 ml) exhibited a higher clustering coefficient than swallowing with distraction

in the Theta, Alpha, and Beta frequency bands (p < 0.03). Also, 10 ml no-distraction

swallowing had a higher clustering coefficient than 10 ml swallowing with distraction in the

Gamma frequency band (p < 0.01).

Figure 19 summarizes the mean value for characteristic path length for various bolus

volumes consumed during the two different states. The no-distraction swallowing showed

significantly higher characteristic path length than did swallowing with distraction during

5 ml swallowing within the Delta, Theta, and Beta frequency bands (p > 0.02). Also, the

no-distraction swallowing showed higher characteristic path length than did swallowing with

distraction during 10 ml swallowing within all frequency bands of interest.

Figure 20 summarizes the mean value for the small-world parameter for various bolus

volumes consumed during the two different states. Swallowing with distraction for the all

bolus volumes (1 ml, 5 ml, and 10 ml) showed a higher small-world parameter than did

no-distraction swallowing in the Beta frequency band (p < 0.03). In the Delta frequency

band, 5 ml swallowing with distraction had a higher small-world parameter than did 5 ml no-
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Figure 18: The value of mean clustering coefficient, C, for different bolus volumes and

for different frequency bands. The black dots show whether there is significant statistical

difference between no-distraction swallowing and swallowing with distraction.

distraction swallowing (p < 0.01). Also, in the Alpha frequency band 10 ml swallowing with

distraction had a higher small-world parameter than did the 10 ml no-distraction swallowing

(p < 0.01).

7.3.2 Volume effects on brain networks

In the Beta frequency band during no-distraction swallowing, 1 ml swallowing showed a

higher clustering coefficient than did the 5 ml swallowing (p = 0.04). During swallowing

with distraction, 1 ml swallowing showed a higher clustering coefficient than did the 5 ml

swallowing within all frequency bands of interest (p < 0.05). Also, during swallowing with

distraction, 1 ml swallowing showed a higher characteristic path length than did 5 ml swal-

lowing within the Delta, Theta, and Alpha frequency bands (p < 0.05).
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Figure 19: The value of mean characteristic path length, L, for different bolus volumes and

for different frequency bands. The black dots show whether there is significant statistical

difference between no-distraction swallowing and swallowing with distraction.

The 1 ml swallowing with distraction showed a higher clustering coefficient than did the

10 ml swallowing with distraction within all frequency bands of interest, while the 1 ml

no-distraction swallowing had a lower clustering coefficient than did the 10 ml no-distraction

swallowing (p < 0.05). The 1 ml no-distraction swallowing showed a lower characteristic

path length than did 10 ml no-distraction swallowing within the Beta and Gamma frequency

bands (p < 0.01). The 1 ml swallowing with distraction showed a higher characteristic path

length than did 10 ml no-distraction swallowing within the Theta and Alpha frequency

bands (p < 0.01). Furthermore, in the Gamma frequency band during the no-distraction

swallowing and the swallowing with distraction, the 1 ml swallowing showed a higher small-

world parameter than did the 5 ml swallowing (p < 0.01). Also, 1 ml swallowing with

distraction had a lower small-world parameter than did 10 ml swallowing with distraction

in the Theta frequency band (p = 0.02).
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Figure 20: The value of mean small-worldness, S, for different bolus volumes and for different

frequency bands. The black dots show whether there is significant statistical difference

between no-distraction swallowing and swallowing with distraction.

During no-distraction swallowing, 5 ml swallowing had a lower clustering coefficient and

characteristic path length than did 10 ml swallowing within the Alpha, Beta, and Gamma

frequency bands (p < 0.05). Also, during no-distraction 5 ml swallowing had a lower small

world parameter than did the 10 ml swallowing within the Theta and Gamma frequency

bands (p < 0.01).

7.3.3 Age effects on brain network

Lastly, we investigated age dependence on the swallowing characteristics during both no-

distraction swallowing and swallowing with distraction. Results did not depend on the

subject’s age in any of the frequency bands of interest for both swallowing conditions.
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7.4 DISCUSSION

Our hypothesis, that the brain network is different for no-distraction swallowing compared

with the brain network constructed during swallowing with distraction, was supported by

our results. The significant statistical differences between no-distraction swallowing and

swallowing with distraction are described for each frequency band of interest:

• Delta and Theta: Our results showed differences in the Delta and Theta frequency

bands between no-distraction swallowing and swallowing with distraction for the cluster-

ing coefficient and characteristic path length. Changes in the lower EEG frequencies (i.e.

Delta and Theta) have been previously reported as important in the process of selective

attention to both auditory and visual stimuli [237]. Also, one EEG study combined with

fMRI confirmed that sensory cortices such as the auditory and visual cortices are associ-

ated with the activation of the Delta and Theta EEG frequency bands [238]. This means

that changes in the Delta and Theta frequency bands (i.e, higher clustering coefficient,

higher characteristic path length, and lower small-worldness for no-distraction swallow-

ing in comparison with swallowing with distraction) can be attributed to the changes

in the sensory cortices produced by auditory and visual stimulation during swallowing

with distraction task. Furthermore, our results also showed changes in the Delta and

Theta frequency bands between the swallowing of various bolus volumes. Previous stud-

ies have shown that the Delta and Theta frequency bands are activated during sensory

stimulation [226]. The swallowing process involves different types of the sensory stimu-

lation such as smell, taste, and touch in the oral areas, all of which have been shown to

lead to subsequent alterations in swallowing motor activation patterns [239]. The var-

ious bolus volumes used in this study differently affected sensory receptors responsible

for touch, kinesthesia, and proprioception in the oral cavity. Therefore, changes in the

Delta and Theta frequency bands between swallowing of the various bolus volumes may

be attributable to the effects of altered afferent activity entering the swallowing brain

networks caused by variations in bolus volume.

• Alpha: The Alpha frequency band is the most dominant EEG component for the con-

scious person. Studies showed that the activity of the Alpha frequency band is less
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prominent when visual stimulation is present [240]. Furthermore, previous studies have

reported differences in the Alpha waveforms between attended and unattended stim-

uli [241, 242]. Our results are in agreement with these finding by showing significant

differences between no-distraction swallowing and swallowing with distraction for the

characteristic path length and the small-world parameter in the Alpha frequency band.

Thus, we can attribute these statistical differences to the different attentional demands

of the no-distraction and distraction conditions while swallowing. In addition, our results

showed significant statistical differences in the Alpha frequency band between swallow-

ing of various bolus volumes. Studies have shown that EEG waveforms also exhibit

changes in the Alpha frequency band during sensory stimulation [134, 137]. Therefore,

changes between swallowing of different bolus volumes can be attributed to the changes

in the activation of the sensory, kinesthetic, and proprioceptive receptors and pathways

introduced by the variously-sized stimuli employed.

• Beta: Several previous studies have suggested that the Beta EEG frequency band is

directly related to attention during sensorimotor tasks [227, 228, 243–245]. Our results

demonstrated changes in the Beta frequency band between no-distraction swallowing

and swallowing with distraction for the small-world parameter. Swallowing is a complex

process that involves activation of a number of sensory receptors, as well as muscle

activity in both the head and neck. Therefore, changes in the Beta EEG frequency

band during swallowing with the distraction could be attributed to the reallocation of

cognitive sources during this task [227,228].

• Gamma: A number of studies reported changes in the Gamma EEG frequency band dur-

ing various motor activities and muscle recruitment [55, 218, 219]. Brodsky et. al [246]

showed that consumption of stimuli during distraction may alter swallowing activity.

Naturally, altered swallowing neural activity may also cause changes in the muscular

recruitment involved in performing the swallowing act [247]. Therefore, changes in the

Gamma EEG frequency band during swallowing with the distraction could be attributed

to motor changes introduced by compromised attention. In addition, we found signif-

icant differences in the Gamma frequency band between the swallowing of the various

bolus volumes. Alteration of bolus volume influences the kinematics of oral and pha-
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ryngeal activity, the upper esophageal sphincter opening, and hyolaryngeal excursion

during swallowing, all of which are motor events [248–250]. Therefore changes in the

Gamma frequency band can be attributed to the changes motor activity in response to

manipulation of bolus volume that various bolus volumes produce.

• Limitations of the present study: A limitation of this study is that the order of consumed

stimuli was specified (i.e., 1 ml first, 5 ml second, 10 ml third), as well as the order of

conditions (i.e. no-distraction swallowing first, then swallowing with the distraction).

In order to overcome this limitation, future studies could randomize the order of the

various manipulations of swallowing conditions. Furthermore, future studies could also

investigate the influence of distraction on the swallowing of the different stimuli (i.e.

nectar-thick apple juice, or solid food).

7.5 CONCLUSION

In this study we investigated the differences between the brain networks formed during swal-

lowing of three bolus volumes in a no-distraction condition and during distraction. Swal-

lowing EEG signals were collected from fifteen healthy male adults aged 18 to 35. Each

participant performed ten 1 ml swallows, ten 5 ml swallows, and ten 10 ml swallows in both

conditions. Our results showed a difference between no-distraction swallowing and swallow-

ing with distraction in all frequency bands of interest (i.e., Delta, Theta, Alpha, Beta, and

Gamma). In addition, our results showed differences in the swallowing of boluses of various

volumes in all frequency bands of interest.
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8.0 FAST WINDOWED FOURIER TRANSFORM

This chapter was excerpted partly or in entirety from the following submitted journal article:

Jestrović, I., Coyle, J.L., Sejdić, E., A fast algorithm for vertex-frequency representations of

signals on graphs, Signal Processing, submitted in December, 2015. This article is currently

under review with Signal Processing.

8.1 MOTIVATION

In spectral graph analysis, vertex-frequency distributions of the signal on the graph could give

important information about structural properties of the graph. In classical signal process-

ing, the windowed Fourier transform is one of the most commonly used tools for extracting

time-frequency information from signals [251]. However, the windowed Fourier transform

has the limitation of a fixed window size that can result in poor time-frequency resolution.

The S-transform originates from the windowed Fourier transform with a window size that is

dependent on frequency, which overcomes limitations of the fixed window of the windowed

Fourier transform method. In one of the previous studies, following the notation from classi-

cal signal processing and adopting it for signals on graphs, Shuman et al. [107] developed the

for the extraction of the vertex-frequency content from signals on graphs. As WGFT also

has the limitation of fixed window size, it would be straightforward to implement the graph

S-transform (GST ) using the algorithm for WGFT and change the size of the windowed

function for different frequencies, as we have shown in the next section. However, algorithms
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for the WGFT and the GST have the drawback of high computation complexity, which

results in long computation times for larger graphs. This means that potential applications

which would use the WGFT or the graph S-transform would be impractical.

In order to overcome computational burdens, the WGFT and GST could be computed

by operating on the Fourier spectrum of the signal and the Fourier spectrum of the window

function. Previously, this approach has been used in classical signal processing for calculating

more efficiently windowed Fourier transform and S-transform of a one-dimensional signal

[165]. In classical signal processing, this fast algorithm resulted in a significantly lower

computational time than the original approach. Therefore, taking advantage of operating

with the signal and window spectra, the fast WGFT and GST could significantly decrease

computation complexity and overall computation time.

This study presents fast algorithms for calculating WGFT and GST ; therefore these

new techniques are referred to as the fast windowed graph Fourier transform (FWGFT )

and the fast graph S-transform (FGST ), respectively. The proposed schemes were tested

using synthetic test signals on graphs and then using an example of the real signal on a

graph. Performances are compared between the FWGFT and WGFT algorithms, as well

as between the FGST and GST methods. Results have shown significant computational

improvements for the fast algorithms. These proposed algorithms could be useful for many

applications that use the signal processing on graph analysis, specifically for biomedical data.

8.2 THE PROPOSED SCHEME

8.2.1 Classical signal processing case

In order to overcome computational burdens, we can calculate the windowed Fourier trans-

form and S-transform by operating on the Fourier spectrum of the signal on the graph as

well as the window function on the graph. Previously this approach has been used in clas-

sical signal processing for calculating the windowed Fourier transform of a one-dimensional

signal [165].
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In the classical case of the one-dimensional signal, the windowed Fourier transform and

the S-transform can be calculated by performing the inverse Fourier transform from the

“α domain”. The α domain is defined as the Fourier transform of the windowed Fourier

domain or the S-transform defined in (B.1) and (B.3) in the B section. This domain can

mathematically be presented as:

α(f ′, f) =

∫ ∞
−∞

WFT (τ, f)e−j2πf
′τdu, (8.1)

where the f ′ axis is produced by taking the Fourier transform along the τ axis of the time-

frequency domain. The α domain could also be expressed as a representation of the Fourier

transform of the original signal, shifted by one sample and multiplied by the Fourier trans-

form of the windowed function:

α(f ′, f) =

∫ ∞
−∞

WFT (τ, f)e−jf
′τdu

=

∫ ∞
−∞

{∫ ∞
−∞

x(t)[w(t− τ), σ]e−j2πftdt

}
e−j2πf

′τdτ

=

∫ ∞
−∞

x(t)e−j2πftdt[W (f, σ)e−j2πf
′τ ]

= W (f, σ)

∫ ∞
−∞

x(t)e−j2π(f+f ′)tdt

= X(f ′ + f) ·W (f ′, σ)

(8.2)

where σ will determine the size of the window function. Finally, the windowed Fourier

transform and the S-transform can be recovered by applying the inverse Fourier transform

on each row from the matrix which represents the α domain:

FWFT (τ, f) =

∫ ∞
−∞

α(f ′, f)ej2πf
′τdf ′, (8.3)

In the case of the windowed Fourier Transform, σ will be fixed, while for the S-transform, σ

will change over various frequencies.
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8.2.2 Fast windowed graph Fourier transform and fast graph S-transform

In order to adopt the algorithm from Section 8.2.1 to calculate the WGFT and the GST ,

we first define the α domain as a graph Fourier transform of the WGFT . The α domain

can be represent as multiplication of the shifted graph signal spectrum and spectrum of the

window function:

α(λl, λl′) =
N∑
n=1

{
N∑
n=1

x(n)[Tnw(n, δ)]X ∗l (n)

}
X∗l′(n)

=
N∑
n=1

x(n)X ∗l′ (n)
N∑
n=1

[Tnw(n, δ)]X ∗l (n)

=
N∑
n=1

x(n)X ∗l′ (n)
N∑
n=1

X ∗l (n)
N−1∑
l=0

ŵ(λl, δ)X ∗l (n)Xl(n)

=
N∑
n=1

x(n)X ∗l (n)X ∗l′ (n)
N∑
n=1

w(n, δ)X ∗l (n)

= ŵ(λl, δ)
N∑
n=1

x(n)X ∗l (n)X ∗l′ (n)

= ŵ(λl, δ)x̂(λl, λl′),

(8.4)

where x̂(λl, λl′) =
∑N

n=1 x(n)X ∗l (n)X ∗l′ (n). The λl′ axis is produced by taking the Fourier

transform along the vertices of the graph from the vertex frequency representation. Param-

eter δ will determine size of the window function. In the case δ = C is a constant, the

window function w(n, δ) is fixed, and will be used for calculating FWGFT . In that case,

the Fourier transform of the window function is defined as a heat kernel ŵ(λl, δ) = Ce−kλl ,

where C is chosen such that ||ŵ||2 = 1. For calculating the FGST , the parameter δ = l′

(l′ = 0, 1, ..., N−1), the window size will be frequency dependent and the window function is

defined in the vertex domain as w(n, l) = e−
n2λ2l

2 . That means, in the case of the FWGFT ,

the size of the windowed function will be the same across all frequencies, while for the FGST ,

the window size will tend to be more narrow for higher frequencies.
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α(λl, λl′) = ŵ(λl, δ)x̂(λl, λl′), (8.5)

Thus, the vertex-frequency domain can be recovered by taking the inverse Fourier transform

of each row from the matrix which represents the α domain of the signal on the graph:

FSG(n, λl) =
N−1∑
l′=0

α(λl, λl′)Xl′(n) (8.6)

where n refers to the node, and k is the signal frequency which for the signal on the graph

is the eigenvalue λl of the Laplacian.

Moreover, the signal x(n) can be recovered from the fast windowed graph Fourier repre-

sentation using the expression:

x(n) =
N−1∑
l=0

Xl(n)
N∑
n=1

FSG(n, λl). (8.7)

8.2.2.1 Algorithm for calculating FWGFT and FGST The algorithm for calculat-

ing FWGFT and FGST is defined through the following steps:

(1) Calculate N ×N matrix which represents:

x̂(λl, λl′) =
N∑
n=1

x(n)X ∗l (n)X ∗l′ (n). (8.8)

This step has O(N3) computational complexity. Alternative way for calculating x̂(λl, λl′)

is using matrix calculus as:

X̂(λl, λl′) = x̂(λl, λl′) = (X ∗ X ′l) · Xl, (8.9)

where the “ ∗ ” sign represents element-by-element multiplication of the two matrices,

and “ ·” sign represents standard matrix multiplication. The variable X is N×N matrix

formed such that each row of the matrix is the signal x(n), and Xl is also N × N that

represents a given set of eigenvectors.
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(2) Form a matrix where each row is the Fourier transform of the window function ŵ.

Ŵ (λl, δ) =

=

∣∣∣∣∣∣∣∣∣
ŵ(λ0, δ0) ŵ(λ1, δ0) · · · ŵ(λl−1, δ0)
ŵ(λ0, δ1) ŵ(λ1, δ1) · · · ŵ(λl−1, δ1)

...
...

. . .
...

ŵ(λ0, δl′−1) ŵ(λ1, δl′−1) · · · ŵ(λl−1, δl′−1)

∣∣∣∣∣∣∣∣∣
(8.10)

In the case of FWGFT , parameter δ is constant, and ŵ(λl, δ) will be directly defined

and each row in the Ŵ (λl, δ) matrix will be the same. Therefore, this step will not

influence computational complexity of the algorithm. However, if we calculate FGST ,

parameter δ is equal l′, therefore, ŵ(λl, δ) = ŵ(λl, l
′) is defined as the Fourier transform

of the window function that is dependent on frequency (w(n, l′) =
|λl′ |√

2π
e−

n2λ2
l′

2 ). That

means that each row of the Ŵ (λl, l
′) matrix will be calculated by obtaining the Fourier

transform of the window function that corresponds to the particular frequency point.

Thus, in the case of FGST , this step will have O(N3) computational complexity.

(3) Calculate the α domain representation by multiplying each row of the X̂(λl′ , λl) matrix

with the appropriate window function:

α(λl′ , λl) = X̂(λl′ , λl) ∗ Ŵ (λl′ , δ), (8.11)

where the “ ∗ ” sign represents element-by-element multiplication of the two matrices.

(4) Finally, the vertex-frequency content is calculated by doing the inverse Fourier transform

using formula (B.5) for each row from the α(λl′ , λl). According to the formula (B.5),

the computational complexity of the inverse Fourier transform is O(N2). Thus, the

computational complexity of this step will be O(N3).

In the algorithm described above, step (2) and step (4) do not affect the computational

complexity. This means that the fast algorithm for calculating the vertex frequency repre-

sentation will have a O(2N3) computational complexity in the case of FWGFT , and O(3N3)

in the case of FGST . For the higher N , this computational complexity is a significant im-

provement in comparison with the original algorithm which has a O(N4) computational

complexity.
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8.3 PERFORMANCE EVALUATION OF VERTEX-FREQUENCY

ALGORITHMS

In order to evaluate the performance of the fast WGFT and the fast graph S-transform, we

generated examples of the graphs where we know the expected frequency. For that purpose

we used examples of the time series as path graphs, where each time point represents nodes

on the graph, and time samples are signals on the graph. Weights of the edges between nodes

are equal to one. We considered a sampled sinusoidal signal that contains one frequency for

the entire duration of the signal (s1), a signal that contains different frequencies during

different time points (s2), and a chirp signal (s3) (see Figure 21). Signals s1, s2, and s3 are

defined as:

s1(n) = sin(60πn), 0 ≤ n ≤ 200 (8.12)

s2(n) =


sin(150πn) 0 ≤ n < 65

sin(50πn) 65 ≤ n < 135

sin(100πn) 135 ≤ n ≤ 200

(8.13)

s3(n) = sin((10n+ kn2)π), 0 ≤ n ≤ 200 (8.14)

Next, we calculated the vertex-frequency representation of the graph examples using the

FWGFT , FGST , WGFT , and FGST methods. Then, we normalized all representations

to have the same energy and calculated the mean squared error (MSE) between FWGFT

and WGFT , and between FGST and GST . The MSE between the vertex-frequency rep-

resentations is calculated using the formula [252]:

MSE =
1

N2

N∑
i=1

N∑
l=1

(Ŷi,λl − Yi,λl)2, (8.15)

where Ŷi,k is the vertex-frequency representation calculated using WGFT , Yi,k is the vertex-

frequency representation calculated using fast WGFT , and N is the number of nodes of the

graph. We also calculated the MSE between the reconstructed and the original signal, as
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Figure 21: Signals used for testing the algorithm.

well as the MSE between the reconstructed and the original signal contaminated with noise.

The MSE between the reconstructed and the original signal is calculated as:

mse =
1

N

N∑
n=1

(x̂(n)− x(n))2, (8.16)

where x̂(n) is the reconstructed signal, and x(n) is the original graph signal. Then we com-

pared the required computation time between the fast algorithms and the slow algorithms.

Finally, we checked the performance of the fast algorithm by applying it to the real brain

network. The real brain network was formed using an electroencephalography (EEG) signal

recorded during a swallowing activity.

Figure 22 shows the calculated vertex-frequency representation for each graph using

FWGFT , WGFT , FGST , and GST . The heat kernel ŵ(λl) = Ce−τλl with the τ = 60

is used as the spectral domain of the window function for calculating the FWGFT and

WGFT , where the constant C is chosen such that ||w||2 = 1. For calculating FGST and

GST , we used the window function w(n, l) = |λl|√
2π
e−

n2λ2l
2 defined in the vertex domain.
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Figure 22: Vertex-frequency representation of the signals s1, s2, and s3 using FWGFT ,

WGFT , FGST , and GST .

According to Figure 22, one may see that all methods produce the expected results.

Results showed that the mean squared error (MSE) between the normalized representations

of FWGFT and the normalized representations ofWGFT , as well as between the normalized

representations of FGST and the normalized representations of GST are less than 10−31 for

the all signals used in testing (s1, s2, and s3).

The MSE between the original and the signal reconstructed using FWGFT or WGFT

for all three test signals is significantly less than 10−29, while for FGST andGST , it is slightly

higher, but still it is less than 10−6. The MSE between the original signal contaminated

with the noise and the reconstructed signal did not change across the different levels of noise

using any of the four algorithms (FWGFT , WGFT , FGST , and GST ). This means that

noise will have no effect on the reconstruction error for each vertex-frequency technique used

in this study.

Figure 23 shows the computation time for the FWGFT versus WGFT and the computa-

tion time for the FGST versus GST . From these results, it is obvious that the computation

time improved for the fast algorithms in comparison to the original algorithms. One may
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see from the graph containing 5000 nodes that the computation time for the WGFT and

GST is around 40 minutes. Using this fast approach, computing vertex-frequency changes

of the signal on the graph with 5000 nodes will take less than one minute.

Figure 23: The required time for computing WGFT versus FWGFT and GST versus

FGST for the different graph sizes. Blue lines represent computation time for the original

algorithms while red lines represent computation time for the fast algorithms.

8.3.1 Performance evaluation using real graph signals of the brain network

The proposed scheme was also tested on the example of a brain network formed from the

EEG signals recorded during a swallowing activity. The data collection process, swallowing

segmentation, and pre-processing steps are described in our previous study [205]. Weighted

connectivity networks were formed using the time-frequency based phase synchrony measure

(i.e., reduced interference Rihaczek distribution) proposed by Aviyente et al [99]. From

the formed weighted connectivity networks, weak connections were removed by applying a

threshold on the network. Then, in order to provide the signal on the graph, we formed a line

graph [253] from the weighted connectivity network that corresponded to the synchronization
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between signals from the EEG electrodes during swallowing. The process of forming the

line graph is provided in Appendix A. With the new formed line graph, each vertex will

represent one edge from the original graph. Vertices from the line graph will be connected

if corresponding edges from original graph are connected to the same node.

Figure 24: Vertex-frequency representations of the sample signals representing the brain

network formed with EEG signals recorded during swallowing using FWGFT , WGFT ,

FGST , and GST .

Figure 24 shows the calculated vertex-frequency representation for each graph using

FWGFT , WGFT , FGST , and GST . The FWGFT and WGFT are calculated from the

spectral domain of the window function. A heat kernel represents the spectral domain of

the window function, and it is defined as ŵ(λl) = Ce−τλl with τ = 0.05. When calculating

the FGST and GST , we used the window function w(n, l) = |λl|√
2π
e
n2λ2l

2 . In both cases the

constant C is chosen such that ||w||2 = 1. Results showed that the MSE for the normalized

vertex-frequency representation between the FWGFT and WGFT was less than 10−6.
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8.4 DISCUSSION

In this study, we have described the basic signal processing operations on graphs: the graph

Fourier transform, translation on graphs, modulation on graphs, the WGFT , and the graph

S-transform. We have also described algorithms for calculating the fast WGFT and the

fast graph S-transform. We showed that FWGFT and FGST have a significantly lower

computational complexity than WGFT and GST [107].

Figure 22 summarizes the vertex-frequency representations for the signals s1, s2, and s3 on

the path graph, and Figure 8 summarizes the vertex-frequency representation for an example

of the real signal on the swallowing brain network formed using EEG signals. From Figure

22 it can be seen that all used methods produced results that would match a spectrogram

from classical signal processing. As in classical signal processing, the FWGFT and WGFT

have the limitation of a fixed window size. FGST and GST overcome the limitation of

a fixed window by using a window size that is dependent on frequency. It is well known

from classical signal processing that a wide window gives good frequency resolution but

poor vertex resolution, while a narrow window trades improvements in frequency resolution

for decreased quality of the vertex resolution. Such trends can be seen from Figure 8 in

the signal on graph vertex-frequency representations using FGST and GST , where we have

poor vertex resolution at the very low frequencies and poor frequency resolution at the very

high frequencies. Therefore, just as in classical signal processing [254], we can say that

FGST and GST provide a good concentration of the energy at lower frequencies, but poor

concentration of the energy at higher frequencies.

Results of the MSE between the original and the reconstructed signal showed that

FWGFT and WGFT show an almost perfect reconstruction of the signal. However, the

FGST and GST exhibited higher MSE between the original and the reconstructed sig-

nal. This means that varying window size in the case of the FGST and GST affects the

reconstruction formula. Our results also showed that the MSE between the original and

the reconstructed signal contaminated with noise is approximately constant for various noise

levels. This means that noise will have no effect on the reconstruction error when we use

any of the methods of analysis for the vertex-frequency changes in the graph signal.
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Finally, we showed significant computation time improvement in the algorithm for the

FWGFT and FGST in comparison with the original WGFT and GST (see Figure 23).

Also, from Figure 23 it can be seen that the computation time for the WGFT and GST is

likewise good for smaller graphs. However, as the number of nodes increases, computation

time progressively increases as well. Fast approaches could be applied in any application

that is sensitive to time or memory, or on those applications which deal with large graphs.

Figure 24 summarizes the vertex-frequency representations of the brain network during

healthy human swallowing activity. From the figure, it can be seen that the vertex-frequency

representations of healthy swallowing have a distinctive pattern. Deeper investigation of

brain network swallowing patterns could provide a way to recognize swallowing difficulties

caused by neurological conditions and abnormal brain activities, and provide insight into

contributions of the higher central nervous system mechanisms on swallowing physiology in

healthy and pathological conditions. In the future, this approach could potentially lead to

developing improved diagnostic and rehabilitation techniques for patients with swallowing

difficulties.

8.5 CONCLUSION

In this study, we developed fast algorithms for the WGFT and the graph S-transform. The

developed algorithms are referred to as the fast windowed graph Fourier transform and the

fast graph S-transform. Performance of the fast algorithms are evaluated and compared with

the standard WGFT and the graph S-transform algorithms using synthetic graph signals

and a real graph signal. Results showed that the proposed approach significantly decreases

the computation time for extracting vertex-frequency information from graph signals. We

also showed that the inverse formula for the proposed algorithms provides almost perfect

reconstruction. Additionally, we showed that the signal reconstruction is not affected by

noise.
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9.0 DIFFERENCES IN THE BRAIN NETWORK BETWEEN

CONSECUTIVE SWALLOWS - OPTIMIZED WINDOWED FOURIER

TRANSFORM

This chapter was excerpted partly or in entirety from the following submitted journal arti-

cle: Jestrović, I., Coyle, J.L., Sejdić, E., “Differences in brain networks during consecutive

swallows detected using an optimized vertex-frequency algorithm,” IEEE Journal on Selected

Topics in Signal Processing, Special Issue on Advanced Signal Processing in Brain Networks,

submitted in November, 2015. This article is currently under review with IEEE Journal on

Selected Topics in Signal Processing, Special Issue on Advanced Signal Processing in Brain

Networks.

9.1 MOTIVATION

Consecutive swallows could significantly influence swallowing control for people who have

impaired clearance of swallowed material from the throat or impaired muscles that are in-

volved in swallowing control (i.e., due to fatigue in the muscles of the larynx involved in

swallowing or due to residue in the pharynx [104–106, 166–168]). Therefore, understanding

the differences in the brain networks between consecutive swallows could be very important

for future investigations. Figure 25 shows the brain network of three healthy consecutive

swallows. Even visually, we can notice that there is some difference in the brain network

structure between each swallow. However, result did not show statistical differences for the
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clustering coefficient and characteristic path length of each node from the network between

these three swallows. Thus, in order to understand the difference in the brain network

between consecutive swallows, we need to use a different approach.

Figure 25: Brain network of four consecutive swallows.

Signal processing on graphs enables deeper insight into the structure of the graph, which

provides more information about the topological properties of the graph than classical graph

theory provides. In this case, the WGFT [107] could be useful in extracting information

about the identity of the brain network for each swallow. In addition, with the WGFT , we

will be able to see how the graph frequency changes among the vertices between consecutive

swallows. However, the FWGFT has limitations regarding the fixed window size. Choosing

too wide or too narrow window can result in poor resolution of the representation of the

graph’s frequency content. On the other hand, FGST suffers in some cases from bad energy

concentration in the vertex-frequency representation. One way to optimize window size with

the WGFT and the graph S-transform is to directly optimize energy concentration in order

to minimize the spread of the energy beyond the edges of the signal components [255]. When

applied to the swallowing brain network, the optimized algorithm could provide more reliable

information about the differences in vertex-frequency representations of the swallowing brain

network between consecutive swallows.

9.1.1 Effect of window size on windowed graph Fourier transform

In order to provide a better understanding of the effect of window size on the WGFT , we will

consider a simple example of 3 graphs which contain 9 nodes and variously positioned edges

(Figure 26). Connections between all nodes are equal to one. Values of the nodes represent

99



samples of a signal on the graph. Depending on the values of nodes and the position of edges

between them, we could draw approximate assumption regarding whether the frequency of

the signal on graph is lower or higher.

Figure 26: A signal f on the path graph.

We will calculate the WGFT for all three graphs using equation B.9. As a window

function we use a heat kernel ĝ(λl) = Ce−τλl , where C is chosen such that ||g||2 = 1. Since

the parameter τ can control the width of the window, we will calculate the WGFT for all

three graphs using different values for τ . Figure 27 shows the shape of the window for the

different values of τ that were used for calculating the vertex-frequency representation of the

graph G1.

Figure 28 shows the vertex-frequency representation of all three graphs for different values

of τ . According to the figure, we can tell that the results match with the intuition, but also

the resolution of the representation is highly dependent on the window size. A wide window

gives better vertex resolution but poor frequency resolution, and vice versa. Therefore finding

an optimal window size is important for producing the most accurate result.

100



Figure 27: A kernel function of the graph G1 for the different values of τ .

9.2 THE PROPOSED SCHEME

For ŵ(λl) = Ce−kλl , the window size depends on the parameter k (i.e., as k will tend to

be more narrow). Consequently, improvement of the energy concentration with the graph

S-transform could be accomplished by introducing a new parameter, p, into the window

function. Thus, the new window function used in the graph S-transform would be defined

as w(λl) = |λl|p√
2π
e−

n2λ
2p
l

2 , where parameter p will be optimized. In order to automatically

calculate an optimal window size, concentration measure (CM) [256] was used.

CM is defined as:

CM(τ) =
1∑N

n=1

∑N−1
l=0 |Sτf(n, l)|

(9.1)

where Sτf(n, l) is the vertex-frequency representation and τ is the parameter that we want

to optimize. In the case of FWGFT , τ will be k, while in the case of FGST , τ will be

p. Optimal τ can be calculated as a vertex-invariant constant or as a vertex dependent

parameter (τ(n)). In the following subsections both algorithms are described.
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Figure 28: Vertex-frequency representation of G1, G2, and G3 graphs, for different values of

τ .

9.2.1 Algorithm for optimizing vertex-invariant τ

To calculate the optimal value for the parameter τ , we will have to calculate the vertex-

frequency representation using different values of τ (Sτf(i, l)). In the next step, each calcu-

lated vertex-frequency representation will be normalized, in order to provide equal energy:

Sτf(n, l) =
Sτf(i, l)√∑N

n=1

∑N−1
l=0 |Sτf(n, l)|2

. (9.2)
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Using equation (9.1), concentration measures will be calculated for each normalized vertex-

frequency representation:

CM(τ) =
1∑N

n=1

∑N−1
l=0 |Sτf(n, l)|

. (9.3)

In addition, the optimal parameter τ , will be determined as:

τopt = max
τ

[CM(τ)]. (9.4)

9.2.2 Algorithm for optimizing vertex-dependent τ(n)

In the first step, we will calculate the vertex-frequency representation of the signal using the

formula described in the Section 8.2.2, and from that vertex-frequency representation we will

calculate the energy, E. Then, the vertex-frequency representations will be calculated by

using the different values of τ (Sτf(i, l)). Vertex-frequency representations will be normalized

as:

Sτf(n, l) =
√
E

Sτf(n, l)√∑N
n=1

∑N−1
l=0 |Sτf(n, l)|2

. (9.5)

The concentration measure that corresponds to each vertex will be calculated as:

CM(n, τ) =
1∑N

l=1 |Sτf(n, l)|
. (9.6)

Finally, the optimal τ(i) for the each vertex will be the maximized concentration measure:

τ(n)opt = arg max
τ

[CM(n, τ)]. (9.7)
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9.3 PERFORMANCE EVALUATION OF THE OPTIMIZED

VERTEX-FREQUENCY ALGORITHMS

The algorithms were evaluated using the test graph signals, where the expected frequency

was known. For a test signal, we used a time series as the path graph, where each time points

represents nodes on the graph, and time samples are signals on the graph. The weights of

the edges between nodes are equal to one. The test signals s1 and s2 are defined as (see

Figure 29):

s1(n) =


cos(15π ln((10n− 10.5)2 + 1)) 0 ≤ n < 100

cos(15π ln((10n− 10.5)2 + 1)) + cos(200πn) 100 ≤ n < 180

cos(15π ln((10n− 10.5)2 + 1)) 180 ≤ n ≤ 200

(9.8)

s2(n) = cos[40π(n− 0.5) arctan(21n− 10.5)− 20π ln((21n− 10.5)2 + 1)/21] + sin(π(80n− kn2))

(9.9)

Next, we calculated FWGFT , FGST , optimized FWGFT , and the optimized FGST . For

Figure 29: Signals used for testing the algorithm.
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calculating optimized FWGFT as a value of τ , we used a range of values from 10 to 70

with increments of 1, while the τ parameter was equal to 35 for calculating the FWGFT

defined in (8.6). For calculating the optimized FGST s, a range of p values from 0.01 to 1

with increments of 0.01 were used. Vertex-frequency representations for the test signals s1

and s2 are presented in Figures 30 and 31 respectively.

Figure 30: Vertex-frequency representations for the test signal s1.

The concentration measure algorithm showed that the optimal k value for calculating

FWGFT for s1 is equal to 25, while that for calculating FWGFT for s2, it is equal to 5. Also,

the concentration measure algorithm showed that the optimal p value for calculating FGST

for s1 is equal to 0.57, while for calculating FGST for s2 is equal to 0.79. Improvements in

the representation of the optimized algorithm can be seen clearly in both Figures 30 and 31.

The performance measure of each representation was calculated using the formula:

Ξ =

(
N−1∑
n=0

N∑
k=1

|Sτf(n, k)|

)−1

, (9.10)

where |Sτf(n, k)| is the normalized vertex-frequency representation. This performance for-

mula is actually a concentration of the vertex-frequency representation. In addition, the
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Figure 31: Vertex-frequency representations for the test signal s2.

performance measure is also estimated for the signals on graph contaminated with noise

(SNR=10dB and SNR=20dB). The results of the performance measure for each vertex-

frequency representation for both signals are shown in the Table 4. According to Table 4,

the performance measure value does not show improvement for the optimized algorithms

when it is used for the FWGFT . However, the FGST performance measure value is the

highest for each representation that used vertex-invariant optimized window size. Table 4

also shows that with the higher level of noise, the performance measure value tends to be

lower.
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Table 4: Performance measure for the considered vertex-frequency representations.

Noise free SNR=20dB SNR=10dB
Ξs1 Ξs2 Ξs1 Ξs2 Ξs1 Ξs2

Standard WGFT 0.0096 0.0093 0.0071 0.0070 0.0063 0.0063

Vertex-invariant optimized WGFT 0.0097 0.0093 0.0073 0.0072 0.0064 0.0064

Vertex dependent optimized WGFT 0.0094 0.0093 0.0091 0.0090 0.0081 0.0081

Standard FGST 0.0086 0.0081 0.0071 0.0068 0.0065 0.0066

Vertex-invariant optimized FGST 0.0094 0.0089 0.0073 0.0070 0.0068 0.0068

Vertex dependent optimized FGST 0.0096 0.0088 0.0092 0.0086 0.0080 0.0077

9.4 ANALYZING THE DIFFERENCES BETWEEN CONSECUTIVE

SWALLOWS

9.4.1 Data acquisition

55 healthy people, between the ages of 18 and 25, participated in the data collection process.

Data collection setup is described in detail in section 5.2.1. After setting-up devices for data

acquisition, the participants were asked to perform five saliva swallows, five water swallows,

five nectar-thick apple juice swallows (nectar-thick, Nestlé Health Care Inc., Florham Park,

N.J.), and then five honey-thick apple juice swallows (honey-thick, Nestlé Health Care Inc.,

Florham Park, N.J.) The unit for measuring viscosity was the centipoise (cP), where 1

cP corresponds to the viscosity of water. The nectar-thick apple juice with a viscosity

of 150cP is considered mildly thick, while the honey-thick apple juice with a viscosity of

400cP is considered moderately thick. The water, nectar, and honey were served chilled

(3-5C) in separate cups. Since previous studies documented differences in comfortable bolus

size between the sexes [170], the bolus size was not measured. However, participants were

instructed to consume a bolus of comfortable amount of bolus volume.
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9.4.2 Pre-processing steps; forming graphs and signals on graphs

The collected data were further pre-processed as is described in section 5.2.2. The weighted

connectivity networks were formed using the time-frequency based phase synchrony measure

described in section 5.2.4. The calculated swallowing brain networks were averaged across the

conditions for first, second, third, forth, and fifth swallows. Depending on the density levels

of connection, the brain networks will have different sparsity. Previous studies have shown

that networks with more than 40% of the connection can be considered as too dense [212,213].

Thus, in the formed connectivity matrices we applied a threshold such that we keep 40% of

the strongest connections in the network.

The most convenient way to provide signals on graphs is to form a line graph from the

original graphs, which corresponds to the synchronization between signals from the EEG

electrodes during swallowing [253]. With the newly formed line graphs, the weights of the

edges from the original graph will correspond to the nodes of the line graph, while the new

nodes will be connected if edges from the original graph that correspond to the vertices of

the line graph are connected to the same node. All connections from the new line graph will

have weights equal to one. Thus, we define an undirected, unweighted graph G = {V ,W},

where V is a set of vertices in the graph, and W is the connectivity matrix of the graph.

9.4.3 Analysis of the differences between conditions

For forming vertex-frequency representations of the swallowing brain networks, we used

vertex-invariant optimized FWGFT and vertex-invariant optimized FGST . In order to

estimate the differences between vertex-frequency representations between consecutive swal-

lows, the vertex-frequency representations were converted to the gray scale image. The

difference between gray scale images that represent the vertex-frequency representations

between consecutive swallows were estimated using structural similarity index [257]. The

structural similarity index estimates similarity between two images, where the maximum

similarity structural similarity index is equal to one.
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9.4.4 Results

The vertex frequency representations were calculated using 252 saliva swallows, 245 water

swallows, 233 nectar-thick liquid swallows, and 228 honey-thick liquid swallows. The results

were presented as a vertex frequency representation of the line graph formed from the aver-

aged swallowing brain networks for the first, second, third, forth, and fifth swallows of each

saliva, water, nectar, and honey swallows.

Figure 32 summarizes FWGFT representation of the signals on graphs that correspond

to the brain network during consecutive swallowing of various stimuli, while in Figure 33

summarizes the FGST representation of the signals on graphs that correspond to the brain

network during consecutive swallowing of various stimuli. All vertex-frequency representa-

tions have the most dominant energy at the lower frequencies. Also, each representation

shows the frequency burst, which is the most prominent around the 300th and around 700th

node.

Table 5 summarizes the structural similarity index for the standard FWGFT and stan-

dard FGST between consecutive swallows among various viscosity fluids, while Table 6

summarizes the structural similarity index for the optimal FWGFT and optimal FGST

between consecutive swallows of fluids of the various viscosities. According to the tables, the

mean structural similarity index between consecutive swallows tends to be lower for thicker

liquids. Also, the values of structural similarity index between consecutive swallows for the

standard and the optimal FWGFT are very similar, while the values of structural similar-

ity index between consecutive swallows for the standard FGST are higher than values of

structural similarity index between consecutive swallows for the optimal FGST .
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Figure 32: The vertex frequency representation of the brain network during consecutive

saliva, water, nectar, and honey swallows.

9.5 DISCUSSION

In this study, we have introduced an algorithm for optimizing the window size for calculating

FWGFT and FGST . We have shown that the optimized window size provided a higher

energy concentration for the vertex-frequency representation. In addition, we used this

algorithm to investigate differences between signals on the brain networks for consecutive

swallows.

From Figures 30 and 31 the improvement of the vertex-frequency representation of the

algorithms with optimal window size can be seen. This improvement is confirmed by Table

4, where the results show a higher performance measure value for the algorithm with the
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Figure 33: The vertex frequency representation of the brain network during consecutive

saliva, water, nectar, and honey swallows.

optimized window size. Even though the optimized FWGFT and the optimized FGST have

higher energy concentrations for the vertex-frequency representation, these optimized algo-

rithms have a higher computational complexity in comparison with the standard FWGFT

and FGST . A higher computational complexity resulted from the optimization procedure,

which is necessary for the parameter tuning. However, in comparison with the WGFT and

graph S-transform [107], the optimized FWGFT and the optimized FGST still exhibit a

significantly lower computational complexity.

Our hypothesis, that the vertex-frequency information of the brain network is different

between consecutive swallows, is supported by our results. Swallowing is a complex process,

which involves the activation of many sensory receptors in the oral cavity, as well as the
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Table 5: Structural similarity index for the standard FWGFT and standard FGST between

consecutive swallows.

Standard FWGRFT Standard FGST

Swallows

comparison

Saliva Water Nectar Honey Saliva Water Nectar Honey

1-2 0.6120 0.4627 0.4275 0.4362 0.5075 0.2776 0.2619 0.2331

1-3 0.6350 0.4434 0.4597 0.4354 0.4937 0.2557 0.2746 0.2505

1-4 0.5972 0.4193 0.4328 0.4205 0.5009 0.2435 0.2582 0.2235

1-5 0.6555 0.4474 0.4022 0.4352 0.4982 0.2524 0.2512 0.2643

2-3 0.6188 0.4341 0.4685 0.3958 0.5454 0.2387 0.2601 0.2245

2-4 0.6146 0.3934 0.4149 0.4028 0.5937 0.2288 0.2271 0.2263

2-5 0.6284 0.4402 0.3919 0.4280 0.5643 0.2381 0.2443 0.2514

3-4 0.6113 0.3981 0.4579 0.3910 0.5565 0.2333 0.2697 0.2288

3-5 0.6486 0.4264 0.4225 0.3901 0.5508 0.2537 0.2720 0.2263

4-5 0.6238 0.4153 0.4080 0.4161 0.5747 0.2603 0.2490 0.2498

mean 0.6245 0.4280 0.4286 0.4151 0.5386 0.2482 0.2568 0.2378

activation of several head and neck muscles. Previous studies have shown that changes in

EEG wave forms during voluntary movement can be observed in the sensorimotor areas

of the cortex. Consecutive swallows can cause neuromuscular fatigue, which can result in

a reduced level of muscular force involved in performing this activity [258]. Therefore, the

results can be attributed to the changes caused by the activation of the sensorimotor neurons

due to neuromuscular fatigue.

Similarity between vertex frequency representation of the brain networks during consec-

utive swallows tends to be lower for the thicker liquids. Previous studies investigating brain

activity during eating reported that different groups of neurons are activated due to various

food viscosity, or due to the various food taste, or sometimes due to various viscosity and

taste combinations [181]. It has also has been reported that some neurons are only activated

by specific ranges of fluid viscosities [182]. This means that some neurons will have increased

or decreased activity due to various viscosities. Also, studies have shown that consuming
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Table 6: Structural similarity index for the optimal FWGFT and optimal FGST between

consecutive swallows.

Optimal FWGRFT Optimal FGST

Swallows

comparison

Saliva Water Nectar Honey Saliva Water Nectar Honey

1-2 0.6151 0.4502 0.4037 0.4000 0.0263 0.0375 0.0437 0.0338

1-3 0.6358 0.4198 0.4478 0.4095 0.0704 0.0380 0.0426 0.0315

1-4 0.6052 0.3978 0.3948 0.3964 0.0525 0.0425 0.0386 0.0250

1-5 0.6554 0.4182 0.3882 0.3998 0.0879 0.0299 0.0324 0.0258

2-3 0.6366 0.4016 0.4374 0.3787 0.0250 0.0391 0.0509 0.0273

2-4 0.6427 0.3834 0.3890 0.3787 0.0323 0.0250 0.0412 0.0331

2-5 0.6467 0.4055 0.3890 0.3787 0.0324 0.0444 0.0387 0.0245

3-4 0.6426 0.3782 0.4412 0.3736 0.0474 0.0322 0.0388 0.0280

3-5 0.6666 0.4111 0.4159 0.3619 0.0655 0.0378 0.0324 0.0196

4-5 0.6590 0.4000 0.3938 0.4029 0.0504 0.0342 0.0320 0.0205

mean 0.6406 0.4066 0.4093 0.3913 0.0491 0.0361 0.0392 0.0270

thicker liquids causes an increase in submental muscular activity [232], which increases the

traction forces applied to the hyolaryngeal complex, this leading to airway closure during

swallowing and opening of the upper esophageal sphincter. The changes in the muscle activ-

ity also cause a change in neural activity in the brain [55,218]. Increased or decreased neural

activity cause changes in EEG waveforms, which will affect the weights of the connection in

the swallowing brain network. The changes in the connection weights in the swallowing brain

network will directly modulate signals on the line graphs that correspond to the swallowing

brain network. Thus, the lower similarity between the vertex frequency representations dur-

ing consecutive swallows of thicker liquids could be attributed to the changes in the neural

responses that the higher viscosity fluids produce.

According to Table 5 and 6, the structural similarity index is much higher for the dry

swallows (i.e., saliva swallows) as compared to the wet swallows (i.e., water, nectar-thick, and

honey-thick). During swallowing, sensory receptors in the oral cavity capture information
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about the bolus size, shape, temperature, smell, and taste. The captured information is

sent to the sensorimotor cortex and a motor plan is produced by the swallowing central

pattern generator in the brainstem [33]. In the case of saliva swallows, sensory information

such as temperature, smell, and taste, are not captured. Thus, the neurons which are

involved in processing this sensory information, will not be activated. Also, this study was

conducted such that participants consumed wet stimuli from cups. Consumption of stimuli

from cups involves additional head movements, which activate additional neurons responsible

for motor activation. Thus, a higher structural similarity index between vertex-frequency

for the consecutive swallows could be attributed to the reduced motor activity and sensory

stimulation of the dry swallows.

Figures 32 and 33 show that the vertex-frequency representations of the swallowing brain

networks mostly contain low frequency components. In addition, they display the frequency

burst around the 300th and around the 700th node. In the line graph, the connections

of the newly formed nodes depend on the position of the edges in the original graph. By

applying thresholds on the brain networks, the low connections are dismissed, which disable

the direct connection between some neighboring nodes in the line graph. This indirect

connection results in more oscillations in the signal between neighboring nodes, resulting in

higher frequency in the vertex-frequency representation. This means that the position of the

weak connections and proper thresholding of the brain network can be very important for

future studies, as it provides distinctive information about the brain network.

A limitation of this study is that the bolus size was not measured. There is a possibility

that a non-uniform bolus size could affect the brain network in different sized subjects.

Another limitation is that the order of consumed stimuli was the same for each participant

(i.e., saliva first, water second, nectar-thick third, honey-thick forth). The order of consumed

stimuli could also potentially influence the results of the formation of brain networks. Thus,

future investigations should consider measuring of the bolus size and scaling bolus volume

to a standard proportion of bolus volume to patient size, as well as randomizing the order

of consumed stimuli.
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9.6 CONCLUSION

In this study, we presented an algorithm, which provides a higher energy concentration of

the FWGFT and FGST . The algorithm was based on the window size optimization, which

uses the concentration measure. In order to optimize the window size with the graph S-

transform, we introduced a new parameter, which controls the window size that corresponds

to the each frequency point. The algorithm was tested using two synthetic signals. The

results of the tests showed that the optimized FWGFT and the optimized FGST have

a higher energy concentration than do FWGFT and FGST . In addition, we used the

proposed algorithm to investigate differences between consecutive swallows by analyzing

vertex-frequency information from the swallowing brain networks. For this analysis, we

collected signals from 55 healthy people, who performed five saliva, five water, five nectar

thick, and five honey thick swallows. We showed that there are differences in the vertex-

frequency representations of the brain networks between consecutive swallows, which can

be attributed to changes in activation of the sensorimotor neurons due to fatigue in the

muscular force. Furthermore, we showed that differences between consecutive swallows are

higher for the thicker liquids, which corresponds to changes in cortical activation due to

various sensory stimuli.
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10.0 SUMMARY

10.1 CONCLUSION

In this dissertation we investigated brain activity during swallowing using graph theory and

the signal processing on graph approach applied to EEG recordings. To our knowledge,

there is no previous study that investigated swallowing brain activity using this approach.

Therefore, the purpose of presented studies were at first to check if, using this approach we,

could gain some useful information about brain activity during swallowing, and second, to

provide some insight into brain activity during swallowing. More precisely, we investigated

how head position, bolus viscosity, attention, and consecutive swallows influence perfor-

mance of the swallowing action in healthy people. I order to answer these questions, first

we investigated the behavior of EEG signals during swallowing in order to choose the best

methods for forming swallowing brain networks. Furthermore, we improved existing meth-

ods for analyzing vertex-frequency information from the signals on graphs, and we applied

those improved algorithms in our analysis. Our results showed that there are differences

between swallowing in the neutral and the chin-tuck head position, between swallowing of

different stimuli, between normal swallowing and swallowing with distractions, and between

consecutive swallows. Therefore, head position, fluid viscosity, attention, and consecutive

swallows should be considered in future investigations concerning swallowing.
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10.2 FUTURE DIRECTIONS

One of the most challenging problems inherent in the analysis of acquired central neural

swallowing data is the difficulty in determining when each of the swallowing phases begins

and ends, and whether the swallowing is healthy or unhealthy. Unlike the gold standards

for investigation of brain activity (i.e., fMRI and PET), EEG is not sensitive to any nearby

metal objects (e.g., implants), so it can be easily combined with other testing techniques that

deploy instrumentation containing metal components, such as imaging technology (fiberoptic

endoscopic evaluation of swallowing, videofluoroscopy (VFSS)). Concurrent imaging together

with EEG sampling during swallowing could provide more information about swallowing that

EEG alone cannot obtain (e.g. swallowing start and stop points), and that can be compared

to the EEG signals, and could then be important for future developments in the field. Incor-

porating EEG together with a videofluoroscopic swallowing study [1,259] could also provide

chance to investigate the relationships between neural activity and the biomechanics of the

oropharyngeal swallowing phases. In the case of dysphagia, aspiration often occurs dur-

ing the pharyngeal phase. By performing a simultaneous recording on patients with both

EEG and VFSS, a speech language pathologist can demarcate the swallowing phase seg-

ments’ duration using the VFSS and correlate EEG signals to physiological events. Analysis

of segmented signals would enable a better understanding of brain activation during each

swallowing phase. Finally, single treatment modalities do not provide a complete set of infor-

mation regarding the effects of treatment because treatments are often combined. However,

individual treatment modalities are designed to address specific impairments in swallowing

physiology and are then combined with other treatments that address other impairments.

Understanding the effects of each component of a combined treatment program on the EEG

signal will elucidate whether and how each modality may contribute to treatment-induced

cerebral plasticity.

The ability to combine EEG with other techniques could be used for a number of dif-

ferent applications and may provide better insights into the swallowing function itself. For

example, it could be beneficial to combine EEG with pharyngeal neuromuscular stimula-

tion. Neuromuscular electrical stimulation activates muscles and peripheral motor nerves
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and may be able to recover normal swallowing control by strengthening the muscles that

were weakened by a stroke or other neurological condition, though the evidence supporting

its efficacy is mixed. A number of studies have shown the advantages of the neuromuscular

electrical stimulation (NMES) as a safe and effective treatment that provides better swal-

lowing function [260–263]. However, the majority of these studies were poorly controlled

and tainted by design flaws that rendered their results equivocal at best. In a meta-analysis

published by [264], 81 studies of NMES for dysphagia treatment were evaluated. 74 of these

studies were rejected from the analysis due to the poor quality of their evidence, and the

remaining 7 studies were significantly heterogeneous. Although a small but significant effect

size was measured, the authors cautioned: “Because of the small number of studies and

low methodological grading for these studies, caution should be taken in interpreting this

finding.” Hence, the use of EEG to monitor brain activity during neuromuscular electrical

stimulation and other dysphagia treatments warrants significant further investigation to de-

termine whether it may be a worthwhile addition to the treatment armamentarium. Further,

EEG can also be combined with some other commonly used techniques for the screening and

diagnosis of dysphagia, such as fiberoptic endoscopic evaluation, or with some techniques

which are still under development, such as cervical auscultation. Combining EEG with

other techniques could provide additional information about swallowing that may provide

deeper insight into brain activity during swallowing.

Since the motor imagery of swallowing may evolve into an adjunct for dysphagia rehabil-

itation, it would be highly desirable to evaluate the efficacy of this approach in combination

with EEG for future swallowing investigations. This could eventually lead to the development

of advanced human-to-computer interface based applications. A previous study produced a

70.89% classification accuracy of swallowing-imagery detection using the dual-tree complex

wavelet transform feature. Better accuracy could be achieved by employing more features, or

perhaps using an alternative analysis technique such as graph theory or signal processing on

graph. However, translation of this result to improved swallowing function in humans with

dysphagia needs to be established in order to advance the clinical utility of this method.
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APPENDIX A

LINE GRAPH

The line graph L(G) of the graph G, is an undirected binary graph, that represents the

adjacencies between edges of G. The line graph is formed such that, to each vertex of the

graph L(G) is attributed a value of the one edge from the graph G. Vertices of the graph

L(G) are connected if edges from the graph G that corresponds to the vertices of L(G) are

connected to the same node (Figure 34). Thus, the weights of the edges from the graph G

will be parts of the signal of the graph L(G).

Figure 34: Forming of the line graph from the regular graph.
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APPENDIX B

WINDOWED FOURIER TRANSFORM AND S-TRANSFORM

B.1 CLASSICAL SIGNAL PROCESSING CASE

The windowed Fourier transform in classical signal processing is a commonly used technique

for extracting frequency information from one dimensional signals. Mathematically, the

windowed Fourier transform of a function x ∈ L2(R) can be written as the inner product of

the original signal and the windowed Fourier atom [265]:

WFT (τ, f) := 〈x(t), wτ,f (t)〉 =

∫ ∞
−∞

x(t)w(t− τ)e−j2πftdt, (B.1)

where the classical windowed Fourier atoms are defined using notation for translation ((Tτf)(t) :=

f(t− τ)) and modulation ((Mfx)(t) := e−j2πft) as:

wτ,f (t) := (MfTτw)(t) = w(t− τ)e−j2πft, (B.2)

where w(t) is the fixed window function. The fixed window in the windowed Fourier trans-

form is the limitation that can influence the resolution of the time-frequency signal repre-

sentation. In order to overcome the limitations of the fixed window, the S-transform was

defined as [266]:

ST (τ, f) := 〈x(t), wτ,f (t)〉 =

∫ ∞
−∞

x(t)w(t− τ, f)e−j2πftdt, (B.3)
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where the term wτ,f (t) := (MfTτw)(t) = w(t − τ, f)e−j2πft is the S atom. The window

function, w, is also dependent on frequency, and can be represented with the function

|f |√
2π
e−

(τ−t)2f2
2 . This means that for the higher frequencies, the window size will be more

narrow. Such a defined window should adjust the time-frequency resolution to provide bet-

ter frequency resolution for the lower frequencies and better time resolution for the higher

frequencies.

B.2 SIGNALS ON GRAPHS

The windowed Fourier transform and S-transform can be adapted for signals on graphs

using the Laplacian matrix. The Laplacian matrix enables the adjustment of basic classical

signal processing operations to graph signals [70, 71]. The (unnormalized) graph Laplacian

is defined as L := D−W, where D is a diagonal matrix containing the degree values of each

node from the graph, and W is the connectivity matrix of the graph. The graph Laplacian

L has a complete set of orthonormal eigenvectors {Xl}l=0,1,...,N−1, and real, nonnegative

eigenvalues {λl}l=0,1,...,N−1 that correspond to each eigenvector. We assume that nonnegative

Laplacian eigenvalues are ordered as 0 < λ0 ≤ λ1 ≤ λ2... ≤ λN−1 := λmax. Eigenvectors

corresponding to the lower eigenvalues have smooth oscillations, while eigenvectors that

correspond to the higher eigenvalues have more rapid oscillations. Therefore, we can tell

that in graph signal processing notation, the eigenvalue will correspond to the frequency of

the graph signal.

Since in the classical signal processing the Fourier transform can be represented as the

expansion of a signal in terms of the eigenfunctions, we can say that the graph Fourier

transform of a signal on the vertices of a graph x ∈ RN can be defined as the expansion of

x in terms of the eigenfunctions of the graph Laplacian [267]:

x̂(λl) := 〈x,Xl〉 =
N∑
n=1

x(n)X ∗l (n). (B.4)
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The inverse graph Fourier transform is then given by:

x(n) =
N∑
l=1

x̂(λl)Xl(n). (B.5)

Following basic signal processing on graph notation, translation and modulation on graphs

can be defined as (derivation provided in [107]):

(Tix)(n) :=
√
N(x ∗ δi)(n) =

√
N

N−1∑
l=0

x̂(λl)X ∗l (i)Xl(n), (B.6)

(Mkx)(n) :=
√
Nx(n)Xk(n). (B.7)

Equipped with the above defined generalized notions of translation and modulation of signals

on graphs, we can now define the windowed graph Fourier atom as [107]:

Wi,k(n) := (MkTiw)(n) = NXk(n)
N−1∑
l=o

ŵ(λl)X ∗l (i)Xl(n), (B.8)

where ŵ is the Fourier transform of the window function. For calculating the windowed

graph Fourier atoms, we will use a kernel function defined directly in the spectral domain

as ŵ(λl) = Ce−τλl , where C is chosen such that ||ŵ||2 = 1. In the case of the WGFT , the

window size iz fixed, which means the τ parameter in the kernel function is arbitrarily chosen

such that the vertex frequency representation has the most optimal resolution. However, if

we want to define Fourier graph atoms for the S-transform, we will define a window function

in the vertex domain as w(n, l) = |λl|√
2π
e
n2λ2l

2 .

Finally, the WGFT and GST of a function x ∈ R is defined as the inner product of the

signal and the windowed graph Fourier atoms:

SG(i, k) := 〈x,Wi,k〉 . (B.9)

Moreover, the signal f(n) can be recovered from the WGFT or GST representation

using the expression [107]:

x(n) =
1

N ||Tng||22

N∑
i=1

N−1∑
k=0

SG(i, k)Wi.k. (B.10)
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WGFT or GST requires high computational complexity [107]. For the N number of

nodes, the vertex-frequency representation will generate an N × N spectrum for Fourier

graph atoms. Each of those N × N points will generate N additional iterations in order

to calculate the translation of the signal. Those N3 points in the next step will integrate

with the N signal points. Therefore, the total computational complexity will have O(N4)

operations. Such a high computational complexity requires too long computation time for

larger graphs.
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[127] A. Ikeda, H. O. Lüders, R. C. Burgess, and H. Shibasaki, “Movement-related potentials

recorded from supplementary motor area and primary motor area role of supplementary

motor area in voluntary movements,” Brain, vol. 115, no. 4, pp. 1017–1043, 1992.

[128] A. Ikeda, H. O. Lüders, R. C. Burgess, A. Sakamoto, G. H. Klem, H. H. Morris III,

and H. Shibasaki, “Generator locations of movement-related potentials with tongue

protrusions and vocalizations: subdural recording in human,” Electroencephalography

and Clinical Neurophysiology/Evoked Potentials Section, vol. 96, no. 4, pp. 310–328,

1995.

136



[129] I. Rektor, “Scalp-recorded bereitschaftspotential is the result of the activity of cortical

and subcortical generators–a hypothesis,” Clinical Neurophysiology, vol. 113, no. 12,

pp. 1998–2005, 2002.

[130] S. Yazawa, A. Ikeda, K. Terada, T. Mima, N. Mikuni, T. Kunieda, W. Taki, J. Kimura,

and H. Shibasaki, “Subdural recording of bereitschaftspotential is useful for functional

mapping of the epileptogenic motor area,” Epilepsia, vol. 38, no. 2, pp. 245–248, 1997.

[131] J. M. Fuster, “Behavioral electrophysiology of the prefrontal cortex,” Trends in Neu-

rosciences, vol. 7, no. 11, pp. 408–414, 1984.

[132] T. S. Lorig, “Human EEG and odor response,” Progress in Neurobiology, vol. 33, no. 5,

pp. 387–398, 1989.

[133] T. S. Lorig and G. E. Schwartz, “Brain and odor: I. alteration of human EEG by odor

administration,” Psychobiology, vol. 16, no. 3, pp. 281–284, 1988.

[134] W. Klemm, S. Lutes, D. Hendrix, and S. Warrenburg, “Topographical EEG maps of

human responses to odors,” Chemical Senses, vol. 17, no. 3, pp. 347–361, 1992.

[135] R. Moncrieff, “Effect of odours on EEG records,” Perfumery Essential Oil Rec, vol. 53,

no. 1, pp. 757–760, 1962.

[136] T. S. Lorig and G. E. Schwartz, “EEG activity during relaxation and food imagery,”

Imagination, Cognition and Personality, vol. 8, no. 3, pp. 201–208, 1988.

[137] T. S. Lorig, E. Huffman, A. DeMartino, and J. DeMarco, “The effects of low concentra-

tion odors on EEG activity and behavior.” Journal of Psychophysiology, vol. 5, no. 1,

pp. 69–77, 1991.

[138] G. Stacher, H. Bauer, and H. Steinringer, “Cholecystokinin decreases appetite and

activation evoked by stimuli arising from the preparation of a meal in man,” Physiology

and Behavior, vol. 23, no. 2, pp. 325–331, 1979.

[139] G. N. Martin, “Human electroencephalographic (EEG) response to olfactory stimula-

tion: two experiments using the aroma of food,” International Journal of Psychophys-

iology, vol. 30, no. 3, pp. 287–302, 1998.

137



[140] C. Mizoguchi, T. Kobayakawa, S. Saito, and H. Ogawa, “Gustatory evoked cortical ac-

tivity in humans studied by simultaneous EEG and MEG recording,” Chemical Senses,

vol. 27, no. 7, pp. 629–634, 2002.

[141] M. Wada, “Evoked responses to taste stimulations,” The International Tinnitus Jour-

nal, vol. 11, no. 1, pp. 43–47, 2005.

[142] K. Ohla, J. Hudry, and J. le Coutre, “The cortical chronometry of electrogustatory

event-related potentials,” Brain Topography, vol. 22, no. 2, pp. 73–82, 2009.

[143] K. Ohla, U. Toepel, J. le Coutre, and J. Hudry, “Electrical neuroimaging reveals

intensity-dependent activation of human cortical gustatory and somatosensory areas

by electric taste,” Biological Psychology, vol. 85, no. 3, pp. 446–455, 2010.

[144] B. C. Min and K. Sakamoto, “Influence of sweet suppressing agent on gustatory brain

evoked potentials generated by taste stimuli,” Journal of Physiological Anthropology,

vol. 17, no. 1, pp. 9–17, 1998.

[145] I. H. Franken, J. Huijding, I. M. Nijs, and J. W. Van Strien, “Electrophysiology of

appetitive taste and appetitive taste conditioning in humans,” Biological Psychology,

vol. 86, no. 3, pp. 273–278, 2011.

[146] M. Funakoshi and Y. Kawamura, “Summated cerebral evoked responses to taste stimuli

in man,” Electroencephalography and Clinical Neurophysiology, vol. 30, no. 3, pp. 205–

209, 1971.

[147] G. Kobal, “Gustatory evoked potentials in man,” Electroencephalography and Clinical

Neurophysiology/Evoked Potentials Section, vol. 62, no. 6, pp. 449–454, 1985.

[148] K. H. Plattig, S. Dazert, and T. Maeyama, “A new gustometer for computer evaluation

of taste responses in men and animals,” Acta Oto-Laryngologica, vol. 105, no. S458,

pp. 123–128, 1988.

[149] T. Hummel, A. Genow, and B. N. Landis, “Clinical assessment of human gustatory

function using event related potentials,” Journal of Neurology, Neurosurgery and Psy-

chiatry, vol. 81, no. 4, pp. 459–464, 2010.

138



[150] P. B. Singh, E. Iannilli, and T. Hummel, “Segregation of gustatory cortex in response

to salt and umami taste studied through event-related potentials,” Neuroreport, vol. 22,

no. 6, pp. 299–303, 2011.

[151] A. Parent, Carpenters Human Neuroanatomy, 9th, Ed. Baltimore, MD: Williams and

Wilkins, 1996.

[152] K. Yoshida, R. Kaji, N. Kohara, N. Murase, A. Ikeda, H. Shibasaki, and T. Iizuka,

“Movement-related cortical potentials before jaw excursions in oromandibular dysto-

nia,” Movement Disorders, vol. 18, no. 1, pp. 94–100, 2003.

[153] A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in

the brainis it an elusive concept?” Neuroscience and Biobehavioral Reviews, vol. 28,

no. 8, pp. 827–836, 2005.

[154] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, “Organization, development

and function of complex brain networks,” Trends in Cognitive Sciences, vol. 8, no. 9,

pp. 418–425, 2004.

[155] C. J. Stam, M. Breakspear, A.-M. v. C. van Walsum, and B. W. van Dijk, “Nonlinear

synchronization in EEG and whole-head MEG recordings of healthy subjects,” Human

Brain Mapping, vol. 19, no. 2, pp. 63–78, 2003.

[156] S. J. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, “Detecting dynamical interde-

pendence and generalized synchrony through mutual prediction in a neural ensemble,”

Physical Review E, vol. 54, no. 6, pp. 6708–6724, 1996.

[157] M. Le Van Quyen, C. Adam, M. Baulac, J. Martinerie, and F. J. Varela, “Nonlin-

ear interdependencies of EEG signals in human intracranially recorded temporal lobe

seizures,” Brain Research, vol. 792, no. 1, pp. 24–40, 1998.

[158] J. Arnhold, P. Grassberger, K. Lehnertz, and C. Elger, “A robust method for detecting

interdependences: application to intracranially recorded EEG,” Physica D: Nonlinear

Phenomena, vol. 134, no. 4, pp. 419–430, 1999.

[159] S. Olbrich, J. Jödicke, C. Sander, H. Himmerich, and U. Hegerl, “ICA-based muscle

artefact correction of EEG data: What is muscle and what is brain?: Comment on

McMenamin et al.” Neuroimage, vol. 54, no. 1, pp. 1–3, 2011.

139



[160] P. Borgnat, P. Flandrin, P. Honeine, C. Richard, and J. Xiao, “Testing stationarity

with surrogates: A time-frequency approach,” IEEE Transactions on Signal Processing,

vol. 58, no. 7, pp. 3459–3470, 2010.

[161] J. Logemann, P. Kahrilas, M. Kobara, and N. Vakil, “The benefit of head rotation

on pharyngoesophageal dysphagia.” Archives of Physical Medicine and Rehabilitation,

vol. 70, no. 10, pp. 767–771, 1989.

[162] J. S. Lewin, T. M. Hebert, J. B. Putnam, and R. A. DuBrow, “Experience with the

chin tuck maneuver in postesophagectomy aspirators,” Dysphagia, vol. 16, no. 3, pp.

216–219, 2001.

[163] J. A. Logemann, “Role of the modified barium swallow in management of patients with

dysphagia,” Otolaryngology-Head and Neck Surgery, vol. 116, no. 3, pp. 335–338, 1997.
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