
EXPLOITING THE SYNERGY BETWEEN

SCHEDULING AND LOAD SHEDDING TO

FACILITATE DIFFERENTIATED LEVELS OF

SERVICE FOR CONTINUOUS QUERIES

by

Thao Nguyen Pham

B.Sc. in Information Technology, HCM University of Science, 2004

M.Sc. in Computer Science, University of Pittsburgh, 2014

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Thao Nguyen Pham

It was defended on

April 8th 2016

and approved by

Panos K. Chrysanthis, Professor, University of Pittsburgh

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

Adam J. Lee, Associate Professor, University of Pittsburgh

Christos Faloutsos, Professor, Carnegie Mellon University

Dissertation Advisors: Panos K. Chrysanthis, Professor, University of Pittsburgh,

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

ii

EXPLOITING THE SYNERGY BETWEEN SCHEDULING AND LOAD

SHEDDING TO FACILITATE DIFFERENTIATED LEVELS OF SERVICE

FOR CONTINUOUS QUERIES

Thao Nguyen Pham, PhD

University of Pittsburgh, 2016

Data Stream Management Systems (DSMSs) offer the most effective solution for processing

data streams by efficiently executing continuous queries (CQs) over the incoming data. CQs

inherently have different levels of criticality and hence different levels of expected quality

of service (QoS) and quality of data (QoD). Adhering to such expected QoS/QoD metrics

is even more important in cases of multi-tenant data stream management services. In this

dissertation, we propose DILoS, a framework that supports differentiated QoS and QoD for

multiple classes of CQs by tightly integrating priority-based scheduling and load shedding.

Unlike existing works that consider scheduling and load shedding separately, DILoS is a novel

unified framework that exploits the synergy between them. For the realization of DILoS, we

propose ALoMa and SEaMLeSS, two general, adaptive load managers. Our load managers

can also be used standalone and outperform the state-of-the-art in three dimensions: (1)

they automatically tune the headroom factor, (2) they honor the delay target, and (3) they

are applicable to complex query networks with shared operators.

We implemented DILoS, ALoMa and SEaMLeSS in our real DSMS prototype system

(AQSIOS) and systematically evaluate their performance using real and synthetic workloads.

Our experimental evaluation of ALoMa and SEaMLeSS verified their advantages over the

state-of-the-art approaches. Our evaluation of DILoS showed that it (a) allows the scheduler

and load shedder to consistently honor CQs’ priorities, (b) significantly increases system

capacity utilization by exploiting batch processing, and (c) enables operator sharing among

iii

query classes of different priorities while avoiding priority inversion.

To further support differentiated QoS and QoD for CQs in distributed DSMSs, we pro-

pose ARMaDILoS, a conceptual framework for large scale adaptive resource management

using DILoS. A fundamental component in ARMaDILoS is CQ migration. For this reason,

we propose and implement UniMiCo, a protocol to migrate CQs without interrupting the

execution of the queries. Our experiments showed that UniMiCo produced correct outputs

and did not introduce any hiccup in the response time of the queries.

Keyswords Data stream, continuous query, scheduling, load shedding.

iv

TABLE OF CONTENTS

PREFACE . xiv

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Approach . 5

1.3.1 Scheduler-load manager synergy framework 5

1.3.2 Adaptive load managers . 5

1.3.3 Large-scale adaptive resource management using DILoS 6

1.4 Contributions . 7

1.5 Outline . 7

2.0 SYSTEM MODEL AND RELATED WORK 9

2.1 System model . 9

2.1.1 AQSIOS . 9

2.1.2 CQ processing . 10

2.1.3 Quality metrics . 11

2.2 Related work: Resource management in DSMS 13

2.2.1 Scheduling . 13

2.2.2 Load shedding . 13

2.2.3 Memory management . 16

2.2.4 Workload distribution and balancing 17

2.2.4.1 CQ migration . 17

2.2.4.2 Other works on large-scale DSMSs 18

v

2.3 Summary . 20

3.0 DILOS: DYNAMIC INTEGRATED LOADMANAGERAND SCHED-

ULER . 21

3.1 DILoS as a general priority-based scheduler and load manager integration

framework . 21

3.2 Inter-class sharing in DILoS . 23

3.2.1 Congestion problem . 23

3.2.2 Handling inter-class sharing in DILoS 25

3.3 Load management challenge . 26

3.3.1 The “when and how much” problem and state-of-the-art 28

3.4 Summary . 30

4.0 SEAMLESS . 31

4.1 Overview . 31

4.2 Implementation . 32

4.2.1 Handling complex query networks 32

4.2.2 Headroom factor auto-adjustment 33

4.3 Experimental evaluation . 35

4.3.1 Experiment settings . 35

4.3.2 Effect of incorrectly-tuned headroom factor on Aurora and CTRL . 37

4.3.2.1 Effect of incorrect headroom factor on Aurora 37

4.3.2.2 Effect of incorrect headroom factor on CTRL 38

4.3.3 SEaMLeSS evaluation . 39

4.3.3.1 Under system environment changes 39

4.3.3.2 With a complex query network 41

4.3.3.3 Sensitivity analysis . 43

4.4 SEaMLeSS’s limitation . 44

4.5 Summary . 45

5.0 ALOMA . 47

5.1 Overview . 47

5.2 Implementation . 48

vi

5.2.1 Observing the response time . 48

5.2.2 Increasing and decreasing the capacity 51

5.2.3 The ALoMa algorithm . 51

5.2.4 Overhead and worst case . 53

5.3 Experimental evaluation . 55

5.3.1 Experiment settings . 55

5.3.2 Experiment results . 57

5.3.2.1 ALoMa vs CTRL under CTRL’s ideal setting 57

5.3.2.2 ALoMa vs CTRL under system environment changes . . . 58

5.3.2.3 ALoMa vs CTRL and Aurora with a complex query network 59

5.3.2.4 ALoMa vs SEaMLeSS under a priority-based scheduler . . 60

5.3.2.5 ALoMa vs CRTL and Aurora with long queries 62

5.3.2.6 Worst-case scenarios . 62

5.4 Summary . 66

6.0 DILOS IMPLEMENTATION AND EVALUATION 68

6.1 DILoS implementation . 68

6.1.1 Load manager . 68

6.1.2 Scheduler . 69

6.1.3 Capacity redistribution . 70

6.1.4 Handling inter-class sharing . 71

6.1.5 Overhead of DILoS . 73

6.2 Evaluation . 74

6.2.1 Experimental settings . 74

6.2.2 Confirming the advantages of DILoS 76

6.2.3 Asserting DILoS robustness . 80

6.2.3.1 QN-A and SDp . 80

6.2.3.2 QN-B and SDr . 83

6.2.4 Sensitivity analysis . 86

6.3 Extensibility of DILoS . 87

6.4 Summary . 88

vii

7.0 LARGE-SCALE ADAPTIVE RESOURCE MANAGEMENT USING

DILOS . 89

7.1 ARMaDILoS . 89

7.2 UniMiCo . 91

7.2.1 Window-based operators . 92

7.2.2 Overview of UniMiCo . 92

7.2.3 Migration timestamp . 93

7.2.4 Calculating the migration timestamp 94

7.2.5 Stopping and resuming continuous queries 96

7.2.5.1 Stopping the query at the originating node 96

7.2.5.2 Starting the query at target node 97

7.3 Experimental Evaluation of UniMiCo . 99

7.3.1 Experiment settings . 99

7.3.2 Experiment results . 100

7.3.2.1 Simple CQ migration: . 100

7.3.2.2 Complex CQ migration: 103

7.4 Summary . 104

8.0 CONCLUSIONS . 105

8.1 Summary of contribution . 105

8.2 Intellectual merit . 106

8.3 Future work . 107

8.3.1 DILoS . 107

8.3.2 ARMaDILoS . 108

8.4 Broader Impact . 109

BIBLIOGRAPHY . 110

viii

LIST OF TABLES

1 Aurora with off-tuned headroom factors . 38

2 CTRL with off-tuned headroom factors . 40

3 Delays and data loss with QN-complex and S-r 42

4 Average delay and data loss when CTRL has optimal setup 58

5 Delays and data loss with QN-complex and S-r 60

6 ALoMa’s and SEaMLeSS’s performance under a weighted RR scheduler . . . 61

7 ALoMa’s properties compared to the state-of-the-art 66

8 DILoS’ advantages shown through average response time and data loss 77

9 Average response time (ms) with SD-p and QN-A 82

10 Average data loss (%) with SD-p and QN-A 82

11 Average response time (ms) with SD-r and QN-B 85

12 Average data loss (%) with SD-r and QN-B 85

ix

LIST OF FIGURES

1 AQSIOS System model . 3

2 Motivation example . 4

3 Overview of the proposed DILoS framework 22

4 DILoS with inter-class sharing . 24

5 Congestion problem . 25

6 A query network not supported by CTRL . 30

7 Input rate of the real data in S-r and SD-r 36

8 Effect of headroom factor tuning on Aurora 38

9 Effect of incorrect tuning of headroom factor on CTRL 39

10 Effect of environment changes on CTRL and adaptation of SEaMLeSS 41

11 Response times with QN-complex and S-r . 42

12 Effect of different headroom adjustment periods on SEaMLeSS 44

13 Response time and system’s load state with increasing input rate 49

14 Cost fluctuation in response to changes of input rate 50

15 Response time with QN-flat and S-r . 57

16 Effect of environment changes on CTRL and adaptation of ALoMa 59

17 Response times with QN-complex and S-r . 60

18 ALoMa vs SEaMLeSS under weighted RR scheduler 61

19 Performance of ALoMa, CTRL and Aurora with QN-long and S-r 63

20 Performance with workload increasing to worst case 64

21 Response time with background job coming and leaving at different frequency 65

22 Per-class load management with ALoMa without inter-class sharing 69

x

23 Per-class load manager with inter-class sharing 72

24 Input rate changes for class 1 - input setup SD-p 75

25 Response times with SD-c, QN-A, DILoS, and inter-class sharing 77

26 Headroom factor estimated, with SD-c, QN-A, and one ALoMa per class . . . 78

27 Headroom factor estimated, with SD-c, QN-A, and DILoS’ full synergy 78

28 Response times with SD-p, QN-A, and DILoS (with sharing) 80

29 Estimated headroom factors, with SD-p, QN-A, and DILoS (with sharing) . . 81

30 Response times with SD-r, QN-B, and DILoS (with sharing) 83

31 Estimated headroom factors with SD-r, QN-A, and DILoS (with sharing) . . 84

32 Data loss at different lengths of the capacity redistribution cycles 86

33 ARMaDILoS system model . 90

34 UniMiCo’s migration strategy . 93

35 Calculating migration timestamp with two consecutive windows 95

36 Example of a output tuples from a window operator in AQSIOS/STREAM . 100

37 Result of Q1 around the migration point . 101

38 Response time of Q1 around the migration point 101

39 Result of Q2 around the migration point . 102

40 Response time of Q2 around the migration point 102

41 Result of the complex query Q3 around the migration point 103

42 Response time of Q3 around the migration point 104

xi

LIST OF ALGORITHMS

1 ALoMa . 54

2 UniMiCo protocol at target node . 98

3 UniMiCo protocol at originating node . 98

xii

LIST OF EQUATIONS

3.1 Equation (3.1) . 26

3.2 Equation (3.2) . 27

3.3 Equation (3.3) . 28

4.1 Equation (4.1) . 32

4.2 Equation (4.2) . 32

4.3 Equation (4.3) . 33

5.1 Equation (5.1) . 51

5.2 Equation (5.2) . 52

6.1 Equation (6.1) . 71

7.1 Equation (7.1) . 94

7.2 Equation (7.2) . 94

xiii

PREFACE

Looking back, I feel that the thing I treasure the most during this journey is not this

dissertation, but the love and support I have had throughout the years...

I am in deep gratitude to my advisor, Panos K. Chrysanthis. To me Panos is a whole-

hearted mentor who has always been available for me with his support, advices, and encour-

agement. He is also a role model for me about devotion and integrity - whether that is when

he is doing research, preparing his teaching material, or reviewing a peer’s paper. Panos, I

thank you for all your care, understanding and trust, and for the countless late nights you

worked to give me feedbacks on my work.

I would like to thank Alexandros Labrinidis, who has been my very supportive co-advisor.

Not only did Alex provide me with countless feedbacks and lots of technical helps, he has

been a friend who shared with us, his graduate students, many fun activities and memorable

moments.

I would like to thank Adam J. Lee, whose role in my years at PITT has been beyond

a committee member. I greatly appreciated Adam’s careful review of my work and many

helpful feedbacks. I was touched when he shared with me his experience as a new parent to

help me prepare for the arrival of my baby. I also admired Adam’s enthusiasm in his class

that I attended, which made the class so well-organized, lively, and helpful.

I would also like to thank Christos Faloutsos for serving in my thesis committee and

providing me with many feedbacks to improve my work.

I thank the staff and faculty of the Computer Science Department, especially Kathy

Allport, Karen Dicks, Nancy Kreuzer, Keena Walker, Sangyeun Cho, and Daniel Mosse for

their help, sharing and advices.

I thank my labmates and classmates: Roxana Gheorghiu, Shenoda Guirguis, Lory Al

xiv

Moakar, Rakan Maddah, Santiago Bock, Ruhsary Rexit, Vyasa Sai, Di Bao, Alex Connor,

Musfiq Rahman, Sriranjani Mandayam, and many others, for all the collaborations, dis-

cussions, sharing and laughers we had together. Thanks for the late night puzzles in the

lab, for the badminton games, and for the frozen-yogurt breaks. Thanks for giving me the

opportunity to learn about many different cultures.

I thank my dear friend, Hoang Tran, who shared with me every joy and sadness since

the start of this journey. Hoang, you would be there for me when I needed, no matter how

busy you were. I will never forget what you told me, that busy or not was all about setting

priorities.

I thank my other Vietnamese friends, Ha Nguyen, Anh Le, Ngan Nguyen, Son Le, Thuy

Bui, Phuong Pham, who gave me the feelings of home away from home, and cheered me up

with your warm friendship.

I am grateful to my mom and dad for their unconditional love. Through all the hardship

of our family, they never stopped believing that their shy and slow little girl could fly up

high, and I am deeply thankful for that.

I thank my husband, Tuan Nguyen, for his love and support, for putting our son to bed

every night and taking him out every weekend so I could finish this dissertation. I thank my

little son, Nam Nguyen, for entering my life and bringing a whole new meaning to it. Tuan

and Nam, thank you for sharing this life with me, through all the ups and downs...

I would like to acknowledge that the work in this dissertation has been supported in

part by NSF(IIS-0534531, CAREER IIS-0746696), a gift from EMC/Greenplum, a VOSP

fellowship from Vietnam and an Andrew Mellon Predoctoral Fellowship.

xv

1.0 INTRODUCTION

1.1 MOTIVATION

Today the ubiquity of sensing devices as well as mobile and web applications continuously

generate a huge amount of data which takes the form of streams. These data streams are

typically high-volume, often high-velocity (speed) and high-variability (bursty). In order to

meet the near-real-time requirements of the monitoring applications and of the emerging

“Big Data” applications [48], incoming data streams need to be continuously processed and

analyzed. Data stream management systems (DSMSs) (e.g., [13, 19, 27, 29, 10, 6, 5]) have

become the popular solutions to handle data streams by efficiently supporting continuous

queries (CQs). CQs are stored queries that execute continuously, looking for interesting

events over data streams as data arrives, on the fly.

CQs are registered for different purposes and inherently have different levels of criticality.

For example, assume the data feed of a personal health monitoring device such as Fitbit,

Microsoft Band, Apple’s iWatch, etc. Also assume two continuous queries: CQ1, that mon-

itors the user’s heart rate for the possibility of a heart attack due to abnormally low or high

beats per minute (as appropriate for the particular user given his/her age, physical condi-

tion and medical history), and CQ2, that monitors the user’s overall activity level (using

the heart rate monitor, a pedometer and other sensors) in order to nudge him/her to remain

physically active. Clearly, CQ1 is more critical than CQ2 and as such can demand a higher

priority than CQ2 in sharing the DSMS’ processing capacity. Another example of CQs with

different priorities is in the financial sector. Assume three CQs that monitor the transactions

of credit card uses: CQ3 is used to detect fraud (e.g., identity theft), CQ4 is used to notify

users of low credit balance remaining in their accounts and CQ5 is trying to find good tar-

1

geted advertisements for the credit card users. Again, these three CQs have different levels

of criticality with CQ3 being more important than CQ4 which is more important than CQ5.

A third example is one where CQs to detect a tsunami [7] would have higher priority than

those that detect, understand and predict El Nino and La Nina [11].

In contrast to single-application DSMS, which is dedicated to a specific application,

multi-tenant DSMSs host multiple applications and normally provide different service groups

with different costs (e.g., gold, silver, bronze etc.). The differentiated service groups deter-

mine the priority of the queries subscribed to each group and hence the quality guarantees,

i.e., service level agreements (SLAs).

Clearly, it is important to support priority-based query processing in DSMS. CQ’s priority

has been discussed in research prototypes such as Aurora [13], MavStream [27], and IBM

System S [10], and AQSIOS [32].

1.2 PROBLEM STATEMENT

For the above reasons, we consider a DSMS (Figure 1) that supports multiple classes of

service for CQs. Each CQ submitted to this DSMS belongs to a query class that is associated

with a priority. The system admits queries based on its provisioned processing capacity and

the expected loads of the queries. However, due to the burstiness of data streams, the

incoming workload can be, at times, higher than the system capacity, making the system

overloaded. The two important requirements for this multiple-CQ-priority DSMS are:

• Guarantee an upper-bound on the response time: Most stream applications re-

quire an upper bound on the response time, which is also referred to as Quality of Service

(QoS) in the worst case, or delay target. Each class can require a different delay tar-

get; normally a higher-priority class requires a smaller delay target. Because of this

requirement, when the DSMS is overloaded, it has to apply load shedding, i.e., drops an

appropriate amount of data to avoid further cost of processing it.

2

Figure 1: AQSIOS System model.

• Minimize data loss with priority consideration: With load shedding applied to

honor delay targets, all classes desire as little data loss, i.e., as high Quality of Data

(QoD), as possible. At the minimum, each CQ class expects QoD according to their

priorities.

Previous works have partially addressed these requirements, either through scheduling

(e.g., [25, 58]) or through load shedding (e.g., [74, 27]), yet these were only considered in

isolation. Clearly, enforcing worst-case QoS in overload situations while providing prioritized

QoD for query classes requires the participation of both the scheduler and the load manager

(i.e., load shedder): the load manager decides how much data to drop from each class,

whereas the scheduler decides how much processing time each query has, which consequently

governs how much data the class can process in a period. The challenge of how to integrate

scheduling and load shedding in a way to consistently honor the priorities of CQs still remains.

Even if the load manager and the scheduler are both aware of the CQs’ priorities and enforce

policies that seem to be consistent with each other, undesired situations can still happen, as

we demonstrate in the example below.

3

Figure 2: Motivation example (Example 1).

Example 1. Consider a simplified example of two CQs, Q1 and Q2, in which Q1 and Q2

have the same cost, yet Q1’s priority is twice as high as Q2. We illustrate this example in

Figure 2. Without going into the details of the scheduling and load shedding policies, let

us consider a period during which the scheduler effectively executes 10 tuples of Q1 and

5 tuples of Q2 in every second, for a total processing capacity of 15 tuples/s. The DSMS

also has a prioritized load shedder that, once detecting the excess load, will drop twice as

much load from Q2 as from Q1. Assuming that the input rate coming to both Q1 and Q2

is 9 tuples/s (for a total of 18 tuples/s), the load shedder calculates the excess rate to be 3

tuples/s and, following its policy, will drop 1 tuple from the input of Q1 and 2 tuples from

the input of Q2. We observe two problems. First, shedding 2 tuples from Q2 is not sufficient

to control Q2’s load since 7 tuples/s is still higher than Q2’s processing rate of 5 tuples/s.

As such, the response time of Q2 increases unboundedly and the system would violate any

delay target set for Q2. Second, shedding from Q1 while it is running underloaded is a waste

of the system processing capacity and unnecessarily affects Q1’s QoD.

The problems described above are due to the fact that the load manager is not aware

of the way the scheduler is enforcing its priority policy, and that the scheduler does not

recognize the level of capacity usage of each CQ to fully utilize the system capacity.

Our hypothesis is that the proper cooperation between the scheduler and the load manager

would consistently provide differentiated levels of services for CQs, while using the system

capacity more effectively.

4

To the best of our knowledge, we were the first to identify and analyze the problem of

integrating a priority-aware scheduler and load manager in a DSMS.

1.3 APPROACH

1.3.1 Scheduler-load manager synergy framework

We propose DILoS (Dynamic Integrated Load Manager and Scheduler) [67, 66], a novel

framework that exploits the synergy between the load manager and the scheduler to enable

consistent and effective integration between the two modules in the DSMS.

Intuitively, for our simplified example (Example 1), DILoS allows the load manager to

recognize that Q2 is overloaded by 4 tuples/s and Q1 is 1 tuple/s underloaded, so it drops 4

tuples from Q2 and nothing from Q1. At the same time, the load manager reports the load

status of each CQ to the scheduler. Hence, in the next cycle the scheduler can choose to

give the redundant CPU time from Q1 to Q2, enabling Q2 to process up to 6 tuples/s. If

such an adjustment is made, the load manager will reduce the shedding of Q2 to 3 tuples,

improving Q2’s QoD while fully using the system capacity.

Our experimental evaluations, with both complex synthetic and real input rate patterns,

show the robustness of DILoS and confirm that DILoS achieves the following two basic goals:

• Consistently supporting multiple levels of priorities for CQs.

• Maximizing the utilization of the system processing capacity to reduce the need for load

shedding.

1.3.2 Adaptive load managers

The implementation of DILoS requires a load manager that is capable of recognizing the

scheduler’s policy and acts accordingly. Given that state-of-the-art load shedders do not

fulfill this requirements, we propose two adaptive load managers, namely SEaMLeSS [65]

and ALoMa [66]. Besides enabling the realization of DILoS, SEaMLeSS and ALoMa are also

5

general, adaptive load managers that perform better than the state-of-the-art alternatives

in three dimensions:

• Automatically tune the headroom factor.

• Honor the delay target.

• Applicable to complex query networks with shared operators.

In realizing DILoS, we choose ALoMa because, compare to SEaMLeSS, ALoMa has the

advantages of not depending on the fairness of the DSMS scheduler, and easier to be imple-

mented in different DSMSs, as we explain in Sections 4.4 and 5.3.2.4.

1.3.3 Large-scale adaptive resource management using DILoS

The elasticity brought by modern cloud infrastructure provides further solution for DSMSs

to handle their highly-variable workload, in addition to load shedding: the system can scale

out to deal with overwhelming or prolonged overloading, and scale in when the load is light.

The stated problem still persists in such a cloud-based DSMS, but with additional challenges,

as both the processing capacity and query network now span across multiple nodes.

We outline ARMaDILoS (Adaptive Resource Management using DILoS), a conceptual

framework for adaptive resource management in cloud DSMSs. ARMaDILoS aims to extend

the stated goals of consistently honoring CQs’ priorities and increasing system capacity

usage in a multi-node cluster. The framework has DILoS as a local workload management

unit which, when combined with similar units from other nodes, support a global workload

management that considers priority-based capacity distribution across the whole system.

A fundamental component in ARMaDILoS is CQ migration. Although the full implemen-

tation of ARMaDILoS is beyond the scope of this dissertation, we propose and implement

UniMiCo (Uninterruptible Migration of Continuous Queries), a protocol to migrate CQs

because it plays a key role in the framework. UniMiCo [64] supports CQ migration without

the need to migrate the states of stateful operators and does not cause any down time in

CQ processing. Such a migration scheme is vital for the success of an elastic, cloud-based

DSMS model, as the stream applications usually expect CQ’s output in near real-time and

hence cannot accept query migration that adds latency by stopping and resuming a CQ.

6

The protocol has been designed in a general way to handle both time-based and tuple-based

window. Moreover, it allows migrating a query with multiple stateful operators, each of

which could have a different window specification.

1.4 CONTRIBUTIONS

This dissertation makes the following contributions:

• DILoS, a novel framework that allows consistent integration between the scheduler and

load manager in a DSMS to support multiple priority classes of CQs. DILoS also solves

the congestion problem typically encountered when there is operator sharing between

classes of different priority in a fully optimized query network

• ALoMa and SEaMLeSS, two new general, practical DSMS load shedders that outper-

form the state-of-the-art in deciding when the DSMS is overloaded and how much load

needs to be shed. At the same time, they are adaptive load management schemes that

enables the realization of DILoS.

• UniMiCo, an interruptible migration protocol for CQs that does not cause any down

time in CQ processing.

• Prototype implementation: All the proposed schemes, namely DILoS, ALoMa, SEaM-

LeSS, and UniMiCo are implemented on AQSIOS [32], our real DSMS prototype. DILoS

with ALoMa has been released with AQSIOS 2.0 [4], providing a basic experimental

platform for future work on DSMS resource management.

We provide thorough experimental evaluation of the proposed approaches, and compare their

performance to the state-of-the-art when applicable (i.e., for ALoMa and SEaMLeSS).

1.5 OUTLINE

Chapter 2 presents the background on our assumed DSMS and studies the related work on

workload and resource management in DSMSs. Chapter 3 formally analyzes the problem

7

and presents the overview of our proposed DILoS framework. Chapters 4 and 5 describe

our work on SEaMLeSS and ALoMa, respectively. Chapter 6 presents an implementation

and evaluation of DILoS using ALoMa, with a discussion on the possibility of incorporating

different schedulers and load shedders. We ourline ARMaDILoS and present UniMiCo in

Chapter 7, and then conclude in Chapter 8.

8

2.0 SYSTEM MODEL AND RELATED WORK

In this chapter, we first present background on DSMS and CQ processing, with a focus

on our assumed system model and experimental platform. We then discuss in more detail

the state-of-the-art of DSMS resource management, including scheduling, load shedding,

memory management, and workload distribution and balancing.

2.1 SYSTEM MODEL

2.1.1 AQSIOS

Like most other DSMS architectures (e.g., [13, 19, 29]), our assumed DSMS (Figure 1) has

a CQ processing engine, together with a query optimizer, a scheduler, and a load manager/

shedder. Users register CQs which are executed as data arrives. The DSMS connects to one

or more stream sources, which feed data tuples continuously to the CQs.

We consider a multi-tenant DSMS in which each submitted CQ belongs to a priority

class. We assume that the query class priorities have been quantified into discrete values,

with higher value meaning higher priority.

AQSIOS [32] is our DSMS prototyped based on the above system model. AQSIOS is

inherited from STREAM source code [19], written in C/C++. Extensions made by the

ADMT Lab at the University of Pittsburgh include new operator implementation [45], opti-

mization strategy [46], new scheduling policies [71, 57], and all the schemes proposed in this

dissertation.

AQSIOS is the platform for all of our experimental evaluation presented in this dis-

9

sertation. Like STREAM, AQSIOS accepts queries written in CQL language [19]. System

parameters such as memory pool size, scheduling method, load shedding scheme, and number

of CQ classes and their priorities can be specified in a configuration file prior to execution.

Currently, all the query processing in AQSIOS, including scheduling and load management

tasks, is single threaded (i.e., they are scheduled to run sequentially). AQSIOS reads data

stream from files, simulating each tuple’s arrival time based on the timestamp of the tuple.

Output tuples are also written to files.

Toward an implementation of ArMaDILoS, our resource management framework for

distributed DSMSs, AQSIOS is extended with communication threads, which reports the

capacity usage of each class to the coordinator, receives requests from the coordinator, and

communicates with the other AQSIOS node during a CQ migration (Figure 33). These

threads run in parallel with the main thread which executes CQs. Note that we use this

version of AQSIOS only in the experimental evaluation of UniMiCo, our CQ migration

protocol (Chapter 7).

2.1.2 CQ processing

Each submitted CQ is compiled and optimized into a query plan consisting of multiple

relational operators (e.g., select, project, join, or aggregates). In addition, the query plan

also consists of one or more source operator and an output operator. A source operator

accepts tuples from a corresponding stream source and transforms the tuple into internal

representation format so that it can be processed by the subsequent operators. The output

operator converts the output tuples from internal format back to a form understood by

stream applications, and either writes the output tuples to a file or database or streams

them to applications.

A continuous query plan can be conceptualized as a data flow tree [13, 20], where the

nodes are operators that process tuples and edges represent the flow of tuples from one

operator to another. An edge from operator Oi to operator Oj means that the output of Oi

is an input to Oj. Each operator has an input queue where input tuples are buffered until

they are processed. Each operator has one or more input queues depending on its type.

10

Tuples produced by an operator will be placed in the input queues of the next operators

downstream. In AQSIOS, all the queues have a fixed size which can be set in the configuration

file prior to execution. If the input queue of an operator is full, the corresponding upstream

operator has to pause its processing, waiting for the tuples in the queue to be consumed by

the downstream operators.

AQSIOS supports batch processing, which allows each operator to process up to a certain

number of input tuples in the operator’s turn, if the tuples are available in its input queue.

This reduces the context switching overhead and hence reduce the processing cost per tuple.

The batch size is set at a reasonable value (50 in our experiments), such that the total time

to process each batch is much lower than the worst-case response time (i.e. delay target).

Multiple queries with common sub-expressions can be partially merged together to elimi-

nate the repetition of similar operations [69]. For example, in Figure 1 the segment containing

the first two operators of Q1 is shared with Q2. In such a case, the intermediate tuples pro-

duced by the shared operator will be placed in a shared input queue for the two operators

downstream.

In a query, each operator Oi is associated with two parameters: processing cost and

selectivity, as defined below:

Definition 1. Processing cost (ci) is the amount of time needed for Oi to process an input

tuple.

Definition 2. Selectivity (seli) is the number of tuples produced after processing one input

tuple. seli is less than or equal to 1 for a filter operator and it could be greater than 1 for a

join operator.

2.1.3 Quality metrics

For each CQ in the DSMS, we define below the quality metrics for the CQ:

Definition 3. The response time of a tuple is the time elapsed between when the tuple

enters the system until it is output. For a tuple ti, let tai and toi denote the arrival and

output time of the tuple, respectively, then the response time yi of ti is calculated as:

11

yi = toi − tai

Only tuples that are output by the query (i.e, not being filtered) contribute to the

measuring of response time.

Definition 4. The worst-case Quality of Service (worst-case QoS) of a query is the highest

response time tolerated by the stream applications using the query. In this dissertation, the

worst-case QoS is also referred to as delay target, denoted by D. We assume that all queries

in the same class have the same delay target.

Different works have been proposed targeting the QoS (i.e., response time) of a DSMS,

among which are query optimization (e.g., [78, 17, 46, 60]) and operator scheduling (e.g.,

[71, 20]). While query optimization can help the system to handle a higher incoming load, it

can not guarantee that the DSMS will be free from overload situations. Scheduling policies in

general are able to reduce the average response time of the query outputs since they optimize

for queuing time, however they cannot control the response time once the system has got

into an overload state (i.e., when the rate of the input load is higher than the processing

rate of the system). In such cases, the load manager may shed a necessary amount of load

to prevent the response time of the system from increasing unboundedly, which raises the

need for a metric on the quality of data.

Definition 5. The Quality of Data (QoD) of a query is the percentage of output tuples

retained after load shedding, compared to the case with no shedding. Let Ns and N be the

number of tuples with and without shedding, respectively, QoD is calculated as follows:

QoD(%) =
Ns

N
× 100

Conjecture: A good load manager should maximize QoD (i.e., minimize data loss) while

controlling the response time to the specified delay target.

Note that Definition 5 for QoD is only meaningful for CQs in which shedding of input

tuples results in proportional loss of output tuples (e.g., CQs consist of select, project, and

join operators). For CQs with aggregations, shedding of input tuples results in inaccuracy of

output tuples other than loss of them. In such cases, we use shedding rate as a comparative

evaluation for QoD.

12

2.2 RELATED WORK: RESOURCE MANAGEMENT IN DSMS

2.2.1 Scheduling

Scheduling of CQs in a DSMS focuses on time-sharing the system resources among the query

operators. During execution, the scheduler is responsible for assigning each operator a time

slot to run, deciding the order to execute the operators in the query network. While Round

Robin (RR) has been used as the default scheduling policy in many prototype DSMS systems

such as [19, 13], there are many other proposals for scheduling the execution of CQs in a

DSMS with the objective of optimizing certain performance goals such as minimizing latency

([25, 71]) or minimizing memory requirements ([18]). A hybrid approach that balances both

memory and latency optimization has also been considered [28].

Related to our work on multi-class CQ processing are the works in [13, 25, 27], which

consider latency-based QoS functions for each query, and in [79, 52, 81] which schedule real

time CQs where each CQ has a deadline. These schemes try to optimize the overall benefit of

the system rather than explicitly guarantee the benefit of each class according to its priority.

In our previous work [58], we proposed another scheduling scheme, called CQC (Continuous

Query Class scheduler), in which each query belongs to a class of a specific relative priority,

and the benefit of each class according to its priority. CQC was later extended in [57]. None

of these works on priority-based schedulers considers the integration with a load shedder to

handle overload situations.

2.2.2 Load shedding

Load shedding has been proposed in many DSMS architectures as a method to handle

overloading [19, 13, 68, 50]. We define below some basic concepts commonly used in the load

shedding problem:

Definition 6. The incoming load, denoted by L, is the amount of time needed to process

all the tuples that come to the system per time unit (say, a second). L is proportional to

the processing cost of the whole query network and the input rate of the input stream.

13

Definition 7. The system capacity, denoted by LC , represents the fraction of each time unit

the system can spend on processing the incoming tuples. Since the DSMS might share the

CPU with some other processes and also spends part of its processing time on other tasks

such as context switching, statistics collection, etc., this fraction of time for tuple processing

is normally less than 1 and is approximated by a a headroom factor, H, which is typically in

the range of (0,1).

Definition 8. Overload refers to a state of the DSMS (or a class of CQs) at which the

incoming load L to the system is higher than the system capacity LC . In such a situation,

the queuing time accumulates over time, causing the response time to increase unboundedly,

exceeding the specified the delay target.

In [74], Tatbul et al. articulate four basic questions for a load shedder: when, how much,

where and what to shed. This dissertation focuses on the first two questions: when and how

much.

The works in [74, 73, 21] mainly focus on the question of where to shed, i.e., given

an amount of excess load, which positions in the query network should drop how much of

the load, such that the loss of quality of data is minimized. [59] basically considers the

same problem, but the model is for aggregates and mining queries and aims at deciding the

shedding ratio for each of the keys of the queries.

The question of what to shed has been addressed in many of previous works in load

shedding. Instead of randomly dropping tuples, semantic models are used in [74, 31, 30, 36]

to increase the usefulness of the query results after shedding. Also related to this question,

in [68, 61, 42, 41, 43] the authors propose methods to shed load other than simply discarding

tuples from a query network. In [68], dropped tuples are routed to a lightweight shadow plan

that produces approximated results. The work in [61] is customized for spatio-temporal data

streams, in which a dropped tuple is approximated by the mean value of the cluster it belongs

to. In [41, 43] the system load is shed by selecting only subsets of the windows to perform

the joins. In [42] the DSMS delegates the load shedding task to the source filters, which

apply varying amounts of shedding to different regions of the data space. [75] considers a

whole window, not a single tuple, as the shedding unit.

14

There are a few previous works addressing the questions of when and how much to shed

([76, 74, 68, 50]), the first questions to be answered by any load shedding module. Compared

to the other existing schemes that address these questions, CTRL [76] and Aurora [74] are the

most mature schemes in term of reacting on time to overload situations as well as minimizing

data loss. Compared to each other, CTRL and Aurora have complementary strengths: CTRL

is able to control the response time to the delay target, while Aurora is able to handle complex

query networks (with join, aggregate and shared operators). None of them, however, has

both of these two necessary abilities, i.e., delay-target awareness and applicable to all types

of query network. In addition, both of these schemes depend on a manually-tuned headroom

factor, which is subject to change during execution and requires constant monitoring and

human intervention. In this dissertation, we propose ALoMa and SEaMLeSS, two adaptive

load managers that have all these required properties of a practical, general-purpose load

shedding scheme. ALoMa and SEaMLeSS enable us to build our proposed scheduler-load

manager integration framework. Compared to each other, ALoMa is more flexible because

it does not require the fairness of the scheduling policy as SEaMLeSS does.

Admission control can be viewed as a more proactive way of load shedding: the sys-

tem decides to drop some of the queries rather than the data. Typically, admission control

schemes select a subset of CQs to run every period of time or epoch based on some optimiza-

tion objective. For example, in [80], the goal is to maximize the utilization of the system

and the overall importance of the CQs, whereas in [56], the goal is profit maximization,

strategyproofness and sybil immunity even at the expense of system utilization. Admission

control is not considered in this dissertation. However, like the works on where and what

to shed, admission control can be used in combination with a load shedder such as ALoMa,

which gives the answer to the questions of when and how much to shed.

Combination approaches have been proposed in different settings. For example, [44]

combines admission control and load shedding (i.e., update shedding and query shedding) in

a mobile CQ setting. In [40], the authors model both load shedding and resource allocation

as a dual optimization problem, formally solves the problem and illustrates the solution using

a simulation. This work does not consider query priorities in both resource allocation and

load shedding and assumes a known system capacity (i.e., resource budget).

15

Few of the previous works on load shedding have considered the priority of the CQs. CQ

priorities have been implicitly considered through loss-tolerance QoS (i.e., QoD) graphs [74]

or maximal tolerable relative error [50, 27]. However, the emphasis of these approaches is

on load shedding: the load shedder is unaware of the priorities the scheduler is enforcing,

and there is no unified priority model which a load manager and a scheduler can together

support consistently. As a result, unlike our DILoS framework, none of these load shedders

can provide feedback to the scheduler to improve scheduling decisions.

In [80], the authors consider the problem of resource allocation and job admission for

DSMS deployed on multiple nodes, taking into account the rank of the jobs. This work also

aims at maximizing resource utilization and giving higher admission priority to jobs with

higher rank. However, this work considers job admission rather than load shedding and does

not provide any guarantees on QoS and QoD for different ranks as our scheme does.

2.2.3 Memory management

Constrained by the near-realtime requirement of monitoring application, a DSMS normally

executes the CQs over the incoming data stream in memory, limiting disk I/O overhead.

Memory usage in a DSMS mainly falls into two categories: operator state and buffer space

for queued input and intermediate results.

Because a data stream is infinite, the memory required to maintain the states of some

stateful operators might be unbounded. As characterized in [15], a set of CQs can be com-

puted using bounded memory (e.g., selection, duplicate-preserving projection, min/max),

while the other requires memory that grows linearly with the input size (e.g., join, duplicate-

eliminating projection, most aggregation with group-by). Because a data stream is infinite,

most DSMS employ techniques such as sliding window (e.g., [19, 13]), punctuation ([77]) or

heartbeat [19] to divide the stream into overlapping, finite data sets, over which the contin-

uous queries are evaluated. Such techniques help to bound the memory used to maintain

the states of stateful operators, in addition to helping to produce timely outputs.

There have been several works trying to optimize the memory used for CQ processing,

targeting both categories of memory consumption. Adaptive query processing techniques are

16

usually used to adjust in-memory states to cope with memory limitation. Example of these

are [39], in which part of the state of a join operator is adaptively pushed to disk yet trying

to hide disk I/O latency, and [24], in which window size and slide are increased/decreased

according to the load state of the system. On the other hand, scheduling strategies are

proposed to minimize the queue size, including [20], [22], and [28]. The general idea of these

schedulers is to execute first the operator that can reduce the most its input size. In [55],

the authors present preliminary study on the implication of different types of memory on

the performance of CQs.

Our assumed DSMS system implements sliding windows, which is the most generic and

commonly used method. For the work in this dissertation, we assume that the available

memory is sufficient for all computing needs, hence no CQ priorities need to be considered

in memory allocation. The memory manager simply allocates memory blocks whenever there

are requests from the operators to maintain their states or to accommodate waiting tuples.

2.2.4 Workload distribution and balancing

2.2.4.1 CQ migration Flux [70] was one of the early attempts to introduce a monitoring

and load detection operator in a query network, and provided a state migration protocol to

move CQs across different machines. Fernandez et al. [26] presented a solution in which

backup Virtual Machines (VMs) are used in a distributed network of VMs for periodically

storing state. In the event of load imbalance, CQs are migrated by receiving the state from

the backup VMs, and resume execution by the time the full state has been transferred,

along with incremental changes. Recently, Lin et al. [54] discussed an operation migration

mechanism, which also follows the state migration paradigm.

The efficiency of the migration mechanism is crucial, and no system downtime is ac-

cepted since it translates to loss of data (hence the term “live” in previous work). Further,

performing a migration imposes additional load to a machine, which can sometimes make

matters worse and prolong an overloaded situation.

Our approach on CQ migration shares the basic idea of the Window Recreation Protocol

(WRP) presented in [47]. In WRP, an operator’s state for the migrating window is recon-

17

structed at the target node without the need for state transfer. However, WRP can handle

the migration of a sub-query with only one stateful operator, and considers only time-based

windows. In contrast, UniMiCo’s protocol has been designed in a general way to handle both

time-based and tuple-based window. Moreover, it allows migrating a query with multiple

stateful operators, each of which could have a different window specification. Finally, unlike

WRP, UniMiCo does not need to involve the upstream data source in synchronizing the

migration point.

2.2.4.2 Other works on large-scale DSMSs There have been a number of previous

works on workload distribution and balancing for database systems on the cloud. Since data

partitioning and replication is the key achieving scalability for cloud OLTP databases, many

previous works focus on data migration techniques that avoid service downtime and reduce

latency (e.g., [38, 35, 23]), and new data storage structures associated with “good enough”

consistency level that reduce the data synchronization overhead among the partitions (e.g.,

[37, 34]). For OLAP databases on the cloud, the focus is more on parallelizing the processing

of complex analytical queries, with the map-reduce paradigm receiving a big attention (e.g.,

[33, 14])

A cloud DSMS shares some characteristics with an OLAP database system, where queries

are read-only, long-running and are the focus of workload partitioning. However, while the

load of an analytical query is basically stable during its execution, the load of a continuous

query can fluctuate considerably due to the fluctuation in arrival rate of the incoming streams

or the value distribution of the incoming data. Therefore, while a workload distribution plan

for an analytical query can be fixed with the exception of node failure, that of a continuous

query network has to be re-evaluated on the fly and query/operator migration might need

to happen frequently for load balancing purposes.

There have been previous works on finding a query network deployment that is resilient

to workload fluctuation at run-time [82, 72, 53]. Other works are on strategies to parallelize

continuous queries across multiple nodes, such as [83, 47]. The work in [26] also integrates

fault tolerance and scaling out of stream operators. In [63] and [62], the authors consider

the problem of splitting CQ processing between DSMS server and client mobile devices, with

18

the goal of minimize power consumption. These work have different goals from ours, as they

do not target priority-based adaptive resource management.

In [80], the authors discuss job admission in IBM System S, assuming a highly-overloaded

DSMS where load shedding is not sufficient. In this system, in every epoch continuous

stream processing jobs are considered for admission and assigning to a set of serving nodes.

The rank of the jobs is taken into account in the admission decision, yet other factors are

also considered to optimize for the total importance of the selected jobs. This system is

relevant to our proposed work on a multi-node deployment of DILoS with respect to a

dynamic workload distribution plan. However, the system model is different: we assume

that the system is sufficiently provisioned so overloading just happens occasionally, and load

shedding is able to handle it. We also aim at an explicit priority guarantee for each class

of queries before optimizing for some overall metrics. In [84], the author also discusses a

dynamic operator placement scheme to proactively balancing load among nodes. The goal

of the scheme, however, is different from that of our proposed work: the scheme aims at

minimizing worst-case relative performance among the CQs, i.e., aims at providing the same

quality of service for all CQs, while we aim at providing differentiated services for different

class of CQs and maximizing capacity usage.

Other commercial stream processing systems such as Storm [3], Spark [9], Flink [2],

Samza [8] also support distributed and scalable processing of CQs. However, those systems

do not scale automatically as what our ARMaDILoS aims for, but instead require users to

monitor and add or remove the executors themselves. Amazon Kinesis [1] is a multi-tenant,

cloud-based stream processing system, which charges a registered stream a monetary cost

based on the throughput the stream requires. Yet the required throughput has to be specified

upfront, and explicitly increased and decreased by the stream’s owner at runtime. Amazon

Kinesis does not apply load shedding or dynamic scaling to cope with the fluctuation of the

stream load.

A few previous works [51, 49] has proposed dynamic, automatic scaling of cloud DSMS

to cope with variability in input load. However these systems are still at an early stage with

simplified system models. Unlike ARMaDILoS, they do not consider CQ priorities.

19

2.3 SUMMARY

In this chapter we presented the background on our assumed DSMS and studied the related

work on workload and resource management in DSMSs, including scheduling, load shedding,

memory management, and, for cloud DSMSs, workload distribution and load balancing. We

also discussed why previous works could not solve the problem stated in Section 1.2.

Workload and resource management is a common problem in many systems including

DSMS, real-time database, networking, and web services. Although, for each approach, the

basic ideas are shared across systems, every system has its own model and constraints, which

determine the details of the approach. In the scope of this dissertation, our discussion focuses

on workload management in DSMS, which are the most closely-related to our work.

20

3.0 DILOS: DYNAMIC INTEGRATED LOAD MANAGER AND

SCHEDULER

In this chapter we formally analyze the problem of integrating priority-based scheduler and

load manager and present the basic idea of DILoS [67, 66], our framework for the cooperation

between the load manager and scheduler in a DSMS. We also point out the load management

challenges in realizing DILoS, which motivate us to seek for new adaptive load managers.

3.1 DILOS AS A GENERAL PRIORITY-BASED SCHEDULER AND

LOAD MANAGER INTEGRATION FRAMEWORK

At runtime, a priority-based scheduler applies its policy to assign an execution time slot

for each operator in the query network. In general, the scheduler takes into account the

priorities of CQ classes by given a higher-priority class a higher amount of time to execute

the operators of the CQs belonging to the class.

Definition 9. Scheduling policy Let Ck denote the k
th CQ class, with corresponding priority

Pk. At the class level, in a specific time period T a scheduling policy can be represented by

a function fT : Pk 7→ Tk, such that
∑

k(Tk) ≤ T , where Tk is the total time the class Ck

receives during T.

Example 1 in Section 1 suggests that, in a specific period, the load manager can act

consistently with the scheduler’s policy if it knows (1) the current incoming workload of each

class, and (2) the maximum workload each class can handle (i.e., the processing capacity of

the class).

21

Figure 3: Overview of the proposed DILoS framework.

We observed that, within a single class, the load management tasks are the same as what

a general load manager would do for a typical DSMS without CQ priority, i.e., monitoring

system load, calculating excess load based on the system processing capacity, and applying

load shedding fairly for all CQs. In other words, each class can be viewed as a virtual system.

Based on this observation, we propose the DILoS framework in which each class has its

own load manager instance. Each class has an incoming workload Lk and a system capacity

LCk proportional to Tk. We separate the scheduler into two levels: a class scheduler and a

set of local operator schedulers. Each class Ck has its local operator scheduler, which, in each

period T, schedules the operators of the CQs belonging to Ck using the assigned time Tk.

The class scheduler schedules the CQ classes, i.e., determines the function fT (Pk) that maps

the priority of Ck to Tk (capacity distribution policy). In general, the two-level scheduling

can be just a logical separation: the DSMS might not explicitly have the class scheduler, in

which case fT is defined implicitly through the time the scheduler assigns for each operator

of a class.

Figure 3 illustrates our DILoS framework. For simplicity we assume for now that there

is no operator sharing between classes of different priorities. We drop this assumption later

in Section 3.2.

22

The design of DILoS allows the load manager to follow exactly the policy enforced by

the scheduler. Within a class, the load manager instance acts as if it is managing a DSMS

with all CQs having the same priority: it monitors the incoming load, detects and shed the

excess load to comply with the worst-case QoS requirement of the class. The class’ priority

is reflected automatically: the class with higher priority is scheduled with a larger time slot

(bigger processing capacity) and therefore will have a higher QoD (less data loss due to load

shedding) given the same workload.

In addition, the load manager also reports the capacity usage (i.e., the ratio Lk

LCk
) of its

class to the class scheduler. Based on that information, the class scheduler can consider

adjusting its capacity distribution policy to better exploit the system capacity. An example

of such an adjustment is taking the redundant capacity from one class and distributing it to

the classes in need.

The advantage of DILOS’s synergy is not only that it repairs the over-provisioning of

system capacity for some classes, but it also exploits batch processing to further increase

system capacity utilization. We explain further the benefit of batch processing through an

experiment presented in Section 6.2.2.

3.2 INTER-CLASS SHARING IN DILOS

In a fully optimized query network, there can be sharing between classes of different priority.

We explain in this section the congestion problem caused by this inter-class sharing and

show how DILoS solves this problem.

3.2.1 Congestion problem

Given a prioritized scheduler such as CQC, intuitively the shared segment between a query

of high priority and a query of lower priority should remain in the high-priority class in order

not to affect its performance. Figure 4 illustrates this, in which a query of class 1 (higher

23

Figure 4: Inter-class sharing in DILoS, with class 1 (high priority) sharing a segment with

class k (lower priority).

priority) shares a segment with a query of class k (lower priority), and the shared segment

remains in class 1.

However, this still could lead to a situation when the performance of the high-priority

query is negatively affected, which is due to the congestion at the end of the shared segment.

The intermediate tuples produced by the shared segment are placed in a shared queue for

the downstream operators to read from. While the downstream operator belonging to the

high-priority class can consume these tuples fast enough to keep up with the production rate,

the operators belonging to the low-priority class, however, are much slower. Therefore, the

intermediate tuples accumulate and once they fill the queue, the upstream segment has to

stop processing and wait, causing the corresponding high-priority queries also to be blocked.

Note that this problem persists even if each downstream operator has its own input queue

for the intermediate tuples instead of using a shared queue: the upstream shared segment

still needs to postpone its processing if one of the queues becomes full.

24

 1

 10

 100

 1000

 10000

 100000

 1e+06

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 5: Congestion problem: Class 1 sharing a query segment with class 3 and is affected

by the congestion in class 3.

We demonstrate this problem in Figure 5, with an experiment using three classes, with

class 1 having the highest priority and class 3 the lowest. The delay targets of class 1, 2, and

3 are 300ms, 400ms, and 500ms, respectively. In this experiment, we enable the class 1 and

class 3 to share a query network segment consisting of two source operators and two select

operators. Because class 3 is overloaded, the response times of the class 1’s queries that are

shared with class 3 are affected by the congestion and increase dramatically after a certain

period. Class 2, although having lower priority than class 1, is not affected because it does

not share any query segment with class 3.

3.2.2 Handling inter-class sharing in DILoS

Interestingly, the aforementioned problem on priority inversion can be solved with an appro-

priate employment of load management based on the following observation: as long as the

low-priority class can keep up with the incoming workload including the input fed by the

shared segment, i.e., does not become overloaded, there will be no congestion of intermediate

tuples at the end of the shared segment, i.e., the shared queue.

Claim 1: If the load manager manages to keep the response time of the low-priority class

to its delay target, the number of tuples accumulating in the shared queue is no higher than

25

the ratio R between the delay target of the low-priority class and the average processing cost

per tuple at that low-priority class.

Proof: (By contradiction) Let d be the delay target and c the average processing cost per

tuple at the lower-priority class. We define R = d/c.

Assume that the load manager satisfies the delay target d and there are S > R tuples

accumulating in the shared queue.

It is known that the response time of an output tuple is equal to its processing time plus

its waiting time. With S tuples in the shared queue (waiting to be processed by the low-

priority class), the waiting time of a new tuple entering the queue, which is to be processed
by that class, is going to be S ∗ c and its response time t is going to be greater than S ∗ c.

Since S > R and R = d/c then t > d. This contradicts the fact that the load manager can

control the response time of the class to be no more than the delay target (t <= d).

A direct consequence of Claim 1 is that, with per-class load manager enabled in DILoS,

which can guarantee the delay target, as long as the shared queue size is big enough to

contain R tuples, the high priority class is not affected by the congestion problem. This is a

reasonable assumption for the queue size, since this ratio is normally within tens to hundreds

(in our setup it is around 25-50) and can be either estimated in advance or dynamically

extended during execution.

3.3 LOAD MANAGEMENT CHALLENGE

In order to successfully control the load in a CQ class, the class’ load manager needs to (1)

estimate the incoming load of the class and (2) detect the real system capacity of the class.

Estimate the incoming load of a class: In [74], the authors present a method to estimate

the total system load L. We can apply this method with a small modification to estimate

the incoming workload of each class.

Definition 10. The incoming load of class Ck in a time unit, denoted Lk, is given by:

Lk =
∑
i

(rki × load coefk
i) (3.1)

26

where rki denotes the input rate of the ith input stream of class Ck, and load coefk
i is the

load coefficient of the stream.

Definition 11. The load coefficient of the ith input stream of class Ck, denoted load coefk
i ,

in the case of a flat query (i.e., no shared operator), is given by:

load coefk
i =

∑
j

(cj ×
∏

1≤m<j

selm) (3.2)

where cj is the processing cost per tuple of the j
th operator in the path from the input stream

to the corresponding output, and selj is the operator’s selectivity.

In the case of fan-out query plans, i.e., with shared operators, it recursively sums up the

load coefficient of every sub-path along the way. More information can be found in [74].

Since the input rates, costs and selectivities all change frequently at runtime, Lk needs

to be recalculated periodically.

Detect the real system capacity of a class: This is one of the biggest challenges in

materializing DILoS. The state-of-the-art load shedders estimate the system capacity of a

DSMS by using a headroom factor H, which is either assumed available or manually tuned.

This is not practical, since the value of the headroom factor can change during execution due

to changes in the system environment, as explained in Section 3.3.1. In the case of our per-

class load management, the actual capacity portion each class obtains (LCk) is represented

by a headroom factor Hk, which is usually different from its expected value of Tk

T
. This

deviation is partly due to the existence of other tasks, either inside or outside the DSMS,

sharing the CPU time, and partly due to the scheduling details as we will show later in our

experiments. Because the existing load shedders cannot tune H automatically, when serving

as a class’ load manager they would also not be able to recognize the actual capacity portion

that the class has. Therefore, they would not be able to successfully control the load of the

class to honor its delay target.

In addition, we realize that there is also a lack of a load manager that can both strictly

honor the worst-case response time and be applicable to all types of query networks, as we

discuss below.

27

3.3.1 The “when and how much” problem and state-of-the-art

The load shedding problem is typically defined by four questions: when to shed load, how

much load to shed, where in the query network to apply load shedding, and what data should

be shed. Among these, solutions for the two questions of “when and how much to shed”

are crucial for all load shedding schemes to work correctly, while approaches for “where and

what to shed” rely on a good estimation of when and how much to shed and try to reduce

the impact of shedding by exploiting application-specific constrains.

It is therefore important to develop a good load manager that can provide good answers

to the questions of when and how much to shed. Such a load manager is necessary for both

DILoS and any general purpose DSMS. Surprisingly, few existing works have addressed these

questions and none has addressed them thoroughly.

A first attempt to answer the “when and how much questions”, proposed in Aurora [74],

is to compute the coming load L (based on statistics about operators’ costs and selectivities),

compare it to the system capacity LC (which is estimated by a headroom factor H), and shed

an amount equal to L-LC if L > LC . Although the Aurora approach is theoretically sound,

in practice it has the following two problems:

1. Ad-hoc selection of headroom factor: Aurora does not provide a method to pick the

correct headroom factor and assumes one is available.

2. Not delay-target-aware: Aurora simply assumes that the response time will be acceptable

if the excess load is shed. As pointed out in [76], Aurora does not have a self-correcting

mechanism to prevent the response time from exceeding a delay target.

CTRL [76] is a control-based approach proposed to addressed the second shortcoming

of Aurora, i.e., not delay-target-aware. The CTRL approach counts the number of tuples

coming in and out of the system in each period and keeps track of a virtual queue of tuples

queued in the system. The response time (which is called delay in the CTRL paper) of the

tuples coming to the system at the ith period is then estimated by the following equation,

called the delay estimation model:

yi =
c

H
qi−1 =

c.T

H

∑
j<i

[f j
in − f j

out] (3.3)

28

where yi is the response time at the ith period, q(i−1) is the length of the virtual queue after

the (i− 1)th period, c is the processing cost per tuple, T is the length of the period, H is the

headroom factor, fin and fout is the input and output rate, respectively.

Applying control theory on the above model, CTRL computes the maximum number of

tuples allowed to come in the next period such that the response time converges quickly to

the delay target. The experimental results in [76] show that CTRL can keep the response

time around the target, which the Aurora approach cannot, while shedding only 1-2% more

data than Aurora.

CTRL, however, has also two major shortcomings:

1. Manual tuning of the headroom factor: In [76], the authors manually try different values

of H in Eq. 3.3 and pick the value such that the estimated delay best matches the real

response time. This manual, offline tuning is clearly not practical since the headroom

factor is not constant and can change during execution.

2. Not applicable in complex query networks: When the query network has shared operators,

join, or aggregation operators (we call it complex), the one-to-one mapping of an input

tuple to an output tuple, which is the way CTRL estimates the length of the virtual

queue, is no longer correct. Figure 6 gives an example of such a case, where the result

from the Select operator σ2 is shared by two queries, and one of the operators is a

Join (▷◁1). In this case, simply increasing the length of the virtual queue by 1 for each

incoming tuple from the two sources and decreasing 1 for each tuple output or discarded

would not work.

Some other schemes have also been discussed, yet they are not as complete as Aurora and

CTRL. The scheme in [50] is effectively the same as Aurora without taking into account the

headroom factor (i.e., assuming that the headroom factor always equals 1). The schemes in

[68] and [51], like CTRL, monitor the input queue(s) to decide when the system is overloaded,

yet they do not discuss how the number of queued tuples can be used to infer whether the

system is overloaded.

The above limitation of the state-of-the-art load shedders motivates us to develop more

practical load management schemes for DSMSs in general and for DILoS in particular. We

29

Figure 6: A query network with joins and shared operators, for which the delay estimation

model of CTRL would not work.

propose two new schemes, namely SEaMLeSS and ALoMa, that have both the complemen-

tary strengths of CTRL and Aurora, while overcoming their weaknesses. More specifically,

our new schemes aim at the following properties:

• Delay-target aware.

• No manually-tuned headroom factor required.

• Applicable for all types of query networks.

We will present in detail both SEaMLeSS in Chapter 4 and ALoMa in Chapter 5.

3.4 SUMMARY

In this chapter we presented DILoS as a general framework for the cooperation between the

load manager and scheduler in a DSMS. We discussed why the state-of-the-art load shedders

is not sufficient to realizing DILoS: they are not able to recognize the system capacity, and

either fails to control the response time (Aurora) or not applicable to complex query network

(CTRL). This motivates us to propose our adaptive load managers, ALoMa and SEaMLeSS,

which we presents in the next chapters.

30

4.0 SEAMLESS

In this chapter we present SEaMLeSS(SElf Managing Load Shedding for data Stream man-

agement systems) [65], which is our first attempt to build a load managers that achieves the

three desired properties of a practical load manager, namely 1) honoring the delay target,

2) not requiring any manual-tuned headroom factor, and 3) applicable for all types of query

networks. We first outline the basic idea of SEaMLeSS, followed by details of how SEaMLeSS

handles complex query networks and automatically adjusts the headroom factor. We present

experimental evaluations and finally summarize SEaMLeSS’s advantages and limitations.

4.1 OVERVIEW

SEaMLeSS follows the design of CTRL [76] in applying a delay estimation model to estimate

the response time from the number of queued tuples, and using control theory to determine

the shedding amount for the next cycle (Section 3.3.1). This design allows SEaMLeSS, like

CTRL, to effectively manage the response time of the DSMS to honor the delay target.

However, SEaMLeSS has the following improvements over CTRL:

• Instead of simplifying the details of the queued tuples by using the virtual queue, we pro-

pose the concept of queued load and use that in SEaMLeSS to estimate the response time

without any assumption on the type of the query network. This improvement enables

SEaMLess to be applicable to all types of query networks including those containing

joins, aggregations or shared operators.

31

• SEaMLeSS uses the actual response time of the outputs as feedback to automatically

adjust the headroom factor, thereby removing the need for manually-tuned one.

In the next section, we will present in detail the implementation of SEaMLeSS and show

how the above two properties are realized.

4.2 IMPLEMENTATION

4.2.1 Handling complex query networks

We propose the concept of queued load and use it in our solution. In a kth period, SEaMLeSS

estimates the queued load based on the number of tuples in the physical queue of each

operator. Because the tuples in different queues contribute unequally to the total queued

load, we consider the load coefficient of the query branch fed by each queue. In particular,

up to the kth period, each operator’s input queue contributes to the total queued load qLk

an amount equal to the queue’s length multiplied by the load coefficient of the query branch

rooted at that operator, as in the following equation:

qLk =
∑
i

(qkoi × load coefoi) (4.1)

where oi denotes an operator in the query network, qkoi is the length of the physical input

queue of oi at the kth period, and load coefoi is the load coefficient of the query branch

rooted at oi, which is calculated following Eq. 3.2 in Section 3.3.1.

Assuming that the query processing task of the system is carried out sequentially and

the DSMS is using a fair scheduler such as Round Robin, then a tuple coming to the system

at time k has to wait for all queued tuples in the system up to time k-1. Therefore, the

estimated response time for the tuples coming during the kth period is given by Eq. 4.2,

which is a modification of Eq. 3.3 in [76]:

yk =
qLk−1

H
(4.2)

32

The Eq. 4.3 presents the SEaMLeSS’ feedback controller, which is an adjustment of the one

in [76]. In each control period, this feedback controller is used to determine uk, which is

the amount of load that can be added to the queue in the next period without violating the

delay target.

uk = H × [b0e
k + b1e

k−1]− auk−1 (4.3)

where ek = yk −D and a, b0, b1 are the controller parameters. Details on the design of the

controller and the derivation of these parameters can be found in [76].

In each control period of length T, the DSMS can process (i.e., take from the queues) a

load of H×T , so the input load that can be accepted in the next period is vk = uk +H×T .

Thus the amount of load to shed in the next period is Lk − vk, where Lk is the incoming

load in the next period. Since Lk has not been observed yet, it is approximated by Lk−1.

4.2.2 Headroom factor auto-adjustment

The number of queued tuples reflects the intermediate outcome of the shedding decision: if

the shedder sheds the right load, the number of tuples in the queues should remain at a level

such that the time to process these tuples does not exceed the delay target. Therefore, the

number of queued tuples, in the form of a virtual queue as in CTRL or our queued load,

is used as feedback to help the load shedders adjust their shedding decisions. However, the

schemes cannot make the inference directly from the length of the virtual queue or the amount

of queued load, but rather apply a delay estimation model over it. The delay estimation

model, in turn, needs an estimation of the headroom factor, so that it can compute the time

needed to process the queued tuples. The problem in CTRL is that there is no feedback

about the correctness of the headroom factor, so it depends on a manually-tuned one.

This motivated us to add to SEaMLess another feedback loop to automatically adjust

the headroom factor. Since the headroom factor is used in the delay estimation model to

estimate the response time based on the number of queued tuples, the feedback that can

be utilized to adjust the headroom factor should be the different between the estimated

response time and the actual response time. The question is how this difference suggests the

correct headroom factor.

33

The obvious solution of using the difference between the estimated response time (i.e.,

estimated delay) and the real one would not work, because this difference does not always

indicate that the current headroom factor is not correct. The difference might be caused by

the lag between the time of the measurement and that of the estimation. This can happens

when the system is overloaded but the response time is still below the delay target. In that

case, the load manager does not shed the excess load so the response time keeps increasing

quickly. This is also true for the case when the system comes from an overloaded state to

a non-overloaded one, causing the response time to decrease quickly. Therefore, in both of

these cases, it is hard to use the difference to adjust the headroom factor. In addition, when

the system is in normal state (i.e., not overloaded), the response time is small and hence

factors such as system environment fluctuations and statistics errors can cause a difference

that is relatively significant. Therefore, the difference between real and estimated response

time during normal state is also not a good clue to adjust the headroom factor.

Because the ultimate goal of CTRL, and SEaMLeSS, is to keep the response time around

the delay target when the system is overloaded, if the headroom factor is correct the response

time should converge to the target whenever the load is being shed. Therefore, by monitoring

the actual response time when the shedding decision is in effect and comparing it with the

target, we can figure out whether the headroom factor is correct or not and how to adjust

it. More specifically, a wrong value of the headroom factor causes the error in the estimated

response time, which finally results in the response time converging to a value D′ that is

higher or lower than the target D. The difference between the target delay D and this value

D′ tells how much the headroom factor should be:

Hadjusted = Hcurrent ×
D

D′

where Hadjusted is the new value of the headroom factor, and Hcurrent is the current one. D′

is the average real response time over a number of periods when shedding is applied.

34

4.3 EXPERIMENTAL EVALUATION

4.3.1 Experiment settings

We evaluated SEaMLeSS in AQSIOS, our real DSMS platform. In this section we present two

sets of experiments, one confirming the effect of off-tuned headroom factor on the two state-

of-the-art schemes (i.e., Aurora and CTRL), and one evaluating SEaMLeSS. All experiments

were run 5 times and we report the averages, ensuring statistically significant results.

Query networks: We use three query networks as described below:

• QN-flat: is a flat query of 8 select and project operators together with a source operator

and an output operator. We add delay to the operators to increase the processing cost per

tuple, so that the total cost of this query network is approximate to that of QN-complex.

This QN-flat query network is similar to the one used in the CTRL paper [76] 1. We use

this query network in our experiments to create a setting where CTRL can achieve its

best performance. The simple, flat query network enables the correct calculation of the

virtual queue in CTRL, even though such a query network is not representative of real

applications.

• QN-complex: is a big query network containing 1,140 operators. The query network

contains 60 identical groups of 4 queries, with select, project, source and input operators.

The queries in the same group read data from the same stream source. We intentionally

let the queries in each group share some operators with each other, which creates a case

where CTRL is not applicable, as analyzed in Section 3.3.1.

Input data: We use two streams of synthetic data, denoted Sc and Sstep, and one of real

data Sr. We generated the input tuples for each source beforehand and stored them in a file.

Each tuple has a timestamp, which indicates the time the tuple will arrive at the system

during execution (relative to the experiment’s start time) and reflects the input rate.

• Sc: has a constant input rate of 200 tuples/s, which is within the system capacity, for

1In fact, the CTRL paper does not even use real operators: it used only delay operators to simulate an
operator with a certain processing cost and selectivity. The Aurora paper uses only a simulation for its
experiment, not a real DSMS.

35

Figure 7: Input rate of the real data in Sr and SDr.

the first 10 seconds, and then goes to 350 tuples/s, which overloads the system, until the

end of the experiment at the 400th second. Sc is used when we want to keep the input

rate constant to clearly examine the effect of the factor of interest.

• Sr: is a trace of TCP packets between the Lawrence Berkeley Laboratory and the rest

of the world2. Figure 7 shows the input rate of this stream. This input rate allows us to

evaluate the performance of our scheme, compared to the others, with the fluctuations

of a real-world data stream. Note that this real input rate pattern is the same as that of

the input used in the CTRL paper.

We use a uniform distribution for the values of the tuples in order to fix the selectivities

of the select operators and make sure they are not the cause for the cost fluctuation.

Parameters: We choose the values for the delay target D = 2s, which are the same to that

used in the CTRL paper. We use the control period T = 0.5s (CTRL paper experimentally

shows that [250ms-1000ms] is the best range for T given that D = 2s).

In order to choose an appropriate headroom factor for CTRL, we follow the method used

in [76] and run the CTRL’s module that estimates the output delay based on the length of

the virtual queue. We manually change the headroom factor used in the model and plot the

estimated value together with the real one until they match one another. This tuning gave

2 Dataset LBL-PKT-4/lbl-pkt-n.tcp is publicly available at the following URL:
http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.

36

us 0.99 as the best value of headroom factor for CTRL for the QN-flat query network. For

the QN-complex and QN-long query network, as anticipated, it is impossible for us to find

a suitable headroom factor for CTRL since the estimation of the virtual queue by CTRL is

no longer correct. Therefore, in this case, we have to run CTRL with the headroom factor

obtained with the QN-flat query network, as well as some other values down to 0.8.

4.3.2 Effect of incorrectly-tuned headroom factor on Aurora and CTRL

In this section we experimentally verify our observations in Section 3.3.1 about the depen-

dence of Aurora’s and CTRL’s performance on the selection of the headroom factor, and

study how much the effect of an incorrect selection would be. We use the QN-flat query

network, together with the Sc input streams.

4.3.2.1 Effect of incorrect headroom factor on Aurora It is actually difficult to

determine a “correct” headroom factor for Aurora, as it does not have any feasible method to

select one. The right value should be the one that prevents the response time from exceeding

the delay target, while, compared to other values that can do so, minimizing data loss. A

correct headroom factor for CTRL does not guarantee to work for Aurora, due to all the

difference in the estimation of excess load.

We show in Figure 8 the detailed response time under Aurora with different headroom

factor values3, and Table 1 summarizes the average response time and data loss. We can

observe that Aurora is extremely sensitive to the headroom factor: a difference of 5% in the

headroom factor can create a huge change in the violation of delay target (up to more than

300%), and significant difference in data loss (up to 7.7%). In fact, even when the headroom

factor is just a little higher than the correct one, such as 0.99 in this case, Aurora can no

longer stop overloading and therefore, the response time keeps increasing although the input

rate remains constant.

3In the current prototype, which is single threaded, a correct headroom factor cannot be higher
than 1. However, when the system is parallelized to exploit the multi-core infrastructure, the
headroom factor, in theory, can approach the number of cores being used.

37

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300

re
sp

on
se

 ti
m

e
(s

)

time(s)

H = 0.89
H = 0.94

H = 0.99
H = 1.04

delay target

Figure 8: Effect of headroom factor tuning on Aurora, with constant input rate Sc.

4.3.2.2 Effect of incorrect headroom factor on CTRL We first show how CTRL

performs, under a constant input rate, with values for the headroom factor higher or smaller

than the correct, manually-tuned one (0.99 in this case). The detailed response time is shown

in Figure 9 and the average response time and data loss are shown in Table 2.

In this case, while the delay violation increases significantly when the headroom factor

is higher than the correct one, the data loss is not much higher if the headroom factor is

lower than it should be (about 0.1% when the headroom factor is 5% lower). This can

Table 1: Effect of headroom factor tuning on average delay violation and data loss under

Aurora, with Sc.

Headroom factor Delay violation Data loss

0.89 0.00 sec 45.44%

0.94 0.00 sec 41.89%

0.99 4.60 sec 38.80%

1.04 17.48 sec 36.90%

38

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

re
sp

on
se

 ti
m

e
(s

)

time(s)

Correct H
5% smaller H

20% smaller H
5% higher H

20% higher H
delay target

Figure 9: Effect of incorrect tuning of headroom factor on CTRL, with constant input rate

Sc.

be explained: the difference is only at the time the load shedder starts shedding (i.e., if

the headroom factor is smaller the scheme will start shedding earlier and hence lose more

data). In the later period when the system remains overloaded, the fact that the response

time stops at a constant value means the incoming workload is exactly equal to the system

capacity, that is, the shedding rates are the same although a different headroom factor is

used. The difference in data loss will be more significant if the workload goes back and forth

from normal state to overload state.

We can see that, using the length of the virtual queue as feedback, CTRL manages to

reduce the effect of an incorrectly chosen headroom factor so that it is not as severe to CTRL

as it is to Aurora. However, such an effect is still not desirable: the load shedder still either

violates the delay target or drops more data than necessary.

4.3.3 SEaMLeSS evaluation

4.3.3.1 Under system environment changes Selecting a correct headroom factor for

CTRL is a daunting task, but despite being carefully selected, the headroom factor is not

guaranteed to be correct for the whole execution time. In fact, it is virtually guaranteed

not to be correct for the the whole execution time. In this experiment we illustrate this by

39

Table 2: Effect of headroom factor tuning on average delay violation and data loss under

CTRL, with Sc.

Headroom factor Delay violation Data loss

20% lower 0.00 sec 40.11%

5% lower 0.00 sec 40.03%

Correct (0.99) 0.00 sec 39.99%

5% higher 0.03 sec 39.96%

20% higher 0.47 sec 39.91%

launching background jobs while the DSMS is running. We use the input Sc and the QN-flat

query network.

Figure 16 shows the response time under CTRL, which used a fixed, manually-tuned

headroom factor, and our SEaMLeSS, which automatically adjusts the headroom factor at

runtime. At the beginning, the headroom factor tuned for CTRL is correct so it manages

to keep the response time at the delay target. SEaMLeSS does not have such a well-tuned

headroom factor, yet it quickly picks up the correct value and can control the response time

as efficiently as CTRL. When some background jobs are launched and share the processor

with the DSMS at the 100th second, the headroom factor used for CTRL is no longer correct,

making the response time twice as high as the delay target. SEaMLeSS, however, is able

to adapt very quickly to the change, and still honor the delay target. Figure 16 shows the

headroom factor adjustment made by SEaMLeSS in response to the change in the system

environment.

When the query network is flat, which is the case in this experiment, [76] has shown

that CTRL outperforms Aurora. Therefore the fact that SEaMLeSS performs equivalent or

better than CTRL in this experiment also means that SEaMLeSS outperforms Aurora with

a flat query network.

40

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

SEaMLeSS CTRL delay target

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

SEaMLeSS CTRL

Figure 10: Effect of environment changes on CTRL and adaptation of SEaMLeSS. Top plot

shows the response time, bottom plot shows the headroom factor recognized by each scheme.

Total data loss for SEaMLeSS and CTRL is 62.98% and 62.69%.

4.3.3.2 With a complex query network In this experiment we use a complex query

network (QN-complex) for which CTRL’s estimation is no longer correct. Since [76] does

not compare CTRL’s performance to Aurora for complex query networks, we include Aurora

in this evaluation to confirm that SEaMLeSS also outperforms Aurora in this case. Because

the Aurora scheme does not suggest a way to pick a correct value for the headroom factor,

we ran it with a range of possible values. However, in this setup no value of the headroom

factor could enable it to perform equivalently to SEaMLeSS. If the headroom factor is too

41

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

SEaMLeSS
CTRL

Aurora (H = 0.92)
delay target

Figure 11: Response times with QN-complex and Sr. The X-axis plots the input timestamps,

showing that within the specified experiment time the system under CTRL was only able to

process tuples coming in the first 66 seconds. Note that the Y-axis is in logarithmic scale.

small, the response time is kept well below the target at all time by dropping much more

data unnecessarily. When the headroom factor equals 0.92 (Figure 11), the average delay

violation of Aurora is roughly the same as SEaMLeSS but Aurora drops considerably more

data (Table 3). Increasing the headroom factor to 0.93 makes the delay violation to be

significantly higher (due to the higher peak in the response time) and the data loss is still

higher than SEaMLeSS. This is consistent with the properties of Aurora analyzed in [76]: the

Aurora method is not aware of the delay target and cannot recover from a previous wrong

decision since it does not look at its outcomes.

Table 3: Delays and data loss with QN-complex and Sr.

H Max delay violation Average delay violation Data loss

SEaMLeSS auto 0.73s 0.09s 32.85%

CTRL 0.99 41.10s 23.33s 0.00%

Aurora 0.92 1.16s 0.09s 37.59%

Aurora 0.93 1.80s 0.19s 36.82%

42

The method given by CTRL to tune the headroom factor cannot be applied with the

complex query network: no matter how we change the value of the headroom factor, the

delay estimated by CTRL does not match the real output delay. Because the query network

contains a shared operator, an input tuple actually corresponds to several tuples in the

output flow. CTRL cannot recognize this mapping and hence it miscalculates the length of

the virtual queue. We still tried to run CTRL with the headroom factor equal 0.99 (i.e.,

the value we tuned for QN-flat). As we show in Figure 11, CTRL totally fails to control

the response time: it does not realize that the system is overloaded and does not apply any

shedding, letting the response time of the query output exceed the delay target quickly (the

Y-axis is in log scale). As a result, when the experiment stops (for all schemes, we let the

experiment run for 420s), the system with CTRL has only been able to process input tuples

coming in the first 66s (out of 400s). We tried some other values of the headroom factor

from 0.8 - 0.99 as well, but they do not make any observable difference to the performance

of CTRL compared to that in this case.

4.3.3.3 Sensitivity analysis In this experiment we show the sensitivity level of SEaM-

LeSS to the headroom adjustment period, denoted P.

We ran SEaMLeSS’s headroom adjustment algorithm varying P from 1 to 60 control

periods with the experiment presented in Section 4.3.3.1, in which the headroom factor

changes significantly at the 100th second. We expect that when P is large, it takes SEaMLeSS

longer to adjust the headroom factor but it is more stable. When P is smaller SEaMLeSS

starts adjusting earlier but it tends to make more inaccurate adjustments and hence becomes

less robust against fluctuation caused by system events.

The sensitivity analysis shows that in this case SEaMLeSS works best (in term of both

delay violation and data loss) with P in the range of [20-40]. To provide more insight, we

show in Figure 12 the three cases with P equals 1, 30 and 60. As expected, when P = 1 the

adjustment decision is much less accurate so it has to adjust it many times before getting to

the appropriate value. And its response time afterward also fluctuates more than the others.

With P=60 the load shedder has to wait for a long time unnecessarily before adjusting the

headroom factor.

43

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

P=1
P=30

P=60
delay target

Figure 12: Effect of different headroom adjustment periods on SEaMLeSS.

In other experiments when we keep the headroom factor unchanged during the execution

time, there is no considerable difference for P in [20-60] (the auto-adjustment of the headroom

factor at the beginning is too small to observe the effect of P), and we have shown the results

with P = 30.

4.4 SEAMLESS’S LIMITATION

SEaMLeSS overcomes two major drawbacks of CTRL and has all of the stated desired

properties for an adaptive load manager. However, SEaMLeSS still has some limitations as

discussed below.

First, SEaMLeSS depends on the delay estimation model. Although the model has been

extended to capture complex query networks, it still only works under a fair scheduling policy

in which the waiting time of new coming tuples depends only on the total queued load. For

priority-based schedulers, SEaMLeSS would exhibit a problem: the response time of the

low-priority queries can be much higher than the promised worst-case response time. We

present in Section 5.3.2.4 an experiment showing how SEaMLeSS performs under a weighted

Round Robin scheduler.

44

Second, SEaMLeSS needs to know the number of tuples waiting in the input queues of

all CQs. This requires a model where an independent thread runs in parallel with the query

processing engine to receive the input tuples, count them and inform the load shedder. Such

a thread must not be overloaded (otherwise it cannot keep up with the incoming tuples to

count them), meaning that it cannot share the same CPU with the thread that processes

the query network. Although it was not mentioned explicitly before, this is also a problem

with CTRL’s applicability.

AQSIOS does not have such an independent counting thread available. In AQSIOS, the

number of tuples that have come to the system can be counted by the source operators when

it reads the tuples. However during overloading, the source operators (which are part of the

query processing thread) cannot keep up with the input rate to count the incoming tuples

(since they are also overloaded and have not processed up to the last tuples coming yet).

Therefore, in our experiments we had to prepare additional information for SEaMLeSS (and

CTRL) to simulate the case when such information is available. Specifically, we provide these

schemes with a file specifying the number of new tuples coming in every load management

cycle. The scheme reads the file and calculates the numbers of tuples that have come up

to the current time, even though the tuples have not been read by the source operator (i.e.,

the tuples are waiting at the input queues of the sources). Such a file is prepared in advance

based on the input rate of the data that will be use for the experiment4.

4.5 SUMMARY

In this chapter we presented SEaMLeSS, our first attempt for an adaptive load manager.

The experiments show that SEaMLeSS outperforms the state-of-the-art with respect to the

requirements for a practical load manager: being able to honor the delay target, applicable

to all types of query networks, and not assuming a manually-tuned headroom factor.

4For a fair performance comparison, in all the experiments we also force AQSIOS operating under other
load shedders to read the file and do the same calculation, although Aurora and ALoMa does not use that
information.

45

We also pointed our some limitations of SEaMLeSS, which motivated us to propose

ALoMa. ALoMa, same as SEaMLeSS, satisfies the three desired properties of a practical

load manager, but overcomes SEaMLeSS’s limitation.

46

5.0 ALOMA

In this chapter we present ALoMa (Adaptive Load Manager) [66], our second adaptive load

manager. We start with the general idea of ALoMa, then go into details of the algorithms.

We present the experimental evaluation and conclude with a summary of ALoMa’s properties

compared to SEaMLeSS and the state-of-the-art load shedders.

5.1 OVERVIEW

ALoMa has two basic components that interact with each other: the statistics-based load

monitor and the response time monitor. The core idea behind ALoMa is to automatically

adjust the estimation of the system capacity (i.e., the headroom factor) based on the actual

response time provided by the response time monitor. The load monitor estimates the

incoming load using the method in [74] (i.e., Eq. 3.1 when there is only one class) and

calculates the excess load. This load estimation is based on the statistics on input rates

and operators’ costs and selectivities, which are continuously collected in the DSMS during

execution.

The system starts with some initial value of the headroom factor that might be reasonable

(for example, 0.8). Later on, if the load monitor estimates that the system is overloaded

but the response time monitor still observes normal response time, ALoMa decides that the

system capacity should be higher. On the contrary, if the response time monitor detects

that the response time is already higher than the delay target but the incoming load is still

less than the estimated capacity, ALoMa decreases the estimated capacity. When the two

components agree with each other, the difference between the estimated load and the system

47

capacity is the amount of load that needs to be removed or can be added to the system.

Next we explain the intuition behind ALoMa’s decisions.

5.2 IMPLEMENTATION

5.2.1 Observing the response time

One important part of developing ALoMa was to identify what the response time implies

about the system’s load status, so we studied the response time of the system (Figure 13A)

in response to step changes of the input rate (Figure 13B). All experiments were carried out

on AQSIOS, our experimental DSMS prototype described in Section 2. Note that the Y-axis

in Figure 13A is in log-scale. The input rate starts from 5,000 tuples/s and increases by

5,000 tuples/s after every 20 seconds.

From time t = 0s to t = 20s the response time remains at around 120µs. One can

think that this 120µs reflects the processing cost per tuple and that the system will be

overloaded with an input rate greater than 1 tuple/150µs (about 8300 tuples/s). However,

we can observe that during the next 20 seconds when the input rate reaches the value of

10,000 tuples/s the response time jumps to a higher value, but it remains constant during

that 20 second period. This trend continues in all of the other 20-second periods before

t = 120s. This means there is no accumulation of queuing delay over time and the system

is not overloaded until the input rate exceeds 35,000 tuples/s.

This phenomenon is due to batch processing. As the input rate increases, more tuples

are waiting every time an operator gets executed, so it can process more tuples in a batch

(up to a predefined batch size) and reduce the processing cost per tuple. Therefore the

system can endure input rates that are higher than the anticipated one. Figure 14 confirms

our explanation by showing a huge fluctuation of the processing cost per tuple as the input

rate changes (we circle some of the points where the cost decreases significantly as the input

rate comes to a peak). On the other hand, this decrease in processing cost results in higher

response time since every tuple has to wait for the others in the same batch.

48

Figure 13: Response time (top plot) with increasing input rate (bottom plot) and its imply

on system’s load state.

Note that there are some occasional overshoots in the response time. This is due to

events such as operating system interrupts and can occur randomly at any point during the

execution time.

When the input rate exceeds 35,000 tuples/s in Figure 13B, the corresponding response

time in Figure 13A goes up dramatically due to the accumulated queuing time and the system

can be considered to be overloaded. If the user-specified delay targetD (the horizontal line in

Figure 13A) is higher than the response time before this overloading point, which is usually

the case in practice, the system can be allowed to run in an overloaded state as long as the

response time is still below the target.

Let O denote the point after which the system starts to be overloaded (i.e, the 120th

second in Figure 13). Based on the above observation, we can map the response time to the

49

Figure 14: Cost fluctuation in response to changes of input rate, measured on the AQSIOS

system.

following three load states of the DSMS, each one requiring a different action from the load

manager:

• Normal : the system is not overloaded, the response time is below or equal to the response

time at the O point.

• Under-threshold overloaded (UT): the system is overloaded so the queuing time starts

accumulating, the response time is greater than that at the O point but still less than

the delay target.

• Over-threshold overloaded (OT): the system is overloaded and the response time is higher

than the delay target.

We explain later at the end of Section 5.2.3 how we find the O point in practice.

50

5.2.2 Increasing and decreasing the capacity

When ALoMa decides that the estimated headroom factor H should be increased, a straight-

forward answer is to set LC (i.e., H) equal to L, since the system can withstand the load of

L without being overloaded.

However, consider the case when a high input rate is measured at time t to calculate the

load L. At that time it is possible that the response time is still that of those tuples coming

at a much lower rate from the previous period. So ALoMa would then make a mistake by

setting LC equal to L. The dynamic nature of ALoMa enables it to quickly correct the

mistake, but a less aggressive solution will improve its performance.

Given that the system environment is fairly stable, the headroom factor usually fluctuates

with small amplitudes and big, sudden changes just happen once in a while. Therefore, when

the gap between L and LC is small, we can be more aggressive in moving LC toward L (i.e.,

when the gap is small enough, we can set LC equal L). In such cases, the impact of a mistake

due to not-up-to-date statistics, if any, is also small. On the other hand, if the gap is big,

we should be more conservative and move LC by a smaller fraction of the gap, because the

disagreement of the two components (which leads to the decision to adjust LC) is more likely

to be caused by the not-up-to-date statistics and the impact of an error could be big.

We codify the above ideas into Eq. 5.1. Note that when the gap between LC and L gets

bigger, this formula moves LC by a bigger absolute amount, but the ratio of that amount to

the gap is smaller.

LCnew = LC ± log2(z + 1)

z
|L− LC | (5.1)

where z =


|L−LC |

LC
× 100 if |L−LC |

LC
× 100 ≥ 1

1 otherwise

5.2.3 The ALoMa algorithm

The pseudocode in Algorithm 1 shows the skeleton of ALoMa. Periodically, the load monitor

recomputes the current incoming load L and the response time monitor determines the

current load state of the system (lines 2, 3).

51

Load rate L > estimated capacity LC: There are three cases to consider when the

current load rate L is greater than the estimated capacity LC .

• If the state reported by the response time monitor is normal, then the estimated capacity

LC is increased following Eq. 5.1 (lines 5, 6).

• If the state is OT, ALoMa sheds an additional amount equal to the difference between

L and LC , because the two components are agreeing with each other (lines 7, 8).

• If the state is UT, ALoMa further checks if load shedding is being applied and the

response time is not increasing (line 10). If true, ALoMa is shedding more than necessary

and so it decides to increase LC (line 11). Also, because the system at this time tends to

be able to endure a load higher than L, although it is not clear how much higher, ALoMa

tries to reduce the shed load by x% (line 12). ALoMa learns the result of this trial in

the next cycle and if the same situation is observed, it increases x. The algorithm starts

with x = 1%, which is the minimum increase/decrease in the shedding amount that we

used in the system. x is increased by the binary logarithm of k, which is the number

of times the situation has been observed in a sequence. More specifically, x is given by

Eq. 5.2:

x = 1 + log2(k) (5.2)

Load rate L ≤ estimated capacity LC: When the current load rate L is smaller than

or equal to the estimated system capacity LC , we only need to consider whether or not the

delay target is violated (i.e., the system is in OT state).

• If the system is in OT state (line 16), ALoMa continues to check whether the response

time is not decreasing (line 17). If this is true, the estimated capacity LC needs to be

decreased toward L following Eq. 5.1 (line 18), since it is likely higher than the correct

value. Also, the fact that the response time is higher than the delay target and is not

decreasing means that ALoMa needs to shed more data to bring the response time back

to the target. However, since the load now is smaller than the estimated capacity, it is

not clear how much more data should be shed. We also approach this by trying to drop

an additional x% (line 19), with x started as 1% and increased following Eq. 5.2.

52

• If the system is not in OT state, which means the two components are agreeing with

each other, ALoMa reduces (LC − L) from the current shedding amount being applied,

if any.

One question in this algorithm is how to recognize the precise O point to distinguish the

normal state from the UT state which is, unfortunately, impossible in practice. However,

in the design of ALoMa, the only purpose of recognizing the UT state is to know whether

or not to increase the estimated capacity early (lines 5, 6). Therefore, a rough estimation

of this point is sufficient: The response time monitor signals that the system is in UT state

whenever the response time doubles the smallest response time it observed so far. It is not

a problem if this estimated point is a little higher than the actual value, because once the

system enters the overloaded state, the response time increases very quickly and exceeds

this higher value no later than it does the correct one. Thus, the load manager can stop

increasing the estimated capacity just in time. It is also fine if the estimation point is lower

than the real one, as there is a provision for the estimated capacity to be increased when the

system is overloaded, should it be smaller than the real one (line 11). We can periodically

refresh the smallest response time by doubling the current value and updating it with the

smallest observed one since then.

Note that we are assuming a feasible delay target which is higher than the O point.

However, the algorithm still holds if the delay target is smaller than the O point but still

higher than the response time when the system is very lightly-loaded (e.g., before the 20th

second in Figure 13, which approximates the processing cost per tuple). In such a case, the

UT state will never happen, and the system capacity is not fully used. If the delay target

is smaller than the lightly-loaded response time, the load shedder cannot honor it unless

shedding everything. But this means the original provisioned capacity is not sufficient and

no load shedder can deal with it.

5.2.4 Overhead and worst case

Overhead: At every load management cycle, ALoMa needs to (1) recompute the total

load of the system and (2) adjust the headroom factor and calculate the amount of load

53

Algorithm 1 ALoMa
1: BEGIN

2: L := load monitor.compute current load()

3: state := response time monitor.detect current state()

4: if L > LC then

5: if state = normal then

6: Increase LC

7: else if state = OT then

8: Shed (L− LC) more load

9: else {state = UT}

10: if (shedding is being applied)

and (response time ≤ previous response time) then

11: Increase LC

12: Reduce shed amount by x%

13: end if

14: end if

15: else {L ≤ LC}

16: if state = OT then

17: if (response time ≥ previous response time) then

18: Decrease LC

19: Shed x% more load

20: end if

21: else

22: if shedding is being applied then

23: Reduce shed amount by (LC − L)

24: end if

25: end if

26: end if

27: END

54

to drop. The time complexity of (1) is O(Op), where Op is the number of operators in

the query network, and the cost of (2) is a small constant (a few numeric calculations).

ALoMa, as well as CTRL and Aurora, uses the statistics on response time and operator

costs and selectivities, which has time complexity of O(T*Op) where T is the number of

incoming tuples. However, a typical DSMS system would still need to collect these statistics

for a variety of purposes such as scheduling, query optimizing, and performance auditing.

Therefore it is reasonable to exclude these costs from ALoMa’s overhead.

Worst-case: As with any adaptive technique, the worst-case scenario of ALoMa is when

the headroom factor (i.e., its adaptivity object) goes up and down very frequently, causing

a value of the headroom factor to become stale before ALoMa has even learned it. Such an

unstable environment would be hostile to any adaptive load management techniques.

The worst-case workload for ALoMa, as well as any load management scheme, is when

the system is so overloaded that it calls for 100% shedding (we know the system still needs

to spend some CPU cycles on dropped tuples). If such a case persists, load shedding is no

longer a sufficient solution and the system has to be either scaled out or re-provisioned.

5.3 EXPERIMENTAL EVALUATION

5.3.1 Experiment settings

We evaluated ALoMa in AQSIOS along the same lines as SEaMLeSS (Section 4.3). We use

ALoMa to realize our DILoS framework due to its flexibility, so we perform a more extensive

evaluation of it. Again, all experiments were run 5 times and we report the averages.

Query networks: We use the query networks QN-flat and QN-complex (Section 4.3.1),

which are also used for SEaMLeSS’s evaluation. In addition, we use another query network

named QN-long, which contains long queries (i.e., queries having many operators). A repre-

55

sentative query in this network is presented in CQL syntax [19] below1, with S, T, U, V, W

and M being the six stream sources:

SELECT l. avg(m) FROM

ISTREAM

(SELECT S.l AS l,

(S.m + T.m + U.m + V.m + W.m + X.m)/6 AS m

FROM S[Range 10 seconds],

T[Range 10 seconds],

U[Range 10 seconds],

V[Range 10 seconds],

W[Range 10 seconds],

X[Range 10 seconds]

WHERE S.l = T.l and T.l = U.l and U.l = V.l

and V.l = W.l and W.l = X.l

) [Rows 10]

GROUP BY l

HAVING avg(m) < 40.0;

Effectively, the query has five Joins and five Range windows, one Relation-to-stream

operator (ISTREAM), one Group-aggregate and one Row window, and one Select. In addi-

tion, the query has five Stream sources and one Output operator, for a total of 20 operators.

There are five groups in the query network, each containing 4 queries with multiple levels

of sharing. More specifically, two of the queries in each group share with each other the

segment from stream sources up to the group-aggregate, while sharing with the other two

queries the stream sources and the first range window join.

Input data: Besides reusing the two streams Sc and Sr (Section 4.3.1), we use an additional

stream called Sstep. Sstep has an initial constant input rate of 200 tuples/s for the first 10

seconds, then goes up to a higher level every 40 seconds until the system is so overloaded

1Note that because STREAM (inherited by AQSIOS) does not support everything in the CQL syntax,
we had to split the query into several virtual queries in the actual script.

56

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa CTRL delay target

Figure 15: Response times with QN-flat and Sr.

that load shedding can no longer control the response time. We use this input to test a worst

case situation.

Parameters: We use the same parameters as in the experimental evaluation of SEaMLeSS

(Section 4.3.1). We set the initial value of the headroom factor for ALoMa to be 0.8.

5.3.2 Experiment results

5.3.2.1 ALoMa vs CTRL under CTRL’s ideal setting In this experiment, we use

the flat query network QN-flat so that all the calculations of CTRL’s delay estimation model

are correct. In addition, we manually tune its headroom factor and keep the system environ-

ment unchanged during execution, so that the tuned value remains accurate (even though

this is unrealistic for real systems). The real input Sr is used for the experiment. We run

ALoMa under the same setting, but without the manual tuning of the headroom factor.

Figure 15 shows the response time of the output under ALoMa and CTRL. Table 4

summarizes the average delay violation, the maximum violation observed, and the data

loss under each scheme. ALoMa has higher maximum violation, and from Figure 15 we

can observe that the response time fluctuates more under ALoMa than under CTRL. This,

57

Table 4: Average delay and data loss, with QN-flat and Sr for CTRL with optimal, manually-

tuned headroom factor.

Average delay violation Max delay violation Data loss

ALoMa 0.05s 0.62s 21.36%

CTRL 0.01s 0.35s 21.41%

however, is expected, since ALoMa has to make multiple adjustments of the headroom factor

on the fly, while CTRL has the headroom factor manually pre-tuned. Nevertheless, ALoMa

manages to honor the delay target, closely to what CTRL does. The average delay violation

under ALoMa is slightly bigger than CTRL but is still very small (0.05s compared to the

delay target of 2s)

Clearly, ALoMa achieves performance very close to that of CTRL under CTRL’s ideal

setting, even though ALoMa makes all the headroom factor adjustment automatically, without

requiring any manually-tuned value as CTRL does.

5.3.2.2 ALoMa vs CTRL under system environment changes As shown in Sec-

tion 4.3.3.1, a specific value of the headroom factor is not guaranteed to be correct for the

whole execution time. In this experiment we repeat the setup in Section 4.3.3.1 with two

background jobs launched while the DSMS is running. In order to clearly show the effect of

the system environment change, we again use the input Sc with constant input rate.

Figure 16 shows that ALoMa is able to adapt very quickly to the change as expected

and still honor the delay target despite the change of the environment. The data loss

with ALoMa, in this case, is similar to that with CTRL. For more insight, Figure 16 also

shows the headroom factor adjustment made by ALoMa in response to the change in the

system environment. Figure 16 again shows that CTRL, which uses a fixed, manually-

tuned headroom factor can no longer control the response time to the delay target when the

background jobs are launched and share the processor with the DSMS at the time t = 100s.

58

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa CTRL delay target

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

ALoMa CTRL

Figure 16: Effect of environment changes on CTRL and adaptation of ALoMa. Top plot

shows the response time, bottom plot shows the headroom factor recognized by each scheme.

Total data loss for ALoMa and CTRL is 62.98% and 62.69%.

5.3.2.3 ALoMa vs CTRL and Aurora with a complex query network With the

same experiment setup as that in Section 4.3.3.2, we show ALoMa’s performance compared

with CTRL and Aurora using a complex query network QN-complex and real input data Sr.

We observe similar result: no value of the headroom factor could enable Aurora to perform

equivalently to ALoMa, while CTRL’s performance is completely off as it’s delay estimation

model does not work with complex query network (in this case, the query network contains

shared operators). ALoMa, while not required any pre-tuned headroom factor, performs well

in controlling the response time to the delay target and minimizing the data loss.

59

Table 5: Delays and data loss with QN-complex and Sr.

H Max delay violation Average delay violation Data loss

ALoMa auto 0.75s 0.06s 32.41%

CTRL 0.99 41.10 s 23.33s 0.00%

Aurora 0.92 1.16s 0.09s 37.59%

Aurora 0.93 1.80s 0.19s 36.82%

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa
CTRL

Aurora (H = 0.92)
delay target

Figure 17: Response times with QN-complex and Sr. Note that the X-axis plots the input

timestamps, showing that within the specified experiment time the system under CTRL was

only able to process tuples coming in the first 66 seconds.

5.3.2.4 ALoMa vs SEaMLeSS under a priority-based scheduler In this section,

we demonstrate our remarks in Section 4.4 that the delay estimation model is dependent

on the specific operator scheduling policy and will not work appropriately under an unfair

scheduler.

We used the QN-complex query network for this experiment. We implemented in AQ-

SIOS a simple weighted Round Robin scheduler which, in each cycle, gives half of the queries

(i.e., the operators in these queries) a scheduling time quota of 50% bigger than that for the

other half. We call the two halves the high-priority and the low-priority, respectively.

60

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa - low priority
ALoMa - high priority

SEaMLeSS - low priority

SEaMLeSS - high priority
delay target

Figure 18: ALoMa vs SEaMLeSS under weighted RR scheduler.

Table 6: Average data loss and delay violation of ALoMa and SEaMLeSS under a weighted

RR scheduler, with Sc.

Delay violation-low priority Delay violation - high priority Data loss

ALoMa 0.16 sec 0 sec 33.92%
SEaMLeSS 2.12 sec 0 sec 32.80%

For both schemes, we show the detailed response time and delay violation separately for

the low-priority and high-priority queries in Figure 18 and Table 6. While ALoMa manages

to control the worst-case response time (i.e., response time of the low-priority queries when

overloaded) to be around the delay target, SEaMLeSS fails to do that for the low-priority

queries. This is because the delay estimation model does not incorporate any information

about the priority and assumes that the processing cost and the length of the queues are the

only factors that determine the output delay. In this case, since the higher-priority queries

can consume their tuples faster, an incoming tuple that goes through a high priority path

will have a significantly less waiting time. ALoMa, although still oblivious to the priority of

the queries, still is able to handle this situation because it is monitoring the response time

directly and therefore is independent of the scheduling details.

Our experimental results do not suggest any clear relationship between the relative prior-

ities and the relative response times of the queries. In addition, we observe that high-priority

61

queries usually do not exploit batch processing as much as the lower-priority ones, resulting

in higher processing cost. Therefore, incorporating scheduling priority to the delay estima-

tion model is clearly not trivial, even for the simple priority-based scheduler as the one we

used in this experiment.

5.3.2.5 ALoMa vs CRTL and Aurora with long queries In this experiment, we

use QN-long to confirm that ALoMa is applicable for query network containing long queries

with all basic types of operators and with multiple levels of operator sharing. We use the

real input rate pattern Sr for all of the stream sources. Note that because there are five

range window joins in each query, the effective overshoots in the input load is actually much

higher than the overshoots in the individual input load shown in Figure 7. The reason is

that the increase in input rate increases the number of tuples in each window, causing the

selectivity of the range window join to increase. Figure 19 shows the response time under

the 3 schemes.

In general, ALoMa can control the response time well at the delay target. We observe

four points when the delay target is violated, of which the highest violation is 1.08s. These

violations correspond to the very high overshoots in the input load. However, ALoMa was

able to cope with them by increasing the shedding rate from 0% to almost 70%.

CTRL, as expected, cannot control the response time because it cannot correctly estimate

the length of the virtual queue of a complex query network. We show Aurora’s performance

just for completeness, as without being aware of the delay target its performance for a certain

workload is very unpredictable. In this experiment, with headroom factor set to 0.92, it

happens that it drops more than necessary, as shown in the bottom plot of Figure 19.

5.3.2.6 Worst-case scenarios In this set of experiments we illustrate the worst case

scenarios explained in Section 5.4. We use query network QN-flat, so that CTRL is applica-

ble.

In the first setup, we use the input Sstep to push the input workload from no overload

(200 tuples/s) to extreme overload. As expected, as the input load reaches a certain point,

none of the schemes can any longer control the response time to the delay target even though

62

 0.1

 1

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa
Aurora

CTRL
delay target

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

sh
ed

di
ng

 r
at

e(
%

)

time(s)

ALoMa
Aurora

CTRL
delay target

Figure 19: Performance of ALoMa, CTRL and Aurora with QN-long and Sr. Top plot is

the response time and bottom plot is the shedding rate.

they drop almost 100% (we set maximum shedding rate for all the schemes at 99%, so that

we can retain some output tuples). This is because the system still spends some CPU cycles

on a dropped tuple to read it from the stream source and to decide whether to drop it.

When the input load is too big, this cost alone is enough to overload the system. Figure 20

(top plot) shows the response time of the system under each scheme, corresponding to the

input rate plotted in the bottom plot. The middle plot shows the shedding rate under each

scheme.

Interestingly, the three schemes have different points at which they can no longer control

the response time, with ALoMa’s point being the farthest to the right. We observed that,

when the input rate is very high (beyond 1000 tuples/s in this experiment), the headroom

factor decreases when the rate increases. ALoMa’s adaptivity allows it to cope with this

63

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa
Aurora

CTRL
delay target

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

sh
ed

di
ng

 r
at

e(
%

)

time(s)

ALoMa
Aurora

CTRL
delay target

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300 350 400

in
pu

t r
at

e(
tu

pl
es

/s
)

time(s)

input rate

Figure 20: Performance of ALoMa, CTRL and Aurora with workload increasing to worst

case situation. Top plot is the response time, middle plot is the shedding rate and bottom

plot is the input rate.

64

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(s

)

time(s)

ALoMa
Aurora

CTRL
delay target

Figure 21: Response time under ALoMa, CTRL and Aurora with background job coming

and leaving at different frequencies.

change, whereas CTRL and Aurora failed to cope with it. Thus, a value of the headroom

factor that works well for CRTL and Aurora at the beginning becomes incorrect, causing the

two schemes to lose control of response time early. Our explanation for this decrease in the

headroom factor is that when the input rate significantly increases, batch processing kicks

in lowering the cost of processing each tuple. Therefore, some fixed costs (e.g., scheduling,

statistics collection) become relatively bigger compared to the processing cost per tuple.

However, we think this phenomenon depends greatly on the detailed implementation of each

system, so it can be different across different DSMSs.

In the second setup, we use the constant input Sc as in the experiment in Section 5.3.2.2.

After the experiment has run for the first 10 seconds, we kick off a background job which

stays for 10 seconds, then leaves for 10 seconds and comes back for another 10 seconds. The

pattern is repeated for about 60 seconds, then switches to a pattern of 5-second stay and

5-second leave for another 60 seconds, then 60 seconds of 2-second stay and 2-second leave

and finally 60 seconds of 1-second stay and 1-second leave. This creates situations where the

change in the headroom factor happens suddenly yet does not stay long enough for ALoMa

to adapt. Figure 21 shows the response time under all three schemes.

We can see that there are points at which the response time under ALoMa drops close

65

Table 7: ALoMa’s properties compared to the state-of-the-art.

ALoMa

[VLDBJ’16]

SEaMLeSS

[SMDB’13]

Aurora

[VLDB’03]

CTRL

[VLDB’06]

Automatically tune headroom factor
√ √

Honor delay target
√ √ √

Applicable to complex query networks (in-

cluding shared operators)

√ √ √

Independent of scheduler’s fairness
√ √

to 0. Ideally, with this constant rate the response time should be kept at the delay target

(i.e., the maximum allowed), so as to minimize the data lost. However, the process of

adjusting the headroom factor takes time. When the background job leaves, ALoMa needs

a few seconds to adjust the headroom factor back to the original, bigger value, so during

that transition time it drops more data than necessary. Interestingly, when the frequency

of coming and leaving of the background job becomes very high (i.e., every one second in

this experiment), ALoMa’s performance becomes better, because by the time the job leaves,

ALoMa is not too far from decreasing the headroom factor so it just needs a short time to

move it back up.

CTRL does not recognize the change in the headroom factor so the response time under

it fluctuates above the delay target. Aurora loses its control of the response time beginning

with the very first appearance of the background job, as it does not consider any kind of

feedback from the outcome of its decision and hence has no way to recover.

5.4 SUMMARY

As confirmed through experiments, ALoMa achieves the stated goals, i.e., being applicable

to all types of query networks and able to honor the delay target without requiring any

66

manually-tuned headroom factor. In addition, ALoMa offers another advantage compared to

SEaMLeSS: ALoMa does not assume the fairness of the operator scheduler while SEaMLeSS

does. With respect to implementation, ALoMa also provides more flexibility as it does not

require a separate, not-overloaded thread to count the number of tuples in the input queues

of the CQs.

We summarize in Table 7 the properties of ALoMa compared to SEaMLeSS and the two

state-of-the-art approaches, i.e., CTRL and Aurora.

With ALoMa, the realization of DILoS is now feasible. We present in the next chapter

an implementation of DILoS using ALoMa.

67

6.0 DILOS IMPLEMENTATION AND EVALUATION

In this chapter, we present an implementation of DILoS (Dynamic Integrated Load Manager

and Scheduler). This implementation of DILoS uses ALoMa, our proposed adaptive load

manager. We also describe the experimental results evaluating DILoS performance and

discuss the extensibility of DILoS.

6.1 DILOS IMPLEMENTATION

Recall that in Chapter 3 (Section 3.1), we proposed the DILoS framework in which we

separate the scheduler into two levels: class-level and operator-level scheduling. Each class

is effectively a virtual DSMS and has its own load manager instance. The system capacity

of each class is adjusted periodically by the class-level scheduler based on the priority and

the capacity usage of each class. For our specific implementation in this dissertation, we

discuss about the specific two-level scheduler, the per-class load manager, and the capacity

redistribution policy.

6.1.1 Load manager

We create one instance of ALoMa to be the local load manager of each class. ALoMa’s

self-tuning ability allows the ALoMa instance to automatically recognize the actual capacity

portion LCk (represented by Hk) that the corresponding class obtains. Consequently, each

ALoMa instance manages to control the load of its class as if it is managing a virtual system.

After calculating the load that exceeds the capacity portion of the class, the ALoMa instance

68

Figure 22: Per-class load management with ALoMa without inter-class sharing.

sheds this excess load from the class by specifying the calculated shedding rate uniformly

across the source operators of the class. Figure 22 illustrates this implementation, in which

the dark operators are the source operators with a load shedder embedded.

6.1.2 Scheduler

In this implementation, we use a two-level, class-based DSMS scheduler proposed in [58],

called CQC. As indicated in Section 3.1, although the physical separation of the scheduler

into two levels is not required in our general DILoS framework, it is easier for an actual

two-level scheduler to develop a capacity redistribution policy.

CQC is a class-based scheduler that supports CQ classes with different priorities, essen-

tially giving more execution time to the class of higher priority. At the class level, a Weighted

Round Robin (WRR) scheduler allocates to each query class Ck a time quota Tk such that

Tk =
Pk∑
i(Pi)

× T . At the operator level, there is a set of slightly modified HR (Highest Rate)

[71] schedulers. Each modified HR scheduler is in charge of the set of operators that be-

69

long to a specific class. The modified HR scheduler aims to preserve the goal of the original

priority-based HR scheduler to minimize the average response time, yet eliminates starvation

within a class. More details on CQC can be found at [58].

6.1.3 Capacity redistribution

After every period, each ALoMa instance reports to the class scheduler the capacity usage

uk = Lk

LCk
of the class. In order for the scheduler to adjust its decisions based on each class’

capacity usage, we extend its policy to incorporate capacity redistribution. Intuitively, the

class scheduler recognizes the available capacity from classes that are running underloaded

and distributes this capacity to the classes that are overloaded following a “highest priority

first” rule. Specifically, for each class Ck the scheduler calculates: demandk, which is the

additional percentage of the system capacity the class needs in order to process all of its

current load without shedding, and supplyk, which is the percentage of the system capacity

the class can share with others without itself being overloaded.

Let uk denote the capacity usage of class Ck, and LCk and L0
Ck = Pk∑

i(Pi)
denote its

current capacity and its initial expected capacity portion, respectively. Values demandk and

supplyk are computed as follows:

demandk =

{
(uk − 1)× LCk if uk < 1
0 otherwise

supplyk =

{
(1− uk)× LCk − 5%× L0

Ck if ui < 1− 5%×L0
Ck

LCk

0 otherwise

Note that in order to increase the system stability, the scheduler does not take all of the

estimated redundant capacity from a class, but conservatively leaves 5% of its original ca-

pacity portion. This small amount of 5% of a class’ original capacity is reserved so that the

often small perturbations of input load do not overload a class and lead to a new capac-

ity re-distribution. Using a higher percentage would increase the stability of the capacity

distribution and decrease the possibility of a class having to shed tuples when input load

suddenly increases. Yet, a higher percentage means the system capacity is not used as fully.

70

Other customizations for this trade-off can be trivially incorporated into DILoS (e.g., higher

percentage may be used for critical classes).

The scheduler calculates budget =
∑

k supplyk, and redistributes the system capacity as

follows:

1. For a class k, after the redistribution, either demandk is satisfied (is 0) or it has at least

its original capacity (i.e., original quota).

2. If the original priority of class i is higher than class j, then demandi must be satisfied

using the available budget before demandj.

3. Any remaining budget, after satisfying all demands, is returned to the classes whose

quotas are less than their original quotas. This proceeds from the highest to the lowest

class.

The capacity portion of each class resulted from this redistribution, denoted Lnew
Ck

, is the

expected capacity portion of the class in the next period. As such, the scheduler calculates

the time quota T new
k for the next period as T new

k =
Lnew
Ck

LCk
×Tk. The sum of time quotas should

not change before and after the redistribution.

In order to help each load manager to quickly adapt to the new value of the capacity

portion, the scheduler also changes the headroom factor of each load manager, as in Eq. 6.1.

This new value set by the scheduler does not need to be perfectly accurate because the load

manager is able to automatically adjust it.

Hnew
k =

T new
k

Tk

×Hk (6.1)

6.1.4 Handling inter-class sharing

In Section 3.2, we have explained the congestion problem that exists with any class-based

scheduler. We have also proved that, with an appropriate load manager such as ALoMa

being the per-class load manager, which can control the response time of the class, DILoS

inherently solves the congestion problem that exists with any class-based scheduler, allowing

inter-class sharing for a more optimized query network.

71

Figure 23: Per-class load manager, with class 1 (high priority) sharing a segment with class

k (lower priority).

When there is sharing between a higher-priority class and a lower-priority class, the

ALoMa instance which is in charge of the lower-priority class views the first operator(s)

in the class after the shared segment as the source operator(s) of the class, so the shared

segment is excluded from the lower-priority class from a load management perspective. In

our current implementation, we embed load shedding into the source operators, which means

this operator also has a shedder embedded. Figure 23 illustrates this method, in which the

shared segment is moved completely to the higher-priority class (class 1), while the load

manager of the low-priority class (class k) behaves as if query Qk1 starts from the dark

operator after the shared segment.

Such a sharing can be trivially applied to more complicated cases when a segment is

shared among several classes: the shared segment will belong to the highest-priority class

and all the load managers of the other classes will consider the corresponding first operators

after the shared segment as sources of their classes.

72

The above approach for inter-class sharing guarantees the original benefit of the high-

priority class: sharing should not affect its performance negatively. At the same time,

although it does not appear to benefit directly from the sharing, there is a potential advantage

for it: when the load of the lower-priority class becomes lighter thanks to sharing, it can

have some redundant capacity to share with the high-priority class when necessary.

The effect on the lower-priority class, however, is twofold. It is clear that when the high-

priority class has enough capacity to process all of its incoming load, the lower-priority class

takes advantage of the shared processing to reduce its own incoming load. However, once

the high-priority class becomes overloaded, it will apply the shedding at all of its sources,

including the shared ones, which results in the loss of QoD for the low-priority class even if

the class is not overloaded. We believe that such a case is rare, for the higher-priority class

should be provisioned with higher capacity (relative to its load) than lower-priority ones.

We can also apply differentiated shedding between shared and not shared segments.

This discussion about handling inter-class sharing assumes that the load shedder ran-

domly drops tuples. If a semantic load shedder (e.g., [74, 31]) is used, it assumes that all the

classes sharing a query segment consider the same semantics for the tuples coming into the

segment (i.e., there is no case when, for example, a tuple is important to a higher-priority

class but not important to a lower-priority class).

6.1.5 Overhead of DILoS

The overall overhead of DILoS includes the cost of the statistics collection and the cost of

redistributing the system capacity among classes. As discussed in Section 5.4, a typical

DSMS system needs to collect these statistics for a variety of purposes such as optimization

and scheduling. Therefore, the mere cost added by DILoS is the cost of redistributing

the system capacity among the classes. This cost actually depends on the specific policy

incorporated. For the specific implementation presented in this disseration, the redistributing

requires one pass to compute demandi and supplyi, and another pass to distribute the total

budget. This process has time complexity of O(C), where C is the number of priority classes.

Because C usually ranges from a few to tens, and the redistributing only happen once after

73

several scheduling cycles, this cost is negligible. In fact, as shown in our experiments, this

extra cost of DILoS is obscured by the benefit it brings: significantly more data can be

processed (i.e., much less shedding).

6.2 EVALUATION

In this section, we first describe our experimental settings, and then discuss the experiment

results showing the advantages and robustness of DILoS.

6.2.1 Experimental settings

Query network: We use two query networks QN-A and QN-B:

• QN-A: A query network that consists of three classes of queries:

– Class 1: Priority 6 (highest), with delay target 300ms.

– Class 2: Priority 3 (second highest), with delay target 400ms.

– Class 3: Priority 1 (lowest), with delay target 500ms.

By assigning priorities 6, 3 and 1 to classes 1, 2 and 3, respectively, the CQC scheduler

(Section 6.1.2) will allocate 60%, 30% and 10% of capacity to the corresponding classes.

All three classes have the same set of 11 queries, consisting of five aggregates, two window

joins, and four selects. These types of operators would appear in a typical monitoring

continuous query, for example those in the Linear Road Benchmark [16].

• QN-B: The same as QN-A except that we triple the size of the first class so that, when

using the real input trace for the first class, the resulting workload is heavy enough to

create some load impact in the system.

Input data: We use two streams of synthetic input patterns, denoted SDc, SDp, and one

using real input traces, SDr, as described below:

• SDc: All the input streams coming to the three classes have a constant input rate of

950 tuples/s, which, together with the query network QN-A, creates a total load that is

74

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250 300 350 400

in
pu

t r
at

e
(t

up
le

s/
se

c)

time(s)

Lower rate value Upper rate value

Figure 24: Input rate ranges for class 1 - input setup SDp.

slightly higher than the total system capacity. The simple pattern of this input allows

us to easily analyze the behavior of each scheme.

• SDp: The input rate (per control period) of classes 2 and 3 follows a Pareto distribution in

the range of [800-1300] and [300-800], respectively, with skewness equal to 1. These input

rates are expected to overload the classes if they are limited to their originally assigned

capacity portions. For class 1, which is the class of highest priority, we change the

range for its input rate distribution (also Pareto) after every 50-second period (Figure 24

sketches the changes of the range) in order to vary the amount of excess capacity it

can share with the other classes. The query segment that can be shared with class 3,

however, has the same input rate as class 3, so that we can keep the entire workload of

class 3 to be at the same level during the experiment).

• SDr: The same input rate patterns as in SDp are used for class 2 and 3, while the input

rate of class 1 is the real trace used in Sr (Figure 7).

Parameters: For all experiments, we set 150ms to be the load management cycle. In [76],

the authors report the appropriate load management cycle to be around one fourth to half

of the delay target, and we had a similar experience. We set the capacity redistribution cycle

(i.e., the cycle at which the scheduler considers redistributing the system capacity for each

75

class) to be 10 load management cycles (i.e., 1.5s). We report the sensitivity analysis on the

length of this capacity redistribution cycle in Section 6.2.4.

All experiments were run 5 times and we report the averages.

6.2.2 Confirming the advantages of DILoS

In these experiments we run the query network QN-A with the constant input rate SDc in

five cases: (1) when there is no load manger, (2) when there is one common load manager for

the whole system, (3) when one ALoMa load manager instance is created for each CQ class,

(4) when the scheduler uses the feedback from the load manager to adjust its scheduling

decisions, in the complete DILoS framework and (5) when operator sharing is enabled in the

DILoS framework, allowing class 1 and class 3 to share a query segment. Table 8 summarizes

the response time and data loss of the three class in each of these cases.

When there is no load manager, class 3 is overloaded, and, as a result, its response time

(117,132.74ms) exceeds its delay target (500ms) by three orders of magnitude. With one

common load shedder, which is the case for all the state-of-the-art systems, the load shedder

is oblivious to the priority enforcement of the scheduler. Thus, although the load manager

successfully controls the response time of class 3 to satisfy the worst-case QoS, it does not

honor the priorities of the classes with respect to QoD: the three classes lose the same amount

of data, and class 1 and class 2 suffer from data loss even though they are not overloaded.

When one load manager instance is created for each CQ class, the load manager can

follow exactly the priority enforcement of the scheduler. As a result, only class 3, which is

the one that is overloaded, experiences load shedding of 85.37%. Not only that, the observed

data loss for class 3 is actually less than the total data loss for the three classes in the case

of a common load shedder.

Under a complete DILoS framework when the scheduler use the feedback from the load

manager instances, its effectiveness is clear: The data loss is reduced by more than 70%

compared to the case with no synergy (24.43% vs 85.37% data loss for class 3 as in Table 8)1.

Given 13 stream sources used by class 3, each with the input rate of 950 tuples/s, this

1We have observed in some experiments (not shown in this dissertation), that the reduction in data loss
under DILoS can reach up to 100%, i.e., completely eliminating the need for shedding.

76

Table 8: DILoS’ advantages shown through average response time and data loss.

Response time (ms) Data loss (%)

class 1 class 2 class 3 class 1 class 2 class 3

No load manager 5.25 7.22 117132.74 0 0 0

Common load manager 4.01 4.74 513.71 42.19 42.15 42.24

Separate load manager 4.91 7.21 492.16 0 0 85.37

DILoS (Full synergy) 8.90 34.18 487.04 0 0 24.43

DILoS with inter-class sharing 9.05 36.54 482.53 0 0 14.70

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 25: Response times with SDc, QN-A, DILoS, and inter-class sharing.

decrease in data loss means approximately 7,526 more tuples are processed per second. At

the same time, the response times of the three classes are well controlled, and the overall

goal is preserved: DILoS is still consistent in providing better QoS and QoD for the class of

higher priority. When inter-class sharing is supported in DILoS more data is saved (14.70%

vs 24.43%)2, while the performance of the higher-priority class 1 is not affected by the lower-

2Since the three classes have the same amount of data, total data loss of the three classes is calculated

by
∑

1≤i≤3[datalossi])

3 .

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

Figure 26: Headroom factor estimated, with SDc, QN-A, and one ALoMa instance per class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

Figure 27: Headroom factor estimated, with SDc, QN-A, and DILoS’ full synergy.

priority class 3. Figure 25 shows the response time of the three classes under a complete

DILoS framework with inter-class sharing.

Understand the benefit of the synergy: One might think that the advantage of DILoS’

full synergy in reducing data loss is only due to the fact that it repairs the over-provisioning

of system capacity for some classes. This benefit is true for the global scheduler that strictly

fixes the CPU time allocation. However, DILoS actually achieves more than merely repair-

ing the over-provisioning: it exploits batch processing to further increase system capacity

utilization.

78

Figure 26 plots the headroom factor (i.e., the capacity portion) estimated by each load

manager of each class when an ALoMa instance is created to manage the load in each

class, but the scheduler does not use the feedback from these ALoMa instances to adjust its

decision. At the beginning of the experiment, we initialize the headroom factors for classes 1,

2, and 3 by their expected values, i.e., 0.6, 0.3, and 0.1, respectively. However, we observed

that the headroom factor of classes 2 and 3, estimated by the load manager at runtime,

were above their expected values of 0.3 and 0.1, respectively. This phenomenon is due to

the policy of CQC: if a class finishes executing all tuples in its queues, the scheduler lets the

next class in the round run without waiting for the former class to use up its quota (waiting

for new tuples). Thus, when a class is very lightly loaded (class 1 in this case), part of its

assigned capacity is automatically given to the other classes3. Thus, CQC by itself already

allows implicit capacity sharing, and the system capacity seems to have been used fully.

However, Figure 27 shows that class 3 actually receives even more system capacity when

the full synergy is used (i.e., the scheduler uses feedback from the ALoMa instances to adjust

its decisions, which explains why it does not need to drop as much data. Where does the

“extra” capacity come from? The answer is from batch processing. We have known that

the higher the number of tuples an operator can process in a batch, the lower the processing

cost per tuple. If the workload is much less than the processing capacity (as in the case of

class 1), there are very few tuples waiting in an operator’s input queue, so it cannot take

advantage of the allowed batching to reduce the processing cost. By explicitly reducing the

capacity portion of the lightly-loaded class, DILoS effectively increases the number of tuples

its operators process in batch and reduces the processing cost per tuple. Therefore, the class

can fit in the smaller capacity without being overloaded, sharing more capacity with the

other classes.

We can observe that the response time of class 1 and 2 increase. This is a side effect

of batch processing: these classes are forced to process more tuples in each batch, so each

tuple has to wait for a longer time. We believe this side effect is not an issue given that the

response times of the three classes still meet their QoS requirement.

3Note that in this case, the estimated headroom factor of class 1 is not adjusted and still remains at the
initial value because the load manager does not have the necessary signals to decrease it.

79

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 28: Response times with SDp, QN-A, and DILoS (with sharing).

6.2.3 Asserting DILoS robustness

Because there is no previous work with an equivalent model to compare our work with, we

evaluated DILoS with more challenging input rate patterns, both real and synthetic, in order

to assert its robustness. More specifically, we tested how fast our scheme can react to sudden

changes of input rate and whether the benefit of the synergy still exists in such cases.

6.2.3.1 QN-A and SDp This set of experiments simulate situations where the load level

of class 1 (the highest priority) changes dramatically after a certain period, aiming to test

if DILoS reacts fast enough to sudden changes in the load of the class that is sharing its

redundant capacity with others. Also, at a given load level, the input rate (of all the three

classes) is still not constant but fluctuates following a Pareto distribution with sudden high

peaks. We show the response times of the three classes under DILoS with inter-class sharing

in Figure 28. In Figure 29 we show the changes in the capacity portion of each class, which

is reflected through the headroom factor estimated by each load manager instance, and the

corresponding changes in the shedding rates.

We observe that when the load of class 1 is low, DILoS enables the global scheduler to

distribute the excess capacity from class 1 to the other classes, allowing them to shed less.

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Figure 29: Estimated headroom factors (top) and shedding rates (bottom), with SDp, QN-A,

and DILoS (with sharing).

However, as soon as the load of class 1 increases (e.g., at time t = 100s), DILoS returns to

class 1 all or part of its original capacity, so that its performance, as specified by its class

priority, is preserved.

In Table 9 and 10 we compare DILoS’ average response time and data loss with those

two alternatives (i.e., DILoS without sharing, and the scheme without the synergy). Clearly,

the synergy between the scheduler and load shedder exploits better the system capacity

and saves considerably more data (2.3% vs 8.53% of data loss of class 3). As expected,

the response times of class 1 and class 2 increase under the synergy due to the side effect of

batch processing, but they are all well below their delay target. The higher-priority class still

receives the better QoS, which complies to the implemented policy. The average response

81

Table 9: Average response time (ms) with SDp and QN-A.

Class 1 Class 2 Class 3

No synergy (& no sharing) 5.30 15.13 176.37

DILoS without sharing 6.47 43.98 84.21

DILoS with sharing 5.94 38.04 72.73

Table 10: Average data loss (%) with SDp and QN-A.

Class 1 Class 2 Class 3

No synergy (& no sharing) 0 0 8.53

DILoS without sharing 0 0.23 2.30

DILoS with sharing 0 0.16 1.42

time of class 3 is smaller under the synergy, because there are more periods during which

the class is not overloaded and its response time is much smaller than its delay target.

In this experiment, class 2 incurs a data loss of 0.2% under DILoS, although its expected

data loss should be 0%. This reveals an inherent aspect of any statistics-based module,

including those used by DILoS to enforce explicit capacity redistribution: they might need

some cycles of adjustment before they can pick up the right decision. This occurs when

the input rate fluctuates considerably after each load management cycle (recall that in Sp

although the upper and lower bounds of the input rate are kept constant for class 2, the input

rate of each load management cycle follows a Pareto distribution within the two bounds).

In such a case, the lag of the statistics-based decision causes small additional shedding in

some time windows. The additional data loss, however, is very small and often not observed,

because it is obscured by the normal fluctuations in the system.

The results also show the benefit of sharing in saving data, and confirms that with

appropriate load management the sharing does not affect the QoS and QoD of the higher

priority class.

82

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

re
sp

on
se

 ti
m

e
(m

s)

time(s)

class 1
class 2

class 3
delay target of class 3

Figure 30: Response times with SDr, QN-B, and DILoS (with sharing).

6.2.3.2 QN-B and SDr In this set of experiments we replace the synthetic input rate

pattern by SDr with the real trace for class 1 (Figure 7). This real input rate pattern has

two challenging periods when the rate keeps increasing with sudden, very high peaks.

We show the response time of the three classes under DILoS with inter-class sharing in

Figure 30. In order to understand better the behavior of the load manager under each of

the three classes, we also plot the headroom factors and shedding percentages in Figure 31

(the top and the middle plot, respectively). For convenience, at the bottom of this figure

we repeat the real input rate pattern used for class 1. As expected, when the input rate of

class 1 increases (e.g., from time t = 250s to t = 300s), the excess capacity the class can

give to the other classes decreases. This has the clearest effect on the lowest priority class

3, causing this class to drop a lot more data during that period.

In the first 250 seconds, none of the classes are overloaded, and the recognized headroom

factors might be higher than the true values because of the implicit redistribution of the

system capacity when some of the classes have very light load, as mentioned in Section 6.2.2.

The load manager recognizes the correct headroom factor when the load of some of the

classes reaches their capacities and the explicit redistribution happens, which is the case

during the high-load period (after the 250th second).

Tables 11 and 12 compare the average response time and data loss for all cases. In

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

he
ad

ro
om

 fa
ct

or

time(s)

class 1 class 2 class 3

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

dr
op

 p
er

ce
nt

ag
e

(%
)

time(s)

class 1
class 2
class 3

Figure 31: Estimated headroom factors (top) and shedding rates (middle) in response to the

input rate of class 1 (bottom), with SDr, QN-A, and DILoS (with sharing).

this experiment, while synergy still brings significant benefit in terms of exploiting system

capacity (much more data is saved: 3.28% vs 7.49% of total data loss), it also incurs a trade-

off: the data loss of class 1 under the two cases with synergy is higher compared to the case

without synergy. As shown in Figure 31, the shedding of class 1 corresponds to the sudden

high peaks of input rate during the high-load period. As in the previous experiment, this

84

Table 11: Average response time (ms) with SDr and QN-B.

Class 1 Class 2 Class 3

No synergy (& no sharing) 22.31 68.23 300.91

DILoS without sharing 25.69 76.86 122.66

DILoS with sharing 25.03 70.29 127.28

Table 12: Average data loss (%) with SDr and QN-B.

Class 1 Class 2 Class 3

No synergy (& no sharing) 0.01 0.79 21.67

DILoS without sharing 0.46 0.68 8.70

DILoS with sharing 0.44 0.82 6.54

is due to inherent lag of the statistics-based decision. Specifically, since class 1 passed its

excess capacity to the others, its remaining capacity became rather tight, hence a sudden,

huge increase in the input rate caused overloading, and subsequently, load shedding, before

the scheduler could recognize and correct the situation.

We believe this trade-off is acceptable given that the increase in the shedding rate of

class 1 (0.45%) is much smaller compared to the total data saved (12.97% for class 3 and

4.21% overall). This happens only in very extreme situations and is eventually corrected.

In practice, if a class is highly critical and such a trade-off cannot be tolerated, one can

develop a capacity redistribution policy that includes a limit on the shared usage of the

class’ capacity (while still allowing the class to use redundant capacity from other classes

and allowing the normal capacity redistribution among the other classes).

These results also confirm that the proposed approach for inter-class sharing saves more

data for class 3 while leaving class 1, i.e., the higher priority class sharing a query segment

with class 3, unaffected.

85

 0.1

 1

 10

 0 5 10 15 20 25 30 35

da
ta

 lo
ss

 (
%

)

cycle length (number of load managing cycles)

class 1 class 2 class 3

Figure 32: Data loss at different lengths of the capacity redistribution cycles.

6.2.4 Sensitivity analysis

In this section, we report the sensitivity of the system performance to the length of this

capacity redistribution cycle (CRC for short).

We show in Figure 32 the system performance in terms of average data loss per class at

different values of CRC, under the Sr input rate pattern which we expect the CRC to have

the biggest impact. Note that the y-axis is in logarithmic scale. We observe that the data

loss of class 1 (and the other two) are smallest when CRC is equal to 1 or 2 load management

cycles (i.e., 150ms - 300ms). This is because the system can react faster with sudden changes

of the input rates and in the system environment. However, the difference across all values

is rather small, suggesting that the long-term performance of the system is somewhat stable

to a wide range of CRC values.

As mentioned in Section 6.2.1, for all the above experiments we let the scheduler consider

redistributing the system capacity after every 10 load management cycles (i.e., 1.5s). To

better evaluate the framework, we avoid using the best-picked value (2 load management

cycles in this case) and instead use one that gives average performance.

86

6.3 EXTENSIBILITY OF DILOS

As a framework with two-level integrated scheduling and load managing, DILoS enables

easy incorporation of different scheduling and load shedding schemes at both the class and

operator level.

At the class level, different capacity allocation and redistribution policies can be adopted.

For example,

• Absolute priority for higher-priority class. A higher-ranked class can use all of the avail-

able system capacity if needed before a lower-ranked class is considered. A hybrid policy

between absolute and relative priority is also possible: the first class might use up the

whole system capacity if needed, but any remaining capacity is distributed to the other

classes proportionally by their priorities.

• Relative priority with workload consideration. The current policy in CQC guarantees

better QoD for a class of higher priority compared to a lower-priority one only if the

higher class has the same or less load than the lower one. With the support of DILoS,

a stricter guarantee is possible: the higher class will receive either maximum QoD (i.e.,

no data loss) or better QoD than the lower class, regardless of the relative workloads of

the two. Since the global scheduler receives feedback from the load manager about the

capacity utilization of each class, it can recognize any violation of such policy and fix it

by moving the necessary capacity from the lower class to the higher one.

At the operator level (i.e., in within a class), different load shedders and operator sched-

ulers can be used. Any operator or query-based scheduling policy can be easily plugged in

as a local scheduler inside a class without affecting the benefit brought by DILoS.

An important part of DILoS is the capability of the load manager to automatically

recognize exactly the system capacity each class is receiving, which ALoMa satisfies. Recall

that ALoMa only focuses on the question of detecting when the system is overloaded and how

much the excess load is. Regarding the other common questions related to load shedding,

i.e., what to shed and where to shed, ALoMa uses a general, domain-independent method

of applying random dropping evenly from the input of all queries in the class. Other works

87

on these questions, such as those considering semantic dropping (e.g., [30, 36, 74]) and

determining where in the query network to shed data to minimize semantic loss (e.g., [74, 21]),

can be trivially plugged in to replace the basic method ALoMa is using. Note that all these

schemes need to know when and how much load to shed, which is answered by ALoMa. For

example, assuming that semantic shedding is desired for a class of 2 CQs, Q1 and Q2, each

of which has input tuples containing integer keys in [1-10]. For Q1, output with keys [9-10]

is more important than those in [1-8], while for Q2 those in [1-2] is more important than

the others. When ALoMa determines that, say, 20% of the current load needs to be shed,

the semantic shedder will take that 20% as input for its algorithm. Correspondingly, the

semantic shedder decides that for Q1, it drops
10
8
×20% tuples with keys in [1-8], while for Q2

it drops 10
8
× 20% tuples with keys in [3-10], keeping the whole important range (assuming

a uniform distribution of the keys). Note that this assumes queries which have different

semantic on incoming tuples, as in the case of Q1 and Q2 in this example, do not share

operators with each other.

6.4 SUMMARY

In this chapter we presented an implementation of the DILoS framework using CQC and

ALoMa, our new adaptive load manager. Through experimental results of this implementa-

tion, we confirmed the significant benefit of DILoS, which exploits the synergy between the

scheduler and load managers and supports the hypothesis of this dissertation. We also dis-

cussed the extensibility of DILoS, making it clear that DILoS is a general framework, which

can integrate many different schedulers, load shedders, as well as different priority-based

capacity redistribution policies.

88

7.0 LARGE-SCALE ADAPTIVE RESOURCE MANAGEMENT USING

DILOS

Modern cloud infrastructure makes possible a further solution for the overloading problem in

DSMSs: a system can scale-up under heavy load, and scale-down during idle periods. Note

that this solution does not replace load shedding entirely: load shedding is still necessary to

deal with mild, short-term overloading at each node in a DSMS cluster.

In this chapter, we outline our conceptual framework named ARMaDILoS (Adaptive

Resource Management using DILoS), which aims at providing a priority-based resource

management model for DSMS deployed on a multi-node cluster. We then present UniMiCo

(Uninterruptible Migration of Continuous Queries), a protocol that allows smooth migra-

tion of a CQ from one node to another, which is a key step in implementing ARMaDILoS.

We conclude with a discussion on technical questions that need to be addressed in our future

work to fully realizing ARMaDILoS.

7.1 ARMADILOS

ARMaDILoS is formed around our hypothesis that when deployed on a cloud-based, multiple-

node infrastructure, the DILoS framework can supports a global workload management that

considers priority-based capacity distribution across the whole system.

We assume a system consisting of multiple shared-nothing nodes, connected by reliable,

high-speed network. We propose a system model in which one node serves the role of the

coordinator, while the other are peers and each one of them runs one instance of a DSMS,

89

Figure 33: ARMaDILoS system model

such as AQSIOS, our standalone DSMS with necessary extension to support communication

with the coordinator and with the other peers.

CQs are registered with the coordinator which optimizes them into a query network.

Each AQSIOS node keeps a copy of the whole query network, but, only a subset of it is

active on the node. A node only connects to the stream sources that are necessary for

the active queries in the node. Data streams, coming from (possibly) different sources, are

received by the source operators, which are the most upstream operators in a CQ.

Figure 33 is an example of our system model with two AQSIOS nodes. The CQs com-

prised of dark operators are those active at the node. The dash lines represent network

connection among the nodes.

The AQSIOS instance on each node runs DILoS as a local workload mamagement unit.

Periodically, each DILoS instance reports to the coordinator the workload of the node of

which it is in charge. The report contains information about the load of each CQ, as well

as how the local system capacity is distributed for each priority class. The coordinator im-

plements a priority-based global workload management policy which, based on the workload

90

reports from the AQSIOS nodes, decides when to move a subset of CQs from one node to

another. The coordinator can also ask a DILoS instance to adjust the local priorities of a

CQ class. The coordinator’s policy aims at providing global priorities of the CQ classes and

maximizing total resource usage.

In such a framework, it is crucial to have a lightweight protocol to support the migration

of workload (in the forms of operators, query segments or queries) from one node to another

in the cluster. The protocol should not cause any interruption in the execution of the CQ and

should have negligible cost, otherwise it can make matters worse and prolong an overloaded

situation.

The implementation of ARMaDILoS is beyond the scope of this dissertation. However,

because ARMaDILoS cannot be realized without an efficient CQ migration protocol, we

proposed and implemented UniMiCo, an interruptible migration protocol for CQs, as part

of a proof of concept for the feasibility of ARMaDILoS. We present UniMiCo in the next

section.

7.2 UNIMICO

UniMiCo is our migration protocol implemented as a first step toward the above large-scale

adaptive resource management. UniMiCo has the ability to (i) migrate stateful CQs without

the need to transfer any state, (ii) do the previous in a “live” fashion (i.e. no downtime).

UniMiCo’s protocol has been designed in a general way to handle both time-based and

tuple-based window.

In this dissertation we consider the whole query as the migration unit. However, the

protocol can also be used to migrate only a segment of a CQ: the operator(s) right before

the migrated segment becomes the stream source(s) for that segment. and their downstream

operators act as source(s) in the corresponding CQs. We assume that there is no operator

sharing between the query to be migrated and the rest of the query network. However, in the

present of operator sharing, the first step is to decouple the migrating CQ from any shared

operators and treat it as an independent CQ.

91

Below, for ease of exposition, we first present a background on window-based operators

in CQs, then describe the basic idea of UniMiCo followed by its details. We also present

some preliminary results showing the correctness and efficiency of the protocol.

7.2.1 Window-based operators

There are two types of operators in a CQ: stateless and stateful operators. A stateless

operator, such as selection (σ), produces an output tuple based solely on the current input

tuple. Conversely, a stateful operator, such as join or aggregation, needs to refer to values

from previous input tuples. Due to the fact that input streams are infinite, DSMSs use

either tumbling or sliding windows, to limit the state of operators. Sliding windows allow

the output to be continuously computed based on the most recent “portion” of the stream

data. In addition, a sliding window is specified through a length (or range) l, and a slide

s, which can be either time interval or tuple count. These two types of windows are called

time-based and tuple-based windows, respectively [19].

While most DSMSs embed the window definition into the corresponding stateful opera-

tor, some systems treat it as a separate operator (e.g., [19]). In this paper, when the semantic

of the stateful operator is not important, we refer only to the window aspect of it as if the

window is a separate operator. UniMiCo works the same way no matter whether the window

operator is physically merged to the corresponding aggregate/join operator or not.

7.2.2 Overview of UniMiCo

The key goal of UniMiCo is to avoid transferring state during the migration of a CQ con-

taining stateful operators. To achieve this, UniMiCo migrates a CQ at a window boundary,

meaning that the originating node continues processing until it completes the last in-progress

window, while the target node starts processing from the first tuple of the next window.

Given that two consecutive sliding windows overlap, the tuples belonging to the overlap of

the two windows are processed by both the originating and the target nodes. This way, the

state of the operator is reconstructed at the target node so there is no need to migrate it.

We illustrate this strategy in Figure 34. In this example, the sliding window of a stateful

92

Figure 34: UniMiCo’s migration strategy

operator (e.g., aggregate) has a size of 4 seconds and a slide of 2 seconds, with input rate

1 tuple/second. The number in each stream tuple is its timestamp, which is assumed to

monotonically increase over time (i.e. in-order processing of tuples). By the time the

migration process starts, the most recent window produced is w1, whose start timestamp is

1. In addition, the first tuple received by the target node after it connects to the stream has

a timestamp of 4. UniMiCo determines that (1) the originating node will continue processing

until w2 expires, which happens to be the last window with start timestamp less than 4, and

(2) the corresponding CQ at the target node will start processing tuples with timestamp

greater or equal to 5 (w3).

7.2.3 Migration timestamp

The migration timestamp marks a CQ hand-off from the originating to the target node. It

is used to synchronize the stop of the last window at the originating node and the start of

the next window at the target node.

Definition 12. The migration timestamp is the start timestamp of the last window to be

processed at the originating node.

In the example in Figure 34, the start timestamp of w2, which is 3, is the migration

timestamp.

93

7.2.4 Calculating the migration timestamp

The exact calculation of the migration timestamp depends on the implementation details of

the window operation. In this section we present how to calculate the migration timestamp

on both time-based and tuple-based cases. In all the equations below, s denotes the slide of

the window.

Time-based, single-input window: Assuming a time-based window of length l and slide

s, let tsstart denote the timestamp of the first input tuple the stream source at target node

was able to read after connecting to the stream. Furthermore, tslast w is the timestamp of

the most recent window processed. The migration timestamp, denoted tsmi is calculated as

follows (note that now s is in number of tuples):

tsmi =

 tslast w if tsstart ≤ tslast w

tsstart − δ otherwise

where δ =

 s if (tsstart − tslast w)%s = 0

(tsstart − tslast w)%s otherwise

(7.1)

Tuple-based, single-input window: For tuple-based windows, the calculation is the same

in the case when tsstart ≤ tslast w. When tsstart > tslast w, UniMiCo needs to wait until a

tuple t comes to the window operator, whose timestamp is equal or greater than tsstart.

This way, UniMiCo is aware of the number of tuples with timestamps between tslast w and

tsstart (let that number be N). The migration timestamp can be calculated by the following

equation:

tsmi = timestamp(δth tuple preceding t)

where δ =

 s if (N + 1)%s = 0

(N + 1)%s otherwise

(7.2)

Multiple-input window: The most popular example of window-based operator with mul-

tiple inputs is a binary join. For time-based windows, Equation 7.1 can be used, with

tsstart = max(tsstarti), where tsstarti is the timestamp of the first input tuple the stream

94

Figure 35: Calculating migration timestamp with two consecutive windows

source i at target node was able to read. For tuple-based window, the number of tuples

Ni coming between tsstarti and tslast w is calculated separately for each input i. Afterwards,

Equation 7.2 is applied with N = max(Ni).

Multiple window operators: A CQ can have multiple window-based operators with

different window specifications (i.e., length and slide), such as a query with an aggregation

on top of a join. For these cases, we introduce the concept of the controlling window operator.

Definition 13. The controlling window operator is the closest window operator to the

output of the CQ. The controlling window operator handles the calculation of the migration

timestamp, as well as controlling the start and stop of the migrated query at the target and

originating nodes.

For simplicity, we assume that the timestamp of an output tuple of a window-based

operator is the earliest timestamp of input tuples involved in the calculation of that output

tuple (we discuss later how this assumption can be relaxed). When the aforementioned con-

dition holds, we know that all the original input tuples, contributing to the result produced

by the farthest window of start timestamp ts, have timestamps greater than or equal to ts.

Therefore, only the farthest window operator (i.e., the controlling window operator) in the

CQ needs to be involved, and the calculation is the same as in the case of single window.

Note that the previous assumption is not required for the controlling window operator.

Figure 35 shows an example of a CQ consisting of two window-based operators: a binary

join, whose window has length of 4 seconds and slide 2 seconds, followed by an aggregation,

95

whose window has length of 3 tuples and size of 2 tuples. For each tuple, its timestamp is

shown on the upper and its join key on the bottom parts. For the controlling window, the

most recent window being produced is w21, whose start timestamp is 1 (i.e., tslast w = 1).

In addition, assume that out of the two first tuples read from S and T by the target node,

the latest timestamp tsstart equals 5. In this case, the migration timestamp is calculated as

if there is only the controlling window operator (i.e, the aggregation) with two inputs S and

T. Because the controlling window operator is tuple-based, UniMiCo has to wait until tuple

t of timestamp 7 arrives to know that there are 3 tuples whose timestamps are between 1

and 5, i.e., N = 3. Applying the calculation from Equation 7.2 for the case of tuple-based

window, UniMiCo decides that the migration timestamp is that of the tuple preceding t,

which is 4. In other words, the last window produced at target is w21.

When the previous condition on output tuples’ timestamps of preceding window oper-

ators does not hold, tsstart is measured as the timestamp of the first tuple arriving at the

controlling window operator on the target node. Recall that when this condition holds, tsstart

is the timestamp of the first tuple coming to the source operator, i.e., it can be captured

earlier. With the new tsstart, all of the above calculations of the migration timestamp are

still applicable. Note that in this case if tsstart is smaller than tslast w, there will be some

wasted processing at the target to process tuples from source up to the controlling window

between tsstart and tslast w. Because migration happens when the target is lightly loaded, it is

expected that processing at the target node will be at least as fast as that at the originating

node, hence the wasted processing, if any, would be small.

7.2.5 Stopping and resuming continuous queries

7.2.5.1 Stopping the query at the originating node Once the migration timestamp

is determined, stopping the query at the originating node is relatively straightforward: all

operators in the CQ continue to process normally until they receive the signal from the

controlling window operator to deactivate themselves. This happens when the controlling

window operator has consumed its last window, i.e., the window started with the migration

timestamp.

96

When the controlling window operator is associated with a join, a minor adjustment

is needed in order to avoid duplicate outputs between the originating and target nodes.

Normally, when there is a match between a tuple t of one input and t′ of the other, the

join tuple tt′ is produced only once, even if both t and t′ fall in the overlap of two (or more)

consecutive windows. If we start migrating from one of the windows, the join tuple tt′ will be

produced once at the originating node, and again at the target node. In the latter case, the

production of a duplicate tuple is avoided by suppressing the production of the join result

at the originating node. Note that when two matching tuples have their timestamps in the

window overlap, the previous adjustment is needed only if the join is the last window-based

operator in the query. In the event that a join is followed by another window operator, the

duplicated intermediate output tt′ is needed, as it is an input for the subsequent window at

the target node.

7.2.5.2 Starting the query at target node All the operators of the migrated CQ

can be activated at the target node, as soon as the migration is initialized. However, full

activation is made feasible by controlling the flow of tuples based on the migration timestamp.

That process behaves differently on time-based and tuple-based windows, as we describe

below.

Time-based controlling window operator: If the CQ has a time-based controlling win-

dow operator, the stream source operator(s) calculate(s) the activation timestamp as migra-

tion timestamp increased with the slide of the window. Then, the stream source operator

discards any input tuples, which carry timestamps less than the activation timestamp. In

addition, it starts producing tuples with timestamp equal to or greater than the activa-

tion timestamp. With tuples being outputted from the stream source(s), the query is fully

activated.

Tuple-based controlling window operator: In this case, the stream source operator(s)

start(s) producing results from tuples with timestamps greater than the migration times-

tamp. But, the controlling window operator will discard all first (s − δ) tuples, where s is

the slide of the window and δ is calculated from Equation 7.2 by the originating node.

97

Algorithm 2 UniMiCo protocol at target node
1: BEGIN

2: Receive(originating node, migrate(Q))

3: for i = 0; i < Q.num streams; i++ do

4: connect(Q.streams[i])

5: tsstart[i] = read(Q.streams[i])

6: end for

7: Send(originating node, tsstart)

8: Receive(originating node,tsmi)

9: Resume Q based on tsmi

10: END

Algorithm 3 UniMiCo protocol at originating node

1: INPUT: Query Q to be migrated

2: BEGIN

3: Send(target node, migrate(Q)

4: Receive(target node, tsstart)

5: tsmi = calculate migration timestamp

6: Send(target node, tsmi)

7: Finish processing(Q, tsmi)

8: END

For both types of windows, if the output timestamp of the preceding window-based

operator is not the window’s start timestamp, the controlling window operator has the

single authority that decides when to output tuples. Thus, the source operator cannot do

any early filtering.

Algorithms 2 and 3 give the outline of the UniMiCo protocol executed at target and

originating node, respectively.

98

7.3 EXPERIMENTAL EVALUATION OF UNIMICO

7.3.1 Experiment settings

We implemented and evaluated UniMiCo in a distributed setup of AQSIOS, our DSMS

prototype. Inherited from STREAM, the window operator is a separate operator, which

receives stream tuples as input, and injects minus tuples to the stream to mark the boundary

of a window [12]. Windows can have either time-based or tuple-based length, but the window

slide is always 1 tuple. Window-based operators, such as join or aggregation, will rely on

those minus tuples to perform their window-based processing. More information on window-

based operators in STREAM can be found in [12].

Figure 36 show an example snapshot of data tuples output from a window operator in

AQSIOS/STREAM. Each line correspond to a tuple, with its columns separated by the

colons. The first field in quare brackets is the timestamp of the tuple, followed by the sign

(plus or minus) and then the value(s). A plus tuple is a real “inserted” tuple, whereas a

minus tuple is just a marker for a completion of the window started by the corresponding

plus tuple. In this snapshot, the window has the length of 3 tuples and slide of 1 tuple. So

the 4th tuple is a minus tuple marking the end of the window started by the first tuple (i.e.,

t1). Note that for illustration purpose this snapshot starts from the beginning of a stream,

so we see all the first three plus tuples coming before the first minus tuple appears.

With the separation of the window operator, each input to a join operators can have a

window of different length and type. In the scope of this work, we assume that join inputs

have windows of the same length and the same type, so UniMiCo treats them as a single

multiple-input window operator.

We run each experiment between two AQSIOS nodes1. In order to evaluate the correct-

ness and efficiency of UniMiCo, we ran each query twice, one with the migration and one

without it. Afterwards, we compared the query’s outputs and response times around the

migration point. All settings are the same between the two runs.

1Note that the coordinator is not necessary for UniMiCo migration protocol. The coordinator in AQSIOS
facilitates our on-going project on workload balancing.

99

Figure 36: Example of a output tuples from a window operator in AQSIOS/STREAM

7.3.2 Experiment results

We run two types of experiments, one with simple CQs consisting of a single window operator

and another with a complex CQ consisting of two window operators. In either case we have

not included any non-stateful operators since they do not have any impact on the migration.

7.3.2.1 Simple CQ migration: We used UniMiCo to migrate a simple continuous query

with a join operator (Q1), and another query with an aggregate operator (Q2). We show

the two queries written in CQL [19] below:

Q1: SELECT *

FROM S [Range 10 seconds],

T [Range 10 seconds]

WHERE S.l = T.l;

Q2: SELECT sum(m)

FROM S [Rows 5];

Figures 37 and 39 show the result of Q1 and Q2 around the migration point, respectively

In Figure 37, the top plot is the result under migration, in which the rows above the dash

line are the last output tuples at the originating node, and those below the dash line are the

first output tuples at the target node. The bottom plots show the result without migration,

100

Output with migration

Output without migration

Figure 37: Result of Q1 around the migration point. Top plot is result with migration and

bottom plot is result without migration.

 0

 5

 10

 15

 20

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)

time(s)

With migration Without migration

Figure 38: Response time of Q1 around the migration point of time t = 10s second. The

lines corresponding to “with migration” and “without migration” are indistinguishable as

the migration does not introduce any noticeable delay.

101

Output with migration Output without migration

Figure 39: Result of Q2 around the migration point. Left plot is result with migration and

right plot is result without migration.

 0

 5

 10

 15

 20

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)

time(s)

With migration Without migration

Figure 40: Response time of Q2 around the migration point of time t = 10s. The lines

corresponding to “with migration” and “without migration” are indistinguishable as the

migration does not introduce any noticeable delay.

which is exactly the same as the concatenation of the two parts of the top plot. Similar

observations can be made in Figure 39 for Q2, except that the result with migration is on

the left and that without migration is on the right. As one can see, the correctness of the

output is maintained by using UniMiCo, and its protocol succeeds in performing the hand-off

without losing any data.

Figures 38 and 40 show the response time of queries Q1 and Q2 two seconds before

and after the migration point of time t = 10s. As can seen in both figures, there are no

102

Output with migration Output without migration

Figure 41: Result of the complex query Q3 around the migration point. Left plot is result

with migration and right plot is result without migration.

noticeable hiccups in the response time of the queries throughout the migration. For Q1,

the average and standard deviation of the response time in this period without migration is

3.751ms and 3.99ms, respectively, while under migration they are 3.750ms and 3.97ms. For

Q2, the corresponding numbers are 3.155ms and 3.923ms without migration, and 3.101ms

and 3.836ms with migration. The difference in both cases is negligible.

7.3.2.2 Complex CQ migration: In this experiment we migrate a more complex query,

Q3, with both join and aggregate operators, each use a different window definition as below:

Q3: SELECT sum(S.m)

FROM ISTREAM

(SELECT *

FROM S [Range 10 seconds],

T [Range 10 seconds]

WHERE S.l = T.l

)[ROWS 5];

In this case, the last window, which is the tuple-based window of size 5 (i.e., [ROWS 5])

associated with the aggregation, plays the role of the controlling window.

103

 0

 10

 20

 30

 40

 50

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)

time(s)

With migration Without migration

Figure 42: Response time of the complex query Q3 around the migration point of time

t = 10s. The lines corresponding to “with migration” and “without migration” are indistin-

guishable as the migration does not introduce any noticeable delay

Figure 41 shows the output tuples and Figure 42 shows the response time of the query

Q3 around the migration point, compared with the run when there is no migration. Similar

to the cases of the simple queries, the query output is preserved and the cost of migration is

not noticeable. The average and standard deviation of the response time without migration

are 6.568ms and 6.133ms respectively, while those with migration are 6.658ms and 6.217ms.

7.4 SUMMARY

In this chapter we sketched our proposed framework, namely ARMaDILoS, for a large-

scale adaptive resource management using DILoS. We proposed and evaluated UniMiCo,

our lightweight, uninterruptible CQ migration protocol which serves as a key step toward

an implementation of ARMaDILoS. UniMiCo itself is also a general CQ migration protocol

that can be used in any multi-node DSMSs. Preliminary experimental results showed that

UniMiCo could migrate CQs correctly from one node to another, while did not introduce

any noticable changes in the response time of the migrated CQs.

104

8.0 CONCLUSIONS

8.1 SUMMARY OF CONTRIBUTION

This dissertation targets at solutions to the problem that can arise in a DSMS when a

priority-based scheduler and load manager do not cooperate properly with each other in

order to honor the priorities of CQs, which are specified by the user or application. That

is, separately the policies can make inconsistent decisions, leaving the system in undesired

situations such as failing to control the workload for some CQs while shedding more data

than necessary from some other CQs. Furthermore, the system capacity might not be fully

used, causing more data to be lost during heavy-load periods.

In this dissertation after analyzing the above problem, we proposed 1) DILoS, a novel

framework that supports seamless integration between DSMS priority-based scheduler and

load manager, 2) ALoMa and SEaMLeSS, two adaptive load managers which enables the

realization of DILoS and outperform the state-of-the-art in determining when and how much

load to shed, and 3) UniMiCo, an interruptible migration protocol for CQs. We also propose

ARMaDILoS, a conceptual design of an adaptive resource management framework for cloud

DSMSs, in which DILoS and UniMiCo are among the key components. We implemented

and experimentally evaluated DILoS, ALoMa, SEaMLeSS, and UniMiCo in AQSIOS, our

real DSMS prototype. The experiment results confirmed that the proposed schemes achieved

their stated goals.

We have shown, through analysis and experimental evaluation on AQSIOS, a real DSMS

prototype, that the synergy developed in DILoS brings three basic benefits: (1) the inte-

gration enables the load manager to honor query class’ priorities in a consistent way with

a priority-based scheduler (e.g., CQC); (2) the scheduler can now better exploit the system

105

capacity and reduce load shedding by adjusting its decision using feedback from the load

manager; and (3) the proper employment of the load manager helps to release the conges-

tion problem in the class-based scheduler to allow the sharing of processing among queries

of different classes, thereby enhancing even more the ability of the system to meet the QoD

and QoS specifications.

ALoMa is a general and practical DSMS load manager that effectively determines when

and how much to shed. It can be used in conjunction with any statistical or semantic scheme

that determines where and what to shed. Our experimental evaluation of ALoMa verified

its clear superiority over the state-of-the-art load managers in four key dimensions: (1) it

automatically tunes the headroom factor, (2) it honors the delay target, (3) it is applicable to

complex query networks with shared operators and (4) it works with both fair and priority-

based operator schedulers. SEaMLeSS was our initial effort and performs as well as ALoMa

in terms of the first three dimensions. However SEaMLeSS is not independent of the fairness

of the operator schedulers and implementation-wise it poses more constraint on the host

DSMS (i.e., requires a separate not-overloaded thread to count the number of queued input

tuples).

UniMiCo is a protocol that allows CQ migration without state transferring for stateful,

window-based operators and without any downtime for the CQ. UniMiCo supports both

time-based and tuple-based sliding window, and allows the migrated CQ to have multiple

stateful operators with different window specification.

The success of DILoS, which facilitates the synergy between the scheduler and load man-

ager in our new framework, confirms our hypothesis that the synergy between the scheduler

and the load manager would consistently provide differentiated levels of services for CQs,

while using the system capacity more effectively.

8.2 INTELLECTUAL MERIT

With DILoS, we pointed out that it is necessary for the different resource management

modules in a system to work in synergy, which is missing in the state-of-the-art. That

106

would not only ensure consistent policies, but also promise better resource usage. DILoS

itself is extensible: it is not a specific scheduling/load shedding policy, but instead a general

framework for a priority-based DSMS scheduler and load shedder to cooperate to achieve

some overall goal. As such, different load shedder can be plugged in (as long as it has

the ability to automatically recognize the system capacity), and both the class-level and

operator-level scheduling policies can be changed depending on the specific goal of each

stream system.

Our adaptive load shedders, namely SEaMLeSS and ALoMa, while aiming at a real

implementation of DILoS, also make an important contribution to the work of load shedding

in DSMSs. The question of “when and how much to shed” is a crucial question that every

load shedder has to answer before going any further, yet has not been solved thoroughly by

the state-of-the-art. Our load shedders has filled in the gap, and can be used in complement

to works that focus on the other question of the load shedding problem, i.e., what and where

to shed.

Although UniMiCo shares the basic idea of state recreation with WRP [47], UniMiCo

is the first that fully covers both tuple and sliding windows, as well as supports multiple

stateful operators in the migrated CQ. UniMiCo therefore can be used as a general CQ

migration protocol in any cloud-based DSMS, regardless whether that DSMS follows our

proposed system model.

8.3 FUTURE WORK

Clearly, DILoS and ARMaDILoS are foundation steps towards efficient support for differen-

tiated levels of service for CQs and there are many future extensions, especially in light of

the constant advances in computer systems.

8.3.1 DILoS

DILoS has been implemented and evaluated on a single-thread DSMS. The obvious next

step is to implement DILoS on a parallelized DSMS, which can utilize multiple CPUs on a

107

server in processing CQs. In such DSMSs, the processing of CQs is split up into multiple

threads (each thread might or might not correspond to an operator, depending on the specific

strategy of the execution engine). We expect that DILoS is also beneficial in such multi-core

deployment. The load manager would still be able to recognize the capacity of the class

it is in charge, which could be greater than 1. However, because there are multiple CPU,

the scheduling task becomes challenging. The scheduler needs a proper strategy to schedule

processing threads of the CQ classes on the multiple CPUs available, so that the priority of

each class is honored. Also, capacity redistribution might result in moving certain processing

threads from one CPU to another, incurring overheads such as cache misses.

Another important future work to extend DILoS is to combine ALoMa with a semantic

load shedder (e.g., [74, 31, 30, 36]). ALoMa’s decision on the amount of load to shed would

serve as a required input for a semantic load shedder. However, semantic dropping is different

from random dropping in that semantic dropping can result in an effective shedded load

greater or smaller than the amount determined by the load shedder. This is because semantic

dropping changes the selectivities of the downstream operators. ALoMa’s adaptivity should

allow it to cope with this issue, yet a more robust approach would be to force the effective

shedded load to be the same as the amount decided by ALoMa.

8.3.2 ARMaDILoS

While DILoS and UniMiCo play the key roles in the proposed ARMaDILoS system model,

there are still various important issues that need to be addressed in a full implementation:

1. Design a solid global workload distribution policy which takes into account the priorities

of the CQ classes: Although ARMaDILoS can accept different policies, it is important

to implement a reasonable one to evaluate the framework.

2. Deciding when to migrate, where to migrate to, and what queries to migrate: The

coordinator needs to take into account the priority of the CQ classes (e.g., a lower-priority

class might be the first candidate to be moved), the migrating cost (e.g., stateless CQs

might be cheaper to move than stafeful CQs), and the potential benefit (e.g., the ability

for the migrated query to share some operators with the query network at destination).

108

Also, because migration always has some cost, the coordinator needs to avoid migrating

CQs just as a react to a brief spike in the load.

3. Improve overall system utilization: when the workload of the system is small, the coor-

dinator might consider putting some nodes to sleep to save power.

The above issues are targets for future work to realize ARMaDILoS.

8.4 BROADER IMPACT

The work in this dissertation would enhance a DSMS’s ability to provide differentiated

levels of service for CQs, which is crucial because it helps guaranteeing that critical queries

run fastest and received the most accurate results even when the DSMS is highly loaded.

This is meaningful in many contexts, including health care (e.g, detection of emergency

health problem), environmental surveillance (e.g., detection of wildfire, earthquake etc.),

and financial market (e.g., spot trend changes).

The main technical contribution of the dissertation (DILoS and ALoMa) has been made

available in a release of AQSIOS [4], which provides a basic experimental platform for further

research on CQ processing in DSMSs.

109

BIBLIOGRAPHY

[1] Amazon kinesis. https://aws.amazon.com/kinesis.

[2] Apache flink. http://flink.apache.org.

[3] Apache storm. http://storm.apache.org.

[4] Aqsios software release version 2.0. http://db.cs.pitt.edu/group/projects/

aqsios/2.0/.

[5] Esper. http://esper.codehaus.org.

[6] Microsoft StreamInSight. https://msdn.microsoft.com/en-us/sqlserver/

ee476990.aspx.

[7] Pacific tsunami warning center. http://ptwc.weather.gov/.

[8] Samza. http://samza.apache.org.

[9] Spark. http://spark.apache.org.

[10] System S - Stream Computing at IBM Research. http://researcher.watson.ibm.

com/researcher/view_group_subpage.php?id=2534.

[11] Tropical Asmosphere Ocean Project. http://www.pmel.noaa.gov/tao/.

[12] A. Arasu et al. Stream: The stanford data stream management system. Technical
report, Stanford InfoLab, 2004.

[13] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream
management. The VLDB JournalThe International Journal on Very Large Data Bases,
12(2):120–139, 2003.

[14] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.
Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analyt-
ical workloads. Proceedings of the VLDB Endowment, 2(1):922–933, 2009.

110

https://aws.amazon.com/kinesis
http://flink.apache.org
http://storm.apache.org
http://db.cs.pitt.edu/group/projects/aqsios/2.0/
http://db.cs.pitt.edu/group/projects/aqsios/2.0/
http://esper.codehaus.org
https://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx
https://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx
http://ptwc.weather.gov/
http://samza.apache.org
http://spark.apache.org
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2534
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2534
http://www.pmel.noaa.gov/tao/

[15] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing memory
requirements for queries over continuous data streams. ACM Transactions on Database
Systems, 29(1):162–194, 2004.

[16] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker,
and R. Tibbetts. Linear road: a stream data management benchmark. In Proceedings of
the Thirtieth international conference on Very large data bases, pages 480–491. VLDB
Endowment, 2004.

[17] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query processing. SIGMoD
Record, 29(2):261–272, 2000.

[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling in
data stream systems. The VLDB JournalThe International Journal on Very Large Data
Bases, 13(4):333–353, 2004.

[19] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 1–16. ACM, 2002.

[20] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: Operator scheduling for mem-
ory minimization in data stream systems. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 253–264. ACM, 2003.

[21] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over
data streams. In Proceedings of 20th International Conference on Data Engineering,
pages 350–361. IEEE, 2004.

[22] Y. Bai and C. Zaniolo. Minimizing latency and memory in dsms: a unified approach to
quasi-optimal scheduling. In Proceedings of the 2nd international workshop on Scalable
stream processing system, pages 58–67. ACM, 2008.

[23] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and P. Shenoy. ”cut me some slack”:
latency-aware live migration for databases. In Proceedings of the 15th International
Conference on Extending Database Technology, pages 432–443, New York, NY, USA,
2012. ACM.

[24] M. Cammert, J. Kramer, B. Seeger, and S. Vaupel. An approach to adaptive memory
management in data stream systems. In Proceedings of the 22nd International Confer-
ence on Data Engineering, pages 137–137. IEEE, 2006.

[25] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker.
Operator scheduling in a data stream manager. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 838–849. VLDB Endowment,
2003.

111

[26] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating
scale out and fault tolerance in stream processing using operator state management.
In Proceedings of the 2013 ACM SIGMOD international conference on Management of
data, pages 725–736. ACM, 2013.

[27] S. Chakravarthy and Q. Jiang. Stream Data Processing: A Quality of Service Perspective
Modeling, Scheduling, Load Shedding, and Complex Event Processing. Springer, 2009.

[28] S. Chakravarthy and V. Pajjuri. Scheduling strategies and their evaluation in a data
stream management system. Flexible and Efficient Information Handling, 4042:220–231,
2006.

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 668–668. ACM, 2003.

[30] J. H. Chang and H.-C. M. Kum. Frequency-based load shedding over a data stream of
tuples. Information Sciences, 179(21):3733–3744, 2009.

[31] Y. Chi, H. Wang, and P. S. Yu. Loadstar: load shedding in data stream mining. In
Proceedings of the 31st international conference on Very large data bases, pages 1302–
1305. VLDB Endowment, 2005.

[32] P. K. Chrysanthis. AQSIOS - Next Generation Data Stream Management System.
CONET Newsletter, June 2010.

[33] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapre-
duce online. In Proceedings of the 7th USENIX conference on Networked systems design
and implementation, pages 21–21. USENIX Association, 2010.

[34] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the 34th international conference on Very large data bases,
1(2):1277–1288, 2008.

[35] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: lightweight elasticity
in shared storage databases for the cloud using live data migration. Proceedings of the
VLDB Endowment, 4(8):494–505, 2011.

[36] R. Dash and L. Fegaras. Synopsis based load shedding in xml streams. In Proceedings
of the 2009 EDBT/ICDT Workshops, pages 93–98. ACM, 2009.

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS Operating Systems Review, volume 41, pages 205–220.
ACM, 2007.

112

[38] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 301–312. ACM, 2011.

[39] F. Farag, M. Hammad, and R. Alhajj. Adaptive query processing in data stream man-
agement systems under limited memory resources. In Proceedings of the 3rd workshop
on Ph.D. students in information and knowledge management, pages 9–16. ACM, 2010.

[40] H. Feng, Z. Liu, C. H. Xia, and L. Zhang. Load shedding and distributed resource
control of stream processing networks. Performance Evaluation, 64(9):1102–1120, 2007.

[41] B. Gedik, K.-L. Wu, S. Y. Philip, and L. Liu. Cpu load shedding for binary stream
joins. Knowledge and Information Systems, 13(3):271–303, 2007.

[42] B. Gedik, K.-L. Wu, and P. S. Yu. Efficient construction of compact shedding filters for
data stream processing. In IEEE 24th International Conference on Data Engineering,
pages 396–405. IEEE, 2008.

[43] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Grubjoin: An adaptive, multi-way, windowed
stream join with time correlation-aware cpu load shedding. IEEE Transactions on
Knowledge and Data Engineering, 19(10):1363–1380, 2007.

[44] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Mobiqual: Qos-aware load shedding in
mobile cq systems. In Proceedings of the 24th IEEE International Conference on Data
Engineering, pages 1121–1130. IEEE, 2008.

[45] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized processing
of multiple aggregate continuous queries. In Proceedings of the 20th ACM international
conference on Information and knowledge management, pages 1515–1524. ACM, 2011.

[46] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized processing
of multiple aggregate continuous queries. In Proceedings of the 20th ACM international
conference on Information and knowledge management, 2011.

[47] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez.
Streamcloud: An elastic and scalable data streaming system. IEEE Transactions on
Parallel and Distributed Systems, (12):2351–2365, 2012.

[48] H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakr-
ishnan, and C. Shahabi. Big data and its technical challenges. Communications of the
ACM, 57(7):86–94, 2014.

[49] N. R. Katsipoulakis, C. Thoma, E. A. Gratta, A. Labrinidis, A. J. Lee, and P. K.
Chrysanthis. Ce-storm: Confidential elastic processing of data streams. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pages
859–864, 2015.

113

[50] B. Kendai and S. Chakravarthy. Load shedding in mavstream: Analysis, implemen-
tation, and evaluation. In Sharing Data, Information and Knowledge, pages 100–112.
Springer, 2008.

[51] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch. Balancing load in stream processing
with the cloud. In 6th IEEE Workshop on Self Managing Database Systems, pages
16–21. IEEE, 2011.

[52] D. Kulkarni, C. V. Ravishankar, and M. Cherniack. Real-time, load-adaptive processing
of continuous queries over data streams. In Proceedings of the second international
conference on Distributed event-based systems, pages 277–288. ACM, 2008.

[53] C. Lei and E. A. Rundensteiner. Robust distributed query processing for streaming
data. ACM Transactions on Database Systems, 39(2):17, 2014.

[54] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 811–825. ACM, 2015.

[55] C. Mafrica, J. Johnson, S. Bock, T. N. Pham, B. R. Childers, P. K. Chrysanthis, and
A. Labrinidis. Stream query processing on emerging memory architectures. In Pro-
ceedings of the 4th IEEE Non-Volatile Memory Systems and Applications Symposium,
2015.

[56] L. A. Moakar, P. K. Chrysanthis, C. Chung, S. Guirguis, A. Labrinidis, P. Neophytou,
and K. Pruhs. Admission control mechanisms for continuous queries in the cloud. In
Proceedings of the 26th IEEE International Conference on Data Engineering, pages
409–412, 2010.

[57] L. A. Moakar, A. Labrinidis, and P. K. Chrysanthis. Adaptive class-based scheduling of
continuous queries. In 7th IEEE Workshop on Self Managing Database Systems, pages
289–294. IEEE, 2012.

[58] L. A. Moakar, T. N. Pham, P. Neophytou, P. K. Chrysanthis, A. Labrinidis, and
M. Sharaf. Class-based continuous query scheduling for data streams. In Proceedings
of the Sixth International Workshop on Data Management for Sensor Networks, pages
1–6. ACM, 2009.

[59] B. Mozafari and C. Zaniolo. Optimal load shedding with aggregates and mining queries.
In Proceddings of the 26th IEEE International Conference on Data Engineering, pages
76–88. IEEE, 2010.

[60] K. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-constrained aggregate com-
putation over data streams. In Proceedings of the 27th IEEE International Conference
on Data Engineering (ICDE), pages 852–863. IEEE, 2011.

114

[61] R. V. Nehme and E. A. Rundensteiner. Clustersheddy: load shedding using moving clus-
ters over spatio-temporal data streams. In Advances in Databases: Concepts, Systems
and Applications, pages 637–651. Springer, 2007.

[62] P. Neophytou, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Power-aware operator
placement and broadcasting of continuous query results. In Proc. of the ACM Interna-
tional Workshop on Data Engineering for Mobile and Wireless Data Access, pages 1–8,
2010.

[63] P. Neophytou, J. Szwedko, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Opti-
mizing the energy consumption of continuous query processing with mobile clients. In
Proc. of the 12th International IEEE Conference on Mobile Data Management, num-
ber 1, pages 98–103, 2011.

[64] T. Pham, N. R. Katsipoulakis, P. K. Chrysanthis, and A. Labrinidis. Uninterruptible
migration of continuous queries without operator state migration. Under submission to
SIGMOD Record.

[65] T. N. Pham, P. K. Chrysanthis, and A. Labrinidis. Self-managing load shedding for
data stream management systems. In 8th IEEE Workshop on Self Managing Database
Systems, pages 70–76. IEEE, 2013.

[66] T. N. Pham, P. K. Chrysanthis, and A. Labrinidis. Avoiding class warfare: Managing
continuous queries with differentiated classes of service. The VLDB JournalThe Inter-
national Journal on Very Large Data Bases, 25(2):197–221, 2016. 11/12/2015 published
on-line.

[67] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis. Dilos: A dynamic
integrated load manager and scheduler for continuous queries. In 6th IEEE Workshop
on Self Managing Database Systems (SMDB 2011), pages 10–15. IEEE, 2011.

[68] F. Reiss and J. M. Hellerstein. Data Triage: An Adaptive Architecture for Load Shed-
ding in TelegraphCQ. In Proceedings of the 21st International Conference on Data
Engineering, pages 155–156. IEEE, 2005.

[69] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems,
13(1):23–52, 1988.

[70] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: an adap-
tive partitioning operator for continuous query systems. In Proceedings of the 19th
International Conference on Data Engineering, pages 25–36. IEEE, 2003.

[71] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and met-
rics for processing multiple heterogeneous continuous queries. ACM Transactions on
Database Systems, 33(1):5.1–5.44, 2008.

115

[72] I. Stanoi, G. Mihaila, C. Lang, and T. Palpanas. Whitewater: distributed processing of
fast streams. IEEE Transactions on Knowledge and Data Engineering, 19(9):1214–1226,
2007.

[73] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit: Efficient load shedding techniques
for distributed stream processing. In Proceedings of the 33rd international conference
on Very large data bases, pages 159–170. VLDB Endowment, 2007.

[74] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding
in a data stream manager. In Proceedings of the 29th international conference on Very
large data bases, pages 309–320. VLDB Endowment, 2003.

[75] N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over
data streams. In Proceedings of the 32nd international conference on Very large data
bases, pages 799–810. VLDB Endowment, 2006.

[76] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: a
control-based approach. In Proceedings of the 32nd international conference on Very
large data bases, pages 787–798. VLDB Endowment, 2006.

[77] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics
in continuous data streams. IEEE Transactions on Knowledge and Data Engineering,
15(3):555–568, 2003.

[78] S. Wang, E. Rundensteiner, S. Ganguly, and S. Bhatnagar. State-slice: New paradigm
of multi-query optimization of window-based stream queries. In Proceedings of the 32nd
international conference on Very large data bases, pages 619–630. VLDB Endowment,
2006.

[79] Y. Wei, S. H. Son, and J. A. Stankovic. RTSTREAM: Real-Time Query Processing for
Data Streams. pages 141–150. IEEE Computer Society, 2006.

[80] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-L. Wu, and L. Fleis-
cher. Soda: an optimizing scheduler for large-scale stream-based distributed computer
systems. In Middleware 2008, pages 306–325. Springer, 2008.

[81] S. Wu, Y. Lv, G. Yu, Y. Gu, and X. Li. A qos-guaranteeing scheduling algorithm for
continuous queries over streams. In Advances in Data and Web Management, pages
522–533. Springer, 2007.

[82] Y. Xing, J. Hwang, U. Çetintemel, and S. Zdonik. Providing resiliency to load variations
in distributed stream processing. In Proceedings of the 32nd international conference
on Very large data bases, pages 775–786. VLDB Endowment, 2006.

[83] E. Zeitler and T. Risch. Massive scale-out of expensive continuous queries. In 36th
International Conference on Very Large Data Bases, 2011.

116

[84] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu. Efficient dynamic operator placement in a
locally distributed continuous query system. In Proceedings of the 2006 Confederated in-
ternational conference on On the Move to Meaningful Internet Systems: CoopIS, DOA,
GADA, and ODBASE, pages 54–71.

117

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Aurora with off-tuned headroom factors
	2. CTRL with off-tuned headroom factors
	3. Delays and data loss with QN-complex and S-r
	4. Average delay and data loss when CTRL has optimal setup
	5. Delays and data loss with QN-complex and S-r
	6. ALoMa's and SEaMLeSS's performance under a weighted RR scheduler
	7. ALoMa's properties compared to the state-of-the-art
	8. DILoS' advantages shown through average response time and data loss
	9. Average response time (ms) with SD-p and QN-A
	10. Average data loss (%) with SD-p and QN-A
	11. Average response time (ms) with SD-r and QN-B
	12. Average data loss (%) with SD-r and QN-B

	LIST OF FIGURES
	1. AQSIOS System model
	2. Motivation example
	3. Overview of the proposed DILoS framework
	4. DILoS with inter-class sharing
	5. Congestion problem
	6. A query network not supported by CTRL
	7. Input rate of the real data in S-r and SD-r
	8. Effect of headroom factor tuning on Aurora
	9. Effect of incorrect tuning of headroom factor on CTRL
	10. Effect of environment changes on CTRL and adaptation of SEaMLeSS
	11. Response times with QN-complex and S-r
	12. Effect of different headroom adjustment periods on SEaMLeSS
	13. Response time and system's load state with increasing input rate
	14. Cost fluctuation in response to changes of input rate
	15. Response time with QN-flat and S-r
	16. Effect of environment changes on CTRL and adaptation of ALoMa
	17. Response times with QN-complex and S-r
	18. ALoMa vs SEaMLeSS under weighted RR scheduler
	19. Performance of ALoMa, CTRL and Aurora with QN-long and S-r
	20. Performance with workload increasing to worst case
	21. Response time with background job coming and leaving at different frequency
	22. Per-class load management with ALoMa without inter-class sharing
	23. Per-class load manager with inter-class sharing
	24. Input rate changes for class 1 - input setup SD-p
	25. Response times with SD-c, QN-A, DILoS, and inter-class sharing
	26. Headroom factor estimated, with SD-c, QN-A, and one ALoMa per class
	27. Headroom factor estimated, with SD-c, QN-A, and DILoS' full synergy
	28. Response times with SD-p, QN-A, and DILoS (with sharing)
	29. Estimated headroom factors, with SD-p, QN-A, and DILoS (with sharing)
	30. Response times with SD-r, QN-B, and DILoS (with sharing)
	31. Estimated headroom factors with SD-r, QN-A, and DILoS (with sharing)
	32. Data loss at different lengths of the capacity redistribution cycles
	33. ARMaDILoS system model
	34. UniMiCo's migration strategy
	35. Calculating migration timestamp with two consecutive windows
	36. Example of a output tuples from a window operator in AQSIOS/STREAM
	37. Result of Q1 around the migration point
	38. Response time of Q1 around the migration point
	39. Result of Q2 around the migration point
	40. Response time of Q2 around the migration point
	41. Result of the complex query Q3 around the migration point
	42. Response time of Q3 around the migration point

	LIST OF ALGORITHMS
	1. ALoMa
	2. UniMiCo protocol at target node
	3. UniMiCo protocol at originating node

	LIST OF EQUATIONS
	3.1. Equation (3.1)
	3.2. Equation (3.2)
	3.3. Equation (3.3)
	4.1. Equation (4.1)
	4.2. Equation (4.2)
	4.3. Equation (4.3)
	5.1. Equation (5.1)
	5.2. Equation (5.2)
	6.1. Equation (6.1)
	7.1. Equation (7.1)
	7.2. Equation (7.2)

	PREFACE
	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Problem Statement
	1.3 Approach
	1.3.1 Scheduler-load manager synergy framework
	1.3.2 Adaptive load managers
	1.3.3 Large-scale adaptive resource management using DILoS

	1.4 Contributions
	1.5 Outline

	2.0 SYSTEM MODEL AND RELATED WORK
	2.1 System model
	2.1.1 AQSIOS
	2.1.2 CQ processing
	2.1.3 Quality metrics

	2.2 Related work: Resource management in DSMS
	2.2.1 Scheduling
	2.2.2 Load shedding
	2.2.3 Memory management
	2.2.4 Workload distribution and balancing
	2.2.4.1 CQ migration
	2.2.4.2 Other works on large-scale DSMSs

	2.3 Summary

	3.0 DILOS: DYNAMIC INTEGRATED LOAD MANAGER AND SCHEDULER
	3.1 DILoS as a general scheduler and load manager integration framework
	3.2 Inter-class sharing in DILoS
	3.2.1 Congestion problem
	3.2.2 Handling inter-class sharing in DILoS

	3.3 Load management challenge
	3.3.1 The ``when and how much'' problem and state-of-the-art

	3.4 Summary

	4.0 SEAMLESS
	4.1 Overview
	4.2 Implementation
	4.2.1 Handling complex query networks
	4.2.2 Headroom factor auto-adjustment

	4.3 Experimental evaluation
	4.3.1 Experiment settings
	4.3.2 Effect of incorrectly-tuned headroom factor on Aurora and CTRL
	4.3.2.1 Effect of incorrect headroom factor on Aurora
	4.3.2.2 Effect of incorrect headroom factor on CTRL

	4.3.3 SEaMLeSS evaluation
	4.3.3.1 Under system environment changes
	4.3.3.2 With a complex query network
	4.3.3.3 Sensitivity analysis

	4.4 SEaMLeSS's limitation
	4.5 Summary

	5.0 ALOMA
	5.1 Overview
	5.2 Implementation
	5.2.1 Observing the response time
	5.2.2 Increasing and decreasing the capacity
	5.2.3 The ALoMa algorithm
	5.2.4 Overhead and worst case

	5.3 Experimental evaluation
	5.3.1 Experiment settings
	5.3.2 Experiment results
	5.3.2.1 ALoMa vs CTRL under CTRL's ideal setting
	5.3.2.2 ALoMa vs CTRL under system environment changes
	5.3.2.3 ALoMa vs CTRL and Aurora with a complex query network
	5.3.2.4 ALoMa vs SEaMLeSS under a priority-based scheduler
	5.3.2.5 ALoMa vs CRTL and Aurora with long queries
	5.3.2.6 Worst-case scenarios

	5.4 Summary

	6.0 DILOS IMPLEMENTATION AND EVALUATION
	6.1 DILoS implementation
	6.1.1 Load manager
	6.1.2 Scheduler
	6.1.3 Capacity redistribution
	6.1.4 Handling inter-class sharing
	6.1.5 Overhead of DILoS

	6.2 Evaluation
	6.2.1 Experimental settings
	6.2.2 Confirming the advantages of DILoS
	6.2.3 Asserting DILoS robustness
	6.2.3.1 QN-A and SD-p
	6.2.3.2 QN-B and SD-r

	6.2.4 Sensitivity analysis

	6.3 Extensibility of DILoS
	6.4 Summary

	7.0 LARGE-SCALE ADAPTIVE RESOURCE MANAGEMENT USING DILOS
	7.1 ARMaDILoS
	7.2 UniMiCo
	7.2.1 Window-based operators
	7.2.2 Overview of UniMiCo
	7.2.3 Migration timestamp
	7.2.4 Calculating the migration timestamp
	7.2.5 Stopping and resuming continuous queries
	7.2.5.1 Stopping the query at the originating node
	7.2.5.2 Starting the query at target node

	7.3 Experimental Evaluation of UniMiCo
	7.3.1 Experiment settings
	7.3.2 Experiment results
	7.3.2.1 Simple CQ migration:
	7.3.2.2 Complex CQ migration:

	7.4 Summary

	8.0 CONCLUSIONS
	8.1 Summary of contribution
	8.2 Intellectual merit
	8.3 Future work
	8.3.1 DILoS
	8.3.2 ARMaDILoS

	8.4 Broader Impact

	BIBLIOGRAPHY

