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Object detection is a fairly important field in computer vision and image processing, and there 

are some domains that have been well researched, such like face detection and pedestrian 

detection, while these detections are based on situation that there are no shelters on objects in 

images or videos. But most objects are partially occluded in real world. And this becomes one 

major obstacle in object detection. In this paper, I utilize a state-of-art model, Deformable Part 

Model (DPM), which present a mixture model contains multi-scale deformable parts. And attach 

visibility flags to both cells and part of it. A visibility flag is used to indicate whether a specific 

cell or part is visible or occluded. By removing the contribution of occluded cells and parts to the 

whole detection score, the performance of partially occluded object detection can be significantly 

improved. To get the value of visibility flags, I use a mathematical method called Alternating 

Direction Method of Multipliers (ADMM). The experiment shows that by using this model, the 

detection accuracy of partially occluded object is improved. 
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1.0  INTRODUCTION 

This paper introduces a method for object detection with partially occluded based on a state-of-

art model, Deformable part models (DPM) [1]. The problem of detecting and localizing is a 

fundamental and important challenge in computer vision area. Detecting objects such as 

pedestrians and cars in static images is a tough problem because these objects, especially 

pedestrians, can vary significantly from image to image. Besides their poses and shapes, image 

illumination, complexity of background and viewpoint can also arise the variation. Despite 

significant effort has been put and encouraging development has been made recent years, most of 

them are only focus on detecting fully visible objects. When comes with objects with partial 

occlusion, the detection results are not good enough.  

 Most popular detection models use method of bounding box, which supposes that all 

pixels in the bounding box belong to the object. But in real world, not all objects are entirely 

visible, which means not all pixels support the object. For example, in the Galtech Pedestrian 

Dataset [22], at least 70% of pedestrian are partially or fully occluded in at least one frame of a 

video sequence. Dollar et al. [22] show that detection performance for standard methods drops 

significantly even under partial occlusion, and drastically under heavy occlusion. [6] So a 

detection model that can learn the visibility of pixels of an object is very important. 

Method in this paper is based on a mixture Deformable Part Model, which provides an 

outstanding framework for the problem of object detection. Deformable part model can 
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significantly capture the object variations, but using only one is not sufficient. Discriminatively 

Trained Deformable Part Model [1] uses a mixture of star-structured deformable part models, 

which contains a “root” filter and a set of part filters to better represent the variations on both 

pixel level and part level. Figure 1 shows a star-structured model for pedestrian. 

 

 

 

                     

 

Figure 1. Person detection model 
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At a specified position and scale, score of the star-structured model is the sum of 

responses of root filter and every part filter. The response of each filter is calculated by the dot 

product of filter weights and image features inside the detection window. In this model, part 

filters are applied to feature maps twice the resolution of root filters. By doing this, feature 

descriptors can better represent parts of objects and experiments show that by doing this, the 

detection performance is improved. However, datasets available now are all weakly labeled, 

which means there are labels only for root bounding box of an object. So we need a Support 

Vector Machine for Multiple-Instance Learning (MI-SVM) [17], in the following paper we will 

call it latent SVM (LSVM), to train the star-structured model with partially labeled dataset. We 

introduce a latent variable, which is used to indicate the positions of root and every part 

according to the object. The detection score of an input example x is calculated by the following 

form of function, 

𝑓𝛽 = max
𝑧∈𝑍(𝑥)

𝛽 ∙ Φ(x, z) 

where 𝛽 is a vector of model parameters, z is the vector of latent values, and Φ(x, z) is feature 

vector. In the star-structured model, 𝛽 is the concatenation of the root filter weights, part filters 

weights and deformation cost weights, Φ(x, z) is the concatenation of feature pyramid image 

inside root filter and part filters detection windows according to the object. A model for a 

specified class consists of several star-structured models, each one of which represents a 

component. Figure 2 shows a model for cars with two components. 

I attach latent visibility flags to part filters and every cell of root filter of deformable part 

model to deal with the detection of partially occluded objects. A visibility flag is a binary 

variable indicates whether the cell or part of a particular object is occluded or visible, 0 for 

occluded and 1 for visible. In order to get the value of visibility flags, I use an optimization 
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method called Alternating Direction Method of Multiplier (ADMM). Since we know that 

generally occluded parts of an object, especially pedestrian, are on the bottom and tend to cluster 

together, so the concave function we use to be maximized totally contains four parts: sum of the 

detection score of root filter and every part filter, a penalty term to encourage occluded parts 

appear at the bottom of the object, a consistency term to encourage cells concatenating have the 

same visibility flag, a consistency term to make sure that overlapped cells of root filter’s 

detection window and parts have the same visibility flag. Experiments show that by removing 

the contribution of occluded cells and parts to final detection score, the performance of partially 

occluded object detection is significantly improved. 
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Figure 2. Two components car detection model 
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2.0  RELATED WORK 

In recent years, object detection without occlusion has significantly developed, and most of the 

methods can achieve a considerable accuracy rate. However, occlusion handling is still an 

obstacle in this area, and a lot of researchers address the problem of partially occluded object 

detection. Paper [4] combines the Histogram of Oriented Gradients (HOG) with Local Binary 

Pattern (LBP) to get the feature set. They use the response of each block in HOG feature vector 

to construct occlusion likelihood maps and classify them with Mean Shift approach. Paper [5] 

use latent variables to indicate the visibility of every cell, but the model they construct can only 

be used in the situation that the object is truncated. In real world most objects are occluded by 

other objects, so this method cannot solve common problems. Paper [6] provides a segmentation-

aware object detection model. A latent variable is also attached to every cell in their model to 

indicate whether the cell belongs to the object. They construct a structural SVM to learn the 

values of latent variables, which means this model need to be trained with features of both 

objects being occluded and occluder. This will be time-consuming and the training dataset 

needed is also relatively large. 

Models above are using holistic detectors, while Paper [7], [8], [8], [9] use part-based 

detectors instead of the whole object detector and attach visibility flags to every part. Like 

method in this paper, Paper [7] also based on deformable part model and use latent variable to 

indicate the visibility of every part. They construct a discriminate deep model to learn the 
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visibility relation shape of overlapping parts. Paper [8] use the contextual and spatial 

configuration information from deformable part model to train conditional random field (CRF) 

parameters and use stochastic gradient descent with belief propagation to optimize CRF to get 

visibility flag value. But all these methods only based on part detectors and ignore the occlusion 

information on finer cell level. 

There are some other approaches like training occlusion specified dataset, which is quite 

time consuming. Paper [14] provides an approach to train a double person detector to handle 

person-to-person occlusion, which cannot be handling with in this paper. 
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3.0  PROBLEM BACKGROUND 

3.1 HISTOGRAMS OF ORIENTED GRADIENTS 

A good object detection method must base on a robust feature descriptor, which can greatly 

represent the object and make it discriminate from complex background. Edge and gradient 

based descriptors are most widely applied to object detection methods, and among theses 

approaches, grids of Histograms of Oriented Gradient (HOG) descriptors plays a very important 

role because its outstanding performance.  

The basic idea of HOG is that local object appearance and shape can often be 

characterized rather well by the distribution of local intensity gradient or edge directions, even 

without precise knowledge of the corresponding gradient or edge position [2]. To implement this 

descriptor, we can divide the image inside detection window into small connected regions, which 

we called cells, and in each cell, we calculate centered horizontal and vertical gradient of every 

pixel in the cell and accumulate them together. The combination of these histograms represents 

the descriptor. Then by creating larger spatial regions (blocks) and accumulating “energy” inside 

the block, the local histograms can be contrast normalized to get better performance.  This 

normalization will improve the descriptor’s robustness to illumination and shadow changes. 
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3.1.1 Implementation of Algorithm 

The Algorithm implementation is consisted of four parts: gradient computation, orientation 

binning, creating blocks and block normalization. 

The first step is to compute centered horizontal and vertical gradient and gradient’s 

orientation and magnitude. The most common method is to apply a centered point discrete 

derivative mask in horizontal and vertical directions. The two filter kernels are: 

𝐷𝑥 = [−1 0 1]         𝐷𝑦 = [1 0 − 1] 𝑇  

The second step is to create cell histogram by casting weighted vote from every pixel, where 

vote can be the magnitude of gradient or square or square root of it. Histogram bins are evenly 

spread over 0 to 180 degrees or 0 to 360 degrees, which is depending on whether the gradient is 

“unsigned” or “signed”. After experiments, Dalal and Triggs [2] found that unsigned gradients 

use in conjunction with nine histogram bins performs best. 

In order to make the descriptor robust to the change of illumination and image contrast, a 

local normalization should be applied to the gradients inside a block. Since generally these 

blocks are overlapped, cells in one block may contribute twice or more to the final descriptor. 

Many normalization factors like 𝑙1  norm and 𝑙2 norm can be used here to do the block 

normalization. A created feature descriptor can be put into a classifier like linear SVM to train 

and get the final detector. 
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3.2 ALTERNATING DIRECTION METHOD OF MULTIPILER 

In computer vision and machine learning area, many problems can be finally posed in a 

framework of convex function optimization. Due to the large size and high complexity of most 

dataset we needed in this area, a good optimization method becomes critical. Both computing 

time and storage of large data size should be taken into consideration when choosing an 

optimization approach. In this paper, I use a method called Alternation Direction Method of 

Multiplier (ADMM), which is well suited to distributed convex optimization, especially to large-

scale problem. This method was developed in the 1970s, with roots in the 1950s, and is closely 

related to many other algorithms, such as dual decomposition, Doughlas-Rachford splitting, 

Spingran’s method of partial inverses, the method of multiplier and others.  

3.2.1 Implementation of Algorithm 

Here I will give a simple overview of ADMM. More details please refer to the [16]. Giving an 

example of optimizing a convex function 𝑓(𝑥). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝐶                                                       (3-1) 

here 𝑥 is input variable that subjects to condition set 𝐶, and 𝑓(𝑥) is a convex function. We can 

first rewrite the function to the following form, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) + 𝐼𝐶(𝑧) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 = 𝑧                                                           (3-2) 

where 𝐼𝐶(𝑧) is the indicator function on 𝐶, which means 𝐼𝐶(𝑧) = 0 for 𝑧 ∈  𝐶 and 𝐼𝐶(𝑧) =  + ∞ 

for 𝑧 ∉  𝐶. Then we can get the augment Lagrangian function for this problem as, 
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𝐿𝜌(𝑥, 𝑧, 𝑢) = 𝑓(𝑥) + 𝐼𝐶(𝑧) +
𝜌

2
‖𝑥 − 𝑧 + 𝑢‖2

2                               (3-3) 

Where 𝑢  is a scaled dual variable associated with the constraint 𝑥 = 𝑧  and 𝜌 > 0  is penalty 

parameter. In each iteration, we perform alternation minimization of the augment Lagrangian 

function over 𝑥 and 𝑧 and update value following steps as below, 

𝑥𝑘+1 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥) +
𝜌

2
‖𝑥 − 𝑧𝑘 + 𝑢𝑘‖2

2} 

𝑧𝑘+1 ≔ Π𝐶(𝑥𝑘+1 + 𝑢𝑘) 

𝑢𝑘+1 ≔ 𝑢𝑘 + (𝑥𝑘+1 − 𝑧𝑘+1)                                               (3-4) 

When updating 𝑥, we fix 𝑧 and 𝑢. Similarly, when updating 𝑧, 𝑥 and 𝑢 are fixed and updating 𝑢 

while 𝑥 and 𝑧 are fixed. Π𝐶  denotes the Euclidean projection onto constrain set 𝐶. 

 A typical criterion to stop the iteration is, 

‖𝑒𝑃
𝑘‖

2
≤ 𝜖𝑝𝑟𝑖 , ‖𝑒𝑑

𝑘‖
2

≤ 𝜖𝑑𝑢𝑎𝑙                                              (3-5) 

Where 𝑒𝑃
𝑘 and 𝑒𝑑

𝑘 are primal and dual residuals 𝜖𝑝𝑟𝑖 and 𝜖𝑑𝑢𝑎𝑙 are tolerances can be set via an 

absolute plus relative criterion.  

𝑒𝑃
𝑘 = (𝑥𝑘 − 𝑧𝑘),  𝑒𝑑

𝑘 = 𝜌(𝑧𝑘 − 𝑧𝑘−1) 

𝜖𝑝𝑟𝑖 = √𝑛𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙max {‖𝑥𝑘‖2, ‖𝑧𝑘‖2} 

𝜖𝑑𝑢𝑎𝑙 = √𝑛𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙𝜌‖𝑢𝑘‖2                                            (3-6) 
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4.0  PART BASED MODEL 

In this section, I will mainly introduce the mixture deformable part based model that the 

occlusion handling model based on. This section includes four parts: introduction to models, 

features descriptor, the utilization of latent SVM and training process. 

4.1 MODEL 

The basic idea of models is applying linear filters to dense feature map of the input image. A 

linear filter is an array of d-dimensional weight vectors and a feature maps present an array of 

feature vectors computed inside a sub-window. Here the model use feature maps based on HOG 

features introduced in [2], but following discussion is independent of the form of feature 

descriptor.  

The response (score) of a filter F on a feature map G is calculated by summing the dot 

product of the filter and a sub-window feature weights. Since there may be not only one object in 

the whole image and the size may various greatly and we would like to detect all of them, 

changing size of detection window is needed here. But instead of changing the size of detection 

window, we prefer to calculate a feature pyramid, which is more suitable for this model. Feature 

pyramid is implemented by the iteration of smoothing and subsampling on the original image. 

Then compute feature maps on every level of the pyramid. Figure 3 explains the construction. 
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Figure 3. Image pyramid (left) and its corresponding feature pyramid (right) 

 

 

 

As we discussed before, in this model, part filters will be applied to the feature maps 

twice resolution as the root filter. So here they introduce a parameter 𝜆 to indicate the number of 

levels in an octave of feature pyramid.  That means image resolution will increase twice as much 

when pyramid level go down 𝜆 levels. Experiments show that by doing this, the detection rate 

can be improved. 

The advantage of deformable part model is that it can better present the variation of 

object but single filter is still not good enough. In this model, mostly two components are 

included in one object model. Suppose that there is a filter 𝐹 with the size 𝑤 × ℎ and is applied 

to a feature pyramid  𝐺 . Let Φ(𝐺, 𝑝)  denote the feature vector obtained from concatenation 

specific 𝑤 × ℎ  sub-window of feature pyramid. Here 𝑝 =  (𝑥, 𝑦, 𝑙)  is used to indicate the 

position (𝑥, 𝑦) in the 𝑙-th level of pyramid. Let 𝐹’ be the vector obtained by concatenating the 

weight vectors in F. All the concatenation is done in row-major order. Then the score of the filter 

F applied to G is 𝐹’ ∙ Φ(𝐺, 𝑝). 
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4.1.1 Deformable Part Models 

This model analyzes features both on cell-based level and part-based level. A star model is 

consist of a root filter coarsely cover the entire object and a set of part filters cover small parts of 

the object. Figure 4 shows a star model for a bottle. A root filter is first applied to the feature 

pyramid as a detector and then part filters will be applied to the feature map 𝜆 level down in the 

pyramid according to root filter. By doing this, feature map detected by part filter is twice the 

resolution as that detected by root filter. This step is very important. Higher resolution the image 

has, more detailed feature can be captured. For example, in the process of detecting a face, root 

filter can capture edges like boundary of face while part filters can capture features like eyes and 

mouth. Experiments also show that applying part filters to higher resolution image can get much 

higher accuracy. 

 

 

  

 

Figure 4. Star model for bottle 
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Every model for an object with n parts is defined by a (𝑛 + 2) tuple (𝐹0, 𝑃1, … , 𝑃𝑛, 𝑏) 

where 𝐹0 is the root filter, 𝑃1 to 𝑃𝑛 are models for part filters, b is the bias term. Every part model 

is defined by a three tuple (𝐹𝑖, 𝑣𝑖, 𝑑𝑖) where 𝐹𝑖 is the filter for the 𝑖-th part, ai is a two value 

vector indicate the “anchor” position according to the position of root filter and di defines the 

deformation cost for every placement of the part relative to the anchor position. 

Here they introduce a latent vector 𝑧 = (𝑃0, … , 𝑃𝑛) to indicate the position of every filter 

where 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑙𝑖) specifies the position and level in feature pyramid. Since we apply part 

filters to feature map twice the resolution of root filter, we can get the relation that 𝑙𝑖 =  𝑙0–  𝜆.  

Give a object hypothesis 𝑧 = (𝑃0, … , 𝑃𝑛), the score of it can be computed by the sum of 

each filter response minus the deformation cost depends on the positions of parts relative to the 

root filter plus the bias term, 

𝑠𝑐𝑜𝑟𝑒(𝑃0, … , 𝑃𝑛) =  ∑ 𝐹𝑖
′ ∙ ϕ(G, p𝑖) − ∑ 𝑑𝑖 ∙ 𝜙𝑑(𝑑𝑥𝑖 , 𝑑𝑦𝑖)

𝑛
𝑖=0

𝑛
𝑖=0 + 𝑏            (4-1) 

Deformation cost term is a four values vector specifies a quadratic function of the 

displacement. Bias term is introduced to make multiple models able to mixture together. As we 

have discussed, generally every object model is a mixture of two models. 

Finally the computed score should be put into a latent SVM framework to train detector 

parameters, so we rewrite the model parameters as 𝛽 = (𝐹0
′, … , 𝐹𝑛

′, 𝑑1, … , 𝑑𝑛, 𝑏)  and feature 

vector as 𝜓(𝐺, 𝑧) = (ϕ(G, p0), … , ϕ(G, p𝑛), −𝜙𝑑(𝑑𝑥1, 𝑑𝑦1), … , 𝜙𝑑(𝑑𝑥𝑛, 𝑑𝑦𝑛), 1), which can 

illustrate the relation between this model and linear classifier. 

4.1.2 Matching 

The overall score of a detection window is calculated according to the best placements 

(𝑃0, … , 𝑃𝑛) for parts, 
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𝑠𝑐𝑜𝑟𝑒(𝑝0) = max
𝑃1,…,𝑃𝑛

𝑠𝑐𝑜𝑟𝑒(𝑃0, … , 𝑃𝑛)                                 (4-2) 

Then we can get high-scoring root locations define the possible location of the whole object and 

best placements for parts according to it. Root filter is applied as a sliding window detector to 

every level and position of the feature pyramid, so we can detect multiple instances of the object 

with different location can scale. And the score of every root location defines the score of every 

detection window. 

Dynamic programming and generalized distance transform [25] are used to calculate the 

best placements for parts according to the location of root. The overall score can be calculated by 

summing the root filter response at the specific level and position and shifted versions of 

transformed and subsampled part responses, 

𝑠𝑐𝑜𝑟𝑒(𝑥0, 𝑦0, 𝑙0) = 𝑅0,𝑙0
(𝑥0, 𝑦0) + ∑ 𝐷𝑖,𝑙0−𝜆(2(𝑥0, 𝑦0) + 𝑣𝑖) + 𝑏𝑛

𝑖=0               (4-3) 

After getting a high-scoring root location (𝑥0, 𝑦0, 𝑙0), we can find the relative part locations by 

optimal displacement 𝑃𝑖,𝑙0−𝜆(2(𝑥0, 𝑦0) + 𝑣𝑖). Figure 5 shows the procedure of matching. 

4.1.3 Mixture Model 

As we discussed before, use only one model to represent an object is not enough. Here we 

introduce the mixture model, which is consisted of several components. A mixture model with m 

components is defined by a m tuple, 𝑀 = (𝑀1, … , 𝑀𝑚), where 𝑀𝑖  is the model for the 𝑖 -th 

component. Every model includes a root filter and a set of part filters. For example, when 

detecting people, we may need a model to represent people standing up and another one for 

people sitting or crouching down. For cars detecting, we may need two models to represent cars 

coming from right hand and left hand separately.  
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For a single component model, the score of a hypothesis is the dot product between the 

vector of model weight and the feature vector inside the detection window. For an m components 

model, the model weight vector is concatenation of weight vectors for every model. To detect an 

object with mixture model, we can use the process discussed above to find high-scoring root 

location and relative parts locations independently for each component 

 

 

 

 

 

Figure 5. Procedure of matching 
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4.2 LSVM 

As we have discussed before, filter response is calculated by dot product of filter weight vector 

and feature vector as the following form, 

𝑓𝛽(𝑥) = max
𝑧∈𝑍(𝑥)

𝛽 ∙ Φ(𝑥, 𝑧)                                            (4-4) 

where β is the vector of filter weight and z are latent valves. We have a set of possible latent 

values Z(x) for an input x. Then we can set a threshold the to the score to label the input x. Like 

training classical SVM, we can train β from labeled data set 𝐷 =  (〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉), where 

𝑦𝑖 ∈ {−1,1} is the label of xi, by minimizing objective function, 

𝐿𝐷(𝛽) =
1

2
‖𝛽‖2 + 𝑐 ∑ max (0,1 − 𝑦𝑖𝑓𝛽(𝑥𝑖))𝑛

𝑖=0                               (4-5) 

where max (0,1 − 𝑦𝑖𝑓𝛽(𝑥𝑖)) is the hinge loss and 𝐶 is a constant value used to control the weight 

of regularization term.  If there is only one possible latent value for an input x, then the problem 

is simplified to a linear SVM training problem. So linear SVM is a special case of latent SVM. 

4.2.1 Semi-convexity 

Training a linear SVM is convex optimization problem because 𝑓𝛽(𝑥) is linear in 𝛽 and hinge 

loss is convex as maximum of two convex functions. However training a latent SVM is a non-

convex optimization problem. But in some specified cases, it can be treated as convex. If there is 

single latent value possible for positive examples, then the problem becomes linear SVM training 

problem. 

As we know, the maximum of a set of convex functions is also a convex function. From 

function above we can see that 𝑓𝛽(𝑥) is a maximum of a function, which is linear in 𝛽. So 𝑓𝛽(𝑥) 
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is convex in β and hinge loss, max (0,1 − 𝑦𝑖𝑓𝛽(𝑥𝑖)), is also convex when 𝑦𝑖 = −1. That means 

the loss function is convex in 𝛽 for negative examples, which is called semi-convexity.  

Generally speaking, hinge loss in latent SVM for positive examples is not convex 

because it is a maximum of a convex function and a concave function.  

4.2.2 Optimization 

Here we introduce a value 𝑍𝑝 to specify the latent value for each positive example in training set 

𝐷. Let 𝐷(𝑍𝑝) is a dataset derived from 𝐷 by restricting latent values 𝑍𝑝 for positive examples. 

That is we set 𝑍(𝑥𝑖)  =  {𝑧𝑖} for a positive example according to 𝑍𝑝. Then we can rewrite the 

loss function of latent SVM as, 

𝐿𝐷(𝛽) = min
𝑍𝑝

𝐿𝐷(𝛽, 𝑍𝑝)                                             (4-6) 

where 𝐿𝐷(𝛽) ≤ 𝐿𝐷(𝛽, 𝑍𝑝). So we can train latent SVM by minimizing 𝐿𝐷(𝛽, 𝑍𝑝). 

 We implement the minimization of 𝐿𝐷(𝛽, 𝑍𝑝) by using a “coordinate descent” approach, 

which iteratively update variables in a function while set others constant. The procedure is 

shown below, 

(1) Optimize 𝑍𝑝: Set 𝛽 as constant and minimize 𝐿𝐷 over 𝑍𝑝 to get highest scoring latent     

value for each positive example. 

 (2) Optimize 𝛽: Set 𝑍𝑝 as constant and minimize 𝐿𝐷 over 𝛽. 

Follow the steps above repeatedly until converge. After convergence we will get a relatively 

strong optimum because step 1 search all possible latent values to each positive example and find 

the highest scoring one while step 2 search a large set of values to get best model weights. Here 
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the initialization of 𝛽 is important because bad initialization of 𝛽 may lead to unreasonable 𝑍𝑝 in 

step1 and then lead to bad model finally. 

 The semi-convex property is very important here. In step 1, we specify the latent value to 

all positive examples and then in step 2, latent SVM becomes linear for positive examples and 

convex for negative examples. 

4.3 TRAINING 

Most training data available are images labeled with a bounding box around an object of interest. 

Here we use the PASCAL datasets, which contains thousands of labeled images. But this dataset 

is weakly labeled because it only has labeled bounding box for the whole object but no 

components or parts label. The parameter of latent SVM and best latent values are learned by the 

procedure of coordinate descent approach introduced in 4.2.2.  

4.3.1 Learning Parameter 

Assume for an object class 𝑐, the training dataset 𝐷 is consisted of positive examples 𝑃 with 

labeled bounding boxes around objects of interest in every image and negative examples 𝑁. 𝑃 is 

a set of pairs (𝐼, 𝐵) where 𝐼 is a image and 𝐵 are the bounding boxes for objects of interest in 

image 𝐼. 

𝑀  is a mixture model with weight parameters vector 𝛽 . We use coordinate descent 

approach to learn the values of 𝛽 with positive examples from 𝑃 and backgrounds from 𝑁. We 

compute feature pyramid 𝐺(𝑥) for every image (𝑥, 𝑦) in dataset 𝐷 where 𝑥 and 𝑦 is the label for 
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it. Latent value 𝑧 ∈ 𝑍(𝑥) specify the root location and relative part locations. We define 𝜙(𝑥, 𝑧) 

as the feature vector. Then 𝛽 ∙ 𝜙(𝑥, 𝑧) is the score of hypothesis z for 𝑀 on 𝐺(𝑥).  

We want the detection score high in area of bounding box 𝐵 for image 𝐼. We define a 

positive example x for every (𝐼, 𝐵) ∈ 𝑃 and the detection window of root filter specified by 𝑍(𝑥) 

should overlap 𝐵 at least 50%. Here we treat the root location as a part of latent value, which is 

helpful for compensating for noisy bounding boxes in 𝑃 . On the other hand, we want the 

detection score low when applied on negative examples. 

The pseudo code of training process is shown in Figure 6. The first loop from line 2 to 15 

implements fixed iteration of coordinate descent. Lines 3 to 5 do the positive example relabeling 

to optimize 𝑧 while lines 7 to 14 optimize 𝛽. Data-mining algorithm is used to remove hard 

negative examples for reducing the data size. In every iteration, highest scoring hypothesis is 

stored in 𝐹𝑝 while hard negative examples are all collected into 𝐹𝑛. Then training 𝛽 and remove 

easy feature vectors from 𝐹𝑛. The process break when we reach the memory limitation. 
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Figure 6. Pseudo code of training process 

  

 

 

The function 𝑑𝑒𝑡𝑒𝑐𝑡 − 𝑏𝑒𝑠𝑡(𝛽, 𝐼, 𝐵) is used to find the highest scoring hypothesis that 

specifies a root filter overlap 𝐵 on a large area. The  𝑑𝑒𝑡𝑒𝑐𝑡 − 𝑎𝑙𝑙(𝛽, 𝐼, 𝑡ℎ) is used to find the 

best hypothesis for a specified root and select ones whose score above 𝑡ℎ . The function 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 𝑑𝑒𝑠𝑐𝑒𝑛𝑡(𝐹) is used to train 𝛽 with hypothesis values.  
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4.3.2 Initialization 

The coordinate descent algorithm for latent SVM is sensitive to the initialization of model 

parameters. So here we discuss the procedure of initialization and training.  

For training a mixture model with 𝑚 components, we first sort the bounding boxes by 

their aspect ratio and send them into m groups. Every group has equal size bounding boxes and 

we train m different root filters, one for each group. We use standard SVM to train these filters 

on positive dataset 𝑃 with no latent variables. Figure 7 shows two trained models for bicycle. 

After we got initialed root filters, we need to combine them together to form a mixture 

model. This mixture model has no parts information now. Then we train this mixture model 

following the pseudo code shown above on the whole dataset 𝐷 . In this case, the latent 

information only contains the information of component label and root location.  

Next step is to initialize and train part filters. We fix the number of parts for each 

component as six and we assume parts should be placed on high-energy regions of root. We use 

a pool of part-shape rectangular to cover these regions and once a region is covered on the root, 

it is set to be zero. Then we look for a next high-energy region until six parts are chosen. The 

deformation parameters are initialed as 𝑑 =  (0,0, .1, .1). 
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Figure 7. Model for bicycle 
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5.0  OCCLUSION HANDLING 

In this section, I will mainly introduce an occlusion handling approach based on the mixture 

deformable part models discussed in section 4.0  and the idea is mainly based on paper [26]. This 

section includes two parts: introduction of model and implementation of model. 

5.1 MODEL 

As we discussed before, mixture deformable part model introduced in section 4.0  is consisted of 

a root filter and a set of part filters. The model can be define as 𝑀 =  (𝐹0, 𝑃1, … , 𝑃𝑏 , 𝑏) where 𝐹0 

is the root filter, 𝑃𝑖is the model for the 𝑖-th part filter and b is the bias term. Part model is defined 

as 𝑃𝑖 =  (𝐹𝑖, 𝑣𝑖 , 𝑑𝑖) where 𝐹𝑖 is the filter for the 𝑖-th part and 𝑑𝑖 is the deformation coefficients, 

which we will use here to calculate part filter responses.  

Given a detection window at position 𝑝  and level 𝑙 , the response of root filter is 

calculated as, 

𝑅(𝑝, 𝑙) = 𝐹0
𝑇 ∙ 𝐺(𝑝, 𝑙) + 𝑏                                              (5-1) 

Where 𝐺(𝑝, 𝑙) is the concatenation of features computed on cell level inside the detection box 

and 𝑏 is the bias term. Since this is a linear operation, we can rewrite the filter response as a 

summation of responses on cell level. Then the root detector score can be written as, 
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𝑅0(𝑝, 𝑙) = ∑ [(𝐹0
𝑐)𝑇 ∙ 𝐺𝑐(𝑝, 𝑙) + 𝑏𝑐]𝐶

𝑐=1 = ∑ 𝑅0
𝑐(𝑝, 𝑙)𝐶

𝑐=1                        (5-2) 

Where 𝐶 is the number of cells and 𝑏 =  ∑ 𝑏𝑐. Here we suppose 𝑅𝑝(𝑝, 𝑙) is the filter response of 

𝑝-th part according to the root position and as we know, part filter response is linear on part level. 

Then the total score of a detection window, which is the summation of root filter response and 

every part filter response can be calculated as, 

𝑅(𝑝, 𝑙) = ∑ 𝑅0
𝑐(𝑙, 𝑝)𝐶

𝑐=1 + ∑ 𝑅𝑝(𝑝, 𝑙)𝑃
𝑝=1                                    (5-3) 

 When an object is partially occluded, the occlusion parts may have negative effect to the 

filter response, which will decrease the detection score. So what we need to do here is to remove 

the contribution of occluded part to both root filter response and part filter response. So I attach a 

visibility flag to every cell and part to indicate that whether the cell or part is occluded or not. 

The visibility flag is a binary variable that 0 indicates occluded and 1 indicates visible. By doing 

this, we will only aggregate the filter responses of visible cells and parts. 

 The problem of finding put the values of visibility flags can be treated as a optimization 

problem on the following score function, 

𝑣0̂, {𝑣�̂�}
𝑝=1

𝑃
= 𝑎𝑟𝑔 max

𝑣0,{𝑣𝑝}
(∑ 𝑅0

𝑐𝑣0
𝑐𝐶

𝑐=1 + ∑ 𝑅𝑝𝑣𝑝
𝑃
𝑝=1 )                        (5-4) 

Where 𝑣0̂ = [𝑣0
0, … , 𝑣0

𝐶] and {𝑣�̂�}
𝑝=1

𝑃
 are the visibility flags for cells of root and parts. Here we 

omit the parameter 𝑝 and 𝑙 for simplicity and the function only focus on one detection window. 

The maximization result of the score function above will simply set visibility flag 0 for cells and 

parts whose filter response below zero and 1 for others. But occluded regions are not likely to be 

distributed evenly on the object. There some occlusion “rules” we need to follow.  

 First of all, the object is usually occluded by another object, which means occlusion 

likely to occur on a continuous region. What’s more, the root cells and parts that are overlapped 
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should have the same visibility flag value. To account these spatial relations, we can add two 

penalty terms, cell-to-cell consistency and part-to-part consistency, to the score function. Then 

the function takes the following form, 

𝑅𝑜𝑐𝑐 = max
𝑣0,{𝑣𝑝}

𝑝=1

𝑃
∑ 𝑅0

𝑐𝑣0
𝑐 + ∑ 𝑅𝑝𝑣𝑝

𝑃

𝑝=1

𝐶

𝑐=1
 

                                                     −𝛾 ∑ |𝑣0
𝑐𝑖 − 𝑣0

𝑐𝑗| −𝑐𝑖~𝑐𝑗
𝛾 ∑ |𝑣0

𝑐𝑖 − 𝑣0

𝑝𝑗|𝑐𝑖~𝑝𝑗
          (5-5) 

Where 𝑐𝑖 and 𝑐𝑗 are adjacent cells, 𝑐𝑖 and 𝑝𝑗 are overlapped cell and part, 𝛾 is the regularization 

parameter. 

 Since the dataset I will use to test the model is a pedestrian detection dataset, in street 

scene, lower part of the pedestrian are more likely to be occluded than the upper part. So here I 

also introduce two penalty terms to control the position of the occlusion region. Then the score 

function can be written as, 

𝑅𝑜𝑐𝑐 = max
𝑣0,{𝑣𝑝}

𝑝=1

𝑃
∑ [𝑅0

𝑐𝑣0
𝑐 − 𝛼𝜆0

𝑐 (1 − 𝑣0
𝑐)] + ∑ [𝑅𝑝𝑣𝑝

𝑃

𝑝=1

𝐶

𝑐=1
− 𝛽𝜆𝑝(1 − 𝑣𝑝)] 

                                                     −𝛾 ∑ |𝑣0
𝑐𝑖 − 𝑣0

𝑐𝑗| −𝑐𝑖~𝑐𝑗
𝛾 ∑ |𝑣0

𝑐𝑖 − 𝑣0

𝑝𝑗|𝑐𝑖~𝑝𝑗
          (5-6) 

 

Where 𝜆0
𝑐  and 𝜆𝑝 are penalties when visibility flags of cells and parts are set occluded, 𝛼 and 𝛽 

are weights of the penalty term. The value of 𝜆0
𝑐  and 𝜆𝑝 should be proportional to the height from 

the bottom of image to the cell or part. When the cell or part is in upper area of the image, the 

penalty of setting their visibility flags to 0 should be large. It can be calculated follow the 

sigmoid function as, 

𝜆 =
1

2
[

1

1+𝑒−𝜏(ℎ−ℎ0 2⁄ ) +
1

2
]                                               (5-7) 

where ℎ is the height of cell or part from the bottom of image and 𝜏 controls the step size. 
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5.2 IMPLEMENTATION 

There are a large number of detection windows in an image, so computing visibility flags for all 

these windows will be very time-consuming. So here we run the DPM detector on an image first 

and pick top 10% from all detection windows as our candidates. Then we attach visibility flags 

to these candidates and here we introduce Alternation Direction Method of Multipliers (ADMM) 

[16] to speed up the optimization process. 

 The function (5-6) can be rewritten as the following ADMM form, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − 𝜔𝑇𝑞 + 𝜆‖𝑧1‖1 + 𝐽[0,1](𝑧2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷𝑞 = 𝑧1, 𝑞 = 𝑧2, 𝑞 ∈ [0,1]𝐶+𝑃                                  (5-8) 

where q = [v0
0, … , v0

C, v1, … , vp]
𝑇
 is the concatenation of visibility flags of cells and parts, 𝜔 =

[(𝑅0
0 + 𝛼𝜆0

0), … , (𝑅0
𝐶 + 𝛼𝜆0

𝐶), (𝑅1 + 𝛽𝜆1), … , (𝑅𝑝 + 𝛽𝜆𝑝)]
𝑇
 is the stack of filter responses and a 

penalty term parameter. D here is a (𝐶 + 𝑃) × (𝐶 + 𝑃) differentiation matrix for cell-to-cell 

consistency and cell-to-part consistency penalty terms. 𝐽[0,1](𝑧2)  is an indicator function. 

𝐽[0,1](𝑧2) = 0 when 𝑧2 between 0 to 1, otherwise 𝐽[0,1](𝑧2) =  +∞. Then we can get the augment 

Lagrangian function as following, 

𝐿(𝜔, 𝑧1, 𝑧2, 𝑢1, 𝑢2) = −𝜔𝑇𝑞 + 𝜆‖𝑧1‖1 + 𝐽[0,1](𝑧2) 

                              +
𝜌1

2
‖𝐷𝑞 − 𝑧1 + 𝑢1‖2

2 

                            +
𝜌2

2
‖𝑞 − 𝑧2 + 𝑢2‖2

2                                        (5-9) 

where 𝜌1 > 0, 𝜌2 > 0 are penalty terms. Here tried different values for parameters (𝜆, 𝜌1, 𝜌2) and 

find best value set. This will be discussed in detail in next section. 
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6.0  EXPERIMENTS 

6.1 DETECTION OF FULLY VISIBLE OBJECTS 

The Deformation Part Model is tested on PASCAL VOC 2006 [20], 2007 [18] and 2008 [19]. 

These are very difficult dataset for object detection challenge. Each dataset has thousands of 

images with one or more different objects on them. Every object is has a ground-truth bounding 

box. In the test process, our goal is to predict the bounding box for a given class object. Since the 

system returns several high-scoring bounding box candidates, so we need to set a threshold to 

pick out better results from these candidates. A prediction of bounding box can be treated as 

correct when it overlap the ground-truth bounding box over 50%. Sometimes the system with 

return several bounding boxes that overlap together, in this case, we will only consider one of 

them is correct, and the others are false. 

Every model consists of two components. Figure 8 shows some mixture models trained 

on PASCAL 2007 set. Figure 9 shows some detection results we get by using these models. 
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Figure 8. Some model examples trained on PASCAL 2007 dataset 
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Figure 9. Some detection result on PASCAL test dataset 
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6.2 DETECTION OF PARTIALLY OCCLUDED OBJECTS 

The test dataset for partially occluded objects we choose here is Daimler Multi-Cue Occluded 

Pedestrian Classification benchmark [13], which contains a large variety set of partially occluded 

pedestrians with cars or other non-pedestrian objects as occluders.  Note that the occlusion 

handling model here in this paper is not able to deal with pedestrian-to-pedestrian occlusion. 

That’s why the most other relative datasets like ETH [23] and Caltech Pedestrian Detection 

Benchmark [24] cannot be used here.  

The training and testing part of the dataset contain labeled pedestrians and non-

pedestrians bounding boxes. All the images of the dataset are taken from a vehicle-mounted 

camera in an urban environment. Positive samples are manually labeled while the negative 

samples are based on pre-processed with relaxed threshold setting. Besides formal intensity 

image, the dataset also contains dense stereo samples and dense optical flow samples. There are 

totally 80,000 training samples as well as 50,000 testing samples. Each sample has a 96*48 

resolution with a border of 12 pixels around the pedestrian. Intensity samples are the only 

samples used in my test. 

In practice, the minimization problem of function (5-9) has parameters such as 𝜆, 𝜌1, 

𝜌2, 𝛼, to be set. But the Daimler dataset only provides test set for occluded pedestrian detection. 

There is not enough data used to train these parameters. So here I just try a range of values of 

every parameter and find the parameter set that produces highest detection score.  
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Figure 10. Alpha from 1 to 1.2 
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Figure 11. Alpha from 1.3 to 1.5 
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Figure 12. Alpha from 1.6 to 1.8 
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Figure 10, Figure 11 and Figure 12 shows the detection accuracy value according 

to different parameter set. To reduce the search space, I assume that 𝜌1 = 𝜌1. When the 

bounding box returned by the system overlaps the ground-truth bounding box over 50%, 

then we treat the detection result as accurate. Otherwise, we treat it as false detection. The 

highest scoring parameter set we get is (𝜆 = 1.4, 𝜌1 = 1, 𝜌2 = 1, 𝛼 = 1.4). 

Even though only the cell information and part information alone cannot 

determine whether a region is occluded or not, this information combined with penalty 

term will provide a relatively robust model handing occlusion problems. Figure 13 shows 

some detection results on the Daimler dataset. 

I compare the occlusion handling model with mixture deformation part model by 

testing both of them on the partially occluded and non-occluded pedestrian datasets. And 

the test result is shown in Table 1. From the table we can see clearly that the accuracy 

rate of partially occluded object detection is significantly improved compared with DPM. 

 

 

 
Table 1. Comparison of occlusion handling model and DPM 

 Partially occluded Non-occluded 

Occlusion Handling 0.9717 0.9884 

DPM 0.350 0.6047 
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Figure 13. Some detection results: 

Original input image (left). Cell occlusion detection (middle). Regions covered with read lines are 

occluded. Part occlusion detection (right). Parts with red bounding box lines are   occluded. 
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7.0  CONCLUSION 

In this paper, we introduce a state-of-art object detection model, mixture Deformable Part Model, 

and based on this model, we introduce an occlusion handling approach. We attach visibility flags 

to every root cells and parts and by doing convex function optimization, then we get tall he flag 

values. We do test on the Daimler Multi-Cue Occluded Pedestrian Classification benchmark and 

the experiments show that the accuracy rate of partially occluded object detection improved 

significantly. But there is still storage of this model: it cannot deal with pedestrian-to-pedestrian 

occlusion. I will do more future research on it. 
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