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Functional electrical stimulation (FES) is an application of low-level electrical current to the 

motor nerves to produce muscle contractions. FES-induced limb motion can be used to 

reproduce gait in persons with paraplegia. The biggest limitation of using FES for gait 

restoration is the rapid onset of muscle fatigue. Unlike FES, powered exoskeletons don’t suffer 

from this limitation but need batteries and large actuators to generate enough torque to restore 

gait motion. However, a hybrid neuroprosthesis that combines these two technologies may be a 

promising direction to achieve walking for long durations. Our ultimate goal is to develop a 

wearable hybrid neuroprosthesis that can be conveniently used in daily life. 

In order to use closed loop feedback control for a wearable walking hybrid 

neuroprosthesis, accurate estimates of lower limb angles need to be determined. This thesis 

presents a nonlinear estimator that parameterizes nonlinearities in an extended linear form using 

a state-dependent coefficient formulation. The new class of state estimation algorithm is called 

State-Dependent Riccati Equation (SDRE) based estimator and was implemented on a single 

joint knee model driven by FES of the quadriceps muscle. Two inertial measurement units 

(IMUs) were used to measure kinematic data of the thigh and shank segments. To prove that the 
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SDRE estimator is feasible for this application, it was compared with an Extended Kalman Filter 

(EKF) and a rotation matrix method (RMX). Each estimator's performance was evaluated using a 

rotary encoder, which was assumed as the true value of the joint angle. The error for each 

estimator was calculated through the root mean square error (RMSE), in which the experimental 

results showed that the SDRE estimator had the most accurate knee joint estimation with a mean 

RMSE of 1.77 . The EKF and rotation matrix gave a mean RMSE of 2.04  and 2.79 , 

respectively.  

 Further, a two limb joint angle simulation study was performed to explore the 

performance of the SDRE estimator during multi-DOF limb movements. In another simulation, 

this novel estimator was combined with the synergy-inspired controller scheme for tracking 

control of hip and knee joint angles. A discussion on stability analysis of this estimator-controller 

scheme is also presented in this thesis.  
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1.0  INTRODUCTION 

Every year approximately 5125 people in the USA become paraplegic because of a spinal cord 

injury (SCI) [1]. That impairs their walking ability and deeply limits activities of daily living. 

Functional electrical stimulation (FES) is an application of low-level electrical current to the 

motor nerves to produce muscle contractions that can be used for gait restoration in person with 

spinal cord injury [2-4]. Walking motion can be achieved by accurately stimulating specific 

muscle groups in a proper sequence [5]. But the use of FES for gait restoration is limited by the 

rapid onset of muscle fatigue. Unlike FES, powered exoskeletons don’t suffer from this 

limitation but need batteries and large actuators to generate enough torque to restore gait motion. 

However, a hybrid neuroprosthesis that combines these two technologies may be a promising 

direction to achieve walking for long durations. A hybrid neuroprosthesis may preserve the 

advantages of both FES and powered exoskeletons and avoid their limitations at the same time 

[6-8]. Moreover, the use of powered exoskeleton in the hybrid system can reduce the 

unnecessary degree of motion, which can simplify the motion of walking gait and reduce the 

effort needed for FES [3]. Thus, the hybrid system might be a possible direction to achieve 

longer walking and preserve the extra benefits of FES such as muscle growth and increase bone 

density.  

Accurate state estimation accuracy and reliable control strategies are two crucial parts for 

high-performance hybrid neuroprosthesis development. Good tracking performance may not be 
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achieved without accurate measurement of system states. In our current prototype, encoder 

embedded inside the electric motor is used to measure system state needed. But further 

development of hybrid device might require more state variables such as foot reaction forces, 

arm gestures to detect gait phase or human intent.  Use of encoders will be a limitation because 

its rigid structure is not suitable for a wearable neuroprosthesis. A popular method of 

measurement uses inertial measurement units (IMUs) that consist of three gyroscopes, 

accelerometers, and magnetometers, which are small enough to attach to the limbs of a user [9, 

10]. Many portable FES systems have been developed with IMUs to measure motion data. 

However, signal noise and drift always exist in the measurement of IMUs [9, 11-14]. Various 

filters have been developed to solve this problem, such as the Kalman Filter [9, 15], Extended 

Kalman Filter (EKF) [16] [17], and complementary filters [18]. These state estimators employ a 

linear dynamical model or linearized dynamics at every time step to filter signal noise and drift. 

 In this thesis, a State-Dependent Riccati Equation (SDRE)-based estimator is designed to 

estimate the joint angle of hip and knee joints during FES-elicited tasks or when a hybrid 

neuroprosthesis is used. First, an experiment was conducted on a single limb-joint, driven by 

electrical stimulation of the quadriceps muscle, to evaluate the performance of the SDRE-based 

estimator. The results of SDRE based estimator were compared with two conventional IMU 

estimation techniques, namely, RMX and EKF estimation algorithms. The rotation matrix 

method that related the orientation of the two IMUs in a shared frame of reference to obtain the 

joint estimation was computed. Then, an EKF method, based on a Jacobian of the 

musculoskeletal dynamics, was used to compare the estimated the limb joint angles. 

Secondly, a simulation study was performed to further explore the performance of this 

new estimator to estimate 2 limbs joint angles of a fixed hip model. After design and test of the 
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SDRE based estimator for the fixed hip model, it was coupled with a lower dimensional adaptive 

controller for a 2-DOF fixed hip model. The controller, which is based on our previous work [19] 

is inspired by the synergy principle for solving the actuator redundancy problem in the hybrid 

neuroprosthesis. 

Contribution: There are three main contributions of this thesis. The main contribution of this 

thesis is the design and evaluation of the SDRE estimator for accurate estimation of knee joint 

movement during FES of the quadriceps muscle. Further contribution is that a two limb joint 

angle simulation study was performed to explore the performance of the SDC estimator during 

multi-DOF limb movements. Finally, this novel estimator was combined with the synergy-

inspired controller scheme for tracking control of hip and knee joint angles. A discussion on 

stability analysis of this estimator-controller scheme is also presented in this thesis. 

This thesis is organized into chapters as follows: Brief introduction on IMU based motion 

estimation in Chapter 1. Chapter 2 presents the background information on FES and IMU. A 

literature review about current estimation algorithm (Kalman filter, extended Kalman filter, 

complementary filter) is included. Chapter 3 shows the detail of the IMU sensor and test of its 

performance and signal processing. Estimation algorithm development and the experiment for its 

evaluation is given in Chapter 4. Chapter 5 demonstrates results from the simulation of 

estimation algorithm on a 2-DOF fixed hip model and the tracking results of the estimator-

controller scheme on the 2-DOF fixed hip model. Chapter 6 briefly discusses the overall 

conclusion and future work. Appendix A shows Simulink block of estimator-controller scheme. 

Appendix B presents a framework about stability analysis of estimator-controller scheme. 
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2.0  BACKGROUND INFORMATION AND LITERATURE REVIEW 

Functional electrical stimulation (FES) is a technique that applies low-level current to motor 

nerves to produce muscle contraction. FES is primarily used to restore function in people with 

disabilities due to spinal cord injury (SCI) [20]. Sometimes it also referred to as neuromuscular 

electrical stimulation (NMES). The background information will mainly focus on restoration of 

lower extremity function by using FES. The earliest use of FES on lower limb was to prevent the 

foot from dragging during the swing phase [21]. Till now, the application of FES on lower limb 

can be divided into three directions: prevention of foot drop, restoration of standing and recovery 

of walking ability [22]. In walking restoration area, pioneering research has been done by [23] 

that introduced the technique of eliciting a flexion reflex of the knee, hip and ankle by 

stimulating the peroneal nerve, which can be substituted for the swing phase of walking. The 

ParastepTM company uses 4-6 surface stimulation of the quadriceps, peroneal nerves to enable a 

person with paraplegia to walk with a walker [24]. Different from surface stimulation referred 

above, direct activation and control each muscles by implantable systems is another option to 

achieve walking restoration. The researchers at Cleveland VA Medical Center used up to 48 

muscles under a programmable external stimulator to help subjects to walk with a rolling walker, 

and some of them even were able to climb stairs [25]. In order to control FES system to perform 

desired motion, feedback signal is needed for controller to adjust the input of FES system in real-

time. The closed-loop control of the FES system relies on sensory information of limbs angles 
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and angular velocities. Measurement of limb kinematics provides necessary information for a 

controller to stimulate muscles at the proper time to produce walking motion. The following 

section discusses estimation techniques for limb kinematics. 

2.1 CURRENT MOTION ESTIMATION METHOD 

An rotary encoder is a traditional method to measure angle position. The rigid structure of 

encoder becomes a limitation for application to the human body or soft exo-suit. Optical motion 

analysis systems (e.g.VICON) use a series of high-speed camera to detect the movement of 

makers on human body then combine the data to reconstruct motion. The advantage of this 

method is its accuracy. But such system cannot be applied during field studies because we need 

to reinstall a series of equipment and recalibrate all of them before operating the system 

correctly. Another practical method of measurement uses IMUs consisting of gyroscopes and 

accelerometers. Its small size and ability to provide different type of measurements are 

advantages of this sensor. But drift and noise always exist in IMU measurements, which are the 

primary limitations of this sensor. The following section reviews research on three most 

commonly used estimation methods. 

2.1.1 Kalman Filter 

A Kalman filter that fuses triaxial accelerometer measurements and triaxial gyroscope signals for 

ambulatory estimation of human motion was discussed in [15]. Because of the heading drift, this 

proposed Kalman filter is only suitable for long-term measurement. A Kalman filter for the 
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estimation of the lower trunk orientation during walking using the measurement of accelerometer 

and gyroscope was designed in [26]. Besides, they tried to determine the importance of choosing 

suitable parameters of Kalman filter for different walking speeds by doing a sensitivity analysis. 

According to their result, the use of the approximated parameters resulted in an improvement in 

the estimation of about 2 compared to conventional integration result. But the residual errors, 

were still unsatisfactory, with an RMSE of about 5 . With the optimal configuration of the 

parameters of the filter, the RMSE was significantly reduced to 0.6 , which shows the 

importance of choosing the suitable parameters. A flex sensor was used with gyroscope together 

by [27] to estimate the knee joint angle of an SCI patient, the estimation error is near 6 . 

2.1.2 Extended Kalman Filter 

Besides the Kalman filter, the extended Kalman filter is another popular technique to deal with 

the measurement drift of IMU. An extended Kalman filter (EKF) was designed based on the 

similarities between the kinematics of a two-link robot arm and the kinematics of the human leg 

in [16]. Their work used the measurement from gyroscope attached on the hip to inform a 

kinematic model based EKF to estimate the linear distance traveled by a subject. For the 

displacement over a distance of 3.55 meters, the proposed EKF shows a good estimation 

performance of total distance with an average error of 6.89 cm compared to the previous 

experiment with an error of 19.8 cm. Because their works were focused on walking position 

estimation, this estimation algorithm did not perform well in joint angle estimation, the estimated 

result of knee joint appeared near 20 error in each trajectory peak. Similar to [16], two different 

models including lower body kinematic model and switching based model were introduced to 
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EKF to estimate the joint angles from IMU sensor measurements in [17]. They found that the 

switching based model performed better on the stance leg, and the other model slightly 

outperforms in estimating the swing leg motion. This difference shows the importance of 

choosing a proper dynamic model for estimator construction.  

2.1.3 Complementary Filter 

Some researchers focused on applying a complementary filter to solve the IMU drift problem. A 

foot-mounted complementary filter (CF)-aided IMU approach for position tracking in indoor 

environments was proposed in [18]. This CF is greatly simplified to pre-process the sensor data 

from IMU sensor and avoid the intermediate step of gyro bias estimation and correction, which 

greatly decrease the computing time. A reliable gait detection method also was applied to an 

algorithm that only require input from foot-mounted accelerometer sensors without adding a 

threshold on gyroscope measurements. This work performed well for position estimation, but its 

performance for angle estimation need be tested. A wide range comparison between different 

external sensors for gait estimation was performed by [28]. A complementary filter was designed 

to combine the measurement of accelerometer and gyroscope, the result of estimation showed it 

performed better compared to accelerometers alone. The result of this work illustrates the 

advantage of combing accelerometers and gyroscopes; i.e., the measurement of accelerometer 

could correct the drift in gyroscope to get better estimation performance. 
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2.2 INERTIAL MEASUREMENT UNIT 

An inertial measurement unit (IMU) is a wearable device that measures a body’s angular 

velocity, linear acceleration and magnetic field surrounding the body. IMU are usually applied to 

aircraft, including unmanned aerial vehicles (UAVs), spacecraft including satellites and landers 

[29]. 

2.2.1 Construction and Operational principles 

The IMU usually is a small box containing three accelerometers and three gyroscopes and 

optionally three magnetometers. The gyroscopes measure how the body is rotating in space. 

Gyroscopes that placed on each axis will provide angular velocity around each axis. Three 

accelerometers placed on each axis and measure accelerations on each axis [30]. IMU with 

magnetometers allows measurement of magnetic field amplitudes mostly to assist calibration 

against orientation drift. 

 

Figure 1. IMU motion tracking system on the human body. The left figure shows Xsens Xbus Kit, and the 

right figure shows YOST 3 space sensor system. 
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2.2.2 Disadvantages 

The most obvious disadvantage of using IMUs for motion estimation is that they typically have 

accumulated error. The conventional method to estimate the angle position continually adds 

detected changes to its previously-calculated positions. Any errors in measurement, although 

small, are accumulated from point to point. This process leads to 'drift', or an ever-increasing 

difference between where the estimated system states, and the real position [31].  

Due to integration, a constant error in acceleration measurement can cause a linear error 

in velocity estimation and a quadratic error in the estimated position that increase with time. A 

constant error in the angular velocity measurement leads to a constant error in the velocity 

estimation and a linear error in the angular position estimation; and both errors increase with 

time. 
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3.0  IMU SENSOR TEST AND SIGNAL PROCESSING 

3.1 IMU TEST 

As introduced in Section 2.2, the IMU is a suitable choice for the wearable sensor system 

development. After comparing IMUs from different manufacturers, the YEI 3-Space made by 

YOST Inc. was chosen.  

 

Figure 2. YEI 3-Space IMU sensor 

According to the description on its website [32], this sensor is ready-to-use attitude and 

heading reference system (AHRS) with onboard Kalman filtering algorithm and three 
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communication interfaces (USB, UART, and SPI). The filtering scheme is shown in Figure 3. 

This correction algorithm is static calibration that cannot adjust for dynamic environment. The 

setting of the Kalman filter and its normalization, scale parameters are unknown to the user. 

Before applying this IMU sensor, a performance test is needed to test its measurement accuracy. 

The first test was based on YOST’s 3-space sensor suite. It is a software that can provide 

real-time display of IMU measurement.  The motion of IMU sensor is demonstrated by a 3D 

model. The first step is static position rotation test to evaluate the gyroscope reliability in a static 

environment. The IMU sensor was put on a horizontal table and rotated in clockwise for one 

circle and rotated in counter-clockwise  for one circle, then repeated it for ten times. As Figure 4 

shows from left to right are the different states of IMU during the test. In the static position 

rotation  

 

Figure 3. On board filtering scheme with Kalman filter of YEI 3-Space Sensor 
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test, the IMU performed very well with a slight angle error, as shown in the middle status in 

Figure 4. But the drift appeared on both X and Y-axis when the IMU moved parallel to another 

position. As shown in the last status of the IMU in Figure 4, the angle error increased due to the 

measurement drift of gyroscope. As the result shows, the traditional method, which computes the 

angle by integrating the measurement of the gyroscope, is not reliable in limb angle estimation. 

 

Figure 4. Rotation test of IMU sensor 

Therefore, our goal was to use a dynamic model based estimator to correct IMU drift in 

limb-angle estimation. 

3.2 SIGNAL PROCESSING 

In order to get pure gravitational acceleration measurement, the motion acceleration must 

be filtered out. A single differentiation operation, at each data point, must be applied to the 

gyroscope’s measurement to get motion acceleration then subtracted from the measurement of 

acceleration from the accelerometer. But this differentiation operation aggravates measurement 

noise in the measurement. Moreover, the measurement from the accelerometer and gyroscope 
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always contains significant noise, which makes it impossible to apply them directly. A popular 

method is to apply a low-pass filter to separate noise before the operation. While the walking 

motion studied in this thesis is slow, the low pass filter will not distort useful information in 

measurement signals. A 3rd Butterworth filter with a normalized cutoff frequency of 0.05 HZ was 

designed to get a smooth signal from the raw measurement. Sample signals were collected from 

one joint limb experiment to guarantee the proposed filter will work in the real situation. As 

Figure 5 shows, from the beginning to sample point 2500 is a static period, and the dynamic 

period is from sample point 2500 to 35000, then followed by another static period. The detailed 

figure shows the filter performed quite well both in the dynamic period and static period. Note 

there exists a small delay introduced by low pass filter in the dynamic period.  

 

Figure 5. Baseline signal of the angular velocity 
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Numerical differentiation result of the gyroscope noisy signal after the operation can be 

superposed on the filtered result to study the influence of low pass filter.  

As shown in Figure 6, numerical differentiation operation magnified noises significantly. 

The angular acceleration signal (Blue) was computed by applying a single differentiation 

operation on gyroscope signal. Compared to the result of filtered signal (Red), the numerical 

differentiation greatly magnified over all sample points. For measurements of the accelerometer, 

the smoothing operation is needed before apply them to the estimator. The 3rd low pass filter was 

performed on sample signal, the result is shown in Figure 7. The low pass filter dismissed most 

noise in the peaks of the signal while it is the most valuable part for state estimation that will 

influence the estimated trajectory peak amplitude.  

  

Figure 6. Compare between filtered and nonfiltered numerical differentiation result with sampling time 

0.01s. 
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Figure 7. Filter effects on acceleration measurement 

As for acceleration measurement, only gravitational acceleration projection on X-axis of 

IMU is chosen for estimation. But the actual measurement from X-axis is a combination of 

motion acceleration projection and gravitational acceleration projection, the motion acceleration, 

however small, needs to be eliminated. The motion acceleration can be approximated by 

Equation Section 3 

 motion lqLα =  ,  (3.1) 

where q  can obtain from the measurement of the gyroscope after one numerical differentiation 

operation with sampling time 0.01s, the lL  is the length from IMU position on the limbs to the 

limb joint. As Figure 8 shows, the amplitude of motion acceleration ranges from -0.2 to 0.25 

2/m s  in the sample signal, which is only about 5% of the amplitude of gravitational acceleration 

measurement. In this slow motion experiment, the body motion is negligible and can be ignored 

or use low pass filter to eliminate noise.  
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Figure 8. Approximated motion acceleration 

Because the amplitude of motion acceleration is negligible, this is the reason why gravitational 

acceleration projection on X-axis of IMU is chosen in the measurement model for estimator 

construction. In slow motion case, the motion acceleration is too small to measure accurately, it 

might be mixed with measurement noise and the useful signal might be eliminated by the low 

pass filter. The amplitude of gravitational acceleration is much larger than the signal noise that 

essential signal won’t be eliminated by the low pass filter as noise. 

3.3 IMU ALIGNMENT 

Before the data was processed in the estimator, it must be transformed from the IMU frame to 

the respective body coordinate systems (CS). This transformation was essential for the 

estimation process because the system dynamics were modeled in the body CS, especially in the 



 17 

sagittal plane of the subject. The correlation exists between the know motion vector and IMU 

measurement vector is: 

 b b i
iv R v=  ,  (3.2) 

where 3bv ∈


  is the motion vector in the body frame, and 3iv ∈


   is IMU reading vector in the 

IMU frame and 3 3b
iR ×∈  is the transpose of the alignment matrix that transforms the 

coordinates from the IMU to the body frame. By defining the body segment frame with axes 

(𝑋𝑋𝑏𝑏 𝑌𝑌𝑏𝑏 𝑍𝑍𝑏𝑏) and the IMU frame with axes (𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖). The alignment matrix 𝑅𝑅𝑏𝑏𝑖𝑖  can be 

expressed as follow: 

                       𝑅𝑅𝑏𝑏𝑖𝑖 = �
cos(𝑋𝑋𝑏𝑏,𝑥𝑥𝑖𝑖) cos(𝑌𝑌𝑏𝑏 ,𝑥𝑥𝑖𝑖) cos(𝑍𝑍𝑏𝑏 , 𝑥𝑥𝑖𝑖)
cos(𝑋𝑋𝑏𝑏 ,𝑦𝑦𝑖𝑖) cos(𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑖𝑖) cos(𝑍𝑍𝑏𝑏 ,𝑦𝑦𝑖𝑖)
cos(𝑋𝑋𝑏𝑏, 𝑧𝑧𝑖𝑖) cos(𝑌𝑌𝑏𝑏 , 𝑧𝑧𝑖𝑖) cos(𝑍𝑍𝑏𝑏 , 𝑧𝑧𝑖𝑖)

� = �
𝑋𝑋𝑥𝑥 𝑌𝑌𝑥𝑥 𝑍𝑍𝑥𝑥
𝑋𝑋𝑦𝑦 𝑌𝑌𝑦𝑦 𝑍𝑍𝑦𝑦
𝑋𝑋𝑧𝑧 𝑌𝑌𝑧𝑧 𝑍𝑍𝑧𝑧

�, 

 

 

 

where  cos(𝑋𝑋𝑏𝑏,𝑦𝑦𝑖𝑖) means the cosine of the angle between axis 𝑋𝑋𝑏𝑏 and 𝑦𝑦𝑖𝑖. When a motion along 

the axis 𝑋𝑋𝑏𝑏 is performed on IMU, the normalized sensor output vector will be the first column of 

this matrix. The rest elements can be computed by same method on 𝑌𝑌𝑏𝑏 and 𝑍𝑍𝑏𝑏 axis. In order to 

obtain this alignment matrix, the procedure was performed as shown in Figure 9. The first step is 

that the subject was asked to stand still for a minimum of 10 seconds. In this time frame, the 

gravitational acceleration measured by the accelerometer was used to create gravity vector that is 

coincident with the anatomical axis 𝑍𝑍𝑡𝑡ℎ and 𝑍𝑍𝑠𝑠ℎ for the two body coordinate systems (CSs, body 

CS of thigh and shank). Then the subject performed three to five hip extension/flexion rotations. 

During each positive rotation to let the gyroscopes measure the angular velocity about the 

horizontal axis 𝑋𝑋𝑡𝑡ℎ and 𝑋𝑋𝑠𝑠ℎ. Here we denote the alignment matrix 𝑅𝑅𝑖𝑖𝑖𝑖ℎ𝑏𝑏𝑏𝑏ℎ and 𝑅𝑅𝑖𝑖𝑖𝑖ℎ𝑏𝑏𝑏𝑏ℎ can be written 

as follow: 

𝑅𝑅𝑖𝑖∗𝑏𝑏∗ = [𝒄𝒄1 𝒄𝒄2 𝒄𝒄3] 



 18 

where 𝒄𝒄𝑖𝑖  means the columns of the matrix. The acceleration measurement in first step was 

averaged and normalized to unity to obtain the  𝒄𝒄3 of the matrix. The readings from gyroscope in 

second step was integrated and normalized to unity create the  𝒄𝒄1 of the matrix. Then the  𝒄𝒄2 was  

obtained by the product of 𝒄𝒄1  and 𝒄𝒄3  . Due to the measurement noise and slight difference 

between motions, transformation result by this initial computed alienation matrix may not 

accurate.   

 

Figure 9. IMU Alignment Procedure 

 

The body axis obtained by this initial alignment matrix may not complete orthogonal to the each 

other. This was corrected by using pure rotation matrix properties as given below 

 

1,

0,
0,

i j

i j

i j

r c

r r
c c

= =

=

=





  (3.3) 
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where 1 ,, ( , 2 3)ir i =  and 1 ,, ( , 2 3)jc j =  represent the designated matrix row and column, 

respectively. After an orthogonal CS had been created for each body segment, this corrected 

result may still does not matched the actual body frame, there might existed a deflection around 

the Z axis. Another correction was needed to rotate the whole CS around the Z-axis to let the Y-

axis match the anterior direction. This rotation was constrained to the X-Y plane after the 

orthogonal correction was made, which simplified the procedure. The angle of rotation was 

calculated by choosing the first created X-axis as a reference and summing the angles between it 

and the rest of the X and Y-axis calculated. This was then averaged and subtracted by 45 

degrees. This can be seen as follows 

 1 45 ,
2

n

xx xy
oi

n

θ θ
θ =

+
= −
∑

  (3.4) 

where xxθ is the angle between the X-axis and the reference X-axis is, xyθ  is the angle between 

the Y-axis and reference X-axis and n is the number of positive rotations. If the Y-axis are 

perfectly aligned, the θ  should be zero. Then this angle was inserted into a correction matrix that 

rotates the CS around the Z axis as follows 

 

2
1 1 2 3 1 3 2

2
1 2 3 2 2 3 1

2
1 3 2 2 3 1 3

,

1 ,

Z W c Z Z W Z s Z Z W Z s
Z Z W Z s Z W c Z Z W Z s
Z Z W Z s Z Z W Z s Z W c

W c

θ θ θ

θ θ θ

θ θ θ

θ

 + − +
 + + − 
 − + + 
= −

  (3.5) 

where 1 ,, ( , 2 3)iZ i = is the respective element of the Z-axis vector, cos( )cθ θ=   and sin( )sθ θ= . 

Then the X axis computed by initial alignment matrix was corrected and final Y-axis can be 

computed by the cross product of the Z and the new corrected X-axis. The corrected final 𝑅𝑅𝑏𝑏𝑖𝑖  can 
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be obtained by the operation showed above. Then the IMU data was transformed to the body 

frame by multiplying each dataset in time by the transpose of the alignment matrix. 
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4.0  OFFLINE MOTION ESTIMATION 

This chapter focused on exploring State-Dependent Riccati Equation (SDRE) based estimator. 

Simplified models were introduced to do offline estimation experiment and simulation to 

evaluate the performance of the SDRE estimator, and the results were compared to two 

conventional IMU estimation techniques. First was the rotation matrix method that related the 

orientation of the two IMUs in a shared frame of reference to obtain the joint estimation. 

Followed by a dynamic based Extended Kalman Filter (EKF), which used Jacobian to handle 

nonlinearities of the system instead of the SDC parameterization. For fixed hip model based two 

joint simulation, only EKF was compared to SDRE estimator. 

4.1 OFFLINE ESTIMATION ON LEG EXTENSION MACHINE 

In order to explore the performance of SDRE estimator, a single link dynamic model of the leg in 

a leg extension machine with stimulation of the quadriceps was chosen. 

4.1.1 Single joint Dynamic and Measurement model 

The dynamics of a leg extension musculoskeletal system with FES applied in Figure 10 is 

given by Equation Section 4 
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 ( ) P keJ G T Tθ θ+ = + ,  (4.1) 

where J ∈  denotes the moment of inertia lower leg, , ,θ θ θ ∈ 

  are the angular position, 

velocity, and acceleration of the lower leg (shank and foot) relative to equilibrium. 

( ) sin( )c eqG mglθ θ θ= + is the gravitational torque where m  is the mass of lower leg, g  is 

gravitational acceleration, cl  is the length from the mass center of the lower leg to the knee joint 

and eqθ  is the equilibrium angle relative to vertical. pT  represents the passive musculoskeletal 

torque of the knee joint, which is modeled as 

 64
1 0 2 3 5( ) dd

pT d d d e d e φφφ φ φ= − + + − ,  (4.2) 

where , ( 1, 2,..6)id i =  and 0φ  are subject specific parameters that model the stiffness and 

damping of the knee joint. In this part, φ and φ  represents the anatomical knee joint angle and 

angular velocity, respectively. Each variable can be defined as 
2eq
πθ θ φ+ = −  and φ θ= −  .  

 

Figure 10. Leg extension musculoskeletal model 
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From (4.1), keT  is torque produced by muscle contraction caused by FES, it is modeled as: 

 2
2 1 0 3(c c c )(1 c )ke keT aφ φ φ= + + +  ,  (4.3) 

where , ( 0,1, 2,3)iC i =  represent the force-length parameters of the dynamic model. The muscle 

activation kea  parameter dynamic can be ignored and assumed equal to [0,1]keu ∈ which the 

normalized electrical stimulation amplitude. The normalized electrical stimulation amplitude can 

be mapped to the current amplitude of the electrical stimulation as: 

 ( )t ke s tI I u I I= + − ,  (4.4) 

in which tI and sI represent the minimum current amplitude required to produce a movement 

(threshold) and the minimum current amplitude that produces the maximum muscle force 

(saturation), respectively. The dynamic model of this system can be expressed as follow: 

 ( , )f x wx u= + ,  (4.5) 

where [ ] 20 Tw w= ∈ is a process noise characterized by Gaussian process and an associated 

covariance matrix 2 2Q ×∈ , and the nonlinear function 2( , )f x u ∈ is given by 

 2

1sin( ) (
,

)
( )

p ke

x
x T

f x u
Tβ α

 
 − + + 

=   (4.6) 

where [ ]1 2

TT
eqx x x θ θ θ = = + 

  with 1/ , cJ mglα β α= = . 

The IMU attached to the shank provided three kinds of measurements: three-axis angular 

velocities, linear accelerations and magnetic amplitude from the gyroscopes, accelerometers, and 

magnetometers. During these experiments, the motion of the leg was slow enough (just like the 

case of FES and orthosis based walking) that we assumed that the accelerometer only measured 

the gravitational acceleration, the motion acceleration part can be considered as the noise in 
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acceleration measurement. Thus, the measurements from the IMUs can be expressed as follows, 

and signal was filtered by a low pass filter before being applied to measurement model 

 [ ]1 2( ) Ty h x v h h v= + = + ,  (4.7) 

 1 2 2 1, sin( )h x h g x= = − ,  

where 1h  denotes the measurement from the Z-axis gyroscope of IMU after transformation by 

alignment matrix, and 2h  denotes the measurement from X-axis  accelerometer of IMU after 

transformation by alignment matrix. The v is a two dimensional zero-mean Gaussian 

measurement noise with the measurement covariance matrix 2 2S ×∈ . 

 

4.1.2 State-Dependent Coefficient (SDC) Parameterization 

The SDRE estimator is based on the dynamic model presented in (4.5) and measurement model 

(4.7). Unlike the EKF, which uses a Jacobian to approximate the dynamics of the system, the 

SDRE estimator implements the SDC form approximation. The advantage of the SDC based 

approximation is that it is not unique and yields multiple estimators, with each of them has 

different performance, and SDC parameterization process won’t cause mismatch compare to the 

original system. It was assumed that the nonlinear dynamics can be directly inserted into state-

dependent form by SDC parametrizations as shown below: 

 
( ) {1.. },

( ) {1..m},
( )i

j

x A x x i n
y

B x u
C x x v j

w= + ∀ =
= + ∀

+
=



  (4.8) 

( )iA x  and ( )jC x  are nonlinear matrices, both of them satisfy following conditions: 

 1 1 2 2( , , ) ( , ) ( , ) ... ( , )i n nA x t x A x t x A x t x A x t xγ γ γ γ= + + + , (4.9) 
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where 0iγ ≥  and 
1

1
n

i
i
γ

=

=∑ . 

 1 1 2 2( , , ) C ( , ) C ( , ) ... C ( , )j m mC x t x x t x x t x x t xδ δ δ δ= + + + , (4.10) 

where 0jδ ≥  and 
1

1
n

j
j
δ

=

=∑ . 

There exist clear requirements for choosing suitable SDC parameterization form. 

Remark1: The SDC parameterization matrix ( )iA x  and ( )jC x  should not go to infinity for any 

x  during the estimation process. 

Remark2: The SDC parameterization matrix ( )iA x  and ( )jC x  should be of both full ranks. 

By defining sin( )sin ( ) xc x
x

= , and because
0

limsin ( ) 1
x

c x
→

= , a suitable SDC parameterization of 

(4.5) was chosen as follows:  

 𝐴𝐴(𝑥𝑥�) = � 0 1
−𝛽𝛽 sin 𝑐𝑐(𝑥𝑥�1) 0�, (4.11) 

 𝐵𝐵(𝑥𝑥�)𝑢𝑢 = �
0

𝛼𝛼(𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑘𝑘𝑘𝑘)� , (4.12) 

 𝐶𝐶(𝑥𝑥�) = � 0 1
−𝑔𝑔 sin 𝑐𝑐(𝑥𝑥�1) 0�. (4.13) 

The SDRE estimator is given by 

 ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ˆ( , )( ( , ) ))x t x B x t ux A K x t y C x t x+= + − , (4.14) 

the 2 2K ×∈  is obtain from 

 1ˆ ˆ ˆ( , ) ( , ) ( , )TK x t P x t C x t S −= ,  (4.15) 

the 2 2S ×∈  is the measurement noise covariance matrix and the 2 2ˆ( , ) xP x t R∈  is a positive 

symmetric solution to 
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 1

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) 2 ( , )
ˆ ˆ ˆ ˆ( , )( ( , ) ( , )) ( , ) ,

T

T T

P x t A x t P x t P x t A x t aP x t
P x t C x t S C x t P x t Q−

= + +
− +



  (4.16) 

The estimator gain 1a =  was chosen in this case. 

The zero-mean Gaussian noise process with the covariance matrices 2 2Q ×∈  and 2 2S ×∈  are 

given by 

 

1

2

1

2

0
,

0

0
.

0

n
Q

n

s
S

s

 
=  
 
 

=  
 

  (4.17) 

The process noise matrix Q   is a constant diagonal matrix, where the 1 2,n n  terms were 

determined by tuning for the best performance based on one trial that was performed before the 

experiment. S represents the constant measurement noise matrix that was calculated by taking 

the sample standard deviation of the filtered IMUs measurement data in the initialization stage 

when the IMUs were stationary. 

4.1.3 Experiment implementation 

The experimental setup is shown in Figure 11 where the rotary joint of the leg extension machine 

can be fixed at different angles so that the force can be measured by the load cell. Three able-

bodied persons participated in the experiment, where each leg was identified as a separate 

subject.  
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Figure 11 Subject sitting in the leg extension machine 

The parameters of dynamics of each subject were determined by a system identification 

process as described in [33]. All results of parameter estimation are shown in Table 1. 

Table 1. Subject parameters obtained from the parameter estimation procedure. L and R represent the 

subject’s left and right leg respect 

[ ]0 radsφ   0.40 8.34E-11 0.78 2.22E-14 0.30 1.50 

[ ]1d Nm   4.05 2.27 5.86 4.12 2.22E-14 4.41 

[ ]2d Nm  3.05 3.30 3.56 2.54 3.14 2.60 

[ ]3d Nm  1.48E-9 3.96E-8 1.54E-5 2.38E-5 6.1984 3.39E-4 
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Table 1 (continued) 

4d  14.10 11.20 8.70 8.33 0.84 6.70 

[ ]5d Nm  8.90 15.30 3.05 5.41 0.04 0.16 

6d  -1.76 -1.77 -3.45 -0.41 -30.22 -1.26E-8 

[ ]0c Nm  76.71 61.00 27.74 -28.29 -17.88 5.63 

[ ]1c Nm  3.12 -0.57 296.32 402.07 299.41 159.39 

[ ]2c Nm  -15.36 -8.47 -186.11 -231.19 -183.75 -85.94 

3c  0.28 0.47 1.93E-4 0.88 1.52 1.75 

[ ]eq radsθ  0.13 0.08 0.19 0.17 0.17 0.14 

[ ]aT Sec   0.25 0.19 0.14 1.0 0.72 0.18 

[ ]tI mA   33.90 38.60 33.50 38.80 38.20 32.90 

[ ]sI mA  60.40 68.20 66.60 64.90 68.10 63.20 

[ ]RMSE Deg  2.61 3.42 2.43 4.06 4.18 3.15 

 

As Figure 11 shows, two IMUs were placed firmly on the thigh and shank segments of 

the leg using an electrical tape. The wireless communication between the IMUs and the wireless 

dongle was established in a program written in Matlab 2015a with a sampling frequency of 

100Hz. The encoder data was acquired in a Matlab Simulink file with a higher sample frequency 

of 1000Hz. Because the sampling rates between the two pieces of equipment did not match, the 

IMU data was interpolated by using Matlab’ s cubic spline data interpolation function and then 
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filtered by a 3rd low pass filter. The experimental testing done on leg extension machine was 

conducted on three healthy persons. Each subject performed three tests per leg, which created a 

total of 18 trials. To assess the performance of the system, the subject's motion was recorded 

using a rotary encoder (type: GHH100, by CALT, China) in leg extension machine. The results 

produced from SDRE estimator and IMUs are shown for one of the experiments and compared 

against the estimated results from the EKF, RMX method and the data collected from the 

encoder. 

4.1.4 Result and discussion of single joint experiment 

We noticed that during the offline estimation, some parameters of the model had changed. 

Especially the threshold value and the initial angle of the dynamic model, and these parameters 

could affect the overall estimation value. In order to fix this problem, the threshold value was 

adjusted to a value that used in experiment instead of the original one we got from the system 

identification (Note: A pre-trial test by setting different level threshold around the value we got 

from system identification was performed on each subject to determine a suitable threshold value 

for experiment). For the initial angle, the acceleration signal measured at the beginning of the 

experiment, when subject’s shank was stationary was used to calculate the initial angle. After 

these two operations, the estimation result of both SDRE estimator and EKF showed good 

tracking performance.  
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Figure 12. Full view of the knee joint angle estimation during the single joint experiment 

Three 30 second long experiments were performed on each subject, and all these three 

estimators performed offline estimation on each trail. Figure 12 is a representative comparison 

between each estimator for subject 2 (trial 2). The results show that each estimator displays the 

overall characteristics of the knee joint angle as it transitions from knee flexion to extension, but 

the majority of the error occurred at the upper and lower peaks of the curves. The SDRE 

estimator and EKF compensated for most of the drifts in IMUs during upper and lower peaks as 

compared to the RMX method. The SDRE estimator and EKF only used the measurement from 

IMU on shank and RMX used the measurement from both IMU sensors. Results of 3 trials (trail 

2 and 3 of P1-R and trial 3 of P3-R) of RMX were unavailable because the IMU on thigh drop 

some data during the experiment. Table 2 shows all root mean square error (RMSE) of the 

estimation results of these three methods. A Shapiro-Wilk test was used to determine if the 

RMSE data were normal data sets. 
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Table 2. Comparison RMSEs of the SDRE-Estimator (SDC), Extended Kalman Filter (EKF) and 

Rotation Matrix (RMX) 

 P1-L P1-R P2-L  

Trial 1 2 3 1 2 3 1 2 3  

SDC 1.10 1.77 1.19 1.78 1.64 1.55 1.25 0.77 1.05  

EKF 1.28 3.00 1.06 1.90 1.62 1.67 1.29 0.92 1.07  

RMX 3.39 3.22 2.55 1.95 NA NA 2.39 0.94 0.99  

 P2-R P3-L P3-R  

Trial 1 2 3 1 2 3 1 2 3 Avg RMSE 

SDC 2.01 2.07 2.10 2.01 2.79 2.0 2.45 2.49 2.40 1.77 

EKF 2.11 2.80 2.57 2.20 2.86 1.73 2.95 2.86 2.82 2.04 

RMX 3.53 6.06 5.92 2.95 2.06 2.49 2.20 1.26 NA 2.79 

• Note: the unit of RMSE is degree 

 From the results of the Shapiro-Wilk test, it was showed that the RMSE data sets are not 

normal distributions. Therefore, a Wilcoxon signed rank test with a 95% confidence level was 

used to determine if there was a difference between these estimators. As shown in Figure 14, the 

test result between SDRE and EKF shows the significant index is 0.005 which means there exist 

a significant difference between the result of SDRE estimator and EKF. Similar, the test result 

between SDRE and Rotation Matrix is 0.035 that there exist a significant difference between the 

result of SDRE and Rotation Matrix. Therefore, it can be concluded that SDRE estimator 

improved the estimation performance compare to these two methods in this case.  
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Figure 13. Result of Wilcoxon-signed rank test 

In the experiment, as expected, both SDRE estimator and EKF enhanced the estimation 

of the knee joint angle by reducing the error between the true and estimated peaks. It is because 

both SDRE estimator and EKF are dynamic based, they can correct the measurement drift by 

model predict value. Compared the SDRE performance to EKF's and Rotation Matrix's, the 

SDRE estimation result was better based on the statistical analysis result. For SDRE estimator, 

the major error occurred at peaks in the experiment. The most obvious reason is that error could 

result from the parameter estimation. As shown in Table 1, the RMSE of parameter identification 

usually around 2  to 4 , which indicates the estimation error may be mainly caused by 

inaccurate dynamic parameters. And we estimated the parameters before the experiment, the 

subject characteristics may have changed when the experiments were performed. Especially 

threshold value of dynamic model may deeply influence the peak value. Another assumption is 

that error in defining the body frame may have caused the estimators to predict the next position 

incorrectly which could propagate throughout the experiment. With this error, the orientation of 



 33 

the sagittal plane can be slightly offset, in which the dynamic model doesn't properly compensate 

for this situation. 

In order to explore the difference of SDRE-estimator and EKF for the more complex 

nonlinear system, a 2 DOF fixed hip model was used to do a simulation study.  

4.2 OFFLINE ESTIMATION ON 2-DOF FIXED HIP MODEL 

4.2.1 Fixed hip dynamic model and measurement model 

 

Figure 14. A schematic of the fixed hip model with no ground model. The  , , ,he hf ke kfu u u u  indicate the input to 

the stimulated muscles which produce hip/knee flexion and extension and the torques produced by the motors at are 

labeled as ,hm kmT T . 
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The dynamics equation of a fix hip hybrid neuroprosthesis with 2-DOF shown in Figure 14 is 

given by: 

 ( ) ( , ) ( ) PaM q q V q q TG Tq+ + = +  ,  (4.18) 

where ( ) 2 2M q ×∈ denotes the combined moment of inertia of the orthosis and human limbs, 

( ) 2,V q q ∈   is the Coriolis vector, ( ) 2 2G q ×∈ is the gravitational torque vector, 2, ,q q q∈ 


are the angular position, velocity, and acceleration of the segments of the swinging leg relative to 

equilibrium. 2
PaT ∈  represent the passive musculoskeletal torque vector of the knee joint and 

hip joint. Activate torques at joints are produced by musculoskeletal dynamics due to FES and 

electric motor, it is defined as follow: 

 ( ),T b q q u=  , (4.19) 

where ( ) 6u t ∈  and 2 6b ×∈∈  is the control gain matrix as follow: 
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. (4.20) 

,, ,
fx ex fx exh h k kψ ψ ψ ψ are torque length and torque-velocity relationships of the flexor and extensor 

muscles at hip and knee joints, respectively, 1 2,κ κ  are the conversion gain of the electric motor 

to converge current to torque. 
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4.2.2 Fix hip SDC parameterization 

Define the state vector as follows: 

 1 2 3 4

3 1 4 2

[ , , ,
,

,]
.

Tx x x x x
x x x x
=

= = 

  (4.21) 

In order to meet requirements of state dependent coefficient parameterization, defining the 

clockwise direction as negative, set 1 1 2 2,x q x q= = , such that the dynamic of the hybrid device 

can be expressed as follow: 

 ( , )x f x u w= + ,  (4.22) 

where [ ]1
4

20 0 Tw w w= ∈ is a process noise characterized by Gaussian process and an 

associated covariance matrix 4 4Q ×∈ , and the nonlinear function 4( , )f x u ∈ is given by 
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  (4.23) 
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where 1 2 3, ,a b b  are constant parameters we got from system identification. 

The measurement vector is defined as follow: 
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 1 2 3 4

1 1 2 3 1 4 22

( ) [ , , , ] ,
sin( ), sin( ),, ,

Ty h x v h h h h v
h x h xx h g x h g
= + = +

= = = − = − 

  (4.24) 

where 1 3,h h ∈  are angular velocities and 2 4,h h ∈  are gravitational acceleration projection 

on X axis of IMU sensor, all these singal have been transformaed to body coordinate system. 

Noise and drift are introduced in simulation to simulate a real environment. The acceleration 

measurement from IMU is a combination of gravitational acceleration and motion acceleration, 

in this case, only gravitational acceleration is considered because motion acceleration is 

negligible. The v is a four dimensional zero-mean Gaussian measurement noise with the 

measurement covariance matrix 4 4S ×∈ . 

The chosen of SDC parametrization of this dynamic follow the method referred before in 

Section 4.1.2. The suitable SDC parametrization forms were chosen as follows: 
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( )
1

1

2

( ) ,
)

0 0 1 0
0 0 0 1

( , ) .
sinc( ) 0 0 0

0 sinc( ) 0 0

0
0

( pa

B x t U
T T

C x t
g x

g

M

x

−

 
 =  
 + 

 
 
 =
 −
 − 

  (4.25) 

Note: in order to meet the requirement of SDC form and original input have been rewrite as

7U ∈ .  

The estimator construction is same as single joint model expect the change of dimension. 
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4.2.3 Simulation result and discussion 

In order to fairly compare the performance of these two estimators, these two estimators were 

constructed in the same Simulink file, sharing the same IMU data. A small constant was 

introduced to the measurement of the gyroscope to simulate the IMU measurement drift. Radom 

noise was added to accelerometer measurement to simulate the measurement noise. The 

simulated IMU raw signal is shown in Figure 15 and Figure 16, it was very similar to the actual 

signal we measured in the experiment. 

           

Figure 15. Simulation IMU signal-angular velocity 
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Figure 16. Simulation IMU signal-angular acceleration 

Figure 17 shows the estimation results comparison between the SDRE estimator and EKF. The 

SDRE result almost matches the actual value while the EKF result tracks the real value with 

some error. 

 

Figure 17. Simulation result comparison between SDRE estimator and EKF 
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Figure 18. Error Comparison between SDRE estimator and EKF in Simulation  

More details were provided in Figure 18, as we can see the error of SDRE estimator is very small 

with an RMSE about 0.2 and 0.23 for hip and knee joint. Compare to SDRE-estimator, the 

error of EKF is much larger. 

Comparing to the estimation results of one joint model, the advantage of SDRE estimator 

become more apparent in the complex nonlinear system during the simulation study. It maybe 

because the SDC parameterization process preserves all details of nonlinear dynamics, but the 

application of Jacobian in EKF during linearization process approximates the original system. 

Another problem is that the errors of these two estimators in the simulation are much smaller 

than the errors in the experiment. This larger estimation error in the real experiment may result 

from inaccurate parameter identification or incomplete IMU frame transformation.  

In order to figure out the influence of these two factors referred above, a set of simulation 

studies were performed as follows. In the first test, the dynamic model parameters was changed 
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to simulate the dynamic model we obtained by system identification in experiment which exist 

some error between the actual dynamic. The IMU drift and measurement noise were set as 0 to 

eliminate the influence of the measurement. As Figure 19 shows, both SDRE estimator and EKF 

appeared errors larger than before. The inaccurate dynamics caused by system identification may 

be one of the main cause of estimation error in experiment. It is noted that the changing of 

threshold value and initial angle of the dynamics were excluded in this simulation while we 

already know the changing of these two value may affect the overall estimation performance. 

 

Figure 19. Estimation result with inaccurate dynamics 
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Figure 20. Estimation result with improper IMU alignment-1 

 

Figure 21. Estimation result with improper IMU alignment-2 

 

Another set of simulation studies were performed to test the influence of incomplete IMU 

frame alignment. The setting of these simulation were set as follow: 
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S1: A constant was added to the acceleration signal to simulate inaccurate acceleration 

measurement caused by body frame rotation around X axis. 

S2: The acceleration signal was multiplied by 0.8 to simulate the body frame created by 

alignment rotated around the Z axis with a small angle.  

As shown in Figure 20 and Figure 21, both SDRE estimator and EKF were drift from the 

actual value, it seems inaccurate acceleration signal of IMU caused by incomplete IMU 

alignment have a strong effect on estimation performance. Especially in Figure 21, the SDRE 

estimator seems effected more by the inaccurate measurement as described in the S2.  

More simulate studies were performed to explore the performance of these two estimator 

with different level IMU gyroscope drift in measurement. The gyroscope drift was simulated by 

adding a small constant (range from 0.1 to 1) to the simulation IMU gyroscope signal on each 

data point.  An integration operation was performed to test the affections of these man-made drift 

on conventional angle calculation method. As shown in Figure 21, the simulation drift resulted in 

inaccurate angle estimation result. Especially the level 3, the estimation error almost reached 90 .  
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Figure 22. Integration result of gyroscope signal with different level drift 

Then the EKF and SDRE-estimator were applied to estimate knee joint angles with these 

drift. Both of these two estimator were tuned to its best performance during these tests.  As 

shown in Figure 23, the SDRE-estimator performed very well in knee joint angle estimation with 

different level IMU drift. The error of these three trials have very similar overall amplitude, 

which means the SDRE-estimator have a very strong ability to compensate the IMU 

measurement drift. The estimation result of EKF was shown in Figure 24, the EKF performed 

well when the IMU drift was small, and the amplitude of the estimation error was very close to 

the error of SDRE-estimator. But the estimation error became larger with IMU drift increased to 

level 3. It seems the ability to compensate IMU drift of EKF is not as good as SDRE-estimator. 
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Figure 23. SDRE estimation error with different level drift 

 

Figure 24. EKF estimation error with different level drift 

Combining these simulation studies and results of single joint experiment, the larger error 

existed in the experiment might due to the inaccurate IMU measurement, especially the 

acceleration measurement and inaccurate system identification. The threshold value and initial 
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angle of dynamics also could influence the overall estimation result.  More accurate system 

identification and IMU alignment algorithm are needed for improvement of SDRE estimator. 
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5.0  REAL-TIME ESTIMATION COUPLED WITH CONTROLLER 

After design and implementation of the SDRE-estimator, this Chapter shows it online estimation. 

In the fixed hip model of the hybrid neuroprosthesis, the active torque of each joint can be 

produced by FES of joint flexors and extensors or electric motor, which introduced actuator 

redundancy problem. Our previous work [19] designed a lower dimensional controller inspired 

by muscle synergy principle specifically focused on solving the actuator redundancy problem, 

and it shows good performance on tracking. In this chapter, the proposed SDRE-estimator is 

coupled with the synergy based lower dimensional controller, the performance of this scheme 

was tested by a simulation study. The discussion about stability analysis for estimator-controller 

scheme is presented in Appendix B.Equation Section 5 

5.1 CONTROLLER DEVELOPMENT  

The control objective is to track the desired trajectory, so the tracking error 2e∈ is defined as 

ˆde q q= −  define the auxiliary error signal 2r∈ is defined as  

  r e eα= + .  (5.1) 

Choosing the update law as  

 ˆu Wc kr= + , (5.2) 
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where ˆ pc∈  is the estimate of dc  and 6 2k ×∈ is the feedback gain that is chosen only to effect 

the electric motors. The estimate of the principal components updates according to the following 

update law with the projection algorithm 

 ( )ˆ T T
d dc proj c W b r= +Γ

 ,  (5.3) 

while the p p×Γ∈ is a symmetric positive definite gain matrix. The stability analysis in [19] 

shows this synergy based adaptive closed loop control system is  semi-global uniformly 

ultimately bounded (SGUUB) 

5.2 SIMULATIONS 

The developed controller-estimator scheme was tested in a simulation study on 2-DOF fixed hip 

model of a leg which can represent the gait cycle for when one leg fixed at the hip joint. There 

are six actuators in total including FES flexion, extension and an electric motor at each joint. The 

schematic of this model shown as Figure 14. In order to simulate the real performance of IMU 

sensor, we introduced constant noise into gyroscope measurement to simulate the IMU drift and 

introduced random noise into acceleration measurement. The Simulink block scheme is shown in 

Figure 28 in Appendix A. 

5.3 RESULTS AND DISCUSSION 

As expected, the SDRE estimator-adaptive controller scheme is sufficient to produce smooth 

limb motion. As shown in Figure 25, the estimation error is tiny regardless we introduced IMU 
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measurement drift and noise. As we can see at time 4.5 s, there appeared a larger disturbance but 

the estimator still converges back which shows its robustness. Figure 25 shows the tracking 

performance of estimator-controller pair. It is to be noted that although estimation error became 

slightly larger due to disturbance, the controller is still capable of tracking the desired trajectory 

with adaptive and feedback control. 

 

Figure 25. The joint angles resulting from simulating estimator-controller scheme. The top plot shows the 

desired and actual hip angle and the bottom plot shows the desired and actual knee angle, each for five steps. 
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Figure 26. Estimation error of the SDRE-estimator 

 

Figure 27. Joint motion tracking errors. 

Figure 27 shows the tracking error of estimator-controller scheme. 

 



 51 

6.0  CONCLUSION AND FUTURE WORK 

This thesis presents the development of a wearable sensor-based estimator for functional 

electrical stimulation aided lower limb motion estimation. A new nonlinear estimator was 

designed to accurately estimate system state. This estimator was coupled with a controller and 

tested by a simulation study, a general framework for the stability analysis is given in Appendix 

B.  

In the offline estimation study, estimators for one joint leg extension model and two joint 

fix hip model were designed and tested. The experimental validation indicated that for one joint 

model, the average RMSE of all trials was less than 1.77  between the SDRE-estimator 

estimated trajectory and the encoder recorded trajectory. The dynamic based EKF also 

performed well in this case with average RMSE about 2.04 . Compared to these dynamic model 

based estimators, the rotation matrix has larger average RMSE about 2.7 . The second part of 

offline estimation study was focused on applying these two dynamic based estimators to estimate 

motion base on fixed hip model by a simulation study. The simulation validation indicated that 

results of the SDRE-estimator and actual trajectories matched each other very well with near 

0.2 RMSE on the hip joint and 0.23  RMSE on the knee joint while the RMSE of EKF was near

0.60 and 0.76 on hip and knee joint. This result proved the previous assumption that the SDRE-

estimator performed better than EKF in complex nonlinear system with proper choose of SDC 
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form, and more accurate parameter identification and IMU alignment algorithm are needed for 

improvement of SDRE-estimator. 

In Chapter 5, the newly designed estimator was coupled with a synergy inspired 

controller and tested by a simulation study.  The simulation results indicate online estimation 

performance of SDRE-estimator was excellent with a very small error which is an ideal feedback 

signal to assure the tracking performance of the controller. 

The dynamic model is the biggest limitation of this algorithm. As discussed in Chapter 4, 

the performance of SDRE-estimator highly relied on the accuracy of the dynamic model. By 

increasing the dynamic model’s accuracy, the performance of this estimation algorithm can be 

greatly improved in the experiment. Also, the accuracy of acceleration measurement also play an 

important role in improving the performance of the estimator. Further work after this thesis 

should focus on improvement of parameter estimation accuracy and improve the matrix 

alignment procedure. Moreover, we also should continue testing the performance of this novel 

estimator-controller scheme in the experiment and further application on hybrid neuroprosthesis 

on walking. 
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APPENDIX A 

ESTIMATOR-CONTROLLER SIMULATION BLOACK DIGRAM 

 

Figure 28. Simulink scheme of estimator-controller pair 
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APPENDIX B 

DISCUSSION ABOUT STABILITY ANALYSIS of INTERCONNECTED SYSTEM 

The overall dynamics of estimator-controller scheme can be shown as followEquation Section 6 

 
ˆ( , ) ( , ) ( )

( , )
x f t x g t x U x
y h t x
= +
=

 ，

，
  (6.1) 

 ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , )ˆ( , ) ( ( ( ) )) ,g t x U xx A x t x K x t y C x t x= + + − , (6.2) 

the actual states x  and estimated states x̂  are shared by (6.1) and (6.2). As referred in 5.1, the 

controller is SGUUB, It is hard to directly prove the stability of this combination system. Some 

previous research has been done on this topic. Loria and Morals [34] applied nonlinear 

separation principle and cascade structure to prove the stability of the interconnected system. But 

in our case, the dual interconnected system cannot be directly rewritten into a form as cascade 

structure. In order to find a possible direction to prove the stability of estimator-controller 

scheme, we start to prove the stability of SDRE estimator. 

Assumption 1. Follow the SDC parameterization method, the system (6.1) is transformable into 

the form 

 ( ) ( , )x A x x W x U= + ,  (6.3) 

where the function (.)W  satisfies 
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 ˆ( , ) ( , ) fwW x U W x U lW e− = ≤ ,  (6.4) 

where 4ˆ ˆ, 0fe x x x x t= − ∀ ∈ ∀ ≥ . 

Remark. The Assumption 1 contain follow second layer assumptions: 

 

ˆ( , ) ( , )

ˆ( , ) ( , )

, *

f

f

u u

w

g

g wf f

g t x U g t x U l e

g t x g t x l e

U l l l e l e

W− = ≤

− ≤

≤ ≤

 ，

，

，

  

where , ,g w ul l l   are positive constants. This assumption is based on  [35] and [36], the ul can be 

determined by considering the actuators saturation limit. Other researchers such as [37, 38], 

where SDRE estimator stability analysis are usually based on a dynamic system without system 

input, therefore the previous assumption can be avoided.  

The SDRE estimator also can be written as  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )( ( , ) )x A x t x W x U K x t y C x t x= + + − . (6.5) 

Then the error dynamics of proposed SDRE estimator can be expressed as follow 

 ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] ( )f fe A x K x C x e WA K x C= − + − + 



 ,  (6.6) 

where  

 
ˆ( ( ) ( ))
ˆ( ( ) ( )) .

A A x A x x

C C x C x x

−

−









，
  (6.7) 

There exist some assumptions for the SDRE estimator as follow  

Assumption 2. Following [39], the positive definite solution ˆ( , )P x t of the differential Riccati 

(4.16) satisfies the bound 

 

 ˆ( , ) , 0pI P x t pI t≤ ≤ ∀ ≥   (6.8) 
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Assumption 3. As [38], the SDC parameterization  ( )jC x  is such that 

 ( , )C x t c≤   (6.9) 

where constant c +∈  . 

Assumption 4. The SDC parameterization ( )A x and ( )C x are chosen such that ,a cL L +∈ for all

ˆ,x x , 

 
ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

a

c

A x A x L x x

C x C x L x x

− ≤ −

− ≤ −
  (6.10) 

Assumption 5. There existσ +∈ for all 0t ≥ , x σ≤  .  

In order to analysis the stability of proposed estimator, the Lyapunov function ( )V e ∈  is 

defined as: 

 1T
f fV e P e−= . (6.11) 

There exist lower bound and upper bound as 

 
2 2

2
1 1

f fe V e
p p

≤ ≤ .  (6.12) 

Taking the time derivative of ( )ˆ, ,V x x t  , then we got 

 1 11T T T
f f f f f fPV e P e e e e P e−− −= + +

  ,  (6.13) 

according to Assumptions 1-5 and 1 1S
s

− ≤  there exist follow inequality 

 

1 1

1 1 1

2

ˆ ˆ( ( ) ) ( ( ) )

ˆ(

,

)

T T
f f

T T T
f f f

f

e P A B K x C e P A B K x C

We P A e P e P K x C

eκ

− −

− − −

+ − ≤ + −

≤ + +

≤

   



 

   (6.14) 
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where the constant wa cL L cL
p s

σ σκ +
= + . 

Substituting (6.6) into V , then following obtained:  

 
1 1

1 1

ˆ ˆ ˆ( ( ) ( ) ( ))
,ˆ ˆ ˆ ˆ( ( ) ( ) ( )) 2 ( ( ) )

T T
f f f f

T T T
f f f

V e P e e P A x K x C x e
e A x K x C x P e e P A B K x C

− −

− −

= + −
+ − + + −

 

 

  (6.15) 

combining with (6.14) and (4.15), it can be further bounded as 

 

( )

1 1 1

21

ˆ ˆ( )

.

( )

ˆ ˆ2 ( ) ( ) 2

T T
f f

T T
f f f

V e P P A x A x P e

e C x R C x e eκ

− − −

−

 
≤ + + 

 

− +

 

  (6.16) 

Considering 

 1 1 1P P PP− − −= −  , 

combine with the Riccati differential equation (4.16) leads to 

 
( )1 1 1

21 .2 2

T T
f f

T
f f f

V e P QP C R C e

e P e eα κ

− − −

−

≤ − +

− +



  (6.17) 

Denoting the smallest eigenvalue of the positive-definite matrix Q  by q , we have 0 qI Q≤ ≤ . 

Together with Assumption 2 for P  we obtain 

 
. 2

22 ( 2 ) ,f
qV aV e
p

κ≤ − + − +   (6.18) 

moreover from above that  

 
.

2( 2 2 ) .
qp

V a p V
p

κ≤ − − +   (6.19) 
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If the gain a  is taken large enough, i.e., 22
qp

a p
p

κ> − +  the globally exponential uniformly 

stability of the state estimation can be achieved since the derivative of ( )V e  will be negative 

definite.  

By applying ˆ( , )U k t x= , the original system (6.1) can be expressed as follow: 

 [ ]ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , )x f t x g t x k t x g t x k t x k t x= + + − .  (6.20) 

Assumption 6. For the function g( , )t x  and ( , )k t x  there exist nondecreasing function (.)θ  that 

 4
1(g( ) ), xt x xθ≤ ∀ ∈ , (6.21) 

 4
2ˆ( , ) ( , ) ˆ ˆ( ) ,k t x k t x x x x xθ≤ − ∀− ∈ . (6.22) 

The overall interconnected system can be expressed as follow: 

 [ ]ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,x f t x g t x k t x g t x k t x k t x= + + −   (6.23) 

 ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] ( ) .f fe A x K x C x e A K x WC= ++− −  

   (6.24) 

Inspired by [34], a key observation to this point is that the estimator error dynamics is globally 

exponentially stable, that means even the error dynamics (6.24) is related to the actual state x , 

the estimation error fe  trend to zero exponentially for any trajectory x .Therefore, the stability of 

error dynamic of the estimator can be assumed as not related to x . 

By defining [ , ]fcol x eζ = , the overall system can be written on the cascade structure as follow  

 1 1 1

2 0 2

( , ) ( , ) ( , ),

( , ),

F t G t t

F t

ζ ζ ζ α ζ

ζ ζ

= +

=





  (6.25) 

where ( , ) ( , )G t g tζ ζ= , [ ]1( , ) ( , ) ( , )t k t k tα ζ ζ ζ= − . 
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According to Theorem 1 in [40], the cascaded system (6.25) referred above will keep the 

stability characteristic of the original closed loop system which is semi-global ultimate uniformly 

stable (SGUUB). 

A general framework for stability analyze of estimator-controller scheme is given. A 

strong assumption (Assumption 1) was to support the proof. The future work will focus on 

removing this strong assumption. 
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