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Co-inhibitory immune checkpoint receptors (ICR) are novel targets for cancer immunotherapy. 

Programmed death ligand 1 (PD-L1), expressed in many cancers, including head and neck 

cancers (HNC), interacts with its receptor, programmed death 1 (PD-1), resulting in an exhausted 

phenotype. As yet, the stimuli and pathways that induce PD-L1 expression in tumor cells are not 

fully understood. Interferon gamma (IFNγ) and the epidermal growth factor receptor (EGFR) 

utilize Janus kinase 2 (JAK2) as a common signaling node transmitting tumor cell-mediated 

extrinsic or intrinsic signals, respectively. We investigated the mechanisms by which these 

factors upregulate PD-L1 and immunosuppressive cytokine expression in HNC cells in the 

context of EGFR/JAK/STAT pathway activation. We found that wild type overexpressed EGFR 

significantly correlated with JAK2 and PD-L1 expression. Furthermore, PD-L1 expression was 

induced in an EGFR- and JAK2-dependent manner, and specific JAK2 inhibition prevented PD-

L1 upregulation in HNC, enhancing their immunogenicity. HNC tumors have higher expression 

of immunosuppressive cytokines including TGFβ, IL-10, VEGF-A and IDO and lower 

expression of inflammatory cytokines such as IL-12A and IL-17A than controls. EGFR/JAK2 

inhibition downregulated secretion of these STAT3-dependent cytokines in vitro, suggesting that 

targeting the EGFR/JAK2/STAT3 suppressive pathway may reverse tumor immunoescape. This 

view is supported by in vivo findings where HNC patients unresponsive to cetuximab therapy 

had significantly higher concentrations of immunosuppressive cytokines. 

conchabenaventef
Typewritten Text



v 

NK cells are crucial for promoting T cell responses against cancer. However, NK cell 

PD-1 expression remains largely undefined. Cetuximab-activated NK cells constitute the major 

effector cell subset that lyses tumor targets via antibody dependent cellular cytotoxicity (ADCC). 

We demonstrate that expression of PD-1 in HNC tumors correlates with NK cell activation 

markers. HNC patients exhibit higher levels of circulating PD-1+ NK cells, which are further 

enriched in the tumor. Interestingly, cetuximab treatment increased this frequency in vitro and in 

vivo. Inhibition of the PD-L1/PD-1 axis increased cetuximab-mediated NK cell activation and 

cytotoxicity. 

Collectively, our findings suggest a novel role for JAK2 in EGFR-mediated PD-L1 

upregulation and immunosuppressive cytokine secretion. Importantly, combined inhibition of the 

EGFR and PD-L1/PD-1 axis presents a potential strategy to reverse cetuximab-resistant immune 

evasion of HNC by enhancing NK cell cytotoxicity. 
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PREFACE 

When I was a little kid, my mom used to ask me, what do you want to be when you grow up? I 

always answered -while holding my colorful toy stethoscope in one hand and a small plastic 

microscope on the other hand-, a doctor mom! I want to be a doctor! ... And here I am, a few 

years later. Medicine and science are wonderful, truly captivating, enticing, rewarding, but not 

easy. They require a lot of motivation, commitment, endurance and most importantly passion, 

the kind of passion that makes you leave everything behind -even your beloved ones- to pursue 

your dreams! … I am a dreamer, a very passionate one. I am infinitely thankful to God -and life 

itself- for giving me the opportunity to discover the beauty of nature and science, and of course, 

my dear mother for her unconditional support of my passion, for letting me follow my dreams. 

I am very fortunate to have met so many amazing mentors during the past years of my 

life, brilliant minds who I admire and consider exemplary and honorable, the ones who showed 

me how wonderful medicine and science is and taught me those attributes that make a great 

scientist. First, I want to thank my mentor Dr. Robert L. Ferris - or Doc, how I always call him- 

for believing in me, for opening the doors of his laboratory and giving me a home to start my 

scientific journey, for his wise advice and encouragement even during the most difficult times of 

my thesis project, for giving me the freedom a creative researcher needs in order to explore new 

ways to go around experimental obstacles. I am sure immunology research would have never 

been as exciting without his support and amiable mentorship. I am also grateful to Dr. Michael 

T. Lotze, my laboratory rotation mentor and thesis committee member, I admire your work,

scientific ethics, kindness, and joyful personality. I will always remember how such a great 
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motivator you are, your words of encouragement even when experiments fail and your wise 

advice for my future medical and scientific career plans. I am also thankful to Dr. Nikola 

Vujanovic whose sharp scientific advice was always helpful, his respectful yet friendly 

personality always made him really approachable. I am honored to have learned some 

experimental techniques from him and collaborate -at least in part- in the research he conducts. 

Finally, I am also indebted to Doctors Russell Salter -my first lab rotation mentor and initially 

part of my thesis committee-, Walter Storkus, Sarah Gaffen and Alexander Sorkin for their 

patience, insightful guidance and helpful scientific suggestions with my thesis project during the 

past years.  

I should also make a special mention to my very first mentor and friend Dr. Jorge Ballón 

Echegaray, I will always be grateful for the opportunity he gave me to work in the immunology 

research group he still directs at the Universidad Nacional de San Agustin-Peru. I am indebted to 

him for introducing me to the fascinating world of immunology and for fueling my passion for 

research that now burns stronger than ever.  

Finally, I want to thank all the Ferris lab members who helped me in more than one way. 

Also, all the friends and kindhearted people from all around the world I have met in this 

wonderful city, Pittsburgh! A place that now I call home away from home. And last but not least, 

my close family, especially Delfina and Jorge -mom and dad-, Toribio and Lourdes -my beloved 

grandpa and aunt- and all those who were there for me since the very beginning, some are still 

around. Gracias totales!!! 



1.0 INTRODUCTION 

1.1 THE HALLMARKS OF CANCER 

Cancer arises in eukaryotes when normal cells develop genomic instability transforming their 

timely and biologically organized growth and function. This oncogenic multistep transformation 

is caused by intrinsic and extrinsic disturbances that lead to tumor transformation. These 

capabilities include, in addition to genomic instability, uncontrolled and sustained proliferation, 

evasion of growth suppression, resistance to cell death by enabling mitogenic immortality, 

activation of an invasive phenotype, stimulation of angiogenesis and metastasis. These 

capabilities common to the majority of tumors are recognized as the initial “Hallmarks of 

Cancer” (1). Recent work has yield evidence for enlarging this list of tumor transforming 

competences where re-conditioning of cellular metabolism, inflammation promoting tumor 

development and evasion of immune destruction become important new hallmarks of cancer 

(Figure 1.1). Importantly, another important factor that adds complexity to this set of tumor 

characteristics is the recruitment and interaction of tumor cells with surrounding stromal cells 

and immune infiltrating cells forming the intricate network called the tumor microenvironment. 

Focusing on inflammation and immune recognition by the host has increased our therapeutic 

strategies targeting the process of oncogenic transformation and enabled new and curative 

approaches. 

Recognition of the immune escape capabilities of cancer cells as one important factor 

inducing and maintaining tumor formation has provided a framework to understand the 

interaction of the host’s immune system with cancer cells in the setting of immune surveillance.  

1



Figure 1.1 The hallmarks of cancer: The illustration lists the up-to-date hallmarks of 
cancer development, which include the four recently added: tumor promoting inflammation, 
genome instability and mutation, deregulation of cellular energetics and escape from immune 
destruction. We include as well the therapeutic strategies that target each of the different cancer 
capabilities that aim ultimately to reverse cancer progression. [Adapted from Hallmarks of 
Cancer: The Next Generation. Hanahan D and Weinberg R. Cell, 2011 (1)]. 
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1.2 CANCER IMMUNE SURVEILLANCE 

The cancer immune surveillance theory was originally proposed in 1957 by Burnet M. (2-4) 

when he predicted that the host’s immune system could actively detect and eliminate nascent 

tumor cells. These seminal insights were confirmed and extended in transplantation models of 

nude athymic mice in 1970 that allowed researchers to investigate how tumors arise in 

immunocompromised hosts (5). As the field of tumor immunology evolved, studies showing the 

pivotal role of IFNγ in control of tumor growth in mice provided irrevocable evidence of the role 

of the immune system in cancer suppression. The question of how tumors still appear and 

progress in immunocompetent hosts is still an unresolved conundrum (6). Extensive work over 

the past 30 years revealed that this immunosurveillance function was only part of a larger, more 

complex setting that included “cancer immunoediting”, which more accurately temporally 

defines the tumor-immune system interactions and cross-talk.  

1.3 CANCER IMMUNOEDITING 

Cancer immunoediting comprises all the dynamic multifactorial processes where the immune 

system, through activation of innate and adaptive immune mechanisms, not only protects against 

cancer development but also shapes or “edits” the phenotype of emerging cancer cells in three 

temporally well-defined stages: elimination, equilibrium and escape. A large body of evidence 

supports this notion; first, chronic inflammation promotes cancer development (7) and second, 

previous work showed that an intact immune system could prevent or promote cancer depending 

on the stage of the immunoediting sequence (6, 8).  

3



Elimination, is characterized by immune destruction of transformed cells, which are highly 

immunogenic, a small subset of these transformed cells survive immune destruction and enter the 

“editing” phase termed equilibrium. The elimination phase is sufficiently supported by evidence 

where immunodeficient mice develop more carcinogen-induced and spontaneous cancers than 

wild type mice and tumors derived from immunodeficient mice are more immunogenic than 

those from immunocompetent mice. The role of type I and II interferons, dendritic cells, and 

CD8 T cells are underlined in the immunogenic process and rejection of tumors that involve the 

adaptive immune system (9-11) (Figure 1.3). More recently, new pathways of tumor rejection 

involving the innate immune system have been described whereby NK cells play a crucial role 

eliminating senescent tumors that expressed NKG2D ligands upon DNA damage and overactive 

Ras signaling (12, 13). The equilibrium stage is characterized by tumor dormancy where strong 

immune pressure causes tumor cell destruction, culling and Darwinian selection of tumor cells 

that are progressively more resistant to immune attack. Dormant tumor cells have higher 

proportion of resident CD8+ T cells, NK cells and gamma delta T cells but low NKT, Tregs and 

MDSCs (14). What tilts the balance to either elimination or escape is still not well understood, 

since editing occurs during dormancy, such cells evolve in an environment that the immune 

system is unable to contain, leading to escape. Tumor immune escape occurs through several 

different mechanisms including resistance to cell death and increasing certain intrinsic survival 

signals including STAT3, Bcl-2, Bcl-xl, IAPs and surviving. Tumors evade immune recognition 

by downregulating signal 1, constituted by antigen processing and HLA class I presentation, by 

providing aberrant signal 2, characterized by overexpression of immune checkpoint receptor 

ligands including PD-L1, Tim3, LAG3 and Galectin 9, or providing an abnormal signal 3, 

4



characterized by secreting immunosuppressive cytokines such as VEGF, TGFβ, IL-10 and IDO 

among others rather than IL-12 family members (15-17).  

Recognizing that the immune system is not ignorant of the presence of cancer but rather 

sculpts its progress or rejection, underpins the need of investigating and understanding the 

individual mechanisms by which these complex phenomena occur and justifies the 

development of strategies to manipulate the host immune system in order to promote 

tumor control and elimination.  

5



Figure 1.3 The cancer immunoediting concept: Only after cellular transformation has occurred 
and intrinsic tumor suppressor mechanisms have failed, an extrinsic tumor suppressor 
mechanism is engaged in which the host immune system edits or sculpts tumor development. 
Cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. 
In the escape stage many mechanisms of immune evasion are triggered, characterized by 
aberrant signals 1-antigen presentation-, 2 -co-inhibitory molecules and 3-immunosuppressive 
soluble cytokines. [Adapted from Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: 
integrating immunity's roles in cancer suppression and promotion. Science. 2011 (9)]. 
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1.4 CANCER IMMUNOTHERAPY 

We have described numerous studies that support the immune system as a major modulator 

of cancer growth. Immunotherapy of cancer has emerged as a viable and transformative 

approach for treatment of patients. Current immunotherapies are focused on either 

stimulating the activities of specific components of the immune system or counteract signals 

produced by cancer cells that suppress immune responses. Adoptive cell transfer, therapeutic 

tumor-antigen specific monoclonal antibodies, cancer vaccines, immune modulators and 

immune checkpoint blocking antibodies are among the different types of immunotherapy. 

Importantly, approaches that involve combinations and target multiple pathways may prove 

to be synergistic and generate stronger antitumor immune responses. It is noteworthy to 

mention the recent clinical success of antibodies targeting programmed death ligand 

1/programmed death 1 (PD-L1/ PD-1) axis, especially in the setting of melanoma where PD-

1 mediated monoclonal antibody blockade has revolutionized conventional treatment 

strategies of patients (18-20). Investigating the immunosuppressive pathways that tumor cells 

have across different types of cancers is important in order to understand their biology, 

rationalize and personalize treatments in order to increase efficacy of current therapies. One 

major advance in the field of immunotherapy has been the increasing capabilities to 

undertake genomic studies of tumors to measure the effect of antitumor immunotherapy and 

evaluate its efficacy. This defines key parameters that allow us to differentiate tumor gene 

profiles from responders and non-responders, identify mutations, stratify patients and 

develop new approaches that will ultimately enhance response rates.  

7



1.5 SIGNALS 0, 1, 1.5, 2 AND 3 IN IMMUNE CELL ACTIVATION AND 

ABERRANT SIGNALS 1, 2 AND 3 IN TUMOR IMMUNO ESCAPE 
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Figure 1.5 Signals 0, 1, 1.5, 2 and 3 in normal immune cell activation and aberrant signals 
1,2 and 3 in tumor immune escape: In a normal immune cell activation 3 signals are required. 
Signal 1 mediated by MHC class I antigen presentation to the T cell receptor on CD8+ T cell, 
following this event CD40L is upregulated on the T cell and ligates CD40 on the antigen 
presenting cell promoting CD80/CD86 upregulation, this constitutes what we call signal 1.5. 
Signal 2 is mediated by co-stimulatory molecules CD80/CD86 expressed on antigen presenting 
cells such as dendritic cells that engages CD28 on T cells providing a second activating signal. 
Finally signal 3, mediated by known stimulating soluble cytokines secreted by antigen presenting 
cells namely: IFNγ, IFNα, IL-12, IL-1, TNFα. (Top panel). Conversely, in the setting of cancer, 
suppressed antigen presenting cells or tumor cells themselves provide aberrant signals 1, 2 and 3. 
Characterized by downregulation of HLA class I mediated antigen presentation, aberrant co-
inhibitory molecules such as PD-L1, also known as immune checkpoint ligands and finally 
soluble suppressive cytokines such as TBFβ, IL-10, IL-6, and IDO among others, these three 
aberrant signals favor immune escape of tumor cells (Bottom panel).  

1.5.1 SIGNAL 0: Damage-associated molecular pattern molecules (DAMP) 

Damage-associated molecular pattern molecules (DAMPs) are cell-derived molecules that 

initiate the immune response, thus called herein signal 0. DAMPs are secreted from cells that 

suffer traumatic or ischemic damage, either in the absence or presence of microbial infection. 

DAMPs bind specific receptors such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), 

RIG-I-like receptors (RLRs), AIM2-like receptors, and the receptor for advanced glycation end 

products (RAGE). The ligation of these receptor induces autophagy in the target cell. Autophagy 

is a process whereby soluble cytoplasmic components and organelles are degraded by the 

lysosome, most likely as a cell stress response to starvation and subsequently to limit damage 

and maintain cellular homeostasis as a means to exert protein/organelle quality control. 

Importantly, autophagy constitutes one of the “Hallmarks of Cancer” and is linked to both tumor 

cell survival and death. Indeed, severely stressed cancer cells (by nutrient starvation, 

radiotherapy or cytotoxic drug therapy) induce cell shrinkage via autophagy to a state of 

reversible dormancy (21). This survival strategy of tumor cells may lead to an eventual regrowth 

and persistence of late stage tumors.  
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The concept of DAMPs initiating immune responses as what we call signal 0, starts with the 

idea that the immune system detects danger when tissues have been damaged either by microbes 

or sterile inflammation. In this model, DAMPs such as HMGB1, HSP, ATP, hyaluronic acid 

bind specific receptors and activate antigen-presenting cells (APCs) from stressed or damaged 

tissues. These activation stimuli in turn switch on pathways such mitogen-activated protein 

kinases (MAPKs), NF-κB, and PI3K/AKT which provide potent responses to cell survival, 

proliferation and immune activation (22).   

1.5.2 SIGNAL 1: Antigen processing machinery (APM) and HLA class I mediated antigen 

presentation 

1.5.2.1 Normal antigen processing and presentation   Proteins are degraded by two major 

pathways: the ubiquitin-proteasome pathway and the lysosomal pathway (23). In APCs the 

lysosomal pathway primarily degrades external proteins taken up by endocytosis or 

recycled internal proteins loading the final peptides onto HLA class II molecules, the 

proteasomal pathway degrades intracellular proteins through ubiquitination and loads the final 

peptide product generated by the proteasome onto HLA class I molecules (24, 25). A major 

exception to this rule is a process called cross-presentation, whereby external proteins 

taken up by professional antigen presenting cells entering the lysosomal pathway attain access 

to the HLA class I pathway (26).

The complex process of ubiquitination is a multi-step tandem enzymatic enzymatic 

reaction involving 3 crucial catalytic proteins: E1 (ubiquitin activating enzyme), E2 (ubiquitin 

conjugating enzyme) and E3 (substrate specific ubiquitin ligase) that covalently link a 76-residue 

polypeptide to free amino groups on the target protein (27).

The complex process of ubiquitination is a multi-step tandem enzymatic reaction involving 3 

crucial catalytic proteins: E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme) 

10

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text
                                                                                              

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text

conchabenaventef
Typewritten Text



Once tagged, the target proteins are degraded by the proteasome. The proteasome is a 

multimeric protein complex formed by the 20S catalytic core, which has two outer rings of 7 α-

subunits (α1- α7) and two inner rings of 7 β-subunits (β1- β7); two regulatory 19S particles sit on 

both ends of the core regulating ingress and egress of cargo. Importantly, 3 β-subunits: β1, β2 and

β5 are replaced by the interferon-γ (IFNγ) inducible subunits: low molecular weight protein-2, 7 

and 10 (LMP2, LMP7 and LMP10), respectively. The replacement of these subunits at the 

catalytic core forms the immunoproteasome (28, 29). This structure generates different antigenic 

peptides with high affinity for HLA class I alleles (30, 31). Once these immunogenic peptides are 

generated, they are transported to the endoplasmic reticulum (ER) by transporter of antigen 

processing (TAP), which is formed by two non-covalently linked subunits TAP1 and TAP2. The 

assembling of TAP1 and TAP2 forms a pore on the ER membrane allowing the protein to enter 

the ER lumen (32-34). Peptides that enter the ER lumen are loaded onto nascent HLA class I 

heavy chains, which are associated with β2-microglobulin chains, with the assistance of four 

chaperones: calnexin, ERp57, calreticulin and tapasin. The HLA class I complex is subsequently 

loaded with the peptide by tapasin (Figure 1) (35-38). The stabilized trimeric complex: HLA class

I heavy chain, β2-microglobulin and peptide, now transverses the Golgi apparatus, shuttles to the 

cell membrane and fuses with it so the HLA class I peptide complex is exposed extracellularly 

and can be recognized by the cognate T cell receptor (TCR) on CD8+ T cells. An intact, stepwise 

progression of this pathway is required in order for the immunogenic peptide to reach the surface 

loaded onto HLA class I molecules and interact with CD8+ T cells. If any of the steps is 

disrupted in tumor cells, antigen presentation does not occur, leading to an impaired TA-specific 

CTL recognition and subsequent lysis (39).   
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1.5.2.2  Defects of APM machinery components and antigen presentation in tumor cells 

Abnormalities of the APM machinery have been identified in many types of cancer including 

HNC. Most of them take place at the genetic or epigenetic level, however, there is also evidence 

of defects at the transcriptional and post-translational level, as follows:  

Proteasome defects: Abnormalities in expression and function of the IFNγ inducible 

subunits LMP2, LMP7 and LMP10 have been described in HNC (40, 41) as well as in other 

cancers such as esophageal (42-44), stomach (45), colorectal (46-48), bladder (49, 50), prostate 

cancer (51) as well as melanoma (52, 53). The molecular basis for these defects has been 

described for certain types of cancer. For instance, gastric cancer shows microsatellite mutations 

at the gene encoding LMP7 and single nucleotide polymorphisms for LMP2 and LMP7 have been 

detected in the case of cervix malignancies (54). Loss of LMP2 upregulation after IFNγ treatment 

has been associated with defects in transcription factors such as interferon response factor 1 

(IRF1) and signal transducer and activator of transcription (STAT1) binding to promoter 

sequences (55). Furthermore, defects in Janus kinase 2 (JAK2) expression have been linked to 

lack of interferon-mediated upregulation of LMP2 and LMP10 in melanoma (56).  

Defects in TAP1, TAP2 and chaperones: Downregulation of TAP1 and TAP2 at the 

mRNA and protein level in cell lines and primary tumors has been documented for HNC (40, 41, 

57-59) as well as for esophageal (42-44), stomach (45), pancreatic (60), colorectal (46-48), 

prostate cancers (51) and melanoma (52, 53, 61-63). Interestingly, IFNγ treatment restored TAP
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expression in several cell lines where it was downregulated (64-66). However, this effect was 

impaired in those cells with loss of JAK2 expression (56). Therefore, JAK2 presents as a crucial 

mediator in IFNγ pathway activation and HLA class I upregulation. Additionally, genetic 

mutations at the TAP loci that impair normal protein expression or function have been reported 

in cervix, colorectal, gastric and lung carcinomas (45, 46, 48, 67-69).  

As for chaperones expression and function, calnexin, tapasin and ERp57 have been 

shown to be downregulated in HNC (maxillary sinus and larynx carcinomas) as well as in 

esophagus, colon, prostate, cervix and breast cancer and melanoma (41, 44, 46, 48, 51, 54, 61, 

70, 71). Additionally, a defective IFNγ signaling has been associated with low tapasin expression

in melanoma cells (56). However, more interesting is the finding of an irreversible tapasin 

frameshift mutation in metastatic melanoma cells that is associated with HLA-A3 gene 

expression selective epigenetic unresponsiveness to IFNγ, which is reversible only after DNA

methyltransferase I depletion (72). Thus, these results suggest the rational use of demethylating 

agents in order to increase HLA class I antigen presentation and stimulate CTL specific 

responses. 

Defects in HLA class I molecules: Complete absence of HLA class I expression on 

the cell membrane has been linked with β2-microglobulin mutations and defects in peptide 

synthesis and transport that are concomitantly found with defects in expression of LMP, TAP 

and chaperones, leading to a defective peptide loading of HLA molecules and instability of the 

HLA class I-peptide trimolecular complex. Interestingly, HLA class I and β2-microglobulin 

defects can only be overcome with gene transfection, and defects in APM components can 

induce a very marked downregulation in HLA class I expression which can be corrected with 

IFNγ treatment. Defects in HLA class I expression have been described in HNC, esophagus, 
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gastric and colon carcinomas as well as in melanoma (43, 45, 48, 73-79). Likewise, partial 

mutations in the HLA loci have been detected in laryngeal cancer (80, 81) colon, cervical 

carcinoma and melanoma (68, 77, 82). 

Figure 1.5.1.2 Antigen processing machinery components: Normal cells process 
intracellular ubiquitinated proteins tagged for degradation via the proteasome generating 
peptide fragments that are loaded onto nascent HLA class I molecules inside the 
endoplasmic reticulum (ER). Antigen presentation on the cell surface requires intact APM 
machinery in order to stimulate specific CD8+ T cell effector responses. 

1.5.3  SIGNAL 1.5: CD40/CD40L 

CD40 is a receptor member of the tumor necrosis factor (TNF) receptor family, is expressed by 

antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, 

which is transiently expressed on T cells and other non-immune cells under inflammatory 
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conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 

engagement including the initiation and progression of cellular and humoral adaptive immunity. 

We coined the concept of CD40/CD40L interaction as signal 1.5 since ligation of CD40 on 

APCs increases expression of co-stimulatory molecules CD80/CD86, which provide an 

activating signal 2. 

CD40L/CD40 interactions exert profound effects on dendritic cells (DC), B cells, and 

endothelial cells, among many cells of the hematopoietic and non-hematopoietic compartments. 

It has been demonstrated that CD40 engagement on the surface of DCs promotes their cytokine 

production, the induction of co-stimulatory molecules on their surface, and facilitates the cross-

presentation of antigen. Overall, the impact of CD40 signaling ‘licenses’ DCs to mature and

achieve all of the necessary characteristics to effectively trigger T-cell activation and 

differentiation (83) . 

1.5.4  SIGNAL 2: Co-stimulatory/co-inhibitory molecules, the PD-L1/PD-1 axis 

T cell activation not only depends on MHC class I mediated antigen presentation but also on 

second signal characterized by co-stimulatory molecules. This co-stimulatory signal 2 is antigen 

independent and is provided by the B7 family of molecules and is expressed on antigen 

presenting cells: B7.1 (CD80) and B7.2 (CD86), which bind to CD28 expressed on T cells (84). 

Interestingly, these same ligands bind the immune checkpoint receptor cytotoxic T lymphocyte 

antigen 4 (CTLA4) providing inhibitory signals downstream preventing T cell receptor 

activation (85). In addition to B7 receptors other members of this family have been identified and 

named B7-homologs (B7-H) due to their structural resemblance to the former ones: B7-

H1/CD274 or programmed death ligand 1 (PD-L1), B7-DC/CD273 or programmed death ligand 
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2 (PD-L2), B7-H2/CD275, B7-H3/CD276 and B7-H4. From these, PD-L1 and PD-L2 bind to 

their surrogate receptor molecule programmed death 1 (PD-1) delivering inhibitory signals 

(Figure 1.5.2) (86).  

PD-L1 and PD-L2 are type I transmembrane glycoproteins composed of IgC- and IgV-

type extracellular domains (84, 87). PD-L1 shares 20% amino acid identities with B7.1 and B7.2 

that are ligands for CD28 and CTLA-4. PD-L1 and PD-L2 share 40% amino acid identity while 

human and murine orthologs of PD-L1 or PD-L2 share 70% amino acid identity. Both PD-L1 

and PD-L2 have short cytoplasmic tails with no known motif for signal transduction, suggesting 

that these ligands do not transduce any signal upon interaction with PD-1. However, one group 

reported that cross-linking of PD-L2 induces stimulatory signal in DCs, resulting in the 

augmented antigen presentation (88).  

PD-L1 is expressed under homeostatic conditions in many non-immune tissues including 

endothelial cells, heart, skeletal muscle and placenta to name a few (87) and in immune cells 

such as activated B and T cells and dendritic cells (DC). Additionally, PD-1 is expressed on 

double-negative αβ and γδ T cells in the thymus and induced on peripheral T and B cells upon 

activation (89, 90).  In homeostatic immune system development and function PD-L1/PD-1 

interaction delivers inhibitory signals that regulate both peripheral and central tolerance. In the 

thymus, PD-L1 is expressed on thymocytes in the cortex and in the medulla, participating in 

positive a well as negative selection (91). Likewise, tolerogenic dendritic cells express PD-L1 

and PD-L2, and reduce the initial phase of activation and expansion of self-reactive T cells, it is 

also involved in limiting the reactivation, expansion and effector functions of T cells (92, 93). 

PD-1/PD-L1 interaction inhibits T cell proliferation, survival, cytotoxicity and cytokine release, 

induces apoptosis of tumor-specific T cells (94, 95), promotes the differentiation of CD4+ T cells 
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into Foxp3+ regulatory T cells (96), and resistance of tumor cells to CTL attack (97). Upon PD-

L1 ligation, PD-1 recruits SH2-domain containing protein tyrosine phosphatases (SHP-1 

and SHP-2) to the immunoreceptor tyrosine based switch motif within the PD-1 cytoplasmic tail 

and inhibits positive signaling events downstream of the TCR. Importantly, PD-L1 has also 

been shown to mediate differentiation and maintenance of FOXP3+ regulatory T cells 

(Tregs) via downregulation of the Akt/mTOR pathway (98).  

In addition, the PD-1/PD-L1 axis may also regulate NK cell function. In a murine model, 

tumor derived IL-18 promoted the differentiation and accumulation of immature NK cells, which 

overexpressed PD-L1 and killed lymph node resident DC in a PD-1/PD-L1-dependent manner 

(99). These results suggest a NK/DC crosstalk in a PD-1/PD-L1-dependent manner leading to 

regulation of expansion of DCs and adaptive immunity. Cancer cells could also control NK 

cytotoxicity by providing inhibitory PD-L1-mediated signals to PD-1 expressing NK cells. This 

setting is particularly important in malignancies where therapeutic monoclonal antibodies, such 

as cetuximab that can both block EGFR and stimulate IFNγ secretion via activation of NK and 

CTLs, are broadly used for patient immunotherapy (100-102). 
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Figure 1.5.2 Superfamily of B7 and B7-H receptor/ligands: Nomenclature, expression pattern 
and function are indicated in the illustration. Act: expression upon activation, const: constitutive 
expression. [Adapted from Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to 
clinical application. International immunology (103)]. 

1.5.5  SIGNAL 3: tumor derived cytokines and chemokines 

Inflammation is a beneficial response that restores tissue injury and activates the immune system 

to fight pathogenic agents. However, in malignant transformation, inflammation is unregulated 

and perpetuates in time becoming chronic. Indeed, more than a century ago, Rudolph Virchow 

described tumor infiltrating inflammatory cells and hypothesized that cancer could emerge as a 

consequence of inflammation (104). Recent work has proved Virchow’s postulate with sufficient 

evidence supporting that various cancers are triggered by infection and chronic inflammatory 
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disease (105). In the first stages of inflammation, during the elimination phase of tumor 

immunoediting a tumor-rejecting cytokine milieu is characterized by cytokines such as IL-1beta, 

IL-2, IL-12, TNFalpha, IFNalpha and IFNgamma, which skew the immune response to a Th1/M1 

pattern. These cytokines enhance B cell proliferation, increase antigen presentation and synergize 

with IL-2 to induce proliferation of helper T cells and cytotoxic T lymphocytes (CTL), which in 

turn stimulate differentiation of M1 myeloid cells via MyD88-mediated activation of NFkB 

signaling (106, 107). Importantly, TNFalpha and IFNgamma are crucial mediators for NK cell 

activation in cancer control positively correlating with good prognosis and survival of patients 

(108).  However, tumor variants eventually become less immunogenic and secrete a set of 

signature immunosuppressive cytokines that prevent proper immune activation or induce 

differentiation and expansion of immunoregulatory cell subsets such as Tregs, M2 macrophages, 

myeloid derived suppressor cells (MDSC) and immature DCs. At the molecular level TGFβ, IL-4, 

IL-6, IL-10, IL-13 (Th2 cytokines) and VEGF and GM-CSF (Angiogenic cytokines) all play 

major roles in cancer immune escape.  

Transforming growth factor beta (TGFβ): The role of TGFβ in cancer is complex 

and paradoxical, varying by cell type and stage of tumorigenesis. In early stages, TGFβ acts as a 

tumor suppressor, inhibiting cell cycle progression and promoting apoptosis, TGFβ exerts a 

tumor suppressor effect through p21 upregulation and c-Myc downregulation [L85]. However in 

later stages of cancer, enhances invasion and metastasis by inducing epithelial to mesenchymal 

transition (EMT) (109). Furthermore, TGFβ directly inhibits the cytolytic activity of NK cells, 

macrophages, and CTLs. Interestingly a previous report showed that CD8+ cells when exposed to 
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tumor-secreted IL-6 and TGFβ in vitro or in vivo, began to express IL-17, which directly 

promoted tumor growth and survival (110). 

Th2 cytokines: TGFβ also favors the secretion of IL-4, IL- and, IL-10 from T cells, 

skewing the immune response to a Th2 profile (111). These cytokines seem to be important for 

proliferation and maintenance of MDSC and M2 macrophages. In turn, IL-6 plays a key role 

inhibiting apoptosis via gp130/JAK/STAT signaling pathway that ultimately leads to STAT3 

activation (112). Moreover, IL-10, which is also secreted by tumor cells and M2 macrophages, 

induces sustained STAT3 phosphorylation in an autocrine-paracrine loop (113). IL-10 and IL-6 

mediated STAT3 upregulation is further discussed in chapter 3.  

Angiogenic cytokines: VEGF-A, an angiogenic cytokine also induces 

immunosuppression by inhibiting DC maturation (114), and serves as a chemoattractant for M2 

macrophages. M2 macrophages in turn are a significant source of VEGF, MMPs, and M-

CSF/CSF1, which increase expression of VEGF; thus, providing a positive feedback loop 

between inflammation/angiogenesis and immunosuppression (115). 

IL-17: The role of IL-17 in cancer progression is controversial since it has been 

demonstrated anti- and pro-tumorigenic effects. Interestingly, a previous study in HNC patients 

showed elevated circulating Th17 cells that were further enriched in the tumor. A bead-based 

multiplex and ELISA revealed that Th17 cells in the tumor milieu secreted IL-1β, IL-6, and IL-

23. This study also noted that co-culturing HNC cells with Th17 cells resulted in a net increase in

many pro-angiogenic cytokines (116). Most recently, the relationship between Th17 cells and 

angiogenesis has been strengthened by a report in which IL-17 and Th17 cells have been 

implicated in tumor resistance to anti-angiogenic therapy by inducing tumor associated 

20



fibroblasts expressing granulocyte colony stimulating factor (G-CSF), a known cytokine 

involved in the recruitment and expansion of MDSCs (117). 

Figure 1.5.3 Immunosuppressive cytokine and cellular network in the tumor 
microenvironment: Illustration summarizes the interactions of principal suppressive 
cytokines in the tumor microenvironment. [Adapted from Burkholder et al. (118)].   

21



1.6  HEAD AND NECK CANCER (HNC) 

Head and neck cancer accounts for more than 90% of the malignancies that arise in the head and 

neck (119). Unfortunately, despite standard chemo and radiotherapy, 50% of the patients will 

succumb to this malignancy (120). The epidermal growth factor receptor (EGFR/ErbB1) is a 

tyrosine kinase receptor from the Erb/HER family that is overexpressed in approximately 90% of 

head and neck squamous cell carcinomas (121) and correlates with decreased survival (122). The 

EGFR activates many downstream signaling pathways including JAK/STAT, 

phosphatidylinositol 3-kinase (PI3K)/AKT and Ras/mitogen-activated protein (MAP) kinase 

pathways leading to cell proliferation, survival and invasion (123). Tumor cells overexpress both 

the receptor and the ligand, leading to an uncontrolled autocrine activation (124), which in turn 

induces the constitutive activation of signal transducer and activator of transcription 3 (STAT3), 

an oncogenic transcription factor (125-127).  

1.6.1 The EGFR/JAK2/STAT3 pathway activation 

The EGFR constitutively activates STAT3, which blocks apoptosis, induces proliferation, 

angiogenesis and immune escape (128, 129). STAT3 is considered an oncogene and its 

inhibition leads to apoptosis in vitro and reduced tumor growth in xenografted mouse models 

(130, 131). Interestingly, Janus Kinase 2 (JAK2) is a molecule downstream the EGFR that 

mediates STAT3 phosphorylation, and is upregulated in some HNC cell lines (132). JAK2 

inhibition suppresses HNC proliferation and angiogenesis but even more interesting is the 

finding that selective JAK2 inhibitors favor tumor cell death (133) indicating that JAK2 plays a 

major role in HNC tumorigenesis. Currently, numerous pharmacologic JAK2 inhibitors are being 

tested in the clinic for treatment of myeloproliferative malignancies where STAT3 is overactive 
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(134). BMS-911543 is a selective JAK2 small molecule inhibitor that causes downregulation of 

pSTAT3 levels in a human megakaryoblastic cell line (135). However, its effect inhibiting the 

EGFR/JAK2/STAT3 pathway in HNC is still uncharacterized.   

1.6.2 Cetuximab-mediated EGFR blockade 

The oncogenic transformation induced by overexpressed wild type EGFR in HNC cells and the 

modest success of conventional chemo and radiotherapy in HNC patients led to the 

implementation of monoclonal antibody immunotherapy targeting the EGFR. Cetuximab, an 

EGFR-specific chimeric IgG1 mAb, not only blocks ligand binding but also induces 

EGFR internalization and degradation (136), further limiting EGFR signaling. Even though 

cetuximab interferes with growth signals, its not sufficient to induce cell death, most likely 

because of alternative survival pathways in cancer cells. Interestingly, cetuximab-induced 

tumor cell death occurs only when NK cells are added to in vitro co-cultures (137-139), 

providing evidence that the major cetuximab antitumor mechanisms are immune mediated.  

1.6.3 Cetuximab-mediated NK cell activation 

Cetuximab IgG1 framework allows its interaction with Fc gamma receptors (FcγR) expressed on 

immune cells, particularly FcγRIIIA (CD16) which is expressed on natural killer cells (NK). 

Binding of cetuximab to CD16 on NK cells triggers antibody-dependent cellular cytotoxicity 

(ADCC), NK cell activation and secretion of IFNγ. Moreover, IFNγ-secreted from cetuximab 

activated NK cells mediate NK-DC cross talk via enhancing IL-12/IFNγ production and 

enhances DC maturation and MHC class I antigen presentation, which in turn induces clonal 

expansion of EGFR-specific CD8+ T cells (100, 140-143). Clinically, cetuximab has shown to be 
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effective increasing survival of patients either when added to radiation or platinum-based 

chemotherapy (144, 145) or as monotherapy (146), however, effective in only 10-20% of the 

patients (147, 148). Consequently, understanding the immune mechanisms initiated by 

cetuximab and how tumor cells evade cetuximab-mediated immune activation will allow us to 

overcome resistance to cetuximab therapy in HNC patients. 

1.6.4 EGFR-mediated immune escape 

Head and neck cancer presents as an ideal model of tumor immune escape where EGFR 

overexpression induces oncogenic transformation as discussed in previous sections. However, 

more important is to understand the role that EGFR plays in tumor immunoescape. We present 

the notion that tumor immune evasion is characterized by distorting the three fundamental 

signals for efficient immune activation: Signals 1, 2 and 3. An aberrant Signal 1 is characterized 

by downregulation of APM components and HLA class I antigen presentation, mediated in part 

by EGFR-induced Src homology-2 domain containing phosphatase (SHP2) activation, leading to 

reduced levels of phosphorylated signal transducer and activator of transcription 1 (STAT1) (59, 

66, 149). Interestingly, this phenomenon can be counteracted by IFNγ treatment or inhibition of 

SHP2, which is overexpressed in HNC (150). Furthermore, SHP2 depletion also resulted in 

phospho-STAT1 (pSTAT1) activation and restoration of APM components, leading to HLA 

class I restricted, TA-specific CTL recognition (150). In addition, SHP2-mediated pSTAT1 

suppression reduced type 1 cytokine production by HNSCC cells, since its inhibition resulted in 

the secretion of Interleukin-12 (IL-12) p35/p40 and IFNγ-dependent CXCR3 and CCR5 binding 

chemokines (150). Paradoxically, IFNγ is also a major inducer of PD-L1 expression as shown in 

fibrosarcoma (151), glioblastoma (152) and multiple myeloma cells (153). In HNC, cetuximab 
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mediated NK activation and IFNγ secretion that is otherwise beneficial to enhance tumor 

immune recognition, could also upregulate PD-L1 expression through a tumor cell-extrinsic 

pathway. However, even more interesting is the speculation that the overactive EGFR/JAK2 

pathway may constitute a cell-intrinsic stimulus for PD-L1 upregulation and provide an aberrant 

signal 2. Finally, EFGR-mediated STAT3 overactivation would also lead to increased secretion 

of signature immunosuppressive cytokines and chemokines providing an abnormal signal 3. 

Ultimately, these EGFR-dependent aberrant signals 1, 2 and 3 will induce evasion of immune 

effector cell recognition and lysis. Since, JAK2 is common to IFNγ and EGFR pathways, 

presents as a crucial target to inhibit in order to reverse the extrinsic (IFNγ mediated) and 

intrinsic (EGFR mediated) PD-L1 expression and immunosuppressive phenotype of HNC cells.

1.7 HYPOTHESIS 

EGFR and JAK2 inhibition will reverse the immunosuppressive phenotype of head and neck 

cancer cells and subsequently enhance tumor immune detection and NK cell cytotoxicity.  
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1.8  SPECIFIC AIMS 

1.8.1 SPECIFIC AIM 1 

Determine the in vitro effect of EGFR and JAK2 inhibition to reverse PD-L1 upregulation and 

correlate with patient tumor expression data from The Cancer Genome Atlas (TCGA) and pre- 

and post- single agent cetuximab clinical trial UPCI 08-013.  

1.8.2 SPECIFIC AIM 2 

Determine the in vitro effect of EGFR and JAK2 inhibition downregulating STAT3 dependent 

tumor derived cytokines and correlate with TCGA tumor expression data and patient 

serum specimens from pre- and post- single agent cetuximab clinical trial UPCI 08-013.

1.8.3 SPECIFIC AIM 3 

Determine the effect of EGFR and JAK2 inhibition in order to enhance NK cell 

mediated tumor lysis in vitro and correlate with patient tumor expression data from TCGA and 

pre- and post- single agent cetuximab clinical trial UPCI 08-013. 
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2.0 IDENTIFICATION OF THE CELL-INTRINSIC AND EXTRINSIC PATHWAYS 

DOWNSTREAM OF EGFR AND IFNγ THAT INDUCE PD-L1 EXPRESSION IN 

HEAD AND NECK CANCER 

2.1 INTRODUCTION 

The cancer immunoediting theory states that lymphocytes successfully suppress tumor growth 

(154). However, tumor cell immune escape can eventually occur, such as by downregulating 

HLA class I antigen processing (149) or by providing checkpoint inhibitory signals or 

suppressive cellular subsets (155) to disable effector immune cell infiltrates in the tumor 

microenvironment, preventing the generation and maintenance of an effective antitumor 

response (9). Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) are 

two relevant immune checkpoint receptors expressed by tumor infiltrating lymphocytes that are 

being actively targeted in the clinic. PD-1 limits the function of activated T cells and other 

lymphocytes (155, 156). Moreover, its cognate binding partner programmed death ligand-1 (PD-

L1) is expressed in many types of cancers including melanoma, ovarian, renal and lung cancer 

(156). Given the frequent expression of PD-L1 in tumors (157), trials targeting the PD-L1/PD-1 

pathway with blocking antibodies have been carried out with encouraging results in patients with 

renal cell carcinoma, non-small cell lung cancer and melanoma where tumor cell surface PD-L1 

expression was associated with objective response to anti-PD-1 therapy (18, 19, 158, 159). 

Recent data support a similar enrichment of clinical responders in PD-L1+ HNC patients (160). 

HPV associated HNC is increasing worldwide with prevalence reaching 50% 

of all oropharyngeal cancers (161). Interestingly, HPV positive tumors are more 

responsive to oncologic therapy, which may be in part immune mediated (162-164).
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A previous report suggested that PD-L1 expression contributed to immune resistance in 

HPV positive HNC tumors (157), relating PD-1+ CD8+ tumor infiltrating lymphocytes (TIL) 

with an anergic phenotype. In contrast, Badoual et al. relates PD-1+ CD8+ T cells with an 

activated phenotype, which constitutes a favorable prognostic biomarker in HPV positive HNC 

(165). Given the importance of PD-L1 expression in HNC, the stimuli and signaling pathways 

that induce PD-L1 expression in HPV+ and HPV- HNC cells are clinically important. A more 

precise understanding of PD-L1 regulation would permit the development of more effective 

approaches to anti PD-L1/PD-1 therapy in order to improve clinical outcomes.   

We hypothesized that targeting signaling molecules involved in PD-L1 expression in HNC 

cells might synergize with current anti-EGFR antibody targeted immunotherapies such as 

cetuximab, that are known to activate natural killer (NK) cells and cytotoxic T lymphocytes 

(CTL) (100). However, because activated NK and T cells secrete IFNγ, a known stimulus for PD-

L1 expression, understanding the complex signaling pathway regulating this immunosuppressive 

ligand is crucial. 

PD-L1 expression in tumor cells may be regulated by two major mechanisms. First, an 

“extrinsic” mechanism where an antitumor cellular immune response driven by NK and CD8+ 

tumor infiltrating T lymphocytes (TIL) produce inflammatory cytokines such as IFNγ, which in 

turn may induce PD-L1 expression on tumor cells. Indeed, a previous study showed that IFNγ 

and CD8 expression were increased in a small number of PD-L1 positive tumors (157). Second, 

an “intrinsic” mechanism may exist in which constitutive oncogenic signaling pathways within 

the tumor cell itself lead to PD-L1 overexpression. In glioblastoma, PTEN deletion promotes 

PI3K-AKT mediated PD-L1 overexpression (166), while EGFR mutant lung cancer cells have 
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been associated with PD-L1 overexpression (167, 168). In contrast to lung cancer, in the setting 

of HNC, EGFR mutations are extremely rare, whereas, wild type EGFR is overexpressed in 

approximately 80-90% of tumors (169). Since an extrinsic (IFNγ-mediated) and intrinsic (EGFR-

mediated) mechanism may cooperate to promote PD-L1 upregulation, we investigated signaling 

pathways that mediate both IFNγ and EGFR induced PD-L1 upregulation in tumor cells. These 

findings have particular relevance given the clinical utility of EGFR-specific FDA-approved 

monoclonal antibody cetuximab, which can both block EGFR signaling and stimulate IFNγ 

secretion via activation of NK and CTL (100-102).  

2.2 MATERIALS AND METHODS 

2.2.1 Tumor cell lines 

HPV negative HNC cell lines used in this report (JHU020, JHU022, JHU029, PCI13) and HPV 

positive (SCC2, SCC47, SCC90 and 93VU) were cultured in IMDM (Invitrogen, Carlsbad, CA) 

supplemented with 10% FBS (Mediatech, Herndon, VA), 2% L-glutamine and 1% 

penicillin/streptomycin (Invitrogen Corp, Carlsbad, CA). JHU020, JHU022 and JHU029 were a 

kind gift from Dr. James Rocco (Ohio state university, Columbus, OH) in January of 2006. 

SCC90 and PCI13 were isolated from patients treated at the University of Pittsburgh Cancer 

Institute (Pittsburgh, PA) through the explant/culture method, authenticated, and validated as 

unique using STTR profiling and HLA genotyping every 6 months (170, 171). UD-SCC2 and 

UM-SCC47 (called SCC2 and SCC47 in this report) were a kind gift from Dr. Thomas Carey 

(University of Michigan, Ann Arbor, MI) in December of 2005. 93-VU-147 T (called 93VU in 

this report) was a kind gift from Dr. Henning Bier (Technische Universitat Munchen, Munich, 

Germany) in October of 2013. All cell lines were routinely tested every 6 months and found to 
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be free of Mycoplasma infection. For all treatments involving the IFNγ and EGFR pathways cell 

lines were cultured overnight in serum free AIM-V media (Invitrogen, Carlsbad, CA) and 

treatments (IFNγ, EGF and inhibitors) were started when cells reached at least 20% confluence. 

Adherent tumor cells were detached by warm trypsin–EDTA (.25%) solution (Invitrogen, 

Carlsbad, CA) incubated for 5 min at 37°C. We previously determined that Trypsin treatment did 

not cleave surface PD-L1 by comparing with a non-enzymatic detachment method. Surface 

protein PD-L1 expression was determined by flow cytometry and pSTAT1 or total STAT1 was 

determined by intracellular flow cytometry (IFC).  

2.2.2 Antibodies and treatments 

PE conjugated PD-L1 monoclonal antibody (mAb) was purchased from BD Pharmingen (San 

Jose, CA). The anti-PD-L1 monoclonal antibody (mAb) clone 405.9A11 used for IHC was 

previously validated (172) and kindly provided by Dr. Gordon J. Freeman (Dana-Farber Cancer 

Institute, Boston, MA). The rabbit monoclonal anti-pJAK2 (Y1007 and Y1008) antibody used 

for IHC staining in this report was purchased from Abcam (Cambridge, United Kingdom), the 

FITC conjugated anti-HLA-ABC mAb (clone w6/32) was purchased from E-biosciences (San 

Diego, CA) and was used in the flow cytometry determinations in this report. The intracellular 

phosphorylated and total STAT staining was performed using PE-conjugated irrelevant IgG1 

mAb isotype control, PE conjugated anti phosphorylated tyrosine 701 STAT1 mAb (pSTAT1 

Tyr701), PE conjugated total STAT1 and PE conjugated total STAT3 were purchased from BD 

Biosciences (San Jose, CA), PE conjugated rabbit anti human phospho-AKT (Thre308) was 

purchased from Cell Signaling (Danvers, MA), primary anti-p44/42 MAPK (Erk1/2) and 

phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibodies were purchased from Cell 

Signaling (Danvers, MA), secondary PE conjugated anti-rabbit secondary antibody was 
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purchased from Cell Signaling as well. Western blotting antibodies include rabbit anti-human 

total JAK2, pJAK2 (y1007/1008), total AKT, pAKT, pERK and mouse anti-human β-actin that 

were all purchased from Cell signaling (Danvers, MA). 

Human recombinant interferon gamma (IFNγ) was purchased from R&D systems 

(Minneapolis, MN) reconstituted according manufacturer instructions and kept at -80 Celsius in 

20 microliter aliquots, for all experiments in this report IFNγ was used at 10 IU/mL. Human 

recombinant interferon alpha 2a (IFNα2a) was purchased from PBL Interferon Source 

(Piscataway, NJ), reconstituted and kept at -20 Celsius, for all experiments in this report IFNα2a 

was used at 1000 IU/mL. The specific JAK2 inhibitor BMS-911543 (N,N-dicyclopropyl-4-((1,5-

dimethyl-1H-pyrazol-3-yl)amino)-6-ethyl-1-methyl-1,6-dihydroimidazo[4,5- 

d]pyrrolo[2,3b]pyridine-7-carboxamide) was characterized previously (171) and kindly provided 

by Bristol-Myers Squibb. The JAK2 inhibitor was reconstituted in dimethylsulfoxide (DMSO) as 

a 10mM stock solution, stored in aliquots at -20C and was used at 10uM final concentration in 

all the in vitro experiments in this report. The selective JAK1/3 inhibitor (ZM39923) was 

characterized previously (152, 173) and purchased from Tocris bioscience (Bristol, United 

Kingdom) reconstituted in DMSO, stored at -80 Celsius, and was used at 10uM final 

concentration. The pan-PI3K inhibitor wortmannin was purchased from Cell Signaling (Danvers, 

MA) and resuspended at a concentration of 10uM and used at a final concentration 1uM. The 

specific PI3Kα110 subunit inhibitor (BYL-719) was used at a 1uM final concentration and the 

MEK1/2 inhibitor (PD0325901) was used at a 5uM final concentration; both inhibitors were 

purchased from Tocris Bioscience (Bristol, United Kingdom). 
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2.2.3 Flow cytometry analysis 

Surface flow cytometry was performed as follows, cells were harvested and resuspended in PBS 

containing a 1:50 dilution of a previously validated viability dye Zombie Aqua (174), following 

the manufacturer’s protocol (Biolegend, San Diego, CA), then resuspended in 50uL of

fluorescence-activated cell sorting (FACS) buffer and fluorophore conjugated antibodies were 

added at 1:10 dilution, incubated for 15 minutes at 4 Celsius, then antibodies were washed away 

twice by sequential centrifugation at 1400 RPM with FACS buffer and resuspended in 2% PFA 

solution until analyzed in the flow cytometer.  Intracellular flow cytometry was performed as 

described (175). Briefly, cells were fixed using 1.5% for 15 min at room temperature (RT) and 

permeabilized with ice cold 100% methanol for 10 minutes at 4 Celsius and kept for 18h at -20 

Celsius. Cells were then washed in FACS buffer and stained either with a fluorophore-

conjugated primary pSTAT1, STAT1 or pSTAT3 mAb, cells were then incubated for 45 min at 

RT, washed and resuspended in FACS buffer. When using an unconjugated primary antibody 

cells were stained with a secondary PE-conjugated antibody for additional 45 minutes and then 

washed as previously described. Flow cytometry analysis was performed on the same day as 

staining. Isotype control antibody staining was added for each condition and each mAb used for 

targeted markers (STAT1, pSTAT1 and pSTAT3) samples were collected and analyzed in an 

LSR Fortessa cytometer (BD Biosciences). A minimum of 10,000 cells was collected per test. 

Data analysis was performed using FlowJo version 10 (FlowJo, Ashland, OR). All surface and 

intracellular markers in this study were calculated as median fluorescence intensity (MFI) fold 

change and normalized with either untreated or vehicle control after subtracting the isotype 

control (MFI) of each sample.  Each experiment was repeated at least three times and mean and 
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standard error of the mean (SEM) was calculated and plotted using GraphPad PRISM software 

version 6.  

2.2.4 Western Blotting

 Cells were lysed in 10 mM Tris HCl, 5 mM EDTA, 50 mM NaCl, 30 mM Na2P2O7, 50 mM 

NaF, 1 mM NaVO4, 1% Triton X-100, 1 mM PMSF and vortexed for at least 1 h at 4°C, and 

centrifuged at 4°C, 16,100 g for 15 min. The supernatant protein was quantified and normalized, 

and 40–60 μg of protein were loaded and size fractionated through a 4–12% SDS–PAGE gel 

(Lonza, Rockand, ME), transferred to a PVDF membrane (Millipore, Billerica, MA) and 

immunoblotted with the indicated antibodies for βactin, pJAK2, JAK2, pERK, pAKT and total 

AKT.  

2.2.5 siRNA knockdown 

HNC cell lines were transfected at 30% confluence with STAT1-targeting siRNA, STAT3-

targeting siRNA or a non-targeting siRNA control (Ambion, Austin, TX), Lipofectamine RNAi 

max (Invitrogen Corp) and Optimem I (Invitrogen Corp) according to the Lipofectamine RNAi 

max instructions. 48 hours after the transfection, cells were washed with PBS and incubated with 

or without INFγ  (10IU/mL) or EGF (10ng/mL) for 48 h at 37°C. Then, cells were harvested and 

analyzed by flow cytometry for STAT1, STAT3 and PD-L1 expression. siRNA STAT1: 5-

CUACGAACAUGACCCUAUTT-3(s) and 5-AUAGGGUCAUGUUCGUAGGTG-3(as) siRNA 

STAT3: 5-GCCUCAAGAUUGACCUAGATT-3(s) and 5-

UCUAGGUCAAUCUUGAGGCCT-3(as) and siRNA non-targeting 5-

AGUACAGCAAACGAUACG Gtt-3 control: (s) and 5-

CCGUAUCGUUUGCUGUACUtt-3(as). 
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2.2.6 Quantitative PCR (qPCR 

Total RNA was extracted using Trizol reagent (Invitrogen, Grand Island, NY) and purified using 

RNA cleanup (Qiagen), followed by Purelink on-column DNase digestion Invitrogen, Grand 

Island, NY) according to manufacturer’s instructions. The concentration and purity of RNA was 

determined by measuring absorbance at 260 and 280 nm. 2000 ng of RNA was used for first 

strand cDNA synthesis using random hexamers and MultiScribe reverse transcriptase (Applied 

Biosystems, Foster City, CA) according to manufacturer’s instructions. PCR probes for PD-L1 

(Hs01125301_m1) and GUSB (Hs99999908_m1) were purchased from Applied Biosystems for 

TaqMan® Gene Expression Assay. Real-time PCR cycling was performed using StepOne™ 

Real-Time PCR Systems (Applied Biosystems, Carlsbad, CA). GUSB was amplified as an 

internal control. All of the experiments were performed in triplicates. Relative expression of the 

target genes to endogenous control gene (GUSB) was calculated using the ΔCT method: relative 

expression = 2−ΔCT, where ΔCT = CT (target gene) − CT (GUSB).

2.2.7 Chromatin immunoprecipitation (ChIP) assay

Cells were serum starved for 18 h at 37°C in AIM V medium (Invitrogen Corp, Carlsbad, CA) prior 

to incubation with, IFN-γ (10 IU/ml) for 30 min at 37°C, or sequentially with cetuximab (10 ug/ml) 

for 30 min at 37°C. At the end of the incubation, cells were fixed with formaldehyde (1% final 

concentration) (Sigma–Aldrich Inc.) for 10 min at RT. Cells were then quenched with glycine 

(0.125 M final concentration) (Sigma–Aldrich Inc.) for 5 min, washed twice with ice-cold PBS and 

harvested. After centrifugation at 16,100 g for 12 min at 4°C, cells were lysed in SDS lysis buffer 

(Millipore) containing protease inhibitors. Chromatin was sheared by sonication for 5 cycles of 9s at 

40% of the maximum potency (Cole Palmer Instrument) to generate fragmented DNA with an 

average length between 400 and 1,000 base pairs. pSTAT1, pSTAT3 
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and IgG control mAbs were used to immunoprecipitate pSTAT1- or pSTAT3-bound chromatin 

(5 μg of antibody) rotating overnight at 4°C. Protein A agarose beads were added to each IP (60 

μl) and incubated for 1 h rotating at 4°C. The subsequent washes and elution steps were 

performed using the Ez-ChIP™ kit (Millipore) and according to the manufacturer's instructions. 

Protein–DNA crosslinks were reversed at 65°C overnight. After RNase (10 μg, 30 min at 37°C)

(Sigma–Aldrich Inc.) and sequential proteinase K (10 μg, 2 h at 45°C) (Sigma–Aldrich Inc.) 

digestion, DNA was purified using the QIAquick PCR purification kit (Qiagen). Purified DNA 

was used in each quantitative RT-PCR using the EpiTect ChIP qPCR (Qiagen) SYBR-green 

Master Mix method (at 94°C for 10 min, and 50 cycles at 94°C for 20 s, 60°C for 1 min) using 

the primer for the PD-L1 promoter NM_014143.2 (-)16Kb.  qPCR amplification data were 

normalized and analyzed as percent input as described previously (176) and expressed as relative 

enrichment to % input. 

2.2.8 Immunohistochemistry (IHC) protocol 

The use of clinical tumor samples from HNC patients was approved by the Institutional Review 

Board (IRB approval #99-069) at the University of Pittsburgh, and written informed consent was 

obtained from all participants. Slides were deparaffinized and rehydrated using a standard 

histology protocol. Antigen retrieval was performed using Diva Retrieval solution (Biocare 

Medical, Concord, CA) and a Decloaking chamber at 124°C, 3 minutes, and cooled for 

10 minutes on the counter.  The slides were placed on an Autostainer Plus (Dako, Carpenteria, 

CA) using a TBST rinse buffer (Dako) and stained using the following protocol. 3% 

H2O2 (ThermoFisher Scientific, Pittsburgh, PA) for 5 minutes, CAS Block (Invitrogen, Grand 

Island, NY) for 10 minutes.
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The primary antibody for PD-L1 (clone 405.9A11) was previously characterized (177) 

and the pJAK2 (Y1007-1008) (clone E132) used according to manufacturer instructions. The 

secondary consisted of Envision Dual Link + (Dako) polymer for 30 minutes, rinsed, then a 

TBST holding rinse was applied for 5 minutes. The substrate used was 3,3, 

Diaminobenzidine + (Dako) for 7 minutes and counterstained with hematoxylin. PD-L1 and 

pJAK2 staining were quantified by positive pixel count v9 algorithm (Aperio). The protein 

expression level is represented by the score of intensity of staining multiplied by the positive 

area percentage. Tumor sections stained with PD-L1 and pJAK2 were examined by a head and 

neck pathologist (RRS) who was blinded to the clinical patient data. Scoring was determined by 

tumor percentage stained positive for PD-L1 or pJAK2, respectively. Tumors with less than a 5% 

tumor cells positive cut-off staining were considered as negative. 

2.2.9 Cellular cytotoxicity assays 

Cytotoxicity was determined using a 51Cr release assay. Briefly, target cells were incubated in 

100 μL of media with 25 μCi of Na251CrO4 (Perkin Elmer, Boston MA) for 60 min at 37°C and 

resuspended in RPMI 1640 medium supplemented with 25 mM HEPES. Cells were thoroughly 

washed and plated at various effector: target (E:T) ratios in 96-well plates. Cetuximab or human 

IgG1 was added (10μg/mL) then freshly purified NK cells were added at the specified 

effector:target (E:T) ratios. The supernatants were collected and analyzed with a Perkin Elmer 

96-well plate gamma counter. Specific lysis = (experimental lysis − spontaneous lysis)/

(experimental lysis − maximal lysis) × 100. Results are representative of 4 different donors and 

were plotted in bar graphs. 
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2.2.10  The Cancer Genome Atlas (TCGA) data retrieval and analysis

TCGA data for HNC gene expression by RNAseq were downloaded from the UCSC cancer 

genomics browser (https://genome-cancer.ucsc.edu). The HNC gene expression profile from 

500 head and neck tumor specimens was measured experimentally using the Illumina HiSeq 

2000 RNA Sequencing platform by the University of North Carolina TCGA genome 

characterization center as described previously (178). Level 3 interpreted data was downloaded 

from TCGA data coordination center. This dataset shows the gene-level transcription 

estimates, as in RSEM normalized count, percentile ranked within each sample. Genes are 

mapped onto the human genome coordinates using UCSC cgData HUGO probeMap. The 

RSEM units to quantitate RNAseq expression data were described and validated 

previously (179). Correlations from TCGA data were calculated using Pearson r test (Two or 

One tailed) and linear regression curve fits were graphed using GraphPad PRISM software 

version 6 and values were plotted into either graphs or tables.  

2.2.11  IPA Ingenuity pathway software analysis 

Software was accessed via the University of Pittsburgh health sciences library system (HSLS) 

license. Path Explorer tool available in IPA Ingenuity was utilized for exploration of EGFR and 

IFNγ pathways for any association with PD-L1 expression. Pathway matching relationships for 

PD-L1, EGFR and IFNγ were selected specifically in the human species. As stated in the Results 

section, software-generated possible matches were STAT1, STAT3, AKT, Jun and Myc.  
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2.3 RESULTS 

2.3.1 PD-L1 protein expression is higher in HPV positive HNC tumor specimens 

Immunohistochemistry staining of tumor specimens (n=134) revealed that 59.7% of HNC 

patients express detectable PD-L1 on the tumor cell surface, as determined by a threshold of 

>5% positive tumor cells (Figure 2.3.1A). Furthermore, when segregated by HPV status (n=127,

63 HPV- and 64 HPV+), we noted that PD-L1 expression was more frequent in HPV+ specimens 

(70% vs. 43.3%, respectively, Figure 2.3.1B) and the % PD-L1 expression was also significantly 

higher in in HPV+ tumors (Figure 2.3.1C). Interestingly, PD-L1 expression was more intense on 

the cell membrane than in the cytoplasm and was heterogeneously expressed within the 

microenvironment, generally forming clusters of PD-L1+ tumor cells with a higher intensity at 

the cluster periphery (Figure 2.3.1D and 2.3.1E). To study the stimuli and pathways by which 

PD-L1 is upregulated in vitro, we analyzed a panel of HPV+ and HPV- HNC lines for PD-L1 

expression, which was expressed variably (Figure 2.3.1F) similar to patient tumors by IHC.  
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Figure 2.3.1 PD-L1 protein expression is higher in HPV+ tumor specimens: A. PD-

L1 protein expression in HNC tumor specimens (IHC, n=134). Tumors were considered positive 

for PD-L1 when higher than 5% tumor staining threshold. 59.7% of tumors were PD-L1+. B. PD-

L1 expression in HPV- and HPV+ tumor specimens using the same criteria as in A. 70% HPV+ 

vs. 43.3% HPV- specimens were PD-L1+ C. percent PD-L1+ tumor area in HPV- and 

HPV+ specimens. Dotted line represents the 5% tumor positive cut-off, solid lines represent the 

median value. (Mann-Whitney test, ** P<0.001). D. Representative image of a high intensity, 

100% PD-L1+ tumor of a HPV+ specimen. E. Representative image of a low intensity, 50% PD-

L1+ tumor of a HPV- specimen. Insets on the left represent the magnification (20X) on the 

right. F. HNC tumor cell lines expressed heterogeneous levels of PD-L1, which resembled 

those seen in vivo by IHC.  

2.3.2 HPV positive tumor specimens show higher Th1 type expression profile 

We then analyzed PD-L1 expression in a large cohort of HNC specimens for which gene 

expression TCGA repository data were available (178). Since PD-L1 expression has been linked 

with that of CD8 and IFNγ (102, 157), we investigated the Th1 mRNA expression profile of 

HPV+ versus HPV- specimens. Pooled data from 88 HNC specimens were plotted using a heat 

map, segregated by HPV status (Figure 2.3.2A, red boxes depict higher expression in HPV+ 

tumors). A Th1 type expression profile (PD-1, CD8A, CD8B, IFNG and JAK2) was significantly 

higher in HPV+ than HPV- tumors (Figure 2.3.2B) suggesting that activated immune effector 

cells readily infiltrate HPV+ tumors, which may be important for PD-L1 induction due to this 

source of IFNγ. Importantly, JAK2 expression (but not JAK1) was also higher in HPV
+ tumors

(Figure 2.3.2B). Therefore, JAK2 was associated with a Th1 profile and with PD-L1 expression,

particularly in HPV+ tumors.
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Figure 2.3.2 HPV+ specimens show higher expression of a Th1 type RNA expression profile: 

A. Heat map of RNAseq expression level expressed as RSEM units (as described in Materials

and Methods) of PD-L1, PD-1, CD8A, CD8B, IFNγ, JAK2, JAK1, STAT1, EGFR, PIK3CA,

TORC1, 4EBP1 and MAPK1 (66 HPV- and 22 HPV+) TCGA database (178), red boxes

emphasize a higher expression of a Th1 profile in HPV+ specimens and higher EGFR expression
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in HPV- counterparts (color code, yellow 10 fold higher, turquoise 10 fold lower relative 

expression change over black). B. HPV+ tumor specimens show significantly higher expression 

of a Th1 type expression profile: PD-1, CD8A, IFNγ and JAK2. EGFR expression is

significantly higher in HPV- tumor specimens (Mann-Whitney * P<0.05, ** P<0.001). 

2.3.3 PD-L1 expression correlates with that of JAK2, EGFR, IFNγ and a Th1 profile 

regardless HPV status 

Given that JAK2 is a common signaling molecule downstream of the EGFR and IFNγ pathways, 

we found that PD-L1 and JAK2 mRNA expression were highly correlated (n=500) and persisted 

when the cohort was segregated by HPV status (Figure 2.3.3A). In order to further assess the 

relationship between JAK2 and PD-L1 in vivo at the protein level, we determined phospho-JAK2 

and PD-L1 using IHC from adjacent sections of HNC specimens (n=23). Corroborating our 

previous findings, PD-L1 was predominantly expressed on the tumor cell membrane while 

phospho-JAK2 exhibited strong nuclear staining, with occasional weak-moderate cytoplasmic 

staining. PD-L1 positive tumor islands were found to be strongly positive for phospho-JAK2 

(Figure 2.3.3B). Furthermore, we also found a significant correlation between EGFR and PD-L1 

expression, which was somewhat weaker in HPV- tumors (Figure 2.3.3C). Likewise, PD-L1 

expression was highly correlated with a Th1 type expression profile (IFNγ, CD8A and PD-1) 

regardless of HPV status (Figure 2.3.3D and Table 2.3.3.1). In addition, correlation of EGFR and 

CD8 or JAK2 was only significant in HPV+ tumors, given that their expression level was higher 

than in HPV- tumors. However, this finding did not preclude the fact that JAK2 could also be 

important for PD-L1 expression in HPV- tumors given that they were strongly correlated 

regardless of HPV status.  
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Figure 2.3.3 PD-L1 expression correlates with that of JAK2, EGFR and IFNγ regardless 

HPV status: A.  PD-L1 expression significantly correlated with that of JAK2 in both HPV- and 

HPV+ specimens (Pearson r and linear regression curve fit, *** p<0.0001). B. PD-L1 and pJAK2 

IHC staining in adjacent sections and matching areas of HNC specimens. PD-L1 (top panel) was 

predominantly expressed on the tumor cell membrane.  Phospho-JAK2 (bottom panel) exhibits a 

strong nuclear staining with occasional weak to moderate cytoplasmic staining. PD-L1 positive 

tumor islands are also diffusely strongly positive for phospho-JAK2 (3 representative specimens 

out of 23) C. PD-L1 mRNA expression significantly correlated with that of EGFR in both HPV- 

and HPV+ specimens (Pearson r and linear regression curve fit * P<0.05 ** P<0.001). D. PD-L1 

mRNA expression significantly correlated with that of IFNγ regardless HPV status (Pearson r 

and linear regression curve fit *** P<0.0001). 66 HPV- and 22 HPV+ tumor specimens collected 

from TCGA database. 
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Correlation (XY)
HPV Negative HPV Positive

Pearson r P value Pearson r P value 

PD-L1 vs. PD-1 0.5937 < 0.0001 (***) 0.7538 < 0.0001 (***)

PD-L1 vs. CD8A 0.5157 < 0.0001 (***) 0.8363 < 0.0001 (***)

EGFR vs. CD8A -0.01368 0.4566 (ns) 0.4705 0.0136 (*)

EGFR vs. JAK2 0.1853 0.0681 (ns) 0.438 0.0207 (*)

IFNγ vs. CD8A  0.7747 < 0.0001 (***)  0.9396 < 0.0001 (***) 

IFNγ vs. JAK2  0.7264 < 0.0001 (***)  0.7391  < 0.0001 (***)

Table 2.3.3.1 Correlation of PD-L1, EGFR and IFNG with a Th1 profile in HPV negative 

and HPV positive tumors: PD-L1 mRNA expression highly correlated with that of PD-1 and 

CD8A regardless HPV status. In addition, EGFR expression correlated with that of CD8A or 

JAK2 in HPV+ but not HPV- tumors. As expected, IFNγ shows a strong correlation with that of 

CD8A and JAK2 regardless HPV status 

2.3.4 STAT1 but not STAT3, PIK3CA or MAPK1 expression is higher in tumor tissue 

and strongly correlates with PD-L1, EGFR and IFNγ regardless of HPV status 

Since PD-L1 expression strongly correlated with a Th1 type expression profile in the tumor 

microenvironment, we hypothesized that PD-L1 may depend on STAT1 activation, a known Th1 

type transcription factor. Indeed, STAT1 emerged as one of the highly predicted transcription 

factors binding to PD-L1 promoter region and common to EGFR and IFNγ pathways when

utilizing previously validated software for transcription factor binding prediction (MATCH) and 

pathway exploration (Ingenuity IPA) (180). Given that previous reports presented STAT3, PI3K 

and MAPK as possibly involved in PD-L1 expression in other tumor types, we included these in 

our investigation. We pooled RNAseq data collected from 46 paired specimens of tumor vs. 

matched normal mucosa and found that STAT1 (but not STAT3, PIK3CA or MAPK1) was 
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significantly upregulated in tumor tissue (Figure 2.3.4A). Furthermore, STAT1 expression highly 

correlated with that of PD-L1 in TCGA (n=500), which was preserved when segregated by HPV 

status (Figure 2.3.4B). Concordant with TCGA data, we found that STAT1 protein was widely 

expressed in HNC tumor tissues, and that PD-L1 positive tumor islands were also strongly 

positive for total STAT1 staining (Figure 2.3.4C, circled areas highlight co-localization, 100X 

inset). Interestingly, STAT1 expression also showed strong correlation with that of EGFR 

(Figure 2.3.4D). As expected, STAT1 tumor expression also was strongly correlated with that of 

IFNγ (Figure 2.3.4E). Notably, STAT3 and PI3K pathway components (AKT1, TORC1 or 

4EBP1) showed no correlation with PD-L1 in HPV+ tumors and only weakly in the HPV- HNC. 

Likewise, MAPK1 was not correlated with PD-L1 expression in either cohort (Table 2.3.4.1). 

Overall, our findings suggest that the JAK2/STAT1 pathway may serve as an important common 

mediator for both EGFR- and IFNγ-mediated PD-L1 expression in HNC tumors, regardless of 

HPV status. 
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Figure 2.3.4 STAT1, but not STAT3, PI3KCA or MAPK1 expression is higher in tumor 

tissue and strongly correlates with that of PD-L1, EGFR and IFNγ regardless HPV status: 

A. Expression of STAT1 but not STAT3, PIK3CA or MAPK1 was significantly higher in tumor

specimens when compared with matched control mucosa (TCGA, 46 HNC tumor specimens and

matched controls, Mann-Whitney test, *** P<0.0001). B. STAT1 expression is strongly

correlated with that of PD-L1 regardless HPV status (Pearson r and linear regression curve fit, **

P<0.001 *** P<0.0001) C. PD-L1+ tumor islands are also strongly positive for STAT1 protein in

HNC specimens. Representative section of a HNC specimen co-stained for PD-L1 (brown

chromogen) and STAT1 (red chromogen). Insets represent magnification of the tumor area,

yellow circles indicate co-localization. D-E. STAT1 expression correlated with that of EGFR

and IFNγ regardless HPV status. (Pearson r and linear regression curve fit, ** P<0.001 ***

P<0.0001).
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Table 2.3.4.1 Correlation of PD-L1 and STAT3, PI3K and MAPK pathway components in 

HPV negative and HPV positive tumors: PD-L1 mRNA expression did not show a strong 

correlation with STAT3, PI3K and MAPK pathways regardless HPV status. (TCGA, 66 HPV- 

and 22 HPV+ tumor specimens).  

2.3.5 IFNγ-mediated PD-L1 upregulation is JAK2/STAT1 dependent 

Based on our TCGA analysis and previous reports linking IFN with PD-L1 expression at the 

mRNA level, we investigated the signaling pathway by which IFNγ upregulates PD-L1 

expression in vitro. Indeed, a panel of HPV+ and HPV- HNC cell lines upregulated PD-L1 

expression after IFNγ treatment (Figure 2.3.5A). Given that IFNγ-mediated PD-L1 upregulation 

was linked with PI3K pathway activation (166), we tested whether wortmannin (pan-PI3K 

inhibitor) or BYL-719 (PI3Kα110 subunit specific inhibitor) could prevent IFNγ-mediated PD-L1 

upregulation. PI3K pathway inhibition did not induce PD-L1 downregulation, under conditions in 

which these inhibitors effectively prevented AKT phosphorylation (Supplementary Figure 

2.5.1-4). Since IFNγ signals via JAK1 and JAK2, we utilized a clinical grade, selective JAK2 

inhibitor BMS-911345 (JAK2i) which was previously characterized (181), finding an abrogation 

of IFNγ-mediated PD-L1 upregulation in all cell lines tested, both at the mRNA and

Pearson r P value Pearson r P value 

PD-L1 vs STAT3 0.2503 0.0427 (*) 0.3867 0.0754 (ns)

PD-L1 vs AKT1 -0.2048 0.099 (ns) 0.00568 0.98 (ns)

PD-L1 vs TORC1 -0.2743 0.0258 (*) -0.1973 0.3787 (ns)

PD-L1 vs 4EBP1 -0.2488 0.044 (*) -0.2206 0.3238 (ns)

PD-L1 vs MAPK1 -0.1659 0.1832 (ns) 0.07862 0.728 (ns)

HPV Negative HPV Positive
Correlation (XY)
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protein level (Figure 2.3.5A and 2.3.5B, Supplementary Figure 2.5.5). Interestingly, specific 

JAK1/3 inhibition (JAK1/3i) did not show a significant downregulation of IFNγ-mediated PD-

L1 protein expression (Figure 2.3.5C). We then used IFNα, which signals via JAK1 and TYK2,

but not JAK2. IFNα treatment did not upregulate PD-L1 expression (Figure 2.3.5D) but still 

induced pSTAT1 upregulation, although to a lesser extent than IFNγ, in all cell lines tested.

Moreover, JAK2 inhibition did not affect HLA-ABC upregulation (Supplementary Figure 2.5.6-

7), which suggests that the kinetics of IFNα-induced pSTAT1 binding to the PD-L1 promoter 

differ for HLA-ABC.  

In order to determine whether the IFNγ-mediated PD-L1 upregulation was solely STAT1 

dependent, we silenced each transcription factor using siRNA technology (80-90% knockdown 

efficiency, supplementary Figure 2.5.8). STAT1 but not STAT3 knockdown potently impaired 

IFNγ-mediated upregulation of PD-L1 (Figure 2.3.5E). Moreover, chromatin 

immunoprecipitation (ChIP) assays documented that pSTAT1 but not pSTAT3 binds to the 

promoter region of PD-L1 after IFNγ treatment (Figure 2.3.5F). Interestingly, cetuximab 

mediated EGFR blockade downregulated IFNγ induced pSTAT1 binding to the PD-L1 promoter 

and significantly downregulated the IFNγ-mediated PD-L1 upregulation at the mRNA and 

protein level, respectively. (Figure 2.3.5G-H and Supplementary Figure 2.5.9).  
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Figure 2.3.5 IFNγ mediated PD-L1 upregulation is JAK2/STAT1 dependent: A. Specific 

JAK2 inhibitor BMS-911345 (JAK2i) abrogates IFNγ-mediated PD-L1 protein upregulation in 

all cell lines tested regardless HPV status. Cell lines were either treated with vehicle control, 

JAK2i (10uM), IFNγ (10IU/mL) or the combination for 48h, harvested and PD-L1 expression 

was determined by flow cytometry (FC) B. JAK2i abrogates IFNγ-mediated PD-L1 mRNA 

upregulation. Cell lines were either treated with vehicle control, IFNγ (10IU/mL) or JAK2i 

(10uM) or the combination for 24h; PD-L1 mRNA was determined by qPCR and expressed as 

fold change over vehicle control C. Specific JAK1/3 inhibition did not prevent IFNγ-mediated 

PD-L1 upregulation in HNC cell lines. Cell lines were either treated with vehicle control, 

JAK1/3i (10uM), JAK2i (10uM), IFNγ (10IU/mL) or the combination for 48h, harvested and 

PD-L1 expression was determined by FC (ANOVA, ns= not significant) D. IFNα did not 

upregulate PD-L1 expression. Cells were incubated with IFNα (1000 IU/mL), JAK2i (10uM) 

and the combination for 48 h. IFNγ (10IU/mL) was used as a positive control. PD-L1 expression 

was determined by FC (ANOVA, ns= not significant). E. IFNγ-mediated PD-L1 upregulation is 

abrogated when STAT1, but not STAT3, is silenced. Cells were incubated with STAT1 siRNA, 

STAT3 siRNA or control siRNA (10nM) for 48h then were either left untreated or treated with 

IFNγ (10IU/mL) for additional 48h, harvested and PD-L1 expression was determined by FC. F. 

pSTAT1 but not pSTAT3 binds to the PD-L1 promoter region after IFNγ treatment as 

determined by ChIP assay. Cells were either left untreated or treated with IFNγ (10IU/mL) or 

IFNγ+cetuximab for 30 minutes, ChIP assay showed enrichment of pSTAT1 in the PD-L1 

promoter (black bars). PD-L1 enrichment calculated as % input DNA (refer to Materials and 

Methods) (ANOVA * P<0.05, ** P<0.01). G. Cetuximab-mediated EGFR blockade 

downregulated IFNγ-mediated PD-L1 mRNA upregulation. Cell lines were either treated with 

vehicle control, IFNγ (10IU/mL), cetuximab (10ug/mL) or IFNγ+cetuximab for 24 h. harvested 

and mRNA was quantified by qPCR and expressed as fold change over vehicle control 

(ANOVA, * P<0.05, *** P<0.0001) H. Cetuximab-mediated EGFR blockade downregulated the 

IFNγ-mediated PD-L1 protein upregulation. Cell lines were either treated as in G for 48h 

harvested and PD-L1 protein expression was determined by FC (ANOVA, *** P<0.0001) 
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2.3.6 EGFR-mediated PD-L1 upregulation is JAK2/STAT1 dependent  

Since EGFR strongly correlated with PD-L1 expression in TCGA specimens and a previous 

report showed that EGFR activating mutations induce PD-L1 in lung cancers (167), we 

hypothesized that wild type EGFR, overexpressed in 80-90% of HNC, may promote PD-L1 

upregulation. EGF treatment induced upregulation of PD-L1 protein in 7 of 8 HNC lines studied, 

though to a lesser extent than that induced by IFNγ (Figure 2.3.6A). This effect was also seen at 

the mRNA level (Figure 2.3.6B). Although EGFR activates multiple downstream pathways, 

including PI3K, MAPK and JAK/STAT pathway, TCGA analysis yielded weak if any 

correlation between PD-L1 and PIK3CA or MAPK1 (Table 2.3.1.1). However, a strong 

correlation was observed with that of JAK2 and STAT1 (Figure 2.3.3A and 2.3.4B respectively). 

Given that JAK2 serves as a common signaling molecule for both IFNγ and EGFR pathways, we

investigated whether EGF-mediated PD-L1 upregulation was JAK2 and/or STAT1 dependent. 

Indeed, basal expression of PD-L1 in HNC cell lines was downregulated by JAK2 but not 

JAK1/3 inhibition (Figure 2.3.6C). Furthermore, EGF induced JAK2 phosphorylation 

(Supplementary Figure 2.5.10) and upregulation of basal PD-L1 expression (Figure 2.3.6D). 

Additionally, specific JAK2, but not JAK1/3, inhibition prevented EGF induced PD-L1 

upregulation (Figure 2.3.6D and Supplementary Figure 2.5.11). Interestingly, the EGF-mediated 

PD-L1 upregulation was higher in cell lines with a higher EGFR expression (JHU029 and 

JHU022 vs 93VU and SCC90). Likewise, JAK2 inhibition more strongly downregulated basal 

and EGF-mediated PD-L1 expression in the EGFRhigh cell lines (Figure 2.3.6D, JHU022 and 

JHU029).  

Since EGFR activates PI3K and MAPK pathways, we tested whether these mediated PD-

L1 upregulation after EGFR stimulation. We found that neither wortmannin-mediated PI3K 
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inhibition nor MEK1/2-mediated MAPK inhibition prevented EGF-induced PD-L1 upregulation 

(Supplementary Figures 2.5.12 and 2.5.13). However, these inhibitors effectively suppressed 

AKT and ERK phosphorylation, respectively (Supplementary Figures 2.5.14 and 2.5.15). In light 

of this result and the positive correlation found between EGFR and STAT1, we hypothesized 

that EGF may be activating STAT1 phosphorylation, mediated by JAK2. Indeed, EGF induced 

STAT1 (tyrosine701) phosphorylation reaching its maximum peak at 24 hours, while total 

STAT1 levels remained stable (Figure 2.3.6E). Furthermore, siRNA-targeted STAT1 

knockdown efficiently suppressed total STAT1 levels, (Supplementary Figure 2.5.16) as well as 

significantly abrogating EGF induced PD-L1 upregulation (Figure 2.3.6F). 
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Figure 2.3.6 EGFR-mediated PD-L1 upregulation is JAK2/STAT1 dependent: A. EGF 

upregulates PD-L1 protein expression. Cells were either left untreated or treated with EGF 

(10ng/mL) for 48h, IFNγ (10IU/mL) was used as a positive control. Cells were harvested and 

PD-L1 surface expression was determined by FC B. EGF treatment upregulates PD-L1 mRNA 

expression. Cells were treated as in A for 24h, harvested and PD-L1 mRNA expression was 

determined by qPCR and expressed as fold change over vehicle control (ANOVA, * P<0.05, ** 

P<0.01, *** P<0.001). C. JAK2 but not JAK1/3 inhibition downregulates baseline expression of 

PD-L1. Cells were treated with JAK1/3 inhibitor (JAK1/3i, 10uM) or JAK2i (10uM) for 48h and 

PD-L1 expression level was determined by FC (ANOVA, * P<0.05, ** P<0.001). D. JAK2 but 

not JAK1/3 inhibition prevents EGF-mediated PD-L1 upregulation. Cells were treated with 

JAK1/3i (10uM) or JAK2i (10uM) for 48h and PD-L1 expression level was determined by FC 

(ANOVA, ns= non-significant ** P<0.001 *** P<0.0001). E. EGF induces pSTAT1y701 

upregulation. Cells were either left untreated or treated with EGF (10ng/mL) for 1, 2, 4, 24 and 

48 hours, harvested, fixed and permeabilized and pSTAT1y701 or total STAT1 expression were 

determined by ICF. F. STAT1 silencing prevents EGF induced PD-L1 upregulation. Cells were 

treated with either control siRNA or STAT1 siRNA (10nM) and EGF (10ng/mL) for 48h, 

harvested and PD-L1 expression was determined by FC (ANOVA, *** P<0.001). 
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2.4  DISCUSSION 

Previous studies showed that PD-L1 is expressed in many types of malignancies including HNC. 

Given the known importance of HPV infection in the etiology of HNC, several studies have 

sought to correlate expression of PD-L1 with HPV status. Indeed, recent reports have shown 

higher PD-L1 expression in HPV positive compared to HPV negative tumors (157, 165, 182, 

183). Interestingly, Lyford-Pike et al. (157) only noted 29% PD-L1 positivity among a small 

cohort (n=9) of HPV negative HNC patients while Malm et al. reported 80% (183) making the 

association of PD-L1 expression with HPV positivity controversial. In our large series of 134 

patients, we found that the majority of HNC tumor specimens analyzed (approximately 60% of 

n=134) were positive for PD-L1 (using a 5% cutoff threshold). Most importantly, we found HPV 

positive tumors to be more frequently PD-L1 positive (70%, n=64) and have a significant higher 

percent area and intensity of PD-L1 expression in contrast to their HPV negative counterparts 

(figure 2.3.1C-D). Importantly, a previous study showed that PD-L1 co-localized with CD3 in 

56% of tumors while 44% showed a diffuse pattern with no co-localization noted (183), raising 

the question of how PD-L1 is regulated in those tumors. These findings support the view that 

PD-L1 expression could be “extrinsically” induced by IFNγ secreting CD8
+ TILs (where co-

localization was found), particularly in HPV positive tumors and “intrinsically” induced via 

endogenous EGFR signaling (where no co-localization was found), particularly in HPV negative 

tumors.  

In light of the finding that HPV positive tumors show higher PD-L1 protein expression in 

vivo and to extend findings reported previously, we took advantage of the large HNC cohort in 

TCGA repository, containing RNAseq expression data for 500 HNC tumor specimens, from 

which 88 have data available regarding HPV status assessed by p16 expression. Here we show 
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that HPV positive tumor specimens have significantly higher expression of a Th1 type profile 

including CD8A, PD-1, IFNG and JAK2 (Figure 2.3.2A-B). Our findings are concordant with 

those of a previous report where HPV positive HNC tumors showed more PD-1+ CD8+ T cell 

infiltration and that PD-1 expression was a marker of activated T cells and correlated with 

favorable clinical outcome (165). These data suggest that PD-1 expressing cells are biologically 

relevant and may play a crucial role in HPV positive disease and PD-L1 induction. Importantly, 

we report that PD-L1 expression highly correlated with that of JAK2 at the mRNA level. 

Furthermore, pJAK2 protein expression was strongly associated with that of PD-L1 in vivo as 

determined by IHC from HNC tumor specimens (Figure 2.3.3B, n=23). Additionally, we found 

that pJAK2 staining was significantly higher in HPV positive than HPV negative specimens 

(data not shown). Interestingly, PD-L1 was also strongly correlated with a Th1 type profile 

regardless of HPV status (Figure 2.3.3C-D and Table 2.3.3.1), suggesting that the PD-L1/PD-1 

axis represents an important mechanism of immune evasion in both HPV negative and positive 

tumors, such that HPV negative tumors may rely more on a tumor intrinsic oncogenic (EGFR-

driven) PD-L1 expression, while HPV positive tumors rely more on a tumor extrinsic IFNγ-

mediated Th1 like response. 

The tumor microenvironment contains effector cell infiltrates but also a complex network 

of immune cells such as dendritic cells (DC), myeloid derived suppressor cells (MDSC) or 

tumor-associated macrophages (TAM) that could also express PD-L1, ligate PD-1 expressing 

lymphocytes, and play a pivotal role affecting antigen presentation and CTL generation. Indeed, 

PD-L1 expressing DCs infiltrating ovarian tumors are higher when compared with normal lymph 

nodes, and blockade of PD-L1 increases infiltrates of CD8+ cells and tumor rejection in a mouse 

model (172). Interestingly, Chikamatsu et al. found a higher frequency of MDSC, defined as 

63



CD14+ HLA-DR- cells, in peripheral blood of HNC patients when compared to normal controls, 

and treatment with anti-PD-L1 antibody restored T cell proliferation and IFNγ production in 

vitro (173). However, further investigation may be needed to define the specific role of antigen 

presenting cells in HNC and whether there is a different pattern of infiltration and PD-L1 

expression in HPV negative versus positive tumors. In our study we focus principally on PD-L1 

expression on tumor cells given that EGFR expression is mainly limited to tumor cells rather 

than immune cells and its activation leads to PD-L1 upregulation having JAK2/STAT1 as a 

common mediator with the IFNγ pathway.

We found that STAT1 was a predominant transcription factor upregulated in HNC 

tumors when compared with paired autologous normal mucosa (Figure 2.3.4A, n=46) and that 

PD-L1 was significantly correlated with STAT1 expression regardless of HPV status (Figure 

2.3.4B). Moreover, we corroborated these TCGA findings in vivo as STAT1 and PD-L1 protein 

showed co-localization in tumor islands as determined by IHC (Figure 2.3.4C). Notably, 

components of other signaling pathways such as PI3K and MAPK, which have been previously 

associated with PD-L1 expression in other types of cancer and tissues, such as glioma or non-

small cell lung cancer (NSCLC) (152, 166) did not show significant correlation with PD-L1 

expression in HPV positive tumors or induce PD-L1 in our cell lines. Indeed, the unique biology, 

mutational landscape and predominant signaling pathways in HNC may explain the differences 

with those of glioblastoma and NSCLC regarding PD-L1 expression. Indeed, it has been recently 

reported that PTEN loss-of-function mutations are frequent in glioblastoma (31.9% of 

specimens, TCGA data) (184). Furthermore, Parsa et al. showed that PD-L1 was upregulated 

after PTEN loss/PI3K activation in glioblastoma cell lines, suggesting that gliomas may rely 

more on this signaling pathway. Likewise, in the setting of NSCLC, PD-L1 protein is 
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upregulated after EGFR/RAS/MAPK pathway activating mutations. Indeed, HRAS and EGFR 

mutations in NSCLC are far more frequent than in HNC (2-5%) (185, 186). Therefore, we 

speculate that mutant EGFR may induce a stronger MAPK pathway activation than wild type 

EGFR. On the other hand, PTEN or PIK3CA mutations are rather infrequent in HNC, 7% and 

8% respectively (186). Hence, in the setting of HNC the intrinsic oncogenic signaling mostly 

depends on overexpressed wild type EGFR stimulation and presents as a unique feature of this 

type of cancer, in which the JAK/STAT3 oncogenic pathway is best characterized (187). 

Importantly, in our series, STAT3 showed no significant correlation with PD-L1 expression in 

HPV positive tumors and only a weak correlation in HPV negative tumors, most likely because 

of higher EGFR expression in these tumors versus HPV positive ones.   

Concordant with other types of cancer, IFNγ induced PD-L1 upregulation in all of the 

HNC cell lines tested in our study (Figure 2.3.5A), however its upregulation was not PI3K 

dependent as reported for glioma, lymphoma or lung cancer (152, 188, 189). We are the first to 

report that specific JAK2 inhibition completely abrogated the IFNγ-mediated PD-L1 

upregulation at the mRNA and protein level (Figure 2.3.5A-C). Interestingly, IFNα, which does

not signal via JAK2, did not upregulate PD-L1 expression, confirming the specific role of JAK2 

upregulating PD-L1. However, IFNα did upregulate pSTAT1(Y701) although not to the extent 

of IFNγ (Supplementary Figure 2.5.5). These findings suggest that the binding kinetics of 

pSTAT1(Y701) to the PD-L1 promoter may have differences in the amount of pSTAT1 

molecules required to initiate gene transcription, a threshold that IFNγ may reach. Likewise, we

should emphasize the fact that IFNα not only induces STAT1 phosphorylation but also STAT2, 

and complexes with IRF9 in the transcription factor assembly cascade, forming the ISGF3 

transcription complex, where IRF9 is the main DNA binding domain (190). In contrast IFNγ
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mainly induces the formation of pSTAT1 dimers that directly bind to the DNA’s promoter region 

of the target gene, which explains why IFNα may not upregulate PD-L1 although it still 

upregulates pSTAT1. In addition, and corroborating our TCGA findings, in vitro knockdown 

experiments show that STAT1 but not STAT3 mediates IFNγ induced PD-L1 upregulation 

(Figure 2.3.5E), further supported by a ChIP assay, providing additional evidence that pSTAT1 

but not pSTAT3 binds to the PD-L1 promoter region as early as 30 minutes after IFNγ treatment

(Figure 2.3.5F). Our findings complement that of a previous report performed in AG490 cells 

(lung cancer) that shows IRF-1 binding to the PD-L1 promoter after IFNγ treatment (191). 

However, we used a 10-fold lower dose of IFNγ (10 IU/mL) constituting a more physiologic

dose as previously determined in tumor supernatants (data not shown). Interestingly, we are the 

first to report that cetuximab-mediated EGFR blockade significantly downregulates IFNγ-

induced PD-L1 expression (Figure 2.3.5G-H), suggesting cross-talk between the IFNγ and EGFR

pathways in regulating PD-L1 expression mediated through STAT1 modulation. 

PD-L1 overexpression was associated with mutant EGFR in a murine lung cancer model 

as well as in surgically resected human NSCLC specimens (167, 168, 189), but studies 

associating wild type overexpressed EGFR signaling and PD-L1 expression have not been 

reported. Our TCGA database analysis showed higher EGFR expression in HPV negative tumors 

concurring with a previous report (192). EGFR mRNA expression significantly correlated with 

that of PD-L1 although to a lesser extent than that seen for IFNγ (Figure 2.3.3C-D). Moreover, 

EGFR and PD-L1 showed a higher correlation in HPV positive tumors that corresponds to the 

higher correlation seen with CD8A, JAK2 and STAT1 as well.  These otherwise counter intuitive 

results may be explained by the fact that PD-L1 expression might be more dependent on the 

strength of EGFR/JAK2 pathway activation rather than EGFR higher expression in HPV 
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negative tumors that may induce an increased STAT1 activation and induction of PD-L1 

expression. Alternatively, other immune cells infiltrating the tumor microenvironment may also 

express PD-L1, such as dendritic cells, macrophages, monocytes, B cells as well as non-immune 

cells like tumor associated fibroblasts and stromal cells (172, 193). PD-L1 expression on these 

cells may confound the strength of correlation with that of EGFR given that the expression of the 

latter is mostly on tumor cells, given that the TCGA RNAseq values represent whole tumor and 

are not cell specific. Therefore, protein levels maybe a better readout for EGFR-JAK2-PD-L1 

correlations.  

In light of our findings we hypothesized that JAK2/STAT1 signaling is a major common 

regulator for PD-L1 transcription driven by IFNγ and EGFR pathways. Since EGFR mutations

are very rare in HNC (2% of tumors) (185), we hypothesized that EGFR pathway overactivation, 

rather than activating mutations, are more important for PD-L1 upregulation in this type of 

cancer. We are the first to report that wild type EGFR pathway induces PD-L1 upregulation at 

the mRNA and protein level (Figure 2.3.6A-B), and that specific JAK2 inhibition significantly 

downregulated baseline and EGF-induced PD-L1 upregulation (Figure 2.3.6C-D). Though the 

latter not completely, which suggests other alternative pathways not dependent on JAK2 may 

also contribute to PD-L1 expression in HNC. It is noteworthy that JAK2 inhibition was more 

effective at downregulating basal and EGF-mediated PD-L1 expression on those cell lines with 

higher EGFR surface expression (Figure 2.3.6C-D. JHU029, JHU022 vs. 93VU, SCC90). In 

addition, we are the first to report that EGFR stimulation induces phosphorylation of STAT1 

(Figure 2.3.6E), which in turn mediates PD-L1 upregulation, since its silencing completely 

abrogated the EGF induced PD-L1 expression (Figure 2.3.6F). Indeed, EGFR and JAK2 

inhibition may synergize downregulating the “intrinsic” PD-L1 expression. Most importantly, 
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however, is the speculation of potential added benefit of JAK2 inhibition with the simultaneous 

blockade of the “extrinsic” IFNγ-mediated PD-L1 upregulation, which seems to be more 

important in HPV positive tumors. Notably, anti-PD-1 immunotherapies in the clinic aim to 

restore the antitumor capabilities of the CD8+ PD-1+ TILs by releasing the PD-1-mediated 

inhibition of TCR downstream activation signaling. If that is achieved, TIL will re-acquire an 

effector phenotype that will involve secretion of a Th1 cytokine profile including IFNγ that 

paradoxically will lead to tumor cell PD-L1 overexpression and immune escape. This strategy 

most likely will benefit patients with HPV positive tumors. Additionally, we think that blocking 

PD-L1 expression rather than PD-1 would be a more effective approach for restoring an effector 

T cell phenotype and favor tumor cell lysis given that PD-1 expression on a subset of TIL may 

represent their activated status rather than true exhaustion.  

In conclusion, our study shows that HPV positive tumors have higher PD-L1 protein 

expression, which correlates with a Th1 expression profile driving PD-L1 expression, most likely 

by an “extrinsic” (IFNγ-mediated) pathway. In addition we present JAK2 as a central mediator 

also driving “intrinsic” PD-L1 tumor cell expression, downstream of wild type EGFR. 

Consequently, JAK2 specific inhibition may constitute a logical therapeutic strategy to prevent 

PD-L1 upregulation and enhance CTL and NK cell mediated tumor lysis that is otherwise 

impaired by PD-L1/PD-1 axis interaction. Further investigation is necessary in order to elucidate 

whether JAK2 inhibition may synergize with anti-EGFR blockade to more potently abrogate 

EGF-induced PD-L1 upregulation, as well as to understand heterogeneity in EGFR+ cells which 

nonetheless are PD-L1 negative. This discordance appears to represent a minority of HNC given 

the high rate (>60-70%) of PD-L1+ HNC tumors. 
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2.5. SUPPLEMENTARY DATA 

Figure 2.5.1 IFNγ-induced PD-L1 upregulation is not PI3K dependent: Wortmannin (Wort) 

a pan-PI3K inhibitor did not prevent IFNγ-mediated PD-L1 upregulation in all cell lines tested 

regradless HPV status. Cells were either treated with vehicle control; wortmannin (1uM), IFNγ 

(10IU/mL) or the combination for 48h harvested and PD-L1 was determined by FC.  
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Figure 2.5.2 Wortmannin (Wort) effectively downregulated phosphorylation of AKT: Cells 

were either treated with vehicle control or wortmannin (1uM) for 30 min, harvested and pAKT 

was determined by intracellular flow cytometry (ICF).  

Figure 2.5.3 Specific PI3Kα110 subunit inhibitor BYL-719 (PI3Ki) did not prevent IFNγ 

induced PD-L1 upregulation: Cells were either treated with vehicle control, PI3Ki (5uM), IFNγ 

(10IU/mL) or the combination for 48h harvested and PD-L1 was determined by FC.  
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Figure 2.5.4 Wortmannin and PI3Ki (BYL-719) effectively inhibit 

AKT phosphorylation: DET652 and CAL33 cell lines were either left untreated or 

treated with Wortmannin (1uM) or PI3Ki (5uM) for 15, 30 minutes and 1 hour. Cells were 

harvested and pAKT, total AKT and beta actin were determined by WB. Note that 

Wortmannin and PI3Ki effectively inhibit AKT phosphorylation in both HNC cell lines. 
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Figure 2.5.5 Flow cytometry gating strategy and representative histograms: Top. Flow 

cytometry gating strategy used in all PD-L1 determinations in this report. Tumor cells were 

collected according to size and granularity (FSC vs. SSC), then Zombie aqua negative cells were 

gated in (as described in Material and Methods) and finally duplets were gated out. Bottom. 

Representative histograms of HNC cell lines showing color-coded MFI values of PD-L1 

expression after IFNγ and JAK2i treatments.
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Figure 2.5.6 IFNα induces pSTAT1 upregulation: IFNα induced pSTAT1 upregulation 

although to a lower extent than IFNγ. HNC cells lines were treated with IFNα (1000IU/mL) or 

IFNγ (10IU/mL) for 0, 5, 10 or 30 minutes and pSTAT1 (Y701) was determined by intracellular 

flow cytometry.  

Figure 2.5.7 IFNα induces HLA-ABC upregulation, which is not downregulated by JAK2 

inhibition: HNC cells were treated with IFNα2a (1000IU/mL) or IFNα2a (1000IU/mL) + JAK2i 

(10uM) for 48h and HLA-ABC was determined by FC. 
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Figure 2.5.8 STAT1 and STAT3 siRNA knockdown efficiency: HNC cell lines were 

either treated with control siRNA, STAT1 or STAT3 siRNA (as indicated in Materials and 

Methods section). Cells were harvested, fixed and permeabilized and total STAT1 and 

STAT3 were determined by ICF (3 independent experiments). Percentages on top of bars 

represent percent of remaining STAT1/3 after knockdown compared to control siRNA (100%).  
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Figure 2.5.9 Cetuximab downregulates IFNγ mediated PD-L1 upregulation, representative 

histograms: Representative histograms of HNC cell lines showing color-coded MFI values of 

PD-L1 expression after IFNγ and cetuximab treatments.

Figure 2.5.10 EGF induces JAK2 phosphorylation: EGF treatment (10ng/mL) induced 

upregulation of phospho-JAK2. HNC cell lines were serum starved for 18h and either left 

untreated or treated with EGF (10ng/mL) at different time points, harvested and pJAK2 

(y1007/1008), total JAK2 and β-actin were determined by WB.  
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Figure 2.5.11 JAK2 inhibition prevents EGF mediated PD-L1 upregulation, representative 

histograms: Representative histograms of HNC cell lines showing color-coded MFI values 

of PD-L1 expression after EGF and JAK2i treatments.  

Figure 2.5.12 EGF-induced PD-L1 upregulation is not PI3K or MAPK 

dependent: Wortmannin (Wort), a pan PI3K inhibitor did not prevent EGF-mediated PD-L1 

upregulation in all cell lines tested regradless HPV status. Cells were either treated with 

vehicle control, wortmannin (1uM), EGF (10ng/mL) or the combination for 48h, harvested 

and PD-L1 was determined by FC. 
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Figure 2.5.13 MEK1/2 inhibitor PD0325901 (MEKi) did not prevent EGF induced PD-

L1 upregulation: MEK1/2 inhibitor PD0325901 (MEKi) did not prevent EGF induced 

PD-L1 upregulation. Cells were either treated with vehicle control, EGF (10ng/mL), MEKi 

(10nM) or the combination for 48h, harvested and PD-L1 was determined by FC.  

Figure 2.5.14 Wortmannin effectively prevented EGF mediated phosphorylation of AKT: 

Wortmannin effectively prevented EGF mediated phosphorylation of AKT. Cells were both 

treated with vehicle control, EGF (10ng/mL), wortmannin (1uM), JAK2i (10uM) or the 

respective combinations for 1 hour, harvested and pAKT, total AKT and β-actin were 

determined by WB.  
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Figure 2.5.15 MEKi downregulated phosphorylation of ERK in all cell lines tested: Cells 

were either treated with vehicle control, EGF (10ng/mL), IFNγ (10IU/mL)  or MEKi (5uM) for 

1 hour, harvested and pERK and β-actin were determined by WB. 

Figure 2.5.16 Knockdown Efficiency of STAT1 siRNA in HNC cell lines: Cell lines 

were treated with either control siRNA or STAT1 siRNA for 48h as described in 

materials and methods and treated with EGF (10ng/mL) for an additional 48h. Total STAT1 

was determined by ICF. 
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3.0 EGFR AND JAK2 MEDIATED DOWNREGULATION OF IMMUNOSUPPRESIVE 

CYTOKINE SECRETION IN HEAD AND NECK CANCER 

3.1 INTRODUCTION 

Head and neck cancer (HNC) accounts for more than 90% of the malignancies that arise in the 

head and neck (119). Unfortunately, despite standard chemo and radiotherapy, 50% of patients 

will succumb to this malignancy (120). EGFR is overexpressed in 92% of head and neck 

squamous cell carcinomas (121) and corresponds to a decrease in patient survival (122). EGFR 

activates many downstream signaling cascades including JAK/STAT, phosphatidylinositol 3-

kinase (PI3K)/AKT and Ras/mitogen-activated protein (MAP) kinase pathways leading to cell 

proliferation, survival and invasion (123). Tumor cells overexpress both the receptor and ligand, 

leading to an uncontrolled autocrine activation of EGFR oncogenic signaling pathways (124). 

Importantly, EGFR activation in turn induces the constitutive activation of signal transducer and 

activator of transcription 3 (STAT3), a known oncogenic transcription factor (125-127). STAT3 

plays a major role in promoting tumor immune evasion, previous work showed that it not only 

inhibits production of inflammatory signals from tumor cells but also production of 

immunosuppressive mediators, thus inducing a tolerant tumor microenvironment (194, 195).  

HNC exhibits a constitutively active STAT3 that blocks apoptosis, favors proliferation, 

angiogenesis and immune evasion (128, 129). STAT3 is considered an oncogene, its inhibition 

leads to apoptosis in vitro and to impairment of tumor growth in xenografted mouse models 

(130, 131). Previous studies showed that STAT3 mediates the expression of vascular endothelial 

growth factor (VEGF), IL-6 and IL-10 in many cancer types . IL-6, IL-10 and VEGF are known 

to activate STAT3 in tumor-associated suppressive immune cells, providing a feed forward 
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mechanism to ensure a STAT3-dominated microenvironment. Tumor-secreted VEGF and IL-10 

induce T cell tolerance through inhibition of DC differentiation and maturation (196, 197). 

Moreover, blocking STAT3 in macrophages restored T cell responsiveness by inducing secretion 

of IL-12 and CCL5. Likewise, IL-10 induces immunosuppression by protecting tumor cells from 

CTL lysis by downregulation of APM components (TAP1, TAP2) and surface HLA class I (198, 

199). Transforming growth factor beta (TGFβ), a known immunosuppressive cytokine, is found

to be present at high concentrations in plasma of cancer patients and is associated with disease 

progression and poor response to immunotherapy. TGFβ is produced by many tumor types

including melanoma, breast and colon cancer and its known to prevent proper CTL generation 

and function (200), however its production by HNC cells is still not well characterized. 

Interestingly, TGFβ and IL-10 are involved in the generation of regulatory T cells (Treg) that are 

known to inhibit CD8+ T cell activation, IFNγ production and proliferation (201). Additionally, 

Tregs can secret TGFβ and IL-10 in a STAT3-dependnet fashion, further propagating the 

immunosuppressive signals (202, 203). The intricate tumor microenvironment cellular network 

also includes tumor-associated macrophages (TAM), which are induced by monocyte exposure 

to tumor-secreted IL-6, IL-10 and VEGF (204). TAMs suppress DC maturation in an IL-10 

dependent manner that in turn inhibits CD8+ T cell proliferation and function (205, 206). TAM-

derived IL-10 can also induce differentiation of naive T cells into Tregs (203).  

Cetuximab, an EGFR-specific mAb, not only interferes with ligand binding and receptor 

dimerization, limiting EGFR signaling and STAT3 activation (136). However, resistance to 

cetuximab has been observed, this phenomenon most likely occurs via EGFR-independent 

STAT3 activation. Notably, the IL-6 receptor (IL-6R)/CD130 signaling complex has been shown 

to be a major pathway involved in EGFR-independent STAT3 activation and tumorigenesis 
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(207-209) and is further correlated with poor survival in HNC patients (210). Therefore, the 

expected cetuximab-mediated growth inhibition of HNC implemented by blocking EGFR-

dependent signals would be negated by STAT3 constitutive activation through alternative 

pathways, particularly the IL-6R. Given that JAK2 is common signaling molecule to both EGFR 

and IL-6R pathways we hypothesized that combined EGFR and JAK2 inhibition may 

downregulate STAT3-dependent production of immunosuppressive cytokines revising signal 3 

mediated tumor immunoescape. 

3.2 MATERIALS AND METHODS 

3.2.1 Patient plasma specimens collection and storage 

All patients signed an informed consent approved by the Institutional Review Board (IRB 

#99-06). Peripheral venous blood samples were obtained from HNC patients with stage 

III/IVA disease, receiving neoadjuvant cetuximab on a prospective phase II clinical trial (UPCI 

08-013, NCT 01218048), plasma was isolated and stored in -80C the same day the blood 

specimen was drawn. Tumors were biopsied immediately before, and again after 4 weeks of 

cetuximab therapy. Clinical response was analyzed by comparing paired CT scans pre/

post-cetuximab, and quantifying tumor measurement by a dedicated head and neck radiologist 

blinded to patient status. Anatomic tumor measurements were recorded in 

two dimensions and the cohort segregated into clinical “responders,” who showed a reduction in 

tumor volume, or “nonresponders,” whose tumors grew during this therapy. Tumor biopsies (pre-

treatment) or surgical tumor specimens (post-treatment) were preserved for a maximum of 

12 hours in complete media until tumor infiltrating lymphocytes were isolated. 
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3.2.2 Tumor cells and treatments 

HNC cell lines used in this report: JHU022, JHU029, SCC90 and 93VU. JHU022, JHU029 were 

a kind gift from Dr. James Rocco (Harvard Medical School, Boston, MA) in January of 2006. 

SCC90 were isolated from patients treated at the University of Pittsburgh Cancer 

Institute (Pittsburgh, PA) through the explant/culture method, authenticated, and validated 

as unique using STTR profiling and HLA genotyping every 6 months. 93-VU-147 T (called 

93VU in this report) was a kind gift from Dr. Henning Bier (Technische Universitat 

Munchen, Munich, Germany) in October of 2013. All cell lines were routinely tested every 6 

months and found to be free of Mycoplasma infection and were cultured in IMDM 

(Invitrogen, Carlsbad, CA) supplemented with 10% FBS (Mediatech, Herndon, VA), 

2% L-glutamine and 1% penicillin/streptomycin (Invitrogen Corp, Carlsbad, CA). For 

treatment with rhEGF or JAK2 inhibitor, cells were cultured overnight in serum free AIM-V 

media (Invitrogen, Carlsbad, CA) and rhEGF (10ng/mL) or JAK2 inhibitor (10uM) treatment 

was started when cells reached at least 20% confluence. Adherent tumor cells were 

detached by warm trypsin–EDTA (0.25%) solution (Invitrogen, Carlsbad, CA) incubated for 

5 min at 37. Surface or intracellular protein expression was determined by flow cytometry. 

3.2.3 Antibodies and other reagents

Total STAT3 and phosphorylated STAT3 antibodies were purchased from BD Biosciences (San 

Jose, CA). APC conjugated TGFbeta-LAP antibody was purchased from Biolegend. rhEGF was 

purchased from R&D systems, reconstituted in PBS containing 0.1% BSA  and used at a final 

concentration of 10ng/mL. The specific JAK2 inhibitor BMS-911543 (was characterized 

previously (171) and kindly provided by Bristol-Myers Squibb.
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3.2.4 ELISA 

Human TGF beta and soluble PD-L1 ELISA kits were purchased from R&D 

systems (Minneapolis, MN) and used according manufacturer protocol. Samples of frozen 

tumor cell culture supernatants or human plasma were thawed at room temperature for 15 

minutes before starting the protocol. Results were normalized to cell counts on each experimental 

condition and expressed as pg per 500 000 cells. 

3.2.5 Flow cytometry analysis 

Surface flow cytometry was performed as follows, cells were harvested and resuspended in PBS 

containing a 1:50 dilution of a previously validated viability dye Zombie Aqua (174), following 

the manufacturer’s protocol (Biolegend, San Diego, CA), then resuspended in 50uL of 

fluorescence-activated cell sorting (FACS) buffer and fluorophore conjugated antibodies 

were added at 1:10 dilution, incubated for 15 minutes at 4 Celsius, then antibodies were washed 

away twice by sequential centrifugation at 1400 RPM with FACS buffer and resuspended in 

2% PFA solution until analyzed in the flow cytometer.  Intracellular flow cytometry was 

performed as described (175). Briefly, cells were fixed using 1.5% for 15 min at room 

temperature (RT) and permeabilized with ice cold 100% methanol for 10 minutes at 4 Celsius 

and kept for 18h at -20 Celsius. Cells were then washed in FACS buffer and stained 

either with a fluorophore-conjugated primary STAT3 pSTAT3 or pJAK2 mAb, cells were 

then incubated for 45 min at RT, washed and resuspended in FACS buffer. When using an 

unconjugated primary antibody cells were stained with a secondary PE-conjugated antibody 

for additional 45 minutes and then washed as previously described. 
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Isotype control antibody staining was added for each condition and each mAb used for 

targeted markers, samples were collected and analyzed in an LSR Fortessa cytometer 

(BD Biosciences). A minimum of 10,000 cells was collected per test. Data analysis was 

performed using FlowJo version 10 (FlowJo, Ashland, OR). All surface and intracellular 

markers in this study were calculated as median fluorescence intensity (MFI) fold change and 

normalized with either untreated or vehicle control after subtracting the isotype control (MFI) 

of each sample.  Each experiment was repeated at least three times and mean and standard 

error of the mean (SEM) was calculated and plotted using GraphPad PRISM software version 6.

3.2.6 Luminex assay

Human plasma samples and frozen tumor cell culture supernatants were assayed for cytokines 

by fluorescent bead Luminex assay 29-plex (Millipore) following the manufacturer protocol 

and as previously validated (211) by the Luminex core facility at the University of Pittsburgh 

Cancer Institute.

3.2.7 TCGA database analysis 

TCGA data for HNC gene expression by RNAseq were downloaded from the UCSC cancer 

genomics browser (https://genome-cancer.ucsc.edu). The HNC gene expression profile 

was measured experimentally using the Illumina HiSeq 2000 RNA Sequencing 

platform. This dataset shows the gene-level transcription estimates, as in RSEM 

normalized count, percentile ranked within each sample. The RSEM units to quantitate 

RNAseq expression data were described and validated previously (179). 
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3.3 RESULTS 

3.3.1 HNC tumors have higher expression of signature immunosuppressive cytokines than 

control tissues 

In order to investigate whether HNC tumors expressed higher immunosuppressive cytokines, we 

took advantage of the large curated database of The Cancer Genome Atlas (TCGA) (178) and 

compared mRNA expression of the signature immunosuppressive cytokines TGFβ, VEGFA, 

IL-10 and IDO from HNC tumor specimens (n=500) and normal mucosa. Likewise, we analyzed 

interferon-γ (IFNG)  expression in both cohorts and considered including it as part of 

immunosuppressive cytokine group since we previously demonstrated that it induces PD-L1 

upregulation, a known checkpoint inhibitor ligand that induces immune escape of HNC tumors 

(Chapter 2) (212).  We observed that tumors from HNC patients had higher expression of 

signature immunosuppressive cytokines such as TGFβ, VEGFA, IL-10 and IDO (Figure 3.3.1A-

D). We also found that interferon-γ expression was upregulated in tumor tissues when compared 

with healthy mucosa (Figure 3.3.1E) corroborating our previous observations and providing 

more evidence supporting the IFNγ-PD-L1 immunosuppressive axis inducing tumor 

immunoescape. Overall, these results indicate that the tumor microenvironment of HNC patients 

is highly immunosuppressive and may induce and fuel the tolerant tumor cellular immune 

infiltrate preventing the onset of an efficient effector cell activation and antitumor immune 

response.  
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Figure 3.3.1 HNC tumor specimens have significantly higher expression of 

immunosuppressive cytokines than control tissues: A. TGFβ.  B. VEGFA. C. IL-10. D. IDO. 

E. IFNγ.  Cytokine mRNA expression (RSEM units, TCGA) is significantly higher in HNC tumor

specimens than in normal control tissues. TCGA mRNA expression data from 500 HNC specimens and

43 control specimens. (Box and whiskers plots, bars represent maximum and minimum values, Kruskall-

Wallis test *** P<0.001).
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3.3.2 HNC tumors have lower expression of immunostimulatory cytokines than control 

mucosa 

In order to further characterize the immunosuppressive milieu of the tumor microenvironment 

we analyzed the expression level of known immunostimulatory cytokines such as IL-12, IL-17 

and IL-23 taking advantage of TCGA mRNA database. Herein we show that HNC specimens 

had significantly lower expression of IL-12A and IL-17A –but not IL-23A- when compared to 

healthy control mucosa (Figure 3.3.2A-B, n=500, Kruskall-Wallis test * P<0.05, *** P<0.001). 

Further supporting our view that HNC tumors are not only highly expressers of signature 

immunosuppressive cytokines but also lacking the expression of immunostimulatory ones, 

reflecting the tolerant milieu to which effector immune infiltrates are exposed to when reaching 

the tumor bed.  
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Figure 3.3.2 HNC tumor specimens have significantly lower expression of 
immunostimulatory cytokines than control tissues: A. IL-12A.  B. IL-17A. 
C. IL-23A Cytokine mRNA expression (RSEM units, TCGA) is significantly lower
in HNC tumor specimens than in normal control tissues. TCGA mRNA expression
data from 43 HNC specimens. (Box and whiskers plots, bars represent maximum and
minimum values, Kruskall-Wallis test * P<0.05, *** P<0.001, ns: non-significant).

3.3.3 EGFR and JAK2 inhibition downregulate STAT3 activation in tumor cells 

Previous reports showed that EGFR signaling activates STAT3 and oncogenic transformation of 

HNC cells (126). In addition to the EGFR pathway some other STAT3 activating 

EGFR-independent pathways may exist. In fact a previous report showed that IL-6R is widely 

expressed in HNC cells and constitutes a strong stimulus for STAT3 activation via JAK2 

activation (207). Therefore, inhibiting STAT3 activation not only targeting EGFR but 

also other STAT3 activating pathways such as the IL-6R, which shares JAK2 in their 

signaling pathway, may reverse the immunosuppressive phenotype of cancer cells.  We 

found that specific EGFR and JAK2 inhibition effectively downregulated JAK2 

phosphorylation and STAT3 phosphorylation in HNC cells (Figure 3.3.3A-C, ANOVA ** P 

<0.01).  
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Figure 3.3.3 EGFR and JAK2 inhibition downregulate STAT3 activation in HNC 

cells: Tumor cells were cultured with JAK2i for different time points or vehicle control for 1 

hour, harvested and A. pJAK2 and B. pSTAT3 were detected by intracellular flow cytometry. C. 

Cells were treated with cetuximab (10ug/mL) for 24h and pSTAT3(Y705) MFI and % of 

positive cells were detected by intracellular flow cytometry. (ANOVA ** P <0.01).  

3.3.4 EGFR and JAK2 inhibition downregulate production of TGFβ and other signature 

immunosuppressive cytokines in tumor cells 

Since EGFR and JAK2 inhibition downregulated STAT3 activation, we next investigated 

whether they could also downregulate production of STAT3-dependent immunosuppressive 

cytokines in HNC cells. We found that cetuximab downregulated TGFβ production, having its 

maximum inhibitory effect at 48h (Figure 3.3.4A, ANOVA ** P <0.01, *** P<0.001). 
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Moreover, cetuximab mediated TGFβ downregulation was seen in all cell lines tested 

regardless HPV status (Figure 3.3.4B). Likewise, JAK2 inhibition downregulated TGFβ 

production in HNC cell lines regardless HPV status under the conditions tested (10uM, 48h) 

(Figure 3.3.4C). Additionally, we observed that both EGFR and JAK2 inhibition downregulated 

other signature immunosuppressive cytokines such as VEGF, IL-6 and chemokines CCL22 and 

CCL2. Interestingly, EGFR and JAK2 inhibition showed an additive effect downregulating IL-6 

secretion, not seen for other cytokines tested (Figure 3.3.4D, ANOVA ** P <0.01, *** P<0.001). 

Overall, these results indicate that EGFR and JAK2 inhibition significantly diminish tumor cell 

secretion of signature immunosuppressive cytokines and chemokines in vitro.   
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Figure 3.3.4 EGFR and JAK2 inhibition downregulate production of TGFβ and other 

signature immunosuppressive cytokines in tumor cells: A. Tumor cells were cultured with 

cetuximab (10ug/mL) for 24h, Golgi stop was added in the last 6h of culture and TGFβ-LAP 

expression was determined by intracellular flow cytometry. B. Cells were either left untreated or 

cultured for 12, 24 or 48h with EGF (10ng/mL), cetuximab (10ug/mL) or the combination, 

supernatants were harvested and TGFβ was determined by ELISA. Likewise cells were either 

left untreated or incubated with C. cetuximab (10ug/mL) or D. JAK2i (10uM) for 48h, 

supernatants were harvested and assayed for TGFβ by ELISA. E. Cells were either untreated or 

cultured for 48h with cetuximab (10ug/mL), JAK2i (10uM) or the combination, then 

supernatants were harvested and VEGF, IL-6, CCL22 and CCL2 were determined by Luminex.
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3.3.5 EGFR and JAK2 inhibition diminish secretion of soluble PD-L1 

As described in chapter 2, EGFR and JAK2 inhibition downregulated membrane bound PD-L1 

expression in tumor cells. However, many studies have recently reported a soluble form of PD-

L1 (sPD-L1). Circulating sPD-L1 was found in peripheral blood from gastric, lung 

and lymphoma patients (213-215).  Furthermore, a previous study also showed that 

supernatants of lung cancer cells had detectable concentrations of sPD-L1 and it mediated 

inactivation of tumor-antigen specific T cells (213). We found that sPD-L1 is present in 

supernatants of HNC cells and its concentration was downregulated by EGFR and JAK2 

inhibition in all cell lines tested (Figure 3.3.5A, ANOVA * P<0.05, ** P<0.01, *** 

P<0.001). Thus, these results show that the EGFR/JAK2 pathway may mediate not only 

expression of membrane bound PD-L1 but also soluble PD-L1.  
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Figure 3.3.5 EGFR and JAK2 inhibition downregulate soluble PD-L1: A. Cells 
were either left untreated or cultured with cetuximab (10ug/mL) JAK2i (10uM) or the 
combination for 48h, supernatants were harvested and soluble PD-L1 was determined by ELISA.

3.3.6 Cetuximab resistant HNC patients have significantly lower concentrations of Th1 

cytokines in plasma 

In order to corroborate our TCGA and in vitro findings we determined the concentration of 

signature immunostimulatory cytokines in plasma obtained from advanced HNC patients that 

were treated with cetuximab on a prospective neoadjuvant trial (UPCI #08-013, NCT 

#01218048), peripheral blood was collected prior to and after 4 weeks of cetuximab therapy, 

plasma was isolated from samples from these patients pre- and post-cetuximab single agent 

treatment and analyzed by Luminex (see materials and methods). Response to cetuximab therapy 

was evaluated radiologically pre and post 4 weeks of treatment and response criteria were 

categorized as follows: Complete Response: disappearance of all targets, PR: Partial Response: 

greater than 30% decrease, LPR: Less than Partial Response: 10-30% decrease, PD: Progressive 

A
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Disease: 20% increase, Stable: Response between 10% decrease and 20% increase. Interestingly, 

we found that patients who responded to cetuximab therapy (CR, PR and LPR) had higher 

concentrations of immunostimulatory cytokines such as IL-12p70, IL-17A and IFNγ. While, 

patients who were resistant to cetuximab therapy (S or PD) had significantly lower 

concentrations of IL-12p70, IL-17A and IFNα2, the same trend was noted for IFNγ however 

sample size was not sufficient to reach significance (P=0.055). (Figure 3.3.6A, Mann-Whitney 

test * P<0.05, ** P<0.01). In addition to the cytokines mentioned, we also determined the 

concentration of other inflammatory cytokines such as IL-1β and TNFα, however no difference 

between responders or non-responders was noted (data not shown). 
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Figure 3.3.6 Cetuximab resistant HNC patients have significantly lower concentrations of 
Th1 cytokines in plasma than responders: A. Patient plasma specimens from cetuximab single 
agent clinical trial UPCI 08-013 were collected pre- and post- cetuximab administration and 
assayed for cytokine concentration by Luminex (Mann-Whitney * P<0.05, ** P<0.01). Response 
criteria: Complete Response: disappearance of all targets, PR: Partial Response: greater than 
30% decrease, LPR: Less than Partial Response: 10-30% decrease, PD: Progressive Disease: 
20% increase, Stable: Response between 10% decrease and 20% increase. 
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3.3.7 Cetuximab resistant patients have higher concentration of TGFβ in plasma 

Likewise we determined TGFβ concentration in plasma from the same cohort of patients as in 

section 3.3.6. We found that patients who responded to cetuximab therapy showed no significant 

upregulation of TGFβ in plasma while those who were resistant to cetuximab therapy showed a 

significant increase (Figure 3.3.7A, Mann-Whitney test ns, non-significant, ** P<0.01).  

Figure 3.3.7 Cetuximab resistant HNC patients have significantly higher concentration of 
TGFβ in plasma: A. Patient plasma specimens from cetuximab single agent clinical trial UPCI 
08-013 were collected pre- and post- cetuximab treatment and TGFβ was determined by ELISA.

(Mann-Whitney ns;non-significant, ** P<0.01) Response criteria: Complete Response:
disappearance of all targets, PR: Partial Response: greater than 30% decrease, LPR: Less than
Partial Response: 10-30% decrease, PD: Progressive Disease: 20% increase, Stable: Response
between 10% decrease and 20% increase.

A
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3.4  DISCUSSION 

Tumor cells evade immune recognition not only by providing an aberrant signal 1, represented 

by downregulation of APM components and HLA class I antigen presentation, or aberrant signal 

2, characterized by upregulation of checkpoint ligands such as PD-L1, but also providing an 

aberrant signal 3, characterized by secreting immunosuppressive cytokines and chemokines that 

induce a tolerant microenvironment. 

 In the setting of HNC, overexpressed wild type EGFR induces not only proliferation, 

resistance to apoptosis and aberrant antigen processing and presentation of tumor cells but also 

upregulates immunosuppressive signal 2 as shown in chapter 2. Similarly, inhibiting EGFR 

mediated expression of suppressive cytokines becomes crucial in order to reverse 

immunoescape. Taking advantage of the large curated TCGA database we are the first to report 

that HNC tumor specimens have significantly higher expression of signature immunosuppressive 

cytokines such as TGFβ, VEGFA, IL-10 and IDO when compared with normal mucosa (Figure 

3.3.1). Furthermore, we also found higher expression IFNγ in tumor specimens than in control 

tissues, which confirms and further supports our view of an IFNγ/PD-L1 tumor-extrinsic 

immunosuppressive axis in HNC. In addition, expression of known 

immunostimulatory/inflammatory cytokines such as IL-12A or IL-17A was significantly lower 

in tumor specimens than control mucosa (Figure 3.3.2), further providing evidence of the 

dominant suppressive microenvironment in this type of cancer. Interestingly, previous studies 

have shown STAT3 as a major transcription factor inducing tumor immune evasion since it not 

only inhibits production of inflammatory signals from tumor cells but also production of 

immunosuppressive mediators (194, 195). Because STAT3 mediates the expression of VEGF, 

IL-6 and IL-10 which in turn activate STAT3 in tumor-associated suppressive immune 
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infiltrates, providing a feed forward mechanism to ensure a STAT3-dominated 

microenvironment, we hypothesized that preventing STAT3 activation not only by EGFR 

blockade but also JAK2 inhibition would downregulate production of STAT3-dependent 

cytokines. Herein, we show that cetuximab mediated EGFR blockade and specific JAK2 

inhibition successfully downregulate STAT3 activation in HNC cells (Figure 3.3.3) and diminish 

production and secretion of TGFβ, VEGF and IL-6 (Figure 3.3.4). Moreover, EGFR and JAK2 

inhibition also downregulated production of CCL2 and CCL22, known chemokines that mediate 

tumor progression, angiogenesis and metastasis (216, 217) and attracts myeloid suppressor cells 

and regulatory T cells to the tumor microenvironment (218, 219), respectively (Figure 3.3.4D). 

Interestingly, combined EGR and JAK2 inhibition had an additive effect downregulating IL-6 

secretion, further supporting our view that other EGFR-independent pathways, such as IL-

6R/gp130 pathway, may play a major role in the synthesis and secretion of immunosuppressive 

cytokines in the tumor microenvironment. In this regard, further work has to be done in order to 

investigate the IL-6 effect in the production of these suppressive cytokines as compared to the 

EGFR pathway.  

Our previous work showed that the EGFR/JAK2 pathway induces PD-L1 upregulation in 

HNC (212), interestingly, PD-L1 not only exists as membrane bound molecule but also as a 

soluble isoform. In fact, previous reports have shown that soluble PD-L1 (sPD-L1) is present in 

peripheral blood of gastric, lung and lymphoma patients. Moreover, the concentration detected in 

these patients was significantly higher than that of the control group, making it a suitable 

predictive biomarker for anti-PD-1 therapy. Interestingly, whether sPD-L1 is present in 

peripheral blood of HNC patients is still not known. However, in this study we show that HNC 

cells secrete sPD-L1 in vitro and that EGFR and JAK2 inhibition downregulates sPD-L1 in cell 
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culture supernatants. Therefore, JAK2 inhibition not only diminishes membrane bound but also 

secreted soluble PD-L1. This is particularly important, since a previous in vitro study in lung 

cancer cells showed that sPD-L1actively suppresses T cell proliferation and activation in vitro 

(213). Thus, adding sPD-L1 to the long list of immunosuppressive soluble factors secreted by 

tumor cells that protect them from lysis.  

In order to confirm our TCGA and in vitro findings we screened plasma specimens from 

advanced stage HNC patients that were treated with cetuximab single agent on a neoadjuvant 

trial (UPCI #08-013, NCT #01218048). We correlated cytokine concentration with clinical 

response to therapy (as described in section 3.3.5). We found that cetuximab-resistant patients 

had significantly lower plasma concentrations of Th1 inflammatory cytokines IL-12p70, IL-17 

and IFNα2, opposite to what was seen in cetuximab responders, however statistically non-

significant due to the small sample size (Figure 3.3.6). These results most likely reflect that 

cetuximab mediated activation of effector cells, such as NK cells, triggers a Th1 antitumor 

response pattern that is clinically effective reducing tumor burden. Importantly, this view is 

further supported by our finding of a higher frequency of NK cells in peripheral blood of HNC 

patients than healthy controls that readily infiltrate tumors and get activated after 

cetuximab:CD16 interaction (See Chapter 4). Moreover, our previous findings where cetuximab 

reversed the suppressive activity of MDSC in vitro and diminished infiltration of granulocytic 

MDSC in the responder cohort of patients (220) further agree with a Th1 dominant 

microenvironment induced by cetuximab in those patients who respond to therapy. In addition to 

determining Th1 cytokines, we also determined TGFβ in the same cohort of patients. As shown 

in figure 3.3.7, cetuximab-resistant patients had significantly higher concentration of TGFβ in

plasma while the responders had a non-significant change. It is well documented that TGFβ is a
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strong inducer of immunosuppression by inhibiting NK cytotoxicity, clonal expansion of CTLs 

and inducing the generation of Tregs. In fact, our findings of a higher TGFβ concentration in 

cetuximab-resistant patients agrees with what our laboratory previously reported, where 

cetuximab-resistant HNC patients had higher frequencies of Tregs in peripheral blood and in the 

tumor bed (221).  

Overall, our results show that tumors of HNC patients express a higher 

immunosuppressive cytokine profile including TGFβ, IL-10, VEGFA and IDO than control 

tissues and lower expression of signature inflammatory cytokines such as IL-12A and IL-17A, 

confirming the view of a dominant immunosuppressive tumor microenvironment that prevents 

proper immune effector cell activation. We showed that EGFR and JAK2 inhibition effectively 

downregulate secretion of these immunosuppressive STAT3-dependent cytokines in vitro, 

providing evidence that supports reversing the EGFR/JAK2/STAT3 mediated suppressive 

pathway in order to enhance tumor lysis. Likewise, targeting not only membrane-bound PD-L1 

expression but also sPD-L1 becomes important since HNC cells secrete this soluble 

immunosuppressive factor. Importantly EGFR and JAK2 inhibition downregulated sPD-L1 

secretion further supporting its role reversing tumor-originated immunosuppressive signal 3. 

Finally, our findings are clinically relevant since HNC patients who are resistant to cetuximab 

therapy have significantly higher TGFβ concentration and a lower immunostimulatory cytokine 

profile in plasma, which endorses the use of combined therapy in those patients where EGFR 

blockade is not sufficient to reverse production of immunosuppressive cytokines and chemokines 

that feed the tolerant cellular network in the tumor microenvironment.   
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4.0 DISRUPTION OF THE PD-L1/PD-1 AXIS INTERACTION BY JAK2 INHIBITION 

AND/OR anti-PD-1 mAb BLOCKADE ENHANCES CETUXIMAB MEDIATED NK 

CELL CYTOTOXICITY IN HEAD AND NECK CANCER 

4.1 INTRODUCTION 

Immune checkpoint receptors have recently become important targets for cancer 

immunotherapy. PD-1, an activation marker as well as an immunoinhibitory receptor in the 

CD28 superfamily, is expressed by several immune subsets including activated CD8+ T cells, B 

cells, NK cells and dendritic cells (DC) in the tumor microenvironment (222, 223), and plays an 

important role in tumor immunoescape after binding its cognate ligands programmed death 

ligand 1 or 2 (PD-L1 or PD-L2) (95-97, 224). Blocking the PD-L1/PD-1 axis restores T cell 

responses and improves clinical outcome in several types of cancer (225, 226). In the setting of 

head and neck cancer, we previously documented that 50%-70% of tumors express PD-L1 (212) 

and a high frequency of PD-1 expressing tumor infiltrating T cells (165, 183, 227, 228). 

Therefore, blocking the PD-L1/PD-1 axis becomes crucial in order to reverse tumor 

immunoescape.  

In chapter 2 we provide evidence that PD-L1 expression in tumor cells is regulated by 

two major mechanisms. First, an “extrinsic” mechanism where tumor immune infiltrates driven 

by NK and CD8+ T lymphocytes produce IFNγ, which in turn may induce PD-L1 expression on 

tumor cells. And second, an “intrinsic” mechanism in which constitutive EGFR oncogenic 

signaling leads to PD-L1 overexpression. Since these extrinsic and intrinsic mechanisms have 

JAK2 as common signaling relay molecule we hypothesized that JAK2 inhibition on tumor cells 

may enhance EGFR-specific mAb cetuximab mediated NK cytotoxicity given that PD-L1/PD-1 
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axis suppression would be reversed by JAK2 inhibition. Furthermore, an equally interesting 

question is to which extent PD-1, the PD-L1 receptor, is expressed on NK cells and whether its 

blockade, using PD-1-specific FDA-approved mAb nivolumab, reverses PD-L1/PD-1 mediated 

NK cell exhaustion/suppression. These findings have particular relevance given the clinical utility 

of cetuximab, which can both block EGFR signaling and stimulate IFNγ secretion via activation 

of NK and CTL (100-102).  

Interestingly, whether PD-1 is a marker of activation versus exhaustion is still 

controversial and may differ among various lymphocyte subsets. Indeed, PD-1 expression has 

been suggested as marker of activated effector T cells (89, 229). Importantly, these data are in 

concordance with our previous findings where PD-1+ TIL co-expressed the Th1 transcription 

factors STAT1 and T-bet, and cytokines such as IFNγ and IL-12 after CD3/CD28 stimulation 

(102). While PD-L1/PD-1 axis disruption is important in the clinic and PD-1 expression has been 

largely characterized in tumor infiltrating T cells, little is known about its expression and 

function on NK cells despite their importance in bridging innate and adaptive immunity and 

mediating monoclonal antibody  (mAb) specific responses. NK cells are an important subset of 

innate immune system cells that constitute the first line of defense against pathogens and play a 

crucial role in immunosurveillance in the tumor microenvironment (230). NK cells mediate 

cytotoxicity via several distinct mechanisms, being antibody dependent cellular cytotoxicity 

(ADCC) one of the most studied in the setting of cancer given their availability to bind tumor 

antigen (TA) specific mAbs and induce objective antitumor responses and increased survival of 

patients (231). Cetuximab, an EGFR-specific IgG1 mAb, FDA-approved for treatment of HNC 

patients has shown to activate NK cells via binding of its Fc portion to FcγRIIIa expressed on 

NK cells. The immunostimulatory cytokines secreted into the microenvironment in turn activate 
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dendritic cells (DC) and promote cross-presentation of TA and the expansion of EGFR-

specific CTL (100, 101), linking innate and adaptive antitumor effector mechanisms. 

However, the benefit of cetuximab-mediated immunotherapy in the clinic is only seen in 20% of 

patients (101, 232, 233) most likely caused by a dominant immunosuppressive tumor 

microenvironment where the PD-L1/PD-1 axis interaction between tumor cells and infiltrating 

dysfunctional NK cells may be present.  

PD-1 expression on NK cells has been reported in the setting of infectious diseases such 

as hepatitis C, HIV and tuberculosis where circulating PD-1 expressing NK cells were 

higher when compared with healthy controls, and PD-1 blockade enhanced their activation 

status and cytotoxicity (234-236). Interestingly, in the setting of cancer, multiple myeloma 

patients showed higher PD-1 expressing NK cells in peripheral blood than healthy 

individuals, and PD-1 blockade enhanced cytotoxicity of NK cells against tumor targets (237). 

To our knowledge, there are no reports about PD-1 expression on NK cells in solid tumors, 

including HNC, and whether it represents a marker of activation or exhaustion. Therefore, 

we investigate the regulation of cetuximab-activated NK cells by the PD-L1/PD-1 axis in 

order to reverse potential tumor immunoescape mechanisms and to improve current 

outcomes of mAb-based immunotherapy (232, 233).  

In this study, we investigated the expression of NK activation markers in tumors and 

correlate these with PD-1 expression in a large cohort of HNC specimens. Moreover, we 

measured PD-1+ circulating and tumor infiltrating NK cells in these cancer patients. We 

hypothesized that PD-1 expression on NK cells may constitute an activation marker and that 

cetuximab-mediated activation would further increase PD-1+ NK cells in vitro and in vivo, 

testing specimens from a novel neoadjuvant cetuximab clinical trial. Thus, JAK2-mediated 
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inhibition of PD-L1 expression on tumor targets and/or nivolumab-mediated PD-1 blockade on 

NK cells may enhance cetuximab-mediated NK cell cytotoxicity against PD-L1 expressing HNC 

targets. Taken together, these findings support the use of combined anti-EGFR and PD-L1/PD-1 

axis blockade therapy in the clinic.  

4.2 MATERIALS AND METHODS 

4.2.1 Patients and specimens 

All patients signed an informed consent approved by the Institutional Review Board (IRB 

#99-06). Peripheral venous blood samples were obtained from HNC patients with stage 

III/IVA disease, receiving neoadjuvant cetuximab on a prospective phase II clinical trial (UPCI 

08-013, NCT 01218048). Tumors were biopsied immediately before, and again after 4 

weeks of cetuximab therapy. Clinical response was analyzed by comparing paired CT 

scans pre/post-cetuximab, and quantifying tumor measurement by a dedicated head and neck 

radiologist blinded to patient status. Anatomic tumor measurements were recorded in two 

dimensions and the cohort segregated into clinical “responders,” who showed a reduction in 

tumor volume, or “nonresponders,” whose tumors grew during this therapy. Tumor biopsies (pre-

treatment) or surgical tumor specimens (post-treatment) were preserved for a maximum of 

12 hours in complete media until tumor infiltrating lymphocytes were isolated.  
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were plated in a 96-well U-bottom tissue culture plate with beads in 200 μL AIM-V media. After 

24-hour incubation at 37°C with 5% CO2, supernatants were collected and cells were stained and 

subjected to flow cytometry analysis. 

4.2.2  Tumor infiltrating lymphocyte (TIL) isolation

Fresh tumors from patients with HNC were minced into small pieces manually or using a 

gentleMACS dissociator (Miltenyi Biotec), then transferred to 70-μm cell strainers (BD) and 

mechanically separated using the plunger of a 5-mL syringe. The cells passing through the cell 

strainer were collected, washed and subjected to Ficoll–Hypaque gradient centrifugation. After 

centrifugation, mononuclear cells were recovered and immediately used for experiments.

4.2.3 PBMC and NK isolation from peripheral blood 

After approval by our Institutional Review Board [University of Pittsburgh Cancer Institute 

(UPCI; Pittsburgh, PA) protocol 99-069], informed consent was obtained from each subject 

before blood withdrawal. Blood from healthy donors (Western Pennsylvania blood bank) or 

patients with HNC treated with cetuximab during or within 1 month of treatment (UPCI 

clinical trial #08-013 NCT 01218048). Lymphocytes were purified by Ficoll-Paque PLUS 

centrifugation following standard protocol (Amersham Biosciences) and subsequently NK cells 

were purified using NK negative selection magnetic EasySep kits following the manufacturer’s 

protocol (Stemcell technologies). Purity of the selection was more than 95% FcγRIIIa+, CD56

+, and CD3−.

4.2.4 Co-culture of NK cells using hIgG1 or PD-L1-coupled beads 

PD-L1-hIgG1 Fc fusion protein (R&D Systems) or control human IgG1 (Southern Biotech) 

was covalently coupled to Dynabeads M-450 Epoxy beads according to the manufacturer's 

protocol (Life Technologies). We kept constant the total amount of protein at 5 μg per 107 

beads as previously described (238). Briefly, 107 beads were coated with 50ug/mL of either 

PD-L1-hIGg1 Fc fusion protein or control human IgG1. Covalent coupling of the proteins to 

the beads was performed in 0.1mol/L sodium phosphate buffer for 24 hours at room 

temperature with gentle tilting and 107 rotation. NK cells were freshly isolated from PBMC 

and subjected to co-culture experiments. NK cells were cultured with beads at a fixed cell:bead 

ratio of 1:20. Briefly, 0.2 × 106 NK cells.
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4.2.5 Tumor cell lines 

HNC cell lines used in this report: JHU022, JHU029, SCC90 and 93VU. JHU022, JHU029 were 

a kind gift from Dr. James Rocco (Harvard Medical School, Boston, MA) in January of 2006. 

SCC90 were isolated from patients treated at the University of Pittsburgh Cancer Institute 

(Pittsburgh, PA) through the explant/culture method, authenticated, and validated as unique using 

STR profiling and HLA genotyping every 6 months. 93-VU-147 T (called 93VU in this report) 

was a kind gift from Dr. Henning Bier (Technische Universitat Munchen, Munich, Germany) in 

October of 2013. All cell lines were routinely tested every 6 months and found to be free of 

Mycoplasma infection and were cultured in IMDM (Invitrogen, Carlsbad, CA) supplemented with 

10% FBS (Mediatech, Herndon, VA), 2% L-glutamine and 1% penicillin/streptomycin 

(Invitrogen Corp, Carlsbad, CA). For treatment with IFNγ, cells were cultured overnight in serum 

free AIM-V media (Invitrogen, Carlsbad, CA) and IFNγ (10IU/mL) treatment was started when 

cells reached at least 20% confluence. Adherent tumor cells were detached by warm trypsin–

EDTA (0.25%) solution (Invitrogen, Carlsbad, CA) incubated for 5 min at 37. We determined that 

Trypsin detachment did not cleave surface PD-L1 by comparing with a non-enzymatic detachment 

method. Surface protein PD-L1 expression was determined by flow cytometry. 

4.2.6 Antibodies and treatments 

Mouse anti-human PD-L1-PE monoclonal antibody (mAb), CD3-PerCPCy5.5, CD56-PE, CD56-

FITC, PD-1-APC (clone MIH4), CD16-PECy7, CD107a-PE, GranzymeB-FITC and IFNγ-APC-

Cy7 were purchased from BD Pharmingen (San Jose, CA). Zombie aqua viability dye was 

purchased from Biolegend (San Diego, CA). 
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Human recombinant interferon gamma (IFNγ) was purchased from R&D systems 

(Minneapolis, MN) reconstituted according manufacturer instructions and kept at -80 Celsius freezer 

in aliquots, for all experiments in this report IFNγ was used at 10IU/mL. rhIL-2 was purchased from 

R&D systems (Minneapolis, MN) reconstituted according manufacturer 

instructions and kept at -80 Celsius freezer in aliquots, for NK activation experiments rhIL-2 was used 

at 130IU/mL for 24h following a previously validated protocol (237). Mouse anti-human anti-IFNγ 

blocking antibody was purchased from R&D systems (Minneapolis, MN) and used at 50ng/mL in our 

experiments. Cetuximab (anti-EGFR mAb, IgG1) and nivolumab (anti-PD-1 

mAb, IgG4) were kindly provided by Bristol-Meyers Squibb. Panitumumab (anti-EGFR mAb, IgG2) 

was kindly provided by Amgen. Cetuximab and panitumumab were used at 10ug/

mL in all our experiments, while nivolumab was used at 20ug/mL.   

4.2.7 Flow cytometry analysis 

Surface flow cytometry was performed as follows, cells were harvested and resuspended in PBS 

containing a 1:50 dilution of a previously validated viability dye Zombie Aqua (174), following 

the manufacturer’s protocol (Biolegend, San Diego, CA), then resuspended in 50uL of 

fluorescence-activated cell sorting (FACS) buffer and fluorophore conjugated antibodies were 

added at 1:10 dilution, incubated for 15 minutes at 4 Celsius, then antibodies were washed away 

twice by sequential centrifugation at 1400 RPM with FACS buffer and resuspended in 2% PFA 

solution until analyzed in the flow cytometer. 
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4.2.8 Cellular cytotoxicity assays 

Cytotoxicity was determined using a 51Cr release assay. Briefly, target cells were incubated in 

100 μL of media with 25 μCi of Na2
51CrO4 (Perkin Elmer, Boston MA) for 60 min at 37°C and 

resuspended in RPMI 1640 medium supplemented with 25 mM HEPES. Cells were thoroughly 

washed and plated at various effector: target (E:T) ratios in 96-well plates, then treatments 

(mAbs) and freshly purified NK cells were added at the specified effector:target (E:T) ratios. 

Plates were incubated for 4 h at 37°C in a 5% CO2 atmosphere. Controls for spontaneous (cells 

only) and maximal lysis (cells treated with 1% Triton-X) were included. Each reaction was done 

in triplicate and repeated three times. The supernatants were collected and analyzed with a Perkin 

Elmer 96-well plate gamma counter. % specific lysis = (experimental lysis − spontaneous lysis)/

(experimental lysis − maximal lysis) × 100. Results are representative of 3 different donors and 

were plotted in bar graphs. 

4.2.9  The Cancer Genome Atlas (TCGA) data retrieval and analysis 

TCGA data for HNC gene expression by RNAseq were downloaded from the UCSC cancer 

genomics browser (https://genome-cancer.ucsc.edu). The HNC gene expression profile was 

measured experimentally using the Illumina HiSeq 2000 RNA Sequencing platform. This 

dataset shows the gene-level transcription estimates, as in RSEM normalized count, 

percentile ranked within each sample. Genes are mapped onto the human genome coordinates 

using UCSC cgData HUGO probeMap. The RSEM units to quantitate RNAseq expression data 

were described and validated previously (179). Correlations and linear regression curve fits 

from TCGA data were calculated using GraphPad PRISM software version 6 and values were 

plotted into either graphs or tables.  

109

https://genome-cancer.ucsc.edu/


4.3  RESULTS 

4.3.1 HNC patients have higher PD-1+ circulating NK cells in healthy individuals, which 

are enriched in HNC tumors, and predict better survival 

Little is known about the frequency of circulating NK cells, their activation status and PD-1 

expression in HNC patients. Using freshly isolated PBMC, we observed that circulating NK cells 

were higher in HNC patients than in healthy individuals (Figure 4.3.1A). More interesting 

was the finding of a significantly higher frequency of peripheral blood PD-1+ NK cells in 

HNC patients when compared with healthy individuals (Figure 4.3.1B, Mann-Whitney 

test *** P<0.0001). In the light of these findings, we compared PD-1 expression on CD3-CD56+ 

NK cells from peripheral blood and matched HNC tumors in a different subset of patients. This 

cohort of HNC patients had variable levels of circulating PD-1+ NK cells (data not shown), 

which were significantly enriched at the tumor site (Figure 4.3.1C, Tumor NK cells vs. 

Peripheral blood, n=8, ** P<0.01). To investigate whether the higher frequency of PD-1+ 

circulating NK cells in HNC patients represented a prognostic biomarker, we segregated NK 

cells (from the subset of patients shown in Figure 4.3.1 A and B) into % NK PD-1 high or low, 

according to whether they were above or below the mean frequency cutoff value (mean 

60.34% ± SEM 2.817). We observed that patients who had a higher frequency of 

circulating PD-1+ NK cells (above the mean) showed a significantly longer overall survival 

than those below the mean (Figure 4.3.1D, n=30, P=0.03). This finding showed the same 

trend but did not reach statistical significance when we analyzed disease free survival 

(Supplementary figure 4.5.1, n=21, P=0.18).  
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Figure 4.3.1 PD-1+ NK cells are higher in HNC patients than in healthy individuals, are 

enriched in HNC tumors and predict better survival of patients: A. Frequency of circulating 

NK cells (CD3- CD56+) from peripheral blood lymphocytes (PBL) is higher in HNC patients 

than healthy individuals. B. Percent of circulating PD-1+ NK cells (CD3-CD56+) is significantly 

higher in PBL from HNC patients when compared to that of healthy individuals. (Mann-Whitney 

test *** P<0.001) C. Fold change of PD-1+ NK cells (CD3-CD56+) in TIL vs. PBL in HNC 

patients. Fresh HNC patient TIL or PBL were stained for PD-1 expression on CD3-CD56+ NK 

cells by flow cytometry. Fold change increase in tumor over peripheral blood (PBL) was 

C

D
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statistically significant. (Mann-Whitney test, ** P<0.01). D. Kaplan-Meier survival curve of 30 

HNC patients whose PBL were harvested and PD-1 expression was determined on NK (shown in 

panels A and B), the mean frequency of PD-1+ NK cells was set at a cutoff (mean 60.34%± 

2.817) and % NK PD-1 high and low refers to frequency of PD-1+ NK cells above or below the 

mean value, respectively. Frequency of PD-1+ NK cells was correlated with overall survival of 

patients, statistical significance was determined by log-rank Mantel-Cox test, P=0.03. 

4.3.2 Elevated expression of NK activation markers correlates with that of PD-1 in HNC 

tumors 

In order to corroborate our previous findings, we took advantage of the large curated database of 

The Cancer Genome Atlas (TCGA) (178) and correlated mRNA expression of the NK cell 

specific activation marker NKp46, Th1 phenotype activation markers granzyme B (GZMB), 

perforin (PRF1), interferon-γ (IFNG), and FcγRIIIa (FCGR3A) in matched control and tumor 

tissue from 43 HNC patients. We observed that tumors from HNC patients had higher expression 

of NKp46 and these well-known NK activation markers when compared with paired control 

tissues (n=43) (Figure 4.3.2A). Furthermore, we found a strong correlation between PD-1 

expression and that of NKp46, NKG2D, FCGR3A, GZMB, PRF1 and IFNG in the entire cohort 

of HNC in TCGA (n=500) (Figure 4.3.2B and supplementary figure 4.5.2, Pearson r, P<0.0001 

for all correlations). These results indicate that activated NK cells infiltrate HNC tumors, 

strongly correlating with PD-1 expression. Overall, these results extend the finding that PD-1 

expressing NK cells are enriched in the tumor microenvironment of HNC patients, and that PD-1 

expression may represent a marker of NK cell activation rather than exhaustion, perhaps in 

distinction to tumor infiltrating T cells.  
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Figure 4.3.2 NK activation markers are higher in HNC tumors than in matched controls 

and strongly correlate with PD-1 expression: A. NKp46, FcγRIIIA (FCGRIIIA), granzyme B 

(GZMB), perforin (PRF1) and IFNγ (IFNG) mRNA expression (RSEM units) is significantly 

higher in tumor specimens than in normal matched tissues. TCGA mRNA expression data from 

43 HNC specimens. (Kruskall-Wallis test *** P<0.001, ** P<0.01, * P<0.05). B. PD-1 mRNA 

expression strongly correlates with that of NK activation markers NKp46, NKG2D, FCGR3A 

(FcγRIIIA), IFNγ (IFNG), GZMB (granzyme B) and PRF1 (perforin) in HNC tumor specimens. 

500 HNC tumor specimens were analyzed from TCGA database (see material and methods), 

correlation was determined by Pearson r test, graphs show linear regression curve fit (P<0.0001). 

4.3.3 PD-1 expressing NK cells display an activated phenotype 

In order to test our hypothesis that PD-1 expression on NK cells may reflect an activated rather 

than an exhausted phenotype, we isolated NK cells from fresh healthy donor PBMC and 

measured PD-1 expression along that of NK cell and activation markers such as CD16 

(FcγRIIIa), CD107a, IFNγ and Granzyme B at baseline and after activation with IL-2 

(130IU/mL, 24h), as described previously (237). PD-1 expression on NK cells significantly 

increased and concomitantly with that of signature activation markers CD107a, IFNγ, CD16 and

Granzyme B, with the first two being significantly upregulated (Figure 4.3.3A, *** P<0.001, ** 
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P<0.01). Furthermore, in order to test whether activated PD-1 expressing NK cells’ activated

phenotype becomes impaired after PD-L1 ligation, we co-cultured activated NK cells with either 

isotype control mAb or PD-L1-IgG conjugated beads for 24 hours and then measured the same 

panel of activation markers on NK cells. When co-cultured with PD-L1-IgG conjugated beads, 

PD-1+ NK cells significantly downregulated CD16, CD107a (P<0.01 and P<0.05, respectively). 

IFNγ and Granzyme B expression was also decreased but not to a significant extent (Figure 

4.3.3B, P>0.05). 
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Figure 4.3.3 PD-1 upregulated NK cells display an activated phenotype: A. CD3-CD56+ NK 

cells concomitantly upregulate PD-1 expression and activation markers such as CD16, CD107a, 

IFNγ and granzyme B after IL-2 activation. Healthy donor NK cells (CD3-CD56+) were purified 

from freshly isolated PBMC and baseline PD-1, CD16, CD107a, IFNγ and granzyme B 

expression was determined by flow cytometry (open gray circles in graph), a separate aliquot of 

the same NK cell culture was treated with rhIL-2 (130 IU/mL) for 24 h (For NK activation see 

material and methods), harvested and the same activation markers were determined by flow 
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cytometry (closed black cicles in graph). Statistical significance between medians was 

determined by Kruskal-Wallis test (*** P<0.001, ** P<0.01). B. PD-1+ NK cells downregulate 

expression of activation markers upon PD-L1 ligation. Healthy donor NK cells (CD3-CD56+) 

were purified from freshly isolated PBMC and activated with rhIL-2 (130 IU/mL) for 24 hours 

(open gray squares), then incubated with either Isotype control (open gray circles) or PD-L1 

conjugated beads (closed black circles) for an additional 24 hours, cells were harvested and 

CD16, CD107a, IFNγ and granzyme B expression was determiend by flow cytometry. (Kruskal-

Wallis test, ** P<0.01, * P<0.05)  

4.3.4 Cetuximab induces NK cell activation, PD-1 expression and IFNγ-dependent PD-L1 

upregulation in HNC 

We previously reported that cetuximab-coated tumor cells induce NK:DC crosstalk and trigger 

TA specific CD8+ T cell expansion (100, 101). Since cetuximab activates NK cells leading to 

IFNγ secretion and cytotoxicity, we hypothesized that this activation stimulus could also induce 

PD-1 upregulation. Indeed, as shown in Figure 4.3.4A, cetuximab but not isotype control (IgG1) 

or panitumumab (IgG2) induced NK cell activation and IFNγ secretion when co-cultured with 

EGFR+ HNC cells. In turn, NK cell-derived IFNγ secretion led to PD-L1 upregulation on HNC 

cells from the same co-culture system (Figure 4.3.4B), as well as induced upregulation of PD-1+ 

NK cells (Figure 4.3.4C). Next, we analyzed PD-1 expression on tumor infiltrating NK cells 

from cetuximab treated HNC tumor specimens. Advanced HNC patients were treated with 

cetuximab on a prospective neoadjuvant trial (UPCI #08-013, NCT #01218048).  Prior to and 

after 4 weeks of cetuximab therapy, HNC tumors from these patients (n=6) were harvested, 

tumor infiltrating lymphocytes freshly isolated, and NK cells analyzed by flow cytometry. We 

found a significant fold change increase in PD-1+ tumor infiltrating NK cells in post cetuximab 

treated specimens when compared with their respective matched samples before treatment 
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(Figure 4.3.4D, Mann-Whitney test, * P<0.05). Thus, PD-1 expression is strongly upregulated in 

cetuximab activated NK cells in the tumor microenvironment, where PD-L1 is also present in 

50-70%of HNC patients (212), supporting combinational therapy blocking PD-1-mediated NK

cell suppression. 
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Figure 4.3.4 Cetuximab-activated NK cells increase PD-1 expression, IFNγ secretion, and 

PD-L1 upregulation in HNC cells: A. Higher IFNγ secretion by NK cells when co-cultured with 

cetuximab-coated HNC cells. Freshly isolated NK cells were co-cultured with JHU029 tumor 

cells at 1 to 1 ratio for 24h in the absence of mAb or with IgG1 (10ug/mL), cetuximab (10ug/mL) 

or panitumumab (10ug/mL). IFNγ in the culture supernatants was determined by ELISA. 

(ANOVA, *** P<0.001). B. Cetuximab-activated NK cells upregulate PD-L1 expression in 

tumor cells in an IFNγ dependent fashion. Freshly isolated NK cells from 3 different healthy 

donors were co-cultured with JHU029, JHU022 and SCC90 tumor targets for 24h in the absence 

of mAb or with cetuximab (10ug/mL), panitumumab (10ug/mL) and cetuximab with IFNγ 

blocking antibody (anti-IFNγ, 50ng/mL). Then harvested and PD-L1 expression on tumor cells 

was determined by flow cytometry (ANOVA, ** P<0.01, *** P<0.001) C. Cetuximab-activated 

NK cells increase PD-1 expression. Healthy donor peripheral blood NK cells were either stained 

freshly isolated or co-cultured with tumor targets (JHU029 cells) in the absence of mAb or with 

cetuximab (10ug/mL) for 24h, harvested and surface PD-1 expression was determined by flow 

cytometry. (Kruskal-Wallis test *** P<0.001, ** P<0.01). D. Cetuximab treatment increases 

frequency of tumor infiltrating PD-1+ NK cells in vivo. Tumor infiltrating NK cells from HNC 

patients were isolated pre- and post- cetuximab treatment (clinical trial UPCI #08-013, see 

material and methods) and PD-1 expression on CD3-CD56+ NK cells was determined by flow 

cytometry, % NK cell fold change of Post vs. Pre-cetuximab treated specimens was calculated 

and plotted. (Mann-Whitney test, * P<0.05). 

4.3.5  PD-1 blockade enhances NK cell cytotoxicity and cetuximab mediated ADCC in PD-

L1 high tumor targets 

Next, we determined whether PD-1 blockade using the FDA approved, anti-PD-1 mAb 

nivolumab could enhance NK cell cytotoxicity against PD-L1 expressing tumor targets. Indeed, 

cetuximab-activated PBMC increased the frequency of PD-1+ NK cells after 24 hours of 

treatment (Supplementary Figure 4.5.3A and B) and showed a higher specific lysis of tumor 

targets when co-cultured in the presence of nivolumab (Figure 4.3.5A, left bars). Importantly, 
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these same effector cells showed a significantly higher cytotoxicity when co-cultured with IFNγ-

pretreated, PD-L1high HNC targets (Figure 4.3.5A, right bars) (53% vs 30% specific tumor lysis, 

ANOVA *** P<0.001). In order to further confirm our interpretation, we isolated fresh NK cells 

from healthy donor PBMC (n=3), and co-cultured them with either PD-L1low (JHU029 targets) 

or PD-L1high (93VU targets) (Supplemetary Figure 4.5.2C). Under these conditions, PD-1 

blockade enhanced cetuximab mediated ADCC, only when tumor targets expressed a higher 

level of PD-L1 (Figure 4.3.5B and 4.3.5C). 
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Figure 4.3.5 PD-1 blockade enhances NK cytotoxicity and cetuximab mediated ADCC of 

PD-L1high expressing tumor targets: A. Nivolumab-mediated PD-1 blockade enhances 

cytotoxicity of cetuximab pre-activated PBMC. Freshly isolated PBMC were co-cultured with 

JHU029 tumor cells in a 200:1 ratio in the absence of mAb or with cetuximab (10ug/mL) for 

24h, then harvested and co-cultured with either untreated or IFNγ (10IU/mL) pre-treated tumor 

targets (JHU029 cells, 40:1 ratio, 24h) in the presence or absence of nivolumab for 4 hours. 51Cr 

release was determined in a scintillation counter (Perkin-Elmer) and percent specific lysis was 

calculated. (Two-way ANOVA *** P=0.001) B. Nivolumab does not enhance cetuximab 

mediated ADCC of PD-L1low tumor targets (JHU029 cells, see supplementary figure 2C). 

Freshly isolated NK cells were co-cultured with tumor targets (51Cr labeled, 20:1 ratio) with no 

mAb, IgG1 isotype (10ug/mL), cetuximab (10ug/mL), nivolumab (20ug/mL) or cetuximab + 

nivolumab for 4 hours. 51Cr release was determined in a scintillation counter (Perkin-Elmer) and 

% specific lysis was calculated. (ANOVA, ns=non-significant). C. Nivolumab enhances 

cetuximab mediated ADCC of PD-L1high tumor targets (93VU cells, see supplementary figure 

2C). Freshly isolated NK cells were co-cultured with tumor targets (51Cr labeled, 20:1 ratio) with 

no mAb, IgG1 isotype (10ug/mL), cetuximab (10ug/mL), nivolumab (20ug/mL) or cetuximab + 

nivolumab for 4 hours. 51Cr release was determined in a scintillation counter (Perkin-Elmer) and 

% specific lysis was calculated. (ANOVA, ** P=0.01, *** P=0.001). 

4.3.6  JAK2 inhibition prevents tumor PD-L1 expression and enhances cetuximab 

mediated NK cell cytotoxicity 

Since JAK2 represents a key player in PD-L1 upregulation in both EGFR (intrinsic) and IFNγ

(extrinsic) pathways in vitro, we tested whether JAK2 inhibition enhanced NK mediated killing 

via antibody dependent cell cytotocixity (ADCC) (100) against PD-L1+ HNC cells. When NK 

cells were co-cultured with HNC targets and cetuximab, activated NK cells upregulated tumor 

PD-L1 expression in an IFNγ dependent fashion (Figure 4.3.6A, open bars). As a control, the 

EGFR specific mAb panitumumab (IgG2 isotype) which does not bind to CD16 on NK cells, did 

not induce PD-L1 upregulation, most likely because of a lack of NK cell activation and IFNγ
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secretion (137). Importantly, the IFNγ mediated PD-L1 upregulation on HNC cells was 

prevented when they were pre-treated with the JAK2 inhibitor (top panel, closed bars), but not 

with a JAK1/3 specific inhibitor (bottom panel, closed bars). We therefore tested the hypothesis 

that NK cells would more efficiently lyse JAK2 inhibitor pre-treated tumor cells, in the setting of 

reduced PD-L1 expression. Indeed, NK cells showed aproximately 25% higher specific lysis of 

HNC cells pre-treated with the JAK2 inhibitor (Figure 4.3.6B). Overall, these results confirm 

that JAK2 is an important regulator of PD-L1 expression in HNC tumor cells, and its inhibition 

reverses PD-L1 mediated tumor cell escape from cetuximab mediated ADCC. 
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Figure 4.3.6  JAK2 inhibition prevents NK mediated PD-L1 upregulation on tumor cells 

and enhances cetuximab mediated NK cell cytotoxicity: A. PD-L1 expression is upregulated 

on tumor cells when co-cultured with cetuximab-activated NK cells in an IFNγ dependent fashion 

(left panel, open bars). JAK2i pre-treatment of tumor targets prevented PD-L1 upregulation (left 

panel, closed bars). In contrast, JAK1/3 inhibition did not prevent PD-L1 upregulation under the 

same conditions (right panel, closed bars). Tumor target cells were incubated in media alone or 

JAK2i (10uM) supplemented media for 48 hours then co-cultured with NK cells for 24 hours 

untreated or in the presence of cetuximab (10ug/mL), panitumumab (10ug/mL) or cetuximab

+anti-IFNγ blocking antibody (50ug/mL), harvested and PD-L1
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expression on tumor cells was determiend by FC. Data representative of two independent 

experiments with similar results B. Higher NK-cetuximab mediated lysis of JAK2i pre-treated 

targets (closed black bars, 5:1 and 20:1 effector:target ratio). Tumor cells were pre-treated with 

JAK2i (10uM) for 48 hours then labeled with 51Cr and co-cultured with purified NK cells plus 

media, IgG1 control (10ug/mL) or cetuximab (10ug/mL) for 4h (ANOVA, * P<0.05, *** 

P<0.0001). 

4.4 DISCUSSION 

In the setting of HNC immunotherapy, cetuximab has shown objective responses and improved 

survival of HNC patients either as single agent or in combination with chemo-radiotherapy. 

However, its activity is only seen in minority of patients (101). Therefore, investigating and 

understanding its mechanism of action is crucial in order to improve its clinical outcome. 

Quantification and phenotypic characterization of immune cell subsets present in the tumor 

microenvironment is crucial in order to optimize their cytotoxicity against tumor cells. (165). NK 

cells constitute the first line of defense to respond to tumors without previous sensitization given 

their ability to recognize and kill targets without receptor gene rearrangement (239-241). While 

multiple studies implicate the PD-L1/PD-1 axis in tumor immunoevasion of T cell mediated 

adaptive immune responses in several solid tumors (242, 243), to our knowledge, information 

regarding the role of PD-L1/PD-1 axis in regards to NK cell-mediated immune responses in 

cancers, especially HNC is very scarce. Therefore, in the present study we focus in NK cells, 

which are crucial mediators of cetuximab-mediated therapy given their ability to specifically 

bind EGFR-overexpressing, cetuximab-coated tumor cells via FcγRIIIa, and to stimulate 

adaptive T cell responses via NK:DC crosstalk (101). This study demonstrates that NK cell 
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immune activation markers are highly expressed in tumors of HNC patients, suggesting not only 

that NK cells can readily infiltrate tumors but also have an important role in immune rejection 

since they display an activated phenotype. We found that frequency of NK cells in peripheral 

blood from HNC patients is higher when compared to healthy individuals, concordant with a 

previous report of a higher percentage and absolute number of circulating NK cells (244).  In 

contrast, others showed a decreased NK cell number in peripheral blood from HNC patients, but 

that particular study determined NK frequency relying on methylation of NKp46 gene loci from 

archival DNA samples (245). We directly analyzed NK cell frequency by flow cytometry 

quantifying CD3-CD56+ cells, which may represent a more reliable method of measurement. 

More importantly, we are the first to report that circulating PD-1 expressing NK cells are 

significantly higher in HNC patients than healthy individuals. These results corroborate those of 

Benson et al. in which circulating PD-1+ NK cells where higher in multiple myeloma patients 

than in healthy individuals (237). Interestingly, we also found that PD-1+ NK cells are enriched 

in tumors when compared with matched patient peripheral blood, suggesting that NK cells traffic 

to the tumor microenvironment. More importantly, a significantly better patient survival 

corresponded with a higher frequency of circulating PD-1+ NK cells when compared to those 

who had lower frequencies (Figure 4.3.1D). In addition, we found significantly higher expression 

of signature NK activation markers in tumor tissue when compared to matched control mucosa 

(Figure 4.3.2A), and a strong correlation of these NK activation markers and PD-1 expression in 

a large cohort of tumors from TCGA database (n=500). All these findings led us to hypothesize 

that PD-1 expression on NK cells may represent a marker of activation rather than exhaustion. 

Indeed, when activated PD-1 expressing NK cells were co-cultured with PD-L1 coated beads, 

activation markers such as CD16 and CD107a as well as IFNγ and Granzyme B showed an
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evident downregulation, with the two first in a significant fashion. Thus, confirming our view 

that PD-1 per se is a marker of NK cell activation which only induces an exhauted phenotype 

after PD-L1 ligation.  

Several studies support the view that PD-1 expression represents an activation marker on 

T cells, namely in the setting of viral infections where PD-1 was co-expressed with CD38 and 

HLA-DR (229, 236, 246). Furthermore, Badoual et al. showed similar findings in the setting of 

HNC (165). PD-1 expression depends on the stage of cell differentiation and activation, where 

early activated CD8+ T cells upregulate PD-1 expression along with other signature T cell 

activation markers (246). Similarly, co-expression of PD-1 and other activation markers have 

also been shown in tumor infiltrating lymphocytes (TIL) from cancer patients. Regarding NK 

cells, Alvarez et al. reported a direct correlation between PD-1 and IFNγ expression in the setting 

of Mycobacterium tuberculosis infection, where PD-1 blockade enhanced lytic degranulation and 

IFNγ production of NK cells that was otherwise reduced when PD-1 was bound by PD-L1 (234). 

Interestingly, Benson et al. reported that IL-2, a known NK activating cytokine, induced PD-1 

expression on NK cells from healthy individuals that were otherwise PD-1 negative (237).  

Our laboratory has shown before that cetuximab can activate NK cells (101), herein we 

demonstrate that cetuximab-activated NK cell-secreted IFNγ induced PD-L1 upregulation on 

tumor cells (Figure 4.3.4A-B). Likewise, cetuximab treatment induced upegulation of PD-1+ NK 

cells in vitro in a co-culture system and in vivo in patients from the UPCI #08-013 clinical trial 

where cetuximab was used as a single agent therapy (Figure 4.3.4D). Overall these data suggest 

that the otherwise beneficial effect of cetuximab may, in fact, induce a tumor escape mechanism 

dominated by the PD-L1/PD-1 axis interaction, in which IFNγ secreted from cetuximab-

activated NK cells may induce PD-L1 upregulation on the tumor cell and PD-1 expression on the 
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effector immune cell compartment. Thus, we hypothesized that disruption of PD-L1/PD-1 axis 

interaction, either by JAK2 mediated inhibition of PD-L1 expression on the tumor end or 

nivolumab mediated PD-1 blockade on the immune effector cell end, may enhance NK cell 

cytotoxicity and tumor cell lysis. 

In order to test our hypothesis, we co-cultured cetuximab-preactivated PBMC, where PD-

1+ NK cells were expanded approximately two-fold, with either untreated or IFNγ pre-treated 

tumor targets in the presence or absence of nivolumab. As expected, PBMCs exhibited a 

significantly higher cytotoxicity when tumor targets were high expressers of PD-L1 (Figure 

4.3.5A). Furthermore, purified activated NK cells showed a significantly higher cytolityc activity 

with the combination of cetuximab (anti-EGFR) and nivolumab (anti-PD-1) only when co-

cultured with PD-L1high but not PD-L1low tumor targets. Taken together, these findings support 

the view that PD-L1/PD-1 axis disruption is an important strategy to enhance cetuximab-

mediated NK cytotoxicity against HNC tumor targets that could be translated into the clinic. 

Importantly, this strategy most likely will benefit patients that have a higher expression of PD-L1 

on tumor cells. Indeed, a recent study showed that anti-PD-1 therapy had a higher response rate 

(46% vs 11%) when tumors had a very robust PD-L1 expression, thus presenting PD-L1 

expression level as a predictor of anti-PD-1 therapy (160). In addition and supporting our view 

that PD-1 expression on immune cells represents a marker of activation is the finding that PD-1 

expression on tumor infiltrating T cells are a favorable prognostic biomarker in HNC (165)  

Overall, our results show that PD-1 expressing NK cells in HNC patients readily infiltrate 

tumors and display an activated phenotype and predicts better survival, that PD-1+ NK cells 

show reduced activation and cytotoxicity only when PD-1 is bound by its cognate ligand PD-L1. 

Importantly PD-L1/PD-1 axis blockade restores NK cytotoxicity against PD-L1high expressing 
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tumor targets and enhances cetuximab mediated ADCC. Alternatively, one added benefit of 

using combined JAK2 inhibition and cetuximab mediated EGFR blockade would be that the 

JAK2 mediated downregulation of PD-L1 expression on tumor cells would ultimately enhance 

the effector properties of PD-1+ NK cells activated in the tumor microenvironment. Indeed, we 

show that JAK2 inhibition in tumor targets enhances cetuximab mediated ADCC to a significant 

extent, therefore reversing PD-L1 mediated immune escape of tumor cells to NK killing (Figure 

4.3.6B). Moreover, we may also speculate that JAK2 inhibition might synergize with 

monoclonal antibodies targeting PD-1 and/or CTLA-4 by enhancing ADCC of PD-1+CTL4+

lymphoid or myeloid suppressor immune infiltrates in the tumor microenvironment as well as 

reducing PD-L1 expression. Finally, our findings support novel immunotherapy approaches 

where combination of PD-L1/PD-1 axis blockade and EGFR blockade should be taken into 

account to improve clinical outcomes of cetuximab therapy in HNC patients. 
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4.5. SUPPLEMENTARY DATA 

Figure 4.5.1 High frequency of circulating PD-1+ NK cells correlates with better survival of 

patient: A. Kaplan-Meier survival curve of 30 HNC patients whose PBL were harvested and 

PD-1 expression was determined on NK (shown in Figure 1A and B), the mean frequency of PD-

1+ NK cells was set at a cutoff (mean 60.34%± 2.817) and % NK PD-1 high and low refers to 

frequency of PD-1+ NK cells above or below the mean value, respectively. Frequency of PD-1+ 

NK cells was correlated with disease free survival of patients, statistical significance was 

determined by log-rank Mantel-Cox test, P=0.18. 
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Figure 4.5.2  IFNγ and PD-1 expression correlate with that of NK activation markers in 

HNC patients: A. IFNγ mRNA expression correlates with that of NKG2D, FCGR3A 

(FcγRIIIA). B. IFNγ mRNA expression correlates with that of NK activation markers NKp46, 

NKp44 and NKp30. Likewise, PD-1 mRNA expression correlates with that of other NK 

activation markers NKp40 and NKp30 in HNC tumor specimens. For all of the above data from 

500 HNC tumor specimens were analyzed from the TCGA database. Correlation was determined 

by Pearson r test, graphs in A show linear regression curve fit. 

Correlation XY Pearson r P (two-tailed)

IFNG vs NKp46 0.5579 < 0.0001

IFNG vs NKp44 0.1824 < 0.0001

IFNG vs NKp30 0.5054 < 0.0001

PD-1 vs NKp44 0.2261 < 0.0001

PD-1 vs NKp30 0.6516 < 0.0001
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Figure 4.5.3 Increased frequency of PD-1+ NK cells in cetuximab-activated PBMC: A. 

Freshly isolated PBMC were co-cultured with JHU029 tumor cells in a 200:1 ratio in the absence 

of mAb or with cetuximab (10ug/mL) for 24h, the harvested and frequency of PD-1+ NK cells 

(CD3-CD56+) was determined by flow cytometry. B. IFNγ pre-treatment of target cells 

(JHU029) increases PD-L1 expression. JHU029 were treated with IFNγ (10IU/mL) for 24h, 

harvested and PD-L1 surface expression was determined by flow cytometry. C. PD-L1 

expression on JHU29 and 93VU tumor targets. JHU029 and 93VU cells were harvested and 

PD-L1 expression was determined by flow cytometry. 93VU cells expresses 3 fold higher PD-L1 

than JHU029 and were considered PD-L1high in our experiments as compared to JHU029, which 

were considered PD-L1low. 
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