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ABSTRACT 
 
 

Breast cancer is of public health importance with an increasing incidence over the past decade. 

Estrogen Receptor (ER) activity is critical for promoting majority of breast cancers. Inhibiting 

ER is one of the most successful targeted therapies in oncology. Studies have suggested that 

genomic variation in ER binding sites and ESR1 gene may be responsible for endocrine 

treatment response and cancer progression. We investigated the role of single nucleotide variants 

(SNVs) in the ER pathway in breast cancer, including clinically relevant mutations in ER gene 

and regulatory variants in ER binding sites. First, we developed a computational pipeline to 

identify SNVs in ER binding sites, using chromatin immunoprecipitation-sequencing (ChIP-seq) 

data from hormone responsive breast cancer cells and tumors. Analysis of ER ChIP-seq data 

from multiple MCF7 studies characterized a SNV within intron 2 of the IGF1R gene, 

rs62022087, predicted to increase the affinity for ER binding. By integrating 43 ER ChIP-seq 

data sets, multi-omics and clinical data, we identified SNVs regulating downstream target genes 

which may contribute to patients’ survival.  Second, we used sensitive detection methods to 

detect mutations and identified high frequencies ESR1 mutations in primary tumors, metastatic 

lesions and cell-free DNA samples. This result may be due to higher sensitivity of our study in 

detecting mutations at very low allele frequency. Finally, we generated appropriate knock-in cell 

lines through CRISPR technology to study ER mutations. RNA-seq studies revealed ER 
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mutations are can activate estrogen regulated genes in a ligand independent manner and also may 

induce/repress a set of novel targets. Cell adhesion assays demonstrated mutants are less 

adhesive to Collagen I which may be a marker of metastasis. Taken together, our findings 

indicate that SNVs in ER pathway are clinically important and may predict drug response in ER+ 

breast cancer. From the public health perspective, screening for these impactful variants will be 

soon part of the genetic testing as our knowledge of genome improves. This will eventually help 

initiatives to reduce public health burden by choosing the right treatment for breast cancer 

patients in personalized manner.  

 

 

 
 
 
 
 

 

 

 



vi 

TABLE OF CONTENTS 

PREFACE ................................................................................................................................... XV 

LIST OF ABBREVIATIONS ............................................................................................... XVII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 ESTROGEN RECEPTOR STRUCTURE AND FUNCTION ........................ 1 

1.2 SIGNIFICANCE OF ESTROGEN RECEPTOR IN BREAST CANCER .... 3 

1.3 DNA SEQUENCE VARIANTS ASSOCIATED WITH ER BINDING IN 

BREAST CANCER .............................................................................................................. 5 

1.4 ESR1 GENE MUTATIONS IN PRIMARY AND METASTATIC BREAST 

CANCER ............................................................................................................................... 7 

1.5 PUBLIC HEALTH RELEVANCE .................................................................... 9 

1.6 HYPOTHESIS ................................................................................................... 11 

2.0 IDENTIFICATION OF REGULATORY SINGLE NUCLEOTIDE VARIANTS 

IN ESTROGEN RECEPTOR BINDING* ............................................................................... 13 

2.1 INTRODUCTION ............................................................................................. 13 

2.2 MATERIALS AND METHODS ...................................................................... 16 

2.2.1 Extracting genomic variants from ChIP-seq reads .................................... 16 

2.2.2 Extracting somatic SNV in ER binding sites from WGS data .................. 16 

2.2.3 Identifying predicted DNA binding sites using ChIP-seq data ................. 17 



vii 

2.2.4 Motif analysis and p-value scoring of the regSNVs* .................................. 17 

2.2.5 TCGA data analysis....................................................................................... 18 

2.2.6 ChIP ................................................................................................................ 18 

2.2.7 Allele specific ChIP ........................................................................................ 19 

2.2.8 RNA extraction and quantitative PCR (qPCR) .......................................... 19 

2.2.9 Cloning and luciferase assay ......................................................................... 19 

2.3 RESULTS ........................................................................................................... 20 

2.3.1 In-silico Identification of regSNVs in MCF7 ER ChIP-seq data .............. 20 

2.3.2 ER binding is associated with an intronic regSNV in IGF1R .................... 23 

2.3.3 Discovery of RegSNVs in available breast cancer ER ChIP-seq data ...... 26 

2.3.4 Identification of somatic RegSNVs in WGS data of breast tumors .......... 29 

2.4 DISCUSSION ..................................................................................................... 30 

3.0 SENSITIVE DETECTION OF MONO- AND POLYCLONAL ESR1 

MUTATIONS IN PRIMARY TUMORS, METASTATIC LESIONS AND CELL FREE 

DNA OF BREAST CANCER PATIENTS* ............................................................................. 34 

3.1 INTRODUCTION ............................................................................................. 37 

3.2 METHOD ........................................................................................................... 39 

3.2.1 Sample acquisition ......................................................................................... 39 

3.2.2 DNA isolation, preparation, and quantification ......................................... 39 

3.2.3 Mutation detection by ddPCR ...................................................................... 40 

3.2.4 Quantitative analysis ..................................................................................... 42 

3.3 RESULTS ........................................................................................................... 42 

3.3.1 ESR1 mutations in primary tumors ............................................................. 42 



viii 

3.3.2 ESR1 mutations in bone metastases ............................................................. 44 

3.3.3 ESR1 mutations in brain metastases ............................................................ 45 

3.3.4 ESR1 mutations in cfDNA ............................................................................ 45 

3.3.5 Analysis of ESR1 mutations in serial blood samples, and matched 

metastatic tumors ....................................................................................................... 47 

3.4 DISCUSSION ..................................................................................................... 50 

3.4.1 ESR1 mutations are present at very low allele frequency in primary ER-

positive breast cancer ................................................................................................. 50 

3.4.2 ESR1 is mutated in both brain and bone metastases ................................. 51 

3.4.3 ESR1 exhibits polyclonal mutations ............................................................. 52 

3.4.4 Longitudinal monitoring of ESR1 mutations in cfDNA ............................. 52 

3.5 ACKNOWLEDGEMENT ................................................................................ 53 

4.0 THE BIOLOGY OF ESR1 MUTATIONS IN METASTATIC BREAST 

CANCER* ................................................................................................................................... 55 

4.1 INTRODUCTION ............................................................................................. 55 

4.2 MATERIALS AND METHODS ...................................................................... 57 

4.2.1 Cell culture ..................................................................................................... 57 

4.2.2 Generation of ESR1 mutant cell lines .......................................................... 57 

4.2.3 ddPCR............................................................................................................. 58 

4.2.4 Western blot ................................................................................................... 58 

4.2.5 Transcriptional reporter activity of WT and mutant ESR1* .................... 58 

4.2.6 RNA-seq analysis ........................................................................................... 59 

4.2.7 Growth Assay ................................................................................................. 60 



ix 

4.2.8 Adhesion Assay .............................................................................................. 60 

4.3 RESULTS ........................................................................................................... 61 

4.3.1 Molecular characterization of ESR1 mutations .......................................... 61 

4.3.2 Transcriptome regulation by ER mutants .................................................. 63 

4.3.3 Gain of function activities of ESR1 mutants in genome edited cell lines .. 66 

4.4 DISCUSSION ..................................................................................................... 68 

5.0 CONCLUSIONS ........................................................................................................ 72 

5.1 IDENTIFICATION AND FUNCTIONAL ASSESSMENT OF ER 

REGULATED SNVS IN BREAST CANCER ................................................................. 72 

5.2 DETECTION OF ESR1 MUTATIONS IN PRIMARY TUMORS, 

METASTATIC LESIONS AND CFDNA OF PATIENTS WITH ADVANCED 

BREAST CANCER ............................................................................................................ 74 

5.3 FUNCTIONAL ANALYSIS OF ESR1 MUTATIONS IN ENDOCRINE 

TREATMENT RESISTANCE BREAST CANCER ....................................................... 76 

APPENDIX A: SUPPLEMENTARY FIGURES ..................................................................... 79 

APPENDIX B: SUPPLEMENTARY TABLES ..................................................................... 103 

BIBLIOGRAPHY ..................................................................................................................... 145 



 x 

 LIST OF TABLES 

Table 1. A summary of ESR1 mutations found in primary breast cancer ....................................... 8 

Table 2. Top 10 regulatory SNVs increasing ER binding to MCF7 genome. .............................. 23 

Table 3. Top regulatory SNVs  associated with the expression of their target genes................... 28 

Table 4. Frequent SNVs in putative ER binding sites within WGS of 45 tumors ........................ 30 

Table 5. The rates of ESR1 mutations in primary tumors, cfDNA, brain and bone metastases 

from breast cancer patients. .......................................................................................................... 44 

Table 6. Clinical characteristics and endocrine treatment history in patients with confirmed ESR1 

mutant cfDNA, brain or bone metastases. .................................................................................... 46 

Table 7. The IC-50 for WT and mutant cells treated by different compounds ............................. 67 

Table 8. Primer sets used for different assays ............................................................................. 103 

Table 9. The list of all ER ChIP-seq data sets in breast cancer .................................................. 104 

Table 10. The list of regulatory SNVs in MCF7 Cell line .......................................................... 106 

Table 11. The list of regulatory SNVs in BT474 Cell line ......................................................... 110 

Table 12. The list of regulatory SNVs in MDA-MB-134 Cell line ............................................ 114 

Table 13. The list of regulatory SNVs in T47D Cell line ........................................................... 118 

Table 14. The list of regulatory SNVs in TAMR Cell line ......................................................... 122 

Table 15. The list of regulatory SNVs in ZR75 Cell line. .......................................................... 126 

Table 16. The list of regulatory SNVs in good prognosis tumors .............................................. 129 



 xi 

Table 17. The list of regulatory SNVs in bad prognosis tumors ................................................ 133 

Table 18. The list of regulatory SNVs in metastatic tumors ....................................................... 137 

Table 19. The allele frequency of top RegSNVs in ER binding sites with sufficient coverage . 140 

Table 20. Sequence of targeted amplification primers. .............................................................. 141 

Table 21. Sequence of ddPCR primer and probes. ..................................................................... 142 

Table 22. Cellularity and location of bone metastases. .............................................................. 143 

Table 23. The sequence of sgRNA and oligos used to generate ESR1 mutant cell lines ........... 144 

Table 24. Name of the novel mutant ER target genes shared between T47D and MCF7 .......... 144 



 xii 

LIST OF FIGURES 

Figure 1. Schematic view of estrogen receptor structure. ............................................................... 2 

Figure 2. Schematic view of the location somatic mutation in ESR1 gene. ................................... 8 

Figure 3. The schematic view of the hypothesis model. ............................................................... 12 

Figure 4. Analysis pipeline for detecting regulatory SNVs from ChIp-seq data. ......................... 21 

Figure 5. The location of rs62022087 in genome and ER binding sites. ...................................... 24 

Figure 6. IGF1R SNP can affect ER binding and result in higher gene expression. .................... 26 

Figure 7. The distribution of RegSNVs over the gnome across a panel of breast cancer cell lines, 

good and bad prognosis tumors. ................................................................................................... 27 

Figure 8. Positive controls for mutation probes utilized in ddPCR technology. .......................... 41 

Figure 9. ESR1 mutation allele frequency of ESR1 mutation-positive samples. .......................... 43 

Figure 10. Clinical timelines and allele frequency of ESR1 mutations in serial blood draws and 

matched metastatic lesions. ........................................................................................................... 48 

Figure 11. Generation and molecular characteristics of ESR1 mutations. .................................... 62 

Figure 12. Heatmap of ligand independent differentially regulated genes between WT and 

mutants. ......................................................................................................................................... 64 

Figure 13. The overlap of ligand independent regulated genes between the cell lines for each 

mutations. ...................................................................................................................................... 64 

Figure 14. Growth assay in WT and mutant cells. ........................................................................ 66 



 xiii 

Figure 15. Cell adhesion to Collagen I and IV. ............................................................................ 68 

Figure 16. The UCSC gnome browser view of the second intron in IGF1R gene. ...................... 79 

Figure 17. The visualization of ChIP-seq reads from multiple cell lines over rs62022087 SNP 

site. ................................................................................................................................................ 80 

Figure 18. The pipeline used for analyzing breast tumors and calling somatic SNVs within ER 

binding sites. ................................................................................................................................. 81 

Figure 19. Schematic view of somatic non-coding mutations found in two independent WGS 

data sets. ........................................................................................................................................ 82 

Figure 20. Visualization of ENCODE data around non-coding mutations sites. ......................... 83 

Figure 21. Palindromic sequence surrounding the non-coding mutations in GPR126 and 

PLEKHS1 genes. .......................................................................................................................... 84 

Figure 22. The gene expression of GPR126 and PLEKHS1 genes in WT vs Mut carriers. ......... 85 

Figure 23. Survival analysis of patients stratified by the expression of GSTM1. ........................ 86 

Figure 24. Pre-amplification preserves mutant allele frequency and maintains sensitivity  of 

ESR1-D538G mutation detection by ddPCR. ............................................................................... 87 

Figure 25. Pre-amplification preserves mutant allele frequency and maintains sensitivity of 

PIK3CA-E545K mutation detection by ddPCR. .......................................................................... 88 

Figure 26. ESR1 Y537C/N/S and D538G mutation probes are specific to their corresponding 

mutations. ...................................................................................................................................... 89 

Figure 27. ESR1 Y537C probe does not bind to wild-type allele, even at high concentrations of 

wild-type DNA.............................................................................................................................. 90 

Figure 28. Lack of cross-reactivity between D538G and Y537S probes. .................................... 91 

Figure 29. LLoD determination of ddPCR ................................................................................... 92 



 xiv 

Figure 30. Mutant allele frequency of PIK3CA H1047R mutation in 12 bone metastases. ......... 93 

Figure 31. The D538G ER mutation in 3 brain mets was confirmed by Sanger sequencing. ...... 94 

Figure 32. ESR1 Y537S and D538G observed in the same specimens are not mutated on the 

same alleles. .................................................................................................................................. 95 

Figure 33. Clinical timelines and allele frequency of ESR1 mutations in multiple blood draws 

and matched metastatic lesions from two patients. ....................................................................... 96 

Figure 34. Sanger sequencing of ESR1 mutations in T47D cells. ................................................ 97 

Figure 35. PCA analysis of 1000 top variable genes between WT and mutants. ......................... 98 

Figure 36. The overlap of ligand independent differentially expressed novel targets of ER. ...... 99 

Figure 37. Cell adhesion to Collagen I and IV in individual WT and mutant clones. ................ 100 

Figure 38. Cell adhesion different ECMs in T47D pooled WT and mutant cells. ..................... 101 

Figure 39. Network analysis of ligand independent novel regulated genes common between 

Y537S and D538G in each cell line. ........................................................................................... 102 

  



 xv 

PREFACE 

Over the past few years, I have been so lucky to be surrounded by intelligent and lovely people. 

First and the foremost, I would like to thank my advisor, Dr Steffi Oesterreich. She was a great 

mentor throughout my studies and stood by me in the times of failure and success. I felt not only 

like a student of hers, but also a close friend, and for that I truly thank her. Further, I have always 

admired her knowledge and passion about science. Oftentimes, we had very productive 

discussions which were the key to my motivation and progress. I would also like to thank the 

members of my committee, Adrian Lee, Candace Kammerer and Ryan Minster for the guidance 

and insight that they provided. I should also thank the department faculty, in particular Candy 

Kammerer, who provided an excellent learning atmosphere where student progress is a priority.  

I would like to thank the members of Oesterreich and Lee labs for their support, 

friendship and all the fun moments that we had together. My special thanks go to my colleagues 

and friends Kevin Levine, Rebecca Watters, Rekha Gyanchandani, Matt Sikora, Nolan 

Priedigkeit, Emily Harrington, Courtney Andersen, Ali Nagle, Tiffany Katz, Beth Knapick, Peilu 

Wang, Nilgun Tasdemir and Vaciry Li. I would like to highlight two intelligent and selfless 

people, Ryan Hartmaier and David Boone, who spent hours teaching me science through 

thought-provoking discussions. It would be hard for me to find another lab with such sincere and 

lovely people.   



 xvi 

Most importantly, I like to thank my family for their endless love and support. Although 

it has been tough being away from them for the last few years, I would not have been able to 

make it through without thinking of my family. My dad, Agha Seyed, taught me how to be hard-

working and take risks to achieve the best in my life. I learned how to be passionate and love 

other people from my mom, Shahnaz, who devoted best moments of her life taking care of me. 

And I have the most cheerful brother on earth, Hamid, who makes me laugh about anything.  My 

family has lightened my way to where I stand today. I owe them what I have until the last day of 

my life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvii 

LIST OF ABBREVIATIONS 

 

4OHT 4-hydroxytamoxifen  

AAV adeno-associated virus 

AF-1 activation function 1  

AF-2 activation function 2 

AI aromatase inhibitor 

cfDNA circulating free DNA  

ChIP-seq chromatin immunoprecipitation-sequencing  

DBD DNA-binding domain 

ddPCR digital droplet PCR 

DE differentially expressed  

E2 17β-estradiol  

ECM extra cellular matrix 

ER estrogen receptor alpha 

ERE estrogen response element 

GWAS genome wide association study  

LBD ligand binding domain 

LLOD lower limits of detection 



 xviii 

MACS Model-based Analysis of ChIP-Seq 

MAF minor allele frequency  

MAPK mitogen-activated protein kinase 

METABRIC Molecular Taxonomy of Breast Cancer International Consortium  

MPS massively parallel sequencing  

PARP Poly(ADP-ribose) polymerase  

PDX patient derived xenograft  

PGRR Pittsburgh Genome Resource Repository 

PR progesterone receptor  

qPCR quantitative PCR 

regSNP regulatory SNP 

regSNV regulatory single nucleotide variant 

SERD selective estrogen receptor degrader 

SERM selective estrogen receptor modulator 

SNP single nucleotide polymorphism 

SNV single nucleotide variant 

SRA Sequence read archive 

TCGA The Cancer Genome Atlas  

TF transcription factor 

WGS whole genome sequencing  

WT wild-type  

 



1 

1.0  INTRODUCTION 

1.1 ESTROGEN RECEPTOR STRUCTURE AND FUNCTION 

Estrogen receptors are a subgroup of nuclear receptors which are responsible for sensing steroid 

hormones and control development, metabolism, and homeostasis of the organism (1). Two 

classes of estrogen receptors exist, alpha (hereinafter referred to as ER) and beta, which map to 

chromosomes 6q and 14q and are encoded by separate genes ESR1 and ESR2, respectively. Each 

receptor has distinct patterns of expression and function in normal and disease states. 

ER is a nuclear transcription factor comprised of different functional domains (Figure 1). 

The A/B domain contains the transcriptional activation function 1 (AF-1) which is located at the 

NH2 terminus of the receptor and can be activated in a hormone independent manner. The C 

domain encompasses the DNA-binding domain (DBD), responsible for DNA interaction. The 

nuclear localization sequence is located in the D-domain or hinge region. Finally, the E/F 

domains resides in activation function 2 (AF-2) or ligand binding domain (LBD) which 

stimulates the receptor upon ligand binding. 
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Figure 1. Schematic view of estrogen receptor structure. 
ER domains are named A-F with amino acid numbers below functional domains labeled above. 
As a transcription factor, ER actively interacts with the genome to transcribe a group of 

target genes. There are two distinct genomic pathways that ER can exert its transcriptional 

activity within the cell. In the classic estrogen signaling, ER is activated by estrogen and then 

binds directly to estrogen response elements (EREs) to initiate the gene transcription by serving 

as an enhancer or repressor. Several studies have sequenced chromatin immunoprecipitation 

enriched DNA fragments (ChIP-seq) and have shown that ER binds to thousands of regions in 

the genome (2-5).  These studies have revealed that the regulation of ER target genes can be 

mediated via proximal promoter binding or long-range interactions. In the second non-classical 

pathway, ER is activated by receptor tyrosine kinases which recruit transcriptional complex to 

the promoter of the target genes by interacting with other nuclear proteins (6). For example, ER 

binding sites are enriched for a number of putative binding motifs of nuclear proteins including 

SP-1, AP-1, Oct and C/EBP (7-9). Further, there is evidence that suggests some transcription 

factors can serve as a pioneer for ER binding such as FOXA1 (4) and some can control and 

reprogram ER chromatin binding such as progesterone receptor (PR) (10). 

ER also has non-genomic mediated signaling that involves cytoplasmic proteins. Some 

studies have suggested the presence of ER outside the nucleus facilitating membrane and 

cytoplasmic signals (11). Both full length ER and alternatively spliced ER have been implicated 
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in cytoplasmic signaling (12,13). This non-genomic signaling results in activation of growth 

factor receptors, cellular tyrosine kinases, mitogen-activated protein kinases (MAPKs), 

phosphatidylinositol 3 kinase, and Akt (protein kinase B) -signaling enzymes, and adaptors such 

as adenyl cyclases and Shc (14,15). Activation of these pathways by estrogen sends strong cell 

survival and cell proliferative signals via Akt and MAPK pathways. In addition, these kinases 

can phosphorylate ER and its coregulators to augment nuclear ER signaling (14). 

1.2 SIGNIFICANCE OF ESTROGEN RECEPTOR IN BREAST CANCER 

Given a widespread role for estrogen signaling in human physiology, estrogen receptors have 

been shown to be associated with many types of abnormalities including neurodegenerative 

diseases, cardiovascular disorders, obesity, lupus erythematosus and several types of cancer, in 

particular breast cancer (16).  

Breast cancer has become a major public health issue with an increasing incidence over 

the past decade in the US (www.cancer.gov). Breast tumors can be classified into subtypes based 

on gene expression patterns among which the ER overexpressing subtypes (ER+), Luminal A 

and B, comprise 70-80% of all breast cancers (17-20). Interfering with estrogen action is one of 

the best treatments in this subset of patients with ER+ tumors. Endocrine therapy targets estrogen 

signaling by inhibiting ER activity or blocking the synthesis of estrogen. The selective estrogen 

receptor modulators (SERMs) such as Tamoxifen have been one of the major therapeutic 

approaches against estrogen receptor for the last 25 years (21). Tamoxifen has been shown to 

improve the survival as well as the quality of life in patients with breast cancer (22,23). The ER+ 

breast cancer became further treatable with the introduction of additional endocrine therapies 
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which either cut off the source of the estrogen ligand, aromatase inhibitors (AIs) such as 

Anastrozole and Letrozole, or degrade the ER such as Fulvestrant (24,25). Clinical trials have 

suggested that Letrozole and Anastrozole may be superior to Tamoxifen as the first-line therapy 

in hormone-receptor positive breast cancer in postmenopausal women (26-29).  Fulvestrant has 

been also shown to be as effective as AIs; however in combination with Anastrozole, it works 

better in patients with metastatic disease (30-32).   

Despite great advances in the treatment on ER+ breast cancer, a portion of tumors does 

not respond to endocrine therapy and the tumor regrows rapidly (de novo resistance). 

Furthermore, a substantial number of patients who do respond very well for a few years, will 

develop disease progression while on therapy, or even recur many years later (acquired 

resistance) (21,33).  

Resistance to endocrine therapy is a major health and societal problem.  Several studies 

have suggested that resistance against anti-estrogen treatment is due to crosstalk between ER and 

other growth factor pathways. Osborne et al indicated that overexpression of AIB1 and HER-2 in 

breast tumors is associated with worse outcome in patients undergoing tamoxifen therapy (34). 

Activation of the mTOR pathway may also be an alternative pathway through which tumor cells 

escape the effect of Tamoxifen (35). IGF1R and EGFR/MAPK pathways which are involved in 

cell growth and proliferation have shown to be activated in Tamoxifen resistant cell lines (36-

39). 

Many studies have suggested that development of resistance is caused by the tumor 

acquiring somatic mutations, and there is increasing evidence for a role of germline mutations. 

For instance, somatic mutations in PIK3CA, PTEN and TP53 and germline mutations in CYP 

family gene are known to be associated with endocrine response in patients (40-43).  
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Overall, the data suggests that a combination of genetic and transcriptomic changes could 

modify the response to endocrine treatments although more studies are warranted to understand 

the biology of de novo and acquired resistance in breast tumors. 

1.3 DNA SEQUENCE VARIANTS ASSOCIATED WITH ER BINDING IN BREAST 

CANCER 

As mentioned previously, one of the major ways through which estrogen signaling is mediated is 

via ER-DNA interaction. Upon recruitment to DNA, ER facilitates the transcription or repression 

of downstream target genes essential for cell growth and proliferation. Our understanding of ER 

binding sites has been greatly improved owing to a large number of ER ChIP-seq studies in 

breast cancer models (2,4,5,44-46). Of importance, ER is differentially bound to DNA in 

Tamoxifen responsive versus resistant cell lines and tumors (4). It has also been shown that 

differential binding sites in breast tumors are linked to clinical outcomes in patients (4). 

However, the potential genomic changes underlying unique ER binding sites in different models 

are still unclear. A number of studies have suggested that several single nucleotide 

polymorphisms (SNPs) associated with breast cancer are likely to lie within EREs in the 

promoter of critical growth factor and cell adhesion genes such as FGFR2 and NRCAM (47-49). 

A computational study predicted that an ERE associated germline SNP in intron 2 of the 

NRCAM gene is likely to be enriched in breast cancer patients (47). Two large genome wide 

studies have identified risk associated SNPs which are able to generate putative ER binding site 

in the intron of the FGFR2 gene (48,49). In an in silico study, it has been indicated that breast 

cancer-risk associated SNPs are enriched in the binding sites of ER in a cell-type specific 
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manner. Testing the statistically significant SNPs in ER cistromes, the authors found a variant 

suppressing the expression of a downstream gene, TXO3, through modulating the FOXA1 

binding to DNA (50).  Clinical studies have also shown that functional SNPs in putative EREs 

can alter endocrine response to anti-estrogen drugs.  A genome wide association study (GWAS) 

of breast cancer patients receiving endocrine therapy identified a SNP in the second intron of 

ZNF423 gene recruiting ER in the presence of 4-hydroxytamoxifen (51). A functional SNP was 

identified that created an ERE affecting TCL1A gene expression in a phase III trial comparing 

Anastrozole vs Exemstane (52). These data suggest a potential role for genomic variation 

underlying unique ER binding which could potentially affect the disease progression and 

response to anti-estrogen drugs. 

In order to better understand how SNV could alter ER binding to DNA, I developed a 

pipeline for identifying SNVs in ER binding sites and predicting their impact on ERE motifs. 

Lucas dos Santos (Department of Biomedical Informatics) helped with implementing the motif 

analysis in our pipeline. I used the well-established breast cancer cell line, MCF7, ER ChIP-seq 

data as a training sample to build our pipeline and then applied that to all available ER ChIP-seq 

data sets originating from breast cancer cell lines and tumors. In the following chapters, I will 

discuss how I employed my method to identify functionally relevant SNVs in ER bindings sites 

and how I validated a candidate intronic SNP in IGF1R gene by in vitro studies.  
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1.4 ESR1 GENE MUTATIONS IN PRIMARY AND METASTATIC BREAST 

CANCER 

The theory of “somatic ESR1 mutations as a mechanism for escaping endocrine therapy” was 

first proposed decades ago when multiple groups tried to screen primary tumors. Few studies 

were able to identify ESR1 mutations at very low frequency (53-57). Table 1 shows a summary 

of ESR1 mutations found in primary breast tumors, most of which lead to a nonfunctional 

truncated receptor. The Cancer Genome Atlas (TCGA) also shows a mutation frequency of 1% 

at ESR1 locus in about 1,000 breast tumors (58). However, there has been an exponential 

increase in the number of studies in the last two years describing ER as being highly mutated in 

metastatic breast cancer. Li et al first reported the incidence of ESR1 ligand binding domain 

mutations in metastatic lesions (59). This was followed by a number of groups discovering a 

significantly higher rate of ESR1 mutations (15-50%) in metastatic lesions derived from primary 

ER+ tumors (60-63). Furthermore, we and others indicated that ESR1 mutations are detectable in 

the blood of patient with progressed disease (64-69). The majority of the point mutations 

identified in metastatic lesions are located in the LBD suggesting a gain of function for 

resistance to anti estrogen treatments (Figure 2). Preliminary functional studies have shown that 

ER mutants are hyperactive in the absence of estrogen and strongly interact with cofactors. 

Although it was first believed that the ER mutations arose under estrogen deprivation setting 

such as AI therapy, several groups found that cells transfected with ESR1 mutant plasmids are 

partially resistant to tamoxifen and fulvestrant. However, both drugs showed potency to knock 

down ER activity at higher doses (60-63). Additionally, it has been shown that Y537S and 

D538G ER mutants have more affinity to ER cofactors SRC-1 and AIB1, respectively(63,70,71). 
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Further studies are required to better characterize the frequency of ER mutations, and their 

altered activities and function, in particular in the context of endocrine therapy. 

Figure 2. Schematic view of the location somatic mutation in ESR1 gene. 
The majority of mutations lie within LBD domain of ER protein with 537 and 538 amino acid sites being 
the most frequently mutated loci.  

Table 1. A summary of ESR1 mutations found in primary breast cancer 

Mutation Domain Impact References 
N69K AF-1 NA (56) 
A86V AF-1 NA (53) (53) 
G160C AF-1 NA (72,73) 
L296P AF-2a, hinge NA (55) 

K303R AF-2a, hinge 
Increased estrogen 

mediated transactivation (74) 

E352V 
Hormone 

binding, AF-2 NA (54) (53) 

M396V 
Hormone 

binding, AF-2 NA (56) 
437stop HBD NA (54) 

Based on these data, I sought to address a few urgent questions in the field: 
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1) Do rare ESR1 mutant clones exist in primary tumors?

2) Are ESR1 mutations present in understudied metastatic lesions such as bone and brain, and

also circulating free DNA (cfDNA) of patients with advanced disease? 

3) What is the biological gain of function of ESR1 mutants in the context of hormonal resistant

breast cancer? 

In chapters 2 I will address questions 1 and 2 using the highly sensitive digital droplet PCR 

(ddPCR) methodology which is able to detect rare mutations at a frequency as low as 0.05%. 

This method helped us to identify a high frequency of ESR1 mutations in primary tumors, 

metastatic lesions and blood of the patients with progressed disease. Finally in chapter 3, I will 

discuss our findings about the biology of ER mutants via integrating genomic, transcriptomic and 

epigenomic data.   

1.5 PUBLIC HEALTH RELEVANCE 

Breast cancer is the most common cancer and the second most common cause of cancer death 

among U.S. women. Despite major advances in the early detection, diagnosis, and treatment of 

breast cancer, health care providers face critical challenges to create and support health care 

programs that can improve breast cancer outcomes. Compared to low and medium level 

countries, governments with well-funded health care systems have higher rates of breast cancer 

incidence, but also have better overall rates of breast cancer survival (75). Thus, genetic testing 

in breast cancer, whether for early detection or improved outcome, seems to play an important 

role in helping public health in these countries (76).  
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BRCA1 and BRCA2 mutations are probably one of the significant examples of breast 

cancer screening. The identification of families at the highest hereditary risk for cancer has 

served as a model to test strategies for prevention or early detection of breast malignancies 

(77,78). Genetic testing has also helped treating breast cancer patients by personalized medicine 

approach. For example, it has been shown that tumors deficient in BRCA and Fanconi anemia 

genes are more sensitive to interstrand cross-link–generating drugs (e.g., mitomycin C, platinum 

and its analogues) and Poly(ADP-ribose) polymerase (PARP) inhibitors (79). There are many 

companies offering targeted sequencing services for hotspot genes in breast cancer although the 

mutations from only a few genes now have prognostic value for the patients.  

Approximately all of the commercially available genetic tests are focused on the coding 

genome given the poverty of our knowledge about the non-coding genome which comprises 98% 

of our DNA. There have been tremendous efforts in the recent years in characterizing the role of 

non-coding genome by large multi-center collaborative projects such as ENCODE (80). TCGA 

has also given us the opportunity to study non-coding DNA in cancer by sequencing hundreds of 

whole genomes from different tumor type (58). Two comprehensive studies of non-coding 

mutations in cancer demonstrated recurrent mutations in the regulatory regions of the genome 

(e.g. promoters, 3’UTRs and 5’UTRs) (81,82). They also indicated that these regulatory 

mutations could have clinical importance by impacting the survival of the patients carrying the 

mutations. 

In breast cancer patients, about two-thirds of the tumors are ER-positive which makes 

them an enormous population of candidates sensitive to endocrine therapy. Our main goal in this 

study is to identify recurrent SNVs associated with ER pathway in breast cancer, from regulatory 

variants in ER binding sites to recurrent coding mutations in ESR1 gene. Detection and tracking 
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the ESR1 mutations in the blood of breast cancer patients could serve as a tool for monitoring 

response to endocrine therapy as testing metastatic lesions is a hassle in the clinic and could be 

complicated for the patients.  We hope to implement the novel findings of our study to improve 

the predictive genetic testing in ER+ breast cancer patients in terms of therapy and survival. This 

will help public policy makers to direct treatment budgets more efficiently in order to target 

potential candidates in the setting of personalized medicine. 

1.6 HYPOTHESIS 

I hypothesize that SNVs in ER pathway are associated with breast cancer progression and 

metastasis in ER+ disease (Figure 3). In my experimental model, the SNVs include ESR1 gene 

mutations and genetic polymorphisms in ER binding sites. I believe such SNVs will affect ER-

cofactors interaction, ER binding sites, the expression of downstream targets and eventually 

signaling pathways activated by ER. Our better understanding of ER associated SNVs will 

inform us about the biology existing behind resistance against endocrine therapy. 
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Figure 3. The schematic view of the hypothesis model.  
Classical ER pathway in breast cancer is inhibited by available endocrine treatments. Two major pathways 
may contribute to resistance against anti E2/ER treatments and cancer progression: 1. RegSNVs in RE 
binding sties may modulate the ER affinity to DNA and change the expression of downstream target genes 
2. Somatic mutations in ESR1 locus may alter the function of ER leading to a decreased response to
endocrine therapy. 
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2.0  IDENTIFICATION OF REGULATORY SINGLE NUCLEOTIDE VARIANTS IN 

ESTROGEN RECEPTOR BINDING* 

* Dr Takis Benos and Lucas dos Santos contributed to motif analysis part in our analysis 

pipeline. Kevin Levine helped with analyzing TCGA data.  

2.1 INTRODUCTION 

Breast cancer is a major public health issue with an increasing incidence over the past decade in 

the US. Endocrine therapy, such as the antiestrogen tamoxifen and aromatase inhibitors, are the 

most successful treatment for breast cancer in which estrogen signaling is active. Estrogen 

signaling is mediated through ER, which upon binding the ligand estradiol, is recruited to DNA 

at EREs, and alters transcription of downstream target genes essential for cell growth and 

proliferation. The development of chromatin immunoprecipitation assays has allowed a genome-

wide analysis of ER binding sites.  For example, ER binds different sites in tamoxifen responsive 

versus resistant cell lines and tumors (4). However, the potential genomic changes underlying 

unique ER binding sites in different models are still unclear. 

A number of studies indicate that SNPs associated with breast cancer lie within EREs, 

such as those in FGFR2 and NRCAM (47-49). In an in silico study, breast cancer-risk associated 

SNPs were enriched in ER binding sites in a cell-type specific manner (50).  After analyzing 



14 

these statistically significant SNPs in ER cistromes, the authors found a variant suppressing the 

expression of a downstream gene, TXO3, via modulation of FOXA1 binding to DNA (50).  

Clinical studies have also shown that functional SNPs in putative EREs can alter endocrine 

response to anti-estrogen drugs.  A GWAS of breast cancer patients in a phase III trial comparing 

anastrozole vs exemestane identified a SNP in the second intron of ZNF423 that is associated 

with recruitment of ER in the presence of 4-hydroxytamoxifen (51). A functional SNP was also 

identified which created an ERE conferring estrogen induction of TCL1A gene expression (52). 

These data suggest a role for genomic variation underlying unique ER binding which may affect 

disease progression and response to anti-estrogen therapy.  

ChIP followed by high-throughput sequencing is a powerful technique for genome-wide 

mapping of protein-DNA interactions (83). Owing to the tremendous technological 

developments and reduction in the costs of the massively parallel sequencing (MPS), the number 

of ChIP-seq studies has grown rapidly. ChIP-seq is generally utilized to characterize the binding 

sites of a specific protein through enrichment of the sequencing reads over the genome. 

Sequencing reads have generally been simply used to identify binding sites and the strength of 

binding; however, recent studies have examined the actual sequences themselves, to identify 

variants that affect DNA binding. BCRANK is an algorithm designed to detect regulatory SNPs 

(regSNPs) in ChIP-chip data based upon SNP genotyping in DNA binding sites (84). More 

recently, another strategy used ChIP-seq data to nominate regSNPs using the assumption that the 

enrichment of SNPs within transcription factor (TF) binding loci indicates their regulatory 

function (85). This approach was applied to ENCODE data resulting in the characterization of a 

panel of SNPs associated with a number of transcription factors. Both approaches are primarily 

focused on annotated SNPs and rare variants may be missed. These studies also lack a 
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connection between regSNPs and the expression of cis target genes, which eventually determine 

the phenotypic output. Furthermore, appropriate motif detection could fine-tune the detection of 

biologically relevant variants in genome-wide binding sites.      

Here we describe a pipeline integrating computational and experimental strategies to 

detect and validate regulatory single nucleotide variants (regSNVs) defined as germ-line or 

somatic single base pair changes that can affect TF binding to DNA. Our pipeline interrogates 

ChIP-seq reads and nominates regSNVs affecting transcription factor binding motifs. Using 

MCF7 cell line as the most studied model in breast cancer, we addressed whether ER binding is 

associated with regSNVs and resulting in differential expression of downstream genes. We 

further applied our computational pipeline to all available ER ChIP-seq data including ER-

positive cell lines and tumors. Lastly, we modified our pipeline to accommodate discovery of 

somatic RegSNVs in whole genome sequencing (WGS) data. We believe that our strategy is able 

to identify genomic variation localized in TF binding sites having potential phenotypic 

significance.  
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2.2 MATERIALS AND METHODS 

2.2.1 Extracting genomic variants from ChIP-seq reads 

SNVs were identified from ChIP-seq data using the GATK pipeline(86). Briefly, BWA was first 

employed to align the raw sequence reads to the human genome reference (hg18) (87). To 

increase the sequence read coverage over the binding regions for more accurate variant calling, 

we pooled the reads from all the data sets on the same cell line. The reads were sorted and 

duplicates were removed using PICARD tools (ww.github.com/broadinstitute/picard). To refine 

the mapping quality, reads were locally realigned around the known indels and finally base calls 

were recalibrated using GATK tools. The SNVs were called by the GATK UnifiedGenotyper 

tool and known variants were annotated using dbSNP and 1000genome databases. We filtered 

out sequence calls with a coverage <10 reads and/or a phred-score <Q20, and SNVs which were 

not within binding sites. 

2.2.2 Extracting somatic SNV in ER binding sites from WGS data 

We first pooled and combined all the ER binding sites from available ChIP-seq data. This led to 

a comprehensive list of 331,021 binding peaks with an average length of 573 bp. Sequence read 

archive (SRA) files were then obtained from a WGS of 46 breast tumors paired with normal 

blood (88) via dbGaP(phs000472.v1.p1). BAM files were extracted from SRA files containing 

only the reads overlapping with ER binding sites. The generation of one bam file failed due to 
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quality issues of the SRA file (n=45). The trimmed bam files were then passed through GATK 

pipeline to mark duplicates, locally realign the reads around the indels and recalibrate the base 

quality score. Recalibrated bam files were used to call somatic SNVs by SomaticSniper, a 

package aimed to detect point mutations by comparing tumor and normal pairs (89). We finally 

subtracted the dbSNP variants from the Somatic calls to exclude the germline SNPs. 

2.2.3 Identifying predicted DNA binding sites using ChIP-seq data 

The Model-based Analysis of ChIP-Seq (MACS) (90) was used to analyze all ER ChIP-seq data 

in breast cancer prior to July 2014 (Table 9). MACS models the length of ChIP sequencing reads 

to improve the resolution of predicted binding sites. We used 1e-5 as the p-value cutoff and 

assigned a genome size which matches UCSC human hg18 assembly. In data sets which had 

sequenced untreated genomic DNA as a control we used this sequence as input (untreated) 

control. 

2.2.4 Motif analysis and p-value scoring of the regSNVs* 

For each identified SNV, sequences containing reference allele and alternative allele were 

computationally created. Each sequence was independently scanned using the ESR1 human 

position specific matrices (PWM). The PWM was obtained from the JASPAR database (91). 

Determination of the potential effect of a given SNV in a binding site was inferred using 

reimplementation of the is-rSNP algorithm (92). Briefly, the is-rSNP calculates the background 

distribution of PWM scores, for a given PWM. Sequences containing reference and mutated 

alleles are scored and a p-value for each score is calculated. The ratio of reference and mutated 
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sequence p-values are calculated and compared to the background distribution of p-value ratios. 

If the p-value obtained from the background distribution is less than 0.05, then a SNV is 

considered to affect a binding site. The SNVs are next ranked based on the adjusted p-value 

ratio, which shows the significance of motif binding change after the introduction of the variant 

allele in the consensus sequence. 

*(In collaboration with Dr Takis Benos and Lucas Santana) 

2.2.5 TCGA data analysis 

Using the Pittsburgh Genome Resource Repository (PGRR), we accessed gene expression data 

for 1,095 breast cancer samples and SNP array data for 501 cases. The expression of regSNVs 

target genes was compared between wild-type (WT) and variant carriers by a multiple 

comparison test. The ER positive disease was defined by ER staining in tumor samples. For the 

enrichment analysis, the closest adjacent genes to regSNVs were called and used to test for 

differential expression between ER+ and ER- tumors.   

2.2.6 ChIP 

ChIP experiments were performed as previously described by our group (93). Briefly, hormone 

deprived cells were treated with 10nM E2 or vehicle (EtOH) for 45 minutes. We used ERα (HC-

20) and rabbit IgG (sc2027) antibodies (Santa Cruz Biotechnologies) for immunoprecipitation. 

ChIP DNA was analyzed by qPCR using primers amplifying the rs62022087 locus in IGF1R 

(Table 8). 
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2.2.7 Allele specific ChIP 

ChIP DNA was first amplified by primers specific to the SNV site (Table 8). PCR products were 

TA-cloned into pCR™4-TOPO® (Invitrogen) and plasmid was transformed to competent cells 

according to the manufacturer’s instructions. 30 bacterial colonies were picked, DNA isolated, 

and subjected to Sanger sequencing. The wildtype and variant alleles were counted and the 

statistical significance of allele enrichment was determined by Chi-square test.  

2.2.8 105BRNA extraction and quantitative PCR (qPCR) 

RNA was extracted using Illustra RNAspin Mini kit (GE Health). iScript master mix (Bio-Rad) 

for cDNA conversion and qPCR reactions were set up on a CFX384 thermocycler (Bio-Rad), at 

an annealing temperature of 60 for 40 cycles.  

2.2.9 106BCloning and luciferase assay 

ER binding sites with IGF1R SNP and WT alleles were amplified from MCF7 DNA using 

primers containing the restriction sites for EcoRV and HindIII (Table 8). PCR products and 

backbone plasmid pGL4-TATA-luc (pGL4.23 from Promega) were digested and ligated using 

thermos scientific rapid DNA ligation kit, and transformation using TOP10 competent cells. The 

plasmids were isolated using QIAprep Spin Miniprep Kit and further validated by Sanger 

sequencing.   

MCF7 cells were grown in DMEM, supplemented with 10% FBS. Before transfection, 

cells were estrogen deprived for three days with IMEM containing 10% charcoal-stripped FBS. 
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Cells were transfected with pGL4 ER binding site TATA –luc containing WT or SNP allele and 

renilla using Lipofectamine LTX with Plus. 10nM Estradiol was added to media 24hrs after 

transfection. Firefly and renilla luciferases were measured sequentially using the Dual-Luciferase 

Reporter Assay System (Promega).  

2.3 RESULTS 

2.3.1 In-silico Identification of regSNVs in MCF7 ER ChIP-seq data 

MCF7 is one of the most employed cell lines for studying molecular genetics of breast cancer. 

Therefore, we selected publicly available ER ChIP-seq data from MCF7 to identify regSNVs in 

ER binding sites. Our computational approach (Figure 4) consisted of 1) identify SNVs from 

MCF7 ER ChIP-seq data, 2) identify ER biding sites using MACS, 3) overlap SNVs with ER 

binding sites, and 4) rank regSNVs based upon the predicted alteration of motif binding. 
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Figure 4. Analysis pipeline for detecting regulatory SNVs from ChIp-seq data.  
The above pipeline was utilized to extract and rank RegSNVs based on their impact on the corresponding 
TF binding. MACS and GATK tools were recruited to identify binding sites and SNVs, respectively. The 
SNVs and binding peaks were overlapped and then regSNVs were ranked depending on how they alter 
EREs. One of the top candidates was selected for further functional studies. 
   

We applied our computational workflow to nine ER ChIP-seq data sets from five different 

studies of MCF7 cells performed under similar experimental conditions (Table 9) (3-5,45,46). 

303,964,039 reads were mapped to the human genome (hg18) and identified a total of 1,409,406 

SNVs and short indels. However, only 163,502 (11.6%) variants had sufficient coverage to pass 

filtering (see Materials and Methods) and were included in the final list for the analysis. 

In parallel to SNV discovery, we used the MACS algorithm (90) to map genome-wide 

ER binding sites using the same nine ER ChIP-seq data sets from above (but each data set 

analyzed independently). The results showed a wide range of variability in the number of 
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binding peaks from 15,677 to 79,978 sites. To build a consensus peak list, we overlapped the 

binding sites of all data sets and selected the genomic regions which were common in at least six 

data sets.  This led to the detection of 22,143 ER binding sites with an average length of 385 bp. 

Using this panel of ER binding peaks, we next identified the SNVs which altered consensus 

EREs.  

Motif assessment was performed by comparing ER binding probabilities in the presence 

and absence of SNVs. The variants that were associated with a statistically significant change 

(see Materials and Methods) were selected as putative regSNVs. Our pipeline nominated 5,839 

motif altering regSNVs, among which 3,067 (53%) and 2,772 (47%) variants were 

computationally predicted to increase and decrease the binding affinity of their corresponding 

motifs, respectively (Table 10). To further refine the list, regSNVs were annotated with the 

closest adjacent genes and this list was compared to a list of estrogen-regulated genes. We 

focused on regSNVs capable of increasing ER binding and being within the proximity of an E2-

regulated gene (<5 kb of distance) (Table 1). Interestingly, a number of highly ranked 

statistically significant putative regSNVs appeared close to genes previously shown to be 

oncogenic in breast cancer such as PVT1 (94), IGF1R (95) and GREB1 (96). Of these, 

rs62022087 located in IGF1R was identified by both JASPAR and TRANSFAC matrices 

increasing the confidence of the call. Moreover, Sanger sequencing showed that this regSNV is 

heterozygous in MCF7, which makes it an appropriate candidate for allele-specific binding 

assays. This prompted us to investigate regulatory function of rs62022087 by further in vitro 

studies.  
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Table 2. Top 10 regulatory SNVs increasing ER binding to MCF7 genome. 

Chr Annotation Gene Distance From Gene SNP ID Adj_Pvalue_Ratio 
chr8:128992864 ncRNA_intronic PVT1 NA NA 2.26E-06 
chr10:94821513 intergenic CYP26C1,CYP26A1 dist=3069;dist=1709 rs68040629 1.10E-05 
chr15:97136484 intronic IGF1R NA rs62022087 2.03E-05 
chr15:97136484 intronic IGF1R NA rs62022087 2.03E-05 
chr10:121292409 upstream RGS10 NA rs10787978 3.39E-05 
chr6:157157941 intronic ARID1B NA rs12208040 3.63E-05 
chr6:157157941 intronic ARID1B NA rs12208040 3.63E-05 
chr11:20014669 intronic NAV2 NA rs10741810 3.65E-05 
chr17:54818764 intronic YPEL2 NA rs8073731 5.44E-05 
chr2:10384622 intronic HPCAL1 NA rs2014889 5.62E-05 
chr2:10384622 intronic HPCAL1 NA rs2014889 5.62E-05 
chr4:3456949 intronic DOK7 NA rs916189 1.09E-04 
chr2:11712184 intergenic GREB1,NTSR2 dist=11821;dist=3571 rs6432223 1.13E-04 

 

2.3.2 ER binding is associated with an intronic regSNV in IGF1R 

Our motif assessment analysis showed that rs62022087 is one of the top three regSNVs 

putatively modulating ER binding to an ER-regulated gene. This SNV is located within an ERE, 

and the G of the SNV could potentially alter the ERE from a weak to a strong binding site.  

rs62022087, with a minor allele frequency (MAF) of 13.5%, is located centrally in the second 

intron of IGF1R (Figure 5) which is a region hosting several active histone marks such as 

H3K29ac and H3k4Me1, and a number of transcription factors including FOXA1, FOXA2 and 

E2F1, and finally DNase I hypersensitive sites (Figure 16). Direct genotyping of rs62022087 by 

Sanger sequencing of MCF7 genomic DNA indicated that the locus is heterozygous compared to 

T47D, ZR75 and BT474 cells. We examined whether ChIP-seq data showed an allelic preference 

towards the regSNV, as would be predicted from the increased ERE motif binding (4). 

Supporting this,  cell lines (MCF7) and human breast tumors (Tumor_2, Tumor_3 and 
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Met_Tumor) which harbor the regSNV showed increased ER ChIP-seq reads in this ER binding 

site (Figure 5). In addition, the allele frequency of rs62022087 is strongly biased towards the 

variant allele in the samples carrying the regSNV (MCF7: 100%, Tumor 2: 100%, Tumor 3: 

78%, Met Tumor: 100%, derived from (4)), further supporting the idea that the regSNV results in 

increased ER binding.  A similar phenomenon was observed in the ChIP-seq data sets of two 

other studies (Figure 17).  Collectively, these data suggest that ER has higher affinity for the 

regSNV allele compared to the wild-type allele resulting in an increased transcriptional activity 

and expression of IGF1R. 

 

 

 
Figure 5. The location of rs62022087 in genome and ER binding sites. 

A) Schematic view of SNV genomic position in IGF1R gene. B) The position of IGF1R SNP with regards to 
canonical ERE sequence. C) The distribution of ER ChIP-seq reads flanking rs62022087 SNP in different 
cell line models as well as patient tumors (ref. 1). The numbers in parentheses are the fraction and 
percentage of the reads containing mutant allele, respectively. 
 
We next performed experiments to directly examine the role of the regSNV in altering 

ER-mediated induction of IGF1R expression.  ER ChIP-qPCR in MCF7 cells showed that ER 

bound the genomic region containing regSNV in intron 2 of IGF1R with a 4-fold enrichment 
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following E2 treatment (Figure 6A). Allele-specific ChIP showed a significant enrichment of the 

regSNV allele (G allele) in the DNA bound to ER (Figure 6B).  Cloning of the ER binding site 

(with or without the regSNV site) upstream of a heterologous promoter and luciferase indicated 

that the ER binding site containing the regSNV showed greater ER-induced luciferase expression 

upon estradiol treatment (Figure 6C). This indicates that the G allele is more potent in recruiting 

ER and subsequently transcriptional imitation leading to increased induction of IGF1R 

expression(Figure 6D). Consistent with this, we observed a significant increase in IGF1R 

transcript in MCF7 cells compared to the cell lines that lack the regSNV and are homozygous for 

the wild-type allele. Taken together, our in vitro experiments validate one of the top candidates 

found by our computational pipeline showing rs62022087 can change chromatin configuration in 

favor of ER binding and in the higher expression of IGF1R gene.  
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Figure 6. IGF1R SNP can affect ER binding and result in higher gene expression. 
A) Confirmation of ER binding to IGF1R SNP by ChIP-qPCR in MCF7 cell line. The cells were estrogen 
deprived for 3 days and subsequently treated by Veh or E2 (1nM) for 45 minutes. ChIP was performed as 
describes in the methods section. ER binding is significantly enriched upon treatment by E2. B) Allele 
specific ChIP result shows a significant enrichment of SNP allele (70%) vs Wt allele (30%) in ER binding 
site. C) Luciferase transactivation assay using MCF7 cells transfected with constructs containing the ER 
binding site with Wt or SNP. The luciferase assay demonstrates that the binding site with variant allele has 
higher affinity to ER upon induction by Estradiol (1nM). D) IGF1R gene expression in different breast 
cancer cell lines treated by Veh or E2 (1nM). The significant induction of IGF1R expression in MCF7 Cell 
line may contribute to the presence of regulatory SNP compared to the other cell lines with WT allele. 
 

2.3.3 Discovery of RegSNVs in available breast cancer ER ChIP-seq data 

We applied our workflow to all available ER ChIP-seq data in breast cancer cell lines and tumors 

comprising a total of 43 data sets from 7 independent studies (Table 10-Table 18) (2-5,44-

46,93,97). The variant calls were confined to those within ER binding sites. The closest genes to 



27 

the RegSNVs were annotated. The genomic position of the RegSNVs was also defined based on 

the coding and regulatory annotations. Figure 7 shows the distribution of RegSNVs in the 

analyzed models from available ER ChIP-seq data. As expected, the majority of regulatory 

variants are located in the intergenic areas whose functionality is not well-characterized. A great 

portion of the SNVs lies in intronic areas suggesting a major role of introns in regulation of the 

gene expression. 

Figure 7. The distribution of RegSNVs over the gnome across a panel of breast cancer cell lines, good 
and bad prognosis tumors. 
The binding sites from different ER ChIP-seq data sets were extracted and annotated based on their 
location in the genome. The majority of the binding sites are located in the intergenic and intronic areas. 



28 

Using gene expression on 1,045 samples in TCGA, we found that regSNVs (n=11,605) 

are enriched in the proximity of genes differentially regulated between ER-positive (n=808) and 

ER-negative tumors (n=237) (chi-square test, pvalue<0.01). Further, to determine if the regSNVs 

have a functional role, we assessed the correlation of genotype (i.e. regSNV) with neighboring 

gene expression. We used the SNP array data in TCGA to find the samples carrying the SNVs 

and then compared the expression of target genes in SNV vs wild-type carriers in only ER+ 

samples. Interestingly, this led to the discovery of 17 regSNVs associated with the expression of 

their adjacent genes (qvalue<0.01,Table 3). We observed that the variant allele was enriched in 

the ER binding sites where there was at least coverage of 10x (Table 19). This indicates that 

higher affinity of ER to variant allele leads to higher expression of the target gene. The majority 

of these variants (13 out of 17) were located in the promoter of target genes further showing that 

they are likely functionally important regulatory variants (Table 3). 

Table 3. Top regulatory SNVs associated with the expression of their target genes 

RegSNV Location Target Gene 
Number of Tumors with 
SNV genotype log2 fold change (Mut/WT) adj p-Value 

rs36208869 Promoter GSTM1 32 4.580808174 1.25E-08 
rs1131017 Promoter RPS26 318 -0.394006779 5.19E-07 
rs7113753 Promoter TRAPPC4 180 0.258426245 2.79E-05 
rs1412825 Promoter LRRIQ3 243 -0.217910733 3.64E-05 
rs34282253 Promoter XKR9 119 0.407692927 4.62E-05 
rs10747783 Promoter TSFM 205 -0.218721922 0.000157917 
rs252923 Promoter SETD9 197 0.407801595 0.000157917 
rs41293275 Promoter NSUN4 175 -0.215401706 0.000241865 
rs3213745 Promoter CEBPZ 241 -0.191620271 0.000444457 
rs2732649 intergenic LRRC37A 132 0.124517689 0.002214471 
rs17361749 Promoter NSUN4 168 -0.196072417 0.002736821 
rs10489769 Promoter NSUN4 172 -0.189003347 0.004515197 
rs10956142 intergenic ANXA13 38 -0.291199916 0.004515197 
rs2939587 Promoter TM2D3 260 0.207588052 0.005471564 
rs1291363 Promoter HTR7P1 315 0.591907017 0.006560413 
rs4418583 Intron LDLRAP1 248 0.237085892 0.006560413 
rs3811254 Intron OR4E2 3 0.035536509 0.009385423 
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The top candidate in our list is rs36208869 which is an SNV in the promoter of GSTM1 

gene. Our algorithm predicted an increased binding of ER to the SNP allele and we observed an 

approximately 16 fold higher expression in tumors carrying the SNP (adjP=1.25E-08). GSTM1 

encodes for a member of the glutathione S-transferase family which is responsible for 

detoxification of chemical compounds including carcinogens and products of oxidative stress 

(98). A large body of evidence has shown that loss of GSTM1 increases the susceptibility to 

several types of cancer including lung and bladder (99-101). Interestingly, we inquired 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data and found 

that higher expression of GSTM1 in breast tumors is associated with better survival in a group of 

1,505 patients (Figure 23, pvalue=8.2E-4). This result may be of clinical importance as 

rs36208869 may predict a better survival in patients carrying the variant allele. 

2.3.4 Identification of somatic RegSNVs in WGS data of breast tumors 

In order to discover novel recurrent somatic mutations in ER binding sites, we modified our 

workflow and applied it to a WGS study of 45 primary tumors paired with normal blood (88). 

The principles of our analysis follow what was described previously with minor modifications 

(Figure 18). We found 7,482 somatic SNVs occurring within ER binding sites. Among these 

variants, 13 were recurrent in more than one tumor (Table 4). We identified two intronic 

mutations in GPR126 and PLEKHS1 genes at a frequency of 8.6% (4/46). Interestingly, another 

mutation was observed 3 bp away in each locus at the lower frequency (2.1%, 1/46). We further 

validated these mutations in 98 breast tumors within TCGA samples with WGS data and, they 

appeared to be recurrent. However, the overall frequency of mutations is lower for both loci in 

TCGA (Figure 19).  Based on previously published ChIP-seq data (4) , the location of these 
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mutations overlap with ER binding further suggesting a regulatory role (Figure 19). In addition, 

somatic SNVs lie in regions shown to be actively regulating transcription by ENCODE data 

(Figure 20). We also found that non-coding mutations in GPR126 and PLEKHS1 are located 

within palindromic sites which are known to form sites for transcription factors binding (Figure 

21). This observation was intriguing although we failed to find a correlation between mutations 

and gene expression of GPR126 and PLEKHS1 genes (Figure 22).    

Table 4. Frequent SNVs in putative ER binding sites within WGS of 45 tumors 

Chr Start End Frequency (out of 46 tumors) Closest gene 
6 1.43E+08 1.43E+08 4 GPR126 

10 1.16E+08 1.16E+08 4 
PLEKHS1 
(c10orf81) 

8 99487670 99487671 3 KCNS2 
3 1.04E+08 1.04E+08 3 ZPLD1 
3 75824685 75824686 2 LINC00960 

21 9757052 9757053 2 TPTE 
21 10062034 10062035 2 BAGE2 
16 80440896 80440897 2 PLCG2 
16 10627835 10627836 2 TEKT5 
15 36396249 36396250 2 SPRED1 
14 1.01E+08 1.01E+08 2 LINC00524 
1 2.06E+08 2.06E+08 2 CR1L 
1 1.99E+08 1.99E+08 2 CACNA1S 

   

2.4 DISCUSSION 

Global genetic variation in TF binding sites can lead to widespread changes in gene expression 

among different individuals (102-104). Analyzing complete genomes of different cancer types 

has elucidated recurrent mutations in the genomic regions potentially regulated by TFs 

(81,82,105).  However, deciphering how genome-wide DNA variants affect TF binding remains 
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understudied. We present a computational pipeline, which analyzes ChIP-seq reads to identify 

regSNVs in TF binding sites. We used this pipeline, in combination with experimental studies, to 

confirm the impact of regSNVs on the corresponding DNA motifs.  While other studies have 

identified regSNVs in ER binding sites using a biased approach involving genotyping 

information from resources such as dbSNP and GWAS, our approach differs by identifying 

SNVs directly from ChIP-seq data thus increasing the likelihood of identifying regSNVs in TF 

binding sites..  

The MCF7 cell line is one of the most studied models for understanding ER biology, and 

results from this cell line have had a fundamental impact upon breast cancer research and patient 

outcome (67). Using available ER ChIP-seq data in MCF7, we investigated the genetic variation 

in ER binding sites with this model. The number of binding sites varies significantly between the 

MCF7 data sets ranging from 15,677 to 79,978 sites. This high degree of variation may be due to 

slight differences in technical details, such as culturing conditions or cell line passage numbers, 

utilized for the ChIP experiments.  We used an overlap of ER binding sites for this study.  Our 

analysis revealed a functional regSNV (rs62022087) in intron 2 of the IGF1R gene which was 

predicted to increase ER binding. We show that the rs62022087 SNP results in increased ER 

recruitment to intron 2 and increased E2-mediated expression of IGF1R gene in MCF7 cells 

compared to cell lines carrying the wild type allele. IGF1R overexpression has been implicated 

to play an important role in the development of breast cancer (106-108) and the crosstalk 

between IGF1R and estrogen signaling has been well established in malignant breast tissue 

(38,109,110). This prompted us to obtain more information on this SNP from GWAS studies and 

correlate it with clinical outcome in breast cancer patients. However, neither rs62022087 nor any 

of the SNPs in LD with our candidate SNP are genotyped by Affymetrix chips, which are 
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commonly, used in GWAS studies. Further sequencing studies in large cohorts are warranted to 

characterize the potential role of this regulatory SNP in development and progression of breast 

cancer.  

Our pipeline is able to detect not only germline variants but also rare somatic mutations, 

which may alter the affinity of TF to DNA. However, the general low coverage of ChIP-seq data 

makes it challenging to perform accurate variant calling. Therefore, in this study we pooled the 

reads from multiple data sets on the same cell line to improve the confidence of calls. With the 

decreased costs of sequencing, we expect that increased coverage in ChIP-seq studies will 

alleviate this problem in the near future. 

Applying our pipeline to all available ER ChIP-seq data characterized thousands of 

RegSNV candidates in multiple breast cancer models, which may potentially change the binding 

of ER. About 96% of these variants are annotated in dbSNP and 1000genome databases and are 

thus likely to be germline alteration, but we didn’t have access to normal matched samples to 

confirm this. This high rate of germline SNPs may reflect our inability to detect low allele 

frequency somatic mutations due to the low read coverage of ChIP-seq data.  The majority of 

regSNVs reside in intronic regions of the genome, similar to the regSNV we have characterized 

in intron 2 of the IGF-IR gene. Several studies have identified regulatory SNPs in genes 

associated with breast cancer susceptibility and treatment (49-51,111). By integrating multi-

omics large data sets, we found 17 regSNVs associated with the expression of target genes. The 

Top candidate was a SNP in the promoter of GSTM1 whose expression is associated with 

survival in breast cancer patients.  ChIP-seq reads provided further evidence showing the variant 

allele is enriched in the ER binding sites although we were not able to infer the true reference 

genotype due to not having access to normal tissue information in analyzed samples (Table 19). 
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We finally sought to identify recurrent non-coding mutations in ER binding sites by 

integrating WGS and ChIP-seq data. We discovered two mutation hotspot regions in the introns 

of GPR126 and PLEKHS1 genes. Several studies have previously reported the recurrence of 

PLEKHS1 mutations not only in breast but also in other cancers (81,82,105). The biology of 

these two genes is not known in cancer. GPR126 is a G-protein coupled receptor that is involved 

in neural development and myelination in mammals (112,113). PLEKHS1 is a pleckstrin 

homology domain containing protein which has been shown to be regulated by E2 in MCF7 cell 

line (114). We also did not find any meaningful connection between the presence of mutations 

and expression of neighboring genes in TCGA data. Therefore, we suspect these hotpots may 

interact with distal target genes. Future experiments such as chromosome conformation capture 

combined with high-throughput sequencing (4C-seq) are required to screen for potential physical 

interaction of these regulatory elements and distal parts of the genome. This will help us identify 

non-coding mutations affecting the regulation of critical genes in cancer.  
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3.1 INTRODUCTION 

ER is expressed in the majority of breast cancers and is a major regulator of breast cancer 

development and progression (115). Endocrine therapy is one of the most efficacious and least 

toxic treatments in ER-positive (+) breast cancers. Current strategies target ER action either by 

ligand deprivation (AIs or ovarian function suppression) or ER blockade through selective 

SERMs and SERDs. All these therapies may improve survival in early stage breast cancer 

(22,23). However, de novo or acquired resistance is a major clinical problem, especially in 

metastatic breast cancer. Multiple molecular mechanisms of resistance include down-regulation 

of ER expression, dysregulation of ER co-regulators, post-translational modifications of ER, and 

crosstalk with growth factor signaling pathways (6,34-39,116).  

The concept that somatic base-pair missense mutations in ESR1 may confer hormone 

independence has been speculated for many years. However, studies of primary breast cancer 

have reported few or no ESR1 mutations (53-57).  For example, ESR1 base-pair missense 

mutations are present at 0.2% (1/482) in breast cancers in TCGA (111), and 0.3% (5/1430) in the 

Catalog of Somatic Mutations in Cancer. However, recent studies have documented ESR1 as 

being highly mutated in metastatic breast cancer. Li et al first reported ESR1 ligand binding 

domain mutations in two patient-derived xenografts from hormone-resistant advanced disease 

(59).  Subsequently, high rates of ESR1 mutation (15-50%) in metastatic breast cancer have been 

reported (60-63). Furthermore, recent studies have implicated that the emergence of ESR1 

fusions can also be a mechanism of endocrine therapy resistance (59,117). Preliminary functional 

studies indicate that some somatic mutations in ESR1 results in ER ligand-independent activity 

that is partially resistant to current endocrine therapies, suggesting that these mutations may 

undergo selection under the pressure of endocrine therapy (59-63). 
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One goal of precision cancer medicine is to make clinical decisions based upon genomic 

data, which can identify a target for therapy, and/or predict therapeutic resistance. It is 

hypothesized that ESR1 gene mutations may be a predictive biomarker of resistance to endocrine 

therapy. As longitudinal biopsy and genetic analysis of metastatic disease is often not feasible, 

the concept of measuring mutations in tumor DNA circulating in plasma, termed cfDNA, has 

recently gained much attention. The feasibility of using cfDNA to noninvasively identify 

molecular alterations within metastatic tumors has been shown in several studies (68,118,119) 

and preliminary data suggest that cfDNA can be used to monitor breast cancer burden and 

treatment response (120).  A recent proof-of-principle study detected an ESR1 mutation (E380Q) 

in cfDNA from a single patient with advanced hormone refractory breast cancer (68,69). 

However, the detection of rare mutations has been challenged by several limiting factors, 

including low cfDNA yields and low tumor cellularity in metastatic lesions.  ddPCR is a highly 

sensitive and robust technology for detection of rare mutations compared to the available 

sequencing techniques (119,121,122).  Here, we report the use of ddPCR to study the incidence 

of ESR1 mutation in primary breast cancer, metastatic biopsies with a focus on bone and brain 

metastases since they have been understudied due to difficulties in accessing such tissue, and 

finally cfDNA from breast cancer patients with recurrent disease.  
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3.2 METHOD 

3.2.1 Sample acquisition 

Samples used in this study were obtained from the University of Pittsburgh Health Sciences 

Tissue Bank (HSTB) (primary breast cancer, brain metastases), or were prospectively collected 

(bone metastases, blood).  There were no special criteria for selection of samples for the study 

other than those described here.  Frozen primary ER-positive breast cancers (n=43) (>60% tumor 

cellularity) from patients subsequently treated with endocrine therapy were obtained from HSTB. 

Metastatic tumor biopsies from brain (n=38) and bone (n=12) were collected through HSTB over 

the last three years.  For collection of cfDNA (n=29), blood was drawn (1-4 x 10ml Streck tubes) 

between 01/14 and 08/14 from patients with advanced disease seen within the UPMC health 

system. There were a total of 122 samples, from 121 patients, since one patient (CF28) donated 

both cfDNA and a bone metastases sample.  In addition, we had access to skin (CF4), liver 

(CF16), ovarian (CF23), and soft tissue neck metastases (CF14) from patients who donated 

blood for cfDNA isolation, thus totaling n=126 analyzed samples.  ER status was detected by 

immunohistochemistry, using ASCO-CAP 2010 guidelines for tumors diagnosed in or after 2010 

(123).  All patients signed informed consent, and the studies were approved by the University of 

Pittsburgh IRB.  

3.2.2 DNA isolation, preparation, and quantification 

30-50 mg of frozen primary tumor tissue and 50-150 mg frozen bone metastases were crushed 

under liquid nitrogen, and DNA was isolated using Qiagen DNeasy Blood & Tissue Kit.  Brain 
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metastases were obtained as FFPE sections and Qiagen Allprep DNA/RNA FFPE Kit was used 

to isolate DNA from four to six 10 µm slides.  cfDNA was isolated as previously described 

(121).  Briefly, plasma was separated by double centrifugation within 7 days of blood collection, 

and DNA was isolated from 1-4 ml plasma using QIAamp Circulating Nucleic Acid kit. 

Targeted high-fidelity pre-amplification (15 cycles) was performed on cfDNA and DNA isolated 

from FFPE brain metastases using primers listed in Table 20. Pre-amplification products were 

purified using QiaQuick PCR purification kit and diluted before ddPCR at 1:100 and 1:20 for 

brain metastases and cfDNA, respectively.  The pre-amplification does not affect linearity of 

detection of the mutant allele, as we have shown for ESR1 and PIK3CA mutations (Figure 24 

and Figure 25). All DNA samples were quantified by Qubit dsDNA HS/BR assay kits (Life 

Technologies). 

3.2.3 Mutation detection by ddPCR 

Primers and probes were designed and ordered through Life Technologies for S463P, 

Y537C/N/S, K303R and Integrated DNA Technologies for D538G ESR1 mutations (Table 21). 

Bio-Rad QX100 Droplet Digital PCR system was used.  Briefly, 1 µl template from diluted pre-

amplified products or 50-60 ng of non-amplified DNA was mixed with ddPCR supermix for 

probes (no dUTPs) (Bio-Rad laboratories, Inc.) and primer/probe set.  Droplets were generated 

using 20 µl of the reaction mixture and 70 µl of droplet generation oil.  Positive and negative 

controls were included in each run to exclude potential contamination artifacts, and to control for 

proper gating of alleles.  All mutation-positive samples were run in at least 3 replicates, assaying 

at least 10,000 genome equivalents. For positive controls, we utilized oligonucleotides 

containing the mutation (463P, Y537C/N, K303R), DNA from a cell line with a D538G knock-in 
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mutation (unpublished data), or DNA from a liver biopsy with an ESR1 mutation at Y537S 

confirmed by Sanger sequencing (Figure 8).  Specificity of the probes was demonstrated for 

Y537C/N/S and D538G mutations (Figure 26).  No detectable cross-reactivity of mutant probes 

and WT probes was observed for D538G or Y537C mutation (Figure 27). We did find that an 

increase in the presence of Y537S caused a slight downshift in the fluorescent signal for D538G 

(Figure 28) causing a double population, however this didn’t affect the calculated D538G allele 

frequency. The reason for the decrease in D538G fluorescence is unclear.  Mutations with high 

allele frequencies were confirmed with Sanger sequencing using primers listed in Table 20. 

 

Figure 8. Positive controls for mutation probes utilized in ddPCR technology.  
ESR1 K303R, S463P, Y537C, Y537N oligos, or ESR1 D538G and Y537S gDNA were mixed with 
ESR1 WT gDNA to serve as positive controls for the assay.  Scatter plots of ddPCR results showing 
fluorescent detection of individual droplets.  Blue and green dots represent droplets with ESR1 
genotypes indicated on Y-axis and X-axis, respectively.  Orange dots represent droplets containing 
both WT and mutant ESR1 DNA.   Black dots represent droplets that did not contain DNA. 
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3.2.4 Quantitative analysis 

Data were analyzed using QuantaSoft software (Biorad), calculating a fractional abundance 

(“mutant allele frequency”).  The background noise, which was higher in pre-amplified DNA 

from cfDNA and FFPE brain metastases compared to DNA from frozen tissues (primary tumors 

and bone metastases), was defined as the average of allele frequency plus half (for cfDNA) or 

full (for FFPE DNA) 95% confidence intervals (CIs) of negative controls (ESR1 wildtype DNA) 

across all ddPCR assays. The noise was subtracted from the allele frequencies. The background-

noise-adjusted lower limits of detection (LLoD) of the assay were 0.05% for frozen tissues, 

0.10% for cfDNA, and 0.16% for FFPE tissues (Figure 29). Samples were called “positive” for 

the ESR1 mutation if a) the allele frequencies were >0 after subtraction of background noise, 

AND b) >2 mutant droplets were repeatedly detected, AND c) allele frequency was > noise 

adjusted LLoD for at least 3 independent assays.  

3.3 RESULTS 

3.3.1 ESR1 mutations in primary tumors 

We screened 43 primary ER-positive tumors to detect ESR1 mutations (S463P, Y537C, Y537N, 

Y537S, and D538G) recently described in recurrent endocrine-resistant breast cancer.  We also 

included the analysis of the K303R mutation, which has been previously described to be present 

in primary and metastatic disease, while it wasn’t detected in other studies (74,124-127). Three 

primary tumors (PR3, PR21, PR28) were positive for D538G, with very low mutant allele 



43 

frequencies between 0.07 to 0.2% (Figure 9, and Table 5).  Another sample (PR44) was positive 

in multiple repetitive assays, but the mutant allele frequency (0.012%) was below our LLoD. No 

other mutations were detected in any of the remaining primary tumors. We thus detected ESR1 

mutations in 7.0% (3/43, 95% Wilson binomial confidence interval (CI) 2%-19%) of primary 

ER+ breast cancers. 

 

 
Figure 9. ESR1 mutation allele frequency of ESR1 mutation-positive samples.  
Average mutant allele frequency ± SEM were calculated using data from at least 3 replicates (after 
subtraction of respective background noise). Grey lines indicate the adjusted LLoD of respective tissue. PR, 
BM, BR, and CF represented primary tumors, bone metastases, brain metastases, and cfDNA respectively.  
Each mark on x-axis represents a sample, and names are indicated for ESR1 mutation-positive samples. 
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Table 5. The rates of ESR1 mutations in primary tumors, cfDNA, brain and bone metastases from 
breast cancer patients. 

Samples N  ER+ 
Primary 

                          ESR1 mutations Pts with 
ESR1   
mutation 

Rates of 
ESR1 mutation K303R S463P Y537C Y537N Y537S D538G  

Primary 
tumor 43 43 0 0 0 0 0 3 3 7.0% (3/43) 

Bone 
metastases 12 11

‡
 0 0 0 0 0 1 1 8.3% (1/12) 

(9.1% in ER+)** 

Brain 
metastases 38 24

‡
 0 0 0 0 1 3 3* 

 
7.9% (3/38) 
(12.5% in ER+)** 
 

cfDNA 29 29
‡
 0 0 1 0 2 6 7* 24.1% (7/29) 

‡ Number with known ER+ primary tumor at time of diagnosis (ER status of primary tumor unknown for 
remaining samples) 
* One patient with a brain metastasis, and one with cfDNA analysis had multiple distinct ESR1 mutations 
within a single sample (polyclonal ESR1 mutations). 
** Frequency of mutations in metastases from a known ER+ primary tumor 
 

3.3.2 ESR1 mutations in bone metastases 

Since decalcification of bone metastases can impact downstream analyses, we restricted our 

analysis of bone metastases to fresh frozen tissue.  We obtained 12 frozen bone metastases, 11 of 

which were from primary tumors known to be ER+.  One sample (BM14) was positive for the 

D538G mutation, with an allele frequency of 1.4% (Figure 9), for an overall ESR1 mutation rate 

in bone metastases of 8.3% (1/12, 95% CI 0.4%-35%).  Of note, the pathologist’s estimate of 

tumor cellularity in this sample was about 1-5% (Table 22), suggesting that the allele frequency 

of this mutation within tumor cells in this sample is likely much higher.  To confirm our ability 

to detect mutations across all samples, we performed an additional control by assaying for a 

frequent PIK3CA mutation (H1047R).  Three samples (BM01, BM08, and BM11) (Table 22) 

tested positive for PIK3CA mutation at high allele frequencies (27.0%, 29.7%, and 37.8%), 

supporting suitability of our metastatic samples for mutation detection by ddPCR (Figure 30). 
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3.3.3 ESR1 mutations in brain metastases 

We analyzed 38 brain metastases, 24 of which originated from ER+ primary tumors, and 14 from 

which the ER status of the primary tumors were unknown.  All brain metastases with the 

exception of BR55 (30-40%), BR56 (40-60%), BR60 (40%) and BR68 (30-50%) had at least 

60% tumor cellularity. Three brain metastases (BR11, BR17, BR19) contained D538G mutations 

at high allele frequencies (34.3-44.9%) (Figure 9 for an overall mutation rate of 7.9% (3/38, 95% 

CI 3%-21%): all were recovered from patients with ER+ primary breast cancer giving a 12.5% 

frequency in disease with known ER-positivity (3/24, 95% CI 4%-31%).  The presence of the 

D538G mutation was confirmed by Sanger sequencing in the three brain metastases (Figure 31). 

Interestingly, sample BR17 had an additional Y537S mutation at a lower allele frequency 

(0.24%).  Furthermore, using a dual-mutation specific probe, the mutations were found to be on 

separate alleles, indicative of polyclonal ESR1 mutations within a single metastatic tumor  

(Figure 32). 

3.3.4 ESR1 mutations in cfDNA 

We next interrogated ESR1 mutations in cfDNA collected from 29 patients with metastatic breast 

cancer, all arising from ER+ primary disease. ESR1 D538G (n=6), Y537S (n=2), and Y537C 

(n=1) mutations were detected in a total of 7 patients, with one patient (CF4) having polyclonal 

ESR1-mutations consisting of Y537C, Y537S and D538G with allele frequencies of 2.7%, 1.2% 

and 5.1% respectively (Table 5).  cfDNA allele frequency was overall higher compared to 

primary tumors (Figure 9).  The ESR1 mutation rate in cfDNA was 24.1% (7/29, 95% CI 12%-

42%). 
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Table 6 summarizes clinical characteristics and endocrine treatment history of patients 

with an ESR1 mutation identified in cfDNA. Typical of patients with ER+ metastatic breast 

cancer, most had an extensive history of endocrine therapy as measured by both number of 

agents and months of exposure. There were not sufficient number of samples to formally analyze 

a predicted association between ESR1 mutations and shorter survival.   

Table 6. Clinical characteristics and endocrine treatment history in patients with confirmed ESR1 
mutant cfDNA, brain or bone metastases. 

Clinical Characteristics Endocrine Therapy before 
to Mutation Analysis 

Endocrine Therapy after 
Mutation Analysis 

ID Speci- 
men 

Detected 
ESR1 mutations 

Stage 
at Dx 

ER 
Status 

ADJ 
Hormonal 
therapy 

ADJ 
Hormonal 
Therapy 
Duration  
(months) 

Number 
of 

therapies 
Cumulative 
Exposure 
(months) 

Endo-
crine 

therapy 
Number 

of 
therapies 

Cumu-
lative 

Exposure 
(months) 

Endo-
crine 

Therapy 
CF4

† cfDNA Y537C/S, 
D538G IIB + SERM 5 3 23 AI, 

SERM No No No 
CF8

† cfDNA D538G IIB + AI 13 1 47 SERD 2 5 AI, 
SERM 

CF14
† 

cfDNA/ 
Soft 
tissue 

Y537S IV + No 0 4 25 
AI, 
SERM,  
SERD 

1 2 
AI, 
SERM,  
SERD 

CF16 cfDNA/ 
Liver D538G 0 + No 0 4 35 

AI, 
SERM,  
SERD 

1 4 AI 
CF23 cfDNA D538G IV + No 0 3 42 AI, 

SERD 1 7 SERM 
CF27

† cfDNA D538G IV + No 0 7 37 
AI, 
SERM,  
SERD 

No No No 
BR11 Brain  D538G 0 + No 0 4 47 

AI, 
SERM,  
SERD 

1 7 SERM 
BM14/ 
CF28 

cfDNA/ 
Bone D538G IIA + AI 72 2 9 AI, 

SERD 1 4 AI 
BR19 Brain D538G NK NK NK NK NK NK NK NK NK NK 
BR17 Brain Y537S, 

D538G NK NK NK NK NK NK NK NK NK NK 
† Patient is deceased. 
AI, aromatase inhibitor; SERM, selective estrogen receptor modulator; SERD, selective estrogen receptor 
down-regulator; ADJ, adjuvant; NK, not known; Dx, diagnosis 
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3.3.5 Analysis of ESR1 mutations in serial blood samples, and matched metastatic tumors 

Serial blood draws from four patients were available for longitudinal examination of ESR1 

mutation status. Patient CF4 (Figure 10A) was originally diagnosed with ER+ lymph-node 

positive disease, underwent mastectomy, and was then treated with SERMs. Over the next year, 

she developed metastases to brain, liver, bone and skin. A metastatic skin lesion biopsy was 

negative for ESR1 mutation.  A blood draw 6 months later showed three ESR1 mutations with 

different allele frequencies (Y537C – 2.7%, Y537S – 1.2%, D538G – 5.1%). The patient 

received an aromatase inhibitor, everolimus, and chemotherapy for six months. A subsequent 

blood draw (6 months after the first one) revealed an enrichment of Y537C and D538G 

mutations, but a loss of the Y537S mutant clone (Y537C – 7.4%, Y537S < LLoD, D538G – 

10.1%).  The increase in the allele frequencies of D538G and Y537C co-occurred with an 

increase in the tumor marker CA 27-29. 
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Figure 10. Clinical timelines and allele frequency of ESR1 mutations in serial blood draws and 
matched metastatic lesions. 
A) Sample CF4 and B) Sample CF16. Top: 2D blots showing ESR1 mutant allele frequency as measured 
by ddPCR.  Bottom: The timeline starts with diagnosis of metastatic disease and shows treatments received, 
disease progression (indicated with orange/red vertical arrows), tumor marker assessments (CA 27-29 
antigen line graph), blood draws (indicated with syringe), and ESR1 mutant allele frequency (bar graphs). 
Treatment abbreviations: Chemo (chemotherapy), PARPi (PARP inhibitor), LU (Leuprolide), SERM 
(Selective Estrogen Receptor Modulator), SERD (Selective Estrogen Receptor Degrader), AI (Aromatase 
Inhibitor) and mTORi (mTOR inhibitor). *The matched metastatic lesion was positive for ESR1 mutation. 
 

For patient CF16, DNA from five serial blood draws and from a biopsy of a liver 

metastasis was analyzed (Figure 9B). The patient originally developed ER+ chest wall 

metastases twelve years after excision of DCIS.  She received serial endocrine therapy including 

tamoxifen, fulvestrant, and multiple AIs, followed by mTOR inhibitor and chemotherapy, but 

metastases progressed to other sites, including liver and bone. The ESR1 D538G mutation was 

detected in both the liver metastasis (23.0%) and the first blood draw (1.0%).  The allele 

frequency was similar in the 2nd blood draw (0.9%), peaked around the time of the 3rd draw 

(13.7%), decreased in the 4th blood draw (4.9%), and was below LLoD in the 5th draw taken after 

∼ 6 months of chemotherapy (0.2% before noise subtraction, which did not pass the cut-off for 
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“positive” mutation calling).  The decreased frequency of the mutant allele corresponded to 

lower CA 27-29 levels after chemotherapy.  

Two additional patients (CF23, CF28) had two blood draws each (Figure 33).  Patient 

CF23 presented with Stage IV disease, with multiple bone lesions, and an ovarian metastasis that 

was negative for ESR1 mutation. Blood was drawn at two time points throughout disease 

progression, as indicated in Figure 33A, which was approximately 1 month after surgical 

removal of the ovarian metastasis.  D538G mutation was detected at low allele frequency (0.2%) 

in the 1st draw, and was below LLoD in the 2nd draw.  Patient CF28 developed lung, bone, and 

brain metastases 3 years after completion of 5 years of AI treatment for an ER+ breast tumor 

(Figure 33B).  She was treated with AI, and fulvestrant, and cfDNA from 1st blood draw was 

negative for ESR1 mutations.  The disease progressed, and a subsequent bone biopsy revealed an 

ESR1 D538G mutation (1.4% allele frequency) (BM14, described above), and cfDNA showed 

the D538G mutation at 7.8% allele frequency.  The increase in allele frequency of D538G co-

occurred with an increase in CA 27-29 tumor marker. Finally, in one additional patient (CF14) 

with a single blood draw, the Y537S mutation was detected in both a posterior neck soft tissue 

nodule (40.5% allele frequency), and in cfDNA, although at lower frequency (0.8%). 

Thus, in summary, mutations were either detected in both metastatic biopsy and cfDNA 

(n=3) or in cfDNA only (n=2), suggesting cfDNA as a source for disease phenotyping (e.g. 

detecting types of mutations), and potentially monitoring burden.  This is supported by the 

observation that changes in ESR1 mutation frequency correlated with changes in CF27-29 levels. 
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3.4 DISCUSSION 

3.4.1 ESR1 mutations are present at very low allele frequency in primary ER-positive 

breast cancer 

Previous studies have shown low or undetectable rates of ESR1 mutation in primary breast 

cancer using Sanger sequencing or massively parallel sequencing (MPS). This is the first study 

to examine ESR1 mutations (S463P, Y537C, Y537N, Y537S, and D538G, K303R) in primary 

breast cancer using ddPCR. We found that 7.0% (3/43) of primary breast cancers have an ESR1 

D538G mutation, but the allele frequency is very low (0.07 to 0.2%).  A recent NGS study of 

primary tumors from BOLERO trial identified ESR1 mutation in 6/183 tumors (3.3%) (63). 

TCGA did not detect ESR1 D538G mutation (or K303R, S463P, Y537C, Y537N, Y537S) in 482 

primary breast cancers, and COSMIC contains only one ESR1 D538G mutation from 1430 

primary breast cancers. The very low allele frequency suggests that in some primary tumors 

ESR1 mutations pre-exist as rare clones, which are then selected for during metastatic 

progression. This is consistent with a previous study from a single patient, which used deep-

targeted MPS and identified an ESR1 mutation (E380Q) at 2% allele frequency in primary 

disease and 68% in synchronous liver metastasis (68,69). Detection of rare ESR1 mutations in 

primary tumors (0-7%) may be clinically relevant for predicting resistance to hormone therapy; 

however, additional studies using sensitive detection technologies are necessary to develop this 

area of investigation. 
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3.4.2 ESR1 is mutated in both brain and bone metastases 

Our analysis of 38 brain and 12 bone metastases showed ESR1 mutations with higher allele 

frequency compared to primary tumors. To our knowledge, this is the largest study of ESR1 

mutations in these specific metastatic sites and the only one to use ddPCR. The most frequently 

identified ESR1 mutation was D538G, which is consistent with five prior studies that detected a 

total of fourteen D538G mutations, eleven Y537S mutations, four Y537N mutations, three 

Y537C mutations, two S463P mutations and eight other ESR1 mutations in a total of 329 

samples (59-63).  The slightly increased rate of D538G mutations compared to other mutations 

may be a result of the small sample size in our study.  We did not detect the K303R mutation in 

any of our 126 analyzed samples.  The prevalence of K303R has been controversial with one 

group reporting high frequencies of up to 34% (74) and 50% (128) in premalignant and invasive 

breast cancer respectively, while others have identified it at low frequency (124,129), or not at all 

(58-63,125-127). The sensitivity of our detection methods suggests that the occurrence of the 

K303R mutation is likely to be rare. 

We detected very high allele frequency (34.3-44.9%) in brain metastases, indicating that 

the ESR1 mutant-clones are likely dominant clones, and suggesting that the ESR1 mutation is a 

driver event in metastatic progression to this site.  Only one bone metastasis had an ESR1 

mutation of relatively low allele frequency (1.4%); however this low frequency is likely due to 

the very low tumor cellularity in this sample (1-5%). In the future, it might be of interest to test 

whether different ESR1 mutations preferentially seed at different metastatic sites.  
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3.4.3 ESR1 exhibits polyclonal mutations 

Previous studies have shown convergent evolution of polyclonal mutations in cancer, with 

different mutations in the same gene ultimately targeting the same phenotype (130). We 

observed cases with multiple ESR1 mutations in the same tumor, and demonstrated that 

mutations (Y537S and D538G) were on different alleles, indicating polyclonal disease. Patient 

CF4 is unique in that cfDNA contained three different ESR1 mutations. It is possible that the 

cfDNA integrates ESR1 mutations from distinct populations of cells, potentially arising from 

different metastases. The presence of three different mutations in the ligand-binding domain of 

ESR1 highlights the substantial selection pressure for these types of mutations during endocrine 

therapy.  Interestingly, longitudinal analysis of cfDNA in this patient indicated increased mutant 

allele frequency of two clones, and loss of the third clone, possibly reflecting differential 

response of individual ESR1 mutations to treatments. There is some prior evidence for different 

biologies of the different mutants.  Toy et al show that ligand-independent activity of Y537S is 

stronger than that of D538G, and weak for S463P (63).  It will be important to investigate if this 

polyclonality is important in treatment response and tumor progression, e.g. if different clones 

support each other, or if this simply represents a snapshot of a high rate of genomic instability. 

 

3.4.4 Longitudinal monitoring of ESR1 mutations in cfDNA 

We detected ESR1 mutations at high mutant allele frequency in cfDNA from patients with 

advanced breast cancer. The ease of obtaining cfDNA and the high sensitivity suggest that this 

may be a valuable tool for detecting ESR1 mutation in patients with advanced breast cancer.  



53 

However, larger studies directly comparing ESR1 mutation in paired cfDNA and metastatic 

tumor biopsies are required to confirm this possibility. Additionally, cfDNA analysis potentially 

affords an invaluable approach for longitudinal measurement of mutations that is simply not 

possible with solid biopsies.  This is shown for example in patient CF4 where an initial skin 

biopsy was negative for ESR1 mutation, but subsequent cfDNA assays were positive during her 

course of advanced disease. A study by Mattros-Arruda et al. showed a similar concept in a 

proof-of-principle study of one patient with advanced disease (68,69).  Association between 

ESR1 mutation status and response to endocrine therapy is an important question, but our study 

was not designed to address this.  As the numbers were small, retrospective assessment of 

endocrine therapy history was not examined.  Larger studies, and methods to determine the ratio 

of cfDNA from tumor vs normal cells are required to determine the concordance between 

primary and metastatic disease, and effects of mutations upon response to hormone therapy.  

Thus, ultrasensitive detection of rare ESR1 mutations may represent an important biomarker for 

development of endocrine resistant disease.  

Note: While this manuscript was under review, two other studies reported detection of 

ESR1 mutations in cfDNA (131,132). 
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4.0  THE BIOLOGY OF ESR1 MUTATIONS IN METASTATIC BREAST CANCER* 

*Peilu Wang contributed to CRISPR genome editing. Zheqi Li performed Western blots, 

Adhesion and growth assays. Kevin Levine contributed to the RNA-seq data analysis. 

Andrew Stern and Zhijie Ding performed ERE-TK assay. 

4.1 INTRODUCTION 

As discussed in previous chapters, the ESR1 gene is significantly mutated in metastatic lesions 

heavily treated by endocrine treatments. Both tamoxifen and fulvestrant were shown to inhibit 

the growth of ER mutants, even though higher doses of drugs were required for complete 

inhibition compared to wild-type ER (60-63). Recent studies have shown that transfection of ER 

mutant plasmids in cells results in enhanced ligand-independent activity of ER and increased 

expression of target genes such as TFF1, GREB1 and PR (59-63). Toy et al showed that mice 

bearing tumors with Y537S and D538G mutations grow rapidly in the absence of estrogen (63). 

A patient derived xenograft (PDX) model of a metastatic breast tumor expressing Y537S also 

demonstrated ligand independent growth (59). A gene expression analysis of MCF7 cells 

overexpressing ER WT and mutant constructs indicated constitutive activation of ER target 

genes in the absence of estrogen. They also identified a subset of novel genes regulated by 

mutants (63).  
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Molecular and mechanistic studies have revealed that ESR1 wild-type and mutants are 

structurally different. Ser118 is a major phosphorylation site of ER (133). Ser118 is highly 

phosphorylated in ER mutants, with Y537S mutants showing the highest level (63). Molecular 

dynamics simulations showed agonistic formation of co-factor bound Y537S caused by the 

stabilization of H12 helix (61,63). ER mutations are able to confer higher affinity to cofactors 

such as SRC-1 and SRC-3 (61,63,70,71). Recruitment of cofactors by ER can further promote 

the regulation of downstream targets required for cell proliferation and survival. Hence, some 

believe that mutations in ER genes could contribute to major structural changes which lead to ER 

mediated transcriptome changes. 

Taken together, these data demonstrate the constitutive activity of ER mutants in the 

absence of estrogen or presence of tamoxifen/fulvestrant and suggest a potential role for novel 

target genes. However, these experiments have all been conducted in transfected models where 

mutants are expressed many-fold higher than physiological levels. Here in this chapter, we 

describe the creation of relevant knock-in models by CRISPR technology. Our in-depth RNA-

seq analysis demonstrates that ESR1 mutants have ligand-independent activity of known ER 

targets, and they also induce a subset of novel genes. Our further experiments show that mutants 

may drive gain-of-function phenotypes and promote growth, proliferation and survival of the 

cells in the presence of anti-estrogen drugs. 
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4.2 MATERIALS AND METHODS 

4.2.1 Cell culture 

T47D and MCF7 cells were maintained in RPMI 1640+10% FBS and DMEM+5% FBS, 

respectively. For estrogen/drug treatment experiments, cells were deprived in IMEM with 10% 

and 5% CSS for T47D and MCF7, respectively. 17β-estradiol (E2) and 4-hydroxytamoxifen 

(4OHT) were obtained from Sigma and ICI was purchased from Tocris. 

4.2.2 Generation of ESR1 mutant cell lines 

The generation of in vitro models was performed using CRISPR-Cas9 genome-editing (129,134-

137). For the design of the sgRNA, we utilized a web tool (http://crispr.mit.edu) entering the 

sequence flanking the hotspot mutations in the ESR1 gene (Y537S and D538G) and selected a 

guide RNA that targets our region of interest (Table 23). The oligos were cloned into PX458 

(www.addgene.com), also coding for Cas9, tracrRNA, GFP, and the resulting plasmid was 

transfected along with the respective double stranded 70bp oligos containing Y537S and D538G 

mutations into T47D cells. GFP+ cells were sorted via FACS, and the mutation was confirmed 

by Sanger sequencing (Figure 34). We were able to obtain two clones for Y537S and three 

clones for D538G mutations along with three WT control clones. We also received MCF7 cells 

with WT, Y537S and D538G genotypes (two clones each) through collaboration with Dr Ben 

Park (Johns Hopkins University). They used adeno-associated virus (AAV)-mediated gene 

targeting as previously published by this group in order to create MCF7 mutants (138).  
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4.2.3 ddPCR 

ddPCR was performed on WT and mutant clones as previously described (67). Briefly, 50-60 ng 

of DNA was isolated from cells and mixed with ddPCR supermix and Y537S or D538G 

primer/probe sets. The mastermix was then partitioned into droplets by Biorad droplet generator. 

The PCR was conducted subsequently using 40 cycles of amplification. The fluorescent signal 

from each droplet was finally quantified by Biorad QX100 system and analyzed by QuantaSoft 

software. 

4.2.4 Western blot 

MCF-7 and T47D clones were counted after 3 days of hormone deprivation in CSS, and plated 

into 6 well plates with the concentration of 120,000 cells per well (MCF-7) and 90,000 cells per 

well (T47D). Cells were treated with 0.1% ethanol as a vehicle control or 1 nM of E2. The cells 

lysed with RIPA buffer and subsequently sonicated. Protein concentrations were determined with 

BCA assay kit following the manufactural protocol (Thermo Fisher Scientific). 80 ug of proteins 

per samples were loaded in SDS-PAGE gel, and then transferred onto PVDF membrane. The 

antibodies against total estrogen receptor and phosphor-estrogen receptor (Ser118) were 

purchased from Cell Signaling Technology and Signalway Antibody, respectively.   

4.2.5 Transcriptional reporter activity of WT and mutant ESR1* 

We set up a 384-well plate format using the ThermoScientific Multidrop Combi for cell 

dispensing, Velocity 11-Bravo liquid handling instrument for compound dispensing, and the 
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Perkin Elmer EnVision multilabel reader for luminescence detection resulting from the ERE-Tk-

luc reporter (63). The pRL-TK renilla reporter was used to normalize transfection conducted 

with X-tremeGene HP transfection reagent. The cells were stimulated by increasing doses of E2 

for 24 hours and luminescence was read accordingly  

*(performed by Dr Andrew Stern and Dr Zhijie Ding at the Drug Discovery Institute, University 

of Pittsburgh). 

4.2.6 RNA-seq analysis 

Each clone for WT and mutant T47D and MCF7 cells were deprived of estrogen for three days. 

The clones for each genotype (WT or muts) were then pooled and plated in four replicates in 6-

well plates. The cells were treated by veh or E2 for 24 hours and RNA was isolated via Qiagen 

RNeasy kit according to the manufacturer protocol.   

500ng RNA of each sample was sent to the genomic core at Children’s Hospital of 

Pittsburgh and subjected to NGS obtaining >15M reads per sample. We used Salmon for 

quantification of the transcripts using default options and hg38 genome build as the reference 

(139). The differentially expressed (DE) genes between WT and mutants were identified by 

DEseq2 package using the contrast option (140). The genes which had a maximum transcripts 

per million (TPM) <1 were excluded from the analysis due to avoid confounding pathway 

analysis with genes of low expression. We employed R to plot the heatmaps and perform the 

statistical analysis. To test the statistical significance of overlapped genes in venn diagrams, we 

used Chi-square test. 
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4.2.7 Growth Assay 

MCF-7 or T47D cells were evenly pooled after 3 days of hormone deprivation in CSS, and 

plated into 96-well plates with concentration of 2500 cells per well (MCF-7) or 4000 cells per 

well (T47D). After 24 hours, the cells were treated with 0.1% ethanol as vehicle control, 1 nM of 

E2, 100 nM of fulvestrant or their combination. The cells were harvested for quantification after 

0, 2, 4, 6 and 9 days with the FluoResporter kit (Life Technology) following the manufacturer’s 

protocol. The data was plotted and IC-50 was calculated by PRISM statistical package. 

4.2.8 Adhesion Assay 

MCF-7 or T47D cells were counted first and were then added into Collagen I (Thermo Fisher 

Scientific), Collagen IV (Corning)- or BSA-coated 96-well plate as well as uncoated 96-well 

plates with the concentration of  30, 000 cells per well. For the ECM array assay, T47D cells 

were resuspended in serum-free medium first, and added into the ECM array plate (EMD 

Millipore) with 100, 000 cells per well. After incubation in 37 degree for 2 hours, all the coated 

plates were washed with DPBS for three times. The quantification of cell numbers was 

performed using the FluoResporter kit (Life Technology) following the manufactural protocol on 

all the washed-coated plates and the unwashed-uncoated plate. The adhesion ratio was calculated 

by dividing the values of washed to unwashed wells. 
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4.3 RESULTS 

4.3.1 Molecular characterization of ESR1 mutations 

To study the biology of ESR1 mutations in breast cancer, we employed two ER-positive cell 

lines that are well-studied in the literature. T47D cells were genome edited via CRISPR 

technology resulting in two and three clones of Y537S and D538G, respectively (Figure 11A). 

We also received MCF7 cells harboring Y537S and D538G mutations (two clones each) from Dr 

Ben Park Lab. The mutation allele frequency of each clone was inspected in DNA and RNA by 

highly quantitative ddPCR using corresponding probe/primer sets (Figure 11B). The ER 

mutations frequency was approximately 50% showing heterozygous loci in all clones except 

T47D Y537S#2 clone where the mutation is only expressed in 22% of DNA and RNA. This 

could be due to more copies of WT ER copies in this clone. 
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Figure 11. Generation and molecular characteristics of ESR1 mutations. 
A) A schematic view of CRISPR genome-editing: Cas9 and sequence specific sgRNA constructs from the 
CRISPR complex which makes a cleavage in the target DNA. Homologous recombination pathway in the 
cells repairs the DNA using template oligos which contain mutations of interest. B) The mutation 
frequency of each clone was checked by ddPCR at the DNA and RNA level. C) Western blotting of mutant 
and WT clones of T47D and MCF7 cells. The blots were stained for ER and Phospho-ER (P-ER). Clones 
for WT or mutants were pooled and estrogen deprived for three days. Cells were then treated by Veh or E2 
(1nM) for 24 hours. D) Transcriptional activity of WT and mutant cells were analyzed by high-throughput 
ERE-TK assay using different doses of E2 in T47D cells following three days of E2 deprivation. 
(C provided by Zheqi Li, D provided by Dr Andrew Stern and Zhijie Ding) 
 

We next tested the protein expression and phosphorylation of ER in all clones (Figure 

11C). More variation was observed in baseline ER levels among T47D clones compared to those 

of MCF7. Phosphorylation at Ser118 has been shown to be required for the full activity of ER 

(141).  We observed that mutants displayed higher constitutive ER phosphorylation compared to 

WT in both cell lines. The level of phosphorylation decreased after E2 treatment in MCF7 

mutants while it increased in T47D mutants. This suggests cell line specific ER activity that 

might be dependent on the unique molecular profile of each model (141). 
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To test transcriptional activity of the ER mutant proteins, we set up a high throughput 

384-well plate ERE-tk-luc reporter assay system. We detected ligand-independent activity of the 

ER mutants, and in addition, D538G was hyper-responsive to estradiol in T47D cells (Figure 

11D). This data suggests that both mutations are active in the absence of estrogen and further, 

D538G could induce/repress target genes at lower doses of E2. 

4.3.2 Transcriptome regulation by ER mutants 

To further assess how mutations could impact the transcriptional activity of ER, we performed 

whole transcriptome RNA-seq of the mutant cells in the absence and presence of E2. PCA 

analysis of the top 1,000 most variable genes showed that biological replicates cluster together 

(Figure 35). The gene expression analysis characterized a total of 1,327 genes for Y537S and 

1,207 genes for D538G that were differentially regulated compared to WT cells in the absence of 

ligand (cutoff=fold change >2, p-value<0.005) (Figure 12). The heatmaps in Figure 12 show that 

approximately 2/3 of these genes were estrogen regulated in WT clones, suggesting that mutants 

are more active than WT in the absence of E2. This was consistent with our previous 

transactivation data showing the constitutive activity of mutants. We also observed a high 

overlap in constitutively regulated genes between the two cell lines (chi-square test, p-

value<0.01) (Figure 13) 
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Figure 12. Heatmap of ligand independent differentially regulated genes between WT and mutants. 
Individual clones were estrogen deprived for 3 days and pooled for each genotype (WT, Y537S and 
D538G). Cells were then treated by Veh or E2 (1nM) for 24 hours. RNA-seq was performed on RNA 
isolated from the cells and differentially expressed genes were called by DESeq2 (fold>2, adjp<0.005). 
Color represent log2 fold change. 
(In collaboration with Kevin Levine) 

Figure 13. The overlap of ligand independent regulated genes between the cell lines for each 
mutations. 
The ligand independent genes (p-value<0.005, fold change>2) were overlapped between the two cell lines. 
The Chi-square test was used to test whether the overlap is significant. 
*p-value<0.01
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Most importantly, however, a set of genes (n=246 in MCF7 and n=322 in T47D) were 

uniquely regulated only in mutant clones. In T47D cells, 304 and 187 genes were differentially 

expressed in Y537S and D538G, respectively, with 40 genes overlapped between the two 

mutations (chi-square test for overlap, p-value<0.01). In MCF7 cells, 241 and 244 genes were 

induced or repressed in Y537S and D538G, respectively, with a larger statistically significant 

overlap of 105 genes (chi-square test, p-value<0.01) (Figure 36). We also found that only 12 

genes were shared between T47D and MCF7 mutants (11 in Y537S and 1 in D538G) among the 

ligand independent potential novel targets of ER (Table 24), although this did not reach 

statistical significance. This result suggests that the gain-of-function of properties of the 

mutations may be cell line specific and dependent on the genetic background of knock-in cells.  

IPA pathway analysis showed enrichment of cancer and immunological diseases in 

mutants of both cell lines (p-value<0.001). Given the fact that there was little overlap of novel 

genes between the two cell lines, we performed the pathway analysis on the novel regulated 

genes shared between Y537S and D538G in each cell line independently (Figure 39).We found 

that several upstream regulators are activated in mutants such as STAT and Interferon signaling 

in MCF7, and FOS, TGFB1 and SMAD4 in T47D mutants. The upregulation of these pathways 

have been previously shown to be associated with breast and other types of cancer (26,142-152). 

Taken together, our data suggests that mutants could potentially activate alternative pathways in 

addition to ligand-independent classic ER pathways. 
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4.3.3 Gain of function activities of ESR1 mutants in genome edited cell lines 

Previous overexpression models of mutant ER have shown ligand-independent growth as well as 

partial resistance to antiestrogens (60-63). We investigated the ligand-independent growth of our 

knock-in models and found that T47D-D538G cells proliferated at a higher rate in the absence of 

E2 and are hyper sensitive to E2 compared to WT clones. T47D-Y537S cells, however, did not 

show a similar behavior. In the MCF7 cell line, both mutants displayed higher ligand 

independent growth and were at least as responsive to E2 as WT cells (Figure 14). 

Figure 14. Growth assay in WT and mutant cells. 
T47D and MCF7 cells were deprived for 3 days followed by different treatments: E2 (1nM), ICI (100 nM), 
and E2 (1nM) + ICI (100nM) 
(Provided by Zheqi Li) 

To test the response of mutants to anti-ER drugs, we performed a growth study of cells 

treated by various doses of ICI, Raloxifene and 4OHT.  The IC50  for ICI was significantly higher 

in MCF7 mutants and to a lesser degree in T47D mutants compared to WT (Table 7). In both cell 

lines, Y537S mutations represented a remarkable resistance to 4OHT and Raloxifene compared 
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to D538G and WT clones. This suggests that the Y537S mutation may have a survival advantage 

in tumors treated by SERMs.  

Table 7. The IC-50 for WT and mutant cells treated by different compounds 

Compund T47D-WT T47D-Y537S T47D-D538G MCF-7-WT MCF-7-Y537S MCF-7-D538G 
ICI 0.42 nM 1.41 nM 1.32 nM 0.72 nM 30.57 nM 4.49 nM 
4OHT 0.27 nM 11.66 nM 1.33 nM 0.49 nM 211.15 nM 1.56 nM 
Raloxifene 0.09 nM 2.47 nM 0.24 nM 1.48 nM 51.44 nM 11.19 nM 

Tumor metastasis involves adhesion molecules that are responsible for the attachment 

and detachment of cells (153,154). Several studies have shown a role for Collagen I and IV in 

promoting cancer metastasis (155-158). We examined the adhesion of WT and mutant cells 

(pooled clones for each genotype) on plates coated with Collagen I and IV (Figure 15).  

Interestingly, both D538G and Y537S cells showed less adhesion to Collagen I (p-value<0.05 in 

T47D and p-value<0.0001 in MCF7) whereas attachment to Collagen IV was not different from 

WT cells. We performed the assay on individual clones and observed consistent results (Figure 

37). A similar experiment was performed on an array of extracellular matrices (ECMs) using 

T47D clones and observed less adhesion to Collagen II, Fibronection, Laminin, Tenascin and 

Vitrobectin in D538G or both mutants compared to WT (Figure 38). These data further indicate 

that less adhesion of mutants to basement proteins may confer a metastatic phenotype to cells.  
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Figure 15. Cell adhesion to Collagen I and IV. 
The individual clones of each genotype (WT and mutants) were pooled and plated on precoated plates with 
BSA (negative ctrl), Collagen I and Collagen IV. The statistical significance of difference was analyzed by 
ANOVA test corrected for multiple comparison (*p-value<0.05, **p-value<0.01, ****p-value<0.0001). 
(Provided by Zheqi Li) 

4.4 DISCUSSION 

In this study, we report for the first time the generation of knock-in models of ESR1 mutations, 

Y537S and D538G. Previous studies have all employed cell lines transfected with constructs 

expressing significantly high levels of mutations which do not recapitulate what has been 

observed in actual tumors (57,59-63). Here we used CRISPR technology to genome-edit T47D 

cells that resulted in at least two clones for each mutation. As controls, we selected three WT 

clones which underwent CRISPR transfection, but maintained an intact ESR1 locus. To avoid 

potential off target activity, we designed a unique guide RNA based on previously described 

methods (135,137,159). In addition, we generated more than one clone for each mutation and 
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used two independent cell lines to minimize the possibility of data confounded by clone specific 

features.  

We next characterized the mutation frequency, ER expression and phosphorylation in all 

clones. T47D-Y537S clone #2 represented a lower mutation allele frequency compared to other 

mutants suggesting that there are more WT copies of ESR1 gene present in this clone (Figure 

11B). However, this outcome is not concerning in our study since previous reports show variable 

ESR1 mutant allele frequency (mainly <50%) in metastatic lesions (60,62,63).  We found that 

total ER levels were different between individual clones, which may be due to clonal variation 

during the CRISPR selection. The mutants consistently showed higher phosphorylation of ER in 

the absence of estrogen (Figure 11C). This is in line with previously published data, although the 

increased phosphorylation of ER was not as high as previously reported (63). This could be due 

to significantly high expression of mutations in transfected models.  Phosphorylation of ER at 

this particular site was previously reported to be elevated in tumor biopsies taken from patients 

who had relapsed following tamoxifen treatment (160). Constitutive activity of ER mutants was 

further confirmed in T47D cells by ERE-tk-luc in which both Y537S and D538G showed 

transcriptional activity in the absence of E2. 

Transcriptomic analysis of ESR1 mutants was performed using RNA-seq in cells treated 

with veh or E2. We identified a large subset of genes that were constitutively regulated in 

mutants and regulated by E2 in WT cells.  These mostly include classic ER target genes required 

for cell growth and proliferation such as IGFBP4, GREB1, MYC, and TFF1. Intriguingly, we 

found a number of genes that are not E2 regulated in WT but are uniquely induced/repressed in 

mutants. Pathway analysis revealed that several cancer associated networks are activated by 
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these novel genes. We are performing additional experiments to characterize the specificity of 

these pathways in our mutant models. 

In one study, the gene expression of mutants was investigated in MCF7 cells transfected 

with the various ERα mutant constructs in hormone-depleted medium (63). The investigators 

found a panel of 92 genes differentially regulated in mutants vs WT in MCF7 cells. This data is, 

however, subjected to some bias as the mutation levels were non-physiological due to the nature 

of overexpression models. Furthermore, the E2 regulated genes in WT were not subtracted in 

their data.  

Previous studies have shown that ESR1 mutations occur in disease refractory to endocrine 

treatments (59-63). Limited data from these studies on overexpression models have suggested 

partial resistance to SERMs and SERDs with the latter being more potent in inhibiting ER 

mutations.  We tested the proliferation of mutants exposed to different compounds including E2, 

4OHT, raloxifene and ICI in a dose-dependent manner. In addition to constitutive activity of 

both mutations, we observed hyper-sensitivity of D538G in T47D cells. Both mutants also 

showed resistance to physiological levels of anti-ER drugs which were able to fully inhibit WT 

clones. Y537S, however, showed a higher resistance to SERMs compared to D538G. This data 

may explain the higher frequency of D538G in metastatic lesions where patients were more 

likely to be treated by AIs shown in previous clinical studies (60-63,65). Future prospective 

clinical studies are required to discover the drug specific characteristics of the mutations. 

Adhesion molecules have been long known to play a critical role in the process of cancer 

metastasis (161-163). Our adhesion assay showed that mutants are significantly less attached on 

Collagen I coated basement. It has been previously indicated that highly metastatic cells express 

a decreased binding to Collagen I, which results in more motility and invasiveness (164,165). 
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Experiments are ongoing to investigate the metastatic phenotype of our mutant models through 

motility and migration assays. 
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5.0  CONCLUSIONS 

5.1 IDENTIFICATION AND FUNCTIONAL ASSESSMENT OF ER REGULATED 

SNVS IN BREAST CANCER 

Breast cancer is the most common type of cancer in females and the second leading cause of 

death due to cancer. The majority of breast tumors overexpress ER, which is known to be a 

driver of cancer in these tumors. As we discussed in earlier chapters, the DNA binding profile of 

ER varies among tumors and may be associated with prognosis and response to endocrine 

treatment. However, genomic alterations underlying differential ER binding to DNA remains 

understudied. 

In this dissertation we addressed the above question by developing a pipeline to identify 

potential regSNVs in ER ChIP-seq studies performed on breast cancer models. We first tested 

our pipeline on ER binding sites extracted from studies of the MCF7 cell line and identified a 

functional SNV in the IGF1R gene. The minor allele rs62022087 was predicted in our analysis to 

strengthen an ER binding site in the second intron of the IGF1R gene. Further in vitro 

experiments confirmed and validated that this regSNV is able to increase ER affinity to DNA 

and therefore, increase the expression of IGF1R gene.  

We next applied our pipeline to all available ER ChIP-seq data sets in breast cancer. This 

analysis led to the discovery of a large number of potential regSNVs enriched in intergenic and 
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intronic sites. By integrating TCGA data, we found that regSNVs are enriched in proximity of 

genes differentially regulated between ER+ and ER- disease. Further, we asked whether any of 

the regSNVs were associated with the expression of corresponding target genes. We identified 

17 variants regulating the expression of host genes by modifying ER binding. Our top candidate 

was rs36208869 in the promoter of GSTM1 gene whose expression was correlated with survival 

in breast cancer patients. Future studies are required to study and characterize the clinical 

significance of RegSNVs in breast cancer. 

In the last part of chapter 2, we searched for somatic mutations in ER binding sites by 

integrating WGS and ChIP-seq data. Our initial analysis of published WGS on 45 tumors 

identified a panel of recurrent somatic regSNVs located in potential ER binding sites. Two 

mutation hotspots were found in the intronic regions of GPR126 and PLEKHS1 genes which 

were further confirmed in a cohort of 98 breast tumors in TCGA. Several reports have indicated 

the PLEKHS1 mutations in cancer (81,82,105) but mutations in GPR126 were not identified 

previously. We did not see any correlation between the presence of mutations and expression of 

target genes in TCGA. In collaboration with Dr Geoff Greene, we are performing experiments 

similar to 4C-seq in T47D cells in order to identify long-range targets of these potential 

regulatory elements. We will validate the identified targets in additional cell lines and tumor 

samples which will be eventually tested whether they may impact the clinical outcome in breast 

cancer patients. 

One of the limitations in our study is using various types of data generated by different 

platforms and labs. This may introduce some error into our analysis due to technical variation. 

Another challenge which we faced in our study was lack of normal samples in ChIP-seq data 

which made it difficult to differentiate between germline and somatic variants. We used dbSNP 
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and 1000Genome databases to annotate the variants which have been reported to be germline. In 

order to systematically study regulatory SNVs in breast cancer, we need to conduct ChIP-seq and 

multi-omics analysis on the tumor sample and obtain clinical information by following up 

patients for long term outcome. 

The role of non-coding genomic variants in cancer and other diseases has been largely 

understudied due to the technological challenges and lack of understanding about the non-coding 

genome. In this dissertation, we present a novel pipeline to capture regulatory SNVs by 

integrating multi-omics data and validate them through in vitro studies. We believe our 

methodology is applicable to not only other types of cancer, but also other genetic based 

diseases. The screen for impactful regulatory variants will soon become part of genetic testing as 

our knowledge of non-coding genome improves and sequencing hurdles are being lifted. Such 

genetic tests are of great importance to public health in order to tailor the treatment to the needs 

of each individual patient. Public health authorities will be able to treat cancer patients in a 

personalized manner and cooperate with insurance companies to cover more targeted therapies. 

This will eventually reduce the cost burdens on public health and direct the patients towards the 

appropriate treatments.  

5.2 DETECTION OF ESR1 MUTATIONS IN PRIMARY TUMORS, METASTATIC 

LESIONS AND CFDNA OF PATIENTS WITH ADVANCED BREAST CANCER 

As mentioned in chapter 3, multiple studies have shown a high frequency of ESR1 mutations in 

metastatic breast cancer (59-63). However, technical limitations hindered scientists from 

studying rare ESR1 mutations in primary tumors and circulating DNA from metastatic patients. 



75 

Moreover, the frequency of ER mutations was not well studied in lesions hard to biopsy such as 

bone and brain. This prompted us to use the highly sensitive ddPCR technology to address these 

issues. 

Six ESR1 mutations were assessed in clinical samples from a total of 121 patients. 

Mutation rates were 7.0% (3/43 primary tumors), 9.1% (1/11 bone metastases), 12.5% (3/24 

brain metastases), and 24.1% (7/29 cfDNA).  Two patients showed polyclonal disease with more 

than one ESR1 mutation. Mutation allele frequencies were 0.07% to 0.2% in primary tumors, 

1.4% in bone metastases, 34.3 to 44.9% in brain metastases, and 0.2% to 13.7% in cfDNA.  In 

cases with both cfDNA and metastatic samples (n=5), mutations were detected in both (n=3) or 

in cfDNA only (n=2).  Treatment was associated with changes in ESR1 mutation detection and 

allele frequency. Low allele frequency in some primary tumors suggests that in some tumors, 

rare ESR1 mutant clones are enriched by endocrine therapy.  Further studies should address if 

sensitive detection of ESR1 mutations in primary breast cancer and in serial blood draws is 

predictive for development of resistant disease.  

It has been shown that ESR1 mutations in metastases may contribute to a shorter 

progression free survival (65). Several other studies have shown that these mutations could drive 

metastasis in patients treated with endocrine therapy (discussed in chapter 3). Therefore, it is 

very important to screen the patient with ER+ disease on a regular basis for early detection of ER 

mutations. In this dissertation, we describe a highly sensitive tool to achieve this goal.  Using 

ddPCR technology, we were able to detect low frequency ESR1 mutations in the blood of the 

patients with advanced disease. From the public health perspective, genomic testing via cfDNA 

is preferred by patients and clinicians over traditional invasive means such as surgical biopsies. 

Furthermore, utilizing liquid biopsies for monitoring cancer treatment and progression will 
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decrease the need for costly imaging tools and therefore, reduce the costs on public health 

agencies. Clinical studies are ongoing to validate the sensitivity and specificity of liquid biopsies 

including cfDNA in different types of cancer to treat patients more effectively in the future. 

5.3 FUNCTIONAL ANALYSIS OF ESR1 MUTATIONS IN ENDOCRINE 

TREATMENT RESISTANCE BREAST CANCER 

Point mutations in the ESR1 gene are clustered in the LBD domain of ER protein, suggesting a 

gain of function for resistance to anti estrogen treatments (discussed in chapter 1 and 4). The 

biology of ER mutations has been studied mainly in transfected models where the mutants are 

expressed at very high levels that are not physiologically relevant. In order to create appropriate 

knock-in models, we used CRISPR technology to genome-edit T47D cells. We were able to 

obtain several clones for each of the most frequent ER mutations, Y537S and D538G. In 

addition, MCF7 knock-in clones created by Dr Park’s Lab were included in our functional 

studies. 

The genotype of each clone was first confirmed by Sanger sequencing and ddPCR at the 

DNA and RNA level. All the clones expressed ER protein although the levels were variable in 

T47D cells. ER phosphorylation at Ser118, a marker of transcriptional activity, was higher in 

mutant clones, and this was consistent between T47D and MCF7 cell lines. ERE-TK 

transactivation assays showed that mutants can constitutively activate transcription of luciferase 

with D538G being more responsive to lower doses of E2. 

We next sought to characterize the transcriptomic changes mediated by ER mutants. The 

majority of the genes differentially regulated between WT and mutants at baseline were 
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induced/repressed by E2 in WT. Furthermore, a subset of genes were uniquely regulated only in 

mutant clones and speculated to be novel targets of ER mutants. Pathway analysis showed that 

these novel targets can activate metastasis associated pathways such as STAT, Interferon, 

SMAD4, and TGFB1. Our future plan is to target ESR1 mutants by high doses of SERDs such as 

ICI and see if the effect of novel targets could be reversed. Furthermore, we are performing 

ChIP-seq experiments in mutant cells to identify potential novel binding sites of ESR1 mutants 

which may drive their gain of function in the cell.   

As we discussed in previous chapters, ESR1 mutations are selected as a result of anti-

E2/ER treatments. We measured the growth of WT and mutant cells in the presence of 

4OHT, Raloxifene and ICI. Both mutants demonstrated partial resistance to drugs with Y537S 

being less sensitive to SERMs. This confirms the clinical relevance of mutations in the 

endocrine treatments settings. Finally, we investigated cell adhesion as a metastasis associated 

phenotype in WT vs mutant cells. Interestingly, both mutants in T47D and MCF7 cells showed 

less attachment to Collagen I. It is plausible that mutants have gained properties to digest 

Collagen I or similar scaffolds and become more invasive. Our studies are now ongoing to 

assess the motility and aggressiveness of ER mutants on Collagen I precoated plates.   

         We faced a few challenges in the study of ESR1 mutations. Single mutant cells were 

selected in the process of CRISPR genome editing and this may introduce clonal bias into our 

downstream functional experiments. To address this concern, we created more than one 

clone for each mutation and used all clones in our validation experiments. However, we were 

obliged to pool the clones of each genotype in some other experiments due to lack of 

resources such as RNA-seq. Another challenge in our study was to select the appropriate 

breast cancer cell lines for mutating ER. We genome-edited the T47D cell line via 
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CRISPR and also received MCF7 mutants from Dr Park’s lab. Both of these cell lines are 

well known to be estrogen responsive and may be good models as recipients of ER 

mutations. However, the genetic and proteomic background of T47D and MCF7 cells are 

different, which can lead to differences in endpoint phenotypes. This may explain why the 

same mutations exhibit functional differences in some of our assays between the two cell lines.  

Understanding the biology of ER mutations is critical for targeting the mutant cells in the 

tumor more efficiently. This dissertation included some preliminary data on the biology of ER 

mutations in more appropriate models compared to previous studies. Partial resistance to SERMs 

and SERDs in mutants suggests that higher doses of these drugs are needed when ER mutations 

are present, although this needs to be tested in future clinical trials. Our data also suggests some 

gain-of-function activity at the transcriptomic levels which may lead to novel phenotypes in 

mutants. This may be mediated via novel interaction with cofactors driving ER transcriptional 

complex to new targets. We are implementing new studies to test these hypotheses and target not 

only ER mutations, but also alternative networks cooperating with ER mutant protein.  

Endocrine treatment in breast cancer has public health implications given the fact that it 

is the most successful targeted therapy in ER+ disease, which comprises 70-80% of all breast 

cancers. A large proportion of patients, however, acquire resistance during or after the course of 

treatment due to ESR1 mutations. Costs associated with illness and therapies in metastatic breast 

cancer patients are remarkably high. Therefore, public health authorities need to allocate 

sufficient budgets for finding novel therapies against ER mutants that can significantly increase 

survival and quality of life in metastatic patients.  
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APPENDIX A: SUPPLEMENTARY FIGURES 

Figure 16. The UCSC gnome browser view of the second intron in IGF1R gene. 
The index SNP, rs62022087, seems to be located in a region bound by several chromatin modifying factors 
based on ENCODE data. 
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Figure 17. The visualization of ChIP-seq reads from multiple cell lines over rs62022087 SNP site. 
Data extracted from Ref: (3,44) 
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Figure 18. The pipeline used for analyzing breast tumors and calling somatic SNVs within ER 
binding sites. 
GATK was used to refine the raw bam files. SomaticSniper was further utilized to call the somatic 
mutations from the bam files. To further filter out the potential contamination from normal samples, we 
subtracted dbSNP variant from our list. 
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Figure 19. Schematic view of somatic non-coding mutations found in two independent WGS data 
sets. 
The bar graphs show the frequency of the mutations in each data set. The MCF7 ER ChIP-seq reads 
visualized below each figure suggest the hotspot mutations could be potentially located at tail of ER 
binding sites.  
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Figure 20. Visualization of ENCODE data around non-coding mutations sites. 
The genomic regions surrounding non-coding mutations are marked by histone proteins and DNaseI 
hypersensitivity assay which are enriched in regulatory sites of the genome.  
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Figure 21. Palindromic sequence surrounding the non-coding mutations in GPR126 and PLEKHS1 
genes. 
The base-pair changes are colored in red. 
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Figure 22. The gene expression of GPR126 and PLEKHS1 genes in WT vs Mut carriers. 
The gene expression was obtained for tumors with WT and Mut genotype in TCGA. No significant 
correlation was found in the expression of GPR126 and PLEKHS1 gene between WT and Mut carriers  
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Figure 23. Survival analysis of patients stratified by the expression of GSTM1. 
The gene expression and survival information was obtained from METABRIC data portal. The patients 
were classified based on the upper quartile expression of GSTM1. The patients harbouring tumors with 
higher expression of GSTM1 show better overall survival (in collaboration with Kevin Levine). 
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Figure 24. Pre-amplification preserves mutant allele frequency and maintains sensitivity  of ESR1-
D538G mutation detection by ddPCR. 
2ng input DNA from admixtures of serially diluted cfDNA-16 mutant DNA and fixed amount of cfDNA-
14 wildtype DNA (at resultant mutant allele frequencies of 14.7%, 3.5%, 2.0%, 1.1%, and 0.55%) were 
pre-amplified for 15 cycles using primers just outside of the ddPCR primers. Qiagen column-purified 
targeted amplified (TA) PCR products were then subjected to ddPCR analysis using 1/20th of diluted TA 
output along with the respective unamplified (Un) cfDNA samples (2ng input DNA). A. 1D fluorescence 
plots are shown for serially diluted Un and TA samples. B. Fractional mutant abundance (%) was 
comparable between Un and TA samples and showed linearity in serially diluted mutant cfDNA.  
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Figure 25. Pre-amplification preserves mutant allele frequency and maintains sensitivity of 
PIK3CA-E545K mutation detection by ddPCR. 
1ng input DNA from admixtures of serially diluted MDA-MB-361 mutant cell line DNA and fixed amount 
of BT-474 wildtype cell line DNA (at resultant mutant allele frequencies of 25.0%, 8.0%, 1.0%, and 0.1%) 
were pre-amplified for 15 cycles using primers just outside of the ddPCR primers. Qiagen column-purified 
targeted amplified (TA) PCR products were then subjected to ddPCR analysis using 1/20th of diluted TA 
output along with the respective unamplified (Un) DNA samples (1ng input DNA). A. 1D fluorescence 
plots are shown for serially diluted Un and TA samples. B. Fractional mutant abundance (%) was 
comparable between Un and TA samples and showed linearity in serially diluted mutant DNA. 
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Figure 26. ESR1 Y537C/N/S and D538G mutation probes are specific to their corresponding 
mutations. 
5ul of 10fM ESR1 Y537C, Y537N, or Y537S oligo nucleotides were mixed with 30ng WT gDNA as 
corresponding controls. 15ng gDNA with ESR1 D538G was used as D538G control. DNA controls 
with mutations as well as non-template control (NTC) were analyzed by A) Y537C probe, B) 
Y537N probe, C) Y537S probe, and D) D538G probe, respectively. 1D plots show mutant channel. 
The grey signal in D) D538G ctrl lane (fluorescence intensity ~ 2500) is for WT ESR1 and appears 
only in the D538G probe as the location of WT and mutant droplet clusters are shifted inwards on 
the 2-D plot unlike at right angles for the remaining probes. 
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Figure 27. ESR1 Y537C probe does not bind to wild-type allele, even at high concentrations of wild-
type DNA. 
(Similar results were observed for ESR1 D538G probe, data not shown here). 1ng, 10pg, 1pg, 10fg, 1fg, 
10ag of ESR1 WT plasmid was tested for the binding of ESR1 Y537C mutant probe. ESR1 Y537C oligos 
mixed with ESR1 WT DNA and NTC were used as positive and negative controls, respectively. 1D plots of 
fluorescent signal are shown for ESR1 Y537C (top) and WT (bottom) probes. 
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Figure 28. Lack of cross-reactivity between D538G and Y537S probes. 
Constant amount of genomic DNA (30ng) from CRISPR clone with D538G mutation was mixed with 
increased amount of Y537S oligo. 2D plots of fluorescent signal are shown for ESR1 D538G and WT 
probes (Top).  Increasing amount of Y537S did not change detected allele frequency for D538G (bottom). 
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Figure 29. LLoD determination of ddPCR 
on A) Frozen tissues, B) cfDNA, and C) FFPE tissues. ESR1 D538G KI gDNA, ESR1 D538G positive 
cfDNA, or ESR1 D538G positive FFPE samples were spiked in ESR1-mutation-free frozen tissues, cfDNA, 
or FFPE samples respectively at different ratio. Expected allele frequency of mutations is labeled on the x 
axis. The LLoD were defined as the lowest mutant frequency with at least 3 droplets which was 0.05% for 
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frozen tissues, 0.45% for cfDNA and FFPE samples. The respective adjusted LLoD were 0.05%, 0.10%, 
and 0.16% after background-noise subtraction. 
 

Figure 30. Mutant allele frequency of PIK3CA H1047R mutation in 12 bone metastases. 
The T47D cell lines DNA was used as the WT only control. 
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Figure 31. The D538G ER mutation in 3 brain mets was confirmed by Sanger sequencing. 
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Figure 32. ESR1 Y537S and D538G observed in the same specimens are not mutated on the same 
alleles. 
CF4 D1, CF4 D2, BR17 were tested using ESR1 Y537S, D538G, Y537S/D538G and ESR1 WT probes 
among which the latter only detects dual mutations on the same alleles at high signal amplitude. 
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Unamplified DNA from BR17 was also tested. Plasmid with both mutations (Y537S/D538G ctrl), gDNA 
with ESR1 D538G or ESR1 WT were used as controls. 

Figure 33. Clinical timelines and allele frequency of ESR1 mutations in multiple blood draws and 
matched metastatic lesions from two patients. 
A) CF23 and B) CF28/BM14 . The timeline starts with diagnosis of metastatic disease and shows
treatments received, disease progression (vertical arrows), death (red cross), tumor marker assessments 
(CA 27-29 antigen line graph), and ESR1 assessments (syringe and bar graphs). The mutant allele 
frequency of the ESR1 mutations, measured by ddPCR, are displayed in 2D plots above the time line. The 
dashed line represents the LLoD (0.09%) below which the mutations were not detectable by ddPCR. 
Treatment abbreviations: Chemo (chemotherapy), PARPi (PARP inhibitor), LU (Leuprolide), SERM 
(Selective Estrogen Receptor Modulator), SERD (Selective Estrogen Receptor Degrader), AI (Aromatase 
Inhibitor) and mTORi (mTOR inhibitor). *The matched metastatic lesion was positive for ESR1 mutation. 
(online only). 
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Figure 34. Sanger sequencing of ESR1 mutations in T47D cells. 
Sanger sequencing shows the insertion of Y537S (A>C) and D538G (A>G) in T47D cells. 
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Figure 35. PCA analysis of 1000 top variable genes between WT and mutants. 
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Figure 36. The overlap of ligand independent differentially expressed novel targets of ER. 

p-value<0.01 
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Figure 37. Cell adhesion to Collagen I and IV in individual WT and mutant clones. 
Individual clones were grown in media+10% FBS and plated on precoated Collagen I, IV and BSA plates. 
The adhesion assay was performed as described in the methods. 
(provided by Zheqi Li) 
 
 

 

 

 

 

 

 

 

 

 

 

 



101 

Figure 38. Cell adhesion different ECMs in T47D pooled WT and mutant cells. 
Individual clones were grown in media+10% FBS and pooled prior to using ECM array kit. The adhesion 
assay was performed as described in the methods. 
(Provided by Zheqi Li) 
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Figure 39. Network analysis of ligand independent novel regulated genes common between Y537S 
and D538G in each cell line. 
The upstream regulator analysis was performed on the genes inputted in IPA package for each cell lines 
independently. 
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APPENDIX B: SUPPLEMENTARY TABLES 

 

Table 8. Primer sets used for different assays 

Assay name Forward Sequence Reverse Sequence 
ChIP-qPCR AGGATCCAGGCAGAGTACAG  CCCAGCCCTGTGAGCTTTA  
Allele specific ChIP GCAACACCTGGCTTCTGT  CAGCCCTGTGAGCTTTAACA  
IGF1R expression AGTTATCTCCGGTCTCTGAGG TCTGTGGACGAACTTATTGGC 
Cloning for luciferase 
assay AATTGATATCCCACAGCTATGCCACCTG AATTAAGCTTCCACAACACACCTCCCTAAT 
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Table 9. The list of all ER ChIP-seq data sets in breast cancer 

Cell 
line/Tumor 

Data 
set Reads Peaks Ref 

MCF7 

1 6,442,721 37,057 (3) 
2 15,450,131 79,978 (45) 
3 20,876,237 15,677 (45) 
4 21,220,101 24,823 (45) 
5 22,924,491 30,130 (5) 
6 26,445,865 48,243 (46) 
7 26,825,998 79,731 (4) 
8 27,238,465 49,231 (4) 
9 34,587,361 66,483 (4) 

T47D 

1 20974865 20405 (4) 
2 71986040 8,044 (4) 
3 14490194 4,806 (3) 
4 29801890 3,098 (44) 
5 16753735 11,145 (44) 

BT474 1 20830555 36,565 (4) 
2 21056403 36,337 (4) 

ZR75 

1 19678686 57,828 (4) 
2 62581081 34,870 (4) 
3 18981841 12,137 (44) 
4 18746193 26,820 (44) 

TAMR 1 22555819 61,536 (4) 
2 29699074 46,420 (4) 

MDA-MB-
134 1 84820062 3,398 (93) 

Good 
Prognosis 
Tumors 

1 11498805 11,130 (4) 
2 6201437 13,543 (4) 
3 13907908 18,635 (4) 
4 13946259 35,788 (4) 
5 7177205 3,008 (4) 

6 15274041 6,976 
(4) 

7 12566868 8,898 
(4) 

8 21862228 7,167 
(4) 

9 18053501 2,918 
(4) 

Bad 
Prognosis 
Tumors 

1 14269376 14,029 
(4) 

2 17447408 60,874 
(4) 



105 

Table 9 Continued 

3 18669346 8,981 
(4) 

4 15743920 36,698 
(4) 

5 13886222 18,000 
(4) 

6 13205910 15,181 
(4) 

7 19265908 2,355 
(4) 

8 18277065 5,175 
(4) 

9 22858543 3,009 
(4) 

Metastatic 
samples 

1 10970298 13,676 
(4) 

2 17325390 79,516 
(4) 

3 19851135 15,861 
(4) 
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Table 10. The list of regulatory SNVs in MCF7 Cell line 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr1 147476254 intergenic NBPF25P,LOC388692 dist=99905;dist=77500 rs111816629 0 DECREASE 
chr17 68148267 upstream LINC00511 NA rs112860966 0 DECREASE 
chr16 83735945 ncRNA_intronic LOC400548 NA rs4783134 0 INCREASE 
chr1 154453258 intronic PMF1,PMF1-BGLAP NA rs2475757 9.22878E-07 INCREASE 
chr8 128992864 ncRNA_intronic PVT1 NA chr8:128992864 2.25786E-06 INCREASE 
chr17 4425801 intergenic GGT6,SMTNL2 dist=15161;dist=8224 rs10852864 2.25786E-06 INCREASE 
chr2 177210984 ncRNA_splicing LOC102724224 NR_110599:exon1:c.255+2C>T rs2969356 7.56077E-06 DECREASE 
chr1 143643443 UTR5 PDE4DIP NA rs1324349 7.77221E-06 INCREASE 
chr5 174111380 ncRNA_exonic MIR4634 NA rs7709117 8.46441E-06 DECREASE 
chr12 154319 exonic IQSEC3 NA rs216230 1.06917E-05 INCREASE 
chr16 79766256 intronic PKD1L2 NA rs935929 1.06917E-05 DECREASE 
chr14 20387049 intergenic RNASE1,RNASE3 dist=46173;dist=42353 rs28419520 1.09518E-05 DECREASE 
chr10 94821513 intergenic CYP26C1,CYP26A1 dist=3069;dist=1709 rs68040629 1.09518E-05 INCREASE 
chr11 112083748 intergenic LOC387810,LOC101928847 dist=152013;dist=251464 rs2055936 1.23128E-05 INCREASE 
chr3 198870842 intergenic LOC220729,KIAA0226 dist=31693;dist=11820 rs145563991 1.26161E-05 INCREASE 
chr1 150165373 intergenic THEM4,S100A10 dist=16388;dist=56637 rs2999541 1.26161E-05 DECREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr10 125987106 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 125987106 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 125987106 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr7 155348454 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr7 155348454 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr7 155348454 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
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Table 10 continued  
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
chr16 317624 intronic AXIN1 NA rs10903014 2.53932E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr17 78165542 downstream WDR45B NA chr17:78165542 3.09647E-05 DECREASE 
chr17 78165542 downstream WDR45B NA chr17:78165542 3.09647E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr7 43255038 intronic HECW1 NA rs56040296 3.28554E-05 INCREASE 
chr10 121292409 upstream RGS10 NA rs10787978 3.38577E-05 INCREASE 
chr6 157157941 intronic ARID1B NA rs12208040 3.62837E-05 INCREASE 
chr6 157157941 intronic ARID1B NA rs12208040 3.62837E-05 INCREASE 
chr6 157157941 intronic ARID1B NA rs12208040 3.62837E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr13 38154404 intergenic LINC00366,FREM2 dist=102751;dist=4769 rs2496419 4.01757E-05 INCREASE 
chr13 38154404 intergenic LINC00366,FREM2 dist=102751;dist=4769 rs2496419 4.01757E-05 INCREASE 
chr13 38154404 intergenic LINC00366,FREM2 dist=102751;dist=4769 rs2496419 4.01757E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr9 139438247 intronic NOXA1 NA rs11497278 4.38072E-05 INCREASE 
chr20 4090809 intronic SMOX NA rs13040038 4.38072E-05 DECREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
chr7 84893979 intergenic SEMA3D,GRM3 dist=304796;dist=1217187 rs1608484 4.7029E-05 INCREASE 
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Table 10 continued 
chr7 84893979 intergenic SEMA3D,GRM3 dist=304796;dist=1217187 rs1608484 4.7029E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr7 130961351 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr7 130961351 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr16 76642909 intergenic CLEC3A,WWOX dist=19407;dist=47902 rs2344922 5.17572E-05 INCREASE 
chr16 76642909 intergenic CLEC3A,WWOX dist=19407;dist=47902 rs2344922 5.17572E-05 INCREASE 
chr16 76642909 intergenic CLEC3A,WWOX dist=19407;dist=47902 rs2344922 5.17572E-05 INCREASE 
chr1 186668364 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr12 100615617 UTR5 CHPT1 NA chr12:100615617 5.34422E-05 DECREASE 
chr12 100615617 UTR5 CHPT1 NA chr12:100615617 5.34422E-05 DECREASE 
chr17 54818764 intronic YPEL2 NA rs8073731 5.44256E-05 DECREASE 
chr17 54818764 intronic YPEL2 NA rs8073731 5.44256E-05 DECREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr14 105141141 intergenic TMEM121,MIR8071-2 dist=73557;dist=17357 rs4983455 5.69393E-05 DECREASE 
chr14 105141141 intergenic TMEM121,MIR8071-2 dist=73557;dist=17357 rs4983455 5.69393E-05 DECREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
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Table 10 continued 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chr4 7379317 intronic SORCS2 NA rs3864203 6.09368E-05 DECREASE 
chr4 7379317 intronic SORCS2 NA rs3864203 6.09368E-05 DECREASE 
chr4 7379317 intronic SORCS2 NA rs3864203 6.09368E-05 DECREASE 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
chr4 7379510 intronic SORCS2 NA rs3900741 6.27053E-05 INCREASE 
chr4 7379510 intronic SORCS2 NA rs3900741 6.27053E-05 INCREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 6.2727E-05 DECREASE 
chr7 84893979 intergenic SEMA3D,GRM3 dist=304796;dist=1217187 rs1608484 6.2727E-05 INCREASE 
chr2 132742681 intergenic ANKRD30BL,GPR39 dist=10669;dist=147936 rs75955051 6.49819E-05 INCREASE 
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Table 11. The list of regulatory SNVs in BT474 Cell line 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 

ADJ 
PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr19 18253643 upstream JUND,MIR3188 NA rs41523455 7.56077E-06 DECREASE 
chr19 18253642 upstream JUND,MIR3188 NA rs41519246 7.77221E-06 DECREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr6 1033964 ncRNA_intronic LOC285768 NA rs7770094 1.58627E-05 DECREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr16 317624 intronic AXIN1 NA rs10903014 2.53932E-05 INCREASE 
chr7 33839193 intergenic BBS9,BMPER dist=226988;dist=71855 rs6961339 2.54502E-05 INCREASE 
chr7 33839193 intergenic BBS9,BMPER dist=226988;dist=71855 rs6961339 2.54502E-05 INCREASE 
chr7 33839193 intergenic BBS9,BMPER dist=226988;dist=71855 rs6961339 2.54502E-05 INCREASE 
chr22 43485450 intronic PRR5,PRR5-ARHGAP8 NA rs9614562 2.57312E-05 INCREASE 
chr22 43485450 intronic PRR5,PRR5-ARHGAP8 NA rs9614562 2.57312E-05 INCREASE 
chr22 43485450 intronic PRR5,PRR5-ARHGAP8 NA rs9614562 2.57312E-05 INCREASE 
chr5 363825 intronic AHRR,PDCD6 NA chr5:363825 2.82816E-05 DECREASE 
chr5 363825 intronic AHRR,PDCD6 NA chr5:363825 2.82816E-05 DECREASE 
chr19 50041017 upstream PVRL2 NA rs77241309 3.77088E-05 INCREASE 
chr19 50041017 upstream PVRL2 NA rs77241309 3.77088E-05 INCREASE 
chr7 67991068 intergenic LOC102723427,LOC100507468 dist=855956;dist=707991 chr7:67991068 4.01757E-05 INCREASE 
chr7 67991068 intergenic LOC102723427,LOC100507468 dist=855956;dist=707991 chr7:67991068 4.01757E-05 INCREASE 
chr7 67991068 intergenic LOC102723427,LOC100507468 dist=855956;dist=707991 chr7:67991068 4.01757E-05 INCREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
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Table 11 continued 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 4.49834E-05 DECREASE 
chrX 38744889 intergenic MID1IP1,LINC01281 dist=194162;dist=304265 rs11797866 4.7029E-05 DECREASE 
chrX 38744889 intergenic MID1IP1,LINC01281 dist=194162;dist=304265 rs11797866 4.7029E-05 DECREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chrX 38744889 intergenic MID1IP1,LINC01281 dist=194162;dist=304265 rs11797866 6.09368E-05 DECREASE 
chr5 363825 intronic AHRR,PDCD6 NA chr5:363825 6.2727E-05 DECREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.55787E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 
chr14 69939953 intronic SYNJ2BP,SYNJ2BP-COX16 NA rs10140263 7.24677E-05 INCREASE 
chr14 69939953 intronic SYNJ2BP,SYNJ2BP-COX16 NA rs10140263 7.24677E-05 INCREASE 
chr14 69939953 intronic SYNJ2BP,SYNJ2BP-COX16 NA rs10140263 7.24677E-05 INCREASE 
chr19 52016022 intergenic SLC1A5,SNAR-E dist=32340;dist=9660 rs62136763 7.25674E-05 DECREASE 
chr19 52016022 intergenic SLC1A5,SNAR-E dist=32340;dist=9660 rs62136763 7.25674E-05 DECREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 8.0548E-05 INCREASE 
chr19 52016022 intergenic SLC1A5,SNAR-E dist=32340;dist=9660 rs62136763 8.24616E-05 DECREASE 
chr14 90039715 intergenic LINC00642,TTC7B dist=44713;dist=36970 chr14:90039715 8.25737E-05 DECREASE 
chr14 90039715 intergenic LINC00642,TTC7B dist=44713;dist=36970 chr14:90039715 8.25737E-05 DECREASE 
chr14 90039715 intergenic LINC00642,TTC7B dist=44713;dist=36970 chr14:90039715 8.25737E-05 DECREASE 
chr19 50041017 upstream PVRL2 NA rs77241309 9.33126E-05 INCREASE 
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Table 11 continued 
chr15 53854963 intergenic PRTG,NEDD4 dist=32494;dist=51446 rs4774822 9.33484E-05 INCREASE 
chr15 53854963 intergenic PRTG,NEDD4 dist=32494;dist=51446 rs4774822 9.33484E-05 INCREASE 
chr15 53854963 intergenic PRTG,NEDD4 dist=32494;dist=51446 rs4774822 9.33484E-05 INCREASE 
chr8 1.25E+08 intronic FER1L6 NA rs10089757 9.83528E-05 DECREASE 
chr8 1.25E+08 intronic FER1L6 NA rs10089757 9.83528E-05 DECREASE 
chr8 1.25E+08 intronic FER1L6 NA rs10089757 9.83528E-05 DECREASE 
chr9 1.28E+08 downstream MVB12B NA rs3739564 0.00010804 INCREASE 
chr9 1.28E+08 downstream MVB12B NA rs3739564 0.00010804 INCREASE 
chr10 97657673 ncRNA_intronic ENTPD1-AS1 NA rs7906654 0.000108627 INCREASE 
chr10 97657673 ncRNA_intronic ENTPD1-AS1 NA rs7906654 0.000108627 INCREASE 
chr10 97657673 ncRNA_intronic ENTPD1-AS1 NA rs7906654 0.000108627 INCREASE 
chr10 1.15E+08 intergenic TCF7L2,HABP2 dist=313308;dist=69846 rs2036551 0.000108702 DECREASE 
chr10 1.15E+08 intergenic TCF7L2,HABP2 dist=313308;dist=69846 rs2036551 0.000108702 DECREASE 
chr11 10366316 ncRNA_intronic CAND1.11 NA rs77384703 0.000108702 DECREASE 
chr11 10366316 ncRNA_intronic CAND1.11 NA rs77384703 0.000108702 DECREASE 
chr5 67728553 intergenic PIK3R1,SLC30A5 dist=95148;dist=696979 chr5:67728553 0.00011304 INCREASE 
chr5 67728553 intergenic PIK3R1,SLC30A5 dist=95148;dist=696979 chr5:67728553 0.00011304 INCREASE 
chr20 25106862 intergenic LOC284798,LOC101926889 dist=29436;dist=6446 rs118015381 0.00011304 INCREASE 
chr20 25106862 intergenic LOC284798,LOC101926889 dist=29436;dist=6446 rs118015381 0.00011304 INCREASE 
chr2 11712184 intergenic GREB1,NTSR2 dist=11821;dist=3571 rs6432223 0.00011304 INCREASE 
chr2 11712184 intergenic GREB1,NTSR2 dist=11821;dist=3571 rs6432223 0.00011304 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 0.0001149 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 0.0001149 INCREASE 
chr1 1.76E+08 intergenic BRINP2,LOC101928778 dist=166441;dist=251660 rs2207028 0.0001149 INCREASE 
chr1 1.76E+08 intergenic BRINP2,LOC101928778 dist=166441;dist=251660 rs2207028 0.0001149 INCREASE 
chr1 1.76E+08 intergenic BRINP2,LOC101928778 dist=166441;dist=251660 rs2207028 0.0001149 INCREASE 
chr5 1.33E+08 intergenic FSTL4,C5orf15 dist=272348;dist=70627 rs10736848 0.000116617 INCREASE 
chr5 1.33E+08 intergenic FSTL4,C5orf15 dist=272348;dist=70627 rs10736848 0.000116617 INCREASE 
chr5 1.33E+08 intergenic FSTL4,C5orf15 dist=272348;dist=70627 rs10736848 0.000116617 INCREASE 
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Table 11 continued 
chr7 16801076 intronic AGR2 NA rs4719480 0.000117929 DECREASE 
chr7 16801076 intronic AGR2 NA rs4719480 0.000117929 DECREASE 
chr7 16801076 intronic AGR2 NA rs4719480 0.000117929 DECREASE 
chr21 45203197 intronic FAM207A NA rs2877001 0.000122819 INCREASE 
chr21 45203197 intronic FAM207A NA rs2877001 0.000122819 INCREASE 
chr21 45203197 intronic FAM207A NA rs2877001 0.000122819 INCREASE 
chr2 48830624 intronic LHCGR,STON1-GTF2A1L NA rs4555391 0.000122819 INCREASE 
chr2 48830624 intronic LHCGR,STON1-GTF2A1L NA rs4555391 0.000122819 INCREASE 
chr2 48830624 intronic LHCGR,STON1-GTF2A1L NA rs4555391 0.000122819 INCREASE 
chr11 1.01E+08 intergenic KIAA1377,C11orf70 dist=10313;dist=36060 rs10791548 0.000123861 DECREASE 
chr11 1.01E+08 intergenic KIAA1377,C11orf70 dist=10313;dist=36060 rs10791548 0.000123861 DECREASE 
chr17 78426666 intronic TBCD NA rs8078446 0.000124464 DECREASE 
chr17 78426666 intronic TBCD NA rs8078446 0.000124464 DECREASE 
chr17 78426666 intronic TBCD NA rs8078446 0.000124464 DECREASE 
chr1 1.46E+08 intronic NBPF10,NBPF8 NA chr1:146192389 0.000130941 DECREASE 
chr1 1.46E+08 intronic NBPF10,NBPF8 NA chr1:146192389 0.000130941 DECREASE 
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Table 12. The list of regulatory SNVs in MDA-MB-134 Cell line 

CHR POS ANNOTATION GENE 
DISTANCE FROM 
GENE SNP ID 

ADJ 
PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr15 67907815 intergenic LOC145837,LINC00593 dist=256982;dist=6812 rs305024 1.26161E-05 INCREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.37513E-05 INCREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.37513E-05 INCREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.72702E-05 INCREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr3 65769158 intronic MAGI1 NA rs2017783 3.2491E-05 INCREASE 
chr3 65769158 intronic MAGI1 NA rs2017783 3.2491E-05 INCREASE 
chr3 65769158 intronic MAGI1 NA rs2017783 3.2491E-05 INCREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr21 10168351 intergenic BAGE,NONE dist=47543;dist=NONE rs143333505 7.12551E-05 INCREASE 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 8.15262E-05 DECREASE 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 8.15262E-05 DECREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chrY 57411338 intergenic NONE,SPRY3 dist=NONE;dist=98507 rs75814907 8.43299E-05 DECREASE 
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Table 12 continued 
chrY 57411338 intergenic NONE,SPRY3 dist=NONE;dist=98507 rs75814907 8.43299E-05 DECREASE 
chrY 57411338 intergenic NONE,SPRY3 dist=NONE;dist=98507 rs75814907 9.26148E-05 DECREASE 
chr10 41961161 intergenic NONE,LOC441666 dist=NONE;dist=186159 rs61847195 9.83528E-05 INCREASE 
chr10 41961161 intergenic NONE,LOC441666 dist=NONE;dist=186159 rs61847195 9.83528E-05 INCREASE 
chr17 41334421 intronic MAPT NA rs1560311 0.000103514 DECREASE 
chr17 41334421 intronic MAPT NA rs1560311 0.000103514 DECREASE 
chr1 5655337 intergenic MIR4417,MIR4689 dist=108547;dist=189982 rs75831410 0.000103834 INCREASE 
chr1 5655337 intergenic MIR4417,MIR4689 dist=108547;dist=189982 rs75831410 0.000103834 INCREASE 
chr1 5655337 intergenic MIR4417,MIR4689 dist=108547;dist=189982 rs75831410 0.000103834 INCREASE 
chr7_random 191044 intergenic NONE,LOC389831 dist=NONE;dist=14698 chr7_random:191044 0.000108627 INCREASE 
chr7_random 191044 intergenic NONE,LOC389831 dist=NONE;dist=14698 chr7_random:191044 0.000108627 INCREASE 
chr9_random 613232 intergenic NONE,RNF208 dist=NONE;dist=513406 chr9_random:613232 0.000108627 DECREASE 
chr9_random 613232 intergenic NONE,RNF208 dist=NONE;dist=513406 chr9_random:613232 0.000108627 DECREASE 
chr4 4007600 ncRNA_intronic FAM86EP NA rs3892453 0.000110161 DECREASE 
chr4 4007600 ncRNA_intronic FAM86EP NA rs3892453 0.000110161 DECREASE 
chr4 4007600 ncRNA_intronic FAM86EP NA rs3892453 0.000110161 DECREASE 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 0.000110161 DECREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.00011304 INCREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.00011304 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.000119481 INCREASE 
chr6 1.58E+08 intergenic ARID1B,ZDHHC14 dist=80543;dist=68397 chr6:157654148 0.000122819 INCREASE 
chr6 1.58E+08 intergenic ARID1B,ZDHHC14 dist=80543;dist=68397 chr6:157654148 0.000122819 INCREASE 
chr6 1.58E+08 intergenic ARID1B,ZDHHC14 dist=80543;dist=68397 chr6:157654148 0.000122819 INCREASE 
chr1 1.44E+08 intronic NBPF12,NBPF20,NOTCH2NL NA rs2794088 0.000123994 INCREASE 
chr1 1.44E+08 intronic NBPF12,NBPF20,NOTCH2NL NA rs2794088 0.000123994 INCREASE 
chr1 1.44E+08 intronic NBPF12,NBPF20,NOTCH2NL NA rs2794088 0.000123994 INCREASE 
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Table 12 continued 
chr1 16779915 exonic NBPF1 NA rs78540200 0.000133177 DECREASE 
chrX 1.52E+08 intronic ZNF185 NA rs3761504 0.000138172 INCREASE 
chrX 1.52E+08 intronic ZNF185 NA rs3761504 0.000138172 INCREASE 
chrY 10594845 intergenic TTTY23,NONE dist=235274;dist=NONE rs77846686 0.000138172 DECREASE 
chrY 10594845 intergenic TTTY23,NONE dist=235274;dist=NONE rs77846686 0.000138172 DECREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000142131 INCREASE 
chr20 26149877 intergenic MIR663AHG,NONE dist=12008;dist=NONE rs62198169 0.000142721 DECREASE 
chr20 26149877 intergenic MIR663AHG,NONE dist=12008;dist=NONE rs62198169 0.000142721 DECREASE 
chr20 26149877 intergenic MIR663AHG,NONE dist=12008;dist=NONE rs62198169 0.000142721 DECREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr7_random 176814 intergenic NONE,LOC389831 dist=NONE;dist=28928 chr7_random:176814 0.000146461 DECREASE 
chr7_random 176814 intergenic NONE,LOC389831 dist=NONE;dist=28928 chr7_random:176814 0.000146461 DECREASE 
chr7_random 176814 intergenic NONE,LOC389831 dist=NONE;dist=28928 chr7_random:176814 0.000146461 DECREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000146461 INCREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000146461 INCREASE 
chr17 41334421 intronic MAPT NA rs1560311 0.000159308 DECREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000162941 DECREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000162941 DECREASE 
chr12 56403622 downstream AGAP2 NA rs238516 0.000165147 DECREASE 
chr12 56403622 downstream AGAP2 NA rs238516 0.000165147 DECREASE 
chr17_random 95928 intergenic NONE,MGC70870 dist=NONE;dist=20695 chr17_random:95928 0.000169076 DECREASE 
chr7_random 180317 intergenic NONE,LOC389831 dist=NONE;dist=25425 chr7_random:180317 0.000178475 DECREASE 
chr7_random 180317 intergenic NONE,LOC389831 dist=NONE;dist=25425 chr7_random:180317 0.000178475 DECREASE 
chr22 26751300 ncRNA_intronic MIR548AM NA rs1548235 0.000178475 INCREASE 
chr22 26751300 ncRNA_intronic MIR548AM NA rs1548235 0.000178475 INCREASE 
chr22 26751300 ncRNA_intronic MIR548AM NA rs1548235 0.000178475 INCREASE 
chr1 5654098 intergenic MIR4417,MIR4689 dist=107308;dist=191221 rs72863341 0.000178475 DECREASE 
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Table 12 continued 
chr1 5654098 intergenic MIR4417,MIR4689 dist=107308;dist=191221 rs72863341 0.000178475 DECREASE 
chr1 5654098 intergenic MIR4417,MIR4689 dist=107308;dist=191221 rs72863341 0.000178475 DECREASE 
chr2 91171920 intergenic NONE,LOC654342 dist=NONE;dist=16516 rs2531397 0.000188278 INCREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000188278 DECREASE 
chr22 49429472 intergenic ARSA,SHANK3 dist=16005;dist=30464 rs62241523 0.000188278 INCREASE 
chr22 49429472 intergenic ARSA,SHANK3 dist=16005;dist=30464 rs62241523 0.000188278 INCREASE 
chr22 49429472 intergenic ARSA,SHANK3 dist=16005;dist=30464 rs62241523 0.000188278 INCREASE 
chr2 57173824 intergenic RNU6-35P,VRK2 dist=494952;dist=814466 rs71416469 0.000191251 DECREASE 
chr2 57173824 intergenic RNU6-35P,VRK2 dist=494952;dist=814466 rs71416469 0.000191251 DECREASE 
chr2 57173824 intergenic RNU6-35P,VRK2 dist=494952;dist=814466 rs71416469 0.000191251 DECREASE 
chr7_random 174962 intergenic NONE,LOC389831 dist=NONE;dist=30780 chr7_random:174962 0.000196412 DECREASE 
chr7_random 174962 intergenic NONE,LOC389831 dist=NONE;dist=30780 chr7_random:174962 0.000196412 DECREASE 
chr8 11625848 intronic GATA4 NA rs10096189 0.000196412 DECREASE 
chr8 11625848 intronic GATA4 NA rs10096189 0.000196412 DECREASE 
chr12 1.21E+08 intronic TMEM120B NA rs4760112 0.000196412 INCREASE 
chr12 1.21E+08 intronic TMEM120B NA rs4760112 0.000196412 INCREASE 
chr20 28206811 intergenic NONE,FRG1B dist=NONE;dist=18729 rs62198925 0.000200867 DECREASE 
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Table 13. The list of regulatory SNVs in T47D Cell line 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 3.46458E-05 INCREASE 
chr14 94865979 ncRNA_intronic LOC101929080 NA rs111943653 7.58002E-05 INCREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 0.000103704 INCREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 0.000103704 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr1 17514023 intronic PADI4 NA rs2501808 0.000117929 INCREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000142131 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000146461 INCREASE 
chr4 7098724 ncRNA_exonic LOC100129931 NA rs10012093 0.000146461 INCREASE 
chr14 94865979 ncRNA_intronic LOC101929080 NA rs111943653 0.0001532 INCREASE 
chr14 94865979 ncRNA_intronic LOC101929080 NA rs111943653 0.0001532 INCREASE 
chr2 45833232 intronic PRKCE NA rs73926056 0.000185539 DECREASE 
chr9 76905965 intronic OSTF1 NA rs11144228 0.000261882 INCREASE 
chr9 76905965 intronic OSTF1 NA rs11144228 0.000261882 INCREASE 
chr6 6704104 intergenic LY86,RREB1 dist=103889;dist=348725 rs6938081 0.000320937 DECREASE 
chr15 91090470 intergenic FAM174B,ASB9P1 dist=90435;dist=49248 rs12440115 0.000330423 DECREASE 
chr15 91090470 intergenic FAM174B,ASB9P1 dist=90435;dist=49248 rs12440115 0.000330423 DECREASE 
chr15 91090470 intergenic FAM174B,ASB9P1 dist=90435;dist=49248 rs12440115 0.000330423 DECREASE 
chr5 1.32E+08 intronic SLC22A5 NA rs274567 0.000349852 DECREASE 
chr14 93867312 intergenic SERPINA6,SERPINA2 dist=7871;dist=32416 rs1884551 0.000411044 INCREASE 
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Table 13 continued 
chr17 73929111 intronic PGS1 NA rs2138127 0.000609653 DECREASE 
chr17 73929111 intronic PGS1 NA rs2138127 0.000609653 DECREASE 
chr2 45833232 intronic PRKCE NA rs73926056 0.000763915 DECREASE 
chr2 45833232 intronic PRKCE NA rs73926056 0.000763915 DECREASE 
chr9 76905965 intronic OSTF1 NA rs11144228 0.000882191 INCREASE 
chr10 82717289 intergenic SH2D4B,NRG3 dist=320993;dist=907761 rs2881074 0.001124783 INCREASE 
chr14 94865979 ncRNA_intronic LOC101929080 NA rs111943653 0.001188517 DECREASE 
chr22 27549122 intergenic XBP1,ZNRF3 dist=22562;dist=60633 rs6519764 0.001188517 DECREASE 
chr7 34070750 intronic BMPER NA rs1362456 0.001196024 DECREASE 
chr15 31147775 intronic FMN1 NA rs11639303 0.001200055 DECREASE 
chr12 51650094 intergenic KRT18,EIF4B dist=17142;dist=36235 rs7306508 0.001291262 INCREASE 
chr12 51650094 intergenic KRT18,EIF4B dist=17142;dist=36235 rs7306508 0.001291262 INCREASE 
chr12 51650094 intergenic KRT18,EIF4B dist=17142;dist=36235 rs7306508 0.001291262 INCREASE 
chr16 82538204 intergenic MLYCD,OSGIN1 dist=30916;dist=6124 rs4782862 0.001414265 INCREASE 
chr11 69039535 intergenic LOC101928292,CCND1 dist=22043;dist=125519 rs2015489 0.001620628 DECREASE 
chr16 87123750 intronic ZFPM1 NA rs12929780 0.001745782 INCREASE 
chr17 72796567 intronic 41891 NA rs1702937 0.001815744 DECREASE 
chr15 91090470 intergenic FAM174B,ASB9P1 dist=90435;dist=49248 rs12440115 0.001906126 INCREASE 
chr2 65380947 intergenic ACTR2,SPRED2 dist=29056;dist=10542 rs6546142 0.001906126 INCREASE 
chr7 36091291 intergenic SEPT7,LOC101928618 dist=178051;dist=10154 rs2700947 0.001962839 INCREASE 
chr7 36091147 intergenic SEPT7,LOC101928618 dist=177907;dist=10298 rs2718005 0.001962839 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 0.002007182 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 0.002007182 INCREASE 
chr11 72175110 intronic STARD10 NA rs481206 0.00204715 DECREASE 
chr17 46276879 intergenic WFIKKN2,TOB1 dist=2171;dist=17707 rs9893135 0.002169912 INCREASE 
chr15 61467142 intergenic CA12,LOC102723344 dist=5780;dist=2340 rs35474601 0.002203505 DECREASE 
chr9 76905965 intronic OSTF1 NA rs11144228 0.002276914 DECREASE 
chr3 1.27E+08 ncRNA_exonic FAM86JP NA rs13063122 0.002310662 DECREASE 
chr16 82538204 intergenic MLYCD,OSGIN1 dist=30916;dist=6124 rs4782862 0.002406649 DECREASE 
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Table 13 continued 
chr12 1.15E+08 intergenic MIR4472-2,LINC00173 dist=66155;dist=38949 rs1566930 0.002413074 INCREASE 
chr8 1.02E+08 intergenic FLJ42969,ZNF706 dist=44759;dist=76028 rs2441704 0.003600164 DECREASE 
chr16 82538204 intergenic MLYCD,OSGIN1 dist=30916;dist=6124 rs4782862 0.004888673 INCREASE 
chr16 82538204 intergenic MLYCD,OSGIN1 dist=30916;dist=6124 rs4782862 0.004888673 INCREASE 
chr3 1.66E+08 intergenic LINC01192,SI dist=1331742;dist=343855 rs34741709 0.00528453 DECREASE 
chr3 1.66E+08 intergenic LINC01192,SI dist=1331742;dist=343855 rs34741709 0.00528453 DECREASE 
chr6 53437811 intergenic ELOVL5,GCLC dist=115875;dist=32288 rs593532 0.005296121 INCREASE 
chr17 72795651 UTR5 41891 NA rs138270732 0.005319381 DECREASE 
chr7 7328048 intergenic LOC101927354,COL28A1 dist=43823;dist=36721 rs1882600 0.005717452 DECREASE 
chr7 7328048 intergenic LOC101927354,COL28A1 dist=43823;dist=36721 rs1882600 0.005717452 DECREASE 
chr5 1.32E+08 intronic SLC22A5 NA rs274567 0.006156115 DECREASE 
chr5 1.32E+08 intronic SLC22A5 NA rs274567 0.006156115 DECREASE 
chr8 99246585 intergenic POP1,NIPAL2 dist=5340;dist=26978 rs1868993 0.006795569 DECREASE 
chr8 99246585 intergenic POP1,NIPAL2 dist=5340;dist=26978 rs1868993 0.006795569 DECREASE 
chr17 78165175 downstream WDR45B NA rs8071743 0.006931985 INCREASE 
chr1 1.14E+08 UTR3 HIPK1 NA rs10732635 0.007172273 DECREASE 
chr1 1.14E+08 UTR3 HIPK1 NA rs10732635 0.007172273 DECREASE 
chr4 2908816 ncRNA_exonic NOP14-AS1 NA rs1263338 0.007333009 DECREASE 
chr4 2908816 ncRNA_exonic NOP14-AS1 NA rs1263338 0.007333009 DECREASE 
chr16 84050383 intergenic MIR5093,GSE1 dist=152951;dist=152147 rs731957 0.007740416 INCREASE 
chr16 84050383 intergenic MIR5093,GSE1 dist=152951;dist=152147 rs731957 0.007740416 INCREASE 
chr12 1.24E+08 intronic SCARB1 NA rs10773109 0.009679985 INCREASE 
chr12 1.24E+08 intronic SCARB1 NA rs10773109 0.009679985 INCREASE 
chr16 9049152 intergenic USP7,C16orf72 dist=84310;dist=43886 rs113403549 0.009679985 DECREASE 
chr16 9049152 intergenic USP7,C16orf72 dist=84310;dist=43886 rs113403549 0.009679985 DECREASE 
chr8 1.02E+08 intergenic FLJ42969,ZNF706 dist=44759;dist=76028 rs2441704 0.009679985 DECREASE 
chr8 1.02E+08 intergenic FLJ42969,ZNF706 dist=44759;dist=76028 rs2441704 0.009679985 DECREASE 
chr1 1.44E+08 upstream PDZK1 NA rs900347 0.009679985 INCREASE 
chr1 1.44E+08 upstream PDZK1 NA rs900347 0.009679985 INCREASE 
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Table 13 continued 
chr17 37203179 intergenic JUP,LEPREL4 dist=6689;dist=8552 rs12453367 0.009786707 INCREASE 
chr17 46217672 intergenic MIR8059,WFIKKN2 dist=16582;dist=49932 rs4793670 0.010569059 INCREASE 
chr17 46217672 intergenic MIR8059,WFIKKN2 dist=16582;dist=49932 rs4793670 0.010569059 INCREASE 
chr14 68482557 intronic ACTN1 NA rs2268982 0.011143964 DECREASE 
chr17 72794878 intronic 41891 NA rs1996631 0.014593517 INCREASE 
chr11 1.01E+08 intergenic LOC101054525,TRPC6 dist=248353;dist=43941 rs12785425 0.018701016 INCREASE 
chr11 1.01E+08 intergenic LOC101054525,TRPC6 dist=248353;dist=43941 rs12785425 0.018701016 INCREASE 
chr11 1.01E+08 intergenic LOC101054525,TRPC6 dist=248353;dist=43941 rs12785425 0.018701016 INCREASE 
chr10 12232323 intronic SEC61A2 NA rs9329337 0.0199501 DECREASE 
chr12 51650500 intergenic KRT18,EIF4B dist=17548;dist=35829 rs2682327 0.021292451 DECREASE 
chr16 53015651 intergenic IRX3,CRNDE dist=137772;dist=494627 rs9940750 0.026543734 DECREASE 
chr16 53015651 intergenic IRX3,CRNDE dist=137772;dist=494627 rs9940750 0.026543734 DECREASE 
chr16 53015651 intergenic IRX3,CRNDE dist=137772;dist=494627 rs9940750 0.026543734 DECREASE 
chr3 1.78E+08 intergenic LINC01209,TBL1XR1 dist=135007;dist=68746 rs2862637 0.030321457 INCREASE 
chr3 1.78E+08 intergenic LINC01209,TBL1XR1 dist=135007;dist=68746 rs2862637 0.030321457 INCREASE 
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Table 14. The list of regulatory SNVs in TAMR Cell line 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr8 1.29E+08 ncRNA_intronic PVT1 NA chr8:128992864 2.25786E-06 INCREASE 
chrX 19391837 intronic MAP3K15 NA rs5909298 7.38457E-06 DECREASE 
chr1 1.44E+08 UTR5 PDE4DIP NA rs1324349 7.77221E-06 INCREASE 
chrX 19391837 intronic MAP3K15 NA rs5909298 7.9065E-06 DECREASE 
chrX 19391837 intronic MAP3K15 NA rs5909298 7.9065E-06 DECREASE 
chr12 25926409 intergenic MIR4302,RASSF8-AS1 dist=8130;dist=72446 rs12368327 1.03041E-05 INCREASE 
chrX 1.49E+08 ncRNA_intronic LINC00894 NA rs1080027 1.23128E-05 INCREASE 
chr11 1.12E+08 intergenic LOC387810,LOC101928847 dist=152013;dist=251464 rs2055936 1.23128E-05 INCREASE 
chr3 1.99E+08 intergenic LOC220729,KIAA0226 dist=31693;dist=11820 rs145563991 1.26161E-05 INCREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr5 4984128 intergenic LOC101929153,LINC01020 dist=156150;dist=103344 rs621356 1.50767E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 1.88217E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 1.88217E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr7 1.55E+08 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr7 1.55E+08 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr7 1.55E+08 intergenic SHH,LOC389602 dist=50726;dist=99633 rs34044649 2.0412E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 2.20437E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
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Table 14 continued 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
chr11 64982763 intergenic MIR612,MALAT1 dist=14159;dist=39046 rs1626021 2.4987E-05 INCREASE 
chr5 4984128 intergenic LOC101929153,LINC01020 dist=156150;dist=103344 rs621356 2.98815E-05 INCREASE 
chr5 4984128 intergenic LOC101929153,LINC01020 dist=156150;dist=103344 rs621356 2.98815E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr11 44297292 intergenic ALX4,CD82 dist=9000;dist=246425 rs7480769 3.28554E-05 DECREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr2 1.06E+08 intergenic UXS1,PLGLA dist=108734;dist=79041 rs3890642 3.62837E-05 DECREASE 
chr2 1.06E+08 intergenic UXS1,PLGLA dist=108734;dist=79041 rs3890642 3.62837E-05 DECREASE 
chr2 1.06E+08 intergenic UXS1,PLGLA dist=108734;dist=79041 rs3890642 3.62837E-05 DECREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chrX 1.49E+08 ncRNA_intronic LINC00894 NA rs1080027 4.01757E-05 INCREASE 
chrX 1.49E+08 ncRNA_intronic LINC00894 NA rs1080027 4.01757E-05 INCREASE 
chr2 2.22E+08 intergenic MIR4268,EPHA4 dist=1451402;dist=60059 rs2011122 4.10495E-05 INCREASE 
chr2 2.22E+08 intergenic MIR4268,EPHA4 dist=1451402;dist=60059 rs2011122 4.10495E-05 INCREASE 
chr2 2.22E+08 intergenic MIR4268,EPHA4 dist=1451402;dist=60059 rs2011122 4.10495E-05 INCREASE 
chr14 74515113 intergenic PGF,EIF2B2 dist=22893;dist=24252 rs175005 4.27669E-05 INCREASE 
chr8 18926781 intergenic PSD3,LOC100128993 dist=11305;dist=158685 rs1426916 4.3212E-05 INCREASE 
chr8 18926781 intergenic PSD3,LOC100128993 dist=11305;dist=158685 rs1426916 4.3212E-05 INCREASE 
chr8 18926781 intergenic PSD3,LOC100128993 dist=11305;dist=158685 rs1426916 4.3212E-05 INCREASE 
chr20 4090809 intronic SMOX NA rs13040038 4.38072E-05 DECREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
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Table 14 continued 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr5 17144822 intergenic MYO10,LOC285696 dist=155437;dist=38315 rs79986080 4.73771E-05 INCREASE 
chr2 2.24E+08 intronic WDFY1 NA rs538980 4.75328E-05 INCREASE 
chr2 2.24E+08 intronic WDFY1 NA rs538980 4.75328E-05 INCREASE 
chr2 2.24E+08 intronic WDFY1 NA rs538980 4.75328E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr4 89382877 intergenic ABCG2,PPM1K dist=11379;dist=14908 rs997630 5.03646E-05 DECREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr7 1.31E+08 intergenic PODXL,LOC101928782 dist=69435;dist=284168 rs2971746 5.05513E-05 DECREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr16 3955317 UTR3 ADCY9 NA rs1045475 5.43508E-05 INCREASE 
chr16 3955317 UTR3 ADCY9 NA rs1045475 5.43508E-05 INCREASE 
chr16 3955317 UTR3 ADCY9 NA rs1045475 5.43508E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.02636E-05 INCREASE 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
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Table 14 continued 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
chr8 19292641 intronic SH2D4A NA rs2410611 6.18167E-05 INCREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 6.2727E-05 DECREASE 
chr2 15788944 intergenic LOC101926966,MYCNOS dist=12408;dist=204894 rs880565 6.48179E-05 INCREASE 
chr2 15788944 intergenic LOC101926966,MYCNOS dist=12408;dist=204894 rs880565 6.48179E-05 INCREASE 
chr11 44697969 intergenic CD82,TSPAN18 dist=100078;dist=44583 rs7950389 6.55787E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 
chr16 87569119 intronic CBFA2T3 NA rs4782488 6.99845E-05 DECREASE 
chr16 87569119 intronic CBFA2T3 NA rs4782488 6.99845E-05 DECREASE 
chr16 87569119 intronic CBFA2T3 NA rs4782488 6.99845E-05 DECREASE 
chr1 2E+08 intronic LGR6 NA rs1318189 7.09531E-05 DECREASE 
chr1 2E+08 intronic LGR6 NA rs1318189 7.09531E-05 DECREASE 
chr12 25926409 intergenic MIR4302,RASSF8-AS1 dist=8130;dist=72446 rs12368327 7.49599E-05 INCREASE 
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Table 15. The list of regulatory SNVs in ZR75 Cell line.  

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr1 2.1E+08 intergenic LINC00467,RD3 dist=37815;dist=6172 rs77207115 2.17145E-05 INCREASE 
chr1 2.1E+08 intergenic LINC00467,RD3 dist=37815;dist=6172 rs77207115 2.17145E-05 INCREASE 
chr1 2.1E+08 intergenic LINC00467,RD3 dist=37815;dist=6172 rs77207115 2.17145E-05 INCREASE 
chr16 317624 intronic AXIN1 NA rs10903014 2.53932E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 3.33543E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 3.33543E-05 DECREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 3.46458E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 22998700 intronic USP31 NA chr16:22998700 6.48179E-05 DECREASE 
chr16 22998700 intronic USP31 NA chr16:22998700 6.48179E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr6 1.49E+08 intergenic SASH1,UST dist=81959;dist=113128 rs74400481 6.86397E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 7.22241E-05 DECREASE 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 8.15262E-05 DECREASE 
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Table 15 continued 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 8.15262E-05 DECREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chr5 66546818 intergenic CD180,LOC102467655 dist=18445;dist=974642 rs1705397 8.25737E-05 INCREASE 
chr10 79402130 intergenic DLG5-AS1,POLR3A dist=42541;dist=2783 rs10160016 8.84467E-05 INCREASE 
chr10 79402130 intergenic DLG5-AS1,POLR3A dist=42541;dist=2783 rs10160016 8.84467E-05 INCREASE 
chr10 79402130 intergenic DLG5-AS1,POLR3A dist=42541;dist=2783 rs10160016 8.84467E-05 INCREASE 
chr9 1.3E+08 exonic PIP5KL1 NA rs10760515 9.87132E-05 DECREASE 
chr9 1.3E+08 exonic PIP5KL1 NA rs10760515 9.87132E-05 DECREASE 
chr12 1.32E+08 intergenic LOC101928416,FBRSL1 dist=134960;dist=24036 rs12309386 9.88261E-05 DECREASE 
chr12 1.32E+08 intergenic LOC101928416,FBRSL1 dist=134960;dist=24036 rs12309386 9.88261E-05 DECREASE 
chr12 1.32E+08 intergenic LOC101928416,FBRSL1 dist=134960;dist=24036 rs12309386 9.88261E-05 DECREASE 
chr15 87794879 intergenic LINC00925,RHCG dist=52157;dist=20765 chr15:87794879 0.00010296 DECREASE 
chr15 87794879 intergenic LINC00925,RHCG dist=52157;dist=20765 chr15:87794879 0.00010296 DECREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 0.000103704 INCREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 0.000103704 INCREASE 
chrX 1.37E+08 intergenic ZIC3,LINC00889 dist=465546;dist=577087 rs5931289 0.000110161 DECREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.00011304 INCREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.00011304 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 0.0001149 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 0.0001149 INCREASE 
chr8 29632859 intergenic DUSP4,LINC00589 dist=368673;dist=1835 rs10216706 0.000116641 INCREASE 
chr8 29632859 intergenic DUSP4,LINC00589 dist=368673;dist=1835 rs10216706 0.000116641 INCREASE 
chr8 29632859 intergenic DUSP4,LINC00589 dist=368673;dist=1835 rs10216706 0.000116641 INCREASE 
chr15 55671170 upstream GCOM1,MYZAP NA rs2641571 0.000119481 INCREASE 
chr5 1.27E+08 intergenic CTXN3,LINC01184 dist=98022;dist=264900 rs13182486 0.000130941 INCREASE 
chr5 1.27E+08 intergenic CTXN3,LINC01184 dist=98022;dist=264900 rs13182486 0.000130941 INCREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 0.000130941 INCREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 0.000130941 INCREASE 



128 

Table 15 continued 
chr16 4967077 intronic SEC14L5 NA rs2908649 0.000131768 INCREASE 
chr4 1.84E+08 intronic TENM3 NA rs77905405 0.00013267 INCREASE 
chr4 1.84E+08 intronic TENM3 NA rs77905405 0.00013267 INCREASE 
chr14 93988897 upstream SERPINA11 NA rs1956720 0.000138172 INCREASE 
chr14 93988897 upstream SERPINA11 NA rs1956720 0.000138172 INCREASE 
chr14 93988897 upstream SERPINA11 NA rs1956720 0.000138172 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr5 66547543 intergenic CD180,LOC102467655 dist=19170;dist=973917 rs1697138 0.000144987 INCREASE 
chr15 99525863 intergenic LRRK1,CHSY1 dist=98023;dist=7588 rs1982489 0.000144987 INCREASE 
chr7 1.57E+08 exonic PTPRN2 NA rs1130502 0.00015549 DECREASE 
chr7 1.57E+08 exonic PTPRN2 NA rs1130502 0.00015549 DECREASE 
chr7 1.57E+08 exonic PTPRN2 NA rs1130502 0.00015549 DECREASE 
chr4 1.75E+08 intergenic HAND2-AS1,FBXO8 dist=675258;dist=19571 rs11946728 0.00015549 DECREASE 
chr4 1.75E+08 intergenic HAND2-AS1,FBXO8 dist=675258;dist=19571 rs11946728 0.00015549 DECREASE 
chr4 1.75E+08 intergenic HAND2-AS1,FBXO8 dist=675258;dist=19571 rs11946728 0.00015549 DECREASE 
chr14 64503470 intronic CHURC1-FNTB,RAB15 NA rs8004904 0.000155556 INCREASE 
chr14 64503470 intronic CHURC1-FNTB,RAB15 NA rs8004904 0.000155556 INCREASE 
chr10 1.23E+08 intronic FGFR2 NA rs11599804 0.000158241 INCREASE 
chr10 1.23E+08 intronic FGFR2 NA rs11599804 0.000158241 INCREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000162941 DECREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000162941 DECREASE 

chr9 2459742 intergenic 
SMARCA2,VLDLR-
AS1 dist=276119;dist=65913 rs2150720 0.000165147 INCREASE 

chr9 2459742 intergenic 
SMARCA2,VLDLR-
AS1 dist=276119;dist=65913 rs2150720 0.000165147 INCREASE 

chr12 56403622 downstream AGAP2 NA rs238516 0.000165147 DECREASE 
chr12 56403622 downstream AGAP2 NA rs238516 0.000165147 DECREASE 
chr17 46278218 intergenic WFIKKN2,TOB1 dist=3510;dist=16368 rs8072476 0.000165147 DECREASE 
chr17 46278218 intergenic WFIKKN2,TOB1 dist=3510;dist=16368 rs8072476 0.000165147 DECREASE 
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Table 15 continued 
chr20 54637885 UTR5 TFAP2C NA rs62208554 0.000167187 DECREASE 
chr20 54637885 UTR5 TFAP2C NA rs62208554 0.000167187 DECREASE 
chr16 57062847 intronic NDRG4 NA rs16960169 0.000169076 INCREASE 
chr17 46217715 intergenic MIR8059,WFIKKN2 dist=16625;dist=49889 rs12942595 0.000178475 DECREASE 
chr17 46217715 intergenic MIR8059,WFIKKN2 dist=16625;dist=49889 rs12942595 0.000178475 DECREASE 
chr4 6748574 intronic S100P NA rs3822263 0.000188278 DECREASE 
chr18 9978324 intergenic VAPA,LINC01254 dist=28306;dist=416806 rs29030 0.000191251 INCREASE 
chr18 9978324 intergenic VAPA,LINC01254 dist=28306;dist=416806 rs29030 0.000191251 INCREASE 
chr18 9978324 intergenic VAPA,LINC01254 dist=28306;dist=416806 rs29030 0.000191251 INCREASE 
chr12 1.21E+08 intronic TMEM120B NA rs4760112 0.000196412 INCREASE 
chr12 1.21E+08 intronic TMEM120B NA rs4760112 0.000196412 INCREASE 
chr8 96775028 ncRNA_intronic C8orf37-AS1 NA rs7010069 0.000196706 INCREASE 
chr8 96775028 ncRNA_intronic C8orf37-AS1 NA rs7010069 0.000196706 INCREASE 
chr1 5871451 intronic NPHP4 NA rs9729880 0.000196736 INCREASE 
chr6 12396408 intergenic HIVEP1,EDN1 dist=123190;dist=2107 rs2859337 0.000201249 INCREASE 
chr6 12396408 intergenic HIVEP1,EDN1 dist=123190;dist=2107 rs2859337 0.000201249 INCREASE 

 

Table 16. The list of regulatory SNVs in good prognosis tumors 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr1 1.54E+08 intronic PMF1,PMF1-BGLAP NA rs2475757 9.22878E-07 INCREASE 
chr7 54699748 intergenic VSTM2A-OT1,SEC61G dist=92835;dist=87686 chr7:54699748 2.25786E-06 INCREASE 
chr19 18253643 upstream JUND,MIR3188 NA rs41523455 7.56077E-06 DECREASE 
chr1 1.44E+08 UTR5 PDE4DIP NA rs1324349 7.77221E-06 INCREASE 
chr19 18253642 upstream JUND,MIR3188 NA rs41519246 7.77221E-06 DECREASE 
chr2 1.33E+08 intergenic ANKRD30BL,GPR39 dist=18939;dist=139666 rs62163790 7.77221E-06 INCREASE 
chr1 2.31E+08 intronic PCNXL2 NA rs10797598 8.46441E-06 INCREASE 
chr19 10597181 UTR5 SLC44A2 NA rs139154013 8.46441E-06 DECREASE 
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Table 16 continued 
chr1 43552151 exonic TIE1 NA rs3120276 1.06917E-05 INCREASE 
chr1 2.13E+08 UTR5 PTPN14 NA rs10864100 1.09518E-05 DECREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr11 1.12E+08 intergenic LOC387810,LOC101928847 dist=152013;dist=251464 rs2055936 1.23128E-05 INCREASE 
chr3 1.99E+08 intergenic LOC220729,KIAA0226 dist=31693;dist=11820 rs145563991 1.26161E-05 INCREASE 
chr1 2.29E+08 UTR5 AGT NA rs5050 1.31407E-05 DECREASE 
chr1 2.29E+08 UTR5 AGT NA rs5050 1.31407E-05 DECREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr6 1.1E+08 upstream CD164 NA rs3757231 1.69288E-05 INCREASE 
chr3 80041411 intergenic ROBO1,GBE1 dist=141662;dist=1580129 rs4563372 1.99407E-05 DECREASE 
chr3 80041411 intergenic ROBO1,GBE1 dist=141662;dist=1580129 rs4563372 1.99407E-05 DECREASE 
chr3 80041411 intergenic ROBO1,GBE1 dist=141662;dist=1580129 rs4563372 1.99407E-05 DECREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr20 57464499 intergenic EDN3,PHACTR3 dist=130057;dist=121460 rs271977 2.22362E-05 INCREASE 
chr13 35535010 intronic DCLK1 NA rs17053384 2.45735E-05 INCREASE 
chr13 35535010 intronic DCLK1 NA rs17053384 2.45735E-05 INCREASE 
chr13 35535010 intronic DCLK1 NA rs17053384 2.45735E-05 INCREASE 
chr16 317624 intronic AXIN1 NA rs10903014 2.53932E-05 INCREASE 
chr1 1.2E+08 exonic NOTCH2 NA rs11810554 2.53932E-05 INCREASE 
chr16 82707955 UTR5 MBTPS1 NA rs7205403 2.53932E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
chr14 99091387 intronic CCDC85C NA rs10147748 3.13772E-05 DECREASE 
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Table 16 continued 
chr1 2.33E+08 intergenic LINC00184,LINC01132 dist=47691;dist=41572 rs12748673 3.2491E-05 DECREASE 
chr1 2.33E+08 intergenic LINC00184,LINC01132 dist=47691;dist=41572 rs12748673 3.2491E-05 DECREASE 
chr1 2.33E+08 intergenic LINC00184,LINC01132 dist=47691;dist=41572 rs12748673 3.2491E-05 DECREASE 
chr11 44297292 intergenic ALX4,CD82 dist=9000;dist=246425 rs7480769 3.28554E-05 DECREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chr1 2.07E+08 intergenic PLXNA2,MIR205HG dist=130558;dist=1053945 rs696983 3.64709E-05 INCREASE 
chr19 50041017 upstream PVRL2 NA rs77241309 3.77088E-05 INCREASE 
chr19 50041017 upstream PVRL2 NA rs77241309 3.77088E-05 INCREASE 
chr22 24575178 ncRNA_intronic MIR1302-1 NA rs2859409 3.85968E-05 DECREASE 
chr22 24575178 ncRNA_intronic MIR1302-1 NA rs2859409 3.85968E-05 DECREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr4 1.91E+08 intergenic LINC01262,FRG1 dist=60136;dist=219198 rs5005522 4.27045E-05 INCREASE 
chr4 1.91E+08 intergenic LINC01262,FRG1 dist=60136;dist=219198 rs5005522 4.27045E-05 INCREASE 
chr20 4090809 intronic SMOX NA rs13040038 4.38072E-05 DECREASE 
chr2 2.24E+08 intergenic KCNE4,SCG2 dist=410440;dist=130863 rs1439926 4.42322E-05 DECREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 4.49834E-05 DECREASE 
chr9 14396805 intergenic NFIB,ZDHHC21 dist=7823;dist=204264 rs1407836 4.51824E-05 DECREASE 
chr19 61335967 intergenic ZNF787,ZNF444 dist=11413;dist=8380 rs665082 4.73021E-05 INCREASE 
chr19 61335967 intergenic ZNF787,ZNF444 dist=11413;dist=8380 rs665082 4.73021E-05 INCREASE 
chr19 61335967 intergenic ZNF787,ZNF444 dist=11413;dist=8380 rs665082 4.73021E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr12 33030513 intergenic PKP2,SYT10 dist=89466;dist=389102 rs7306057 4.93682E-05 INCREASE 
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Table 16 continued 
chr12 6315224 intronic TNFRSF1A NA rs34819705 5.05513E-05 INCREASE 
chr12 6315224 intronic TNFRSF1A NA rs34819705 5.05513E-05 INCREASE 
chr16 33846021 intergenic RNU6-76P,LINC00273 dist=375277;dist=22532 rs79467332 5.17572E-05 DECREASE 
chr16 33846021 intergenic RNU6-76P,LINC00273 dist=375277;dist=22532 rs79467332 5.17572E-05 DECREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr17 21489423 intergenic C17orf51,FAM27L dist=93889;dist=260074 rs79109536 5.44256E-05 DECREASE 
chr17 21489423 intergenic C17orf51,FAM27L dist=93889;dist=260074 rs79109536 5.44256E-05 DECREASE 
chr17 54818764 intronic YPEL2 NA rs8073731 5.44256E-05 DECREASE 
chr17 54818764 intronic YPEL2 NA rs8073731 5.44256E-05 DECREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr12 33030513 intergenic PKP2,SYT10 dist=89466;dist=389102 rs7306057 5.62199E-05 INCREASE 
chr12 33030513 intergenic PKP2,SYT10 dist=89466;dist=389102 rs7306057 5.62199E-05 INCREASE 
chr16 69717250 ncRNA_intronic HYDIN2 NA rs79976803 5.63588E-05 INCREASE 
chr16 69717250 ncRNA_intronic HYDIN2 NA rs79976803 5.63588E-05 INCREASE 
chr16 69717250 ncRNA_intronic HYDIN2 NA rs79976803 5.63588E-05 INCREASE 
chr14 1.05E+08 intergenic TMEM121,MIR8071-2 dist=73557;dist=17357 rs4983455 5.69393E-05 DECREASE 
chr14 1.05E+08 intergenic TMEM121,MIR8071-2 dist=73557;dist=17357 rs4983455 5.69393E-05 DECREASE 
chr22 24575178 ncRNA_intronic MIR1302-1 NA rs2859409 5.84418E-05 DECREASE 
chr8 1.45E+08 intergenic ZNF623,ZNF707 dist=7754;dist=23813 chr8:144814797 6.18167E-05 DECREASE 
chr8 1.45E+08 intergenic ZNF623,ZNF707 dist=7754;dist=23813 chr8:144814797 6.18167E-05 DECREASE 
chr8 1.45E+08 intergenic ZNF623,ZNF707 dist=7754;dist=23813 chr8:144814797 6.18167E-05 DECREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr18 97864 intergenic LOC102723376,ROCK1P1 dist=91934;dist=1201 chr18:97864 6.53221E-05 INCREASE 
chr18 97864 intergenic LOC102723376,ROCK1P1 dist=91934;dist=1201 chr18:97864 6.53221E-05 INCREASE 
chr18 97864 intergenic LOC102723376,ROCK1P1 dist=91934;dist=1201 chr18:97864 6.53221E-05 INCREASE 
chr7 62110563 intergenic NONE,ZNF733P dist=NONE;dist=278542 rs73697257 6.53221E-05 INCREASE 
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Table 16 continued 
chr7 62110563 intergenic NONE,ZNF733P dist=NONE;dist=278542 rs73697257 6.53221E-05 INCREASE 
chr7 62110563 intergenic NONE,ZNF733P dist=NONE;dist=278542 rs73697257 6.53221E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 
chr8 8165597 intergenic FAM86B3P,SGK223 dist=25800;dist=47071 rs2955552 6.72671E-05 INCREASE 

 

 

Table 17. The list of regulatory SNVs in bad prognosis tumors 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT 
ON BINDING 

chr7 1034712 intronic C7orf50 NA rs115018039 0 DECREASE 
chr8 28006454 intronic ELP3 NA rs2305452 0 INCREASE 
chr11 87548211 UTR5 RAB38 NA rs3812730 0 DECREASE 
chr6 1.19E+08 UTR5 MCM9 NA rs62422268 0 DECREASE 
chr17 71096951 ncRNA_exonic MYO15B NA rs117940210 9.22878E-07 INCREASE 
chr1 1.54E+08 intronic PMF1,PMF1-BGLAP NA rs2475757 9.22878E-07 INCREASE 
chr19 18391161 UTR5 SSBP4 NA rs28375303 9.22878E-07 DECREASE 
chr16 704754 upstream METRN NA rs3809666 9.22878E-07 DECREASE 
chr10 1.21E+08 upstream GRK5 NA rs10886423 1.03706E-06 DECREASE 
chr21 33883005 upstream;downstream DONSON;CRYZL1 NA rs115794175 1.03706E-06 INCREASE 
chr5 1.49E+08 UTR5 ARHGEF37 NA rs35436322 1.03706E-06 DECREASE 
chr12 6354970 UTR5 LTBR,SCNN1A NA rs10849447 2.25786E-06 INCREASE 
chr19 19748174 ncRNA_exonic LINC00663 NA rs248944 2.25786E-06 DECREASE 
chr8 8403033 intergenic SGK223,CLDN23 dist=126279;dist=194043 rs56037578 2.79491E-06 INCREASE 
chr10 1.19E+08 intronic KIAA1598 NA rs6585423 2.79491E-06 DECREASE 
chr5 1.12E+08 intronic EPB41L4A NA rs10478076 3.27257E-06 INCREASE 
chr19 19518590 downstream CILP2 NA rs73924805 4.14822E-06 INCREASE 
chr1 1.64E+08 intergenic LOC400794,MGST3 dist=16097;dist=32672 rs10158373 5.38308E-06 DECREASE 
chr19 4322431 intronic SH3GL1 NA rs104964 5.38308E-06 DECREASE 
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Table 17 continued 
chr10 1.05E+08 intronic SH3PXD2A NA rs7910092 5.38308E-06 INCREASE 
chr1 1.14E+08 intronic HIPK1 NA rs1217441 7.56077E-06 INCREASE 
chr10 97406097 intronic ALDH18A1 NA rs2225892 7.56077E-06 DECREASE 
chr2 1.77E+08 ncRNA_splicing LOC102724224 NR_110599:exon1:c.255+2C>T rs2969356 7.56077E-06 DECREASE 
chr19 18253643 upstream JUND,MIR3188 NA rs41523455 7.56077E-06 DECREASE 
chr1 1.44E+08 UTR5 PDE4DIP NA rs1324349 7.77221E-06 INCREASE 
chr19 18253642 upstream JUND,MIR3188 NA rs41519246 7.77221E-06 DECREASE 
chr2 1.33E+08 intergenic ANKRD30BL,GPR39 dist=18939;dist=139666 rs62163790 7.77221E-06 INCREASE 
chr6 13982218 intergenic MCUR1,RNF182 dist=59447;dist=50438 rs1204243 8.38474E-06 INCREASE 
chr3 72468930 intergenic LINC00870,RYBP dist=162750;dist=37504 rs4677147 8.38474E-06 DECREASE 
chr19 16443937 upstream EPS15L1 NA rs2885706 8.46441E-06 DECREASE 
chr5 1.12E+08 intronic EPB41L4A NA rs10478076 9.60381E-06 INCREASE 
chr5 1.12E+08 intronic EPB41L4A NA rs10478076 9.60381E-06 INCREASE 
chr12 25926409 intergenic MIR4302,RASSF8-AS1 dist=8130;dist=72446 rs12368327 1.03041E-05 INCREASE 
chr4 1782841 downstream LETM1 NA rs10014663 1.06917E-05 DECREASE 
chr8 1898800 intergenic ARHGEF10,KBTBD11 dist=4586;dist=10651 rs17757154 1.06917E-05 DECREASE 
chr6 34630750 intronic SPDEF NA rs3798542 1.06917E-05 DECREASE 
chr10 1.28E+08 upstream FANK1 NA rs78422237 1.06917E-05 DECREASE 
chr16 30314770 intronic ZNF48 NA rs13333093 1.09518E-05 DECREASE 
chr8 1.44E+08 UTR5 THEM6 NA rs2280877 1.09518E-05 DECREASE 
chr14 20387049 intergenic RNASE1,RNASE3 dist=46173;dist=42353 rs28419520 1.09518E-05 DECREASE 
chr10 94821513 intergenic CYP26C1,CYP26A1 dist=3069;dist=1709 rs68040629 1.09518E-05 INCREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr8 98845752 intergenic MTDH,LAPTM4B dist=34088;dist=11233 rs7827538 1.14577E-05 DECREASE 
chr11 1.12E+08 intergenic LOC387810,LOC101928847 dist=152013;dist=251464 rs2055936 1.23128E-05 INCREASE 
chr5 1.12E+08 UTR5 APC NA rs138386816 1.26161E-05 DECREASE 
chr18 9604096 intronic PPP4R1 NA rs71360847 1.26161E-05 INCREASE 
chr2 10009824 intronic GRHL1 NA rs73913927 1.26161E-05 DECREASE 
chr3 75801255 intergenic FLJ20518,LINC00960 dist=2197;dist=2867 rs189438805 1.36538E-05 DECREASE 
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Table 17 continued 
chr1 26369042 UTR5 ZNF593 NA rs2232648 1.36538E-05 DECREASE 
chr19 1016044 exonic ABCA7 NA rs4147935 1.36538E-05 DECREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr6 77538132 intergenic IMPG1,HTR1B dist=699017;dist=690535 rs67307959 1.36538E-05 DECREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr17 45964961 upstream EPN3 NA rs12953066 1.51215E-05 DECREASE 
chr4 39734053 ncRNA_intronic LOC344967 NA rs1706025 1.61492E-05 INCREASE 
chr6 1.1E+08 upstream CD164 NA rs3757231 1.69288E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr19 16018435 intergenic LINC00905,TPM4 dist=4490;dist=20882 rs4808432 1.93066E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr15 97136484 intronic IGF1R NA rs62022087 2.02609E-05 INCREASE 
chr16 317624 intronic AXIN1 NA rs10903014 2.53932E-05 INCREASE 
chr14 1.04E+08 intronic ADSSL1 NA rs117084961 2.53932E-05 INCREASE 
chr1 1.2E+08 exonic NOTCH2 NA rs11810554 2.53932E-05 INCREASE 
chr11 2377970 intergenic CD81,TSSC4 dist=2745;dist=2129 rs800351 2.53932E-05 INCREASE 
chr20 31401767 intergenic BPIFB1,CDK5RAP1 dist=40422;dist=8539 rs293709 2.89476E-05 INCREASE 
chr20 31401767 intergenic BPIFB1,CDK5RAP1 dist=40422;dist=8539 rs293709 2.89476E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr6 52573007 intergenic TRAM2-AS1,LOC730101 dist=16257;dist=64151 rs10948704 3.13527E-05 INCREASE 
chr6 52573007 intergenic TRAM2-AS1,LOC730101 dist=16257;dist=64151 rs10948704 3.13527E-05 INCREASE 
chr6 52573007 intergenic TRAM2-AS1,LOC730101 dist=16257;dist=64151 rs10948704 3.13527E-05 INCREASE 
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Table 17 continued 
chr12 45051495 intronic SLC38A2 NA rs10880961 3.28554E-05 DECREASE 
chr2 730277 intergenic TMEM18,LINC01115 dist=62838;dist=39560 rs112665529 3.28554E-05 DECREASE 
chr5 77692527 intronic SCAMP1 NA rs4634329 3.28554E-05 INCREASE 
chr9 38059463 upstream SHB NA rs79230237 3.28554E-05 INCREASE 
chr20 62051086 intronic UCKL1 NA rs817310 3.28554E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 3.33543E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 3.33543E-05 DECREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr13 99376302 ncRNA_intronic LOC101927437 NA rs9300575 3.37009E-05 INCREASE 
chr10 1.21E+08 upstream RGS10 NA rs10787978 3.38577E-05 INCREASE 
chr12 7199694 intronic CLSTN3 NA rs3782920 3.38577E-05 INCREASE 
chr20 24878801 intronic CST7 NA rs227654 3.41023E-05 INCREASE 
chr20 24878801 intronic CST7 NA rs227654 3.41023E-05 INCREASE 
chr2 1.83E+08 intronic PPP1R1C NA rs1515891 3.46458E-05 INCREASE 
chr16 83472565 intronic CRISPLD2 NA rs2172622 3.46458E-05 INCREASE 
chr9 68116030 upstream LOC100132352 NA rs78173369 3.62837E-05 DECREASE 
chr9 68116030 upstream LOC100132352 NA rs78173369 3.62837E-05 DECREASE 
chr19 49280118 intronic ZNF284 NA rs55771992 3.65661E-05 DECREASE 
chr19 49280118 intronic ZNF284 NA rs55771992 3.65661E-05 DECREASE 
chr2 1E+08 intergenic LINC01104,LONRF2 dist=1756;dist=20051 rs2309812 3.78484E-05 DECREASE 
chr2 1.6E+08 intronic CD302,LY75-CD302 NA rs2556106 3.78484E-05 DECREASE 
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Table 18. The list of regulatory SNVs in metastatic tumors 

CHR POS ANNOTATION GENE DISTANCE FROM GENE SNP ID 
ADJ PVALUE 
FDR 

SNP AFFECT ON 
BINDING 

chr1 1.54E+08 intronic PMF1,PMF1-BGLAP NA rs2475757 9.22878E-07 INCREASE 
chr21 42122206 intronic PRDM15 NA rs62214691 2.79491E-06 DECREASE 
chr10 1.19E+08 intronic KIAA1598 NA rs6585423 2.79491E-06 DECREASE 
chr1 1.44E+08 UTR5 PDE4DIP NA rs1324349 7.77221E-06 INCREASE 
chr3 72468930 intergenic LINC00870,RYBP dist=162750;dist=37504 rs4677147 8.38474E-06 DECREASE 
chr2 42091558 intergenic C2orf91,PKDCC dist=57111;dist=37107 rs11887745 1.08813E-05 DECREASE 
chr2 42091558 intergenic C2orf91,PKDCC dist=57111;dist=37107 rs11887745 1.08813E-05 DECREASE 
chr2 42091558 intergenic C2orf91,PKDCC dist=57111;dist=37107 rs11887745 1.08813E-05 DECREASE 
chr7 1.49E+08 ncRNA_intronic ATP6V0E2-AS1 NA rs185874861 1.09518E-05 DECREASE 
chr14 20387049 intergenic RNASE1,RNASE3 dist=46173;dist=42353 rs28419520 1.09518E-05 DECREASE 
chr11 1.12E+08 intergenic LOC387810,LOC101928847 dist=152013;dist=251464 rs2055936 1.23128E-05 INCREASE 
chr19 1016044 exonic ABCA7 NA rs4147935 1.36538E-05 DECREASE 
chr16 78615542 intergenic LOC101928248,LOC102724084 dist=222801;dist=131814 rs4889067 1.36538E-05 DECREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr12 28619812 intergenic CCDC91,FAR2 dist=25446;dist=573391 rs7315906 1.36859E-05 INCREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.37513E-05 INCREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.37513E-05 INCREASE 
chr4 7826420 ncRNA_exonic AFAP1-AS1 NA rs10026941 1.45084E-05 INCREASE 
chr4 7826420 ncRNA_exonic AFAP1-AS1 NA rs10026941 1.45084E-05 INCREASE 
chr4 7826420 ncRNA_exonic AFAP1-AS1 NA rs10026941 1.45084E-05 INCREASE 
chr17 45964961 upstream EPN3 NA rs12953066 1.51215E-05 DECREASE 
chr17 43481157 intronic NFE2L1 NA rs73327306 1.51215E-05 DECREASE 
chr21 26264932 intronic APP NA chr21:26264932 1.63219E-05 INCREASE 
chr21 26264932 intronic APP NA chr21:26264932 1.63219E-05 INCREASE 
chr6 1.21E+08 intergenic LOC285762,TBC1D32 dist=650496;dist=937677 rs79423570 1.72702E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
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Table 18 continued 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr10 1.26E+08 intergenic CHST15,OAT dist=143993;dist=88756 rs10794194 1.87026E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 1.88217E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 1.88217E-05 INCREASE 
chr22 41003755 intergenic OGFRP1,LINC01315 dist=2943;dist=86595 rs134885 2.05954E-05 INCREASE 
chr22 41003755 intergenic OGFRP1,LINC01315 dist=2943;dist=86595 rs134885 2.05954E-05 INCREASE 
chr22 41003755 intergenic OGFRP1,LINC01315 dist=2943;dist=86595 rs134885 2.05954E-05 INCREASE 
chr2 2.24E+08 intergenic ACSL3,KCNE4 dist=33672;dist=74857 rs34356450 2.20437E-05 INCREASE 
chr21 26264932 intronic APP NA chr21:26264932 2.57641E-05 INCREASE 
chr20 31401767 intergenic BPIFB1,CDK5RAP1 dist=40422;dist=8539 rs293709 2.89476E-05 INCREASE 
chr20 31401767 intergenic BPIFB1,CDK5RAP1 dist=40422;dist=8539 rs293709 2.89476E-05 INCREASE 
chrX 53730090 intronic HUWE1 NA rs7877957 3.02431E-05 INCREASE 
chr19 16039250 upstream TPM4 NA rs36048257 3.28554E-05 DECREASE 
chr11 44297292 intergenic ALX4,CD82 dist=9000;dist=246425 rs7480769 3.28554E-05 DECREASE 
chr12 7199694 intronic CLSTN3 NA rs3782920 3.38577E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr11 20014669 intronic NAV2 NA rs10741810 3.64524E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr12 54839276 intronic MYL6 NA rs35436573 3.77734E-05 INCREASE 
chr20 61603720 intergenic EEF1A2,PPDPF dist=2608;dist=18857 rs880447 3.79596E-05 INCREASE 
chr20 61603720 intergenic EEF1A2,PPDPF dist=2608;dist=18857 rs880447 3.79596E-05 INCREASE 
chr20 61603720 intergenic EEF1A2,PPDPF dist=2608;dist=18857 rs880447 3.79596E-05 INCREASE 
chr1 1.15E+08 intronic SYCP1 NA rs74116188 3.81718E-05 INCREASE 
chr1 1.15E+08 intronic SYCP1 NA rs74116188 3.81718E-05 INCREASE 
chr1 1.15E+08 intronic SYCP1 NA rs74116188 3.81718E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 
chr21 45009292 intergenic TSPEAR,UBE2G2 dist=53369;dist=3631 rs658657 4.10495E-05 INCREASE 



139 

Table 18 continued 
chr1 22340802 intronic WNT4 NA rs3820282 4.22013E-05 INCREASE 
chr2 69479142 intronic NFU1 NA rs7580642 4.3212E-05 INCREASE 
chr2 69479142 intronic NFU1 NA rs7580642 4.3212E-05 INCREASE 
chr2 69479142 intronic NFU1 NA rs7580642 4.3212E-05 INCREASE 
chr9 1.39E+08 intronic NOXA1 NA rs11497278 4.38072E-05 INCREASE 
chr21 40876587 intronic DSCAM NA rs74811265 4.38313E-05 INCREASE 
chr21 40876587 intronic DSCAM NA rs74811265 4.38313E-05 INCREASE 
chr21 40876587 intronic DSCAM NA rs74811265 4.38313E-05 INCREASE 
chr1 93232394 intergenic FAM69A,MTF2 dist=32727;dist=84986 rs4240963 4.42322E-05 INCREASE 
chr9 14396805 intergenic NFIB,ZDHHC21 dist=7823;dist=204264 rs1407836 4.51824E-05 DECREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr9 82484228 intergenic LOC101927477,TLE1 dist=644938;dist=904190 rs1412283 4.73021E-05 INCREASE 
chr16 10520159 intergenic ATF7IP2,EMP2 dist=35163;dist=9621 rs4780936 4.73021E-05 DECREASE 
chr16 10520159 intergenic ATF7IP2,EMP2 dist=35163;dist=9621 rs4780936 4.73021E-05 DECREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr6 51986013 intronic PKHD1 NA rs1896972 4.87364E-05 INCREASE 
chr15 61839069 intronic HERC1 NA rs7167066 4.87364E-05 INCREASE 
chr15 61839069 intronic HERC1 NA rs7167066 4.87364E-05 INCREASE 
chr1 1.87E+08 intergenic PLA2G4A,BRINP3 dist=1443628;dist=1665056 rs1472003 5.17869E-05 INCREASE 
chr9 1.36E+08 intergenic RXRA,COL5A1 dist=9168;dist=192051 rs11103603 5.44256E-05 INCREASE 
chr9 1.36E+08 intergenic RXRA,COL5A1 dist=9168;dist=192051 rs11103603 5.44256E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr16 4967077 intronic SEC14L5 NA rs2908649 5.49688E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr2 10384622 intronic HPCAL1 NA rs2014889 5.62199E-05 INCREASE 
chr9 1.36E+08 intergenic RXRA,COL5A1 dist=9168;dist=192051 rs11103603 5.63588E-05 INCREASE 
chr11 69377341 intergenic FGF3,LOC101928443 dist=34212;dist=202643 rs7395799 5.63588E-05 INCREASE 
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Table 18 continued 
chr11 69377341 intergenic FGF3,LOC101928443 dist=34212;dist=202643 rs7395799 5.63588E-05 INCREASE 
chr11 69377341 intergenic FGF3,LOC101928443 dist=34212;dist=202643 rs7395799 5.63588E-05 INCREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 5.72577E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 5.9582E-05 DECREASE 
chr3 1.31E+08 intergenic PLXND1,TMCC1 dist=16877;dist=24176 rs11718169 5.9582E-05 DECREASE 
chr20 31401767 intergenic BPIFB1,CDK5RAP1 dist=40422;dist=8539 rs293709 6.18462E-05 INCREASE 
chr16 73721127 intergenic LDHD,ZFP1 dist=12956;dist=18795 rs12448032 6.2727E-05 DECREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr14 49135467 UTR5 LRR1 NA rs2281836 6.2727E-05 INCREASE 
chr7 30995158 intergenic GHRHR,ADCYAP1R1 dist=9487;dist=63443 rs11760522 6.90096E-05 INCREASE 
chr7 30995158 intergenic GHRHR,ADCYAP1R1 dist=9487;dist=63443 rs11760522 6.90096E-05 INCREASE 
chr7 30995158 intergenic GHRHR,ADCYAP1R1 dist=9487;dist=63443 rs11760522 6.90096E-05 INCREASE 

 

 

 

Table 19. The allele frequency of top RegSNVs in ER binding sites with sufficient coverage 

RegSNP Target gene Binding impact Coverage in binding site Mut reads 
Frequency 
(%) Sample Reference 

rs36208869 GSTM1 INCREASING 22 22 100 Tumor (4) 
rs1412825_LRRIQ3 LRRIQ3 INCREASING 11 11 100 Tumor (4) 
rs10956142_ANXA13 ANXA13 INCREASING 55 55 100 Tumor (4) 
rs2939587_TM2D3 TM2D3 INCREASING 10 10 100 Tumor (4) 
rs1291363_HTR7P1 HTR7P1 INCREASING 14 14 100 Tumor (4) 

rs4418583_LDLRAP1 LDLRAP1 INCREASING 27 23 85.2 

Tumor, 
ZR75 cell 
line (4) 
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Table 20. Sequence of targeted amplification primers. 

Mutation Forward primer  Reverse primer Amplicon size 

ESR1 K303R GCCCGCTCATGATCAAACG CGGCCGTCAGGGACAAG 57 

ESR1 S463P GCTTCTCTCTCTCACTCTCTCT  AGGACTCGGTGGATATGGT  101 

ESR1 Y537C 

ESR1 Y537N 

ESR1 Y537S 

ESR1 D538G 

CAAAGGCATGGAGCATCTGTA  TGAAGTAGAGCCCGCAGT  169 
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Table 21. Sequence of ddPCR primer and probes. 
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Table 22. Cellularity and location of bone metastases. 

ID Tumor 
Cellularity Bone site 

BM01 80 Lt. distal femur (knee) 
BM02 N/A Lt. Proximal humerus 
BM03 70 Rt. Pelvis 
BM04 10-20 Lt. Femur 
BM06 70-80 Lt. Proximal femur (hip) 
BM07 30 Lt. Distal humerus  
BM08 60 Lt. Proximal femur (hip) 
BM09 10 Rt prox humerus 
BM10 >90 Rt Femur, L humerus 
BM11 80 Rt femur (hip) 
BM12 70 Rt humerus 
BM14 <5 Lt femur 
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Table 23. The sequence of sgRNA and oligos used to generate ESR1 mutant cell lines 

Name Length (bp) Sequence 
sgRNA targeting 

ESR1 gene 20 TCTCCAGCAGCAGGTCATAG 

Oligo for Y537S 70 
GCGGTGGGCGTCCAGCATCTCCAGCAGCAGG 

TCAGAGAGGGGCACCACGTTCTTGCACTTCATGCTGTAC 

Oligo for D538G 70 
GTAGGCGGTGGGCGTCCAGCATCTCCAGCAGCAG 

GCCATAGAGGGGCACCACGTTCTTGCACTTCATGCT 
 

 

 

Table 24. Name of the novel mutant ER target genes shared between T47D and MCF7 

Gene Overlap 
BBOX1 MCF7-Y537S and T47D-Y537S 

TRANK1 MCF7-Y537S and T47D-Y537S 
SPRR1B MCF7-Y537S and T47D-Y537S 
ITGAM MCF7-Y537S and T47D-Y537S 
PYDC1 MCF7-Y537S and T47D-Y537S 

AHNAK2 MCF7-Y537S and T47D-Y537S 
KRT10 MCF7-Y537S and T47D-Y537S 
S100A2 MCF7-Y537S and T47D-Y537S 
CDSN MCF7-Y537S and T47D-Y537S 
UBD MCF7-Y537S and T47D-Y537S 

AC132217.4 MCF7-Y537S and T47D-Y537S 
FKBP1B MCF7-D538G and T47D-D538G 
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