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ABSTRACT 

G-protein coupled receptor (GPCR) sensitization and desensitization, served as mechanisms to turn 

the system on and off in response to various ligands, involves mainly the endocytosis and trafficking of 

receptors. In this study, I utilized a mathematical model to investigate the endocytosis and trafficking of 

cannabinoid receptor type 2 (CB2), a GPCR highly expressed in the immune system. Two published 

experimental studies have provided some quantitative data demonstrating the time course of receptor 

phosphorylation, internalization, dephosphorylation, and recycling under various conditions in transfected 

Chinese Hamster Ovary cells. Based on these datasets, I developed an ordinary differential equation (ODE)-

based model with the assumption that ligands regulate receptor endocytosis and trafficking only by 

affecting the activation of receptors on the cell surface. Fitting of this model to the data using Markov chain 

Monte Carlo (MCMC) method suggested that receptor constitutive trafficking is a fundamentally different 

process than the receptor trafficking under ligand treatment. The key difference between the two processes 

was shown to be the transfer of receptors from sorting endosome to recycling endosome, and the 

dephosphorylation of internalized receptors. The model was then modified according to this finding, and 

the subsequent fitting of the revised model showed a good accordance with the data. 

Key words: Cannabinoid Receptor Type 2; Desensitization; Sensitization; ODE-based Model; Markov 

Chain Monte Carlo  
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1. INTRODUCTION 

1.1 The Paradigm of G-protein Coupled Receptor Signaling 

It is commonly believed that G-protein coupled receptor (GPCR) signaling begins with the 

binding of ligand to the extracellular region of the receptor, followed by a conformational change 

in the intracellular region which results in the activation of the either pre-coupled or encountered 

G-protein1–3. Simple as it seems, what truly happens in the cell can be far more complicated than 

such description. For many receptors in the GPCR family, including β2-adrenoceptor and 

cannabinoid receptor type 2 (CB2), they exist in both active and inactive forms under an 

equilibrium between the two conformations even prior to ligand binding4–6. The difference in the 

intrinsic efficacy between agonist and inverse agonist thus can be explained by the fact that agonist 

stabilizes the active form of the receptor, while inverse agonist stabilizes the inactive form3,6. 

The receptor does not necessarily need to pre-couple to the G-protein before ligand binding. 

Free G-proteins randomly diffuse on the membrane, and are activated upon the collision with 

diffusing ligand-induced or spontaneously activated receptors7. Extensive evidences also have 

shown that in the presence of agonist, the receptor dynamically changes its conformation among 

different sub-states that could couple to not only G-proteins, but also G-protein coupled receptor 

kinase (GRK) or arrestins, inducing uncanonical downstream signaling events8–11. 

 

Figure 1. The early events of GPCR signaling. A: agonist; R: receptor. 
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The terminology “G-protein activation” covers several specific steps of reactions. G-

protein is essentially a heterotrimer consisting of α, β, and γ subunits. When not activated, a GDP 

molecule binds to the Gα subunit. Once activated, a GTP molecule replaces GDP, and receptor-

G-protein complex dissociates into an uncoupled receptor, a Gα-GTP subunit, and a Gβγ complex. 

Gα-GTP and Gβγ are able to interact with a variety of downstream effectors, depending on the 

specific type of the G-protein. The activation turns off when the bound GTP is hydrolyzed by the 

GTPase activity of Gα itself. Free Gα-GDP re-associates with Gβγ to form the inactive G-protein 

again, and thus far finishes a G-protein activation/inactivation cycle7. In an alternative theory, 

however, the α subunit of Gi-protein, named for its inhibitory effect on adenylyl cyclase, does not 

dissociate from Gβγ; instead, the heterotrimer experiences a subunit rearrangement upon activation, 

according to experimental observations12. The biological relevance of this finding is yet to be 

determined, but it has demonstrated that the interactions in GPCR system can be very diverse and 

complicated. 

G-proteins can be classified into four categories mainly based on their α subunits: Gs, Gi, 

Gq, G12/13. The α subunit of Gs-protein, upon activation, stimulates the activity of adenylyl cyclase, 

and hence leads to an increase in the second messenger cyclic AMP (cAMP)13. All β-adrenergic 

receptors couple to this type of G-protein, as well as other GPCRs like some serotonin (5-HT) 

receptors14, Histamine H2 receptor15, Dopamine receptors D1 and D5
16, etc. The activated α subunit 

of Gi-protein, as opposed to Gs-protein, inhibits the adenylyl cyclase in the presence or absence of 

Gs α subunits13. CB receptors17,18, Opioid δ, κ, μ receptors19, Acetylcholine M2 & M4 receptors20, 

and Chemokine CXCR4 receptor21 are all Gi-protein coupled receptors. In addition, β2-adrenergic 

receptor is also reported to be able to couple to Gi-protein after prolonged agonist treatment, 

supposedly through the action of PKA22. Gq-protein stimulates the production of two second 

messengers, inositol trisphosphate (IP3) and diacylglycerol (DAG), by activating membrane-

bound phospholipase C-β (PLC-β) that cleaves phosphatidylinositol 4,5-bisphosphate (PIP2)
23. 

Receptors coupled with Gq-protein includes 5-HT2 receptor14, α1-adrenergic receptor24, H1 

receptors15, etc. G12/13 are the latest found G-proteins among the four categories, shown to regulate 

actin cytoskeleton reorganization through interaction with guanine nucleotide exchange factors for 

Rho/Rac/Cdc42-like GTPases (RhoGEFs)25. 

1.2 CB2 Signaling, Endocytosis, and Trafficking 
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CB2 is coupled to Gi-protein, of which activated α subunit, as mentioned before, has an 

inhibitory effect on the downstream effector adenylyl cyclase, leading to a decrease in the cellular 

concentration of cAMP. Four cAMP molecules can symmetrically bind to two regulatory subunits 

of an inactive Protein Kinase A (PKA) complex, resulting in the release of two catalytic subunits 

with active catalytic site (activated PKA, or simply PKA when there is no confusion)26. Activated 

PKA is able to phosphorylate a broad range of proteins leading to either enhanced or inhibited 

activity. For example, cAMP response element-binding protein (CREB), a transcription factor 

binds to DNA sequences called cAMP response element (CRE) enhancing or reducing the 

transcriptional level of downstream genes27. CB2 is also reported to activate ERK-MAPK via 

PI3K/Akt pathway that leads to cell migration28, and induce calcium transients through PLC-β29,30. 

 
Figure 2. Diagram for known CB2-initiated signaling pathways. 

PKA-phosphorylation is typically considered as a mean of desensitizing GPCR and 

shutting down prolonged signaling, especially for GPCRs which couple to Gs-protein, by 

precluding the receptor coupling to G-protein31,32. For Gi-protein coupled receptors, such as CB2, 

the desensitization theory seems however to be irrelevant as the inhibition of adenylyl cyclase will 

lead to a decrease in cAMP33, which amounts to decreased PKA activation. Meanwhile, even if 

such interaction does exist, the mutual inhibition between CB2 and PKA will possibly lead to the 

bistability of the system, which is by no means a desensitization mechanism34. A study conducted 
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by Bouaboula et al. suggested that CB2 signaling pathway, including PKA activation, is not 

involved in the desensitization of CB235. 

Another important kinase GRK, briefly mentioned above, is capable of phosphorylating 

many GPCRs including CB2, ensuing its decoupling from G-protein and endocytosis. The GRK-

phosphorylated receptors bind to arrestin, which targets the receptor to clathrin-coated pits, where 

surface proteins are internalized10,36. Presumably GRK only phosphorylates activated receptors, 

and unlike PKA, its activation is mostly considered to be independent of activated Gα. It has been 

reported that the recruitment of GRK2 in β2-adrenoceptor system involves released Gβγ37, but as 

mentioned before, Bouaboula et al. demonstrated that in CB2 this is unlikely to be the case35. 

The receptors are internalized, mediated by Rab5, a monomeric G-protein that facilitates 

transportation of membrane proteins, and translocate to early endosomes, where the acidic pH 

stabilizes the receptors in a conformation that is a suitable substrate for phosphatase38. It is thus 

far unclear about which phosphatase catalyzes the dephosphorylation of CB2 receptor, but 

evidences indicate it might be a phosphatase-2A (PP2A) type phosphotase35. The 

dephosphorylated receptors are sorted either to degradation pathway, or alternatively to the 

recycling pathway, by which the receptors are transported back to the cell surface. Rab4-mediated 

fast recycling occurs with an estimated half-life in minutes (e.g. 5 min for transferrin receptor)38, 

but the slow recycling of CB2 suggests it is likely to be through recycling endosome mediated by 

Rab1139. 

1.3 Kinetic Modeling as a Biological Research Method 

The law of mass action, which depicts the rate of a chemical reaction to be proportional to 

the product of the concentrations of involved reactants to the power of order of reaction, has been 

extensively used in biochemistry for decades to study enzymatic reactions and physical contacts 

of proteins. The famous Michealis-Menten equation relating enzymatic reaction rate to the 

concentration of substrate and enzyme is derived from a series of ordinary differential equations 

(ODEs) given by the very law of mass action40, and it turns out to be almost as equally useful in 

modeling complex biological systems as it is useful in the characterization of enzymatic reaction 

data. Today, mathematical models of biological systems using these kinetic laws are generally 

called kinetic models41. Because of the ability to generate time-dependent data, kinetic models are 

particularly suitable for analyzing the dynamic behavior of a given biological system, including 



5 
 

hypersensitivity42, bistability34,43,44, negative feedback loop45, etc. When necessary, the static 

behavior of a system can also be easily acquired by a steady state analysis of such models46. Mass 

action or Michealis-Menten kinetics only describes the temporal behavior of a particular 

component, hypothesizing the reaction to happen under a well-mixing condition47. With the 

advance of bio-imaging techniques, information regarding the spatiotemporal dynamics of many 

biological systems comes into sight. The traditional way, and perhaps the simplest way, to 

incorporate spatial factors is to divide the volume where reactions take place into compartments. 

Components are assigned to each compartment with their concentrations calculated using the 

volume of that compartment rather than the whole space; reactions other than transportations 

happened in different compartments are treated independently using kinetic laws48,49. Another 

popular way of modeling spatiotemporal dynamics is using partial differential equations (PDEs), 

where the quantity of a component is a function of time and coordinates of the space. In PDE-

based models, temporal relationship is still mostly governed by law of mass action, whereas the 

spatial relationship is depicted in terms of diffusion50,51.  

Kinetic modeling has proven to be valuable in studying biological phenomena52–54. In the 

area of drug design and development, such modeling style has pervaded every aspect of 

pharmacokinetics (PK) and pharmacodynamics (PD). One good example would be mechanistic 

PK/PD models, which is built to understand the metabolism (PK aspect) and action (PD aspect) of 

a drug, and further to predict the optimal dose or dosage regimen for clinical trials55,56. In analytical 

pharmacology, kinetic modeling is extensively utilized to understand the interaction between drug 

molecules and biological targets (e.g. receptors, enzymes, DNAs, etc.), and to predict possible 

outcomes resulted from certain pharmacological manipulations57,58. Although promising, kinetic 

modeling is never almighty, and challenges have yet to be overcome. The stochastic simulation of 

large scale kinetic models could be slow, particularly when both fast and slow reactions are 

present59,60. Numerical values for kinetic constants or other parameters are prerequisites, which is 

rather tricky to obtain in the context of biology. Biochemical reactions typically are coupled to one 

another, forming a complicated network with almost everything involved, making it difficult to 

decide which components should be included in the model and which should not. These limitations 

entail that we can only model and make predictions for biological systems that is allowed to be 

observed by any means. Model is not a replacement for experiment; rather it is a complementary 

tool to experimental methods that together facilitate our understanding of nature. 
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1.4 Previous Relevant Kinetic Models 

1.4.1 Clark’s Model: Ligand-Receptor Interaction 

In 1933, Clark proposed a classical equilibrium model for ligand-receptor binding, where 

the interaction between ligand (L) and receptor (R) is simply modelled as a reversible reaction61: 

 

In the light of law of mass action, the rate of the production of LR can be written as: 

d[LR]

d𝑡
= 𝑘+[L][R] − 𝑘−[LR] (1.4.1) 

Assuming that initially the quantity of R is R0 and that of LR is 0. The number of receptors are 

conserved within the duration of reaction, so we have: 

[R] + [LR] = 𝑅0 (1.4.2) 

In most cases ligand molecules bound to the receptors only occupy a relatively small portion of 

the total, so it is safe to assume that [L] does not vary with the time, being only a constant in the 

equation. The solution of Eq.1.4.1 thus can be obtained and is as follows: 

[LR]𝑡 =
𝑘+[L]𝑅0

𝑘+[L] + 𝑘−
(1 − 𝑒−(𝑘+[L]+𝑘−)𝑡) (1.4.3) 

Under the constraint Eq.1.4.2, the analytical form of [R] as a function of time is simply: 

[R]𝑡 = 𝑅0 (1 −
𝑘+[L]𝑅0

𝑘+[L] + 𝑘−
(1 − 𝑒−(𝑘+[L]+𝑘−)𝑡)) (1.4.4) 

Thus far we have obtained the closed-form expressions for all the components, namely R and LR, 

in the model, as functions of time. In most scenarios, however, we are mainly interested in the 

steady state of the model, for drug actions after reaching equilibrium predominately produce the 

therapeutic outcome. In the sense of mathematics, we are interested in the limits: 

[LR]∞ =
𝑘+[L]𝑅0

𝑘+[L] + 𝑘−
 (1.4.5) 

[R]∞ =
𝑘−𝑅0

𝑘+[L] + 𝑘−
 (1.4.6) 

From Eq.1.4.5 and Eq.1.4.6, we can get: 
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[LR]∞
[L][R]∞

=
𝑘+

𝑘−
 (1.4.7) 

The right hand side of Eq.1.4.7 is no more than a constant. Customarily we define the association 

constant Ka to be: 

𝐾𝑎 ≝
𝑘+

𝑘−
 (1.4.8) 

Whence, 

[LR]∞
[L][R]∞

= 𝐾𝑎 (1.4.9) 

Eq.1.4.9 is essentially the chemical equilibrium equation, in which the infinity symbols are 

removed for simplicity. It is obvious that with a higher association constant Ka, more L and R will 

associate to yield LR complex, which amounts to a higher affinity of drug molecule for the receptor. 

The reciprocal of Ka, dissociation constant KD, is also a measure of affinity and will be 

used later on. Define drug response E to be the fraction of ligand-occupied receptors: 

𝐸 ≝
[LR]

𝑅0
 (1.4.10) 

With Eq.1.4.2, Eq.1.4.9, and simple algebra: 

𝐸 =
[L]

[L] + 𝐾𝐷
 (1.4.11) 

The plot of this function against log[L] is a sigmoidal curve, resembling the dose-response curve 

commonly seen in pharmaceutical sciences. To account for drugs with similar affinity but different 

efficacy, the model is modified by introducing a coefficient κ, ranging from 0 to 162: 

𝐸 =
𝜅 [L]

[L] + 𝐾𝐷
 (1.4.12) 

1.4.2 Emax Model 

Noting that in Eq.1.4.12, when [L] → ∞, the response would reach its maximum. At the 

same point, we will have [L] >> KD, therefore: 

𝐸𝑚𝑎𝑥 = 𝜅 (1.4.13) 
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Denote the quantity of ligand when half of maximum response is reached as ED50, with Eq.1.4.13 

considered, then: 

1

2
𝜅 =

𝜅 ED50

ED50 + 𝐾𝐷
 (1.4.14) 

Whence, 

ED50 = 𝐾𝐷 (1.4.15) 

To account for baseline response, a constant E0 shifting the curve along the y-axis is introduced. 

So finally we have: 

𝐸 = 𝐸0 +
𝐸𝑚𝑎𝑥[L]

ED50 + [L]
 (1.4.16) 

Sometimes when the receptor is capable of accepting multiple ligands simultaneously, a Hill 

coefficient n is present in Eq.1.4.16 to reflect binding cooperativity63: 

𝐸 = 𝐸0 +
𝐸𝑚𝑎𝑥[L]𝑛

ED50
𝑛 + [L]𝑛

 (1.4.17) 

In which an n greater than 1 means positive cooperativity, an n less than 1 means negative 

cooperativity, and an n of unity amounts to independent binding. For the shape of the curve, a large 

n leads to a steep slope of the log-linear region, as shown in Figure 3. 

 
Figure 3. Hill function plotted with different n. 

1.4.3 Ternary Complex Model 

Clearly, drug action does not stop at binding; the binding between the drug molecule and 

the receptor is just a beginning of a series downstream signaling events. Biological transducers, 
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such as G-proteins, serve not only as messengers but also adjustable elements in the pathway, so 

it is crucial to incorporate their presence in the mathematical model. The Ternary Complex Model 

(TCM) is proposed for above reasons, with a simple extension of the coupling of receptor to G-

protein64: 

 

There is no closed-form solution for ODEs depicting these two reactions; actually such and more 

complicated systems are typically solved numerically using computers. But it is still possible to 

solve them for steady state solution, by noting that under multiple equilibria: 

𝐾𝑎 =
[LR]

[L][R]
 (1.4.18) 

𝐾𝑔 =
[LRG]

[LR][G]
 (1.4.19) 

As well as the constraint: 

[R] + [LR] + [LRG] = 𝑅0 (1.4.20) 

The response E can be derived: 

𝐸 ≝
[LRG]

𝑅0
=

𝐾𝑔𝐾𝑎[G][L]

1 + 𝐾𝑎[L] + 𝐾𝑔𝐾𝑎[G][L]
 (1.4.21) 

Compared to Eq.1.4.11 and Eq.1.4.12, we can clearly see how coupling of receptor to G-protein 

contributes to the response: in the numerator, a factor of Kg[G] is added in Eq.1.4.21, 

corresponding to κ in Eq.1.4.12; in the denominator, an additional term with the same form of the 

numerator is added. It is then reasonable to postulate that in addition to binding affinity, drug 

molecules can affect the response by either facilitating or hampering receptor coupling to G-

protein, which is probably achieved by inducing different conformations of LR complexes. 

This explanation on intrinsic efficacy of GPCR drug, although rudimentary, turns out to be 

correct in some sense, and it is in effect a good example of how mathematical modelling can help 

us understand the way by which biological systems work. 

1.4.4 Two-State Ternary Complex Model 
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Proteins are not static rigid bodies; rather, they are dynamic elastic objects which fluctuate 

among various states. As mentioned in section 1.1, substantial evidences have shown that GPCRs 

can switch back and forth, either spontaneously or induced by ligand-binding, between an active 

state and an inactive state. To model this observation, the extended Ternary Complex Model 

(eTCM) is proposed65: 

 

In which R* stands for the active form of the receptor, and only equilibrium constants are shown 

in the scheme. Because all the reactions in the system are reversible reactions, detailed balance 

implies that, between any pair of nodes (e.g. R and LR*), no matter which route you take to travel 

from one to another, the product of equilibrium constants are the same. This gives us an interesting 

insight that if a ligand promotes receptor activation (most likely an agonist), then it would also 

prefer binding to the active form of the receptor rather than the inactive form, which implies the 

same logics mentioned in Section 1.1, that the agonist stabilizes the active form while the inverse 

agonist stabilizes the inactive form. 

Using similar technique in Section 1.4.1, and noting that only LR*G and R*G give rise to 

downstream signaling, the response can thus be written as follows: 

𝐸 =
𝐾𝑎𝑐𝑡𝐾𝑔[G](1 + 𝛼𝛾𝐾𝑎[L])

1 + 𝐾𝑎𝑐𝑡 + 𝐾𝑎[L](1 + 𝛼𝐾𝑎) + 𝐾𝑎𝑐𝑡𝐾𝑔[G](1 + 𝛼𝛾𝐾𝑎[L])
 (1.4.22) 

Particularly, when ligand is absent, the system still possesses a basal level of response: 

𝐸0 =
𝐾𝑎𝑐𝑡𝐾𝑔[G]

1 + 𝐾𝑎𝑐𝑡 + 𝐾𝑎𝑐𝑡𝐾𝑔[G]
 (1.4.23) 

Which is the so-called constitutive activity of GPCR systems, mentioned briefly in Section 1.1 

from a biological perspective. As we can see, the level of constitutive activity, or basal response 

E0, depends on receptor activation equilibrium constant Kact, coupling equilibrium constant Kg, 

and the quantity of free G-protein. Rearrange Eq.1.4.23 by dividing the numerator into both sides 

of the fraction line: 
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𝐸0 = 1 (
1

𝐾𝑎𝑐𝑡𝐾𝑔[G]
+

1

𝐾𝑔[G]
+ 1)⁄  (1.4.24) 

Apparently when [G] does not vary, larger Kact and Kg lead to higher E0. However [G] is in fact a 

function of Kact and Kg, as higher receptor activation and coupling equilibrium constants amount 

to more G-protein binding to the receptor, but considering that (a) the level of spontaneous receptor 

activation is low (Kact ≈ 0.1 ∼ 0.0166), and (b) receptors are outnumbered by G-proteins under 

normal conditions, the above analysis generally holds true. 

It is quite difficult to understand how α and γ decide the effect of a ligand on the system 

from Eq.1.4.22, so instead we consider that when [L] → ∞, the response reaches its maximum: 

𝐸𝑚𝑎𝑥 =
𝛼𝛾𝐾𝑎𝑐𝑡𝐾𝑔[G]

1 + α𝐾𝑎𝑐𝑡 + 𝛼𝛾𝐾𝑎𝑐𝑡𝐾𝑔[G]
 (1.4.25) 

To compare with basal response E0, we take the ratio of Eq.1.4.25 and Eq.1.4.23: 

𝐸𝑚𝑎𝑥

𝐸0
=

𝛼𝛾 + 𝛼𝛾𝐾𝑎𝑐𝑡 + 𝛼𝛾𝐾𝑎𝑐𝑡𝐾𝑔[G]

1 + α𝐾𝑎𝑐𝑡 + 𝛼𝛾𝐾𝑎𝑐𝑡𝐾𝑔[G]
 (1.4.26) 

The necessary and sufficient condition of Emax > E0 is that the numerator of the right hand side of 

Eq.1.4.26 is greater than the denominator, which amounts to: 

𝛼𝛾 − 1 + 𝛼𝐾𝑎𝑐𝑡(𝛾 − 1) > 0 (1.4.27) 

Suppose that the ligand binding does not affect G-protein coupling (γ = 1), Eq.1.4.27 reduces to: 

𝛼 > 1 (1.4.28) 

In such circumstance, therefore, if a ligand is able to facilitate receptor activation or has higher 

affinity for active receptors (α > 1), the ligand is an agonist. Conversely if a ligand hampers 

receptor activation or has higher affinity for inactive receptors (α < 1), the ligand is an inverse 

agonist. When the ligand has no effect on receptor activation and has equal binding affinity for 

active and inactive receptors, the ligand will compete with other ligands for the binding site on 

receptors, thus being a neutral antagonist. 

If the ligand binding can affect G-protein coupling – which is very likely according to 

recent findings that GPCRs possess more than one active conformation and can be induced by 

different ligands, causing ligand-biased downstream signaling – different combinations of α and γ 

can lead to either agonism or inverse agonism9,11. It suffices to show that, however, if both α and 
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γ are greater than one, the ligand is agonist; if both α and γ are less than one, the ligand is inverse 

agonist. 

Inspired by the idea that receptor and G-protein can be coupled without receptor activation, 

a more comprehensive model – cubic Ternary Complex Model (cTCM) is proposed67: 

 

Figure 4. The cubic Ternary Complex Model. 

The cTCM can be analyzed under steady state with aforementioned methods as well, and 

the implications of the model can be found in many literatures3,67–69. An additional parameter 

controls the effects of ligand in cTCM, which is a factor that indicates the interactions among 

ligand-binding, G-protein coupling, and receptor activation, making the response of the model 

even more complex. Nevertheless, the conclusions on α, γ, and agonism/inverse agonism still apply. 

1.4.5 Other Relevant Models 

(1) A kinetic model of GRK-mediated β2-adrenoceptor regulation70. 

(2) A kinetic model for VEGFR2 signaling and trafficking71. 

(3) A kinetic model for CXCR4 and CXCR7 competition for β-arrestin and trafficking72. 

(4) A compartmental model of β1 and M1 receptor systems in cardiac myocyte, which includes 

caveolar, extra-caveolar, and cytoplasmic compartments49. 

The list is not an exhaustive one, but all of which are pertinent to the study of this thesis. 
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2. METHODS AND MATERIALS 

2.1 Experimental Datasets 

A total of six datasets from two published studies are used in this study to develop the 

model and estimate parameters. Two datasets from Bouaboula et al. for the time course of 

unphosphorylated CB2 receptor concentration in response to agonist (30 nM CP-55940) or inverse 

agonist (50 nM SR 144528) treatment, called as “phosphorylation data” in this thesis, are used for 

estimating the phosphorylation and dephosphorylation rate constants35. The original data is an 

immunoblotting of CB2 receptor with an antibody, which is converted into percentage changes for 

data fitting, using software ImageJ, in this study. There is only one single experiment so there is 

no error bar in the data. 

The other four datasets are from Grimsey et al.’s work39. Two of the datasets are under 

constitutive condition, called as “constitutive data” in this thesis, where surface receptors are 

labeled with a primary antibody, then allowed to internalize constitutively, and finally detected 

using a secondary antibody. Two conditions are used for secondary antibody binding: (a) under 

permeabilizing condition, the secondary can penetrate the cell membrane and hence detect all 

primary antibody-labeled receptors, so data obtained under this condition demonstrate the 

constitutive degradation of CB2 receptors; (b) under non-permeabilizing condition, the secondary 

antibody cannot enter into the cell, and therefore is only able to bind to surface primary antibody-

labeled receptors. Data obtained under this condition demonstrate the constitutive internalization 

of CB2 receptors. The other two datasets show the percentage change in number of surface 

receptors in response to agonist (1μM HU-308) or inverse agonist (1μM AM630) treatment, which 

is called as “ligand treatment data” in this thesis. All of these four datasets are acquired from three 

independent experiments, so an error bar is present in each of these datasets. 

2.2 ODE-Based Model for CB2 Endocytosis and Trafficking 

The model describes the biochemical reactions in terms of law of mass action (LMA), 

which for a single reaction states as47: 

d𝑃

d𝑡
= 𝑘 ∏𝑆𝑖

𝜈𝑖

𝑖
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Where P stands for product, t stands for time, k stands for the rate constant, Si stands for the i-th 

substrate, and νi stands for the order of reaction for Si. For coupled reactions, the total rate for the 

production or depletion of a particular species is simply the summation of the rates for all 

individual reactions. In particular for the CB2 endocytosis and trafficking system that I am 

interested in, the structure of the system is shown as follows: 

 

Figure 5. The structure of the kinetic model. R: inactive receptor; R*: active receptor; LR, LR*: ligand-bound 

receptor; Rp: phosphorylated receptor; eeR, eeRp: receptor in early endosome; reR: receptor in recycling endosome. 

Where the letters indicate species (or biological entities), the arrows indicate reactions, and letters 

in italics above each arrow represents the rate constant for that particular reaction. Species are 

divided into two compartments generally in this model. As shown in Figure 5, above the dash line 

is the cell surface, and below the dash line is the endosome compartment. Mass transportation 

between the two compartments manifests as the internalization reaction, of which rate constant is 

kint, and the recycling reaction, of which rate constant is krec. Reactions take place on two time 

scales: the interaction between receptor and ligands, as well as the activation of receptor, which is 

much faster than the receptor trafficking processes. Mathematically, all the coupled reactions as a 

whole, compose a system of ODEs describing the temporal dynamics for each species: 
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�̇� = −𝑘1𝑅 +

𝑘1

𝐾𝑎𝑐𝑡
𝑅∗ − 𝑘3𝐿 ∙ 𝑅 +

𝑘3

𝐾𝑎
𝐿𝑅 + 𝑘𝑟𝑒𝑐𝑟𝑒𝑅 + 𝑠 (2.2.1) 

 
𝑅∗̇ = 𝑘1𝑅 −

𝑘1

𝐾𝑎𝑐𝑡
𝑅∗ − 𝛼𝑘3𝐿 ∙ 𝑅∗ +

𝑘3

𝐾𝑎
𝐿𝑅∗ − 𝑘𝑝𝑅∗ (2.2.2) 

 
𝐿�̇� = −𝛼𝑘1𝐿𝑅 +

𝑘1

𝐾𝑎𝑐𝑡
𝐿𝑅∗ + 𝑘3𝐿 ∙ 𝑅 −

𝑘3

𝐾𝑎
𝐿𝑅 (2.2.3) 

 
𝐿𝑅∗̇ = 𝛼𝑘1𝐿𝑅 −

𝑘1

𝐾𝑎𝑐𝑡
𝐿𝑅∗ + 𝛼𝑘3𝐿 ∙ 𝑅∗ −

𝑘3

𝐾𝑎
𝐿𝑅∗ − 𝑘𝑝𝐿𝑅∗ (2.2.4) 

 𝑅�̇� = 𝑘𝑝𝑅∗ − 𝑘𝑖𝑛𝑡𝑅𝑝 (2.2.5) 

 𝑒𝑒𝑅𝑝
̇ = 𝑘𝑖𝑛𝑡𝑅𝑝 − 𝑘𝑑𝑝𝑒𝑒𝑅𝑝 (2.2.6) 

 𝑒𝑒𝑅̇ = 𝑘𝑑𝑝𝑒𝑒𝑅𝑝 − 𝑘𝑡𝑟𝑒𝑒𝑅 − 𝑠 (2.2.7) 

 𝑟𝑒𝑅̇ = 𝑘𝑡𝑟𝑒𝑒𝑅 − 𝑘𝑟𝑒𝑐𝑟𝑒𝑅 (2.2.8) 

Note that the degradation of receptors is modeled as a zero-order reaction with a rate of s, 

to account for the experimental observation that agonist treatment does not increase 

degradation39,73, which contradicts the behavior of a first-order process whose rate is linearly 

dependent of the number of internalized receptors increased as a result of agonist stimulation. 

Ligand concentration is assumed to be a constant that is independent of the reactions. The total 

number of receptors remains unchanged throughout the experiment, therefore a zero-order rate of 

synthesis is used to account for this observation. Since both synthesis and degradation are zero-

order reactions, so the following initial condition is vital for both simulation and analytical solution: 

𝑅0 = 𝑅 + 𝑅∗ + 𝑅𝑝 + 𝑒𝑒𝑅𝑝 + 𝑒𝑒𝑅 + 𝑟𝑒𝑅 (2.2.9) 

There is no term for ligand-bound receptors in Eq.2.2.9 because in most experimental procedures, 

cells have already reached the steady state before any ligand addition. 

2.3 Solving the Constitutive Steady State Analytically 

The term “constitutive steady state” means (a) constitutive: before ligand treatment; (b) 

steady state: the concentrations of all the species in the system do not vary with time (or fluctuate 

within a very small region due to various noise source). Solving the ODEs analytically for this 

state is desirable for numerical simulations because it spares the trouble of simulating the system 

to reach constitutive steady state before ligand addition, of which time scale is hard to determine 
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and can be time-consuming when being run for thousands of times for parameter estimation or 

sensitivity analysis. The system of ODEs for the case where no ligand is present can be reduced to 

six ODEs where the concentrations for ligand-bound species are 0, and written in the matrix form: 

 

(2.3.1) 

Denote the species variable vector as 𝑟, the first-order reaction rate constant matrix as 𝑨, and the 

zero-order reaction rate constant vector as �⃑⃑�, then Eq.2.3.1 can be written as: 

�̇� = 𝑨 𝑟 + �⃑⃑� (2.3.2) 

At steady state, the rates are all zero: 

0⃑⃑ = 𝑨 𝑟 + �⃑⃑� (2.3.3) 

Together with the initial condition Eq.2.2.9, the steady solution can be solved analytically, which 

is done using Wolfram Mathematica 9.0 in this study. 

2.4 Numerical Simulation of The System 

With the initial condition for constitutive steady state determined analytically in last section, 

the concentration of each species as a function of time under ligand treatment can be solved 

numerically using an ODE solver. In general, the numerical solver takes an extremely small time 

step Δt, and iteratively calculates the value for variable x based on the approximation74: 

∆𝑥 = 𝑓(𝑥, 𝑡) ∆𝑡 (2.4.1) 

Here, f(x, t) is the function for reaction rates determined by LMA. Advanced numerical solvers 

typically choose Δt adaptively to satisfy certain tolerance for error, and improve integration 

accuracy using Runge-Kutta methods75. In this study, ODEs are solved numerically using ode15s 

solver in MATLAB, which is able to solve stiff ODEs rather quickly. 

In particular, for simulations of the constitutive data, as introduced in Section 2.1, it should 

be noted that only labeled species can be read from data. A simple way to cope with this problem 

[
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is to simulate the dynamics of labeled species independently. For example, for the following toy 

model:  

 

If we denote the number of labeled species with lowercase letters, r and r*, and denote the total 

number with uppercase letters, R and R*, we have: 

 
�̇� = −𝑘1𝑅

𝑟

𝑅
+ 𝑘2𝑅

∗
𝑟∗

𝑅∗
= −𝑘1𝑟 + 𝑘2𝑟

∗ (2.4.2) 

Where we consider that for a particular reaction, each molecule has an equal chance to be chosen 

to react, regardless of the labeling status, so the rate for labeled species is effectively the rate for 

total reaction times the probability that a labeled molecule gets chosen. In the end, we see that for 

linear systems the dynamics for labeled species is simply an isolated system that is independent of 

unlabeled ones. With that, the simulation procedure for labeled species is as follows: 

(a) Calculate the initial condition analytically; 

(b) Set concentrations for intracellular species to 0, mimicking the labeling procedure 

using primary antibodies; 

(c) Simulate the system within a time duration of interest. 

Zero-order degradation can lead to unrealistic situations where the concentration for the 

degrading species becomes negative, as shown in Figure 6 (A). Also zero-order kinetics is less 

capable of capturing delayed effect. Therefore, a piecewise function is used for degradation in 

simulation to circumvent these problems: 

 d𝑋

d𝑡
= {

   −𝑠, 𝑤ℎ𝑒𝑛 𝑋 > 𝑐

   −
s

c
𝑋, 𝑤ℎ𝑒𝑛 𝑋 ≤ 𝑐

 (2.4.3) 

So that the degradation is first-order when the number of X is below the threshold c, and is zero-

order otherwise, as shown in Figure 6 (B). In this study, the threshold c is set to 100 and it captures 

the delayed degradation for labeled species fairly well, which will be shown in Section 3, Results. 
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Figure 6. Schematic plots showing the time course of  

(A) zero-order degradation, (B) a mixture of zero- and first-order degradation 

2.5 Parameter Estimation Based on Literatures 

The forward rate constant for ligand binding k1, receptor activation k3, and the binding 

affinity Ka for both agonist and inverse agonist are estimated based on values in other published 

experimental or computational works. Because in this study we are mainly interested in events 

occurring on the time scale of minutes or hours, so the k1 and k3 do not need to be very accurate 

and can be estimated coarsely based on general ligand binding rate and receptor activation rate 

constant for GPCRs. The ligand-receptor association constant Ka for agonist, HU-308 in this study 

is estimated based on a dose-response data published in Grimsey et al.’s work39, and for inverse 

agonist, AM630, is determined by its EC50 in published binding assays5,76. 

The searching ranges for other parameters, which will be used for optimization algorithms 

as MCMC, are determined based on the values used in other computational studies. The total 

number of receptors is set to be 2500 – 50000, as determined by preliminary simulation of the 

system, as well as the number used in other published models66,70. 

2.6 Parameter Estimation Based on Optimization Algorithms 

2.6.1 Nelder-Mead Algorithm 

Nelder-Mead algorithm is a method to search for an optimal point in the parameter space 

that minimizes an arbitrarily defined loss function77, which in my case is the sum of squares error 

between the experimental data and the simulated data. In the algorithm, a simplex, the convex hull 

of a set of n+1 linearly independent points defined in an n dimensional space, is placed in the 

parameter space initially, and then moved by changing the coordinates of its vertices using 

Reflection, Expansion, Contraction, or Reduction operators, through which the simplex tends to 
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move to positions where the loss function reaches a minimal value. It is a gradient-free method, 

for which it is suitable for minimizing functions with no closed form expression, but meanwhile it 

cannot guarantee a globally optimal solution78, making it sensitive to the initial location of the 

simplex for functions with complicated landscape. 

In this study the rate constants of GRK phosphorylation and dephosphorylation of receptor 

is estimated by fitting the following exponential function to a published experimental dataset using 

MATLAB built-in Nelder-Mead algorithm, fminsearch: 

 𝑥(𝑡; 𝑘, 𝑥0, 𝑥1) = (𝑥0 − 𝑥1)𝑒
−𝑘𝑡 + 𝑥1 (2.6.1) 

The Eq.2.6.1 is an exponential decay in either decreasing or increasing form, starting from x0 and 

converging to x1, and the rate constant k characterizes the time scale of the process and can be used 

as a starting point for further parameter estimation. The loss function is defined as follows: 

 𝑓(𝜽) = ∑(𝑥(𝑡𝑖; 𝜽) − 𝑦𝑖)
2

𝑖

 (2.6.2) 

Where θ is a vector of parameters, which in this case is (k, x0, x1), and ti is the i-th time point 

corresponding to the time point for yi, the i-th experimental data point. 

Eq.2.6.1 is fitted to the agonist-induced phosphorylation data and an inverse agonist-

induced dephosphorylation data mentioned in Section 2.1 is used for estimating phosphorylation 

and dephosphorylation rate constants, respectively. 

2.6.2 Markov chain Monte Carlo: Metropolis-Hastings Algorithm 

Parameter estimation/search algorithms as Nelder-Mead algorithm commonly assume that 

there is one “correct” parameter set of the model for fitting the data, whereas we all know that 

most biological experimental observations are the total or averaged effects contributed from 

hundreds to thousands of cells or different biological samples. Even within a single cell, 

background “noise” originated from various sources, such as the stochastic synthesis of proteins 

or heterogeneous distribution of molecules, can easily dismiss the relevance of such mindset. The 

error bar in the experimental data also means that all the solutions are possible, and statistically, it 

is just a matter of probabilities79,80. 

MCMC is a family of techniques that can be used for parameter estimation in a statistically 

relevant way, and very different from parameter searching algorithms that aims for an “optimal 
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solution”, it tries to map the probability distribution on the parameter space, given the known data 

D, namely, the algorithm samples points in the parameter space according to 𝑃(𝜽|𝑫). What we 

get out of such algorithms, is a cluster of parameter sets that contribute to the fitting with certain 

likelihood, but in the meantime, we still have the option to pick out the optimal one with the largest 

likelihood and see if a single parameter set is good enough to fit the data. 

Computing the posterior probability 𝑃(𝜽|𝑫) analytically, however, is difficult for most 

models. The trick is by applying the Bayes’ rule: 

 
𝑃(𝜽|𝑫) =

𝑃(𝑫|𝜽)𝑃(𝜽)

𝑃(𝑫)
=

𝑃(𝑫|𝜽)𝑃(𝜽)

∫𝑃(𝑫|𝜽)𝑃(𝜽) d𝜽
 (2.6.3) 

Typically we do not care much about 𝑃(𝑫) since it is independent of θ and basically serves as a 

normalization factor, so Eq.2.6.3 implies that we only need the likelihood 𝑃(𝑫|𝜽)  and prior 

probability 𝑃(𝜽) to calculate the posterior: 

 𝑃(𝜽|𝑫) ∝ 𝑃(𝑫|𝜽) 𝑃(𝜽) (2.6.4) 

The prior 𝑃(𝜽) is often set to be a uniform distribution on a given parameter. It is of course crucial 

to consider using a non-uniform prior probability distribution if a strong correlation between two 

or more parameters is found, but in this study, a uniform distribution is good enough for all 

parameters. The likelihood 𝑃(𝑫|𝜽) is often defined in the following form assuming a normally 

distributed noise in the data: 

 
𝑃(𝑫|𝜽) = ∏

1

√2𝜋𝜎𝑖

exp [−
(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽))

2

2𝜎𝑖
2

]

𝑖

 (2.6.5) 

Where σi stands for the standard deviation of the i-th data point. 

To sample random points from the now defined 𝑃(𝜽|𝑫) can be accomplished by using the 

Metropolis-Hastings algorithm, which uses a random walker that, in each iteration, attempts to 

visit a randomly chosen adjacent point in the parameter space, and this attempt gets either accepted 

or rejected based on a transition probability defined based on the posterior 𝑃(𝜽|𝑫)  at the 

destination and that at the original point81,82. This is where the Markov chain in its name comes 

from, because each point in the parameter space can be seen as a state (or a node) in a Markov 

chain, and the transition probabilities between each pair of states are well-defined. It can be shown 
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that, for a random walker at θ and a destination at θ’, it guarantees a unique equilibrium distribution 

for a Markov chain, when the acceptance criterion is: 

 

𝑃(𝜽 → 𝜽′) = {
   
𝑃(𝜽′|𝑫)

𝑃(𝜽|𝑫)
, 𝑖𝑓 𝑃(𝜽′|𝑫) < 𝑃(𝜽|𝑫)

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6.6) 

From Eq.2.6.4 and Eq.2.6.5, and the fact that we choose uniform distribution as the priors 𝑃(𝜽), 

the ratio of posteriors can be easily calculated: 

𝑃(𝜽′|𝑫)

𝑃(𝜽|𝑫)
=

𝑃(𝑫|𝜽′)

𝑃(𝑫|𝜽)
=

∏
1

√2𝜋𝜎𝑖

exp [−
(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽

′))
2

2𝜎𝑖
2 ]𝑖

∏
1

√2𝜋𝜎𝑖

exp [−
(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽))

2

2𝜎𝑖
2 ]𝑖

  

 
= exp [−∑

(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽
′))

2

2𝜎𝑖
2

𝑖

+ ∑
(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽))

2

2𝜎𝑖
2

𝑖

] (2.6.7) 

The walking of the random walker is typically done by applying a small perturbation at its current 

location. As simple as it may sound, this perturbation procedure is, in practice, rather critical for 

the sampling efficient as well as the speed of convergence for the algorithm. First of all, for 

parameters that vary on the logarithm scale, the perturbation should be the multiplication of a 

uniformly sampled random number instead of an addition. Second, the magnitude of the 

perturbation should be adjusted for each parameters in terms of the range of variation to facilitate 

a faster convergence. A simple and elegant way to implement this is to normalize the parameters 

based on their range. For normalized parameters, the size of a perturbation step decides also the 

sampling efficiency: small perturbation steps dig deeply within a local optimal, but have little 

chance to explore globally, and vice versa. A common practice to optimize the sampling efficiency 

is by looking at the acceptance rate, which is reported to be optimal within the range of 0.25-0.583. 

There is no built-in MCMC method in MATLAB, so I wrote my own script to implement 

the algorithm. For this particular study, the implementation is as follows: 

(a) Based on current parameter set, create separate parameter sets (with different ligand 

properties or concentration) for constitutive steady state, agonist treatment, and inverse 

agonist treatment conditions, respectively. 
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(b) Simulate for the experimental data with labeled species as mentioned in Section 2.4, 

and calculate the likelihood. 

(c) Simulate for the agonist treatment data, and calculate the likelihood. 

(d) Simulate for the inverse agonist treatment data, and calculate the likelihood. 

(e) Use the product of all the aforesaid likelihoods to determine if the current parameter 

set should be accepted or rejected based on the acceptance criterion Eq.2.5.6. 

(f) If accepted, output current parameters as well as the corresponding likelihood. 

(g) Perturb the parameters based on their range and scale. 

Repeat (a)-(g) until convergence. 

2.6.3 Latin Hypercube Sampling 

Even though techniques like MCMC have the potential to escape a local optimal and thus 

be able to explore the whole parameter space, a trade-off for its ability to sufficiently sample the 

local geometry must be made. To reach both goals, a simple strategy is to generate multiple 

Markov chains whose initial points are widely spread over the parameter space, and naively, if we 

subdivide each parameter range into n bins, for an m-dimensional parameter space we can generate 

m × n Markov chains to make sure of a representative coverage of the whole space. This is usually 

unnecessary and impractical due to the large number of Markov chains which increases 

exponentially with the number of parameters m. 

Alternatively, we can select initial points in the parameter space randomly from a uniform 

distribution, which is reasonable, as we assumed a uniform distribution for the prior probability 

𝑃(𝜽). This method, however, suffers from the problem that, because of the relatively small number 

of initial points needed, it is difficult to guarantee that the randomly chosen initial points have a 

good coverage of the whole space. A better way to generate random initial points is through Latin 

Hypercube Sampling (LHS), a technique that can sufficiently generate n random points from the 

m-dimensional parameter space (if each dimension is subdivided into n bins), and meanwhile 

guarantee the coverage of the parameter space. The number of Latin Hypercube Sampled points is 

only dependent of the number of bins n into which each dimension is subdivided84. Take a 2-

dimensional space as an example, a LHS point satisfy the criterion that it does not occupy the same 

column and row with any other point, as demonstrated in Figure 7: 
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Figure 7. An example of LHS points in a 2D space subdivided into 5 bins for each dimension. 

This technique is used in this study to generate initial points for the MCMC algorithm. For 

the 12 dimensional parameter space, typically 20-50 initial points are generated for each Markov 

chain to guarantee a sufficient sampling of the space. 

2.6.4 Indicators for Goodness-of-Fit 

It should be noted that the goal of this study is not to propose a regression model that aims 

to fit all experimental data for CB2 endocytosis and trafficking. The mechanistic model developed 

in this study tries to explain known experimental observations, and further offer new insights for 

understanding the mechanism of GPCR desensitization and resensitization. Data fitting techniques 

used in this study serve as means to bridge biological data and the theoretical model, to help 

understand how each parameter in the model plays a role in interpreting the data. 

However, goodness-of-fit metrics are still needed and as indicators for “good fitting” and 

“poor fitting”. Sum of squared error of prediction (SSE) is used in this study as a primary indicator 

for the discrepancy between data and the model, which is defined as85: 

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑙

𝑖=1

 (2.6.8) 

Where l is the total number of data points, and for each data point 𝑦𝑖, there is a predicted 

value from the model 𝑦�̂�. Because we do not have the original data points yi’s, and only have the 

mean and standard deviation for each time point, so we cannot use Eq.2.6.8 to calculate the SSE. 

Alternatively, if we have m parallel experiments and n time points (a total of m × n data points), 

we can use: 
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𝑆𝑆𝐸 = (𝑚 − 1)∑𝜎𝑖

2

𝑛

𝑖=1

+ 𝑚 ∑𝑦�̅�
2

𝑛

𝑖=1

− 𝑚 ∑(2𝑦�̅�𝑦�̂� − 𝑦�̂�
2)

𝑛

𝑖=1

 (2.6.9) 

Where 𝜎𝑖 is the standard deviation, 𝑦�̅� is the mean, and 𝑦�̂� is the model-predicted value for i-th time 

point. 

The ODE model in this study has 8-12 independent parameters, and with more parameters 

introduced into the model, it is more likely lead to over-fitting. To compare fitting between models 

with different number of parameters, Bayesian information criterion (BIC) can be used as a metric 

for goodness-of-fit, which is defined as follows85: 

 𝐵𝐼𝐶 = −2 ∙ ln 𝐿𝑚 + 𝑘 ∙ ln 𝑛 (2.6.10) 

Where Lm is the maximized value for likelihood 𝑃(𝑫|𝜽), k is the number of parameters, and n is 

the number of data points. Lm can be calculated as the likelihood with a particular set of parameter 

which maximizes it. From Eq.2.6.5 in Section 2.6.2, Lm can be written as: 

 
𝐿𝑚 = ∏

1

√2𝜋𝜎𝑖

exp [−
(𝑦𝑖 − 𝑦�̂�)

2

2𝜎𝑖
2

]

𝑖

  

  
= (∏

1

√2𝜋𝜎𝑖𝑖

) × exp [−∑
(𝑦𝑖 − 𝑦�̂�)

2

2𝜎𝑖
2

𝑖

] (2.6.11) 

For the same reason as that for the calculation of SSE, we cannot calculate the exponential term in 

Eq.2.6.11 directly since it requires the original data points yi’s. An alternative to calculate it is: 

 
∑

(𝑦𝑖 − 𝑦�̂�)
2

2𝜎𝑖
2

𝑖

= ∑
(𝑚 − 1)𝜎𝑖

2 + 𝑚𝑦�̅�
2 − 2𝑚𝑦�̂�𝑦�̅� + 𝑚𝑦�̂�

2

2𝜎𝑖
2

𝑛

𝑖=1

 (2.6.12) 
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3. RESULTS 

3.1 Parameter Estimation 

The rate constant for phosphorylation and dephosphorylation is acquired by fitting an 

exponential function to an experimental dataset published by Bouaboula et al35. The 

phosphorylation data is an immunoblotting of CB2 with an antibody showing the percentage 

change of unphosphorylated receptors in response to a CB2 agonist CP-55940 in CB2 transfected 

Chinese Hamster Ovary (CHO) cells. Similarly for the dephosphorylation data, only that the agonist 

is replaced and inverse agonist SR 144528. 

 
Figure 8. The plot of fitted curve with the experimental datasets. 

The loss function plane, shown in Figure 7, demonstrates that there is only one optimal 

point within the area of interest for the two parameters, and thus we circumvent the potential flaw 

that Nelder-Mead algorithm might be trapped in a local optimal. 

 
Figure 9. The loss function plane for the exponential functions given the two experimental datasets. 
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The rate constant for phosphorylation of receptor is estimated to be roughly 20 hour-1 ≈ 0.0056 

second-1, and that for dephosphorylation is estimated to be roughly 10 hour-1 ≈ 0.0028 second-1.  

The following is a table for estimated range or value of parameters: 

Symbol Description Range or Value Reference 

Rt 
The total number of receptors. (number of 

molecules) 
2500-50000 66,70 

k1 
The forward rate constant for receptor activation. 

(sec-1) 
1 66,70 

k3 
The forward rate constant for ligand binding. (M-1 

sec-1) 
107 66 

Kact 
The equilibrium constant for receptor activation. 

(dimensionless) 
0.001-0.1 3,66 

Ka The association constant for ligand binding. (M-1) 
108 for agonist; 

107 for inverse agonist 

39,76 

α 
The factor for intrinsic activity of ligand. 

(dimensionless) 

1-100 for agonist; 

0.01-0.1 for inverse 

agonist 

66,70 

kp Phosphorylation rate constant. (sec-1) 0.00056-0.056 - 

kdp Dephosphorylation rate constant. (sec-1) 0.00028-0.028 - 

kint Receptor internalization rate constant. (sec-1) 0.001-0.1 71,72 

krec 
Rate constant for receptor recycling back to cell 

surface. (sec-1) 
0.0001-0.01 71,72 

ktr 
Rate constant for receptor transferring from early 

endosome to recycling endosome. (sec-1) 
0.00001-0.01 71 

s 
Synthesis and degradation rate. (number of 

molecules / sec) 
0.01-0.1 - 

Table 1. The 12 parameters of the model. 

3.2 Analytical Solution for Constitutive Steady State 
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The constitutive steady state is analytically solved using the method mentioned in Section 2.3. 

The solutions share a common denominator, denoted here as D: 

𝐷 = 𝑘𝑑𝑝𝑘𝑖𝑛𝑡𝑘𝑝𝑘𝑟𝑒𝑐𝑘𝑡𝑟𝐾𝑎𝑐𝑡

+ 𝑘1 (𝑘𝑖𝑛𝑡𝑘𝑝𝑘𝑟𝑒𝑐𝑘𝑡𝑟𝐾𝑎𝑐𝑡

+ 𝑘𝑑𝑝 (𝑘𝑝𝑘𝑟𝑒𝑐𝑘𝑡𝑟𝐾𝑎𝑐𝑡

+ 𝑘𝑖𝑛𝑡 (𝑘𝑝𝑘𝑡𝑟𝐾𝑎𝑐𝑡 + 𝑘𝑟𝑒𝑐 (𝑘𝑝𝐾𝑎𝑐𝑡 + 𝑘𝑡𝑟(1 + 𝐾𝑎𝑐𝑡))))) 

(3.2.1) 

Define another factor F that will be used in the solutions as: 

𝐹 = (𝑠 𝑘𝑑𝑝𝑘𝑖𝑛𝑡𝑘𝑝𝐾𝑎𝑐𝑡

+ 𝑘1 (𝑠 𝑘𝑖𝑛𝑡𝑘𝑝𝐾𝑎𝑐𝑡

+ 𝑘𝑑𝑝 (𝑠 𝑘𝑝𝐾𝑎𝑐𝑡 + 𝑘𝑖𝑛𝑡 (−𝑅𝑡𝑘𝑝𝐾𝑎𝑐𝑡 + 𝑠(1 + 𝐾𝑎𝑐𝑡))))) 

(3.2.2) 

In a realistic case, the value for F should be negative. The whole solutions for the constitutive 

steady state are: 

 𝑅𝑠𝑠 = 𝑘𝑑𝑝𝑘𝑖𝑛𝑡(𝑠 𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐(𝑠 + 𝑅𝑡𝑘𝑡𝑟))(𝑘1 + 𝑘𝑝𝐾𝑎𝑐𝑡) 𝐷⁄  (3.2.3) 

 𝑅∗
𝑠𝑠 = 𝑘1𝑘𝑑𝑝𝑘𝑖𝑛𝑡(𝑠 𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐(𝑠 + 𝑅𝑡𝑘𝑡𝑟))𝐾𝑎𝑐𝑡 𝐷⁄  (3.2.4) 

 𝑅𝑝,𝑠𝑠 = 𝑘1𝑘𝑑𝑝𝑘𝑝(𝑠 𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐(𝑠 + 𝑅𝑡𝑘𝑡𝑟))𝐾𝑎𝑐𝑡 𝐷⁄  (3.2.5) 

 𝑒𝑒𝑅𝑝,𝑠𝑠 = 𝑘1𝑘𝑖𝑛𝑡𝑘𝑝(𝑠 𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐(𝑠 + 𝑅𝑡𝑘𝑡𝑟))𝐾𝑎𝑐𝑡 𝐷⁄  (3.2.6) 

 𝑒𝑒𝑅𝑠𝑠 = −(𝑘𝑟𝑒𝑐𝐹) 𝐷⁄  (3.2.7) 

 𝑟𝑒𝑅𝑠𝑠 = −(𝑘𝑡𝑟𝐹) 𝐷⁄  (3.2.8) 

It can be easily shown that, at steady state: 

 𝑅∗
𝑠𝑠

𝑅𝑠𝑠
=

𝑘1𝐾𝑎𝑐𝑡

𝑘1 + 𝑘𝑝𝐾𝑎𝑐𝑡
 (3.2.9) 
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 𝑅𝑝,𝑠𝑠

𝑅∗
𝑠𝑠

= 𝑘𝑝 𝑘𝑖𝑛𝑡⁄  
(3.2.10) 

 𝑒𝑒𝑅𝑝,𝑠𝑠

𝑅𝑝,𝑠𝑠
= 𝑘𝑖𝑛𝑡 𝑘𝑑𝑝⁄  

(3.2.11) 

 𝑟𝑒𝑅𝑠𝑠

𝑒𝑒𝑅𝑠𝑠
= 𝑘𝑡𝑟 𝑘𝑟𝑒𝑐⁄  

(3.2.12) 

These ratios can be also acquired by setting �̇� = 0⃑⃑, implying that the analytical solution is valid as 

steady state by definition means that the concentration of all involved species remain constant. The 

simulation using this analytical solution as the initial condition proves the validity of the solution, 

as shown in Figure 10: 

 
Figure 10. The time course of the simulation result using the analytical solution as initial condition. 

Before 0 hour, no ligand is added to the system. At 0 hour, A hypothetical Ligand is added. 

3.3 Fitting of The Constitutive Data 

20 Markov chains are initialized by running each for 5000 iterations (the first 20% 

iterations for each chain are burnt-in) to fit the constitutive data as described in Section 2.1 and 

Section 2.6.2. The plot for best fitting (with the largest likelihood) is shown in Figure 11: 
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Figure 11. The plot for the best fitting of constitutive data. 

SSE1 and BIC1 are for the degradation data, SSE2 and BIC2 are for the internalization data. 

The fit in general is fairly good as indicated by the BIC values, suggesting that under the 

constitutive condition, the model captures the dynamics of the system. It is worth noting that the 

relatively high SSE for the degradation data is mainly due to a large discrepancy between the 

constitutive degradation curve and the model at the 2h time point, which is most likely due to the 

error in the experimental data, since it exceeds 100% at 2h implying an unreasonable increase in 

primary antibody-labeled receptors. The delayed degradation indicates that it requires 2-4 hours 

for surface receptors to get internalized and enter into the degradation compartment under the 

constitutive condition. 

 
Figure 12. The distribution of MCMC-sampled points on the 8 independent parameters. 

The posterior probability distribution 𝑃(𝜽|𝑫) revealed by the MCMC sampling technique, 

as shown in Figure 12, shows that these two data offer little constraints on most parameters, as the 
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obvious flat distribution, except for kdp, the rate constant for dephosphorylation of internalized 

receptors, as well as ktr, the rate constant for transferring receptors from early endosome to the 

recycling endosome. This suggests that constitutively the receptor dephosphorylation and 

trafficking is rather slow. 

3.4 Simultaneous Fitting of Constitutive and Ligand Treatment Data 

The model is fitted to constitutive and ligand treatment data simultaneously, to ensure that 

the model with the resulted parameters satisfies both observed constitutive and ligand-induced 

behaviors. The fitting is generally good for ligand treatment data, but poor for the constitutive data 

(large SSEs for both degradation and constitutive internalization data), as shown in Figure 13. 

 
Figure 13. The plot for the best fitting of four datasets. 

In (A), SSE1 and BIC1 are for the degradation data, SSE2 and BIC2 are for the internalization data. 
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Figure 14. The distribution of MCMC-sampled points on the 10 independent parameters. 

To test if this is due to a predominately high likelihood bias towards the fitting for ligand 

treatment data, a second fitting with 5× weight on the likelihood for constitutive data is run, and 

the results are shown in Figure 15.  

As shown in the Figure 15, the weighted fitting procedure, even though performed well on 

constitutive data, fits ligand treatment data poorly, indicated by an SSE of 6055.53 for agonist data 

and that of 90963.92 for inverse agonist data, respectively, suggesting that the model indeed cannot 

satisfy both data simultaneously. Combining with the results shown in Figure 13, these data 

strongly suggests that the current model cannot capture the dynamics of the true system under 

different conditions, and that the ligand-induced receptor endocytosis and trafficking is very likely 

to be intrinsically different processes than that under constitutive condition. 

By comparing the distributions shown in Figure 12 and Figure 14, it is easy to see that first, 

the distribution for many parameters are more restricted, thanks to information provided by the 

ligand treatment data; and second, among all the processes, the transfer of receptors from early 

endosome to recycling endosome, as well as the dephosphorylation of internalized receptors are 

the two processes with the most noticeable difference. This supports the idea that, as reported in 

various literatures, ligands can penetrate the cell membrane, or be internalized along with the 

receptors to affect receptor trafficking inside the cell. The model needs to be revised to account 

for and test this finding. 
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Figure 15. The plot for the best 5× constitutive data-weighted fitting. 

In (A), SSE1 and BIC1 are for the degradation data, SSE2 and BIC2 are for the internalization data. 

3.5 Simultaneous Fitting Using Revised Model 

To account for the new assumption that ligand-treatment can affect and alter the rate of 

processes that occur after receptor activation, an additional parameter ε is added as a multiplier of 

ktr due to ligand’s effects. The range of ε is estimated to be 10-1000 according to the distribution 

plot for ktr shown in Figure 12 and Figure 14. As previous, 50 Markov chains with different initial 

positions are each run for 5000 iterations. The results for best fitting curve as well as the 

distributions are shown as follows in Figure 16 and Figure 17: 
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Figure 16. The plot for the best 2× constitutive data-weighted fitting using the revised model. 

 

Figure 17. The distribution of MCMC-sampled points on the 12 independent parameters. 
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The fitting results in general are much better than those in Section 3.4. Particularly for the 

fitting of constitutive data, the SSE (2066.64 for degradation data, and 748.28 for constitutive 

internalization data) is slightly better than the SSE (2160.62 for degradation data, and 859.21 for 

constitutive internalization data) from the previous fitting where 5× weights are added to the 

likelihood for fitting of constitutive data, but not as good as the SSE (1418.25 for degradation data, 

and 749.29 for constitutive internalization data) from the first fitting which is under only 

constitutive condition. BIC tends to penalize the addition of new parameters, but still we see a 

general decrease in almost all BICs in the fitting using revised model, with the exception that the 

BICs of fitting for ligand treatment data are larger when compared to that shown in Figure 13. 

The distribution of MCMC samples on independent parameters show that for parameters 

Rt, kp, kdp, ktr, krec, and α, there are rather restricted constraints provided by the data, and for the 

rest of the parameters, there are also certain degrees of non-uniformity in their distribution. This 

suggests that the four experimental datasets are fairly informative and that many parameters can 

be sufficiently estimated through this data fitting procedure. 

3.6 Summary of Data Fitting Results 

Here I summarize all the fitting results in this table: 

 Fit 1 Fit 2 Fit 3 Fit 4 

SSE1 1418.25 2786.28 2160.52 2066.64 

BIC1 111.74 172.01 144.33 134.93 

SSE2 749.29 2117.05 859.21 748.28 

BIC2 72.63 110.93 75.03 72.86 

SSEa - 795.55 6055.53 1416.47 

BICa - 70.86 184.45 89.24 

SSEi - 21709.41 90963.92 20578.94 
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BICi - 92.24 152.42 92.93 

Table 2. Summary of all data fitting results. 

Fit 1: Original model, only constitutive data, no weight; 

Fit 2: Original model, constitutive data + ligand treatment data, no weight; 

Fit 3: Original model, constitutive data + ligand treatment data, 5× weight on constitutive data; 

Fit 4: Revised model, constitutive data + ligand treatment data, 2× weight on constitutive data; 

SSEa, BICa: For agonist treatment data; 

SSEi, BICi: For inverse agonist treatment data. 

Poor fits are marked in red. 
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4. DISCUSSION 

4.1 Significance of the Study 

GPCRs are one of the most popular target for drug intervention, but its desensitization 

phenomenon has been a problem for many treatment strategies. For asthma treatment, the 

desensitization of β2 adrenergic receptor is suspected to be the main reason for its ineffectiveness. 

In the field of neuropharmacology, desensitization of opioid receptors is considered to be a major 

player in development of opioid tolerance. CB2 receptors as new targets for treating neural 

inflammation, Alzheimer’s disease, and other pathological conditions, understanding its 

endocytosis and intracellular trafficking is then essential for design of effective drug treatment 

strategies. 

GPCR desensitization is composed of a series of temporally sequential events, involving 

phosphorylation of receptors on the membrane, binding of arrestin, and internalization. The 

kinetics of the whole system enables GPCR to respond to ligand differently on two time scales. 

The acute effect of an arbitrary agonist leads to the activation of the whole system, while 

chronically the response vanishes and sometimes reverses. This time-dependent phenomenon 

makes it interesting and important to develop a kinetic model that can be used to study its temporal 

behavior and make predictions. However, such models are rather few for GPCR and not as 

complete as those for other biological systems, e.g. epidermal growth factor receptors (EGFR)86 

or high-affinity IgE receptor (FcεRI)87. 

Given six published experimental datasets, this thesis aims to develop a simplistic model 

for CB2 endocytosis and intracellular trafficking, and hopefully provide new insights for 

understanding and modeling this particular system as well as other GPCRs. 

4.2 Mechanism Based Modeling of CB2 Endocytosis and Trafficking 

New findings unraveled by experiments on GPCR signaling and regulation change our 

understanding of the system all the time. The concept of “intrinsic efficacy” for GPCR has always 

been changing subtly but decisively. The two-state model for GPCR is intuitively easy to accept, 

and capable of explaining most experimental observations, where receptors are spontaneously 

activated, and the intrinsic efficacy of a ligand is exhibited via its ability and preference to bind to 

the active or inactive state. This point of view, even though true to some extent, is challenged by 
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the observation that there is more than one active state for most GPCRs. For instance, it has been 

shown that the reduced response caused by a partial agonist for β1-adrenergic receptor is due to a 

less potent active state it induced, which is distinct from the active state induced by a full agonist88. 

The finding of “protean agonists” implied that the ligand-stabilized active state can be an “active 

state” that is less potent than the constitutive active in terms of G-protein coupling, and, the subtle 

differences among the various conformational states of the GPCR make the response of a ligand 

sensitive to conditions including receptor and G-protein expression level, as well as constitutive 

activity66,89. 

 
Figure 18. A diagram showing how the ODE model can incorporate multiple active states of receptors. 

Seemingly, this ODE model does not include multiple active states and seems not to be 

able to account for the above concepts, as there are only R* and LR*, the spontaneous active state 

and ligand-stabilized active state. However, considering that, if R* represents a subset of multiple 

active states, among which the transition is fast enough that can be seen as a whole, the minor 

differences in the conformations of various spontaneous active state might not be that important 

for kinetic models. Similarly, a single symbol LR* can amount to a subset of ligand-bound active 

states, and by adding a multiplier for the phosphorylation rate, as we did for ktr in Section 3.5, the 

ligand-bound active state can be phosphorylated via a slower or faster process. 

The ODE model does not explicitly model the different trafficking route for ligand-bound 

receptors and free receptors because this will lead to additional modeling efforts for ligand 

association and dissociation inside the cell that requires the knowledge of endosome volume. 

Instead, to account for ligands’ effects inside the cell, the rate constant for affected processes are 
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multiplied with a factor which will be one in the absence of ligand molecules. Arrestin binding 

and the endocytosis process are modeled as a single process in this model, since there is no data 

allowing for such differentiation. Such simplification strategy is also used by many other 

mathematical models. 

4.3 Effects of Ligands on CB2 Trafficking 

The phenomenon that many GPCR are constitutive active not only permits the action of 

inverse agonists, but also is suspected to be one of the reasons that some GPCR undergo 

constitutive phosphorylation and internalization. For CB2, this hypothesis is supported by the data 

that the using of inverse agonist leads to increase in the number of unphosphorylated as well as 

surface receptors35,39. The first ODE model is built based on the assumption that the ligands’ effects 

on CB2 endocytosis and trafficking can be purely attributed to their ability to shift the activation 

equilibrium of the receptor, which have no effect on other events posterior to receptor activation. 

Fitting of the model to the experimental data, as shown in Section 3.4, however, suggests that this 

hypothesized mechanism cannot fully explain all the data. 

The model is then revised by incorporating the possibility that ligands can affect receptor 

endocytosis and trafficking after receptor activation and inside the cell by either directly changing 

the conformation of the bound receptor into a better substrate for phosphatase, or somehow 

activating the phosphatase. This idea is also proposed in Bouaboula et al.’s experimental study, 

but yet to be verified35. According to the parameter distribution plot from data fitting, two 

processes are found to be the most affected by ligand treatment, which are the transfer of receptors 

from early endosome to recycling endosome, and the dephosphorylation of internalized receptors. 

A second fitting using a revised model where the rate for the transfer process is multiplied by a 

factor under ligand treatment condition shows an improved performance of the model on the 

datasets. It is worth pointing out that it is also easy to add another factor to alter the 

dephosphorylation along with the transfer process and could enhance the fitting performance 

further, but rather pointless as we could do this to all the reactions to make the model behaves 

totally independently under ligand treatment or constitutive condition, and yet the conclusion will 

not change. 

An interesting relevant phenomenon that ligand stimulation affects receptor trafficking 

property is found in the vascular endothelial growth factor 2 (VEGFR2) signaling pathway. 
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Constitutively internalized VEGFR2 recycles through Rab4-mediated fast recycling pathway90,91, 

whereas the VEGF-VEGFR2 complex undergoes a Rab11-mediated recycling pathway, promoted 

by a co-receptor neuropilin-1 (NRP1)90,92. Given the knowledge that CB2 trafficking is not 

affected by variation of Rab439, I postulate that constitutively CB2 experiences slow or effectively 

no recycling, while the activation of CB2 by ligand, either an agonist or inverse agonist, activates 

or targets the receptor to the Rab-11 recycling pathway. This is also backed by the data that the 

introduction of constitutively active or dominant negative Rab11 alters the AM630 induced 

recycling, but not the constitutive trafficking of CB239. 

4.4 Limitations 

Despite that the revised model captures the dynamics of the system quite well, there are 

still uncertainties and questions remained to be determined or answered. The data-constrained 

model demonstrates that a simple assumption that ligands regulate receptor endocytosis and 

recycling does not suffice to explain the four experimental datasets published by Grimsey et al. 

simultaneously39, and that the transfer of receptor from early endosome to recycling endosome, as 

well as the dephosphorylation of internalized receptors are the two processes suspected to be 

modulated by ligand, but such model cannot reflect the detailed molecular mechanism through 

which the ligand exhibits such effects. In addition, a study of CB receptors using primary human 

cells has shown that, unlike what happened in the transfected cells, they do not undergo 

internalization upon agonist treatment, but are transported between cytoplasm and cell membranes 

via ligand-independent mechanisms93. This would impair the relevance of not only this work, but 

also all the previous experimental works that are done in transfected animal cells. 

As mentioned in Section 4.2, GPCRs are complicated systems that many details regarding 

their signaling, endocytosis, and trafficking are still unknown. Our model, even though designed 

specifically for the data to be explained and based upon references from other relevant modeling 

studies, is too simplistic to have great prediction power. Certainly, a much more detailed model 

would require a much more detailed dataset to be used as validations, which is rather scarce for 

GPCRs, especially the CB2 receptor. 

For the goal of this project, an alternative to data fitting is parameter synthesis techniques, 

which are techniques that can identify an area of parameters with which the model will show a 

certain desirable or undesirable behavior94. Sampling strategy, such as MCMC, even though is 
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much easier to implement, suffers problems including inefficient and insufficient sampling, and 

uncertainty of convergence. Parameter synthesis specifies “behavior” or “event” of a model using 

logics, instead of continuous data points. The algorithm first approximates the reachable set, a 

cluster of behaviors that can be possibly reached by the model with parameters arbitrarily chosen 

from the parameter space, by using a finite number of simulated trajectories and sensitivity analysis, 

and then classifies each parameter subset as either satisfying the specification or not by computing 

the intersection between the reachable set and the specified region. Therefore, if a desirable 

behavior is not present, then the intersection will be an empty set, meaning the model cannot 

explain the experimental observation. 

4.5 Future Prospective 

A more comprehensive dataset quantifying time courses for receptors in all compartments, 

early endosome, late endosome, recycling endosome, as well as the cell membrane will provide 

much more information for building a complete model. 3D imaging of receptor distribution in 

cellular substructures could facilitate the development of a spatial model. Therefore, the 

prerequisite for the most promising improvement for my work will be more informative and 

quantitative biological data. This can be possibly done by either designing the experiment in our 

laboratory or through collaborations. 

It is crucial to know how the output, surface receptor expression level, is sensitive to the 

variation of each parameter. Many biological systems are known to be robust to changes in cellular 

conditions due to environmental noise, so it is not necessarily true that parameters with the largest 

variation would be the most important determinant for the model. Meanwhile, in the process of 

model development, the value and range for many parameters are determined through some data-

guided heuristic approach, and this can be done in a much more systematic manner by 

understanding the whole picture of how each parameter contributes to the final behavior of the 

model. A global sensitivity analysis, e.g. partial rank correlation coefficients (PRCC) or 

elementary effects (EE), can be used to resolve such issue.  

For this particular study, I do not see any necessity to use stochastic simulation method, as 

all the species are abundant in each compartment, and there is no evidence showing obvious traits 

for stochastic effects in this system. Future models, however, especially if receptor expression and 
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CME are modeled mechanistically, might need to consider stochastic behaviors, in which case 

stochastic simulation algorithms, e.g. Gillespie algorithm, will be needed. 

The final goal for such model, after extensive validation and modification, is to not only 

explain how the whole system works, but also predict how the response of the system will change 

as a result of certain variations of involved biological processes. These variations can be due to 

genetic variations, disease status, or environmental stimuli, including medications and antigens. 
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APPENDIX A. IMPLEMENTATION DETAILS FOR MCMC 

 

 

In Section 2.6.2, several probability functions are briefly mentioned, without detailed 

explanation of their practical meaning. In this appendix, we will discuss the MCMC theory with 

further details and attempt to connect abstract mathematical formulas to the real problem we have.  

Metaphorically we can imagine a biological system as a machine that produces data. Since 

machines are never perfect, so the data they produced contain noise. Of course in the sense of 

experimental data, noise sometimes comes from the mean of measurement, not necessarily from 

the biological system itself, but for now, let us keep that simple mindset for convenience. 

Mathematical models are descriptions of such system, and in the case of deterministic models, 

they try to mimic the real biological system and are noise-free. How accurate, or how close a 

kinetic model is to the real system depends on the architecture, (i.e. how species are wired up) and 

the value of each parameter. Therefore the task for parameter estimation algorithms, including 

MCMC techniques, is to search for a parameter set that maximizes the accuracy of the model, 

assuming the architecture is “correct” or close enough. 

In reality, however, we will not be able to know how a biological system really works. 

Typically, all we have are some experimental data D that generated by the system – evidences, 

and some facts or speculations on how the system works, which sometimes lead to a deterministic 

kinetic model M – the hypothesis. With different values for the parameters 𝜽, the model M behaves 

differently, meaning that the model M is a function of 𝜽. Even if we can find a parameter set 𝜽𝒊 

making the hypothesis 𝑀(𝜽𝒊) fits the evidences D extremely well, we can only say it is very likely 

that the real system works the same as 𝑀(𝜽𝒊). Statistically we say, given the evidences D, the 

probability that the hypothesis 𝑀(𝜽𝒊) is true is high, but there is still some probability that with 

another parameter set, say, 𝜽𝒋, the hypothesis 𝑀(𝜽𝒋) is true. This probability we are describing 

now is the very posterior probability 𝑃(𝜽|𝑫). With this mindset, I summarized the practical 

meaning for all probability functions in the following table: 
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Symbol Terminology Practical Meaning 

𝑃(𝜽|𝑫) 
Posterior 

Probability 
The probability that 𝑀(𝜽) is true, given data D. 

𝑃(𝑫|𝜽) Likelihood The probability that D are generated, if 𝑀(𝜽) is true. 

𝑃(𝜽) Prior Probability The probability that 𝑀(𝜽) is true, without knowing D. 

𝑃(𝑫) 
Marginal 

Likelihood 
The probability that D are generated, without knowing 𝑀(𝜽). 

Table 3. Summary of Probability Functions. 

The ultimately goal for MCMC is to sample random points from distribution of posterior 

probability 𝑃(𝜽|𝑫). But as discussed in Section 2.6.2, computing 𝑃(𝜽|𝑫) is intractable for most 

complex systems, and that is why we need to use Eq.2.6.3 instead to approximate 𝑃(𝜽|𝑫) by 

generating samples from the product of likelihood  and prior probability distribution. The 

likelihood for a single data point 𝑦𝑖 can be well defined, assuming Gaussian noises: 

 
𝑃(𝑦𝑖|𝜽) =

1

√2𝜋𝜎𝑖

exp [−
(𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽))

2

2𝜎𝑖
2

] (A.1) 

This formula describes the probability that 𝑦𝑖 is sampled from a Gaussian distribution with a mean 

of 𝑥(𝑡𝑖; 𝜽), the simulation result generated by 𝑀(𝜽) at i-th time point 𝑡𝑖, and a variance of 𝜎𝑖. The 

likelihood for all data points 𝑫 = {𝑦𝑖|𝑖 = 1, 2, … , 𝑛} can be calculated as the product of Eq.A.1 

for all elements in D, supposing that the sampling events are independent, which leads to Eq.2.6.5. 

In practical, the calculation of likelihood is done by using the following formula, which can be 

readily shown to be equivalent to Eq.2.6.5: 

 
𝑃(𝑫|𝜽) = (∏

1

√2𝜋𝜎𝑖𝑖

)(exp [−
1

2
∑(

𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽)

𝜎𝑖
)

2

𝑖

]) (A.2) 

The product in the first pair of brackets can be omitted, since we are interested in the ratio of 

likelihood functions 𝑃(𝑫|𝜽′) 𝑃(𝑫|𝜽)⁄ , as shown by Eq.2.6.7, while this product is a constant for 

all 𝜽. For the exponential function in the second pair of brackets, the exponent is first calculated, 

and when calculating the ratio of likelihood functions, the difference between the exponents of the 
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two likelihood function is calculated, to avoid numerical problems when the two likelihoods are 

too small that they exceed the lower bound of the range for the computer to store a float. 

Specifically, if we denote the summation part of the exponent in Eq.A.2 as 𝑍(𝜽), from Eq.2.6.7, 

we can compute the ratio as: 

𝑃(𝑫|𝜽′)

𝑃(𝑫|𝜽)
= exp [−

1

2
(∑(

𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽
′)

𝜎𝑖
)

2

𝑖

− ∑(
𝑦𝑖 − 𝑥(𝑡𝑖; 𝜽)

𝜎𝑖
)

2

𝑖

)]  

 
= exp [−

1

2
(𝑍(𝜽′) − 𝑍(𝜽))] (A.2) 

For this study, we have a total of for datasets, and if we call degradation data as data 1, constitutive 

internalization data as data 2, agonist treatment data as data a, and inverse agonist treatment data 

as data i, then we have: 

 𝑍(𝜽) = 𝑍1(𝜽) + 𝑍2(𝜽) + 𝑍𝑎(𝜽) + 𝑍𝑖(𝜽) (A.3) 

Sometimes due to practical issues, we have certain terms in Eq.A.3 that are extremely large making 

them dominate the value of 𝑍(𝜽). For example in Section 3.4 we found that 𝑍1(𝜽) + 𝑍2(𝜽) ≪

𝑍𝑎(𝜽) + 𝑍𝑖(𝜽), therefore 𝑍(𝜽) ≈ 𝑍𝑎(𝜽) + 𝑍𝑖(𝜽). To overcome this problem, I assign a weight w 

to the small terms to make it larger artificially: 

 𝑍(𝜽) = 𝑤(𝑍1(𝜽) + 𝑍2(𝜽)) + 𝑍𝑎(𝜽) + 𝑍𝑖(𝜽) (A.4) 

We used 𝑤 = 5 in the third fit, and 𝑤 = 2 in the fourth fit. 
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APPENDIX B. CORE CODES 
 

The indices for each species and parameter are defined in a script Initialize.m: 

 

%% Species 
inited = 1; 
global R Rs LR LRs Rp eeRp eeR reR... 
    names keys n_species 
%% Species 
R = 1; 
Rs = 2; 
LR = 3; 
LRs = 4; 
Rp = 5; 
eeRp = 6; 
eeR = 7; 
reR = 8; 

  
names = {'R' 'R*' 'LR' 'LR*' 'R-p' 'Rp^{(ee)}' 'R^{(ee)}', 'R^{(re)}'}; 
keys = {'R' 'Rs' 'LR' 'LRs' 'Rp' 'eeRp' 'eeR' 'reR'}; 

  
n_species = 8; 

  
%% Parameter list 
global ik1 iKact ik3 iKa ia ... 
ikp ikint ikdp iktr ikrec ikre5 is iRt iL... 
ie ... 
n_params knames 

  
% Rate & Equilibrium constants 
ik1 = 1; iKact = 2; ik3 = 3; iKa = 4; ia = 5; 
% GRK & recycling module 
ikp     =   6; 
ikint   =   7; 
ikdp    =   8; 
iktr    =   9; 
ikrec   =   10; 
ikre5   =   11; 
is      =   12; 
% concentrations 
iRt     =   13; 
iL      =   14; 
ib      =   15; 
ic      =   16; 
id      =   17; 
ie      =   18; 
ig      =   19; 
ih      =   20; 

  
n_params    =   20; 
knames = {'k1' 'Kact' 'k3' 'Ka' 'a'... 



46 
 

    'kp' 'kint' 'kdp' 'ktr' 'krec' 'kre4' 's' 'R_t' 'iL' 'b', 'c', 'd', 'e', 

'g', 'h'}; 

  
%% Ligand2 Parameters 
global i2a i2Ka i2e n_params2 knames2 
i2a   =  n_params + 1;  % Agnoist 
i2Ka  =  n_params + 2; 
i2e   =  n_params + 3; 
n_params2 = n_params + 3; 
knames2 = cat(2, knames, {'2a' '2Ka', '2e'}); 

  
%% Constants 
global M nM uM V VM NA Mm nMm uMm VE Me nMe uMe 
% Avogadro's number 
NA     =  6.02e23;           % mol 
nano   =  1e9; 
mu     =  1e6; 
mag    =  1e3; 
% Volumes 
V      =  1.77e-12;          % Cell Volume, 1fL -> 1e-15L 
VM     =  V/100;             % Membrane Volume 
VE     =  V/1000;            % Endosome Volume 
% Unit conversions 
M      =  V*NA; 
nM     =  M/nano; 
uM     =  M/mu; 
% Unit conversions 
Mm      =  VM*NA; 
nMm     =  Mm/nano; 
uMm     =  Mm/mu; 
% Unit conversions 
Me      =  VE*NA; 
nMe     =  Me/nano; 
uMe     =  Me/mu; 

 

 

The ODEs are written as MATLAB codes and solved in function solveodes: 

 

function [T,Y,terminated] = solveodes(C, tspan, Parameters, solver) 
% Solve ODEs numerically 
%####################### Species mapping list ########################### 
global R Rs LR LRs Rp eeRp eeR reR 
global ik1 iKact ik3 iKa ia ... 
       ikp ikint ikdp iktr ikrec ikre5 is iL ie 
%########################## Parameters list ############################# 
k1      = Parameters(ik1); 
Kact    = Parameters(iKact); 
k3      = Parameters(ik3); 
Ka      = Parameters(iKa); 
a       = Parameters(ia); 
kp      = Parameters(ikp); 
kint    = Parameters(ikint); 
kdp     = Parameters(ikdp); 
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ktr     = Parameters(iktr); 
krec    = Parameters(ikrec); 
kre5    = Parameters(ikre5); 
s       = Parameters(is); 
L       = Parameters(iL); 
e       = Parameters(ie); 
%####################### Differential Equations ######################### 
%options = odeset('NonNegative', 1:numel(C)); 
%[T, Y] = solver(@diffeqts, tspan, C, options); 
[T, Y] = solver(@diffeqts, tspan, C); 

  
if (T(end) < tspan(end) - 0.5) 
    fprintf(':\n'); 
    terminated = 1; 
else 
    fprintf('.'); 
    terminated = 0; 
end 

  
function [ dc ] = diffeqts( t, c ) 
% Differential Equations for the model; 
% input: t -- time; c -- concentrations for species 
% output: dc -- dc/dt 
if c(eeR) >= 100 
    deg = s; 
else 
    deg = s/100 * c(eeR); 
end 

  
dc = zeros(size(c)); 

  
dc(R) = - k1 * c(R) + (k1/Kact) * c(Rs) - k3 * L * c(R) + (k3/Ka) * c(LR)... 
    + krec * c(reR) + kre5 * c(eeR) + s; 
dc(Rs) = k1 * c(R) - (k1/Kact) * c(Rs) - a*k3 * L * c(Rs) + (k3/Ka) * 

c(LRs) ... 
    - kp * c(Rs); 
dc(LR) = - a*k1 * c(LR) + (k1/Kact) * c(LRs) + k3 * L * c(R) - (k3/Ka) * 

c(LR); 
dc(LRs) = a*k1 * c(LR) - (k1/Kact) * c(LRs) + a*k3 * L * c(Rs) - (k3/Ka) * 

c(LRs) ... 
    - kp * c(LRs); 
dc(Rp) = kp * c(Rs) + kp * c(LRs) - kint * c(Rp); 
dc(eeRp) = kint * c(Rp) - kdp * c(eeRp); 
dc(eeR) = kdp * c(eeRp) - e * ktr * c(eeR) - kre5 * c(eeR) - deg; 
dc(reR) = e * ktr * c(eeR) - krec * c(reR); 
end 

  
end 

 

 

To simulate the dynamics of labeled species, as discussed in Section 2.4, another function 

solveodes_nosynth, is written with no receptor synthesis term but otherwise the same as 

solveodes. For simplicity, the codes for solveodes_nosynth are not attached here. 
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The calculation of constitutive steady state is implemented based on analytical solutions 

shown in Section 3.2: 

 

function [ c0 ] = initConc( Parameters ) 
%INITCONC calculate constitutive steady state 

  
global R Rs LR LRs Rp eeRp eeR reR n_species 
global ik1 iKact ... 
       ikp ikint ikdp iktr ikrec ikre5 is iRt 
k1      = Parameters(ik1); 
Kact    = Parameters(iKact); 
kp      = Parameters(ikp); 
kint    = Parameters(ikint); 
kdp     = Parameters(ikdp); 
ktr     = Parameters(iktr); 
krec    = Parameters(ikrec); 
kre5    = Parameters(ikre5); 
s       = Parameters(is); 
Rt      = Parameters(iRt); 

  
den = kdp * kint * kp * krec * (kre5 + ktr) * Kact ... 
    + k1 * (kint * kp * krec * (kre5 + ktr) * Kact ... 
    + kdp * (kp * krec * (kre5 + ktr) * Kact ... 
    + kint * (kp * ktr * Kact + kre5 * krec * (1 + Kact) ... 
    + krec * (kp * Kact + ktr * (1 + Kact))))); 

  
c0 = ones(n_species, 1) / den; 
kcom = Rt * kre5 * krec + s * ktr + krec * (s + Rt * ktr); 
c0(R) = c0(R) * kdp * kint * (k1 + kp * Kact) * kcom; 
c0(Rs) = c0(Rs) * k1 * kdp * kint * Kact * kcom; 
c0(LR) = 0; 
c0(LRs) = 0; 
c0(Rp) = c0(Rp) * k1 * kdp * kp * Kact * kcom; 
c0(eeRp) = c0(eeRp) * k1 * kint * kp * Kact * kcom; 
kcom2 = kdp * kint * kp * s * Kact ... 
    + k1 * (kint * kp * s * Kact + kdp * (kp * s * Kact ... 
    + kint * (-Rt * kp * Kact + s * (1 + Kact)))); 
c0(eeR) = c0(eeR) * (-krec * kcom2); 
c0(reR) = c0(reR) * (-ktr * kcom2); 

  
end 

 

 

The ranges for each parameter and other preparations for running MCMC are defined and 

coded in MCMC2.m: 

 
Initialize(); 
global ik1 iKact ik3 iKa ia ... 
ikp ikint ikdp iktr ikrec ikre5 is iRt iL ie... 
i2a i2Ka i2e n_params2 
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%% Parameter Ranges 
rangs = zeros(n_params2, 2); 
% Concentrations 
rangs(iL,:) = 1e-6 * [1, 1]; 
rangs(iRt,:) = 5000 * [0.5, 10]; 
% Rate & Equilibrium constants 
rangs(ik1,:) = [1 1]; 
rangs(ik3,:) = 1e7 * [1 1]; 
rangs(iKact,:) = [0.001 0.1]; 
rangs(iKa,:) = 1e8 * [1 1]; 
rangs(ia,:) = [1 100]; 
rangs(ie,:) = [1 1000]; 
rangs(i2Ka,:) = 1e7 * [1 1]; 
rangs(i2a,:) = [0.01 1]; 
rangs(i2e,:) = [10 1000]; 
% GRK & recycling module 
rangs(ikp,:)       =   0.0056 * [0.1 10];     % GRK phosphorylates receptor 
rangs(ikdp,:)      =   0.0014 * [0.1 10];     % phosphotase dephosphorylates 

receptor 
rangs(ikint,:)     =   [0.001 0.1];           % internalize 
rangs(ikrec,:)     =   [0.0001 0.01];         % recycle via rab11 
rangs(iktr,:)      =   [0.00001 0.01];        % rab5 -> rab11 
rangs(ikre5,:)     =   0 * [1, 1];            % recycle via rab5 
% Synthesis & Degradation 
rangs(is,:) = 0.1 * [0.1, 1]; 

  
%% Parameter Scale 
% 0 for log, 1 for linear 
scale = zeros(n_params2, 1); 

  
%% Parameter Selection 
sele = zeros(n_params2, 1); 
sele(iL)  =   0; 
sele(iRt)  =   1; 
% Rate & Equilibrium constants 
sele(ik1) = 0; 
sele(ik3) = 0; 
sele(iKact) = 1; 
sele(iKa) = 0; 
sele(ia) = 1; 
sele(ie) = 1; 
sele(i2Ka) = 0; 
sele(i2a) = 1; 
sele(i2e) = 1; 
% GRK & recycling module 
sele(ikp)       =   1;    % GRK phosphorylates receptor 
sele(ikdp)        =   1;    % phosphatase dephosphorylates receptor 
sele(ikint)       =   1;    % internalize 
sele(ikrec)       =   1;    % recycle 
sele(iktr)       =   1; 
sele(ikre5)       =   0; 
% Synthesis & Degradation 
sele(is)       =   1; 
sele = logical(sele); 

  



50 
 

disp('Choose degradation data'); 
[t_deg, Y_deg, sd_deg] = loadData(); 
disp('Choose constitutive internalization data'); 
[t_cint, Y_cint, sd_cint] = loadData(); 
disp('Choose agonist treatment data'); 
[t_ag, Y_ag, sd_ag] = loadData(); 
disp('Choose inverse agonist treatment data'); 
[t_inv, Y_inv, sd_inv] = loadData(); 

  
re = input('How many start points?'); 
k0s = lhsdesign(re, sum(sele)) - 0.5; 
n_iter = input('How many iterations?'); 
trajK = []; 
trajCurve1 = []; 
trajCurve2 = []; 
trajLH = []; 
for i = 1 : re 
    fprintf('\nStarting Point #%d\n', i) 
    par = zeros(1, n_params2); 
    par(sele) = k0s(i, :); 
    par = denorm(par, rangs, scale); 
    [ trajK_0, trajLH_0 ] =... 
        MCMC_2lig( par, t_deg, t_ag, t_inv, ... 
        Y_deg, Y_cint, Y_ag, Y_inv, sd_deg, sd_cint, sd_ag, sd_inv, ... 
        @(k, r)stepdenorm( k, r, rangs, scale, sele ), n_iter); 
    n_burn = ceil(0.2 * n_iter); 
    trajK = [trajK, trajK_0(:, n_burn : end)]; 
    trajLH = [trajLH, trajLH_0(n_burn : end)]; 
end 
x = num2str(rand()); 
save(['MCMC_2lig_results_', x, '.mat'], 'trajK', 'trajLH') 

 

 

The Metropolis-Hastings algorithm is implemented as function MCMC_2lig: 

 

function [ trajK, trajLH ]... 
    = MCMC_2lig( par0, time, time_ag, time_inv, ... 
Y_deg, Y_cint, Y_ag, Y_inv, sd_deg, sd_cint, sd_ag, sd_inv, stepfunc, 

n_iter) 
% MCMC Simulation on Parameter Space 
% trajK -- all sampled Ks; trajLH -- likelihood associated with sampled Ks 
% par0 -- initial parameter values; 
% time: time points for constitutive data; 
% time_ag: time points for agonist treatment data; 
% time_inv: time points for inverse agonist treatment data; 
% Y_deg: means for degradation data; 
% Y_cint: means for constitutive internalization data; 
% Y_ag: means for agonist treatment data; 
% Y_inv: means for inverse agonist treatment data; 
% sd_deg: standard deviation for degradation data; 
% sd_cint: standard deviation for constitutive internalization data; 
% sd_ag: standard deviation for agonist treatment data; 
% sd_inv: standard deviation for inverse agonist treatment data; 
% step_func: a function that change the values for parameters; 
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% n_iter: total number of iterations; 

  
global R Rs LR LRs Rp eeRp eeR reR 
global ik1 iKact ik3 iKa ia ie ... 
ikp ikint ikdp iktr ikrec ikre5 is iRt iL... 
i2a i2e i2Ka 

  
n_tot = numel(par0); 

  
trajK = zeros(n_tot, n_iter); 
trajLH = zeros(1, n_iter); 

  
first = 1; 
n_acc = 0; 
all_par = par0; 
for i = 1 : n_iter 
    fprintf('\nIteration #%d\n', i) 

     
    % Create parameter set for constitutive, agonist, and inverse agonit 
    ag_par = all_par; 
    inv_par = all_par; 
    inv_par(ia) = inv_par(i2a); 
    inv_par(ie) = inv_par(i2e); 
    inv_par(iKa) = inv_par(i2Ka); 
    const_par = all_par; 
    const_par(iL) = 0; 

  
    % Calculate initial concentration 
    ini_conc = initConc(all_par); 

  
    % Remove unlabeled species (for constitutive data) 
    unlabeled = ini_conc([eeRp, eeR, reR]); 
    ini_conc([eeRp, eeR, reR]) = [0, 0, 0]; 

  
    % Constitutive simulation 
    const_par(iL) = 0; 
    [~, x] = solveodes_nosynth(ini_conc, [0; time * 3600], const_par, 

@ode15s); 

     
    xtot = sum(x(:, [R, Rs, Rp, eeRp, eeR, reR]), 2); 
    xsur = sum(x(:, [R, Rs, Rp]), 2); 
    xtot = xtot / xtot(1) * 100; 
    xsur = xsur / xsur(1) * 100; 
    xtot = xtot(2:end); 
    xsur = xsur(2:end); 

     
    % Agonist treatment 
    ini_conc([eeRp, eeR, reR]) = unlabeled; 
    [~, x] = solveodes(ini_conc, [0; time_ag * 3600], ag_par, @ode15s); 
    x_ag = sum(x(:, [R, Rs, LR, LRs, Rp]), 2); 
    x_ag = x_ag / x_ag(1) * 100; 
    x_ag = x_ag(2:end); 

  
    % Inverse agonist treatment 
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    [~, x] = solveodes(ini_conc, [0; time_inv * 3600], inv_par, @ode15s); 
    x_inv = sum(x(:, [R, Rs, LR, LRs, Rp]), 2); 
    x_inv = x_inv / x_inv(1) * 100; 
    x_inv = x_inv(2:end); 

  
    X = [xtot; xsur]; 
    Y = [Y_deg; Y_cint]; 
    V = [sd_deg.^2; sd_cint.^2]; 
    if isequal(size(X), size(Y)) 
        loglh = loglikelihood(Y, X, V); 
    else 
        loglh = -1e300; 
    end 

  
    X = [x_ag; x_inv]; 
    Y = [Y_ag; Y_inv]; 
    V = [sd_ag.^2; sd_inv.^2]; 
    if isequal(size(X), size(Y)) 
        loglh = loglh + loglikelihood(Y, X, V); 
    else 
        loglh = loglh - 1e300; 
    end 

  
    fprintf('Likelihood = Exp(%d)\n', loglh) 

     
    if first == 1 
        lastLH = loglh; 
        lastK = all_par; 
        first = 0; 
        fprintf('Likelihood = Exp(%d)\n', loglh) 
    else 
        reP = exp(loglh - lastLH); 
        fprintf('reP = %d\n', reP) 
        r = rand(); 
        if r <= min([1, reP]) 
            % Accept 
            lastLH = loglh; 
            lastK = all_par; 
            n_acc = n_acc + 1; 
        else 
            % Reject 
            all_par = lastK; 
            loglh = lastLH; 
        end 
        fprintf('Likelihood = Exp(%d)\n', loglh) 
        fprintf('Accept Rate = %d\n', n_acc/i) 
    end 
    trajK(:, i) = all_par; 
    trajLH(1, i) = loglh; 

     
    % sample next parameters 
    step = 0.08; 
    r = 2 * step * rand(n_tot, 1) - step; 
    all_par = stepfunc(all_par, r); 
end 
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end 

  
function [ P ] = likelihood( y, M, var ) 
%LIKELIHOOD Calculate the likelihood function 
%   P -- likelihood 
%   y -- prediction values; 
%   M -- means of data; var -- variance of data 
    p = exp(-0.5*(y-M).^2./var); 
    P = prod(p); 
end 

  
function [ logP ] = loglikelihood( y, M, var ) 
%LOGLIKELIHOOD Calculate the logarithm of likelihood function 
%   logP -- log likelihood 
%   y -- prediction values; 
%   M -- means of data; var -- variance of data 
    logp = -0.5*(y-M).^2./var; 
    logP = sum(logp); 
end 

 

 

Where the function stepfunc for perturbing the parameter vector is implemented as: 

 
function [ y ] = stepdenorm( x, r, ranges, scale, sele ) 
%STEPDENORM perturb and denormalize the parameter space 
%   y -- perturbed parameter vector 
%   x -- original parameter vector 
%   r -- step 
%   ranges -- the range for parameters 
%   scale -- 0 for log space, 1 for linear space 
%   sele -- selected parameters 

  
y = x; 
for i = 1 : numel(x) 
    if sele(i) ~= 0 
        x1 = ranges(i, 1); 
        x2 = ranges(i, 2); 
        if scale(i) == 0 
            y(i) = x(i) * (x2 / x1) ^ r(i); 
            if y(i) > x2 
                y(i) = x1/x2 * y(i); 
            elseif y(i) < x1 
                y(i) = x2/x1 * y(i); 
            end             
        else 
            y(i) = x(i) + (x2 - x1) * r(i); 
            if y(i) > x2 
                y(i) = x1 + y(i) - x2; 
            elseif y(i) < x1 
                y(i) = x2 - (x1 - y(i)); 
            end 
        end    
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    end 
end 

  
end 

 

 

The calculation of SSE based on Eq.2.6.9: 

 

function [ sse ] = calcSSE(  Ymean, Ysig, m, tY, X, tX  ) 
%CALCSSE calculate Sum of Squared Error for Prediction 
%   Ymean -- data mean 
%   Ysig -- data variance 
%   m -- number of parallel experiments 
%   tY -- time points for data 
%   X -- simulation results 
%   tX -- time points for simulation results 

  
% Find the closest points for Y 
I = ones(size(tY)); 
for i = 1 : numel(tY) 
    least_d = abs(tY(i) - tX(1)); 
    for j = 2 : numel(tX) 
        d = abs(tY(i) - tX(j)); 
        if d < least_d 
            I(i) = j; 
            least_d = d; 
        else 
            break; 
        end 
    end 
end 
X = X(I); 

  
sse = (m - 1) * sum(Ysig .^ 2) + m * sum(Ymean .^ 2)... 
    - m * sum(2 * Ymean .* X - X .^ 2); 
end 

 

 

The calculation of likelihood term for computing BIC based on Eq.2.6.11 and Eq.2.6.12: 

 

function [ lh ] = calcLH(  Ymean, Ysig, m, tY, X, tX  ) 
%CALCSSE calculate the maximum likelihood 
%   Ymean -- data mean 
%   Ysig -- data variance 
%   m -- number of parallel experiments 
%   tY -- time points for data 
%   X -- simulation results 
%   tX -- time points for simulation results 
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% Find the closest points for Y 
I = ones(size(tY)); 
for i = 1 : numel(tY) 
    least_d = abs(tY(i) - tX(1)); 
    for j = 2 : numel(tX) 
        d = abs(tY(i) - tX(j)); 
        if d < least_d 
            I(i) = j; 
            least_d = d; 
        else 
            break; 
        end 
    end 
end 
X = X(I); 

  
lh = prod(1./sqrt(2 * pi * Ysig .^ 2)) * ... 
    exp(-sum(sum( ((m - 1) * Ysig .^ 2 + m * Ymean .^ 2 ... 
    - 2 * m * X .* Ymean + m * X .^ 2) ... 
    ./ (2 * Ysig .^ 2) ))); 
end 

  

 

 

 

The script that plot all the fitting results is coded in plotmc4.m: 

 

clear 
Initialize(); 
global R Rs LR LRs Rp eeRp eeR reR n_species names 
global ik1 iKact ia iKa iL ie... 
       ikp ikint ikdp iktr ikrec ikre5 is iRt knames ... 
       i2a i2e i2Ka n_params2 knames2 

  
files = dir(fullfile(pwd, 'Data')); 
filemat.name = ''; 
filemat.type = ''; 
o = 0; 
for i = 1 : numel(files) 
    [~, filename, filetype] = fileparts(files(i).name); 
    if (strcmp(filetype, '.mat')) 
        newfile.name = filename; 
        newfile.type = filetype; 
        if (o == 0) 
            filemat = newfile; 
        else 
            filemat = cat(2, filemat, newfile); 
        end 
        o = o + 1; 
        prompt = strcat('    ', num2str(o), '. ', filename); 
        fprintf('%s\n', prompt); 
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    end 
end 
re = input('Which file you want to analyze?'); 
load(strcat('Data\', filemat(re).name, filemat(re).type),... 
    'trajK', 'trajLH'); 

  
disp('Choose degradation data.') 
[~, Y_deg, sd_deg] = loadData(); 
disp('Choose constitutive internalization data.') 
[time, Y_cint, sd_cint] = loadData(); 
disp('Choose agonist treatment data.') 
[t_ag, Y_ag, sd_ag] = loadData(); 
disp('Choose inverse agonist treatment data.') 
[t_inv, Y_inv, sd_inv] = loadData(); 

  
% some data transformation 
for i = 1 : numel(trajLH) 
    if(trajLH(i)<0) 
        trajLH = exp(trajLH); 
        break; 
    end 
end  

  
% Find Best and Mean 
[bestLH, I] = max(trajLH); 
bestK = trajK(:, I); 
meanK = 10.^(mean(log10(trajK), 2)); 

  
fprintf('\nLikelihood = %d\n', bestLH) 
disp('Best Ks:') 
for i = 1 : numel(bestK) 
    fprintf('%s: %d\n', knames2{i}, bestK(i)) 
end 
disp('Mean Ks:') 
for i = 1 : numel(meanK) 
    fprintf('%s: %d\n', knames2{i}, meanK(i)) 
end 

  
%% Create parameter sets for 3 conditions 
bestK_const = bestK; 
bestK_const(iL) = 0; 
bestK_ag = bestK; 
bestK_inv = bestK; 
bestK_inv(ia) = bestK_inv(i2a); 
bestK_inv(ie) = bestK_inv(i2e); 
bestK_inv(iKa) = bestK_inv(i2Ka); 

  
%% Constitutive Dynamics 

  
% Calculate initial concentration 
ini_conc = initConc(bestK); 
% Remove unlabeled species 
ini_conc([eeRp, eeR, reR]) = [0, 0, 0]; 
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[t, x] = solveodes_nosynth(ini_conc, [0, time(end) * 3600], bestK_const, 

@ode15s); 

  
xtot = sum(x(:, [R, Rs, Rp, eeRp, eeR, reR]), 2); 
xsur = sum(x(:, [R, Rs, Rp]), 2); 
xtot = xtot / xtot(1) * 100; 
xsur = xsur / xsur(1) * 100; 

  
figure() 
hold on 
errorbar(time, Y_deg, sd_deg, 'rx') 
errorbar(time, Y_cint, sd_cint, 'rs') 
thour = t / 3600; 
plot(thour, xtot) 
plot(thour, xsur, 'k') 
xlabel('Time (hrs.)') 
ylabel('% Starting Surface Receptor') 
legend('Experiment: Degradation', 'Experiment: Internalization',... 
    'Model: Degradation', 'Model: Internalization') 
% Calculate Goodness-of-Fit Criteria 
sse1 = calcSSE(Y_deg, sd_deg, 3, time, xtot, thour); 
sse2 = calcSSE(Y_cint, sd_cint, 3, time, xsur, thour); 
txt1 = ['SSE_1: ', num2str(round(sse1, 2))]; 
txt2 = ['SSE_2: ', num2str(round(sse2, 2))]; 
text(1, 50, txt1); 
text(1, 40, txt2); 
lh1 = calcLH(Y_deg, sd_deg, 3, time, xtot, thour); 
bic1 = - 2 * log(lh1) + 8 * log(3 * 6); 
lh2 = calcLH(Y_cint, sd_cint, 3, time, xsur, thour); 
bic2 = - 2 * log(lh2) + 8 * log(3 * 6); 
txt1 = ['BIC_1: ', num2str(round(bic1, 2))]; 
txt2 = ['BIC_2: ', num2str(round(bic2, 2))]; 
text(1, 45, txt1); 
text(1, 35, txt2); 
hold off 

  
figure() 
hold on 
plot(thour, x) 
xlabel('Time (hrs.)') 
ylabel('Number of Molecules') 
legend(names) 
hold off 

  
%% Ligand Treatment 
% Calculate initial concentration 
ini_conc = initConc(bestK); 

  
% Agonist treatment 
[t, x] = solveodes(ini_conc, [0, t_ag(end) * 3600], bestK_ag, @ode15s); 
% Inverse agonist treatment 
[t2, x2] = solveodes(ini_conc, [0, t_inv(end) * 3600], bestK_inv, @ode15s); 

  
x_ag = sum(x(:, [R, Rs, LR, LRs, Rp]), 2); 
x_ag = x_ag / x_ag(1) * 100; 
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x_inv = sum(x2(:, [R, Rs, LR, LRs, Rp]), 2); 
x_inv = x_inv / x_inv(1) * 100; 

  
figure() 
% Agonist 
subplot(121) 
hold on 
errorbar(t_ag, Y_ag, sd_ag, 'rx') 
plot(t / 3600, x_ag) 
xlabel('Time (hrs.)') 
ylabel('% Starting Surface Receptor') 
legend('Experiment: Agonist', 'Model best fit') 
hold off 
% Calculate Goodness-of-Fit Criteria 
sse = calcSSE(Y_ag, sd_ag, 3, t_ag, x_ag, t / 3600); 
txt = ['SSE: ', num2str(round(sse, 2))]; 
text(1.6, 85, txt); 
lh = calcLH(Y_ag, sd_ag, 3, t_ag, x_ag, t / 3600); 
bic = - 2 * log(lh) + 8 * log(3 * 6); 
txt = ['BIC: ', num2str(round(bic, 2))]; 
text(1.6, 80, txt); 

  
% Inverse agonist 
subplot(122) 
hold on 
errorbar(t_inv, Y_inv, sd_inv, 'rx') 
plot(t2 / 3600, x_inv) 
xlabel('Time (hrs.)') 
ylabel('% Starting Surface Receptor') 
legend('Experiment: Inverse agonist', 'Model best fit') 
hold off 
% Calculate Goodness-of-Fit Criteria 
sse = calcSSE(Y_inv, sd_inv, 3, t_inv, x_inv, t2 / 3600); 
txt = ['SSE: ', num2str(round(sse, 2))]; 
text(8, 100, txt); 
lh = calcLH(Y_inv, sd_inv, 3, t_inv, x_inv, t2 / 3600); 
bic = - 2 * log(lh) + 8 * log(3 * 6); 
txt = ['BIC: ', num2str(round(bic, 2))]; 
text(8, 80, txt); 
hold off 

  
figure() 
hold on 
plot(t / 3600, sum(x(:, [R, LR]), 2)) 
xlabel('Time (hrs.)') 
ylabel('Number of Molecules') 
%legend(names) 
hold off 

  
%% Distributions 
K_names = {'R_t', 'Kact', 'kp', 'kint', 'kdp', 'ktr', 'krec', 's', 'a', 

'2a', 'e', '2e'}; 
% Calculate the layout 
ntot = numel(K_names); 
m = ceil(ntot / 4); 
n = min(ntot, 4); 
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figure() 
for i = 1 : ntot 
    subplot(m, n, i) 
    par_idx = findcell(knames2, K_names{i}); 
    [trajKi, I] = sort(trajK(par_idx,:)); 
    trajLHi = trajLH(I); 
    %semilogx(trajKi(trajLHi > 0.9), trajLHi(trajLHi > 0.9)) 
    semilogx(trajKi, trajLHi) 
    xlabel(K_names(i)) 
    ylabel('Likelihood') 
end 

  
figure() 
for i = 1 : ntot 
    subplot(m, n, i) 
    hold on 
    par_idx = findcell(knames2, K_names{i}); 
    [nbins, xout] = hist(log10(trajK(par_idx,:)),60); 
    bar(xout,nbins) 
    xlabel(sprintf('log(%s)', K_names{i})) 
    ylabel('Number') 
    fprintf('%s mean: %d\n',K_names{i}, meanK(par_idx)) 
    % mean indicator 
    p1 = ... 
        plot([log10(meanK(par_idx)),log10(meanK(par_idx))],... 
        [0, max(nbins)*1.1], '--', 'color',[0 0.5 0]); 
    % best indicator 
    p2 = ... 
        plot([log10(bestK(par_idx)),log10(bestK(par_idx))],... 
        [0, max(nbins)*1.1], 'r'); 
    legend([p1, p2], {'Mean', 'Best'}) 
    ylim([0, max(nbins)*1.1]) 
    hold off 
end 

  
%correlation plots 
K_names = {'R_t', 'kint', 'krec'}; 
figure() 
k = 0; 
for i = 1 : 3 
    for j = 1 : 3 
        if (j > i) 
        k = k + 1; 
        subplot(1, nchoosek(numel(K_names), 2), k) 
        par_idx1 = findcell(knames, K_names{i}); 
        par_idx2 = findcell(knames, K_names{j}); 
        K1 = log10(trajK(par_idx1,:)); 
        K2 = log10(trajK(par_idx2,:)); 
        scattercloud(K1, K2) 
        xlabel(K_names{i}) 
        ylabel(K_names{j}) 
        end 
    end 
end 
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The codes for fitting and plotting for constitutive data are not shown, but they are simply a 

shortened version of above codes as they do not include ligand treatment data.  
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63. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997). 

64. Alexander, S., Mathie, A. & Peters, J. G Protein-Coupled Receptors. Br. J. Pharmacol. 164, 

S5–S113 (2011). 

65. Kenakin, T. Efficacy at G-protein-coupled receptors. Nat. Rev. Drug Discov. 1, 103–110 

(2002). 

66. Kinzer-Ursem, T. L. & Linderman, J. J. Both ligand- and cell-specific parameters control 

ligand agonism in a kinetic model of G protein-coupled receptor signaling. PLoS Comput. 

Biol. 3, 0084–0094 (2007). 

67. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex 

receptor-occupancy model. I. model description. J. Theor. Biol. 178, 151–167 (1996). 



67 
 

68. Weiss, J. M., Morgan, P. H., Lutz, Mi. W. & Kenakin, T. P. The Cubic Ternary Complex 

Receptor–Occupancy Model II. Understanding Apparent Affinity. J. Theor. Biol. 178, 169–

182 (1996). 

69. Drive, F. M. The Cubic Ternary Complex Receptor-Occupancy Model III. Resurrecting 

Efficacy. J. Theor. Biol. 181, 381–397 (1996). 

70. Vayttaden, S. J. et al. Quantitative modeling of GRK-mediated beta2AR regulation. PLoS 

Comput. Biol. 6, e1000647 (2010). 

71. Tan, W. H., Popel, A. S. & Mac Gabhann, F. Computational model of VEGFR2 pathway 

to ERK activation and modulation through receptor trafficking. Cell. Signal. 25, 2496–2510 

(2013). 

72. Coggins, N. L. et al. CXCR7 controls competition for recruitment of beta-arrestin 2 in cells 

expressing both CXCR4 and CXCR7. PLoS One 9, 1–14 (2014). 

73. Carrier, E. J. et al. Cultured rat microglial cells synthesize the endocannabinoid 2-

arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent 

mechanism. Mol. Pharmacol. 65, 999–1007 (2004). 

74. Butcher, J. C. Numerical Methods for Ordinary Differential Equations. Methods (2008). 

doi:10.1002/9780470753767 

75. Lasagni, F. M. Canonical Runge-Kutta methods. ZAMP Zeitschrift f??r Angew. Math. und 

Phys. 39, 952–953 (1988). 

76. Bolognini, D., Cascio, M. G., Parolaro, D. & Pertwee, R. G. AM630 behaves as a protean 

ligand at the human cannabinoid CB 2 receptor. Br. J. Pharmacol. 165, 2561–2574 (2012). 

77. Olsson, D. M. & Nelson, L. S. The Nelder-Mead Simplex Procedure for Function 

Minimization. Technometrics 17, 45–51 (1975). 

78. Luersen, M. A. & Le Riche, R. Globalized nelder-mead method for engineering 

optimization. in Computers and Structures 82, 2251–2260 (2004). 

79. Rizk, M. L. & Liao, J. C. Ensemble modeling and related mathematical modeling of 

metabolic networks. J. Taiwan Inst. Chem. Eng. 40, 595–601 (2009). 



68 
 

80. Kuepfer, L., Peter, M., Sauer, U. & Stelling, J. Ensemble modeling for analysis of cell 

signaling dynamics. Nat. Biotechnol. 25, 1001–1006 (2007). 

81. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation 

of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953). 

82. Chib, S. & Greenberg, E. Understanding the Metropolis-Hastings Algorithm. The American 

Statistician 49, 327 (1995). 

83. Swigon, D. Ensemble Modeling of Biological Systems. Math. Life Sci. 19–42 (2012). 

84. Stein, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. 

Technometrics 29, 143–151 (1987). 

85. Rosner, B. Fundamentals of Biostatistics. (Brooks/Cole, 2011). 

86. Resat, H., Ewald, J. A., Dixon, D. A. & Wiley, H. S. An integrated model of epidermal 

growth factor receptor trafficking and signal transduction. Biophys. J. 85, 730–743 (2003). 

87. Faeder, J. R. et al. Investigation of early events in FcεRI-mediated signaling using a detailed 

mathematical model. J. Immunol. 170, 3769–3781 (2003). 

88. Warne, T. et al. The structural basis for agonist and partial agonist action on a β(1)-

adrenergic receptor. Nature 469, 241–4 (2011). 

89. Kenakin, T. Inverse, protean, and ligand-selective agonism: matters of receptor 

conformation. FASEB J. 15, 598–611 (2001). 

90. Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E. & Berger, P. Neuropilin-1 promotes 

VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 

816–826 (2011). 

91. Gampel, A. et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular 

endothelial storage compartment. Blood 108, 2624–2631 (2006). 

92. Nakayama, M. & Berger, P. Coordination of VEGF receptor trafficking and signaling by 

coreceptors. Experimental Cell Research 319, 1340–1347 (2013). 

93. Kleyer, J. et al. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated 



69 
 

by a binary biochemical switch. Biochem. Pharmacol. 83, 1393–1412 (2012). 

94. Donzé, A., Clermont, G. & Langmead, C. J. Parameter synthesis in nonlinear dynamical 

systems: application to systems biology. J. Comput. Biol. 17, 325–336 (2010). 

 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 The Paradigm of G-protein Coupled Receptor Signaling
	1.2 CB2 Signaling, Endocytosis, and Trafficking
	1.3 Kinetic Modeling as a Biological Research Method
	1.4 Previous Relevant Kinetic Models
	1.4.1 Clark’s Model: Ligand-Receptor Interaction
	1.4.2 Emax Model
	1.4.3 Ternary Complex Model
	1.4.4 Two-State Ternary Complex Model
	1.4.5 Other Relevant Models


	2. METHODS AND MATERIALS
	2.1 Experimental Datasets
	2.2 ODE-Based Model for CB2 Endocytosis and Trafficking
	2.3 Solving the Constitutive Steady State Analytically
	2.4 Numerical Simulation of The System
	2.5 Parameter Estimation Based on Literatures
	2.6 Parameter Estimation Based on Optimization Algorithms
	2.6.1 Nelder-Mead Algorithm
	2.6.2 Markov chain Monte Carlo: Metropolis-Hastings Algorithm
	2.6.3 Latin Hypercube Sampling
	2.6.4 Indicators for Goodness-of-Fit


	3. RESULTS
	3.1 Parameter Estimation
	3.2 Analytical Solution for Constitutive Steady State
	3.3 Fitting of The Constitutive Data
	3.4 Simultaneous Fitting of Constitutive and Ligand Treatment Data
	3.5 Simultaneous Fitting Using Revised Model
	3.6 Summary of Data Fitting Results

	4. DISCUSSION
	4.1 Significance of the Study
	4.2 Mechanism Based Modeling of CB2 Endocytosis and Trafficking
	4.3 Effects of Ligands on CB2 Trafficking
	4.4 Limitations
	4.5 Future Prospective

	APPENDIX A. IMPLEMENTATION DETAILS FOR MCMC
	APPENDIX B. CORE CODES
	BIBLIOGRAPHY

