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ESTIMATION, MODEL SELECTION, AND RESILIENCE OF POWER-LAW

DISTRIBUTIONS

Yafei Wei, PhD

University of Pittsburgh, 2016

This thesis includes a series studies on power-law distribution, which is a widely used distribution

in vast areas such as biology, economy, social science and information science. There are three

parts in the thesis.

The first part is parameter estimation of power-law distributions. We categorize variants of

power-law distributions into six types. We proposed improvements on the estimation for some

types, either decreasing bias or standard deviation of the estimates. We also proposed methods for

some types if there is no corresponding estimation method yet.

The second part is model selection between non-truncated and truncated power-law distribu-

tions. We evaluated both criterion based methods and test based methods on the model selection,

by calculating sensitivity and specificity of each method from simulation studies. We also proved

some properties of the calculation to extend the result of the simulation study with a particular

parameter setting to more general parameter settings.

The third part is exploring resilience of the power-law degree distribution of scale-free net-

works. We explored how the degree distribution changes if the network receives attacks to lose

vertices and corresponding edges under random removal, normal curve removal and high degree

removal strategies. We derived the form of expected degree distribution, which is not power law

any more even one vertex is removed. We also conducted a simulation study by using goodness of

fit test to see the validity of power law, which shows that power law is very resilient for random

removal but fragile for high degree removal. We also conducted a simulation study to observe the

change of parameters when the goodness of fit test shows that power law is a good fit.
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1.0 INTRODUCTION

A power-law distribution is one with probability density function of the form p(x) = Cx

≠–

for x Ø “. More generally, this form may be appropriate over a bounded or truncated range

“ Ø x Æ ‹. It arises from the analysis of measurements that do not peak around a typical (mean

or median) value. In such situations, measurements often vary over an enormous range, and the

distribution has a long tail. An example is the population of towns and cities, which ranges from

only 52 to over 8 million according to the 2000 US census (Newman, 2005).

Power-law distributions are found in many research areas such as computer science, informa-

tion theory, biology, ecology, astronomy, and economics. Examples of data sets that have been

shown to be well fit by a power-law distribution within a certain range include the sizes of earth-

quakes, sizes of computer files, sizes of craters on the moon, frequency of word usage, number

of citations, number of hits on web pages, sales of music recordings, and number of species in

biological taxa. (Clauset et al., 2009)

There are many studies of power-law distributions (Newman, 2005). People have found inter-

esting mathematical properties of power-law distributions. For example, it is the only distribution

that is scale-free: p(bx) = g(b)p(x). It is a heavy-tailed distribution: the majority of top values

of x lie in a small proportion of the distribution at the top. For example, the ‘80/20 rule’ with 80

% of the total wealth in a population being in the hands of the richest 20% of the population is

a standard application of a power-law or Pareto distribution. There are also studies of statistical

inference and tests concerning the power-law distribution, parts of which will be discussed below.

Researchers have also tried to find generation mechanisms for the power-law distribution: these

mechanisms include random walks, the Yule process, critical phenomena, self-organized critical-

ity, and combinations of exponentials.

In this thesis, we deal with three statistical aspects of power-law distributions. The first part
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is on parameter estimation; the second part is on model selection between truncated and non-

truncated power-law distributions; and the third part is on the resilience of power-law degree dis-

tribution of networks. For each part, we introduce the problems, summarize previous work, and

propose our methods and solutions.
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2.0 PARAMETER ESTIMATION

2.1 INTRODUCTION

2.1.1 Density type classification

The expression p(x) = Cx

≠– for x Ø “ is the conventional form of the power-law density.

However, there are variants based on whether the power law applies in only a subinterval with

a truncation above or below or both, and whether there are other distribution types outside the

power-law region. Power-law distribution has both continuous form and discrete form too; in this

thesis we only consider estimation of the continuous case.

Different variants of the power-law distribution require different parameter estimation schemes

and methods. Below, we classify the variants of power-law distribution into six types, and then

discuss estimation for each type. For types which already have well understood methods, we list

the commonly used methods for them; for others which have unsatisfactory or no method at all,

we propose either an improved estimation method or fill in the gap.

The basic form of the power-law distribution is p(x) = Cx

≠–
, x Ø “, and is labeled as Type

1: see Figure 1. For this form, the entire range is governed by a power-law distribution. This is

the most commonly used form to fit data. For example, it is used to fit people’s annual income

(Pareto, 1964), number of papers scientists write (Coile, 1977), sizes of earthquakes (Gutenberg

and Richter, 1944), and sizes of moon craters (Neukum and Ivanov, 1994). However, sometimes

other types of power-law distribution might be more appropriate for such applications (Burroughs

and Tebbens, 2001).

In some cases, there is an upper threshold for large values, due to some natural mechanism or

observation limit. For example, the size of a forest fire cannot be infinitely large, but is bounded

3



(by, say, the size of the largest known forest) (Burroughs and Tebbens, 2001). This form is called a

power-law distribution with truncation, and we label it as Type 2: see Figure 1 and the correspond-

ing density function in (2.2). It should be noted that sometimes the term “truncated power-law

distribution” is used as the power-law distribution with exponential decay: f(x) = Cx

≠–
e

≠—x,

which is different from the truncation defined here.

In some cases, the density has other distribution types outside the power-law region. We call

that an “impure” power-law distribution. Correspondingly, densities with only power-law forms,

such as the Type 1 and Type 2 densities, are called “pure” power-law distributions. Those “im-

pure” distributions, where other distribution types appear at the head and the tail has a power-law

we call “head-impure” power-law distributions. Such examples are common, since the power law

is usually found in the tail. This can also be partly explained by certain generation mechanisms,

in which the power-law is formed asymptotically, that is for large values. Depending on whether

the power-law tail is truncated or not, there are “head-impure non-truncated” power-law distri-

butions and “head-impure truncated” power-law distributions, which we call Type 3 and Type 4

respectively, shown in Figure 1 and, with density functions given in (2.3) and (2.4).

We call a distribution Type 5 when the power-law distribution fits small values and the tail

follows a different distribution. See Figure 1, which is a “tail-impure” power-law distribution,

with density function (2.5). However we have omitted estimation for Type 5 in this thesis because

there are few applications in literature for it.

Finally, if the power-law distribution is found in an interval, with both the head and tail fol-

lowing other distributions, it is called a “head-tail-impure” power-law distribution and labeled as

Type 6: see Figure 1, and its density function in (2.6). Such examples can be found in studies of

insurance policies (Beirlant et al., 2015). It should be noted that truncation is different from “tail-

impure”. Truncation is for cases where there is no other value greater than the upper boundary,

while tail-impure means there are still larger values following other distributions.

We summarize these six types in Table 1.

4



pure head-impure tail-impure head-tail impure

non-truncated Type 1 Type 3
Type 5

ú Type 6

ú

truncated Type 2 Type 4

Table 1: Density Types. Type 1 is “pure non-truncated”, Type 2 is “pure truncated”, Type 3 is

“head-impure non-truncated”, Type 4 is “head-impure truncated”, Type 5 is “tail-impure”, and

Type 6 is “head-tail impure”.
úTruncation is only for pure tail, therefore Types 5 and 6 are not referred as truncated or not.

Figure 1: Power-law density variants. The solid curves are power-law parts. The dashed curves (for

Type 6 both the dashed curve and the red curve) are not power-law distribution. Vertical dashed

lines indicate the borderlines of the power-law part.
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The densities for the six types have the following forms:

Type 1: f(x) = Cx

≠–
, x Ø “ (2.1)

Type 2: f(x) = Cx

≠–
, “ Æ x Æ ‹ (2.2)

Type 3:

Y
_]

_[

g(x), x Æ “

f(x) = Cx

≠–
, x Ø “

(2.3)

Type 4:

Y
_]

_[

g(x), x Æ “

f(x) = Cx

≠–
, “ Æ x Æ ‹

(2.4)

Type 5:

Y
_]

_[

f(x) = Cx

≠–
, “ Æ x Æ ‹

g(x), x Ø ‹

(2.5)

Type 6:

Y
_____]

_____[

g

1

(x), x Æ “

f(x) = Cx

≠–
, “ Æ x Æ ‹

g

2

(x), x Ø ‹

(2.6)

2.1.2 Parameter estimation

Parameter estimation methods are needed for each type of power-law distribution. We only con-

sider the estimation of the power-law part in this thesis, that is, we do not estimate parameters of

other distributions outside the power-law region in “impure” cases. In general, parameters that are

estimated are boundary parameters “ and ‹, and the exponent – (see Eq 2.1 - Eq 2.6).

Typically the distribution parameters will be used in calculating some quantities arising from

real problems. For example, if a disease is spreading over a network whose degree distribution

follows a power-law distribution, then the speed of its spread is determined by the second moment

of the degree distribution (Newman, 2002). The estimation of boundary parameters will affect the

estimation of the exponent, which is critical in such calculations. Also, in some cases, the precision

of boundary parameters is important in itself. Therefore, we aim to estimate both parameters

precisely.

In this thesis, we summarize existing methods for some density types; and propose new meth-

ods for other density types if the existing methods are either not satisfactory, or have not yet been

developed. Specifically,

6



1. For Types 1 and 2, we summarize existing methods.

2. For Types 3, 4, and 6, we not only summarize existing methods, but also propose new methods

for improvement.

2.2 PREVIOUS WORK

In this section we describe the details of existing estimation methods for each density type.

2.2.1 Type 1

For Type 1, there are two parameters: the lower bound “ and exponent –. Here we introduce

the least squares estimate (LSE), a method of moments estimate (MOM), the maximum likelihood

estimate (MLE), and quantile estimate (QE). There are other estimates for Type 1 too, but because

they are not much used, we omit them: for example, see (Quandt, 1966), which proposes an

estimate derived from a type of goodness of fit test.

LSE: The least squares estimate uses a simple power-law property: the log-log plot of the sur-

vival function of the power-law distribution should be a straight line, as seen in Figure 2. Specifi-

cally, we have

p(x) =

– ≠ 1

1 ≠ “

–
x

≠– and S(x) = P (X Ø x) =

1

1 ≠ “

–
x

1≠–
(x Ø “),

so that

ln(S(x)) = ≠ ln(1 ≠ “

–
) + (1 ≠ –) ln(x);

least squares can be used to obtain estimates of “ and – in this linear relationship.

MLE: We start with the likelihood and solve the likelihood equations:

L(–, “|X) =

nŸ

i=1

f(xi) = (

– ≠ 1

“

1≠–
)

n
nŸ

i=1

x

≠–
i ;

ˆ ln L(–, “|X)

ˆ–

= n[ln(– ≠ 1) ≠ (1 ≠ –) ln “] ≠ –

nÿ

i=1

ln xi;

7



Figure 2: Example of a power-law distribution. The figure shows plots from a network with power-

law degree distribution, which includes the histogram of degrees, the empirical pdf of degrees on

a log-log scale and the empirical survival density of degrees on a log-log scale.

so that

–̂mle = 1 +

n

qn
i=1

ln

xi
“

and “̂mle = X

(1)

.

MOM: We use first moment of an observation and from the first order statistic of a sample

from this distribution. If – > 2, the mean of power-law distribution exists. Thus, we have

E(X) =

– ≠ 1

– ≠ 2

“ and E(X

(1)

) =

n(– ≠ 1)“

n(– ≠ 1) ≠ 1

,

so that the MOM estimators are

–̂MOM = 1 +

nX ≠ X

(1)

n(X ≠ X

(1)

)

and “̂MOM = X

(1)

C

1 ≠
X ≠ X

(1)

nX ≠ X

(1)

D

.

QE: Choose two probability levels P

1

and P

2

, and determine two quantiles x

1

and x

2

, that is,

P (X Æ x

1

) = P

1

, and P (X Æ x

2

) = P

2

, then

P

1

= 1 ≠
A

x

1

“

B
1≠–

and P

2

= 1 ≠
A

x

2

“

B
1≠–

,

so that

–̂QE = 1 ≠
log

1≠P1
1≠P2

log

x1
x2

;

substituting –̂qtl to one of the above yields “̂QE .

(Quandt, 1966) has shown that all estimates above are consistent. He has conducted simula-

tions to compare their performance. No great differences were found between the four methods,

8



although the MLE and QE (with the 1st quantile) performed best. Comparisons of the mean

squared error (MSE) using simulations showed that MLE performs better (Goldstein et al., 2004),

(Bauke, 2007), (White et al., 2008).

2.2.2 Type 2

The density function has the form

f(x) = Cx

≠–
, “ Æ x Æ ‹.

For Type 2, there are several methods in the literature: binning (Apellániz and Úbeda, 2005), CDF

(Koen, 2006), minimum variance unbiased estimate (UMVUE) (Beg, 1983), MLE (Aban et al.,

2006), improved Hill estimator (same as MLE) (Nuyts, 2010), and bias-free estimators based on

the MLE (Maschberger and Kroupa, 2009). Here we describe the MLE, which is most often used.

Our methods below are based on it.

MLE: The value of the normalizing constant is

C =

– ≠ 1

“

1≠– ≠ ‹

1≠–
.

Thus, the likelihood function is:

L(–, “|X) =

nŸ

i=1

f(xi) = (

– ≠ 1

“

1≠– ≠ ‹

1≠–
)

n
nŸ

i=1

x

≠–
i I(“ < X

(1)

< X

(n)

< ‹).

The partial derivative with respect to – is

ˆ ln L(–, “, ‹|X)

ˆ–

=

n

– ≠ 1

+ n

“

1≠–
ln “ ≠ ‹

1≠–
ln ‹

“

1≠– ≠ ‹

1≠–
≠

nÿ

i=1

ln xi

=

n

– ≠ 1

+ n

ln

‹
“

(

‹
“ )

1≠– ≠ 1

≠
nÿ

i=1

ln

xi

“

. (2.7)

The MLE estimates of the boundaries are

“̂mle = X

(1)

and ‹̂mle = X

(n)

;

substituting “̂mle and ‹̂mle into (2.7) yields –̂mle using a one-dimensional search. (Aban et al.,

2006) has proved consistency and asymptotic normality of MLE of –.
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2.2.3 Type 3

The density function is: Y
_]

_[

g(x), x Æ “

f(x) = Cx

≠–
, x Ø “

If “ is known, Type 3 is similar to Type 1, but easier because there is only one unknown parameter –

to estimate. We can immediately get the MLE, a moment estimate, the LSE, and quantile estimate

by reference of the formulas in Type 1. Hill’s estimator (1975) is equivalent to the MLE when

“ is known. In certain application areas other methods have been proposed; for example, in the

finance and insurance industries, robust estimate and shrinkage estimate have been proposed by

(Brazauskas and Serfling, 2003), (Singh et al., 2007). Hill’s estimator is based on order statistics:

suppose that X

(1)

Ø X

(2)

Ø ... Ø X

(k)

... Ø X

(n)

, and it is known that X(k) Ø “, then

–̂Hill =

1

k

kÿ

i=1

(ln X

(1)

≠ ln X

(k)

)

If “ is unknown, it is necessary to first estimate “, and then estimate – with that estimate. One

way to detect “ manually is to try many values of “ to estimate –, and to choose the value of “ for

which the estimate of – becomes stable. Two shortcomings of this process are that it is laborious

and not precise (White et al., 2008). (Clauset et al., 2009) proposed the following approach to

estimate “ automatically. For each given “, fit the data above that “ by a power-law density and

use MLE to estimate – for that part of data; then calculate the goodness of fit test statistic KS by

using Kolmogorov-Smirnov (KS) test for that part of data; choose the value of “ which yields the

smallest KS statistic.

In our work below, we find that, in some cases the bias and standard deviation of the Clauset

method are not small. We attempt to decrease both the bias and standard deviation.

2.2.4 Type 4

Density function is: Y
_]

_[

g(x), x Æ “

f(x) = Cx

≠–
, “ Æ x Æ ‹
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If “ is known, Type 4 is similar to Type 2, but easier because there are only two unknown

parameters – and ‹. Both the MLE and UMVUE are available here (Beg, 1983).

If “ is unknown, we need to search for the appropriate “ first. Just as for Type 3, (Aban et al.,

2006) has proposed the examination of different values of “ to choose the one for which the MLE

of – becomes stable. However, there is no work on an automatic search of “ yet. In this thesis, we

adapt the automatic search of “ in Type 3 to this framework.

2.2.5 Type 6

The density function is: Y
_____]

_____[

g

1

(x), x Æ “

f(x) = Cx

≠–
, “ Æ x Æ ‹

g

2

(x), x Ø ‹

For this type, both endpoints must be estimated. (Deluca and Corral, 2013) and (Peters et al.,

2010) have proposed a method for searching “ and ‹ by modifying Clauset method. Instead of

searching one boundary parameter “ in Clauset method, they proposed to search two parameters “

and ‹ together. For each potential pair of the parameters, calculate the p-value of the KS test for

the data bracketed by this pair of ends. They select parameter pairs whose p-values are beyond a

threshold, and choose the parameter pair whose interval is longest. They applied their method to

real data without assessing its performance using simulation studies. Here we conduct a simulation

study to study its performance. We also present methods for comparison.

2.3 OUR PROPOSAL FOR TYPES 3, 4, AND 6

2.3.1 Type 3

2.3.1.1 Examination of Clauset method We examine the performance of Clauset’s method

(Clauset et al., 2009) for comparatively small data sets using simulations. We explored more

parameter combinations of n, “, and – than they did. In (Clauset et al., 2009), the simulation

sample size was 50,000; however, in many applications of the power-law distribution tails, data

11



are not that rich. For example, the power-law distribution has been applied to the analysis of large

US weather losses between 1980 to 2011, which has only 36 data points: (Clark, 2013). In this

thesis, we used sample sizes of 100, 500 and 1000 in simulations. In the simulation of Clauset

paper, – = 2.5. In this thesis we tried other values: 1.5, 2, 2.5, and 3, where – = 2 is the boundary

determining whether the mean of the power-law distribution exists or not.

We only used “ = 15 in this thesis because we prove in Lemma 1 below that for the power-

law distribution from which data is simulated, result of one value of “ is enough to infer results

of all of values. We simulated data sets with the form (2.8) that is used in (Clauset et al., 2009).

This distribution has the features that it has continuous derivatives at “, making estimation more

challenging; furthermore, it will guarantee the effectiveness of an estimation method if it performs

well in simulations. There is another important property of this distribution, which is proved in

Lemma 1: after data is multiplied by a constant, the new data will still follow this distribution, with

the same –, and with “ multiplied by the same constant. By this property, in Lemma 1 it proves

that if n and – fixed, the bias and standard deviation of estimates of – (denoted as –̂) will be the

same for different “ values; the bias and standard deviation of estimates of “ (denoted as “̂) will

be proportional to the value of “. It follows that only one value of “ is enough in this simulation.

To illustrate this, suppose n and – are fixed, we compare estimates for “ = 15 and “ = 150. Using

Clauset method for estimation, bias and standard deviation of –̂ are same for “ = 15 and “ = 150;

bias and standard deviation of “̂ for “ = 150 is 10 times of those for “ = 150.

p(x) =

Y
_]

_[

C(x/“)

≠–
, for x Ø “

Ce

≠–(x/“≠1)

, for x < “

(2.8)

Lemma 1 is valid not only for the Clauset method, but also for methods that were introduced later,

such as the jackknife, Hall’s bootstrap, Danielsson, KS+rank, and Hall+Clauset. The extensions

can be proved the same way.

Lemma 1: Suppose X follows power-law distribution in the form Eq 2.8, with parameters –X

and “X ; Y follows power-law distribution in the form Eq 2.8 too, with –Y = –X , and “Y =

m“X , where m is a positive constant. Denote bias as b and variance as S. Then if using Clauset

method to do estimation for “ and –, we have: b(–̂X) = b(–̂Y ), S(–̂X) = S(–̂Y ), b(“̂Y ) =

mb(“̂X), S(“̂Y ) = m

2

S(“̂X).

12



Proof : Using Clauset method, “̂X = argmin

“
KS(X Ø “) = argmin

“
max
xØ“

| ˆ

P (x) ≠ P (x)|, where

KS is the Kolmogorov-Smirnov test statistic, ˆ

P (X) is the empirical survival function of the part

of data which is greater than “, and P (X) is the theoretical power-law survival function for the

same part of data. Similarly, “̂Y = argmin

“
KS(Y Ø “) = argmin

“
max
yØ“

| ˆ

P (y) ≠ P (y)|.

For m > 0, the density of mX is

p(x) =

Y
_]

_[

C(x/m“)

≠–
, for x Ø m“

p(x) = Ce

≠–(x/m“≠1)

, for x < m“,

(2.9)

so that Y and mX have the same distribution. We can suppose there exists a one-to-one mapping

from the sample space of X to the sample space of Y : for any given sample x

1

, x

2

, ...xn from X ,

there exists a sample from Y which is y

1

= mx

1

, y

2

= mx

2

, ..., yn = mxn, and vice versa for any

given sample from Y .

Consider any sample {x

1

, x

2

, ..., xn}, and corresponding mapped sample {y

1

, y

2

, ..., yn}. For

any given value xı œ {x

1

, x

2

, ..., xn}, the mapped value of {y

1

, y

2

, ..., yn } is yı = mxı. ˆ

P (yı) =

ˆ

P (xı), since the value of empirical survival function is the percentage of data greater than the

lower bound, and these two samples are proportional, with proportional lower bounds for power-

law distribution too. P (yı) =

s Œ
yı

pY (t) dt =

s Œ
mxı

1

mpX(

t
m) dt =

s Œ
xı

pX(t) dt = P (xı). Therefore

“̂Y = argmin

“
max
yØ“

| ˆ

P (y) ≠ P (y)| = argmin

“
max
mxØ“

| ˆ

P (x) ≠ P (x)| = argmin

“
max
xØ “

m

| ˆ

P (x) ≠ P (x)| =

m“̂X . –̂Y = 1 +

nq
i

log yi≠n log y(1)
= 1 +

nq
i

log mxi≠n log mx(1)
= 1 +

nq
i

log xi≠n log x(1)
= –̂X . Since

these relationships hold for any sample from X , it follows that

b(–̂Y ) = E(–̂Y ≠ –Y ) = E(–̂X ≠ –X) = b(–̂X)

S(–̂Y ) = E(–̂Y )

2 ≠ 2E(–̂Y )–Y + (–Y )

2

= E(–̂X)

2 ≠ 2E(–̂X)–X + (–X)

2

= S(–̂X)

b(“̂Y ) = E(“̂Y ≠ “Y ) = E(m“̂X ≠ m“X) = mb(“̂X)

S(“̂Y ) = E(“̂Y )

2 ≠ 2E(“̂Y )“Y + (“Y )

2

= m

2

E(“̂X)

2 ≠ 2m

2

E(“̂X)“X + m

2

(“X)

2

= m

2

S(“̂X).

Clauset’s method is based on the assumption that if the candidate “ is bigger than the true “,

the calculated candidate KS will be bigger than KS calculated from true “ because of the worse

power-law fitting due to the lack of data; if the candidate “ is smaller than the true “, then the

calculated KS will also be greater than the true KS because of the worse fitting due to adding

13



impure data from distributions other than the power-law distribution. Therefore, during searching

of “, say searching from the largest to smallest value (though any search direction in principle

reaches the same result), Clauset et al. expect KS to decrease first to hit the lowest point when true

“ is searched, and then increase again when involving more impure data.

However, this basic assumption is not correct. There are two competing factors when including

more impure data (i.e., candidate “ smaller than true “ to include data from other distributions):

one is increasing the amount of data which decreases KS, and the other is making the power-law

fit worse which increases KS. Therefore, when searching “ from large to small, after hitting true “

and searchomg for smaller “, encompassing more impure data may cause KS to keep decreasing,

because the increase of KS due to the impurity of data cannot overcome the decrease of KS due to

the larger data amount. Therefore, it is likely that Clauset method produces an estimate of “ that

is biased low.

We examined Clauset estimation with the results shown in Table 2.

The lower bias of the estimate of “ (denoted as “̂C) is apparent, except when n = 1000 and

– = 1.5, however in that case the standard deviation is big to make the marginally higher biased

“ untrustworthy. It is concerning that for n = 1000 and – = 2, the bias of “̂C is nearly one third

of its true values. As we proved in Lemma 1, this bias proportion applies to all values of “. If

“ = 1500, bias will be around 500. Therefore, correcting the bias of the estimate of “ is necessary.

The bias and standard deviation of –̂C increase as n becomes small and – becomes large,

which is reasonable, because smaller n or larger – both make the amount of data in the power-

law tail smaller. The bias of “̂C changes in the same way, while its standard deviation of moves

in the opposite direction. It is possibly because when power-law tail part is small, the search

for “ will include values much smaller than the true “, and searched results scatter within the

“impure” region, which is comparatively stable; when the power-law tail part is large, “ will be

searched closer to true “, therefore combating factors mentioned above (increasing data amount

and including more impure data) makes searched results jump in and out of the “impure” region,

causing a large standard deviation of “̂C . The high standard deviation of “, for example when

– = 1.5 is also a concern.

Thus, we aim to decrease bias of “̂C especially when – is small, and decrease standard devi-

ation especially when – is large. In fact, among the methods below, correcting bias or decreasing

14



n = 100 – = 1.5 time – = 2 time – = 2.5 time – = 3 time

Clauset
1.506±0.098 1.994 ± 0.233 2.445± 0.437 2.789±0.614

13.757 ± 22.953 1s 7.800± 4.253 1s 6.879±3.070 1s 6.124± 2.510 1s

Jackknife
1.509±0.083 2.002±0.203 2.439±0.364 2.784±0.523

14.820±20.489 7.955±4.392 6.833±2.671 6.095±2.153

Danielsson
2.649±9.992 5.974±23.670 8.851 ±35.640 11.882±47.520

237.764±846.895 4min1s 31.506±44.241 4min7s 18.331±12.787 4min8s 15.616±6.709 4min7s

KS+rank
1.487±0.070 1.927±0.192 2.257±0.320 2.507± 0.425

7.565 ±8.151 11s 6.039±2.791 13s 5.198±1.928 13s 4.710±1.743 13s

Clauset+Hall
1.623 ±1.130 2.253±2.266 2.848±3.414 3.385±4.568

54.629±398.051 2min39s 11.924 ±13.081 2min4s 9.752 ±5.260 1min41s 8.753±3.502 1min32s

n = 500 – = 1.5 time – = 2 time – = 2.5 time – = 3

Clauset
1.498±0.036 1.990±0.086 2.467±0.161 2.882±0.252

12.404 ±15.109 5s 9.904±4.450 5s 9.592±2.958 6s 8.462±2.2292 5s

Jackknife
1.498±0.035 1.990 ± 0.085 2.466±0.159 2.882±0.250

12.711±14.248 9.984±4.337 9.548 ±2.811 8.482±2.180

Danielsson
1.492±0.051 2.049 ± 0.605 2.563±0.915 3.833±7.323

12.312±8.435 1hr12min 17.182 ±39.966 1hr13min 17.469±10.317 1hr12min 16.672±7.738 1hr12min

KS+rank
1.495±0.032 1.968±0.073 2.411 ±0.142 103s 2.787±0.242

8.524±3.313 1min44s 8.220± 2.089 1min43s 7.990±1.780 1min43s 7.239 ±1.607 1min43s

Clauset+Hall
1.503±0.032 1.996±0.082 2.477 ±0.154 2.912± 0.246

13.800±8.259 17min19s 12.023±3.257 10min15s 11.668±2.515 6min29s 10.527±2.085 5min13s

n = 1000 – = 1.5 time – = 2 time – = 2.5 time – = 3

Clauset
1.501±0.025 1.994 ±0.058 2.469 ±0.104 2.933± 0.180

16.203±18.791 14s 10.750±3.970 14s 10.097±2.772, 15s 9.489± 2.195 14s

Jackknife
1.498±0.028 1.986±0.070 2.466±0.123 2.937±0.211

15.420±16.634 11.176±7.424 10.146±3.052 9.650±2.228

Danielsson
1.681±1.306 2.523±2.960 3.061±3.919 4.398±6.480

4147.061±23986.95 4hr50min 58.744 ±210.826 4hr52min 19.556±22.515 4hr53min 19.541±13.704 4hr50min

KS+rank
1.497±0.022 1.985±0.058 2.441 ±0.103 2.848±0.161

9.619±4.526 4min52s 9.337 ±2.283 4min50s 8.780±1.600 4min37s 8.132±1.444 4min37s

Clauset+Hall
1.502±0.022 2.000±0.060 2.489±0.100 2.960±0.181

15.203±6.309 38min5s 13.359±3.0780 21min34s 12.675±1.965 13min22s 11.916±2.157 8min55s

Table 2: Various methods for Type 3. True “ = 15 for all situations. For each parameter combina-

tion, 100 data sets are simulated for estimation. For each method, top line is an estimate of –, and

bottom line is an estimate of “ and computation time.
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standard deviation usually will apply for all –, not specifically for some values of –. While some

methods can decrease both bias and standard deviation, some methods can decrease one and in-

crease the other in compensation (a form of bias-variance tradeoff).

2.3.1.2 Possible solutions We list below several methods to correct bias and decrease standard

deviation of “̂C . We also examined the estimation on –̂C too without treating it as our main concern,

partly because –̂C is comparatively similar across methods.

• We tried the jackknife correct for bias, because it is classical bias correction method.

• We adapted bootstrap method proposed by Hall (Hall, 1990) to estimate “ here. It has been

proved that such estimate of “ (denoted as “̂H) makes estimate of – (denoted as –̂H) achieve

asymptotic minimized MSE. We tried this method by considering that “̂H which yields a good

estimate of –̂H should be a good estimate for “ itself too.

• We adapted the Danielsson method here (Danielsson et al., 2001). It automatically selects a

subsample which is a prerequisite parameter for Hall’s method.

• We proposed a new method with the name KS+rank, which uses the spirit of bootstrap but

does not require prerequisite subsample size.

• We also proposed a new method with the name Hall+Clauset by combining the Clauset and

Hall methods. This method was based on our careful examination of our simulation results.

2.3.1.3 Jackknife The jackknife leaves one data point out and uses Clauset estimation for the

remaining data for each time, then the averages of all these estimates to get the final estimate. Table

2 shows that both bias and standard deviation of both “̂C and –̂C are improved by the jackknife;

however, the improvement seems trivial, and it takes nearly n times longer of computation than

Clauset method. It is known that jackknife is useful to correct the bias of estimator if the estimator

is smooth; however, “ is not a smooth estimator (it is a boundary point), which is likely the reason

why the jackknife is not very effective here.

2.3.1.4 Hall method Hall (Hall, 1990) proposed the use of the bootstrap to estimate MSE;

based on it he proposed a parameter estimation method when the purpose of estimation is to min-

imize the MSE. Unlike searching values of “ in Clauset’s method, it searches for which order
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statistic can be treated as “. With such estimated order k it uses the Hill estimator (Hill et al.,

1975) to estimate – for the power-law distribution part. This method reaches the asymptotic min-

imized MSE of estimate of – (–̂H). Hall’s method is applicable for more generalized types of

distributions: 1 ≠ F (x) ≥ Cx

≠– with C, – > 0. There are no simulations, for power-law or other

distributions in his paper. Also, it is not known that whether “̂H , at least for power-law distribu-

tions, will be satisfactory too. Therefore, we explored Hall’s estimation for power-law distribution

by the simulation.

The procedure consists of the following steps:

• Step 1: Suppose data set is x

1

, x

2

, ..., xn. Set subsample size n

1

.

• Step 2: Search all possible values of k

1

(k
1

= 2, 3, ..., n

1

). k

1

is a rank such that largest k

1

data

in subsample is considered to follow power-law distribution. For each k

1

, use Hall’s formula

to calculate the MSE of the estimate of – of the subsample.

• Step 3: Choose k

1

whose MSE of the estimate of – of the subsample is minimized. Finally, set

k = k

1

(

n1
n )

2
3 (he gives a theoretical justification for the exponent 2/3); k is the rank such that

largest k data of the original data set is considered to follow power-law distribution. Therefore,

given x

(n)

Æx

(n≠1)

Æ ... Æ x

1

, x

(k)

is an estimate for “.

• However, the formula provided to calculate MSE in Step 2 did not yield reasonable results in

our simulations; therefore, we used simulated subsamples to calculate the estimated MSE to

replace the theoretical MSE in step 2. So our procedure is:

• Step 1: Suppose data set is x

1

, x

2

, ..., xn. Set subsample size n

1

and number of subsamples m.

Simulate m subsamples.

• Step 2: Search all possible values of rank k

1

(k
1

= 2, 3, ..., n

1

). For any given value of k

1

, for

each subsample, treat the largest k

1

data in the subsample as power-law distribution and use

maximum likelihood to get –̂k1,i, i = 1, 2, ..., m. Also, use k = k

1

(

n1
n )

2
3 to determine the rank

in the original data, and get –̂k. Estimate the MSE thus:

ˆ

MSEk1 =

ı̂ıÙ
mÿ

i=1

(–̂k1,i ≠ –̂k)

2

/(m ≠ 1).

• Step 3: Choose k

1

which minimizes ˆ

MSEk1 . Finally, k = k

1

(

n1
n )

2
3 . Therefore, given

x

(n)

Æx

(n≠1)

Æ ... Æ x

(1)

, x

(k)

is “̂H .
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Table 3 shows that different choices of n

1

make a difference in both “̂H and –̂H . When n

1

is chosen appropriately, Hall’s method clearly outperforms Clauset’s method, for both bias and

standard deviation, and for both – and “. However if n

1

is not chosen well, performance of Hall’s

method can be worse than Clauset’s. From our simulation study, we found that when n

1

/n is

chosen around to be the true proportion of power-law tail, Hall estimation performs comparatively

best. This rule of thumb appears to be new; we have not seen it in the literature.

When doing a simulation study, it is necessary to decide how many subsamples are needed

for calculating the estimated MSE. Table 4 shows that the number of subsamples does not affect

the result too much. Therefore we just chose 200 to be the number of subsamples. Using 200

subsamples means that computation time of Hall’s method can be controlled at less than 200 times

of that of Clauset’s method, because length of each subsample is no larger than the original data

size.

2.3.1.5 Danielsson method Danielsson (Danielsson et al., 2001) proposed a two-step bootstrap

method for determining fraction of the power-law distribution tail part (as in Hall’s method, the

aim is to determine which order statistic will be “̂H). It is an improvement on Hall’s method in that

it does not require the important tuning parameter n

1

. It automatically searches n

1

by having even

smaller subsamples with size n

2

.

The steps for Danielsson’s method are the following.

• Step 1: Suppose data set is x

1

, x

2

, ..., xn.

• Step 2: For each n

1

(n

1

= 2, 3, ..., n), calculate asymptotic MSE at each k

1

by using simulated

subsample as in Hall’s method. Here k

1

has the same meaning as in Hall’s method - the largest

k

1

data of the subsample is considered to follow power-law distribution. Find k

1,0 for n

1

which

minimizes this bootstrap AMSE.

• Step 2: Repeat Step 1 for an even smaller subsample size n

2

= (n

1

)

2

/n, and get k

2,0 for n

2

the

same way.

• Step 3: Choose n

1

which minimizes (Q(n1,k1,0))

2

Q(n2,k2,0)

, where Q is asymptotic MSE. Note that a grid

search for n

1

is suggested rather than a search for all values of n

1

, which will take a lot of time.
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n = 100 – = 1.5 time – = 2 time – = 2.5 time – = 3 time

Clauset
1.51±0.10 1.99 ± 0.23 2.44± 0.44 2.79±0.61

13.76 ± 22.95 1s 7.80± 4.25 1s 6.88±3.07 1s 6.12± 2.51 1s

0.1n
1.53±0.11 2.10±0.28 2.65 ± 0.46 3.27±1.09

52.09 ±39.79 11s 20.32 ±7.35 12s 14.41 ±3.65 12s 11.91 ± 2.63 11s

0.2n
1.52±0.08 2.06± 0.24 2.57±0.47 3.14±1.47

31.73± 22.52 25s 15.17±5.67 25s 11.44 ±3.09 25s 9.80±2.88 24s

0.5n
1.51±0.07 2.23±2.26 2.41±0.39 3.38±4.87
13.75±6.88 1min9s 11.06±12.37 1min7s 8.05±2.87 1min8s 7.39±3.22 1min10s

0.46, 0.24 1.51±0.07 2.05±0.26 2.62± 0.52 3.42±1.16
0.13, 0.07 15.27± 7.56 1min3s 13.81±6.40 30s 13.41±3.78 15s 13.37± 3.51 7s
n = 500 – = 1.5 time – = 2 time – = 2.5 time – = 3 time

Clauset
1.50±0.04 1.99±0.09 2.47±0.16 2.88±0.25

12.40±15.11 5s 9.90±4.45 5s 9.59±2.96 6s 8.46±2.23 5s

0.1n
1.50± 0.04 2.01 ± 0.09 2.50±0.16 2.94±0.23

41.24±22.99 1min8s 18.49 ± 3.53 1min10s 14.40 ± 2.36 1min7s 12.12 ± 1.93 1min7s

0.2n
1.50±0.03 2.00 ±0.08 2.4953505 ± 0.16 2.93± 0.24
25.98±8.31 2min30s 14.64±2.98 2min30s 12.48±2.21 2min25s 10.83±1.72 2min25s

0.5n
1.50±0.03 1.98 ± 0.07 2.40±0.15 2.77±0.23

14.28 ±3.97 7min25s 10.47±2.32 7min19s 8.79±1.91 7min19s 8.01±1.61 7min22s
0.46, 0.24 1.50± 0.03 2.00 ± 0.08 2.49± 0.16 2.96 ±0.24
0.13, 0.07 15.01±3.50 6min43s 14.06±3.15 2min58s 13.62±2.43 1min29s 12.92±1.73 46s
n = 1000 – = 1.5 time – = 2 time – = 2.5 time – = 3

Clauset
1.50±0.02 1.99 ±0.06 2.47 ±0.10 2.93± 0.18

16.20±18.79 14s 10.75±3.97 14s 10.10±2.77 15s 9.49± 2.20 14s

0.1n
1.50±0.03 2.01±0.06 2.49 ±0.10 2.97±0.18

41.10±11.35 2min28s 19.45±3.66 2min27s 14.70±2.02 2min52s 12.98± 2.03 2min33s

0.2n
1.50±0.03 2.00 ±0.06 2.49±0.10 2.95±0.17

26.54 ± 7.98 5min35s 15.71±2.79 5min35s 13.08 ±1.67 6min18s 11.53±1.77 5min32s

0.5n
1.50±0.02 1.99±0.06 2.4±0.11 2.84±0.17
15.03±3.55 19min24s 11.31±2.00 19min20s 9.76 ± 1.53 21min6s 8.94± 1.39 19min21s

0.46, 0.24 1.50±0.02 2.00±0.06 2.49±0.10 2.97± 0.17
0.13, 0.07 15.99 ±3.63 17min9s 14.75±2.45 7min36s 14.06±1.87 3min29s 13.72±1.70 1min43s

Table 3: Hall method vs. Clauset method. Number of subsamples is 200. To try different values

of n

1

, n

1

/n is chosen to be some proportion of original size: 0.1, 0.2 and 0.5. Also, n

1

/n should

be the proportion of power-law tail in whole data, which is known in simulation study but not

known for applications. When – = 1.5, 2, 2.5, 3, the corresponding proportions of power-law tail

are 0.46, 0.24, 0.13, 0.07, respectively.
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n

1

= 100 – “

resample = 100. 80s 2.52±0.14 15.06±3.02

resample = 200. 153s 2.51 ±0.14 15.33±2.57

resample = 300. 230s 2.51± 0.13 15.27 ±2.51

resample = 400. 295s 2.51±0.14 15.12±2.40

resample = 500. 373s 2.51±0.14 15.15±2.71

resample = 600. 455s 2.51±0.13 15.19±2.48

resample = 700. 524s 2.51± 0.14 15.27±2.60

resample = 800. 592s 2.51±0.13 15.06±2.60

resample = 900. 657s 2.51±0.13 15.25±2.48

Table 4: Different number of subsamples in Hall method. When – = 2.5, n = 1000, and n

1

=

100, an illustration which shows that the number of resamples does not make much difference for

estimation.
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• Use the formula provided in the Danielsson paper to calculate k:

k =

k

2

1

k

2

A
(log k

1

)

2

(2 log n

1

≠ log k

1

)

2

B
(log n1≠log k1)/ log n1

Table 2 shows that Danielsson method takes much more time than Clauset method while pro-

viding no improvement for either bias or standard deviation. Therefore, even though Danielsson

can achieve asymptotically minimized MSE, it does not perform well in smaller data size.

2.3.1.6 KS+rank The potential advantage of Danielsson method is that it avoids selection of

the tuning parameter n

1

by examining all values of it automatically. However, this method turns

out to give disappointing results despite much longer computation time. We therefor would like to

find other methods to automatically select n

1

. We propose two methods in this thesis: one we call

KS+rank, and the other Clauset+Hall. Both combine ideas of the Clauset and Hall methods. We

first introduce the KS+rank method.

The difference between Clauset method and Hall method is that the former searches values of

“ directly and uses goodness of fit KS statistic as the standard of searching, while the latter method

searches for rank of order statistic from where power-law tail starts, and uses the MSE standard

instead. For estimating the MSE, the Hall method requires a subsample with a different size from

original size; otherwise the bias part is usually estimated as 0 (Hall, 1990). If we do not use MSE as

the standard, then estimated bias is not necessary, and we need not choose a subsample size smaller

than original data size. Therefore, we keep Hall’s idea of searching the rank and using bootstrap

subsamples, but change the standard from MSE to KS statistic; then we can use subsample size

same as original data size (which we call resamples rather than subsamples).

The procedure of KS+rank method is:

• Step 1: Suppose data set is x

1

, x

2

, ..., xn. Determine then number of resamples, m. Simulate

m resamples from given data set, each with size n.

• Step 2: Search all possible k, k = 2, 3, ..., n. For each k, and for each resample, treat the

largest k values of the resample as coming from a power-law distribution. Use the MLE –

and compute KSi(i = 1, 2, ..., m) for power-law tail part of each resample. Then compute the

mean of KSi across these resamples, denoted as KS

k.

• Step3: Choose k which minimizes KS

k.
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In Step 1, we must determine number of resamples in the simulation. We tried several values,

and (as with many bootstrap experiments) found that this number does not affect results much.

Therefore in applications we can choose only m = 10 to make the process faster, which means

the computation time of KS+rank is around 10 times of that of Clauset method (though in fact

sometimes it takes 20 times of time for some extra time spent on calculations on the resamples).

Table 2 indicates that KS+rank can decrease standard deviation well for both “̂K+r and –̂K+r,

however it will have larger bias for both of them too.

2.3.1.7 Clauset+Hall Another method to determine n

1

for Hall’s method is based on the prop-

erty we discovered from the previously mentioned simulation of Hall method: the best n

1

/n is

approximates the true proportion in the power-law tail. Although the true power-law proportion

is not known without knowing “, it could start iterations from an estimated “ to get an initial n

1

,

and use newly a estimated “ to estimate a new n

1

, and iterate. In this thesis, considering compu-

tation time and unproved convergence of iterations, we iterate just once. We name this method as

Clauset+Hall, because we used Clauset’s method first to quickly get an estimate of “, and used this

estimated n

1

for Hall’s method to get “̂C+H and –̂C+H .

Table 2 indicates that Clauset+Hall can obtain nontrivial improvement for both bias and stan-

dard deviation for both “̂C and –̂C when n = 500 and 1000, with longer time consumption over

Clauset. However, for n = 100, it performs less well than the Clauset’s method. Though in Table

3 the result for n = 100 of Hall’s method is still comparable with that of the Clauset’s method, we

need to remember that Clauset+Hall is based on “̂C from Clauset’s method, which means that large

bias and standard deviation of “̂C from Clauset’s method will cause a large departure and variation

in n

1

in Clauset+Hall leading to a large bias and standard deviation. When n = 100, estimates of

Clauset’s method have large bias and standard deviation, and therefore Clauset+Hall cannot have

satisfactory results either.

2.3.1.8 Conclusions

• Clauset’s method has comparatively large bias and standard deviation of estimates for some

parameter settings. We proved that bias and standard deviation of “̂C will be proportional to

the size of “.
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• The Jackknife decreases bias and standard deviation for both parameters, however the improve-

ment is marginal, and it takes much more computational time.

• Hall’s method, which can achieve minimized asymptotic MSE of –̂H theoretically, is better

estimation than Clauset in both bias and standard deviation of both “̂ and –̂, if n

1

chosen

appropriately. We observed that the best n

1

should be approximately the true amount of data

in the power-law tail.

• Danielsson’s method requires a much larger amount of time; despite that, its standard deviation

is too large and very unstable, and performance of bias is also unstable.

• KS+rank has a smaller standard deviation but larger bias. It does not require n

1

, and it is

resistant to various choices of the number of resamples. Choosing a small number of resamples

can make computation faster.

• Clauset+Hall decreases bias and standard deviation for both parameters visibly when n = 500

and n = 1000, without too much more time consumed. It does not require n

1

. However, it has

a worse result than Clauset when n = 100.

• Generally, searching rank of order statistic from which the tail becomes power-law distribution,

such as Hall’s method, KS+rank, and Clauset+Hall have smaller standard deviation of both

“̂C+r and –̂C+r than the Clauset method.

• Searching rank method involves much more computing time than Clauset’s method because it

requires subsamples or resamples.

2.3.2 Type 4

2.3.2.1 Analysis and solutions There are three parameters to be estimated for Type 4: –, and

the two boundaries of power-law behavior “ and ‹. The procedure is similar to that for Type 3,

which is to estimate ‹ first, then search for “, and finally – using the estimated “ and ‹.

Previously, Aban et.al (Aban et al., 2006) used X

(n)

, which is MLE of ‹, to estimate ‹. They

proposed to plot the estimated – against the searched rank of the order statistic k (largest k data is

considered to follow power-law distribution), and choose k from which the estimated – becomes

stable, which is empirically assessed. The k

th largest order statistic is the estimate of “. They

23



pointed out that the choice of k affects the estimation of –. However, they suggested no automatic

way to search for “.

We tried to adapt methods in Type 3 to search for “ or k automatically. Since there is one more

parameter ‹ to estimate, we use a more precise way to estimate parameters: in particular, we use

a quasi-unbiased MLE for –, a modified upper limit for ‹, and a stabilized KS-test to search for “

(Maschberger and Kroupa, 2009). (We tried such corrections for Type 3 too, but the results were

quite similar to the one without correction. Therefore for Type 3 we used the original MSE and

KS calculations.)

The quasi-unbiased MLE is:

–̂QUML ≠ 1 =

n

n ≠ 2

(–̂ML ≠ 1) (2.10)

The modified upper limit is:

x̂mmax = X

(n)

A

1 +

e

G ≠ 1

n

B 1
1≠–̂QUML

, where G = (1 ≠ –̂QUML) ln

A
X

(n)

X

(1)

B

(2.11)

The stabilized KS-test statistic is:

SKS = max

1ÆiÆn
|S(

i ≠ 0.5

n

) ≠ S(P

(i))| (2.12)

where P is the theoretical CDF, and S(u) = 2S

0

(0.5 + 0.5u) ≠ 1, S

0

(u) =

2

fi arcsin(

Ô
u). The

stabilized KS-test deals with insensitivity of the KS-test in the tails.

Note that when calculating –̂QUML in Eq 2.10, we use X

(n)

as the estimate of ‹, though finally

estimate of ‹ is x̂mmax. We can not use x̂mmax for calculation of –̂QUML, because calculation of

x̂mmax in Eq 2.11 requires –̂QUML too.

We also adapt Clauset’s method here: use X

(n)

as estimate of ‹ first, search through all possible

values of “, and for each searched “ fit a truncated power-law distribution to the tail by using the

quasi-unbiased MLE from (2.10) and calculate the stabilized KS-test statistic from (2.12). “̂

4

is

the one that minimizes the stabilized KS. Finally, we use (2.11) to get a modified estimate of ‹

denoted as ‹̂

4

.

Thus, the steps for the KS+rank adapted procedure are the following.

1. For a given data set, simulate several resamples, each with size as original data set size.
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2. Search all possible k (k = 3, 4..., n). For each k, consider the largest k data from each resample

following truncated power-law distribution, and get the quasi-unbiased MSE of – , modified

upper limit ‹, and the stabilized KS for the power-law tail of each resample. Calculate the

mean KS for each k.

3. Choose k which minimizes KS.

We did not try Hall’s method here, because there is no theoretical derivation for the relationship

between the original data rank k and the subsample rank k

1

(recall that in Type 3, k = nk

1

/n

1

).

In simulations, we used the distribution with the form 2.13, which is just a truncated version

of the simulation distribution for Type 3. Lemma 1 can still be applied for the truncated power-law

distribution with the form (2.13). The interpretation is similar. For example, with – and n fixed, to

compare estimates of two distributions: distribution A with “ = 15, ‹ = 50, and distribution B with

“ = 150, ‹ = 500, then bB(–̂) = bA(–̂), SB(–̂) = SA(–̂), bB(“̂) = 10bA(“̂), SB(“̂) = 100SA(“̂),

bB(‹̂) = 10bA(‹̂), SB(‹̂) = 100SA(‹̂), where b is bias, S is variance. Therefore, it is not necessary

to try all combinations of “ and ‹, since only the ratio between them matters. If there is a large ratio,

the truncated distribution will be close to non-truncated distribution. Therefore we set “ = 15, and

‹ = 50, whose ratio is not large, so that the result will be representative for typical truncated

distributions. We also tried – = 1.5, 2, 2.5, and n = 100, 500, 1000.

Y
_]

_[

p(x) = C(x/“)

≠–
, for “ Æ x Æ ‹

p(x) = Ce

≠–(x/“≠1)

, for x < “

(2.13)

2.3.2.2 Results Table 5 shows that for estimation of ‹, Clauset’s method and KS+rank are

similar. For the estimation of – and “, Clauset is better than KS+rank in bias, while KS+rank is

better than Clauset in standard deviation.

2.3.3 Density 6

2.3.3.1 Analysis and solutions There are three parameters to be estimated for type 6: “, ‹ and

–. Deluca et al. (Deluca and Corral, 2013) modified Clauset method to search pairs of “ and ‹.

However, they did not have a simulation study but simply applied it to real data whose values of

parameters are unknown. In this thesis, we conducted a simulation study to evaluate their method.
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n = 100 Clauset time KS+rank time
– = 1.5 1.57 ±0.51 1.30±0.31
‹ = 50 48.88±2.33 49.09 ±2.35
“ = 15 6.67 ±3.88 1s 4.37±2.18 18s
– = 2 1.94 ±0.52 1.58±0.35
‹ = 50 46.46±4.07 46.57±4.08
“ = 15 6.16±2.95 1s 3.86±1.80 19s
– = 2.5 2.25±0.61 1.78 ± 0.38
‹ = 50 42.50±6.37 42.55 ±6.34
“ = 15 5.51±2.42 1s 3.37±1.46 18s
n = 500 Clauset time KS+rank time
– = 1.5 1.46 ± 0.20 1.37± 0.17
‹ = 50 49.66±0.65 49.66± 0.65
“ = 15 8.13±3.15 9s 6.57± 2.41 1min54s
– = 2 1.94 ±0.31 1.79 ±0.22
‹ = 50 48.97±1.32 48.96 ±1.32
“ = 15 8.23±2.97 9s 6.45± 1.88 1min49s
– = 2.5 2.36±0.37 2.19± 0.32
‹ = 50 47.51±2.62 47.48± 2.61
“ = 15 7.95± 2.83 9s 6.39 ±1.84 1min54s

n = 1000 Clauset time KS+rank time
– = 1.5 1.49± 0.24 1.43±0.14
‹ = 50 49.82± 0.27 49.82 ±0.27
“ = 15 9.85±4.08 21s 7.61 ±1.96 4min33s
– = 2 1.95 ±0.23 1.90±0.24
‹ = 50 49.45±0.59 49.44± 0.59
“ = 15 9.30 ±3.25 22s 7.89 ±2.25 4min17s
– = 2.5 2.41 ±0.26 2.30 ± 0.25
‹ = 50 48.60±1.28 48.58± 1.28
“ = 15 9.25±2.53 23s 7.56 ± 1.74 4min5s

Table 5: Type 4, Clauset vs KS+rank. 100 data sets are simulated from (2.13). For KS+rank,

number of resamples is m = 10.
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Deluca’s method is based on Clauset’s method. The difference is that Deluca’s method does

not directly choose the pair of “ and ‹ which minimizes KS, rather, it selects a pool of candidates

of pairs of “ and ‹ whose corresponding p-value from a goodness of fit test exceed a boundary,

and then choose the pair which has the longest interval among candidates. The longest interval is

chosen, for it might include many acceptable intervals. For this method, finding the p-value is very

time consuming, because it cannot be calculated easily, so it requires bootstrap samples instead

(which is also very time consuming when n is big).

We also tried Clauset’s method and KS+rank here. Briefly speaking, Clauset’s method searches

the pair of “ and ‹ whose KS is smallest, and uses the MLE of – using data in this interval;

KS+rank generates resamples from original data set, and determines k and s which are ranks

of data, such that interval between k

th data and s

th largest data points following a power-law

distribution. It chooses k and s whose KS is smallest, and uses the MLE of – for data in this

interval.

We simulated data following distribution (2.14), which has smooth derivatives at the transition

points; hence, it is quite challenging for estimation. Lemma 1 is applicable for distribution (2.14)

too. Just as for Type 4, we need not try all combinations of “ and ‹, since only the ratio between

them matters. We set “ = 15. To decide the values of ‹, – and —, we tried many combinations

of them: – = 1.5, 2, 2.5, 3, — = 0.01, 0.1, 1, 10, 100, ‹ = 50, 500, to choose a combination

of parameters which allows that the proportions of each part are not too small. Finally, we use

“ = 15, ‹ = 50, – = 1.5, — = 0.01, in which the proportion for the components is: 59% for the

head-impure part, 23% for the middle power-law part, and 18% for the tail-impure part.

Y
_____]

_____[

p(x) = Ce

≠–(x/“≠1)

, for 0 < x < “

p(x) = C(x/“)

≠–
, for “ Æ x Æ ‹

p(x) = C(x/“)

≠–
e

≠0.1(x/‹≠1)

2
, for x > ‹.

(2.14)

2.3.3.2 Results Table 6 shows that Deluca’s method has comparatively smallest standard devi-

ation, however it has a rather intolerably large bias for all parameters. Clauset’s method and the

KS+rank method have larger standard deviations than Deluca’s method, while having a critically

smaller bias than Deluca’s method.
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“ ‹ – time
True value 15 50 1.5

Deluca, n=100 1.00±0.66 203.56±53.00 1.08±0.11 7min39s
Clauset, n=100 5.53 ± 3.75 85.35±75.07 1.29±0.33 7min34s
ks+rank, n=100 4.46±2.24 132.15±65.36 1.322±0.20 1hr11min

Clauset, n = 1000 8.82±4.27 86.97±59.15 1.40±0.21 14hrs
ks+rank, n=1000 6.96±1.71 113.23 ±20.26 1.36±0.04 162hr40min

Table 6: Parameter estimation for Type 6. Simulation with the density format (2.14), with “ =

15, ‹ = 50, – = 1.5, — = 0.01 (— is only for simulation, not an estimating parameter). We

simulate 100 data sets, each with sample size n = 1000.

Comparing the Clauset and KS+rank methods, we can see that when n = 100, Clauset is better

in terms of bias of “̂ and ‹̂, and KS+rank is better in bias of –̂ and in standard deviations of all

parameters; when n = 1000, Clauset is better in bias of all parameters, and KS+rank is better in

standard deviation of all parameters. All these programs consume a large amount of computation

time. We did not do simulation study for Deluca’s method for n = 1000, because the computational

time is infeasible.

2.4 SUMMARY

• We studied properties of simulated data for Types 3, 4 and 6, which allows us to reduce the

work for setting parameters in the simulation.

• We pointed out that bias of “ in Clauset’s method for Type 3 data is nearly “/3 for some cases,

and when – = 1.5, the standard deviation of “ is very large.

• We tried several existing methods and proposed two new methods to decrease bias and standard

deviation of estimate of “. Existing methods include Jackknife, Hall and Danielsson methods;

newly proposed methods are KS+rank and Clauset+Hall.

• We adapted Clauset and KS+rank methods to Type 4 data to automatically search for “.

• We adapted Clauset and KS+rank methods to Type 6, and compared it to Deluca’s method.
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3.0 MODEL SELECTION

3.1 INTRODUCTION

Methods of parameter estimation differ according to the different types of densities listed above.

Not knowing the density type when estimating the parameters may lead to the use of an inappro-

priate estimation method (Burroughs and Tebbens, 2001). In deciding the density type, whether

the density is truncated or not is a key feature to be considered.

If the truncated density is fitted with a non-truncated density or vice versa, the estimation of

the exponent will not be correct, which will in turn lead to incorrect estimates of key quantities,

such as the first and second moment of the density. In addition, there might be other concerns

about the misuse of methods in application to different density types. For example, suppose that

the data concern values related to risks, where high values represent high risk. Then, treating

a non-truncated density as truncated will miss the high risk values, so we could be unprepared

for the high risk; on the other hand, treating a truncated density as non-truncated could make

the estimated risk higher than it actually is, increasing the cost of risk prevention, with too many

false positives. Therefore, differentiating density types, especially between truncation and non-

truncation is necessary.

Different model selection methods provide different sensitivity (true positive) and specificity

(true negative) when deciding between non-truncated and truncated models. It will be helpful

if researchers know the sensitivity and specificity for each method so they can weigh them and

choose appropriate methods to decide the density type. In this chapter, we offer researchers this

information about several model selection methods. These models include test-based methods (ex-

ceedance test and likelihood ratio test) and criterion based methods (AIC and BIC). For simplicity,

we analyzed whether a density is truncated or not, only for the case of pure densities, that is, to
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differentiate the density type between Types 1 and 2. We present the results of our simulation

studies in tables below.

3.2 PREVIOUS WORK

There are several previous studies about deciding whether a power-law density is truncated or not.

One approach is to see if there is a drop-off at the tail of the log-log survival curve (Burroughs and

Tebbens, 2001), as seen in Figure 3. This is derived from a property that log-log plot of survival

curve is straight for the non-truncated density with the form (2.1), because

log (S(x)) = (– ≠ 1) log “ ≠ (– ≠ 1) log (x) (3.1)

while log-log plot for the truncated density with the form Eq 2.2 has a drop-off, because

log (S(x)) = log (

1

“

1≠– ≠ ‹

1≠–
) + log (x

1≠– ≠ ‹

1≠–
) (3.2)

To do this, one would fit data by both non-truncated and truncated power-law distributions to

see which curve fits better, and then observe whether there is a drop-off at the tail of the better

fit curve. However, sometimes this procedure is not reliable. Even if a given data set follows a

non-truncated power-law density, the better-fit model must be truncated because it has one more

parameter, and in practice data sets are (of course) finite. When observing whether there is a drop-

off of the fitted truncated curve, (3.1) and (3.2) show that as long as x

(n)

is not too large, the fitted

truncated density will have a drop off, even though the original data is non-truncated. Therefore,

people tend to judge some non-truncated cases as truncated, as seen from Figure 3. On the other

hand, if distribution of data is truncated, with large x

(n)

, the drop-off often seems too trivial to

consider the distribution as truncated.

Aban, et al. (Aban et al., 2006) proposed a test-based model selection method: they used

exceedance test. Consider the following hypothesis testing problem:
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Figure 3: (a) is the log-log scale survival plot of a data sample from a truncated power-law distri-

bution with form (2.2), where – = 1.5, “ = 15, ‹ = 50, sample size is 60. The red is fitted by a

truncated power law. (b) is the log-log scale survival plot of a data sample from a non-truncated

power law with form (2.1), where – = 1.5, “ = 15, and sample size 50. The green line is the fitted

by non-truncated and the red by truncated power law. Though data are non-truncated, because of

the small value of x

(n)

, there is still a drop-off in the tail and a truncated distribution is a better fit.

H
0

: power-law distribution with ‹ = Œ (non-truncated power-law distribution)

vs

Ha : power-law distribution with ‹ < Œ (truncated power-law distribution)

The significance level q for this test is the probability of deciding the power-law distribution

as truncated when it is actually non-truncated. Here, we use the language of screening or classi-

fication: we treat non-truncated as ”positive” and truncated as ”negative” for convenience. The

sensitivity (true positive) is 1 ≠ q, and the specificity (true negative) is the power of the test. For

the exceedance test of (Aban et al., 2006), H
0

will be rejected if the largest order statistic is small.

They did not analyze power in their paper, so that the specificity to detect a truncated power-law

distribution is unknown.

Maschberger, et al. (Maschberger and Kroupa, 2009) considered several testing methods and

conducted simulations to assess the powers of these methods. These testing methods include the

following:
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1. Empirical Distribution Function (EDF) methods based on distances, such as the KS statistic;

2. EDF methods based on the correlation measures, such as an R

2;

3. tests for exponentiality, because logarithm of power-law variate is exponential; and

4. tests specifically for truncation, including a likelihood ratio test and an exceedance test.

They used a simulation study to get empirical critical values during testing, and considered various

parameter combinations of –, “, ‹ and n. They concluded that among all of these tests, likelihood

ratio test and exceedance test are most powerful; in some cases, however, such as when n is small,

– is large, or ‹ is large, even likelihood ratio and exceedance tests can only achieve very low power

(less than 0.1). In that paper, they confined the significance level of the test to be 0.05, which set

the sensitivity of detecting non-truncated density as 95%. In real applications, a researcher may

not pursue very high sensitivity of non-truncated density. Rather, depending on the purpose, they

may balance sensitivity and specificity to choose a more appropriate significance level for the tests.

Deluca, et al. (Deluca and Corral, 2013) mentioned the possibility of using the AIC to do

model selection. A truncated model has one more parameter than the non-truncation model, and

AIC does adjust for the number of parameters in a model. However, they just mentioned it in a

sentence without simulations or theoretical work to assess the performance of the AIC.

3.3 OUR SOLUTION

In this thesis, we consider two types of methods for model selection: test based methods and crite-

rion based methods. For test based methods, suppose H
0

: model is non-truncated vs. Ha: model is

truncated. We use exceedance test and likelihood ratio test as testing methods, because they are the

two most powerful tests in (Maschberger and Kroupa, 2009). For criterion based methods, we used

AIC and BIC, because both of them are criteria to decide whether more parameters are necessary.

Based on our theoretical and computational work, we created tables so that given parameters, re-

searchers can use the tables to find sensitivity and specificity of each method and choose the most

appropriate method.

There are several parameters involved in calculating sensitivity and specificity: –, “, ‹ and

n. Lemma 2 indicates that for the exceedance test, only the ratio between “ and ‹ matters for the
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calculation for all four methods. Lemma 2 cannot be extended to the other three methods exactly,

but by mimicking its proof of we have similar (approximate) conclusions for them. Therefore, we

suggest only considering the ratio between “ and ‹ when using the table for all four methods.

Lemma 2. For the exceedance test, the power calculated for given q, –, n, “ and ‹, is same as

that calculated by q, –, n, m“ and m‹, where m is any positive constant, and q is significance level.

More precisely, suppose that X ≥ PL(–, “, ‹), and Y ≥ PL(–, m“, m‹), with “ and – known, ‹

unknown, where m is a positive constant. To conduct level-q hypothesis testing H
0

: ‹ = Œ vs.

Ha : ‹ < Œ for both X and Y . For a sample size of n and ‹ = ‹

0

, power of the test for X is same

as that of the test for Y .

Proof : The rejection region for X is X

(n)

< CX , such that P (X

(n)

< CX |X ≥ PL(–, “)) = q;

rejection region for Y is Y

(n)

< CY , such that P (Y

(n)

< CY |Y ≥ PL(–, m“)) = q.

If X ≥ PL(–, “), then mX ≥ PL(–, m“). It follows that

P (X

(n)

< CX |X ≥ PL(–, “)) = P (mX

(n)

< mCX |mX ≥ PL(–, m“))

= P ((mX)

(n)

< mCX |mX ≥ PL(–, m“))

It is easy to see that Y and mX have with same distribution PL(–, m“), therefore CY = mCX .

Next, the power of the test for X is PowerX = P (X

(n)

< CX |X ≥ PL(–, “, ‹

0

)). If X ≥

PL(–, “, ‹), then mX ≥ PL(–, m“, m‹). Thus it follows that

PowerX = P (mX

(n)

< mCX |mX ≥ PL(–, m“, m‹

0

))

= P ((mX)

(n)

< mCY |mX ≥ PL(–, m“, m‹

0

))

= P (Y

(n)

< CY |Y ≥ PL(–, m“, m‹

0

))

= PowerY (3.3)

We use several significance levels in the simulation: 0.01, 0.05, 0.1 and 0.15. We also tried dif-

ferent parameter combinations: – = 1.5, 2, 2.5, 3, “ = 15, ‹ = 50, 150, 500, n = 30, 50, 100, 1000.

For each parameter combination, we simulated data to estimate the empirical critical value, and

simulated data again to estimate power.

For the test based methods, the simulation procedure is the following.
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1. Simulate 1000 non-truncated data sets with given values of –, n, and “. Get the largest order

statistic x

(n)

(or likelihood ratio) for each data set.

2. Find the empirical critical value such that the proportion of x

(n)

(or likelihood ratio) less than

or equal to it (for LR, greater than) is the significance level q.

3. Simulate 1000 truncated data sets with the same given values of –, n, “, as well as another

parameter ‹. Get largest order statistic again x

(n)

(or LR) for each data set.

4. The proportion of x

(n)

(or LR) less than or equal to (for LR, greater than) that empirical critical

value is the power.

For criterion based methods, simulations are based on different parameter combinations. We

tried criteria such as AIC and BIC respectively (Clarke et al., 2009). In this context, sensitivity is

the proportion of times that a non-truncated power-law distribution is detected as non-truncated,

and specificity is the proportion of times that a truncated power-law distribution is detected as

truncated. To calculate sensitivity, the procedure is:

1. Simulate 1000 non-truncated data sets with given values of –, n, and “.

2. For each eata set, apply AIC or BIC criteria to determine whether it is truncated or not.

3. The sensitivity is the proportion of determined non-truncated data sets.

To calculate specificity, the procedure is the following.

1. Simulate 1000 truncated data sets with given values of –, n, “ and ‹.

2. For each data set, apply AIC or BIC criteria to determine whether it is truncated or not.

3. Specificity is the proportion of determined truncated data sets.

Table 7 and Table 8 provide the power under each significance level and each parameter com-

bination, for both the exceedance test and likelihood ratio test. To use the tables, researchers may

check the value of q and see the power under the most appropriate parameter combination. Note

that when considering “ and ‹, only the ratio between them matters, especially for exceedance test.

After weighing the balance of type 1 error and power, researchers can choose an appropriate level

q and testing method to do the test-based model selection.

Table 9 and Table 10 provide sensitivity and specificity under each parameter combination per

criterion. To use these tables, researchers may choose the most appropriate parameter combination.

34



q = 0.01 – = 1.5 – = 2 – = 2.5 – = 3 q = 0.05 – = 1.5 – = 2 – = 2.5 – = 3

n ‹ exc LR exc LR exc LR exc LR n ‹ exc LR exc LR exc LR exc LR

30 50 100.0 86.3 100.0 53.5 100.0 18.6 15.5 13.5 30 50 100.0 97.7 100.0 82.2 100.0 55.0 72.7 26.8

30 150 100.0 69.1 25.4 12.1 1.8 2.1 0.6 0.8 30 150 100.0 89.5 100.0 38.9 14.1 14.8 6.9 6.5

30 500 100.0 28.4 2.2 3.4 1.3 1.2 0.3 0.5 30 500 100.0 65.9 9.4 15.3 5.4 6.3 4.3 4.6

50 50 100.0 99.3 100.0 96.2 100.0 73.0 100.0 33.3 50 50 100.0 100.0 100.0 99.7 100.0 92.8 100.0 69.0

50 150 100.0 91.7 100.0 34.1 3.2 5.2 1.8 1.1 50 150 100.0 99.4 100.0 75.8 23.1 21.4 7.6 7.0

50 500 100.0 79.6 6.8 2.4 1.7 1.8 1.0 0.7 50 500 100.0 93.7 21.8 15.2 8.3 7.0 4.3 4.2

100 50 100.0 100.0 100.0 100.0 100.0 99.8 100.0 80.8 100 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

100 150 100.0 100.0 100.0 88.5 16.4 24.7 2.6 2.5 100 150 100.0 100.0 100.0 99.8 100.0 56.3 13.9 10.3

100 500 100.0 99.9 12.6 14.9 1.8 1.3 1.0 1.1 100 500 100.0 99.9 94.0 54.3 8.1 8.5 5.7 5.2

1000 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1000 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1000 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 500 100.0 100.0 100.0 100.0 100.0 68.3 2.3 2.4 1000 500 100.0 100.0 100.0 100.0 100.0 99.8 15.4 12.1

Table 7: Table of power for test based methods, for q = 0.01, 0.05

q = 0.1 – = 1.5 – = 2 – = 2.5 – = 3 q = 0.15 – = 1.5 – = 2 – = 2.5 – = 3

n ‹ exc LR exc LR exc LR exc LR n ‹ exc LR exc LR exc LR exc LR

30 50 100.0 98.8 100.0 93.3 100.0 78.6 100.0 58.2 30 50 100.0 99.4 100.0 97.5 100.0 88.6 100.0 70.6

30 150 100.0 96.2 100.0 56.8 31.7 26.6 13.5 13.4 30 150 100.0 97.0 100.0 70.0 34.6 38.5 22.3 23.3

30 500 100.0 79.8 26.3 24.3 10.6 10.6 11.3 12.0 30 500 100.0 87.7 37.5 37.1 19.9 16.7 16.5 14.5

50 50 100.0 100.0 100.0 99.9 100.0 96.5 100.0 86.2 50 50 100.0 100.0 100.0 100.0 100.0 98.9 100.0 93.8

50 150 100.0 100.0 100.0 89.8 47.7 45.3 14.3 14.5 50 150 100.0 100.0 100.0 93.2 82.1 55.9 25.1 23.2

50 500 100.0 96.5 4.5 38.7 15.2 17.2 10.4 11.6 50 500 100.0 99.8 66.2 49.7 20.1 21.2 18.1 15.1

100 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 150 100.0 100.0 100.0 100.0 100.0 82.1 26.6 28.5 100 150 100.0 100.0 100.0 99.9 100.0 88.5 42.8 41.1

21.7 500 100.0 100.0 100.0 77.6 14.2 15.4 11.2 11.2 100 500 100.0 100.0 100.0 86.5 21.7 28.3 14.0 16.9

1000 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1000 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1000 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 500 100.0 100.0 100.0 100.0 100.0 100.0 25.1 22.2 1000 500 100.0 100.0 100.0 100.0 100.0 100.0 37.4 42.2

Table 8: Table of power for test based methods, for q = 0.1, 0.15
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Sensitivity – = 1.5 – = 2 – = 2.5 – = 3

n ‹ AIC BIC AIC BIC AIC BIC AIC BIC

30 50 59.0 78.2 58.8 79.8 61.2 82.1 63.1 81.5

30 150 63.4 82.1 61.7 80.5 61.9 82.3 61.7 81.5

30 500 61.6 80.5 60.1 79.3 58.6 79.8 64.0 83.8

50 50 60.5 84.4 60.5 85.6 63.4 86.8 60.7 85.2

50 150 60.5 85.7 61.1 84.6 59.7 83.4 60.7 85.5

50 500 61.4 84.8 60.7 84.4 63.9 87.5 59.4 84.2

100 50 61.6 88.6 64.3 90.6 61.5 89.6 60.6 88.7

100 150 64.7 90.3 60.0 90.0 61.7 89.3 61.1 89.2

100 500 61.1 88.9 60.7 89.8 61.6 88.5 62.6 89.6

1000 50 63.1 96.6 65.0 96.9 63.8 96.8 62.3 96.0

1000 150 63.7 97.0 63.2 96.2 63.7 96.5 60.9 95.9

1000 500 65.9 97.4 62.9 96.3 60.8 96.4 64.1 97.7

Table 9: Table of sensitivity for criteria based methods

Specificity – = 1.5 – = 2 – = 2.5 – = 3

n ‹ AIC BIC AIC BIC AIC BIC AIC BIC

30 50 100.0 99.9 99.8 97.8 98.9 92.1 94.9 76.0

30 150 99.8 98.2 96.1 80.5 71.5 39.7 48.5 25.0

30 500 98.9 94.4 72.5 42.3 46.2 24.3 41.0 20.2

50 50 100.0 100.0 100.0 100.0 100.0 98.8 99.2 92.8

50 150 100.0 100.0 99.7 93.5 90.3 53.2 61.3 24.4

50 500 100.0 99.6 85.9 50.4 49.8 21.0 40.4 17.2

100 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

100 150 100.0 100.0 100.0 100.0 99.7 80.3 81.0 25.4

100 500 100.0 100.0 99.7 79.2 62.0 16.8 41.8 12.8

1000 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 150 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 500 100.0 100.0 100.0 100.0 100.0 99.5 86.9 8.1

Table 10: Table of specificity for criteria based methods
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They check sensitivity and specificity for each criterion and decide which criterion to use for the

model selection.

We conclude by noticing the following features in these tables.

1. Table 7 and Table 8 show that larger q, larger n, smaller ‹ and larger – can increase power, for

both the exceedance test and likelihood ratio test.

2. Table 9 and Table 10 show that larger q, larger n and smaller ‹ can increase specificity while

decreasing sensitivity. Sensitivity and specificity of both AIC and BIC, especially AIC, are

fairly stable with changes in –, as the power is in test based methods.

3. Table 9 and Table 10 show that BIC has higher sensitivity than AIC, while AIC has a higher

specificity than BIC. This is a reasonable finding, because BIC prefers a more parsimonious

model than AIC.

3.4 SUMMARY

In this part, we provided four model selection methods. We created tables so researchers can select

an appropriate method after weighing the sensitivity and specificity. We observed some trends in

the tables. We also proved Lemma 2 for the exceedance test.
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4.0 RESILIENCE

4.1 INTRODUCTION

Power-law distributions have many applications, one of which is that the degree distribution of

many networks follow power-law distributions. The degree of a vertex of a network is the number

of connections it has to other vertices. The degree distribution is the proportion of these degrees

distributed over the entire network. If the degree distribution of a network follows a power-law dis-

tribution, at least approximately, then the network is called a scale-free network because changing

the scale does not change the exponent of its power-law distribution. Figure 3 shows an example

of a power-law degree distribution plot. Many networks are found to be scale-free, such as the

world wide web’s (WWW’s) internet links, certain biological networks, and some social networks

(Barabási et al., 2009).

The degree distribution is a critical characteristic of networks which gives topological infor-

mation and provides a basis for calculations of other important quantities. For example, in protein-

protein interaction networks, investigating high-degree proteins as drug targets might provide a

good approach for therapeutic mediation (Han et al., 2005). Such a strategy would have less of

an impact if the true topology is exponential rather than power-law distribution. In epidemiology

networks (Newman, 2002), the speed of the disease’s spread is a function of the second moment

of the degree distribution.

In many applications, networks receive attacks causing them to lose vertices and edges. For

example, in the epidemiology network, people who get immunized will be removed from the

network; in computer networks, hackers attack the network to make some computers malfunction

or lose connection with other computers. There are many attack strategies for how to remove

vertices or edges. In this thesis, we focus on the removal strategies for vertices, not for edges. We
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assume that if the vertices are removed by a strategy, their edges will be removed together with

them. In the current literature about network resilience (Cohen et al., 2000) (Holme et al., 2002),

the typical removal strategies are random removal or high-degree removal, which are to remove

vertices randomly or by the order of their degrees. In this thesis, we also explored an additional

generalized removal strategy that we define below.

When a network loses vertices due to an attack, the degree distribution may change and, con-

sequently, affect the functioning of the network. We study both theoretically and empirically how

the degree distribution changes after vertices are removed, which is called assessing the resilience

of the degree distribution after a network is attacked (the meaning of “resilience” will be explained

further in next section). Through theoretical studies, we show below that the power-law degree

distribution does not hold after only one vertex is removed from a power-law degree distribution,

regardless of the removal strategy. However, by a simulation study, using KS test to determine

whether degree distribution is power-law distribution will test it as still being power-law distribu-

tion even after larger proportions of vertices are removed, which indicates a discrepancy between

theoretical and experimental work. Note, however, that the experimental work gives an inaccurate

but tolerable conclusion: it is often appropriate to declare a degree distribution as following power-

law distribution even if there is a small departure, because properties of power-law distribution are

very useful, and may well be robust to small perturbations from the power law. We can imagine

that in real studies, if researchers conclude (say, using the KS-test) that the degree distribution is

still a power-law distribution after an attack, which is inaccurate but tolerable, they might be inter-

ested in how parameters will change for the power-law distribution. Therefore, we also conducted

an numerical experiments to study the change of parameters when power-law distribution is tested

to be still valid after attacks.

4.2 RELATED WORK

There are several studies about the resilience of a network different from our work. These stud-

ies are more about resilience of the connectivity of a network, so the measurements they use are

tailored for that purpose. Such measurements include the critical fraction of nodes that need to
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be removed before the network disintegrates (Cohen et al., 2000, 2001), size of the largest con-

nected subgraph, or average inverse geodesic distance (the number of edges in the shortest path

connecting them) (Holme et al., 2002). They consider a network is resilient if after removing a

considerable number of vertices, the critical fraction of nodes for disintegration remains high, or

the size of the largest subgraph remains large, or the average inverse geodesic distance remains

large. They concluded that power-law networks are resilient to random removals: in particular,

even when around 80% vertices are removed, the network still remains connected (Cohen et al.,

2000). However, power-law networks are not resilient to the high-degree removal: in fact, the

network becomes disconnected with high probability when only 5% vertices are removed (Cohen

et al., 2001; Callaway et al., 2000).

Below, we use the definition of resilience of the connectivity of a network to define the re-

silience of the degree distribution of a network: the degree distribution is resilient if it does not

change much after removing a considerable number of vertices from the network. We also adopt

their simulation procedures to simulate attacks by removing an increasing proportion of vertices

and observe the change in the degree distribution.

Next, there are studies exploring whether the degree distribution of the sampled network is the

same as that of the whole network (Kolaczyk, 2009) (Stumpf et al., 2005). Sampling a network

is defined as taking a sample of vertices and include all edges between them. There are sam-

pling strategies for either sampling with replacement or without replacement. For those sampling

strategies with replacement, there are various sampling probabilities, such as random sampling

and degree dependent sampling. For those sampling strategies without replacement, there are

various traversal techniques, such as breath/depth-first search and snowball sampling, which are

procedures where newly selected nodes depend on other selected nodes. Our removal approach

is different from sampling. We remove vertices without replacement with various removal prob-

abilities. It is hard to find a relationship between the sampling strategies and removal strategies

directly. There is no need to explore the relationship between sampling and removal probabili-

ties, because one is with replacement and the other is without replacement. It is not easy either to

find a relationship between their procedures both for without replacement, because the sampling

strategies use connections with selected nodes but removal strategies do not use such information.

Therefore, conclusions on the degree distribution from sampling research cannot be applied to the
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research of resilience after removal. One future possible research direction might be designing

removal strategies in the same style as sampling strategies. In that way, it might be possible to find

a relationship between these two types of research.

4.3 SIMULATIONS AND ANALYTICAL DERIVATIONS

In this Section, we present two experiments as well as a theoretical derivation to explore the change

of the power-law degree distribution after the network is attacked. The first experiment evaluates

whether the degree distribution type will change using simulation and a hypothesis test. We then do

theoretical derivations to deduce the exact form of the expected degree distribution after attacks.

The second experiment explores how the parameters of the degree distribution change when a

hypothesis test indicates that the distribution type remains a power-law after attacks. Therefore, by

looking at both the distribution type and distribution parameters, we have a full range of exploration

of the change in the degree distribution due to attacks, or removal of vertices.

4.3.1 Experiment 1

For the first experiment, we try three attack strategies: random removal, high degree removal, and

normal curve removal. Removal strategies are described by their removal probability densities,

which models the probability that a vertex of a certain degree is removed. For random removal,

the removal density is a uniform curve (Figure 4a), which means that the chance to remove a

vertex is the same for all vertices. For high degree removal, the density is piecewise constant, with

vertices of high degree having a high chance to be removed: in Figure 4b a vertex with the degree

above (below) some threshold will definitely (not) be removed. For normal curve removal, vertices

medium-sized degree are removed with the highest probabilities.

Random and high degree removal are commonly studied removal strategies. We propose a

new strategy, the normal curve removal, because we believe that it should be a realistic strategy.

It combines two approaches to attacks. One is that the larger the degree of a vertex is, the easier

this vertex can be spotted and removed. For example, hackers seldom pay attention to individual
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Figure 4: Removal probability models for (a) random removal; (b) high-degree removal; (c) normal

curve removal.

accounts, but attack some hubs of computers if they want to destroy a computer network. The

other is that the larger the degree of vertex is, the harder it is for the attacker to remove the vertex.

For example, hackers may not be able to attack any important hubs because they have very good

security. Thus, they may only attack small-size accounts. Combining these two perspectives, we

propose the normal curve removal, which models the situation in which attackers pay more and

more attention to remove a vertex when the degree of the vertex increases, but it gets harder to

remove such a vertex also. In the simulation, the normal curve is in the domain (1, degreemax),

with the same shape as the standard normal curve in the domain (≠3, 3).

We tried three networks. The first two are simulated networks and the third is a real network.

Network 1 is Babarasi-Albert network, which is considered a typical example for power-law degree

distribution with – = 3. Network 2 is a simulated network by configuration method, that is,

generating a network with a given expected degree distribution. Network 3 is a protein-protein

interaction network, whose degree distribution is considered to follow power-law distribution (Han

et al., 2005). There are 10000, 2000, and 1870 vertices in the B-A, configuration, and the protein

networks, respectively.

We simulate attacks by removing an increasing proportion of vertices to mimic an attack that

is increasingly severe. For random removal and normal curve removal strategies, we remove 5% to

95% of the vertices, in steps of 5%. We do this because power-law distribution prevails even when
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a large proportion of vertices are removed. For the high-degree removal, however, the power-law

distribution collapses very quickly when only small proportion of vertices are removed. To better

see the details, we remove 1% to 19% of the vertices, in steps of 1%.

The simulation procedure is as follows: determine what vertices will be removed according

to their removal probabilities for each removal strategy. Remove an increasing proportion of ver-

tices. After each removal, determine the degree distribution of the remaining network by fitting

the degree distribution and using KS test to test the goodness of fit. We fit not only a power-law

distribution, but also five other models: a power-law distribution with a cutoff, Poisson, expo-

nential, stretched exponential (Weibull) and lognormal distributions, because these are commonly

used distributions for fitting degree distributions. We consider a large p-value from the goodness

of fit test as a good fit of the model.

The results are shown in Figure 5, from which we draw the following conclusions:

1. With random and curve removals, for all three networks, the degree distribution type remains

power-law distribution even when over 90% of the vertices are removed.

2. With high-degree removals for all three networks, a power-law distribution does not hold even

after only about 5% of the high-degree vertices are removed.

3. With high-degree removal, the networks lose long tails, and an exponential distribution is a

better fit.

4. For network 3, when more than 50% of vertices are removed by random removal or normal

curve removal, the exponential distribution becomes the best model.

5. This is consistent with the resilience research of the network for network connectivity; that is,

the connectivity is quite resilient to random removal but very fragile to high-degree removal.

4.3.2 Analytic Development

4.3.2.1 Introduction. Experiment 1 illustrates the changes in degree distributions by simula-

tion. We also derived the exact form of the expected degree distribution after removing vertices.

We derived formulas for all three removal strategies, and for each one, we developed the formula

starting from the removal of one vertex and extending to any number of vertices. No assumption is

required for random removal; however certain assumptions are needed for normal curve and high
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Figure 5: Fit of degree distribution by six models. There are three networks and three removal

strategies. For random and normal curve removal, the procedure is to remove vertices from 5% to

95%, by 5% each time. For high degree removal, the procedure is to remove vertices from 1% to

10%, by 1% each time. The y-axis is the p-value of the goodness of fit test. The red horizontal line

is the 0.05 threshold. p-values of different models is depicted by different colors and marks.
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degree removal. Although the degree distribution may not reject the power-law hypothesis after at-

tacks in some cases, the mathematical form of the degree distribution is not power-law distribution

after even one vertex removed, regardless of removal strategy.

For any vertex v, let d(v) denote the degree of v, and let {pk} denote the degree distribution

of a network with n vertices, where pk = P (d(v) = k), the proportion of vertices with degree k

among n vertices, for k = 1, 2, ..., n≠1. When the degree distribution is a power-law distribution,

pk = Ck

≠– for some –.

Denote the expected degree distribution of the new network by {qk}. The derivation starts

from removing only one vertex randomly, and then moves to removing r vertices randomly from

the n vertices, where r = 1, 2, 3, ..., n ≠ 1. Usually people do not consider the situation of 0

degree, however in our derivation we included 0 degree, just for providing more information. It

is easy to remove the situation of 0 degree by multiplying a normalization constant for expected

degree of other degrees, which will not change the fact that whether expected degree distribution

is power-law distribution or not.

qk = E(Prob(d(v) = k)|one vertex removed), which is the expected proportion of vertices

with degree k among n ≠ 1 vertices, k = 1, 2, ..., n ≠ 2. The expected value qk is a weighted sum

of all possible values. Each possible value is a proportion of vertices of degree k in the remaining

network. Suppose the information known about the original network is the number of vertices

and the degree distribution, therefore any network with the same information should be taken into

consideration. We denote each possible value of qk as q

TM ,M,W
k , where W = 1, 2, 3, ... is the index

of networks which have same information as the original network, M = 1, 2, ..., n≠1 is the degree

of the removed vertex, TM = 1, 2, ..., M is the index of the vertex removed among all removed

vertices whose degrees are M . For example, q

3,5,2
k is the proportion of vertices with degree k when

the network is the second network, the removed vertex’s degree is 5, and the removed vertex is the

third one in all removed vertices with degree 5 in the second network (here orders of index of the

network and vertices can be created by any means).

Note that qk = E(E(q

TM ,M,W
k |W )). We derive E(q

TM ,M,w
k |W = w) first, where w is any given

network. We find that w does not appear in E(q

TM ,M,w
k |W = w), therefore qk is simply E(q

TM ,M,w
k ).

Our notation used in this derivation are the following.

• V is the set of vertices, |V | = n. V

w is set of vertices for network w.
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• v and v

Õ are vertices in V . v

tm,m,w is the removed vertex from network w with degree m and

index tm.

• d(v) is the degree of vertex v, that is, number of links that v has.

• l(v

Õ
, v) = 1 means that v

Õ and v are connected (0 means unconnected). Note that l(v, v) = 1.

• fi(v) is the removal probability of vertex v.

• Networks considered in this thesis are simple networks: they are undirected, without multiple

edges between any two vertices, or loops within any vertex.

4.3.2.2 Random removal: Remove one vertex. Suppose that the degree distribution is pk =

Ck

≠–, for k = 1, 2, ..., n ≠ 1. For random removal, the removal probability for any vertex is 1/n.

After removing a particular vertex v

tm,m,w from among the n vertices, q

tm,m,w
k is the proportion of

vertices with degree k among n≠1 vertices of the remaining network. Vertices with degree k after

the removal include two types of vertices: first, there are vertices with degree k +1 before and with

degree k after the removal; the rest are vertices with degree k before and remaining degree k after,

as seen in line 1 of (4.1).

The summations in line 3 of (4.1) are not easy to evaluate. Take the first item for example: it is

not easy to directly calculate the summation, across all removal situations (that is, all values of M

and TM ), of how many vertices are with degree k + 1 before and with degree k after removal. We

therefore found another way to calculate it: since the removal probability is same for all vertices,

it is equivalent to calculating the summation (see the first item in line 1 of (4.3)) across all vertices

with degree k + 1 in network w of how many removals can remove one degree from them. The

latter is easy to get (see the first item in line 2 of (4.3)): for each vertex with degree k + 1 before

(there are totally npk+1

such vertices) and k after, the number of the removals which removes one

degree from this vertex is k + 1, because each of its linked vertices can be removed. Similarly, the

second item in line 1 of (4.3) can be derived too. For each vertex with degree k both before and

after the removal, the number of removal situations are n ≠ (k + 1), because each vertex not linked

with this vertex can be removed, as well as itself.

Now, (4.3) shows that E(q

TM ,M,w
k |W = w) is independent of w, therefore

qk = E(E(q

TM ,M,W
k )|W ) = E(q

TM ,M,w
k )
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for any w. (4.3) is the result for expected degree distribution qk, as shown in (4.3). From (4.3) we

conclude that even after one vertex is removed, the degree distribution of the network is no longer

a power-law distribution. Next, we turn to the evaluation of the conditional expectation above.

E(q

TM ,M,w
k |W = w) =

n≠1ÿ

m=1

ÿ

tm

fi(v

tm,m,w
)

q
vtm,m,wvÕœV w( d(vÕ

)=k+1,l(vÕ,vtm,m,w
)=1

+ d(vÕ
)=k,l(vÕ,vtm,m,w

)=0

)

n ≠ 1

=

ÿ

vœV w

fi(v)

q
vÕœV w( d(vÕ)=k+1,l(vÕ,v)=1

+ d(vÕ
)=k,l(vÕ,v)=0

)

n ≠ 1

(4.1)

=

1

n(n ≠ 1)

(

ÿ

vœV w

ÿ

vÕœV w

d(vÕ
)=k+1,l(vÕ,v)=1

+

ÿ

vœV w

ÿ

vÕœV w

d(vÕ
)=k,l(vÕ,v)=0

)

(4.1) =

1

n(n ≠ 1)

(

ÿ

vÕœV w

ÿ

vœV w

d(vÕ
)=k+1,l(vÕ,v)=1

+

ÿ

vÕœV w

ÿ

vœV w

d(vÕ
)=k,l(vÕ,v)=0

)

=

1

n(n ≠ 1)

((k + 1)npk+1

+ (n ≠ (k + 1))npk

=

k + 1

n ≠ 1

pk+1

+

n ≠ (k + 1)

n ≠ 1

pk (4.2)

=

k + 1

n ≠ 1

C(k + 1)

≠–
+

n ≠ (k + 1)

n ≠ 1

Ck

≠–

Therefore,

qk =

Y
_]

_[

p1
n≠1

k = 0

(k+1)pk+1+(n≠k≠1)pk

(n≠1)

k = 1, 2, ..., n ≠ 2

(4.3)

Remove two vertices.

The derivation of the expected degree distribution qk after random removal of two vertices is quite

similar to that of the removal of one vertex. It is still a weighted sum of all possible degree

distribution values for degree k. The weight for each removal is
1

n
2

2≠1

, and the value of the degree

distribution is the proportion of vertices with degree k among n ≠ 2 vertices. Vertices with degree

k after removal include three types of vertices: vertices with degree k +2 before and with degree k

after the removal, vertices with degree k+1 before and with degree k after, and vertices with degree

k before and remaining degree k after. Again, we exchange the orders of the double summations.

We denote two removed vertices as v

1

and v

2

. It follows that
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qk =

ÿ

v1,v2œV w

fi(v

1

, v

2

)

q
v2œV w( d(vÕ

)=k+2,l(vÕ,v1)=1,l(vÕ,v2)=1

+ d(vÕ
)=k+1,l(vÕ,v1)=1orl(vÕ,v2)=1

n ≠ 2

+ d(vÕ
)=k,l(vÕ,v1)=0,l(vÕ,v2)=0

)

n ≠ 2

=

1

1
n
2

2
(n ≠ 2)

(

ÿ

vÕœV w

ÿ

v1,v2œV w

( d(v2)=k+2,l(vÕ,v)=1,l(vÕ,v2)=1

+ d(v2)=k+1,l(vÕ,v)=1orl(vÕ,v2)=1

+ d(vÕ
)=k,l(vÕ,v1)=0,l(vÕ,v2)=0

)

=

1

1
n
2

2
(n ≠ 2)

CA
k + 2

2

B

npk+2

+

A
k + 1

1

BA
n ≠ (k + 2)

1

B

npk+1

+

A
n ≠ (k + 1)

2

B

npk

D

(4.4)

qk =

Y
__]

__[

n

(

n
2)(n≠2)

(p

2

+ (n ≠ 2)p

1

) k = 0

n

(

n
2)(n≠2)

(

1
k+2

2

2
pk+2

+

1
k+1

1

21
n≠(k+2)

1

2
pk+1

+

1
n≠(k+1)

2

2
pk) k = 1, ..., n ≠ 3

(4.5)

Remove any number of vertices.

Suppose we randomly remove r vertices (0 < r < n). By the same logic we can derive the

expected degree distribution: qk =

1

(

n
r)

I1+I2+...+Ir+1
n≠r , k = 0, 1, ..., n ≠ r ≠ 1 where

Ij+1

=

A
n ≠ (k + j + 1)

r ≠ j

BA
k + j

j

B

npk+j, for j = 0, 1, ..., r,

which is how many removals cause vertices with initial degree k + j to lose j degrees to have

degree k after the removal. Note that when k = 0, I

1

= 0.

Check the correctness of the derivation.

Here we check that
q

k qk = 1, (k = 0, 1, 2, ..., n≠r≠1) is satisfied, when r vertieces are removed.

Check for one vertex removed.

n≠2ÿ

k=0

qk =

1

n ≠ 1

p

1

+

n≠2ÿ

k=1

k + 1

n ≠ 1

pk+1

+

n ≠ (k + 1)

n ≠ 1

pk (4.6)
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The summation in Eq 4.6 is a linear combination of pk, k = 1, 2, ..., n ≠ 1. When k = 1, the

coefficient of pk is 1

n≠1

+

n≠2

n≠1

= 1; when 2 Æ k Æ n≠2, the coefficient of pk is n≠(k+1)

n≠1

+

k≠1+1

n≠1

= 1;

when k = n ≠ 1, the coefficient of pk is n≠2+1

n≠1

= 1. Therefore,

n≠2ÿ

k=0

qk =

n≠1ÿ

k=1

pk = 1

Check for two vertices removed.

n≠3ÿ

k=0

qk =

n

1
n
2

2
(n ≠ 2)

(p

2

+ (n ≠ 2)p

1

)

+

n≠3ÿ

k=1

n

1
n
2

2
(n ≠ 2)

(

A
k + 2

2

B

pk+2

+

A
k + 1

1

BA
n ≠ (k + 2)

1

B

pk+1

+

A
n ≠ (k + 1)

2

B

pk)

(4.7)

The summation in (4.7) is also a linear combination of pk, k = 1, 2, ..., n ≠ 1. Similarly, when

k = 1, the coefficient of pk is n

(

n
2)(n≠2)

((n ≠ 2) +

1
n≠(1+1)

2

2
) = 1; when k = 2, the coefficient

of pk is n

(

n
2)(n≠2)

(1 +

1
n≠(2+1)

2

2
+

1
1+1

1

21
n≠(1+2)

1

2
) = 1; when 3 Æ k Æ n ≠ 3, the coefficient of

pk is n

(

n
2)(n≠2)

(

1
n≠(k+1)

2

2
+

1
k≠1+1

1

21
n≠(k≠1+2)

1

2
+

1
k≠2+2

2

2
) = 1; when k = n ≠ 2, the coefficient

of pk is n

(

n
2)(n≠2)

(

1
n≠3+1

1

21
n≠(n≠3+2)

1

2
+

1
n≠4+2

2

2
) = 1; when k = n ≠ 1, the coefficient of pk is

n

(

n
2)(n≠2)

1
n≠3+2

2

2
= 1. Therefore,

n≠2ÿ

k=0

qk =

n≠1ÿ

k=1

pk = 1

Check for any number of vertices removed.

Using a calculation similar to the one above, we check that coefficients of pk, k = 1, 2, ..., n ≠ 1

are all 1 so that
qn≠r

k=0

qk =

qn≠1

k=1

pk = 1. We omit writing the details here.

Comparison between the derived expected degree distribution and power-law distribution.

Not only did we derive the formulas above, we also demonstrated more intuitively the degree dis-

tributions after removal of vertices by plotting the derived expected degree distributions and the

original power-law degree distribution together. Recall that the mathematical form indicates that
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power-law distribution is destroyed even only one vertex is randomly removed, however, in the

simulation study the power-law distribution is quite resilient even after 90% vertices are removed,

by using the KS-test of goodness of fit. It is possible that the expected degree distribution seems

similar to power-law distribution such that KS is not able to detect the difference even by sig-

nificance level 0.05. It is also possible that the expected degree distribution is not similar to the

original degree distribution even though it passes a power-law test; rather, it might be fit well by

power-law distribution with different parameters.

Figure 6 are plots when n = 50, Figure 7 are plots when n = 500, and Figure 8 is a partial

plots of Fig.2 showing more details of low degrees. For both n = 50 and n = 500, the tails of

distributions are similar, partly due to the small amount of data in these tails. When removing more

and more vertices, the expected degree distribution becomes more away from the original degree

distribution. However we cannot say that it is more away from power-law distribution, since it

might be fitted by other power-law distribution with new parameters.

Figure 6: Plots of the original power-law degree distribution and expected degree distribution after

different proportions of removals: remove one vertex, remove two vertices, remove 50% of the

vertices, and remove 90% of the vertices; n=50.

4.3.2.3 Normal curve removal: One vertex removed. For random removal, as shown above,

the expected degree distribution does not use the information inW . However, following the same
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Figure 7: Plots of the original power-law degree distribution and expected degree distribution after

different proportions of removals; n=500.

Figure 8: This figure shows a part of Figure 2 for better viewing of details for degrees at most 50.
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approach to derive from (4.1), the interchange of summation in (4.3), which is available for ran-

dom removal because of uniform removal probabilities, is not available for normal curve removal.

Therefore, we tried another perspective to calculate qk; recall that

qk = E(q

TM ,M,W
k ) = E(E(q

TM ,M,W
k )|M) =

n≠1ÿ

m=1

P (M = m)E(q

Tm,m,W
k |M = m), (4.8)

where E(q

Tm,m,W
k |M = m) is an expected proportion. We wrote this proportion by its defi-

nition as the ratio of number of vertices with degree k over n ≠ 1. Just as for random removal,

there are two types of vertices with degree k after removal. Some are vertices with degree k be-

fore removal and without a connection with the removed vertex; the others are vertices with initial

degree k + 1, and are connected with the removed vertex, so they lose one degree upon removal.

We denote number of vertices with degree k which are removed together with the removed vertex

v

Tm,m,W as a

Tm,m,W
k (note that here a

Tm,m,W
k only includes number of vertices connected with the

removed vertices, not of the removed vertices with degree k) to get

E(q

Tm,m,W
k |M = m) = E

A
npk ≠ a

Tm,m,W
k ≠ m=k + a

Tm,m,W
k+1

n ≠ 1

|M = m

B

(4.9)

We propose Assumption 1 to facilitate the calculation of (4.9). When a vertex v with degree

m is removed, knowing E(a

Tm,m,W
k ), or on average how many vertices with degree k lose one

edge together with v, is equivalent to knowing what proportion of the m removed edges of v are

connected with the vertices with degree k. Assumption 1 provides this proportion. Multiplying

that by m yields the average number of vertices with degree k losing one edge due to removal.

Assumption 1 For any vertex in a network, the expected proportion of the edges connected to

vertices with degree k in all edges of this vertex, is the proportion of the degrees of vertices with

degree k in all degrees of all vertices. Also, assume that for any vertex v

0

œ V ,

d(v

0

)

q
v d(v)

<

1

max

vœV
(d(v))

,

that the network is a simple network, which is undirected, without multiple edges or loops.

We use a social network as an example to illustrate Assumption 1. Suppose Mike has 500

friends in a social network (consider Mike a vertex in this network). How many of his friends have

100 friends (k = 100)? Suppose that in this network, there are in total 200 people whose number
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of friends is 100, then total friends number of these people is 200 ú 100 = 20, 000 (for simplicity

we do not consider overlap of friends among these 200 people). Suppose the total number of

friends of all people in this network is 400, 000. Then Assumption 1 states that the proportion of

100-friend people among Mike’s friends is the proportion of those people’s friends in all people’s

friends, which is 200 ú 100/400, 000 = 5%. Therefore, Mike should have 500 ú 5% = 25 friends

whose number of friends is 100. d(v0)q
v

d(v)

<

1

max

vœV
(d(v))

indicates that even the most popular person

(who has most friends) will not be any person’s friend twice, which guarantees that there are no

multiple edges between any two persons.

For many network generation schemes, the generation procedure depends only on degrees of

vertices, treating each single link with equal weight. Such generation procedures include configu-

ration modeling, B-A model, Chung model, and others (Newman, 2005). Therefore, it is reason-

able to propose Assumption 1, which assumes properties of connections of a vertex depends only

on degrees of vertices connected to it, with each link equally weighted.

With Assumption 1, we have

E(a

Tm,m,W
k |M = m) = m

npkk

qn≠1

l=1

npll
and E(a

Tm,m,W
k+1

|M = m) = m

npk+1

(k + 1)

qn≠1

l=1

npll
;

therefore,

(4.9) =

m

npk+1(k+1)qn≠1
l=1 npll

+ npk ≠ m

npkkqn≠1
l=1 npll

≠ m=k

n ≠ 1

(4.10)

Now plug in (4.10) into (4.8) to get the expected degree distribution:

qk =

n≠1ÿ

m=1

npmfi(v

m
)

m

npk+1(k+1)qn≠1
l=1 npll

+ npk ≠ m

npkkqn≠1
l=1 npll

≠ m=k

n ≠ 1

=

n≠1ÿ

m=1

npmfi(v

m
)

m

nC(k+1)

≠–
(k+1)qn≠1

l=1 nCl≠–l
+ nCk

≠– ≠ m

Ck≠–kqn≠1
l=1 nCl≠–l

≠ m=k

n ≠ 1

(4.11)

Here v

m is any vertex with degree m, and fi(v

m
) depends only on m. (4.9) is also a linear

combination of k

≠– and (k + 1)

≠–, which is not a power-law distribution. Therefore, for normal

curve removal, power-law distribution is also destroyed when just one vertex is removed.

In fact, we notice that during the derivation of the normal curve removal, we used a general

notation fi(v) to denote the removal probability rather than a specific normal form. Therefore, the
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derivation is a general one which can be used for all removal strategies. We check its correctness

by applying it to the random removal. Using fi(v

m
) = 1/n in line 1 of (4.11), we see that (4.12) is

same as (4.3), as expected:

(4.9) =

1

n(n ≠ 1)

A
pk+1

(k + 1) ≠ pkk

qn≠1

l=1

lpll

n≠1ÿ

m=1

np(m)m + n

2

pk ≠ npk

B

=

1

n(n ≠ 1)

A
pk+1

(k + 1) ≠ pkk

qn≠1

l=1

pll

n≠1ÿ

l=1

npmm + n

2

pk ≠ npk

B

(4.12)

=

1

n ≠ 1

(pk+1

(k + 1) + (n ≠ (k + 1))pk)

Two and more vertices removed

Assumption 1 provides a way to calculate the expected degree distribution for the normal curve

removal when one vertex is removed. However, for the normal curve the removal of more than one

vertex is more complicated, for it requires more information or assumptions. The formula of the

expected degree distribution when two vertices are removed is given in (4.13). Abbreviating the

removed two vertices v

Tm1 ,m1,W
1

and v

Tm2 ,m2,W
1

as v

1

and v

2

, we have

qk = E(E(q

Tm1 ,Tm1 ,m1,m2,W
k |M

1

, M

2

)) (4.13)

=

n≠1ÿ

m1=1

n≠1ÿ

m2=1

P (M

1

= m

1

, M

2

= m

2

)E(

q
vœV ( d(v)=k,l(v,v1)=0,l(v,v2)=0

+ d(v)=k+1,l(v,v1)=1orl(v,v2)=1

n ≠ 2

+

d(v)=k+2,l(v,v1)=1,l(v,v2)=1

)

n ≠ 2

)

Actually, the expected value of the summation of each indicator function in (4.13) is not easy

to calculate. Consider E(

q
vœV d(v)=k+2,l(v,v1)=1andl(v,v2)=1

) for an example, which is to calculate

averagely how many vertices with degree k + 2 will lose 2 edges during the removal of v

1

and v

2

,

one edge from each. Note that there is no information about how many links between v

1

and v

2

,

such that it is uncertain that how many edges are removed totally by v

1

and v

2

. What is more, even

the number of links between v

1

and v

2

is known, then suppose there are totally m edges removed

from the unit of v

1

and v

2

, we still cannot use Assumption 1. Because each of the connected

vertices with degree k + 2 is supposed to connect with the unit twice, while Assumption 1 is for

simple network where double linkages are not allowed. Therefore, there is no further derivation

for Eq 4.13.
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4.3.2.4 High degree removal. Since the derivation for the normal curve removal is actually

general for all removal strategies, we can directly apply it to the high degree removal. Above, we

considered removing only one vertex. The removal probability fi(v) = 1 if v is with highest degree

(or say, largest degree), where h is number of highest degree, and fi(v) = 0 if v is not with highest

degree. Plugging in fi(v) into (4.12) and (4.13), we can see that the expected degree distribution

is not a power-law distribution. Also, we are not able to get the formula for the cases when more

than two vertices are removed because the expressions are intractable.

4.3.3 Experiment 2

Although we showed theoretically that the power-law distribution will not hold after just one vertex

is removed for all attack strategies, Experiment 1 shows that empirically, for the random removal

and normal curve removal, the degree distribution is very resilient, that is, close to a power-law

distribution. Such a discrepancy is often tolerable in applications. The degree distribution may

well retain power-law properties if it is perturbed a bit from a power-law distribution, because

those properties are very useful. Under such cases, if the power-law distribution is still considered

valid, parameters might change. In Experiment 2, we use a simulation study to explore whether

and how the parameters of the degree distribution will change when power-law distribution is

considered valid after a goodness of fit test.

We still use the same three networks as those in the Experiment 1, and for each network, we

plot the mean and standard deviation of estimates of “ and –. We used both random attack and

normal curve attack strategies, which show power-law resilience in the experiment 1. Results are

shown in Figure 9 and Figure 10 respectively.

From Figure 9 and Figure 10, we can conclude the following.

1. The trends in changes of the parameters of all three networks look similar for each strategy.

2. Though the change trends are similar, the B-A network appears to have smaller standard de-

viations than the other two networks for both – and “. Protein network shows a change of

parameters earlier than the other two networks for both – and “.

3. For both the random and normal curve removals, values of – are quite stable, staying around

the original value with small standard deviations. For random removal, – retains its value until
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Figure 9: Estimation of parameters of power-law part of the degree distribution after random

removal of vertices. We remove vertices from 5% to 95%, in steps of 5% each time. For each

network, we repeat the removing procedure 50 times to calculate the mean and standard deviation

of parameter estimates.
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Figure 10: Estimation of parameters of power-law part of the degree distribution after normal curve

removal of vertices. The only difference between Fig 9 is that the removal strategy here is normal

curve removal.
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more than 75% vertices removed. After that, values increase and standard deviations increase.

For normal curve removal, – stays stable until more than 75% vertices removed too; after that,

values decrease and standard deviations also increase.

4. For both random removal and normal curve removal, values of “ decrease. For random re-

moval, values of “ decrease continuously, with standard deviation starting to decrease when

around 60% vertices are removed. For normal curve removal, values of “ decrease continu-

ously first, while it appears to have a sudden decrease when around 75% of the vertices are

removed. Standard deviations of “ in normal curve removal appears to be unchanged (though

B-A network appears smaller standard deviations in the middle part).

4.4 SUMMARY

• We conducted a simulation study to see whether the degree distribution is still a power-law

distribution after attacks by three removal strategies.

• We derived the mathematical form of the expected degree distribution for three removal strate-

gies. For random removal, we derived the form when any number of vertices are removed.

For normal curve and high degree removals, we derived it when only one vertex is removed,

under certain assumptions. We also pointed out that the derivation for normal curve removal

and high degree removal is not tractable when more than two vertices are removed.

• We conducted a simulation study to see how parameters change if the power-law degree distri-

bution is considered valid after a goodness of fit test.
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