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Influenza and pneumonia continue to be leading causes of morbidity and mortality in the United 

States each year. These pathogens can be lethal on their own, but they are particularly dangerous 

if encountered simultaneously in an influenza-pneumonia superinfection. The severity of the 

infection can be controlled by the strength of the host’s immune response, which is often dependent 

on the age and species of the host. In this work, the intrahost immune response to respiratory 

infections is explored with mathematical modeling. We first examine how different species of mice 

react to an identical Streptococcus pneunoniae infection. A low-order ordinary differential 

equation (ODE) model is used to model data from four strains of mice, each of which represents a 

distinct phenotype in response to the infection. By changing only a small number of parameters, 

representing variations in the strength of the immune response, the output of the model can change 

significantly. We next examine the complementary study, in which the host species remains 

constant but the strain of bacteria administered is different. Again adjusting only a few parameters 

in our small ODE model, we can again reproduce several phenotypes of responses to these varied 

infections. We then examine the immune response to influenza infection. First, we develop a large 

ODE model to fit to data from mice infected with either a sublethal or lethal dose of H1N1. The 

model is the first of its kind to include a detailed study of the inflammatory response to infection. 

Next we use a Boolean network model to study data taken from adult and elderly mice infected 
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 v 

with influenza to assess differences in the immune response that arise with age. Finally, we propose 

an ODE model of influenza-pneumonia superinfection. In each of these five studies, we discuss 

the implications of our work for further experiments and identify potential avenues for future 

research. 
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1.0  INTRODUCTION 

Mathematical modeling of biological systems has grown in recent years as larger biological data 

sets have become increasingly available. These models let us predict the behavior of physiological 

systems under a variety of conditions, allowing for the answers to questions which cannot yet be 

addressed using traditional experimental methods. This work focuses primarily on modeling the 

mechanisms through which the immune system responds to infectious respiratory disease, 

specifically influenza A virus and bacterial pneumonia infection. The following sections give an 

overview of the immune response to infection and the mathematical modeling tools with which 

we model these physiological processes.  

 IMMUNE RESPONSE TO RESPIRATORY INFECTION 

The immune response can be divided into three parts: innate immunity, adaptive immunity, and 

humoral immunity. Each response has a distinct role in the resolution of an infection, involving 

different cells, cytokines, and receptors for its activation. This section outlines these three 

responses and their involvement in the resolution of a respiratory infection. 
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1.1.1 Innate immunity 

Mechanical clearance of microbes from the host is among the first of the non-specific line of 

defenses of the body. The mucociliary elevator acts in the lungs to physically remove pathogens 

from the body via coughing and sneezing [1,2]. The flow of mucus tends to be comparatively slow, 

with an average speed of around 2 μm/s, and thus these nonspecific defenses can be easily 

overwhelmed if the bacterial population is large [3]. Epithelial cells will also release antimicrobial 

peptides, such as defensins, to inhibit the reproduction of the antigen [1].  

The innate immune response is the second line of defense against infection. Innate 

immunity is always ready to act and does not act in an epitope-specific fashion. The primary 

components of an innate immune response are the soluble components, such as cytokines, 

chemokines, complement, and interferons, and cellular components, such as neutrophils, 

macrophages, dendritic cells, and natural killer (NK) cells [4]. These components act in a 

nonspecific manner against any microbe present in the host. Innate immune components are 

present constitutively in the body, and as such they are able to act very quickly when an infection 

begins. 

One important element of innate immunity is phagocytosis, the killing of foreign agents in 

the body by cellular ingestion and lysosomal degradation. Neutrophils and macrophages are the 

primary effectors of phagocytosis, with neutrophils initially circulating in the blood and 

macrophages patrolling tissues. Once an infection has been detected, these cells will move via 

chemotaxis to the site of infection to increase immune defenses at that site. Chemotaxis is 

instigated by the upregulation of chemokines, such as interleukin (IL)-8 or macrophage 

inflammatory protein (MIP). These chemical messengers bring phagocytes and other immune cells 

to the site of infection. These cells, along with epithelial cells in the tissue, also release cytokines, 
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chemical messengers that activate the immune cells. Cytokines are classified as either pro-

inflammatory or anti-inflammatory, depending on whether they activate or deactivate the immune 

cells. Cytokines like tumor necrosis factor (TNF) and IL-1 are common examples of pro-

inflammatory cytokines, as they serve to increase inflammation locally. IL-10 is a common 

example of an anti-inflammatory cytokine and is used often in this work to inhibit further 

inflammation. Some cytokines, such as IL-6, can serve as either pro- or anti-inflammatory, 

depending on the specific cells with which they are interacting [5]. This system of checks and 

balances in the cytokine response helps to curb excess inflammation, which is linked to tissue 

damage, causing further symptoms in the host. Tightly regulated control of the inflammatory 

response is a vital part of survival of an infection, as we will see in Chapter 4 of this work.  

Interferons are a type of cytokine particularly important for antiviral immunity. Type I 

interferons include all subtypes of interferon-α and interferon-β [6]. These interferons are secreted 

by a variety of cell types, including plasmacytoid dendritic cells (pDCs) and infected epithelial 

cells. These cells secrete interferon to help protect surrounding epithelial cells from infection. 

Interferon induces an antiviral state in a cell, protecting it from viral infection by initiating the 

production of two proteins: MXC and PKR. These proteins stop the cellular machinery from 

allowing transcription and translation of DNA, which prevents a virus from taking advantage of 

the cell and replicating itself [4]. Type II interferon, also known as interferon-γ, is released by 

natural killer cells and T cells [7–10]. Type II interferon helps to increase pathogen recognition, 

antigen presentation, and immunomodulation [7]. 

In addition to neutrophils and macrophages, NK cells and dendritic cells are also essential 

elements of the nonspecific immune response. Natural killer cells are so named for their innate 

ability to kill infected cells to control an infection. Dendritic cells are professional antigen-
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presenting cells [11], acting as a link between the innate immune responses and the later adaptive 

immune responses. In lung tissue, dendritic cells form a tightly regulated network of sentinel cells, 

recognizing antigen and adjusting the ensuing immune response to levels necessary to ward off 

infection [11–14]. 

1.1.2 Adaptive immunity 

The adaptive immune response is characterized by the actions of T cells and B cells. These cells 

are lymphocytes which cannot carry out their antiviral activity until they have clonally expanded 

and differentiated. In a viral infection, the T and B cell immune responses primarily target infected 

cells and free virus particles. T cell-mediated immunity is an important source of clearance of 

infected cells; killing these cells helps prevent further viral replication and keeps the infection in 

check [4]. There are two types of T lymphocytes that play a major role in this work: CD4+ T helper 

cells (TH cells) and CD8+ cytotoxic T cells (CTLs). CTLs kill other cells infected with foreign 

matter. TH cells work to activate T and B lymphocytes to generate the adaptive immune response, 

and they also produce important cytokines to help regulate the innate immune response [4]. TH 

cells can be divided into two groups: TH-1 cells and TH-2 cells.  TH-1 cells primarily secrete IL-2, 

IL-12, and interferon-γ, promoting further cytotoxic responses. TH-2 cells primarily secrete IL-4, 

IL-5, IL-9, IL-10, and IL-13, all of which can control inflammatory responses. 

B cell-mediated immunity is also known as humoral immunity, and it is predominantly 

defined by actions of antibodies produced by plasma cells. When a resting B lymphocyte is 

activated through its B cell receptor, it is stimulated to differentiate into a plasma cell. These 

plasma cells produce immunoglobulins which neutralize virus particles in a viral infection. 
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 MATHEMATICAL MODELING OF PHYSIOLOGICAL SYSTEMS 

The complex series of immune response interactions described above are modeled in this work 

with either a series of differential equations or a network model, depending on the problem which 

we seek to solve. The difficulty in developing mathematical models lies in the ability to generate 

a model structure to replicate biological phenomena given a particular data set. Much of this 

process depends on the values assigned to parameters of the model. The inverse problem is solved 

by identifying parameter sets of the model which replicate the given data [15]. Inferring the 

parameters from the data is an ill-posed problem, meaning it does not yield a unique solution and 

is not  statistically identifiable [16]. A well-posed problem would involve a large amount of 

experimental data, and would allow us to ascertain a single parameter set which would minimize 

the error associated with this data.  However, uncertainty in both the parameter values and the 

experimental data lead us to use a probabilistic approach to the inverse problem. 

Traditional parameter fitting algorithms involve finding a single parameter set that 

minimizes the objective function. A single parameter set may not adequately describe a true 

biological phenomenon, however. Many biological data sources, including those used in this work, 

are derived from a pool of measurements collected from different hosts subjected to identical 

experimental conditions. Because smaller animal hosts like mice need to be sacrificed in order to 

properly measure all the data, these animals cannot be followed for the full length of the 

experiment, making true longitudinal data impossible to generate. Larger animal hosts like pigs or 

nonhuman primates can be used to generate longitudinal data, but these experiments are quite 

expensive by comparison. For this reason, smaller animal models are often used, and multiple 

animals are sacrificed at pre-determined times and measured for the variables of interest. These 

experiments assume that animals of the same species undergoing identical infections would react 
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very similarly. Inter-individual variability in the hosts can lead to large differences in the 

measurements between these hosts, however, invalidating this assumption.  

To mitigate this problem, Bayesian parameter inference is commonly used to compute a 

distribution of values in which the parameters of the model may exist [15,17–22]. This probability 

density of distribution describes the likelihood of a parameter set taking on a particular value. The 

distribution is meant to incorporate the behavior of an entire population, not just of one individual. 

For this reason, Bayesian inference may be more appropriate to describe the pooled data than a 

single parameter set would be. 

Bayesian parameter inference yields the posterior probability density, which is defined as 

the probability that the model has a particular parameter set given the data. Thus we are choosing 

parameters most likely to make the model fit well to the data. The calculation of the posterior 

distribution depends on the definition of the prior distribution of the parameters, or the information 

known about the parameters’ values before the experimental data are considered [22]. For the 

purposes of this work, the prior distributions of all parameters are taken to be a uniform distribution 

in log space between the upper and lower bounds of each parameter [23]. Bounds are typically 

defined from biological references where possible, and estimated for parameters unable to be 

directly measured in experiments.  

We sample from within these parameter bounds to yield the collections of parameter sets 

which comprise the distributions and make up an ensemble of models. Each parameter set is 

applied to the system of differential equations used to the model the given experimental data, and 

the output is a potential predicted trajectory of each variable of the model. The likelihood that a 

particular parameter set occurs in the posterior distribution is equivalent to the likelihood that the 
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corresponding predicted trajectory has contributed to the experimental data. Thus, ensemble 

modeling allows us to account for the uncertainty in the data.  

 OVERVIEW 

First, mathematical models of the intrahost immune response to bacterial pneumonia caused by 

Streptococcus pneumoniae are explored. Ordinary differential equation (ODE) models are used to 

simulate the trajectories of the bacterial count and phagocytic cell response. Both host organism 

and bacterial strains are varied to determine the impact of each on the outcome of the infection. 

The intrahost immune response to influenza infection is next investigated using two 

different types of models: ODE and Boolean. Two age groups and two inocula are tested so that 

conclusions may be drawn as to the effectiveness of a host’s immune response to varied amounts 

of virus as the host ages. First, a large-scale ODE model is used to simulate a detailed look at both 

branches of immunity. Then, a Boolean network model is used to study and contrast the 

interactions between various immune components in both older and younger hosts. 

Finally, a superinfection of influenza A virus and bacterial pneumonia is explored in silico. 

A superinfection is defined as an infection in which the first infectious agent is not fully cleared 

from the system before a second infectious agent is introduced. We investigate hypotheses as to 

the mechanisms responsible for the increased likelihood of morbidity and mortality associated with 

influenza-pneumonia superinfection, and we also study the lethal synergism between these two 

pathogens. 
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2.0  EFFECT OF HOST SPECIES ON INTRAHOST IMMUNE RESPONSE TO 

BACTERIAL PNEUMONIA INFECTION 

 OVERVIEW 

The seriousness of pneumococcal pneumonia in mouse models has been shown to depend both on 

bacterial serotype and murine strain. We here present a simple ordinary differential equation model 

of the intrahost immune response to bacterial pneumonia that is capable of capturing diverse 

experimentally determined responses of various murine strains. We discuss the main causes of 

such differences while accounting for the uncertainty in the estimation of model parameters. We 

model the bacterial population in both the lungs and blood, the cellular death caused by the 

infection, and the activation and immigration of phagocytes to the infected tissue. The ensemble 

model suggests that inter-strain differences in response to streptococcus pneumonia inoculation 

reside in the strength of nonspecific immune response and the rate of extrapulmonary 

phagocytosis. This work has been previously published in Journal of Theoretical Biology [24]. 

 BIOLOGICAL OVERVIEW 

Pneumonia is the most significant cause of death of children worldwide, killing over one million 

children under the age of five every year, mostly in developing countries [25], and is the most 

prevalent infectious disease in the elderly in developing countries [26], often complicating 

respiratory viral infections. Pneumonia is an inflammatory condition of the lung affecting 
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primarily the alveoli, caused by bacterial or viral infection, or to a lesser extent other micro-

organisms or chemicals. Streptococcus pneumoniae, also known as pneumococcus, is the most 

common cause of bacterial pneumonia [25]. Pneumococcus is estimated to permanently colonize 

the upper respiratory system of about 10% of adults and 20 – 40% of children [27]. While the 

bacteria remain in the nasal cavities, carriers do not show signs of infection and are not considered 

to be ill. Pneumonia begins when bacteria move from the upper to lower respiratory tract and grow, 

which may or may not be contained by the ensuing immune response. 

The first line of defense against microbes in the upper respiratory tract is the mucociliary 

layer, which can mechanically clear bacteria via directed mucus flow [2] or the production of 

antimicrobial peptides [1].  Mucociliary flow is rather slow (about 2 μm/s), and pneumococcal 

strains have been found to impair the flow by disrupting the F-actin cytoskeleton of epithelial cells 

[3], so larger bacterial challenges can overwhelm the mechanical defenses. Once pneumococci 

reach the lower respiratory tract, they will adhere to the epithelial cell surface via platelet-

activating factor receptor [28], which is quickly internalized by the cell together with the bacteria. 

The bacteria damage the host epithelial cells primarily via the action of pneumolysin, a pore-

forming cytotoxin that is lytic to the cells at sufficiently high concentrations [2]. A pneumolysin-

deficient pneumococcus mutant is less likely to cause lethal infection than wild type and reaches 

overall lower levels in both lung and blood [29]. Once the epithelial cell wall is disrupted, the 

bacteria can cross into the bloodstream. 

Alveolar macrophages are the first immune cell type to recognize and phagocytose low 

numbers of pneumococci [30,31]. If the pneumococcal population grows quickly, macrophage 

phagocytic activity can be overwhelmed. Macrophages also orchestrate the inflammatory response 

by producing pro-inflammatory cytokines such as Il-1 or TNF-, which are involved in the 
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recruitment of neutrophils and other phagocytic cells [31]. Neutrophils are the primary phagocytic 

agent for clearing the infection. [32]. They are activated in the blood and then move toward the 

infected tissue, and though they will digest bacteria found in the bloodstream along the way, most 

of their work will be performed in the tissue. Once in the bloodstream, pneumococcus can cause 

bacteremia and spread to other tissues, a particularly deadly complication of localized infection. 

Extrapulmonary phagocytosis in the blood is an important factor in determining survival or 

nonsurvival in response to infection [33]. Once bacteria are cleared from the lung, newly recruited 

macrophages enter the alveoli to clear neutrophils and cellular debris [34,35]. Macrophages 

themselves then apoptose after phagocytosis [36]. 

The purpose of this study is to use a model-based approach to provide insight as to why 

distinct murine strains elicit distinct phenotypes in response to the same load of an identical strain 

of pneumococci. It has been observed, for example, that when infected by D39 strain, CBA/Ca 

and MF1 mice succumb to the infection after 1 – 2 days, while the BALB/c and C57BL/6 mice 

are generally able to overcome the infection quickly [37–39] Moreover, the progression of 

infection in the lung differs from a mild increase (CBA/Ca), to a decline followed by sharp increase 

(MF1), to a constant level followed by a decline (BALB/c), to a sharp decline (C57BL/6). In 

particular, the origin of a sharp increase following the decline in MF1 strain has not yet been 

satisfactorily explained [29]. In this chapter, we will employ mathematical modeling techniques 

to explain what facets of the immune response are primarily responsible for these four different 

phenotypic responses to identical bacteria. 
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 LITERATURE REVIEW 

Previous work in the intrahost response to pneumonia has led to several ODE models. Smith et al. 

used models of increasing complexity to model the intrahost immune response of BALB/c mice 

to three initial doses of pneumonia [40]. These models divide the immune response into three 

successive stages: resident alveolar macrophage response, neutrophil and cytokine response, and 

recruited monocyte-derived macrophage response. Using a single equation to model the alveolar 

macrophage response, a low inoculum of bacteria can be cleared. Adding in complexity with 

recruited neutrophils and macrophages, the authors develop a target cell-limited model of 

pneumonia infection. The more complex model can clear higher doses of bacteria from the system, 

but at a cost of depleting the susceptible cell population. The model is fit to only one host species 

and one pathogen species, but it could be generalized to other bacterial infections by changing the 

value of the parameters. 

Another study by Romanyukha et al. used ODEs to study the amount of energy required 

by the human body to clear an infection [41]. A host must expend energy not only to fight an 

infection, but also to maintain homeostasis. These authors found the maintenance of a fever is the 

greatest energy cost, followed by the maintenance of phagocytic cells. 

Pilyugin and Antia studied the influence of the handling time, or time required to complete 

ingestion of bacteria, of phagocytic cells [42]. The model operates under the assumption that the 

time required for phagocytosis to occur can hinder the overall effectiveness of immune cells 

against the pathogen, particularly if the number of recruited cells is low. The equations and 

parameters of their model are not specific to any species but provide guidance as to how to 

incorporate this handling time into simple ODE models.  
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All of these previously published studies focus on different aspects of the immune system 

and provide parameters based on experimental data for a single combination of bacterial and mouse 

strains. Thus, characterizing distinctive immune response across strains using a model-based 

approach has not been previously attempted. None of the models differentiate between bacteria in 

the lung and bacteria in the blood, a feature that we find especially important for description of 

various types of responses. 

 

 

Figure 1. Graphic representation of the interactions between the bacteria and the host. 

 MODEL DEVELOPMENT 

The four equations comprising the ODE model represent interactions between the bacteria, the 

host tissue, and the immune system, as shown in Figure 1. The model simulates four variables: 
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bacteria levels in the lungs (𝑃𝐿), bacteria levels in the blood (𝑃𝐵), activated phagocytic cells (N), 

and damage to the lung epithelium (𝐷).  

2.4.1 Bacteria equations 

 𝑑𝑃𝐿

𝑑𝑡
= 𝑘𝑙𝑃𝐿 −

𝜈𝑃𝐿

𝜇 + 𝑃𝐿
−

𝜉𝑛𝑙𝑁𝑃𝐿

1 + 𝜉2𝑃𝐿
+ 𝑓[(𝑏𝐷 + 𝑎)𝑃𝐵 − 𝑏𝐷𝑃𝐿] 2.1 

 𝑑𝑃𝐵

𝑑𝑡
= 𝑘𝑏𝑃𝐵 (

𝑃𝐵 − 𝜀

𝑃𝐵 + 𝜀
) (1 −

𝑃𝐵

𝐾
) −

𝜉𝑛𝑏𝑁𝑃𝐵

1 + 𝜉2𝑃𝐵
− (𝑏𝐷 + 𝑎)𝑃𝐵 + 𝑏𝐷𝑃𝐿 

2.2 

 

Equation 2.1 represents the bacterial population in the lungs (𝑃𝐿). Lung bacteria grow at a constant 

rate of kl. Two terms represent the impact of the immune system on the lung bacteria population. 

First, a saturating term expresses the rate at which the nonspecific immune response initially 

controls the bacteria levels in the tissue. Parameters ν and μ control these dynamics, which 

represent responses such as the mucociliary elevator and complement-driven removal of bacteria. 

These parameters are tuned such that they can lead to the eradication of the bacteria from the lungs 

without the influx of neutrophils. However, if the initial burden of bacteria is too high, other 

immune responses will be necessary to clear the body of infection. The third term in the equation 

denotes the effect of immune cells (N) on the bacterial population. Immune cells phagocytose the 

bacteria at a rate 𝜉𝑛𝑙. Higher rates of phagocytosis are more likely to fully clear the bacteria from 

the lung tissue. 

The last two terms in the equation describe the effects of exchange between the lung and 

blood pathogen populations.  Parameter f represents the volumetric difference between the blood 

and lung compartments. Blood bacteria (𝑃𝐵) can move from the bloodstream back to the lungs in 

two ways: damage-dependent motion and damage-independent motion. Parameter b represents the 
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permeability of the epithelial membrane to the bacteria, which is determined by the level of damage 

(𝐷) in the tissue. Parameter a represents the damage-independent motion of the blood bacteria into 

the lung compartment. Bacteria circulating in the bloodstream exhibit a tendency to attach to 

capillary walls in the lung tissue and concentrate at this location [43], so parameter 𝑎 denotes this 

increased probability of bacteria moving from blood to the tissue. The final term (−𝑏𝐷𝑃𝐿) denotes 

the movement of the bacteria in the lung to the bloodstream, which is a damage-dependent motion. 

Equation 2.2 denotes the change in blood pathogen (𝑃𝐵) over time. Equation 2.2 has a 

similar structure to Equation 2.1, but with a few key differences. Blood bacteria grow logistically 

at a rate kb, limited by the carrying capacity K and the Allee threshold ε. Blood pathogen is removed 

by phagocytes in the blood at a rate 𝜉𝑛𝑏, proportional to the pathogen population. Like the previous 

equation, the final terms describe damage-dependent and damage-independent motion of bacteria 

between the two compartments. 

There is no logistic growth term necessary in the lung bacteria equation, as the bacterial 

data used in this study never approach carrying capacity in the lungs. However, bacteria in the 

blood do seem to reach carrying capacity as they extravasate to other organs. Bacteria also tend to 

grow more quickly in the nutrient-rich environment of the blood as compared to the relatively 

sterile environment of lung tissue. Thus, two different bacterial growth terms are used to justify 

differences in bacterial reproduction in each compartment. 

2.4.2 Damage equation 

 𝑑𝐷

𝑑𝑡
= 𝑞𝑃𝐿(1 − 𝐷) − 𝑐𝐷 2.3 
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Equation 2.3 describes the increase in damage to the lung epithelium as a result of bacterial 

infection. When bacteria interact with epithelial cells, they release toxins such as pneumolysin, 

causing cell apoptosis. In this model, these interactions occur at a rate 𝑞, proportional to the amount 

of bacteria present in the lung. The host can repair this damage at a rate 𝑐. Damage is meant to 

represent a percentage of the epithelial tissue injured by the pathogen, and as such it varies only 

between 0 and 1. 

 

2.4.3 Immune cells equation 

 𝑑𝑁

𝑑𝑡
= (−𝑁 +

ℎ𝑃𝐿

𝑛ℎ + 𝑃𝐿
) (

1

𝜏𝑁
) 2.4 

 

Equation 2.4 describes the change in the lung population of activated phagocytes (primarily 

composed of neutrophils). Parameter 𝜏𝑁 denotes the time to activation of the phagocytes, and this 

activation is proportional to the population of lung bacteria. Activation occurs with Michaelis-

Menten dynamics, with a rate constant of ℎ and a half-maximum of 𝑛ℎ. In reality, this activation 

is a much more complicated mechanism, involving pro-inflammatory cytokines and receptors on 

the surface of the immune cells. For the sake of simplicity, we do not model these cytokines 

explicitly, but instead assume they would be produced proportionally to the bacteria present. 
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2.4.4 Model parameters 

Table 1 summarizes the 17 model parameters and their biological interpretations, as well as the 

bounds and units for each of their values.  

 

Table 1. Biological interpretation of bacteria ODE model parameters. 

 

Parameter Meaning Units Bounds 

𝜏𝑁 Time to activation of 

phagocytes 

hours 0.01 – 10 

𝑛ℎ Steady-state value of 

phagocyte population 

cells 102 – 104 

μ Michaelis-Menten rate of 

nonspecific immunity 

CFU/ml 105 – 107 

𝜉2 Inhibition of phagocyte 

phagocytosis 

ml/CFU 10-13 – 10-11 

ℎ Activation of phagocytes 

due to 𝑃𝐿 population 

cells/CFU/ml 105 – 108 

𝐾 Carrying capacity of 

blood pathogen 

CFU/ml 107 – 108 

𝑘𝑙 Growth rate of pathogen 

in lung tissue 

hour-1 0.1 – 5 

𝑘𝑏 Growth rate of pathogen 

in blood 

hour-1 20 – 40 

𝑞 Rate of increase of 

damage due to 𝑃𝐿 

hour-1 10-9 – 10-7 

ε Threshold value of 𝑃𝐵 CFU/ml 1 – 10 

a Directionality of 

movement from 𝑃𝐵 to 𝑃𝐿 

hour-1 0.1 – 10 

𝑓 Volumetric ratio dimensionless 10 – 50 

𝑏 Effect of  𝐷  on movement 

rates 

hour-1 0.01 – 10 

ν Rate of clearance of 𝑃𝐿 by 

nonspecific immunity 

CFU/ml/hour 104 – 109 

𝜉𝑛𝑙 Rate of phagocyte 

phagocytosis in lung 

tissue 

cell-1 hour-1 10-9 – 10-4 

𝜉𝑛𝑏 Rate of phagocyte 

phagocytosis in blood 

cell-1 hour-1 10-9 – 10-4 

c Rate of repair of damage hour-1 0.01 – 1  
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Parameters for this model can be divided into two groups: mouse-strain-independent, and 

mouse-strain-dependent. Four of the seventeen parameters fall into the mouse-strain-dependent 

group: ℎ, the rate at which phagocytes migrate to lung tissue; ν, the rate at which pathogen is 

cleared from the lungs by non-specific immunity, and ξnl and ξnb, the rate at which phagocytes clear 

pathogen from lungs and blood, respectively. These are defined as the parameters which will differ 

between each type of mouse examined in this study, and as such, these are the parameters that will 

be responsible for creating the four different phenotypes seen in the experimental data used. 

The parameters defined as strain-independent are those which would not necessarily 

change with host species. These include parameters inherent to the bacteria (bacterial growth rates 

𝑘𝑙 and 𝑘𝑏 as well as carrying capacity 𝐾), steady-state and threshold parameters (𝜀, 𝜇, 𝑛ℎ, 𝜉2), 

phagocyte activation time constant 𝜏𝑛, and parameters controlling bacterial infiltration of the lung 

(𝑏, 𝑓, 𝑎, 𝑞, 𝑐). 

The bounds on each of these parameters were defined in biological ranges where literature 

values could be ascertained, and approximated for the other parameters. Bacterial growth 

parameters were approximated from doubling times reported in both tissue and blood [44,45]. The 

phagocyte activation rate was also estimated from literature [46]. Most other parameters were 

allowed to vary over two orders of magnitude. Sampling was performed across log space. The four 

strain-dependent parameters were given very wide ranges such that their behavior could be more 

fully understood. 
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2.4.5 Initial conditions of the system variables 

Since the simulations begin just as the bacteria reach the lung tissue, it is assumed that there is no 

appreciable damage in the lungs initially, and no activated phagocytes have yet made their way to 

the tissue. There is also no bacteria in the blood initially. The only non-zero initial value therefore 

is the initial condition for 𝑃𝐿, which is equal to the dose given to the mice in each experiment (106 

CFU for the CBA/Ca, MF1, and BALB/c mice, and 105 CFU for the C57BL/6 mice).  

For the purposes of model fitting, the activated neutrophil data must be assumed to be zero 

at day 0. The initial value of N data, therefore, is subtracted from all subsequent data points, such 

that each have been shifted down by N0. 

 MARKOV CHAIN MONTE CARLO SAMPLING PROCEDURE 

As in Battogtokh et al. [47]  we use Bayesian inference to estimate the likely values of the 

parameters of the system. If p represents the list of all parameters and y represents the vector of 

the data, then the posterior distribution ρ(𝐩|𝐲), reporting on the probability that the system has 

parameters p given the data y, is given by the Bayes formula ρ(𝐩|𝐲) = 𝑄−1𝐿(𝐲|𝐩)θ(𝐩) where 

𝐿(𝐲|𝐩) is the likelihood of observing y for a model with parameters p, θ(𝐩) is the prior distribution 

based on information about the parameter distribution available before the data is collected, and  

𝑄 = ∫ 𝐿(𝑌|𝐩)θ(𝐩) is the normalizing constant.  The likelihood function used in the generation of 

posterior distribution is the exponential of the negative sum of squared errors, i.e. 
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𝐿(𝑌|𝐩) = exp (− ∑
(�̅�𝑖,𝑗 − 𝑦𝑖,𝑗)2

2σ𝑖,𝑗
2

𝑖,𝑗

) 2.5 

where �̅�𝑖,𝑗 is the mean of variable 𝑗 at time 𝑖, and 𝜎𝑖,𝑗
2  is its standard deviation. For prior distribution 

θ(𝐩) we choose a product of uncorrelated bounded Jeffreys prior distributions for 𝑝𝑖 which are 

equivalent to uniform distributions for log(𝑝𝑖) between 0.01 and100 times a biologically 

reasonable logged baseline value .  

Three heuristics were also added to the likelihood function to ensure biologically relevant 

solutions were found. First, we require that the system is stable with no pathogen, meaning the 

healthy state is stable. We also require complete clearance of bacteria at a low inoculum of 102 

CFU/ml within 2 days post inoculation. Lastly, for the BALB/c mice, the system must be able to 

clear lung pathogen within 2 days post inoculation at an inoculum of 105 CFU/ml. Smith et al., 

[40] showed this to be true experimentally, so we use this requirement as well. If a parameter set 

does not fulfill any of these heuristics, a large penalty is added to the overall cost, essentially 

eliminating any chances this parameter set will be accepted.  

A sample of parameter sets which represents the posterior distribution ρ(𝐩|𝐲) over the 

parameter space was found by using the Metropolis-Hastings Monte Carlo method (MHMC) 

(sometimes also called Markov Chain Monte Carlo). We generate parameter sets for all strains of 

mice simultaneously, with p consisting of 13 strain-independent parameters that are applied to all 

4 strains’ parameter vectors, and four sets of 4 strain-dependent parameters, one for each strain. 

This results in a total of 29 parameters generated at every step of the simulation. The error is 

calculated for each strain’s fit, and the likelihood 𝐿(𝐲|𝐩) is taken to be the product of likelihoods 

of individual strain fits. 
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To facilitate full sampling of the 29-dimensional space, we use a parallel tempering 

technique [48–50], in which chains move through parameter space in steps analogous to their 

assigned energies, with larger steps taken at higher energies. We generated two million parameter 

sets and tested convergence of the chains with a Gelman-Rubin diagnostic [51] and a Geweke test 

[52].  

 EXPERIMENTAL DATA 

The model was calibrated to data from literature [37–39], in which female mice of four strains 

(CBA/Ca, MF1, BALB/c, and C57BL/6) were intranasally infected by Streptococcus pneumoniae 

strain D39. D39, a serotype 2 strain of Streptococcus, is known to be particularly virulent in murine 

models of pneumonia, and as such it is often employed as the infectious agent in these studies. 

These studies provided data for the bacterial population in the lungs post-infection, and all but one 

study (C57BL/6) also provided data for neutrophil counts and bacteria levels in the blood. 

BALB/c is an inbred albino mouse strain mainly used for hybridoma development, 

monoclonal antibody production and infectious disease studies. The CBA/Ca strain is commonly 

used for brain development, neurochemistry, and behavioral studies. The MF1 strain is suitable 

for general use in toxicology, pharmacology, physiology, and behavioral science. C57BL/6 strain 

is used for diet-inducing obesity, transgenic/knockout model development, safety and efficacy 

testing, and immunology. All four strains have very different origins, and it is therefore not 

surprising that they should exhibit contrasting phenotypes under challenges they were not 

specifically engineered to withstand  [53]. CBA/Ca are the most susceptible to infection, as they 

succumb to the infection about 24 hours post inoculation and exhibit no appreciable decrease in 
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bacteria levels in either the lung or blood compartment. MF1 are moderately susceptible mice. In 

the first twelve hours, these mice are able to mount a defense in the lung tissue through nonspecific 

immunity, but the blood pathogen levels rise too quickly for the phagocytes to control. MF1 mice 

are known to die about 48 hours post inoculation. 

C57BL/6 and BALB/c mice are resistant to the infection at these inocula. Female C57BL/6 

mice are able to keep lung pathogen levels under control immediately, clearing the infection within 

24 hours post inoculation. Only lung pathogen data was available for this strain, and we have only 

48 hours of data from the experiment. BALB/c mice are also able to survive their challenge to the 

end of the seven day experiment. 

 ENSEMBLE FITS OF MODEL TO DATA 

Model ensembles for each strain comprised two million parameter sets. Figure 2 shows the 

ensemble trajectories for each of the four strains. The solid black line represents the median value, 

at a given time point, of all trajectories computed from parameter sets comprising the ensemble, 

not any particular or best fitting trajectory. The darker shadowed area corresponds to the interval 

between 25th and 75th percentile of trajectory values, and the lighter outside shadows the interval 

between 5th and 95th percentile. The data and their standard deviations are also displayed. 

The most variation seen in the CBA/Ca mice tends to occur in the overall level of damage. 

The other trajectories are tight, as the bacteria levels will rise quickly and settle at the carrying 

capacity by day 2. The model predicts that these mice should show the most damage to the 

epithelium, as would be expected given their high morbidity. In the first twelve hours, pathogen 

levels remain relatively constant as a result of the nonspecific immunity. High pathogen levels in 
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tissue encourage movement to the blood, where bacteria reproduce rapidly. Simultaneously, 

pathogen increases in the lung due to the infiltration through the damaged epithelium, leading to 

high sustained pathogen levels in both compartments. Since phagocyte levels are proportional to 

lung pathogen, the phagocyte trajectories are also tight and held essentially constant over the seven 

day simulation. In experiments, CBA/Ca mice were found moribund within 24 hours post 

inoculation. 

MF1 mice are also killed by pneumococcus, but infection evolved more slowly following 

inoculation. We see an initial decay in 𝑃𝐿 levels as the nonspecific immunity in the lung fights the 

initial dose of bacteria and the remaining bacteria invade the tissue and the blood. Then, as 

𝑃𝐵 levels rise, the pathogen will infiltrate back into the lungs and will enter a phase of uncontrolled 

reproduction. The phagocytes are not strong enough to overcome the infection, and mice die, 

despite the high level of activated phagocyte levels. 

The BALB/c and C57BL/6 mice were both able to overcome the infection. BALB/c mice 

controlled the blood pathogen levels during the full course of the infection. The peak of 𝑃𝐵 is 

several orders of magnitude lower for BALB/c than either the MF1 or CBA/Ca. The majority of 

𝑃𝐿 and 𝑃𝐵 trajectories generated for the BALB/c ensemble will decay to zero eventually, though 

some will stay at a chronic level. Endpoints of the trajectories are largely influenced by the strength 

of parameters directing movement between tissue and blood in these populations; those with strong 

tendencies for infiltration will tend to be unable to clear the infection. Lung bacteria populations 

are also largely dependent on blood bacteria, given that tissue infiltration is the major contributing 

factor to 𝑃𝐿 levels. BALB/c mice also show little damage since the bacterial levels are brought 

under control so quickly. 
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The C57BL/6 trajectories show little variation, given the few data points available for this 

strain. The data show lung bacteria clearance by 24 hours post inoculation, and because of this 

rapid clearance, there is no appreciable blood bacteria and no tissue damage. Phagocytes are the 

only factor showing variation in the ensemble. Phagocyte levels are proportional to lung pathogen 

by a factor of ℎ. The width of this ensemble reflects the width of the posterior distribution on ℎ for 

C57BL/6 mice. 

 

 

Figure 2: Ensemble fits of each murine strain for lung pathogen (PL), blood pathogen (PB), epithelial damage 

(D), and activated phagocytic cells (N).  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Trajectories are simulated over 7 

days, with infection occurring on day 0. Each row denotes the ensembles for a different strain of mouse: CBA/Ca, 

MF1, BALB/c, and C57BL/6, respectively. 
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 POSTERIOR DISTRIBUTIONS OF PARAMETERS EXPLAIN FOUR 

PHENOTYPES IN DATA 

2.8.1 Full marginal distributions 

To characterize the ensembles generated for each of the four murine strains, the full marginal 

posterior distributions for each parameter are analyzed and compared. These distributions are 

plotted as histograms of the value which each parameter takes on in the fitting procedure. Figure 

3 shows the one-dimensional parameter distributions of the strain-independent parameters of the 

model. The left and right sides of the plots are the lower and upper bounds of each parameter, 

respectively, as defined in Table 1. These parameter distributions are identical for all 4 murine 

strains used in this study. 

 

Figure 3: Full marginal parameter distributions of strain-independent parameters.  
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The parameter distributions for the strain-dependent parameters are shown in Figure 4.  

Each row represents one strain of mouse, and each column corresponds to one parameter. 

Comparing down a column shows how different these distributions can be between the four 

phenotypes studied here. Column 1 shows the distributions for parameter ℎ, the rate at which the 

immune cells are activated in response to presence of bacteria. C57BL/6 mice (bottom row) tend 

to exhibit a high rate of phagocyte activation, while each of the other three strains show a similar 

and lower ℎ distribution. The data for the C57BL/6 mice did not include neutrophil counts. 

However, there is a sharp decrease in bacteria counts in the lungs almost immediately after the 

onset of infection. It is likely that this decrease is caused, at least in part, by a high number of 

activated phagocytic cells present in the tissue.  

The ℎ distribution for the BALB/c mice had an average value of 3.4 𝑥 106 cells/CFU/ml, 

while the average for the CBA/Ca mice was 2.1 𝑥 106 cells/CFU/ml. The source of the data for 

these two strains [38] reports that BALB/c did exhibit a higher overall rate of neutrophil influx 

than did the CBA/Ca mice, which aligns with our findings. 

Figure 4, column 2 shows the distributions for the parameter 𝜈, the rate of mechanical 

clearance of lung pathogen. These posterior distributions can be divided into two subgroups: those 

with a higher 𝜈 (MF1 and BALB/c) and those with lower 𝜈 values (CBA/Ca and C57BL/6). Data 

for MF1 mice show a strong decay of lung bacteria in the first twelve hours post-infection, likely 

controlled by 𝜈. BALB/c mice also exert strong control over the bacteria in the first twelve hours, 

again showing the importance of these nonspecific defenses in resistance to bacterial infection. 

Interestingly, C57BL/6 mice have the lowest overall 𝜈 values, despite the quick decay of lung 

pathogen values seen in these data. The immune cell response must then be strong enough to 
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eradicate the bacteria levels without the need for much other intervention via nonspecific 

immunity. 

The final two columns describe the posterior distributions of 𝜉𝑛𝑙 and 𝜉𝑛𝑏, the rates of 

phagocytosis of immune cells in the lungs and blood, respectively. The 𝜉𝑛𝑙 distribution again 

divides the mice into two sets of two. BALB/c and CBA/Ca mice both tend towards the lower 

bound, while MF1 and C57BL/6 tend to have higher values. BALB/c mice have the highest values 

for 𝜉𝑛𝑏, showing a strong immune response in the bloodstream as a distinct characteristic of their 

resistant phenotype. CBA/Ca mice again tend towards the lower bound on the phagocytosis rate, 

underlining their susceptibility to the bacterial infection. MF1 and C57BL/6 mice do not show 

much of a pattern in the 𝜉𝑛𝑏 distributions.  

 

 

Figure 4: Full marginal parameter distributions of strain-dependent parameters.  

Each row represents one strain of mouse, and each column contains a histogram showing the values each strain-

dependent parameter takes on in the corresponding ensemble. 
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2.8.2 Two-dimensional parameter distributions show important correlations 

Two-dimensional parameter distributions demonstrate any correlations between pairs of these 

strain-dependent parameters. Figure 5 shows these parameter correlations for all four strains of 

mice. These plots were generated using the scattercloud function in MATLAB, which plots pairs 

of values as a scatterplot between defined bounds (in this case, the upper and lower bound of the 

parameter of interest), and it uses a Gaussian smoothing technique to create a cloud of points, 

showing where most of the parameter distribution mass is concentrated. The scattercloud is plotted 

for all parameter pairs within our four strain-dependent parameter subset. 

Panel A shows these correlations for the CBA/Ca mice. These clouds show no strong 

correlations between any of the parameters. These highly susceptible mice tend to have parameter 

values only on the lower end of the spectrum, thus creating very little correlation between 

parameter pairs. 

The other three strains show more interesting trends. A negative correlation exists between 

𝜉𝑛𝑙 and ℎ, which is most clearly visible in the C57BL/6 parameter space (Panel D). This negative 

correlation implies that if the actual activation rate of phagocytes is high and more will be brought 

to the infected tissue, the strength of the phagocytosis does not need to be as high as if there were 

fewer phagocytes present to fight the infection. 

There is also a negative correlation evident in both MF1 and BALB/c mice between 

parameters 𝜉𝑛𝑏 and ℎ C57BL/6 mice do not show this trend, as the distribution for  𝜉𝑛𝑏 spans the 

entire allowable range. Again, if more phagocytes are brought in to eliminate bacteria, their 
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individual efficacy does not need to be as high. Other parameter pairs here do not show much of a 

correlation in these ensembles. 

 

Figure 5: Two-dimensional parameter correlations: 

 for strain-dependent parameters for (A) CBA/Ca, (B), MF1, (C) BALB/c, and (D) C57BL/6 mice. 

 

2.8.3 Principal component analysis of ensembles 

Principal component analysis (PCA) applied to the ensembles will identify the parameters which 

describe the most sensitive directions in parameter space. Moving along these sensitive directions 

(i.e. changing these most sensitive parameters in a particular direction) will have a great impact on 

the trajectory output. 

PCA was performed using a singular value decomposition (SVD).  SVD is a factorization 

of a matrix, in which our data matrix X is factorized into the form X = UΣVT, where U is a unitary 
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matrix, Σ is a diagonal matrix, and VT is the transpose of unitary matrix V. The elements of Σ are 

the singular values of X, and columns of V yield the principal directions. The 17 parameters in this 

model yield 17 principal components. The singular values associated with each of the 17 principal 

components (Figure 6) show a significant difference between principal components 16 and 17, 

denoting a sharp increase in sensitivity at the last principal component [54]. Therefore, principal 

component 17 characterized a very stiff direction in parameter space, indicating that parameters 

contributing large coefficients to this principal component are particularly sensitive. 

 

 

Figure 6:  Eigenvalues associated with each principal component for mouse ensembles. 

 

 

The makeup of this principal component is shown in pie charts in Figure 7. The larger a 

piece of the pie, the more sensitive the ensemble is to that parameter. CBA/Ca mice show the most 

sensitivity to the activation rate of phagocytes and the nonspecific clearance rate. If either of these 
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factors was increased, the CBA/Ca mice would have a better chance of fighting off the infection 

and the phenotype would be altered. The posterior distributions for these parameters tend to 

include low rates for both of these parameters, however, keeping the CBA/Ca mice from being 

able to clear pathogen from the lungs. 

MF1 mice are most sensitive to the nonspecific immunity, with some contribution from the 

activation rate of phagocytes. Nonspecific defenses are responsible for the initial decline in lung 

pathogen numbers in these mice, and thus are the primary factor to creating this phenotype.  

The variation in the trajectories of BALB/c mice is most sensitive to the blood pathogen 

phagocytosis rate and the nonspecific immunity. BALB/c mice are primarily able to resist the 

infection because they can keep the blood bacteria levels under control, and are therefore able to 

limit movement back into the lungs and survive the infection. The initial decline in lung pathogen 

levels is driven by nonspecific clearance, accounting for the large contribution of ν to the 

sensitivity. 

C57BL/6 mice are most sensitive to the lung pathogen phagocytosis and the phagocyte 

activation rate. Since these mice clear all bacteria from the lungs before there can be any significant 

movement into the blood component, the variation in this phenotype will be predominantly subject 

to the lung phagocytosis parameters. Thus, the stiff directions identified in the strain-specific 

ensembles point to biological drivers for each of the phenotypes. 
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Figure 7: PCA results for mouse strain study: 

Composition of the principal component associated with the smallest eigenvalue for each mouse strain. The larger 

the fraction represented by a parameter, the more sensitive the population is to that parameter. 

 MODEL VALIDATION 

To ensure the ODE model is not overfit to the data previously presented, more data from literature 

searches were used to test the model. PubMed searches for published data from experiments in 

which one of these four murine strains were infected with D39 S. pneumoniae lung and/or blood 

bacteria data. No comparable data could be found for the CBA/Ca mice. 

Smith et al. [40] published data for BALB/c mice infected intranasally with D39 strain 

pneumococcus at three different inocula: 104 CFU/ml, 105 CFU/ml, and 106 CFU/ml. At the low 

inoculum, the mice clear the bacteria within a few hours, but at a higher inoculum there are 

appreciable bacteria levels over the first few days. We simulated this system with all parameter 
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sets previously generated for BALB/c but with the three initial conditions listed (Figure 8). The 

mice clear bacteria within 2 days post inoculation for both 104 CFU/ml and 105 CFU/ml. At 106 

CFU/ml the predicted trajectories are those originally generated by the BALB/c mice ensemble 

(Figure 2). Given the large standard deviations in the data, the ensemble fits these data generally 

well, except on the first day, as our predicted trajectories all decrease immediately after 

inoculation, contrary to these observations. There may be an uncertainty in the actual starting 

inoculation levels due to different technique of delivery in the Smith et al. experiments compared 

to those used for calibration of the model. 

 

 

Figure 8: Model validation on test data for BALB/c mice.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Trajectories are simulated over 4 

days, with infection occurring on day 0. Each row represents a different initial bacterial load modeled: 104 CFU, 105 

CFU, and 106 CFU, respectively. 
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We also validated predictions in MF1 mice on data in which MF1 mice were infected with 

a higher dose of D39 strain pneumococcus (108
 CFU/ml) [55]. Only lung pathogen data is reported 

for this testing set, obtained over the first 24 hours post inoculation. Qualitatively, the data look 

similar to our training set, with a smaller initial dip in lung pathogen populations but the same 

general timeframe of events. At this higher inoculum, innate immunity will not be as effective, 

and so the initial clearance is not as noticeable as in the training data. Yet, the ensemble of 

trajectories fit the data well, again validating our ensemble as biologically relevant (Figure 9). 

 

 

Figure 9: Model validation on test data for MF1 mice.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Trajectories are simulated over 4 

days, with infection occurring on day 0. 

 

Kadioglu et al. provided data for female C57BL/6 mice after challenges of both 105 and 

106 CFU/ml [39]. We train our set on the lower inoculum, and then validate on the higher inoculum 

(Figure 10). We have only four data points for lung bacteria levels, but the trajectories generally 
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fit these points well. Gingles et al. provided a count of blood pathogen 24 hours post inoculation 

for the C57BL/6 mice, estimating about 2 – 3 log CFU/ml [38]. This estimate aligns with our 

simulated fit (Figure 10) as well, also validating predictions from the ensemble. Mean survival 

time given in the Gingles et al. study was about 72 hours post inoculation for this strain. Most of 

the trajectories at this higher initial condition will cause sustained high lung pathogen levels, but 

a small percentage of the trajectories will be able to clear within a few days. In this situation, the 

strength of our inference is limited by available data: without late data, it is impossible to discern 

how many of these trajectories that predict bacterial clearance would, in reality, be associated with 

dead mice. However, following trends seen in the training set for shapes of trajectories and mean 

time to death, this test again seems to support that inferences using our approach is robust. 

 

 

 

Figure 10:  Model validation on test data for C57BL/6 mice.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Trajectories are simulated over 7 

days, with infection occurring on day 0. 
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 DISCUSSION 

We developed an ensemble model of intrahost immune dynamics of pneumococcal pneumonia in 

four murine strains, where each strain is represented as a model ensemble, a large collection of 

parameter sets compatible with experimental data. With only four equations and 17 parameters, 

the model expresses phenotypic differences across strains as differences in parametric distributions 

across the corresponding ensembles. These differences in immune response crystalize in four 

strain-dependent parameters governing different aspects of the immune response. Variance in the 

phenotypes can also be explained biologically through the principal component analysis described 

in Figure 7. 

Two of the strains studied in this work, BALB/c and C57BL/6, were resistant to the 

pneumococcal infection and able to survive the inoculum, but the model suggests that their 

immune systems handled the infection in different ways. BALB/c mice first appear to control lung 

pathogen levels through a strong nonspecific immunity, showing a sharp decay in bacteria levels 

in the first day. This component of immunity may include mechanisms such as mucociliary 

clearance, a specific characteristic of respiratory epithelial cells conveying resistance to bacterial 

attachment, alveolar macrophage activity, or the presence of other participants to mucosal 

immunity such as defensins [56]. As infiltration into the blood increases, blood and 

extrapulmonary pathogen clearance become the strongest influence on the ability of bacteria to 

propagate infection. C57BL/6 mice, on the other hand, control bacterial populations by recruiting 

phagocytes quickly and maintaining a high level of efficacy of phagocytosis in tissue. 

We see separate trends for the strains that do not survive the infection. CBA/Ca mice have 

low bacterial clearance rates both by leukocytic phagocytosis and by nonspecific immunity, 

explaining their tendency to die soon after inoculation with a high pathogen load. MF1 have strong 
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nonspecific immune defenses, but phagocytes cannot effectively control excess pathogens and 

therefore do not overcome the infection. 

We have also shown that our model does not overfit the four experimental datasets used to 

compute the strain-specific ensembles, as predictions generated from those ensembles produced 

good fit of testing data, both qualitatively and quantitatively. Important conclusions from literature, 

such as survival times and strength of cytokine signaling, can be validated with the parameter 

ensembles, supporting the biological and mathematical relevance of our model. 

It is also clear that containing blood and extrapulmonary bacteria to low levels is vital to 

surviving an infection. Several studies suggest that resistant mice have a higher rate of influx of 

phagocytes than the susceptible mice, corresponding to our parameter ℎ [57–59]. The ensembles 

show the highest rates of influx in C57BL/6 and MF1 mice, and the lowest rates for CBA/Ca mice. 

In the future, flow cytometry could be performed to test the number of activated phagocytes in the 

blood of each of these strains. We could then determine if this difference in phagocytosis rates is 

due to an increase in the number of phagocytes in the blood compartment, or whether the same 

number of phagocytes is more efficient in clearing bacteria in the BALB/c mice. We would predict 

that, as phagocyte number is driven by bacterial counts, higher phagocyte counts would be 

associated with worse outcomes. Of course, profound immune failure associated with extremely 

low blood phagocytes would also be associated with a poor outcome. Support for these predictions 

can be found in several reports, where successful containment of infection was associated with a 

strong immune response at the site of infection, with limited expansion of the inflammatory 

response beyond this site [60,61]. Our model explains the data for all testing and training sets well 

and provides biological mechanisms associated with these varying phenotypes. Our equations 

greatly simplify the dynamics of the system. We summarize the immune system with only three 
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components: one term for the nonspecific removal of pathogen, one term encompassing all 

phagocytosis in the lung tissue, and one term for the phagocytosis in blood. In reality, these 

mechanisms are more complex, involving macrophages, neutrophils, plasma cells and other 

adaptive immune components, and many cytokines and chemokines for signaling. The model 

could be adapted to include more of these components explicitly. Incorporating more mechanistic 

details could allow the models to further elucidate the biological underpinning of phenotypic 

differences. Such enhancements provide a path for future improvements but may be limited by 

available experimental data. 

Mice are typically sacrificed whenever data were collected, although methods to collect 

data longitudinally in smaller animals are expanding. Extending the model-based approach to truly 

longitudinal data would improve the robustness of inference. The ensemble methodology is not an 

attempt to construct a synthetic population of individuals. Rather, it simply attempts to reflect data 

sparsity and uncertainty into model uncertainty, and therefore prediction uncertainty [16]. The 

posterior distribution, because it is computed from a limited number of individuals, represents an 

underestimate of population variability. Whether access to longitudinal data would impose more 

constraints on this distribution remains an open question. In the context of precision medicine, 

comparison of human phenotypes could be possible with simple models as well. Differences in 

human susceptibility to pneumonia and other lung diseases can be partially attributed to differences 

in the inflammatory response [11,62]. Our model can distinguish between phenotypes with high 

and low neutrophil recruitment, which may lend insight to mechanisms distinguishing severe from 

mild infections, for comparable pathogen loads. 

Traditionally, contrasting phenotypes is accomplished through data analysis, from which 

speculative mechanisms explaining differences are inferred [11,38,63–67]. Our ensemble-based 
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approach determines putative mechanisms a priori, and quantifies their relative importance in 

explaining various phenotypes through distributional differences in phenotype-specific ensemble. 

Our approach has two main limitations. Potential mechanisms can only be included a priori, and 

mathematical models have limited complexity owing to data sparsity. If quantification of some of 

the mechanisms can be supported by data, a model-based approach would also offer more detailed 

and robust insight. Both approaches, data-first and model-first, are in fact complementary. The 

richness of the data should determine the level of detail with which individual mechanisms can be 

modeled. Yet, a model-based approach may lead to mechanistic insight more naturally, and 

provide direct intuition as to the structure of the ensuing experimental agenda. 
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3.0  A THREE-TIERED STUDY OF DIFFERENCES IN MURINE INTRAHOST 

IMMUNE RESPONSE TO MULTIPLE PNEUMOCCAL STRAINS 

 OVERVIEW 

Using the pneumonia ODE model presented in the previous chapter, we present a complementary 

study in which we vary the species of pathogen while keeping the host species constant. We first 

explore the response to D39 (serotype 2) bacteria missing portions of the pneumolysin protein 

controlling either the hemolytic activity (H2-/C+) or complement-activating activity (H+/C-) [68]. 

Next, we model the response to D39 bacteria deficient in either NanA or NanB [55]. Lastly, we 

explore the response to three different serotypes of pneumococcus: D39 (serotype 2), 0100993 

(serotype 3), and TIGR4 (serotype 4) bacteria [69]. Notably, a change in few key parameters 

expressing the activity of immune response components and virulence factors in our 4-variable 

ODE model captures the differences in the progression of infection exhibited by each phenotype 

of bacteria.  This work has been previously published in PLOS One [70]. 

 VIRULENCE OF PNEUMOCOCCUS 

The capsule of pneumococcal bacteria, composed almost entirely of polysaccharides, shields the 

bacteria from several host defense mechanisms and contributes significantly to the virulence of 

pneumococci [71–73].  In fact, encapsulated strains are about 100,000 times more virulent than 

strains without a capsule [74,75].  
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The virulence of encapsulated bacteria depends on capsule thickness and chemical 

composition. A thicker capsule is advantageous in that it allows the bacteria to evade phagocytosis 

by immune cells such as neutrophils or macrophages [76]. However, thicker capsules also impede 

the ability of the bacteria to migrate from lung tissue to the bloodstream, decreasing their ability 

to cause bacteremia [77]. Bacteria in blood tend to proliferate faster than in tissue [44,45], and the 

number of activated phagocytes in the blood is proportionally lower than the number which 

migrate into infected tissue. Thus, even though a thinner capsule leaves the bacteria more 

vulnerable to phagocytosis, a thin capsule may also be advantageous for survival in some host 

species. Because of this dichotomy, pneumococcal serotypes have evolved with a range of capsule 

thicknesses. 

In addition to capsule thickness, the chemical composition of the capsule is significant to 

bacterial fitness. Serotypes of pneumococcus are distinguished by the presence of specific 

glycoprotein motifs present on the surface of the capsule that influence the activation of the 

complement [78,79], degradation of complement components [80], and resistance to phagocytosis 

[81]. To date, over 90 serotypes of pneumococcus have been identified [82]. Each serotype can 

induce a different reaction from the immune system, depending on the makeup of the capsule and 

the activity of virulence factors associated with the bacterial surface [83].  

In addition to the capsule, other virulence factors, present both on the surface and within 

the bacterium, play an important role in the ability of the bacteria to evade the immune system. 

Examples of such virulence factors are pneumolysin and neuraminidase. Pneumolysin is a pore-

forming toxin expressed by virtually all serotypes of pneumococcus [84]. In early stages of the 

infection, when bacteria exist in low levels in the body, pneumolysin is cytotoxic, causing 

apoptotic activity in the epithelial cells [85] and activation of the complement system [86]. As the 
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infection progresses and pneumolysin concentration reaches higher levels, it is lytic to any cell 

with cholesterol in the membrane [87]. This lytic action causes damage to the tissue, and 

surrounding epithelial cells will increase the cytokine signaling to activate immune cells. In the 

absence of pneumolysin, the influx of phagocytic cells is delayed and decreased [37].  

Neuraminidase is a surface protein that promotes the attachment of the bacteria to the epithelium. 

Neuraminidase cleaves the terminal sialic acid from glycolipids and glycoproteins, which damages 

the epithelium, exposes more potential binding sites for the bacteria, and promotes colonization 

[88,89]. Pneumococci have two neuraminidases on their surfaces: neuraminidase A (NanA) and 

neuraminidase B (NanB) [55]. Though bacteria deficient in either NanA or NanB are unable to 

cause sepsis in mice, NanA-deficient (NanA–) bacteria have been shown to cause less damage than 

NanB– bacteria [55]. 

 OVERVIEW OF METHODS 

The ODE model used for the bacteria strain study is identical to that used in the murine strain study 

presented in Chapter 2. In each of our three studies (pneumolysin activity study, neuraminidase 

study, and serotype study), we define a subset of the model parameters as “bacterial-strain-

dependent”. These parameters are chosen based on existing knowledge of the mechanisms of 

immune response regulation so as to account for expected phenotypic differences seen in the 

progression of disease caused by each strain of bacteria modeled in the study. All other parameters 

are defined as “bacterial-strain-independent”; these parameters, which include parameters 

governing phagocyte lifespan, bacteria growth rates, threshold parameters, and parameters 
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inherent to host tissue, are assumed not to differ across strains of bacteria. Table 2 summarizes 

these parameter choices for each of the three studies. These choices are justified in Section 3.4. 

 

 

Table 2: Summary of bacteria-strain-dependent parameters in each study. 

Study Parameters varied between strains Reference 

Pneumolysin activity ℎ, 𝑞, 𝜈, 𝜉𝑛𝑙 , 𝜉𝑛𝑏 [68] 

Neuraminidase 𝑞, 𝜈, 𝑎, 𝜉𝑛𝑙 , 𝜉𝑛𝑏 [55] 

Serotype ℎ, 𝑞, 𝜈, 𝑎, 𝜉𝑛𝑙, 𝜉𝑛𝑏 [69] 

 

 EXPERIMENTAL DATA 

This work is divided into three sub-studies, each with its own corresponding set of experimental 

data taken from literature. Here, the data used in each study and the method by which it was 

retrieved are summarized for the reader. 

3.4.1 Pneumolysin activity study data 

Data for the first study comes from a 2003 paper on the effect of pneumolysin on the survival of 

bacteria in the host [68]. Female MF1 mice were infected with D39 S. pneumoniae bacteria. The 

study involved wild-type D39 and two mutant strains: H+/C-, in which pneumolysin lacks its 

complement-activating activity, and H2-/C+, in which pneumolysin has substantially reduced 

hemolytic (pore-forming) activity.  The C location on the pneumolysin protein activates the 
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classical complement pathway [90]. Decreased activation of complement leads to decreased 

phagocytic activity in both compartments and decreased activation of nonspecific immunity. In 

our model, these effects are controlled by ℎ, the rate at which phagocytes are activated by lung 

bacteria; ν, the rate of nonspecific clearance of bacteria from the lungs by mucociliary clearance 

and resident macrophages; 𝜉𝑛𝑙, the rate at which phagocytes clear bacteria from the lungs; and 𝜉𝑛𝑏, 

the rate at which phagocytes clear bacteria from the blood. The H segment of the pneumolysin 

controls the hemolytic activity of the bacteria, and hence the rate at which damage to the epithelium 

increases due to the presence of bacteria in the lungs, which is in our model represented by 

parameter 𝑞,  We therefore fit the model to the pneumolysin study data by allowing only ℎ, 𝜈, 𝜉𝑛𝑙, 

𝜉𝑛𝑏 and 𝑞 to vary across the bacterial strains.  

3.4.2 Neuraminidase study data 

Data for the neuraminidase study was drawn from a 2006 study on the impact of both 

neuraminidase A and neuraminidase B on the survival of bacteria in the host [55]. Mice were 

infected intranasally with 107 CFU of either wild-type, NanA–, or NanB– D39 pneumococcus. 

NanA– bacteria are cleared from the lungs by 12 hours post-infection, while NanB– bacteria persist 

for up to 48 hours post-infection but are eventually cleared by the immune system. Wild-type 

bacteria overwhelm the immune system and cause death about 24 hours post-infection. The wild-

type D39 data is the same data used to calibrate the MF1 mouse model in Chapter 2.  

We select the following parameters to explain the behavior of neuraminidase in the 

intranasal infection: 𝑞, the rate of increase of damage to epithelium; 𝜉𝑛𝑙, the rate of intrapulmonary 

phagocytosis; and ν, the nonspecific clearance of bacteria in the lungs. Changes in 𝑞 and ν would 
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represent a decreased ability of the bacteria to bind to the epithelium in the absence of 

neuraminidase, and some studies also suggest neuraminidase can stimulate resistance to 

opsonization by neutrophils [91], which would impact the value of 𝜉𝑛𝑙. We hypothesize that the 

wild-type bacteria should cause the most damage to the epithelium, as this strain has full ability to 

bind to the epithelium. We would expect higher rates of clearance and lower damage creation from 

the mutant strains.  

Following the intranasal infection, neither NanA– nor NanB– bacteria were able to be 

isolated from the blood [55]. To better explore the role of neuraminidase in the blood vessels, 

Manco et al. also infected MF1 mice intravenously with 105 CFU of one of these bacterial strains. 

Again, the neuraminidase-deficient bacteria are unable to cause a serious infection, as they are 

cleared from the blood within 2 days post-infection. Wild-type bacteria, however, are again able 

to cause serious bacteremia and therefore lead to morbidity around 2 days post-infection.  We 

select a, the damage-independent rate of bacterial migration from blood to tissue, and 𝜉𝑛𝑏, the rate 

of extrapulmonary phagocytosis, to explain the results of the intravenous infection experiment.  

Neutrophil opsonization would again be limited by the presence of neuraminidase in the wild-type 

bacteria, and neuraminidase-deficient bacteria would not be able to migrate between compartments 

easily, as they lack a basic component of adhesion to the epithelial wall.  

3.4.3 Serotype study data 

The final set of data was taken from a 2004 study featuring three serotypes of S. pneumoniae. [69]. 

In this experiment, mice were intranasally infected with wild-type strains of either D39 (serotype 

2), 0100993 (serotype 3), or TIGR4 (serotype 4) pneumococcus. Data were taken at 12, 24, and 
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48 hours post-infection. Three mice were sacrificed at each time point and their bacteria and cell 

counts were averaged to provide the experimental data. 

These serotypes differ primarily in their capsule thicknesses and virulence. Capsule 

thickness is a major contributor to the ease with which bacteria can move through the epithelial 

barrier. In this study, we selected 6 parameters as bacteria-strain-dependent: ℎ, 𝑞, 𝑎, 𝜈, 𝜉𝑛𝑙 and 𝜉𝑛𝑏, 

since these parameters control the degree to which bacteria can move between lung tissue and 

blood (𝑞 and a), as well as the degree to which the host is able to fight these particular strains of 

pneumococcus (ℎ, 𝜈, 𝜉𝑛𝑙, 𝜉𝑛𝑏).  

 PNEUMOLYSIN ACTIVITY STUDY 

In accord with experimental conditions, we set the initial condition for lung bacteria to 106 CFU, 

and all other variables were initially set to 0. Figure 11 displays the ensemble fits to data for wild-

type, H+/C-, and H2-/C+ D39 bacteria. On each ensemble trajectory plot, we represent the median 

trajectory as a solid black line, with the 25 – 75% quantiles in dark gray and 5 – 95% percentiles 

in light gray. Mean experimental data are represented by the black triangles, with standard 

deviations presented by the error bars. 

In both lung and blood, each strain exhibits distinct behavior in the first 12 hours post-

infection. The H+/C- bacteria stay at a near constant high level for the first 12 hours and reach the 

bloodstream in only 2 hours. The H2-/C+ bacterial population remains essentially level in the lungs 

until a sharp decrease at 12 hours, while showing negligible levels in the blood during that time. 

Bacterial populations in both compartments then begin to rise quickly, as transport between 

compartments increases and the bacteria can more easily avoid the immune system. The wild-type 
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bacteria exhibit a gradual, steady decline in lung population levels. Wild-type bacteria reach the 

blood in about 6-8 hours post-infection. As Figure 11 shows, the model captures all these behaviors 

within the ensemble. 

 

 

 

Figure 11: Ensemble fits of each strain for lung pathogen (PL), blood pathogen (PB), epithelial damage 

(D), and activated phagocytic cells (N) for pneumolysin activity study.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Data were taken at 0, 3, 6, 12, 24, and 

48 hours post-infection with ten mice in each group. Trajectories are simulated over two days, with infection 

occurring on day 0. The top row shows ensembles for H+/C- bacteria, the middle row shows ensembles for H2-/C+ 

bacteria, and the bottom row shows ensembles for the wild-type (WT) bacteria. 
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We next explore differences in the posterior distributions of the bacteria-strain-dependent 

parameters (Figure 12). H+/C- bacteria distributions (Figure 12, top row) show a bimodal response 

of the phagocytes, and the pairwise parameter correlations in Figure 15 indicate these parameters 

are inversely correlated. Thus, when lung phagocytosis rates (𝜉𝑛𝑙) are high, blood phagocytosis 

(𝜉𝑛𝑏) tends to be less effective, and vice versa. Since this strain lacks complement activation, we 

would expect a generally low level of phagocytic activity. Interestingly, even though this strain 

has full hemolytic activity, the distribution of the damage production rate 𝑞 exists in the lower half 

of its bounds. This likely occurs because lung bacteria levels remain high throughout the full course 

of the infection, and thus the values for 𝑞 do not need to be exceedingly high in order to produce 

movement into the blood compartment. 

H2-/C+ bacteria distributions (Figure 12, middle row) have full complement-activating 

capability, so they show relatively high levels of phagocytic activation (ℎ) and response (𝜉𝑛𝑙).  

Nonspecific clearance (ν) tends to be low for this strain, allowing the bacteria to persist in the lungs 

at a constant level for the first 8 hours post-infection. The lack of hemolytic activity in this bacterial 

strain is associated with a low level of damage production 𝑞. In contrast, wild-type bacteria 

distributions (Figure 12, bottom row) exhibit high levels of damage production, phagocytic 

activation, and nonspecific clearance. The pneumolysin of this strain possesses its full hemolytic 

and complement-activating activity. Clearance of the wild-type bacteria in the blood is low, as the 

bacteria reach the blood and remain at high levels after about 12 hours post-infection. 
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Figure 12: Full marginal parameter distributions for strain-dependent parameters in pneumolysin activity study.  

Each row represents one strain used in this study, and each column contains histograms for one of the strain-

dependent parameters in this study (𝒉, 𝒒, 𝝂, 𝝃𝒏𝒍, 𝝃𝒏𝒃). 

 

 

The strain-independent parameters include all other parameters of the model, with the 

exception of carrying capacity K, which is kept at a constant value of 108 CFU in this experiment. 

Histograms for the strain-independent parameters are shown in Figure 13. All three ensembles in 

the pneumolysin activity study have identical distributions for these ten parameters. Bounds on 

these parameters are identical to those presented in Table 2. 
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Figure 13: Full marginal parameter distributions for strain-independent parameters in pneumolysin activity study.  

All parameter values are given in log10 space, and upper and lower bounds on the graphs correspond to upper and 

lower bounds given to each parameter in the MCMC procedure (Table 1). 

 

 

We next study the eigenvalues of the system through singular-value decomposition (Figure 

14). Since there is no large difference in the singular values associated with the final two principal 

components, we conclude that a principal component analysis would not be beneficial to this study, 

as there is no clear stiff direction in parameter space.   

We instead present two-dimensional parameter correlations for the strain-dependent 

parameters for each bacteria strain (Figure 15). Figure 15, left panel more clearly shows the 

bimodality exhibited by 𝜉𝑛𝑙 and 𝜉𝑛𝑏 in the H+/C- ensemble. The ensembles for H2-/C+ (Figure 15, 

middle) and wild-type (Figure 15, right) show few correlations of interest, as these distributions 

tend to be tighter than those of the H+/C- ensemble. 
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Figure 14: Eigenvalues and associated principal components for pneumolysin activity study. 

 

 

 

 

 

Figure 15: Two-dimensional parameter correlations for pneumolysin activity study.  

(Left) H+/C-, (Center) H2-/C+ , (Right) WT parameter correlations. Each dot represents a single pair of 

parameter values in the ensemble. 
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 NEURAMINIDASE STUDY 

As explained in Section 3.4.2, the neuraminidase study includes experimental data for both an 

intranasal and an intravenous bacterial infection. We fit both the intranasal and intravenous data 

simultaneously for all three strains of bacteria. For the intranasal case, we use an initial condition 

of 107 CFU for 𝑃𝐿 and 0 CFU for 𝑃𝐵, and for the intravenous case, we use an initial condition of 

0 CFU for 𝑃𝐿 and 105 CFU for 𝑃𝐵, consistent with experimental conditions. The model is fit to 

data for both cases simultaneously, thus generating only one set of parameter distributions for each 

strain of mouse in the neuraminidase study. 

Figure 16 shows the ensemble fits to intranasal infection data for wild-type, NanA–, and 

NanB– D39 bacteria. NanA– bacteria are unable to adequately bind to the epithelium, and they are 

cleared from the lungs within 12 hours. NanA– bacteria are unable to cause any appreciable damage 

or sustain a population in the blood for more than a few hours in our predicted trajectories. 

Experiments verified that these bacteria were not detected in the blood at any point in the 

experiments. NanB– bacteria can persist in the lungs longer than NanA–, but these bacteria will 

eventually clear as well. While our ensembles show some presence of bacteria in the blood, these 

bacteria are cleared within about one day, thus not causing severe bacteremia, again aligning with 

the findings of the authors [55]. The wild-type bacteria are highly virulent, causing sepsis and 

eventual death to the mice about 1 day post-infection. Our ensembles match the lung data well and 

show a quick rise in blood bacteria levels as well as epithelial damage. Though the activated 

phagocytic cell population is highest in the simulated wild-type bacteria ensemble, these cells are 

unable to contain the bacterial population in either compartment. 
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Figure 16: Ensemble fits of each strain for lung pathogen (PL), blood pathogen (PB), epithelial damage 

(D), and activated phagocytic cells (N) for intranasal infection in neuraminidase study.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Data were taken at 0, 2, 4, 6, 12, 24, 

and 48 hours post-infection with ten mice in each group. Trajectories are simulated over two days, with infection 

occurring on day 0. The top row shows ensembles for NanA– bacteria, the middle row shows ensembles for NanB– 

bacteria, and the bottom row shows ensembles for the wild-type (WT) bacteria. 

 

 

 

Figure 17 demonstrates the ensemble solutions for the intravenous infection experiments. 

Bacteria are introduced into the blood at day 0 at an initial level of 105 CFU. NanA– bacteria are 

cleared from the blood within about 12 hours post-infection, and while they are able to reach the 

lungs relatively quickly, they are cleared from the tissue quickly as well. NanB– bacteria show an 
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initial steep drop in blood levels as they move into the lungs. These bacteria are not fully cleared 

from the blood until about 2 days post-infection. While the lung bacteria levels have not been 

eliminated at this point, all trajectories will eventually lead to total clearance of bacteria from both 

compartments. Again, the wild-type bacteria are the most virulent in these experiments. These are 

the only bacteria able to cause significant damage, and as such the bacteria levels in both 

compartments rise over the first 12 hours until they hit a carrying capacity in the blood and cause 

morbidity of the host. 

 

 

Figure 17: Ensemble fits of each strain for lung pathogen (PL), blood pathogen (PB), epithelial damage 

(D), and activated phagocytic cells (N) for intravenous infection in neuraminidase study.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Data were taken at 0, 3, 6, 24 and 48 

hours post-infection with ten mice in each group. Trajectories are simulated over two days, with infection occurring 
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on day 0. The top row shows ensembles for NanA– bacteria, the middle row shows ensembles for NanB– bacteria, 

and the bottom row shows ensembles for the wild-type (WT) bacteria. 

 

 

Distributions of our bacteria-dependent parameters show marked differences across these 

three strains (Figure 18). NanA– bacteria are essentially insensitive to 𝑞 and 𝑎, as the bacteria are 

unable to maintain their population for more than a few hours in either the intranasal or the 

intravenous experiments. Clearance rates of the NanA– bacteria both by nonspecific means (𝜈) and 

by phagocytic cells (𝜉𝑛𝑙, 𝜉𝑛𝑏) tend towards the upper end of the spectrum, meaning these bacteria 

are easily cleared by the immune system. This result is further verified by the evidence that NanA 

prevents opsonization by neutrophils [91]. 

NanB– bacteria show the most sensitivity to 𝑎, the damage-independent movement of 

bacteria from blood to lungs, as this distribution is the most narrow. Pulmonary clearance of the 

NanB– bacteria (𝜈, 𝜉𝑛𝑏) tends to be lower than that of the NanA– bacteria. It is unclear whether 

NanB has the same effect on opsonization as NanA; further experiments on the interactions of 

NanB and neutrophils are needed in order to verify this prediction biologically. The clearance of 

NanB– bacteria in the blood is generally very high, explaining the fast initial drop in blood levels 

in the intravenous infection data. 

The distributions for the wild-type bacteria differ most from the neuraminidase-deficient 

bacteria in the values of 𝑎 and 𝜉𝑛𝑏, both of which are much lower than the distributions seen in the 

other two strains. Both of these results align with our initial hypotheses; the presence of NanA 

allows the wild-type bacteria additional resistance to phagocytosis, and the ability to bind the 

epithelium and cause excess damage means the bacteria require less damage-independent motion 

to overwhelm the lung and blood compartments. Interestingly, all three strains show an 
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insensitivity to 𝑞, despite the known increased ability of the wild-type bacteria to adhere to the 

epithelium and create damage. The effect of this phenomenon is absorbed in the parameter 𝑎; 

higher values of 𝑎 imply lower levels of damage created. 

 

 

Figure 18: Full marginal parameter distributions for strain-dependent parameters in neuraminidase study.  

Each row represents one strain used in this study, and each column contains histograms for one of the strain-

dependent parameters in this study (𝒒, 𝒂, 𝝂, 𝝃𝒏𝒍, 𝝃𝒏𝒃). 

 

 

Strain-independent parameters are shown in Figure 19. Most parameters fully span their 

bounds, allowing a wide range of phenotypes in the output, given a particular set of strain-

dependent parameters from Figure 18. 
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Figure 19: Full marginal parameter distributions for strain-independent parameters in neuraminidase study.  

All parameter values are given in log10 space, and upper and lower bounds on the graphs correspond to upper and 

lower bounds given to each parameter in the MCMC procedure (Table 1). 

 

 

The principal values of the system again show no significant difference between the final 

two components (Figure 20), so a principal component analysis would not provide interpretable 

results. The two-dimensional parameter correlations (Figure 21) show a few noteworthy patterns. 

NanA– bacteria (green) exhibit a switching behavior with 𝜈, 𝑎, and 𝜉𝑛𝑙. When 𝜈 is high, then  𝑎 

and 𝜉𝑛𝑙 are low, and vice versa.  In other words, when nonspecific clearance of bacteria in the lungs 

is high, phagocyte-dependent clearance can be low to achieve the same overall clearance from the 

lungs. 

In addition, both NanB– (red) and wild-type bacteria (blue) show a strong negative 

correlation between 𝑞 and 𝑎. As we saw in Figure 18, much of the effects of 𝑞 become absorbed 
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in parameter 𝑎, as low damage creation can imply a large percentage of bacteria movement is 

damage-independent. 

 

Figure 20: Eigenvalues and corresponding principal components for neuraminidase study. 

 

 

 

 

Figure 21: Two-dimensional parameter correlations for neuraminidase study.  

(Left) NanA-- -, (Center) NanB--, (Right) WT parameter correlations. Each dot represents a single pair of 

parameter values in the ensemble. 



 58 

 SEROTYPE STUDY 

In the serotype study, each strain of bacteria was given in a different dose to the mice, reflecting 

their widely varied virulence in murine hosts. Because of this, we have three separate sets of initial 

conditions used to simulate the ODEs. Lung bacteria begins at 106 CFU for D39, 107 CFU for 

0100993, or 105 CFU for TIGR4 pneumococcus. As in the previous studies, all other variables 

begin at 0. 

Figure 22 shows the ensemble trajectories fit to data for D39, 0100993, and TIGR4 bacteria 

up to 48 hours post-infection. Trajectories generally fit data tightly, with most variation in 

predicted trajectories occurring in 𝐷 and 𝑁. TIGR4 tend to create the most damage, while very 

little damage is seen for the D39 ensemble. Each strain varies significantly in the first 12 hours, 

represented by the first data point. 0100993 bacteria remain relatively high, exhibiting little 

nonspecific clearance. TIGR4 and D39 bacteria levels in the lung decrease by several orders of 

magnitude during the first 12 hours, showing both a greater susceptibility to this initial clearance 

and faster movement into the bloodstream. 
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Figure 22: Ensemble fits to data in serotype study.  

The black line represents the median trajectory, the inner dark gray area represents the 25th to 75th quantiles of 

trajectories, and the outer light gray envelope represents 90% of the trajectories (5th to 95th quantiles). Data points 

with standard deviations are represented by the black triangles with error bars. Data were taken at 12,  24 and 48 

hours post-infection with ten mice in each group. Trajectories are simulated over two days, with infection occurring 

on day 0. The top row shows ensembles for 0100993 bacteria, the middle row shows ensembles for TIGR4 bacteria, 

and the bottom row shows ensembles for the D39 bacteria. 

 

 

 

Figure 23 shows the distributions of bacteria-strain-dependent parameters for each of the 

three serotypes. The largest disparities between strains exist in distributions for 𝑎, 𝜉𝑛𝑙, 𝜉𝑛𝑏 and 𝜈 

populations. 0100993 bacteria tend to have a low value for 𝑎, the damage-independent movement 

of bacteria from the bloodstream to the tissue. Since these serotype 3 bacteria typically remain 

higher in the lung tissue than in the blood, we would expect the effect of this motion to be minimal. 
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In contrast, TIGR4 bacteria tend to have a high 𝑎 value, as these bacteria readily cause sepsis. D39, 

known to cause both severe pneumonia and sepsis in MF1 mice, have 𝑎 values concentrated 

between these two extremes. 

Each serotype also differs in its resistance to clearance by both mucosal immunity and 

phagocytic activity. The distribution for D39 𝜈 aligns with the MF1 output from our previous work 

[24]. Higher values of 𝜈 are evident in 0100993 and TIGR4 bacteria. Phagocytosis rates (𝜉𝑛𝑙 and 

𝜉𝑛𝑏) also vary between these serotypes. Phagocytosis in the tissue tends to be low for the 0100993 

bacteria, high for TIGR4, and D39 lies somewhere in the middle. Extrapulmonary phagocytosis is 

high in both 0100993 (mean of 1.3 × 10−5) and D39 (mean of 1.8 × 10−5),  and  it is slightly 

lower for TIGR4 (mean of 3.6 × 10−6).  

 

 

 

Figure 23: Full marginal parameter distributions for serotype study.  

Each row represents one strain used in this study, and each column contains histograms for one of the strain-

dependent parameters in this study. 
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Strain-independent parameters are shown in Figure 24. Bacterial reproduction rates kl and 

kb, as well as neutrophil activation time τN, tend to be low, but the other parameters generally can 

take on any value in their allowed ranges. 

 

 

Figure 24: Full marginal parameter distributions for strain-independent parameters in serotype study.  

All parameter values are given in log10 space, and upper and lower bounds on the graphs correspond to upper and 

lower bounds given to each parameter in the MCMC procedure (Table 1). 

 

 

We performed singular value decomposition on the ensemble, and from the output 

determine the makeup of each principal component and eigenvalues associated with each. The 

steep drop in the magnitude of the eigenvalue associated with the final principal component 

suggests that the composition of the final principal component explains most of the sensitivity of 

the model (Figure 25). We studied the makeup of this vector to determine which parameters 

contribute most to this sensitivity (Figure 26). The relative contribution of each element to the 
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vector is represented in a pie chart, and the color of each piece denotes whether the parameter has 

a positive (cool colors) or negative (warm colors) contribution.  

Strain 0100993 is most sensitive to 𝜈. Serotype 3 strains tend to stay in the lungs to cause 

severe pneumonia [92], so a sensitivity to clearance in the tissue is expected. The TIGR4 ensemble 

is most sensitive to 𝜈, 𝜉𝑛𝑏 , 𝑞 and 𝑎. TIGR4 bacteria are known to cause bacteremia and sepsis very 

quickly in mice, and eventually progress to cross the blood-brain barrier, leading to meningitis 

[92]. These sensitive parameters control the ability of the bacteria to proliferate in the lungs, cause 

epithelial damage, and move between the lung and blood compartments. Lastly, the D39 ensemble 

is most sensitive to 𝑞. D39 is known to be highly virulent to mice, often leading to both sepsis and 

severe pneumonia [92,93]. Since bacterial replication in lung tissue is highly dependent on the 

ability of the bacteria to move to the blood and evade phagocytosis, we would expect the rate of 

damage creation to be critical to explain the data. 

 

 

Figure 25: Eigenvalues and associated principal components for serotype study. 
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Figure 26: PCA output for the serotype study.  

Each pie chart demonstrates the makeup of principal component 16 for each of the three strains used in this 

study. (Left) PCA for 0100993 strain shows high sensitivity to ν. (Center) TIGR4 PCA shows a high sensitivity to 

parameters 𝒂, 𝝂, 𝒒, 𝝃𝒏𝒍. (Right) PCA for D39 strain shows high sensitivity to q.  

 DISCUSSION 

In this study we further developed the ODE model of intrahost immune response to pneumococcal 

pneumonia presented in Chapter 2 and previously published in Journal of Theoretical Biology 

[24]. We demonstrate the selection of a parsimonious subset of parameters that can define primary 

differences between bacterial strains. We here show that the model is capable of capturing 

differences not only across murine strains, but also across bacterial strains. Our model identifies 

differences in immune response to infection by bacteria missing a portion of a protein 

(pneumolysin activity study), a whole protein (neuraminidase study), or entirely different 

serotypes (serotype study). The model can also describe initial decay and subsequent dramatic rise 

in the number of pneumococci in the lungs, which has been observed experimentally as 

coordinated with a similar rise in the blood. 
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While a different subset of five or six parameters was identified as bacteria-dependent in 

each study, four parameters were consistently bacteria-dependent in all of our three studies: 

𝜈, 𝑞, 𝜉𝑛𝑙 and 𝜉𝑛𝑏. The parameter 𝜈 incorporates nonspecific clearance mechanisms such as 

mucociliary clearance, alveolar macrophage activity, defensins and other proteins active in 

mucosal immunity. The pneumolysin study demonstrated differences in 𝜈 for all three bacterial 

strains, with high 𝜈 values seen in the wild-type bacteria ensembles and low 𝜈 values in the  

H2-/C+ ensembles. Absence of hemolytic activity in the H2-/C+ bacteria could be responsible for 

a decreased activation of the alveolar macrophages, thereby decreasing the overall rate of clearance 

by 𝜈. In the neuraminidase study, 𝜈 tended to be lowest for NanB— bacteria. These bacteria have 

not been studied extensively, so reasons for this difference are unclear.  

In the serotype study, 𝜈 stood out as a highly sensitive parameter for both TIGR4 and 

0100993 bacteria. TIGR4 bacteria are highly virulent, so likely the host must have strong 

nonspecific defenses to control TIGR4 levels from the beginning of the infection.  Another 

virulence factor impacting the nonspecific clearance is choline-binding protein. Choline-binding 

proteins allow bacteria to anchor themselves to the epithelial surface, increasing their ability to 

avoid non-specific clearance mechanisms. Brooks-Walter et al. showed that about 25% of 

pneumococcal strains do not express choline-binding protein A (CbpA, also known as PspC or 

SpsA), which can limit virulence [94]. It has been shown that another serotype 3 strain, A66.1, 

does not express CbpA, so it is possible that our serotype 3 strain, 0100993, also does not. This 

would explain the need for such a high inoculum to generate survival rates similar to those seen in 

the other infections; an inoculum of 107 CFU of 0100993 was required, compared to only 105 CFU 

of TIGR4, suggesting decreased virulence in the serotype 3 strain. 
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The parameter 𝑞, the rate at which lung bacteria create damage to the epithelium, was found 

to be strain-dependent in all three studies. While 𝑞 was not an influential parameter in the 

neuraminidase study, it was crucial to the ensemble fits for the wild-type D39 bacteria in the 

pneumolysin and serotype studies. D39 is often used in murine models of pneumonia because it is 

known to be highly virulent to mice, leading to both severe pneumonia and bacteremia. We would 

therefore expect to see damage creation as a highly important factor in the phenotype associated 

with D39 infection. The 𝑞distribution for wild-type D39 tends to be skewed high in the 

pneumolysin study but exists over the full parameter range in the serotype study. We can see large 

differences in the D39 bacteria levels between the two studies, possibly due to different laboratory 

conditions, different protocols used, or different sources of the materials and specimens used in 

the study. These differences are enough to induce distinct parameter distributions for each wild-

type ensemble.  

The rates of phagocytic clearance in lung tissue and blood (𝜉𝑛𝑙 and 𝜉𝑛𝑏, respectively) were 

also found to be bacteria-dependent parameters in each of the three studies. Many virulence factors 

present on the bacterial surface allow the bacteria to avoid phagocytosis, and since the presence 

and efficacy of these virulence factors varies across strains, we would expect these parameters to 

greatly influence the ensembles. In the pneumolysin study, because the biggest variations in the 

data occur in the first 12 hours, phagocytic cells do not control the major differences in the 

ensembles; these effects are felt more strongly later in the course of the infection. In the 

neuraminidase study, wild-type bacteria are not cleared effectively in the blood, while the 

neuraminidase-deficient strains show very high levels of blood clearance. Neuraminidase A is 

known to decrease efficacy of neutrophil killing [91], so it is possible neuraminidase B has a 

similar effect on the host. Our ensembles do not demonstrate such a stark contrast in the 
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intrapulmonary phagocytosis rates, however. A lower intensity of immune response in the lungs 

is sufficient to clear the bacteria. 

We have utilized experimental data for neutrophil levels and for bacterial levels in the lungs 

and in the blood to calibrate the model.  We have not fit the trajectory of the damage variable to 

any data and therefore this trajectory is a prediction of the model that can be potentially used to 

validate our results. There are several ways that damage to epithelium can be monitored; one 

possibility is by means of a biomarker such as decreased lung capacity or decreased epithelial cell 

cilia [95,96]. The other possibility is to use histological samples to assess the level of epithelial 

damage. The addition of damage level data to future uses of the model could change the 

distributions of q, possibly making them to be tighter to adhere to a particular range of data. 

The ensemble model approach to data analysis can accommodate uncertainty in data, but 

it does have limitations. Our equation-based model might be considered complex by some 

researchers (it requires 17 parameters), yet, even so, it greatly simplifies the actual biology of the 

immune response. For example, parameter 𝜈 lumps several different mechanisms involved in 

mucosal immunity, only one type of immune cells is assumed to remove pathogens, and we do not 

directly account for intercellular signaling.  Unfortunately, experimental datasets required to 

parametrize more complex and biologically accurate models describing these mechanisms 

currently do not exist. Accordingly, we perceive our contribution as hypothesis-generating and as 

a basis for guiding future mechanistically-based experimentation. Future iterations of the model 

could address some of these simplifying assumptions, perhaps providing for a more detailed 

account of the host immune system. Another important assumption of the model is that, within the 

lung or blood compartments, the system is well-mixed. In reality, there is a spatial component to 
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bacterial infections that this simple model is unable to capture. Future models may allow for this 

spatial heterogeneity to be incorporated into the dynamics. 

 CONCLUSIONS FROM PNEUMONIA MODEL STUDIES 

Throughout Chapters 2 and 3, we have demonstrated the biological relevance of the ODE model 

presented in Equations 2.1-2.4. First, Chapter 2 showed that the model is capable of depicting four 

very different reactions to an identical inoculum. By defining a few parameters as mouse-strain-

dependent, we can generate ensembles in which only four parameters change value in order to 

change the phenotype. Blood bacteria levels were shown to be an important factor in determining 

whether a host will survive a pneumococcal infection; if blood bacteria are allowed to reproduce 

too quickly, they will overrun the host and cause quick morbidity and mortality. Strong 

extrapulmonary phagocytosis rates, however, can contain blood bacteria to manageable levels, 

allowing the infection to be resolved. 

Chapter 3 presents an important extension of our previously proposed model that shows its 

utility not only in modeling how different hosts response to the same bacterial infection, but also 

how identical hosts respond to multiple types of bacterial infections. Our model is able to capture 

the initial decay followed by quick rise in lung bacterial loads associated with a rise in blood 

bacterial loads. We have demonstrated how the parameters of our model can be used to analyze 

and predict the immune responses of the host to each type of bacteria. This work provides a path 

forward for future work modeling the response to different bacterial strains or adding complexity 

to the model by incorporating more components of the immune system explicitly in the equations. 
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4.0  ORDINARY DIFFERENTIAL EQUATION MODEL OF THE INTRAHOST 

IMMUNE RESPONSE TO INFLUENZA A VIRAL INFECTION 

 OVERVIEW 

Influenza A virus continues to be a leading cause of morbidity and mortality worldwide. While the 

virus itself can often be lethal, the host’s immune response, particularly the inflammatory response, 

is often a major contributor to the lethality of disease. An ordinary differential equation model of 

the intrahost immune response to influenza infection is presented here. The model was calibrated 

to experimental data from mice infected with H1N1 at either a survivable or nonsurvivable dose. 

Using Markov chain Monte Carlo simulations, we generated an ensemble of parameters fit to these 

data. Parameters were then used to study survivability of influenza infection, as well as the effect 

of the inflammatory response on the immune system as a whole. This work has been published in 

Journal of Theoretical Biology [97]. 

 PREVIOUS WORK 

Many mathematical models of the immune response to IAV infection have been developed 

with varying degrees of detail [98–116]. Some of the simplest model of IAV infection describe 

only dynamics of epithelial cells interacting directly with the virus [102,103]. These models are fit 

only to viral titer data, and they employ many simplifying assumptions to limit the number of 

parameters in the model.  
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Some slightly more complex models will focus on one aspect of the immune response, 

such as type I interferons [117] or T cells [105,118]. Other larger ODE models will include several 

arms of immune response [106,119–121]. Likewise, systemic inflammation has been studied using 

mathematical modeling, also with varying degree of detail, ranging from conceptual models, to 

more detailed models leveraging rich biological datasets linking cytokine expression and organ 

dysfunction [65,122–125].  

Most published ODE models of viral infection are target cell-limited models, meaning the 

initial population of susceptible epithelial cells can decrease as the infection spreads, but these 

target cells can never regenerate. This monotonic decline in target cell populations makes the 

equation simple, but ensures that by the end of the simulation, all target cells in the infected tissue 

will be dead, implying that even if the virus is cleared from the host, the lungs will have completely 

decayed. While this assumption allows for a simpler model to be used, it is not biologically sound. 

The model of in-host response to influenza presented in this chapter is a comprehensive 

model that includes all major cellular and molecular components of the immune response and 

inflammation. The model accounts for the classical mechanisms of antiviral immune response as 

represented by several arms of immunity described in the literature, including the innate, adaptive, 

and humoral (antibody) responses [126]. As a novel component, the model also includes the basic 

pathways of systemic inflammation, comprised of macrophages, pro-inflammatory and anti-

inflammatory cytokines, chemokines attracting neutrophils, and toxins utilized by cytokines.  
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 EXPERIMENTAL DATA 

The experimental data for this work was obtained by Franklin Toapanta and Ted Ross and 

published in their previous work [127]. Female BALB/c mice, age 12-16 weeks, were given an 

intranasal dose of influenza A/8/PR/34 (H1N1). Mice were given either a sublethal dose of 50 

plaque-forming units (PFU) or a lethal dose of 500 PFU. Those given the sublethal dose were 

observed for up to 19 days post-infection, and those given the lethal dose could only be observed 

for up to 7 days post-infection, after which time there were no surviving subjects. Toapanta and 

Ross collected data at day 0 (before the infection began) and at days 1, 2, 3, 5, and 7 for all mice, 

plus days 9, 11, 15, and 19 post-infection for the mice in the sublethal cohort. However, since the 

virus is cleared around day 9 and is fully eradicated by day 11, we do not include the data for days 

15 and 19. At each time point, three mice were sacrificed and data were measured from these mice. 

We use these measurements to generate a mean and standard deviation for each variable at each 

measurement day. This provides us with a pooled data set; because mice need to be sacrificed in 

order to obtain all necessary measurements, we cannot obtain longitudinal data for murine 

infection studies. 

Table 3 summarizes the types of data and method for measuring each variable in the system 

of ODEs. Of the 20 variables modeled in the system, only four have no measured data against 

which to calibrate them: blood neutrophils, reactive oxygen species, target epithelial cells, and 

infected epithelial cells. We use weight loss data as a proxy for dead epithelial cells, as these cannot 

be directly measured. In addition, the macrophages, antibodies, and antigen presenting cells were 

reported only for the sublethal cohort, so we have three fewer variables with data associated in the 

lethal fits than we do in the sublethal case.  
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Table 3: Variables and corresponding measured data for influenza model 

 Variable Units Measured data 

Measurement 

type 

TNF T pg/ml TNF Luminex 

IL-10 L pg/ml IL-10 Luminex 

Chemokines C pg/ml MCP and MIP-1β Luminex 

Macrophages M cell count 

CD11c- CD11b+ CD40+ GR-1 dim 

F4/80- Flow cytometry 

Blood neutrophils Ñ cell count None N/A 

Tissue neutrophils N cell count Gr-1+ (high) CD11b+ (high) Flow cytometry 

Reactive oxygen 

species X pg/ml None N/A 

Target epithelial cells H cell count Recovery/mortality Heuristic 

Infected epithelial cells I cell count None N/A 

Damaged epithelial 

cells DH cell count Weight loss Weight 

Virus V pfu/ml Influenza A/PR/8/34 Plaque assay 

Type I interferon F pg/ml IFN-α and IFN-β ELISA 

Type II interferon G pg/ml IFN-γ Luminex 

Natural killer cells K cell count CD49b(DX5)+ CD69+ Flow cytometry 

Antigen presenting 

cells P cell count CD11c+ CD11b+ CD40+ GR-1 dim Flow cytometry 

B cells B cell count CD19+ CD69+ Flow cytometry 

CD8+ T cells E cell count CD3+ CD8+ CD69+ Flow cytometry 

IL-12 W pg/ml IL-12 Luminex 

CD4+ T cells O cell count CD3+ CD4+ CD69+ Flow cytometry 

Antibodies A pg/ml IgM antibodies HAI 

 ODE MODEL 

The ODE model used to simulate the immune response to influenza infection contains 20 equations 

and 94 parameters. This model incorporates all branches of immunity, as well as variables for 

target, infected, and damaged epithelial cells. Figure 27 gives a graphical representation of this 

system, denoting the inflammatory response versus the remainder of the immune response. The 

equations used in this model are summarized below along with their biological justifications. The 

full list of parameters, their biological interpretations, and the bounds for each are listed in 



 72 

Appendix A. Parameter bounds were taken from literature where possible, and others were 

estimated from previous modeling efforts. 

 

 

Figure 27: Graphic of interactions between variables in the influenza ODE model.  

 

 

Neutrophils (Equations 4.1 and 4.2) are modeled in two separate groups: active free 

neutrophils (Ñ) and active neutrophils at the site of infection (N). Two processes are required for 

activation and recruitment of neutrophils. First, the inactive neutrophils receive a stimulation by 

pro-inflammatory cytokine TNF (T), but this process is inhibited by the anti-inflammatory 

mediator IL-10 (L). Then, chemokines (C) draw the active neutrophils to the site of infection via a 

chemokine gradient, driving neutrophils from the Ñ population to the N population. Both types of 

neutrophils have a natural decay rate of μn, and both populations are zero at baseline. 
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�̅�′ =

𝒃𝒏𝒕𝑻

𝒂𝒏𝒕 + 𝒂𝒏𝒍𝑳 + 𝑻
−

𝒈𝒏𝒄�̅�𝑪

𝒂𝒏𝒄 + 𝑪
− 𝝁𝒏�̅� 4.1 

 
𝑵′ =

𝒈𝒏𝒄�̅�𝑪

𝒂𝒏𝒄 + 𝑪
− 𝝁𝒏𝑵 4.2 

 

Neutrophil phagocytosis produces a reactive nitric oxygen species (NOS) byproduct [128]. 

NOS (X) is taken up by surrounding tissue and has toxic effects on these cells [129–131]. NOS is 

assumed to be zero initially. 

 
𝑋′ =

𝑏𝑥𝑛𝑁

𝑎𝑥𝑛 + 𝑁
− 𝑔𝑥ℎ𝐻𝑋 − 𝑔𝑥𝑖𝐼𝑋 − 𝜇𝑥𝑋 4.3 

 

The macrophage population (M) is comprised of two groups: the resident alveolar 

macrophages and the recruited blood macrophages. Resident macrophages are represented by the 

nonzero initial condition, bm. Recruited macrophages enter the tissue via a chemokine gradient, 

here represented by a Hill term. The cells deactivate after several days [132].  

 
𝑀′ =

𝑏𝑚𝑐𝐶ℎ𝑐

𝑎𝑚𝑐
ℎ𝑐 + 𝐶ℎ𝑐

− 𝜇𝑀(𝑀 − 𝑏𝑚) 4.4 

 

An important function of macrophages is the production of pro- and anti-inflammatory 

cytokines. We assume macrophages produce these cytokines in responses to a stimulus, 

represented by Σ1 and Σ2. The stimuli are comprised of a linear combination of pro-inflammatory 

signals, including TNF [133], damaged tissue (D) [134], and virus (V) [135]. The virus term in Σ2 

saturates for a low level of virus, representing the role of resident alveolar macrophages to detect 

and respond to the small initial presence of virus in the host. 

 



 74 

Σ1 = 𝑎11𝑇 + 𝑎12𝐷 

Σ2 = Σ1 +  
𝑎21𝑉

𝑎22 + 𝑉
 

 

Macrophages produce the pro-inflammatory cytokine TNF in proportion to all three 

inflammatory stimuli (Σ2) in a Michaelis-Menten type equation. IL-10 (L) inhibits TNF production 

to maintain an inflammatory balance in the tissue. Both the maximum production rate of TNF and 

the substrate affinity are tempered by IL-10. The half-life of TNF is on the order of minutes [136]. 

 
𝑇′ =

𝑏𝑡𝑀Σ2

Σ2 + (Σ2 +
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2
) (

𝑘1𝐿 + 𝑘2

𝐿 + 𝑑1
)

− 𝜇𝑡𝑇 
4.5 

 

IL-10 production is proportional to exogenous TNF and damage only (Σ1). Target epithelial 

cells (H) also produce a low level of IL-10 at baseline to maintain homeostasis in the lungs. IL-10 

half-life is 1.1 – 2.6 hours [137].  

 
𝐿′ =

𝑏𝑙𝑀Σ1

Σ1 + (
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2
)

− 𝜇𝑙(𝐿 − 𝑏𝑙ℎ (1 − 𝑅𝐹) 𝐻) 4.6 

 

Chemokine production by macrophages is also modeled as a Michaelis-Menten function 

of inflammatory signal Σ1, inhibited by a function of IL-10. The chemokine population decays on 

the order of minutes [138]. 

 
𝐶′ =

𝑏𝑐𝑀Σ1

Σ1 + (
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2
)

− 𝜇𝑐𝐶 
4.7 
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Type I interferon (F) is primarily produced by infected cells and antigen presenting cells 

(P) [139]. Interferon levels decrease in one of two ways. Infected cells can absorb free interferon, 

or interferons can decay naturally. 

 𝐹′ = 𝑏𝑓𝑖(1 − 𝑅𝐹)𝐼 + 𝑏𝑓𝑝𝑃 − 𝑔𝑓𝑖𝐼𝐹 − 𝜇𝑓𝐹 4.8 

 

Interferon production by infected cells is limited by saturation term RF. RF  is an algebraic 

term representing the saturation of type I interferon in the system [7,117,140], where 𝑅𝐹 =
𝐹

𝑎𝑟𝑓 + 𝐹
. 

RF  can take on values between 0 and 1. The RF  term was derived from the resistant class of cells 

used in the Hancioglu et al. model, from which this model was derived [119]. In the Hancioglu 

model, epithelial cells can be divided into healthy, infected, or resistant cells. Resistant cells are 

unable to be infected by virus due to an influx of type I interferon preventing viral replication in 

the cell. However, defining a class of epithelial cells as “resistant” to viral infection is a bit 

simplistic; even epithelial cells with high interferon present can become infected. Instead, we 

define a RF to represent the percentage of epithelial cells affected by interferon. Type I interferon 

is so named because it interferes with the cellular reproduction machinery, halting viral 

reproduction within the cell.  

Target epithelial cells (H) are stimulated to reproduce by nearby dead or damaged epithelial 

cells (𝐷𝐻 + 𝐷𝐼). Type I interferons, however, slow this reproduction by interfering with mitosis; 

this process is represented by the (1 − 𝑅𝐹) term in the epithelial cell reproduction term. At 

baseline, target cells are at their maximum value, Hmax. The target cell reproduction term also 

contains an Allee threshold 𝜃. The Allee threshold is defined as the population size below which 

a reproduction term will become negative [141], i.e. if  𝐻 < 𝜃, (𝐻 − 𝜃) becomes negative and the 
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healthy cell population will decay. When H is above θ, healthy cells may regenerate, eventually 

returning to 𝐻𝑚𝑎𝑥 in the event of a survivable infection.  

 
𝐻′ = 𝑏ℎ𝐻(1 − 𝑅𝐹)(𝐷𝐻 + 𝐷𝐼) (

𝐻 − 𝜃

𝐻0
) − 𝑔ℎ𝑣𝑉𝐻 −

𝑔ℎ𝑥𝐻𝑋ℎ𝑥

𝑎ℎ𝑥
ℎ𝑥 + 𝑋ℎ𝑥

 4.9 

 

Infected epithelial cells arise as target cells interact with the virus. We assume an infected 

cell will not undergo mitosis [142]. Thus, the virus must be present for the infected cell population 

to continue growing. Both NK cells and cytotoxic T cells (E) clear infected cells from the lungs. 

A Hill term is used to denote the death of infected cells as a byproduct of interaction with NOS. 

Infected cells are presumed to be zero before the infection begins. 

 
𝐼′ = 𝑔𝐻𝑉𝑉𝐻 −

𝑔𝑖𝑥𝐼𝑋ℎ𝑥

𝑎𝑖𝑥
ℎ𝑥 + 𝑋ℎ𝑥

− 𝑏𝑖𝑘𝑅𝐹𝐼𝐾 − 𝑏𝑖𝑒𝑅𝐹𝐼𝐸 − 𝜇𝑖(1 − 𝑅𝐹)𝐼 4.10 

 

Virus (V) is produced by infected cells, hindered by the presence of type I interferon. Free 

virus is depleted when interacting with a target cell to create a new infected cell, and virus can also 

decay naturally. Two immune responses are included in the viral equation. We include a saturating 

term representing the mechanical clearance of virus from the lungs via mucociliary action at rate 

gv [143]. This term is analogous to the ν term in the pneumonia model presented in Chapters 2 and 

3. Virus can also be cleared by interaction with antibodies (A).  

 
𝑉′ = 𝑔𝑣𝑖(1 − 𝑅𝐹)𝐼 − 𝑔𝑣ℎ𝐻𝑉 −

𝑔𝑣𝑉

1 + 𝑎𝑣𝑉
− 𝑔𝑣𝑎𝐴𝑉 − 𝜇𝑣𝑉 4.11 

 

Uninfected, damaged target epithelial cells (DH) arise as a result of an interaction between 

NOS and healthy target cells, which we model with a Hill function. Damaged cells are cleared as 

healthy cells regenerate. 



 77 

 
𝐷𝐻′ =

𝑔ℎ𝑥𝐻𝑋ℎ𝑥

𝑎ℎ𝑥
ℎ𝑥 + 𝑋ℎ𝑥

− 𝑏ℎ(𝐻)(1 − 𝑅𝐹)(𝐷𝐻) (
𝐻 − 𝜃

𝐻max
) 4.12 

 

There also exists a population of infected damaged cells (DI). Assuming 𝐻𝑚𝑎𝑥 is the 

maximum number of epithelial cells in the lungs, the number of infected damaged cells can be 

calculated with an algebraic expression, assuming the total number of epithelial cells remains 

constant: 𝐷𝐼  =  𝐻𝑚𝑎𝑥 –  𝐻 –  𝐼 −  𝐷𝐻.  

Cytotoxic T cells (E) exist endemically at low levels and are recruited to the site of infection 

by antigen presenting cells, represented by a Hill term. CTLs decay naturally on the order of days 

[144,145]. In addition, some CTLs deactivate as a result of infected cell lysis. CTLs can become 

fatigued after removing infected cells from the host, rendering them less effective against the virus 

[146]. The infected cell removal is also multiplied by the RF term, since CTLs affect infected cells 

that are in the presence of interferon [117]. 

 
𝐸′ =

𝑏𝑒𝑝𝑃ℎ𝑒

𝑎𝑒𝑝
ℎ𝑒 + 𝑃ℎ𝑒

− 𝑏𝑒𝑖𝑅𝐹𝐼𝐸 − 𝜇𝑒𝐸 4.13 

 

B cells (B) also exist endemically at low levels in the tissue (represented by bb). B cells 

mature from a pool of undifferentiated B cells (B0), aided by antigen presenting cells (P) and 

regulatory cytokine IL-12 (W). B cells have a long half-life but deactivate on the order of days. 

 𝐵′ = 𝑏𝑏 + 𝑏𝑏𝑝𝑊𝑃 (𝐵0 − 𝐵) − 𝜇𝑏𝐵 4.14 

 

Antibodies (A) are produced in proportion to the population of mature B cells. Antibodies 

decay naturally after several weeks [147]. Those that come in contact with virus will also be 

removed from the system. Antibodies are assumed to start at a low initial level of ba. 
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𝐴′ = 𝑏𝑎 + 𝑏𝑎𝑏𝐵 − 𝑔𝑎𝑣𝐴𝑉 − 𝜇𝑎𝐴 4.15 

 

Natural killer (NK) cells (K) are present in low quantities in the lung in the absence of 

infection, which we model with a nonzero baseline value of bk. NK cells are primarily brought to 

the lungs by the chemokine gradient [148], modeled here with a Hill function. The NK cells are 

depleted either naturally or after lysing infected epithelial cells (I) at a rate gki [8,9,145,148,149].  

 
𝐾′ = 𝑏𝑘 +

𝑏𝑘𝑐𝐶ℎ𝑘

𝑎𝑘𝑐
ℎ𝑘 + 𝐶ℎ𝑘

− 𝑔𝑘𝑖𝑅𝐹𝐼𝐾 − 𝜇𝑘𝐾 4.16 

 

Several types of cells can be classified as an antigen presenting cell (APC). Macrophages 

and dendritic cells both possess antigen presentation capability. Here, we differentiate in the 

experimental data between the macrophage modeled in equation 4.4 and the APC by the presence 

of cluster-differentiation factor 11c (CD11c+) [150]. The formulation of the APC equation is 

similar to that in the Hancioglu model [107]. APCs (P) are largely recruited to the lungs after 

exposure to virus or damaged infected cells, aided by the presence of type II interferon (G). APCs 

deactivate on the order of days [151] and begin at a nonzero level equivalent to parameter bp. 

  
𝑃′ = 𝑃0 (

𝑔𝑝𝑣𝑉

𝑎𝑝𝑣 + 𝑉
+ 𝑔𝑝𝑑𝐷𝐼) (𝑔𝑝 +

𝑏𝑝𝑔𝐺

𝑎𝑝𝑔 + 𝐺
) − 𝜇𝑝(𝑃 − 𝑏𝑝) 4.17 

 

IL-12 (W) is produced by APCs as they interact with T helper cells (O). We use a 

Michaelis-Menten term here to denote the saturation of available receptors for T helper cells on 

the APC surface. IL-12 exists endemically in the tissue, represented by nonzero initial condition 

bw, and it decays naturally at rate 𝜇𝑊. 
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𝑊′ = 𝑏𝑤 +

𝑏𝑤𝑜𝑂

𝑎𝑤𝑜 + 𝑂
𝑃 − 𝜇𝑤𝑊 4.18 

 

Type II interferon (G) is produced primarily by NK cells [8,9] and TH1 cells [7,10], 

enhanced by the presence of IL-12. Type II interferon has a relatively short half-life, decaying 

after several hours [7,8,140]. 

 
𝐺′ =

𝑏𝑔𝑜𝑊 + 𝑔𝑔𝑜

𝑎𝑔𝑜 + 𝑊
𝑂 +

𝑏𝑔𝑘𝑊 + 𝑔𝑔𝑘

𝑎𝑔𝑘 + 𝑊
𝐾 − 𝜇𝑔𝐺 4.19 

 

TH1 cells (𝑂) are recruited by the presence of APCs, represented here by a Hill function. 

TH1 cells have a half-life on the order of days [152].  

 
𝑂′ =

𝑏𝑜𝑝𝑃ℎ𝑜

𝑎𝑜𝑝
ℎ𝑜 + 𝑃ℎ𝑜

− 𝜇𝑜𝑂 4.20 

 

These twenty equations together comprise the influenza ODE model. Table 4 gives a 

summary of each variable and its initial condition used in simulations. Many initial conditions are 

defined as relationships between parameters of the model, determined algebraically. The initial 

level of target epithelial cells, 𝐻𝑚𝑎𝑥, is defined as 2.5 × 105 cells, an approximation generated 

from the volume of a mouse’s lungs. The initial level of virus is either 50 or 500 PFU, depending 

on whether we are simulating the sublethal or lethal infection condition. 
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Table 4: Initial conditions in the influenza ODE model. 

 Variable Initial condition 

Blood neutrophils Ñ Ñ0 = 0 

Tissue neutrophils N N0 = 0 
Reactive oxygen 

species X X0 = 0 

Macrophages M M0 = bm 

TNF T T0 = 0 

IL-10 L L0 = blhHmax 

Chemokines C C0 = 0 

Type I interferon F F0 = bpbfp/μf  

Target epithelial cells H H0 = Hmax 

Infected epithelial cells I I0 = 0 

Virus V V0 = 50 or 500 
Damaged, uninfected 

epithelial cells DH DH0 = 0 

CD8+ T cells E 

(
bep

μe
⁄ ) bp

he

bp
he + aep

he
 

B cells B 
B0 =

bb  +  bbpbpW0b0

bbpbpW0  +  μb

 

Antibodies A A0 = (ba + babB0)/μa 

Natural killer cells K K0 = bk 

Antigen presenting 

cells P P0 = bp 

IL-12 W 

(
bp

μw
⁄ ) bwo𝑂0

O0 + 𝑎𝑤𝑜
 

Type II interferon G 
G0 =

(
O0

μw
) (bgoW0)

W0 + ago

+

(
K0

μg
) (bgkW0)

W0 + agk
 

CD4+ T cells O 

(
beo

μo
⁄ ) bp

ho

bp
ho + aep

ho
 

 MODEL PARAMETERS AND HEURISTICS 

In total the model contains 94 parameters, each with a distinct biological interpretation and 

boundaries between which we allow the parameters to vary in the MCMC procedure. These 
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parameters are summarized in Appendix A. The bounds on each parameter are determined from 

literature where available, or estimated from previous modeling efforts. 

 Three heuristic requirements are also included in the fitting procedure, constraining the 

admissible parameter values further. First, small perturbations from baseline (i.e. viral loads less 

than 1 virion) will always heal without requiring a full immune response.  Second, sublethal viral 

loads clear completely, and cytokine levels and healthy epithelial cells must return to their baseline 

levels within 15 days. Lastly, the target epithelial cell population must decay to zero after a lethal 

inoculum. In this study, time of death is defined as the time at which healthy cells drop below 10% 

of their baseline value [153]. When the number of healthy cells falls below this threshold, the 

reproduction term in Equation 4.9 becomes negative, so healthy cells decay to zero. A potential 

solution which does not obey all three heuristic behaviors will have a large penalty added to its 

overall associated error. Unless the solution was found with a high-energy chain (in which 

solutions with larger errors are more likely to be accepted), this solution will end up rejected. 

 MARKOV CHAIN MONTE CARLO SIMULATIONS 

To calibrate the model to the data, we utilize MCMC techniques (please see Section 2.5 for more 

details). We fit the sublethal and lethal cases simultaneously, generating a total energy for each fit 

that is comprised of a sum of the error of the fit to the sublethal data and the error for the fit to the 

lethal data. Energy is defined as the sum of errors between the predicted trajectory of the variable 

and the data associated with it. A set of parameters will ideally minimize the distance between the 

trajectory in both the sublethal and lethal fits, as well as obey a set of pre-defined heuristic 

behaviors integral to the qualitative behavior of the simulation. 
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Figure 28 represents the ensemble by plotting each parameter combination in the ensemble 

as a point in the objective space, where the objective values report the relative error of the fit of 

the trajectory for that parameter combination to either sublethal or lethal data when starting at the 

appropriate initial condition. Typically in multi-objective optimization, there is no single solution 

of the model which will yield the optimal solution for both objectives concurrently [154]. Here, 

that implies there is no single parameter set in the sample that would represent the optimum for 

both the sublethal and the lethal objectives taken from data across multiple subjects. As is common 

with multi-objective optimization, the optimization yields a Pareto boundary (shown as a dashed 

polygonal curve) which represents a collection of parameter sets that cannot improve in one 

objective without increasing the other objective value [154]. 

 

Figure 28: Distribution of energies from sublethal vs lethal fits to data.   

Each dot on the graph represents a single pair of sublethal and lethal energies associated with one parameter set in 

the ensemble. Red dot represents the center of mass of the energy pairs.  Dashed line represents Pareto boundary. 
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 ENSEMBLE FITS TO EXPERIMENTAL DATA 

4.7.1 Sublethal infection ensembles 

Graphs of the ensemble trajectories for all variables for the sublethal inoculum are shown in Figure 

29. The black line shows the median of the trajectories at each time point, the dark grey shows the 

range from 25% of trajectories above and below the median, and the light grey shows the range 

from 5% to 95%. Black crosses indicate the mean and standard deviation of the experimental data 

for each analyte.  

 

 

 

Figure 29: Ensemble fits to data for sublethal simulations of influenza ODE model.  

Experimental data are represented by the blue crosses, with standard deviations expressed in the error bars. Data are 

measured at days 0, 1, 2, 3, 5, 7, 9, and 11. The black line signifies the median trajectory, the dark gray envelope 

signifies 25-75% confidence, and the light gray envelope signifies 5-95% confidence.  
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Our predicted trajectories are generally in accord with the experimental data. Blood 

neutrophils (panel 1) do not have experimental data to which we fit the trajectories, but the tissue 

neutrophils (panel 2), which arise from chemotaxis of blood neutrophils, are matched to data. Most 

neutrophil data points have very large standard deviations, especially at days 1 and 3, though there 

are two points (at days 2 and 11) with very tight distributions. These two points drive the overall 

shape of the ensemble trajectories. 

Macrophages (row 1, column 3) are not well matched to the first two data points. Data 

show the macrophages rise almost two full logs from baseline to the endpoint; our fits, however, 

miss the initial value of M by about one order of magnitude. Experiments to force the baseline 

value of M to the data value were ineffective, hurting the overall fit of several other variables while 

slightly improving the macrophage fit (data not shown). 

Macrophages are a major source of IL-10, TNF, and chemokines. IL-10 (row 1, column 4) 

and TNF (row 2, column 1) both fit well to their corresponding data. TNF trajectories rise until 

about day 6, and then fall back to baseline around day 11. IL-10 trajectories peak a day later than 

TNF, around day 7. IL-10 tends to be very tightly distributed, with the greatest variation seen in 

the initial level of IL-10, corresponding to variation in parameter 𝑏𝑙ℎ. Chemokines (row 2, column 

4) are matched to data for total levels of MCP-1 and MIP-1β, both of which recruit macrophages 

to the site of infection. Chemokine trajectories peak around day 7 and then quickly fall back to 

baseline levels as the inflammatory response begins to wane. The other cytokine modeled here is 

IL-12 (row 5, column 2). IL-12 data is bimodal, with a peak at day 5, a small decline to day 9, and 

then a second peak at day 11. Our ensemble instead peaks at day 9 and misses the points at days 5 

and 9. 
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The virus (row 3, column 4) rises continuously for the first four days post-infection, peaks 

at day 4, and then falls for the next five days, leading to its clearance around day 9. The peak of 

the ensemble is almost a full log higher than the peak exhibited in the data. Infected cells (row 3, 

column 1) peak around the same time as the virus, at around 20% of Hmax.  

Target epithelial cells (row 3, column 2) begin at Hmax, which we set at 2.5 𝑥 105. Target 

cell levels begin decaying quickly after the start of the infection, reaching a minimum around day 

5, falling to about 40% of the initial value. Our system is not a target cell-limited model, so the 

target cells are able to regenerate and eventually return to Hmax about two weeks after the infection 

began. Target cell-limited models are common [102,112,116,155,156], and in each the susceptible 

cell population decays to zero over time, which depletes the potential source of infected cells, 

ensuring the virus will eventually clear even without immune response intervention. Importantly, 

our model forces the virus to clear without depleting the epithelial cell population; influenza 

infection leads to a heterogeneous infection, with some areas of the lung more severely damaged 

than others, but there always remains a population of epithelial cells at the end [157]. Thus the 

influenza model makes an important step towards more accurately modeling the true biology of 

the immune response to infection. 

Trajectories for damaged cells (row 4, column 1) peak at day 7, coinciding with the peak 

of the majority of NOS trajectories (row 2, column 2). However, the data do not peak until day 9, 

suggesting that our use of weight loss as a proxy for epithelial damage may not be appropriate for 

this model. 

Antibodies (row 2, column 3) are the major source of viral clearance. They remain at or 

below the level of detection for the first five days, and then rise steadily until day 11, at which 

point about half the trajectories begin to fall while the others continue to rise. B cells (row 3, 
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column 3) are the source of antibodies in this model. B cells fit their data well, rising quickly for 

five days, and then remaining relatively stagnant for the remainder of the experiment, in accord 

with the data. 

CTLs, TH1 cells, and APCs all fit their corresponding data very well. NK cells (row 4, 

column 4) fit the rise of the data over the first 7 days, but the simulated trajectories are slower to 

return to baseline than the data imply.  

Type II interferon (row 5, column 3) follows the data tightly. Type I interferon follows the 

first five days of data well, but the simulated trajectories continue to rise until day 8, whereas the 

data fall after day 5. Our model therefore misses the peak of type I interferon by around 3 days. 

The equation for type I interferons (Equation 4.8) includes two production terms. First, infected 

cells produce the majority of interferons, and then as the infection progresses and infected cells 

die out, antigen presenting cells are the major contributor to interferon production. The APC 

production of interferon drives the late peak, and as such, the reliance on APC production of 

interferon in the model may be too high to accurately predict the biology. 

4.7.2 Lethal infection ensembles 

Figure 30 shows the ensemble fits to the lethal infection data. In these simulations, death is defined 

as the point when target cells are depleted, which occurs here at day 7, in accord with experiments. 

Subplots are shown in the same order as Figure 29. Most predictions seem to fit to data well, 

though a few variables do not.  
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Figure 30: Ensemble fits to data for lethal simulations of influenza ODE model.  

Experimental data are represented by the red crosses, with standard deviations expressed in the error bars. Data are 

measured at days 0, 1, 2, 3, 5, and 7. The black line signifies the median trajectory, the dark gray envelope signifies 

25-75% confidence, and the light gray envelope signifies 5-95% confidence.  

 

 

In the first row, we see blood neutrophils have a predicted trajectory similar to that in the 

sublethal case, but the neutrophil level remains high throughout the simulation, rather than 

dropping off as in the sublethal trajectories. Tissue neutrophils rise quickly and stay high, in accord 

with experimental data. There is no data given for macrophages in the lethal case, but the prediction 

shows a macrophage trajectory very similar to that in the sublethal case. IL-10 trajectories begin 

rising about three days before the data do. Since the data measure only free IL-10, it may be that 

more IL-10 receptors are activated in response to the high virus levels, thus decreasing the amount 

of free IL-10 without actually denoting a decrease in anti-inflammatory activity in response to 

virus. IL-10 receptors are found on most myeloid and lymphoid cell lineages [136], so it is unclear 

which cell types would exhibit the increased receptors. 
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TNF trajectories fit well to the data, as do the chemokines. NOS and antibodies do not have 

data to which trajectories are matched in the lethal case. As in the sublethal, NOS rises quickly 

and hits its peak around day 6, but in the lethal case NOS does not drop off over time. Antibodies 

begin rising around day 7 and stay high through the end of the simulation.  

Infected cells peak earlier in the lethal simulations, corresponding to a higher initial dose 

of virus, and their peak value is slightly higher than in the sublethal cohort. Virus rises quickly 

after the onset of infection, reaching a peak around day 4, and then dropping through the remainder 

of the experiment. Our simulations miss the second viral data point, which shows an initial 

decrease in viral load one day after infection. This decay would indicate an eclipse period, a time 

between infection and the production of free virions by epithelial cells, which lasts about 6 – 8 

hours [158]. We do not include the eclipse phase in the model, but future iterations of this work 

may include it to more accurately predict this data. 

Type I interferon is again poorly predicted by the ensemble, as the data peak on day 3, 

while the ensemble comes to a slow peak around day 10. The interferon data peak two days earlier 

after a lethal infection than a sublethal infection, and with such tight standard deviations on the 

data, these features are difficult for the ensemble to accurately capture.  

Damaged cells, CTLs, and NK cells all generally predict the data well. B cell predictions 

tend to be a bit lower than the data suggest; our ensemble misses the peak value but follows the 

general shape of the data well. Antibodies, which do not have corresponding data in the lethal 

cohort, stay low until day 5 and then rise steadily to the end of the experiment, much like the 

sublethal predictions. 

APCs were not measured in the lethal infection, and their predicted trajectories generally 

look similar to those predicted in the sublethal case. Type II interferon and helper T cells follow 
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the data well. IL-12 predicts the first four data points well, but the second half of the infection is 

not well calibrated. The peak of the data occurs at day 5, while the ensemble continues to rise until 

day 11 and peaks at a value much higher than the data imply. 

Overall, Figure 30 shows a well-calibrated model that follows the trends defined by the 

experimental data. The peak level of the virus is about 3 times higher in the lethal condition than 

in the sublethal condition. We also see higher peak values in the cytokines and chemokines after 

the lethal inoculum, leading to a subsequently higher inflammatory response and increased rate of 

epithelial damage. 

 MARGINAL DISTRIBUTIONS FOR ALL PARAMETERS 

Shown in Figure 31 are the marginal distributions for all 94 parameters of the model. The upper 

and lower bounds of the horizontal axis of each subplot are equal to the bounds within which the 

parameter was allowed to vary. These bounds are listed explicitly in Appendix A. Sensitivity of 

individual parameters can be inferred from these marginal distributions; the more narrow the 

distribution, the more sensitive the system is to that parameter’s value.  
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Figure 31: Posterior distributions for all parameters of the influenza ODE model. 

 PREDICTING HOST SURVIVAL 

Though our experimental data includes only predictions for host response after 50 PFU and 500 

PFU doses of virus, we want to determine how our model reacts to other viral inocula to see at 

what point the behavior of the ensemble changes from survival to nonsurvival. In Figure 32, we 

show how changing the inoculum changes the outcome of the infection by tracking the change in 

target cell population over time. Other published influenza ODE models do not include dynamics 

of epithelial cells such that the acan be used to track symptomaticity of infection. Our ODE model 

is the first to be calibrated such that changing only the initial condition of the virus allows for a 

change in the trajectory of the target cell population corresponding to severity of infection.  



 91 

Using one representative parameter set from the ensemble, we simulated the system of 

ODEs at each of 11 different viral inocula. These simulations denote three distinct regimes of 

behavior:  

(1) A very low inoculum (5 PFU in this example) leads to an asymptomatic infection, in 

which there is no discernable change in the target epithelial cell population. With no excess damage 

detected in the simulations, we can conclude that the virus is cleared by nonspecific immunity, 

without the need for adaptive or humoral responses to be activated. The virus will monotonically 

decay to be fully cleared after only a few days. 

(2) A moderate inoculum (here, between 25 PFU and 150 PFU) will lead to a sublethal 

infection, defined as a loss of target cells followed by an increase in target cells leading to a full 

recovery. The substantial loss of target cells corresponds to an infection in which the virus was 

able to persist, meaning the immune system would have been activated. After reaching a minimum 

around a week after the infection began, the target cells will quickly regenerate, eventually 

reaching their starting value Hmax again. 

(3) A large inoculum (here, 175 PFU and above) will lead to a lethal infection. Death in 

this model is defined as the point at which target cells have been fully depleted. Unlike the 

sublethal infection examples, target cells monotonically decay as the virus population overwhelms 

the tissue and inflammation causes excess damage.  
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Figure 32: Effect of varying initial virus level in influenza ODE model.  

Each line indicates one representative target cell trajectory using a single parameter set with a particular initial value 

of V. The curves identify three regimes of behavior: asymptomatic infection, sublethal infection, and lethal 

infection, depending upon the viral load given to the host. 

 

 

In contrast to Figure 32, the next analysis utilizes the full ensemble to study the delineation 

between these three behaviors of the model. Figure 33 shows the thresholds between each of these 

regimes for our ensemble. As the initial viral load is varied from 0.01 PFU to 1000 PFU, the 

proportion of the ensemble exhibiting asymptomatic, sublethal, or lethal infections is calculated 

and plotted. In our calibrated model, any infection beginning with 0.1 PFU or less will lead to an 

asymptomatic infection. Likewise, an inoculum of 500 PFU or higher will always lead to a lethal 

infection. The variation between these two extremes corresponds to variation in the parameters of 

the ensemble. 
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Figure 33: Regimes of behavior as identified by the ensemble.  

When beginning a simulation with the initial condition of the virus equal to the value on the horizontal axis, we can 

calculate what percentage of the parameter sets in the ensemble would lead to either an asymptomatic, symptomatic 

sublethal, or lethal infection. Lines on the As the amount of initial virus increases, the likelihood of a symptomatic 

infection also increases.  

 

Finally, the probability of survival over time can also be calculated for the ensemble. 

Survival curves, plotted in Figure 34, demonstrate the likelihood of a lethal infection after a 

particular viral dosage, ranging from 50 PFU to 750 PFU. As the inoculum increases, the time at 

which a percentage of the ensemble begins to die decreases, meaning a larger inoculum leads to 

faster morbidity. A dosage of about 210 PFU leads to about 50% survival at day 15. At 750 PFU, 

the highest inoculum tested in this study, only about 50% of the population can survive 5 days 

post-infection, and all members of the ensemble are predicted to be deceased by day 7. Since we 

used 500 PFU as the dosage at which to calibrate a lethal infection, we would expect any dosage 
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higher than 500 PFU would lead to death by at most 7 days post-infection. The survival curves 

validate this. 

 

 

Figure 34: Survival curves.  

Each curve represents the predicted length of survival of the ensemble for varied viral dosages. At the sublethal 

calibration dose, 50 PFU, 100% of the population survives for 15 days post-infection. As the dosage increases, the 

likelihood of survival to 15 days decreases. At the highest tested dose, 750 PFU, the ensemble predicts only about 

50% of the population would survive to 5 days, and all members of the population are dead by day 7. 

 EFFECT OF SELECTED IMMUNE RESPONSE DELETIONS ON HOST 

SURVIVAL 

As described in Section 4.4, the stimuli Σ1 and Σ2 represent linear combinations of pro-

inflammatory signals that initiate the inflammatory response. TNF, IL-10, and chemokines are 

directly stimulated by these signals, and other effects like NK cell stimulation and NOS production 

are impacted by Σ1 and Σ2 further down the inflammatory cascade. The addition of the in-depth 
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inflammatory component in the model is an important physiological feature of the immune system, 

and as such we experiment with knockouts of various components of the inflammatory response 

to judge their impact on the system as a whole. Figure 35 demonstrates the effect of these 

knockouts on a select set of model variables: IL-10, TNF, NOS, infected cells, target cells, virus, 

and NK cells. Each row represents one variable, while each column denotes a separate knockout 

experiment. To perform the knockouts, one or more variables are forced to remain at their baseline 

level by setting the right hand side of the corresponding equation to zeros (i.e. dY/dt = 0 for some 

variable Y). In every experiment, the inoculum used was 50 PFU, previously identified as a 

survivable dose for these hosts. 

Column 1 shows the wild-type behavior of the ensemble for comparison. These trajectories 

are identical to those shown previously in Figure 29, as no equation is altered in this experiment. 

Column 2 shows the behavior of the model if the inflammatory response is completely shut off. 

To do this, we turn off both Σ1 and Σ2, which prevents the inflammation from ever turning on. 

Without this arm of the immune response, the system is unable to heal, as we see a monotonic 

decay of target cells and high levels of virus, corresponding to higher peak values of infected cells. 

The two major effectors of inflammatory feedback in the model are NK cells and NOS. In 

columns 3 and 4, we turn off each of these components individually to judge their overall impact 

on the system. Without an increase in NK cells (column 3), the system is again unable to heal, 

though death is reached about one day slower than in the “no inflammation” case. When NOS is 

fixed at zero, a similar result occurs. NK cells and NOS both keep the infected cell population in 

check; without them, it may be that the infected cell population cannot be controlled by the 

remaining components of the model. Increased infected cells levels will lead to much higher levels 

of virus, and the host will not be able to survive the infection [159,160]. 
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In column 5, we study the effect of keeping IL-10, the anti-inflammatory mediator in the 

system, at its baseline value. Without the suppressive effects of IL-10, TNF peaks higher than in 

the wild-type. The lack of increased IL-10 does not have much of an effect on the remainder of 

the variables shown in Figure 35, however. In the majority of the parameter sets, fixed IL-10 leads 

to faster viral clearance and faster healing of target cells. In 5-25% of the ensemble, however, the 

increased inflammation will lead to increased target cell damage and eventual death of the host. 

 

 

Figure 35: Immune response response deletions study for influenza model. 



 97 

We also tested one non-inflammatory response knockout in column 6 of Figure 35: 

antibody knockout. Antibodies are critical to the clearance of viral infection. In our ODE model, 

however, a fixed baseline level of antibodies does not lead to prolonged viral infection. In fact, 

healthy target cells actually regenerate faster in the absence of antibodies. This would imply a 

problem with the viral clearance terms in the model. One possibility is the nonspecific clearance 

of virus (parameters gvh, gv, av, and μv) is too strong, meaning the importance of antibodies in viral 

clearance is minimized in this ensemble. Another possibility is antibody clearance of viral load is 

overly simplified in our gavAV term of the virus equation (Equation 4.11). Future iterations of this 

model may improve upon this antibody-virus interaction to better reflect biology. 

 DISCUSSION 

The ensemble model of the intrahost immune response to influenza infection presented here 

incorporated an in-depth look at innate, adaptive, humoral, and inflammatory responses to 

infection. The model was calibrated to a large, detailed data set including the time-dependent 

responses of cells, chemokines, and cytokines to the viral infection [127]. This data set allows for 

a comprehensive look at the immune response, unlike many other influenza ODE models, which 

focus on only one or two immune responses [102–105,108,112,156,161].  

A major contribution of this work is the addition of the inflammatory component to the 

model. In Figure 35, the importance of the inflammatory component is demonstrated, as it clearly 

has an impact on survival of the host. Inflammation provides a stimulus to two important effectors 

of infected cell control (NK cells and NOS), but unchecked inflammation can lead to excess tissue 

damage, ultimately causing the death of the host [162].  
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This ODE model was necessarily large and complex, with 20 equations and 94 parameters 

governing its behavior. The large body of data provided, however, necessitates a complex model 

to best capture the behavior of the immune system as a whole. Of the 20 variables used in the 

model, only four are not fit to any data, and three more are fit only in the sublethal condition. These 

variables (target cell count, infected cell count, NOS levels, and blood neutrophil count) were 

essential for accurate portrayal of the immune response and were included in the model despite 

their lack of corresponding measurements. The primary criticism of such large models is a concern 

about a lack of parameter identifiability. In these cases, we must weigh the importance of 

identifiability of parameters against physiological accuracy and clinical significance. 

Physiological systems are inherently complex, and even large models like this one are forced to 

simplify the biology for computational feasibility. It is impossible to uniquely estimate the 

parameters of this model; rather, we rely on an ensemble of potential solutions to the model. Every 

measurement of rate constants, half-lives, and other parameters used in this model have an inherent 

uncertainty built in. Ensemble models exploit this uncertainly by allowing every parameter to exist 

over a range of values, rather than forcing every parameter to one value. Thus we attain a posterior 

distribution of parameters rather than a single best-fit parameter set.  

Another important feature of this model is the absence of target cell limitation. Viral 

clearance is possible without a total depletion of target cells, in contrast with other published 

models [102,156]. Physiologically, a loss of target cells is analogous to a depletion of the lung 

epithelium, which would certainly lead to death of the host, even if the virus is cleared from the 

system. Thus our model reflects an important component of host recovery not seen in many other 

published models.  
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One disadvantage of this model is the computation time needed to fully explore the 

parameter space. With a 94-dimensional model space, weeks were required to generate the 

ensemble. Though we used parallel tempering techniques to explore the space more thoroughly, 

the time needed for this model may be prohibitive for some future projects. 
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5.0  DISCRETE DYNAMICAL MODELING OF INTRAHOST INFLUENZA 

INFECTION SUGGESTS AGE-DEPENDENT DIFFERENCES IN IMMUNE 

RESPONSES 

 INTRODUCTION 

Influenza A virus leads to about 36,000 deaths every year in the United States [163]. The elderly 

population is highly susceptible to influenza infection, accounting for about 90% of all influenza 

deaths [164]. The increased susceptibility of the elderly to infections leads to enormous medical 

costs; the elderly account for about half the hospital stays and a third of the prescription drug use 

in the United States [165]. These costs will likely continue to increase well into this century, as 

the elderly population is predicted to triple by 2050, reaching about 2 billion individuals worldwide 

[165]. 

The elderly are known to exhibit increased morbidity and mortality in response to influenza 

infection due to a weakening of the immune response with age, called immunosenescence [166]. 

Immunosenescence is a complicated remodeling of the immune response, leading to an overall 

weakened response to pathogens, particularly those which have not been encountered by the host 

previously. Both innate and adaptive responses are impacted by immunosenescence [167]. Both 

mice and humans have been shown to exhibit dysregulated inflammation in response to infection 

due to immunosenescence [168]. The elderly generally experience a delayed onset of innate 

immunity and a prolonged inflammatory response, causing excess inflammatory damage to the 

body and thus more persistent symptoms. Elderly hosts tend to have higher baseline levels of pro-

inflammatory cytokines, a condition recently termed “inflamm-aging” [169]. Elevated cytokines 
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are correlated with increased inflammatory damage. In fact, elevated IL-6 post-infection is the 

most accurate predictor of morbidity and mortality [167]. Phagocytosis by immune cells also tends 

to decrease with age in human hosts, particularly in neutrophils, though neutrophil efficacy has 

not been shown to decrease in elderly mice [170]. The specific changes to neutrophil secretion of 

various cytokines and chemokines are still largely unknown in either human or murine hosts. 

Changes to macrophage phagocytic function are also unclear, as some reports have shown no 

changes to macrophage phagocytosis [171], while others have shown evidence of a decline 

[172,173]. Decreased chemotactic responses have also been shown in macrophages [164]. 

The function of both T cells and B cells has been shown to decline with age, leading to an 

overall decline in the efficacy of flu vaccines [164]. Age-related thymic involution also causes a 

decrease in the number of naïve T lymphocytes [166], limiting the ability of the host to mount a 

defense against novel pathogens. Helper T cell function declines with age, as does the overall 

number of B cells in the host [174]. The number of IgG and IgA antibodies have been shown to 

increase with age, though the efficacy of antibodies against specific pathogens decreases [175]. 

To investigate further the changing immune mechanisms that arise in immunosenescence 

in response to influenza A virus, we have constructed a network model of the intrahost immune 

response to viral infection to elucidate the differences in immune response of older and younger 

hosts. Variables included in the model represent cell types, cytokines, chemokines, interferons, 

antibodies, and viral loads. The model features components from innate, adaptive, and humoral 

immunity. Cell types include macrophages, neutrophils, natural killer (NK) cells, conventional and 

plasmacytoid dendritic cells, T cells, B cells, and epithelial cells. To activate and recruit these cells 

we include cytokines and chemokines, such as interleukins IL-1α, IL-1, IL-6, IL-10, IL-12, type 

I and type II interferons, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, 
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RANTES, monocyte chemotactic protein (MCP-1), and macrophage inflammatory protein (MIP)-

1β., and keratinocyte chemoattractant (KC). The model also incorporates antibodies to clear the 

virus from the host. Interactions between virus, cells, cytokines, chemokines, and interferon 

comprise the early phases of the immune response, until eventually antibodies are upregulated and 

clear the virus. Our Boolean model investigates the structure of these interactions and compares 

interactions between young and older hosts. 

Unlike the previous chapters, which employ systems of ODEs to model physiological 

systems, this study instead uses a Boolean network to model interactions between immune 

components. A discrete, rule-based model allows for an intuitive look at the relationship between 

virus, cells, chemokines, and cytokines. Rules of the model can be as simple or as complex as the 

user wishes, but they are perhaps more readable and more easily interpreted than an ODE. The 

rule-based model also has no parameters to fit, eliminating a large, time-consuming facet of ODE 

modeling. The most difficult part of rule-based modeling is determining the rules themselves. 

These are generally derived from literature knowledge, but the nature of rule-based modeling 

allows for data-driven rules as well. In this way, we can identify novel interactions between model 

components, or verify proposed immune mechanisms, with minimal computation time. 

Boolean network models have previously been shown to generate important conclusions 

regarding the host immune response to other infections [176–179], and we now present a model 

of influenza infections as well. Initiated by the presence of a viral load in the lungs, the network 

propagates a number of processes activated to fight the infection. We match the trajectories of each 

component of the immune system to rich time-series data from a murine model of influenza 

infection [127]. Studying the time evolution of the immune response allows for analysis of the 
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initiation and duration of activation of these immune components and the differences seen in young 

and older hosts.  

 EXPERIMENTAL DATA 

Data to which the model is calibrated were measured from BALB/c mice subjected to influenza A 

viral infection. Mice were in one of two age groups: adult (younger) at 12-16 weeks of age, or 

elderly (older) at 72-76 weeks of age. Within each of these age groups, mice were further 

subdivided into two cohorts based on viral dosage: sublethal (50 pfu dose) or lethal (500 pfu) 

[127]. (The data for the younger mice is the same data used to calibrate the ODE model presented 

in Chapter 4.)  

In the sublethal cohort, data were taken at days 0, 1, 2, 3, 5, 7, 9, 11, 15, and 19. In the 

lethal cohort, data were taken at days 0, 1, 2, 3, 5, and 7, at which point the remaining mice 

succumbed to the infection. At each time point, three mice were sacrificed for the data 

measurements, and from these three mice we generated a mean and standard deviation of each 

measurement. We used these statistics to transform the data from real-valued measurements to 

Boolean values. Using the day 0 measurements as a baseline, we performed an ANOVA to test if 

a data point for variable X at time T is significantly larger than the value of variable X at baseline 

(p < 0.05). If a significant difference is observed, variable X is assigned a value of 1 at time T; 

otherwise, the variable is assigned a 0. We performed this process for all variables across all 

cohorts, yielding a total of 347 Boolean-valued data points with which the model can be calibrated. 
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 GENERATION OF A BOOLEAN NETWORK 

We have constructed a rule-based model of the immune response to influenza infection based on 

both literature and our experimental data. Our model consists of 25 variables representing viral 

load, immune cells, cytokines, chemokines, antibodies, and infected epithelial cells. The model is 

capable of capturing the complex interactions between the immune system and the virus, leading 

to either viral clearance or death of the host, depending on the inoculum.  Table 5 summarizes the 

variables used in the network and the abbreviations used for each. 

Each variable represents a single node of the model, with a total of 25 nodes. Each 

variable’s trajectory over time is governed by a Boolean transfer function, or rule, which defines 

the conditions under which the variable should turn on at the next time step. The model is a strict 

two-state Boolean system, and at each time step, the rules are evaluated synchronously to set each 

node to one of two states: 0 (at or near baseline) or 1 (significantly above baseline). These rules 

are relatively simple and involve a combination of ANDs, ORs, and NOTs. If two or more 

components are required for the activation of a particular variable, the rule will include an AND. 

If one component inhibits another, the rule will include a NOT. If one of multiple sources is 

sufficient to activate a variable, that rule will include an OR. Because the two age groups feature 

distinct patterns in their data sets (in particular, there is a 1 to 2 day delay in the onset of many 

inflammatory components), we use different rules to model each age group’s response to the 

infection. These two rule sets allow us to capture these differences in a data-driven manner and 

will provide conclusions on the impact of immunosenescence on the immune response to influenza 

infection. A more detailed look at the interactions known between these components is presented 

in the following sections. 
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Table 5: Variables and associated abbreviations for the Boolean network model. 

Immune component Variable name Immune component Variable name 

Activated macrophages ActiveM Interferon-γ IFNg 

Tumor necrosis factor 

(TNF)-α 

TNF Activated neutrophils ActiveN 

Interleukin (IL)-1α IL1a Interferon-α/β IFNab 

IL-1β IL1b Activated cytotoxic T 

cells (CTLs) 

ActiveCTL 

IL-6 IL6 Plasmacytoid dendritic 

cells 

pDC 

IL-10 IL10 Activated conventional 

dendritic cells 

ActivecDC 

IL-12p70 IL12p70 Activated helper T 

cells 

ActiveTh 

RANTES RANTES Activated B cells ActiveB 

Monocyte chemotactic 

protein (MCP)-1 

MCP1 Antibodies Ab 

Macrophage 

inflammatory protein 

(MIP)-1β 

MIP1b Low virus Vlow 

Keratinocyte 

chemoattractant 

KC High virus Vhigh 

Transforming growth 

factor (TGF)-β 

TGFb Infected epithelial cells IEC 

Activated natural killer 

(NK) cells 

ActiveNK   

 

5.3.1.1 Innate immunity and inflammation 

The first line of defense against influenza infection is the innate immune system. The presence of 

the virus in the respiratory tract activates the epithelial cells lining the lungs, promoting the 

expression of cytokines and chemokines to attract and activate innate immune cells. Neutrophils, 

macrophages, and dendritic cells will response to these chemical messengers, infiltrating the lungs 
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and promoting further inflammation through the expression of pro-inflammatory cytokines, such 

as IL-1α, IL-1β, TNF, and IL-6. The cells also produce chemokines to recruit more cells to the site 

of infection, including macrophage inflammatory protein 1b (MIP-1β, also known as CCL4), 

monocyte chemotactic protein 1 (MCP-1, also known as CCL2), keratinocyte chemoattractant 

(KC, also known as CXCL1), and RANTES (Regulated on Activation, Normal T cell Expressed 

and Secreted, also known as CCL5). To temper the inflammatory response, anti-inflammatory 

markers like TGF-β and IL-10 are upregulated as well.  

Interferons (IFNs) are also upregulated early in the infection.  Type I IFN (IFN-α and IFN-

β) is released by infected cells and plasmacytoid dendritic cells (pDCs) and instigates an antiviral 

state in nearby target epithelial cells, preventing their infection. Type II IFN (IFN-γ) is important 

for the activation of components of the adaptive immune response, as well as NK cells. 

5.3.1.2 Adaptive immunity 

The adaptive immune response initiates a few days post-infection and is aimed specifically at the 

viral infection, whereas the innate immune response is a more general defense against pathogens. 

The adaptive response to viral infection is primarily composed of T cells. In this model we include 

responses from both CD8+ cytotoxic T cells (CTLs) and CD4+ T helper cells (TH cells).  CTLs 

are an important regulator of the infection, killing infected cells to keep them from spreading the 

infection further. TH cells release cytokines to attract more cells to the site of infection. They also 

bridge the gap between adaptive and humoral immunity, activating the B cells to initiate the 

humoral immune response. Once B cells are activated, they differentiate into plasmablasts and 

plasma cells, which then begin to produce antibodies specific to the virus. These antibodies are the 

principal factor in viral clearance. In our model, antibody function can be hindered by the presence 

of IL-10 [180]. 
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5.3.1.3 Virus and epithelium 

The viral population variable is split into two variables: Vlow and Vhigh, representing the different 

viral loads used as inocula in the experiments to generate the sublethal and lethal responses. A 

high level of virus implies that a low level is also present, but a low level of virus does not 

necessarily imply a Vhigh is active. Virus is cleared from the system by antibodies and is produced 

by the presence of free virus or infected cells. 

5.3.2 Network formation 

To assemble the rules of the Boolean model, we first generated a library of potential rules for each 

of the 25 variables. For example, the pro-inflammatory cytokine tumor necrosis factor (TNF) can 

be produced by neutrophils, macrophages, dendritic cells, and epithelial cells. The time at which 

TNF turns on dictates which of these potential producers will be most influential in its trajectory. 

Thus choices for TNF rules included combinations of these cells. Rule choices were generated 

primarily from literature, but some are also data-driven. Both adult and elderly mouse data were 

fit from the same library of 57 total rule choices. 

 OPTIMIZATION OF NETWORK RULES 

In order to fit the Boolean data, we find the optimal set of rules which fit the data with the fewest 

total errors. We generate a separate set of rules for the older and younger mice, but only one rule 

set is used to model the sublethal and lethal data within one age group. To get these rule sets, we 

reformulated the rule discovery problem into an integer linear programming problem [181,182]. 
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The objective function is the minimized difference between the model prediction and the measured 

data. The objective was then linearized using dummy variables At,s, given by equation 5.1. 

 min ∑ ∑ 𝐴𝑡,𝑠

𝑡∈𝑇𝑠𝑠∈𝑆

 

subject to 𝐷𝑡,𝑠 − 𝑀𝑡,𝑠 ≤  𝐴𝑡,𝑠 

𝐷𝑡,𝑠 − 𝑀𝑡,𝑠 ≥ − 𝐴𝑡,𝑠 

5.1 

where 𝐷𝑡,𝑠 and 𝑀𝑡,𝑠 represents the measured data and model, respectively, for state s at time t. 

5.4.1.1 Formulation of Boolean rules 

All Boolean rules can be expressed in the conjunctive normal form, which is comprised of 

a series of AND clauses: Rule 𝑅 = 𝑄1 ∧  𝑄2 ∧ ·· · ∧  𝑄𝑁 where Qi is a series of inclusive OR terms: 

𝑄𝑖 =  𝑃1 ∨  𝑃2 ∨ ·· · ∨  𝑃𝑀 [183]. Each term P is the name of a variable in the system with or 

without a NOT operator preceding it, depending on whether the term has a positive or negative 

effect on the clause.  

Let yi represent the Boolean value of Pi. Each of the Qi logical OR constraints can be 

expressed as: 

 
y1 + y2 + · ·· + yr ≥ 1    5.2 

In other words, at least one yi must be a value of 1 in order for the OR constraint to be satisfied. 

The AND constraint, R, does not need to be explicitly stated because Equation 5.2 ensures that 

each subclause, Qi, is true, and if R is comprised of a series of true clauses, R must be satisfied.  

The NOT clauses, ¬Pi, can be expressed as (1 − 𝑦𝑖). Implications, e.g. P1 ⇒ P2, can be 

expressed as  ¬𝑃1   ∨  𝑃2, which is an OR constraint: 
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 1 − y1 + y2 ≥ 1  5.3 

Using this framework, we can formulate this as a mixed integer linear program (MILP) 

[181,182]. Potential rules are always of the form: 𝑆𝑖,𝑡+1 ← 𝑆𝑡, where 𝑆𝑡 represents a series of 

logical operations acting upon the state s at the current time t. This logical clause will generate an 

update in the i-th state Si at time t + 1. If this rule were true, 𝑆𝑖,𝑡+1 ⇔ 𝑆𝑡 for all time t. Applying 

the above equivalences, we obtain: 

 ¬𝑆𝑖,𝑡+1  ∨  𝑆𝑡 5.4 

 
¬𝑆𝑡 ∨ 𝑆𝑖,𝑡+1   5.5 

which we expand into the conjunctive normal form and apply the appropriate linear constraints. 

Finally, in order to perform rule optimization, Boolean decision variables, 𝐷𝑖𝑗, are 

initialized for every rule j each state i. The k OR constraints generated from the conjunctive normal 

form of the ij-th rule is now represented as: 

 

 Constraint 1: 𝑦1 +  𝑦2 + · ··  + 𝑦𝑟 ≥  𝐷𝑖𝑗  5.6 

 Constraint 2: 𝑦1 +  𝑦2 + · ··  + 𝑦𝑟 ≥  𝐷𝑖𝑗  

 ⋯  

 Constraint k: 𝑦1 +  𝑦2 + · ··  + 𝑦𝑟 ≥  𝐷𝑖𝑗  

We here modify the rule laid out in Equation 5.2 to allow the optimizer to turn a rule on or off, 

depending on how well it fits to the experimental data. If decision variable 𝐷𝑖𝑗 is 0, the values of 
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𝑦𝑖 are unconstrained and potential rule ij does not apply. If 𝐷𝑖𝑗 is 1, the rule applies. A final 

constraint is set such that each state may only have 1 rule selected: 

 

∑ 𝐷𝑖𝑗 == 1

𝐽

𝑗=1

 5.7 

Now we will look at a detailed example of constraint formation from the first potential rule listed 

in Table 9: ActiveM(t + 1) ← KC(t) ∧ IL6(t). This rule is equivalent to the following constraints: 

 

 ActiveM(t + 1) ⇒ [KC(t) ∧ IL6(t) ]= ¬ActiveM(t + 1) ∨ [KC(t) ∧ IL6(t)] 

= [¬ActiveM(t + 1) ∨  KC(t)] ∧ [¬ActiveM(t + 1) ∨ IL6(t)] 

5.8 

  

1 − ActiveM(t + 1) + KC(t) ≥ D  

 

5.9 

 
1 − ActiveM(t + 1) + IL6(t) ≥ D  5.10 

  

[KC(t) ∧ IL6(t)] ⇒ ActiveM(t + 1) = ¬[KC(t) ∧ IL6(t)] ∨ ActiveM(t + 1) 

= ActiveM(t + 1) ∨ ¬KC(t) ∨ ¬IL6(t) 

 

5.11 

  

ActiveM(t + 1) + 1 − KC(t) + 1 − IL6(t) ≥ D  

 

5.12 

5.4.1.2 Python solver 

A Python (version 3.5) package was written to accept Boolean data and a list of potential 

rules for each state. This package reformulates the inputs into an integer linear program for use 

with the Python Optimization Modeling Objects package (Pyomo) [184,185]. Pyomo then 

converts this script into a solver-friendly file, which was then solved by the IBM ILOG CPLEX 
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optimization studio. CPLEX was set to populate all optimum solutions. Finally, our Python 

package parses through this solution pool and generates the rule selection frequency identified in 

the results. The GLPK solver was also considered, but was unable to populate a solution pool, and 

an important aspect of our work is the identification of equivalent rule sets, which produce the 

same number of errors on the data set but are comprised of different rules for at least 1 variable in 

the system. 

5.4.2 Simulation of the Boolean network 

The Boolean network was simulated with the optPBN software package in MATLAB [186]. Error 

is defined as the total number of data points incorrectly predicted by the simulation. Each time step 

represents one day, and we simulate the system for 7 days for the lethal cohort and 19 days for the 

sublethal cohort. The Boolean model simulates the infection with synchronous updates. At time 0, 

only the virus is set to 1; all other variables are considered “off” initially. In the sublethal 

simulations, only Vlow is on initially, whereas in the lethal simulations, both Vlow and Vhigh are on 

initially. Within each age group, sublethal and lethal cohorts are simulated with the same set of 

rules; only the initial condition is changed in order to generate the trajectories predicting survival 

or nonsurvival of the infection. 

5.4.3 Bootstrapping 

To test the robustness of the rules we have presented, we performed a bootstrapping test on our 

data. We generated 100 new datasets by removing randomly 10% of the raw data (making sure 

that at least two data points remain at each time point for each variable) and recalculating the 
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Boolean levels for each of the 25 variables. Optimization was performed in the same way as in the 

full data set. 

 OPTIMIZED NETWORKS FOR ADULT AND ELDERLY MICE 

5.5.1 Fits to adult mice data 

Figure 36 shows graphically the rules chosen for the adult mice. Green lines represent two or more 

variables combined in an AND condition, and the black arrow represents the output of the AND 

rules. Blue arrows represent direct relations between two variables. Each arrow pointing into a box 

represents an OR condition. For example, we see KC is turned on by ActiveM OR Vlow. Red 

blunted arrows represent NOT conditions. For example, Vlow is turned off by Ab (antibodies). 

Dashed lines represent rules that exist in some, but not all, models that comprise the optimum 

solution.  

Our rules for the adult mice are 95% accurate for the experimental data, missing only 11 

data points in the sublethal simulations (Figure 37A and C) and 5 in the lethal simulations (Figure 

37B and D). Only two of the variables (RANTES and ActiveCTL) could be simulated with more 

than one rule to achieve this optimal result. Each of these variables has two rules that yield identical 

outputs in this system. The four combinations of these alternatives yields four possible models, 

described in Table 6. 
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Figure 36: Graphical representation of adult mouse network model.  

Diagram of adult (younger) mice rule choices for full data set. Blue arrows indicate direct relation between two 

components. More than one blue arrow into a variable indicates an OR condition. Green lines indicate two or more 

components activate another through an AND operator. Black arrows indicate the output of the AND. Red blunted 

arrows indicate a NOT condition. Rectangles represent cell populations, circles represent cytokines and chemokines, 

hexagons represent viral loads, and the diamond represents antibodies. Dashed lines represent rule alternatives that 

exist in some, but not all, models that comprise the optimum solution. 
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Table 6: Optimum rule choices for the adult mouse model. 

Rule Frequency 

ActiveM ← KC & IL6 100% 

TNF ← ActiveM | Vhigh  100% 

IL1a ← ActiveM | Vlow  100% 

IL1b ← ActiveM | Vhigh  100% 

IL6 ← ActiveM | Vlow  100% 

IL10 ← ActiveTh & Vhigh 100% 

IL12p70 ← ActiveTh 100% 

RANTES ← ActiveN 50% 

RANTES ← ActiveM 50% 

MCP1 ← ActiveM | Vhigh  100% 

MIP1b ← ActiveM | Vhigh  100% 

KC ← ActiveM | Vlow  100% 

TGFb ← ActiveM & pDC & IL12p70 100% 

ActiveNK ← ActiveM 100% 

IFNg ← ActiveM 100% 

ActiveN ← (KC | MIP1b) & IL6 100% 

IFNab ← ((pDC & Vhigh) | (ActivecDC & Vhigh)) 100% 

ActiveCTL ← IFNg 50% 

ActiveCTL ← IFNg | RANTES 50% 

pDC ← (Vlow | Vhigh | pDC) & TNF 100% 

ActivecDC ← Vlow | IFNg 100% 

ActiveTh ← ActiveM  & RANTES 100% 

ActiveB ← ActivecDC & MCP1 100% 

Ab ← (ActiveB & TGFb) | Ab 100% 

Vlow ← (IEC | Vlow | Vhigh) & ~Ab 100% 

Vhigh ← (IEC | Vhigh) & ~Ab 100% 

IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK 100% 

 

 

In the sublethal case (Figure 37A), we see the first components to turn on after the infection 

begins are IL-1α, IL-6, KC, infected epithelial cells (IEC), and activated conventional dendritic 

cells (ActivecDC), each of which respond directly to the presence of the virus. Direct response to 
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virus represents an activated or upregulated by lung epithelial cells [187]; since we do not have 

data for these cells, we represent this mechanism with a simple interaction between virus and the 

cytokine. Dendritic cells also respond directly to the virus, implying an early influx and activation 

of these cells, consistent with clinical observations [13]. The presence of virus also produces a 

population of infected cells, which further increase the virus level in the lung tissue, creating a 

high level of virus at day 2. 

Also on day 2, high levels of IL-6 and KC lead to the activation and migration of 

macrophages and neutrophils. Interferon (IFN)-γ is also activated on day 2 in response to the 

dendritic cells, leading to an increase in cytotoxic T cells (CTLs) at day 3. Macrophages, dendritic 

cells, and neutrophils increase activation of several other cytokines and chemokines on day 3, 

including TNF-α, IL-1β, RANTES, MCP-1, and MIP-1β. Macrophages also instigate the influx of 

natural killer cells. 

Day 4 brings an increase in the plasmacytoid dendritic cell (pDC) population and the 

activation of helper T (TH) cells and B cells. The CTLs and NK cells decrease the infected cell 

population on day 4, though free virus levels remain high. On day 5, the anti-inflammatory 

cytokines turn on, including IL-10 and TGF- β, though our rules miss this first data point for TGF-

β. IL-12 also turns on at day 5 in response to the TH cells. 

The next significant event is the activation of antibodies at day 7. Antibodies clear virus 

levels immediately after they turn on. Virus activates pDCs to produce type I IFN, so once the 

virus leaves the system, IFN-α/β turns off as well. The remaining variables all remain on 

throughout the course of the simulation, though our data shows IL-6, IL-12, KC, and IFN-γ will 

turn off at day 19. There are also zeroes in TGF-β at day 15 and in NK cells at day 11. Our rules 
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are unable to capture these behaviors, leading to six errors in the final stages of the infection 

simulation. 

In the lethal case (Figure 37B), many of the cytokines and chemokines turn on immediately 

after infection, whereas only KC, IL-1α and IL-6 were on day 1 in the sublethal case. Macrophages 

and neutrophils are again activated on day 2. The data also show CTLs turn on day 2, but our rules 

do not capture this point. pDCs are also turned on at day 2, two days earlier than in the sublethal 

condition. 

Day 3 brings RANTES, NK cells, and type I and type II IFN. IL-10 and antibodies turn on 

at day 5, though our data show IL-10 is delayed until day 7. Virus levels remain high through day 

7, at which point the host succumbed to the infection. 

 



 117 

 

Figure 37: Boolean model fits to experimental data for adult mice.  

Experimental data are indicated with the 0s and 1s. Variables for which no data was measured are indicated with 

“NaN”. The simulated trajectories are indicated with shading of the table cell, where black rectangles represent a 

variable being on at that time point, and white rectangles represent the variable being off at that point. Thus, if a 

black rectangle overlaps a 1, the simulation correctly predicts that variable’s trajectory at that point. A white 

rectangle overlapping a 0 is also a correct prediction. Incorrectly predicted data points have been highlighted in 

panel (C) for the sublethal condition and panel (D) for the lethal condition. NaN data and blank cells can predict 

either a 0 or 1 without penalty. A total of 16 data points are missed in the optimum fit. 
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5.5.2 Fits to elderly mice data 

 

Figure 38: Graphical representation of elderly mouse network model.  

Diagram of elderly (older) mice rule choices for full data set. Blue arrows indicate direct relation between two 

components. More than one blue arrow into a variable indicates an OR condition. Green lines indicate two or more 

components activate another through an AND operator. Black arrows indicate the output of the AND. Red blunted 

arrows indicate a NOT condition. Rectangles represent cell populations, circles represent cytokines and chemokines, 

hexagons represent viral loads, and the diamond represents antibodies. Dashed lines represent rule alternatives that 

exist in some, but not all, models that comprise the optimum solution. 
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Table 7: Optimum rule choices for the elderly mice model. 

Rule Frequency 

ActiveM ← KC & IL6 50% 

ActiveM ← KC & TNF 50% 

TNF ← ActiveM | Vhigh 25% 

TNF ← ActiveM | Vlow  75% 

IL1a ← ActiveM | ActiveN 100% 

IL1b ← ActiveN 37.5% 

IL1b ← ActiveM 62.5% 

IL6 ← ActiveM | Vlow  75% 

IL6 ← ActiveM | ActiveN | ActivecDC  25% 

IL10 ← ActivecDC & Vhigh 100% 

IL12p70 ← (ActiveTh & Vhigh) | (ActivecdC & 

IL1b) 100% 

RANTES ← ActivecDC 100% 

MCP1 ← ActiveM | Vhigh  100% 

MIP1b ← ActiveM | ActiveN | ActivecDC  100% 

KC ← ActiveM | Vlow  100% 

TGFb ← ActiveM & pDC & Vlow 33.3% 

TGFb ← ActiveM & pDC & IL12p70 66.7% 

ActiveNK ← ActiveM 100% 

IFNg ← ActiveM 100% 

ActiveN ← (KC | MIP1b) & IL6 100% 

IFNab ← ((pDC & Vhigh) | (ActivecDC & Vhigh)) 100% 

ActiveCTL ← IFNg 50% 

ActiveCTL ← IFNg | RANTES 50% 

pDC ← IFN & RANTES & Vlow 100% 

ActivecDC ← ActiveNK 100% 

ActiveTh ← ActiveM  | Vlow | Vhigh 100% 

ActiveB ← ActivecDC & MCP1 100% 

Ab ← (ActiveB & pDC) | Ab 100% 

Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) 100% 

Vhigh ← (IEC | Vhigh) & ~Ab 100% 

IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK 100% 
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Experimental data for the elderly mice show many differences in the activation and 

upregulation of immune system components as compared to the younger mice, particularly in the 

inflammatory response (Figure 38). Our rules fit the data with 94% accuracy, missing 10 data 

points in the sublethal simulation and 12 in the lethal simulation (Figure 39). There are 48 models 

that produce outputs with the same number of errors, though the exact data points which are missed 

may differ between these outputs. Table 7 summarizes the rule choices for the elderly mouse 

optimum fit. 

KC and TH cells respond directly to the virus level in 100% of simulations after the 

sublethal infection (Figure 39A). Depending on the rule chosen, other models can also cause TNF 

and IL-6 to turn on at day 1. The data for TNF show it turns off on day 2 before turning on again 

at day 3, remaining on for the remainder of the experiment. The zero point at day 2 is likely an 

anomaly in the data, and we cannot capture this point with our rules. 

The combination of KC with a pro-inflammatory cytokine brings in the activated 

macrophages and neutrophils, which then initiate the production of the other pro-inflammatory 

cytokines and chemokines, as well as type II IFN and NK cells. The dendritic cells and CTLs turn 

on at day 4, bringing IL-10, type I IFN, and B cells on day 5 and pDCs on day 6. At day 7, TGF- 

β and antibodies turn on. On day 8, antibodies bring down the virus level so that only Vlow remains 

on. Once IL-10 turns off, the antibodies can turn off Vlow as well. Removal of the virus turns off 

IL-10, TGF-β, IFN-α/β, and pDCs between days 9 and 11. 

In the lethal simulations (Figure 39B), we see the higher viral inoculum changes the 

dynamics of the system substantially. Our simulations show TNF, MCP-1, and active all turn on 

immediately after infection. These drive the activation and upregulation of macrophages, IL-12, 
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IFN-gamma, and active B cells. At day 3, the other cytokines and chemokines turn on, bringing in 

neutrophils on day 4. 

Interestingly, in our experimental data, IL-10 never turns on after the lethal dose. In this 

case, the TH cells standard deviations associated with the measured data were so large that we 

cannot discern a statistical difference between any of the data points with baseline. In our 

simulations, however, IL-10 turns on at day 5, causing an error at the day 5 and 7 data points. We 

also have an anomaly in the TGF-β data, where this cytokine is on between days 1 and 2, then off 

again between days 3 and 5, and then turns back on at day 7. The rules are set so that the data at 

days 1 and 2 are ignored, leading to an activation of TGF- β at days 6 and 7 only.  
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Figure 39: Boolean model fits for elderly mice.  

Experimental data are indicated with the 0s and 1s. Variables for which no data was measured are indicated with 

“NaN”. The simulated trajectories are indicated with shading of the table cell, where black rectangles represent a 

variable being on at that time point, and white rectangles represent the variable being off at that point. Thus, if a 

black rectangle overlaps a 1, the simulation correctly predicts that variable’s trajectory at that point. A white 

rectangle overlapping a 0 is also a correct prediction. Incorrectly predicted data points have been highlighted in 

panel (C) for the sublethal condition and panel (D) for the lethal condition. NaN data and blank cells can predict 

either a 0 or 1 without penalty. A total of 22 data points are missed in the optimum fit. 
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5.5.3 Aged-based rule differences 

Figure 40 summarizes the differences between rules chosen for younger (orange arrows) and older 

(purple arrows) mice in this model. Only rules chosen for one age group but not the other are 

included in this figure. Components with no arrows in are governed by the same rules in each 

network. In total, 11 of the 25 components rely on different rules to simulate the Boolean data.  

 

 

Figure 40: Aged-based differences in rules for Boolean models.  

Differences in rule choices between age groups. Orange arrows represent rules seen in adult mouse model but not in 

elderly mouse model. Purple arrows represent rules seen in elderly mouse model but not in adult mouse model. 

Shapes without incoming arrows have identical rules between age groups. 
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These age-dependent variables are also summarized below in Table 8. 

 

Table 8: Summary of age-dependent rules in best fit solutions to adult and elderly mice data. 

Variable Adult Rule Elderly Rule 

IL-1α IL1a ← ActiveM | Vlow  IL1a ← ActiveM | ActiveN 

IL-1β IL1b ← ActiveM | Vlow  IL1b ← ActiveM | ActiveN 

IL-10 IL10 ← ActiveTh & Vhigh IL10 ← ActivecDC & Vhigh 

IL-12 IL12p70 ← ActiveTh 
IL12p70 ← (ActiveTh & Vhigh) | 

(ActivecdC & IL1b) 

RANTES RANTES ← ActiveM | ActiveN RANTES ← ActivecDC 

MIP-1β MIP1b ← ActiveM | Vhigh  MIP1b ← ActiveM | ActiveN | ActivecDC  

ActivecDC ActivecDC ← Vlow | IFNg ActivecDC ← ActiveNK 

pDC pDC ← (Vlow | Vhigh | pDC) & TNF pDC ← IFN & RANTES & Vlow 

ActiveTh ActiveTh ← ActiveM  & RANTES ActiveTh ← ActiveM  | Vlow | Vhigh 

Ab Ab ← (ActiveB & TGFb) | Ab Ab ← (ActiveB & pDC) | Ab 

Vlow Vlow ← (IEC | Vlow | Vhigh) & ~Ab 
Vlow ← (IEC | Vlow | Vhigh) & 

 ~(Ab & ~IL10) 

 

 

IL-1α is produced in the presence of macrophages or low levels of virus in the adult mice, 

but only by macrophages in the elderly mice. Given the high level of dysregulation of cytokine 

production in elderly hosts, this discrepancy can be explained by an inability of epithelial cells to 

respond quickly amount of virus present. A similar trend is seen in the IL-1β rule choices. IL-1β 

can respond to active macrophages in either age group, but in adult mice it can also respond to 

high virus levels. This discrepancy implies epithelial cells in the lungs of younger mice can 
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produce high levels of IL-1β in response to a large viral load, but lung epithelial cells in older mice 

are unable to produce IL-1β at the same rate.  

Cytokine dysregulation may also account for rule differences in IL-10, IL-12, and TGF-β. 

IL-10 responds to dendritic cells in the presence of high virus levels in the elderly mice, but it 

responds to T helper cells and high virus in the younger mice. In both data sets, IL-10 turns off 

immediately after the virus is lowered, implying a dependence of IL-10 on high virus levels. The 

cell type primarily responsible for producing IL-10 is also data-driven, depending on which cells 

activate the day before IL-10 should turn on. TH cells fit the data appropriately in younger mice. 

Experimental data measured for CD4+ T cells (TH cells) included regulatory T cells (Treg), which 

are known producers of IL-10 [188], accounting for this data-driven rule. In older mice, IL-10 is 

produced primarily by cDCs. 

IL-12p70 is the active heterodimer of IL-12, a regulatory cytokine that operates to connect 

the innate and adaptive responses through dendritic cells and macrophages. Though IL-12 can be 

produced by a variety of cell types, in our model, active TH cells are a major source of IL-12, but 

they utilize distinct mechanisms for its production between young and old mice. IL-12 is produced 

by the TH cells in conjunction with active dendritic cells in the younger mice. This mechanism has 

previously been shown in young BALB/c mice [189]. In older mice, the rule is more complicated, 

involving a data-driven mechanism in which T helper cells in conjunction with high virus first 

produce IL-12, and then when virus is cleared, IL-12 levels are kept high by production from 

dendritic cells plus IL-1b. Dendritic cells are known to be a major producer of IL-12 in the presence 

of IL-1b [190]. 

TGF-β rules are largely data-driven in our model. TGF-β is an anti-inflammatory cytokine 

that generally exists in a latent form in the body, and macrophages are required to process and 



 126 

activate the latent form, so both age groups have a TGF-β dependence on activated macrophages. 

Macrophages can be assisted in this process by one of several cell types, and in this model, pDCs 

are used to drive TGF-β production. In the elderly mice, because TGF-β turns off after the virus 

has been cleared from the host, we include a codependence on virus in the rule as well. In adult 

mice, the TGF-β remains high for the full length of the experiment, so no direct virus dependence 

is necessary. Instead, to generate the proper timing of TGF-β activation, we include a 

codependence with IL-12. TGF-β is produced by many T cell types, and since IL-12 activates 

many of these cells, that may explain this IL-12 dependence for TGF-β production. 

Chemokine dysregulation is evident in the elderly mouse rules, as we obtained distinct 

rules for RANTES and MIP-1β between age groups. Dendritic cells are responsible for most 

RANTES production in older mice, while macrophages or neutrophils release most RANTES in 

younger mice. This difference can be attributed to the delay in RANTES activation in older mice; 

RANTES is off until day 5 in the elderly mouse data, while it turns on at day 3 in the adult mouse 

data. MIP-1β is produced by macrophages in both age groups, but adult mice have an additional 

source of MIP-1β from high virus levels, whereas elderly mice have neutrophils and dendritic cells 

as additional sources of MIP-1β. MIP-1β is delayed in the elderly mice as compared to the younger, 

so a direct dependence on virus will not suit the data well. 

Antibodies are also produced differently in each age group. In the adult mice, antibodies 

are produced by B cells which have differentiated into plasmablasts and plasma cells in the 

presence of TGF-β [191,192]. In elderly mice, antibodies are again produced by B cell 

differentiated into plasmablasts and plasma cells, but here the process is aided by pDCs [193]. 

Both types of dendritic cells are governed by age-dependent rules. In adult mice, pDCs 

remain high after activation on day 5, but in elderly mice, pDCs return to baseline after day 11, 
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justifying a separate rule choice for each cohort. pDCs respond early in younger mice, driven to 

replicate by a pro-inflammatory cytokine like TNF. pDCs do not activate until day 7 in older mice, 

possibly related to the well-documented pDC impairment with age [194]. The delayed activation 

and quick deactivation can be described by a codependence of IFN-γ, RANTES, and low virus. 

cDCs can activate in response to the virus or to IFN-γ in the younger mice, while they respond 

directly to NK cells in the older mice. NK cells have previously been shown to aid in dendritic cell 

maturation in BALB/c mice [14]. 

T helper cells are the only other cell type to require separate rules per age group. 

Macrophages in younger mice can activate TH cells in their capacity as antigen-presenting cells, 

and the TH cells are brought to the site of infection by RANTES. Macrophages can also activate 

TH cells in aged mice, but the data suggest TH cells activate at the same time or earlier than 

macrophages, so another factor must bring in TH cells as well. Here, we model this with a direct 

dependence on virus in addition to macrophage activation. 

 BOOTSTRAPPING RESULTS 

Figure 41 shows the distribution of errors associated with the adult and elderly mice bootstrap 

results. The adult bootstrap replicates led to an average error of 23.22, with a minimum of 15 and 

interquartile range (IQR) of 21-28 (Figure 41A). The elderly bootstrap replicates had an average 

error of 27 with a minimum of 22 and IQR of 24-31 (Figure 41B). 
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Figure 41: Error distributions for bootstrap replicate output. Distributions of all errors from bootstrap replicates for 

(A) adult mice (3,016 models) and (B) elderly mice (8,810 models). 

 

 

As with the original data set, each of the bootstrap replicates had multiple equivalent 

solutions with different rules but an equal error. For the younger mice, we generated 3,016 

solutions, and for the elderly mice we generated 8,810 solutions in total for the 100 datasets tested. 

Table 9 summarizes the rule choices between age groups, indicating the percent of rule sets that 

include a particular rule for the full set of bootstrap outputs. Figure 42 and Figure 43 show the 

average fit of the models generated in the bootstrap experiment. Numbers represent the average 

value of the data for a particular variable on each day. Darker gray squares represent a greater 

likelihood each model will predict a variable is on at that point, and lighter gray means a greater 

likelihood the rule predicts the variable will be off. Figure 42 shows the bootstrap output for the 

adult mice, and Figure 43 shows the output for the elderly mice. 
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Table 9: Bootstrapping rule choices for adult and elderly mice. 

  ADULT ELDERLY 

ActiveM ← KC & IL6 43.8% 58.7% 

ActiveM ← MIP1b & TNF 1.9% 0.0% 

ActiveM ← KC & TNF 3.9% 39.5% 

ActiveM ← (MIP1b | MCP1) & IL6 51.0% 1.8% 

TNF ← ActiveM | Vhigh  70.8% 45.7% 

TNF ← ActiveM | Vlow  2.0% 54.1% 

TNF ← ActiveM | ActiveN | ActivecDC 27.2% 0.2% 

IL1a ← ActiveM | Vhigh  11.8% 0.0% 

IL1a ← ActiveM | Vlow  78.1% 0.0% 

IL1a ← ActiveM | ActiveN 10.1% 100.0% 

IL1b ← ActiveM | Vhigh  95.3% 5.3% 

IL1b ← ActiveM 2.0% 49.8% 

IL1b ← ActiveN 2.8% 44.8% 

IL6 ← ActiveM | Vhigh  5.0% 3.3% 

IL6 ← ActiveM | Vlow  88.5% 76.6% 

IL6 ← ActiveM | ActiveN | ActivecDC  6.5% 20.1% 

IL10 ← ActivecDC & Vhigh 12.1% 28.0% 

IL10 ← ActiveTh & Vhigh 87.9% 72.1% 

IL12p70 ← (ActiveTh & Vhigh) | (ActivecDC & IL1b) 11.8% 44.6% 

IL12p70 ← ActivecDC & IL1b 88.2% 28.2% 

IL12p70 ← ActiveTh 0.0% 27.2% 

RANTES ← ActiveN 31.1% 12.0% 

RANTES ← ActiveM 58.7% 8.1% 

RANTES ← ActivecDC 10.3% 79.9% 

MCP1 ← ActiveM | Vhigh  1.7% 97.3% 

MCP1 ← ActiveM | Vlow  72.8% 0.2% 

MCP1 ← ActiveM | ActiveN | ActivecDC  25.5% 2.5% 

MIP1b ← ActiveM | Vhigh  50.0% 0.2% 

MIP1b ← ActiveM | Vlow 0.0% 0.0% 

MIP1b ← ActiveM | ActiveN | ActivecDC  50.0% 99.8% 

KC ← ActiveM | Vhigh  8.2% 0.9% 

KC ← ActiveM | Vlow  91.8% 99.1% 

TGFb ← ActiveM & pDC & Vlow 0.0% 35.6% 

TGFb ← ActiveM & pDC & IL12p70 100.0% 66.4% 

ActiveNK ← ActiveM 100.0% 100.0% 

IFNg ← ActiveM 100.0% 100.0% 

ActiveN ← (KC | MIP1b) & IL6 100.0% 100.0% 
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IFNab ← ((pDC & Vhigh) | (ActivecDC & Vhigh)) 100.0% 100.0% 

ActiveCTL ← IFNg 40.7% 48.4% 

ActiveCTL ← IFNg | RANTES 59.3% 51.6% 

pDC ← IFN & RANTES & Vlow 0.0% 97.8% 

pDC ← (Vlow | Vhigh | pDC) & TNF 100.0% 2.2% 

ActivecDC ← ActiveN 88.0% 3.3% 

ActivecDC ← ActiveNK 12.0% 96.7% 

ActiveTh ← ActiveM  | Vlow | Vhigh 0.0% 26.5% 

ActiveTh ← ActiveM  & RANTES 84.4% 21.7% 

ActiveTh ← ActivecDC | IL12p70 15.6% 51.9% 

ActiveB ← ActiveTh 41.0% 12.7% 

ActiveB ← ActivecDC & MCP1 59.0% 87.3% 

Ab ← (ActiveB & TGFb) | Ab 97.3% 92.1% 

Ab ← (ActiveB & pDC) | Ab 2.7% 7.9% 

Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) 95.7% 89.5% 

Vlow ← (IEC | Vlow | Vhigh) & ~Ab 4.3% 10.5% 

Vhigh ← (IEC | Vhigh) & ~Ab 100.0% 100.0% 

IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK 100.0% 100.0% 

 

 

Figure 42: Bootstrap output for adult mice.  

Average values of bootstrap data are indicated with the numbers, and the simulated trajectories are indicated with 

color, where black rectangles represent a variable being on at that time point, and white rectangles represent the 

variable being off at that point. Gray coloring indicates a variable is on at that point for some rule sets, but not for 

all.  Darker gray indicates greater likelihood of an “on” state at that point.  

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 1 NaN 1 1 1 1 1 1 ActiveM

TNF 0 0.1 0 0.9 1 1 1 1 1 0.6 TNF 0 1 0.9 0.9 1 1

IL1a 0 1 0.8 1 1 1 1 1 1 1 IL1a 0 1 0.9 1 1 1

IL1b 0 0 0 0.9 1 1 1 0.7 1 0.6 IL1b 0 1 1 1 1 1

IL6 0 1 0.7 1 1 1 1 1 1 0 IL6 0 0.9 1 1 1 1

IL10 0 0 0 0 0.6 1 0 0 0 0 IL10 0 0 0 0 0 0.7

IL12p70 0 0.1 0 0 0.9 0.9 0.9 1 0.9 0 IL12p70 0 0 0 0 0.6 0.9

RANTES 0 0.1 0 0 1 1 1 1 1 1 RANTES 0 0.1 0.1 0.9 1 1

MCP1 0 NaN NaN 1 1 1 1 1 1 1 MCP1 0 0.9 1 1 1 1

MIP1b 0 0 0 0.6 1 1 1 1 1 0.6 MIP1b 0 0.6 0.6 0.9 1 1

KC 0 1 0.8 0.9 1 1 1 0.9 1 0 KC 0 1 1 1 1 1

TGFb 0 0 0 0 0.7 0.7 0.7 0.8 0 1 TGFb 0 0 0 0 0 0.9

ActiveNK 0 NaN 0 NaN 1 1 1 0.1 0.8 1 ActiveNK 0 0 0 0.5 0.9 1

IFNg 0 0 0 1 1 1 1 1 1 0.1 IFNg 0 0 1 1 1 1

ActiveN 0 ActiveN

IFNab 0 0 0 0.1 1 1 0.7 0.7 0 0.5 IFNab 0 0 0.7 0.9 1 0.9

ActiveCTL 0 NaN 0 NaN 1 1 1 1 1 1 ActiveCTL 0 0 0.5 0.8 1 1

pDC 0 NaN 0 NaN 1 1 1 1 0.98 1 pDC 0 0 1 0.9 0 1

ActivecDC 0 NaN 1 NaN 1 1 1 1 1 1 ActivecDC

ActiveTh 0 NaN 0 NaN 1 1 1 1 1 1 ActiveTh 0 0 0.1 0 0.6 0.8

ActiveB 0 NaN 0 NaN 0.9 1 1 0.7 1 1 ActiveB 0 0 0.5 0.9 1 1

Ab 0 Ab      

Vlow 1 1 1 1 1 1 0 0 0 0 Vlow 1 1 1 0.9 1 1

Vhigh 0 Vhigh 1 1 1 0.9 1 1

IEC 0 IEC
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Figure 43: Bootstrap output for elderly mice.  

Average values of bootstrap data are indicated with the numbers, and the simulated trajectories are indicated with 

color, where black rectangles represent a variable being on at that time point, and white rectangles represent the 

variable being off at that point. Gray coloring indicates a variable is on at that point for some rule sets, but not for 

all.  Darker gray indicates greater likelihood of an “on” state at that point.  

 

 

Most rule choices in the bootstrapping tend toward the rules chosen in the optimum 

solutions presented in Table 6 and Table 7. A few variables, however, showed interesting patterns 

not obvious from the optimal solutions. Macrophages are activated by distinct mechanisms 

between age groups. Younger mice can recruit macrophages with any chemokine, but IL-6 is 

required for their activation. Conversely, older mice can only recruit macrophages with the 

chemokine KC in this model, but any of the pro-inflammatory cytokines can be used for activation. 

Much of the macrophage’s function is dysregulated with age [164]; it is possible macrophages 

from elderly hosts do not respond as well to MIP-1β or MCP-1, so other chemokines like KC are 

needed as well to initiate a full macrophage response to viral infection. 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 0.7 1 1 1 1 1 1 1 ActiveM 0

TNF 0 0.7 0.1 1 1 1 1 1 1 1 TNF 0 NaN 1 1 1 1

IL1a 0 0.1 0 1 1 0.9 1 1 1 1 IL1a 0 0 0 1 1 1

IL1b 0 0 0.9 1 1 1 1 1 1 1 IL1b 0 0.1 0 1 1 1

IL6 0 1 0.9 1 1 1 1 1 1 1 IL6 0 0 0.2 1 1 1

IL10 0 0 0.1 0 0.1 0.9 1 0 0 0 IL10 0 0 0.1 0 0 0

IL12p70 0 1 0 0.1 0.2 1 0.7 1 0.7 0.7 IL12p70 0 0 1 0.6 1 1

RANTES 0 0 0 0 1 1 1 1 1 1 RANTES 0 0 0 0.8 1 1

MCP1 0 0 0 1 1 1 1 1 1 1 MCP1 0 NaN 1 1 1 1

MIP1b 0 0 0 1 1 1 1 1 1 1 MIP1b 0 0 0 1 1 1

KC 0 1 1 1 1 1 1 1 1 1 KC 0 0.2 0 1 1 1

TGFb 0 0 0 0.1 0.1 0.9 1 1 0 0 TGFb 0 0.5 0.9 0.1 0 0.6

ActiveNK 0 NaN 0.1 0.7 1 1 1 1 0.9 0.7 ActiveNK 0 NaN NaN 0.9 1 1

IFNg 0 0 0.1 1 1 1 1 1 1 1 IFNg 0 1 1 1 1 1

ActiveN 0 ActiveN 0

IFNab 0 0 0 0.8 1 1 0.6 0.1 0 0 IFNab 0 0 1 0.6 1 1

ActiveCTL 0 NaN 0.1 1 1 1 1 1 1 1 ActiveCTL 0 NaN NaN 1 1 1

pDC 0 NaN 0 0 0 0.8 0.8 0.7 0 0 pDC 0 NaN NaN 0 0.7 1

ActivecDC 0 NaN 0 0 1 1 1 1 1 1 ActivecDC 0

ActiveTh 0 NaN 1 1 1 1 1 1 1 1 ActiveTh 0 NaN NaN 1 0.6 0.9

ActiveB 0 NaN 0 1 1 1 1 1 1 1 ActiveB 0 NaN NaN 0.1 0.9 0.9

Ab 0 Ab 0

Vlow 1 1 1 1 1 1 1 0 0 0 Vlow 1 1 1 1 1 1

Vhigh 0 Vhigh 1 1 1 1 1 1

IEC 0 IEC
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IL-10 is initiated by dendritic cells in the original elderly mouse fit, but the bootstrapping 

results suggest a dependence on TH cells. As we age, one major change to cellular immunity is  a 

shift in the T cell cytokine production, from a TH1-focused phenotype to a TH2 phenotype [167]. 

TH2 cells produce IL-10, which implies the bootstrap rule is more likely to represent the underlying 

biology than the cDC-dependent rule. 

IL-12 rules do not match up well between the optimum and the bootstrapping. The original 

adult mouse model shows TH cells are the primary source of IL-12. About 88% of bootstrap 

replicates indicate active cDCs under IL-1β stimulation as the producer of IL-12, however. In 

elderly mice, there is no clear consensus on which rule most accurately describes IL-12 production. 

While about 45% of solutions agree with the optimum rule choice from all data, the other 55% of 

solutions are split evenly between TH cells and active cDCs with IL-1β. This uncertainty is 

correlated to the rule choices for TH cells. IL-12 production by dendritic cells has been shown to 

decrease with age [195], perhaps requiring a compensatory mechanism through T cell production 

to maintain this regulatory cytokine throughout the course of the infection.  

MCP-1 rules differ in the adult case between optimum and bootstrapping. About 73% of 

the bootstrap solutions chose an MCP-1 dependence on macrophages and low virus levels, while 

the optimum solution fit with macrophages and a high virus level. These two rules produce 

identical outputs in the lethal simulations, but produce a 2 day difference in onset of MCP-1 in the 

sublethal case. Because we have no measured data at days 1 and 2 for MCP-1, it can turn on at day 

1, 2, or 3 without penalty, accounting for this difference in rule choices. Similarly, MIP-1β has 

quite a bit of uncertainty in its first two data points in the lethal case; about 60% of data sets are 

on at days 1 and 2. Generally the rules force MIP-1β to turn on at day 3, one day after macrophage 

activation, leading to an error at these early data points in 60% of cases. 
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Antibody rules also do not correlate well to the optimal solution for the elderly mice. 

Because we do not have bootstrap data available for this variable, the antibody trajectory can turn 

on at any day without penalty. We do have antibody data in the original solution, however, forcing 

a more rigorous timing to the antibody trajectory. For this reason, the bootstrapping does not reflect 

the optimum solution for the antibodies in the elderly case.  

We also took the most-often chosen model from each age group and tested this model 

against all 100 bootstrap data sets. The model selected for each age group is presented in Table 10. 

The simulation output for these model choices is shown in Figure 44 for adult (top panels) and 

elderly (bottom panels) mice. 

Finally, we looked at the best-fit outputs from the bootstrapping replicates, i.e. the rule sets 

that garnered the lowest overall error on the bootstrap data. Those rule sets are presented in Table 

11, and the graphical simulation output is presented in Figure 45. 
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Figure 44: Most often chosen model output from adult mice (top) and elderly mice (bottom). 

 

 

 

 

 

 

 

 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 1 NaN 1 1 1 1 1 1 ActiveM

TNF 0 0 0 1 1 1 1 1 1 1 TNF 0 1 1 1 1 1

IL1a 0 1 1 1 1 1 1 1 1 1 IL1a 0 1 1 1 1 1

IL1b 0 0 0 1 1 1 1 1 1 1 IL1b 0 1 1 1 1 1

IL6 0 1 1 1 1 1 1 1 1 0 IL6 0 1 1 1 1 1

IL10 0 0 0 0 1 1 0 0 0 0 IL10 0 0 0 0 0 1

IL12p70 0 0 0 0 1 1 1 1 1 0 IL12p70 0 0 0 0 1 1

RANTES 0 0 0 0 1 1 1 1 1 1 RANTES 0 0 0 1 1 1

MCP1 0 NaN NaN 1 1 1 1 1 1 1 MCP1 0 1 1 1 1 1

MIP1b 0 0 0 1 1 1 1 1 1 1 MIP1b 0 1 1 1 1 1

KC 0 1 1 1 1 1 1 1 1 0 KC 0 1 1 1 1 1

TGFb 0 0 0 0 1 1 1 1 0 1 TGFb 0 0 0 0 0 1

ActiveNK 0 NaN 0 NaN 1 1 1 0 1 1 ActiveNK 0 0 0 1 1 1

IFNg 0 0 0 1 1 1 1 1 1 0 IFNg 0 0 1 1 1 1

ActiveN 0 ActiveN

IFNab 0 0 0 0 1 1 1 0 0 0 IFNab 0 0 0 1 0 1

ActiveCTL 0 NaN 0 NaN 1 1 1 1 1 1 ActiveCTL 0 0 1 1 1 1

pDC 0 NaN 0 NaN 1 1 1 1 1 1 pDC 0 0 1 1 0 1

ActivecDC 0 NaN 1 NaN 1 1 1 1 1 1 ActivecDC

ActiveTh 0 NaN 0 NaN 1 1 1 1 1 1 ActiveTh 0 0 0 0 1 1

ActiveB 0 NaN 0 NaN 1 1 1 1 1 1 ActiveB 0 0 1 1 1 1

Ab 0 0 0 0 0 1 1 1 1 1 Ab      

Vlow 1 1 1 1 1 1 0 0 0 0 Vlow 1 1 1 1 1 1

Vhigh 0 Vhigh 1 1 1 1 1 1

IEC 0 IEC

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 1 1 1 1 1 1 1 1 ActiveM 0

TNF 0 1 0 1 1 1 1 1 1 1 TNF 0 NaN 1 1 1 1

IL1a 0 0 0 1 1 1 1 1 1 1 IL1a 0 0 0 1 1 1

IL1b 0 0 1 1 1 1 1 1 1 1 IL1b 0 0 0 1 1 1

IL6 0 1 1 1 1 1 1 1 1 1 IL6 0 0 0 1 1 1

IL10 0 0 0 0 0 1 1 0 0 0 IL10 0 0 0 0 0 0

IL12p70 0 1 0 0 0 1 1 1 1 1 IL12p70 0 0 1 1 1 1

RANTES 0 0 0 0 1 1 1 1 1 1 RANTES 0 0 0 1 1 1

MCP1 0 0 0 1 1 1 1 1 1 1 MCP1 0 NaN 1 1 1 1

MIP1b 0 0 0 1 1 1 1 1 1 1 MIP1b 0 0 0 1 1 1

KC 0 1 1 1 1 1 1 1 1 1 KC 0 0 0 1 1 1

TGFb 0 0 0 0 0 1 1 1 0 0 TGFb 0 1 1 0 0 1

ActiveNK 0 NaN 0 1 1 1 1 1 1 1 ActiveNK 0 NaN NaN 1 1 1

IFNg 0 0 0 1 1 1 1 1 1 1 IFNg 0 NaN 1 1 1 1

ActiveN 0 ActiveN 0

IFNab 0 0 0 0 1 1 0 0 0 0 IFNab 0 0 1 0 1 1

ActiveCTL 0 NaN 0 1 1 1 1 1 1 1 ActiveCTL 0 NaN NaN 1 1 1

pDC 0 NaN 0 0 0 1 1 1 0 0 pDC 0 NaN NaN 0 0 1

ActivecDC 0 NaN 0 0 1 1 1 1 1 1 ActivecDC 0

ActiveTh 0 NaN 1 1 1 1 1 1 1 1 ActiveTh 0 NaN NaN 1 1 1

ActiveB 0 NaN 0 1 1 1 1 1 1 1 ActiveB 0 NaN NaN 0 1 1

Ab 0 0 0 0 0 1 1 1 1 1 Ab 0

Vlow 1 1 1 1 1 1 1 0 0 0 Vlow 1 1 1 1 1 1

Vhigh 0 Vhigh 1 1 1 1 1 1

IEC 0 IEC
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Table 10: Most-often chosen model from bootstrapping for each age group. 

Adult mice most-often chosen model Elderly mice most-often chosen model 

ActiveM ← (MIP1b | MCP1) & IL6 ActiveM ← KC & TNF 

TNF ← ActiveM | ActiveN | ActivecDC  TNF ← ActiveM | Vlow  

IL1a ← ActiveM | Vhigh  IL1a  ← ActiveM  

IL1b  ← ActiveM IL1b  ← ActiveM  

IL6 ← ActiveM | Vlow  IL6  ← ActiveM | ActiveN | ActivecDC  

IL10 ← ActiveTh & Vhigh IL10 ← ActiveTh & Vhigh 

IL12p70 ← ActiveTh & Vhigh IL12p70 ← (ActivecDC & IL1b) | (ActiveTh & Vhigh) 

RANTES ← ActiveN RANTES ← ActivecDC  

MCP1 ← ActiveM | Vlow  MCP1 ← ActiveM | Vhigh  

MIP1b ← ActiveM | ActiveN | ActivecDC  MIP1b   ← ActiveM  

KC ← ActiveM | Vhigh  KC  ← ActiveM | Vlow  

TGFb ← ActiveM & pDC & IL12p70 TGFb ← ActiveM & pDC & Vlow 

ActiveNK ← ActiveM ActiveNK ← ActiveM 

IFNg ← ActiveM | ActivecDC IFNg ← ActiveM 

ActiveN ← (KC | MIP1b) & IL6 ActiveN ←(KC | MIP1b) & IL6 

IFNab ← (pDC & Vhigh) | (ActivecDC & Vhigh) IFNab ← (pDC & Vhigh) | (ActivecDC & Vhigh) 

ActiveCTL ← IFNg | RANTES ActiveCTL ← IFNg 

pDC ← (Vlow | Vhigh | pDC) & TNF pDC ← (Vlow | Vhigh | pDC) & TNF 

ActivecDC ← ActiveN ActivecDC ← ActiveNK 

ActiveTh ← ActiveM  & RANTES ActiveTh ← ActivecDC | IL12p70 

ActiveB ← ActivecDC & MCP1 ActiveB ← ActivecDC & MCP1 

Ab ← (ActiveB & TGFb) | Ab Ab ← (ActiveB & TGFb) | Ab 

Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) 

Vhigh ← (IEC | Vhigh) & ~Ab Vhigh ← (IEC | Vhigh) & ~Ab  

IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK 
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Table 11: Best fit rule sets for adult and elderly mice from bootstrap experiments. 

Adult mice best-fit bootstrap model Elderly mice best-fit bootstrap model 

ActiveM ← (MIP1b | MCP1) & IL6 ActiveM ← KC & TNF 

TNF ← ActiveM | ActiveN | ActivecDC  TNF ← ActiveM | Vlow  

IL1a ← ActiveM | Vhigh  IL1a  ← ActiveM  

IL1b  ← ActiveM IL1b  ← ActiveM  

IL6 ← ActiveM | Vlow  IL6  ← ActiveM | ActiveN | ActivecDC  

IL10 ← ActiveTh & Vhigh IL10 ← ActiveTh & Vhigh 

IL12p70 ← ActiveTh & Vhigh IL12p70 ← (ActivecDC & IL1b) | (ActiveTh & Vhigh) 

RANTES ← ActiveN RANTES ← ActivecDC  

MCP1 ← ActiveM | Vlow  MCP1 ← ActiveM | Vhigh  

MIP1b ← ActiveM | ActiveN | ActivecDC  MIP1b   ← ActiveM  

KC ← ActiveM | Vhigh  KC  ← ActiveM | Vlow  

TGFb ← ActiveM & pDC & IL12p70 TGFb ← ActiveM & pDC & Vlow 

ActiveNK ← ActiveM ActiveNK ← ActiveM 

IFNg ← ActiveM | ActivecDC IFNg ← ActiveM 

ActiveN ← (KC | MIP1b) & IL6 ActiveN ←(KC | MIP1b) & IL6 

IFNab ← (pDC & Vhigh) | (ActivecDC & Vhigh) IFNab ← (pDC & Vhigh) | (ActivecDC & Vhigh) 

ActiveCTL ← IFNg | RANTES ActiveCTL ← IFNg 

pDC ← (Vlow | Vhigh | pDC) & TNF pDC ← (Vlow | Vhigh | pDC) & TNF 

ActivecDC ← ActiveN ActivecDC ← ActiveNK 

ActiveTh ← ActiveM  & RANTES ActiveTh ← ActivecDC | IL12p70 

ActiveB ← ActivecDC & MCP1 ActiveB ← ActivecDC & MCP1 

Ab ← (ActiveB & TGFb) | Ab Ab ← (ActiveB & TGFb) | Ab 

Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) Vlow ← (IEC | Vlow | Vhigh) & ~(Ab & ~IL10) 

Vhigh ← (IEC | Vhigh) & ~Ab Vhigh ← (IEC | Vhigh) & ~Ab  

IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK IEC ← (Vlow | Vhigh) & ~ActiveCTL & ~ActiveNK 
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Figure 45: Best-fit rule sets from bootstrap replicates from adult (top panels) and elderly (bottom panels). 

 EFFECT OF DELETION OF SELECT IMMUNE COMPONENTS ON VIRAL 

CLEARANCE 

We also tested the effect of removing certain elements of the immune response in silico. For each 

age group, one component of immunity was kept off for all steps of the simulation in the sublethal 

condition. All models identified by the bootstrap replicates were tested in these knockout 

conditions, and the average results for each age group are summarized in Table 12. In Chapter 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 1 NaN 1 1 1 1 1 1 ActiveM

TNF 0 0 0 1 1 1 1 1 1 1 TNF 0 1 1 1 1 1

IL1a 0 1 1 1 1 1 1 1 1 1 IL1a 0 1 1 1 1 1

IL1b 0 0 0 1 1 1 1 1 1 1 IL1b 0 1 1 1 1 1

IL6 0 1 1 1 1 1 1 1 1 0 IL6 0 1 1 1 1 1

IL10 0 0 0 0 1 1 0 0 0 0 IL10 0 0 0 0 0 1

IL12p70 0 0 0 0 1 1 1 1 1 0 IL12p70 0 0 0 0 1 1

RANTES 0 0 0 0 1 1 1 1 1 1 RANTES 0 0 0 1 1 1

MCP1 0 NaN NaN 1 1 1 1 1 1 1 MCP1 0 1 1 1 1 1

MIP1b 0 0 0 1 1 1 1 1 1 1 MIP1b 0 1 1 1 1 1

KC 0 1 1 1 1 1 1 1 1 0 KC 0 1 1 1 1 1

TGFb 0 0 0 0 1 1 1 1 0 1 TGFb 0 0 0 0 0 1

ActiveNK 0 NaN 0 NaN 1 1 1 0 1 1 ActiveNK 0 0 0 1 1 1

IFNg 0 0 0 1 1 1 1 1 1 0 IFNg 0 0 1 1 1 1

ActiveN 0 ActiveN

IFNab 0 0 0 0 1 1 1 0 0 0 IFNab 0 0 0 1 0 1

ActiveCTL 0 NaN 0 NaN 1 1 1 1 1 1 ActiveCTL 0 0 1 1 1 1

pDC 0 NaN 0 NaN 1 1 1 1 1 1 pDC 0 0 1 1 0 1

ActivecDC 0 NaN 1 NaN 1 1 1 1 1 1 ActivecDC

ActiveTh 0 NaN 0 NaN 1 1 1 1 1 1 ActiveTh 0 0 0 0 1 1

ActiveB 0 NaN 0 NaN 1 1 1 1 1 1 ActiveB 0 0 1 1 1 1

Ab 0 0 0 0 0 1 1 1 1 1 Ab      

Vlow 1 1 1 1 1 1 0 0 0 0 Vlow 1 1 1 1 1 1

Vhigh 0 Vhigh 1 1 1 1 1 1

IEC 0 IEC

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Time 0 1 2 3 4 5 6 7

ActiveM 0 NaN 1 1 1 1 1 1 1 1 ActiveM 0

TNF 0 1 0 1 1 1 1 1 1 1 TNF 0 NaN 1 1 1 1

IL1a 0 0 0 1 1 1 1 1 1 1 IL1a 0 0 0 1 1 1

IL1b 0 0 1 1 1 1 1 1 1 1 IL1b 0 0 0 1 1 1

IL6 0 1 1 1 1 1 1 1 1 1 IL6 0 0 0 1 1 1

IL10 0 0 0 0 0 1 1 0 0 0 IL10 0 0 0 0 0 0

IL12p70 0 1 0 0 0 1 1 1 1 1 IL12p70 0 0 1 1 1 1

RANTES 0 0 0 0 1 1 1 1 1 1 RANTES 0 0 0 1 1 1

MCP1 0 0 0 1 1 1 1 1 1 1 MCP1 0 NaN 1 1 1 1

MIP1b 0 0 0 1 1 1 1 1 1 1 MIP1b 0 0 0 1 1 1

KC 0 1 1 1 1 1 1 1 1 1 KC 0 0 0 1 1 1

TGFb 0 0 0 0 0 1 1 1 0 0 TGFb 0 1 1 0 0 1

ActiveNK 0 NaN 0 1 1 1 1 1 1 1 ActiveNK 0 NaN NaN 1 1 1

IFNg 0 0 0 1 1 1 1 1 1 1 IFNg 0 NaN 1 1 1 1

ActiveN 0 ActiveN 0

IFNab 0 0 0 0 1 1 0 0 0 0 IFNab 0 0 1 0 1 1

ActiveCTL 0 NaN 0 1 1 1 1 1 1 1 ActiveCTL 0 NaN NaN 1 1 1

pDC 0 NaN 0 0 0 1 1 1 0 0 pDC 0 NaN NaN 0 0 1

ActivecDC 0 NaN 0 0 1 1 1 1 1 1 ActivecDC 0

ActiveTh 0 NaN 1 1 1 1 1 1 1 1 ActiveTh 0 NaN NaN 1 1 1

ActiveB 0 NaN 0 1 1 1 1 1 1 1 ActiveB 0 NaN NaN 0 1 1

Ab 0 0 0 0 0 1 1 1 1 1 Ab 0

Vlow 1 1 1 1 1 1 1 0 0 0 Vlow 1 1 1 1 1 1

Vhigh 0 Vhigh 1 1 1 1 1 1

IEC 0 IEC
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4.10, we tested an ODE model of the immune response to influenza virus infection using the 

experimental data for the adult mice only. In that section, we tested the model’s prediction of 

intrahost immune response in the sublethal condition with several elements of the immune 

response removed (Figure 35). The Boolean model deletions are compared to the ODE model in 

Table 12. 

 

Table 12: Selected deletion of immune components in the ODE and Boolean influenza models. 

Component kept 

at baseline 

Adult mouse  

ODE model result 

Adult mouse  

Boolean model result 

Elderly mouse Boolean 

model result 

IL-10 Virus clears 2 days 

faster 

Virus clears 1-2 days 

faster 

Virus clears 2 days faster 

NK cells Virus does not clear. 

Infected cells stay 

high for longer. 

No change in virus 

clearance 

Virus does not clear. 

Infected cells stay high for 

1 day longer. 

Antibodies No significant change 

in virus clearance 

Virus does not clear Virus does not clear 

All inflammation Virus does not clear. 

Infected cells peak 

higher. 

Virus does not clear. 

Infected cells stay high 

longer. 

Virus does not clear. 

Infected cells stay high 

longer. 

 

 

Removing IL-10 from the system causes the virus to be cleared 2 days sooner than with 

IL-10 on. This result agrees with the prediction from our ODE model, despite the differences in 

the mechanisms of activation and degradation of IL-10 between the models. In the Boolean 

models, IL-10 inhibits the activity of antibodies on the virus clearance, and in the ODE model, IL-

10 primarily functions to inhibit inflammatory responses (see Section 4.4). Figure 46 shows one 

example output from an IL-10 deletion simulation. 
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Figure 46: Example output from an IL-10 deletion simulation for (A) adult and (B) elderly mice. 

 

 

NK cell deletions have different effects between the two age groups. Without NK cells, 

adult mice are still able to clear the virus fully from the system. NK cells predominantly clear 

infected cells, but CTLs have a redundant role in clearing the infected cells. CTLs will kill the 

cells independently and force the virus to clear. This result differs from the ODE model, in which 

an NK cell deletions will keep the virus from clearing and will force infected cells to stay elevated 

for a longer time. 

In elderly mice, while NK cells are important for clearance of infected cells, they have an 

additional role aiding in the activation of cDCs. A lack of cDCs causes IL-10, IL-12, RANTES, 
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and type I IFN all to remain off for the full length of the simulation. Without these cytokines, 

pDCs, TH cells, B cells, and antibodies all remain off as well, and without antibodies, the virus 

cannot clear from the system. NK cells have been shown to increase in number as we age [196], 

so their loss may be felt more strongly than in younger mice. Figure 47 shows an example output 

from an NK cell deletions test. 

 

 

 

Figure 47: Example output from an NK cell deletions simulation for (A) adult and (B) elderly mice 
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Removing antibodies keeps virus from clearing in both Boolean models, consistent with 

biology. In the ODE model, the virus was able to clear even without an increase in antibodies 

(Figure 35). Infected cells are cleared quickly, removing the source of new virus from the system. 

Without a large production in virus, the innate responses are able to clear the virus relatively easily, 

though this may not reflect how the virus would act in vivo. The Boolean models better reflect the 

necessity of antibodies in survival of viral infection. Figure 48 gives an example simulation from 

an antibody deletion test. 

 

 

Figure 48: Example output from an antibody deletion simulation for (A) adult and (B) elderly mice. 
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Removing all inflammatory components from the model has a largely deleterious effect on 

the host. The final row in Table 12 demonstrates the models’ responses when macrophages, 

cytokines, and chemokines have all been removed from the system. In all three model simulations, 

the virus cannot be cleared from the system without the onset of inflammation, and infected cells 

will peak higher and longer than with this arm of the immune system in place. 

 

 

Figure 49: Example output from a total inflammation removal for (A) adult and (B) elderly mice. Without 

macrophages, cytokines, or chemokines, no branch of immunity can turn on with these rules, and the virus grows in 

the host unabated. 
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 DISCUSSION 

Immunosenescence in humans is a poorly understood phenomenon. The changes to the immune 

system in healthy elderly patients can be difficult to ascertain given the wide range of inter-patient 

variability seen in human subjects, as well as the complex system of interactions between immune 

components. Discrete, rule-based models allow data-driven discovery of important interactions 

between components of host-virus response to influenza infection in a way that may be more robust 

to inter-patient variability than other modeling platforms, such as ODEs. Most previously 

published Boolean models of the immune response to infection focus exclusively on the steady-

state condition of the nodes [176–179]; our model, however, looks at a broad range of time-series 

data to which the outputs of each variable are matched. Our model thus enables a quantitative 

analysis of the prediction of the model over time. 

Rule-based models allow for an intuitive interpretation of the interactions between 

variables, making them simpler for non-experts to understand and apply.  The rules allow for a 

representation of complicated biological phenomena with a straightforward combination of ORs, 

ANDs, and NOTs. Rule-based models also allow for discovery of novel interactions between 

components of the model.  

In comparing activation data between young and elderly mice, it is clear there must be a 

shift in the cellular source of many cytokines and chemokines as we age. The macrophage Boolean 

data shows activated macrophages increase on day 2 for both adult and elderly mice. There is 

disagreement in the literature over how macrophage populations change as we age; some papers 

report a decrease in bone marrow macrophage counts [197,198], whereas other papers suggest an 

increase [199]. Defects have also been reported in toll-like receptors (TLRs) on macrophage 

surfaces [164], which may diminish their ability to react to an infection, affecting the numbers of 
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macrophages found in the tissue during experiments. Our data suggest age presents no difference 

in recruitment of macrophages to the site of infection, but there is a difference in the cytokine 

expression in these cells. 

Macrophage-type cells contribute a large amount of the inflammation response in a healthy 

young host. Because macrophage Boolean data do not indicate a change with age, other cell 

sources must account for the delay in inflammatory cytokine response. A decrease in macrophage-

derived pro-inflammatory cytokines has been previously reported in rodent studies [200], and 

macrophages have been identified as a primary cause of TNF and IL-6 dysregulation in mice [201]. 

We see more dependence on dendritic cells in the elderly mice in our analysis, particularly in the 

production of RANTES, IL-10, IL-12, and MIP-1β. Some studies have reported either no change 

or an increase in percentage of DCs as we age [194,202,203], so elderly hosts may rely more 

heavily on these cells to compensate for a decrease in other immune cell functions. Our rules also 

indicate an important role of macrophages in activation of T helper cells in younger mice. Though 

dendritic cells are generally considered the major antigen-presenting cell (APC), our model 

suggests interstitial macrophages also have a critical role bridging the innate and adaptive 

responses in a healthy younger host [204].  

Cytokine dysregulation plays an important role in the rule choices for older mice. Almost 

every cytokine and chemokine are regulated by rules different from those used in the younger 

mouse model. In particular, elderly mice are less likely to have inflammatory components respond 

directly to virus, representing an initial upregulation by lung epithelial cells. Dysregulation of the 

lung epithelium may account for the slower initiation of many immune responses in elderly hosts. 

The inflammatory response has been shown to be delayed by about two days in elderly hosts [127]. 

Bootstrapping also validated TH cells as a major producer of IL-10 in the elderly. The TH cell 
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response is biased toward a TH-2 phenotype in the elderly, leading to a large production of IL-10 

by T cells [205]. It is also likely the experiments measuring the TH cells included Treg cells in 

addition to traditional T helper cells, and Tregs are known producers of IL-10 [188]. Our consensus 

rule set was able to capture the variations in inflammation seen with increased age. 

Several cell types had identical rules in the two age groups: CTLs, NK cells, neutrophils, 

and B cells. Neutrophils had no measured data associated with them in this model, so we could not 

predict a difference in the neutrophil trajectories over time. NK cells, CTLs and B cell data were 

all very similar between the young and older mice. Though their function and effect on other 

components of the model may vary, the Boolean data revealed enough similarity in these 

components that they were generally able to agree on rule choices. This implies that the differences 

in activation and recruitment in the innate immune response are more substantial than those in the 

adaptive and humoral responses in this model. 

Some of our results may have been improved with a richer data set. Some variables of the 

model, such as neutrophils and epithelial cells, did not have accompanying data to which we could 

match our trajectories. Others, like antibodies and macrophages, had data in some cohorts but not 

in all. Cells were not measured on every day of the experiment, causing several missing data points 

at which time our model could predict a cell to be on or off without penalty. Adding to this data 

set may have strengthened our predictions by removing this ambiguity. We also are unable to 

obtain truly longitudinal data for a mouse model of influenza, as mice must be sacrificed in order 

to measure the data [97]. These trajectories then had to be reconstituted from pooled data from 

three different animals sacrificed at each time point. Results may have been further improved if 

we had been able to track a single animal over the full course of its infection.  
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The results can also change significantly if the p-values used to obtain the 0s and 1s are 

changed. After performing so many statistical tests to generate the Boolean-valued data, we may 

have needed to perform some correction to the p values, such as a Bonferroni correction.  This 

would have adjusted several of the probabilities and forced some of the predicted 1s to 0s.  Future 

work on this model may take this into account. 

Hernandez-Vargas et al. have previously studied this influenza infection data in young and 

older mice [112]. Using an ODE model, the authors fit data for the virus levels in both age groups. 

They determined type I interferon, type II interferon, and TNF have redundant roles in mediating 

antiviral effects post-infection, but they do not consider the different mechanisms by which each 

of these cytokines helps the host to fight the infection. Our model incorporates many more 

mechanisms, and as such we are able to capture information about dysregulation in activation and 

recruitment of cells and cytokines, which tend to vary greatly between age groups. The authors 

also did not find an important effect of NK cells in improving the fits of their model to the 

experimental data. Our model, however, presents an important role of NK cells, particularly in the 

elderly mice simulations. NK cells have been shown to increase greatly with age, likely to 

compensate for a deficiency in CTLs in older hosts [196]. 

Boolean models do not model slow dynamics well, as they represent a fast change from 

“off” to “on”.  A slow, steady rise in a certain variable is not well accounted for in a Boolean 

model.  Our model also does not handle deactivation well.  If all variables are in a steady state for 

two time points in a row, the Boolean model cannot change its output any further.  For that reason, 

our rules largely ignore variables that have reverted to a 0 at the end of the 19 day simulation.  

Future work may include improving upon that by possibly including delays or more variables so 

more changes can occur at the later time points in the sublethal simulations.  
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 CONCLUSIONS 

In conclusion, we have presented an application of optimization methods for Boolean network 

models with a model of murine influenza A viral infection. We generated a library of potential 

rules for this complex series of interactions comprising the immune response to viral infection, 

and using the optimization method outlined in Section 5.4, produced a set of rules that best fits the 

time-series data. Our model emphasizes differences between younger and older hosts, supporting 

some documented mechanisms of immunosenescence. Importantly, the Boolean network also led 

to suggestions of alternative data-driven mechanisms, like those in the rules for TGF-β and IL-12, 

which could guide further focused experimental work on uncovering the biological bases of 

immunosenescence. 
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6.0  DEVELOPMENT OF AN ODE MODEL OF INFLUENZA-PNEUMONIA 

SUPERINFECTION 

 OVERVIEW 

Influenza A virus (IAV) infections are often made worse by a secondary bacterial pneumonia 

infection A superinfection occurs when the host suffers a second infection before fully recovering 

from the initial infection. IAV-pneumonia superinfection is especially evident during flu 

pandemics. For example, during the 1918 Spanish Flu epidemic, a majority of the 50 million deaths 

were believed to be caused by a secondary bacterial infection [206–209]. Similar trends have been 

seen in other influenza pandemics, though the particular bacteria causing the secondary infections 

has changed over time. The 1918 pandemic was predominantly characterized by Streptococcus 

pneumoniae infections, but recently the emergence of the USA300 and USA400 strains of 

Staphylococcus aureus has led to an increase in staph infections [206,208,210]. A high incidence 

of bacterial superinfection was also evident in the 2009 H1N1 pandemic [211]. Superinfection 

causes tens of thousands of excess hospitalizations and deaths each year, particularly among the 

elderly [212,213]. 

Multiple theories exist as to which mechanisms are primarily responsible for the increased 

lethality due to the superinfection of IAV and bacterial pneumonia [214–223], but no one theory 

has yet satisfactorily explained this phenomenon. Dysregulation of cytokines, neutrophil 

deactivation, immune system overload, and increased damage to the epithelium have all been 

identified as potential mechanisms of excess death rates in superinfection. One important factor 

that many theories overlook is the importance of the time between IAV and bacterial infections. 
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For many years, the prevailing theory was that the body simply could not fight off two infections 

simultaneously, leading to decreased survival rates of influenza when bacterial superinfection 

occurs. However, a 2002 study by McCullers and Rehg [217] proved the probability of survival 

after superinfection depends largely on the time between primary and secondary infections. Mice 

in this study were able to survive when bacteria infected the mice a week before the virus, but 

when IAV was the primary infection, mice had very little chance of survival. The increased 

likelihood of death after IAV-pneumonia superinfection has been attributed to a “lethal synergism” 

of the virus and bacteria; when the two are simultaneously present in the host, they can jointly 

cause morbidity and mortality. Using mathematical modeling techniques similar to those presented 

in Chapters 2-4, we investigate the mechanisms primarily responsible for this change in survival 

probability given the time between insults. 

 POTENTIAL MECHANISMS OF LETHAL SYNERGISM IN IAV-PNEUMONIA 

SUPERINFECTION 

6.2.1 Excess inflammatory responses 

As we have shown in Chapter 4, inflammation can cause excess damage to the host, 

worsening the outcome of the infection. The presence of the virus causes damage to the epithelium 

and elicits the inflammatory response, and the corresponding influx of neutrophils increases 

damage further. Damaged lung tissue allows for bacterial movement between lung and blood 

compartments, as shown in Chapters 2 and 3, and this increased diffusion enhances bacterial 

replication and survival in the tissue, diminishing the host’s chances of clearing the bacteria. 
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6.2.2 Neutrophil ineffectiveness 

Some studies have also shown that though a large number of neutrophils are activated after 

IAV infection, these neutrophils become less effective when the secondary infection begins 

[224,225]. Weakened neutrophils could allow the bacteria to replicate more quickly and overtake 

the host tissue. This mechanism would be absorbed in the parameters ξnl and ξnb (Equations 6.4 

and 6.11), where one or both of these parameters would take on a lower value than we would 

normally see for a BALB/c mouse (see Figure 4). The work in Chapter 2 showed that BALB/c 

mice have an especially strong neutrophil efficacy in the blood compartment (ξnb) in response to 

bacterial infection, so we may see this parameter most strongly affected by the neutrophil weakness 

reported after superinfection. 

6.2.3 Weakened mucociliary responses 

The presence of IAV can also cause a weakened mucociliary response in the host. One of 

the first immune responses to IAV is an increase in type I interferon levels, expressed by infected 

epithelial cells to generate an antiviral state in surrounding epithelial cells to limit the spread of 

the infection. High levels of interferon causes a decrease in IL-23 levels, which then reduces IL-

17 levels and leads to a reduction in mucociliary action in the lungs [226]. Thus, when virus is the 

primary infection, type I interferon levels are high when bacteria arrive in the lung, decreasing the 

initial nonspecific clearance rates and leading to an insurmountable infection. However, when 

bacteria infect first, interferon levels are low, so mucociliary clearance is unobstructed, leading to 

a quick depletion of bacteria. 
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 PREVIOUS WORK 

Smith et al. [227] developed an ODE model of IAV-pneumonia superinfection. The model was fit 

to data for a superinfection of influenza strain PR8 (the same strain used in Toapanta and Ross’s 

experiments detailed in Chapter 4) and Streptococcus pneumoniae strain D39. The authors do not 

identify the same mechanisms by which bacteria worsen a viral infection, as they do not take into 

account the timing between infections or the high survivability associated with a bacteria-first 

IAV-pneumonia superinfection. In their model, Smith et al. combine a previous influenza ODE 

model [102] with a bacterial infection ODE model [40] to create an influenza coinfection model. 

The model includes terms describing an increased bacterial adherence to infected epithelial cells, 

increased virus production due to bacterial presence, decreased macrophage phagocytosis rates, 

and increased carrying capacity of bacteria. The authors cite evidence for increased bacterial 

adherence to virally infected cells due to increased presence of neuraminidase on the cell surface 

to which the bacteria can adhere [228]. The authors also include terms for desensitization of the 

immune system after virus infection, causing decreased macrophage clearance of bacteria [229]. 

The bacterial carrying capacity is assumed to be larger after viral infection, and virus reproduction 

is assumed to be stronger in the presence of bacteria as well. 

 ODE MODEL 

The ODE model used to model IAV-pneumonia superinfection is given in Equations 6.1 –6.11. 

The structure of the model is designed as a combination of the bacteria model given in Equations 

2.1 – 2.4 and a simplified version of the influenza ODE model presented in Equations 4.1 – 4.20. 
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Target epithelial cells (H) become infected cells (I) after interaction with free virus (V). Healthy 

cells are killed by interaction with lung bacteria (PL) or neutrophils (N). They are replenished at a 

rate proportional to the number of dead epithelial cells (H𝑚𝑎𝑥 − H − I). Infected cells can also be 

killed by bacteria or neutrophils, and they have an additional natural decay rate (δ). Experimental 

evidence shows neutrophils may interact with infected cells differently than with healthy cells, so 

we allow two different rates of neutrophil killing, gH and gI [230,231]. 

 

 
𝐻′ = −𝛽𝐻𝑉 + 𝜆(𝐻𝑚𝑎𝑥 − 𝐻 − 𝐼) −

𝑑𝐻𝑃𝐿

1 + 𝜅𝑃𝐿
−

𝑔𝐻𝐻𝑁

1 + 𝜂𝑁
 6.1 

 
𝐼′ = 𝛽𝐻𝑉 − 𝛿𝐼 −

𝑑𝐼𝑃𝐿

1 + 𝜅𝑃𝐿
−

𝑔𝐼𝐼𝑁

1 + 𝜂𝑁
 6.2 

 

Virus is produced by infected cells, but this production is directly inhibited by type I 

interferon (F) [117]. Virus is cleared by nonspecific clearance (av1) or by antibodies (c). Antibodies 

are not explicitly modeled here, so for simplicity we assume a constant rate of clearance for the 

virus [102]. 

 
𝑉′ =

𝑝𝐼

1 + 𝑞𝐹
−

𝑎𝑣1𝑉

1 + 𝑎𝑣2𝑉
− 𝑐𝑉 6.3 

 

Lung bacteria are modeled in nearly the same manner as in Equation 2.1, with two 

exceptions. First, there is an additional term which limits the nonspecific clearance of bacteria 

proportionally to the presence of type I interferon (F) to reflect one of our hypotheses on lethal 

synergism. There is also an additional clearance term to represent macrophage phagocytosis rates 

(ξm). 
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𝑃𝐿

′ = 𝑘𝑙𝑃𝐿 −
𝜈𝑃𝐿

(1 + 𝜇𝑃𝐿)𝐹
−

𝜉𝑛𝑙𝑁𝑃𝐿

1 + 𝜉2𝑃𝐿
−

𝜉
𝑀

𝑀𝑃𝐿

1 + 𝜉2𝑃𝐿

+ 𝑓[(𝑏(𝐻max − 𝐻 − 𝐼) + 𝑎)𝑃𝐵 − 𝑏𝐷𝑃𝐿] 

6.4 

 

TNF (T) is the pro-inflammatory cytokine used in this model, and IL-10 (L) is the anti-

inflammatory cytokine. The equations used to describe these variables are significantly simplified 

from those used in equations 4.5 and 4.6. Both cytokines are produced by macrophages and decay 

naturally. 

 
𝑇′ = 𝛾𝑇𝑀 − 𝜇𝑇𝑇 6.5 

 
𝐿′ = 𝛾𝐿𝑀 − 𝜇𝐿𝐿 6.6 

 

Neutrophils (N) are brought into the infected tissue from a bloodstream source (NB) after 

activation by signals from TNF and blood bacteria. Neutrophil recruitment is limited by anti-

inflammatory signals from IL-10. Neutrophils decay naturally at rate μN. 

 
𝑁′ =

(ℎ𝑇(𝑇 − 𝑇0) + ℎ𝑝𝑃𝐵)𝑁𝐵

1 + 𝜃𝑇(𝑇 − 𝑇0) + 𝜃𝐿(𝐿 − 𝐿0)
− 𝜇𝑁𝑁 6.7 

 

Macrophages are produced by a summation of excitatory signals (ΣM), composed of 

interferon [7,117], TNF [128], bacteria, and virus [31,232]. These terms are similar to those 

proposed in Chapter 4 with Σ1 and Σ2. Macrophages decay back to their baseline level M0, a 

parameter defined by the experimental data at day 0. 

 𝛴𝑀 = 𝑏𝑓(𝐹 − 𝐹0) + 𝑏𝑇(𝑇 − 𝑇0) + 𝑏𝑝𝑃𝐿 + 𝑏𝑣𝑉 6.8 
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𝑀′ =

Σ𝑀

1 + 𝜃𝑚Σ𝑀
− 𝜇𝑀(𝑀 − 𝑀0) 6.9 

 

Type I interferon (F) is produced by infected cells to induce viral resistance in surrounding 

healthy epithelial cells. It decays at rate 𝜇𝐹 to its baseline level F0, which is defined by the 

experimental data. 

 
𝐹′ = (

𝑏𝑖𝐼

1 + 𝜃𝐹𝐹
) − 𝜇𝐹(𝐹 − 𝐹0) 6.10 

 

The equation for blood bacteria is the same as in Equation 2.2, with the addition of a 

macrophage phagocytosis term. 

 
𝑃𝐵

′ = 𝑘𝑏𝑃𝐵 (
𝑃𝐵 − 𝜀

𝑃𝐵 + 𝜀
) (1 −

𝑃𝐵

𝐾
) −

𝜉𝑛𝑏𝑁𝑃𝐵

1 + 𝜉2𝑃𝐵
−

𝜉𝑚𝑏𝑀𝑃𝐵

1 + 𝜉2𝑃𝐵
 

−(𝑏(𝐻max − 𝐻 − 𝐼) + 𝑎)𝑃𝐵 + 𝑏𝐷𝑃𝐿 

6.11 

 

Figure 50 shows a network diagram demonstrating how these variables interact in the 

previous equations. Red blunt arrows denote inhibition, while blue arrows represents a source of 

a variable. 
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Figure 50: Schematic of variable interactions in IAV-pneumonia superinfection model. 

 EXPERIMENTAL DATA 

The experimental data to which the model is calibrated comes from a study by McCullers and 

Rehg [217]. The data includes time of survival post-infection for a variety of different infection 

scenarios. These data are summarized in Figure 51 and Figure 52. In Figure 51, we summarize five 

trials in which groups of 20 mice were infected with their primary infection at day -7, followed 7 

days later (day 0 on this plot) by a secondary infection.  

The mice infected with bacteria then virus (light blue data) showed 100% survival for a 

week after the experiment, while the mice infected with virus then bacteria (dark blue data) a all 

died within 24 hours of the secondary infection. The other trials used phosphate-buffered saline 

(PBS) was as a control for the first infection, then varied what was administered at day 0. The 

PBS-Pneumonia infected mice (orange data) experienced about 15% deaths, all of which occurred 
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within the first week post-infection. The PBS-IAV infected mice (gray data) showed about 35% 

death spread out over the first 10 days post-infection. Finally, one group of mice was given PBS, 

then a combination of IAV and pneumonia at day 0 (yellow data). These mice had 60% deaths, 

but they still fared far better than those in the IAV-pneumonia group.  

 

 

 

Figure 51: Survival data from five distinct superinfection experiments. 

Data reproduced from McCullers and Rehg, J Infect Dis 2002 [217]. Experiments begin on day -7 when the 

infection listed first in the legend was given to the mice in each group (n=20 per group). All 100 mice survived to 

day 0, when a second infection was administered, creating a superinfection. Mice were then studied for survival 

post-secondary infection. The percentage of mice which survived per day is plotted here for each experimental 

group. IAV = influenza A virus. PBS = phosphate-buffered saline. 

 

 

The authors also studied the effect of timing of infection on lethal synergism. Groups of 6 

mice were challenged with pneumococcus bacteria at different times relative to the viral infection 
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at day 0. Time to death for each mouse was measured, as well as the percent of mice from each 

group which survived a full 3 weeks after the secondary infection. Figure 52 shows the results of 

this experiment. Again, when pneumococcus are administered a week before the virus (data shown 

at day -7 on Figure 52), 100% of mice survived. The data at day 0 represent a simultaneous 

infection of virus and bacteria. At each other point, the bacteria are given some number of days 

after the virus. The data indicate that there is zero likelihood of 21-day survival if bacteria are 

given 3 to 7 days after the virus. Any other timing tested by these authors presented a nonzero 

chance of survival. This would indicate a “window of opportunity” exists for the bacteria between 

3 and 7 days post-viral infection. The immune response during this time must create an 

environment conducive to bacterial survival. The goal of the ODE model will be to explain the 

presence of this window and recreate it in situ. 

 

 

Figure 52: Superinfection experimental data for time to death.  

Data reproduced from McCullers and Rehg, J Infect Dis 2002 [217]. The green curve corresponds to the left axis, 

representing the average time of death in days for mice in each experimental condition. There is no point plotted for 
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mice in the bacteria-first condition, as all mice survived the full length of the experiment. The blue curve 

corresponds to the right axis, plotting the percent of mice in each group that survived 21 days post-secondary 

infection. No mice survived for 21 days in either the 3-, 5-, or 7-day groups. 

 

 

We were unable to obtain experimental data for the measurements of the variables of the 

model in a superinfection experiment. Instead, the first portion of the model (before the bacteria 

have been introduced) can be calibrated with the younger mouse influenza infection data used 

previously in Chapters 4 and 5 [127]. These data were taken from BALB/c mice, the same strain 

of mouse used in the McCullers study, an important point since Chapter 2 proved how distinctly 

mouse strains can respond to identical infections. The bacteria-dependent parameters are fit using 

heuristics and knowledge of what these trajectories should look like given the work performed in 

Chapters 2 and 3. 

 PARAMETER FITTING 

Parameter fitting was performed with the MATLAB function “fminsearchbnd”, a bounded search 

algorithm. Bounds on parameters are derived from literature values where available, and are 

estimated for the other parameters. Table 13 shows the parameters and their allowed bounds for 

the superinfection model. 

Fits to the data are again determined with a log-likelihood cost function in addition to 

several heuristics determined from literature. Since the initial viral dose of 50 PFU is known to be 

a sublethal dose [127], the virus must be cleared by the immune system when no bacteria are 

administered. From the work done in Section 2.9, we know BALB/c mice can clear a small single 
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infection of 1000 CFU D39 bacteria. Thus, if only a small bacterial infection is administered, the 

host must be able to clear the bacteria as well. In addition, the system must return to a healthy state 

if bacteria are given seven days before the virus. 

Death is defined in the model as the time at which lung bacteria reach their peak value and 

remain at some nonzero steady state. Two heuristics are used to calibrate the time of death. First, 

when bacteria are administered 14 days after viral infection, the time to death must be between 3 

and 5 days [217]. Also, when bacteria are administered 7 days after the virus, time to death must 

be no more than 2 days. 

The model parameters are calibrated to the case when bacteria are administered at day 11, 

which provides a full 11 days of data to which the model can be trained. All other cases presented 

in Figure 52 are used as testing data on which to validate our parameter choices. 

 RESULTS 

6.7.1 Fits to viral infection data: 11 day delay between IAV and pneumonia 

Figure 53 shows the best fit of the model to the influenza data. Time to death in this simulation is 

about 4.4 days, which corresponds to what we see in the McCullers data (Figure 52). The 

parameters used to generate this fit are given in Table 13. The virus fits reasonably well to the 

experimental data, though in the superinfection simulation the virus does not clear as quickly as 

the data imply. Lung bacteria is brought in at day 11 at a level of 1000 CFU. It quickly begins to 

move into the blood compartment, generating a high population of blood bacteria (PB). Once 

bacteria levels in the blood are high enough, they begin to move back into the lungs in significant 
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quantities, generating the fast rise in PL seen at day 14. Bacteria then quickly hit their peak around 

day 15, leading to death of the host. 

Target epithelial cells (H) show only a slight decrease from the viral infection, 

corresponding to the peak in infected epithelial cells (I), which in turn causes the peak in type I 

interferon (F) levels. When the bacteria reach their steady-state value, we see a corresponding dip 

in target epithelial cells that cannot be healed with the bacteria present.  

The inflammatory components of the model (TNF, IL-10, macrophages, and neutrophils) 

all fit reasonably well to the data. The N trajectory misses points at days 1 and 3, but those data 

points have such large standard deviations their measurements are highly uncertain. Macrophages 

also begin to fall back to baseline earlier than the mean data would suggest, but still within the 

standard deviation of the data. 

 

 

Figure 53: Virus-bacteria superinfection simulation with 11 day delay between infections.  

Data plotted are experimental data used for calibration of the model up to day 11 post-viral infection. Lines 

represent single trajectory from a model fit with parameters listed in Table 13. 
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Table 13: Parameters and their associated values for superinfection model. 

Parameter Meaning Value Parameter Meaning Value 

β Infectivity of virus 6.27E-6 μL Decay of L 29.96 

κ Saturation parameter 

for bacterial infection 

of epithelial cells 

1.75E-8 bF Activation of M due to F 6.06E4 

d Rate of death of H or I 

due to bacteria 

7.77E-7 μF Decay of F 1.08 

gH Rate of death of H due 

to neutrophils 

3.07E-4 bP Activation of M due to 

lung bacteria 

2.5E-5 

η Saturation parameter 

for N killing of H 

2.17E-7 bT Activation of M due to 

TNF 

3.27E3 

δ Natural decay rate of 

infected cells 

0.08 μM Natural death of M 1.07 

p Replication rate of V 90.76 bV Activation of M due to V 0.21 

q Rate at which interferon 

limits V replication 

2.27E-5 θF Saturation of F production 

by I 

1.2E-3 

ν Nonspecific clearance 

of bacteria 

30.67 bI Production of F by I 20.81 

μ Saturation parameter 

for bacterial clearance 

3.20E-7 σM Saturation of M activation 4.2E-9 

λ Replication rate of H 5.33E3 b D-dependent movement of 

P into blood  

1.78E-5 

ξ2 Saturation parameter 

for bacterial clearance 

by N or M 

1.41E-9 f Volumetric difference 

between lungs and blood 

156.38 

kl Replication rate of 

bacteria in lungs 

0.61 a D-independent movement 

of bacteria from blood to 

lungs 

7.66 

K Carrying capacity of 

bacteria in blood 

5E8 kb Replication rate of P in 

blood 

20.81 

ξmp Clearance of bacteria 

by M in lungs 

1.51E-6 ε Threshold of P replication 

in blood 

1 

ξnl Clearance of bacteria 

by N in lungs 

8.44E-7 ξmb Clearance of bacteria by M 

in blood 

8E-7 

hT Activation of N by T 0.71 ξnb Clearance of bacteria by N 

in blood 

9.3E-6 

μN Natural death of N 6.28 hp Activation of N by PL 0.0011 

θL Limitation of N 

activation by L 

0.22 gI Rate of death of I due to N 6.16E-5 

γT Production of T 2.3E-3 av1 Nonspecific clearance of V 2.55E4 

μT Decay of T 1.15 av2 Saturation of av1 3.65E3 

γL Production of L 0.48 c Clearance of V by immune 

system (antibodies) 

21.70 
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6.7.2 Adjusting day of bacterial infection to day 7 

The test case in which bacteria are given to the host at day 7 is shown in Figure 54. The entrance 

of the bacteria at day 7 leads to a fast clearance of the virus about 2 days later. The lag time between 

entrance of the bacteria and the peak of lung bacteria also shrinks to about 1 day, compared to 

about 2 days in 11 day delay case. While the lung bacteria population does fall slowly from its 

peak, it does not fall quickly enough for the target cells to recover, causing death to the host in our 

model. Time to death in this simulation is about 1.9 days, around 1 day slower than the McCullers 

data implies but still a fast death. 

 

 

Figure 54: Virus-bacteria superinfection simulation with 7 day delay between infections.  

In this case, lung bacteria peak at day 8.9, meaning the time to death predicted by the model is about 2 

days. The experimental data indicates death should occur about 1 day after the bacteria are administered, making our 

model slightly slower than the experiments would indicate. This simulation was used as a validation rather than 

calibration, so no data are plotted here.  
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6.7.3 Infection simulation with bacteria administered first 

When bacteria are administered a week before the virus in the McCullers experiments, 100% of 

mice survived a full 21 days, seemingly fully overcoming the infection. In Figure 55, we use the 

same parameters as in Table 13, but the initial conditions are changed such that the virus is given 

at day 7 and the bacteria are given at day 0. In the initial parameter fitting procedure, we require 

that this condition lead to full recovery of the host. Figure 55 shows the bacteria are able to be 

cleared after about 5 days, and since the dosage of virus given is defined as a sublethal dose, the 

host can also survive the subsequent viral infection.  

 

 

Figure 55: Bacteria-virus superinfection simulation with 7 day delay between infections.  

When bacteria are administered first, they clear quickly, causing no significant damage to the system. When the 

virus is then given, there is a more noticeable immune reaction, but the virus will eventually clear from the host and 

the system will return to baseline, consistent with experimental evidence. 
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6.7.4 Comparing survival times to data 

We tested each experimental condition provided in Figure 52 from the McCullers experiments, 

changing only the initial conditions of the lung bacteria and the virus to replicate the experimental 

conditions. Parameters for the model were kept constant to the values provided in Table 13. In 

Figure 56, we show a comparison between the expected length of survival of mice from the 

experimental data (black circles) and from the simulations (red circles). 

The predicted trajectories generally match up well to the experimental data. The largest 

error in our simulations is the day 9 simulation, when the McCullers data predicts about a 5 day 

survival, while our experiments predict just over 2 days. The McCullers experiments provide only 

the mean time to survival, not any standard deviations, so we cannot determine if we are within a 

margin of error for our simulations. Our simulations, however, are a much smoother curve than 

the experimental data suggest. The increase in survival time at day 9 followed by a decrease at the 

day 14 condition may be an outlier in the data, making our predictions closer to reality than they 

might appear. We also miss the time of death by 2 days for a simultaneous IAV-pneumonia 

infection. There may be other biological phenomena that occur in the body when both pathogens 

are present concurrently for which our model does not currently account. 
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Figure 56: Comparison of survival times between experimental superinfection data (blue) and prediction from 

simulations (orange). 

6.7.5 Testing superinfection mechanisms 

We next test the three predicted mechanisms of increased death corresponding to IAV-pneumonia 

superinfection: excess inflammation, weakened neutrophils, and disrupted mucociliary responses. 

To test these mechanisms, we either keep a variable at its baseline value (i.e. set dY/dt = 0 for 

some variable Y in the model), or we change a parameter value to exacerbate its impact on the 

model behavior. The following three figures demonstrate the outcomes of these tests. 

We first test the impact diminished neutrophils have on bacteria and epithelial cells. By 

changing the parameters associated with neutrophil activity, we can test the effect of weakened 

neutrophil action. Without loss of generality, parameters ξnl and ξnb are decreased by a factor of 5 

to demonstrate how weakened neutrophils affect the system as a whole. Figure 57 shows the results 

of this test (red lines) as compared to the original trajectories (blue lines). Decreasing the bacterial 
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clearance leads to higher bacterial levels in the lungs and blood, as we would expect. The time to 

reach this higher steady state is essentially the same as in the original prediction, so time to death 

is not affected here.  

We also see a lower steady-state level of target cells, as more of these will be killed by the 

increased bacteria. Higher levels of blood bacteria will also lead to higher levels of neutrophils 

present in the system. Even though we have reduced the efficacy of the neutrophils, they end up 

rising to a higher level, compensating for their weakened state, and do not change the output much 

overall. Our model thus does not predict that ineffective neutrophils would be a major contributor 

to lethal synergism between IAV and pneumonia. 

 

 

Figure 57: Effect of neutrophil weakening on superinfection model predictions. Blue lines are the original predicted 

trajectories with virus administered at day 0 and bacteria given at day 7. Red lines represent the new trajectories 

with parameters ξnl and ξnb decreased by a factor of 5 from their original values. 
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Next we tested the effect of keeping interferon levels at zero. Our hypothesis was that 

interferon is integral to clearing a viral infection, but it has the side effect of disrupting mucociliary 

clearance, hindering the initial clearance of bacteria from the lungs. In Figure 58, we show the 

result of keeping 𝑑𝐹 𝑑𝑡⁄ = 0, which we would hypothesize would improve the survival from 

bacterial infection but would cause problems in clearance of the viral infection.  

Our simulation does not indicate a strong effect of interferon on the bacteria clearance. The 

largest effect is to the macrophages, which are now missing a component of their summation signal 

ΣM. Macrophages peak a full log lower than in the original simulations, leading to a subsequent 

decrease in peak value of TNF and IL-10. We also see a higher and faster peak in the virus (2.90 

x 105 PFU without interferon compared to 1.42 x 105 PFU in the original fit), which leads to a 

greater peak of infected cells as well. 

The initial rise of the lung bacteria is also affected by the loss of interferon. The short 

plateau after lung bacteria are administered is controlled by the nonspecific clearance in the lungs, 

primarily mucociliary clearance as well as some clearance by resident macrophages and 

antimicrobial proteins. Interferon decreases the mucociliary clearance, leading to faster rise of the 

bacteria. That effect is clearly illustrated in these trajectories. The time to death increases by about 

1 full day without the interferon present. This would demonstrate that our hypothesis that type I 

interferon plays a major role in the IAV-pneumonia lethal synergism is validated by our model.  
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Figure 58: Effect of interferon knockout on superinfection model predictions. Blue lines are the original predicted 

trajectories with virus administered at day 0 and bacteria given at day 7. Red lines represent the new trajectories 

with dF/dt = 0 for all t. 

 

 

Finally, we tested the effect of increased inflammation on survival of superinfection. 

Increased inflammation in the model is controlled by a parameters governing the increase of TNF 

and decrease of regulatory effects of IL-10. Therefore we increase the value of parameter γT, which 

controls the rise of TNF trajectories, and decrease the value of parameter θL, which controls the 

anti-inflammatory actions of IL-10 on neutrophil and macrophage activation. Each of these 

parameter values is changed by a factor of 2. 

Figure 59 shows the result of this increased inflammation. Neutrophils rise faster as a result 

of the decreased effects of IL-10, and the infected cells are unable to sustain any appreciable 

population. Lack of infected cells leads to a lack of a source for viral replication, so the virus also 

depletes quickly. The neutrophils and macrophages do not rise high enough to counter the influx 
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of bacteria into the lungs at day 7, though, and the simulation still predicts a lethal trajectory. This 

is not the same mechanism of lethality originally predicted, however. Our hypothesis was that 

increased inflammation would lead to excess death of target cells through excess neutrophils in 

the lungs. This simulation does not predict any excess target cell deaths; in fact, target cells are 

kept relatively constant until the bacteria reach the lungs.  

 

 

Figure 59: Effect of increased inflammation on lethal synergism. Blue lines are the original predicted trajectories 

with virus administered at day 0 and bacteria given at day 7. Red lines represent the new trajectories with increased 

TNF production and decreased IL-10 effects. 

 DISCUSSION AND CONCLUSIONS 

IAV-pneumonia superinfection is a continuing problem, causing morbidity and mortality in tens 

of thousands of patients every year, especially in the elderly and immunocompromised populations 
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[212,213]. We aimed to use mathematical modeling techniques to provide more information on 

mechanisms leading to the lethal synergism between the virus and bacteria.  

This model was developed from a simplified version of the influenza infection model 

presented in Chapter 4 [97]. That model was highly complex and required weeks to accurately 

estimate parameters to fit the data. We removed some of the adaptive components that do not 

directly impact the viral titer trajectories, such as IL-12, TH-1 cells, type II interferon, and antigen-

presenting cells. Because we do not have these adaptive components, we also chose not to include 

antibodies explicitly in this model, as we do not have a biologically-appropriate source for their 

production. Instead, we assume a constant rate of clearance of virus with parameter c [102], and 

another saturating virus removal term representing a nonspecific clearance rate analogous to 

parameter gv in equation 4.11. 

We suggested three such mechanisms to test in this model: excess inflammation, neutrophil 

ineffectiveness, and mucociliary disruption via type I interferon upregulation. Our current model 

demonstrated increased survival time is correlated with a disruption in interferon production, as 

some experimental research has suggested [222]. Interferon affects the nonspecific clearance term 

in the lung bacteria equation, controlled by the parameter ν, which was identified as a sensitive 

parameter in the pneumonia-only model of BALB/c mice infection (see Chapter 2). 

Our model did not indicate a strong effect of neutrophil weakening or increased 

inflammation on survival time. It is important to remember that these effects are directly linked to 

specific parameter values in this model. Generating an ensemble of parameter values via Markov 

chain Monte Carlo simulations would yield a distribution of possible values for these parameters. 

Within this distribution may exist some segment of the population which responds more strongly 
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to these inflammation effects. Future work should include generating and analyzing the ensemble 

for other phenotypes which may exist.  

The future ensembles should also be performed on data for a true IAV-pneumonia 

superinfection. One possible source for this data is the Smith et al. paper which proposed a different 

ODE model for superinfection [227]. This data was not applied to our current model because the 

mice in their experiments did not reflect the time to death seen the in McCullers experiments; after 

a 7 day delay between primary and secondary infections, mice were able to survive at least 2 days, 

whereas the McCullers data suggests these mice should survive less than one day. The difference 

may lie in the inoculum of the influenza used in each experiment. McCullers and Rehg gave mice 

a 3000 TCID50 dose of H1N1, while Smith et al. administered only a 100 TCID50 dose. Since this 

project was inspired by the timing of infection data, however, we chose not to use the Smith data 

to calibrate our model. Future research may take the opposite approach, which could change the 

values and bounds of some of the parameters to allow them to better fit these data. 

This study has proposed one possible ODE model of IAV-pneumonia superinfection that 

may be calibrated to a greater collection of experimental data in future iterations. The model 

incorporates parameters controlling 3 potential mechanisms of lethal synergism between virus and 

bacteria in the host. Though much work remains to be completed on this model to fully validate 

its structure and parameter values, it provides a clear path forward for future work. 

 



 172 

7.0  CONCLUSIONS 

This project produced several models of varying complexity to better understand the intricacies of 

the host immune response to respiratory infection. Developing these models requires a balance 

between biological accuracy and computational feasibility. Increasing the number of variables 

used in the model may reduce the number of simplifying assumptions used in the generation of the 

model, but more variables also leads to longer time for parameter estimation and numerical 

integration of the equations. With the models presented in this work, we have provided a sample 

of large and small models calibrated to data for bacterial or viral infection. 

The first model presented was a four variable model of the intrahost immune response to 

pneumococcal infection. The 17 parameters in the model allow for many different immune 

phenotypes to be replicated by changing the value of only a few parameters at a time. The results 

predicted the importance of maintaining a low bacterial count in the bloodstream in order to control 

the infection and allow the host to survive.  

The 20-variable model of the immune response to influenza infection provides a detailed 

look at innate, adaptive and humoral immunity as well as inflammation. A well-calibrated 

inflammatory response was shown to be vital to the survival of the infection, as excess 

inflammation can cause damage to the host and eventual death. The model’s 94 parameters were 

calibrated such that changing only the initial condition of the viral load will change the output to 

fit either sublethal or lethal infection data. Both of these models were fit to data using the 

Metropolis-Hastings Monte Carlo method with parallel tempering to explore the multidimensional 

parameter space. While this method is effective in finding parameter values which fit the 

experimental data, it is computationally expensive. The 20-variable model took over two weeks to 
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fully collect enough samples on our cluster. These time constraints can be prohibitive for some 

projects, so we next explored this influenza infection data with Boolean network model instead of 

an ODE model. With this Boolean model we examined differences in immune response between 

older and younger hosts. Older hosts were shown to experience a delay in the onset of many innate 

immune responses and a subsequent dysregulation of cellular responses, leading to delayed 

clearance of the virus from the host. The Boolean model allows for a large, complex model but 

without the need for parameter estimation techniques, which greatly reduces computation time for 

calibrating the model. We are, however, limited to only “on/off” levels for our data, which may 

oversimplify some of the immune responses. 

Finally, an ODE model of influenza-pneumonia superinfection was proposed and 

presented with a single parameter set fit to the influenza infection data. This model is able to 

replicate the time to death for several experimental conditions changing the time between the 

primary and secondary infection. More work is needed with this model to see if an ensemble of 

parameter values could fit well to this data and represent a full population of responses to the 

infections. Future work will also include getting a better data source to which to calibrate the 

model. Our experimental collaborators were unable to get this data set for us; future iterations of 

the model should be calibrated for a full influenza-pneumonia superinfection, rather than just the 

influenza infection portion. 

Fitting mathematical models to experimental data does present several challenges. First, a 

lack of sufficient data can make parameter estimation far more difficult. All data presented in this 

work was taken from murine models of infection. When collecting data from mice, their small size 

necessitates their sacrifice in order to get sufficient samples for measurement. This precludes us 

from being able to use longitudinal data in our models. Instead, we look at pooled data from many 
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murine subjects that we assume will react very similarly given the same infection in the same 

environment. However, large standard errors associated with some of our mean data points 

suggests a high level of inter-individual variability, particularly in the older mice in the age 

experiments. Our results could be strengthened if able to follow a single animal through the full 

course of the infection. In addition, these large models require days or weeks of computation time 

to fully explore the parameter space used to fit the model to the data. Even though these models 

are complex, they still simplify the underlying biology of immune response to infection. Some 

future iterations of these models could try to model explicitly some components which we have 

not included to keep the models to a reasonable size. These additions may improve some of the 

fits to data, but may also increase further computation time needed to explore parameter space. 

Balancing these two aspects of mathematical modeling is fundamental in the creation of a system 

of ODEs. This project has provided several models that future researchers may use to fit to data 

for respiratory infections and discover new mechanisms by which hosts defend themselves from 

disease. 
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APPENDIX A 

PARAMETERS OF THE INFLUENZA MODEL 

Table 14: Parameter descriptions and allowed ranges for all parameters in the influenza ODE model. 

Parameter Units Description Range Ref 

a11 ml/pg Signal induced to macrophages by TNF-α [ 5.5E-05, 2.2E-02 ] [233] 

a12 cells-1 Signal induced to macrophages by damaged epithelial cells [ 4.0E-06, 1.6E-03 ] est 

a21 dimensionless Maximal signal induced to macrophages by virus [ 1.6E+00, 6.4E+02 ] [119] 

a22 pfu/ml Substrate affinity for signal induced by virus [ 1.5E+03, 6.0E+05 ]  [119]  

g1 dimensionless Inhibitory term for effect of IL-10 on cytokine production [ 1.1E+00, 4.5E+02 ] est 

g2 pg/ml Inhibitory term for effect of IL-10 on cytokine production [ 3.4E+02, 1.3E+05 ] est 

δ2 pg/ml Inhibitory term for effect of IL-10 on cytokine production [ 2.5E+00, 4.0E+02 ] [233] 

bmc cells/day Maximal chemotactic adduction of macrophages [ 7.5E+02, 4.1E+04 ] [233] 

amc pg/ml Substrate affinity for adduction of macrophages [ 1.3E+02, 2.0E+03 ] [234]  

μm day-1 Decay/removal of macrophages [ 1.0E-02, 5.0E-01 ] [233] 

bm cells Baseline number of macrophages [ 3.0E+02, 1.2E+04 ] [234] 

bt pg/ml/day Maximal production rate of TNF-α [ 7.8E-02, 3.1E+01 ] [233] 

k1 dimensionless Inhibitory term for  pro-inflammatory cytokine production [ 2.5E-01, 2.0E+01] est 

k2 pg/ml Inhibitory term for  pro-inflammatory cytokine production [ 2.5E+01, 4.0E+02 ] [234] 

d1 pg/ml Inhibitory term for  pro-inflammatory cytokine production [ 2.5E+01, 4.0E+02 ] [234] 

μt day-1 Decay/removal of TNF-α [ 2.5E+01, 7.2E+02 ] [233] 

bl pg/ml/day Maximal production rate of IL-10 by macrophages [ 2.1E-02, 8.3E+00 ] [233] 

μl day-1 Decay/removal of IL-10 [ 1.8E+00, 1.2E+01 ] [233] 

blh pg/ml/cell Production rate of IL-10 by target epithelial cells [ 5.0E-05, 1.0e-03 ] [233] 

bc pg/ml/day Maximal production rate of chemokines [ 4.0E+00, 1.6E+03 ] est 

μc day-1 Decay/removal of chemokines [ 1.5E+01, 1.8E+02 ] [233] 

bnt cells day-1 Maximal activation rate of neutrophils by TNF-α [ 4.5E+03, 1.8E+06 ] est 

ant pg/ml Substrate affinity for activation of neutrophils [ 5.0E+00 , 1.6E+02 ] [234] 

anl dimensionless Inhibitory effect of IL-10 on the activation of neutrophils [ 2.5E-02,  1.0E+00 ] est 

gnc day-1 Maximal chemotactic adduction of neutrophils [ 2.1E+01, 8.4E+03 ] est 

anc pg/ml Substrate affinity for adduction of neutrophils [ 1.8E+01, 7.0E+03 ] est 

μn day-1 Decay/removal of neutrophils [ 1.0E-01, 2.4E+00 ] [233] 

bxn pg/ml/day Maximal production rate of NOS [ 1.0E-01, 3.0E+00 ] est 

axn cells Substrate affinity for production of NOS by neutrophils [ 2.0E+02, 8.0E+03 ] est 

gxi cell-1 day-1 Removal of NOS during infected cell destruction [ 1.5E-07, 6.0E-05 ] est 

gxh cell-1 day-1 Removal of NOS during epithelial cell destruction [ 1.5E-07, 6.0E-05 ] est 
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μx day-1 Decay/removal of NOS [ 5.0E-01, 1.2E+02 ] est 

bh cell-1 day-1 Replication rate of epithelial cells [ 1.7E-05, 6.7E-03 ] est 

θ cells Strong Allee term for the replication of epithelial cells [ 6.3E+03, 7.5E+04] est 

ghv ml/pg/day Viral infection rate [ 5.0E-08, 2.0E-05 ] [119] 

ghx cells/day Maximal destruction rate of epithelial cells by NOS [ 2.5E-01, 1.0E+02 ] est 

ahx pg/ml Substrate affinity for destruction of epithelial cells [ 1.0E-01, 4.0E+01 ] est 

gix cells/day Maximal destruction rate of infected cells by NOS [ 2.5E-01, 1.0E+02 ] est 

aix pg/ml Substrate affinity for destruction of infected cells [ 7.5E-02, 3.0E+01 ] est 

gik cell-1 day-1 Removal rate of infected cells by NK cells [ 2.5E-06, 1.0E-03 ] est 

gie cell-1 day-1 Removal rate of infected cells by effector cells [ 5.0E-6, 2.0E-3 ] [119] 

μi day-1 Decay/removal of infected cells [ 2.5E-01, 4.0E+00 ] [119] 

gvi pfu/(ml cells day) Production rate of virus by infected cells [ 7.0E+00, 2.8E+03 ] [119] 

gvh cell-1 day-1 Removal of virus during infection of epithelial cells [ 4.1E-07, 1.6E-04 ] [119] 

gva ml/pfu/day Elimination of virus due to antibody neutralization [ 7.5E-05, 3.0E-02 ] [119] 

gv day-1 Removal rate of sub-threshold viral quantities [ 1.4E+00, 5.4E+02 ] [119] 

av ml/pfu Inverse of lowest viral level capable of infection [ 1.0E+00, 4.0E+02 ] [119] 

μv day-1 Decay/removal of virus [ 5.0E-01, 1.2E+01 ] [119] 

bfi pg/(ml cell day) Production rate of IFN-α/β by infected cells [ 2.7E-02, 1.1E+01 ] est 

bfp pg/(ml cell day) Production rate of IFN-α/β by APC [ 4.7E-04, 1.9E-01 ] est 

gfi cell-1 day-1 Excess absorption rate of IFN-α/β by infected cells [ 3.2E-4, 1.3E-01 ] est 

μf day-1 Decay/removal of IFN α/β [ 1.0E+00, 8.0E+01 ] [119] 

arf pg/ml Substrate affinity of epithelial cells to IFN-α/β [ 1.0E+01, 1.4E+02 ] [234] 

bk cells Baseline number of NK cells [ 1.1E+02, 4.6E+03 ] [234] 

bkc cells/day Maximal chemotactic adduction of NK cells [ 9.0E+03, 3.6E+05 ] [234] 

akc pg/ml Substrate affinity for adduction of NK cells [ 2.0E+02, 2.0E+03 ] [234] 

gki cell-1 day-1 Removal of NK cells during infected cell elimination [ 9.5E-09, 3.8E-06 ] est  

μk day-1 Decay/removal of NK cells [ 4.0E-02, 1.6E+00 ] [233] 

bgo pg/(ml cell day) Μaximal production rate of IFN-γ by Th1 cells [ 7.0E-04, 2.8E-01 ] est 

ago pg/ml Substrate affinity in production of IFN-γ by Th1 cells [ 7.5E-01, 3.0E+02 ] est 

bgk pg/(ml cell day) Maximal production rate of IFN-γ by NK cells [ 1.7E-02, 6.7E+00 ] est 

agk pg/ml Substrate affinity in production of IFN-γ by NK cells [ 2.3E+00, 9.0E+02 ] est  

μg day-1 Decay/removal of IFN-γ [ 1.0E+00, 8.0E+01 ] [119] 

P0 cell/day Inactive APC available for activation [ 1.4E+03, 5.6E+05 ] est 

gpv dimensionless Maximal signal for APC from virus [ 1.0E-01, 4.0E+01 ] est 

apv pfu/ml Substrate affinity for signal from virus [ 5.0E+02, 2.0E+05 ] est 

gpi cell-1 Signal for APC from dead infected cells [ 4.8E-06, 1.9E-03 ] est 

gp dimensionless Non-specific activation rate of APC [ 2.5E-03, 1.0E+00 ] est 

bpg dimensionless Maximal activation rate of APC by IFN-γ [ 5.7E-02, 2.3E+01 ] est  

apg pg/ml Substrate affinity for activation of APC by IFN-γ [ 4.5E+01, 1.1E+03 ] [119] 

μp day-1 Decay/removal of APC [ 5.0E-02, 9.0E-01 ] [119] 

bp cells Baseline number of activated APC [ 3.0E+02, 9.6E+03 ] [234] 

bep cells/day Maximal activation rate of effector cells [ 1.0E+04, 4.0E+05 ] [234] 

aep cells Substrate affinity in the activation of effector cells [ 1.5E+03, 6.0E+04 ] [234] 

bei cell-1 day-1 Removal of effector cells during infected cell elimination [ 7.5E-08, 3.0E-05 ] [119] 
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μe day-1 Decay/removal of effector cells [ 1.0E-01, 7.0E-01 ] [119] 

bop cells/day Maximal activation rate of Th1 cells  [ 2.5E+04, 3.0E+05 ] [234] 

aop cells Substrate affinity in the activation of Th1 cells [ 1.5E+03, 6.0E+04 ] [234] 

μo day-1 Decay/removal of Th1 cells [ 1.0E-01, 7.0E-01 ] [233] 

bwo pg/(ml cell day) Maximal production rate of IL-12 [ 3.8E-03, 1.5E-01 ] [234] 

awo cells Substrate affinity in the production of IL-12 [ 2.5E+03, 2.0E+05 ] [234] 

μw day-1 Decay/removal of IL-12 [ 5.0E-01, 1.0E+01 ] est 

bb cells/day Non-specific activation of B cells [ 5.0E+00, 2.0E+03 ] est 

bbp ml/(cell pg day) APC induced activation of B cells [ 6.0E-08, 2.4E-05 ] est 

B0 cells Reservoir number of inactive B cells  [ 1.5E+04, 3.5E+05 ]  [234] 

μb day-1 Decay/removal of B cells [ 5.0E-02, 8.0E-01 ] [233] 

ba pg/ml/day Non-specific production of antibodies [ 1.2E-03, 4.6E-01 ] [234] 

bab pg/(ml cell day) B cell production of antibodies [ 3.3E-04, 1.3E-01 ] [119] 

gav ml/(pfu day) Removal of antibodies during virus elimination [ 5.0E-07, 2.0E-04 ] [119] 

μa day-1 Decay/removal of antibodies [ 6.0E-02, 1.2E+01 ] [119] 

H0 cells Total number of epithelial cells 2.5E+05 est 

hm dimensionless Hill coefficient for the recruitment of macrophages 3 [234] 

hx dimensionless Hill coefficient for the inflammatory removal of epithelial cells 2 [234] 

he dimensionless Hill coefficient for the maturation of NKT cells 2 [234] 

ho dimensionless Hill coefficient for the maturation of TH1 cells 2 [234] 
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