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EVALUATING THE STANDARD MODEL OF COSMOLOGY IN LIGHT OF

LARGE-SCALE ANOMALIES IN THE COSMIC MICROWAVE

BACKGROUND

Bingjie Wang, BPhil

University of Pittsburgh, 2016

The establishment of the standard model of cosmology represents great observational and

theoretical achievements; at the same time, possible deviations from the standard model are

sought. In this thesis, two anomalies are studied:

The late-time integrated Sachs-Wolfe effect—a few percent of the total temperature fluc-

tuations generated by evolving gravitational potentials—is a signature of dark energy in a

spatially flat universe. Its strongest detection comes from the average microwave background

temperature in the sky directions of superclusters and supervoids seen in the Sloan Digital

Sky Survey, which is claimed to be larger than expected. We compute the maximum expected

average temperature signal by treating the signal due to large-scale structures as a Gaus-

sian random field, and including correlations between different physical contributions to the

temperature fluctuations and between different redshift ranges of the evolving gravitational

potentials. Our model confirms that the observed average temperatures are unexpectedly

large, but reduces the statistical significance of this discrepancy. Comparing with other mea-

surements, none of which has yielded a detection with the same large discrepancy, our work

suggests that a large signal is less unusual to occur than previously thought.

The latter anomaly refers to a 7% asymmetry of fluctuation power between two halves of

the sky found in full-sky maps of the microwave background temperature field. A common

phenomenological model for this asymmetry is an overall dipole modulation of statistically

isotropic fluctuations, which produces particular off-diagonal correlations between multipole
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coefficients. We compute these correlations and construct estimators for the amplitude and

direction of the dipole modulation. Applying these estimators to various cut-sky temperature

maps from Planck and WMAP data shows consistency with a dipole modulation, differing

from a null signal at 2.5σ, with an amplitude and direction consistent with previous fits

based on the temperature fluctuation power. The signal is scale dependent, with a statis-

tically significant amplitude at angular scales larger than 2 degrees. Future measurements

of microwave background polarization and gravitational lensing can increase the significance

of the signal. If the signal is not a statistical fluke in an isotropic Universe, it requires new

physics beyond the standard model of cosmology.
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1.0 INTRODUCTION

1.1 A STANDARD MODEL OF COSMOLOGY

Cosmology is the study of the universe as a whole: its origin, evolution, and ultimate fate.

A wealth of information coming from the theoretical and experimental achievements has

transformed cosmology into a fertile data-driven field over the past decades. At the center

of this revolution lies the observation of the cosmic microwave background (CMB)—the

afterglow of the Big Bang present today as a 2.7K thermal background, which so far provides

the cleanest picture of the very early universe.

CMB is widely regarded as one of the strong evidence for the Big Bang cosmological

model because its spectrum, first being accurately measured by the The COsmic Background

Explorer (COBE) satellite [61], has the shape a black body spectrum. This means that the

temperature of the universe must have been very high in the past, which matches with the

description provided by the Big Bang model: The universe at the beginning is a hot soup

of plasma—the temperature was so high that electrons could not bind to protons to form

neutral hydrogen atoms, and photons interact with electrons through Thomson scattering:

γ + e− → γ + e− (1.1)

As the universe expands, it gradually cools down. At the the epoch of recombination, the

time at which the baryonic component of the universe goes from being ionized to being

neutral, a sudden drop in free electron density occurs. Photons decouple from electrons

when the mean free path of the photons, defined in terms of ne, the number density of free

electrons, and δe, the Thomson cross-section,

λ =
1

neδe
(1.2)
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was approximately equal to the horizon size of the universe H−1.

At this stage, photons are able to steam freely, producing the CMB as we see today.

Surrounding every observer in the universe is a last scattering surface (LSS). As CMB pho-

tons travel from the LSS to the observer, they have the chance to interact with various

effects—those which happen on the LSS are considered as primordial effects, whereas those

which happen between the LSS and the observer are considered as late-time effects. Further

discussion is presented in Chap. 2.

A parametrization of the Big Bang model is the ΛCDM model. It is often referred to as

the standard model of Big Bang cosmology. The model has six free parameters: Ωbh
2 and

Parameters Definitions

Ωbh
2 baryon density

Ωch
2 dark matter density

τ reionization optical depth

In(1010As) primordial curvature perturbations

ns scalar spectral index

H0 Hubble constant

Table 1.1: The six free parameters in the ΛCDM model.

Ωch
2, as their names indicate, quantify the matter composition of the universe, τ refers to

the time at which the first stars formed, In(1010As) and ns quantify the amplitude and slope

of primordial density fluctuations, and H0 describes the expansion of the universe.

Great efforts have been dedicated to the determinations of the values of these param-

eters. WMAP [9], Planck [70], combined with ground-based telescopes such as ACT [51]

and SPT [16], provides precise measurement of the CMB that allows us to constrain the

parameters with an unprecedented accuracy. Much of these studies are carried out through

the CMB temperature power spectrum.
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1.2 CMB POWER SPECTRUM

The fluctuations in the CMB are assumed to arise from some random statistical process, and

therefore the exact pattern of fluctuations we see from our point in the universe is not of our

interest. Rather, a theory of cosmology predicts an underlying distribution, of which our

visible sky is a single statistical realization. For this purpose, it is conventional to expand

the temperature fluctuations of a CMB map δT/T (θ, φ) in spherical harmonics:

δT

T
=
∞∑
`=0

∑̀
m=−`

a`mY`m(θ, φ) (1.3)

where a`m are the temperature multipole coefficients, and Y`m(θ, φ) are the spherical harmon-

ics of degree ` and order m, arising from solving the angular portion of Laplace’s equation.

The order m describes the angular orientation of a fluctuation mode, while the degree (or

multipole) ` describes its characteristic angular size, which generally can be linked to angular

scale through the relation θ ≈ 180◦/`.

Using Eq. (1.3), we can write down perhaps the most important statistical property of

the fluctuations, the two-point correlation function C(θ). Consider two points on the LSS:

Relative to an observer, they are in the directions n̂ and n̂′, and are separated by an angle

θ given by the relation cos θ = n̂ · n̂′. C(θ) is defined as the multiplication of the values of

δT/T at the two points, averaging over all points separated by the angle θ:

C(θ) =

〈
δT

T
(n̂)

δT

T
(n̂′)

〉
n̂·n̂′=cos θ

(1.4)

C(θ) =
1

4π

∞∑
l=0

(2`+ 1)C`P`(cos θ) (1.5)

where P` are the usual Legendre polynomials.

The expansion coefficients in Eq. (1.3),

aT`m =
1

T0

∫
d(n̂)T (n̂)Y ∗`m(n̂) (1.6)
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Figure 1.1: Temperature power spectrum from Planck [78].

are averaged over m to obtain the best estimate of temperature power spectrum:

CTT
` =

1

2`+ 1

∑̀
m=−`

(aT∗`ma
T
`m) (1.7)

This gives the best estimate since the power spectrum in a universe with no preferred

direction is expected to be independent of m. The fact that there exist only (2`+ 1) modes

with which to detect the power at multipole ` sets a fundamental limit in determining the

power. This is known as the cosmic variance:

∆C`
C`

=

√
2

2`+ 1
(1.8)

However, to consider the full uncertainty we must include additional factors as instru-

mental noise, finite beam resolution, and for partial sky surveys, the fact that only a finite

fraction of the full sky is observed.

By convention, the quantity that is usually plotted, as shown in Fig. 1.1, is

∆T 2 ≡ `(`+ 1)

2π
C`T

2
CMB (1.9)

where TCMB is the blackbody temperature of the CMB. This is often referred to as the TT

(temperature-temperature correlation) spectrum.
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1.3 THE INTEGRATED SACHS-WOLFE EFFECT

As CMB photons from LSS travel across the universe, they may be gravitationally redshifted,

which result in the integrated Sachs-Wolfe effect (ISW) [82]. It is often separated into two

contributions, namely the early-time ISW and the late-time ISW. The physics is the same.

Those terms are labeled such in order to distinguish between primodial and late-time effects—

early ISW occurs when there is still enough radiation around, while the late ISW occurs due

to the time-evolving gravitational potentials driven by dark energy, as there is a net change

in energy to photons traversing an underdense or overdense region. The late ISW is described

by the following integral along line-of-sight:

Θ(n̂) ≡ ∆T

T0
= −2

∫ χ?

0

dχg(τ)Φ̇(χn̂, η0 − χ) (1.10)

where g(τ) = e−τ(η0−χ) is the visibility function as a function of the optical depth τ , the

derivative of the Newtonian gravitational potential Φ is with respect to the conformal time,

η0 is the present value of the conformal time, χ? is the comoving distance to the surface of

last scattering, and T0 is the isotropic CMB blackbody temperature, corresponding to the

multipole moment ` = 0. The ISW effect is mostly responsible for temperature fluctuations

on large angular scales (θ > 3◦).

Additionally, once non-linear structures such as galaxy clusters form, linear perturbation

theory breaks down. The contribution to the ISW from non-linear perturbations is called

the Rees-Sciama effect.

In a spatially flat universe, the late ISW effect can be used as an independent probe for

dark energy since for cosmological models where Ωm = 1, gravitational potentials remain

constant during linear structure formation, and the late ISW signal is negligible to first order.

The most direct way for detecting the ISW effect is the determination of the cross-

correlation or the cross-angular power spectrum between the CMB temperature and the

density of tracer objects such as galaxies. Such approach has been applied to WMAP as

well as Planck data. In the Planck 2015 result [76], they include additional galaxy and AGN

catalogues, correlated with the four Planck CMB maps, and yields a detection of the ISW

signal at 2.9σ. In addition, they improve the characterization of the ISW effect through the
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ISW-lensing bispectrum. The higher signal-to-noise ratio of the Planck 2015 temperature

data and the new polarization data help to reconstruct the Planck lensing signal. With such

help, the detection reaches approximately 3σ. When combining the Planck ISW-lensing with

the cross-correlation of the Planck CMB with LSS tracers, a total detection of the ISW effect

at 4σ is obtained. Those detections of the ISW effect are all at the expected level for the

ΛCDM model.

An alternative approach consists of stacking CMB fields centered on known supersclusters

or supervoids [35]. This gives (arguably) the clearest ISW detection to date. However, it

has been argued that this detected signal is 3.3σ away from a theoretical ΛCDM estimate

obtained by performing large N-body simulations [31]. Chap. 2 presents our investigation of

this discrepancy based on Gaussian approximation [3].

1.4 THE HEMISPHERICAL POWER ASYMMETRY

ΛCDM gives us a flat, isotropic and homogeneous universe seeded by Gaussian and adiabatic

fluctuations. However, examination of the WMAP data reveals that there exhibits more

large-scale power on one half of the CMB temperature sky than the other [28], which is

also sequentially confirmed in Planck data [75]. This possible violation to the standard

cosmological scenario has profound implications for our understanding of the physical nature

of the universe and the initial conditions of structure formation.

The power asymmetry has been detected using multiple techniques, including spatial

variation of the temperature power spectrum for multipoles up to ` = 600 [75] and measure-

ments of the local variance of the CMB temperature map [6, 2]. For ` > 600, the amplitude

of the power asymmetry drops quickly with ` [30, 2].

A phenomenological model for the hemispherical power asymmetry is a statistically

isotropic sky Θ(n̂) times a dipole modulation of the temperature anisotropy amplitude:

Θ̃(n̂) = (1 + n̂ ·A) Θ(n̂), (1.11)

where the vector A gives the dipole amplitude and sky direction of the asymmetry [33].
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Both WMAP [27, 42] and Planck [75] show a dipole modulation with the amplitude

|A|' 0.07 along the direction (l, b) ' (220◦,−20◦) in galactic coordinates, with a significance

at a level ≥ 3σ. Further analysis at intermediate scales 100 < ` < 600 shows that the

amplitude of the dipole modulation is also scale dependent [38].

Chap. 3 presents our work on utilizing off-diagonal correlations between multipole com-

ponents to construct estimators for the Cartesian components of the vector A, and applying

the estimators to foreground-cleaned Planck CMB temperature maps [4].

7



2.0 GAUSSIAN APPROXIMATION OF PEAK VALUES IN THE

INTEGRATED SACHS-WOLFE EFFECT

This chapter is reproduced in part with permission from S. Aiola, A. Kosowsky, and B.

Wang. Gaussian approximation of peak values in the integrated Sachs-Wolfe effect. Phys.

Rev. D, 91(4):043510, February 2015.

c© 2015 American Physical Society

2.1 BACKGROUND

In 2008, [35] (GNS08, hereafter) employed a photometric analysis of stacked CMB patches

from the WMAP 5-year sky maps [41] centered on 100 superstructures (50 biggest super-

clusters and 50 biggest supervoids) detected in the Sloan Digital Sky Survey (SDSS) Data

Release 6 [1]. This SDSS Data Release covers a sky area of 7500 square degrees in a redshift

range 0.4 < z < 0.75. GNS08 reported a mean temperature fluctuations of T = 9.6 µK,

showing a departure from the null signal at a significance of 4.4σ.

However, analytical estimates of the stacked late-ISW signal in a comoving volume that

corresponds to that probed by GNS08 gives an average signal of T = 2.27 ± 0.14µK( [31],

FHN13 hereafter). The error here is due to cosmic variance. This results a greater than 3σ

discrepancy as compared to the GNS08 measurement. Since then other cosmological models

have been proposed to resolve this discrepancy, such as primordial non-Gaussianities [39]

and f(R) gravity theories [13], though neither seems to offer an adequate explanation for

the strong ISW signal detected.

A less interesting but more plausible possibility is that the strong detected signal is the

8



result of correlations of the late ISW signal with other sources of temperature anisotropy,

which may boost the mean temperature of the identified top-ranked peaks. The current

theoretical predictions of the stacked late-ISW signal of FHN13 do not include correlations

between ISW temperature fluctuations formed at different redshifts. However, we expect a

non-negligible correlation between the late-ISW signal, traced by superstructures in GNS08

in the redshift range 0.4 < z < 0.75, and the late-ISW effect due to structures at either higher

or lower redshift. In addition, high-redshift fluctuations are also partially correlated with the

secondary temperature anisotropies, at a level that depends on the underlying cosmological

model.

In this chapter, we provide a complete description of these correlations through simulated

skies based on linear perturbation theory. Temperature fluctuations on large scales result

from gravitational potential perturbations in the linear regime (see [20] for alternative pro-

posal). If the primordial perturbations are a Gaussian random field, which appears to be an

excellent approximation to the observed large-scale structure [69], the statistical properties

of the CMB sky on large angular scales are completely specified by the temperature power

spectrum CTT
` . We generate Gaussian random realizations of the CMB sky using the lin-

ear power spectra for its various physical components, including correlations between them.

This is an easy computational process, in contrast to extracting large-angle late-ISW maps

from large-box N-body cosmological simulations [86, 43]. This approach allows full charac-

terization of cosmic variance with a random sample of simulated skies, and it automatically

accounts for the effects of the largest-scale perturbation modes beyond the reach of N-body

simulations.

Our simulated late-ISW mean peak temperature signal is consistent with previous esti-

mates, but with a wider spread of values. Correlations between temperature signals increase

the expected mean value as well as the spread slightly. The main reason for this larger

spread, however, is the noise associated to the uncorrelated fluctuations at scales of our

interest, and thus reduces the statistical significance of the discrepancy between theory and

experiment to around 2.5σ when compared with our measured values from CMB maps.

My involvement in this work is within the scope of Sec. 2.2 and Sec.2.3—developing an

algorithm to generate realistic temperature maps, including spatial filtering and all correla-
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tions between temperature components, and applying the pipeline to simulate distributions

of late-ISW mean peak temperatures. For the completeness of this presentation, applying

the same procedure to the Planck CMB temperature maps is stated in Appendix . This

step guarantees that the discrepancy between theoretical estimates and the measured signal

is not due to different analysis procedures. Sec. 2.5 concludes with a discussion of possible

sources of systematic errors, a comparison with other late-ISW detection techniques.

2.2 CORRELATED COMPONENTS OF THE TEMPERATURE SKY

In the ΛCDM paradigm, different physical processes contribute to temperature fluctuations

over a wide range of angular scales; the CMB temperature sky is well approximated by the

sum of correlated Gaussian random fields, one for each physical component, such that

〈ai`m, ai?`′m′〉 = δ``′δmm′Cii
`

〈ai`m, a
j?
`′m′〉 = δ``′δmm′Cij

`

(2.1)

where i and j are the components making up the observed temperature field Θ(n̂) =∑
i

∑
`m a

i
`mY`m and the power spectra satisfy the condition Cii

` C
jj
` ≥ (Cij

` )2 [45]. This set of

power spectra specify the covariance matrix of the temperature given a cosmological model.

For the purposes of this work, we consider a 2-component sky described by a symmetric 2

by 2 covariance matrix. The first component, C1,1
` , is always the late-ISW component of the

temperature field, corresponding to the GNS08 redshift range (ISW–in, hereafter). As for

the second component, C2,2
` , we consider two distinct cases:

(i) Case A: only late-ISW generated outside the probed redshift range, corresponding to

0 < z < 0.4 and 0.75 < z < 10 (ISW–out, hereafter);

(ii) Case B : primary and secondary anisotropies generated outside the probed redshift

range. Specifically, we consider the sum of ISW–out, early ISW after recombination, and

Sachs-Wolfe, intrinsic and Doppler contributions at last scattering.

The off-diagonal terms C1,2
` are calculated according to the specific case we consider. For

a spatially flat, ΛCDM cosmological model with the best-fit Planck+WP+HighL parame-

ters [74] we compute the covariance matrix in Eq. (2.1) with the numerical Boltzmann code

10



Figure 2.1: Top: Angular power spectra in ΛCDM, for the ISW effect due to structure in the

redshift range 0.4 < z < 0.75 (“ISW–in”), ISW effect outside of this redshift range (“ISW–

out”), and all temperature perturbation components except for ISW–in (yellow). Bottom:

Correlation coefficients between ISW–in and ISW–out, and between ISW–in and all other

temperature perturbation components.

CLASS v2.21 [10] (including the nonlinear effects calculated with Halofit [83], although we

have verified that these do not affect our results.) The correlated harmonic coefficients are

generated via Cholesky decomposition as

ai`m =
2∑

k=1

A`,ikζk

aT`m = a1`m + a2`m

(2.2)

1http://class-code.net/

11
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where ζk is a column vector composed of 2 complex gaussian random numbers with zero

mean and unit variance, and A` is a lower-diagonal real matrix which satisfies C` = AT` A`.

The a1`m are the harmonic coefficients corresponding to the ISW–in component alone.

In Fig. 2.1, we plot the unfiltered covariance matrix components as function of the

multipole `. The top panel shows the diagonal terms. Note that the signal of interest, ISW–

in, has a lower amplitude compared than the other components at all multipoles. Thus,

the statistics of temperature peaks for an unfiltered map are completely dominated by the

anisotropies generated at last scattering. A wise choice for an `-space filter is required (see

below, Sec. 2.3). The bottom panel shows the off-diagonal terms; we plot the normalized

correlation coefficient

r` ≡
Cij
`√

Cii
` C

jj
`

(2.3)

which satisfies the condition |r`|≤ 1. The correlation matrix cannot be considered diagonal,

especially at low ` values. In principle we expect a negative cross-correlation on large scales

(i.e. r` < 0) due to the Sachs-Wolfe component: If we consider the entire late-ISW con-

tribution (i.e., 0 < z < 10), the cross-spectrum is dominated by the ISW-SW term, which

gives an overall anti-correlation. In the case of interest (where we consider shells of late-ISW

signal), the dominant part is the correlation between ISW–in and ISW–out. Notice that

rCaseA
` /rCaseB

` '
√
C

2,2(CaseB)
` /C

2,2(CaseA)
` , which implies that the mean value of the stacked

signal is mainly enhanced by the ISW–out component. This peculiar effect is attributed to

the wide range of k−modes, which couples the fluctuations of neighboring redshift regions.

On the other hand, the mildly correlated primary fluctuations dominate the statistical error

in averaged peak values.

2.3 METHODOLOGY AND ANALYSIS

The multipole region of our interest is dominated by cosmic variance. This problem is

difficult to characterize using N-body simulations, so we generate random temperature maps

from the power spectra and correlations to construct the statistical distribution of ISW mean

12



Figure 2.2: The mean value of the filtered CMB temperature at the locations of the top 50

cold spots Tcold and top 50 hot spots Thot of the ISW–in map component, corresponding to

the late-ISW signal from structures in the redshift range 0.4 < z < 0.75, for a sky fraction

fsky = 0.2. Plotted are (Thot, Tcold) for 5000 randomly generated skies with all contributions

to the CMB signal (green points). The red cross is at the location of the mean values of Tcold

and Thot for the 5000 model skies. For comparison, we plot 5000 model skies generated using

only the ISW–in signal (grey points), and 5000 skies generated using the full late late-ISW

signal but no other temperature components (blue points). Also displayed are the measured

values from GNS08 (purple diamond) and from the analysis in Sec. 2.3 using Planck data

(black square).

peak amplitudes. The procedure described in this section is based on the FHN13 analysis,

adapted to multi-component correlated sky maps.
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2.3.1 Harmonic-Space Filtering

In the GNS08 redshift range (0.4 < z < 0.75), the expected cross-correlation spectrum

peaks at ` ' 20 (θ ' 4◦) ([39], HMS13 hereafter), which motivated the use of a compensated

top-hat filter of 4◦ radius to enhance the signal [36].

To isolate the late-ISW peak signal in `-space, we apply the 4◦ compensated top-hat

filter adopted by GNS08:

F (θ) =


(2π(1− cos θF ))−1, 0 < θ < θF ,

−(2π(cos θF − cos
√

2θF ))−1, θF < θ <
√

2θF ,

(2.4)

where θF = 4◦ is the characteristic filter radius. By performing a Legendre transform of

the real-space filter F (θ) → F` =
∫
F (θ)P`(cos θ)d cos θ, we can compute a full-sky filtered

map simply by rescaling the covariance matrix, C` → C`F
2
` B

2
` , which also uses an additional

Gaussian beam smoothing B` with FWHM= 30′ adopted by PLK13 to match the WMAP

resolution. The compensated top-hat filter does not give a sharp cutoff in multipole space.

However, it drops off faster than `−2, which ensures the suppression of the small-scale fluc-

tuations. At the scales enhanced by the filter ` ' 10 − 30, the portion of the temperature

fluctuations uncorrelated with the ISW–in signal for Case B is approximately one order of

magnitude larger than that for Case A, with a resulting increase in the scatter of the mean

peak statistic.

2.3.2 Simulation Pipeline

To identify the peaks of the late-ISW temperature fluctuations in the CMB sky map, GNS08

used the distribution of luminous red galaxies in SDSS DR6 and looked for overdense and

underdense regions. The top-ranked 100 superstructures identified in the sample have a

median radial length calculated at z = 0.5 of Rv ' 85Mpc and Rc ' 25Mpc for voids

and clusters respectively. The corresponding normalized fluctuations of the gravitational

potential are of the order Φ ' 10−4 [36]. These gravitational potential fluctuations are still

in the linear regime for standard structure growth.
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Figure 2.3: The combined mean value of the filtered CMB temperature at the locations of

the top 50 cold spots and top 50 hot spots of the ISW–in map component, corresponding to

the late-ISW signal from structures in the redshift range 0.4 < z < 0.75, for a sky fraction

fsky = 0.2. Plotted are the distributions (normalized to the maximum value) of the combined

mean temperature (Thot−Tcold)/2 obtained from 5000 simulated skies, for the three difference

cases considered in this work. Also displayed are the measured values from GNS08 (purple

vertical line) and from the analysis in Sec. ?? using Planck data (black vertical line).

Assuming perfect efficiency in detecting and ranking superstructures from large-scale

structure distribution data, the observed GNS08 signal should match the theoretical expec-

tation from averaging the CMB temperature fluctuations traced by the 100 biggest fluctu-

ations in the filtered late-ISW map over the redshift range of the survey [31]. We generate

correlated pairs of filtered random Gaussian maps, one for the ISW–in component and one

for the other linear components of the temperature sky, using multipoles in both power spec-

trum ` ≤ 800; we use HEALPix2 [34] with NSIDE=256. From the filtered ISW–in map, we

identify the 50 hottest maxima and 50 coldest minima in a sky region of area fsky = 0.2,

corresponding to the sky fraction of the SDSS DR6 survey. Maxima and minima are identified

pixel-by-pixel, testing whether or not the temperature of the central pixels is the greatest

2http://healpix.sf.net
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or the smallest of the 8 surrounding pixels. Finally, we take the pixels corresponding to

these extrema and average their values in the full sky map consisting of the sum of the two

correlated random maps. We find the average of the 50 hottest ISW–in maxima Th and

50 coldest ISW–in minima Tc separately, and we also compute the combined mean value as

Tm = (Th − Tc)/2. For comparison, we also calculate the same quantities for the ISW–in

map only, which we call Case 0. This procedure is performed on an ensemble of 5000 random

generated skies.

The procedure adopted here gives an upper bound on the theoretical signal from clusters

and voids identified in any specific tracer of large-scale structure: we simply assume that the

50 largest voids and 50 largest clusters in a sky region are correctly identified. Any error in

identifying these features will lead to a smaller mean signal.

2.4 RESULTS AND COMPARISON WITH PREVIOUS WORKS

The results of our simulations are presented in Table 2.4 and visually summarized in Figs 2.2

and 2.3. As expected for random realizations of a Gaussian field, |Th|= |Tc|. The mean peak

signal for the full simulated sky maps (Case B) is 2.30± 2.32 µK, compared to the GNS08

measurement of 9.6 µK, a discrepancy at a significance of 3.1σ. Our discrepancy is about

the same size as previous analyses, but the significance is somewhat lower. This is due to

our inclusion of all components in the microwave temperature map and their correlations,

which increases the uncertainty in our predicted values. The central value of our ISW–in

peak signal, 1.97 µK (Case 0), is lower by 0.30 µK than the signal predicted in FHN13, which

is expected due to a difference in the underlying cosmological models used. However, the

difference is small compared to the statistical uncertainty for the full sky signal (Case B).

The central value of our full-sky peak signal is also higher than the ISW–in peak signal by

0.33 µK; this difference is due to the correlations between the ISW–in signal and the other

components which are included in the Case B peak signal.

The original late-ISW peak analysis in GNS08 used WMAP sky maps, and PLK13

confirmed the measured value using Planck data. Here we obtain the measured late-ISW

16



Case Th [µK] Tc [µK] Tm [µK]

Case 0 1.97± 0.09 −1.97± 0.09 1.97± 0.07

Case A 2.23± 0.25 −2.23± 0.25 2.23± 0.20

Case B 2.30± 3.1 −2.30± 3.1 2.30± 2.32

FHN13 - - 2.27± 0.14

GNS08 7.9± 3.1 −11.3± 3.1 9.6± 2.22

Table 2.1: Results from Gaussian random skies, stacked on peaks of the ISW–in signal (the

ISW generated for structure in the redshift range 0.4 < z < 0.75). The simulated skies are

constructed from the angular power spectra in the standard ΛCDM cosmology, smoothed

with a Gaussian beam of FWHM 30’ and a compensated top hat filter of radius 4◦, Eq. (2.4).

We report the mean and the standard deviation of the stacks on the locations of the 50 hottest

ISW–in spots Th, 50 coldest ISW–in spots Tc, and the mean magnitude for all 100 spots

Tm, calculated from 5000 random realizations of the microwave sky, including correlations

between the ISW–in signal and other sky components. These values are presented for ISW–in

skies only (Case 0), ISW–in plus ISW–out skies (Case A), and realistic skies including early

ISW, intrinsic, and Doppler contributions to the sky temperature (Case B). The theoretical

prediction from FHN13 and the measured value from GNS08 are reported for comparison.

signal from publicly available foreground-cleaned maps based on Planck and Planck+WMAP

data, using the same sky locations as GNS08. The purpose of this re-analysis is testing the

significance of the discrepancy by using the same analysis pipeline as the simulations in

Sec. 2.3, to ensure that the difference between the model and the measured value is not due

to any inconsistency in how the data and simulations are treated.

We use four different foreground-cleaned CMB temperature maps, based on different

component separation approaches. Two are public CMB temperature maps from the Planck

collaboration3, namely SMICA and NILC [73]. The other two maps are based on the LGMCA

3http://www.sciops.esa.int/wikiSI/planckpla
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Figure 2.4: Histograms of pixel temperatures centered on superstructures identified by

GNS08, measured using 4 different foreground-cleaned filtered CMB maps. Top panel: mea-

sured temperatures at locations of voids in the GNS08 catalog; the dashed vertical line

indicates the mean temperature. Bottom panel: the same for locations of clusters.

method4 from the recent work in Ref. [11]. The PR1 map uses only Planck DR1 data [72],

and the WPR1 map uses both Planck DR1 and WMAP9 dat [40].

We process these four maps in the same fashion:

(i) we apply a gaussian beam smoothing in harmonic space to the map defined as B` =

B`(30′)/B`(map) where B`(map) is the effective beam of the released map; this allows us to

take into account for the finite resolution of the instrument, and hence matching the overall

smoothing applied to the simulated maps. We also filter out the small-scale fluctuations by

setting the harmonic coefficients of the map a`m = 0 for ` > 800;

(ii) the preprocessed map is then masked using the released Planck mask U73, avoiding

contaminates from bright point sources;

4http://www.cosmostat.org/CosmoStat.html
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Figure 2.5: The filtered SMICA-Planck CMB temperature map, in a Mollweide projection

in ecliptic coordinates. The galactic region and point sources have been masked with the

U73-Planck mask. The resolution of the HEALPix maps is NSIDE= 256. The locations of

superclusters (red “+”) and supervoids (blue “x”) from the GNS08 catalog are also shown.

(iii) the masked map is filtered in harmonic space using the compensated top-hat filter

F` and repixelized to NSIDE=256;

(iv) we read the temperature values of the pixels corresponding to the cluster/void po-

sitions used in GNS08 5.

Fig. 2.5 shows the filtered SIMCA map in a Mollweide projection in ecliptic coordinates;

superstructure locations from GNS08 are marked. In Fig. 2.4, we plot the histogram of

the temperature values for voids and clusters separately for the four analyzed maps. The

measured values are used to calculate the quantities Tc, Th and Tm given in Table II. Different

component separation methods quantify the effects of residual foreground contamination.

We measure the fluctuations of the average temperature signal for different maps and use

the variance of these fluctuations σFG as an estimate of the error due to foregrounds. The

temperature values are extremely stable and fluctuations are always within 1% (see also

Fig. 4), suggesting that the temperature variations are predominantly cosmological. Our

5http://ifa.hawaii.edu/cosmowave/supervoids/publications-and-data/
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Map Th [µK] Tc [µK] Tm [µK]

NILC 6.9 −9.4 8.1

SMICA 7.0 −9.4 8.2

PR1 6.9 −9.3 8.1

WPR1 6.9 −9.2 8.0

MEAN 6.89 −9.33 8.11

σFG 0.01 0.09 0.04

Table 2.2: Mean temperature deviations for GNS08 cluster and void locations, for four

temperature maps with different foreground cleaning procedures.We estimate the mean and

standard deviation σFG from the four different maps.

mean peak temperature values are smaller than those reported by GNS08 and PLK13 by

around 1.5 µK, which is within the 1σ uncertainty. Such a difference is driven mainly by

details of the filtering procedure.

The results of our simulations and our measured signals, shown in Fig. 2.2 and Fig. 2.3,

can be summarized as

(i) The departure of the measurements from a null signal has decreased somewhat com-

pared to previous analyses. It corresponds to a detection significance of 2.2σ, 3.0σ and 3.5σ

for clusters, voids and combined, respectively;

(ii) The measurements are higher than the expected maximum signal in ΛCDM cosmol-

ogy at a level of 1.5σ, 2.3σ and 2.5σ for clusters, voids and combined, respectively;

(iii) The asymmetry between the measured signal for voids and clusters is not statistically

significant, being smaller than 1σ.

For these estimates, we consider foregrounds contamination and cosmic variance from

simulations to be uncorrelated; hence we take σtot =
√
σ2
FG + σ2

sim, but the residual fore-

ground error is small compared to the cosmic variance uncertainty.

20



2.5 DISCUSSION

Our analysis confirms both the size of the stacked late-ISW signal seen by GNS08 and

PLK13, and theoretical predictions for ΛCDM models by FHN13 and HMS13. By using

several maps with different foreground subtraction methods, we demonstrate that foreground

residuals contribute negligible uncertainty to the measured signal. The theoretical modeling,

using correlated Gaussian random fields, is far simpler than previous analyses using N-body

simulations, showing that the predicted signal has no significant systematic error arising

from insufficient box size or other subtleties of the simulations. Our calculations also include

the correlations between the late-ISW signal and other sources of microwave temperature

anisotropies, which mildly increases the theoretical mean signal while also increasing the

statistical uncertainty. We find a stacked late-ISW signal which is different from null at

3.5σ significance, and a discrepancy between the predicted and observed signal of 2.5σ in

Planck sky maps at the peak and void locations determined by GNS08 from SDSS data in

the redshift range 0.4 < z < 0.75.

After this work was published, another stacking analysis using a new catalogue from the

CMASS survey is released [53], but such anomaly was not observed. More specifically, the

GNS08 supervoid positions, which are selected via photometry, do not coincide with regions

abundant in DR10 voids which identified in spectroscopic samples, and no significant imprint

was detected when performing the stacking analysis using DR10 CMASS and LOW-Z voids.

In short, their results showed that ISW detections with the stacking protocol strongly depend

on the properties of the tracer population and the void finder. However, the analysis from

Planck DR2 [76], in which the Planck polarization data is used to explore further the origin

of the stacking signal, indicates a secondary nature of the stacking signal. At current stage,

therefore, it remains an open question in need of future surveys.
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3.0 MICROWAVE BACKGROUND CORRELATIONS FROM DIPOLE

ANISOTROPY MODULATION

This chapter is reproduced with permission from S. Aiola, B. Wang, A. Kosowsky, T. Kah-

niashvili, and H. Firouzjahi. Microwave background correlations from dipole anisotropy

modulation. Phys. Rev. D, 92(6):063008, September 2015.

c© 2015 American Physical Society

3.1 BACKGROUND

A phenomenological model for the hemispherical power asymmetry is a statistically isotropic

sky Θ(n̂) times a dipole modulation of the temperature anisotropy amplitude:

Θ̃(n̂) = (1 + n̂ ·A) Θ(n̂), (3.1)

where the vector A gives the dipole amplitude and sky direction of the asymmetry [33]. This

phenomenological model has been tested on large scales (` < 100) with both WMAP [27, 42]

and Planck ([75], hereafter PLK13) data, showing a dipole modulation with the amplitude

|A|' 0.07 along the direction (l, b) ' (220◦,−20◦) in galactic coordinates, with a significance

at a level ≥ 3σ. Further analysis at intermediate scales 100 < ` < 600 shows that the

amplitude of the dipole modulation is also scale dependent [38].

If a dipole modulation in the form of Eq. (3.1) is present, it induces off-diagonal cor-

relations between multipole components with differing l values. Similar techniques have

been employed to study both the dipole modulation [79, 38, 66, 81] and the local peculiar
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velocity [52, 7, 77, 44]. We use these correlations to construct estimators for the Carte-

sian components of the vector A as function of the multipole, the derivation of which for a

cosmic-variance limited CMB temperature map is presented in Sec. 3.2.

In particular, I contributed to the testing and application of the estimators for the

Planck temperature maps (Sec. 3.3). The Planck temperature data that are used to obtain

the results is described in Sec. 3.4. For the completeness of this presentation, Sec. 3.5, in

which we further analyze our result through geometrical test and a power-law model fit,

is also included. We estimate the components of the dipole modulation vector and assess

their statistical significance, finding departures from zero at the 2 to 3 σ level. The best-fit

dipole modulation signal is an unexpectedly good fit to the data, suggesting that we have

neglected additional correlations in modeling the temperature sky. We also perform a Monte

Carlo analysis to estimate how the dipole modulation depends on angular scale, confirming

previous work showing the power modulation becoming undetectable for angular scales less

than 0.4◦. Finally, Sec. 3.6 gives a discussion of the significance of the results and possible

implications for models of primordial perturbations.

3.2 DIPOLE-MODULATION-INDUCED CORRELATIONS AND

ESTIMATORS

Assuming the phenomenological model described by Eq. (3.1), the dipole dependence on

direction can be expressed in terms of the l = 1 spherical harmonics as

n̂ ·A = 2

√
π

3
(A+Y1−1(n̂)− A−Y1+1(n̂) + AzY10(n̂)) (3.2)

with the abbreviation A± ≡ (Ax ± iAy)/
√

2. Expanding the temperature distributions in

the usual spherical harmonics,

Θ(n̂) =
∑
lm

almYlm(n̂), Θ̃(n̂) =
∑
lm

ãlmYlm(n̂), (3.3)

with the usual isotropic expectation values

〈a∗lmal′m′〉 = Clδll′δmm′ . (3.4)
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The coefficients must satisfy a∗lm = (−1)mal−m and ã∗lm = (−1)mãl−m because the temper-

ature field is real. The asymmetric multipoles can be expressed in terms of the symmetric

multipoles as

ãlm = alm + 2

√
π

3

∑
l′m′

al′m′(−1)m
∫
dn̂Yl−m(n̂)Yl′m′(n̂)[A+Y1−1(n̂)−A−Y1+1(n̂) +AzY10(n̂)].

(3.5)

The integrals can be performed in terms of the Wigner 3j symbols using the usual Gaunt

formula,

(3.6)

∫
dn̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

 l1 l2 l3

m1 m2 m3

l1 l2 l3

0 0 0

 .

Because l3 = 1 for each term in Eq. (3.5), the triangle inequalities obeyed by the 3j symbols

give that the only nonzero terms in Eq. (3.5) are l′ = l or l′ = l± 1. For these simple cases,

the 3j symbols can be evaluated explicitly. Then it is straightforward to derive

(3.7)
〈
ã∗l+1m±1ãlm

〉
= ∓ 1√

2
A± (Cl + Cl+1)

√
(l ±m+ 2)(l ±m+ 1)

(2l + 3)(2l + 1)
,

(3.8)
〈
ã∗l+1mãlm

〉
= Az (Cl + Cl+1)

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
.

These off-diagonal correlations between multipole coefficients with different l values are zero

for an isotropic sky. This result was previously found by [79], and represents a special case

of the bipolar spherical harmonic formalism [37].

It is now simple to construct estimators for the components of A from products of

multipole coefficients in a map. Using Ax =
√

2ReA+ and Ay =
√

2ImA+, we obtain the

following estimators:

(3.9)[Ax]lm '
−2

Cl + Cl+1

√
(2l + 3)(2l + 1)

(l +m+ 2)(l +m+ 1)
(Re ãl+1m+1Re ãlm + Im ãl+1m+1Im ãlm) ,
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[Ay]lm '
−2

Cl + Cl+1

√
(2l + 3)(2l + 1)

(l +m+ 2)(l +m+ 1)
(Re ãl+1m+1Im ãlm − Im ãl+1m+1Re ãlm) ,

(3.10)

(3.11)[Az]lm '
1

Cl + Cl+1

√
(2l + 3)(2l + 1)

(l +m+ 1)(l −m+ 1)
(Re ãl+1mRe ãlm + Im ãl+1mIm ãlm) .

where ãlm’s are calculated from a given (real or simulated) map and Cl’s are estimated

from the harmonic coefficients of the isotropic map Cl = (2l + 1)−1
∑
|alm|2. We argue that

for small values of the dipole vector A and (more important) for a nearly full-sky map∑
|ãlm|2→

∑
|alm|2. This assumption has been tested for the kinematic dipole modulation

induced in the CMB due to our proper motion, showing that the bias on the estimated power

spectrum is much smaller than the cosmic variance error for nearly full-sky surveys [44]. Such

estimators, derived under the constraint of constant dipole modulation, can be safely used

for the general case of a scale-dependent dipole vector A by assuming that A(l) ' A(l+ 1).

This requirement is trivially satisfied by a small and monotonically decreasing function A(l).

To compute the variance of these estimators, assume a full-sky microwave background

map which is dominated by cosmic variance; the Planck maps are a good approximation

to this ideal. Then alm is a Gaussian random variable with variance σ2
l = Cl. The real

and imaginary parts are also each Gaussian distributed, with a variance half as large. The

product x = Re ãl+1m+1Re ãlm, for example, will then have a product normal distribution

with probability density

P (x) =
2

πσlσl+1

K0

(
2|x|
σlσl+1

)
(3.12)

with variance σ2
x = σ2

l σ
2
l+1/4, where K0(x) is a modified Bessel function. By the central

limit theorem, a sum of random variables with different variances will tend to a normal

distribution with variance equal to the sum of the variances of the random variables; in

practice the sum of two random variables each with a product normal distribution will be

very close to normally distributed, as can be verified numerically from Eq. (3.12). Therefore
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we can treat the sums of pairs of ãlm values in Eqs. (3.9) to (3.11) as normal variables with

variance σ2
l σ

2
l+1/2, and obtain the standard errors for the estimators as

(3.13)

[σx]lm = [σy]lm

'

√
(2l + 3)(2l + 1)

2(l +m+ 2)(l +m+ 1)
,

(3.14)[σz]lm '
1

2

√
(2l + 3)(2l + 1)

2(l +m+ 1)(l −m+ 1)
,

with the approximation Cl+1 ' Cl.

For a sky map with cosmic variance, each estimator of the components of A for a given

value of l and m will have a low signal-to-noise ratio. Averaging the estimators with inverse

variance weighting will give the highest signal-to-noise ratio. Consider such an estimator for

a component of A which average all of the multipole moments between l = a and l = b:

[Ax] ≡ σ2
x

b∑
l=a

l∑
m=−l

[Ax]lm
[σx]

2
lm

, (3.15)

[Ay] ≡ σ2
y

b∑
l=a

l∑
m=−l

[Ay]lm
[σy]

2
lm

, (3.16)

[Az] ≡ σ2
z

b∑
l=a

l∑
m=0

[Az]lm
[σz]

2
lm

, (3.17)

which have standard errors of

(3.18)

σx = σy

≡

[
b∑
l=a

l∑
m=−l

[σx]
−2
lm

]−1/2

=

[
2

3
(b+ a+ 2)(b− a+ 1)

]−1/2
,

(3.19)
σz ≡

[
b∑
l=a

l∑
m=0

[σz]
−2
lm

]−1/2

=

[
4(b− a+ 1) [a(2b+ 3)(a+ b+ 4) + (b+ 2)(b+ 3)]

3(2a+ 1)(2b+ 3)

]−1/2
.
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The sum over m for the z estimator and error runs from 0 instead of −l because [Az]l−m =

[Az]lm, but the values are distinct for the x and y estimators.

While the Cartesian components are real Gaussian random variables, such that for

isotropic models 〈[Ax]〉 = 〈[Ay]〉 = 〈[Az]〉 = 0, the amplitude of A is not Gaussian dis-

tributed. Instead, it is described by a chi-square distribution with 3 degrees of freedom,

which implies 〈|A|2〉 6= 0 and p(|A|2= 0) = 0, even for an isotropic sky. For this reason, we

consider the properties of the dipole vector A as function of the multipole, considering each

Cartesian component separately.

3.3 SIMULATIONS AND ANALYSIS PIPELINE

The estimators in Eqs. (3.9) - (3.11) are clearly unbiased for the case of full-sky CMB map.

However, residual foreground contaminations along the galactic plane as well as point sources

may cause a spurious dipole modulation signal, which can be interpreted as cosmological.

Such highly contaminated regions can be masked out, at the cost of breaking the statistical

isotropy of the CMB field and inducing off-diagonal correlations between different modes.

The effect of the mask, which has a known structure, can be characterized and removed.

3.3.1 Characterization of the Mask

For a masked sky the original alm are replaced with their masked counterparts:

alm =

∫
dΩΘ(n̂)W (n̂)Y ∗lm (3.20)

where W (n̂) is the mask, with 0 ≤ W (n̂) ≤ 1. In this case, Eq. (3.4) does not hold, meaning

that even for a statistical isotropic but masked sky the estimators in Eq. (3.9)-(3.11) will

have an expectation value different from zero. This constitutes a bias factor in our estimation

of the dipole modulation.
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If we expand Eqs. (3.9)–(3.11) using the definition of the harmonic coefficients in Eq. (3.5),

it is clear that if a primordial dipole modulation is present, the mask transfers power be-

tween different Cartesian components. Under the previous assumption A(l) ' A(l+ 1), the

Cartesian components i, j = x, y, z of the dipole vector can be written as

[Aj]lm = Λji,lmAi,l +Mj,lm (3.21)

where [Aj]lm is the estimated dipole vector for the masked map, and Λji,lm and Mj,lm are

Gaussian random numbers determined by the alm, so dependent only on the geometry of

the mask. For unmasked skies, these two quantities satisfy 〈Λji,lm〉 = δij and 〈Mj,lm〉 = 0,

ensuring that the expectation value of our estimator converges to the true value.

Using Eq. (3.21), we can define a transformation to recover the true binned dipole vector

from a masked map:

[Ai] = Λ−1ji ([Aj]−Mj) (3.22)

where [Aj] is the binned dipole vector estimated from a map, and Λji and Mj are the

expectation values of Λji,lm and Mj,lm, binned using the prescription in Eqs. (3.15)–(3.17).

For each Cartesian component we divide the multipole range in 19 bins with uneven spacing,

∆l = 10 for 2 ≤ l ≤ 100, ∆l = 100 for 101 ≤ l ≤ 1000. For a given mask, the matrix Λji

and the vector Mj can be computed by using simulations of isotropic masked skies. We use

an ensemble of 2000 simulations, and we adopt the apodized Planck U73 mask, following

the procedure adopted by PLK13 for the hemispherical power asymmetry analysis. For the

rest of this work, all estimates of the dipole vector are corrected for the effect of the mask

using Eq. (3.22).

3.3.2 Simulated Skies

We generate 2000 random masked skies for both isotropic and dipole modulated cases. For

the latter, we assume an scale-independent model with amplitude |A| = 0.07, along the

direction in galactic coordinates (l, b) = (220◦,−20◦). We adopt a resolution corresponding

to the HEALPix1[34] parameter NSIDE = 2048, and we include a Gaussian smoothing of FWHM

1http://healpix.sourceforge.net/
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= 5′ to match the resolution of the available maps. The harmonic coefficients ãlm are then

rescaled by
√
C̃l, where the power spectrum is calculated directly from the masked map.

These normalized coefficients (for both isotropic and dipole modulated cases) are then used

to estimate the components of the dipole vector.

These simulations also serve the purpose of estimating the covariance matrix C. From

Eqs. (3.9)-(3.11), we expect different Cartesian components to be nearly uncorrelated, even

for models with a non-zero dipole modulation, for full-sky maps. We confirm this numerically

with simulations of unmasked skies. For masked skies, Fig. 3.1 shows the covariance matrices.

The left panel shows the case for isotropic skies with no dipole modulation. The presence

of the mask induces correlations between multipole bins at scales 100 . l . 500, and also

between the largest scales l . 40 with all the other multipole bins. However, because of

the apodization applied to the mask, the correlation between bins never exceeds 25%. For

comparison, we also show the difference between the correlation matrices for the case of dipole

modulated and isotropic skies (right panel). This is consistent with random noise, which

demonstrates that the covariance matrix does not depend significantly on the amplitude of

the dipole modulation.

3.3.3 Bias Estimates

We determine the mean bias in reconstructing the dipole modulation vector A from a masked

sky by computing the mean value of all three Cartesian components reconstructed from 2000

simulations, for both isotropic and dipole-modulated skies. In both cases, the residual bias

vector has componentsAi > 0, with an amplitude of the first bin of each Cartesian component

below 6× 10−3. For the isotropic case, the amplitude of the bias is strongly decreasing with

multipole (|A(l = 60)|= 3.8 × 10−4), corresponding to 0.5% to 2% of the cosmic variance

error for the entire multipole range considered. Therefore, the analysis procedure on masked

skies does not introduce a statistically any significant signal which could be mistaken for

dipole modulation.

In the case of dipole-modulated simulations with dipole amplitude A = 0.07 consistent

with PLK13, the amplitude of the bias for each Cartesian component is a constant for all
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Figure 3.1: Correlation matrices for the Cartesian components of the dipole vector. These

matrices are estimated using 2000 random simulated skies masked with the apodized Planck

U73 mask. The ordering of the components follows the convention defined for the dipole

vector. (Left panel) Isotropic skies (A=0). (Right panel) Difference between the correlation

matrices for modulated skies, generated using a constant dipole vector across multipoles of

magnitude |A| = 0.07 and direction (l, b) = (220◦,−20◦), and isotropic skies.

multipoles. This indicates that the bias follows the underlying model, and the determination

of the scale dependence of the true dipole vector will not be affected by such a bias. For

this specific case, the amplitude is always ≤ 0.8σ when compared to the cosmic variance,

specifically ≤ 0.1σ for l ≤ 100. However, this simulated case is unrealistic. We do not expect

such a big amplitude for the dipole vector at small scales, so the simulated case overestimates

the actual bias.

30



3.4 MICROWAVE SKY DATA

We consider a suite of six different foreground-cleaned microwave background temperature

maps:2: SMICA, NILC, COMMANDER-Ruler H and SEVEM from the first Planck data release [73],

and two others processed with the LGMCA3 component separation technique by [12]. The

LGMCA-PR1 and LGMCA-WPR1 are based on Planck data only and Planck+WMAP9 data respec-

tively, allowing a non trivial consistency test between these two experiments. Each of these

maps uses a somewhat different method for separating the microwave background compo-

nent from foreground emission, allowing us to quantify any dependence on the component

separation procedure.

Asymmetric beams and inhomogeneous noise may create a systematic dipolar modulation

in the sky. In order to test this possibility, we analyze the 100 publicly available FFP6

single-frequency simulated maps released by the Planck team. Specifically, we process the

simulations for the 100, 143 and 217 GHz channels with our analysis code. The maximum

likelihood analysis shows a bias on small scales, although the values are always less than

0.6 times the cosmic variance for each multipole bin. Considering only the first 15 bins

(lmax = 600) gives a result consistent with the isotropic case, with a p-value larger than 0.1.

The source of the small-scale bias is not yet known, but we simply ignore multipoles l > 600

in the present analysis of Planck data.

3.5 RESULTS

Fig. 3.2 shows the measured values of the Cartesian components of the dipole vector, using

the SMICA map. Similar results are found for the other foreground-cleaned maps, and a

direct comparison is shown in Sec. 3.5.1. Fig. 3.3 displays the amplitude of the dipole vector

compared with the mean value (black dashed line) obtained from isotropic simulations; as

pointed out in Sec. ??, the expectation value of the amplitude of the dipole vector is different

2http://wiki.cosmos.esa.int/planckpla/index.php/Main_Page
3http://www.cosmostat.org/product/lgmca_cmb/
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from zero even for the isotropic case.

The data clearly shows two important features:

(i) The amplitudes of the components of the estimated dipole vector are decreasing

functions of the multipole `.

(ii) The x and y components have a negative sign, which persists over a wide range

of multipoles; the z component is consistent with zero. This indicates that the vector is

pointing in a sky region (180◦ < l < 270◦, b ' 0), in agreement with previous analyses.

We further characterize these basic results in the remainder of this Section.

3.5.1 Geometrical Test

First, we test how likely the observed geometrical configuration of the dipole vector is in an

isotropic universe. To achieve this goal, we need to define a quantity which preserves the

information on the direction of the dipole vector (i.e. statistics linear in the variables Ai).

In addition, the Cartesian components have to be weighted by the cosmic variance, ensuring

that our statistics is not dominated by the first bins. Therefore, we define the following

quantity

α =
3N∑
i=1

(C−1)ij[A]j=1,...,3N (3.23)

where (C−1)ij are the components of the inverse of the covariance matrix calculated in

Sec. 3.3.2, and [A]j=1,...,3N are the three Cartesian components of the binned dipole vector

(up to the N th bin) estimated either from a simulated map of measured data. For an isotropic

universe, we expect the three Cartesian components to sum up to zero, such that 〈α〉 = 0

for any choice of lmax. This will not be the case if the underlying model is not isotropic (i.e.

the expectation values of the Cartesian components are different from zero). In Fig. 3.4,

we plot the values of the α parameter as function of the maximum multipole considered in

the analysis lmax, rescaled by the standard deviation σ(α) determined from the simulations

of isotropic skies. The left panel shows the comparison between the CMB data for all 6

foreground-cleaned maps, and the simulations for the isotropic case. The measured rescaled

α parameter has a value that is discrepant from α = 0 at a level of 2σ . α < 3σ. This

discrepancy is maximized for l . 60 − 70, which corresponds to what has been previously
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probed by PLK13.

The right panel of Fig. 3.4 compares the measured signal with simulations of dipole

modulated skies, using the covariance matrix C calculated from the anisotropic simulations.

This test confirms that the signal averaged over multipoles . 60− 70 is consistent with the

model proposed by PLK13 (assumed in our anisotropic simulations). However, the results

are not consistent with a scale-independent dipole modulation, and the amplitude of the

dipole modulation vector must be strongly suppressed at higher multipoles.

3.5.2 Model Fitting

Consider a simple power-law model for the dipole modulation defined by 4 parameters (in

this section we indicate multipoles with the symbol `, and for the galactic longitude we use

l):

Ath
x = A

( `
60

)n
cos b cos l, (3.24)

Ath
y = A

( `
60

)n
cos b sin l, (3.25)

Ath
z = −A

( `
60

)n
sin b, (3.26)

where A is the amplitude of the dipole vector at the pivot scale of ` = 60, n is the spectral

index of the power law, b is the galactic latitude, and ` is the galactic longitude. We use a

Gaussian likelihood L, such that

lnL = −1

2
χ2 = −1

2
([Ai]− [Ai]

th)T(C−1)ij([Aj]− [Aj]
th) (3.27)

where [Ai] are the estimated components from the Planck SMICA map, [Ai]
th are the compo-

nents of the assumed model properly binned using Eqs. (3.15)-(3.17), and C is the covariance

matrix for a dipole-modulated sky displayed in Fig. 3.1. The parameter space is explored

using the Markov chain Monte Carlo sampler emcee [32], assuming flat priors over the ranges

{A, n} = {[0, 1], [−2, 2]}. Table 3.1, displays the results for different thresholds of `max.
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In the restricted case considering only low multipoles l < 60 and a flat spectrum n = 0,

our best-fit model agrees at the 1σ level with previous analysis by PLK13, for both amplitude

and direction.

If n is allowed to vary, the amplitude A of the dipole vector at the pivot scale of 60, as

well as the spectral index n, are perfectly consistent for three different lmax thresholds. The

amplitude is different from the isotropic case A = 0 at a level of 2σ, and the scale-invariant

case n = 0 with lmax = 400 is excluded at greater than 3σ significance. The value of the

galactic longitude l is stable to a very high degree, whereas the value of galactic latitude b

indicates (although not statistically significant) a migration of the pointing from the southern

hemisphere to the northern one. This is expected due to the effect of the kinematic dipole

modulation induced by the proper motion of the solar system with respect to the microwave

background rest frame [80, 17, 52]. This effect has been detected by Planck [77], and results

in a dipole modulation in the direction (l, b) = (264◦, 48◦) detectable at high `.

The dipole model is a better fit to the data than isotropic models. Both the Aikake

information criterion (AIC) and the Bayes information criteron (BIC) [55] show sufficient

improvement in the fit to justify the addition of four extra parameters in the model. In the

specific case of the AIC, the dipole model is always favored. The improvement is calculated by

the relative likelihood of the isotropic model with respect to the dipole modulated case. This

is defined as exp((AICmin−AICA=0)/2), where the AIC factor is corrected for the finite sample

size, and it corresponds to 0.48, 0.083, 0.13, 0.18, 0.013, and 0.011 for the models considered

in Table 3.1. In the case of the BIC, the corresponding values are BICmin −BICA=0 = 0.5;

0.4; 1.0; 2.1; 2.8, and 2.8. The BIC indicates that the dipole modulation is favored only for the

cases with `max > 400, where the parameters are better constrained. According to Ref. [47],

the improvement, even though positive, is not strong because −6 < BICmin−BICA=0 < −2.

For the dipole-modulated model, the value of χ2 is substantially lower than the degrees

of freedom. This suggests that either the error bars are overestimated or the data points

have correlations which have not been accounted for in the simple dipole model. Since the

errors are mostly due to cosmic variance on the scales of interest, the error bars cannot have

been significantly overestimated. Therefore, our results may point to additional correlations

in the microwave temperature pattern beyond those induced by a simple dipole modulation
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of Gaussian random anisotropies. The correlations are unlikely to be due to foregrounds,

since the results show little dependence on different foreground removal techniques.

3.6 DISCUSSION

The microwave sky seems to exhibit a departure from statistical isotropy, due to half the sky

having slightly more temperature fluctuation power than the other half. This work shows

that the temperature anisotropies are consistent with a dipolar amplitude modulation, which

induces correlations with multipole coefficients with ` values differing by one. At angular

scales of a few degrees and above, the correlations define a dipole direction which corresponds

to the orientation of the previously known hemispherical power asymmetry, while at smaller

scales the direction migrates to that of the kinematic dipole. Our results show that a dipole

modulation is phenomenologically a good description of the power asymmetry, but that the

modulation must be scale dependent, becoming negligible compared to the kinematic dipole

correlations [52, 77] on angular scales well below a degree.

The statistical significance of these multipole correlations is between 2σ and 3σ compared

to an isotropic sky, with the error dominated by cosmic variance. The maximum signal

appears at scales l . 70 as seen previously by PLK13. We also find an unusually low scatter

in the dipole component estimates as a function of scale, given the cosmic variance of an

unmodulated Gaussian random field, suggesting that the microwave temperature sky may

have additional correlations not captured by this simple model.

On the largest scales of the universe, simple models of inflation predict that the amplitude

of any dipole modulation due to random perturbations in a statistically isotropic universe

should be substantially smaller than that observed. This departure from statistical isotropy

may require new physics in the early Universe. One possible mechanism is a long-wavelength

mode of an additional field which couples to the field generating perturbations [26, 24, 25,

21, 60, 23, 85, 57, 64, 56, 62, 22, 14, 18, 50, 63, 46, 58, 19, 65, 68, 5, 29, 67]. If the mode has

a wavelength longer than the current Hubble length, an observer sees its effect as a gradient.

The field gradient modulates background physical quantities such as the effective inflaton
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potential or its slow-roll velocity. The required coupling between long and short wavelength

modes can be accomplished in the context of squeezed-state non-Gaussianity [68, 5, 29, 67].

This mechanism requires a non-trivial scale-dependent non-Gaussianity.

Apart from the hypothesis of new physics, foreground contamination and instrumental

systematics can break the statistical isotropy of the microwave background temperature

map. However, these possibilities can be tested with the available data. Our estimates of

the Cartesian components of the dipole vector, as functions of angular scale, are consistent

for different foreground-cleaned temperature maps. The masking adopted in this analysis

removes most contaminations from diffuse galactic emission and point sources, and our

analysis procedure controls possible biases introduced by this procedure. In addition, realistic

instrument simulations provided by the Planck Collaboration exclude instrumental effects as

the source of the observed isotropy breaking at the angular scales of interest. While this work

was in preparation, the Planck team made available the results of a similar analysis using

the 2015 temperature maps (PLK15) [71]. Our estimates of the amplitude and direction of

the dipole modulation vector on large scales (`max = 60) are consistent with PLK15 analysis

based on bipolar spherical harmonics. The PLK15 analysis does not provide a constraint

on the scale dependency, although it shows (as for the PLK13 analysis) that the amplitude

must decrease at higher multipoles. PLK15 shows that the amplitude of the dipole vector

differs from the isotropic case at a level of 2σ − 3σ when calculated in cumulative multipole

bins [2, `max] for `max up to 320. This result can be compared with our geometrical test, for

which similar results are found.

Additional tests of the dipole modulation will be possible with high-sensitivity polariza-

tion maps covering significant portions of the sky (see, e.g., [15, 49]). In the standard infla-

tionary cosmology, microwave polarization and temperature are expected to be only partially

correlated, giving an additional independent probe of a dipole modulation; a cosmic-variance

limited polarization map will likely double the statistical significance of the signal studied

here. Gravitational lensing of the microwave background over large sky regions provides

another nearly independent probe which will be realized in the near future. We will consider

these possibilities elsewhere. If these probes substantially increase the statistical significance

of the dipolar modulation signal, we will be forced into some significant modification to the
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inferred physics of the early Universe.
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Figure 3.2: Measured Cartesian components of the dipole vector from the SMICA Planck
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to enhance visibility of the signal at higher multipoles. The 1σ errors are the square roots

of the covariance matrix diagonal elements. Data at ` > 600 is not used in our statistical
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sults from CMB data, showing remarkable consistency between different foreground clean-

ing methods. (Left panel) The shaded bands are estimated using simulations of isotropic

masked skies. The distribution α-parameter is Gaussian with 〈α〉 = 0. (Right panel)

The shaded bands are estimated using simulations of dipole modulated masked skies. The

dipole modulation model is A = 0.07, (l, b) = (220◦,−20◦). The confidence regions (col-

ored band) are estimated using percentiles, such that ±1σ = [15.87th/σ(α), 84.13rd/σ(α)],

±2σ = [2.28th/σ(α), 97.72nd/σ(α)] and ±3σ = [0.13rd/σ(α), 99.87th/σ(α)].
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`max A n b[◦] l[◦] χ2
min(ν) χ2

A=0(ν)

60 0.063+0.028
−0.030 − −10+21

−21 +218+24
−24 10.3 (15) 19.5 (18)

200 0.034+0.014
−0.016 −0.54+0.38

−0.22 −7+16
−16 +211+19

−19 16.4 (29) 30.8 (33)

300 0.029+0.012
−0.014 −0.68+0.26

−0.19 −11+18
−16 +211+20

−20 18.1 (32) 31.4 (36)

400 0.027+0.012
−0.014 −0.74+0.22

−0.18 −9+19
−18 +212+22

−21 19.3 (35) 31.9 (39)

500 0.031+0.012
−0.013 −0.61+0.23

−0.15 −4+13
−13 +207+16

−16 22.5 (38) 40.2 (42)

600 0.031+0.011
−0.012 −0.64+0.19

−0.14 −1+13
−14 +209+16

−15 23.9 (41) 41.9 (45)

Table 3.1: Best-fit values of the amplitude A, spectral index n and direction angles (l, b)

for the dipole vector, as function of the maximum multipole `max. The best fit values are

corresponds to the 50th percentile of the posterior distribution marginalized over the other

parameters. The errors corresponds to the 16th and 84th percentiles. For the first case, we

consider a model with spectral index n = 0 and `max = 60, which can be compared with

PLK13 findings. Values of the χ2 corresponding to the best fit model, as well as to the

isotropic case, are also displayed with corresponding number of degrees of freedom ν.
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4.0 CONCLUSION

The success of the Standard Model of Cosmology is evident in its becoming of the dominant

paradigm of the current era of cosmology. The precise agreement between observation and

theory exceeds what cosmologists had wished for in pre-CMB era. Whether considering

WMAP/Planck data alone, or in combination with other cosmological data, overall the

Standard Model gives the most satisfying description. In this regard, hardly any other model

is more compelling. However, it should also be acknowledged that the Standard Model is

perhaps not the final story: There remain questions unanswered, predications unverified, and

limits to be pushed towards the unknowns, all of which are the factors that make anomalies

interesting. In the investigation of possible deviations from the Standard Model lies the clues

for new physics, and the efforts made toward this direction lead to the works in this thesis.

The cosmological constant problem is one of the outstanding problems of modern physics.

A possible venue to study dark energy is via the late-ISW effect, of which unfortunately the

small amplitude imposes observational challenges. Its strongest detection comes from the

aperture photometry on stacked CMB features at the locations of known superclusters and

supervoids seen in the Sloan Digital Sky Survey [35], which is claimed to be 3σ deviated from

the expectation value. Our analysis brings this tension down to 2.5σ by including the cor-

relations between the late-ISW signal and other sources of CMB temperature anisotropies,

which mildly increases the theoretical mean signal while also increasing the statistical un-

certainty. Subsequent studies carried out in Ref. [53] used a new catalogue from the CMASS

survey, and showed that ISW detections with the stacking protocol strongly depend on the

properties of the tracer population and the void finder. The analysis from Planck DR2 [76],

in which the Planck polarization data is used to explore further the origin of the stacking

signal, indicates a secondary nature of the stacking signal. At current stage, therefore, it
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remains an open question whether such anomaly is physical, coincidence, or post-hoc statis-

tics, though a failure in reproducing the same statically significance in the CMASS catalog

indicates a direction toward the latter two explanations.

The second anomaly discussed in this thesis—the hemispherical power asymmetry—has

a longer history of disputation. It is brought into sight ever since the first data release

of WMAP [28]. Despite WMAP team’s claim that after a posteriori choices are carefully

removed from the analysis, the anomalous dipole power asymmetry is not statistically sig-

nificant [8], it remains a topic being discussed. Our analysis concludes that the observed

dipole asymmetry is unlikely at 2σ − 3σ level as compared to an isotropic case, and our

estimates of the amplitude and direction of the dipole modulation vector on large scales

(`max = 60) are consistent with PLK15 analysis based on bipolar spherical harmonics. As a

step further, we quantify the scale dependency by fitting a simple power-law. Though such

choice is purely phenomenological, our approach can be adapted for examining the dipole

modulation of other cosmological fields such as CMB polarization and CMB lensing.

Looking into the future, upcoming optical surveys like Skymapper [48], DES [84], DESI [54],

and LSST [59] promise a substantial expansion in the census of voids and clusters suitable

for late-ISW peak analysis; microwave polarization and temperature are expected to be only

partially correlated in the standard inflationary cosmology, giving an additional independent

probe of a dipole modulation. Gravitational lensing of the microwave background over large

sky regions provides another nearly independent probe which will be realized in the near

future. With the increasing flow of data, many possibilities lay ahead on the quest for an

understanding of the physics of and beyond the Standard Model.
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[69] P. Pápai, I. Szapudi, and B. R. Granett. Integrated Sachs-Wolfe Imprint of Superstruc-
tures on Linear Scales. ApJ, 732:27, 2011.

[70] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, Y. Akrami, M. I. R. Alves,
M. Arnaud, F. Arroja, J. Aumont, C. Baccigalupi, et al. Planck 2015 results. I. Overview
of products and scientific results. ArXiv e-prints, February 2015.

[71] Planck Collaboration, P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud,
M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, et al. Planck 2015 results. XVI.
Isotropy and statistics of the CMB. ArXiv e-prints, June 2015.

[72] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. I. R. Alves, C. Armitage-Caplan,
M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, H. Aussel, et al. Planck 2013
results. I. Overview of products and scientific results. A&A, 571:A1, November 2014.

[73] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, et al.
Planck 2013 results. XII. Diffuse component separation. A&A, 571:A12, November
2014.

[74] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, et al.
Planck 2013 results. XVI. Cosmological parameters. A&A, 571:A16, November 2014.

[75] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, et al. Planck
2013 results. XXIII. Isotropy and statistics of the CMB. A&A, 571:A23, November 2014.

[76] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont,
C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, et al. Planck 2015 results.
XXI. The integrated Sachs-Wolfe effect. ArXiv e-prints, February 2015.

49



[77] Planck Collaboration, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown,
F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G.
Bartlett, et al. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si
muove. A&A, 571:A27, November 2014.

[78] Planck Collaboration, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Bacci-
galupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, and et al. Planck
2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. ArXiv
e-prints, July 2015.

[79] S. Prunet, J.-P. Uzan, F. Bernardeau, and T. Brunier. Constraints on mode couplings
and modulation of the CMB with WMAP data. Phys. Rev. D, 71(8):083508, 2005.

[80] M. Quartin and A. Notari. On the significance of power asymmetries in Planck CMB
data at all scales. J. Cosmology Astropart. Phys., 1:008, January 2015.

[81] P. K. Rath and P. Jain. Testing the dipole modulation model in CMBR. J. Cosmol.
Astropart. Phys., 12:14, 2013.

[82] R. K. Sachs and A. M. Wolfe. Perturbations of a Cosmological Model and Angular
Variations of the Microwave Background. ApJ, 147:73, January 1967.

[83] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R. Pearce, P. A.
Thomas, G. Efstathiou, and H. M. P. Couchman. Stable clustering, the halo model and
non-linear cosmological power spectra. MNRAS, 341:1311–1332, 2003.

[84] The Dark Energy Survey Collaboration. The Dark Energy Survey. ArXiv Astrophysics
e-prints, October 2005.

[85] L. Wang and A. Mazumdar. Small non-Gaussianity and dipole asymmetry in the cosmic
microwave background. Phys. Rev. D, 88(2):023512, 2013.

[86] W. A. Watson et al. The Jubilee ISW project - I. Simulated ISW and weak lensing
maps and initial power spectra results. MNRAS, 438:412–425, 2014.

50


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. CDM parameters
	2.1. Results from Gaussian random skies
	2.2. Mean temperature deviations of GNS08 catalog for four temperature maps
	3.1. Best-fit values of the amplitude A, spectral index n and direction angles (ł,b) for the dipole vector

	LIST OF FIGURES
	1.1. Temperature power spectrum from Planck
	2.1. Components of the temperature power spectrum
	2.2. Results of the mean value of the filtered CMB temperature at the locations of superstructures
	2.3. Histogram showing comparisons between different cases and previous works
	2.4. Histograms of pixel temperatures centered on GNS08 catalog of superstructures
	2.5. The filtered SMICA-Planck CMB temperature map
	3.1. Correlation matrices for the Cartesian components of the dipole vector
	3.2. Measured Cartesian components of the dipole vector from the SMICA Planck map
	3.3. Measured amplitude of the dipole vector from the SMICA Planck map
	3.4. The -parameter

	1.0 INTRODUCTION
	1.1 A STANDARD MODEL OF COSMOLOGY
	1.2 CMB POWER SPECTRUM
	1.3 THE INTEGRATED SACHS-WOLFE EFFECT
	1.4 THE HEMISPHERICAL POWER ASYMMETRY

	2.0 GAUSSIAN APPROXIMATION OF PEAK VALUES IN THE INTEGRATED SACHS-WOLFE EFFECT
	2.1 BACKGROUND
	2.2 CORRELATED COMPONENTS OF THE TEMPERATURE SKY
	2.3 METHODOLOGY AND ANALYSIS
	2.3.1 Harmonic-Space Filtering
	2.3.2 Simulation Pipeline

	2.4 RESULTS AND COMPARISON WITH PREVIOUS WORKS
	2.5 DISCUSSION

	3.0 MICROWAVE BACKGROUND CORRELATIONS FROM DIPOLE ANISOTROPY MODULATION
	3.1 BACKGROUND
	3.2 DIPOLE-MODULATION-INDUCED CORRELATIONS AND ESTIMATORS
	3.3 SIMULATIONS AND ANALYSIS PIPELINE
	3.3.1 Characterization of the Mask
	3.3.2 Simulated Skies
	3.3.3 Bias Estimates

	3.4 MICROWAVE SKY DATA
	3.5 RESULTS
	3.5.1 Geometrical Test
	3.5.2 Model Fitting

	3.6 DISCUSSION

	4.0 CONCLUSION
	BIBLIOGRAPHY

