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Amyotrophic lateral sclerosis (ALS) is the most common form of adult-onset motor neuron disease. 

Heterogeneity in clinical, genetic, and pathological features of ALS suggest the disease is a spectrum 

of disorders each resulting in motor neuron degeneration. Molecular profiling of ALS patients is, 

therefore, a useful means of characterizing and stratifying the ALS population. To this end, mass 

spectrometric proteomic profiling was performed on cerebrospinal fluid (CSF) from ALS, healthy 

control (HC), and other neurological disease (OND) subjects. This resulted in the identification of 

1,712 CSF proteins, 123 of which exhibited altered relative abundance in ALS CSF. Biological 

processes related to these 123 proteins included synaptic activity, extracellular matrix, and 

inflammation. The application of feature selection and machine learning methods to these CSF 

proteomic profiles resulted in a classifier that used relative levels of WDR63, APLP1, SPARCL1, 

and CADM3 to predict independent ALS, HC, and OND samples with 83% sensitivity and 100% 

specificity. To aid in the validation of selected CSF proteins, a Western blot loading control method 

was developed and validated using a reversible, iodine-based total protein stain. This method 

improves the accuracy and sensitivity of the relative quantification of CSF proteins via Western blot. 

As RNA binding protein (RBP) pathology/dysfunction is common to several forms of ALS, the 

largest CSF RBP alteration, that of RNA binding motif 45 (RBM45) protein, was validated 

externally. The results demonstrated that RBM45 pathology is common to several forms of ALS, 

frontotemporal lobar degeneration (FTLD), and Alzheimer’s disease. To further understand the 
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biological functions of RBM45, immunoprecipitation coupled to mass spectrometry was performed 

to identify RBM45 protein-protein interactions (PPIs). RBM45 PPIs and associated pathways were 

most strongly associated with hnRNP proteins, RNA processing, and cytoplasmic translation. 

RBM45 also participates in the general cellular response to stress via association with nuclear stress 

bodies. This association is dependent on RNA binding, is upregulated in ALS/FTLD, and is 

sufficient to induce the aggregation of the protein. Collectively, these results illustrate the utility of 

CSF proteomic profiling for characterizing mechanisms of neurological disease and provide new 

insights into the contributions of RNA binding protein dysregulation to ALS/FTLD.   
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1.0  INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is the most common form of adult-onset motor neuron disease. 

This progressive, fatal neurodegenerative disorder occurs in approximately 2 persons per 100,000
1-5

. 

Since the initial description of the symptoms and associated pathology in 1874, considerable insights 

into the genetic, molecular, and biochemical mechanisms of ALS have been gained. The 

pathological hallmark of ALS is the death of pyramidal motor neurons of the corticospinal pathway 

in the motor cortex and spinal column. This leads to a myriad of clinical symptoms, such as muscle 

weakness, muscle atrophy, and spasticity. Considerable variability in site of onset, rate of 

progression, and survival time occurs in ALS patients and underscores the overall heterogeneity of 

the disease. These observations have led to the hypothesis that ALS is actually a collection of 

disorders of distinct cause that produce similar pathological and clinical phenotypes. Nevertheless, 

molecular mechanisms of ALS tend to converge on the general themes of selective motor neuron 

vulnerability and non-cell autonomous influences. These themes have aided the development of 

molecular models that explain relevant clinical phenomena, such as spreading of motor dysfunction, 

age-related onset, and co-occurrence of cognitive dysfunction (e.g., dementia) in ALS.  

Broadly, ALS can be separated into two categories based on disease etiology. The vast 

majority of cases are classified as sporadic ALS (sALS) and are of unknown cause. Approximately 

5-10% of all ALS cases are a result of inherited genetic abnormalities and are thus classified as 

familial ALS (fALS). Although fALS cases are a small portion of the overall ALS population and 
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any single familial form of disease represents an even smaller fraction, considerable insight into 

disease mechanisms have been gained by studying these rare forms of ALS. As will be emphasized 

throughout this introduction, fALS cases and model systems based on these cases have proven 

highly valuable for the study of sALS, as well as fALS. These monogenic disease-causing variants 

provide a relatively straightforward approach to understanding how a triggering event (in this case a 

genetic abnormality) can produce a cascade of molecular events that ultimately lead to cell death. A 

thorough overview of the various mechanisms associated with ALS, combining evidence from the 

research on sALS (and, where appropriate, fALS) cases and model systems, thus provides a suitable 

framework for understanding current mechanistic models of ALS as well as areas where new 

advancements in our understanding of the disease may be made.  

1.1 PROTEIN AGGREGATION AND INTRACELLULAR INCLUSION BODIES 

The abnormal aggregation of proteins into inclusion bodies in motor neurons is a long-known 

pathological feature of sALS
6
 and fALS

7
. The early characterizations of inclusions defined their 

filamentous, skein-like morphology, along with their eosinophilic core (and, hence, proteinaceous 

composition)
6-8

. Subsequent work revealed a variety of characteristic inclusion types in in ALS 

motor neurons, including larger skein-like inclusions reactive for ubiquitin, smaller filamentous 

inclusions containing neurofilament proteins, dense spheroids with a Lewy-body like appearance 

(compact inclusions [CIs]), and Bunina bodies, small granular inclusions of lysosomal origin
8
. Since 

the identification of inclusions as a pathological hallmark of ALS, considerable effort has been 

devoted to determining the protein constituents and neurotoxic mechanisms.  
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1.1.1 SOD1 

The discovery that point mutations in the superoxide dismutase 1 (SOD1) gene can produce familial 

forms of ALS
9
 (approximately 20% of all fALS cases

10
) led to the identification of inclusions 

positive for the mutant, misfolded protein. Subsequent work has shown that SOD1 pathology can 

also occur in sALS cases
11,12

. SOD1 catalyzes the conversion of the superoxide anion into hydrogen 

peroxide and molecular oxygen via the cylical reduction and oxidation of copper
13,14

. Despite altered 

enzymatic activity in many fALS-linked SOD1 mutant proteins, existing evidence suggests that loss 

of SOD1 function does not contribute to SOD1-linked fALS. Notably, disease progression and 

severity are not correlated with mutant SOD1 enzymatic activity in human patients
15,16

 and mice 

lacking the SOD1 gene develop normally and do not develop motor deficits or SOD1 pathology
17

, in 

contrast to mutant SOD1 expressing mice that develop progressive motor abnormalities and SOD1 

aggregates
18,19

. fALS-linked mutant SOD1 aggregates into insoluble amyloid-like fibrils in vitro
20-22

, 

in transgenic mutant SOD1 expressing mice
19,23

 , and in human fALS patients
24,12

. The mutant SOD1 

aggregation appears to be driven by mutation-induced misfolding, which can result from the protein 

sequence itself, reduced capacity to bind metal ions, or both
12,21,22

.  

While human ALS patients and transgenic SOD1 mice develop insoluble, ubiquitinated 

SOD1 aggregates in motor neurons, current models implicate soluble, misfolded SOD1, as the toxic 

species, similar to models proposed other aggregating proteins, such as amyloid beta. Soluble, 

misfolded SOD1 can form oligomeric pore structures and exerts many deleterious effects within the 

cell
25,20

. The protein is capable of inducing ER stress, which overwhelms the cell’s capacity to 

provide normal clearance of cytoplasmic proteins and can ultimately lead to apoptotic cell death
26-28

. 

Mutant SOD1 also aberrantly accumulates in the mitochondrial intermembrane space, impairing 

normal mitochondrial function
27,29,30

. SOD1 localization to mitochondria promotes the association of 
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mutant SOD1 with BCL2
28

, which is capable of inducing apoptosis in cell culture models. Where the 

mutation reduces metal ion binding, mutant SOD1 also promotes calcium dyshomeostasis, leading to 

enhanced susceptibility to cellular stress
31

. More recent work suggests that cells also secrete 

misfolded SOD1, which can then seed the aggregation SOD1 (mutant or WT native) in adjacent cells 

via a prion-like process
32,11

, providing a possible mechanism for disease spreading.  

1.1.2 TDP-43 

Subsequent work demonstrated that many ubiquitinated, skein-like inclusions in sALS motor 

neurons were non-reactive to SOD1 antibodies. The identity of the constituent protein(s) of these 

inclusions remained elusive until 2006, when TDP-43 was identified as the main component
33

. 

Subsequent studies identified mutations in the TARDBP gene that could lead to familial forms of 

either disorder
34-37

, each with extensive TDP-43 inclusion pathology. These discoveries led to the 

creation of the umbrella term “TDP-43 proteinopathy”
38

 for forms of ALS, frontotemporal lobar 

degeneration (FTLD), and other disorders that exhibit characteristic TDP-43 inclusion pathology. 

Though phenotypically dissimilar, these disorders show a number of common TDP-43 

modifications, the most prevalent of which is the incorporation of the protein into insoluble, 

ubiquitinated filamentous inclusions in neurons
38-41

. The protein is also frequently depleted from the 

cell nucleus, hyperphosphorylated, and cleaved into C-terminal fragments, though this latter 

phenomenon occurs in a CNS region-specific pattern
38-41

.  

The TDP-43 protein is a 43 kDa RNA binding protein that features two RNA recognition 

motifs (RRMs), a nuclear localization sequence (NLS), a nuclear export signal, a glycine-rich C-

terminal domain, and a prion-like domain, the latter two of which are aggregation-prone and the 

location of the majority of ALS/FTLD-causing TARDBP mutations
42,43

. TDP-43 has many roles in 
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the regulation of gene expression. These include regulating transcription, RNA splicing, microRNA 

biogenesis, and mRNA transport and degradation
42,43

. The importance of this regulatory capacity is 

underscored by the observation that TARDBP null mice are embryonic lethal
44,45

. TDP-43 also 

undergoes transient nucleo-cytoplasmic transport in response to cellular stress
46,47

. The resultant 

association of the protein with cytoplasmic stress granules (SGs), stress-induced protein-RNA 

complexes containing stalled translational components, has emerged as a plausible mechanism for 

TDP-43 aggregate formation
48

. Association of RNA binding proteins, such as TDP-43, into stress 

granules results in their assembly into insoluble complexes that disassemble following the removal 

of the stressor. Chronic activation of stress-associated pathways, however, could result in irreversible 

aggregation of TDP-43. Evidence in support of this notion comes from the observation that SG 

proteins are frequently found in TDP-43 inclusions in ALS/FTLD patient tissue and that chronic 

stress produces TDP-43 aggregates in cell culture models
47-49

. Moreover, the TDP-43 protein (and, 

more specifically the C-terminal domain) of the protein are intrinsically aggregation prone
50

.  

Unlike SOD1, TDP-43 toxicity is mediated by both loss-of-function and toxic gain-of-

function mechanisms
40,42

. Loss of the normal gene expression regulatory functions of TDP-43 may 

occur through hypofunction induced by mutation or post-translational modification (e.g., 

phosphorylation or C-terminal cleavage). Similarly, trapping of the protein in cytoplasmic 

aggregates is expected to contribute to loss of function by depleting the protein from the nucleus and 

impairing both normal nuclear and cytoplasmic TDP-43 functions. The importance of maintaining 

homeostatic TDP-43 levels to cell viability is highlighted by studies demonstrating TDP-43’s ability 

to self-regulate its expression in cells via an auto-regulatory feedback loop
51

 and the observation of 

neuronal and behavioral abnormalities in a variety of model systems over- or under-expressing TDP-

43 (WT or mutant), including mice
44,52,53

, drosophila
54-56

, and zebrafish
57,58,

. 
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In addition, misfolded, aberrantly modified TDP-43 displays toxic properties unrelated to its 

normal functions and these toxic properties are chiefly related to the cytoplasmic accumulation and 

processing of the protein. Increased cytoplasmic accumulation is an early event in human TDP-43 

proteinopathies and is thought to precede inclusion formation
59

. When recapitulated in cell culture 

and animal models, the phenomenon induces TDP-43 aggregation/misfolding, proteasomal and 

autophagic activation, and is toxic to cultured neurons
60-62

. Cellular stress together with aberrant 

cytoplasmic localization of TDP-43 promotes cleavage of the protein into C-terminal fragments by 

the activation of caspases
63

. Such fragments are hyperphosphorylated and are toxic to cultured 

cells
64

. A unique property of C-terminal fragments is their confinement to the cytoplasm as a 

consequence of the location of the NLS in the protein’s N-terminus. The generation of CTF’s is 

enhanced by proteasomal inhibition or cell stress
63

, though the precise function(s) of the fragments 

remains elusive. Likewise, the effects of TDP-43 phosphorylation and ubiquitination are not entirely 

clear, though these modifications are strongly associated with misfolded, insoluble forms of the 

protein
65

. Misfolded, cytoplasmic TDP-43 also appears capable of seeding further misfolding of 

endogenous TDP-43 in a prion-like manner as is observed for SOD1
66

. 

1.1.3 FUS 

FUS/TLS is a related RNA binding protein also mutated in rare instances of fALS (approximately 3-

5% of all fALS cases) and found in skein-like inclusions in fALS and sALS motor neurons
67-70

. 

Structurally, the protein contains an RNA recognition motif, a nuclear localization sequence, a 

nuclear export sequence, two arginine/glycine-rich regions, a zinc finger domain, a prion-like 

domain, and a glycine-rich domain. These latter two features confer a propensity for aggregation to 

the protein
71

. Like TDP-43, it has numerous roles in the regulation of gene expression, however, the 



 7 

specific functions defined for FUS distinguish it from TDP-43
67,70

. FUS binding to DNA regulates 

transcription and the protein is recruited to sites of DNA damage, where it contributes to break 

repair
67

. FUS also regulates transcription by direct binding to DNA. With regard to RNA, FUS binds 

long intronic regions of pre-mRNAs
72

 and thus contributes to splicing and the protein also regulates 

the subcellular localization of RNA molecules
67

. FUS, like TDP-43, is capable of nucleocytoplasmic 

shuttling by virtue of its structure and, when localized to the cytoplasm, associates with SGs
73

. As it 

does for TDP-43, this association provides a plausible mechanism for FUS inclusion formation. 

Both loss of function and toxic gain of function mechanisms are thought to contribute to 

FUS-mediated neurodegeneration
67

. The trapping of FUS in inclusions is expected to impair the 

normal functions of FUS and neurons appear particularly sensitive to mutations that alter FUS levels 

or confine the protein to the cytoplasm. Like TDP-43, several ALS-causing FUS mutations are found 

in the glycine rich region of the protein, while, in contrast to TDP-43, numerous additional disease 

causing mutations have been found in the NLS
67,70

. This underscores the vital role of intranuclear 

FUS functions to cell viability and the toxic properties of excessive cytoplasmic FUS. Cytoplasmic-

confined FUS forms inclusions and these are positive for ubiquitin and p62
49,74-76

. Intriguingly, these 

same inclusions are negative for TDP-43, implying separate mechanisms of inclusion formation, 

despite the association of both proteins with SGs. FUS inclusions are non-amyloid, though the 

protein can form fibrils in vitro
71

. Insoluble FUS can be found in human ALS tissue and FUS 

inclusions are frequently ubiquitinated
76

. More recent evidence suggests that FUS may also form 

intranuclear inclusions
77

. Collectively, these processes suggest that mis-localization of FUS, 

misfolding, and aggregation of the protein contribute to its neurotoxic effects in both FUS-linked 

fALS and sALS.  
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1.1.4 Neurofilament Proteins and Peripherin 

The pathological aggregation of cytoskeletal intermediate filament proteins into inclusions in ALS 

motor neurons provides evidence of cell-structural mechanisms of ALS neurodegeneration. 

Spheroidal axonal aggregates, Lewy body-like inclusions, and hyaline conglomerate inclusions are 

frequently positive for peripherin and the neurofilament proteins in fALS and sALS cases
78-80

. These 

proteins are critical components of the neuronal cytoskeleton. Peripherin forms cytoskeleton-

associated homopolymers that can also interact with other cytoskeletal proteins
81

. The expression of 

peripherin is neuron-specific, particularly in neurons extending to the peripheral nervous system, 

including spinal motor neurons. The neurofilaments comprise three subunit types: neurofilament 

light, neurofilament medium, and neurofilament heavy
78,82

. Protein function requires polymerization 

of the three subunit types and the light filament is essential for this process
83

. They are largely 

localized to the axon where they provide structural strength and regulate axonal diameter. The 

neurofilament cytoskeletal assembly is highly dynamic and the rate of transport of neurofilament 

proteins is inversely related to their phosphorylation state
83

. The abnormal accumulation and 

aggregation of these intermediate filament proteins occur in both the cell body and the axon of ALS 

motor neurons
78

. In the case of neurofilaments, the aggregated proteins are generally 

hyperphosphorylated, and hence, immobile. The accumulation and aggregation of these proteins lead 

to deficits in axonal transport and cytoskeletal abnormalities that appear to be early indicators of 

disease in ALS patients and SOD1 transgenic mice
84,85

. Genetic evidence for these mechanisms 

comes from the identification of rare mutations in the peripherin gene in ALS cases
86,87

, ALS 

patients with mutations in the neurofilament heavy gene
88,89

, and the observation that peripherin 

overexpressing mice develop intermediate filament protein inclusions and progressive motor neuron 

loss
90

.  
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1.1.5 Bunina Bodies 

A related form of protein aggregate unique to ALS is the Bunina body. These structures are small (3-

5 µm), intraneuronal, globular inclusions
91

. They are found in motor neurons and are specific for 

ALS, occurring in approximately 90% of sALS cases
92

. The protein composition of Bunina bodies is 

unique in that they are typically not immunoreactive for ubiquitin, p62, TDP-43, FUS, or other ALS 

inclusion-associated proteins. Instead, the cysteine protease inhibitor cystatin C and the iron binding 

protein transferrin are the canonical marker proteins of these aggregates
93,94

. In addition to their 

protein composition, a further distinguishing feature of Bunina bodies is a homogeneous, electron-

dense core surrounded by vesicular and tubular materials
91

. This has led to the suggestion that 

Bunina bodies are of ER or lysosomal origin. The presence of cystatin C in neuronal lysosomes 

lends support to a theory of lysosomal origin and suggests a neuroprotective role for Bunina 

bodies/cystatin C related to protein quality control
91

.   

1.1.6 Other Aggregating Proteins 

In recent years, mutations in a number of genes have been found fALS cohorts. These include 

mutations in the TARDBP, FUS, UBQLN2, OPTN, SQSTM1, VCP, HNRNPA1, and PFN1 genes
8
. 

Despite diverse functions of each protein, aggregates of the mutant form are consistently found in 

fALS cases. Moreover, recent work has shown that non-ATG translation of the fALS-associated 

C9ORF72 repeat expansion leads to the expression of dipeptide repeat proteins that are aggregated 

in fALS tissue and model systems. These findings underscore the preponderant role of protein 

aggregation in motor neuron degeneration, especially when considered together with the observation 

that similar aggregates of these proteins are frequently found in sALS cases
8
. Moreover, some fALS 
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genes encode proteins associated with the ubiquitin proteasome system, demonstrating the 

indispensable role of protein quality control and degradation in maintaining neuronal viability. While 

the protein composition of aggregates in sALS and fALS varies considerably, proteasomal stress and 

impairment of normal cellular trafficking of biomolecules are expected to occur widely in the 

various forms the disorder takes and, thus, these processes represent promising therapeutic targets 

for future drug development and clinical trials. A schematic of the contributions of intracellular 

protein aggregation to motor neuron degeneration is shown in Figure 1.1. 

1.2 INTRACELLULAR STRESS 

Intracellular stress occurring in motor neurons is widely recognized as a cause of ALS pathology and 

motor neuron death. Studies in human ALS tissues and model systems have documented the 

occurrence of multiple forms of intracellular stress occurring within motor neurons and the ways 

these stressors may contribute to cell death. Though it is likely that multiple cellular stresses 

contribute to cell death in concert, understanding the effects of a single cellular stressor is valuable in 

defining the time course of events that lead to cell death and in identifying potential therapeutic 

targets. This has proven especially true for fALS-linked mutations in stress-response genes, as 

documented below.  

1.2.1 Stress Granules 

Cytoplasmic stress granules (SGs) are protein-RNA complexes that form in response to a variety of 

cellular stressors. The onset of cellular stress causes a rapid cessation of mRNA translation. The 
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stalled translational complex rapidly disassembles and the components coalesce into SGs. The 

purpose of SGs appears to be two-fold: (1) To prioritize translation of mRNAs that favor the cellular 

response to stress and (2) remove other mRNAs and RNA binding proteins from the harmful cellular 

environment and stop their translation
95,96

. Evidence for the former purpose comes from studies 

showing selective increases in translation of stress-related mRNAs and selective decreases in 

translation of unrelated mRNAs
96,97

. Evidence for the latter comes from studies showing that certain 

housekeeping gene transcripts are reliably recruited to stress granules following the onset of a 

variety of stressors
98

. SGs are dynamic, transient structures that dissipate following the removal of 

the stressor and a constant turnover of protein and mRNA occurs during the life of the SG. Multiple 

lines of evidence now suggest SG formation and duration are vital determinants of cell fate decisions 

following stressor onset or in disease
95,96,99,100

.  

The notion that this adaptive response has a role in ALS pathogenesis has roots in two 

discoveries, (1) the finding that TDP-43 is a primary component of ubiquitinated inclusions in 

ALS/FTLD patients
33

 and (2) the finding that TDP-43 translocates from the nucleus and associates 

with SGs during conditions of cellular stress
47

. Subsequent identification of FUS as a component of 

inclusions
76

, mutations in its gene in fALS
68

, and its association with stress granules
74

 furthered the 

notion that stress granules represent potential sites of inclusion formation. Analysis of the domain 

structure of TDP-43 and FUS (and other SG-associated proteins) provided evidence of the structural 

elements mediating the association of these proteins with SGs, as well as the mechanisms by which 

these proteins may be irreversibly converted from a transient SG assembly into insoluble aggregates. 

TDP-43 incorporation into SGs requires RRM1 and the glycine-rich C-terminal component of the 

protein
49

. For FUS, the protein’s zinc finger RNA binding domain is required and the degree of 

association is mediated by the protein’s RRM and glycine-rich domain
49

. The necessity of intact 
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RNA binding for incorporation of both proteins suggests that their association with SGs is part of the 

normal cellular response to stress and that loss of this function adversely affects motor neuron 

viability. 

 Further domain analysis of both TDP-43 and FUS identified prion-like domains that are 

essential for their aggregation
46,49,71,101

. Prion-like domains are sequence elements within proteins 

with sequence similarity to the domains of yeast prion proteins (e.g., Sup35) necessary for self-

templating of fold conversion and subsequent aggregation. The general sequence composition of 

such domains is rich in asparagine, glutamine, tyrosine, and glycine residues and they are typically 

60 amino acids or more in length
102

. These regions tend to be unstructured and capable of taking on a 

variety of conformations
95

. Namely, prion domains can self-associate, forming soluble oligomers, 

soluble aggregates, amyloidogenic oligomers,  and amyloid fibrils
95

. In some of these conformations, 

the proteins access a hydrogel-like state that may serve as intermediary between soluble monomers 

and insoluble aggregates. Though the aggregation of proteins into fibrils can serve beneficial 

functions in yeast in certain environments, the persistent association of TDP-43, FUS, and other 

RNA binding proteins in SGs in ALS is thought to result in the generation of toxic oligomers and 

fibrils and the loss of DNA/RNA binding functions by misfolding and removal of these proteins 

from their normal cellular milieu. Moreover, emerging evidence suggests that a host of RNA binding 

proteins may participate in this process. Analysis of prion-like domain harboring proteins in the 

human proteome shows a striking enrichment for DNA/RNA binding proteins, with as many as 20% 

of proteins with prion-like domains having RNA binding function
102

. The identification of mutations 

in the genes encoding these proteins (e.g., HNRNPA1
103

, TAF15
104

) in fALS cases and the 

association of these proteins with SGs provides additional evidence in support of this concept. Thus, 

the combination of persistent RNA binding protein association with SGs and aggregation-prone 
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prion-like domain structures in these proteins likely contributes to ALS pathogenesis by both toxic 

loss of normal function and toxic gain of function.  

1.2.2 Autophagy and Proteasomal Stress 

Autophagy is a degradative pathway by which intracellular materials, including proteins and 

organelles, are enveloped and degraded via fusion with lysosomes. The function of autophagy and 

the observation of numerous types of proteinaceous inclusions in ALS motivated investigations of 

the role of autophagy in the disease process. Such studies consistently find defects in autophagy, and 

protein clearance more generally, in human ALS and ALS model systems. These findings are in 

keeping with views of autophagy as a crucial component of the cellular response to stress
105

 and 

views of ALS as a disease of numerous cellular stressors
106

. The autophagic process proceeds via a 

series of well-defined and evolutionarily conserved steps. The process begins with the generation of 

a phagophore, a double membrane structure that can emerge from ER, Golgi, mitochondria, or 

plasma membrane, depending on the cytoplasmic component to be degraded
107,105

. The phagophore 

encapsulates the components to be degraded and these components collectively define the 

autophagosome. Subsequent fusion of the autophagosome with a lysosome produces an 

autolysosome that degrades the components of the autophagosome, releasing them into the cytosol, 

where they may be used for the metabolic or protein synthetic needs of the cell
105

. Numerous 

signaling molecules mediate various steps in autophagy and among the more well-characterized are 

phosphatidylinositol 3-kinase signaling during autophagosome formation and p62/SQSTM1 tagging 

of proteins/structures targeted for degradation
108,109

. Induction of autophagy results from numerous 

forms of cellular stress. A lack of intracellular nutrient or amino acid availability are signaled to the 

cell via mTOR signaling, which results in autophagic protein degradation. Autophagy is also crucial 
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for the clearance of misfolded or aggregated proteins and is activated by the unfolded protein 

response (UPR). The protein targets of autophagy appear to be relatively long-lived proteins, which 

includes RNA binding proteins, in contrast with the ubiquitin/proteasome system, which is relatively 

specific for short-lived proteins
110

. 

Autophagic clearance of proteins and organelles is particularly important for neuronal 

homeostasis and survival, as neurons have considerable metabolic needs and are acutely sensitive to 

the presence of misfolded or aggregated proteins. Consistent with this, mice lacking the Atg7 gene, 

which is essential for autophagy, show progressive neurodegeneration and motor deficits
111

. Human 

ALS patients show accumulation of p62-positive inclusions in motor neurons and glia
8
, suggesting 

insufficient clearance of misfolded and aggregated proteins is a contributing factor to the disease 

process. The identification of mutations in genes encoding autophagy-associated proteins as 

causative factors in subsets of the fALS population have shown that motor neurons are acutely 

sensitive to defects in autophagy. Mutations in OPTN, the gene encoding optineurin, a membrane 

trafficking protein and autophagy receptor for damaged mitochondria
112

, cause rare forms of 

fALS
113

. OPTN-linked fALS cases harbor optineurin-positive inclusions, which also contain TDP-

43, p62, and ubiquitin. Optineurin-positive inclusions are relatively rare in sALS cases
114

 and fALS-

linked OPTN mutations affect the protein’s autophagic functions
113

, suggesting that loss of 

autophagic function is the primary contributing factor to motor neuron degeneration in OPTN-linked 

fALS and sALS. Mutations in the VCP gene, which encodes valosin-containing protein, are likewise 

found in subsets of fALS patients
115

. Initial estimates indicated that such mutations account for 1-2% 

of fALS cases, suggesting that VCP mutations are a relatively rare event. Nevertheless, the finding 

adds important insights into role of autophagy in both fALS and sALS, as the VCP protein is 

essential for autophagy and loss of VCP function (either via expression of a non-functional mutant 
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protein or gene silencing) leads to the accumulation of unfused autophagosomes and 

neurodegeneration
116,117

. Intriguingly, OPTN and VCP mutation-induced loss of autophagic function 

also leads to the accumulation of cytoplasmic, aggregated TDP-43, suggesting that autophagic 

hypofunction is sufficient to promote TDP-43 nuclear translocation, aggregation, and ultimately, cell 

death. Notably then, sALS and fALS are united by the common motor neuron susceptibility factor of 

impaired or overwhelmed autophagic function and TDP-43 aggregation (Figure 1.1). Loss of 

autophagic function is further supported as the primary pathogenic mechanism of VCP mutations by 

the consistent finding that mutant forms of VCP do not incorporate into inclusion bodies in human 

ALS patients or model systems
117,118

.  fALS-causing mutations in the genes for the autophagy 

receptor protein p62
119

 (SQSTM1), the UPS and autophagy-associated protein ubiquilin 1
120

 

(UBQLN1), and the endosomal trafficking component charged multivesicular protein 2B
121

 

(CHMP2B) and the recent description of the C9ORF72-encoded protein as a regulator of endosomal 

sorting
122

 provide further evidence that impaired protein/organelle clearance and vesicular 

trafficking can contribute to motor neuron death in ALS patients and model systems.  

ALS-associated proteins influence the balance of autophagy in motor neurons. Transgenic 

mice expressing mutant SOD1 show elevated autophagy
123

. Mutant SOD1 is, however, cleared from 

motor neurons via autophagy at a lower rate than in muscle cells
124

. This reduced clearance rate is 

sufficient to induce SOD1 aggregation and cause impaired proteasomal function not seen in muscle 

cells, providing further evidence of autophagic function as a susceptibility factor for motor neuron 

degeneration
124

. Transgenic mice induced to overexpress C-terminal fragments of TDP-43 (TDP-25) 

show reduced levels of several autophagy markers and cytoplasmic accumulation of TDP-25 

(expected, due to the loss of the protein’s NLS), suggesting that TDP-25 overexpression either 

overwhelms neuronal autophagic capabilities, results in reduced expression of autophagic markers, 
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or both
125

. Consistent with this, activation of autophagy via rapamycin reduces TDP-43 aggregation 

and ameliorates motor deficits in transgenic mice expressing TDP-43
126

 and drosophila 

overexpressing the TDP-43 ortholog dTDP
127

. These results suggest that autophagy activation is a 

potential ALS therapeutic target. The results of rapamycin administration to SOD1-G93A mice, 

which accelerated motor neuron degeneration, suggest that some caution is necessary, however, in 

targeting autophagy therapeutically
128

. These studies collectively support the idea that autophagic 

balance, the relative rates of phagophore, autophagosome, and autolysosome formation and 

degradation are a key determinant of motor neuron health and survival in ALS model systems. This 

concept is supported by ultrastructural studies of human ALS spinal cord tissue, which show 

prominent deposition of autophagosomes and autolysosomes, particularly in degenerating motor 

neurons and around inclusion bodes
129

. Impaired autophagic balance, either by accumulation of 

misfolded proteins (such as TDP-43 or SOD1) or mutations in key autophagic proteins (as occurs in 

VCP/OPTN/UBQLN1/SQSTM1-linked fALS), are thus likely to make cells (and in particular motor 

neurons) susceptible to degeneration (Figure 1.1).  

1.2.3 ER Stress 

The endoplasmic reticulum (ER) is an integral component in the synthesis, folding, modification, 

and transport of proteins. The rough ER contains bound ribosomes translating mRNAs into proteins 

that are then brought into the luminal cisternae of the ER for further folding, processing, and 

modification. A large proportion of a cell’s protein synthesis occurs at the level of the ER and ER-

synthesized proteins are destined for one of three possible fates: (1) secretion via the secretory 

pathway, (2) membrane integration, or (3) luminal association with membrane-bound intracellular 

organelles, including ER, Golgi, lysosomes, etc….
130

 Perturbation of normal ER function and, 
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particularly, the accumulation of un- or mis-folded proteins causes ER stress. ER stress signals that 

the normal capacity of the ER to modify and fold proteins has been saturated, which triggers the 

evolutionarily conserved reaction termed the unfolded protein response (UPR). Key components of 

the UPR include a general decrease in the rate of protein synthesis, an increase in the expression of 

ER-associated chaperone proteins, increased expression of folding-associated enzymes (chiefly, 

glycosylases and disulfide isomerases), and activation of the endoplasmic reticulum-associated 

(ERAD) protein degradation pathway and ER-induced autophagy
131,132

.  ERAD initiates 

retrotranslocation of the misfolded protein into the cytoplasm for polyubiquitin tagging and 

proteasomal degradation.  

ER function and stress are monitored by three ER membrane proteins with signaling 

functions: IRE1, PERK, and ATF6. The function of the latter two proteins is regulated by the ER 

chaperone BiP, which is normally bound to the luminal domains of PERK and ATF6
131,132

. The 

accumulation of misfolded proteins releases BiP and allows cytosolic translocation of active PERK 

and ATF6. PERK inhibits translation (reducing the folding load on the ER) by phosphorylating its 

target, eIF2α. ATF6 is proteolytically processed to a transcriptional activating form and translocates 

to the nucleus where it increases the transcription of ER folding-associated genes. IRE1 is activated 

by the direct binding of misfolded proteins and also undergoes cytosolic translocation
131,132

. Once in 

the cytosol, its now active RNAse domain leads to removal of an intron in the XBP1 transcript, 

leading to production of the associated protein, which is a transcriptional activator of ER fold-

associated genes. The ER is also a major reservoir for intracellular Ca
2+

 and contains numerous 

calcium channels and sensors. Ca
2+ 

signaling regulates a number of cellular processes related to the 

stress response and many folding enzymes in the ER lumen are Ca
2+

-dependent. When the UPR and 

ERAD are insufficient to restore ER homeostasis, the above ER proteins and Ca
2+ 

signaling can lead 
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to the induction of apoptosis
132,133

. Ca
2+ 

signaling leads to mitochondrial Ca
2+ 

overload. IRE1, 

PERK, and ATF6 are each capable of activating pro-apoptotic genes
132,134

. 

Accumulating evidence suggests that impaired UPR and excessive ER stress are contributing 

factors to motor neuron vulnerability in ALS and ALS model systems (Figure 1.1). ER abnormalities 

are common in sporadic ALS motor neurons, with irregularities in ER structure, chromatolysis of ER 

membrane, and ribosomal detachment from ER membrane evident
135

. Spinal cord motor neurons of 

sALS patients show several signs of ER stress, including enhanced PERK-induced eIF2α 

phosphorylation and increased expression of ER chaperone proteins, as well as oxidative damage to 

proteins
136

. These changes occur in sporadic ALS patients and are confined to motor neurons, 

suggesting that (1) ER stress is a general phenomenon in ALS and (2) that these changes are specific 

to motor neurons, implicating ER function as a susceptibility factor in motor neuron degeneration. 

Evidence for the former notion comes from studies showing that misfolded TDP-43 and FUS induce 

ER stress and associate with ER chaperone proteins following nucleocytoplasmic translocation
137,138

. 

In evidence of the latter notion, a P56S mutation in VAPB, a gene encoding a vesicular membrane 

trafficking protein that associates with the ER, causes a rare form of fALS in a Brazilian family
139

. 

The mutant protein forms inclusions in ER and cytosol
140

 and is, unlike the wild type protein, 

incapable of activating IRE1 splicing of XBP1 mRNA
141

, suggesting gain and loss of function 

mechanisms of toxicity both related to ER stress. Expression of the disease-associated protein also 

perturbs proteasomal function
142

 , alters ER calcium homeostasis
143

, and strongly inhibits ATF6 

activity
144

, suggesting that a global dysregulation of ER and UPR contributes to neurotoxicity in 

VAPB-linked fALS. Further evidence that ER homeostasis and UPR are component of selective 

motor neuron vulnerability comes from longitudinal studies of vulnerable and resistant motor 

neurons in SOD1 transgenic mice. Vulnerable motor neurons were consistently more susceptible to 
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the onset of ER stress and showed upregulation of UPR markers compared to resistant motor 

neurons, despite comparable accumulation of ubiquitnated cytosolic proteins
145

.  

Efforts to understand the mechanisms promoting ER stress and UPR in ALS model systems 

and mechanisms of toxicity of fALS-linked mutant proteins have largely focused on mutant SOD1. 

Though SOD1 is a primarily cytosolic protein, secretion of and expression of surface receptors for 

the secreted protein have been demonstrated
146

. These findings suggest a physiological role for the 

association of SOD1 with ER and a potential mechanism of disease spreading by secretion of prion-

like misfolded SOD1
147

. Motor neurons seem particularly susceptible to SOD1-induced ER 

dysfunction, as NSC-34 motor neuron-like cells, but not neuronal PC12 or fibroblast COS-7 cells, 

express protein disulfide isomerase (PDI; a UPR-associated folding enzyme) in response to mutant 

SOD1 overexpression
148

. Mutant SOD1 is also secreted less efficiently than the wild-type protein 

and forms inclusions that are toxic to NSC-34, but not COS-7, cells
149

. Secretion of mutant SOD1 

also activates microglia, resulting in non-cell autonomous neurotoxicity in motor neuron/microglial 

co-cultures
150

.     

These findings can be recapitulated in transgenic animal models of ALS. Transgenic mutant 

SOD1-expressing rats display upregulated UPR markers in spinal cord motor neurons, along with 

co-localization of PDI in SOD1 inclusions. Transgenic mice expressing mutant SOD1 likewise show 

elevated PDI expression and inhibition of PDI activity results in a greater motor neuron SOD1 

inclusion burden
148

. Further evidence for the role of ER stress and UPR activation comes from the 

finding that symptomatic SOD1-G93A mice have concomitant elevations in the expression of UPR 

(PERK, IRE1, and ATF6) and apoptosis markers (CHOP expression and caspase cleavage) in motor 

neurons
148

. Cytoplasmic SOD inclusions in these mice are also positive for ER-resident chaperone 

proteins, suggesting that misfolded SOD1 accumulates in the ER, activates the UPR, and may 
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ultimately overwhelm its capacity, resulting in apoptotic cell death
151

. To test this idea, transgenic 

SOD1 mice lacking the XBP-1 gene (whose activation is a component of the UPR) were generated. 

Counterintuitively, mice lacking XBP-1 showed reduced cytoplasmic deposition of SOD1 

aggregates and enhanced resistance to disease onset that was linked to clearance of SOD1 by 

elevations in macroautophagy
152

. This, together with evidence that the ER stress-reducing drug 

salubrinal, preserves neuromuscular function and increases survival in SOD1 transgenic mice argues 

that the role of ER stress and UPR in disease is complex. Maintenance of ER homeostasis is 

dependent on multiple sensor molecules and signaling pathways and the relative balance of these, 

together with other processes like proteasomal and autophagic protein degradation, likely determines 

whether UPR activation is beneficial or harmful to motor neurons in ALS. A schematic of the 

contributions of intracellular stressors to motor neuron degeneration is shown in Figure 1.1.  
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Figure 1.1 Protein aggregation and intracellular stress in ALS. A schematic of protein/RNA 

homeostasis in the normal and ALS disease conditions are shown. Aggregation of RNA binding 

proteins in ALS impairs the normal gene expression regulatory effects of these proteins while 

also impairing protein clearance/degradation pathways. Motor neurons are acutely vulnerable to 

defective/overwhelmed protein clearance as shown by fALS-linked mutations in the indicated 

proteins/genes associated with ER protein folding, processing, and sorting, as well as mutations 

in autophagy and proteasomal proteins.  

1.2.4 Evidence for RNA Binding Protein in the Disease Process 

Since the initial discovery of the TAR DNA-binding protein (TDP-43) as a major component of 

neuronal cytoplasmic inclusions in ALS 
153

 and subsequent identification of  genetic alterations in 

the TARDBP gene that cause familial forms of ALS and frontotemporal dementia (FTD)
154

, the 

number of RNA/DNA binding proteins associated with ALS has continued to grow. TDP-43 positive 

neuronal inclusions are a pathologic hallmark of both ALS and FTLD.  Mutations in TARDBP 

account for approximately 4% of familial cases and a small number of apparently sporadic ALS 

cases
155

.   

Shortly after the discovery of TARDBP mutations that cause ALS, missense mutations in the 

fused-in-sarcoma (FUS) gene were identified as the cause of chromosome 16p linked familial 

ALS
156,157

. Mutations in FUS also account for ~4% of familial ALS cases. The observed protein 

domain homology between TDP-43 and FUS, with both proteins containing multiple RNA binding 

motifs, suggested that RNA metabolism may play an important role in ALS.  Other key structural 

elements include the presence of glycine-rich domains and prion-like domains that contribute to their 

pathological aggregation and impaired function in ALS. This latter element was used to predict other 
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RNA binding proteins associated with ALS.  This led to the discovery of disease causing mutations 

in TAF15, hnRNPA1, and hnRNPA2B1 in rare fALS kindreds
158,159

.  Key functional properties 

linking these RNA binding proteins include association with stress granules and nucleocytoplasmic 

translocation during cellular stress.  

Genetic studies have identified other RNA binding proteins linked to familial or sporadic 

forms of ALS. These include disease causing mutations in SETX, ANG, and ELP3
160-162

, repeat 

expansion of ATXN2 associated with increased risk of ALS
163

, and others such as RBM45 that are 

linked to ALS due to pathologic inclusions of the protein that occur in patients
164

. 

1.2.5 Altered RNA Splicing, Transport, and Translation   

While most of the genetic alterations of RNA binding proteins impact their subcellular distribution 

and accumulation into stress granules and/or pathologic inclusions (see below), we will focus here 

on specific effects of disease causing mutations in TDP-43 and FUS on RNA metabolism (Figure 

1.2). RNA binding proteins have diverse roles in the cell and function within many nuclear sub-

structures and the cytoplasm. At present, the vast majority of evidence for impaired RNA processing 

in ALS has come from studies of TDP-43 and FUS. However many other RNA binding proteins 

linked to ALS interact with TDP-43 and/or FUS, and therefore likely impact RNA metabolism. 

Since both TDP-43 and FUS bind RNA/DNA (Figure 1.2), determining the specific binding 

sequences and effects on gene expression were crucial to understand how these proteins contribute to 

cell death in ALS. Using CLIP-SEQ, TDP-43 was shown to bind over 6,000 RNA targets in the 

brain, approximately 30% of the transcriptome
51,165-167

. TDP-43 binding to long introns (>100 kb) is 

required for the normal maturation and splice site selection of immature mRNA species 
167,168

. TDP-

43 binding to the 3’ UTR of mRNAs may impact stability or transport, whereas binding to long 
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noncoding RNAs (ncRNAs) may influence their regulatory roles. Splicing of many RNA targets of 

TDP-43 are altered in ALS spinal cord tissue
169

. 

Likewise, FUS binds over 5,500 RNA targets in the brain
165

, and its binding pattern to long 

introns suggests that FUS remains bound to pre-mRNAs until splicing is complete. Loss of FUS 

function results in changes of the splicing pattern or abundance in over 1,000 RNAs
165

. All three 

members of the FET gene family (FUS, EWSR1, and TAF-15) are implicated in ALS, suggesting 

that the functions of these proteins on global RNA splicing and metabolism are particularly 

important for motor neurons. In addition, both TDP-43 and FUS bind to the long ncRNAs (lncRNA) 

and influence their function and subcellular localization (Figure 1.2). Both proteins, for example, 

bind NEAT1
170

, a lncRNA core component of nuclear paraspeckles, which function in cell stress 

responses and in the nuclear retention of hyperedited RNAs
171

. FUS directly regulates NEAT1 levels 

and decreasing FUS levels leads to reduced numbers of paraspeckles
172

. At the same time, FUS-

positive inclusions contain other paraspeckle proteins, suggesting that pathological changes in FUS 

levels or function impair normal paraspeckle formation/function, thereby altering cellular 

homeostatic responses and increasing motor neuron vulnerability to degeneration.   

Finally, both TDP-43 and FUS exhibit neuron-specific functions that further implicate them 

in neurodegenerative diseases. Both localize to dendrites in response to neuronal activity.  Disease 

causing mutations that result in functional impairments and protein mis-localization therefore likely 

impact synaptic structure and function via loss of localized translation of specific mRNAs
173,174

. 

Given the remarkable functional diversity of RNA binding proteins such as TDP-43 and FUS, it is 

unsurprising that mutations that affect their structure and function confer numerous aberrant changes 

in the regulation of gene expression. Motor neurons, in particular, seem acutely vulnerable to 

alterations in the levels of ALS-linked RNA binding proteins by either loss of function, gain of toxic 
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function, or both. While much insight into the sequence targets, processing functions, and subcellular 

associations of ALS-associated RNA binding proteins have been gained in recent years, determining 

which of these properties contribute directly to motor neuron vulnerability/degeneration remains an 

unanswered question with considerable therapeutic implications. The collective functions of TDP-

43, FUS, and other ALS-linked RNA binding proteins are shown in Figure 1.2. 

1.2.6 ADAR2 RNA Editing 

Further evidence for motor neuron-specific defects in RNA processing have come from studies of 

RNA editing of the GluA2 subunit of the l-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptor. Adenosine deaminase acting on RNA 2 (ADAR2)-mediated conversion of 

adenosine to inosine (A-to-I editing) of the GluA2 pre-mRNA results in replacement of glutamine 

with arginine in the translated protein. This editing normally occurs in all motor neurons and results 

in expression of Ca2+ impermeable AMPA receptors. ADAR2 levels, and consequently A-to-I 

editing, is dramatically reduced in sALS motor neurons
175

. The resultant enhancement of AMPA 

Ca2+ permeability leads to increased motor neuron vulnerability and the development of TDP-43 

pathology
176

. 

1.2.7 miRNAs 

Over the past decade, microRNAs (miRNAs) have been identified as significantly impacting overall 

gene expression by modulating the stability and/or translational repression of target mRNAs
177

. 

miRNAs are short non-coding RNAs (~22 nucleotides) and over 1,000 have been identified in 

humans, constituting a large class of regulators of gene expression. Approximately 60% of all 
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mammalian mRNAs are predicted targets of miRNAs
178

. miRNA binding to mRNA targets results in 

reduced protein expression from the specific bound mRNA. A single miRNA may have many 

mRNA transcript targets, therefore impacting expression of a large number of genes. Various types 

of cellular stressors impact the levels of miRNAs and therefore regulate how a cell responds to stress 

179
. As ALS is a disorder of multiple stressors, miRNA alterations may represent an important 

pathogenic mechanism of disease. miRNAs are also essential to the overall ability of a cell to 

properly respond to acute or chronic stress conditions that exist during ALS and, therefore, 

modulating levels of stress-associated miRNAs may have therapeutic value in the treatment of ALS.     

Recent studies have examined miRNA changes in ALS patients and model systems, 

including the G93A SOD1 transgenic mouse model, circulating monocytes, skeletal muscle, and 

lumbar spinal cord tissue from ALS patients, and serum from familial ALS patients and pre-manifest 

carriers with known ALS-linked genetic mutations
180-184

. Altered levels of miRNAs may have 

significant impact on gene expression during ALS (Figure 1.2) and studies of miRNA levels from 

multiple sources of origin in ALS patients find altered miRNA profiles. Moreover, modulating levels 

of certain miRNAs (namely, miRNAs 206 and 155) can slow disease progression in SOD1 

mice
183,185

. Collectively, these observations support the notion that miRNA-based modulation of 

gene expression is a key determinant of motor neuron health. Nevertheless, perhaps due to 

differences in models, cell/tissue types, and analytical methods used in these studies, a common set 

of miRNA alterations has not been observed across studies of human ALS patients. However two 

studies detected increased levels of miR-146a and miR-155 in microglial cells
186,181

. In addition, 

increases in miR-146a were detected in two studies using either microglia or spinal cord tissue from 

ALS patients
181,182

. The results support further studies on miRNA changes in ALS using 

standardized approached and model systems, ideally in large collaborative research efforts. 
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Understanding the genes and biological pathways modulated by miRNAs associated with ALS may 

reveal new mechanisms of disease or provide novel targets for modulation of known ALS pathways. 

In addition, miRNAs may correlate with the rate of ALS disease progression, as miR-206 levels have 

been associated with the rate of disease progression in the G93A SOD1 mouse model
187

. Finally, 

both TDP-43 and FUS (and likely other RNA binding proteins implicated in ALS) impact miRNA 

biogenesis
188,189

, linking ALS disease causing mutations to miRNA regulated gene expression. 
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Figure 1.2 RNA processing functions of ALS-associated RNA binding proteins (RBPs). A 

schematic diagram of the RNA-related functions of ALS-linked RBPs is shown. These RBPs affect 

the transcription, processing, export, maturation, transport, and turnover of RNA molecules. ALS-

linked RBPs influence which genes are transcribed, how transcripts are spliced, and the final 

subcellular location of the RNA molecule. In addition to their effects on normal 

transcription/translation, ALS RBPs participate in stress responses via stress granules and regulate 

levels and functions of miRNAs. Lastly, the C9ORF72-linked hexanucleotide repeat expansion 

(G4C2) may impair many of these processes via expansion-linked nucleocytoplasmic transport 

defects.    
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1.2.8 C9ORF72 Hexanucleotide Repeat Expansion 

The most common genetic cause of ALS and FTLD is a GGGGCC repeat expansion in the 

C9ORF72 gene
190,191

. The C9ORF72 repeat expansion is believed to underlie approximately 40% of 

fALS and 6-7% of sALS cases
192

. Patients with C9ORF72 repeat expansions that develop disease 

display variable amounts of TDP-43 pathology and abundant TDP-43 negative, p62-positive 

neuronal and glial inclusions in multiple regions of the CNS, including the cerebellum
193

. At present, 

the function(s) of the C9ORF72 protein is not fully characterized, however, the protein’s high degree 

of homology with the DENN protein, a GDP/GTP exchange factor that acts on Rab-GTPases
194

, and 

reported ability to regulate endosomal trafficking
122

 suggests that the protein has multiple functions.  

Proposed neurotoxic mechanisms of the repeat expansion include haploinsufficiency and a 

toxic gain-of-function. Studies of the former have produced conflicting results: Conditional 

knockout of the C9ORF72 gene does not result in the development of motor neuron degeneration or 

an overt motor/behavioral phenotype in mice
195

; however, knockdown of the zebrafish orthologue 

(zC9ORF72) led to motor deficits and axonal pathology
196

. Differences in model system, genetic 

ablation strategy, and repeat expansion size in these studies could account for these discrepancies 

and underscore the complexity of C9-mediated neurodegeneration. Experimental evidence for a 

repeat expansion-induced toxic gain of function have implicated both the accumulation of RNA foci 

within the nucleus and cytoplasmic translation of dipeptide proteins via repeat-associated non-AUG 

translation (RAN) translation products and resultant accumulation of DPR cytoplasmic inclusions
197

. 

The presence of sense and antisense foci is a common observation in both patient tissues/cell lines 

and C9 model systems
198

, and C9 transcripts are capable of forming G-quadruplex structures that 

may aberrantly influence gene expression by sequestering RNA binding proteins
199

 (Figure 1.2). As 

noted above, C9ORF72 fALS patients exhibit DPR cytoplasmic inclusions resulting from non-ATG 
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(RAN) translation of the repeat. DPRs are neurotoxic in a variety of ALS model systems
200

 and co-

culture of astrocytes taken from C9 patients with wild-type motor neurons results in extensive 

neuronal death
201

, suggesting intracellular and non-cell autonomous mechanisms of 

neurodegeneration in C9-linked ALS. Studies in ALS patients, however, have noted the presence of 

DPR containing inclusions in regions of the CNS that do not degenerate in ALS
202

, suggesting DPR 

inclusions are not directly neurotoxic. 

Recent studies examining mechanisms of C9-mediated toxicity have consistently identified 

impairments in nucleocytoplasmic transport of proteins
203,204

 (Figure 1.2). It remains unclear if all 

proteins that enter/exit the nucleus are equally impacted by C9 repeat expansion-induced transport 

defects. Therapeutic approaches that enhance nucleocytoplasmic transport or remedy defective 

transport-induced pathologies may thus be an effective treatment for C9-linked ALS. However 

nucleocytoplasmic transport deficits may be present from birth, whereas ALS or FTLD typically 

occurs in late to middle age, raising the question of whether additional factors cause disease and C9 

repeat expansion induced nucleocytoplasmic transport defects merely make the cell more susceptible 

to further insult. Anti-sense oligonucleotides (ASOs) and small molecules that target production of 

C9 RAN proteins have also been identified as therapeutics with clinical potential
205,206

. ASOs have 

been shown to ameliorate or prevent the development of C9-associated pathology and 

pathophysiology in some model systems. However, since C9 repeat expansion BAC transgenic mice 

harbor both nuclear RNA foci and C9 RAN proteins throughout life yet exhibit no phenotype, the 

role of both RNA foci and C9 RAN protein inclusions in ALS neurodegeneration remains uncertain. 

Moreover, while loss of C9ORF72 function does not induce motor neuron degeneration or impair 

CNS function, the necessity of the C9ORF72 protein for the proper functioning of other organ 

systems/cell types has not been evaluated. Thus, while knockdown-based approaches (such as 
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ASOs) have shown early promise in model systems, much additional research is needed to determine 

their safety/efficacy.   

1.3 GLIAL AND INFLAMMATORY MECHANISMS OF DISEASE 

A host of non-cell autonomous mechanisms contribute to neurodegeneration in ALS. Among the 

most studied are those involving glial cells, specifically astrocytes, microglia, and oligodendrocytes, 

and the specialized extracellular matrix surrounding motor neurons, termed perineuronal nets 

(PNNs). More recent studies have also shown that regulatory T-cells and extracellular matrix 

breakdown also contribute to motor neuron degeneration.  

1.3.1 Astrocytes 

Astrocytes are the most abundant cell type in the CNS and serve numerous important roles in 

synaptic transmission and maintaining neuronal viability
207,208

. One of the most vital of these 

functions is establishing and maintaining a homeostatic environment for neurons and other CNS 

cells
209

. This is accomplished, in part, by astrocytic contacts with other CNS cells, including 

projections at synaptic sites. At the synapse, astrocytes provide considerable support to neurons in 

the regulation of synaptic activity and plasticity
209

. In addition to providing structural integrity to 

synapses, astrocytes regulate the concentration of neurotransmitters and other molecules both by 

uptake and release of neurotransmitters, ions, and other molecules in the synaptic space
208-211

. 

Astrocytes also aid in maintaining neuronal viability by secreting growth and trophic factors, the 

secretion of which may be increased in response to neuronal injury or stress
209-211

. 
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Astrocytes contact many cell types in addition to neurons, including other astrocytes and 

cells of the vascular system. Astrocytic influence on the cerebrovascular system is extensive and 

comprises numerous functions. This influence is exerted chiefly by the extension of astrocytic 

endfeet to vascular epithelial cells. The resultant cell-cell contacts allow astrocytes to regulate brain 

vascular function
210

. This is, in part, accomplished is by the secretion of factors that influence the 

gap and tight junction protein expression in endothelial cells. In this way, the integrity and 

permeability of the blood brain barrier are directly influenced by astrocytes
210

. Similarly, astrocytic 

secretion of chemical factors can induce vasodilation or constriction, thus tailoring the regional 

blood flow to the needs of surrounding neurons. Astrocytes maintain contact with surrounding 

astrocytes via gap junctions, and though these connections, exchange various molecules
208,210

. 

Collectively, then, astrocytes act as an extensively connected support network that adapts its 

activities to the needs of adjacent neurons. 

In addition to these homeostasis-promoting functions, astrocytes also participate in a 

defensive response to CNS injury or disease termed reactive gliosis
212-214

. Reactive gliosis, or 

reactive astrogliosis, comprises a series of morphological and functional changes that occur in 

astrocytes intended to respond to the initiating stimulus, minimize CNS tissue damage, and restore a 

homeostatic cellular environment (Figure 1.3). Perhaps the most pronounced and well-described 

change occurring in these cells during reactive gliosis is markedly enhanced expression of glial 

fibrillary acidic protein (GFAP), an astrocytic intermediate filament protein. This results in increased 

extension and branching of astrocytic processes to areas of CNS injury or disease and may ultimately 

lead to the formation of a glial scar, a dense interconnected astrocytic network that physically seals 

the afflicted area off from the rest of the CNS
211,215

.  
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Several lines of evidence implicate astrocytes in the degeneration of motor neurons in 

ALS
213,214,216

. Dying motor neurons in the spinal cord and motor cortex of ALS patients are 

frequently surrounded by reactive astrocytes and astrocytes exhibit some of the pathological 

hallmarks of ALS motor neurons, including intracellular inclusion bodies. Astrocytes in ALS 

patients also show elevated expression of inflammatory markers, including nitric oxide synthase 

(NOS), TNFα, and NF-Kβ, suggestive of an astrocytic response to motor neuron degeneration
217-221

. 

The increased expression inflammatory markers and attendant decrease in trophic factor support 

highlight the complexity of the degenerative process, as studies targeting individual markers of 

either type have proven unsuccessful in ameliorating motor neuron degeneration in ALS clinical 

trials
222-224

, even when they have provided benefit in ALS model systems
225-227

. Nevertheless, much 

of our understanding of the role of astrocytes in ALS is a result of studies using transgenic mutant 

SOD1 mice and primary cultures of neurons and glia thereof. One of the main findings of studies in 

mutant SOD1 transgenic mice is that astrocytes secrete numerous factors that predispose motor 

neurons toward apoptotic cell death
213

. Astrocytic production of nitric oxide via increased expression 

of NOS leads to uptake of the molecule by motor neurons, where it impairs mitochondrial function 

and can lead to cell death
218,228

. Likewise, transgenic mutant SOD1 mice show enhanced expression 

of receptors for p75 and TNFα
229-232

. Astrocytic secretion of NGF can activate p75 receptors and 

trigger apoptotic cell death
233,234

. TNFα expression is also increased in these mice and can similarly 

trigger apoptosis
234

. Despite well-defined increases in TNFα in motor neurons and glia in ALS 

transgenic mice and human patients, however, ablating TNFα signaling or even deleting the 

encoding gene do not stop disease progression, suggesting that TNFα may make only minor 

contributions to neurodegeneration in ALS
235,236

. Activated astrocytes also increase their expression 

of EAAT following brain injury and ischemia, which is thought to be a neuroprotective 
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mechanism
237,238

. In contrast, astrocytes in ALS patients show markedly reduced levels of EAAT2 

due to mRNA splicing abnormalities
239,240

 , thus contributing to glutamate excitotoxicity in ALS.  

An important question for resolving the role of astrocytes in ALS is whether reactive 

astrogliosis is a cause of degeneration, consequence, or both. Conflicting reports from mutant SOD1 

transgenic mouse lines have emerged, with reactive astrocytosis evident several weeks prior to 

symptom onset in SOD1
G37R 

mice
241

 and following motor neuron loss by several weeks in the more 

commonly used SOD1
G93A

 mouse
242

. Further complicating matters is the observation that astrocytes 

overexpressing mutant TDP-43
A315T 

or lacking the TARDBP gene did not contribute to motor neuron 

death, either in vitro or following transplant into wild-type rats, in a recent study
243

. This same group 

later showed that inflammatory astrocytic activation with lipopolysaccharide (a known astrocytic 

activator), can lead to cytoplasmic accumulation of TDP-43 in astrocytes and motor neurons in 

A315T TDP-43 transgenic mice, though cell viability was not evaluated
244

. Taken together, these 

results imply that ALS-associated changes, such as a causative mutation or stressor, are sufficient to 

induce reactive astrocytosis and pathological changes in astrocytes, and that astrocytosis may speed 

the degeneration of ALS motor neurons. The interplay of motor neuron intracellular mechanisms and 

non-cell autonomous mechanisms, such as astrocytosis, is complex and the relative contributions of 

each and their time course are unknown in human ALS. Given the heterogeneity of the disease, it 

seems likely that a number of possibilities exist, wherein the initiation of a disease-promoting 

stimulus at either the level of the motor neuron of the astrocyte is sufficient to result in pathological 

changes, and perhaps eventually, cell death (Figure 1.3). The creation of numerous iPSC lines from 

sALS, fALS, and healthy control subjects offers tremendous promise towards delineating the 

contribution of astrocytes to neurodegeneration and identifying subtypes of ALS for which 

therapeutics targeting astrocytes may be effective
245

. 
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The contribution of astrocytes to neurodegeneration in ALS can therefore be viewed as two-

fold. First, the development of pathology within astrocytes (e.g., proteinaceous inclusions) is 

expected to impair their normal function of supporting neuronal health. Motor neurons, with their 

considerable energy demands, are likely to be particularly susceptible to impairment of the astrocytic 

network that maintains a homeostatic environment in the CNS. Second, activation of astrocytes by 

the secretion of chemical factors and misfolded proteins from dying motor neurons results in 

profound activation of astrocytes with accompanying reactive astrogliosis (Figure 1.3). 

1.3.2 Microglia 

Microglia are the resident macrophage cells of the CNS and are a key component of the CNS 

immune system. They have a small cell body with numerous branching processes that extend 

outwards from the soma. These processes extend to neuron cell bodies, dendrites, and axons and 

areas of the CNS vascular system. The processes are used as mobile probes to determine the local 

cellular environment and microglia express receptors for numerous types of molecules (e.g., 

complement proteins, cytokines, ions, plasma proteins, and neurotrophic factors) to aid this 

process
246,247

. Microglia exhibit considerable phenotypic heterogeneity in relation to such 

environmental signals and the density of microglia varies considerably throughout the CNS, with 

microglial numbers being particularly high in myelinated region
248,249

. Microglial activation results 

in phenotypic and morphological changes and occurs in response to signaling molecules (Figure 

1.3). The nature and extent of activation depends on the molecules and their local concentration. 

More recent work has shown that microglia also monitor neuronal activity, with enhanced projection 

surveillance resulting from higher levels of neuronal activity
248

. Activation generally occurs in 

response to a pathological environmental change, such as infection, disease, or inflammation and is 
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associated with a thickening and retraction of processes and the assumption of a more rounded 

morphology
246,247

. This signaling can occur through either the presence of a molecule(s) that is 

normally absent (e.g., LPS signaling via toll-like receptors) or the absence of a molecule(s) that are 

normally present (e.g., CD-200 signaling via CD-200 receptor). Activated microglia also exhibit 

different “active” phenotypes based on the stimulating molecule(s). This concept is perhaps best 

illustrated by microglial activation response to the T-cell effector cytokines IFN-γ and IL-4. IFN-γ 

challenged microglia assume an activated phenotype that commonly produces cell death, while IL-4 

challenge leads to a microglial response that favors neuroprotection. The response to IFN-γ may be 

viewed as M1 activation and is accompanied by microglial release of reactive oxygen species, nitric 

oxide, and inflammatory cytokines (Figure 1.3). In contrast, neuroprotective microglial activation 

(M2) is associated with greater phagocytic activity (e.g., for removing protein aggregates), release of 

trophic factors, and the uptake of potentially neurotoxic substances, (e.g., glutamate via GLT-1). 

Generally, the balance of pro- versus anti-inflammatory factors will determine the nature of the 

response (M1 or M2), time course, and extent of the response
246-249

.  

Given their roles in surveilling the CNS microenvironment and responding to homeostatic 

disturbances, it is perhaps unsurprising that microglia are implicated in the progression ALS in 

studies of both human patients and ALS transgenic mouse models. Studies in human ALS tissue 

consistently identify activated microglia in proximity to degenerating motor neurons and these 

microglia are frequently positive for inflammatory markers
250-253

. In human subjects, the level of 

microglial activation is greater with increasing disease severity, consistent with a microglial role in 

disease progression. In consideration of this, as with astrocytes, an important question is whether 

microglial activation is a consequence of the neurodegenerative process or a primary cause of 

neurodegeneration, and whether microglial responses can be modulated to favor neuroprotection. 
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Answers to these questions have largely come, as they have for astrocytes, from studies of mutant 

SOD1 transgenic mice.  

Microglial activation is one of numerous features recapitulated in SOD1 transgenic mice, 

including elevation of inflammatory markers and microglial activation
253

.  The creation of chimeric 

mice expressing mutant SOD1 in defined cell populations has helped clarify the role of microglia in 

ALS. Wild-type glial cells surrounding mutant SOD1 expressing motor neurons led to a significant 

decrease in neurodegeneration and absence of pathological abnormalities. By contrast, mutant SOD1 

expressing non-neuronal cells adjacent to while type motor neurons led to ubiquitinated protein 

deposits forming in motor neurons
254

. These findings collectively underscore the contribution of 

non-cell autonomous effects to neurodegeneration. Further evidence for this phenomenon comes 

from the observation that expression of an ALS-associated mutant protein seems to shift microglia 

towards and inflammatory phenotype, as cultured microglia from SOD1 mice have enhanced 

inflammatory marker expression
255

. This phenotype can also be conferred by microglial uptake of 

secreted, misfolded SOD1
150,256

, suggesting that the mutant SOD1 misfolded conformation is 

sufficient to activate microglia, independent of other ongoing degenerative processes. Similar results 

obtained for mutant, misfolded TDP-43 and TDP-43 C-terminal fragments
257

, as well as amyloid 

beta
258

, support this as a general mechanism and suggests that misfolded proteins contribute to 

microglial activation via NF-κβ signaling.  Receptor-mediated NF-κβ signaling allows nuclear 

translocation of the NF-κβ protein, which induces a host of inflammation-related transcriptional 

responses. Recent evidence indicates that blocking NF-κβ signaling in microglia, but not in 

astrocytes, reduces motor neuron death and extends survival in SOD1 transgenic mice
221

, suggesting 

a clear role for microglia in neurodegeneration and NF-κβ as a possible therapeutic target. Others 

have shown that knockdown of TDP-43 also causes activation of microglia with attendant 
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neurotoxicity
259

, highlighting the general notion that several ALS-associated changes can lead to 

microglial activation and cell death.  

Given the signal-dependent variability in microglial activation and response, determining 

whether microglial can be induced to assume a benign or neuroprotective phenotype in ALS is an 

important area of research. In vitro studies have convincingly shown that this approach is viable. 

Treatment of microglia with IL-4 antagonists following LPS activation reduces microglial-associated 

wild type motor neuron toxicity
260

. Co-culture of motor neurons and microglia in the presence of 

extracellular mutant SOD1 was used to test this idea in the context of ALS. Extracellular mutant 

SOD1 activates microglia and leads to motor neuron death (not seen in the absence of microglia) that 

can be attenuated by blocking signaling through CD14 and Toll-like receptors. Other studies have 

obtained similar results by attenuating signaling of M1 phenotype-inducing stimuli following nerve 

injury
261,262

. These studies are often performed using co-culture experiments and it is important to 

emphasize such systems do not fully capture the complexity the brain and spinal cord and associated 

signaling between multiple cell types. In ALS, neurons, glia, and astrocytes all simultaneously 

secrete numerous pro- and anti-inflammatory molecules as a result of the disease process, and the 

relative balance of these signals likely determines the phenotypic response of glial cells (M1 or M2) 

and motor neuron fate. Consequently, as with astrocytes, therapeutics targeting an individual 

signaling pathway are unlikely to prove valuable for the treatment of sporadic ALS
223,224

.  

1.3.3 Oligodendrocytes 

Oligodendrocytes are a highly specialized form of glial cell found exclusively in the CNS. They 

ensheath neuronal axons in myelin, a hydrophobic lipid mixture with protein components, thus 

insulating them and markedly enhancing the speed and energetic efficiency of action potential 
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propagation by saltatory conduction. Because of the length of axons and the energy requirements of 

conducting action potentials, oligodendrocytes are also provide metabolic support to neurons directly 

at the level of myelin. Oligodendrocytes express the lactate transporter monocarboxylate transporter 

1 (MCT1) and removal of the protein by antisense oligonucleotide leads axon damage and can 

produce neurodegeneration
263

. The axons of cortical and spinal motor neurons are among the longest 

in the CNS and demyelination, reduced metabolic support, and loss of normal oligodendrocyte 

function have accordingly been hypothesized as contributors to motor neuron selective 

vulnerability/degeneration in ALS.  

Support for this hypothesis was found in studies of human ALS spinal cords, which showed 

inclusion pathology in oligodendrocytes
264-266

. MCT1 levels are also reduced in the spinal cords of 

ALS patients
263

. More direct evidence in favor of oligodendrocyte dysfunction has been obtained 

using transgenic animals expressing ALS mutant proteins. SOD-G93A transgenic rats showed 

extensive myelin abnormalities in early and late stages of disease
267

. Similarly, SOD1-G93A 

transgenic mice show reduced levels of MCT1
263

. In addition to compromising oligodendrocyte 

metabolic support of motor neurons, reduced MCT1 levels are also expected to contribute to 

myelination abnormalities, as lactate is an essential energy source for the production of myelin
268

. 

Such a metabolic impairment may lead to the secretion of inflammatory factors by both 

oligodendrocytes and motor neurons that trigger signaling cascades that ultimately result in non-cell 

autonomous contributions to cell death. SOD1-G93A exhibit morphological changes in 

oligodendrocytes, favoring an elongated and thickened morphology, prior to symptom onset and 

neurodegeneration and the number of cells with this altered morphology increases over the course of 

disease. Although oligodendrocytes frequently undergo apoptosis in this model, the number of 

oligodendrocytes in the cortex and spinal cord remains constant over the course of disease. This is a 
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result of the presence of a pool of undifferentiated NG2
+ 

oligodendrocyte precursor cells
266

. 

Replenishment of oligodendrocytes does not mitigate the degenerative phenotype, however, as the 

SOD1-G93A transgene expressing oligodendrocytes exhibit reduced capacity to generate myelin and 

reduced expression of MCT1, leading to metabolic impairments
266

. Promising results were recently 

obtained by selectively removing mutant SOD1 from oligodendrocytes. Though untreated mice (and 

ALS patients) showed extensive oligodendrocyte degeneration, when the mutant SOD1 was 

removed, disease onset was delayed and survival prolonged
84

.  

These results directly suggest that oligodendrocytes are a key contributor to motor neuron 

viability and that expression of ALS mutant proteins impairs their normal function and maturation to 

an extent sufficient to produce neurodegeneration. Future studies examining other ALS-associated 

proteins, such as TDP-43 and FUS, will address the generality of this mechanism and likely identify 

potential signaling pathways for therapeutic targeting in human ALS.   

1.3.4 Perineuronal Nets and Extracellular Matrix Dysfunction 

The extracellular matrix of the CNS is highly specialized and of a unique composition, consisting of 

chondroitin sulfate proteoglycans, fibronectin, hyaluronan, and several ECM-associated proteins, 

including tenascin R
269,270

. The protein components of PNNs are synthesized by both neuronal and 

glial cells and the type of neuron (e.g., glutamatergic, GABAergic, etc..), in part, determines the 

specific protein and glycan composition of the PNN. This compositional heterogeneity confers 

functional specificity to PNNs located in specific CNS regions. Consequently, considerable regional 

heterogeneity exists in the distribution of PNNs throughout the CNS. PNNs are highly abundant in 

motor regions of the brain and spinal cord and surround the soma, axons, and dendrites of motor 

neurons
269,270

. PNN development is dependent on neuronal activity and PNNs are vital to the 
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establishment of proper synaptic connectivity during development
271

. In adulthood, PNNs are known 

to be repellant to adjacent dendrites and axons, suggesting that PNNs function to maintain 

established synaptic networks and a homeostatic extracellular environment. Consistent with this 

latter point, PNNs entrap growth factors and aid in maintaining local ionic homeostasis
269,272

. The 

neuroprotective functions, together with the observation of PNN abnormalities in other 

neurodegenerative disorders, have led to the hypothesis that PNN abnormalities also contribute to 

ALS-associated neurodegeneration.  

Evidence of PNN abnormalities in ALS have come from studies of human ALS patients and 

ALS model systems. Recent work in human subjects indicates that levels of numerous extracellular 

matrix proteins are decreased in the CSF of ALS patients
273

. This decrease could be correlated with a 

loss of tenascin R immunoreactivity around motor neurons in ALS patient spinal cord tissue. A 

similar loss of tenascin R immunoreactivity around motor neurons is observed in SOD1 transgenic 

rats
274

, suggesting that PNN net abnormalities and degradation may be a common consequence of 

motor neuron degeneration irrespective of cause. A cause of PNN abnormalities in ALS is the well-

characterized elevation in matrix metalloproteinases (MMPs) observed in ALS brain and spinal cord 

tissue
275

 and in transgenic mouse models of ALS
276

. MMPs are zinc dependent endopeptidases 

capable of degrading ECM and PNN components. They can be activated by cytokines, reactive 

oxygen species, and other inflammatory factors secreted from activated microglia or reactive 

astrocytes
277

, suggesting additional non-cell autonomous mechanisms of motor neuron dysfunction 

in ALS. Enhanced MMP expression and PNN degradation may reflect a compensatory response 

from dying neurons attempting to re-establish synaptic contacts. Conversely, MMP degradation of 

PNNs may be an initiating stimulus for an inflammatory glial reaction that ultimately predisposes 

motor neurons to death. Support for this latter proposition comes from a study showing that 
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administration of an MMP inhibitor extended survival in SOD1 transgenic mice
276

. In addition to 

MMPs, high-throughput profiling of ALS subjects at the protein, mRNA, and mRNA splicing level 

consistently demonstrates robust changes in PNN and ECM-associated components
273,278,279

. Despite 

this, PNN alterations in ALS and their contribution to selective motor neuron vulnerability remain a 

relatively understudied topic in the field of ALS research. Future studies addressing the time course 

of onset and mechanisms of PNN dysfunction in ALS will likely identify new mechanisms of motor 

neuron degeneration and therapeutic targets.  

1.3.5 Inflammation and Regulatory T-Cells 

Neuroinflammation within the CNS is a common pathologic feature in many neurodegenerative 

diseases, including ALS (reviewed in 
214

). Both animal models of ALS and post-mortem tissue from 

ALS patients exhibit cellular signs of inflammation, namely activation of astrocytes and microglia 

within affected regions of the brain and spinal cord. Inflammation, therefore, has been a frequent 

therapeutic target for ALS. Many anti-inflammatory drugs have shown promise in the G93A SOD1 

mouse model of disease, but all have failed human clinical trials. These include celecoxib, 

ceftriaxone, thalidomide, and minocycline
280-282

. Reasons may include inadequate powering of the 

clinical trial, suboptimal dosage, or administration to ALS patients after disease onset and therefore 

after closing of a therapeutic window. It is also possible that these therapies failed to reach the 

appropriate target, as pharmacodynamic biomarkers that demonstrate target engagement have only 

been recently introduced into ALS clinical trials. However not all neuroinflammation during ALS 

may be detrimental, as early inflammatory responses can be neuroprotective. Transfer of wild-type 

microglia into a transgenic SOD1 mouse model of ALS slows disease progression 
283

, suggesting 
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that supportive glial responses that release neurotrophic factors and decrease neuronal stress may be 

beneficial.    

Recent evidence strongly implicates CNS-infiltrating immune cells via breakdown of the 

blood-brain barrier or via the choroid plexus contribute to ALS and other neurodegenerative diseases 

(Figure 1.3). Infiltrating T lymphocytes have been shown to play important roles in regulating 

progression and neuroprotection in mouse models of ALS
284

. Fox3p positive regulatory T cells 

(Tregs) infiltration in the CNS plays an important role in modulating the rate of disease progression, 

working together with M2 microglia to suppress inflammation
285

. Passive transfer of Tregs into 

G93A SOD1 mice lacking functional T lymphocytes prolonged survival and decreased Tregs in the 

blood of ALS patients correlated to more rapid disease progression. In addition, early reduced FoxP3 

levels could be used to identify rapidly progressing ALS patients 
286

.  

Nevertheless, in most chronic neurodegenerative diseases, the recruitment of these cells into 

the CNS seems to be insufficient or delayed, resulting in a pro-inflammatory response that 

contributes to the exacerbation of pathology
287

. Transport of these lymphocytes into the CNS 

appears to occur at the level of the choroid plexus
288,289

. Upon entry, Tregs and other infiltrating 

leukocytes could be transported via the CSF to infiltrate within the brain and spinal cord 

parenchyma. In addition, the CSF has recently been proposed to be a mechanism for spread of 

disease
290

. Therefore, both Tregs and the infiltration of other leukocytes into the CNS via the choroid 

plexus are therapeutic targets for ALS and offer new insight into the mechanisms of disease. 

 



 44 

 

Figure 1.3 Non-cell autonomous mechanisms of ALS. A schematic diagram of non-neuronal cells 

surrounding motor neurons in normal and ALS disease states is shown. Under normal conditions, 
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astrocytes and microglia surveil the local environment and aid in homeostatic maintenance. 

Lymphocytes and T-cells are absent from the local environment and perineuronal nets provide 

structural and trophic support to motor neurons. Activation of microglia and astrocytes by secretion 

of inflammatory factors from neuronal and non-neuronal cells activates astrocytes and microglia in 

ALS, exacerbating the degenerative motor neuron phenotype. Oligodendrocyte hypofunction and 

degeneration, impaired axonal transport, and perineuronal net breakdown also contribute to motor 

neuron death. Lastly, infiltration of circulating T-cells and lymphocytes also occurs in ALS, which 

influences disease progression. 

1.4 AXONAL TRANSPORT DEFECTS AND AXONOPATHY 

Bi-directional transport of organelles and molecules along axons is a vital determinant of neuronal 

function, homeostasis, and survival. Synaptic activity at the level of the axon is energetically 

demanding and requires a diverse array of biochemical reactions, cellular organelles, and molecules 

for function. Anterograde axonal transport accomplishes this by transporting proteins, mRNAs, 

organelles, vesicles, and other signaling molecules to the axon terminal
291,292

. At the same time, the 

axon requires a means to retrogradely transport misfolded proteins, damaged organelles, vesicles, 

and signaling molecules from the axon to the cell soma. Both of these functions are accomplished by 

axonal transport driven by protein molecular motors. Because motor neuron axons may be up to 1 

meter in length, they are particularly vulnerable to impairments in this process
292

. Collectively, 

evidence of impaired axonal transport in ALS model systems and evidence of a “dying back” 

mechanism of neurodegeneration have implicated axonal function as a key susceptibility factor in 

ALS. 
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1.4.1 Molecular Motor Proteins and the Neuronal Cytoskeleton 

Active transport of proteins, molecules, vesicles, and organelles along the axon occurs via the 

movement of motor proteins along the microtubule cytoskeleton. Anterograde transport occurs via 

the ATP hydrolysis-driven stepwise motion of proteins of the kinesin superfamily (KIFs). KIFs 

proteins possess a globular motor domain that catalyzes ATP hydrolysis and binds to 

microtubules
293

. The motor domain may be accompanied by a long stalk that allows dimerization of 

kinesin molecules. KIF light chain proteins associate with these stalks and bind cargoes, making the 

classical kinesin unit a heterotetramer
293

. The protein sequence of KIFs members confer binding 

specificity for diverse cargo types and variability in transport velocity.  

Retrograde transport along the axon is primarily accomplished by the molecular motor 

protein dynein. The functional dynein complex is a mixture of polypeptide subunits that includes 

dynein heavy, medium, intermediate light, and light subunits. The heavy chain subunit functions as a 

dimer and contains a globular motor domain that binds microtubules and catalyzes the hydrolysis of 

ATP to achieve molecular motion
294

. Like kinesin, dynein heavy chain stalks associate in a coiled 

structure that also interacts with intermediate, intermediate light, and light dynein polypeptides. The 

dynactin protein complex, composed of 11 different polypeptide subunits, mediates cargo 

recognition and binding and associates with the dynein complex to form the functional retrograde 

transport machinery
292,294

.  

Kinesin and dynein-mediated axonal transport occurs along the microtubule cytoskeleton. 

Microtubules are cylindrical structures built on heterodimers of α and β tubulin monomers that are 

extended linearly to form protofilaments
293

. Hollow, cylindrical filaments 25 nm in diameter 

comprising the functional microtubule are formed by the lateral association of 13 protofilaments
292

. 

Each microtubule has an inherent polarity conferred by the type of tubulin monomer found at each of 
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its ends; the “plus” end features protruding β tubulin monomers, while the “minus” end contains α 

tubulin monomers. Axonal microtubules feature a consistent polarity, with “plus” ends facing 

outward to the axon and “minus” ends facing towards the cell body
295

. This polarity confers 

directionality to the kinesin and dynein motor transport complexes. Microtubule structure is dynamic 

(particularly during development) and polymerization occurs faster at the plus end of microtubules to 

allow for adaptations in synaptic structure
292,295

. 

1.4.2 Anterograde Axonal Transport 

Anterograde axonal transport serves important functions related to synaptic activity, axonal function, 

and axonal growth and structural integrity. Neurotransmitter containing secretory vesicles are 

transported via anterograde axonal transport where they subsequently undergo membrane fusion and 

synaptic transmitter release. Numerous additional cellular components are also transported via 

anterograde transport to the axon terminal, including mitochondria, RNA granules, transmembrane 

receptors, enzymes, and mRNAs
292

. Axon extension, growth, and structural integrity likewise 

require cytoskeletal proteins, including actin, tubulin, and neurofilaments, each of which are 

transported via kinesin-based anterograde transport
292

. Transport can be further subdivided based on 

rate, with transport of mitochondria and vesicles designated as “fast” transport and transport of 

cytoskeletal proteins, enzymes, and other proteins designated as “slow” transport
292,293

. The rates of 

transport for this diverse array of cargoes span an approximate range of 0.1 m to 10 m per day and 

transport often occurs intermittently, with cargoes stopping and starting or switching directions 

during the transport process
292

. Current evidence suggests that the combined rates of antero- and 

retrograde transport determine where and when a cargo is deposited
293

. Loss or impediment of 



 48 

axonal transport function is sufficient to induce growth cone collapse in developing neurons or 

axonal dying back in adult neurons. 

1.4.3 Retrograde Axonal Transport 

Retrograde axonal transport serves important signaling and homeostatic functions for neurons. 

Neurotrophic factors, including BDNF and NGF, bind to axonal receptors and, upon internalization, 

are transported via the dynein-dynactin protein complex to the cell body where they provide trophic 

support to cells
292

. Similarly, following axonal injury, multiple signaling proteins, including 

transcription factors and nuclear transport proteins, are transported to the cell body to enable the 

neuron to sense and respond to injury. Retrograde transport of proteins and organelles destined for 

degradation is also carried out by the dynein-dynactin complex, which mediates transport of 

autophagosomes and other vesicles destined for lysosomal fusion
294

. 

1.4.4 Axonal Transport Defects in ALS 

The remarkable length (up to 1 m) of motor neuron axons and the necessity of axonal transport for 

synaptic function implicate axonal transport as a point of susceptibility in motor neuron 

degeneration. Initial work showing that substances could bypass the blood brain barrier via axonal 

uptake at the neuromuscular junction led to the hypothesis of uptake of a peripheral toxic compound 

that resulted in a progressive dying back of motor neurons
296

. A dying back mechanism was further 

suggested by the identification of decreased retrograde transport in motor neuron axons from ALS 

patients
297

. This defect seems to be related to cytoskeletal abnormalities that occur in the axons of 

ALS patients. Notably, such neurons show axonal swelling and the accumulation of spheroidal 
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inclusions that are positive for neurofilament proteins
78,298

. Cytoskeletal abnormalities and associated 

impairments in axonal transport were further implicated as a susceptibility factor for motor neuron 

degeneration when mice overexpressing the human neurofilament heavy protein were found to 

develop selective, progressive motor neuron degeneration
299

. Findings from this model system also 

implicated anterograde transport, however, as the axon terminals of motor neurons lacked normal 

levels of several proteins and organelles
300

. Mice overexpressing dynamitin showed deficits in 

retrograde axonal transport related to the disassembly of the dynactin complex
301

. Taken together, 

these findings suggest that impairment of axonal transport in either direction are sufficient to cause 

motor neuron degeneration by either cytoskeletal-dependent or cytoskeletal-independent 

mechanisms. 

The development of transgenic mice expressing mutant, ALS-linked SOD1 further 

demonstrated how impairments to axonal transport could contribute to motor neuron degeneration. 

Early studies in SOD1-G93A mice suggested a selective impairment in anterograde axonal transport 

as one of the earliest pathologic events occurring prior to symptom onset
302

. Further characterization 

showed selective impairments of slow anterograde transport, particularly of tubulin and 

neurofilament proteins, that led to axonal swellings containing these proteins
303

. Other studies have 

suggested specific impairments in fast axonal transport, showing that such impairments lead to 

depletion of axonal mitochondria, owing to intact retrograde transport
304

. Still other studies have 

implicated impaired retrograde axonal transport in SOD1-mediated neurodegeneration
305

. This 

notion was supported by the finding that mutant SOD1, but not the wild-type protein, interacts 

directly with the dynein complex
306

. Intriguingly, expression of mutant SOD1 seems to alter not 

simply the rate of retrograde transport, but the cargo as well. The dynein-associated fraction of 

axoplasm from mutant SOD1 transgenic mice shows a significant reduction in neurotrophic factors 
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(including NGF and BDNF) and significant increases in stress-associated signaling molecules 

(including capase 8 and P-JNK)
307

. Thus, the role of axonal transport in mutant SOD1-mediated 

neurodegeneration is complex and likely depends on numerous molecules and organelles. The 

discrepancies between studies are likely due, at least in part, to the use of different assays and 

preparations in measuring axonal transport, which range from nerve ligation in mice to isolated 

axoplasm taken from nerves. Nevertheless, these studies all indicate that impaired axonal transport is 

an early, presymptomatic event in transgenic SOD1 mice. 

More recent work has demonstrated how impaired axonal transport may contribute to 

sporadic ALS. A genome-wide SNP analysis identified a polymorphism in the kinesin-associated 

protein 3 (KIFAP3) gene that led to reduced KIFAP3 protein levels and resulted in a 14 month 

enhancement of survival in sALS patients
308

, although this finding was not replicated by a 

subsequent population-based study
309

. Others have found decreased expression of kinesin motor 

proteins KIF1Bβ and KIF3Aβ in the motor cortex of sALS patients
310

. Lastly, TDP-43, which is 

found in inclusions in motor neurons in almost all sALS cases, is also involved in trafficking of 

mRNA to the axon terminal. TDP-43 associates with mRNAs in the cytoplasm and is transported via 

slow axonal transport. fALS-linked mutant TDP-43 misfolds and reduces the net movement of 

mRNA granules and shifts the balance of transport in the retrograde direction
311

. Because TDP-43 is 

found misfolded and aggregated in inclusions in sALS patients, impaired trafficking of mRNA to 

axon terminals may also be a common pathology of sALS.  

Thus, impaired axonal transport and cytoskeletal abnormalities at the level of the axon are 

susceptibility factors for motor neuron degeneration in ALS. Because of the considerable length of 

their axons relative to other neuronal populations, axonal transport defects and pathology may 

partially explain the selective loss of motor neurons that occurs in ALS. These factors confer both 



 51 

loss and toxic gain of function mechanisms to motor neurons. The loss of normal cytoskeletal 

structure and trafficking of cargoes impairs neuronal function, while protein aggregates and 

enhanced stress signaling are associated with neuronal toxicity. Defects in axonal transport are 

consistently an early event in ALS model systems, suggesting it represents a potential preventative 

therapeutic target.   

1.5 CURRENT THEORY AND OUTSTANDING CHALLENGES 

As described above, many mechanisms have been proposed to contribute to motor neuron 

degeneration in various forms of ALS (Figure 1.4). Delineating which of these are primary, 

causative factors in the development of disease in human patients remains one of the great 

challenges for the field. This question is complicated by the simultaneous occurrence of many of the 

pathologies described above in sALS patients at the time of diagnosis . The observation that 

these mechanisms result in cell death/degeneration in ALS model systems only establishes the 

sufficiency of these processes to produce motor neuron death; it does not demonstrate that they are 

initiating stimuli or causal mechanisms of disease. Emerging evidence does suggest significant 

genetic contributions to the development of disease in apparently sporadic patients, with a current 

heritability estimate for sALS of approximately 20%
312

. Variability in multiple genomic regions is 

associated with increased risk of disease and approximately 25% of sALS patients exhibit 

polymorphisms in known fALS causative genes
313

. Thus, it is likely that a combination of genetic 

and non-genetic factors interact to produce a cumulative individual risk level that if exceeded leads 

to disease. While incomplete, our understanding of non-genetic factors that contribute to sporadic 

forms of disease continues to grow. The unique morphological and metabolic requirements of motor 
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neurons contribute to the cell-type specific degeneration seen in ALS. As described above, motor 

neurons are acutely vulnerable to defects in RNA processing, protein folding/clearance, and axonal 

transport. The accumulation of such defects, individually or concurrently, likely leads to further 

exacerbation of ongoing pathological processes, and, potentially, spread of disease to neighboring 

cells via secretion of toxic factors or misfolded proteins with prion-like properties and non-cell 

autonomous activity generated by this signaling. This accumulative model of disease is consistent 

with the middle to late age of onset observed in a majority of ALS patients. The identification of 

genetic loci that increase cumulative risk of disease, together with characterization of induced 

pluripotent stem cells (IPSCs) will provide insight into the initiation of sporadic ALS. Interplay 

between various mechanisms, genetic variants and/or mutations, and environmental factors likely 

contribute to the onset, progression rate and selective neurodegeneration observed in ALS (Figure 

1.4). Due to the heterogeneity of the disease, a combination of drug treatments targeting multiple 

pathways, and possibly cell replacement strategies, will likely be necessary to effectively impact 

disease course within patients. Our ever-increasing understanding of ALS disease mechanisms is 

vital to designing and implementing these therapeutic approaches. 
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Figure 1.4 General overview of ALS disease mechanisms. Numerous intracellular mechanisms 

contribute to motor neuron death. Each indicated mechanism represents a point of motor neuron 

susceptibility, a concept supported by the fALS-linked mutations in genes associated with each 

mechanism described in the text. As indicated, motor neurons are acutely vulnerable to defects in 

protein processing/clearance, RNA processing/metabolism, and impaired cytoskeletal/axonal 

transport function. Each of these processes is capable of inducing inflammatory signaling cascades, 

which exacerbate impaired motor neuron function by the activation and recruitment of glial and 

other immune cells. 

 

 Despite considerable advances in our understanding of the risk factors, molecular 

mechanisms, and genetics of ALS, numerous outstanding issues limit our understanding and, 

consequently, impede the proper treatment, diagnosis, and prevention of ALS. Chief among these 

issues is determining the distinct etiologies and combinations thereof sufficient to result in the 
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occurrence of disease. ALS is currently viewed as a collection of disorders with diverse etiologies 

sharing clinical and neuropathological features
314,315

. This view of disease suggests that clinical 

phenotype alone is insufficient to properly stratify ALS sub-populations for research and clinical 

trials. Where familial inheritance is evident, genome sequencing has clear utility in diagnosis, 

creation of model systems, and in patient stratification for clinical trials. As noted, however, familial 

forms of ALS account for only approximately 10 percent of the ALS patient population. Genome-

wide association studies (GWAS) in various ALS populations have identified genetic loci that 

increase the risk of sporadic ALS, although findings from these studies have often fared poorly in 

replication studies and the overall contribution of any given single nucleotide polymorphism (SNP) 

to risk of ALS is low, albeit statistically significant
316

. Thus, the majority of genetic influence on 

ALS remains unidentified. Moreover, the identification of SNPs influencing rate of progression and 

age at onset
316

 suggest that fully elucidating the genetic aspects of ALS is a daunting challenge that 

will require considerable population-based sequencing efforts. 

 A complementary approach that may provide similar benefits in terms of stratification of the 

ALS population for research and clinical trials is the identification and validation of protein 

biomarkers for the disease
317,318

. Protein biomarkers may provide useful indices of the degeneration 

of motor neurons at various stages of the disease process. This would be particularly valuable for the 

early detection of disease, as clinical presentation of ALS occurs only after approximately 40 to 50% 

of motor neurons have been lost. Moreover, protein biomarkers could be used to stratify subsets of 

ALS patient for clinical trials and assess target engagement or efficacy by molecular therapeutics
318

. 

The source used for biomarker discovery is a vital determinant of outcome. For ALS numerous 

possibilities exist and include IPSCs, muscle tissue, blood/plasma, and cerebrospinal fluid (CSF), 

among others. Of these, CSF offers several distinct advantages. First, its proximity to the 
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disease/tissue microenvironment results in an increased concentration of motor neuron degeneration-

associated proteins and factors
319

. Second, CSF is relatively easy to obtain and does not require 

extensive culturing/processing as compared to IPSCs or tissue biopsies. Lastly, studies have 

consistently shown that the protein composition of the CSF is diverse and contains proteins from a 

variety of intracellular organelles
320,321

. This suggests that monitoring CSF proteome alterations 

could provide biomarkers of multiple aspects of motor neuron degeneration, including secretion of 

toxic/inflammatory factors
322

, glial/Treg activation
323

, protein aggregation
324

, and cytoskeletal 

abnormalities
323

. While studies have demonstrated the feasibility of this approach, they have 

typically done so in a targeted manner, examining a relatively small number of proteins, often from 

the same protein family. Given that the CSF proteome contains thousands of proteins and with 

considerable functional diversity
320,321

, a global profiling strategy is necessary to fully capture the 

proteomic alterations accompanying ALS. We, therefore, hypothesized that comprehensive 

proteomic profiling of CSF from ALS, healthy control, and other neurological disease patients would 

lead to the identification of novel ALS disease biomarkers and provide insight to ongoing molecular 

mechanisms of disease.  
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2.0  LC-MS/MS PROTEOMIC PROFILING OF AMYTROPHIC LATERAL 

SCLEROSIS CEREBROSPINAL FLUID 

2.1 CHAPTER SUMMARY 

Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of 

neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers 

for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from 

sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using 

label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1,712 CSF 

proteins were detected and relatively quantified by spectral counting. Levels of several proteins with 

diverse biological functions were significantly altered in sALS samples. Enrichment analysis was 

used to link these alterations to biological pathways, which were predominantly related to 

inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF 

proteomic profiles to create a support vector machines classifier capable of discriminating training 

set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing 

protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3 were 

identified by feature selection and externally validated. The resultant classifier distinguished ALS 

from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. 
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Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS 

protein/pathway alterations and candidate disease biomarkers. 

2.2 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder marked by the 

loss of motor neurons of the corticospinal pathway. ALS is the most common form of adult-onset 

motor neuron disease, with an overall incidence of approximately 2-3 per 100,000
325-327

. The disease 

is relentlessly progressive, with most patients dying from respiratory failure within 3-5 years of 

diagnosis
328-331

. 

At present, diagnosis of ALS is made clinically by use of the symptom-based El Escorial 

diagnostic criteria. While clinically stringent, the method does not take into account the underlying 

etiology of the disease. Numerous mechanisms have been proposed to cause motor neuron death in 

ALS, including oxidative stress, mitochondrial dysfunction, impaired RNA metabolism, protein 

aggregation, and proteasomal/autophagic dysfunction, among others
332-335

. These phenomena occur 

in a heterogeneous fashion in sporadic ALS cases, as do differences in site of onset and rate of 

disease progression. This has led to the suggestion that ALS is actually a constellation of disorders of 

diverse cause united by the death of motor neurons and common symptoms
336,337

. Thus, a more 

accurate understanding of the underlying protein/pathway alterations accompanying sporadic ALS 

could enhance diagnostic accuracy, identify novel therapeutic targets, provide relevant indices of 

disease progression/therapeutic response, and aid in stratification of the patient population for 

research studies and clinical trials.  
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Proteomic profiling of cerebrospinal fluid (CSF) offers considerable promise towards these ends. In 

the context of ALS, CSF is a proximal fluid to the site of disease
338

, which gives it several 

advantages as a biomarker source over more distal fluids, such as plasma. One such advantage is its 

less expansive dynamic range of protein concentrations compared to plasma.  By reducing levels of 

highly abundant proteins such as albumin, sensitive detection and relative quantification of low 

abundance, disease-associated proteins can be achieved
339,340

. CSF and other proximal fluids are also 

hypothesized to contain a higher concentration of disease-associated proteins as a result of proximity 

to the diseased tissue microenvironment, from which such proteins may be secreted or released. For 

example, CSF TDP-43, an RNA binding protein known to form inclusions in neurons in ALS and 

FTLD-TDP, has been suggested as a possible biomarker for these disorders
341-343

. Thus, pathological 

intracellular changes resulting from disease can be detected externally through proximal fluids, such 

as CSF. CSF has proven useful for identifying biomarkers for other neurodegenerative diseases, 

including Alzheimer’s disease
344

, Parkinson’s disease
345

, and multiple sclerosis
346

. CSF-based ALS 

biomarkers could likewise be used for several purposes, including identifying novel disease 

mechanisms, diagnostic testing
347

, and evaluating drug efficacy
348

.  

The ability to detect and quantify the CSF proteome has been aided considerably by the 

development of label-free mass spectrometric comparative approaches, such as ion abundance and 

spectral counting
349-351

. Several studies have shown that the values produced by these label-free 

methods reliably correlate with overall protein abundance across orders of magnitude in complex 

samples. Following appropriate processing (including filtering and normalization
350

), robust 

statistical methods can be applied to identify proteins of differential abundance between samples, as 

well as associated pathways/processes from databases such as Gene Ontology, Reactome, or 

KEGG
352,353

. Moreover, when combined with an appropriate feature selection method
354

, machine-
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learning approaches can be applied to such datasets to build parsimonious classifiers that, e.g., 

distinguish healthy from diseased samples based on protein profiles
354-358

. Such methods have been 

used to define the normal human CSF proteome. A recent study identified 2,630 proteins from a 

group of healthy individuals using immunoaffinity depletion of abundant proteins, multiple liquid 

chromatography separations, and label-free quantitation
320

. Moreover, 56% of these proteins were 

CSF-specific. This study and others suggest that the CSF proteome is relatively stable across time 

and that inter-subject differences are considerably greater than intra-subject longitudinal 

differences
320,321

, highlighting the utility of CSF for biomarker discovery.  

Several previous studies have attempted to discover CSF-based biomarkers of ALS using 

mass-spectrometric methods
359-363

. A limitation of these studies is the small overall number of CSF 

samples and, consequently, proteins, peptides, or M/Z peaks detected, which can limit downstream 

data analysis and the detection of low-abundance, disease-associated proteins. The present study, by 

contrast, benefitted from an extensive patient and control population that dramatically enhanced our 

ability to identify CSF proteins. Subjects were segmented into groups based on age at symptom 

onset (< 40, 40-60, or > 60 years old) and, for ALS subjects, site of symptom onset (limb or bulbar). 

This grouping strategy was selected to reduce non-contributing inter-subject variability, while 

preserving disease-associated differences. Moreover, pooling of samples was used to maximize the 

sensitivity of protein detection.  

The goals of this study, thus, were two-fold. First, we sought to use LC-MS/MS label-free 

methods to characterize the CSF proteome in ALS, healthy controls, and other neurologic disease 

subjects to identify disease-associated alterations in proteins and biological pathways. Second, we 

sought to identify CSF proteins that could distinguish sALS from both healthy control and other 
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neurological disease subjects by applying feature selection and machine learning methods to our 

CSF proteomic profiles.   

2.3 MATERIALS AND METHODS 

2.3.1 Subjects and CSF Collection 

In the first phase of the study, CSF samples from 90 sporadic amyotrophic lateral sclerosis (sALS), 

80 healthy control (HC), 20 multiple sclerosis (MS), 20 Alzheimer’s disease (AD), 10 lower motor 

neuron disease (LMND), 10 upper motor neuron disease (UMND), and 15 familial ALS (fALS) 

subjects were collected. These samples were pooled into 9 sALS, 8 HC, 2 MS, 2 AD, 1 LMND, 1 

UMND, and 2 fALS samples for discovery profiling (training set). Subjects were assigned to a given 

pool based on age and disease status, as indicated in Table 1, and all pools were gender matched. 

Each pool contained 200 µL of CSF from each subject in that pool. The MS, AD, LMND, and 

UMND samples were collectively grouped as “other neurological diseases” (OND, n=6) for 

subsequent statistical analyses. A separate set of 9 sALS, 7 fALS, and 4 HC CSF samples were 

individually processed for LC-MS/MS and used in the test set for validation of the classifier 

generated from our training set of pooled samples described above. The demographics of these 

individual samples are also described in Table 1. 

Revised El Escorial criteria were used to diagnose all ALS subjects, with 18% diagnosed as 

definite ALS, 33% probable ALS, 24% probable/lab supported ALS, and 25% possible ALS. CSF 

samples were obtained by lumbar puncture from subjects at either the University of Pittsburgh 
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Medical Center (UPMC) or Massachusetts General Hospital (MGH) upon informed patient consent. 

The study was approved by both institutional review boards.  

Following collection, all samples were spun at 3000 rpm at 4 °C for 10 minutes to remove 

any cells and debris, mixed by inversion, aliquoted, and stored in protein low bind polypropylene 

tubes at –80 °C within 2 hours of harvesting. Only CSF samples without visible blood were 

processed by centrifugation. Hemoglobin levels in all final CSF samples were measured by ELISA 

to eliminate those with evidence of significant levels of hemoglobin, denoting blood 

contamination
364

.    

2.3.2 CSF Preparation and Digestion 

To enhance the detection of low-abundance CSF proteins, abundant proteins were depleted using the 

Multi-Affinity Removal System spin cartridge (Agilent; Santa Clara, CA, USA) that removes the 6 

most abundant human CSF proteins (albumin, IgG, IgA, haptoglobin, transferrin, and α-1-

antitrypsin) according to the manufacturer’s protocol. Depleted samples were buffer exchanged into 

50 mM ammonium bicarbonate (NH4HCO3) by centrifugation using Amicon Ultra3K columns 

(Millipore; Darmstadt, Germany) to a final volume of 300 μL. 

The samples were reduced with addition of 10 mM DTT at 56 ºC for 30 minutes. Samples 

were then alkylated in 55 mM iodoaceteamide in the dark at room temperature for 30 minutes. Next, 

3 μL of 1% ProteaseMAX and Trypsin Gold (Promega; Madison, WI, USA) were added to the 

samples at a 1:20 ratio and digested at 37 ºC for 9 hours. All samples were then de-salted using 

Pepclean C-18 spin columns (Pierce; Rockford, IL, USA). Peptide digests were eluted with 20 μL 

0.1% TFA and 60% ACN by spinning at 1500 g for 1 minute twice. Finally, samples were dried by 

vacuum centrifugation.   
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2.3.3 Liquid Chromatography Tandem Mass Spectrometry 

Peptide digests were re-suspended in 0.1% TFA and analyzed in triplicate by nanoflow reversed-

phase liquid chromatography tandem mass spectrometry (LC-MS/MS) using a Dionex Ultimate 

3000 LC system (Dionex Corporation; Sunnyvale, CA, USA) coupled online to a linear ion trap 

(LIT) mass spectrometer (LTQ, ThermoFisher Scientific; San Jose, CA, USA). Run orders for each 

experiment were randomly determined. Separations were performed using 75 μm i.d. x 360 o.d. x 10 

cm long fused silica capillary columns (Polymicro Technologies; Phoenix, AZ ,USA) that were 

slurry packed in house with 5 μm, 300 Å pore size C-18 silica-bonded stationary phase (Jupiter, 

Phenomenex; Torrance, CA, USA). Approximately 1 g of total peptide digest, as determined by 

BCA assay, was injected onto a C-18 trap column (Dionex, ThermoFisher Scientific; San Jose, CA, 

USA), the column was washed for 3 min with mobile phase A (2% acetonitrile, 0.1% formic acid in 

water) at a flow rate of 30 μL/min. Peptides were eluted using a linear gradient of 0.3% mobile 

phase B (0.1% formic acid in acetonitrile)/min for 130 minutes, then to 95% B in an additional 10 

min, all at a constant flow rate of 0.20 μL/min. Column washing was performed at 95% B for 20 

minutes, after which the column was re-equilibrated in mobile phase A prior to subsequent 

injections. The LIT-MS was operated in a data dependent MS/MS mode in which each full MS scan 

was followed by five MS/MS scans where the five most abundant peptide molecular ions are 

selected for collision-induced dissociation (CID), using a normalized collision energy of 30%. Data 

were collected over a broad mass to charge (m/z) precursor ion selection scan range of m/z 375-1800 

with an isolation window of 3 m/z. Dynamic exclusion was used to minimize redundant selection of 

peptides previously selected for CID with the following settings: repeat count = 1, repeat duration = 

30 s, exclusion list size = 500, exclusion duration = 90 s and expiration S/N threshold = 3. 
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2.3.4 Spectral Counting 

Tandem mass spectra were searched against a combined UniProt human protein database from the 

European Bioinformatics Institute (http://www.ebi.ac.uk/integr8, downloaded 10-05-2010, 58,769 

sequences) using the SEQUEST algorithm in BioworksBrowser (v3.31, ThermoFisher Scientific; 

Waltham, MA, USA). For a fully tryptic peptide to be considered legitimately identified, it had to 

achieve charge state and proteolytic cleavage-dependent cross correlation (Xcorr) scores of 1.9 for 

[M+H]1+, 2.2 for [M+2H]2+ and 3.5 for [M+3H]3+, and a minimum delta correlation ΔCn of 0.08. 

Additionally, peptides were searched for methionine oxidation with a mass addition of 15.9949 and 

serine, threonine and tyrosine phosphorylation with a mass addition of 79.9663. A false peptide 

discovery rate less than 2% was determined by searching the primary tandem MS data using the 

same criteria against a decoy database wherein the protein sequences are reversed
365

. Results were 

further filtered using software developed in-house, and differences in protein abundance between the 

samples were derived by summing the total CID events that resulted in a positively identified peptide 

for a given protein in accession across all samples (spectral counting)
349-351

. We further filtered our 

data by specifying that for a protein to be considered for subsequent statistical analysis, at least 2 

unique peptides of the protein had to be detected in at least one pooled sample, in keeping with 

recent guidelines designed to improve reproducibility in spectral count data analyses
366

.  

2.3.5 Statistical Analysis of Relative Protein Abundance 

We used the beta binomial test for spectral count data
367

 together with normalization to total spectral 

counts
27

 to assess relative levels of identified proteins between groups. To control the false discovery 

rate (FDR)
368 

of the test, we imputed obtained p values into the R package “Q Value” to generate q 
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values from the associated p values. Bootstrap-based resampling of p values
369-373

 was used to 

correct for multiple testing, with the FDR set at 0.05. To provide further insight into the relative 

differences in protein abundance between groups, we computed log2 fold difference values for each 

2 group comparison (sALS/HC, sALS/OND, OND/HC). A value of “1” was added to each protein’s 

spectral count value to account for proteins with a zero spectral count before computing the fold 

difference
374

. To further control false positives in our analysis, we used a joint q value and fold 

change criteria to assign statistical significance to a given protein identified in our analysis. Previous 

work has shown that proteins with high spectral count values tend to produce low fold differences 

and vice versa
350,366

. Accordingly, we used a minimum log2 fold difference of 0.26 for proteins with 

an average spectral count of 100 or more, a 0.58 log2 fold difference for proteins with an average 

spectral count of 1 to 100, and a 0.77 log2 fold difference for proteins with an average count of less 

than 1 to filter our list of proteins with a q value of less than 0.05.   

2.3.6 Ontological Enrichment Analysis 

After filtering our dataset, we used the program STRAP (version 1.5)
375

 to characterize the CSF 

proteome based on the annotations of each identified protein in the Gene Ontology (GO) domains 

“Biological Process”, “Cellular Complex”, and “Molecular Function”. We next visualized our list of 

statistically significant proteins in a network layout using Cytoscape
376

. Proteins were visualized first 

by log2 fold difference values using a red (decreased in x for the x/y fold difference) to green 

(increased in x for the x/y fold difference) gradient above each protein’s name.   

To identify biological pathways associated with our list of differentially abundant proteins, 

we performed enrichment analysis using ClueGO
377

. The hypergeometric test (with Benjamini-

Hochberg multiple testing correction
368

) was used to assess enrichment of categories in the GO 
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domain “Biological Process”
378

. Consistent with recent guidelines for the selection of a reference 

set
379,380

, we used our list of all identified proteins across groups as the reference set for enrichment 

analysis. In the resultant graph, the proportion of shared proteins associated with a pair of given GO 

terms was evaluated using the kappa statistic. Pairs of terms (nodes) with a kappa value of at least 

0.4 were connected with edges in the network, with the edge thickness reflecting the kappa score 

value. 

Following the identification of over-represented GO Biological Processes, we used 

Cluepedia
381

 to enrich the networks created from these terms. First, we visualized leading terms (GO 

Biological Process terms with the highest number of statistically significant proteins) together with 

the proteins associated with that term and the respective fold difference. In the second phase of 

enrichment, we sought to provide a functional context to the alterations in relative protein levels we 

identified. To that end, we selected an over-represented GO Biological Process (“Regulation of 

Extracellular Matrix” [ECM]) and visualized known STRING
382,383

 actions (activation, inhibition, 

expression, and post-translational modification) for statistically significant ECM proteins, other 

ECM proteins detected in our CSF samples, and several ECM proteins not found in our CSF 

samples. STRING action scores were used to connect nodes (proteins) in the network. All final 

figures were made in Adobe Illustrator CS5 (Adobe Systems, Mountain View, CA, USA).  

 

2.3.7 Feature Selection, Classifier Construction, and Validation 

In the second phase of the study, we used our CSF proteomic profiles to construct a classifier 

capable of separating ALS CSF samples from HC and OND CSF samples. The data mining software 

package Weka
384

 was used for this purpose. The classification task was the binary separation of ALS 
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samples (ALS) from HC and OND (collectively, NON) samples. The training set included all of our 

pooled sALS and HC CSF proteomic profiles and 3 of the 6 OND proteomic profiles. An 

independent test set comprised of the remaining 3 OND samples, 9 individual sALS samples, 2 

pooled fALS samples, 7 individual fALS samples, and 4 individual HC samples was used for 

subsequent validation of the classifier. The assignment of samples to the training or test set is 

indicated in Table 1.  

To develop a model resilient to overfitting of the training set, we used a support vector 

machines algorithm for classification and performed filtering and feature selection on our list of 

proteins in the training set samples. Filtering was performed by removing any protein from our list if 

the mean spectral count of any of the classes was zero. Golub’s index (GI), a feature selection 

method previously used for both disease classification
385

 and feature selection
386

 of spectral count 

data, was used to select proteins for the classifier. The GI for a protein, i, was calculated as follows: 

GIi = (µi
ALS

 - µi
NON

) / (σi
ALS

 + σi
NON

) 

where µi
CLASS

 is the mean normalized spectral count for protein i for the indicated class and σi
CLASS

 is 

the standard deviation for protein i for the indicated class. Proteins with a GI ≥ 1.5 were included in 

the classifier. Weka’s linear support vector machine (SVM) learning algorithm was used to build the 

classifier. Consistent with prior studies
386,387

, we used a complexity parameter, C, of 100 for 

classifier training and test set evaluation. To evaluate the performance of the classifier on the 

training set, we used stratified 10-fold cross validation. We then validated our classifier on the test 

set described above and in Table 1. To evaluate the performance of the classifier on the test set, we 

used common measures of predictive performance (ROC curve, sensitivity, specificity, ROC AUC, 

and F-measure).  
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2.3.8 Validation of Selected Proteins 

To validate our LC-MS/MS results, we used several complementary techniques. Proteins selected for 

our SVM classifier were validated using Western blotting (WB). Polyacrylamide gel electrophoresis 

(PAGE), electrophoretic transfer to PVDF membrane, and WB were performed as previously 

described
388

. Briefly, equal volumes of CSF were loaded in each SDS-PAGE gel lane and total 

protein by reversible PVDF membrane stain (G-Biosciences; St. Louis, MO, USA) was used as a 

loading control. For WB experiments, the following antibodies were used: rabbit-anti-WDR63 

(Abcam; Cambridge, MA, USA), rabbit-anti-APLP1 (Proteintech; Chicago, IL, USA), rabbit-anti-

SPARCL1 (Lifespan Biosciences; Seattle, WA, USA), rabbit-anti-CADM3 (Sigma Aldrich; St. 

Louis, MO, USA), and rabbit-anti-secretogranin I (Proteintech; Chicago, IL, USA). To permit blot to 

blot comparisons, Western blot data were normalized using sum total normalization
389

. 

ELISAs for complement C3 and cystatin C were performed as previously described
390,391

.  

Immunohistochemistry and light microscopy of spinal cord tissues for tenascin R were performed as 

previously described
392

. Immunohistochemistry, immunofluorescence, light microscopy, and 

confocal microscopy of spinal cord tissues for eIF 4e-transporter (4e-T) were performed as 

previously described
392

. 
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2.4 RESULTS 

2.4.1 Global CSF Analysis 

Our experimental work flow is illustrated in Figure 2.1. The demographics of each of our pooled 

samples are shown in Table 2.1. Within each of these pooled CSF samples, we identified an average 

of 6,137 peptides, corresponding to an average of 1,234 unique proteins per sample. Collectively, we 

identified 1,712 unique proteins across all groups after filtering. (Supplemental Table 1). To further 

understand the composition of the obtained CSF proteome, we grouped these proteins based on their 

annotations in the Gene Ontology (GO) domains “Biological Process”, “Cellular Complex”, and 

“Molecular Function”. Figure 2.2 shows the proportional representation of the various sub-categories 

in each GO domain with each value expressed as a percentage of the total. Sub-category proportions 

did not differ substantially between sporadic ALS (sALS), healthy control (HC), and other 

neurological disease (OND) groups (data not shown). Our results indicate that proteins associated 

with diverse biological processes, cellular complexes, and molecular functions are found in the CSF 

proteome. Notably, we detect proteins from numerous intracellular organelles, including the nucleus, 

mitochondria, ribosomes, and ER in the CSF, consistent with previous work
320,321

. 
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Figure 2.1 Experimental workflow. The process of sample preparation, data acquisition, and data 

analysis are shown in a flowchart. sALS = sporadic amyotrophic lateral sclerosis, HC = healthy 

control, OND = other neurological disease.  
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Table 2.1 Subject demographics. Patient group, diagnosis, class, and age range (years) are shown. 

For ALS samples, the site of disease onset and use of riluzole are indicated. The set column indicates 

the classifier evaluation set a sample was assigned to. Samples are ordered by class then age. HC = 

healthy control, MS = multiple sclerosis, LMND = lower motor neuron disease, UMND = upper 

motor neuron disease, AD = Alzheimer’s disease, OND = other neurological disease. 

 

POOLED SAMPLES 
 

Group Diagnosis Class Age Range Site of Onset Riluzole Set 
1 sALS ALS < 40 Limb No Train 

2 sALS ALS < 40 Limb No Train 

3 sALS ALS 40-60 Limb No Train 

4 sALS ALS 40-60 Limb Yes Train 

5 sALS ALS 40-60 Limb Yes Train 

6 sALS ALS 40-60 Bulbar No Train 

7 sALS ALS > 60 Limb No Train 

8 sALS ALS > 60 Limb Yes Train 

9 sALS ALS > 60 Bulbar No Train 

10 HC HC < 40 n/a n/a Train 

11 HC HC < 40 n/a n/a Train 

12 HC HC < 40 n/a n/a Train 

13 HC HC 30-60 n/a n/a Train 

14 HC HC 40-60 n/a n/a Train 

15 HC HC 40-60 n/a n/a Train 

16 HC HC > 60 n/a n/a Train 

17 HC HC > 60 n/a n/a Train 

18 MS OND < 40 n/a n/a Test 

19 MS OND 40-70 n/a n/a Train 

20 LMND OND 40-65 n/a n/a Test 

21 UMND OND 40-65 n/a n/a Train 

22 AD OND > 60 n/a n/a Test 

23 AD OND > 60 n/a n/a Train 

24 fALS ALS 30-60 Limb No Test 

25 fALS ALS > 40 Limb No Test 
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INDIVIDUAL SAMPLES 
 

Subject Diagnosis Class Age Site of Onset Riluzole Set 
1 sALS ALS 42 Limb Yes Test 

2 sALS ALS 44 Limb Yes Test 

3 sALS ALS 44 Limb Yes Test 

4 sALS ALS 53 Limb Yes Test 

5 sALS ALS 54 Limb Yes Test 

6 sALS ALS 55 Limb Yes Test 

7 sALS ALS 75 Limb Yes Test 

8 sALS ALS 76 Limb Yes Test 

9 sALS ALS 77 Limb Yes Test 

10 fALS ALS 50 Limb No Test 

11 fALS ALS 52 Limb Yes Test 

12 fALS ALS 52 Limb Yes Test 

13 fALS ALS 53 Limb No Test 

14 fALS ALS 60 Limb No Test 

15 fALS ALS 62 Limb No Test 

16 fALS ALS 62 Limb Yes Test 

17 HC HC 33 n/a n/a Test 

18 HC HC 50 n/a n/a Test 

19 HC HC 51 n/a n/a Test 

20 HC HC 65 n/a n/a Test 
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Figure 2.2 Gene Ontology (GO) domain overview of all identified proteins. All identified 

proteins were input into the three GO domains – Biological Process, Cellular Complex, and 

Molecular Function – and the resultant terms and percentage of proteins associated with these terms 

are visualized as pie charts. Term names and percentages are located next to their position on the 

chart. Percentages correspond to all 1,712 proteins identified across all classes (sALS, HC, and 

OND). 

2.4.2 Statistical Analysis of Relative Protein Abundance 

To identify proteins of differential abundance in the CSF between sALS, HC, and OND groups, we 

performed univariate statistical analysis. Filtering the list of statistically significant proteins from this 

analysis using a fold difference criteria (see Experimental Section) predominantly had the effect of 

removing several proteins for which the class average spectral count was less than 1. In total, we 

identified 123 proteins that met our FDR and fold difference significance criteria (Supplemental 

Table 2). The top 20 proteins of increased and decreased abundance are shown in Table 2.2. Several 

proteins with documented associations with ALS were identified in the top 20 protein list, including 

complement C3, cystatin C, neurofilament medium polypeptide, ephrin type-A receptor 4, and 

secretogranin 2. Another consistent theme in the top 20 protein list was  a decrease in relative levels 

of extracellular matrix (ECM)-associated proteins in sALS, including tenascin R, semaphorins 7A 

and 3G, cell adhesion molecule 3, neurexin-3-alpha, agrin, and oligodendrocyte-myelin glycoprotein 

(Table 2.2).  
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Table 2.2 Top 20 increased and decreased CSF proteins. The top 20 proteins with statistically 

significant increased or decreased relative abundance in sALS samples are shown by q value rank 

(lowest to highest). Protein name, gene name, and Uniprot accession number is shown and protein 

isoform is indicated in the accession number. The log2 fold difference (FD) for each two group 

comparison is shown. 

INCREASED ABUNDANCE 
      

Protein Gene Name Accession q 
FD 

sALS/HC 
FD 

sALS/OND 
FD 

OND/HC 

Neurofilament medium polypeptide NEFM P07197 <0.0001 2.3 2.4 -0.1 

WD repeat-containing protein 63 WDR63 Q8IWG1 <0.0001 1.8 2.3 -0.5 

Complement C3 C3 P01024 <0.0001 0.3 0.1 0.2 

Very large A-kinase anchor protein CRYBG3 Q68DQ2 0.0004 1.5 1.3 0.2 

Acid phosphatase-like protein 2 ACPL2 Q8TE99 0.0010 0.9 2.0 -1.1 

Serine/threonine-protein kinase PLK1 PLK1 P53350 0.0010 1.2 1.4 -0.2 

Protein phosphatase 1J  PPM1J Q5JR12 0.0013 1.4 1.3 0.1 

AF4/FMR2 family member 4 AFF4 Q9UHB7 0.0041 0.6 1.5 -0.8 

PDZDC RING finger protein 4 PDZRN4 Q6ZMN7 0.0044 2.1 1.6 0.5 

Actin ACTB P60709 0.0044 1.5 0.4 1.1 

Disks large-associated protein 1  DLGAP1 O14490 0.0050 1.3 0.3 0.9 

Tripartite motif-containing protein 43B TRIM43B A6NCK2 0.0050 1.2 0.8 0.5 

ALK tyrosine kinase receptor ALK Q9UM73 0.0056 1.4 1.2 0.2 

Protein Daple CCDC88C Q9P219 0.0056 1.1 0.7 0.5 

SMG5 SMG5 Q9UPR3 0.0056 1.0 0.8 0.2 

V-set and IG domain protein 4  VSIG4 Q9Y279 0.0066 1.2 0.7 0.5 

Tafazzin TAZ Q16635 0.0066 0.9 0.7 0.2 

Protein XXbac-BCX360G3.2-001 BCX360G3.2 B0V386 0.0088 1.1 0.9 0.2 

OTU domain-containing protein 7A OTUD7A Q8TE49 0.0105 0.8 1.2 -0.3 

Hyaluronan-binding protein 2 HABP2 Q14520 0.0107 1.1 0.9 0.2 
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DECREASED ABUNDANCE 
      

Protein Gene Name Accession q 
FD 

sALS/HC 
FD 

sALS/OND 
FD 

OND/HC 

Multiple EGF-like domains protein 8 MEGF8 Q7Z7M0 0.0004 -1.1 -0.3 -0.8 

Cystatin-C  CST3 P01034 0.0004 -0.1 -0.3 0.1 

Golgi membrane protein 1 GOLM1 Q8NBJ4 0.0005 -1.4 -0.1 -1.2 

Cell adhesion molecule 3  CADM3 Q8N126 0.0013 -0.9 -0.9 0.0 

Semaphorin-7A  SEMA7A O75326 0.0038 -0.8 -0.5 -0.3 

Semaphorin-3G  SEMA3G Q9NS98 0.0040 -0.6 1.0 -1.6 

Secretogranin-2  SCG2 P13521 0.0040 -0.6 -0.2 -0.4 

Neurexin-3-alpha  NRXN3 Q9Y4C0 0.0044 -0.7 0.2 -1.0 

Putative PRAME family member 24 PRAMEF24 A6NMC2 0.0050 -1.5 -1.1 -0.4 

Cartilage acidic protein 1  CRTAC1 Q9NQ79 0.0050 -0.3 0.6 -0.9 

Oligodendrocyte-myelin glycoprotein OMG P23515 0.0058 -0.9 -0.8 -0.2 

Disks large homolog 5 DLG5 Q8TDM6 0.0064 -1.4 -0.8 -0.6 

Testican-2 SPOCK2 Q92563 0.0114 -0.9 0.2 -1.2 

Cathepsin D  CTSD P07339 0.0142 -0.2 -0.7 0.5 

Agrin AGRN O00468 0.0158 -0.7 -0.4 -0.3 

Gelsolin  GSN P06396 0.0165 -0.1 -0.2 0.1 

Follistatin-related protein 4  FSTL4 Q6MZW2 0.0176 -0.6 0.9 -1.5 

Di-N-acetylchitobiase CTBS Q01459 0.0183 -1.3 -1.2 -0.1 

Delta/Notch-like EGFR receptor DNER Q8NFT8 0.0194 -1.4 -0.6 -0.8 

Ephrin type-A receptor 4  EPHA4 P54764 0.0202 -0.6 -0.1 -0.5 

 

To identify biological pathways associated with our list of differentially abundant CSF 

proteins, we performed enrichment analysis in the Gene Ontology (GO) Biological Process domain. 

We found 27 enriched GO terms that were over-represented in our list of statistically significant 

proteins. These results are shown in Figure 2.3. Several themes emerged from our analysis of over-

represented biological processes. We identified many neuron-specific processes, including “synapse 



 76 

organization”, “regulation of axonogenesis”, “regulation of synaptic plasticity”, and “fasciculation of 

sensory neuron axon”. Of note, all proteins comprising the term “fasciculation of sensory neuron 

axon” (ephrin type A receptors 3 and 4 and multiple epidermal growth factor-like domains protein) 

were significantly altered in sALS samples compared to healthy control samples. Other major 

processes identified from the analysis included “regulation of extracellular matrix”, “acute 

inflammatory response”, and “glial cell differentiation”, each of which has clear relevance to ALS.  

 

Figure 2.3 GO Biological process enrichment. Proteins whose levels were significantly different 

between sALS, HC, and OND groups were used to identify over-represented GO Biological Process 

terms. The results are shown in a network view where node size corresponds to the term’s p value 

and edge thickness corresponds to kappa score value as indicated in the legend at right. Nodes are 

positioned for ease of interpretation and edge length is arbitrary. Leading terms, GO terms with the 

highest number of included proteins, are shown in a larger, colored font.   
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Taking those biological processes with the highest number of associated proteins, we next 

visualized these terms and their associated proteins together in a network view (Figure 2.4). A 

protein’s association with a term is indicated by an edge connecting the two. The relative 

contributions of proteins of increased and decreased abundance in sALS can be seen in this view. 

For example, the identification of the terms “acute inflammatory response” and “regulation of 

inflammatory response” is mainly due to increased levels of proteins associated with these terms in 

sALS CSF samples, particularly those proteins of the complement pathway. Likewise, the 

enrichment of the terms “synapse organization” and “extracellular matrix organization” stems 

primarily from the decreased levels of proteins associated with these terms in sALS samples. 

Collectively, this network view underscores the notion that the ALS disease process is associated 

with a concomitant decrease in synaptic and ECM proteins and increase in inflammation-related 

proteins within the CSF. We also note that proteins with a high degree of connectivity in the network 

of Figure 2.4 (i.e., those associated with several terms) tended to be ECM-associated proteins, such 

as tenascin R and laminin subunit alpha 2 (LAMA2), providing further evidence that ECM 

alterations are a preponderant pathological phenomenon in sALS (Figure 2.4). 
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Figure 2.4 GO leading terms with associated proteins. Leading terms from Figure 2.3 are shown 

with their associated proteins. Each two-group log2 fold difference (sALS/HC, sALS/OND, 

OND/HC) is visualized using a red to green gradient. Proteins with a log2 fold difference > 0.58 for 

sALS relative to both HC and OND groups are emphasized as indicated, as are externally validated 

proteins.  

 

To provide functional context and a pathway-level understanding of the observed ECM 

alterations, we linked ECM proteins using STRING action scores to create a network of the 

“regulation of extracellular matrix” GO term. We note that not all proteins from the term are shown 

to enhance the interpretability of the figure. The final network is shown in Figure 2.5. Several 

findings emerge from this analysis. First, we provide clear evidence of the power of LC-MS/MS 

CSF proteomic profiling to identify ECM-associated proteins. Of the 102 proteins shown in Figure 

2.5, 85 could be detected in at least one of our pooled CSF samples (those that could not are 
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bracketed with parentheses in Figure 2.5). Second, proteins whose levels are significantly altered in 

sALS CSF converge on few common targets, suggesting that pathological ECM protein and 

signaling alterations are widespread in ALS. Lastly, we again note that the majority of altered ECM 

proteins are decreased in sALS samples. The network view thus emphasizes that these decrements 

may have widespread signaling effects, particularly for proteins such as gelsolin (GSN) that act on 

numerous ECM proteins.   
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Figure 2.5 Enrichment of “Regulation of Extracellular Matrix” GO term. Statistically 

significant proteins from the GO Biological Process term “Regulation of Extracellular Matrix” were 

visualized as circular nodes, with log2 fold difference (on a red to green gradient) shown in the three 

squares above each node. Proteins with a log2 fold difference > 0.58 for sALS relative to both HC 

and OND groups are emphasized as indicated, as are externally validated proteins. The network was 

enriched using STRING action scores (activation, inhibition, expression, and post-translational 

modification; colored as indicated) to add associated proteins to the network. Statistically significant 

protein names from the LC-MS/MS data are shown in red font for emphasis. Names of proteins not 
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detected in our LC-MS/MS analysis are bracketed by parentheses. Edge width reflects the strength of 

the STRING action score as indicated in the legend and edge length is arbitrary.  

2.4.3 Validation of Known ALS Biomarkers 

We observed significant differences in a number of proteins previously identified as candidate ALS 

CSF biomarkers by LC-MS/MS. To further evaluate the utility of these proteins as CSF biomarkers, 

we performed ELISAs and Western blots on individual CSF samples from subjects comprising our 

ALS, HC, and OND pooled samples. The results of these experiments are shown in Figure 2.6. 

Complement C3 levels were measured by ELISA in 23 sALS, 26 HC, and 12 OND CSF samples. 

Statistically significant increases in CSF C3 levels were observed when comparing sALS or OND 

samples to HC samples (mean sALS = 3.42 ± 0.29 µg/mL, mean OND = 3.40 ± 0.37 µg/mL, and 

mean HC = 2.22 ± 0.12 µg/mL, p < 0.001 for the sALS/HC comparison, p < 0.01 for the OND/HC 

comparison). We measured cystatin C levels by ELISA in 20 sALS samples, 8 HC samples, and 11 

OND samples. A statistically significant decrease in cystatin c levels was observed in sALS CSF 

relative to HC (means = 3.27 ± 0.34 µg/mL and 4.98 ± 0.36 µg/mL, respectively, p < 0.01). A non-

significant decrease in cystatin C levels was seen when comparing sALS samples to OND samples 

(means = 3.27 ± 0.34 µg/mL and 4.26 ± 0.35 µg/mL, respectively, p > 0.05). Levels of secretogranin 

I were measured by Western blotting of 14 sALS, 10 HC, and 10 OND CSF samples. Secretogranin 

I was significantly decreased in sALS compared to HC (p < 0.01) and OND (p < 0.01) samples.  
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Figure 2.6 Validation of known ALS biomarkers. A. Complement C3 levels in CSF from sALS, 

HC, and OND subjects were measured by ELISA in triplicate. The concentration of Complement C3 

(µg/mL ± SEM) is indicated on the y axis. B. Cystatin C levels in CSF from sALS, HC, and OND 

subjects were measured by ELISA. The concentration of cystatin C (µg/mL ± SEM) is indicated on 

the y axis. C. Relative levels of secretogranin I in CSF from sALS, HC, and OND subjects were 

measured by Western blot. The mean normalized integrated density value ± SEM is indicated on the 

y axis. For A-C. * = p < 0.001 for the indicated comparison, # = p < 0.01 for the indicated 

comparison. 

2.4.4 Validation of Protein Alterations in ALS Spinal Cord Tissue 

Selected proteins from our list of differentially abundant proteins were validated using 

immunohistochemistry and immmunofluorescence. Because decreases in ECM proteins were a 

consistent theme in our results, we stained 4 sALS and 4 HC lumbar spinal cord tissue sections with 

anti-tenascin R antibody. Tenascin R is a component of perineuronal nets, the densely organized 

extracellular matrix surrounding neurons. We observed a clear loss of tenascin R immunoreactivity 

surrounding motor neurons in sALS lumbar spinal cord that was not seen in HC subjects (Figure 

2.7). Thus, the ECM of the ALS-afflicted motor neurons shows perturbations consistent with the 

results of LC-MS/MS proteomic profiling of CSF.  
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Figure 2.7 Tenascin R validation. Lumbar spinal cord sections from sALS and HC patients were 

stained using a polyclonal anti-tenascin R antibody. Top Panel. Motor neurons from HC subjects 

show strong tenascin R immunoreactivity around the cell body. Bottom panel. Motor neurons from 

sALS cases show an absence of this staining pattern. All images were acquired with a 40x objective 

and the scale bar = 10 µm.  

 

LC-MS/MS also identified a significant increase in levels of the eIF 4e transporter (4e-T) in 

the CSF of sALS patients when compared to HC. 4e-T is a component of stress granules
393

 and we 

therefore performed tissue staining to determine if 4e-T is a component of inclusions in sALS spinal 

cord motor neurons, as has been observed for other stress granule-associated proteins
394

. We 

observed filamentous and granular nuclear 4e-T staining and cytoplasmic 4e-T-positive inclusions in 

lumbar spinal cord motor neurons in the 4 sALS cases examined (Figure 2.8. By contrast, the 4e-T 

staining in motor neurons of all 4 HC subjects was diffuse, non-filamentous, and nuclear. 
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Immunofluorescence microscopy was then used to determine if 4e-T inclusions were p62 positive. 

We observed considerable accumulation of autofluorescent cytoplasmic lipofuscin in motor neurons 

(Figure 2.8; arrowheads) that obfuscated the detection of cytoplasmic 4e-T. This accumulation was 

not present in the nucleus, however, and numerous nuclear, p62-positive 4e-T granules in sALS 

spinal cord motor neurons not seen in motor neurons of HC subjects are evident (Figure 2.8; arrows). 
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Figure 2.8 eIF 4e Transporter (4e-T) validation data. Lumbar spinal cord sections from sALS and 

HC patients were stained using a polyclonal 4e-T antibody. Top panels. Light microscopy was used 

to visualize 4e-T staining in the lumbar spinal cord of sALS and HC subjects. Staining in HC 

subjects is diffuse throughout the nucleus. In contrast, sALS cases show nuclear and cytoplasmic 

(arrows) 4e-T inclusions and a loss of diffuse staining. All images were acquired with a 40x 

objective and the scale bar = 10 µm. Bottom panels. Immunofluorescence was used to further 

characterize 4e-T alterations in sALS. sALS 4e-T nuclear inclusion staining overlaps with p62 

staining (arrows). Nuclear 4e-T staining in HC is diffuse and no nuclear p62 is observed (arrows). 
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The presence of cytoplasmic autofluorescent lipofuscin is prominent in both cases and is indicated 

by arrowheads. All images were acquired with a 63x objective and the scale bar = 10 µm. 

2.4.5 Classifier Construction and Machine Learning 

In the final phase of the study, we used our pooled sample CSF proteomic profiles from the training 

set to build a support vector machine (SVM) classifier capable of distinguishing ALS samples from 

non-ALS samples in an independent test set. We first used filtering to remove proteins for which any 

class mean spectral count was 0, as such proteins could lead to an overfitted classifier and, 

consequently, poor validation performance on separate test sets. Moreover, low CSF peptide counts 

may reflect low protein levels that can lead to an inability to validate protein levels via other 

methodologies.   

Feature selection was used to identify proteins that exhibited large alterations between ALS 

and HC/OND (collectively, NON) samples. Four proteins were selected for training of the classifier: 

WD repeat-containing protein 63 (WDR63), amyloid-like protein 1 (APLP1), SPARC-like protein 1 

(SPARCL1), and cell adhesion molecule 3 (CADM3). WDR63 was increased in the CSF of ALS 

samples, while the remaining three proteins were decreased in sALS samples relative to NON 

samples.  

These four proteins were used as features for building a linear SVM classifier using the 

training set samples. For the initial evaluation of the classifier, we used stratified 10-fold cross 

validation. All training set samples were correctly classified in the cross validation. An independent 

test set consisting of individual CSF samples analyzed by LC-MS/MS was used to further validate 

the classifier. Several familial ALS (fALS) samples were included to increase the size of the test set, 

as indicated in Table 1. While etiologically distinct from sALS subjects, we postulated that motor 
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neuron death may nevertheless produce changes in CSF protein levels that are common to both 

sALS and fALS. The performance metrics of the test set evaluation and an ROC curve are shown in 

Figure 2.9. The 4 protein classifier achieved 83% sensitivity and 100% specificity with the test set, 

misclassifying one sALS sample and two fALS samples. Inspection of the misclassified samples 

showed that relative levels of WDR63 were lower and relative levels of APLP1 were higher in these 

samples than in the other ALS test set samples.  

We then validated the levels of our four classifier proteins by Western blot (WB) in select 

individual CSF samples from the training set samples. The results of these experiments are shown in 

Figure 2.10. WB experiments were performed on sALS (n=15) samples, HC samples (n=12), and 

OND (n=10) samples. Relative levels of WDR63 were increased in sALS CSF compared to HC and 

OND samples (p < 0.001 for both comparisons). Two adjacent bands for WDR63 were observed and 

the results reflect levels of total WDR63 in the CSF. Relative levels of APLP1 were decreased in the 

CSF of sALS patients relative to HC (p < 0.001) and OND (p < 0.01) samples. Relative levels of 

SPARCL1 were decreased in the CSF of sALS patients relative to HC (p < 0.01) and OND (p < 

0.05) samples. Relative levels of CADM3 were decreased in the CSF of sALS patients relative to 

HC and OND samples (p < 0.001 for both comparisons).  
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Figure 2.9 Classifier performance. A. ROC curve showing the performance of the support vector 

machines classifier on an independent test set. The various levels of the decision threshold are shown 

as diamonds along the curve. B. Confusion matrix, classifier errors, and the indicated performance 

metrics are shown for the application of the classifier to an independent test set. 
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Figure 2.10 Validation of classifier proteins. Validation of Classifier Proteins. Relative levels of 

classifier proteins in CSF from training set sALS, HC, and OND subjects were measured by Western 

blot. The mean normalized integrated density value ± SEM is indicated on the y axis. A. WDR63. B. 

APLP1. C. SPARCL1. D. CADM3. For A-D, * = p < 0.001 for the indicated comparison, # = p < 

0.01 for the indicated comparison, and § = p < 0.05 for the indicated comparison. 
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2.5 DISCUSSION 

The goals of this study were two-fold. First, we sought to use LC-MS/MS to construct 

comprehensive CSF proteomic profiles of sALS, HC, and OND samples to identify ALS 

protein/pathway alterations. Second, we sought to build a classifier capable of distinguishing ALS 

from HC and OND samples using our CSF proteomic profiles. With regard to our first aim, we 

identified 1,712 proteins in the CSF across all groups. This number is consistent with recent studies 

characterizing the normal CSF proteome
320,321

. Similarly, our data sets show strong concordance in 

the proportion of all identified proteins assigned to the various Biological Process, Cellular 

Complex, and Molecular Function Gene Ontology domains, suggesting that the overall composition 

of the CSF proteome is relatively stable, despite multiple daily turnovers of the total CSF 

volume
395,396

. This, together with CSF’s proximity to the CNS tissue microenvironment, makes it an 

ideal biomarker source for neurological disorders such as ALS. The results also illustrate the 

considerable sensitivity that is achieved by pooling samples and using label-free relative 

quantitation, a finding that has been shown in other studies characterizing the CSF proteome
320,321

.  

The sensitivity of our LC-MS/MS method enabled the detection of differences in relative 

levels of many proteins between sALS and non-sALS samples. Several of these proteins have 

documented associations with ALS. For example, we detected and validated alterations in the 

previously described candidate ALS CSF biomarkers complement C3
390

, cystatin C
391,397

 and 

secretogranin I
398

. We also demonstrate decreases in the known ALS disease modifier
399

, ephrin type 

A receptor 4 (EphA4) in the CSF of ALS subjects. Reducing EphA4 expression or signaling 

prolongs survival in ALS model systems
399

, so the decrease we observe in ALS CSF may reflect a 

compensatory response by the CNS to the ALS disease process.  
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We used enrichment analysis to identify biological processes and pathways altered in ALS. 

The majority of over-represented processes were related to inflammation, synaptic activity, cell 

growth, or extracellular matrix (ECM) regulation. The latter three processes are similar to those 

recently identified using microarray analysis of gene expression in oculomotor and spinal motor 

neurons
400

, while elevations in inflammation-associated proteins, specifically those of the 

complement pathway, have been previously associated with human ALS
390,401-403

 and ALS model 

systems
404,405

. We detect elevations in several proteins of the complement pathway, confirming 

previously-described elevations of CSF C3
390,401

 and providing new evidence for an increase in C5 

(which is upregulated in animal models of ALS
405,406

) and C2, as well as decreased complement 

factor I. Our results support a role of elevated complement pathway activation as a contributing 

factor to motor neuron death and a potential therapeutic target. These complement pathway proteins 

may also be useful biomarkers to evaluate the effectiveness of drugs that target this pathway.  

Aberrant synaptic changes are also well-described in human ALS and ALS model systems. 

Axonal dying-back is recognized both as a pathologic feature and hypothesized causal mechanism in 

ALS
407,408

 and degenerative structural changes are observed at synapses of motor neurons and 

neuromuscular junctions (NMJ) in ALS spinal cord tissue
409,410

. We now identify candidate synaptic 

proteins that contribute to these pathological changes. For example, decreases in semaphorins 7A 

and 3G were observed in sALS CSF. The semaphorins act as axonal guidance molecules and have 

previously been linked to ALS
411,412

. They are expressed in a variety of cell types, including neurons, 

glia, regulatory T-cells, and vascular epithelial cells. Probing these cell types for altered levels of 

semaphorins and other synaptic proteins in ALS tissues or model systems may provide insights into 

how cell type-specific altered synaptic protein expression leads to changes in synapse structure and 

function that lead to or contribute to motor neuron degeneration in ALS.  
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Many of the synaptic proteins that were altered in sALS samples are also components of the 

extracellular matrix (ECM). Pathological ECM alterations have been described for ALS
413

 and ALS 

model systems
414

. Our results showed consistent decreases in levels of ECM proteins, including 

tenascin R, agrin, and cell adhesion molecule 3. These observations point to a loss of integrity of 

perineuronal nets (PNN), the highly specialized ECM surrounding neurons. The functions of PNNs 

are diverse and include physically surrounding neurons, protecting against harmful external 

agents
415

, influencing synaptic transmission
416

, and buffering against oxidative stress
417

. Validation 

of the decrease in tenascin R seen in CSF by immunohistochemistry of spinal cord tissues further 

establishes altered morphology and protein composition of PNNs as a pathological phenomenon in 

ALS, consistent with findings on TNR in ALS animal models
414

. As the alterations we observed 

were localized to motor neurons, we propose that pathological PNN alterations contribute to 

selective MN vulnerability in ALS.  

An implicit and overarching assumption of CSF proteomic profiling is the idea that protein 

alterations detected in CSF can provide evidence of intracellular changes resulting from the ALS 

disease process
363

. We showed previously that RBM45, an RNA binding protein whose levels are 

increased in the CSF of ALS patients
392

, forms cytoplasmic inclusions in motor neurons and glia of 

ALS patients. Similarly, we now show that increased levels of the stress-granule associated
393

 eIF4E 

transporter protein (4e-T) in the CSF of sALS patients correlate with its presence in p62-positive 

nuclear granules and cytoplasmic inclusions (Figure 2.8). Intranuclear inclusions are a pathological 

feature of sALS
418,419

 and we demonstrate the presence of a transport protein, 4e-T, in these 

inclusions. Moreover, while p62-positive intranuclear inclusions have been described in C9ORF72-

linked familial ALS tissue
419

, we demonstrate the presence of such inclusions for the first time in 

sporadic ALS patients. 
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Our second major objective was to build a discriminant classifier capable of distinguishing 

ALS patients from healthy controls and other neurodegenerative disease patients on the basis of the 

CSF proteomic profiles of each group. We
390

 and others
420 

have shown that the CSF protein levels 

and machine learning can be used to distinguish sALS and healthy control subjects. Whether this 

approach is also feasible for the simultaneous separation of sALS from HC and OND samples was 

unclear. As is typical for high-dimensional –omics data sets, we were able to build a classifier 

capable of correctly classifying all training set samples. Validation on an independent test set 

composed of sALS, fALS, HC, and OND samples demonstrated that the classifier generalized well, 

achieving 83% sensitivity and 100% specificity.  

Given the considerable clinical and pathological heterogeneity of ALS
332-335

, no biomarker 

(or panel of biomarkers) is likely to achieve 100% sensitivity and specificity when separating ALS 

from both HC and OND samples. Because ALS is a relatively rare disorder, the specificity of a 

classifier is of paramount importance. In this regard, our set of classifier proteins shows considerable 

promise, correctly classifying all HC and OND samples. The misclassified ALS samples had lower 

WDR63 and higher APLP1 levels than the other ALS samples profiled. Determining the relationship 

between WDR63 and APLP1 CSF levels and ALS disease mechanisms and clinical parameters, thus, 

is an important area of future research. Similar to other LC-MS/MS studies
386

, the sample size of 

both the training and test sets is small relative to the number of proteins identified. Future studies are 

thus needed to confirm the predictive ability of this biomarker panel with a larger set of samples.  

Previously identified CSF protein biomarkers for ALS have often been of increased 

abundance in ALS, such as complement C3 and neurofilament proteins
390

. Markers of inflammation 

or neuronal injury will correctly separate ALS from HC samples. They are, however, less likely to 

correctly distinguish ALS from OND samples (Figure 6a), which is also important for biomarker-
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based disease classification. To account for this, we grouped HC and OND samples together as NON 

(i.e., non-ALS) samples prior to feature selection. Proteins identified by this approach may include 

more specific markers of ALS-associated loss of motor neuron synaptic integrity or degeneration. 

The roles of APLP1 and CADM3 in neuromuscular junction (NMJ) function discussed below 

provide support for this notion.  

Classification based on decreased protein abundance creates the potential for 

misclassification in subsequent studies due to protein instability or differences in analytical 

sensitivity. For this reason, future studies are required to evaluate the longitudinal stability of the 

decreases we observed in our classifier proteins. Likewise, evaluating the clinical stage at which 

these alterations become apparent has considerable implications for the diagnostic/prognostic value 

of these markers. From an analytical perspective, our ability to detect all proteins of the classifier in 

all of our individual samples profiled by Western blot suggests that these markers are readily 

detectable in CSF. They are thus likely amenable to future measurement by quantitative approaches, 

such as ELISA, which may further enhance measurement sensitivity and classification accuracy.  

The four proteins used in our classifier have plausible connections to motor neuron 

degeneration. Three of the proteins used in the classifier, amyloid-like protein 1 (APLP1), SPARC-

like protein 1 (SPARCL1), and cell adhesion molecule 3 (CADM3) were decreased in the CSF of 

ALS patients. Each protein has documented associations with neurons and synaptic activity, making 

them promising candidate biomarkers for ALS. APLP1 associates with NMDA receptors and 

regulates surface expression of this family of glutamatergic receptors
421

. This regulation is crucial 

for maintaining cellular homeostasis and synaptic activity. Knockout of APLP1 and APLP2 (also 

significantly reduced in our ALS samples) results in reduced pre- and post-synaptic compartment 
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size at the NMJ
422

. Reduced levels of APLP1 in ALS, therefore, may contribute to muscle de-

innervation and axonal die-back by altering the integrity of the NMJ.  

SPARCL1 belongs to the BL-40 family of ECM proteins
423

. The protein is secreted by 

astrocytes and promotes synapse formation
424

. Knockout of the SPARCL1 gene in mice resulted in a 

decrease in the number of excitatory synapses in the superior colliculus
425

. In addition to synapse 

formation, the protein may also be essential for synaptic maintenance. If so, reduced levels of 

SPARCL1 could result in decreases in synaptic activity that ultimately contributes to motor neuron 

degeneration. SPARCL1 also binds extracellular calcium
423

. Reduced astrocytic or neuronal 

SPARCL1 may then also promote calcium dyshomeostasis, which could likewise contribute to 

motor neuron vulnerability.  

CADM3 (or nectin-like molecule 1 or synCAM3) is a cell junction protein that localizes to 

synapses
425

. The protein is an immunoglobulin-like molecule that is enriched in the nervous system 

and regulates cell-cell contacts and synapse formation
426

. In keeping with this role, developmental 

patterns of CADM3 expression are observed in the nervous system of multiple organisms
427. 

The 

protein also has a role in the formation of functional NMJs
428. 

Decreased levels of CADM3, thus, are 

predicted to impair synaptic maintenance, produce neuromuscular junction impairments, and reduce 

ECM integrity. Cumulatively, CADM3-induced alteration of any or all of these processes could 

make motor neurons susceptible to degeneration.  

At present, studies characterizing the function of WDR63, the last of our classifier proteins, 

have not been performed. Unlike APLP1, SPARCL1, and CADM3, levels of WDR63 were elevated 

in ALS samples relative to HC and OND. This specificity for ALS makes it a promising biomarker 

though a hypothesized role in motor neuron degeneration or ALS more generally is difficult to 

predict. The WD-repeat is a common structural motif and many diverse functions, including signal 
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transduction, mRNA synthesis, and cytoskeletal assembly, among others, can be assigned to proteins 

containing WD repeats
429,430

. Thus, further research is necessary to determine a functional 

connection between WDR63 and ALS.  

In conclusion, we constructed LC-MS/MS proteomic profiles of sALS, HC, and OND CSF 

samples. We used these profiles to identify proteins whose levels are significantly altered in sALS 

samples relative to HC and OND samples. In doing so, we identified several proteins with 

documented associations with ALS, as well as several new candidate biomarkers with clear 

biological relevance to motor neuron degeneration. Using ontological analysis, we described several 

biological pathways that are altered in ALS. Lastly, we used an SVM learning algorithm to build a 

classifier capable of separating ALS samples from HC and OND samples. Collectively, our results 

illustrate the utility of label-free LC-MS/MS proteomic methods, the promise of CSF as a biomarker 

source, and the applicability of machine learning methods to classifying samples based on mass 

spectrometric-based proteomic profiles. 
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3.0  TOTAL PROTEIN IS AN EFFECTIVE LOADING CONTROL FOR 

CEREBROSPINAL FLUID WESTERN BLOTS 

3.1 CHAPTER SUMMARY 

Cerebrospinal fluid (CSF) has been used to identify biomarkers of neurological disease. CSF protein 

biomarkers identified by high-throughput methods, however, require further validation. While 

Western blotting (WB) is well-suited to this task, the lack of a validated loading control for CSF WB 

limits the method’s accuracy. We investigated the use of total protein (TP) as a CSF WB loading 

control. Using iodine-based reversible membrane staining, we determined the linear range and 

consistency of the CSF TP signal. We then spiked green fluorescent protein (GFP) into CSF to create 

defined sample-to-sample differences in GFP levels that were measured by WB before and after TP 

loading correction. Levels of CSF complement C3 and cystatin C measured by WB with TP loading 

correction and ELISA in amyotrophic lateral sclerosis and healthy control CSF samples were then 

compared. CSF WB with the TP loading control accurately detected defined differences in GFP 

levels and corrected for simulated loading errors. Individual CSF sample Western blot and ELISA 

measurements of complement C3 and cystatin C were significantly correlated and the methods 

showed a comparable ability to detect between-groups differences. CSF TP staining has a greater 

linear dynamic range and sample-to-sample consistency than albumin, a commonly used CSF 

loading control. The method accurately corrects for simulated errors in loading and improves the 
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sensitivity of CSF WB compared to using no loading control. The TP staining loading control 

improves the sensitivity and accuracy of CSF WB results.  

3.2 INTRODUCTION 

Western blotting (WB) is an antibody-based technique for the identification of protein targets 

transferred to a membrane following separation by polyacrylamide gel electrophoresis (PAGE). 

Refinements to the technique, including the use of fluorescently labeled antibodies
431,432

, imaging 

with high dynamic range detectors such as CCDs and photodiode arrays, and the application of 

morphological image processing to gels and blots
433,434

 allow multiplexed detection and quantitative 

measurement of proteins in biological samples.  

These advances make WB a valuable tool for protein quantification and the validation of 

biomarkers obtained via high-throughput methods such as mass-spectrometry. While these high-

throughput methods are a sensitive, unbiased means of identifying protein biomarkers, validation of 

putative markers by a complementary technique is imperative, as inadequate validation can lead to 

poor biomarker performance in a clinical setting
435-437

. The enzyme linked immunosorbent assay 

(ELISA) remains the “gold standard” for biomarker validation and is one of the most-widely used 

techniques for this purpose
438,439

. Frequently, however, high-quality ELISA kits for newly defined 

candidate markers are not commercially available and developing and validating an ELISA “in-

house” is time-consuming, expensive, technically challenging, and dependent on the availability of 

at least two highly sensitive and specific antibodies to the protein of interest. By contrast, PAGE/WB 

is a simple, relatively inexpensive method capable of detecting multiple forms of a given protein 

target, such as multimeric forms or cleavage products. These advantages, combined with the 
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aforementioned refinements to the sensitivity and quantitative performance of the method make it a 

useful approach for the study of CSF proteins and the initial validation of candidate protein 

biomarkers.  

To ensure accurate, reproducible WB results, proper correction for technical error, 

normalization, and processing of the data is essential. Traditionally, WB experiments have used 

expression levels of so-called “housekeeping genes” as loading controls to correct for differences in 

protein concentration or errors in loading. The assumption of this method is that the housekeeping 

genes (often, beta-actin, beta-tubulin, or GAPDH) are highly expressed at relatively constant levels 

across cells, tissues, and disease/injury types. Increasingly, however, the validity of this assumption 

in the analysis of cultured cells
440-442

, tissue types 
441,443-445

, and disease/injury states
441,443,444,446,447

 

has been criticized. As none of the above housekeeping proteins are considered secreted proteins, 

their validity as loading controls for WB of biological fluids can likewise be questioned. In place of 

the housekeeping proteins, normalization to total protein (TP) has emerged as a reliable loading 

control
434,443,445,448-453

. Following PAGE, TP stains can be used directly on the gel or following 

transfer to a PVDF or nitrocellulose membrane. In general, these stains are linear over several orders 

of magnitude, correlate well with total protein levels obtained by the BCA or Bradford assays, 

accurately correct for errors in loading, and are reversible
434,443,445,448-453

. 

The aforementioned methods have been largely applied to WB experiments measuring 

protein levels in cultured cells or tissue homogenates. Whether they apply equally well to biological 

fluids used for biomarker discovery and validation, which typically have individual protein 

abundances spanning several orders of magnitude and high levels of proteins such as albumin, is 

unclear. One biological fluid of particular interest in the study of biomarkers of neurological disease 

is cerebrospinal fluid (CSF). CSF is a clear fluid that surrounds the brain and spinal cord. It arises 
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from the secretory epithelium of the choroid plexus in the brain’s 3
rd

 and 4
th

 ventricles. A normal, 

adult human carries approximately 150 ml of CSF and this volume is turned over 3-4 times per day. 

The protein content of CSF varies from approximately 0.3 to 1.3 µg/µl and the most abundant CSF 

protein is albumin
396,454,455

. CSF has been used to define protein biomarkers for a host of 

neurological disorders, including Alzheimer’s disease (AD)
456

, frontotemporal lobar degeneration 

(FTLD)
457

, Parkinson’s disease
458

, amyotrophic lateral sclerosis (ALS)
359

, multiple sclerosis
459

, 

various forms of CNS tumors
460

, and schizophrenia
461

, among others.  

Despite its obvious utility to neurological disease biomarker research, a validated 

methodology and loading control for CSF biomarker validation by PAGE/WB does not exist. 

Previous studies using PAGE/WB of CSF samples have used a variety of loading controls, including 

albumin
462

, transthyretin
463

, and transferrin
464

. Others have used no loading control or equal CSF 

volume loading
465,466

. A validated loading control for CSF WB would improve the accuracy of the 

obtained results. An ideal CSF loading control should be able to correct for individual differences in 

total protein concentration, which can be large when examining CSF from healthy and diseased 

individuals. Moreover, because CSF samples are obtained by invasive lumbar puncture and are often 

scarce in quantity, an ideal loading control should also be amenable to multiplexed PAGE/WB 

analysis. With these considerations in mind, we investigated the utility of TP as a loading control for 

CSF WB. We first defined the linear range of detection for CSF TP by gel and membrane stain. 

Subsequently, we used simulated experiments in which the amounts of CSF total protein and spiked 

green fluorescent protein (GFP) were varied individually and in tandem to evaluate total protein 

loading’s corrective performance. Lastly, we extend the method to the validation of two candidate 

biomarkers of ALS, cystatin C and complement C3 (C3). Collectively, the results demonstrate that 
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iodine-based TP membrane staining is a reliable, reversible loading control that improves the 

accuracy of CSF WB.   

3.3 MATERIALS AND METHODS 

3.3.1 Cerebrospinal Fluid (CSF) Samples 

Lumbar puncture was used to obtain CSF samples from subjects at the University of Pittsburgh 

Medical Center (UPMC) upon informed patient consent. This study was approved by the UPMC 

institutional review board. After collection, samples were spun at 3000 rpm at 4° C for 10 minutes to 

remove any cells or debris. Samples were then aliquoted in small volumes and stored in low protein 

binding polypropylene tubes at -80° C within 2 hours of collection. Only CSF samples without 

visible blood were centrifuged and hemoglobin levels in all final CSF samples were measured by 

ELISA to eliminate those with evidence of significant levels of hemoglobin (> 200 ng/ml), reflecting 

blood contamination
364,467

. 

The protein concentration of all samples was measured using the BCA assay (Thermo 

Scientific; Rockford, IL). To minimize inter-sample variability for the evaluation of total protein 

staining as a loading control, we pooled CSF samples for our initial experiments. Eight pooled 

samples comprised of CSF from healthy, ALS, and AD subjects were created. The protein content of 

the pooled CSF samples ranged from 0.46 µg/µl to 0.78 µg/µl. To assess the linearity of CSF total 

protein, we concentrated selected pooled CSF samples using Amicon Ultra 3K cutoff columns 

(Millipore; Darmstadt, Germany) to permit loading higher amounts of total protein on PAGE mini 

gels. In some experiments, recombinant, purified GFP (Abcam; Cambridge, MA) was spiked into 
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pooled CSF samples in nanogram amounts. For experiments measuring levels of the ALS candidate 

biomarkers cystatin C and C3, ten individual healthy and ten ALS subject samples were used. The 

protein content of these samples ranged from 0.45 µg/µl to 1.3 µg/µl and a total of 5 µg was loaded 

per lane for each sample.  

3.3.2 Polyacrylamide Gel Electrophoresis (PAGE) and Electrophoretic Transfer 

Prior to PAGE, CSF samples were added to a mixture containing 4x LDS sample loading buffer (2% 

lithium dodecyl sulfate, 10% glycerol, 200 mM Tris; pH 8.4) and DTT (50 mM final concentration). 

The samples were diluted with PBS to ensure equal loading volumes and heated at 70° C for 10 

minutes. Samples were run on 4-12% NuPAGE Bis-Tris gradient mini gels (Life Technologies; 

Grand Island, NY) at 150 V using MOPS buffer (50 mM MOPS, 50 mM Tris, 0.1% SDS, 1 mM 

EDTA; pH 7.7). Following completion of the PAGE run, samples were transferred to Immobilon FL 

PVDF membrane (Millipore; Darmstadt, Germany) using Towbin buffer (192 mM glycine, 25 mM 

Tris). To optimize the transfer of CSF high and low molecular weight proteins, we used a ramped 

overnight transfer strategy, previously shown to result in improved transfer of diverse molecular 

weight protein mixtures to membranes
468

. Membranes were transferred at a constant 8 V for 6 hours, 

then a constant 16 V for 6 hours. This ramped approach improved the transfer of CSF proteins as 

compared to common transfer strategies (e.g., 100 V for 1 hour, or 20 V for 12-16 hours; data not 

shown).  

 



 104 

3.3.3 Total Protein Staining 

Total protein (TP) staining was performed on PAGE gels and PVDF membranes following transfer. 

For TP gel staining, gels were stained with Bio-Safe Coomassie (Bio-Rad; Hercules, CA) overnight 

at room temperature. PVDF membranes were stained for 30 minutes at 4° C with Blot FastStain (G-

Biosciences; St. Louis, MO), a proprietary, reversible TP stain for PVDF membranes, according to 

the manufacturer’s instructions. Blot FastStain is a reversible total protein stain based on iodine 

binding that produces purple bands. Stained gels and membranes were scanned on an Odyssey CLx 

imager (Licor; Lincoln, NE) at 169 µm resolution. All processed images were free of pixel 

saturation. PVDF membranes were de-stained in ultrapure water until no bands could be detected at 

the highest intensity setting of the Odyssey CLx imager. 

3.3.4 Western Blot 

PVDF membranes were blotted using the Benchpro automated Western blot (WB) processing 

system (Life Technologies; Grand Island, NY). Membranes were blocked for 1 hour in Licor 

blocking buffer (Licor; Lincoln, NE), incubated in primary antibodies overnight, washed with PBS, 

incubated in secondary antibodies for 1 hour, washed with PBS, and imaged on the Odyssey Clx. 

The following primary antibodies were used: rabbit-anti-GFP (1:2,000; Life Technologies; Grand 

Island, NY; RRID: AB_221569), chicken-anti-GFP (1:2,500; Aves Labs; Tigard, OR; RRID: 

AB_10000240), mouse-anti-albumin (1: 5,000; Proteintech Labs; Chicago, IL; RRID: 

AB_11042320), rabbit-anti-cystatin C (1:2,000; Proteintech Labs; Chicago, IL; RRID: 

AB_2088058), and chicken-anti-C3 (1:3,000; Encor Biotechnology; Gainesville, FL). Secondary 

antibodies (1:10,000) were produced in goat to the species of the primary antibody and were 
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conjugated with IRdye fluorophores visible in the 700 and 800 channels of the CLx imager. Images 

were acquired on the CLx imager at 169 µm resolution and all processed images were free of pixel 

saturation.  

3.3.5 Enzyme Linked Immunosorbent Assay (ELISA) 

Sandwich ELISAs were used to quantitate levels of cystatin C and C3. Cystatin C ELISAs 

(Biovendor; Asheville, NC) were performed according to the manufacturer’s instructions. C3 

ELISAs were performed as previously described
390

. 

3.3.6 Image Processing and Data Analysis 

All gel and membrane images were processed in ImageJ (National Institutes of Health; Bethesda, 

MD). Images were background subtracted using a rolling ball algorithm
434,469

. Relative quantitation 

was performed to obtain integrated density values according to published guidelines
389,470

. Individual 

values were relatively scaled to allow membrane to membrane comparisons by summing all values 

from a membrane and dividing each individual value by this total
389

. Quantitative protein 

measurements from ELISAs were obtained by fitting a linear equation to the standard curve and 

using this equation to calculate unknown values. Between-groups comparisons were made using the 

independent samples T-test with Sidak correction for multiple comparisons
471

. Correlation between 

values obtained by ELISA and WB were made by Pearson correlation. Data were analyzed using 

Excel 2010 (Microsoft; Tacoma, WA). Final figures were constructed in Illustrator CS5 (Adobe 

Systems; Mountainview, CA).   
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3.4  RESULTS 

3.4.1 CSF Total Protein Signal Linearity and Consistency 

To characterize the CSF total protein (TP) stain signal, we first determined the signal linearity, 

detection limit, and saturation limit of CSF TP by gel and membrane stain. These signals were 

compared to that obtained by Western blot (WB) for albumin, a previously used loading control for 

CSF WB
462

 and the most abundant CSF protein. The results of these experiments are shown in 

Figure 3.1. The CSF TP staining signal is linear (R
2
 > 0.99) from 0.25 µg of total CSF protein to 20 

µg by Coomassie gel stain and from 0.25 µg to 16 µg for PVDF membrane stain. By contrast, 

several points in total protein-albumin WB signal relationship showed clear departures from linearity 

(R
2
 = 0.97), and a higher degree of error. Following statistical analysis of the untransformed data, we 

used a square root transformation of values along both axes to visualize all points on the graphs in 

Figure 3.1A-C clearly. For comparison, the range of 0.25 µg to 20 µg is shown with the 

untransformed values for the three methods (Figure 3.1D). The detection limits (approximately 10 

and 35 ng for gel and membrane stain, respectively) and saturation range (between 40 and 50 µg 

total protein for both) of each method are shown in Figure 3.2. 
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Figure 3.1 CSF total protein linearity. A. Left, Representative Coomassie stained gel of a serial 

dilution of increasing amounts of CSF TP ranging from 0.25 µg to 40 µg from the same sample. 

Right, quantification of the TP signal. Square root transformed TP amount (x axis) and sum total 

normalized, square root transformed integrated density (y axis) are plotted in a line-connected XY 

scatter graph. Data are shown as the mean ± SD for triplicate experiments using separate pooled 

samples. B. Same as (A), but for PVDF membrane stain. C. Same as (A and B), but for albumin 

Western blot. D. Comparison of the untransformed values obtained by each method over the range of 

0.25-20 µg total protein loading. Data are shown as the mean ± SD for triplicate experiments using 

separate pooled samples. 
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Figure 3.2 Full characterization of CSF total protein staining and albumin Western blot. A. A 

range of CSF total protein amounts were loaded and the resultant gel Coomassie stained. The 

leftmost image shows the detection limits of CSF total protein, while the rightmost image shows the 

point at which the stain signal begins to saturate. The center image shows a series of CSF total 

protein amounts between the detection and saturation limits. B. Same as (A) but for PVDF 

membrane stain. C. Same as (A and B) but for albumin Western blot. 
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We also evaluated the sample to sample consistency of the CSF TP signal by loading 

identical protein amounts from each of our 8 pooled CSF samples. The results of quadruplicate 

experiments are shown in Figure 3.3. The coefficient of variation (CV; calculated as [standard 

deviation/mean] x 100) was used as a measure of consistency. By gel and membrane stain, CSF TP 

signal shows a low degree of variability, with a CV of approximately 5% by either method. The 

consistency of the albumin signal by WB was considerably lower, with a CV of 15.08%. This result 

was consistent with the data of Figure 3.1, where TP by gel or membrane stain showed a low degree 

of error, even when loading large amounts of protein (compare error bars in Figure 3.1D). 
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Figure 3.3 CSF total protein consistency. The consistency of the CSF total protein signal was 

evaluated by loading 5 µg of CSF total protein from 8 separate pooled samples and measuring the 

resultant integrated density. A. Representative Coomassie stained gel. B. Same as (A), but for PVDF 
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membrane stain. C. Same as (A and B), but for albumin WB. D. Summary of results. The CV 

([standard deviation/mean] x 100) of quadruplicate experiments was determined. 

3.4.2 CSF Total Protein is an Effective Loading Control 

To evaluate the performance of CSF TP staining as a loading control, we performed simulated 

experiments in which CSF TP and spiked-in GFP were varied in tandem and then individually. 

Because GFP is not found in human CSF, we could control the amount of the protein present in our 

pooled samples and the sample-to-sample differences in TP and GFP. We compared our 

measurements of individual sample TP and GFP levels to the defined, “true” values as an evaluation 

of the performance of TP loading correction. As gel and PVDF membrane total protein staining 

performed comparably (Figure 3.1D), results from GFP spiking experiments are shown only with the 

PVDF membrane stain as a loading control. This allowed for reversible detection of total protein, 

multiplexed blotting using two anti-GFP antibodies, and accounts for variability introduced by the 

electrophoretic transfer process.  

The results of these experiments are presented in Figure 3.4. For the first experiment, we 

simulated extreme error in loading by varying the amount of CSF TP and GFP in tandem. In this 

experiment the ratio of GFP to total protein was constant across an 8 fold change in TP and GFP 

(1.25-10 µg total protein; 25-200 ng GFP; Figure 3.4A). The TP and GFP signal was linear across 

this range of values (R
2
 > 0.99 for both). Correction with an ideal loading control in this example 

should produce identical values for all samples when the data are normalized by sum total. As shown 

in Figure 3.4A, correction by TP signal is able to correct for the loading error (m = 0.0002 in the y = 

mx + b equation, where m expected = 0) and produced relatively consistent values (range = 0.19 to 
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0.22 for the expected 0.2 corrected value). The corrective performance is inversely related to the 

amount of TP, with the worst performance occurring at the highest amount of TP.  

In the second simulation experiment, we varied the amount of TP (2.5-10 µg), but kept the 

amount of GFP constant (100 ng). This experiment simulates a WB experiment where different 

concentrations of a protein are found across samples. Loading by total protein followed by correction 

with an appropriate loading control should, therefore, lead to observable differences in measured 

values across samples. As shown in Figure 3.4B, TP loading correction results in values that 

approximate the true observed differences. By contrast, the uncorrected values are similar (range = 

0.24-0.27 for the expected uncorrected value of 0.25).  We observed declining performance of the 

loading control at the upper range of TP, consistent with the previous experiment.  

For the final simulation experiment, we loaded constant amounts of TP (5 µg; CSF TP plus 

GFP) and created a two-fold difference in GFP across samples (100-200 ng). Figure 3.4C shows that 

the uncorrected values obtained from this experiment underestimate the true fold difference (1.64, 

36% error). TP loading correction, however, allows more accurate determination of fold differences 

across samples (1.93, 7% error). Collectively, these experiments show that CSF TP can correct for 

errors in loading and permits accurate detection of true differences in protein abundance.  
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Figure 3.4 Corrective performance of CSF total protein (TP) loading control. A. Left, 

Representative images of in-tandem varying spiked GFP and CSF TP. Right, quantification of the 

corrected (red squares) and uncorrected (green triangles) normalized integrated density values 

obtained for each band. B. Left, representative images of a serially diluted CSF TP stained 

membrane and equal loading GFP WB are shown. Right, quantification of the resultant uncorrected 

and corrected normalized integrated density values against the true value based on GFP 

concentration. C. Left, representative images of a constant TP stained membrane and two-fold 

difference loaded GFP WB are shown. Right, the resultant fold-difference obtained from the 

uncorrected and corrected values is plotted against the true two-fold difference for triplicate 

experiments. Plots in A. and B. represent the mean ± SD of triplicate experiments.   

3.4.3 Application to the Study of Candidate ALS CSF Biomarkers 

In the final phase of this study, we compared the performance of WB and TP staining to ELISA in 

the measurement of levels of two candidate ALS biomarkers, complement C3 (C3) and cystatin 

C
359,390,391,397,403

, in CSF from five ALS and five healthy control subjects for each protein. To permit 

comparisons across blots and platforms, we first multiplied the concentration of C3 or cystatin C 

obtained by ELISA by the volume of CSF loaded for each sample (5 µg TP) to generate “true” 

values for each subject. Next, these values and obtained WB values were normalized by sum total 

normalization
389

. To do so, all values for a given blot or ELISA were summed and each data point 

divided by this value. This scales all values from 0-1, with the number corresponding to each data 

point’s proportion of the total signal. The resultant values were used to compare individual CSF 

sample measurements and relative between-groups differences of total protein, C3, and cystatin C 

obtained by each method.    
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For C3, we performed WB in triplicate and ELISAs in quadruplicate for five ALS and five 

healthy control CSF samples. The results of these experiments are shown in Figure 3.5. Using TP 

staining of the PVDF membrane, we did not detect significant differences between-groups (p = .13; 

Figure 3.5A, D). By WB corrected by TP loading and ELISA, we detected a significant increase in 

total C3 levels in the CSF of ALS patients compared to controls (p = 0.01 by WB; p = 0.03 by 

ELISA; Figure 3.5B, D). We then assessed the correlation of the ELISA and WB results on a sample 

to sample basis. In general, there was a high degree of agreement between the two methodologies 

(Pearson r = 0.90; average error = 14.39%; Figure 3.5C) and the total protein corrected values 

showed a greater degree of correlation than the uncorrected values (r = 0.90 and 0.673, respectively; 

Table 3.1). C3 is extensively proteolytically cleaved to generate fragments with cell signaling 

functions. Electrophoretic separation via PAGE permits examination of the individual C3 fragments, 

in addition to total C3 levels. Using this information, we also found that levels of C3α were not 

significantly different between-groups (p = 0.07), while levels of C3β were statistically significant 

between-groups (p = 0.028; Figure 3.5B, D).  

Cystatin C ELISAs and WBs were performed in quadruplicate for a second set of five ALS 

and five healthy control CSF samples. These results are shown in Figure 3.5E-H. By PVDF 

membrane stain, we did not detect significant differences in TP signal between-groups (p = 0.79; 

Figure 3.5E, H). A significant decrease in cystatin C was, however, observed in the ALS group 

compared to the control group by ELISA (p = .013) and TP corrected WB (p = 0.038; Figure 3.5F, 

H). While the agreement between platforms was not as strong as that obtained for C3, we still 

observed significant correspondence between the two methods (Pearson r = 0.654, p  = 0.040); 

average error = 31.24%). As with C3, correction of the WB signal by total protein staining improved 

the correlation of WB and ELISA results (rcorrected = 0.654, runcorrected = 0.507; Table 3.1). Removing 
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ALS sample 2, which had unexpectedly high WB signal and error (161%) reduces the overall 

average error to 15.06% (Figure 3.5G). The data from these and the C3 experiments are summarized 

in Table 3.1. 

 

Table 3.1 Summary of complement C3 and cystatin C data. A summary of group data obtained 

by ELISA and WB is shown. ELISA/WB Proportion = the mean indicated group proportion of the 

total signal, p ELISA/WB = the Sidak-corrected, independent samples t-test p value for the between-

groups healthy control-ALS comparison, % WB error = the average percentage error for the WB-

ELISA comparison of each sample, ELISA-WB r = the Pearson correlation coefficient of the 

ELISA-WB values obtained for each sample, TPLC = total protein loading control corrected value, 

No TPLC = value obtained with no total protein loading control correction, p r = the p value of the 

correlation coefficient indicated in the ELISA-WB r column.  

 

 
ELISA Proportion WB Proportion p ELISA p WB % WB Error ELISA-WB r p r 

Complement C3 Control ALS Control ALS 
   

TPLC TPLC 

Total C3 0.0751 0.125 0.0772 0.123 0.03 0.01 14.39 0.9 > 0.001 

C3α n/a n/a 0.0827 0.117 n/a 0.07 
 

No TPLC No TPLC 

C3β n/a n/a 0.0405 0.159 n/a 0.028 
 

0.673 0.0329 

Total Protein 0.1 0.1 0.109 0.0903 0 0.13 
   

  

 
ELISA Proportion WB Proportion p ELISA p WB % WB Error ELISA-WB r p r 

Cystatin C Control ALS Control ALS 
   

TPLC TPLC 

Total Cystatin C 0.134 0.659 0.118 0.0817 0.013 0.038 31.24 0.654 0.04 

Total Protein 0.1 0.1 0.0982 0.101 0 0.79 
 

No TPLC No TPLC 

        
0.507 0.134 
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Figure 3.5 Application of total protein loading correction to candidate ALS CSF biomarkers. 

A. Representative TP stained membrane of 5 µg total loading for 5 healthy control and 5 ALS CSF 
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samples. B. Representative WB of complement C3 in the CSF of above healthy control and ALS 

CSF samples. C. Plot comparing normalized, relative individual subject C3 levels obtained by 

ELISA and TP corrected WB from the above CSF samples. D. Plot comparing normalized, relative 

between-groups differences for TP, C3α, C3β, total C3 WB, and total C3 ELISA. * = corrected p < 

0.05. E.-H. Same as (A-D), respectively, but for cystatin C in a second set of 5 ALS and 5 healthy 

control CSF samples. Plots A-D represent the mean ± SD of triplicate WB experiments, E-H 

quadruplicate WB experiments, and all plots show quadruplicate ELISA results. 

3.5 DISCUSSION 

Total protein (TP) staining has emerged as a reliable and accurate loading control for Western blots 

(WB) of cell and tissue lysates
434,443,445,449-453

. Whether it is similarly useful for the blotting of 

cerebrospinal fluid (CSF) has not been investigated. Moreover, while a variety of CSF WB loading 

controls have been used previously
462-466

, their linearity, consistency, and corrective performance 

have not been evaluated directly. Here, we define the linearity and consistency of CSF TP gel and 

membrane staining, assess its corrective performance as a loading control in simulated experiments, 

and compare its performance to results obtained by ELISA for the validation of two candidate ALS 

biomarkers.  

Previous studies have demonstrated an extensive linear range of TP staining, often spanning 

several orders of magnitude, using a variety of reagents
434,443,445,449-453

. In the present study, we 

observe a lower saturation range (between 40-50 µg; Figure 3.2) and upper limit to the linear range 

(16 µg by PVDF membrane stain and up to 20 µg by Coomassie gel stain versus between 4-8 µg by 

albumin; Figure 1D). This result is not surprising, however, as albumin is estimated to comprise at 



 120 

least 60% of the protein content of CSF
472,473

. Thus, saturation of the albumin signal occurs rapidly, 

limiting the overall linearity of the CSF TP signal. Nevertheless, it should be noted that the linear 

range we observe extends from volumes of less than 1 µl of CSF to the maximum permissible on a 

mini-gel for typical CSF TP concentrations by either PVDF membrane or gel stain. Staining a 

duplicated Coomassie gel has been suggested as a corrective control for Western blots previously
443

 

and we demonstrate the larger dynamic range of this method relative to PVDF membrane staining, 

consistent with prior reports
434

. We, however, recommend using the membrane stain as a loading 

control. Membrane staining accounts for inconsistencies and loss of protein caused by the transfer of 

proteins from the gel to the membrane. Moreover, using a reversible membrane stain obviates the 

need to run a duplicate gel.  

The sample to sample consistency is also an important consideration when choosing a 

loading control for WB. Using pooled samples, we found that the consistency of CSF TP signal by 

gel or membrane stain was high (approximately 5% CV by either method; Figure 3.3D). Likewise, 

we observed very low variability from gel to gel by either method while assessing the linearity of 

CSF TP (Figure 3.1A, B). By contrast, the TP staining pattern for our individual ALS and healthy 

control samples was more variable (Figure 3.5A, E). Several factors could account for this. First, our 

pooled CSF samples were largely homogenous in terms of their TP content, spanning less than a 

two-fold range, unlike the individual ALS and healthy control samples, which spanned a three-fold 

range. Thus, technical errors and instrument imprecision would be expected to produce larger 

variability in our individual samples as compared to the pooled samples. Second, our individual 

samples comprised ALS and healthy control subjects. Large differences in protein content (including 

albumin levels) between disease and control CSF samples are well documented
,474-477

. These 

differences are likely averaged out in the pooled samples, which comprise ALS, AD, and healthy 
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control subjects. Importantly then, the results from our pooled samples likely reflect the true 

consistency of the method, as they are relatively unaffected by pre-analytical factors.  

While albumin is the most abundant protein in CSF by several orders of magnitude, and thus 

a likely candidate for use as a loading control
463

, we provide several compelling reasons to avoid 

using it for this purpose in CSF WB. First, by WB, the linear range and consistency of albumin is 

considerably less than that observed for CSF TP gel or membrane stain (Figures 3.1 and 3.3). This is 

likely due to saturating amounts of albumin on the surface of the membrane, resulting in a signal that 

is not reflective of the true protein content. In addition, using a TP stained gel or reversible 

membrane stain allows the user to analyze total protein and then examine multiple individual protein 

targets on the same membrane. This is a relevant consideration given that CSF sample volumes are 

often limited due to the nature of the collection procedure. CSF albumin levels have also been shown 

to change in response to various diseases 
320,477-480

, making its utility as a loading control 

questionable. Lastly, while the albumin band alone can be used for normalization following gel or 

membrane TP staining, its corrective performance and linear range is less than that of the TP signal 

collectively (data not shown).  

The corrective performance of a loading control is a consideration of equal importance to its 

linearity and consistency. We evaluated the corrective performance of CSF TP as a loading control 

using simulated experiments in which known amounts of GFP were spiked into CSF. The amount of 

GFP and CSF TP were varied, first in tandem, and then separately (Figure 3.4A-C, respectively). 

The results of these experiments indicate that the CSF TP loading control is capable of correcting for 

large errors in sample loading (Figure 3.4A) and permits accurate detection of true differences in 

protein concentration and abundance (Figure 3.4B, C). The corrective performance of the total 

protein loading control began to deteriorate at the highest levels of CSF total protein (10 µg). 
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Nevertheless, the range of corrective ability (8 fold; Figure 3.4A) vastly exceeds what would be 

expected by individual sample variability, technical error, or instrument variability when loading by 

TP amount or CSF volume.  

After testing the ability of the TP stain to correct for errors in simulated experiments, we 

extended the approach to the study of candidate CSF biomarkers for ALS by blotting for C3 and 

cystatin C. Using sum total normalization, we converted values obtained by WB and ELISA to their 

corresponding relative proportions. While this results in the loss of quantitative information from the 

ELISAs, it permits a cross-platform comparison of the ability of each method to detect relative 

differences in protein abundance. Using the TP loading control, we observed significant correlation 

between the normalized ELISA and WB data and comparable sensitivity in detecting differences in 

target protein abundance (Figure 3.5; Table 3.1). Further, we highlight the utility of PAGE-based 

protein separation by showing a significant elevation of the C3β, but not C3α, fragment in ALS 

samples relative to controls. The performance of the TP corrected WB method was not as high when 

blotting for cystatin C, although much of the increased error was a result of an unexpectedly high 

value from a single ALS sample. Nevertheless, we still detected a significant reduction in cystatin C 

levels between-groups, consistent with previous studies
359,391,397

. While ELISA, by virtue of its 

greater dynamic range, sensitivity, and quantitative accuracy, will remain the preferred method for 

validating CSF biomarkers, our results demonstrate that WB can be a useful and economical method 

for the assessment of relative protein levels in CSF samples.   

A variety of total protein stains have been used as loading controls for WB
435,443,445,448-453

. We 

predict that many of these will be suitable for CSF WB. The choice of stain will be predicated on 

study goals and available resources. Given the unique protein composition of CSF, which is at least 

60% albumin
472,481

 and typically has a total protein concentration of at least 0.4 µg/µl, sensitivity and 
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signal saturation are unlikely to be primary concerns. For a study seeking to probe low-abundance 

proteins in CSF by WB at typical linear detection levels (nanogram range), a microgram amount of 

CSF total protein will almost certainly be required, which is far greater than the nanogram amount 

detection limits of the stains characterized here and elsewhere 
435,443,448-453

. Likewise, the saturation 

limit of the stains characterized here was only reached following concentration of CSF samples. 

Reversibility, conversely, is an important consideration, especially with human CSF samples, which 

are often of limited volume. The iodine-based stain used for this study was completely reversible 

within 10 minutes using distilled water washes, providing fast and mild destaining conditions. By 

contrast destaining is longer and harsher with stains such as Coomassie and Ponceau, and the more 

recently characterized Direct Blue 71
449

. We observed a greater sensitivity of Coomassie gel staining 

of CSF total protein than PVDF membrane staining (Figure 3.2). This is likely due to the difficulty 

of electrophoretically transferring small amounts of CSF to PVDF membrane, however, as we 

observe a sensitivity of 2 ng by dot blot with the iodine-based stain used here (data not shown). This 

is comparable to the sensitivity of epicocconone based stains
445

, which for their reversibility, 

sensitivity, and linear range are also useful total protein stains for TP loading control. Trihalo-based 

tryptophan fluorescence (stain-free)
434

 has emerged as another promising means of using total 

protein as a loading control. The signal is linear over a range comparable to that observed here, 

although with lower sensitivity. The main drawback of the method appears to be the cost of the 

required gels and imaging system. The novel loading control evaluation method we present (Figure 

3.4) will allow researchers to determine which total protein stain works best with their protein of 

interest, sample and membrane type, and image acquisition system. The method as presented could 

easily be adapted to cell or tissue lysates and GFP substituted for another protein known not to occur 

in the sample tested, if needed. 
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CSF has proven to be useful for the discovery of neurological disease biomarkers and basic 

research on the CNS. As recent efforts at defining the CSF proteome have illustrated, there is a 

diverse array of proteins found in both healthy and diseased CSF
320,464,482

. WB remains an 

indispensable technique for the study of protein mass, modifications, and relative abundance in the 

CSF. Recent studies have emphasized, however, that levels of CSF proteins can be relatively 

unstable and influenced by a variety of pre-analytical factors
432,483

. These observations and the range 

of total protein concentrations observed across diseases makes clear the need for a corrective loading 

control for CSF WB. We have demonstrated that CSF TP is a linear, consistent, and accurate loading 

control well-suited to this purpose.   
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4.0  THE RNA BINDING MOTIF 45 (RBM45) PROTEIN ACCUMULATES IN 

INCLUSION BODIES IN AMYOTROPHIC LATERAL SCLEROSIS (ALS) AND 

FRONTOTEMPORAL LOBAR DEGENERATION WITH TDP-43 INCLUSIONS 

(FTLD-TDP) PATIENTS 

4.1 CHAPTER SUMMARY 

RNA binding protein pathology represents one of the best characterized pathologic features of 

amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration patients with TDP-43 or 

FUS pathology (FTLD-TDP and FTLD-FUS). Using liquid chromatography tandem mass 

spectrometry, we identified altered levels of the RNA binding motif 45 (RBM45) protein in the 

cerebrospinal fluid (CSF) of ALS patients. This protein contains sequence similarities to TAR DNA 

binding protein 43 (TDP-43) and Fused-In-Sarcoma (FUS) that are contained in cytoplasmic 

inclusions of ALS and FTLD-TDP or FTLD-FUS patients. To further characterize RBM45, we first 

verified the presence of RBM45 in CSF and spinal cord tissue extracts of ALS patients by 

immunoblot. We next used immunohistochemistry to examine the subcellular distribution of RBM45 

and observed in a punctate staining pattern within nuclei of neurons and glia in the brain and spinal 

cord. We also detected RBM45 cytoplasmic inclusions in 91% of ALS, 100% of FTLD-TDP, and 

75% of Alzheimer’s disease (AD) cases. The most extensive RBM45 pathology was observed in 

patients that harbor the C9ORF72 hexanucleotide repeat expansion. These RBM45 inclusions were 
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observed in spinal cord motor neurons, glia and neurons of the dentate gyrus. By confocal 

microscopy, RBM45 colocalizes with ubiquitin and TDP-43 in inclusion bodies. In neurons 

containing RBM45 cytoplasmic inclusions we often detected the protein in a punctate pattern within 

the nucleus that lacked either TDP-43 or ubiquitin. In conclusion, we identified RBM45 using a 

proteomic screen of CSF from ALS and control subjects for candidate biomarkers, and link this 

RNA binding protein to inclusion pathology in ALS, FTLD-TDP and AD.   

4.2 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease and is 

characterized by a degeneration of motor neurons, leading to progressive muscle weakening and a 

typical life expectancy of 2 to 5 years after disease onset
484

. Frontotemporal lobar degeneration 

(FTLD) is the second most frequent cause of dementia and is a clinically diverse syndrome, with 

phenotypes including behavioral changes, semantic dementia, and progressive non-fluent aphasia 

and characterized by cellular inclusions containing tau (FTLD-tau), TAR DNA binding protein 43 

(TDP-43: FTLD-TDP) or Fused-In-Sarcoma (FUS: FTLD-FUS)
485,486

. 

The presence of cytoplasmic inclusions positive for ubiquitin in degenerating neurons is a 

pathological hallmark of ALS and FTLD
487,488

. The observation that some ALS patients develop 

cognitive deficits with prominent frontal lobe features, and that the associated neuropathology 

resembles that of FTLD led to the idea that ALS and FTLD might be related
489,490

. An intronic 

hexanucleotide repeat expansion in the C9ORF72 gene (GGGGCC) has recently been shown to be 

the genetic cause of chromosome 9p21-linked ALS-FTLD, and accounts for 30-40% of familial ALS 

and a similar portion of familial FTLD, further linking these two neurodegenerative disorders 
190,191

. 
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RNA generated from genomic non-coding repeat expansions may disrupt normal RNA metabolism 

by sequestering RNAs and proteins involved in other transcription/translation events
491

.  

TDP-43 and FUS have been identified as components of ubiquitinated inclusions occurring 

in ALS patients without Cu/Zn superoxide dismutase mutations and in FTLD patients
485,492

. Both 

TDP-43 and FUS are primarily located in the nucleus of cells, but mislocalize and form neuronal and 

glial inclusions in ALS, FTLD-TDP and FTLD-FUS
493-495

. Mutations in TDP-43 and FUS have been 

identified as a genetic cause in approximately 4% of familial ALS and in rare cases of FTLD
496

. 

Both TDP-43 and FUS bind numerous RNAs (reviewed in 
495,497

) and are abnormally processed in 

ALS
169

, linking altered RNA metabolism to ALS, FTLD-TDP and FTLD-FUS
497

.  

During an unbiased mass spectrometry based proteomic analysis of cerebrospinal fluid (CSF) 

from ALS and control subjects, we detected an increase in the RNA binding motif 45 (RBM45) 

protein in the CSF of ALS patients. This protein is expressed at highest levels in the brain
498

, and has 

been suggested to be up-regulated in animal models of spinal cord injury and nerve degeneration
499

. 

Furthermore, RNA recognition motifs are conserved between RBM45, TDP-43 and FUS. Therefore 

we sought to further characterize RBM45 expression and distribution in the brain and spinal cord of 

ALS, FTLD-TDP and control subjects.  

RBM45 protein was detected in the CSF and central nervous tissue of ALS and control 

subjects. We observed RBM45 in a punctate pattern predominately in the nucleus of neurons and 

glia in the hippocampus and spinal cord of control subjects. In ALS patients, RBM45 was also 

contained in cytoplasmic inclusions in motor neurons that were immunoreactive for TDP-43 and 

ubiquitin. RBM45 was evident within cytoplasmic inclusions in 100% of FTLD-TDP and 75% of 

AD patients. In contrast to TDP-43, we also detected RBM45 in the nucleus of neurons containing 

cytoplasmic inclusions. Finally, the most abundant RBM45 pathology was observed in ALS patients 
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that harbor the hexanucleotide repeat expansion of the C9ORF72 gene. Thus, RBM45 represents a 

new RNA binding protein located in cytoplasmic inclusions typical of ALS and FTLD-TDP patients.  

4.3 MATERIALS AND METHODS 

4.3.1 Tissue and CSF Samples 

ALS and control post-mortem fixed and frozen tissue was obtained from the University of Pittsburgh 

Brain Bank and the Center for ALS Research. Clinical diagnoses were made by board certified 

neuropathologists according to consensus criteria for each disease. All human tissues were obtained 

through a process that included written informed consent by the subjects' next of kin. The acquisition 

process was evaluated by the University of Pittsburgh Institutional Review Board/University of 

Pittsburgh Committee for Oversight of Research Involving the Dead and determined to be exempt 

from review by the full committee. Subject demographics are listed in Table 4.1. The average age for 

each subject category was 59.7 +/- 11.2 years for ALS, 60.2 +/- 11.2 years for Controls, 76.7 +/- 9.9 

years for frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), and 78.2 +/- 7.3 

years for Alzheimer’s disease (AD) patients. The post-mortem interval for each subject group was 

7.3 +/- 4.6 hours for ALS, 6.6 +/- 5.0 hours for Controls, 9.0 +/- 7.5 hours for FTLD-TDP, and 4.5 

+/- 1.0 hours for AD patients. While there was a statistically significant difference in age across the 

subject groups due to the more advanced age of the FTLD-TDP and AD cases (p = 0.01), there was 

no significant difference of post-mortem interval (p = 0.6). All FTLD-TDP cases either presented 

with motor neuron disease or developed motor neuron deficits and best fit neuropathologic criteria 

for FTLD-TDP type B with TDP-43 inclusions in spinal cord motor neurons and frontal and/or 
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temporal cortex
500

. All AD cases were Braak stage VI with frequent plaque pathology by CERAD 

criteria
501,502

. Two of four AD cases had additional TDP-43 pathology in the hippocampus, as noted 

in Table 2. CSF samples were collected as described in Chapter 2.3.  

4.3.2 Immunohistochemistry 

Paraffin-embedded tissue sections of spinal cord from ALS (n=23), FTLD-TDP (n=2), and non-

neurologic disease control (n=7), and hippocampus from ALS (n=9), FTLD-TDP (n=6), Alzheimer’s 

disease (n=4) and non-neurologic disease control (n=5) cases were used for immunohistochemistry. 

All sections were deparaffinized, rehydrated, and antigen retrieval performed using Target Antigen 

Retrieval Solution, pH 9.0 (DAKO) for 20 minutes in a steamer.  After cooling to room temperature, 

non-specific binding sites were blocked using Super Block (Scytek) for 1 hour. The following 

primary antibodies were used for immunohistochemistry: affinity purified rabbit polyclonal anti-

RBM45 generated to amino acids 1-130 (1:75; Sigma-Aldrich Prestige antibody HPA020448), 

custom made affinity purified rabbit monoclonal antibody to the C-terminal 15 amino acids of 

RBM45 (1:200 dilution; PI462476), affinity purified rabbit polyclonal anti-RBM45 antibody 

AV41154 (Sigma-Aldrich), rabbit polyclonal anti-TDP43 (1:10,000; Proteintech), and mouse 

monoclonal anti-Ubiquitin antibody (1:1,000; Cell Signaling) with overnight incubation. After three 

washes, tissue sections were incubated for 1 hour in the appropriate biotinylated IgG secondary 

antibodies (1:200; Vector Labs) diluted in Super Block (Scytek). Slides were washed in PBS for 15 

minutes and immunostaining visualized using the Vectastain Elite ABC reagent (Vector Labs) and 

Vector NovaRED peroxidase substrate kit (Vector Labs). Slides were counterstained with 

hematoxylin (Sigma Aldrich).  Sections were visualized using an Olympus BX40 light microscope 

and images acquired using a Nikon DS L2 digital camera.  
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A semi-quantitative assessment of RBM45 and TDP-43 cytoplasmic inclusion pathology was 

performed on all coded sections of the lumbar spinal cord and hippocampus by three independent 

investigators. The following scoring system was used: (-) = none; (+) = 1 – 3 inclusions per section; 

(++) = 4 – 9 inclusions per section; (+++) = 10 or more inclusions per section. A quantitative 

assessment of RBM45 and TDP43 pathology was performed on select spinal cord sections. The gray 

matter was morphologically identified for each lumbar spinal cord section on pictures at 1.25X 

magnification using a Leica microscope and outlined using NIH ImageJ software. The area of the 

gray matter was calculated via the ROI (region of interest) tool of NIH ImageJ software (1 pixel= 

1.276 microns). Then, counts of total motor neurons, neuronal and glia inclusions for both RBM45 

and TDP-43 were established per slide and results reported as a proportion of gray matter area 

density for RBM45 and TDP-43 inclusions.  

4.3.3 Repeat-Primed PCR 

100 ng of genomic DNA was used as template in a final volume of 28 µl containing 14 µl of 

FastStart PCR Master Mix (Roche Applied Science, Indianapolis, IN) and a final concentration of 

0.18 mM 7-deaza-dGTP (New England Biolabs, Ipswich, MA), 1X Q-Solution (Qiagen), 0.7 µM 

reverse primer consisting of ~four GGGGCC repeats with an anchor tail, 1.4 µM 6FAM-fluorescent 

labeled forward primer located 280 bp telomeric to the repeat sequence, and 1.4 µM anchor primer 

corresponding to the anchor tail of the reverse primer. A touchdown PCR cycling program was used 

where the annealing temperature was gradually lowered from 70°C to 56°C in 2°C increments with a 

3 minute extension time for each cycle. Fragment length analysis was performed on an AB 3730xl 

genetic analyzer (Applied Biosystems, Foster City, CA) and data analyzed using GeneScan software 

(version 4, ABI). The repeat-primed PCR is designed so that the reverse primer binds at different 
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points within the repeat expansion to produce multiple amplicons of incrementally larger size, 

producing a characteristic sawtooth pattern with a 6 bp periodicity. 

4.4 RESULTS 

4.4.1 Proteomic Analysis of CSF and Identification of RBM45 

We performed an unbiased mass spectrometry based proteomic analysis of CSF samples from ALS, 

healthy controls, multiple sclerosis, Alzheimer’s disease, upper motor neuron disease and lower 

motor neuron disease patients to discover candidate biomarkers for ALS. The subject demographics 

of this proteomics profiling are shown in Table 4.1 A complete and detailed description of all the 

proteins and cellular pathways that appeared altered in ALS versus the various controls groups is 

found in Chapter 2.4. From the top 400 proteins identified in the CSF, we detected peptides from 13 

nucleic acid binding proteins in the CSF, with many of them altered in ALS patients. Several 

exhibited statistically significant increased relative abundance in the CSF of ALS subjects when 

compared across all other groups (healthy control and other neurological diseases). Of these, the 

RNA binding protein motif 45 (RBM45) appeared in almost all ALS groups but only a few of the 

control groups and exhibited the largest difference between ALS and all other groups. Peptides to 

both TAR DNA binding protein 43 (TDP-43) and Fused-in-Sarcoma (FUS) were only detected in a 

few of the subject groups using this mass spectrometry based proteomic method and therefore were 

not in the top 400 proteins detected in CSF.  

RBM45 is a 476 amino acid protein that exhibits structural similarities with TDP-43 and FUS 

(Figure 4.1), two RNA binding proteins contained in cytoplasmic inclusions of neurons and glia in 
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ALS and FTLD patients. RBM45 contains three RNA recognition motifs (RRMs) whereas TDP-43 

has two and FUS has one RRM. RBM45 contains a C-terminal nuclear localization sequence, similar 

to FUS, but lacks both the glycine rich domain contained in both TDP-43 and FUS and a defined 

nuclear export sequence (Figure 4.1). RNA-binding protein 40 (Table 4.2) contains two RRM 

domains and will be further characterized in a future study. However the gene is located on the Y 

chromosome and is believed to participate in spermatogenesis
503

, thus making a direct link to ALS 

less obvious. 

 

Table 4.1 Subject demographics. Patient subject case number and disease group, age, gender, PMT 

(post-mortem interval), and presence or absence of C9ORF72 repeat expansion. ALS = amyotrophic 

lateral sclerosis; FALS = familial amyotrophic lateral sclerosis; FTLD-TDP = frontotemporal lobar 

degeneration with TDP-43 inclusions; AD = Alzheimer’s disease; CT = non-neurological disease 

control. All AD cases were Braak stage VI. 
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Case ID Group Age Gender PMT C9ORF72 
1 ALS 40 M 6 No 

2 ALS 68 M 4 Yes 

3 ALS 43 M 6 Yes 

4 ALS 45 M 7 No 

5 ALS 62 M 7 No 

6 ALS 72 F 9 No 

7 ALS 69 M 5 No 

8 ALS 50 F 7 No 

9 ALS 60 F 4 No 

10 ALS 59 M 4 No 

11 ALS 77 F 4 No 

12 ALS 79 F 4 No 

13 ALS 52 F 21 No 

14 ALS 45 M 7 No 

15 ALS 65 M 5 No 

16 ALS 66 M 18 No 

17 ALS 53 F 12 No 

18 ALS 73 F 6 No 

19 ALS 59 M 5 No 

20 ALS 70 F 4.5 No 

21 FALS 55 M 14 No 

22 FALS 63 F 4 Yes 

23 FALS 48 F 5 No 

24 FTLD-TDP 69 M 6 No 

25 FTLD-TDP 67 M 24 No 

26 FTLD-TDP 69 M 6 No 

27 FTLD-TDP 85 M 3 No 

28 FTLD-TDP 91 F 8 No 

29 FTLD-TDP 79 M 7 No 

30 AD 73 F 4 No 

31 AD 71 M 4 No 

32 AD 85 M 5 No 

33 AD 84 F 5 No 

34 CT 54 M 6 No 

35 CT 53 F 4 No 

36 CT 76 M 13 No 

37 CT 57 M 2 No 

38 CT 48 M 2 No 

39 CT 58 F 5 No 

40 CT 76 M 14 No 
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Figure 4.1 RBM45, TDP-43, and FUS domain structures. Amino acid domain analysis of TDP-

43, FUS, and RBM45 are shown in a schematic diagram. Each protein has one or more RNA 

recognition motifs (RRMs).  TDP-43 and FUS share a common glycine-rich-domain (Gly-RD) that 

is absent from RBM45. A nuclear localization signal (NLS) is present in each protein, with a C-

terminal location in both FUS and RBM45. RBM45 lacks a defined nuclear export signal (NES) 

present in both TDP-43 and FUS.  FUS also contains a glutamine/glycine/serine/tyrosine-rich 

domain (Q/G/S/Y-RD), a zinc finger binding motif (ZF), and an arginine/glycine-rich domain (R/G-

RD) that spans the ZF domain. RBM45 amino acid domains were defined according to 

http://www.uniprot.org, and the location of each RRM is defined in the figure. 
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Table 4.2 RNA binding proteins identified by CSF proteomics. The name and accession number 

for all RNA binding proteins identified by proteomic profiling of cerebrospinal fluid of ALS, healthy 

control, and other neurological disease subjects are shown. The full analysis of the relative 

abundance of these proteins in each group is found in Chapter 2.  

Protein Accession 
RNA-binding protein 45 Q8IUH3 

Ribonuclease T2 O00584 

Transcription factor jun-B P17275 

RNA polymerase I P17480 

Transcription factor TBX3 O15119 

RNA helicase DDX59 Q5T1V6 

RNA-binding protein 40 Q96LT9 

Nucleolar RNA helicase 2 Q9NR30 

RNA-binding protein Raly Q9UKM9 

ZFR2 Q9UPR6 

MLXIPL Q9NP71 

RAD54-like protein Q92698 

SPO11 Q9Y5K1 

4.4.2 Distribution of RBM45 in Control and ALS Spinal Cord 

We next examined the cell type-specific expression patterns and subcellular localization of RBM45 

in ALS and control subjects using immunohistochemistry. Non-neurologic disease control subjects 

exhibited a punctate staining pattern for RBM45 in the nucleus and cytoplasm of motor neurons in 

the lumbar spinal cord, with limited staining of nuclei within glial cells (Figure 4.2A and B). 

Examination of sporadic and non-SOD1 familial ALS spinal cord tissue revealed RBM45-positive 

inclusion pathology bearing a striking resemblance to that seen with TDP-43 or FUS in ALS motor 

neurons (Figure 4.2C-E). Several distinct morphologies were observed, including skein-like (Fig. 

4.2D), globular (Figure 4.2C and E), and neuritic (Figure 4.2D and E) inclusions. Prior studies have 
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demonstrated a clearance of TDP-43 from the nucleus of neurons that harbor cytoplasmic 

inclusions
153,492

. However, we observed motor neurons with cytoplasmic RBM45 inclusions that 

retained RBM45 in a speckled or diffuse staining pattern in the nucleus (Figure 4.2D). In addition, 

we were able to detect glial inclusions that stained positive for RBM45 (Figure 4.2E and F). We also 

detected RBM45 inclusions in the spinal cord of familial ALS and FTLD-TDP cases (Figure 4.2G–

I). A quantitative assessment of RBM45 and TDP-43 pathology is shown in Figure 4.3 and 

Supplemental Table 3. Within the spinal cord, we observed cytoplasmic RBM45 motor neuron 

inclusions in 78% of ALS patients (n = 18 of 23 cases). RBM45 glial cytoplasmic inclusions were 

observed in the spinal cord from 74% of ALS patients (n = 17 of 23 cases). Two cases displayed 

RBM45 glial inclusions but no motor neuron inclusions (cases 18 and 21). Conversely, no RBM45 

containing inclusions were observed in either cell type in the spinal cord of control subjects. From 

this data there appeared to be a relationship between the RBM45 and TDP-43 pathology that was 

further examined by double-label confocal microscopy as described below. 

The anti-RBM45 antibody used above recognizes amino acids 1-50 that contains a small 

region of the first RRM and therefore potential cross-reactivity with other proteins such as TDP-43 

and FUS that contain these domains. However a blocking peptide to this epitope completely 

eliminates immunoreactivity (Figure 4.4), suggesting that this antibody is not also recognizing 

similar epitopes in TDP-43 or FUS. In addition, RBM45 amino acids 1-50 exhibit little sequence 

identity to either TDP-43 or FUS. However we also used another commercial antibody to RBM45 

that recognizes amino acids 216-257 (lacks any RRM domain sequences) and a custom affinity 

purified rabbit monoclonal antibody to the terminal 15 amino acids of RBM45 for 

immunohistochemistry. Both of these antibodies could detect RBM45 inclusions in either the spinal 

cord or hippocampus (Figure 4.4).   
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Using a repeat-primed polymerase chain reaction (PCR) method 
191

, we determined that three 

ALS patients harbored c9ORF72 repeat expansions, defined as having greater than 30 repeats (Table 

4.1). This represented 10% of our sporadic ALS and 33% of our familial ALS population. 

Interestingly, these subjects exhibited the highest number of neuronal and glial cytoplasmic RBM45 

inclusions (Figure 4.3, Supplemental Table 3). This is similar to a recent study indicating that 

individuals with the c9ORF72 repeat expansion had the highest number of p62 positive cytoplasmic 

inclusions in the lumbar spinal cord and hippocampus
504

. Within the lumbar spinal cord, ALS 

patients with the c9ORF72 repeat expansion also exhibited the highest amount of TDP-43 inclusions 

(Figure 4.3, Supplemental Table 3). We quantified the amount of RBM45 and TDP-43 inclusions 

within the lumbar spinal cord gray matter for 2 – 4 sections of each ALS case (see Methods). 

c9ORF72 positive cases contained on average 12.6 RBM45 neuronal inclusions per mm
2
 of gray 

matter whereas all other ALS cases contained 3.4 RBM45 neuronal inclusions per mm
2
 of gray 

matter. There was no difference in the number of RBM45 inclusions within glia in c9ORF72 repeat 

expansion cases. 
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Figure 4.2 RBM45 distribution in spinal cord by light microscopy. Representative sections are 

shown from lumbar spinal cord sections from control, ALS and FTLD-TDP patients stained for 

RBM45 and counterstained with hematoxylin. A., B. Motor neurons from control subjects show a 

punctate staining of the nucleus and cytoplasm. C. – E. Motor neurons from ALS patients, including 

a C9ORF72 case in (E), contain RBM45-positive inclusions with globular, skein-like, and neuritic 

morphology. Arrow in (E) indicates a glial inclusion. F. Two glial inclusions from a sporadic ALS 

patient are shown (arrows). G. RBM45 positive inclusions were also detected in the motor neurons 

of non-SOD1, non-C9ORF72 fALS cases. H. Glial inclusions are also observed in fALS. I. Spinal 
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cord motor neuron of FTLD-TDP case containing skein-like RBM45 inclusion. All images are taken 

at 40X magnification. Scale bars equal 30 μm. Panels represent the following case numbers in Table 

4.1: (A) = 37; (B) = 39; (C) = 2; (D) = 2; (E) = 3; (F) = 13; (G) = 23; (H) = 21; (I) = 24. 

 

Figure 4.3 Assessment of RBM45 pathology in various forms of ALS. RBM45 pathology was 

scored by three separate investigators. The results represent the mean ± SEM for each metric 

reported. Sections of lumbar spinal cord from c9ORF72-linked ALS, sALS, and fALS cases were 

scored for the number of remaining anterior horn motor neurons, neuronal cytoplasmic inclusions 

(NCIs), the percentage of motor neurons harboring NCIs (% NCI), and the number of glial 

inclusions. Each ALS group was compared using the independent samples T-test. * = p < 0.01.  
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Figure 4.4 RBM45 antibody specificity and inclusion recognition. RBM45 pathology is 

recognized by multiple antibodies to RBM45. A., B. Hippocampal RBM45 pathology is seen in 

adjacent sections of an AD case. RBM45 positive inclusions are marked with arrows. Antibodies 

used were HPA020448 generated to amino acids 1-50, AV41154 generated to amino acids 216-257, 
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and PI462476 to amino acids 452-467. RBM45 inclusions are detected by affinity purified rabbit 

polyclonal anti-RBM45 antibodies HPA020448 and AV41154 as indicated by arrows in (A) and (B), 

respectively. Scale bar = 20 µm. C., D.. Multiple antibodies detect RBM45 pathology in lumbar 

spinal cord motor neurons in ALS cases. Adjacent sections of lumbar spinal cord from an ALS case 

were stained with anti-RBM45 antibodies HPA020448 (C) or affinity purified rabbit monoclonal 

antibody PI462476 (D). Inclusions are marked by arrows. Scale bar = 30 µm. E., F. Anti-RBM45 

antibody HPA020448 does not detect inclusions when pre-incubated with blocking peptide. 

Adjacent sections of a sALS case were incubated with anti-RBM45 antibody HPA020448 in the 

absence (E) or presence (F) of RBM45 blocking peptide (aa’s 1-50).  In the absence of blocking 

peptide, the antibody detects RBM45 positive inclusions in motor neurons. When incubated with 

blocking peptide, however, all immunostaining is eliminated. An inclusion in (E) is marked with an 

arrow. Scale bar = 30 µm.  Panels represent the following case numbers in Table 4.1: (A and B) = 

30; (C and D) = 22; (E and F) = 10. 

4.4.3 RBM45 Distribution in the Hippocampus 

Since TDP-43 pathology is also evident in the dentate of FTLD-TDP cases, we next evaluated the 

distribution of RBM45 in the hippocampus from FTLD-TDP, ALS and control subjects. Control 

subjects, including both non-neurologic controls and Alzheimer’s disease, exhibited a punctate or 

speckled RBM45 pattern within the nucleus of dentate granule cells (Figure 4.5A-C). In FTLD-TDP 

patients there were RBM45 positive cytoplasmic inclusions within dentate granule cells (Figure 

4.5D-F). A speckled RBM45 immunoreactivity was still evident in the nucleus of dentate granule 

cells in FTLD-TDP cases. RBM45 inclusions were also detected in dentate granule neurons of ALS 

cases (Figure 4.5G), as well as some hippocampal pyramidal neurons in ALS and FTLD-TDP 
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patients (Figure 4.5H and I). RBM45 dystrophic neurites were not detected in the hippocampus. Of 

the available hippocampal tissue, we observed RBM45 neuronal inclusions in 63% of ALS cases (n 

= 5 of 8), with no glial inclusions in any case. While only six FTLD-TDP cases were available for 

this study, RBM45 pathology occurred in 83% of FTLD-TDP hippocampi (n = 5 of 6) and in both 

available FTLD-TDP spinal cord sections. Collectively, RBM45 pathology was present in some 

form/region in all FTLD-TDP cases examined. RBM45 inclusions were also observed in the dentate 

gyrus and pyramidal neurons for 3 of 4 AD cases (Supplemental Table 3). We used confocal 

microscopy to determine association of RBM45 with tau pathology in AD cases. RBM45 did not co-

localize with phosphorylated tau (pTau) in the hippocampus of AD cases (Figure 4.6). A speckled 

RBM45 pattern was also detected within the nuclei of dentate cells in AD cases (Figure 4.6A and B). 

Finally, we detected no RBM45 pathology in the hippocampus of any non-neurologic disease control 

case. 
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Figure 4.5 RBM45 localization in the hippocampus. Representative hippocampal sections from 

ALS, FTLD-TDP and control subjects immunostained for RBM45 and counterstained with 

hematoxylin. A. – C.: RBM45 immunoreactivity in non-neurologic disease controls. RBM45 is 

located in the nucleus of dentate granule cells. D. – F.: RBM45 cytoplasmic inclusions are observed 

in dentate granule cells in FTLD-TDP cases (arrows in E and F). G. RBM45 pathology in the 

hippocampus of sporadic ALS. H.,  I. Rare CA3 pyramidal neurons in FTLD-TDP cases contained 

RBM45 inclusions. For panels A and D, the magnification is 10X and the scale bars denote 60 μm, 

while in all other panels the magnification is 40X and scale bars indicate 20 μm. Panels represent the 
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following case numbers in Table 4.1: (A) = 38; (B) = 40; (C) = 39; (D) = 29; (E) = 27; (F) = 26; (G) 

= 17; (H) = 29; (I) = 24.  

 

 

Figure 4.6 RBM45 and tau pathology do not overlap in AD cases. Hippocampal sections from 

two AD cases stained for RBM45 (green) and phosphorylated tau (red) with nuclei (DAPI-blue) in 

the merged image. Abundant pTau pathology is seen in both cases, as well as RBM45 inclusions 

marked with arrows. No overlap of pTau pathology with RBM45 inclusions or speckled RBM45 

nuclear staining is seen. Scale bar = 20 µm. Panels represent the following case numbers in Table 

4.1: (A-C) = 30; (D-F) = 33. 
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4.4.4 Co-localization of RBM45 and TDP-43 

We next examined the co-localization of RBM45 and TDP-43 pathology in ALS, FTLD-TDP and 

AD by double-label confocal microscopy, with DAPI to identify nuclei. We detected co-localization 

of RBM45 and TDP-43 within cytoplasmic inclusions of spinal cord motor neurons in ALS (Figure 

4.7A-C). We also noted ALS motor neurons with both nuclear RBM45 and co-localization in 

cytoplasmic TDP-43 inclusions (Figure 4.7C). Interestingly, Figure 4.7A, B represent ALS cases 

with the C9ORF72 repeat expansion and exhibit reduced RBM45 nuclear staining when compared to 

ALS cases without the repeat expansion. 

In the hippocampus of FTLD-TDP and AD patients, RBM45 co-localized with TDP-43 in 

cytosolic and rare intranuclear inclusions of dentate granule cells (arrows in Figure 4.7D, E). We 

also observed co-localization of RBM45 to TDP-43 inclusions in the dentate of AD patients (Figure 

4.7F). A speckled RBM45 nuclear staining pattern was evident in many dentate granule cells that are 

distinct from the more diffuse TDP-43 nuclear immunostaining. Using multiple images from 10 

ALS, 4 FTLD-TDP, and 5 AD cases, we determined that RBM45 was present in 64% of the TDP-43 

inclusions in the spinal cord of ALS cases and 70% of the TDP-43 inclusions in the hippocampus of 

FTLD-TDP and AD cases. Examples of TDP-43 inclusions that lack RBM45 are shown in Figure 

4.8. We observed ALS spinal cord motor neurons with nuclear RBM45 and weak or absent co-

localization to TDP-43 cytoplasmic inclusions (Figure 4.8A). In subjects with the C9ORF72 repeat 

expansion, we also observed spinal cord motor neurons devoid of nuclear RBM45 and lacking 

RBM45 positive cytoplasmic inclusions (Figure 4.8B). Finally, the hippocampus of ALS, FTLD-

TDP and AD subjects contained TDP-43 inclusions without RBM45 (arrowheads in Figure 4.8C). 

We did not detect RBM45 inclusions that completely lack TDP-43 immunoreactivity. 
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Figure 4.7 Double-label immunofluorescence for RBM45 and TDP-43. A. – C. RBM45 (green) 

colocalization with TDP-43 (red) positive inclusions in ALS spinal cord motor neurons is shown. 

DAPI visualizes nuclei (blue) in the merged images. RBM45 also remained in the nucleus of a motor 

neuron with cytoplasmic TDP-43 inclusions (C). D. – F. RBM45 colocalization with TDP-43 

inclusions in the dentate gyrus of FTLD-TDP (D and E) and AD (F) cases. Arrows denote co-

localization in intranuclear (D) and cytoplasmic (E and F) inclusions. Speckled RBM45 nuclear 

stain is observed in all panels and is devoid of TDP-43. Scale bars denote 20 μm in panels A-C and 

30 μm in panels D-F. Each panel represents the following case numbers in Table 4.1: (A) = 2; (B) = 

3; (C) = 7; (D) = 24; (E) = 28; (F) = 30. 
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Figure 4.8 TDP-43 pathology independent of RBM45 pathology. TDP-43 pathology can occur 

independently of RBM45 pathology in ALS and FTLD cases. RBM45 is labeled in green, TDP-43 

denoted in red and DAPI (blue) visualizes nuclei in the merged images. A. Motor neuron with 

nuclear RBM45 and a TDP-43 positive inclusion that labels poorly for RBM45. Several such 

inclusions were found throughout the lumbar spinal cord of sALS and fALS cases. B. Motor neurons 

from C9ORF72 ALS cases exhibited nuclear depletion of RBM45. RBM45 was not contained in the 

TDP-43 inclusions in this motor neuron. C. Several TDP-43 positive, RBM45 negative inclusions 

are indicated by arrowheads in the dentate gyrus of an FTLD case. While no RBM45 positive 

inclusions were seen, the speckled nuclear staining pattern was observed in several adjacent cells. 
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Scale bar = 20 µm. Panels represent the following case numbers in Table 4.1: (A) = 7; (B) = 2; (C) = 

27. 

4.4.5 Co-localization of RBM45 and ubiquitin 

As ubiquitin-positive inclusions are a pathologic hallmark of both ALS and FTLD-TDP
505,506

, we 

examined the co-localization of RBM45 and ubiquitin-containing inclusions in ALS and FTLD-

TDP. RBM45 containing cytoplasmic inclusions in lumbar spinal cord motor neurons of sporadic 

and familial ALS cases were frequently co-labeled with ubiquitin (Figure 4.9A-C). RBM45 nuclear 

immunoreactivity in neurons or glia lacked ubiquitin staining (Figure 4.9A, C). These results suggest 

that RBM45 pathology is highly coincident with ubiquitin in cytoplasmic inclusions, but nuclear 

RBM45 lacks ubiquitin.  

Ubiquitin also labeled RBM45 cytoplasmic inclusions within dentate granule cells of FTLD-

TDP patients (Figure 4.9D, E). In addition, we also observed punctate RBM45 nuclear staining in 

cells that contained cytoplasmic ubiquitin-containing inclusions (Figure 4.9D, E). However we did 

not detect RBM45 within ubiquitin labeled dystrophic neurites in the dentate of FTLD-TDP subjects 

(Figure 4.9D), and ubiquitin did not label the speckled nuclear RBM45 immunoreactivity (Figure 

4.9D, E).  
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Figure 4.9 Double-label immunofluorescence for RBM45 and Ubiquitin. Double-label 

immunofluorescence for RBM45 (green) and ubiquitin (red) in the spinal cord and hippocampus is 

shown. A. – C. RBM45 co-localization with ubiquitin in ALS spinal cord motor neurons. DAPI 

visualizes nuclei (blue) in the merged images. Cytoplasmic ubiquitin inclusions are positive for 

RBM45; however, nuclear RBM45 is not labeled by ubiquitin (C). D., E. Co-localization of RBM45 

to ubiquitin cytoplasmic inclusions in the dentate gyrus. Arrows denote cells that exhibit co-

localization of RBM45 and ubiquitin within an inclusion but retaining a speckled RBM45 nuclear 

immunostaining. Note the lack of RBM45 labeling of an ubiquitin positive dystrophic neurite in the 

dentate gyrus as indicated by arrowhead (D). Scale bars denote 20 μm in panels A-D and 30 μm in 

panel E. Each panel represents the following case numbers in Table 4.1: (A) = 10; (B) = 7; (C) = 22; 

(D) = 27; (E) = 26. 

4.5 DISCUSSION 

We report a new RNA binding protein that exhibits cytoplasmic inclusions in spinal motor neurons 

and dentate granule cells in ALS and FTLD-TDP patients. This protein, RBM45, was identified by 

an unbiased mass spectrometry based proteomic screen of CSF and verified by immunoblot analysis. 

Additional RNA and DNA binding proteins were also observed in our CSF based proteomics 

analyses that warrant further investigation (Table 4.2). We focused efforts in this study to RBM45 

since it exhibited the most statistically significant q value and highest effect size between the ALS 

and control groups, was known to be developmentally regulated in the nervous system, contained 

structural similarities to TDP-43 and FUS, and commercial antibodies were available. RBM45 was 

detected in a punctate or speckled immunostaining pattern in the nucleus of neurons and glia. We 
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observed RBM45-positive inclusions in motor neurons and glia in sporadic and familial ALS cases, 

as well as in hippocampal neurons of FTLD-TDP and AD patients. The most abundant RBM45 

spinal cord pathology was detected in patients that harbor the C9ORF72 hexanucleotide repeat 

expansion, with approximately 3 times as many inclusions observed in these cases. This was not due 

to increased numbers of remaining motor neurons in the C9ORF72 cases but an increased percentage 

of the remaining motor neurons containing inclusions. There were no differences in the amount of 

glial RBM45 inclusions in C9ORF72 repeat expansion cases versus ALS cases without the repeat 

expansion. We did not detect any intranuclear RBM45 inclusions in the spinal cord. Importantly, no 

RBM45 inclusions were detected in any region or cell type examined in control subjects. Significant 

co-localization of RBM45 with TDP-43 or ubiquitin was detected within inclusions of both ALS and 

FTLD-TDP patients, but RBM45 did not co-localize with tau pathology in AD cases. RBM45 within 

the nucleus was not labeled by ubiquitin and did not co-localize with TDP-43.  

Few prior studies have investigated RBM45, and our study is the first to report on the 

distribution and expression of RBM45 in the human brain and spinal cord. In control subjects, we 

saw punctate staining of the nucleus and cytoplasm of motor neurons of the lumbar spinal cord, 

along with speckled nuclear staining of adjacent glia (Fig. 4.2A, B). This is consistent with the initial 

characterization of the protein in rodents, which suggested that the protein is capable of shuttling 

between the nucleus and cytoplasm
507

. Moreover, we detected limited, predominantly nuclear 

RBM45 in a speckled staining pattern within dentate granule cells of control subjects (Fig. 4.5A-C). 

Nuclear speckles were commonly observed in a variety of cell types, including neurons and glia. In 

mammalian cells, they occur in interchromatin regions of the nucleus and contain RNA
508,509

, and 

are dynamic structures most commonly observed using antibodies to splicing factors that function as 



 153 

regulators of pre-mRNA splicing
510,511

. The speckled staining pattern seen for RBM45 is consistent 

with a role as an RNA binding protein involved in pre-mRNA splicing.    

The abundant level of RBM45 in the CSF of control subjects suggests that this RNA binding 

protein may also have an extracellular function. Numerous RNA species are contained within 

biofluids and many have been reported as biomarker candidates for human diseases
512,513

, and while 

speculative, RNA binding proteins such as RBM45 may modulate extracellular RNA signaling 

between cells. Recent evidence indicates that cultured cells stimulated to release microRNAs also 

release numerous RNA binding proteins that may contribute to the protection of extracellular 

micoRNAs
514

. 

We established a connection between RBM45 and neurodegenerative disease by virtue of the 

cytoplasmic inclusion pathology observed in a total of 91% of ALS, 100% of FTLD-TDP and 75% 

of AD cases. We did not identify any clinical attributes (age, gender, site of disease onset, disease 

duration) that would provide insight into why some ALS cases fail to exhibit RBM45 pathology. 

Further studies are necessary to explore the mechanisms of RBM45 inclusion formation and to 

characterize RBM45 in other neurodegenerative disorders. The pattern of RBM45 inclusion 

pathology strongly resembles that observed for TDP-43 (Figure 4.7). Namely, we identified 

numerous cytoplasmic neuronal and glial inclusions in the lumbar spinal cord of sporadic and non-

SOD1 familial ALS patients (Figure 4.2), as well as neuronal inclusions in the hippocampus in 

FTLD-TDP and AD patients (Figure 4.5). This pattern is similar to that seen for the related proteins 

TDP-43 and FUS in sporadic and non-SOD1 familial ALS cases 
492,515

. Indeed, we saw considerable 

overlap of RBM45 and TDP-43 pathology by confocal microscopy in ALS, FTLD-TDP and AD 

patients. However, we did not detect RBM45 in TDP-43 or ubiquitin-positive dystrophic neurites in 

the dentate gyrus of FTLD-TDP patients (Figure 4.9). We also did not observe RBM45 in tau 
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pathology in the hippocampus of AD patients (Figure 4.6). Co-localization with FUS will be 

assessed in future studies. 

Overall, RBM45 co-localized with 64% of cytoplasmic TDP-43 inclusions in ALS spinal 

cord and 70% of TDP-43 inclusions in the hippocampus of FTLD-TDP and AD cases. By confocal 

microscopy we did not detect any RBM45 inclusions that were completely devoid of TDP43 

immunoreactivity, suggesting that RBM45 inclusion formation is always associated with TDP-43 

inclusions in these brain and spinal cord regions (Figure 4.8). By confocal microscopy we also noted 

a punctate or speckled RBM45 nuclear staining in neurons containing RBM45, TDP-43 or ubiquitin 

inclusions (Figures 4.7, 4.8, and 4.9). Retention of FUS in the nuclei of cells harboring cytoplasmic 

inclusions has been noted in ALS cases that do not harbor mutations in FUS
516

. TDP-43 inclusions 

may temporally occur earlier in the pathobiology of ALS and RBM45 may be later sequestered into 

these inclusions. Future cell culture studies are necessary to determine the temporal pattern of TDP-

43 and RBM45 deposition within inclusions and if RBM45 containing inclusions are cytotoxic. 

Since many neurons were observed that had both cytoplasmic RBM45 and speckled nuclear 

RBM45, the formation of RBM45 inclusions does not preclude its normal distribution, and hence 

function, in the nucleus. It is possible that the loss of RBM45 from the nucleus is cytotoxic and 

future studies will explore this possibility.  

Aside from RBM45’s affinity for poly(C) and poly (G) RNA
507

, little is known about 

RBM45-mediated regulation of gene expression, and continued studies of RBM45 function in 

splicing may provide insight into disease associated dysregulation of gene expression. Interestingly, 

the most abundant RBM45 pathology occurred in the spinal cord of subjects containing the 

C9ORF72 repeat expansion. Recently, ubiquitin or p62 positive and TDP-43 negative inclusions 

were noted in non-motor regions including the hippocampus and cerebellum of subjects with the 
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C9ORF72 repeat expansion
193,504,517,518

, and it is possible that RBM45 may be contained within these 

inclusions in the cerebellum. We did not have access to cerebellar tissue from these cases to explore 

this question. We also noted reduced nuclear immunostaining for RBM45 in cases that harbor the 

C9ORF72 repeat expansion (Figure 4.2), though studies using a larger number of subjects containing 

the repeat expansion is necessary to confirm this observation.    

The presence of RBM45 pathology in a majority of ALS and all FTLD-TDP cases suggests 

that RBM45 inclusions occur via a pathway common to familial and non-familial forms of 

neurodegeneration. Prior studies have linked mutations or gene variations in a number of RNA 

processing proteins to ALS and FTLD-TDP, including TDP-43, FUS, senataxin, the survival motor 

neuron protein, and ataxin-2 (reviewed in 
519

). This raises the possibility that RBM45 mutations may 

also occur in familial forms of ALS or FTLD. However the chromosomal location of the RBM45 

gene, 2q31.2, has not been linked to ALS or FTLD in any prior genetic linkage study. Nevertheless, 

our data strengthens the link between ALS and FTLD-TDP to RNA metabolism (reviewed in 
495,497

). 

It is also important to note that TDP-43 has been shown to interact with the RNA for FUS and 

RBM45 in neurons, suggesting a functional role for TDP-43 in the expression of both FUS and 

RBM45
520

.  

In summary, we have identified a novel RNA binding protein in cytoplasmic inclusions of 

motor neurons and glia in sporadic and familial ALS, as well as in hippocampal neurons in FTLD-

TDP and AD. RBM45 inclusions readily co-localize with both TDP-43 and ubiquitin, but RBM45 

can be distinguished from these proteins through its speckled nuclear immunostaining and lack of 

incorporation into hippocampal dystrophic neurites. The most abundant RBM45 pathology typically 

occurred in patients that harbor the C9ORF72 repeat expansion. Additional work is needed to 

understand how this protein contributes to both the normal RNA metabolism as well as to 
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neurodegenerative disorders. Nevertheless, the identification of a new RNA binding protein 

associated with these disorders holds promise for further mechanistic insights into disease 

pathogenesis and strengthens the role of RNA metabolism in these disorders. 
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5.0  IMMUNOPRECIPITATION AND MASS SPECTROMETRY DEFINES AN 

EXTENSIVE RBM45 PROTEIN-PROTEIN INTERACTION NETWORK 

5.1 CHAPTER SUMMARY 

The pathological accumulation of RNA-binding proteins (RBPs) within inclusion bodies is a 

hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). 

RBP aggregation results in both toxic gain and loss of normal function. Determining the protein 

binding partners and normal functions of disease-associated RBPs is necessary to fully understand 

molecular mechanisms of RBPs in disease. Herein, we characterized the protein-protein interactions 

(PPIs) of RBM45, a RBP that localizes to inclusions in ALS/FTLD. Using immunoprecipitation 

coupled to mass spectrometry (IP-MS), we identified 132 proteins that specifically interact with 

RBM45. Select PPIs were validated by immunocytochemistry, demonstrating that RBM45 

associates with a number of other RBPs primarily via RNA-dependent interaction in the nucleus. 

Analysis of the biological processes and pathways associated with RBM45-interacting proteins 

indicates enrichment for nuclear RNA processing/splicing via association with hnRNP proteins and 

cytoplasmic RNA translation via eiF2 and eiF4 pathways. Moreover, several other ALS-linked 

RBPs, including TDP-43, FUS, Matrin-3, and hnRNP-A1, physically associate with RBM45, 

consistent with the observation of these proteins together in intracellular inclusions in ALS/FTLD. 

Taken together, our results define a PPI network for RBM45, suggest novel functions for this 
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protein, and provide new insights into the contributions of RBM45 to neurodegeneration in 

ALS/FTLD. 

5.2 INTRODUCTION 

The aggregation of RNA-binding proteins (RBPs) into inclusion bodies is one of the most prevalent 

and well-characterized pathological findings in amyotrophic lateral sclerosis (ALS) and 

frontotemporal lobar degeneration (FTLD). The identification of cytoplasmic mis-localized TDP-

43
33

, and later FUS
68,69

, as primary components of ubiquitinated inclusions in motor neurons and glia 

in these disorders led to the “two-hit” hypothesis of RBP-mediated neurodegeneration. This model 

proposes that the pathological aggregation of RBPs confers toxicity by simultaneous gain of toxic 

function of the aggregates and the loss of normal functions served by these proteins in regulating 

gene expression. Ample experimental evidence now exists in support of this model, with studies 

consistently finding that under- or overexpression of numerous RBPs is sufficient to induce neuronal 

cell death in a variety of model systems (reviewed in 
70

). 

 This model of RBP-mediated neurodegeneration depends, in part, on the ability of RBPs to 

self-associate and interact with other RBPs within protein aggregates. Many ALS-linked RBPs, 

including TDP-43, FUS, hnRNP-A1, and TAF15 are aggregation prone as a result of prion-like 

domains contained within their protein sequence
50,521

. Mutations in the prion-like domain lead to 

familial forms of ALS/FTLD marked by the pathological aggregation of the mutant protein 

(reviewed in 
522

). In addition to self-aggregation, these proteins are capable of sequestering other 

proteins into aggregates/inclusions as a consequence of the normal functional associations between 

these proteins. For example, proteomic analysis of TDP-43 aggregates showed deposition of stress 
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granule proteins G3BP and PABPC1 as well as paraspeckle proteins PSF and NONO
523

. Similar 

observations of paraspeckle proteins p54nrb and NONO in FUS-positive inclusions
524

 provide 

additional evidence in support of this concept. Thus, understanding the protein-protein interactions 

(PPIs) of ALS-linked RBPs is a necessary step towards defining the protein composition of 

inclusions in ALS/FTLD and new insight into mechanisms of disease.   

 Determining RBP PPIs is also essential for understanding the normal functions of RBPs, and 

how these functions may be compromised as a result of RBP aggregation in ALS/FTLD. Numerous 

RBP functions depend on the association of RBPs with protein/nucleic acid complexes. For example, 

FUS is a component of both nuclear gems, which participate in snRNP biogenesis, and paraspeckles, 

which are involved in cellular stress responses
524,525

. The expression of mutant FUS reduces levels of 

these nuclear sub-structures, suggesting mechanisms by which loss of normal FUS function 

contributes to cell death in ALS/FTLD. In addition, many ALS/FTLD-linked RBPs also associate 

with cytoplasmic stress granules
95

, and disease-associated mutations tend to promote the excess 

formation of these structures
103

. While stress granules normally aid in the response to cellular stress 

by protecting mRNAs and shifting gene expression towards a stress response, excessive stress 

granule formation promotes the formation of insoluble RBP aggregates that may be precursors to 

inclusion bodies
95,103,526

. This can lead to loss of other normal functions, such as impaired P-body 

formation that occurs in response to mutant FUS sequestration in stress granules
527

. PPIs can be used 

to predict these and similar functional associations
523

. Defining RBP PPIs, therefore, helps uncover 

novel functions and candidate disease mechanisms related to these multifunctional proteins.   

 Given the diversity of RBP functions, which includes regulating transcription, RNA 

splicing/export, and miRNA biogenesis
70

, a relatively high-throughput approach is preferable to 

identify candidate functions/binding partners for targeted validation. Immunoprecipitation coupled to 
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mass spectrometry (IP-MS) offers tremendous promise towards identifying large sets of RBP 

protein-protein interactions (PPIs) and associated biological processes/pathways. The sensitivity of 

this approach can be further enhanced by the use of cross-linking methods, such as treatment with 

small cross-linking agents or formaldehyde, to detect low-affinity protein interactions
528,529

. This 

approach has previously been used to identify proteins interacting with the ALS-linked Ewing 

Sarcoma (EWS) RBP
530

, where interactions with hnRNPs and FUS are consistent with roles of EWS 

in mRNA splicing
531

 and inclusion formation in ALS/FTLD
532

, respectively. Thus, IP-MS can 

identify multiple protein binding partners of a given target and this information can be used to 

predict novel functions and roles in disease.  

 Here, we applied this approach to RBM45, a recently characterized RNA-binding protein 

found in inclusions in ALS, FTLD, and Alzheimer’s disease (AD)
533

. These inclusions are positive 

for TDP-43, and RBM45 physically interacts with TDP-43 and FUS in vitro
528

. RBM45 contains 

three RNA-recognition motifs (RRMs), a nuclear localization sequence (NLS), and a homo-

oligomerization (HOA) domain that mediates self-association of the protein, and can localize to 

cytoplasmic stress granules
528,534

. The expression of RBM45 is developmentally regulated and the 

highest expression levels occur in the brain
535

. These properties make RBM45 a promising target for 

continued studies of ALS/FTLD, though at present little is known about the function of RBM45. To 

delineate protein binding partners of RBM45 and putative biological functions of the protein, we 

used an IP-MS approach to comprehensively characterize RBM45 protein-protein interactions 

(PPIs). We identified 132 RBM45 PPIs by IP-MS, including PPIs with many RBPs. Our results were 

used to associate RBM45 with biological processes and pathways. These were primarily related to 

nuclear mRNA processing and cytoplasmic RNA translation. Our IP-MS findings also indicate that 

RBM45 interacts with a number of ALS-linked proteins, including TDP-43, FUS, Matrin-3, hnRNP-
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A1, and hnRNP-A2/B1. Selected PPIs were externally validated via complementary techniques. 

Collectively, our results shed new light on RBM45 PPIs, biological functions, and contributions to 

neurodegeneration in ALS/FTLD.   

5.3 MATERIALS AND METHODS 

5.3.1 Cell Culture and Plasmid Construction 

HEK293 (FreeStyle™ 293-F Cells, Invitrogen) cells were cultured in DMEM medium with 10% 

FBS and 1% Pen-Strep at 37˚C with 5% CO2. Transfection was performed using the Lipofectamine 

2000 (Life technologies) and stable cell lines were selected in the presence of 500 μg/ml G418 (Life 

Technologies) 48 hours post-transfection. The RBM45 cDNA clone plasmid, cGST-hRBM45 

(HsCD00356971), was obtained from the DNASU Plasmid Repository at Arizona State University, 

Tempe. The cDNA was amplified by PCR using Phusion High-Fidelity DNA Polymerase (NEB) and 

sub-cloned into the pcDNA3 vector (Invitrogen). The 3xFLAG tag 

(DYKDHDGDYKDHDIDYKDDDDK) or 2xHA tag (DYPYDVPDYAGGAAYPYDVPDYA) was 

appended to the N-terminus of specific proteins to generate the 3xFLAG- or 2xHA-tagged construct. 

5.3.2 Immunoprecipitation 

Each immunoprecipitation (IP) was carried out in triplicate. Stable cell lines expressing FLAG-

RBM45, HA-RBM45, or pcDNA3 vector were grown on 10cm plates till 90% confluent and 

harvested. For regular IP, cells from one 10cm plate were lysed with 500 μl of 0.5% NP40 lysis 
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buffer (50 mM HEPES pH 7.6, 150 mM KCl, 2 mM EDTA, 0.5% NP40, 0.5 mM DTT and protease 

(Sigma P8340)/phosphatase (Calbiochem 524629)/RNase inhibitors (Ambion AM2694)) at 4˚C for 

15 min. For formaldehyde crosslinking-IP, formaldehyde in-cell crosslinking was performed prior to 

IP as previously reported
528

. Cells from one 10cm plate were suspended in 1 ml PBS containing 

0.1% formaldehyde and incubated at room temperature for 7 min with gentle agitation. The 

suspension was spun for 3 min at 1,800 g at room temperature and the supernatant was discarded. 

The pellet was washed with 1 ml 1.25 M glycine in cold PBS twice to quench the crosslinking 

reaction. The pellet was further washed in PBS, lysed with 500 μl of 1% NP40 lysis buffer (50 mM 

HEPES pH 7.6, 150 mM KCl, 2 mM EDTA, 1% NP-40, 0.5 mM DTT and protease/phosphatase 

inhibitors) at 4˚C and sonicated in a water bath sonicator (Misonix Sonicator 3000) at level 2 for 4 

cycles (15 sec on/30 sec off).  

 The lysates were first cleared by spinning at 16,000 g at 4˚C for 15 min to remove cell debris, 

pre-cleared using IgG-Agarose (Sigma A0919) for 1 hour and further centrifugated. The resulting 

supernatants were immunoprecipitated with appropriate amounts of agarose beads corresponding to 

50 μg of either pre-crosslinked antibody or IgG. FLAG-IP was performed using anti-FLAG M2 

Affinity Gel (Sigma A2220), HA-IP was performed using anti-HA Agarose (Sigma A2095), and 

IgG-IP control was performed using Mouse IgG-Agarose (Sigma A0919). IPs were performed at 4˚C 

for 2 hr and the beads were washed six times in IP buffer. The proteins were eluted with SDS sample 

buffer and heated at 95˚C for 5 min for regular IP samples and heated for 20 min for formaldehyde 

crosslinking IP samples. The samples were then run on the Bolt 4-12% Bis-Tris Plus Gel (Life 

Technologies), and stained using Bio-Safe Coomassie Stain (BioRad). 
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5.3.3 Protein Digestion 

Gel lanes in the molecular weight range between 10 kDa and greater than 250 kDa were excised into 

individual fractions, excluding the stained IgG-H (52kDa) and IgG-L (25kDa) bands. Bands 

fractions were then further reduced into cubes of 1-2mm
3
, destained, washed, dried and further 

processed using an established method
536

. Briefly, each fraction was reduced using 10mM DTT (6˚C 

for 30 min) and alkylated using 55mM iodoacetamide (room temperature for 30 min, in the dark), 

using multiple hydration and dehydration cycles of the acrylamide gel. Fractions were then digested 

using 20 ng/mL of Trypsin Gold (Promega) (37°C, overnight). Finally, peptides were extracted, 

concentrated to dryness under vacuum and stored at -20°C until LC-MS analysis. 

5.3.4 LC-MS Analysis and Protein Identification 

Each fraction was reconstituted in 0.1% formic acid and analyzed using online liquid 

chromatography on a nanoAcquity-UPLC coupled to a Thermo LTQ Orbitrap Velos mass-

spectrometry. Samples were loaded onto a 100-µm diameter column (length 100 mm) packed with 3 

µm Reprosil Pur C18 AQ resin. Solvent A and B were 0.1% formic acid in water and acetonitrile, 

respectively. The gradient was 3% B to 40% B in 17 min followed by 40% B to 90% B in 0.5 min, 

then 90% B for 2 min and final re-equilibration for 10.5 min. The flow rate was set to 500 nL/min 

The mass spectrometer was operated in positive ion mode using a spray voltage of 1.8 kV, and a 

capillary temperature of 200°C. Data were acquired in top-15, data-dependent acquisition mode 

using a collision voltage of 30 V. 

Mass spectra were extracted, deconvolved and deisotoped using Proteome Discoverer 

1.4.1.14 (Thermo Fisher Scientific, Waltham, MA) and searched against a concatenated database 
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(Homo sapiens, Mus musculus, UniprotKB/Swissprot) using Mascot (Matrix Science, London, UK; 

version 1.4.1.14). Oxidation (Met), carbamidomethylation (Cys) were specified as variable 

modifications. Peptides were allowed maximum two trypsin missed cleavages with a mass tolerance 

of ±10 ppm, and a fragment ion mass tolerance of ±0.8 Da. Search results were imported into 

Scaffold (Proteome Sofgtware Inc., Portland, OR), and identifications were confirmed by X!Tandem 

(The GPM, v2010.12.01.1). Only proteins with probabilities equal or higher than 99.0% were 

retained for analysis (one or more peptide per protein contributing to a positive match). Computation 

of putative PPIs (manual and SAINTexpress) were based on exclusive spectrum counts, as 

determined by Scaffold. 

5.3.5 Gene Ontology Analysis of Protein-Protein Interactions 

A combination of an unsupervised probabilistic approach (SAINTexpress
537

) and a manual approach 

was used to identify proteins potentially interacting with RBM45. For each protein-protein 

interaction, SAINTexpress predicted an individual probability based on spectral counts and reported 

average probabilities across all replicates (AvgP), average fold-change, average spectral counts and a 

Bayesian False Discovery Rate (BFDR)
538

. Empty vector IPs were used as experimental controls to 

provide a background list of proteins binding non-specifically to the construct. The interactions 

provided by SAINTexpress were filtered for protein fold change equal or greater than 2, for proteins 

observed in at least 2 out of 3 replicates and with an AvgP equal or greater than 0.7, as 

recommended
537

.For manual elucidation of candidate PPIs, only proteins observed in at least 2 out of 

3 replicates were retained in RBM45 IPs. Fold-change was calculated as the sum of exclusive 

spectral counts across RBM45 replicates divided by the sum of the exclusive spectral counts of that 
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protein in the vector control replicates. Any protein with a fold-change smaller than 2 was filtered 

out. 

 To identify biological processes associated with the list of RBM45 interacting proteins, we 

performed enrichment analysis in the Gene Ontology (GO) Biological Process domain using 

Cytoscape
539

 together with the ClueGo plugin
377

. We performed enrichment analysis using the right-

sided hypergeometric test with Benjamini-Hochberg post-hoc correction. GO terms were considered 

significant at the p < 0.001 level and the resultant significant terms were visualized in a network 

layout where GO Biological Process terms were visualized as color-coded circular nodes, with node 

size corresponding to enrichment p value. The overlap of proteins associated with any two 

Biological Process terms was evaluated using the kappa statistic and nodes were connected where 

the κ value was ≥ 0.4 using edges, with edge thickness corresponding to kappa score. We then took 

leading terms, those GO Biological Process terms with the highest number of associated proteins, 

and visualized these in a network layout where Biological Process terms were connected by edges to 

their associated proteins. All final figures were assembled using Adobe Illustrator CS5 (Adobe 

Systems; San Jose, CA, USA).  

5.3.6 Immunocytochemistry 

For immunocytochemistry, HEK293 cells were grown on number 1.5 glass coverslips. Cells were 

washed with 1X PBS and fixed in 4% paraformaldehyde for 10 min. After fixation and further 

washing, cells were permeabilized by immersion in 1X PBS containing 0.1% Triton X-100 for 15 

min. After further washing, cells were blocked by incubation in SuperBlock (Scytek) for 1 hr. 

Subsequently, primary antibody solutions were applied and allowed to incubate for 2 hr. Following 

primary antibody incubations, coverslips were washed four times in a 1:10 mixture of 
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SuperBlock:1X PBS. Secondary antibodies were applied following these washes, allowed to 

incubate for 1 hr, and washed four times as above. Cell nuclei were visualized by staining with a 300 

nM DAPI solution for 10 min followed by washing with 1X PBS. Coverslips were mounted on glass 

slides using 2,2’-thiodiethanol (TDE) according to the method of 
540

. In brief, coverslips were 

immersed in a series of increasing concentrations of TDE (10%, 25%, 50%, 97%). The final TDE 

solution has a refractive index of 1.518 to match that of the immersion oil used in imaging the slides.  

 The primary antibodies used for immunofluorescence were as follows: rabbit monoclonal 

RBM45 C-terminal antibody (custom-made, 1:250), rabbit monoclonal hnRNP-A1 antibody (Cell 

Signaling 8443S, 1:800), mouse monoclonal hnRNP-A2B1 antibody (Santa Cruz sc-32316, 1:250), 

rabbit polyclonal hnRNP-A3 antibody (Sigma AV41195, 1:200), mouse monoclonal hnRNP-L 

antibody (Novus Biological NB120-6106, 1:1000), rabbit monoclonal Matrin-3 antibody (Abcam 

ab151714, 1:500), mouse monoclonal G3BP antibody (BD Transduction Laboratories, 1:250), 

mouse monoclonal SMN antibody (Sigma S2944, 1:400), and mouse monoclonal FLAG M2 

antibody (Sigma F3165, 1:1000). The secondary antibodies used for immunofluorescence were goat-

anti-Cy2 (rabbit) and goat-anti-Cy5 (Mouse) (Millipore, 1:1000 for both).  

5.3.7 Microscopy, Digital Deconvolution, and Co-localization Analysis 

An Observer Z1 microscope (Zeiss) was used for all image acquisitions using a 63x (1.4 NA) 

objective and LED light source. Images were acquired as three-dimensional stacks with a Z sampling 

interval of 0.240 µm. Images were shading corrected and background subtracted. Following 

acquisition, images were deconvolved using Huygens Essential deconvolution software (SVI). 

Deconvolution and chromatic shift correction were performed using a measured PSF obtained by 

volume imaging of 200 µm fluorescent beads (Life Technologies) together with the Huygens 
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Essential PSF Distiller application. Deconvolution was performed using the software’s classic 

maximum likelihood estimation algorithm. Deconvolved images were used to analyze the co-

localization of RBM45 and selected RBM45 interacting proteins identified by IP-MS. Co-

localization analysis was performed using ImageJ
541

 in conjunction with the JaCoP plugin
542

. Images 

were automatically thresholded for analysis using the method of 
543

 and the M1 and M2 overlap 

coefficients
542

 and intensity correlation quotient (ICQ)
544

 were calculated. Statistical significance of 

the ICQ was evaluated using the normal approximation of the sign test as in 
544

. 

5.4 RESULTS 

5.4.1 Identification of the RBM45 Interacting Proteins in HEK-293 Cells 

A schematic outline of the immunoprecipitation-mass spectrometry procedure used in this study is 

shown in Figure 5.1. FLAG-RBM45 or empty vector was overexpressed in HEK293 cells and 

immunoprecipitated using whole cell lysates in triplicate. HA-tagged RBM45 was also included and 

used as a reference for the data analysis. HEK293 cells expressing empty vector alone served as 

negative controls. Regular IP and formaldehyde crosslinking IP were performed in parallel to 

identify strongly and weakly RBM45-associated proteins separately. Immunoblot analysis of the 

immunoprecipated fractions showed that tagged-RBM45 was enriched in the pulldown. In contrast, 

no RBM45 was detected in the pulldown in the vector control or IgG pulldown.  These data 

demonstrate that tagged-RBM45 can be efficiently and specifically immunoprecipitated from cell 

extracts. Co-immunoprecipitated proteins were then separated using SDS-PAGE and stained. 
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Coomassie staining of the gels loaded with RBM45-IP identified several bands that were not present 

in vector (sample 2 and 4) or IgG controls (data not shown).  

 Immunoprecipitated proteins were gel extracted, trypsin digested, and identified by liquid 

chromatography tandem mass spectroscopy (LC-MS/MS) (Figure 5.1A, see Methods). In total, 235 

unique proteins were identified using a protein false discovery rate equal or lower than 1%. We then 

applied a manual thresholding approach and a probabilistic PPI prediction algorithm 

(SAINTexpress) to compute the most likely associations between each of these 235 proteins and 

RBM45, yielding 132 high-confidence candidates (Figure 5.1). These 132 candidate proteins were 

found in at least 2 out of the 3 FLAG-IP triplicates and were at least 2-fold more abundant compared 

to vector control, suggesting that they specifically associate with RBM45 (Supplemental Table 4). 

Of these 132 proteins, 28 were found exclusively by regular-IP, 68 were found exclusively by 

crosslinking-IP, and 36 were found in both regular-IP and crosslinking-IP groups. Analysis of the 

average number of total spectrum counts by different immunoprecipitation group showed that in 

both regular IP and crosslinking IP, the proteins identified from empty vector groups were 

significantly lower than the proteins identified from FLAG-/HA-IP groups, providing further 

evidence of the specificity of the approach (Supplemental Table 4).  
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Figure 5.1 Workflow. A schematic of the workflow used to determine RBM45 PPIs is shown. IP-

MS = immunoprecipitation/mass spectrometry (MS), LC-MS/MS = liquid chromatography tandem 

MS. 
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Table 5.1 Top 20 RBM45 interacting proteins. The top 20 of 132 identified RBM45 interacting 

proteins is shown. Proteins are arranged in descending order of relative abundance measured by LC-

MS/MS (spectral count). Entries in bold were externally validated. The full list of RBM45 

interacting proteins with spectral count values for regular and cross-linking IPs, as well as fold 

change values and associated pathways is found in Supplemental Table 4. 

Accession Gene Name Protein 

Q8IUH3 RBM45 RNA-binding protein 45 

P14866 HNRNPL Heterogeneous nuclear ribonucleoprotein L 
P22626 HNRNPA2B1 Heterogeneous nuclear ribonucleoproteins A2/B1 
P43243 MATR3 Matrin-3 
Q00839 HNRNPU Heterogeneous nuclear ribonucleoprotein U 

P61978 HNRNPK Heterogeneous nuclear ribonucleoprotein K 

P09651 HNRNPA1 Heterogeneous nuclear ribonucleoprotein A1 
Q93008 USP9X Probable ubiquitin carboxyl-terminal hydrolase FAF-X 

Q9NZI8 IGF2BP1 Insulin-like growth factor 2 mRNA-binding protein 1 

Q8N163 CCAR2 Cell cycle and apoptosis regulator protein 2 

P52272 HNRNPM Heterogeneous nuclear ribonucleoprotein M 

Q08211 DHX9 ATP-dependent RNA helicase A 

P08107 HSPA1A Heat shock 70 kDa protein 1A/1B 

Q13263 TRIM28 Transcription intermediary factor 1-beta 

P11940 PABPC1 Polyadenylate-binding protein 1 

P51991 HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 
P07910 HNRNPC Heterogeneous nuclear ribonucleoproteins C1/C2 

P38159 RBMX RNA-binding motif protein, X chromosome 

O43390 HNRNPR Heterogeneous nuclear ribonucleoprotein R 

Q13148 TARDBP TAR DNA-binding protein 43 

5.4.2 Gene Ontology and Pathway Analysis 

To identify putative biological processes associated with RBM45-interacting proteins, we performed 

enrichment analysis in the Gene Ontology (GO) domain “Biological Process” (Figure 5.2). The 

results of this analysis identified two predominant themes: (1) nuclear RNA processing and (2) 
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cytoplasmic RNA translation. RNA processing terms were chiefly related to splicing (e.g., 

“regulation of RNA splicing”, “alternative mRNA splicing”). Other nuclear RNA-associated terms 

included “mRNA transport”, “regulation of mRNA stability”, and “nuclear export”. Cytoplasmic 

translational themes were more diverse and included events directly to mRNA translation 

(“translation initiation”, “translation termination”), as well as downstream processing events 

(“protein targeting to ER”, “nonsense mediated mRNA decay”). Finally, terms unrelated to these 

phenomena and unconnected to any nodes included “apoptotic nuclear changes” and “telomere 

maintenance” (Figure 5.2).  

 To provide further insights into the biological processes identified by this approach, we took 

leading terms, those terms with the highest number of associated proteins, from our results and 

visualized these terms with their associated proteins in a network layout where edges connect 

proteins to an associated biological process (Figure 5.3). The results show the individual proteins 

that result in the identification of an enriched biological process. For example, the identification of 

the “mRNA metabolic process” and “regulation of RNA splicing” terms results in large part from the 

many hnRNP proteins in our list of RBM45-interacting proteins. Conversely, the enrichment for 

“regulation of translation” results from the presence of initiation and elongation factors (e.g., eIF 

proteins) in our list of RBM45-interacting proteins (Figure 5.3).  

 Major canonical pathways associated with RBM45-interacting proteins were identified using 

Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City). Out of a total of 103 pathways, 28 

were significantly enriched (p-value lower than 0.05). The top 5 pathways, ranked by significance 

and percent overlap are “EIF2 Signaling”, “Regulation of eIF4 and p70S6K Signaling”, “mTOR 

Signaling”, “Telomere Extension by Telomerase”, and “RAN Signaling” (Supplemental Table 4). 

These results were consistent with associations found in the gene ontology analysis. Collectively, 
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this view emphasizes the diverse array of biological functions served by RBM45-interacting 

proteins. 

 

Figure 5.2 Enriched GO Biological Process terms. RBM45-interacting proteins were tested for 

GO Biological Process enrichment using the right-sided hypergeometric test with Benjamini-

Hochberg post-hoc p value correction. Terms with a p value of 0.001 or less were visualized in a 

network layout, where node size corresponds to term p value. The proportion of shared proteins 

between terms was evaluated using the kappa statistic and nodes with a kappa score (κ) of at least 

0.4 were connected with edges on the graph, with edge width proportional to kappa score. Leading 

terms, those terms with the highest number of proteins, are colored for emphasis. 
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Figure 5.3 Leading terms with associated proteins. Leading terms from Figure 3 were placed into 

a separate network and all associated proteins from the list of RBM45-interacting proteins were 

visualized as nodes and connected to the appropriate term. Where a protein is associated with 

multiple terms, multiple edges emanate from that protein and edges are color-matched to their 

associated terms.   

5.4.3 Co-localization Analysis 

To assess the association of RBM45 and selected interacting proteins in cells, we used 

immunocytochemistry of our FLAG-RBM45 stable HEK293 cells together with digital 
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deconvolution and co-localization analysis. The results of this analysis are shown in Figure 5.4. 

Because the staining we observe for the majority of the proteins analyzed is predominantly nuclear, 

multiple methods were used to provide a quantitative measure of the extent of co-localization. We 

thus analyzed the co-localization of FLAG-RBM45 and selected proteins using Manders 

coefficients
542

 and the intensity correlation quotient (ICQ)
544

, together with pixel intensity scatter 

plots. The ICQ evaluates the co-variation of pixel intensities for each protein and provides a 

correlation-based metric (the ICQ, range -0.5 to 0.5) that reflects the degree to which protein staining 

intensities vary in synchrony and associated statistical significance. If staining intensities vary in 

synchrony (co-localization), the ICQ is large and positive. For proteins with subcellular segregation, 

the ICQ is large and negative, while for random variations in intensity, the ICQ = ~0.  

 The results of this analysis are shown in Figure 5.4H. We used SMN as a negative control, as 

the staining for this protein is predominantly cytoplasmic. As shown in Figure 5.4G, by either 

measure of co-localization, the association between RBM45 and SMN is low, reflecting subcellular 

segregation, as anticipated. We then evaluated the extent of co-localization between RBM45 and 

several RBM45-interacting proteins. FLAG-RBM45 staining was exclusively nuclear and we 

evaluated the co-localization of RBM45 with several nuclear hnRNP proteins. By both methods, the 

highest degree of co-localization was observed between RBM45 and hnRNP-A1 (Figure 5.4A,H). 

RBM45 also exhibited statistically significant co-localization with hnRNP-A3, hnRNP-L, and 

Matrin 3, in descending order of extent of co-localization (Fig. 5.4C,D,F,H). By contrast, RBM45 

co-localization with hnRNP-A2/B1 by either approach was lesser and did not reach statistical 

significance, despite a nuclear localization for both proteins (Fig. 5.4B). This finding highlights the 

utility of digital deconvolution and quantitative co-localization measures for assessing the true extent 

of association between proteins by immunocytochemistry. We also observed a lack of co-
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localization between RBM45 and G3BP, the latter of which was predominantly cytoplasmic (Figure 

5.4E). The absence of statistically significant co-localization between RBM45 and hnRNP-A2/B1 

and G3BP may reflect the absence of required stimuli/signaling events necessary for the interaction 

of these proteins. The association of RBM45 and G3BP, for example, most likely occurs in 

cytoplasmic stress granules not observed under basal conditions
528

. 

 

Figure 5.4 Colocalization analysis of RBM45 and selected proteins. A-G. The co-localization of 

RBM45 and the indicated proteins were evaluated using immunocytochemistry together with co-

localization analysis. Representative images and pixel intensity scatter plots are shown with cutouts 

at higher magnification to highlight detail. H. Results of Co-localization analysis. M1 = RBM45 
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overlap with indicated protein. M2 = indicated protein overlap with RBM45. ICQ = intensity 

correlation quotient. p ICQ = p value of ICQ. Manders coefficients (M1 and M2) measure the 

proportion of co-localizing proteins in each channel of a two-channel image and are shown as mean 

± SEM. The intensity correlation quotient (ICQ) has a range of -0.5 (perfect segregation) to 0.5 

(perfect co-localization), with random intensity variation resulting in a value ~0. The statistical 

significance of each ICQ value is shown at far right. SMN staining was used as a negative control.   

5.5 DISCUSSION 

We used IP-MS to identify RBM45 PPIs and gain insight into the biological functions of this 

ALS/FTLD-associated RNA-binding protein (RBP) in HEK293 cells. By employing two 

complementary IP methods, regular IP and formaldehyde crosslinking-IP, we detected 132 RBM45 

PPIs with high confidence. Our ability to identify numerous RBM45 PPIs with high confidence was 

a result of our stringent IP-MS approach. We identified 132 “true” interactors along with another 6 

proteins matched to putative contaminants in the CRAPome database
545

. Triplicate IPs were 

analyzed by mass spectrometry. Identified proteins were subjected to a manual thresholding 

approach (resulting in 132 hits) and a probabilistic approach (resulting in 131 hits) to remove non-

specifically bound proteins and predict putative PPIs. The resulting candidate proteins overlapped at 

98.9%, highlighting the robustness of the analytical method. RBPs were the most prominent protein 

family identified by our analytical approach, both in overall number of proteins and individual 

protein spectral counts. Taking the list of RBM45 PPIs, we next used enrichment and pathway 

analysis to link RBM45 PPIs to putative biological functions and pathways. The results showed 

enrichment for nuclear RNA processing via hnRNPs and cytoplasmic translation functions via eiF2 
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and eiF4 pathways. Taken together, these results provide new insights into the PPIs, biological 

functions, and roles in ALS/FTLD of RBM45.  

These insights are necessary to further understand the role of RBM45 (and RBPs more 

generally) in ALS/FTLD. RBM45 is a component of ubiquitinated inclusions in neurons and glial 

cells in ALS, FTLD, and AD patients
533

. The mechanisms mediating the protein’s incorporation into 

inclusions are poorly understood, however. RBM45 is distinct from other inclusion forming RBPs, 

such as TDP-43, FUS, TAF15, and hnRNP-A1, in that it does not possess a prion-like domain
521

. 

RBM45 does, however, contain a homo-oligomerization (HOA) domain that mediates RBM45 self-

association and association with other RBPs, including TDP-43 and FUS, suggesting a role for this 

domain in RBM45 inclusion formation
528

. Consistent with this notion, we identify numerous 

inclusion-forming RBPs that bind to RBM45 via our IP-MS approach, including hnRNP-A1, 

hnRNP-A2/B1, TDP-43 and FUS (reviewed in 
546

). For several of these proteins, the homo-

oligomerization (HOA) domain is requisite for interaction. Thus, while the HOA domain is likely 

necessary for normal RBM45 functions, its role in mediating RBM45 oligomerization and 

association with other RBPs suggests this domain also contributes to the pathological aggregation of 

RBM45 and other RBPs in ALS/FTLD. The presence of prion-like domains in many RBM45 

interacting proteins and the lack of a prion domain in RBM45 also suggests that RBM45 aggregation 

may be driven by its association with other aggregation-prone RBPs, as has been observed for RBPs 

such as PSF and NONO found in TDP-43/FUS positive aggregates
523,524

. The identification of 

numerous ALS-associated proteins within our RBM45 PPI list suggests that RBM45 can directly 

contribute to disease by virtue of its association with these proteins. 

 The aggregation of RBPs in ALS/FTLD confers toxicity both by aggregation-induced toxic 

gain of function as well as aggregation-induced loss of normal RBP function. Thus, understanding 
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the normal functions of RBPs is critical to identifying molecular mechanisms of disease and 

potential therapeutic targets. RBPs are typically multifunctional and act in both the nucleus and 

cytoplasm, influencing transcription, RNA splicing, RNA export, translation, and transport of 

mRNAs
547

. RBM45 associates with many its binding proteins via RNA-mediated interaction, 

suggesting that RBM45 and its binding proteins share the regulation of specific RNA targets. We 

used our list of RBM45-interacting proteins to generate a list of putative RBM45 biological 

functions and associated pathways using Gene Ontology and pathway analysis. Two major themes 

emerged: nuclear RNA processing/splicing via hnRNPs and cytoplasmic translation via the eiF2 and 

eiF4 pathways (Figures 5.2, 5.3; Supplemental Table 4). The many splicing-associated proteins in 

our list (Table 5.1, Supplemental Table 4) suggest a role for RBM45 in the regulation of splicing 

events. Dysregulation of RNA splicing is a well-characterized phenomenon in ALS/FTLD and can 

result from RBP cytoplasmic mis-localization, aggregation, or both
548

. Loss of individual RBP 

function due to these phenomena can have profound effects on transcriptional regulation. For 

example, TDP-43 and FUS bind to more than 50% of the human transcriptome and the loss of these 

proteins results in substantial global alterations in transcription and splicing
51,167,549

. We anticipate 

that future studies directly examining the role of RBM45 in the regulation of transcription and RNA 

splicing will likewise reveal widespread RBM45 binding across the transcriptome and substantial 

influence on mRNA splicing decisions.  

 In further support of this notion, the identification of RBM45 PPIs with 19 members of the 

hnRNP family suggests considerable functional overlap between RBM45 and this diverse class of 

proteins. Spectral count values for many of these proteins were among the highest observed in our 

study (Supplemental Table 4) and we accordingly predict considerable functional overlap between 

RBM45 and the hnRNP family. hnRNPs participate in a variety of mRNA processing/maturation 
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processes, including mRNA maturation, splicing, nuclear export, and 3’-end processing
550

. 

Abnormalities in the expression/function of hnRNPs are associated with a number of human 

diseases, including ALS by virtue of the recent demonstration that mutations in the prion domains of 

hnRNP-A2/B1 and hnRNP-A1 cause familial forms of ALS
103

. Our analysis of the co-localization of 

RBM45 and these proteins demonstrates that RBM45 co-localizes most highly with hnRNP-A1, 

followed by hnRNP-A3 and hnRNP-L, with low, non-significant co-localization observed with 

hnRNP-A2/B1 (Figure 5.4).  

 The association of RBM45 with hnRNP-A1, together with the aggregation-prone prion-like 

domain of hnRNP-A1, may thus mediate both the function and aggregation of RBM45. We observe 

a high degree of nuclear co-localization between these proteins (Figure 5.4A). hnRNP-A1 serves 

many purposes in the nucleus, including regulating the transcription of numerous genes
551

. 

Transcriptional regulation by hnRNP-A1 is, in part, conferred by its ability to bind and relax G-

quadruplex nucleic acid structures, including the fALS-linked c9ORF72 GGGGCC hexanucleotide 

repeat expansion
552,553

. RBM45 may thus be sequestered to c9ORF72 repeat expansion G-

quadruplex structures in c9-linked fALS cases, causing a loss of normal RBM45 functions. Indeed, 

we identify numerous c9ORF72 repeat expansion binding proteins, including FUS, ELAVL1, 

hnRNP-K, hnRNP-L, hnRNP-Q, and hnRNP-U, as RBM45 PPIs (Supplemental Table 4)
553,554

. 

Despite its high affinity for poly(G)/(C) RNA
535

, RBM45 binding to c9ORF72 has not been shown, 

although discrepancies between experimental approaches and results suggest that additional c9-

binding RBPs remain as yet unidentified
553,554

. 

 We also found significant co-localization of RBM45 with hnRNP-A3 and hnRNP-L in the 

nucleus (Figure 5.4C,D). hnRNP-L is a multifunctional protein that regulates transcript splicing
555

, 

stability
556

, and translation
557

. The protein affects splice site decisions for a large number of 
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transcripts and is capable of inhibiting spliceosome assembly via coordinated action with hnRNP-

A1
558,559

. These results, together with their RNA-dependent physical interaction and co-localization 

of RBM45 with these proteins, provides further evidence of a role for RBM45 in mRNA splicing 

decisions. hnRNP-A3 is involved in the nucleocytoplasmic trafficking of mRNA
560

 and is involved 

in telomere maintenance and protection by virtue of its direct binding to telomeres
561,562

. The protein 

is also a component of p62 positive/TDP-43 negative inclusions in c9ORF72-linked fALS motor 

neurons
554

. hnRNP-A3 is a component mRNP complexes that act to stabilize mRNA
563

. The co-

localization of RBM45 and hnRNP-A3 within distinct nuclear foci (Figure 5.4C) suggests a possible 

role for RBM45 in this process as well.  

 A variety of cytoplasmic RBP functions also contribute to cellular function and studies have 

repeatedly shown that loss of these functions negatively impact cellular viability. TDP-43, for 

example, associates with cytoplasmic stress granules
46

, regulates local mRNA translation
564

, and 

participates in RNA transport
565

. Our results likewise suggest important cytoplasmic functions for 

RBM45 in both normal cellular homeostasis and disease. A direct role for RBM45 in translation is 

predicted from the identification of numerous elongation and initiation factors (e.g., eiF4a, eiF5A, 

EEF2, … [Figure 5.3]) as RBM45 interactors. Twelve percent of the eiF2 signaling pathway 

responsible for charged tRNA delivery to the ribosome and start site recognition is mapped by PPIs 

with RBM45, highlighting a possible role of RBM45 in early translational events (Supplemental 

Table 4). Indirect contributions to translation included the GO biological process “Protein Targeting 

to ER” (Figure 5.2). ER stress is a well-characterized phenomenon in ALS
566

 and RNA-binding 

proteins may directly associate with ER to modulate its functions in certain cell/tissue types
567

. 

Despite these findings, immunocytochemical analysis shows an exclusively nuclear staining pattern 
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for RBM45 in HEK293 cells (Figure 5.4). Future studies are, therefore, necessary to determine the 

factors influencing the subcellular distribution of RBM45.  

One limitation of the current approach is that our analyses were performed exclusively in 

HEK293 cells. HEK293 cells are rapidly dividing, have a unique gene expression profile, unstable 

karyotype, and are tumorigenic
568

. Each of these properties could influence the list of RBM45 PPIs 

detected in the present work. Future studies are necessary to determine cell-type and phenotype-

specific RBM45 PPIs and how these contribute to cellular physiology. One area of particular interest 

is the role of RBM45 in cell division and cell type specification. The initial characterization of 

RBM45 demonstrated developmental regulation and neuronal enrichment of RBM45 expression
498

, 

suggesting that RBM45 and, by extension, RBM45 PPIs contribute to cell division and organismal 

development. Delineating which RBM45 PPIs occur in differentiated cell population, such as 

neurons, may likewise yield insight into RBM45 PPIs and cellular functions that lead to its 

incorporation into inclusions in ALS/FTLD. In addition, stronger formation of RNA binding protein 

complexes is typically seen under prolonged periods of stress
569

. Further studies examining the 

RBM45 protein complexes under stress and basal conditions may similarly help identify biological 

pathways relevant to RBM45 aggregation.   

Finally, we used multiple immunoprecipitation methods coupled with mass spectrometry to 

increase the confidence of our results. Two different tagged RBM45 constructs as well as the 

presence or absence of a formaldehyde crosslinker were used for immunoprecipitation. We used a 

combination of cross-linking and regular IP to distinguish weak and strong interactions, respectively. 

While commonly used to identify PPIs, regular IP may also yield non-physiological protein 

associations resulting from artefactual, non-specific binding after cell lysis
570

. Formaldehyde is a 

mild, cell-permeable and reversible crosslinker with very short spacer length (2.3–2.7 Å) and cross-
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links only closely associated proteins
571

. In vivo formaldehyde crosslinking-IP can preserve transient 

and weak physiological protein-protein interactions and has been used for discovering novel protein-

protein interactions
571-575

. Crosslinking-IP also facilitates stringent immunoprecipitations via 

increased detergent concentration, sonication and extensive washes. Identification of a protein only 

in crosslinking-IP experiments suggests that the interaction with RBM45 is weak. However, one 

cannot predict the biologic significance of the interaction with RBM45 based solely in whether the 

interaction is strong or weak. Of the identified 132 proteins, 68 proteins were found solely in 

crosslinking-IP, while only 28 proteins were found exclusively in regular IP. It is possible that the 

protein-binding sites in these 28 proteins were masked by the crosslinking reaction and thus not 

detected by crosslinking-IP. 

Collectively, our results demonstrate that RBM45 associates with a large and functionally 

diverse set of protein binding partners. Functions served by these proteins, particularly the hnRNPs, 

suggest plausible and previously unknown biological functions for RBM45. The identification of 

these functions and the association of RBM45 with numerous ALS-associated RBPs points to 

RBM45-mediated mechanisms of disease in ALS/FTLD and provides further insight into the 

pathological aggregation of RBM45 occurring in neurodegenerative disease. The association of 

RBM45 with the set of proteins identified herein provides new directions for future studies of 

RBM45’s role in neuronal development, the regulation of gene expression, and neurodegeneration.   
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6.0  RBM45 ASSOCIATION WITH NUCLEAR STRESS BODIES DEFINES AN 

ALTERED STRESS RESPONSE IN ALS/FTLD 

6.1 CHAPTER SUMMARY 

RNA binding protein (RBP) dysregulation by aggregation and loss of normal function in neurons 

and glia is a prevalent pathological finding in amyotrophic lateral sclerosis (ALS) and 

frontotemporal lobar degeneration (FTLD). The persistent association of these proteins in protein-

RNA complexes, such as stress granules, can initiate RBP dysregulation by promoting aggregation 

and removing RBPs from their normal cellular milieu. We describe the association of RBM45, an 

ALS/FTLD-linked RBP, with nuclear stress bodies (NSBs), a stress-induced protein-RNA complex 

driven by the transcription of pericentromeric Satellite III DNA. Endogenous RBM45 associates 

with NSBs in response to a variety of stressors, including heat shock, genotoxic stress, and oxidative 

stress. This association is dependent on intact RNA binding as removal of RRMs 2 or 3 from the 

protein is sufficient to abrogate RBM45 NSB association. The persistent association of RBM45 with 

NSBs is sufficient to induce RBM45 aggregation and does not induce the aggregation of the NSB 

proteins SAFB and HSF1. FTLD dentate gyrus granule cells show upregulation of the NSB response 

that is not seen in control subjects. Collectively, these results define a new stress-response pathway 

altered in ALS/FTLD and provide further evidence of the preponderant role of RNA binding 

proteins in these disorders.   
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6.2 INTRODUCTION 

RNA binding protein (RBP) pathology is common to many forms of neurodegenerative disease, 

including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), 

Alzheimer’s disease, and Parkinson’s disease
576

. These disorders are frequently marked by the 

deposition of RBP inclusions in affected brain regions, for example in motor neurons in ALS and in 

hippocampal dentate granule cells in FTLD, as well as in glial cells in both disorders. RBP inclusion 

pathology is common to many forms of these disorders, including sporadic ALS/FTLD
8
, familial 

ALS/FTLD caused by mutations in RBP genes (e.g., TARDBP, FUS)
8
, and C9ORF72-linked 

familial ALS/FTLD
190,203

. The common occurrence of RBP pathology together with the intrinsic 

propensity of some RBPs to aggregate
50,71

 suggests that RBP dysfunction is a key susceptibility 

factor for neurodegeneration in ALS/FTLD. Current disease models implicate both the aggregation 

(gain of toxic function) and attendant loss of normal RBP function in the degenerative process. RBP 

aggregates are frequently directly toxic to cells and disrupt numerous cellular processes, such as ER 

function and nucleocytoplasmic transport
57,71,577,578

. Similarly, knockdown or knockout of ALS-

linked RBP genes, such as TARDBP or FUS (or their orthologs), results in developmental 

abnormalities, reduced lifespan, motor deficits, and substantial global alterations in gene expression 

in several model systems (reviewed in 
579-581

).  

Chronic self-association of RBPs in protein-RNA complexes may lead to both aggregation 

and loss of normal RBP function. RBP association with stress granules (SGs), cytoplasmic stress-

induced protein-mRNA complexes, is a well-described example of this phenomenon. During cellular 

stress, SGs form to protect mRNAs from a harmful cellular environment and stall the translation of 

associated mRNAs, resulting in prioritization of translation of stress response-associated mRNAs 

(reviewed in Anderson et al.
96

). SGs normally dissipate following stressor removal, however, the 



 185 

persistent association of RBPs in SGs during chronic stress is sufficient to induce the aggregation of 

RBPs, especially those containing low complexity (LC), prion-like domains. The presence of LC 

domains facilitates aggregation and can lead to the formation of several forms of amyloid or 

amyloid-like structures, including amyloidogenic oligomers, fibrils, and hydrogels
49,50,95,582,583

. ALS-

linked RBPs with LC domains, including TDP-43 and FUS, associate with SGs and SG marker 

proteins are found in neuronal cytoplasmic inclusions in ALS patients
49,394

. SG-mediated RBP 

aggregation is also sufficient to induce loss of normal RBP functions. The sequestration of RBPs in 

SGs removes RBPs from their normal cellular milieu. TDP-43 and FUS are frequently found mis-

localized in cytoplasmic SGs and depleted from the nucleus in ALS/FTLD
33,264

. Substantial 

alterations in gene expression result from the loss of nuclear TDP-43 or FUS and underscore the 

preponderant role of RBPs in regulating this process
169,584

.  

Collectively, these findings illustrate how the persistent association of RBPs in protein-RNA 

complexes is sufficient to induce toxic gain and loss of normal RBP function, particularly when 

aggregation-competent RBPs are present. While SGs have been the predominant complex studied in 

the context of ALS, emerging evidence points to dysregulation of other RNP granules and protein-

RNA nuclear bodies, including paraspeckles
170,172

 and gems
527,585

, in ALS. The persistent association 

of ALS-linked RBPs with these complexes, together with a stressful cellular environment or 

maladaptive genetic background, may be sufficient to induce their aggregation as well as to 

sequester other RBPs in oligomeric aggregates. The observation of impaired paraspeckle formation 

in cells expressing mutant FUS and paraspeckle proteins in FUS-positive inclusions in ALS 

underscores this possibility
172

. As with SGs, understanding how the dysregulation of other RNP 

complexes contributes to both the toxic gain and loss of normal RBP function is of considerable 
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importance to understanding the role of RBPs in neurodegeneration and may help define new 

therapeutic targets for ALS/FTLD. 

While RNP granules and nuclear bodies are, thus, of general interest in the study of ALS, one 

nuclear substructure that may be of particular relevance is the nuclear stress body (NSB). NSBs are 

intranuclear RNP granules that form following the onset of cellular stress and dissociate following 

stressor removal. NSBs form in response to a variety of stressors, including heat shock, oxidative 

insult, genotoxic stress, UV irradiation, proteasomal inhibition, and exposure to heavy metals 

(reviewed in Biamonti et al.
586

). NSB formation is a component of the cellular response to stress 

regulated by the heat shock transcription factor (HSF) family of proteins. During cellular stress, 

HSF1 undergoes reversible modification to form a DNA-binding trimer that induces the transcription 

of pericentromeric satellite III (sat III) DNA sequences
586,587

. Pericentromeric sat III sequences are 

normally transcriptionally silent and stress-induced sat III transcripts remain in close proximity to 

their genomic locus of origin, acting as a scaffold for RBP binding that forms the NSB
586-588

. The 

protein composition of NSBs is not fully defined, though NSBs are known to be enriched in pre-

mRNA processing proteins, including splicing factors (e.g., SF2/ASF, SAM68) and contain HSF1 

and scaffold attachment factor B (SAFB)
586

. Given the generality of the NSB response and the 

structural similarity of NSBs and SGs, NSBs may represent another protein-RNA complex capable 

of inducing RBP aggregation under conditions of chronic stress.  

 Persistent activation of the NSB response may also explain the pathology of RBM45 in 

ALS/FTLD. RBM45 is a neuron-enriched RBP whose expression is developmentally regulated
507

. 

RBM45 is found in TDP-43 positive cytoplasmic inclusions in neurons and glia in ALS/FTLD
164

. 

The protein lacks an LC domain, but is capable of self-association via a homo-oligomerization 

(HOA) domain
528

. In addition to its presence in cytoplasmic inclusions, RBM45 is also exhibits a 
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speckled nuclear staining pattern in ALS/FTLD patient tissue
164

. While this pattern is suggestive of 

incorporation into a nuclear body such as speckles or Cajal bodies, subsequent characterization of 

the protein showed a diffuse, non-speckled staining pattern under basal conditions
589

. Moreover, 

RBM45 physically interacts with a variety of splicing factors
589

. We, therefore, hypothesized that 

RBM45 is a component of NSBs and that the persistent association of RBM45 with NSBs would be 

sufficient to induce the aggregation of the protein. To address these hypotheses, we examined the 

properties of RBM45 during conditions of acute and chronic stress, mapped the domains of RBM45 

necessary for it stress-associated functions, and examined ALS/FTLD patient tissue for the presence 

of NSBs. Our results demonstrate that RBM45 is a component of NSBs, that nucleic acid binding 

domains in the protein mediate this response, and that NSBs are enriched in ALS/FTLD patient 

tissue. Together, our results define a new aspect of RBP dysregulation in these disorders and provide 

new insight into the mechanisms of RBP aggregation.  

6.3 MATERIALS AND METHODS 

6.3.1 Cell Culture, Treatments, and Plasmid Construction 

HEK293 cells were grown in DMEM with 10% fetal bovine serum and 1% penicillin/streptomycin 

at 37 °C in a 5% CO2 environment. To induce nuclear stress bodies (NSBs) cells were stressed using 

a variety of reagents. Heat shock was performed by incubating the cells in a 42 °C environment for 1 

hour followed by 1 hour of recovery
590

. Serum starvation was performed by placing cells in serum-

free media for 1 hour. Cells were also treated with the following reagents to induce nuclear stress 

bodies: 20 µM CDSO4 (2-24 hours), 400 µM H2O2 (2-24 hours), 1 mM sodium arsenite (0.25-1 
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hours), or 20 µM mitoxantrone (MTX; 2-24 hours)
590-592

. For expression of WT and domain deletion 

RBM45, the cDNA clone plasmid, cGST-hRBM45 (HsCD00356971; DNASU Respository, 

Arizona) was used. cDNA was PCR amplified using Phusion High-Fidelity DNA Polymerase (New 

England Biosciences) and sub-cloned into a pcDNA3 vector (Invitrogen). To provide specific tags to 

identify RBM45 the 3xFLAG tag (DYKDHDGDYKDHDIDYKDDDDK) or 2xHA tag 

(DYPYDVPDYAGGAAYPYDVPDYA), were N-terminally appended to specific proteins to 

generate 3xFLAG- or 2xHA-tagged constructs. Site-directed mutagenesis using overlap extension 

PCR was used to generate domain deletion constructs. Sequences of all constructs were confirmed 

with DNA sequencing and sizes of the expressed proteins were validated by SDS-PAGE and 

immunoblot
528

.  

6.3.2 Cell Immunofluorescence, Microscopy, and Digital Deconvolution 

Indirect immunofluorescence was performed as in Li et al.
589

. In brief, cells were grown on 20 mM 

#1.5 coverslips. When cells reached 70% confluence, they were treated as indicated above, washed 

with 1X PBS, fixed in 4% paraformaldehyde, and permeabilized using 0.1% Triton X-100 in PBS. 

Following washing with 1X PBS, cells were blocked with Superblock (Scytek) for 1 hour and 

immersed in primary antibody solutions for 2 hours. Subsequently, they were washed 4 times (10 

minutes each) with IF wash buffer (1:10 Superblock/1X PBS), and immersed in secondary antibody 

solutions for 1 hour. Secondary antibodies used were goat-anti-rabbit Cy2 (Abcam) and goat-anti-

mouse Cy5 (Abcam). Following secondary antibody incubations, coverslips were wash 4 times as 

above, washed 4 times with 1X PBS, incubated in a 300 nM DAPI solution for 10 minutes, and 

washed 4 times with 1X PBS. Coverslips were immersed in increasing concentrations of 2,2-
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thiodiethanol (TDE) as in 
540

, and mounted in a 97% TDE solution with a refractive index of 1.518 

to match that of the immersion oil used for imaging. 

 The following antibodies were used for immunofluorescence and immunohistochemistry: 

rabbit-anti-RBM45 (Sigma), rabbit-anti-RBM45 (custom; Pacific Immunology), mouse-anti-SAFB 

(Lifespan Biosciences), rabbit-anti-SAFB (Proteintech), mouse-anti-HSF1 (Abcam), rabbit-anti-

HSF1 (Proteintech), mouse-anti-SC35 (Abcam), mouse-anti-coilin (Abcam), mouse-anti-SMN 

(Sigma), mouse-anti-G3BP (Genetech), and mouse-anti-HA (Sigma). Secondary antibodies for 

immunofluorescence were conjugated to Cy2 and Cy5. Goat-anti-rabbit Cy2 and goat-anti-mouse 

Cy5 (Abcam) were used for immunofluorescence. Goat-anti-rabbit Alexafluor 488 and goat-anti-

mouse Alexafluor 594 (Life Technologies) were used for fluorescence immunohistochemistry.  

 For image acquisition, slides were imaged on a Zeiss Observer Z1 microscope with a 1.4 NA 

63x objective and LED light source. All images were acquired as three dimensional Z-stacks with a 

Z sampling range of 12 µM, X/Y sampling interval of 0.102 µM, and a Z sampling interval of 0.240 

µM. Images were corrected for CCD shading and background subtracted. Following image 

acquisition, images were deconvolved using Huygens digital deconvolution software (SVI). A 

measured PSF was generated by imaging fluorescent 200 nm diameter Tetraspeck beads (Life 

Technologies) mounted in 97% TDE and inputting the obtained images into the Huygens software’s 

PSF distiller application. All images were then deconvolved using the measured PSF together with a 

maximum likelihood deconvolution algorithm.   

6.3.3 Tissue Immunofluorescence and Image Analysis 

Tissue immunohistochemistry was performed as described in Collins et al.
164

. Tissue sections (6 µm 

thick) were deparaffinized, rehydrated by successive immersion increasing concentrations of 
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ultrapure water in ethanol, and subjected to antigen retrieval. Antigen retrieval was performed in 

citra buffer (pH 6.0; Biogenex) with steam heating for 30 minutes. Sections were washed in PBS, 

blocked using Superblock (Scytek), and immersed in primary antibody solutions overnight. The next 

day, the slides were washed 4 times in PBS and incubated in secondary antibody solutions for 1 

hour. Subsequently, slides were again washed 4 times in PBS, and immersed in a 300 nM DAPI 

solution to permit visualization of nuclei. Following washing, slides were immersed in 

autofluorescence eliminator reagent (Millipore) to quench endogenous lipofuscin autofluorescence. 

Slides were mounted using #1.5 glass coverslips, with gelvatol mounting media.  

6.3.4 Data Analysis, Statistics, and Figure Construction 

All images were processed using NIH ImageJ
469

. The number of RBM45-positive puncta in tissue 

quantified by automatic thresholding of tissue immunofluorescence images and morphometric 

counting of puncta meeting size (0.25-2 µM) requirements. Differences in the number of puncta 

between groups were evaluated using the Student’s t test with a p value of 0.01 considered 

statistically significant. All figures were constructed using Adobe Illustrator CS5 (Adobe). 

6.4 RESULTS 

6.4.1 RBM45 is a Component of Nuclear Stress Bodies 

To determine the function(s) of RBM45 and relate the speckled nuclear staining pattern for the 

protein observed in ALS/FTLD patients (Figure 4.7) to biological function, we used 
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immunofluorescence in HEK293 cells. Consistent with prior results (Figure 5.4), we observed a 

diffuse nuclear immunoreactivity of RBM45 under basal conditions, with no speckled staining 

evident. Consequently, RBM45 immunofluorescence against proteins marking subnuclear structures 

showed no incorporation of the protein into nuclear speckles, Cajal bodies, or nuclear gems (Figure 

6.1A-C). Similarly, RBM45 did not associate with cytoplasmic stress granules (SGs) following the 

induction of oxidative stress via administration of 0.5 mM sodium arsenite (Figure 6.1D). Following 

sodium arsenite treatment, however, we noted the incorporation of RBM45 into intranuclear 

punctate structures that resembled those seen in ALS/FTLD patient tissue (Figure 6.1D). Subsequent 

analysis showed that these foci correspond to the incorporation of RBM45 into nuclear stress bodies 

(NSBs). In stressed cells, RBM45 colocalizes with the NSB marker protein scaffold attachment 

factor B (SAFB) in NSBs (Figure 6.1E) and HSF1 (Figure 6.4).  

 Further analysis demonstrated that this incorporation into NSBs is a general stress response. 

As previously demonstrated, treatment of cells with H2O2 (400 µM), mitoxantrone (20 µM), 

cadmium sulfate (CDSO4 [30 µM]), heat shock (1 hour at 42 °C followed by 1 hour recovery), and 

serum starvation (1 hour) all induced the formation of SAFB/HSF1-positive NSBs
586,591

. We 

demonstrate now that these same treatments induce a re-distribution of RBM45 to NSBs as well 

(Figure 6.1E, 6.2). In unstressed cells, both RBM45 and SAFB are diffusely localized throughout the 

nucleus (Figure 6.2A), while stressor treatments induce the formation of large foci with high levels 

of RBM45, SAFB, and HSF1 (Figure 6.2B-E). 
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Figure 6.1 RBM45 association with nuclear stress bodies (NSBs). HEK293 cells were stained for 

endogenous RBM45 and marker proteins of the indicated protein-RNA complexes. Under basal 
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conditions, RBM45 is diffusely localized throughout the nucleus and does not associate with nuclear 

speckles, Cajal bodies, or nuclear gems (A-C, respectively). Following the onset of cellular stress 

(D, E), RBM45 redistributes to nuclear foci corresponding to NSBs. Despite stress-associated 

functions, RBM45 does not associate with G3BP-positive cytoplasmic stress granules (D). All 

images were acquired using a 63x, 1.4 NA objective.  
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Figure 6.2 RBM45 association with NSBs is a general stress response. HEK293 cells were 

treated as indicated and stained for RBM45 and the NSB marker SAFB. The results show that a 
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variety of cellular stressors can induce NSB formation and RBM45 recruitment to NSBs. By 

contrast, in control cells, RBM45 and SAFB are diffusely localized throughout the nucleus, with no 

NSBs evident. All images were acquired using a 63x, 1.4 NA objective. 

6.4.2 RBM45 RNA Binding Domains are Required for NSB Recruitment 

To understand the domain elements necessary for the recruitment of RBM45 to NSBs, we used 

overexpression of domain deletion forms of HA-tagged RBM45, as in Li et al.
528

 The domain 

structure of RBM45 is shown in Figure 6.3.The results of these experiments are shown in Figure 6.4. 

Consistent with prior studies
591

, overexpression of NSB protein components resulted in a larger 

average size and overall number of granules in cells subjected to heat shock (Figure 6.4). In contrast, 

no NSBs were evident in unstressed cells (Figure 6.4A), despite the overexpression of RBM45. The 

results also demonstrate that several domains in the RBM45 protein are required for its association 

with NSBs. Removal of the nuclear localization sequence (NLS) resulted in cytoplasmic  

sequestration of RBM45 that prevented its incorporation into NSBs. RRMs 2 and 3 were also 

required for the incorporation of RBM45 into NSBs. This is consistent with recent work showing 

that many RBM45 protein-protein interactions are RNA-dependent
589

. By contrast, the homo-

oligomerization (HOA) domain that is necessary for RBM45 self-association, was not requisite for 

NSB recruitment. This finding argues that the association of RBM45 with NSBs is driven by 

RRM2/3 binding to sat III transcripts, as has been proposed for other NSB proteins
586

.  
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Figure 6.3 RBM45 Domain Structure. A schematic of the domains in the RBM45 full length 

protein is shown. RRM = RNA recognition motif, HOA = homo-oligomerization domain, NLS = 

nuclear localization sequence.  
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Figure 6.4 RBM45 domain deletion experiments. HEK293 cells were transiently transfected to 

express domain deletion constructs of RBM45 as indicated in the figure. Following the transfection, 

cells were treated as indicated and stained for the HA tag and the NSB marker HSF1 to evaluate the 

incorporation of the tagged construct into NSBs. As shown, the NLS, RRM2, and RRM3 are 

necessary for RBM45 incorporation into NSBs. All images were taken with a 63x 1.4 NA objective.  

6.4.3 Relationship of TDP-43 and FUS to NSBs 

RBM45 has been shown to physically interact with TDP-43 and FUS
528,589

 and is found in TDP-43 

positive cytoplasmic inclusions in ALS/FTLD
392

. We, therefore, sought to determine whether TDP-

43 and FUS are also components of NSBs and whether disturbing physiological TDP-43/FUS levels 

would induce NSBs. For the first aim, cells were heat shocked as above and stained for RBM45, 

TDP-43, and FUS. As shown in Figure 6.5A, TDP-43 and FUS do not associate with RBM45-

positive NSBs. This is in keeping with studies in ALS/FTLD tissue, in which RBM45 nuclear puncta 

were distinct from TDP-43 (Figure 4.7). Next, we asked whether disrupting TDP-43 or FUS levels 

would cause the formation of NSBs (Figure 6.5B). Cells are highly susceptible to alterations in 

physiological TDP-43/FUS levels, either by knockout/down or overexpression
497

. We used 

overexpression of TDP-43, FUS, and a vector control to simultaneously disrupt physiological RBP 

levels and further evaluate whether TDP-43 and FUS are components of NSBs. As shown in Figure 

6.5, the overexpression of TDP-43 was sufficient to induce the formation of NSBs, though TDP-43 

is not a component of these structures. FUS overexpression induced nuclear translocation of HSF1, 

but did not result in the formation of NSBs, and the vector control also did not exhibit NSBs 

following transfection.  
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Figure 6.5 TDP-43, FUS, and nuclear stress bodies. A. HEK293 cells were heat-shocked for 2 

hours at 42 °C and evaluated for the presence of TDP-43 and FUS in RBM45-positive NSBs. 

Neither protein redistributes to the nuclear RBM45 foci following heat shock. B. TDP-43 and FUS 

were then overexpressed in HEK293 cells to determine how disruption of the levels of these proteins 

affects the formation of NSBs. As shown, TDP-43 overexpression was sufficient to drive NSB 
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formation, while FUS and vector expression did not result in NSB formation. All images were taken 

with a 63x, 1.4 NA objective.  

6.4.4 Persistent RBM45 NSB Association Leads to Nuclear Inclusion Formation 

To test whether the persistent association of RBM45 with NSBs is capable of inducing aggregation 

of the protein, we treated cells with 20 µM mitoxantrone (MTX) or 30 µM cadmium sulfate 

(CDSO4) for varying amounts of time. We also sought to determine whether other NSB proteins, 

specifically SAFB and HSF1, are also incorporated into potential NSB-derived protein aggregates.  

The results of these experiments are shown in Figure 6.6. As shown, under basal conditions, NSBs 

are not observed, while either stressor treatment induces a robust NSB response. Transient NSBs 

were induced by 6 hour MTX or 2 hour CDSO4 treatment. We hypothesized that chronic stress 

would be sufficient to induce RBM45 inclusion formation as has been suggested for TDP-43/FUS 

aggregation following persistent association with stress granules
95

. Thus, cells were treated for 24 

hours and allowed to recover for 4 hours. As shown, in either treatment, RBM45 nuclear foci persist, 

while NSB marker proteins SAFB and HSF1 dissipate from NSBs following recovery. These results 

suggest that the persistent association of RBM45 with NSBs is sufficient to induce its aggregation.  
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Figure 6.6 Persistent NSB association drives RBM45 inclusion formation. HEK293 cells were 

treated as indicated to examine the potential aggregation of NSB proteins under chronic stress. 

Shorter duration treatments (6 hour MTX; 2 hour CDSO4) induce the NSB response. Chronic (24 

hour treatment) stress followed by recovery shows dissipation of NSB marker proteins from NSBs 
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and reveals persistent RBM45-positive nuclear inclusions. All images were taken with a 63x 1.4 NA 

objective. 

6.4.5 Observation and Quantification of RBM45-Positive NSBs in FTLD 

For the final phase of the study, we quantified the number of RBM45-positive NSBs in dentate gyrus 

granule cells of FTLD and healthy control subjects. The results of these experiments are shown in 

Figure 6.7. As shown, the number of RBM45-positive NSBs was significantly increased in FTLD 

patients as compared to controls. We also sought to determine whether HSF1 and SAFB positive 

NSBs could be detected in human tissue. To that end, we stained healthy control and FTLD tissue 

sections with antibodies against these proteins. The results of these experiments are shown in Figure 

6.8. As shown, NSBs were not detectable in the hippocampus of healthy control subjects. In contrast, 

numerous NSBs and enhanced nuclear HSF1 reactivity were seen in multiple hippocampal cell 

types, including dentate gyrus granule cells and cells from the CA1 region of the hippocampus.  
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Figure 6.7 RBM45 NSB quantification in FTLD. The number of RBM45 positive puncta in 

dentate gyrus granule cells was quantified using immunofluorescence and image processing. A. 

Representative immunofluorescence images of a healthy control and FTLD subject. All images were 

taken with a 63x 1.4 NA objective and the scale bars = 10 µm. B. Resultant quantification. A total of 

n = 5 controls and n = 5 FTLD tissue sections were stained and n = 50 dentate granule cells were 

counted for each section. The results show the mean ± SEM. * = p < 0.01.  
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Figure 6.8 Nuclear Stress Bodies (NSBs) in FTLD Patient Tissue. NSBs were visualized in 

human FTLD tissue using antibodies against the NSB marker proteins SAFB and HSF1. In the top 

series of panels, staining for SAFB and HSF1 is diffuse in hippocampal dentate gyrus cells and no 

NSBs are evident. In the middle and bottom panels, SAFB and HSF1-positive NSBs are seen in 

hippocampal dentate granule cells (middle) and CA1 neurons (bottom). All images were taken with a 

63x 1.4 NA objective and the scale bar = 10 µm.  
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6.5 DISCUSSION 

The purpose of the present study was to characterize the biological functions of the RNA binding 

protein (RBP) RBM45 as they relate to the incorporation of the protein into speckled nuclear foci in 

ALS/FTLD. To that end, we identified RBM45 as a component of nuclear stress bodies (NSBs), a 

stress-induced nuclear protein-RNA complex templated on pericentromeric satellite III DNA 

transcripts. The association of RBM45 and NSBs is part of the general cellular response to stress and 

occurs following the onset of a variety of stressors (Figures 6.1, 6.2). Other studies have shown that 

the formation of NSBs occurs in response to several distinct forms of cellular stress, including 

oxidative, genotoxic, heat shock, and hyperosmotic stress
586-592

. Our results extend these findings by 

further demonstrating the generality of the NSB response and identifying RBM45, an ALS/FTLD-

linked RNA binding protein, as a component of NSBs. The generality of the NSB response (Figure 

6.2), the numerous forms of intracellular stress that occur in ALS/FTLD
40

, and the increased 

numbers of NSBs in FTLD patient tissue (Figures 6.7, 6.8) observed here collectively provide 

compelling evidence for contributions of NSBs to the RBP pathology of ALS/FTLD and further 

underscores the contribution of RBP dysfunction to disease.  

 NSBs were discovered in the 1980’s
586

 and since that time, considerable progress has been 

made in understanding the mechanisms of the formation of these structures. The onset of cellular 

stress results in the trimerization of heat shock factor 1 (HSF1). The DNA binding competent HSF1 

trimer induces the transcription of pericentromeric satellite III (sat III) repeat sequences
586

. These 

sequences act as a scaffold for the binding of the protein constituents of NSBs. The genomic origins 

of sat III transcripts are primarily in region 9q12, with other regions in chromosomes 12 and 15 also 

containing sat III repeats. Sat III transcripts from the 9q12 region are the most-well studied non-

coding RNAs involved in the NSB response, however
586,590,591

. Sat III repeats originating from the 
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9q12 locus are G-rich strands and the association of RBM45 with NSBs likely derives from sat III 

binding, as RBM45 preferentially binds G-rich RNA
507

. This hypothesis is in keeping with previous 

data showing the necessity of RNA binding for RBM45 interaction with other RBPs
589

 and 

incorporation into NSBs (Figure 6.4). 

Despite advances in our understanding of the formation of NSBs, their function(s) remain 

elusive. One hypothesis suggests that NSBs act to repurpose gene expression in a manner favoring 

the cellular response to stress by sequestering selected RBPs in NSBs
586

. This view would suggest 

that the aggregation of RBM45 resulting from its persistent association with NSBs is a by-product of 

the over-activation of the NSB response. Similar hypotheses have been proposed for the aggregation 

of TDP-43 and FUS by virtue of their sustained incorporation into stress granules (SGs)
95

. TDP-43 

and FUS are distinct from RBM45, however, in that they possess prion-like, low-complexity 

domains that facilitate their aggregation
102

. RBM45 does possess a homo-oligomerization (HOA) 

domain that permits the protein to self-associate and bind other proteins. While this domain is 

inessential for RBM45 incorporation into NSBs (Figure 6.4), it may nevertheless facilitate the 

aggregation of the protein following chronic stress (Figure 6.6). This would make RBM45 similar to 

FUS, whose LC domain is not required for SG association, but does mediate the extent of 

incorporation into SGs
49

.   

We also asked whether TDP-43 and FUS participate in the NSB response and found that 

neither protein is a component of NSBs (Figure 6.5). This is consistent with the lack of TDP-43 

positivity for RBM45 nuclear foci in FTLD patient tissue (Figure 4.7). Nevertheless, disruption of 

homeostatic TDP-43 levels was sufficient to induce NSB formation in HEK293 cells, further 

underscoring the importance of homeostatic RBP levels to cellular viability
52,54,56

. The absence of 

TDP-43 from NSBs does, however, raise the question of how RBM45 is incorporated into 
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cytoplasmic inclusions in neurons and glial cells in ALS/FTLD (Figure 4.7). One possibility is that 

RBM45 undergoes nucleocytoplasmic transport as part of its normal functions. Evidence in favor of 

this concept comes from the identification of RBM45 protein-protein interactions with RNA 

transport proteins, nucleocytoplasmic shuttling proteins, and cytoplasmic-translation associated 

proteins (Supplemental Table 4). Moreover, while RBM45 is predominantly nuclear by 

immunocytochemistry, we nevertheless detect low levels of the protein in cytoplasmic fractions by 

Western blot
528

. This together with the presence of a classical NLS in the protein’s domain structure 

argues that RBM45 possesses cytoplasmic functions. The performance of these functions together 

with nucleocytoplasmic transport defects in ALS/FTLD patients
203,204

 could lead to the accumulation 

of excessive levels of cytoplasmic RBM45 that are then incorporated into TDP-43 inclusions. The 

greater extent of RBM45 pathology in nucleocytoplasmic transport-deficient C9ORF72 fALS 

patients (Supplemental Table 3) provides evidence in support of this concept. 

The NSB response is found only in primate cells, which contain sat III DNA sequences not 

found in lower vertebrates, such as rodents
586

. We provide evidence of upregulation of the NSB 

response in FTLD patients (Figures 6.7, 6.8) and the sufficiency of this upregulation to induce the 

aggregation of RBM45 (Figure 6.6). Removal of RBPs from their normal cellular milieu is sufficient 

to induce substantial alterations in gene expression
51,165

 and disruption of TDP-43 levels can induce 

the NSB response (Figure 6.5). Both of these observations suggest that non-primate animal models 

of ALS/FTLD may insufficiently capture the full extent of RBP aggregation, loss of function, and 

dysregulation of gene expression, particularly as related to the contributions of RBM45 to these 

phenomena in ALS/FTLD. Future studies examining the NSB response in patient-derived IPSC 

motor neurons may provide a useful means to more accurately assess the contributions of RBM45 to 

neurodegeneration in ALS/FTLD. Moreover, comparisons of gene expression changes found in these 
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cell lines to those observed in transgenic rodent lines (e.g., TDP-43, C9ORF72-repeat expansion, 

etc....) may provide useful information about the strengths and weaknesses of transgenic animal lines 

in the modeling of disease. One such study has suggested that rodent models fare poorly in modeling 

transcriptomic changes associated with human ALS/FTLD
593

. Thus, further comparisons are 

warranted and have considerable implications for the design of therapeutic interventions and clinical 

trials for these diseases.  

In summary, we sought to characterize the biological function(s) of RBM45 related to its 

incorporation into nuclear foci. We found that these foci derive from RBM45’s RNA binding-

dependent incorporation into NSBs and that the persistent association of RBM45 with NSBs is 

sufficient to induce its aggregation. This provides a plausible explanation for the increased presence 

of RBM45 foci in the nucleus of FTLD patients, foci that are not typically observed in healthy 

control subjects. Collectively, these results define a new stress-response pathway altered in 

ALS/FTLD, provide further evidence of the role of protein-RNA complexes in RBP aggregation, 

and suggest new therapeutic targets for these disorders. 
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7.0  GENERAL DISCUSSION 

7.1 GLOBAL PROFILING STRATEGIES IN THE STUDY OF ALS 

The ability of global profiling approaches to identify novel mechanisms of disease/pathology makes 

it of value for further stratification of the ALS/FTLD patient population. The recognition that 

ALS/FTLD exist as a spectrum of disorders has led to the designation of subtypes of disease. While 

classification schemes for ALS are not as developed as those for FTLD
594

, improved genomic, 

transcriptomic, proteomic, and pathological profiling of patients should lead to improvements in the 

stratification of ALS and creation of sub-types of disease. This, consequently, should lead to 

improved clinical trial design and implementation for ALS
595

. The accurate and reliable delineation 

of subtypes of disease will require large-scale, multi-center efforts directed towards the genomic, 

transcriptomic, and proteomic global profiling of ALS patients and model organisms.  

7.1.1 CSF Biomarkers for ALS 

Studies of proteomic alterations to the cerebrospinal fluid (CSF) in ALS began several decades ago, 

when isoelectric focusing and electrophoresis were used to define blood brain barrier disruption in 

ALS by virtue of altered protein composition of the CSF
596

. Since that time, the utility of CSF 

protein levels to the study of ALS has been demonstrated via many approaches. Given the inherent 

difficulty in accurately diagnosing ALS
327,334

, the number of motor neurons typically lost by the time 
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of symptom presentation
327

, the increasing recognition that ALS is likely a spectrum of disorders 

with numerous distinct etiologies
336,337

, and the low success rate of ALS clinical trials
595

, CSF 

protein biomarkers (diagnostic, prognostic, and therapeutic) have received increasing focus in the 

study of ALS. At present, the best-studied fluid biomarkers of ALS are the heavy and light chains of 

the neurofilament protein. Phosphorylated neurofilament heavy chain (pNFH), is a sensitive and 

reliable biomarker of disease
323,597

. Neurofilament phosphorylation influences axonal diameter, 

axonal conduction velocity, and the rate of axonal transport, and hyperphosphorylated, aggregated 

neurofilament is a common pathological finding in axons in various forms of ALS
78

. Thus, 

aggregated, hyperphosphorylated neurofilament heavy chain is hypothesized to be released from 

injured, dying axons during the ALS disease process. Consistent with this notion, pNFH is often not 

detectable in control CSF, while it may reach ng/ml levels in ALS patients
323

. Similar results have 

been obtained by measuring CSF neurofilament light chain (NFL)
598

 and results presented herein 

also suggest that neurofilament medium (NFM) levels are substantially increased in CSF as well 

(Table 2.2). Given the necessity of the co-polymerization of NFH, NFL, and NFM for neurofilament 

function, it is perhaps unsurprising that all three subunits can be detected in the CSF following motor 

neuron death in ALS.  

While  neurofilament alone performs well as a diagnostic and prognostic biomarker of 

ALS
597,598

, more recent studies have demonstrated improved performance when panels of protein 

markers are used. This finding has been shown for panels with
323

 and without pNFH
359

. The 

development of protein biomarker panels has traditionally relied upon existing knowledge of 

proteomic alterations associated with disease. For example, multiplex profiling of inflammatory 

molecules, such as cytokines, has been performed to determine the diagnostic value of CSF 

cytokines and the time course of cytokine elevations in ALS
599

. Previous implementations of this 
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strategy have had several limitations. First, the number of proteins evaluated has typically been low. 

This owes, in part, to the methods used, which tend to employ targeted profiling of a known subset 

of proteins or an unbiased approach with limited detection capabilities, such as SELD-TOF MS
359

. 

Global, unbiased profiling yields a larger number of identified proteins, and consequently, is likely 

to identify biomarkers with better predictive ability. This latter point is related to a second issue of 

targeting protein subsets for biomarker panels, which is their reliance on existing knowledge of 

disease, as in the case of pNFH. Unbiased approaches that provide complete proteomic profiles of 

disease, control, and disease control subjects are likely to not only yield more robust markers/marker 

panels, but also provide new insights into mechanisms of disease. We have demonstrated the 

plausibility of this idea, showing that CSF levels of extracellular matrix (ECM) and synaptic proteins 

are decreased in CSF (Table 2.2, Figure 2.5), that these alterations can reliably separate ALS from 

control/disease control subjects (Figure 2.9), and that they correspond to changes occurring in motor 

neurons in ALS patients (Figure 2.7). The application of feature selection and machine learning to 

proteomic profiles and spectral count data is still relatively inchoate
386

, but the continued application 

of these methods together with large-scale efforts to profile disease populations should ultimately 

lead to diagnostic and prognostic markers of disease with high sensitivity and specificity.  

The identification of candidate biomarkers of disease necessitates an evaluation of their 

longitudinal stability. In the field of ALS, unfortunately, such studies are relatively rare. Many prior 

studies in ALS used a cross-sectional approach to examine correlations between candidate 

biomarkers and clinical markers of disease progression and survival, with few studies measuring 

changes in biomarker levels in longitudinal biofluids collected within individual patients. Those 

studies using a longitudinal approach have tended to shown that CSF markers are stable throughout 

the course of disease. NFL levels in CSF, for example, remain relatively constant over the 
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progression of disease in ALS patients
598

. Longitudinal analyses of NFL and patient survival 

indicated that NFL levels in CSF were inversely correlated with patient survival, providing further 

support for the hypothesis of these proteins being released from dying motor neurons. Cystatin C 

was one of the first CSF protein biomarkers suggested for ALS as part of a SELD-TOF MS 

screen
359

, which identified decreases in CSF levels of the protein of ALS patients. Subsequent 

longitudinal validation of this finding by ELISA demonstrated that cystatin C levels decline within 

ALS patients over the course of disease and that initial cystatin C levels were predictive of survival, 

with lower levels corresponding to a shorter duration of disease
391

. Despite promising results from 

these two biomarkers, considerable additional work is needed to validate many other candidate 

markers of disease, including those identified here. Preliminary evidence does indicate longitudinal 

decreases in APLP1 (Figure 2.10) in ALS patients (unpublished observation). In part, the lack of 

longitudinal validation of other markers can be attributed to the difficulties associated with the 

collection and storage of CSF samples. ALS patients may experience increasing difficulty in 

traveling to clinical sites and undergoing lumbar puncture for CSF collection. This has led to studies 

designed to extend CSF biomarkers to plasma, which have met with positive results
598

, though 

plasma markers typically have poorer specificity/sensitivity than their CSF counterparts
317

. 

An equally important and relatively unexplored aspect of CSF biomarkers in ALS is 

identifying biomarkers that can reliably signal the onset of pathological processes in ALS in advance 

of substantive motor neuron degeneration (predictive biomarkers). Such markers would be of vital 

importance in designing and testing preventative therapeutic interventions. Naturally, such 

approaches are not applicable to sporadic patients, as the unknown etiology makes determining a 

priori who will develop disease impossible. Studies using fALS patients and model systems may 

hold promise in this regard, however, and may lead to the identification of proteins that reliably 
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indicate the onset of general degenerative processes in motor neurons or inflammatory activity in 

surrounding glial cells. CSF pNFH and NFL are increased in fALS and sALS patients at symptom 

onset, however, increased levels of either subunit could not be detected at pre-symptomatic stages in 

fALS subjects in a recent study
600

. This provides further evidence in the support of the hypothesis of 

neurofilament release from dying neuron in ALS. Thus, while CSF neurofilament proteins may be 

excellent biomarkers for the diagnosis of ALS and prognostic markers of disease progression, they 

are unlikely to serve as pre-symptomatic markers of disease initiation. Similar results are to be 

expected for other markers of pathology, such as CSF TDP-43
601

. Indeed, the very notion that CSF 

biomarkers arise from dying motor neurons may make CSF proteomic profiling unsuited to the 

detection of pre-symptomatic disease onset. Instead, a combination of genetic sequencing to identify 

susceptibility
316

, assessment of contributing lifestyle risks, and neurophysiological testing
602

 may be 

better suited to early detection, though determining the point in disease at which known CSF 

biomarkers become detectable remains an open and relevant question. 

Despite negative results from analyses of neurofilament in pre-symptomatic fALS subjects, 

this patient population will, nevertheless, provide a unique opportunity to investigate biomarkers in a 

human population prior to disease onset. At present, two clinical research studies are enrolling pre-

symptomatic subjects with SOD1 mutations or C9ORF72 repeat expansions. The samples and 

clinical information collected from these individuals will provide a substantially larger set of 

samples (both in overall number and per patient longitudinal number). Global profiling of CSF, 

tissue, and other sample types will provide a more extensive cataloging of molecular characteristics 

of pre-symptomatic patients that will yield insight into the composition of CSF prior to symptom 

onset. Moreover, retrospective correlation of CSF proteomic alterations with changes in clinical 

parameters should aid in determining which markers serve as reliable indicators of the onset of 
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disease. This approach, together with the development of animal models that accurately recapitulate 

the genetic and pathological aspects of these forms of ALS should facilitate the development of 

therapeutic interventions designed to slow or prevent the onset of disease. In the case of SOD1 and 

C9ORF72, these approaches are particularly applicable, as misfolded SOD1 and C9ORF72 DPRs 

can be detected in the CSF
205,603

. Misfolded SOD1 has been hypothesized to facilitate the cell-to-cell 

spread of disease via prion-like induction of aggregation of mutant SOD1 from soluble monomers to 

insoluble aggregates
604

. Thus, determining the point at which mutant SOD1 and oligomeric SOD1 

are present in CSF has considerable implications for understanding the time course of disease onset 

and progression in SOD1 fALS patients. Similarly, the presence of DPRs in CSF suggests the 

possibility of a similar phenomenon occurring in C9ORF72 patients, though this has not been 

directly demonstrated. Nevertheless, the toxicity of DPRs in neuronal cell culture models
605

 implies 

that DPRs in the CSF would have deleterious consequences for motor neurons. The results from 

these studies and others examining pre-symptomatic changes will thus have considerable 

implications for models of disease spread and our understanding of how extracellular factors 

contribute to motor neuron death in ALS.  

A final use for CSF protein biomarkers of ALS is in the monitoring of response of patients to 

therapeutic interventions. The poor track record of ALS clinical trials
595

 has led to calls for the 

inclusion of biomarkers of target engagement in all future trials
606

. CSF protein biomarkers can serve 

this purpose to the extent that they reflect the ongoing injury and death of motor neurons and 

therapeutic interventions target the process resulting in the proteomic alterations seen in CSF. 

Inflammation is a finding common to many forms of ALS and increased levels of pro-inflammatory 

factors are thought to drive non-cell autonomous mechanisms of disease. While therapeutics 

designed to target inflammation have performed poorly in clinical trials
280-282

, these studies did not 



 215 

use CSF protein biomarkers of inflammation to assess whether target engagement was actually 

achieved during the trial. A more recent study did achieve this, showing that tocilizumab reduced 

transcription of pro-inflammatory factors in circulating monocytes and that this transcriptional 

decrease resulted in decreased circulating levels of inflammatory factors in CSF
607

. Our results 

(Table 2.2, Figure 2.6, Table 3.1, Figure 3.5) likewise suggest readily detectable markers of 

inflammation in the CSF that could be used for this purpose. Beyond the utility of such markers as 

measures of therapeutic response, they may also prove useful for settling the, at times, contentious
608

 

issue of the contribution of inflammation to neurodegeneration in ALS. While the diagnosis of fALS 

will continue to necessarily rely on clinical assessment and genetic testing, CSF levels of mutant 

proteins may be useful measures of the effectiveness of therapies targeting these forms of ALS. The 

detection and quantification of misfolded SOD1 and C9ORF72 DPRs in CSF
603,605

 may therefore be 

a useful readout of the effectiveness of therapies, such as anti-sense oligonucleotides, targeting the 

production of these proteins. SOD1 antisense oligonucleotides have recently been used in a human 

clinical trial
609

. This phase I safety study did not use CSF SOD1 as pharmacodynamic biomarker, so 

the effects of the treatment on CSF SOD1 levels are unclear. Given the absence of serious adverse 

events, however, future Phase II/III trials using this compound will likely determine CSF SOD1 

levels. The use of CSF SOD1 in this manner is particularly illustrative of the utility of CSF 

therapeutic response biomarkers, because the relationship between disease and production of the 

mutant protein is relatively direct. While measuring CSF DPR levels may likewise provide insight 

into therapies targeting the production of this species, the causes of neurodegeneration in C9ORF72 

ALS are less well-defined and likely multifactorial. Proposed mechanisms include DPRs, RNA foci, 

haploinsufficiency, and impaired nucleocytoplasmic transport
610

. Thus, in this and other forms of 

ALS where multiple factors contribute to motor neuron degeneration, multiple markers of 
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therapeutic response via targeted or global profiling may be necessary to accurately assess the 

potential of a therapeutic intervention.   

7.1.2 Genomic Studies in ALS 

The last decade has seen remarkable advances in our understanding of the genetics of fALS, with 

approximately 70% of fALS accounted for by known mutations in fALS-linked genes
316,334

. This 

represents a gain of approximately 50% in the last ten years. This rapid growth is a result of two 

factors: (1) the substantial portion of fALS attributable to the C9ORF72 repeat expansion (40% of 

fALS) and (2) the continued advancement of genetic sequencing technologies. The sheer number 

and diversity of genes whose mutations leads to familial forms of ALS makes evident the idea that 

dysfunction in several cellular pathways is sufficient to cause the cell-type specific degeneration 

seen in ALS and FTLD. Having established this, the more daunting challenge is for researchers to 

delineate how fALS-linked mutations exert their deleterious effects and to what extent these unique 

and rare forms of ALS share pathomechamisms with the more common sporadic form of disease. 

RNA binding protein pathology seems to be a unifying aspect of almost all forms of ALS, with the 

notable exception of SOD1 fALS. More specifically, sporadic, TARDBP fALS, C9ORF72 fALS, and 

familial forms linked to genes apparently unrelated to TDP-43 such as CHMP2B and OPTN fALS all 

exhibit TDP-43 pathology in motor neurons. Our results extend this finding by demonstrating that 

RBM45 pathology is likewise common to several forms of ALS (Figure 4.3, Supplemental Table 3). 

Moreover, our proteomics results demonstrate that these changes extend to the CSF proteome and 

can be used to separate both sALS and fALS from healthy and disease control subjects (Figure 2.9). 

Thus, it seems likely that CSF proteomic changes reflect downstream events resulting from motor 

neuron degeneration. Similar reasoning has been used in the interpretation genome-wide association 
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studies (GWAS) in ALS. Variation in loci in the KIFAP3 and EphA4 genes have been found to 

significantly impact survival in ALS patients
308,399

. The KIFAP3 protein is a kinesin-associated 

motor protein and reduced expression of the protein is associated with reduced survival. Conversely, 

SNPs conferring reduced expression (or pharmacological inhibition in model organisms) of EphA4, 

an axonal repellent molecule, results in enhanced survival in ALS patients
399

. Thus, one 

interpretation of these results has been that variability in the expression of these genes conferred by 

SNPs influences the rate of motor neuron degeneration, but likely does not, in and of itself, initiate 

the degenerative process
316

.   

The identification of risk or causative genetic factors in apparently sporadic ALS is a related 

field of inquiry with implications for the classification of disease. The estimated heritability of ALS 

is 21%
312

, though the confidence interval for this value is large and substantially larger estimates of 

disease heritability have been reported
611

. One group proposed an oligogenic basis of sALS and used 

screening of multiple fALS-linked genes in sALS patients to test this hypothesis. The results showed 

that variability in multiple fALS-linked genes is found in apparently sporadic ALS patients
612

. While 

this finding provides support for both an oligogenic basis of disease and important genetic 

contributions to sporadic ALS, it also suggests considerable complexity in the genetics of the 

disease. Because this study used only screening for mutations in a subset of known fALS-linked 

genes, it is likely that additional, unknown combinations of de novo mutations of known fALS 

genes, unknown fALS genes, and other genes are sufficient to produce the sporadic form of disease. 

The potential combinatorial complexity of this situation is daunting and may make a truly complete 

understanding of the genetics of ALS unattainable. Nevertheless, continued genomic sequencing of 

fALS kindreds to identify genes sufficient to cause disease in an autosomal-dominant manner is 

warranted
316

. Currently, approximately 70% of fALS is explained by mutations in known ALS 
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genes; however, given the small proportion of fALS explained by most genes (often 1-2%
316,613

), 

there are likely many fALS genes left to identify. Further complicating matters is the fact that this 

does not take into account environmental factors that contribute to the development of disease, 

which are estimated at 0.39
611

. Aside from rare geographical clusters, environmental risk factors 

have been hard to define for ALS, but may include smoking, exposure to heavy metals, military 

service, and agricultural chemical exposure
614

. The contributions of non-chemical environmental 

factors have been difficult to replicate and their mechanism(s) of action remain uncertain to the 

extent that they are true contributors to the development of disease. Collaborative efforts are 

presently underway to perform whole genome sequencing for large numbers of ALS patients in 

worldwide project to sequence and generate iPS cells from large numbers of ALS patients.  These 

efforts will likely lead to the identification of new causative genes for ALS and genetic 

polymorphisms that influence rate of disease progression. 

7.1.3 Transcriptomic Profiling in ALS 

The common occurrence of RBP pathology in several forms of ALS suggests that these forms of 

disease may also share deficits in RNA processing. TDP-43 and FUS have numerous roles in both 

the nuclear and cytoplasmic processing and transport of RNAs and RBM45 interacts extensively 

with RNA splicing factors, including many members of the hnRNP family (Table 5.1 Figure 5.3). 

Since aggregation of RBPs is common to several forms of ALS, several groups have attempted to 

address whether these forms of ALS likewise share common deficits in RNA transcript levels, 

processing, and localization owing to RBP dysfunction. Brain transcriptomic profiling of cerebellar 

tissue in control, sALS, and C9ORF72 fALS showed large numbers of RNA processing alterations 

in both forms of ALS, including extensive alternative splicing and alternative polyadenylation 
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defects. These defects differed between sALS and C9ORF72 fALS, with the latter showing a 

considerably larger number of both type of defects (approximately four-fold greater splicing and 

two-fold greater polyadenylation)
615

. The C9ORF72 repeat expansion produces nuclear RNA foci, 

which are hypothesized to sequester RNA binding proteins
553,554

. Thus, C9ORF72 RNA transcripts 

may induce altered RNA processing in ALS motor neurons independently of the 

transcriptional/processing alterations conferred by TDP-43 nuclear depletion and cytoplasmic 

aggregation (which are also present in C9ORF72 fALS). Given the nuclear location of the foci and 

larger number of reported processing defects in C9ORF72 fALS brain tissue than sALS
615

, 

C9ORF72 repeat transcripts seem to be particularly disruptive to RNA processing. To the extent that 

the RNA processing defects are directly related to the presence of these transcripts (and not, e.g., 

nucleocytoplasmic transport defects, DPR pathology, etc...) some have suggested that these defects 

should be therapeutically tractable by approaches such as anti-sense oligonucleotides targeting the 

foci. Our results suggest this may be an oversimplification, as C9ORF72 fALS patients consistently 

showed the greatest amount of motor neuron RBP pathology (Figure 4.3, Supplemental Table 3), 

which itself is sufficient to induce RNA processing defects
169

. Thus, by collective virtue of (i) 

C9ORF72 transcript-mediated sequestration of RBPs, (ii) nucleocytoplasmic transport defects in 

C9ORF72 fALS, and (iii) the greater extent of RBP aggregation in this form of disease, we expect 

that RNA processing defects are greatest for this form of ALS (Figure 1.2). 

This view would reciprocally argue that forms of ALS in which RBP pathology and loss of 

function are not present should exhibit the fewest RNA transcription/processing defects. Evidence in 

support of this view comes from studies of the SOD1 mouse model of fALS. As noted above, SOD1 

fALS patients (and transgenic mice) are unique in that they do not typically exhibit RBP pathology
8
. 

Using an approach similar to that performed in human patients, whole transcriptome profiling of 
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SOD1 transgenic mouse brain tissue revealed alterations in only a small number of transcripts and 

splicing events
616

. Similar results were obtained using whole transcriptome profiling of NSC34 

motor-neuron like cells following exposure to mutant SOD1
617

 and in a separate SOD1 mouse model 

using whole spinal cord tissue
618

. While in the former study, exposure to SOD1 did upregulate 

transcription of antioxidant response element genes, the small overall number of transcriptomic 

changes, especially relative to that observed for, e.g., TDP-43 depletion
168

, for all of these studies 

argues that changes in RNA transcription and processing observed in ALS relate directly to the 

dysfunction of RBPs, and not to downstream events related to the death of motor neurons or 

presence of inflammatory/pro-apoptotic factors. While this implies a relatively straightforward 

relationship between RNA processing defects and RBPs in disease, it also suggests that therapeutic 

approaches to will need to directly target RBP homeostasis, not ongoing degenerative processes 

(e.g., inflammation), to ameliorate these defects. Given the multitude of RBP functions and 

localization to SGs and NSBs in ALS (Figures 1.2, 6.7), this may prove challenging, if not 

impossible, to do in a palliative fashion. Approaches that can reliably signal the onset of RBP 

dysfunction, such as proteomic profiling, may thus be necessary to prevent the onset of degenerative 

processes related RBP processing functions and aggregation.  

Additional approaches to the study of transcriptomic changes in ALS have taken advantage 

of methods capable of selectively isolating motor neurons for RNA extraction. One such study 

characterized the transcriptomic profile of spinal motor neurons and oculomotor neurons (which are 

relatively spared from degeneration in ALS) using laser capture microdissection from neurologically 

normal human subjects. These two populations of neurons showed distinct transcriptomic profiles, 

with differential expression of approximately 1,700 genes observed between neuron populations
400

. 

These results show how distinct transcriptomic profiles can arise in different motor neuronal 
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populations, even from a common genetic background. These differences are likely due to 

differences in size, metabolic requirements, and synaptic activity. Consistent with results presented 

here (Figures 2.5, 2.7), extracellular matrix (ECM) and synaptic structure-related biological 

processes were identified via enrichment analysis of differentially regulated transcripts
400

, 

underscoring the idea that ECM alterations are a key susceptibility factor in the selective 

degeneration of spinal motor neurons in ALS. This analysis also identified oxidative 

phosphorylation, synaptic activity, and ubiquitin-mediated protein degradation pathways as 

significant contributors to differences in motor neuron sub-population transcriptomic differences. 

This latter pathway is likely general to many forms of ALS given the preponderant role of protein 

aggregation in all forms of ALS
8
.  

Collectively, the preceding observations on transcriptional/splicing changes in ALS and 

spinal motor neurons highlights the responsive nature of gene expression. The ability of cells to 

regulate gene expression in response to internal and external stimuli confers benefits to cell survival, 

particularly during periods of stress, development, or other changes. Cells are known to change gene 

expression profiles following a variety of environmental signals
619

. Failure to properly regulate gene 

expression following adverse stimuli may underlie the transcriptomic changes seen in ALS. In this 

context, the transcriptome can be seen as a bridge linking the environmental and genetic aspects of 

ALS. For example, one study examined the transcriptomic changes associated with TDP-43 

overexpression or depletion. These manipulations were found to produce distinct transcriptomic 

alterations in drosophila
620

. Thus, the pathological aggregation (by virtue of e.g., overwhelmed 

autophagy) and loss of normal function accompanying RBP dysfunction in ALS are each capable of 

inducing alterations in gene expression and the regulation thereof. When the (at present unknown) 

totality of RBPs aggregated and improperly subcellularly sequestered is considered, the potential 
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extent of transcriptional dysregulation is extensive. At present, no studies have examined whether 

therapeutic interventions targeting RBPs or protein aggregates mitigate transcriptional alterations, 

though the ability of high-throughput sequencing technologies to rapidly and relatively 

inexpensively generate this information makes transcriptional profiling a potentially appealing 

readout of therapeutic effectiveness.   

7.1.4 Proteomic Profiling in ALS 

Proteomic analyses are less standardized and more technically challenging than genomic and 

transcriptomic technologies. Consequently, the application of proteomics to the study of ALS/FTLD 

is relatively immature when compared to nucleic acid sequencing and quantification studies. 

Proteomic characterization of biofluids, chiefly CSF and plasma represent the vast majority studies 

applying proteomic profiling to the study of ALS. These studies have yielded useful insights into the 

biology of ALS, as described above. As our results here suggest (Chapter 2), the continued 

application of mass-spectrometric global biofluid profiling approaches can be expected to yield 

considerable information with regards to mechanisms of disease, therapeutic efficacy, and disease 

progression. Ongoing longitudinal proteomic profiling of CSF through large multi-center efforts will 

provide considerable insight into the nature of the CSF proteomic landscape over the course of 

disease and in various forms of disease. All of this information has considerable implications for the 

diagnosis, treatment, and design of clinical trials for ALS.   

 Outside of biofluid proteomic profiling, other research groups have used proteomics to 

comprehensively categorize alterations resulting from various ALS/FTLD disease mechanisms. One 

such study attempted to characterize proteins that co-aggregate with a particularly aggregation-prone 

mutant form of TDP-43
523

. In identifying a diverse set of co-aggregating proteins, the results 
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indicated that TDP-43 aggregation is sufficient to induce dysfunction in a host of subcellular 

processes and structures, including ubiquitin proteasome system function and paraspeckle 

composition. Subsequent proteomic analysis of FTLD brain tissue confirmed alterations in 

paraspeckle proteins and underscored the value of proteomic profiling for identifying downstream 

proteomic changes resulting from ALS/FTLD disease mechanisms
621

. Direct application of 

technologies such as MALDI-TOF MS imaging to ALS/FTLD tissue
622

 may yield even greater 

insight into proteomic alterations accompanying disease.  

7.2 MODELING ALS/FTLD  

One of the great challenges in the field of ALS/FTLD research is to develop model systems that 

accurately recapitulate the mechanisms of disease leading to ALS/FTLD. The past 10 years have 

seen remarkable progress made in this endeavor, with numerous transgenic mouse lines representing 

a host of fALS-linked mutations being created and characterized and the development of IPSC motor 

neuron cultures creating the potential to bring personalized medicine into the realm of ALS/FTLD. 

As each model system has distinct advantages and limitations, the continued characterization of each 

model and comparison to the human form of disease is necessary to objectively determine which 

models are appropriate for which research goals.  

7.2.1 Transgenic Mouse Models of ALS 

The first transgenic mouse models of ALS were based on the identification of mutations in the SOD1 

genes as the cause of approximately 20% of fALS. These mice proved extremely useful for 
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disentangling whether loss of SOD1 function, gain of toxic function, or both were responsible for 

motor neuron degeneration. By virtue of SOD1 pathology, progressive motor impairments, and 

motor neuron degeneration, mice overexpressing the mutant human protein were deemed to be the 

proper model system for the human form of disease. Mice lacking the murine SOD1 gene lacked 

these characteristics and were phenotypically normal, ruling out loss of normal SOD1 function as a 

primary cause of disease in SOD1 fALS patients
623,624

. In subsequent years, the SOD1 mouse models 

based on several fALS causing SOD1 mutations have continued to be widely used in research on 

mechanisms of and treatments for ALS. Over-reliance on the model for the latter objective has been 

one factor suggested to account for the poor record of ALS clinical trials
595

. Given the genetic and 

molecular complexity of non-SOD1 forms of ALS, this is perhaps not surprising. Nevertheless, the 

SOD1 transgenic mouse model remains one of the best models of the pathology and progressive 

motor phenotype accompanying the human form of the disease. The SOD1 mouse model will thus 

likely remain a prominent model system, both for studies of SOD1 fALS and as a basis of 

comparison with other forms of ALS to determine the generality of a proposed mechanism of disease 

or effectiveness of a therapeutic intervention.  

The discovery of TDP-43 inclusions and fALS-causing mutations spurred the creation of 

several lines of TDP-43 transgenic mice. Modeling TDP-43 proteinopathy in mice proved 

immediately more challenging than modeling SOD1 mutations, as mice either lacking the TARDBP 

gene or overexpressing the mutant human protein suffered from early lethality
625

. Moreover, the 

creation of multiple lines overexpressing either the wild-type human protein or the mutant A315T 

mutant protein revealed a variety of behavioral phenotypes, pathologies, and mutant protein 

expression levels. Mice rarely had comparable motor abnormalities to SOD1 mice and in some cases 

exhibited other disease phenotypes with unclear relevance to human disease, such as gut 
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pathology
625

. The difficulties in modeling familial or sporadic TDP-43 proteinopathy are 

immediately apparent when one considers that, unlike SOD1, toxicity is conferred by both toxic gain 

and loss of normal function. While modeling one of these phenomena in mice has proven relatively 

straightforward, understanding the additive/synergistic effects conferred by both has proven 

challenging and limitations in TDP-43 mouse models reflect this difficulty.  

Several attempts have been made to create transgenic mouse models of C9ORF72 repeat 

expansion-linked fALS. As the mechanisms of toxicity of the repeat expansion and function of the 

C9ORF72 protein are not known, the relevance of transgenic mouse lines based on this genetic 

abnormality to human disease is not known. As with TDP-43 and SOD1, the development of 

transgenic lines has used knockout and insertional approaches separately. Removal of the murine 

C9ORF72 ortholog does not result in neurodegeneration or a motor phenotype
626

. While this argues 

against haploinsufficiency as a mechanism of disease, it is worth noting that mice with repeat 

expansion insertions also do not exhibit neurodegeneration, motor abnormalities, or reduced 

lifespan, despite the presence of histopathological features found in human C9ORF72 ALS/FTLD 

patients
627,628

. More recent evidence suggests that the C9ORF72 protein is required for proper 

immune function
629,630

, though the relevance of these findings to human C9ORF72 ALS/FTLD is 

unknown.  

Our results suggest that a fundamental limitation of all transgenic mouse models of 

ALS/FTLD is their inability to capture the full complement of cellular dysregulation in these 

diseases. Specifically, our results show activation of the NSB response in FTLD patients (Figure 

6.7), a finding that will not be replicable in any transgenic mouse line by virtue of its lack of 

pericentromeric satellite III sequences
586

. Similarly, these models are unable to adequately model the 

inherent genetic variability that occurs from one individual to another. At present, the effect of such 
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variability on the regulation of gene expression and the development and progression of ALS are 

unknown. Consequently, these factors cannot be modeled in mice and other lower organisms and 

may hinder the development of effective therapies for disease. While lower organisms such as yeast, 

drosophila, and C. elegans have each provided important insights into ALS/FTLD
101,103,583

, the 

comparatively simple nervous system and genetic complexity of these organisms limits their utility 

as true models of disease, despite their utility for rapidly screening the phenotypic effects of 

mutations and modifiers of disease toxicity.  

7.2.2 Induced Pluripotent Stem Cell (IPSC) Models of ALS/FTLD 

Induced pluripotent stem cell (IPSC) models of disease offer a promising alternative to lower 

organism model systems for capturing the genetic variability and complexity that contributes to 

ALS/FTLD. Worldwide efforts are underway to obtain and biobank cells from familial and sporadic 

ALS patients, as well as healthy control subjects and relatives of fALS patients. Culturing of skin 

fibroblasts from these individuals creates a self-renewing pool of cells that accurately represent the 

individual’s underlying genetic makeup. While studies of these fibroblasts may, themselves, provide 

insights into the contributions of genotype to the development of disease-associated pathology
631

, the 

reprogramming of fibroblasts into motor neurons to delineate the exact genetic contributions to the 

selective cell-type vulnerability that is a hallmark of ALS
632

. Characterization of SOD1 fibroblasts 

showed abnormalities consistent with those observed in transgenic mouse models, however, the 

subsequent demonstration that these defects could be corrected via genetic targeting demonstrated 

the remarkable promise of IPSCs both as models of disease and as a new model system for the 

evaluation of therapeutic interventions
633

. IPSCs offer perhaps even greater promise towards the 

modeling of more complex forms of ALS, such as sporadic, TARDBP fALS, and C9ORF72 fALS. 
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One study used reprogramming of fibroblasts from sALS patients to generate motor neurons. 

Subsequent characterization showed that these motor neurons were prone to developing TDP-43 

pathology
634

. Future studies using larger populations of sporadic cell lines together with genomic 

information will help determine how genetic variation contributes to motor neuron death in sporadic 

ALS. Similar results can be expected from studies modeling TARDBP fALS and C9ORF72 fALS, 

which are beginning to be reported. These studies show that neurons derived from patients tend be 

more vulnerable to the development of a host of pathological processes associated with disease
632

. 

Given the identical environmental conditions, these results strongly support a genetic basis for 

susceptibility to ALS, even in sporadic patients. Thus, IPSC models may be an ideal system for 

determining the genetic contributions to disease phenotype. The amenability of these systems to 

targeted genomic manipulation through, e.g., CRISPR-cas9 or TALEN, will allow the mechanisms 

of these genetic contributions to disease to be directly evaluated as well
635

. A final use of IPSC 

models is in the screening of drugs for future clinical trials. Several such studies are underway and 

have shown that IPSCs can identify compounds that ameliorate or prevent the development of a 

disease-like phenotype in patient-derived motor neurons
632-634

. Similarly, culturing of patient 

neurons may also be used to select patient subsets most likely to benefit from a particular therapeutic 

compound being tested in clinical trials. Thus, IPSC models of disease seem poised to become the 

predominant model system in the field of ALS/FTLD research. While cell culture models are 

necessarily limited in their generalizability to complex organisms, the power to therapeutically target 

mechanisms of disease based on individual’s genome offers tremendous promise towards the 

development of therapeutics that effectively target the underlying cause(s) of neurodegeneration for 

heterogeneous disorders such as ALS/FTLD.  
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7.3 RNA BINDING PROTEINS IN ALS/FTLD 

Work presented herein builds on the well-established concept of RNA binding protein (RBP) 

mediated neurodegeneration in ALS/FTLD. The number of RBPs whose mutation is sufficient to 

cause ALS/FTLD
613

, the number of aggregation competent RBPs with LC domains
102

, and the 

number of co-aggregating RBPs
523

 in models of ALS/FTLD all highlight the potential of 

dysregulation of these proteins’ functions to adversely affect neuronal health and homeostasis. The 

well-supported “two-hit” hypothesis suggests that these proteins confer loss of normal function and 

toxic gain of function in disease. Our results provide evidence of both concepts contributing 

mechanisms of disease related to RBM45. RBM45, like many RBPs, appears to serve many 

functions related RNA processing and cytoplasmic translation by virtue of its protein binding 

partners (Supplemental Table 4). Moreover, we show that RBM45 inclusions are common to ALS, 

FTLD, and Alzheimer’s disease (Supplemental Table 3). This latter phenomenon is related to the 

protein’s incorporation into nuclear stress bodies (NSBs). No link between neurological disease and 

NSBs has previously been made, despite the presence of numerous RBPs in NSBs. Our results thus 

provide further evidence of dysregulation of protein-RNA complexes in ALS/FTLD and establish 

new mechanisms by which the persistent association of RBPs can lead to their aggregation.  

 The first description of TDP-43 association with stress granules paved the way for the 

concept of impaired protein-RNA granule function as a primary cause of protein aggregation and 

cellular dysfunction in models of ALS/FTLD
46

. Since that time, emerging evidence points to the 

dysregulation of numerous types of protein-RNA complexes in ALS FTLD, including gems
585

, 

paraspeckles
523

, and, now, NSBs (Figures 6.7, 6.8). An imperative task for the field of ALS/FTLD 

research is to more fully characterize the functions and protein/RNA composition of these granules, 

many of which (such as NSBs) are poorly understood/defined. Given these limitations in our 



 229 

understanding of these structures, it is difficult to predict how their dysregulation contributes to 

neurodegeneration. Similarly, the incomplete characterization of the protein composition of these 

granules makes ascertaining which RBPs are in aggregates, and therefore, hypofunctioning 

challenging. The observation that many RBPs are multifunctional
558

 (Figure 5.3) also suggests that 

understanding their role in disease requires a cataloguing of these functions to determine which are 

essential, especially to neurons, and which have redundancies that may be compensated for by other 

proteins.  

Understanding how RBP aggregates contribute to cellular toxicity is an equally important 

task in the study of ALS/FTLD. There seems to be general agreement in models suggesting toxicity 

of oligomers, as has been proposed for amyloid beta
8
, however, the exact means by which these 

oligomers are toxic remains uncertain. The presence of ubiquitinated inclusions in ALS/FTLD 

(Figure 4.9) and work in cell culture models strongly implicates impaired protein clearance and ER 

stress in the degenerative process
33,63

. Prolonged activation of ER stress can induce apoptotic 

signaling and TDP-43 likewise affects the regulation of apoptotic proteins
63

. TDP-43 and other 

RBPs in aggregates may be post-translationally modified and determining the function(s) of these 

modifications and their contribution to aggregation is likewise an important step towards 

understanding the toxic properties of RBP aggregates.  

As is clear from the preceding paragraphs, the complexity of RBP-mediated 

neurodegeneration is considerable. This complexity makes the design and implementation of 

therapeutic approaches challenging. With SOD1 and C9ORF72 fALS, anti-sense oligonucleotides 

represent a promising approach to mitigate the presence of the neurotoxic mutant gene product. This 

approach is more likely to be of harm to patients than of help in the case of RBPs
625

. Therapeutics 

targeting RBPs must target several aspects of their dysfunction, including aggregation, loss of 
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regulatory functions, and subcellular mis-localization. While studies have used drug screens to find 

modifiers of toxicity
634

 such approaches are unlikely to identify compounds that fully restore neuron 

RBP homeostasis. Finding therapeutic approaches that do so will require a more refined 

understanding of the functions and potential for toxicity of RBPs.  

7.4 FUTURE PERSPECTIVES 

We have provided herein comprehensive proteomic profiles of CSF from ALS, healthy control, and 

other neurological disease subjects and shown how this can be leveraged to yield robust biomarkers 

and new insights into mechanisms of disease in ALS/FTLD. Continued proteomic, transcriptomic, 

and genomic profiling of the ALS population remains the most reasonable approach to fully 

characterize the disorders comprising the spectrum of ALS to FTLD. Tremendous strides in our 

understanding of these disorders have been made by genome sequencing efforts towards the 

identification of causal variants and variants influencing the susceptibility to disease and rate of 

progression. This is perhaps best exemplified by the approximately 40% of fALS cases now known 

to originate from the C9ORF72 repeat expansion. There is still a substantial proportion of familial 

ALS unexplained by known mutations and this number will likely decrease rapidly as sequencing 

technologies continue to improve and decrease in cost, while large-scale collaborative efforts 

towards the sequencing of ALS patients continue. The larger challenge, as has been proven with 

studies of C9ORF72, will be defining the causal mechanisms of cellular toxicity. Our results argue 

that IPSC model systems will be an increasingly important part of the solution to these challenges. 

Specifically, we have shown that NSB pathology is a common finding in FTLD and know from 

previous work on NSBs that such pathology will not be observed in animal models. Thus, the 
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creation of IPSC lines may be necessary to fully delineate the causes of disease. The effects of 

genetic variation on susceptibility to and progression of disease will likely also yield many insights 

into neuronal physiology in the years ahead. Several such variants are currently known, and as with 

disease causing mutations, this number should grow rapidly in the years ahead.  

This work also underscores the vital role of RBPs in both neuronal health/homeostasis and 

neurodegeneration. Increasingly, the toxic effects of RBPs are linked to their association with 

various forms of protein-RNA granules, such as SGs or NSBs. Continued efforts towards 

understanding the function of these structures and how these may ultimately lead to maladaptive 

changes such as aggregation have implications for our understanding of both human disease and the 

normal regulation of gene expression. Ultimately, the presence of RBPs in protein-RNA complexes 

seems to center on the regulation of gene expression. A more thorough understanding of the 

mechanisms by which such structures, and RBPs themselves, regulate gene expression would also 

likely provide insight into the mechanisms of ALS/FTLD. Moreover, this would also provide new 

insights into developmental processes, for which several ALS-linked RBPs are implicated.  

Molecular profiling of disease, as presented here, is a valuable approach for defining disease 

on a biological basis, rather than a clinical one. As these results have illustrated, this has implications 

for practically all aspects of disease research, from the development of disease-specific biomarkers 

to the treatment of associated pathologies. As profiling approaches grow more sophisticated and 

comprehensive, so too will our ability to understand, treat, and prevent these debilitating disorders.  
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