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ABSTRACT 
 
Huntington’s Disease (HD) is a fatal, autosomal dominant, neurodegenerative disorder caused by 

a CAG repeat expansion in the huntingtin gene.  The disease is characterized by chorea, as well as 

psychiatric and cognitive symptoms.  At present, no treatment able to modify the disease 

progression is available.  HD is characterized by the death of medium striatal spiny neurons within 

the brain.  Melatonin is a hormone which acts as a neuroprotectant in a variety of 

neurodegenerative diseases.  While most endogenous melatonin is produced by the pineal gland 

and circulated in the bloodstream, melatonin is also present in neurons.  Here I use a novel method 

of detecting site specific melatonin synthesis to show melatonin is synthesized in neuronal 

mitochondria, where melatonin receptors are also localized.  Previous research shows the 

melatonin receptor MT1 to be the mechanism of melatonin’s neuroprotection in cell and mouse 

models of HD.  Here I measure the expression of MT1 in the R6/2 mouse model of HD to compare 

with literature reported decrease in expression, and test the effects of the R6/2 phenotype on 

overexpression of MT1 in a transgenic MT1 mouse model (NSE-MT1).  Further, I use the cross 

of the NSE-MT1 mouse model and R6/2 to assess the effects of overexpression of MT1 in 

increasing melatonin’s neuroprotective properties to ameliorate disease phenotypes including 
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caspase activation, neuronal density, rotarod behavioral testing, and survival.  Together, these data 

show overexpression of MT1 produces small increases in melatonin’s neuroprotective properties 

with regard to caspase activation, but this protective effect does not cause corresponding increases 

in behavioral deficits or survival.  Neuroprotection by melatonin is partially mediated by the MT1-

receptor in an HD mouse model, but may additionally function by alternate pathways or be 

modulated by regulatory mechanisms.  Understanding melatonin’s role as a neuroprotectant can 

help with the development of melatonergic therapeutics to treat HD and other neurodegenerative 

diseases to significantly impact public health outcomes. 
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1.0    INTRODUCTION 

1.1 HUNTINGTON’S DISEASE 

George Huntington first described a hereditary disease with a defining symptom of chorea in 1872 

when he observed a rare disease that occurred among select families of Long Island1.  Although 

Huntington’s disease (HD) had a distinct genetic signature, it was over a century later that a 

causative gene, originally called IT15 for its interesting transcript, was mapped to 4p16.32.  Shortly 

after, a single gene, huntingtin (HTT), was identified, with the disease causing element found to 

be an expanded trinucleotide repeat of CAG in the first exon of the gene3.  HTT is 180kb, with 67 

exons ranging in size from 48-341 base pairs in length4.  

HD occurs in approximately 5.7 per 100,000 individuals in North America, with an 

estimated 30,000 individuals with manifest HD in the United States.  The disease prevalence varies 

greatly by population, attributed to different haplotypes of average CAG tract size.  HD prevalence 

is 10 times greater in European populations compared to Asian and African populations5.  The 

disease is passed with an autosomal dominant pattern of inheritance. 

The CAG expansion in exon 1 and the correlations between repeat length and HD 

manifestation are extensively studied.  Individuals with fewer than 27 repeats have no disease risk.  

An intermediate range of 27-35 CAG repeats is not disease causing in individuals, but is considered 

a higher risk for transmitting a pathogenic repeat length to offspring6.  Individuals with 36 or more 

repeats are at risk for developing HD within their lifetime.  A very strong negative correlation 

exists between CAG repeat length and age of disease onset7-10.  While a longer repeat length 

correlates with an earlier age of onset, the type of symptoms and order of their manifestation does 



2 

not seem to be determined by repeat length9.  However, while individuals may appear similar in 

their symptoms and disease onset, those with longer repeats tend to have a faster disease 

progression8. 

While the correlation is strong, repeat length does not account for all variability in age of 

onset.  In an extensive study among Venezuelan HD populations, repeat length was determined to 

account for about 70% of variability in age of onset11, although other work estimates it closer to 

50%9.  Among the Venezuelan population, the remaining variability was estimated to be 40% due 

to other genes and 60% due to environmental factors.  Follow-up linkage analysis mapped specific 

loci for other genes, which may modify HTT, but individual genes have not been identified12. 

HD is subject to a strong anticipation effect.  The CAG repeats in the HTT gene are often 

unstable, and the repeat length can increase from parent to child.  It is via this anticipation that 

intermediate repeat length individuals can pass a pathogenic repeat length to their offspring.  This 

effect is more likely when the disease-causing allele is passed paternally.  One theory for this is 

that the frequent production of sperm allows for a greater chance of mitotic instability13.  Even 

within individuals, there can be instability and variation in CAG repeat length.  Some instability 

occurs within somatic tissues, including different neuronal cell types with a high amount of 

variability in striatal cells14.  However, because the disease causes neurodegeneration, it is not 

clear whether CAG variability in neuronal cells is due to mutant HTT causing selective cell death 

or if the neurodegeneration causes mitotic instability. 

HD symptoms in adults typically present around 35-45 years of age, although about 3-10% 

of cases are juvenile, occurring in individuals under 21 years of age, a subset with very high CAG 

repeat length15,16.  The hallmark symptom of the disease is chorea; brief, non-repetitive, non-

rhythmic jerking movements.  However, in a prodromal stage before chorea and other physical 
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symptoms manifest, individuals show a shift in mood and cognitive difficulties17.  Patients often 

under-notice or are unaware of these early symptoms, a characteristic which may itself be caused 

by the disease18.  Cognitive difficulties include problems with memory, visuospatial cognition, and 

ability to manipulate learned information.  In juvenile HD, cognitive symptoms can be seen via 

academic ability, difficulties reading, and regression of language skills15.  As many as half of all 

HD patients present with psychiatric symptoms prior to motor symptoms, although the type, 

severity, and onset of these psychiatric symptoms are not correlated with CAG repeat length19.  

Depression is common, and the suicide rate among HD patients is up to 10 times higher than that 

of the general population17; an estimated 30% of patients attempt suicide at least once after their 

diagnosis20.  Patients also frequently report problems with sleep patterns, both in adult and juvenile 

variants of the disease.  As the disease progresses, the more distinct physical symptoms manifest.  

Chorea is a common marker of disease onset, although it is not an indicator of disease severity.  

Dystonia, which causes involuntary muscle movements, is associated with earlier onset21.  Another 

symptom, motor impersistence, is characterized by an inability to sustain voluntary muscle 

movements; because its presence is not correlated with presence of chorea, motor impersistence 

may be a particularly consistent marker of disease progression.  HD patients show a clear decrease 

in body mass index (BMI), which is progressive over the course of the disease, and the severity of 

weight loss is correlated with CAG repeat length22-24.  Patients exhibit no endocrine or 

gastrointestinal abnormalities, and the change in BMI appears to be due to a hypermetabolic state, 

although the exact mechanism is unclear25.  In juvenile HD, seizures occur in 30-50% of cases15.  

While many symptoms are common within the disease, they do not establish a clear cause of death 

in HD patients.  Leading causes of death for HD are pneumonia, cardiovascular disease, wasting, 

and suicide26. 
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HD has clear neuropathology.  Patients have a dramatic decrease in brain weight, which 

can be as much as 30% smaller than a non-HD brain at autopsy.  This is due to atrophy and neuronal 

death, beginning in the caudate nucleus and putamen.  By late stage disease, up to 95% of neurons 

may be lost in the caudate nucleus27.  As the disease progresses, whole brain atrophy occurs, and 

this combination of neuronal death and atrophy can occur before clinical symptoms begin to 

manifest28.  Neuronal death begins selectively, primarily affecting medium spiny neurons in the 

caudate, with the earliest loss seen specifically in GABA/enkephalin neurons.  As the disease 

progresses, loss of cortical neurons is likely the cause of cognitive and behavioral symptoms, as 

well as affecting motor pathways resulting in chorea29. 

Recent research in HD shows the strong role apoptosis plays in neurodegeneration, and 

indicates this may be a mechanism for the cellular damage seen in the disease.  Programmed cell 

death is seen throughout neurodegenerative diseases including Alzheimer’s and ALS, as well as 

in stroke. 

In programmed cell death, a biochemical cascade is set off which includes the activation 

of caspases and results in fragmentation of the nucleus.  The cascade is a complex interplay of 

molecular components, and while the process is a natural function, a change in any one step can 

result in undesired cell death. 

Caspases, short for cysteine-dependent aspartate specific proteases, are primary factors in 

apoptosis.  Since the discovery of caspase 1 (or interleukin-1β-converting enzyme), a total of 11 

caspases are identified in humans.  These small molecules begin as procaspases, molecules with a 

recruitment domain on the N-terminal.  Variety in the recruitment domains inform where along 

the cell death cascade each caspase functions: upstream or downstream, initiating or executing.  

The N-terminal domain of most upstream molecules (procaspases 1, 2, 4, 5, 9, 11, 12, 13) is a 
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caspase-recruiting domain (CARD).  There are also two caspases (8 and 10) which have a death-

effector domain (DED) at the N-terminus.  These upstream caspases function to initiate the process 

of apoptosis. The other caspases (3, 6, 7, 14) have a short prodomain30.  These caspases function 

in actual executing of the cell by both destroying cellular structures and degrading DNA16. 

Apoptosis can occur through intrinsic mitochondrial mediated pathways or extrinsic death 

receptor pathways. While apoptosis has traditionally been described more broadly, more recent 

understanding has noted that this type of cell death is defined by the activation and involvement 

of caspases31.  Initial signaling to induce this caspase-mediated cell death pathway can come from 

increased levels of free radicals or intracellular calcium, or from pro-apoptotic signals from 

proteins of the BCL2 family.  Proteins within the BCL2 family can act as inhibitors or promoters 

of apoptosis32,33.  For example, upstream of the mitochondria, caspase 1 cleaves Bid, a protein of 

the Bcl-2 family 34.  After this cleavage, the truncated Bid protein (tBid) translocates to the 

mitochondrial membrane.  There, it interacts with BCL2 family proteins Bcl-XL and Bax, resulting 

in a release of cytochrome c from the mitochondria35. 

These signals lead to the release of apoptotic factors from the mitochondria, following both 

caspase dependent and caspase independent pathways.  Critically to the caspase mediated cell 

death, cytochrome c is released from the mitochondria.  Cytochrome c then binds Apaf-1 and pro-

caspase 9 to form the apoptosome and activate caspase 936.  Activated caspase 9 then cleaves and 

activates caspase 3, which proceeds to effect cell death. 

Cell death is an important regulatory element in biological systems. Disrupting the caspase 

mediated cell death pathway can have significant negative effects in a healthy organism.  For 

example, caspase 9 knockout mice show overgrowth and malformation of brain tissue, due to a 
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lack of apoptosis during development37.  Conversely, in many neurodegenerative diseases, caspase 

activity is increased and apoptosis function is altered38. 

Notably, in HD, several caspases are activated. In both mice and humans, caspase 1 showed 

increased activity beginning early in the disease progression, while inhibition of caspase 1 slows 

the disease progression in the R6/2 mouse39.  Similarly, caspase 3 activation is increased in both 

mouse models and human patients, and inhibition results in extended survival of the R6/2 model40.  

Additionally, caspase 9 activation and cytochrome c release are also increased in HD human and 

HD mouse model brains41.  The increased activity of caspase 3 and 9 occurs later in the disease 

progression, whereas increased caspase 1 activity is seen earlier39,41.  While the changes in caspase 

activity illustrate a key mechanism of HD pathology, they also provide an important mechanism 

for treatment as the restoration of their appropriate activity results in clear improvement to the 

disease phenotype. 

1.1.1 HD Mouse Models 

Due to its clear genetic cause, HD is particularly well suited for animal modeling.  There are 

several methods by which mouse models of HD are generated.  Models use either an insertion of 

human HTT or alter the mouse homolog, the Hdh gene42.  Knock-in of CAG repeats into the mouse 

Hdh gene include models such as HdhQ111, which uses the endogenous Hdh promoter.  These 

knock-in models are created by either expanded repeats in the mouse gene or, as is the case in the 

zQ175 model, with a chimeric exon 1 combining both human and mouse regions43.  Insertion of 

the human HTT is done with either a fragment or full length model44.  Full length models have the 

entirety of the human HTT gene inserted into the mouse genome using yeast or bacterial artificial 

chromosomes.  Common full length models include YAC128 and BacHD44.    Because the 
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pathogenic polygluatmine repeat in humans is in the first exon of the HTT gene, some models 

insert only the first exon of human HTT.  Common fragment models include R6/2 and N171-82Q.  

Promoters vary among models42.  While full length models are genetically more similar to human 

HD, the fragment models tend to produce a more robust observable phenotype45. 

Because of the variation in the gene, polyglutamine tract size, and promoter variations, it 

is difficult to compare studies between mouse models46.  Additionally, characterizing the modeled 

aspects of motor, cognitive, and psychiatric symptoms can be difficult in mice due to the way these 

overlap in their manifestation44.  Dysfunction in one aspect may be traced to several possible 

affected neuronal pathways.  However, despite these difficulties, HD model mice provide critical 

insight into the disease pathology, particularly useful for measuring therapeutic outcomes. 

One of the most common and best characterized of the HD mouse models is the R6/2 

mouse.  This first mouse model of HD was developed by Mangiarini, et al., in 1996 as one of 

several R6 mice, each with a different number of CAG repeats in the exon 1 insert.  All R6 mice 

use the human HTT promoter.  The R6 mice were developed on a hybrid background of F1 

offspring of CBA and C57/BL6 mice (B6CBAF1).  While attempts were made to maintain the line 

only mating with C57/BL6, poor litter sizes required that the R6 lines be bred on a background 

with more robust breeding, the B6CBA line.   Of the original lines, R6/1 and R6/2 continued to be 

used for follow-up experimentation, with R6/2 being the most common. 

R6/2 mice average around 144 CAG repeats47.  This polyglutamine track is considerable 

larger than even most juvenile HD patients and results in a very severe and rapid phenotype.  R6/2 

mice present with a progressive phenotype with onset around 7-8 weeks of age, which rapidly 

becomes more severe and ends in death around 13-14 weeks of age47. 
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Similar to patterns of symptoms in human disease, the mice exhibit motor symptoms 

including chorea-like movements, mild ataxia, resting tremor, and involuntary stereotypic 

movements such as stroking of the face and kicking of hindlimbs.  In tests of motor performance 

and grip strength, the R6/2 mice show progressive decline with age45.  The mice exhibit normal 

weight gain from weaning until disease onset when they plateau and then begin to lose weight.  

This weight loss is consistent in both male and female R6/2, although males exhibit more severe 

loss45.  Despite continuing to eat normally, R6/2 mice lose both body weight and muscle mass, 

similar to what is seen in human HD patients47.   While approximately 25% of R6/2 mice develop 

diabetes mellitus, this does not appear to affect survival, weight loss, or motor test performance48.   

As in juvenile HD, R6/2 mice occasionally have seizures, although these are not well 

characterized and the cause is unknown.  Rarely, mice die as a result of seizure (less than 2% of 

deaths)45.  No comprehensive work currently exists documenting cause of death in R6/2 mice46.  

The second most common cause of death in HD patients is cardiovascular defects26,49, and R6/2 

mice show cardiac dysfunction as well.  Reduced cardiac output seen at 8 weeks and by 12 weeks, 

heart weight is decreased49.  This may be a significant contributing factor to R6/2 death, and is 

currently the only potential cause that has been investigated.  While cause of death is not well 

understood, survival is consistently used as a reliable indicator of neuroprotection in therapeutic 

studies45. 

R6/2 mice model several key pathological features which are believed to individually or 

collectively influence HD in humans, including protein aggregates, mitochondrial dysfunction, 

synaptic dysfunction, and cell death and autophagy46.  The brains of R6/2 mice are significantly 

smaller than those of wild type littermates, with approximately 19% reduction seen by late stage 

disease.  At both 60 and 90 days of age, significant loss is seen specifically in striatal neurons; this 
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loss is believed to account for a large portion of overall reduction in brain mass45.  R6/2 mice also 

are one of the few HD models which have intranuclear inclusions; these protein aggregates are 

most prominent in striatal neurons with 98% of these cells affected by 12 weeks46. 

1.2 MELATONIN & SIGNALING 

1.2.1 Melatonin 

N-acetyl-5-methoxytryptamine, better known as melatonin, is a hormone found in mammals 

synthesized from the amino acid tryptophan.  Melatonin was first discovered and isolated in 

196050, and later found to play roles in circadian rhythm and antixodiation51,52.  Melatonin has 

multiple functions, acting both as an antioxidant and through receptor-mediated signaling. 

Melatonin is primarily known for being synthesized in the pineal gland, which cyclically 

regulates serum melatonin levels according to a light/dark pattern 53.  However, intracellular levels 

of melatonin do not follow this same circadian pattern 54.  The highest concentration of extrapineal 

melatonin in the body is found in the brain, and within the cell it is highest in the mitochondria 

54,55.  While the majority of melatonin is synthesized in the pineal gland, early research estimated 

about 20% of melatonin is synthesized extrapineally 56.  Recent work in the Friedlander laboratory 

found that this extrapineal melatonin is synthesized in the mitochondria [manuscript in 

preparation].  Cultured neural stem cells have melatonin present, and the amount of melatonin 

increases with differentiation, supporting the hypothesis that neuronal cells may produce 

melatonin 57. 
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In rats and humans, levels of melatonin decrease with age.  In humans, the serum melatonin 

levels peak during childhood, and a 3.5 fold reduction was seen between age groups 35-50 years 

and 70-90 years of age 58.  Beyond this normal physiologic reduction with age, plasma melatonin 

levels in HD patients are sharply reduced and progressively decreases with disease 59,60.  This 

corresponds with sleep disturbances noted in 60-80% of HD patients 61. 

In mouse models, melatonin production can vary.  Pineal melatonin production follows 

circadian cycling in CBA and C3H mouse strains 62.  C57Bl/6 mice are enzymatically 

compromised in their ability to synthesize melatonin 63, but still express low levels of serum 

melatonin 62.  The mechanism for this contradiction remains unclear. 

The HD model R6/2 mice, which are bred on the B6CBA background, an F1 hybrid of 

CBA and C57Bl/6, have progressive disturbed circadian patterns, sometimes showing complete 

sleep-wake cycle reversal at late stages of disease 64.  While plasma melatonin has been shown to 

be altered in these mouse strains, intraneuronal melatonin has never been measured. 

1.2.2 MT1 receptors 

Melatonin signaling in mammals is mediated by two melatonin receptors, MT1 (officially 

MTNR1A, previously Mel1A) and MT2 (officially MTNR1B, previously Mel1B).  The melatonin 

receptors are their own subgroup of G-protein coupled receptors.  They consist of 7 transmembrane 

alpha helical segments transversing the membrane.  Both receptors are found on the cell membrane 

65 , and recent work shows they are also localized to mitochondrial membrane65.  The human MT1 

gene is mapped to 4q35.1 66 and the mouse Mt1 is located on chromosome 8 67. 

MT1 and MT2 are high affinity binding receptors, with MT1 showing a stronger affinity 

to 125I-melatonin than MT268.  Melatonin binds the receptor, resulting in a conformational change 
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in G-alpha-I.  This change results in inhibition of cAMP formation and PKA activity, as well as a 

decrease in CREB phosphorylation69-71.  Additionally, through coupling with other G proteins, 

activation of MT1 results in activations of many other G proteins. 

G protein coupled receptors were previously believed to function as monomers, but more 

recent work shows not only do they form dimers, but this may be the primary or only form of 

functioning72.  However, the biological significance of these dimers is unclear.  MT1 and MT2 

form both hetero- and homodimers.  Significantly, GPR50 also interacts with these proteins.  

GPR50 is a G protein of unknown function which is considered a “melatonin-related receptor”73.  

GPR50 is mapped to the X chromosome, and shares 45% amino acid homology with MTNR1A 

and MTNR1B74,75.  Notably, GPR50 forms heterodimers with both MT1 and MT2.  This 

dimerization significantly decreases the ability of MT1 to bind melatonin76.  The exact mechanism 

of this inhibition is unknown, but may be due to GPR50 preventing critical interactions of MT1 

and other proteins, including recruitment proteins. 

Expression of pineal melatonin receptors reduces 1.75 fold with human aging; a fold 

change is seen in early stage Alzheimer’s disease, with a progressive decrease through late stage 

of the disease77.  Similarly, a 50% reduction in pineal melatonin receptors is seen in Parkinson’s 

disease78.  Extrapineal melatonin receptor expression also shows a decrease with aging in rats 79.  

In R6/2 mice, expression of MT1 but not MT2 is reduced with disease progression; this same 

pattern is also seen in post-mortem human HD brains65. 

In C3H mice, Mt1 mRNA and protein levels show daily fluctuations, high during the day 

and low at night, opposite the pattern of melatonin.  Mt1 mRNA in these mice is expressed in the 

brain in striatum, substantia nigra, and ventral tegmentum 80. 
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Therapeutic use of melatonin is considered very safe, including for long term use and 

during pregnancy 57.  Both melatonin and melatonin receptor agonists are available currently, with 

few known side effects.  Agomelatine, a receptor agonist, is approved for treatment of depression 

in Europe; ramelteon, another receptor agonist, is approved in the U.S. for treatment of insomnia.  

Over-the-counter melatonin is available as a supplement in the U.S., and an extended release 

melatonin formulation, Circadin, is available in Europe 81.  Exogenously administered melatonin 

has a half-life of about 30 minutes 54.  

1.2.3 Melatonin receptor mice 

Mouse models are used extensively to study various roles of the melatonin receptors.  MT1 

knockout mice have decreased REM sleep time, with MT1 and MT2 playing complementary but 

distinct functions in sleep cycles82.  Another knockout model showed a loss of blood glucose 

cycling rhythm, indicating the time dependent regulatory functions of MT1 extend beyond sleep83.  

Knockout of MT1 also results in an increase in intraocular pressure, death of retinal ganglion cells 

and increased reduction of photoreceptors with age84,85.  Additionally, a knockout MT1 mouse 

model showed sensorimotor defects and an increase in depression, indicating MT1 plays a 

significant role in behavioral outcomes86.  While studies with knockout MT1 mice have been 

performed in a variety of contexts, no previous studies have been done overexpressing the MT1 

gene. 

The role of MT1 in neuroprotection is subject to contradictory evidence.  A study using 

MT1/MT2 double knockout mice treated with melatonin showed no protective effect on ischemic 

brain injury, suggesting the receptors were not the mechanism for melatonin’s neuroprotection87.  

However, work in the Friedlander laboratory found melatonin’s mechanism to specifically be 
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through MT1 in vitro65.  To address these contradictions and clarify MT1’s role in neuroprotection, 

more data is needed. 

Therefore, in order to better understand the role of MT1 in neuroprotection, the Friedlander 

laboratory developed a transgenic mouse to overexpress MT1.  The transgene consists of a human 

MT1 receptor gene, which is attached to a FLAG tag and EGFP sequence at the 3’ end and 

controlled by a neuron-specific enolase promoter (NSE) (see figure 1).  The NSE promoter 

expresses the transgene in primarily neurons; the promoter can also express sporadically in testes 

and kidneys88,89. 

Two founder mice were created for this transgenic model, labeled 2604 and 2606, on a 

B6CBA background. Both lines express the transgenic NSE-MT1 mRNA [personal 

communication, Yalikun Suofu, University of Pittsburgh].  My work uses the 2604 line, which is 

a more prolific breeder. 

Characterization of the MT1 transgenic mouse is ongoing.  Both body weight and brain 

weight are comparable to wild type B6CBA mice.  Their brain volume is the same as that of wild 

type mice and they show no changes in number of cortical or motor neurons [personal 

communication, Amanda Mihalik, University of Pittsburgh].  NSE-MT1 mice kept for breeding 

had a lifespan of 18-24 months, similar to that expected of wild type B6CBA.  

NSE Human Flag GFP 
MT1 

Figure 1. Transgenic NSE-MT1 mouse construct 
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The NSE-MT1 mouse was developed on the B6CBA background specifically so that it 

could be crossed with the R6/2 mouse for HD research.  The use of both the R6/2 and NSE-MT1 

mouse models allows for an excellent method to study the role melatonin and melatonin receptors 

play in ameliorating the pathology of HD. 

1.3 PREVIOUS STUDIES 

Apoptosis and mitochondrial dysfunction are important components of neuronal death in 

neurodegenerative diseases.  As a result, they provide a promising target for therapeutic drugs.  In 

order to screen for possible therapeutic drugs, the Friedlander laboratory used the 

Neurodegeneration Drug Screening Consortium of 1040 compounds, a library of drugs put 

together by NINDS90.  All of the compounds within the library are already FDA approved, making 

them ideal for therapeutic repurposing.  These drugs were initially screened using isolated 

mitochondria, creating a cell-free method of screening.  Follow-up screening was conducted in 

whole cell models. 

The screened compounds were narrowed down by several criteria: ability to inhibit 

cytochrome c release, ability to inhibit cell death, and limited cell toxicity90.  They were compared 

against the antibiotic minocycline.  Minocycline inhibits the release of cytochrome c and has a 

neuroprotective effect in models of Huntington’s, Parkinson’s, ALS, and stroke91.  From this 

screening, sixteen compounds, including melatonin, were selected for further testing92. 

Using primary cortical neurons (PCNs) exposed to oxygen glucose deprivation (OGD), 

which induces the release of cytochrome c and the activation of caspase-3, the Friedlander group 

quantified the protective effects of melatonin92.  They then compared the protective effect against 
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H2O2 and NMDA induced cell death.  In all of these cases, melatonin was effective in protecting 

against cell death92.  It reduced overall death, as well as reduced apoptotic specific mechanisms of 

nuclear fragmentation and chromatin condensation. 

To further understand the mechanisms of this protection, the researchers looked 

specifically at the release of cytochrome c and AIF from the mitochondria.  Melatonin was able to 

block the release of these molecules, as well as inhibit the subsequent activation of caspase-392.  

Melatonin was also able to inhibit the release and activation of caspase-192. 

Additionally, melatonin was able to inhibit the loss of mitochondrial membrane potential 

resulting from OGD in PCNs92.  This indicates that the mechanism involved is not just inhibiting 

the release of molecules from the mitochondria, but also functions by maintaining normal cellular 

function. 

However, in studying mitochondrial permeability, it was found that melatonin does not 

reduce or inhibit this.  It also did not have an effect on mitochondrial membrane potential in 

isolated mitochondria. 

The Friedlander laboratory previously investigated the role melatonin receptors play in HD 

models of neurodegeneration.  Cytochrome c colocalization was looked at in cell cultures of striatal 

cells ST14A with mutant HTT.  When the cells were put into nonpermissive conditions (a shift 

from 33°C to 37°C), they released cytochrome c from the mitochondria.  When these cells were 

treated with melatonin, the release of cytochrome c was inhibited.  Melatonin also was able to 

partly inhibit the release of SMAC and AIF65. 

The Friedlander researchers further investigated the role melatonin receptors play in 

neuroapoptosis.  Luzindole is a melatonin receptor antagonist and 2-iodomelatonin is an agonist.  

Using these molecules, they were able to determine that the neuroprotective effect of melatonin 
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requires binding to the melatonin receptor65.  Additionally, knockdown of MT1 resulted in 

increased cell death; conversely, an increase in MT1 in cell models resulted in neuroprotection65. 

Progressing to in vivo models of HD, the research group found that administration of 

exogenous melatonin extended survival, delayed disease onset, and slowed disease progression 

within the R6/2 mouse model of HD.  Additionally, it was found that the levels of MT1 are 

decreased in the brains of these mice, although this depletion can be ameliorated with the addition 

of exogenous melatonin65. 

1.4 CURRENT RESEARCH AND EXPERIMENTAL RATIONALE 

Previous research shows a complex interplay between mitochondria, melatonin, and MT1 as they 

contribute to neuroprotection.  My work aims to further understand the interactions of melatonin 

and MT1 and how this can be used to understand neuroprotection in HD. 

Using the Friedlander generated transgenic MT1 overexpressing mouse and the well-

known R6/2 mouse model, I determined whether increasing melatonin signaling via the MT1 

receptor would further ameliorate symptoms and pathology of the HD model. 

The R6/2 mouse’s modeling of HD is characterized in several ways and my work utilizes 

each of these methods in order to determine the manner and extent of MT1 overexpression effects.  

To test the hypothesis, my work follows these aims: 

1. To determine whether melatonin is synthesized in neuronal mitochondria 

Previous research shows MT1 to be localized to the mitochondria65 and recent data 

demonstrate the neuronal mitochondria contain the terminal two enzymes of the 

melatonin synthesis pathway [manuscript in preparation].  While most plasma melatonin 
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is known to be synthesized in the pineal gland, the putative synthesis of neuronal 

melatonin in mitochondria has not been demonstrated. 

2. To determine the effects of mutant huntingtin on endogenous and transgenic MT1 

MT1 is localized to the mitochondria and previous work by the Friedlander group shows 

that mutant HTT negatively impacts mitochondrial function93.  Expression of MT1 is 

decreased in mutant-HTT cell models; treatment with melatonin significantly ameliorates 

the loss of MT1 protein92.  Increased MT1 has a neuroprotective effect in cell models65.  

Adequate presence of MT1 is necessary for the protective effect of melatonin on the HD 

mouse65.  Here I aim to test whether the HD phenotype specifically affects the expression 

of MT1, both endogenous and transgenic. 

3. To determine the neuroprotective effects of melatonin via the MT1 receptor in an HD 

mouse model 

The previous studies done by the Friedlander group demonstrated a neuroprotective 

effect of melatonin both in vitro and in vivo.  Further, they illustrated that this effect was 

mediated in vitro by MT1.  This study aims to further understand how increasing 

melatonin signaling via MT1 may further ameliorate symptoms and pathology of the HD 

model. 

1.5 PUBLIC HEALTH SIGNIFICANCE 

Huntington’s disease is a devastating and fatal neurodegenerative disease for which there are 

currently no available treatments.  HD patients have a variety of options to treat individual 

symptoms, but no drug is currently available to treat the disease itself 94,95.  An estimated 30,000 
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individuals in the U.S. are living with HD5.  Clinical genetic testing is available which allows an 

individual to know their genetic status, but only about 10-20% of those at risk get the testing 

done96.  Those who test positive have no options for treating the disease they learn is inevitable for 

them. 

While the cause of the disease, a CAG expansion in the HTT gene, has been known for 

over 20 years, many of the mechanisms of the disease itself remain unclear3.  It is important to 

investigate both potential treatments for the disease as well as understand the ways in which these 

may modify the disease. 

Melatonin has been shown to improve outcomes in neurodegenerative diseases such as 

stroke and ALS.  In an HD mouse model, melatonin has been shown to delay disease onset, slow 

progression, and extend survival65.  Melatonin as a therapeutic agent is safe for long term use and 

shows very few side effects 57,81.  Melatonin and melatonin agonists have been approved in both 

U.S. and European markets for treatment of sleep disorders and depression81. 

While the therapeutic use of melatonin has been studied across major neurodegenerative 

disorders, the mechanism of its neuroprotection remains unknown.  Understanding mechanism of 

melatonin can help development of melatonergic drugs in treatment of Huntington’s disease and 

other neurodegenerative diseases. 
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2.0    MELATONIN SYNTHESIS 

2.1 INTRODUCTION 

While most mitochondria is produced in the pineal gland, about 20% is produced extrapineally56.  

The synthesis and location of this extrapineal melatonin has not been extensively studied.  

However, recent research shows that in brain lysates, there is a particularly high concentration of 

melatonin compared to other tissues65.  Additionally, at a cellular level, there is a high 

concentration of melatonin the mitochondria97.  Melatonin has been shown to protect neurons from 

cell death in vitro; additionally, exogenous melatonin is neuroprotective in several in vivo models 

of neurodegeration including ischemic stroke, Parkinson’s disease, ALS, and HD90,92,98-100.  

Neuronal death in HD is believed to be mitochondrially mediated90.  Before further investigating 

the role of mitochondria in the neuroprotective effects of melatonin, it was therefore important to 

understand how melatonin and mitochondria relate. 

Melatonin is synthesized from serotonin, via a multi-step enzymatic process.  Serotonin is 

first converted to N-acetyl serotonin by the enzyme aralkylamine N-acetyltransferase (AANAT).  

Next, N-acetyl serotonin is synthesized into melatonin via the enzyme acetylserotonin O-

methyltransferase (ASMT, also known as HIOMT, hydroxyindole O-methyltranferase)101.  In 

rodents, non-human primates, and humans, these melatonin synthesis enzymes follow a cyclical 

pattern of expression in the pineal gland, with AANAT being the rate-limiting enzyme which 

controls this timed cycle102.  Research in the Friedlander laboratory identified these two enzymes 

are localized to neuronal mitochondria [manuscript in preparation].  This mitochondrial 
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localization was seen across mouse, primate, and human brain samples.  Notably, these enzymes 

do not appear to be light sensitive or cyclical in their expression.   

With melatonin and its synthesizing enzymes localized to the mitochondria along with 

MT1, it was important to test whether these enzymes functionally produced melatonin within the 

mitochondria where it may directly bind the melatonin receptors.  Melatonin was localized to the 

mitochondria via ELISA, but this method could not determine whether the melatonin was 

produced elsewhere and imported or synthesized in the mitochondria itself.  To address this 

question, I collaborated with the University of Pittsburgh Small Molecule Biomarker Core to 

develop a novel method for measuring melatonin synthesis within the mitochondria.  Here I use 

qualitative mass spectrometry to detect the synthesis of intermediate N-acetyl serotonin as well as 

the final melatonin product in isolated mouse brain mitochondria. 

2.2 METHODS 

For each repeat, 5 wild type mouse forebrains were pooled for mitochondrial isolation.  The tissue 

was homogenized with a Teflon homogenizer and spun for 3 minutes at 1300g at 4°C.  The pellet 

was resuspended and spun at the same conditions.  The supernatant of each spin was combined 

and spun for 10 minutes at 21,000g at 4°C and used to isolate synaptosomal and non-synatosomal 

mitochondria according to published methods93,103,104. 

Mitochondria (synaptosomal and non-synaptosomal) (1μg/μL) were incubated in a 

respiration buffer (5 mM HEPES-Tris, 125 mM KCl, 2 mM Pi, 3 μM EDTA, 1 mM MgCl2, 1 mM 

ATP, 5 mM glutamate/malate, 5mM succinate, 10 μM deprenyl) with 50μm d4-serotonin for 30 

minutes at room temperature, then quenched with sodium hydroxide.  For the quantitative 
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experiments, 1ng/ml agomelatine (Sigma A1362), an MT1 agonist with a similar structure to 

melatonin, was added to act as an internal standard.  The solution was extracted into chloroform 

at 5x reaction volume; samples were vortexed to maximize extraction efficiency, centrifuged 

(1000g for 5 minutes), and the resulting non-organic layer discarded. 

Via a collaboration with the laboratory of Samuel Poloyac through the Small Molecule 

Biomarker Core, the samples were analyzed with ultra performance liquid chromatography mass 

spectrometry (Thermo Fisher TSQ Quantum Ultra) for the presence or absence of deuterated 

melatonin.  Transitions used for analysis are 237 → 178 for d4 melatonin and 181 → 164 for d4 

serotonin.  Neat solutions (20 μM) of d4-serotonin, d4-melatonin (66521-38-8, AlsaChim), and n-

acetylserotonin (1210-83-9, Sigma) were run to verify retention times and optimize detection. 

Mitochondrial samples were incubated with either respiration buffer alone or with deuterated 

serotonin.  Respiration buffer with and without deuterated serotonin was also run to verify that 

deuterated serotonin did not spontaneously generate deuterated melatonin in the absence of cellular 

material. 

The mass spectrometry output data were assessed for presence or absence of deuterated N-

acetyl serotonin and deuterated melatonin. 

2.3 RESULTS 

To determine whether melatonin was synthesized in neuronal mitochondria, I incubated 

mitochondria (synaptosomal and non-synaptosomal) with deuterated serotonin.  Because the 

deuterium labeled region of the serotonin molecule is not modified in the process of synthesizing 

melatonin from serotonin, any resulting deuterated melatonin indicated the ability of the isolated
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mitochondria to perform this synthesis.  Indeed, in wild type mouse mitochondrial samples, the 

d4-melatonin metabolite as well as the intermediate molecule, d4-n-acetly-serotonin were detected 

from samples incubated with d4-serotonin (figure 2).  Demonstrating that this outcome is not the 

result of natural degradation of serotonin, samples with d4-serotonin alone, without the presence 

of mitochondria, showed no resulting d4-melatonin. 

The results of the qualitative mass spectrometry provided a solid result indicating that 

melatonin is synthesized in mitochondria.  The enzymes for this synthesis are localized to the 

mitochondria and are functional.   

Figure 2. Melatonin synthesized from serotonin in neuronal mitochondria detected by mass spectrometry. 
Representative chromatograms showing metabolites extracted from mitochondria incubated in control buffer 
(#1,3,5) or with deuterated (d4) serotonin (#2,4,6). Samples incubated with buffer alone show no presence of d4-
labeled metabolites (#1,3,5). Samples incubated with d4-serotonin show detected levels of unprocessed d4-serotonin 
(#2, retention time 1.65 minutes), d4-n-acetyl-serotonin (#4, retention time 2.28 minutes), and d4-melatonin (#6, 
retention time 4.45 minutes). This experiment was repeated three times and this figure is a representative result. For 
1a-d, brain mitochondria were isolated from four mice per experiment, N=3. 
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2.4 DISCUSSION 

Melatonin protects neurons from cell death in HD through a mitochondrially-mediated 

mechanism.  Preliminary data from others in the Friedlander laboratory indicated the enzymes 

needed to synthesize melatonin from serotonin were present in the mitochondria.  With this in 

mind, my work aimed to determine whether neuronal mitochondria synthesized melatonin, where 

it could directly modulate cell death pathways.  Here I utilizes a novel method of detecting 

melatonin synthesis to demonstrate the AANAT and ASMT enzymes localized to the mitochondria 

are functional and melatonin can be fully synthesized from serotonin in mitochondria. The data 

establishes the first known autocrine signaling loop within the mitochondria.  Neuronal melatonin 

is synthesized in the mitochondria, where it can immediately bind to its receptors without transport 

or release from the cell.  These data also illustrate the central role of mitochondria in melatonin 

signaling, creating an important foundation for understanding melatonin receptor-mediated 

neuroprotection. 
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3.0    MT1 EXPRESSION 

3.1 INTRODUCTION 

Expression of human pineal melatonin receptors has been shown to decline with age, as well as in 

Parkinson’s disease and Alzheimer’s disease 77,78.  Extrapineal melatonin receptor expression has 

also been shown to decrease with aging in rats 79.  In the brains of R6/2 mice, MT1 is decreased 

as compared to wild type, although this depletion can be rescued by treatment with exogenous 

melatonin65.  This rescue capability suggests the presence of a positive feedback mechanism with 

melatonin levels having a positive correlation with MT1 levels.  It is also clear that the HD disease 

phenotype critically interacts with MT1 expression.  My aim here is to characterize how the 

phenotype of standard R6/2 mice affects the expression of both endogenous and transgenic MT1.  

Previous research on MT1 expression in R6/2 mice was done on a unique version of the model 

with a longer CAG repeat length, which lead to atypical disease progression; I sought to replicate 

the reduction of MT1 in the traditional Jax strain of R6/2, with CAG length consistent with the 

original publication of the strain.  Furthermore, I sought to determine whether any reduction in 

endogenous MT1 expression would be mirrored in expression of the transgenic MT1.  To this end, 

I examined the expression of endogenous and transgenic MT1 in wild type, R6/2, and NSE-MT1-

R6/2 mice in late stage disease to determine effects of the R6/2 phenotype on both types of MT1 

expression. 
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3.2 METHODS 

The University of Pittsburgh Institutional Animal Care and Use Committee approved all 

experimental procedures, protocol #15015004.  All procedures conformed to the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. 

For both mRNA and protein studies of endogenous MT1 expression, wild type and R6/2 

mice were used.  Each sample consists of 5 mice brains pooled.  The resulting material was then 

divided between use for RNA isolation, whole brain protein collection, and isolation of and protein 

collection from synatosomal and non-synaptosomal mitochondria.  Mice were studied at 9 and 12 

weeks of age (mid and late state disease) with an n=3 for each time point (a total of 15 mice per 

age per genotype). 

For study of transgenic MT1 expression, NSE-MT1 and NSE-MT1-R6/2 mice were used.  

Experimental mice where offspring from a cross of female NSE-MT1 transgenic mice [B6CBA-

Tg(NSE-MTNR1A)/Rmf(Pitt)] and R6/2 males [B6CBA-Tg(HDexon1)62Gpb/3J (Jackson 

Laboratory)].  All mice were bred in triads, which increased rates of pregnancy resulting from each 

R6/2 breeder.  CAG length of R6/2 mice was verified for each breeder and animals outside of the 

accepted 150-160 repeat range were excluded from breeding and experiments.  Wild type 

littermates were used during optimization and verification.  Individual mice were used for n=3 per 

genotype, with brains collected at 12 weeks of age. 

3.2.1 Expression at mRNA level 

Whole brain was homogenized in mitochondrial isolation buffer at 4°C.  Total RNA was isolated 

by taking 25μL of this whole brain homogenate for lysis in 500μL TRIzol reagent [Life 
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Technologies, 15596-026] and incubated 5 minutes at room temperature.  100μL of chloroform 

was added, tubes shaken and incubated at room temperature for 3 minutes.  Samples were at 

12,000g for 15 minutes at 4°C and aqueous phase containing RNA transferred.  RNA was 

precipitated with 500μL isopropanol per sample and incubated at room temperature for 10 minutes, 

then centrifuged at 12,000g for 10 minutes at 4°C.  Supernatant was removed and RNA washed in 

75% ethanol before being resuspended in nuclease free water.  RNA was treated with a DNase kit 

[Invitrogen, 18068-015].  After DNase treatment, RNA was purified by incubation with 0.1 

volumes 3M sodium acetate and 3 volumes cold 100% ethanol and incubated overnight at -20°C, 

followed by 30 minute centrifugation at 4°C at 13,000 rpm and two washes with 75% ethanol, and 

finally resuspended in nuclease free water.  RNA quality and quantity were determined using the 

Take3 Micro-volume plate system on Biotek Synergy plate reader.  All isolated mRNA had a 

260/280 ratio of at least 1.8.  Generation of cDNA was using High-Capacity cDNA Reverse 

Transcription Kit [Applied Biosystems, 4368814] following manufacturer instructions.  

QPCR for wild type and R6/2 samples was run using primers for endogenous MT1 mRNA 

[Qiagen PPH02532A-200] using Power SYBR Green PCR Master Mix (Applied Biosystems).  

Reaction volume totaled 15ul and all reactions were run in triplicate.  Reaction mix and cycle 

conditions followed manufacturer protocol. 

QPCR to compare MT1 and MT1-R6/2 samples was run using primers designed to 

specifically detect the transgene.  The forward primer site is within the MT1 portion of the gene 

while the reverse primer site is within the GFP sequence [Forward: 

TGGCCGATAGGGTTAAATGGA, reverse: ACCTTGTCGTCATCGTCTTTG].  These samples 

were run with conditions: 95°C for 5 minutes, followed by 40 cycles of 30 seconds at 95°C and 30 

seconds at 62°C. 
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For all sets, RN18S (housekeeping) was used for normalizing results [forward: 

CGTAGTTCCGACCATAAACGATG, reverse: GCTATCAATCTGTCAATCCTGTCC]. 

Results were read using BioRad CFX Manager software and analyzed by computing 

relating MT1 expression normalized to RN18S according to protocol from Livak and 

Schmittgen105.  NSE-MT1 ΔΔct values were divided by WT to determine fold change; fold 

changes of each sample set were averaged and transformed by normalizing WT to 1.  The same 

process was applied to determine normalized fold changes for NSE-MT1-R6/2 compared to NSE-

MT1. 

3.2.2 Expression at protein level 

The protein levels of endogenous MT1 were assessed in WT vs R6/2 mouse brains. Although the 

cause is unclear, the transgenic MT1 protein in the 2604 MT1 mouse line cannot be detected; for 

the purposes of this dissertation only endogenous MT1 was quantified at the protein level. 

Protein levels of MT1 were assessed in whole brain homogenate and mitochondria 

(nonsynaptsomal and synaptosomal).  Mitochondria were isolated as described in section 2 of this 

dissertation. Whole brain homogenate and isolated mitochondria were incubated with RIPA buffer 

at 5x volume on ice for 30 minutes to lyse tissue. Samples were mixed with 4X SDS sample buffer 

[Boston Bioproducts, BP-110NR] and denatured at 55°C for 15 minutes. All samples were run on 

SDS-PAGE, using a 10% acrylamide gel, then transferred to PVDF membrane [Sigma, 

Immobilon-FL, 05317].  Membrane was blocked using Odyssey blocking buffer [Li-Cor, P/N 

927], incubated with MT1 antibody [Thermo Scientific, PA519109, 1:1,000] and for whole brain 

samples, β-actin antibody [Sigma, A5441, 1:10,000] or for mitochondrial samples, Cox I antibody 

[Santa Cruz, sc-19998, 1:1,000] at 4°C overnight, washed with PBST, and incubated with 
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appropriate secondary antibodies [Li-Cor IRDye, 1:30,000].  Blots were scanned on Odyssey CLx 

[Li-Cor] and band intensity quantified using Image Studio software [Li-Cor].  Intensity of each 

MT1 band was normalized by the intensity of respective loading control bands (β-actin for whole 

brain samples, Cox I for mitochondrial samples).  Each R6/2 sample was compared against its 

respective WT sample from the same isolation and preparation to determine fold change.  Fold 

changes for n=3 were averaged to determine final compared differences. 

3.2.3 Statistical analysis 

Analysis of each protein and mRNA pair of values was done using paired t-tests. 

3.3 RESULTS 

 

Figure 3. Endogenous MT1 mRNA expression significantly reduced in R6/2 mice at mid and late stage 
disease.  
Changes in relative expression of endogenous MT1 mRNA shown as the fold change of ΔΔct for WT and R6/2 mice 
at both 9 weeks (left) and 12 weeks (right) of age.  Three biological repeats were used consisting of 5 pooled brains 
each, with each of the three samples run in triplicate.  Expression was normalized by housekeeping gene RN18S, 
then fold differences calculated.  Significant differences at both timepoints determined by paired t-test. 
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Figure 4. Changes in endogenous MT1 protein expression seen in whole brain and mitochondria in R6/2 at 
mid and late stage disease.  
Quantified changes in MT1 protein expression in whole brain and non-synaptosomal (NS) and synaptosonal (Syn) 
mitochondria from WT and R6/2 mice at 9 week (left) and 12 week (right) timepoints.  Three repeats of each sample 
were used, with each sample consisting of 5 pooled brains.  Blots were probed with anti-MT1 antibody and 
appropriate loading control (Β-actin for whole brain samples, Cox I for mitochondrial samples), with blot examples 
shown.  No significant differences were detected at 9 weeks, but whole brain and non-synaptosomal mitochondria 
expression were significantly reduced at 12 weeks of age. 
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Figure 5. Expression of transgenic NSE-MT1 mRNA in NSE-MT1 and NSE-MT1-R6/2 mice at 12 weeks of 
age.   
Three biological repeats were used with each sample run in triplicate.  Expression was normalized by housekeeping 
gene RN18S, then fold differences calculated.  Unpaired t-test showed no significant difference between the two 
(p=0.7564). 

At 9 weeks of age, a reduction in MT1 expression can be seen at the mRNA level, with 

approximately a 40 fold decrease (p=0.046).  At 9 weeks this change in the raw data is not 

significant at the protein level; additionally there are no significant changes in the mitochondrial 

protein level (figure 4).  At 12 weeks of age, mRNA is significantly reduced even further (60% 

decrease, p=0.0004) (figure 3).  Protein is also reduced in 12 week whole brain and non-

synaptosomal mitochondria.  This reduction is not seen in synaptosomal mitochondria (figure 4). 

In mice with transgenic MT1, there is no significant difference in the NSE-MT1 mRNA 

expression with the addition of the R6/2 genotype (p=0.7564) (figure 5). 
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3.4 DISCUSSION 

Previous research within the Friedlander group showed a decrease in MT1 protein expression in 

both whole brain and mitochondria in the extended CAG repeat R6/2 model.  Here, I demonstrated 

that a similar reduction in standard Jax R6/2 mice.  Additionally, I characterized the expression at 

an mRNA level.  The mRNA is decreased at both 9 weeks (mid-stage disease) and 12 weeks (late-

stage disease).  While the protein in mitochondria appears slightly decreased in R6/2 across whole 

brain and mitochondria at 9 weeks of age, this change is not significant until 12 weeks of age, 

where there is a significant decrease in both whole brain and non-synaptosomal mitochondrial 

protein.  Interestingly, I detected no reduction of MT1 in synaptosomal mitochondria. 

Synaptosomal mitochondria are isolated from the active synaptic terminal of neurons.  These data 

may suggest the reduction in MT1 does not severely impact the active functional aspect of neurons; 

however, neuronal death can still be impacted by MT1 reduction elsewhere and receptor-mediated 

melatonin neuroprotection may function there.  Alternatively, reduction of MT1 may increase 

synaptic neuron death or result in die-back of processes reducing the number of synapses overall  

even in the presence of surviving neuron cell bodies, resulting in elimination of synaptosomal 

mitochondria from the sample collected.  Another possible explanation for the unchanged MT1 

expression in synaptosomal mitochondria is the process of isolating these mitochondria may enrich 

healthy mitochondria, resulting in higher detection of MT1. 

These data both verify the effects of the HD phenoytype on MT1 expression and, with the 

addition of the mRNA expression, provide insight that the effect takes place at or before the 

transcriptional level.  No microRNAs known to interact with MT1 are upregulated in HD models, 

but there are many possible other mechanisms which may influence mRNA expression including 

promoter changes or transcriptional dysregulation. 
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The intention of the transgenic MT1 model for this project is to determine if MT1 reduction 

can rescue the R6/2 phenotype.  Therefore it was critical to determine whether the R6/2 phenotype 

affected the expression of transgenic MT1 as well.  With this data, I demonstrate that the R6/2 

phenotype does not appear to affect transgenic MT1 mRNA expressions because the expression in 

the NSE-MT1 mouse alone equals the expression in the NSE-MT1-R6/2 mouse. 

This provides a solid basis for using the NSE-MT1 mouse model crossed with the R6/2 

mouse to determine whether overexpression of MT1 can improve the neuroprotective effects of 

melatonin in that model. 
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4.0    BEHAVIOR AND SURVIVAL 

4.1 INTRODUCTION 

An advantage of the R6/2 model of Huntington’s disease is that it shows progressive motor defects 

that can be characterized by an array of standard mouse behavioral tests106.  While the 

characterization of disease symptoms in mouse models can sometimes be difficult due to the way 

that motor, cognitive, and psychiatric symptoms can interact and overlap, there is a distinct motor 

deficit progression that can be measured in the R6/2 mice44,106.   Various tests are available, but 

one consistently used for R6/2 mice is rotarod.  Critically, fixed speed rotarod was used for the 

initial work showing melatonin’s neuroprotective effects in the R6/2 mouse, and this set of 

experiments aims to repeat that methodology for consistency in both generating and understanding 

outcomes65. 

Because the MT1 transgenic model is newly developed, it was characterized with rotarod 

testing before being used for these experiments, to rule out any effects of the transgene on 

behavioral performance.  The MT1 transgenic performed equally well as wild type littermates 

[personal communication, Amanda Mihalik, University of Pittsburgh].  Additionally, lifespan of 

MT1 transgenics appears to be normal.  Survival studies have not been specifically performed, but 

through colony maintenance within the Friedlander laboratory breeders had a natural survival of 

1-2 years, the typical lifespan for wild type mice of this background. 

For this study, mice were tested on fixed speed rotarod at two speeds.  The higher speed, 

15rpm, is used as an indicator of disease onset, with mice beginning to show decreased latency to 
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fall as motor symptoms first appear.  The lower speed, 5rpm, is used as an indicator of disease 

progression, showing the ongoing progressive decline in motor ability. 

Additionally, this study looks at changes in mouse survival.  Survival time of the R6/2 mice 

has been found to be a good indicator of neuroprotection45. 

The study uses F1 offspring from crosses of R6/2 and MT1 mice.  This cross results in 4 

potential genotypes: NSE-MT1-R6/2 (R6/2+, MT1+), R6/2 (R6/2+, MT1-), MT1 (R6/2-, MT1+), 

and wild type (R6/2-, MT1-).  Mice without R6/2 genotype (including both wild type and MT1 

transgenic) were used as controls for normal performance, but not used for analysis.  The aim of 

this set of experiments was to determine whether an increase in melatonin signaling via the MT1 

receptor will further ameliorate the disease phenotype in R6/2 mice with respect to clinical 

measures. 

4.2 METHODS 

The mice used for this set of experiments were the offspring of NSE-MT1 transgenic [strain 

B6CBA-Tg(NSE-MTNR1A)/Rmf(Pitt)] females, supplied from a colony I bred and maintained, 

and R6/2 males, supplied from our laboratory’s continuously maintained colony.  Due to the 

disease phenotype, female R6/2 mice have very low fertility and we observe when litters are born, 

pups are small, and the females do not care for the pups.  While our R6/2 males also show lower 

rates of fertility compared to WT males, they are still able to generate offspring [personal 

communication, Lisa Ferrando, University of Pittsburgh].  The use of NSE-MT1 females for 

breeding ensured higher pregnancy rates, better litter sizes, and proper care of offspring.  All mice 

were bred in triads, to increase chances of fertilization from each R6/2 male breeder. 
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The R6/2 strain [B6CBA-Tg(HDexon1)62Gpb/3J (Jackson Laboratory)] is a fragment 

model using human exon 1 containing pathogenic CAG repeat length.  In the Friedlander colony, 

this polyglutamine repeat consists of 150-160 tandem CAG repeats.  Repeat length is verified with 

site specific primers (see below) with PCR product run on 1% agarose gel and approximate base 

pair size measured using Invitrogen 50kb ladder [personal communication, Lisa Ferrando, 

University of Pittsburgh].  Mice outside of this range are excluded from breeding and experiments. 

All of the F1 offspring of NSE-MT1 and R6/2 crosses were genotyped at age 15-25 days 

using two sets of primers.  The first was with commonly used R6/2 primers CAG1 and Hu3, also 

used for R6/2 colony maintenance and repeat length measurements. 

CAG1: 5’-ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC-3’ 

Hu3: 5’-GGCGGCTGAGGAAGCTGAGGA-3’ 
 

Second, the mice were genotyped with a set of transgenic MT1 primers which I designed.  

These primers amplify a section of the transgene which spans from the MT1 to GFP portions, 

eliminating the chance that the primers would pick up endogenous MT1 as well.   

Forward: 5'-GTACGACAAACTGTACAGCAG-3' 

Reverse: 5'-GAACTTCAGGGTCAGCTTGC-3' 
  

Previous work has shown no difference in behavioral measures between male and female 

R6/2 mice45.  For this experiment, I used all female mice because males were used for mouse 

colony maintenance.  After genotyping, I weaned mice directly into their experimental cohorts 

with 4-5 mice per cage.  A significant enrichment effect has been seen in the R6/2 mice when 

mutants are housed with wild type107.  In order to avoid confounding due to this effect, all mice 

are housed only with other mice of the same genotype. 
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4.2.1 Treatment 

I began melatonin treatment of 30mg/kg at 30 days of age and continued until death.  The dose 

was chosen after preliminary experiments using 30, 50, and 100mg/kg doses demonstrated 

30mg/kg to be a saturating concentration in R6/2 mice.  Mice received intraperitoneal injections 

daily with a total injection volume of 100μl.  Injection sites alternated between left and right sides 

of body each day to decrease irritation.  Melatonin (Sigma, M5250) is not soluble in water/saline.  

The melatonin was first dissolved in DMSO and vortexed briefly; DMSO volume was calculated 

to 3% of total solution volume.  Once melatonin was fully dissolved, PBS was added to bring the 

solution to its final volume. 

Because daily handling and injection can cause stress in these animals and alter disease 

phenotype, control groups were also injected daily with 100μl vehicle. 

Eight cohorts consisted of the following genotypes and treatments: 

R6/2 mutant + MT1 mutant (melatonin; vehicle) 

R6/2 mutant only (melatonin; vehicle) 

MT1 mutant only (melatonin; vehicle) 

Wild type (melatonin; vehicle) 

4.2.2 Behavior analysis 

Previous studies by the Friedlander group on R6/2 mice have used fixed speed rotarod 65.  The 

behavior measures for this aim were consistent with this in order to generate comparable data and 

allow for analyzing similarities or differences in trends with earlier characterizations of these mice.  
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The rotarod system (Columbus Instruments) measures active behavior, yielding results that 

indicate coordination, strength, and endurance.  Each mouse was trained at 5 weeks of age on the 

fixed speed rod at 15rpm until able to complete a 7 minute trial without falling.  Any mice unable 

to adequately perform during training were removed from test groups.  Trial testing consisted of 

placing a mouse on the constant speed rotarod at 15rpm and 5rpm for 7 minutes each; mice are 

given three attempts to complete the trial without falling, with a minimum 10 minute rest between 

attempts.  The best time from these three attempts was used for analysis.  Mice who died before 

the end of rotarod trials were recorded at 0 minutes; these mice were not censored from the 

experiment to avoid weighting the average time towards longer living mice. 

4.2.3 Survival 

The same mice used for behavioral testing were also used for survival analysis.  I monitored the 

mice daily and counted end of survival as either death or a mouse’s inability to right itself within 

30 seconds of being placed on its back, consistent with previous R6/2 work45. 

4.2.4 Statistical analysis 

Rotarod times were compared week by week using Friedman's 2-way non-parametric ANOVA to 

compare timepoints between grouped cohorts (saline treated R6/2 and NSE-MT1-R6/2 compared 

to melatonin treated R6/2 and NSE-MT1-R6/2), which indicated significant differences between 

melatonin and saline treatments, starting at 10 weeks of age for 15rpm and 11 weeks of age for 

5rpm.  Kruskal-Wallis tests were used to compare timepoints between individual cohorts (separate 

genotypes and treatments): melatonin treated R6/2 with melatonin treated NSE-MT1-R6/2. A GEE 
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repeated measure analysis was used to analyze rotarod times as a whole for overall trends.  

Assistance in choice and performance of these statistical tests was provided by Yuefang Chang, 

PhD of the Department of Neurological Surgery. 

The survival for R6/2 positive groups was compared using a log-rank test.  Follow-up log-

rank tests were used to evaluate the differences between melatonin and saline treatments for each 

genotype, using a Bonferroni-corrected threshold for determining p value significance 

(threshold=0.0083).  

4.3 RESULTS 

In order to establish the melatonin dose to be used for this set of experiments, I first tested 30, 50, 

and 100 mg/kg doses by injection.  I found that in open field measurements of R6/2 performance, 

increased dose provided no improved protection, indicating 30mg/kg to be a sufficient saturating 

dosage.  In addition, I found that while open field behavioral testing provided sufficient data to 

assess dosage, its outcomes were not comparable to the previously established rotarod protocol in 

the Friedlander laboratory; thus rotarod was used for subsequent studies. 

Given three trials at each speed, the best time for each mouse was used for analysis.  Times 

for each cohort were averaged.  At 15rpm (figure 6), the speed indicating disease onset, the groups 

receiving saline treatment performed poorer than those receiving melatonin treatment (p<0.0001).  

Of the groups receiving melatonin, the raw data suggests that the NSE-MT1 transgenic performed 

better starting at 10 weeks; however the difference between the R6/2 melatonin treated and the 

NSE-MT1-R6/2 melatonin treated is only significant at 13 weeks (p=0.004).  Both individual 

timepoints and overall trend were compared.  While melatonin treated NSE-MT1-R6/2 was 
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significantly improved at the 13 week timepoint compared with melatonin treated R6/2, when the 

cohorts are analyzed as a whole, they are not significantly different (p= 0.180). 

 

Figure 6. Time on rotarod at 15rpm for R6/2 cohorts, +/- MT1 transgene, +/- melatonin injection.  
Mice were placed on the rod for trials of 7 minutes total with 3 attempts to pass.  The maximum time each mouse 
stayed on the rod during the three trials was recorded.  Performance at 15rpm is indicative of age of disease onset. 

 

 

* 
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Figure 7. Time on rotarod at 5rpm for R6/2 cohorts, +/- MT1 transgene, +/- melatonin injection.   
Once cohorts failed the full 7 minutes for 15rpm, they were additionally tested at 5rpm.  Mice were placed on the 
rod for trials of 7 minutes total with 3 attempts to pass.  The maximum time each mouse stayed on the rod during the 
three trials was recorded.  Performance at 5rpm is indicative of disease progression. 
 

At 5rpm (figure 7), the speed indicative of disease progression, a similar trend is seen as at 

the higher speed.  The mice receiving melatonin treatment performed much better than those 

receiving only vehicle (p<0.0001).  However, the difference between R6/2 with melatonin 

treatment and NSE-MT1-R6/2 with melatonin treatment is small.  This difference is significant at 

14 weeks (p=0.0003), but no other timepoints.  The overall trend for these groups shows no 

significant difference (p=0.150). 

 
Table 1. Summary table of average survival (days) for each cohort ± standard deviation. 

 Saline Melatonin 
R6/2 97.0 ± 8.9 108.5 ± 5.8 
NSE-MT1-R6/2 99.0 ± 9.0 112.0 ± 9.2 
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These mice were also assessed for survival (figure 8).  Survival analysis showed a 

significant difference in median age of death (summarized in table 1) between saline vs melatonin 

treatment (p<0.0001 for NSE-MT1-R6/2 genotype, p=0.0028 for R6/2 genotype) but there is no 

significant difference between melatonin treated R6/2 vs NSE-MT1-R6/2 (p=0.1053). 

 

4.4 DISCUSSION 

As seen in previous work within the Friedlander laboratory, melatonin was beneficial in both 

behavioral measures and survival in the R6/2 mice65.  However, contrary to the initial hypothesis, 

the behavior and survival in these melatonin treated R6/2 mice was not further extended with the 

Figure 8: Survival of R6/2 mice +/- NSE-MT1 genotype, +/- melatonin treatment.  
 Survival was observed for the same cohorts of mice used in rotarod testing.  Survival was defined as death or 
mouse’s inability to right itself within 30 seconds when placed on its back. 
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addition of MT1 overexpression.  This result lends itself to several possible explanations which 

warrant potential further investigation. 

4.4.1 Molecular influences 

While cellular models indicated that melatonin neuroprotection was mediated through MT1, it is 

possible that in an in vivo chronic model of Huntington’s, this protection may be affected by the 

chronic nature of the in vivo model, supplemented by an alternate mechanism, or modified through 

a regulatory mechanism. 

Cellular models testing the mechanism of melatonin’s neuroprotection studied an acute 

stress.  Additionally, this MT1 overexpression transgenic has shown to additively protect against 

neuronal death in models of stroke [manuscript in preparation].  The stroke model represents 

another acute injury.  Melatonin’s neuroprotection appears to be primarily mediated by MT1 in 

such acute models; however, the MT1 mediated protection may not be the primary mechanism in 

a chronic model. 

In this chronic model, the receptor-mediated mechanism of melatonin may be 

supplemented by melatonin’s role as an antioxidant.  In post-mortem human HD brains, several 

markers of oxidative stress are elevated108; a similar pattern is seen in the R6/2 model mouse as 

well47.  The cellular damage caused by increased free radicals and oxidative stress may be a 

contributing factor to the HD phenotype.  Therefore, melatonin’s additional role as an antioxidant 

may confound these results investigating receptor-mediated protection.  Melatonin may function 

as a neuroprotectant through both antioxidant and receptor signaling pathways, rather than MT1 

alone. 
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Melatonin dosing may be another factor for understanding the experimental outcomes seen 

here.  The melatonin dosage for these experiments was determined using R6/2 mice.  This 

established 30mg/kg as a saturating dose for the R6/2 mouse model.  However, because the dosage 

was not determined in the NSE-MT1-R6/2 mouse, we cannot be sure the 30mg/kg dose is 

saturating with the additional MT1 expression.  If the melatonin was not saturating in these mice, 

we would not be able to see the full protective effect of melatonin with overexpressed MT1. 

Finally, in discussing the biological function of MT1, it is vital to address the role of 

GPR50.  GPR50, as a melatonin receptor-like G protein, is able to dimerize with MT1.  This 

dimerization results in a significant reduction in MT1 signaling.  While the function of GPR50 is 

yet undiscovered, it may play a role in regulating melatonin signaling.  In the context of this work, 

it may affect the functionality of the transgenic MT1, reducing the overall impact of the 

overexpression. 

4.4.2 Mouse model influences 

While these results may indicate a number of possible outcomes regarding melatonin’s mechanism 

of action and the role MT1 plays in neuroprotection, I must also consider that the results may be 

due to the model itself.  While the transgenic MT1 has been detected to be overexpressed at the 

mRNA level [personal communication, Amanda Mihalik, University of Pittsburgh], the transgenic 

protein itself has been particularly difficult to detect and characterize.  Ongoing work indicates 

that while it is overexpressed, the fold increase may be lower in the 2604 line used for these 

experiments compared to the second founder line, 2606. 

As a result, this particular line of transgenic MT1 mice may not overexpress the receptor 

at a high enough level to effect significant change at a behavior or survival level.  The ideal solution 
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to this potential flaw in the MT1 mouse model is to use a line with higher transgenic expression.  

The Friedlander laboratory maintains a second MT1 line from a second founder, which has shown 

higher mRNA expression as well appearing to have increased protein expression.  However, 

consistent with studies which have shown MT1’s impact on reproductive cycles and hormones68,73, 

these mice breed very poorly, taking an extended period of time to generate pregnancies, with 

resulting litter sizes of only two to three pups.  Pairing this very poor breeding line with the poor 

breeding R6/2 line was not considered feasible to generate significantly sized cohorts for such a 

study as this. 

Further studies may benefit from additionally looking at the effects of MT1 knock-

down/out.  Several MT1 knockout (KO) lines have been developed, primarily for use in studying 

circadian rhythm.  If the proposed mechanism is correct and the inability to detect significant 

behavioral changes is indeed due to the NSE-MT1 model itself, I would expect that R6/2 positive, 

MT1 KO crossed mice would produce a dramatically more severe phenotype, unable to be rescued 

by treatment with melatonin. 

While this work is not feasible within the scope of this dissertation project, it represents an 

important follow-up experimental design when it comes to understanding molecular mechanisms 

when using genetic mouse models.  MT1 KO lines are currently available commercially. 

A second potential limitation of these mouse models is the rapid disease progression and 

short lifespan of the R6/2 mouse.  R6/2 was the first HD mouse model developed47; however, it 

has its limitations as a model, most notably being a fragment and not full length model and being 

a very rapid and severe model of disease onset and progression, which led to the development of 

a plethora of other HD model mice109.  R6/2 continues to be a widely used model, with over 500 

publications to date using it, and it is a valuable tool for understanding the pathology of HD.  
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However, the behavior and survival data shown here indicate that with MT1 overexpression effect 

being seen only at very late timepoints (13-14 weeks), the mice may die before a significant effect 

can be observed. 

The highest CAG repeat lengths in human HD are seen in juvenile HD, which typically has 

60+ repeats110.  With 150-160 repeats, the R6/2 model is markedly more severe.  The R6/2 model 

in fact has the longest CAG repeat length of any HD mouse model and by far the shortest 

lifespan109.  This short and severe phenotype is beneficial for extensive studies with a rapid 

turnover of animals with relatively little variability in survival.  However, it may best be 

supplemented by a less severe model in order to fully understand the mechanisms of MT1-receptor 

mediated neuroprotection. 
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5.0    CASPASES AND HISTOLOGY 

5.1 INTRODUCTION 

The R6/2 mouse is noted for having progressive behavioral and neuropathological symptoms, a 

key feature that makes it an important model of HD.  Changes between wild type and R6/2 mice 

can be seen as early as postnatal day 1, when huntingtin aggregates can first be detected in the 

neostriatum.  However, most striking changes in neuropathology are not seen until later in the 

disease.  Notable changes seen in the brain include an overall reduction in brain weight and 

volume, gross enlargement of lateral ventricles, neuronal atrophy, and presence of huntingtin 

aggregates45.  These changes progress in severity over the course of the disease.  Behavioral 

deficits, such as decreased performance on rotarod, correlate with histological markers such as the 

presence of huntingtin aggregates and changes in neuronal density111.  Neuronal atrophy is a 

hallmark of the disease and can be quantified as a reduction in both size and number of neurons in 

the striatum45.  In 12 week R6/2 mice, striatal neuronal count is reduced as much as 50% compared 

with wild type mice112. 

The pathology of HD is complex, and in addition to these known neurological 

characteristics, recent research highlighted the particular role apoptosis plays in 

neurodegeneration, indicating a possible mechanism for the damages caused by this 

disease30,113,114.  Apoptosis, or programmed cell death, is characteristic of neurologic disease115.  It 

is the primary form of cell death in neurodegenerative diseases, seen as a mechanism of neuron 

death in diseases such as Alzheimer’s, stroke, and ALS30. 
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Apoptosis results from a biochemical cascade. Early in this cascade, caspases are activated; 

these then eliminate molecules used to maintain cell survival115.  The cascade causes cell structures 

condensation, the mitochondrial aggregation, and chromatin condensation.  The cell fragments 

after its death and condensed chromatin is cleaved30,115.  Apoptosis is the result of a complex 

interplay of molecular components. 

Cysteine-dependent aspartate specific proteases (caspases) are primary factors in 

apoptosis.  The caspase family is named for caspase 1, or interleukin-1β-converting enzyme16.  

Since its discovery, a total of 11 caspases have been identified in humans.  The molecules begin 

as procaspases, which contain a recruitment domain at the N-terminal16.  The type of recruitment 

domain helps indicate where in the apoptotic cascade a caspase functions.  Caspases can function 

upstream or downstream within the cascade, initiating or executing, respectively.  The N-terminal 

domain of most upstream molecules (procaspases 1, 2, 4, 5, 9, 11, 12, 13) is a caspase-recruiting 

domain (CARD).  There are also two caspases (8 and 10) which have a death-effector domain 

(DED) at the N-terminus.  These upstream caspases function to initiate the process of apoptosis.  

The other caspases (3, 6, 7, 14) have a short prodomain30.  These caspases function in actual 

executing of the cell by both destroying cellular structures and degrading DNA16 

In the R6/2 model of HD, the activation of caspases is known to play a critical role in 

disease progression with specific chronology of activation35. The activation of caspases 3 and 9 is 

noted to occur later in disease, while activation of caspase 1 occurs earlier35,41.  Caspase 1, which 

acts upstream of the mitochondria, acts by cleaving Bid; the cleavage product (tBid) the localizes 

to the mitochondrial membrane where it effects the release of cytochrome c35.  Cytochrome c 

initiates the caspase mediated apoptotic pathway downstream of the mitochondria.  Previous work 

explored the ability of melatonin to inhibit cell death pathways; notably melatonin is able to inhibit 
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the activation of caspase 1 and caspase 3 and prevent cytochrome c release in both ALS and HD 

mouse models65,100.  

To further assess the role of MT1 in this melatonin mediated neuroprotection, I conducted 

experiments to determine whether overexpression of the receptor would further inhibit the 

activation of caspases and to assess neuronal atrophy via both neuronal count in wild type, R6/2, 

and NSE-MT1-R6/2 mice treated with saline or melatonin. 

5.2 METHODS 

Mice were treated and collected as described in section 3 of this dissertation.  Mice tested for 

caspase activation consisted of wild type, R6/2, MT1, and NSE-MT1-R6/2 mice with both saline 

and melatonin treatment groups at 9 and 12 weeks of age.  Neuronal counts were measured in 

control (wild type treated with saline) and R6/2 and NSE-MT1-R6/2 mice treated with saline and 

melatonin at 12 weeks of age, n=4 for each group. 

5.2.1 Caspase activity assays 

Previous work by the Friedlander group used fluorometric assays to assess caspase activity with 

high sensitivity35.  Therefore, caspase activation in brains of these mice was also measured using 

fluorometric assay kits for caspases 1, 3, and 9 [Abcam, ab39412, ab39383, and ab65607, 

respectively].  These fluorometric kits used caspase specific substrates (YYAD-AFC, DEVD-

AFC, and LEHD-AFC for 1, 3, and 9, respectively) which emit a blue light (400nm wavelength) 

when uncleaved and, when cleaved by their respective caspase free AFC (7-amino-4-
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trifluoromethyl coumarin), which emits fluorescence (excitation 400nm, emission 505nm).  

Caspase activity is quantified by amount of free AFC produced. 

While the kits were designed for use with cells, I adapted a protocol for use with mouse 

brain tissue from the manufacturer instructions, correspondence with manufacturer, and direct 

optimization: a half brain was homogenized in 700μL of kit lysis buffer and spun at 1000rpm for 

5 minutes at 4°C to remove debris.  From this, 500μg protein (total volume 50μL in lysis buffer) 

was combined with 50μL kit reaction buffer (containing 10mM DTT) and 5μL of 1mM substrate 

(caspase 1, 3, or 9 substrates, from kit).  Plates of samples were incubated at 37°C for 2 hours and 

read on Synergy H1 with read settings described in kit protocol.  Outputs were calculated as fold 

increase compared to control (wild type untreated sample). 

5.2.2 Tissue collection and preparation 

For neuropathology assessment, mice were treated and collected as described in section 4 of this 

dissertation.  Mice tested consisted of control (wild type treated with saline) and R6/2 and NSE-

MT1-R6/2 mice treated with saline and melatonin.  For each measurement, a total of 4 mice were 

used. 

Brains were collected at 12 weeks of age (late stage disease).  Mice were cardiac perfused 

with approximately 60ml of 10% formalin.  After perfusion, brains were collected and stored in 

10% formalin at 4°C for 24 hours.  Brains were then transferred to increasing concentrations of 

glycerol (10% followed by 20%).  They were stored at 4°C in the final 20% glycerol solution until 

sectioned.  Brains were coronally sectioned at 40μm thickness using a cryostat.  
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5.2.3 Histology 

Sections were stained with cresyl violet (5 minutes xylenes, 5 minutes 100% ethanol, overnight 

95% ethanol, 5 minutes 70% EtOH, 5 minutes ddH2O, 10 minutes cresyl violet, 5 minutes ddH2O, 

5 minutes ddH2O, 5 minutes 70% EtOH, 5 minutes 95% EtOH, 5 minutes 95% EtOH, 5 minutes 

100% EtOH, 30 sec 100% EtOH, 1 minutes xylenes) and analyzed for neuronal cell counts using 

Image-J software.  For each mouse (n=4) sample, a total of 5 images were collected and the counts 

averaged. 

5.2.4 Statistical analysis 

Statistical analysis of caspase activation and neuronal counts was done using a 2-way ANOVA 

with Tukey’s multiple comparisons test, generating multiplicity adjusted p-values for each 

cohort’s comparison. 

5.3 RESULTS 

Caspase 1, 3, and 9 activity was assessed in age 9 weeks and 12 weeks mice using fluorometric 

assays and fold changes of activity were determined in comparison to untreated WT mice. For all 

caspases and timepoints, a significant difference can be seen between untreated WT and untreated 

R6/2, indicating the test is sensitive enough to detect the activation of these caspases (figure 9).  

With no significant difference for any timepoint of any caspase for untreated R6/2 vs untreated 
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NSE-MT1-R6/2, it can be seen that the addition of the MT1 transgenic receptor alone has no 

beneficial effect in these mice without the presence of melatonin. 

At 9 weeks, an impact of treatment can only be seen with caspase 3 (figure 9c), where the 

decrease in activity is seen with the addition of treatment in the R6/2 genotype (p=0.007).  At 12 

weeks, impact of addition of melatonin to the R6/2 shows significant decreases in all three caspases 

(figure 9b, d, f).  This is consistent with previous findings that show melatonin ameliorates disease 

phenotype, including caspase activation. 

At 9 weeks, the treated NSE-MT1-R6/2 genotype appears to decrease caspase activation 

more strongly than treatment confers to R6/2 genotype alone (figure 9a, c, e), although this trend 

is not significant at the 9 week timepoint.   

However, at 12 weeks, this difference becomes significant for caspases 3 and 9 (p<0.0001 

and p=0.011, respectively) (figure 9d and f), indicating that addition of MT1 strengthens the 

protective effects of melatonin treatment.  However, this improvement appears very late in the 

disease (near the end of lifespan for the R6/2 model), and it appears not to produce a strong enough 

effect to see major changes on behavior or survival. 
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Figure 9. Caspase 1, 9, and 3 activity in WT, NSE-MT1, R6/2, and NSE-MT1-R6/2 mice, treated with saline 
or melatonin.  
 Caspase  activation in whole brain homogenate was determined using fluorogenic assays.  Activation is shown as 
fold change from saline treated wild type.  For each sample group, n=3 with individual samples run in triplicate.  
Activation was assessed at mid-stage (9 weeks) and late-stage (12 weeks) of disease.  Notable significance is 
indicated with asterisks (*: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001). 
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Table 2. Summary of p values for all comparisons of caspase activation between genotypes and treatments at 
9 and 12 weeks of age. 
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Figure 10.  Representative images of neuronal density and number in striatum of WT, R6/2, and NSE-MT1-
R6/2 mice, treated with saline or melatonin.   
Neuronal counts, an indication of neuronal cell death, were assessed in striatum of 30μm brain sections stained with 
cresyl violet (Nissl stain). 
 

As expected, neuronal number was significantly decreased in the striatum of saline treated 

mice with the R6/2 genotype compared to WT, with the number reduced by 42.7% in R6/2 

compared with WT (p=0.0007) and 37.6% in NSE-MT1-R6/2 compared with WT (p=0.0019).  

This reduction was ameliorated by treatment with melatonin.  In the NSE-MT1-R6/2, treatment 

with melatonin significantly increased neuronal number by 27.2% (p=0.0442).  While there were 

consistently higher counts in the NSE-MT1-R6/2 melatonin treatment compared to R6/2 melatonin 

treatment, the perceived difference was not reach significant (p=0.2889). 
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Figure 11. Neuronal counts from WT, R6/2, and NSE-MT1-R6/2 treated with saline or melatonin. 
Neuronal number in each section was analyzed with ImageJ. Quantification is the average of 5 image sections per 
brain, n=4 brains per genotype/treatment.  Significance is indicated with asterisks (ns: no significance, *: p<0.05,**: 
p<0.01). 

5.4 DISCUSSION 

While the NSE-MT1-R6/2 genotype did not show significant improvement in rotarod performance 

or survival, significant changes in caspase activation were detected.  While it is possible the R6/2 

phenotype is too aggressive to see macro changes at the level of behavior and survival, I 

determined to assess whether the differences in caspase activation were able to still make subtle 

changes at the neuronal level.   

Treatment with melatonin resulted in significant reduction of caspase activation in the 

diseased mice.  This finding is consistent with previous work indicating that melatonin is able to 

reduce neuronal cell death.  The ability of melatonin to reduce caspase activity, and for this effect 
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to be strengthened by the addition of the MT1 transgenic, illustrates that MT1 does play an 

important role in mediating melatonin neuroprotection.  Similar to the results seen with behavior 

and survival, this effect shows up very late in the disease and appears not to provide a strong 

enough biological impact to prolong survival or alter disease course.  This data, in combination 

with the outcomes seen with behavior and survival, provides a more complete picture of the roles 

of MT1 in melatonin neuroprotection, although there are still multiple potential conclusions to be 

explored further. 

The inability of this caspase activity rescue to significantly impact the disease course at a 

macro level (i.e. behavior and survival) may be in part due to the aggressive nature of the R6/2 

HD phenotype, as mice begin dying before a significant effect takes place.  The R6/2 model of HD 

is indeed one of the fastest and most aggressive models available to study the disease.  While the 

model has the advantage of also being among the most consistent in terms of its onset and 

progression timeline, this also results in an early death.  While the protective effect of melatonin 

itself can be clearly seen within the lifespan of the mouse, amelioration due to the addition of the 

MT1 overexpression may not be additionally strong enough to elicit an outcome within the 

mouse’s lifespan.  A clearer result may theoretically be possible by using a slower progressing 

model or a greater overexpression of MT1.  The latter option seems less feasible as our higher 

expressing model of the MT1 transgenic (the 2606 line) displays significant issues in breeding.  

Due to time constraints and mouse availability, experimentation with an alternate HD model 

mouse or the higher expressing MT1 line were not pursued for this project, but remain a potential 

path for future study. 

In addition to the caspase activation data, neuronal counts provide key insight into the 

subtle changes the NSE-MT1-R6/2 genotype provided when combined with melatonin treatment.  
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The changes at the cellular level shown here follow the pattern of changes seen with caspase 

activation and rescue, although with a milder effect.  This slight perceived difference continues to 

be seen at the behavioral level, with the effect again being even more mild (non-significant).  The 

neuropathological data provides a connecting line between understanding the role of 

neuroprotection against apoptotic factors and an overall alteration in behavior and survival.  

However, the MT1 overexpression ultimately did not provide a strong additive effect to the 

administration of melatonin alone. 
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6.0    CONCLUSIONS & DISCUSSION 

HD is a devastating disease with no known cure or treatment.  Finding mechanisms of its pathology 

as well as mechanisms of protection are critically important to helping individuals and families 

with this disease. 

Melatonin has been widely studied in a variety of roles, including in circadian rhythms, as 

an antioxidant, and most recently as a neuroprotectant.  While melatonin is known to improve 

outcomes for other neurodegenerative diseases such as Parkinson’s and Alzheimer’s, its ability to 

ameliorate symptoms in HD is a promising new development.  In order to fully investigate the 

neuroprotective effects of melatonin, we must develop a clear picture of the mechanisms of 

melatonin’s function within cells.  Because melatonin functions in cells through multiple 

mechanisms, including both antioxidant and receptor mediated roles, understanding how these 

functions contribute to its neuroprotective properties allows us to direct efforts to maximize 

neuroprotection as we aim to develop treatments for individuals with HD. 

Melatonin signaling occurs via two receptors, MT1 and MT2.  Because the neuroprotective 

effects of melatonin occur through MT1, it is the focus of this research.  The Friedlander laboratory 

previously found MT1 is located on the mitochondria.  Melatonin’s highest concentration within 

the cell is also the mitochondria, although the mechanism of melatonin’s mitochondrial 

localization was unclear.  The Friedlander group identified the two terminal enzymes involved in 

melatonin synthesis, AANAT and ASMT, as being localized to the mitochondria, pointing to the 

possibility of their function being carried out there.  Here, I demonstrate isolated mitochondria are 

capable of synthesizing melatonin from serotonin.  This centralizes mitochondria in understanding 

the mechanisms of melatonin’s neuroprotection via MT1.  This also establishes a novel autocrine 
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loop for the synthesis and signaling of neuronal melatonin.  Melatonin is synthesized in 

mitochondria, where is binds to its MT receptors.  Melatonin does not need to be transported within 

the cell or from external sources in order for rapid signaling to occur.  No other known autocrine 

signaling in the mitochondria is documented in literature.  Ongoing studies are aimed at examining 

how this melatonin synthesis in the mitochondria may be affected by the HD phenotype, using the 

R6/2 mouse model. 

The relationship between mitochondria and HD is well documented.  While there are many 

theories as to the precise role the mitochondria plays in HD pathology, it is clear that many 

functions of the mitochondria, from protein import to caspase mediated cell death to antioxidation, 

are affected in HD.  Knowing melatonin synthesis and melatonin’s signaling via MT1 both occur 

in the mitochondria, I sought to determine whether MT1 may also be affected by HD.  Previous 

work with an R6/2 model with longer CAG repeat length showed MT1 expression decreased.  My 

experiments sought to determine whether this downregulation occurred in the standard R6/2 mouse 

model, with approximately 144 CAG repeats.  Indeed MT1 is downregulated in this R6/2 line at 

both an mRNA and protein level, seen at mid-stage disease and progressing to a larger significant 

difference by late stage disease.  Not only does the HD phenotype decrease MT1 decrease but it 

does so in a progressive fashion correlating with disease progression.  As previous research 

indicated MT1 as the mechanism of melatonin’s neuroprotection, this decrease suggests the 

downregulation of MT1 contributes to increased neuronal death as the disease progresses. 

The NSE-MT1 mouse model was developed to explore the effects of increased MT1 

signaling.  This increase can ameliorate the effects of decreased MT1 expression in an HD model 

such as the R6/2 and increase the efficacy of neuroprotection with melatonin.  R6/2 and NSE-MT1 

mice were crossed to create NSE-MT1-R6/2 offspring.  I tested whether the decrease in 
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endogenous MT1 expression was paralleled with transgenic MT1.  While the mechanism by which 

R6/2 downregulates endogenous MT1 is unknown, it may act through mechanisms such as 

transcriptional regulation, DNA modification, or mRNA degradation.  These mechanisms could 

potentially affect the transgenic MT1, preventing an effective increase in MT1 expression in the 

NSE-MT1-R6/2 model.  I found transgenic MT1 mRNA expression was the same with and without 

the addition of the R6/2 genotype at late stage disease (12 weeks).  This provided a solid rationale 

for using the cross mice for experiments with melatonin neuroprotection; the increased transgenic 

MT1 compensates for the loss of endogenous MT1 in the R6/2 model without itself being reduced 

by the disease phenotype.  Additionally, with the transgenic unaffected but endogenous decreased 

in R6/2, possible mechanisms of the latter can be posited.  NSE-MT1 contains the human MT1 

gene; while similar and homologous to the mouse MT1, it is not identical.  While a search of the 

database GEO found no known microRNAs which target MT1 and are upregulated in R6/2 mice, 

factors such as changes to transcriptional regulators may affect endogenous mouse MT1 in a site 

specific way.  Additionally, and potentially more likely an explanation, the endogenous and 

transgenic MT1 have different promoters, which may play a role in how the HD phenotype affects 

each due to HD affecting the endogenous MT1 promoter via changes in enhancers or 

transcriptional regulators.  Mutant HTT is known to interfere with transcription factors and 

transcriptional proteins, cause histone and methylation based regulation of DNA, and alter miRNA 

expression.  The results of these experiments opens a new understanding of how the HD 

phenotype, as seen in the R6/2, may affect melatonin signaling via MT1.  In a broader scheme, 

insight into how HD downregulates MT1 expression may be useful in understanding HD’s many 

gene regulation effects. 
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Because the transgenic MT1 is not affected by the R6/2 genotype, it has the potential to 

rescue the loss of melatonin signaling via MT1 and increase the neuroprotective effects of 

melatonin.  The R6/2 and NSE-MT1 mice were crossed to investigate the capability of increased 

MT1 expression to improve melatonin's previously seen amelioration of the disease phenotype. 

At a molecular level, melatonin is able to inhibit cell death via caspase-mediated pathways, 

although the specific molecular mechanism responsible is unknown.  The overexpression of MT1 

produced a modest but significant improvement on reduction of caspase activation, particularly at 

late-stage disease.  This demonstrates that a potential pathway for melatonin signaling via MT1 to 

prevent activation of cell death pathways.  However, further experiments to examine the effects of 

this at a macro level were less conclusive.  While cell death via caspase-mediated pathways appears 

decreased, cell death may still be occurring via other pathways.  In order to assess whether this 

reduction in caspase activation was truly protective from cell death, an assessment of neuronal 

death was needed.  Neuronal counts suggested improvement with the addition of the transgenic 

MT1 but were still statistically decreased compared to controls.  Similarly, the measures of disease 

onset and progression using rotarod testing suggested an improved phenotype in the NSE-MT1-

R6/2 compared to R6/2 alone, however these rotarod measures only conclusively demonstrated 

improved at very late stage disease.  As with other endpoint measures, data suggested but could 

not conclusively demonstrate improved survival.  While caspase activation was further decreased 

in melatonin treated NSE-MT1-R6/2 compared to R6/2 alone, reducing caspase-mediated cell 

death, the data do not suggest this decrease is sufficient to decrease neuronal cell death and 

ameliorate the disease phenotype.  There are several possible explanations for this outcome 

including choice of mouse models, feedback mechanisms, modification of MT1 signaling 

functions, alternative pathways of neuroprotection, or insufficient melatonin dosing. 
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With improved outcomes seen primarily in late stage disease, there is the possibility that 

the mice die before a strong and significant effect of the neuroprotection can be seen.  While the 

R6/2 model is advantageous for its robust disease phenotype and clear progressive pathology, it 

also has the disadvantage of being a particularly aggressive and quick model.  As a result, the 

effects of MT1 overexpression may have been more difficult to see at a macro phenotypic level.  

The use of a slower disease model in future work may allow for seeing a stronger effect of MT1 

overexpression. 

Also factoring in to the efficacy of the mouse models is the possibility that transgenic MT1 

expression may not have been high enough.  Of the two founder lines for the NSE-MT1 mouse 

model, the line used for this work, line 2604, had lower expression of the transgenic MT1 

compared to the second founder line 2606.  Future work in the understanding of increased 

melatonin signaling via MT1 may require use of the higher expressing line with the aggressive 

R6/2 phenotype.  Additionally, research exploring melatonin's neuroprotection as it functions 

through MT1 would benefit from pairing both overexpressed MT1 models and knockout MT1 

models with HD mouse modeling.  Given the slight improvements in disease phenotype with the 

addition of excess MT1, one would expect to see all melatonin-related neuroprotection eliminated 

with the knockout of MT1. 

Conversely, it is possible that transgenic MT1 expression was high, but the melatonin dose 

was not optimal.  While the melatonin dosage was optimized to be a saturating level in the R6/2 

mouse, the dose given may not have been saturating for the increased amount of MT1.  In future 

studies, dosing should be determined for the overexpressed MT1 levels, allowing for a level of 

melatonin which would fully saturate the transgenic MT1 and maximize increased signaling via 

MT1.  Alternatively, no lower doses were tested during optimization and it is possible the dose of 
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melatonin is sufficient to result in saturating downstream signaling, such that an increased number 

of receptors would not affect the already saturated signaling pathway. 

The expression of endogenous MT1 may be affected by transgenic MT1 expression via a 

regulatory feedback mechanism.  If there is a maximal level of MT1 expression in a cell, the 

transgenic expression may cause a reduction in endogenous MT1 in order to maintain this level, 

ultimately resulting in the same final amount of MT1 expressed. 

Additionally, it is important to note the dimerization of MT1 with itself, and as a 

heterodimer with MT2 or GPR50.   These are of particular interest due to their ability to reduce 

MT1 function when dimerized, with GPR50 providing the most striking reduction in function.  

While research is still determining the function of GPR50, some hypotheses point to it having a 

regulatory role in melatonin signaling.  In this case, GPR50 may modify the functionality of the 

transgenic MT1 without resulting in a reduction of MT1 expression; this would account for a mild 

but not strong effect of MT1 overexpression.  Future studies may benefit from knocking down 

GPR50 expression to determine whether a reduction in its ability to dimerize with MT1 results in 

stronger transgenic MT1 functionality and protective effects. 

In addition to receptor changes, another factor affecting these outcomes is melatonin’s role 

as an antioxidant.  The HD phenotype has many molecular effects including both apoptotic 

dysfunction and oxidative damage.  While these experiments focused on melatonin’s role in 

inhibiting apoptosis, it may also provide neuroprotection as an antioxidant.  Reactive oxygen 

species (ROS) are formed as a by-product of oxidative phosphorylation, the process by which ATP 

is produced in the mitochondria.  Build-up of ROS in cells causes mitochondria damage, which is 

detected by BCL-2 family proteins on the mitochondria, triggering apoptotic cell death.  In HD, 

there is an overproduction of ROS, increasing mitochondria and cell damage116.  Melatonin 
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functions as an antioxidant, and it may protect against neuronal death by reducing oxidative 

damage in mitochondria and preventing apoptotic cell death in that manner.  

The caspase activation changes paired with the neuropathological and behavioral 

phenotypic outcomes in the NSE-MT1-R6/2 compared to R6/2 alone increase our understanding 

of the strengths and limitations of melatonin-mediated neuroprotection.  This provides key insight 

into MT1-mediated neuroprotection, an important mechanism for modifying the disease outcome.  

The data strengthens evidence for caspase reduction as a means of neuroprotection.  However, 

there are notable limitations with the aggressive nature of the disease as modeled in R6/2 mice as 

well as the variety of unknown co-regulators which may impact the outcomes beyond MT1’s 

effects alone.  Combined with research in the field of understanding the pathology of HD and 

development of melatonergic drugs, my work provides a foundation for better understanding how 

to treat and modify this fatal disease. 
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