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REDUCED-ORDER MODELING TOWARD SOLVING INVERSE

PROBLEMS IN SOLID MECHANICS AND FLUID DYNAMICS

Mohammad Ahmadpoor, PhD

University of Pittsburgh, 2016

Despite great improvements in computing hardware and developments of new methodologies

for solving partial differential equations (PDEs), solving PDEs numerically can still be com-

putationally prohibitive for certain applications. This computational difficulty is especially

true when the solution of PDEs is tied to characterization, control, design, or other inverse

problems in general. Most of the traditional PDE solution strategies, such as the Finite

Element Method or Finite Volume Method can require hundreds of thousands of degrees of

freedom to accurately capture the behavior of even relatively simple physical system. The

computational cost is several orders of magnitude higher for solving optimization problems

(a common approach to solve inverse problems), which require obtaining several solution

fields. Hence, model order reduction is necessary to enable the solution of such optimization

problems with sufficient efficiency to allow practical applicability. Several approaches have

been developed to create accurate reduced-order models (ROMs) of physical systems with

dramatically reduced computational expense. Yet, several questions remain as to the opti-

mal approach to create ROMs for a given physical system to ensure suitable accuracy, and

even more so in relation to inverse problem applications. The objective of the present work

is to address issues relating to the creation of suitably accurate ROMs that can be utilized

for the solution of a variety of computational inverse mechanics problems. This work focuses

on ROMs that utilize proper orthogonal decomposition (POD) to create a reduced-order

basis for the PDE solution from a set of previously obtained potential solution fields (i.e.,

snapshots) of the system of interest. First, a generally applicable algorithm is presented to
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efficiently create accurate ROMs for use in solving inverse problems in material character-

ization (i.e., nondestructive evaluation). This algorithm is based upon a novel concept for

maximizing the diversity of the system snapshots used to create the ROM. Results show

that by maximizing the snapshot diversity, the accurate generalization of the resulting ROM

is substantially improved, which then improves inverse problem solution capabilities. Then,

a comprehensive study is presented of the capability of a set of different approaches for

reduced-order modeling (all still using POD) to represent systems involving flow past bluff

bodies. One of the relatively unexplored issues when creating ROMs for fluid flows is the

accuracy with respect to changes in Reynolds (Re) number. The present work uses the gen-

eralized POD technique to create ROMs that are capable of predicting flow field not only at

different time levels, but also at different Re numbers. Finally, the ROM strategies explored

for fluid flow were extended to investigate the applicability to optimal flow control problems.

The ROM of flow was used along with an optimization technique and adjoint method for

gradient calculation to solve a control problem to reduce the drag force in flow past one

or more cylinders. Results of the solution of this optimal control problem show that the

developed ROMs are capable of solving complex optimization problems with significantly

reduced computational expense.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1.0 A GENERALIZED ITERATIVE APPROACH TO IMPROVE REDUCED-

ORDER MODEL ACCURACY FOR INVERSE PROBLEM APPLI-

CATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Optimal Basis Generation for Reduced-Order Modeling . . . . . . . . . . . . 6

1.3.1 Steady-State Solid Mechanics Governing Equations and Weak Form . 7

1.3.2 Reduced-Order Modeling with Proper Orthogonal Decomposition . . . 8

1.3.3 Iterative Snapshot Generation to Improve Generalization . . . . . . . 11

1.4 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Full-Order and Reduced-Order Forward Modeling . . . . . . . . . . . 16

1.4.2 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.3 Example 1 - Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.4 Example 2 - Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 POD Reduced-oreder Modeling of Incompressible NS Equations . . . . . . . 34

2.3.1 POD-Galerkin Projection Approach for Reduced-Order Modeling . . . 35

2.3.2 Surrogate Model Approaches . . . . . . . . . . . . . . . . . . . . . . . 37

vi



2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Example 1: Flow Past a Single Cylinder . . . . . . . . . . . . . . . . . 40

2.4.1.1 Predicting time variation for fixed Re numbers: . . . . . . . . 41

2.4.1.2 Predicting variations in time and Re number: . . . . . . . . . 44

2.4.2 Example 2: Flow Past a Cluster of Four Cylinders . . . . . . . . . . . 49

2.4.2.1 Predicting time variations for fixed Re numbers: . . . . . . . . 51

2.4.2.2 Predicting variations in time and Re number: . . . . . . . . . 53

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.0 REDUCED-ORDER MODELING FOR COMPUTATIONAL SOLU-

TION OF CONTROL PROBLEMS FOR ROTARY CYLINDERS IN

FLUID FLOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Forward Problem and Control Objective . . . . . . . . . . . . . . . . . . . . 60

3.4 POD-Galerkin Projection Approach for ROM . . . . . . . . . . . . . . . . . 62

3.4.1 POD Basis Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 ROM for Flow Around a Stationary Cylinder . . . . . . . . . . . . . . 63

3.4.3 ROM for Flow Around a Rotating Cylinder . . . . . . . . . . . . . . . 65

3.5 Utilization of ROM for Optimal Control Solution . . . . . . . . . . . . . . . 67

3.5.1 Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 Snapshot Generation and POD Modes for a Single Cylinder . . . . . . 70

3.6.2 Optimal Control Results for Flow Past a Sing Cylinder . . . . . . . . 71

3.6.3 Extension to Control of Flow Past Two Cylinders . . . . . . . . . . . 73

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.0 CURRENT CAPABILITIES AND FUTURE DIRECTIONS . . . . . . 79

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



LIST OF TABLES

1.1 Target (i.e., simulated experimental) values for the RBF amplitude (α), the

breadth of the RBF (c1), and the coordinate of the center of the RBF (ζ1, ζ2)

defining the Young’s modulus distribution, the corresponding parameters esti-

mated with the inverse characterization process using the ROMs created with

20 (ROM-20), 40 (ROM-40), and 60 (ROM-60) iteratively generated snap-

shots, and the respective ROM measurement error (ME), the FOM measure-

ment error (FE), and the error in the predicted Young’s modulus distribution

(YE) for the five test cases (i.e., damage scenarios) for Example 1 - Plate. . . 21

1.2 Target (i.e., simulated experimental) values for the RBF amplitude (α), the

breadth of the RBF (c1), and the horizontal and vertical locations of the center

of the RBF (ζ1, ζ2) defining the Young’s modulus distribution, the mean and

standard deviation (from the 10 repetitions) of the corresponding parameters

estimated with the inverse characterization process using the ROM created

with 60 iteratively generated snapshots (ROM-60), the respective ROM mea-

surement error (ME), FOM measurement error (FE), and error in the pre-

dicted Young’s modulus distribution (YE) for the two test cases (i.e., damage

scenarios) for Example 2 - Airfoil. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Summary of Re numbers, inlet velocity (Vin), vortex shedding period (VSP),

Strouhal number (St), and the vortex shedding interval (VSI) that snapshots

were chosen within for the flow past a single cylinder cases considered . . . . 39

viii



2.2 The average L2 and L∞ errors for the ROM response predictions by the POD

Galerkin (Galerkin) and surrogate model (surrogate) methods over the four

given test times for three representative Re numbers for flow past a single

cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 5500, 6000, and 7190,

for the given Re numbers over the four given test times for flow past a single

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 4800, 6000, and 7190, for the

given Re numbers over the four given test times for flow past a single cylinder 50

2.5 The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 5500, and 7190, for the given

Re numbers over the four given test times for flow past a single cylinder. . . 50

2.6 The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 4800, and 5500, for the

given Re numbers over the four given test times for flow past a single cylinder 50

2.7 The average L2 and L∞ errors for the ROM response predictions by the POD

Galerkin (Galerkin) and surrogate model (surrogate) methods over the four

test times for three representative Re numbers for flow past a cluster of four

cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 4800, 6000 and 6600, for

the given Re numbers over the four test times for flow past a cluster of four

cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Summary of the control parameters at the end of the optimization process,

corresponding relative cost functional reduction (RC), and relative drag re-

duction (RD) for each scenario of the optimal control of flow past a single

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



3.2 Summary of the control parameters at the end of the optimization process, cor-

responding relative cost functional reduction (RC), and relative drag reduction

(RD) for each scenario of the optimal control of flow past two cylinders. . . . 77

x



LIST OF FIGURES

1.1 Flowchart describing the iterative snapshot generation algorithm. . . . . . . . 15

1.2 Spatial distribution of the Young’s modulus from (a) the target (simulated

experiment) and (b) the inverse characterization estimate with the ROM built

from 60 iteratively generated snapshots for the fourth test scenario for Example

1 - Plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Average and standard deviation (error bars) with respect to the 100 test cases

of the relative L2 and L∞ ROM errors for the randomly generated (Random)

and the iteratively generated (Iterative) ROMs for Example 2 - Airfoil. . . . 25

1.4 Spatial distribution of the Young’s modulus from (a) the target (simulated

experiment) and (b) the inverse characterization estimate with the ROM built

from 60 iteratively generated snapshots for the second test scenario for Exam-

ple 2 - Airfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Lower plenum geometry including support posts and inlet jets [77] . . . . . . 33

2.2 The variation of the lift coefficient on the cylinder for flow past a single cylinder

at Re=4800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Schematic for flow past a single cylinder. The small filled circle represents the

cross section of the cylinder with radius of 0.5m and the larger circle shows

the fluid domain of interest with radius of 50m. . . . . . . . . . . . . . . . . . 41

2.4 The first four POD modes for flow past a single cylinder at Re =2900 (Note

that the color contours represent the amplitude of the POD mode). . . . . . 42

2.5 The convergence of percentage of cumulative energy corresponding to each

eigenvalue for three simulations of flow past a cylinder. . . . . . . . . . . . . 43

xi



2.6 The variation of the first modal coefficient with respect to time and Re number

predicted by the POD-Galerkin ROM (colored mesh) and Kriging surrogate

model ROM (black circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 The first six POD modes for flow past a single cylinder obtained from the

ensemble of 75 snapshots from Re numbers 2900, 3500, 5500, 6000, and 7190

(Note that the color contours represent the amplitude of the POD mode). . . 48

2.8 Schematic for flow past a cluster of four cylinders. The small filled circles

represents the cross section of the cylinders with radius of 0.5m each which

were located on the vertices of a 2m × 2m square,and the larger circle shows

the fluid domain of interest with radius of 50m. . . . . . . . . . . . . . . . . . 51

2.9 The first two POD modes for flow past multiple cylinders at Re =5500 (Note

that the color contours represent the amplitude of the POD mode). . . . . . 52

3.1 Schematic for flow past a cylinder in a channel. . . . . . . . . . . . . . . . . . 60

3.2 The convergence of the cumulative energy of POD modes for the station-

ary cylinder and one rotating cylinder with rotational velocity of Ω(t) =

1.73sin(0.505t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Evolution of the cost functional at each iteration of the optimization for three

scenarios of the weight parameter α. . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Schematic for flow past two cylinders in a channel. . . . . . . . . . . . . . . . 75

3.5 Evolution of the cost functional at each iteration of the optimization for two

scenarios of the weight parameter α. . . . . . . . . . . . . . . . . . . . . . . . 77

xii



PREFACE

I would like to thank my advisor Dr. John C. Brigham for his continuous help and support

during my years at Pitt.

I would like to thank Dr. Mark Kimber, Dr. Andrew P. Bunger, and Dr. Jeen-Shin Lin

for serving on my graduate committee and for their support throughout my studies.

I also would like to thank my colleagues in Professor John C. Brighm’s group for their

help and encouragement during my PhD study especially Dr. Bahram Notghi.

I would like to dedicate this Doctoral dissertation to my parents, Hassan Ahmadpoor

and Ommolbanin Noshirvani, who are the only reason that I was able to pursue my studies.

xiii



1.0 A GENERALIZED ITERATIVE APPROACH TO IMPROVE

REDUCED-ORDER MODEL ACCURACY FOR INVERSE PROBLEM

APPLICATIONS

1.1 ABSTRACT

A generally applicable algorithm for iterative generation of data ensembles to efficiently cre-

ate accurate computational mechanics reduced-order models (ROM) for use in computational

approaches to approximate inverse problem solutions is presented and numerically evaluated.

The ROM approach considered is based on identifying the optimal low-dimensional basis to

be used within a Galerkin weak-form finite element method to provide substantially reduced

computational cost while maintaining accuracy relative to that of a (traditional) full-order

finite element model. Furthermore, proper orthogonal decomposition is used to derive the

ROM basis from a set of response fields (i.e., snapshots) generated a priori with full-order

finite element analyses. Therefore, the set of full-order finite element analyses used to create

the ROM directly affects the accuracy/generalization of the ROM. The core hypothesis of

the algorithm presented is that maximizing the diversity, as defined in a measurable sense, of

the full-order models used to create the ROM will improve the accuracy of the ROM over a

range of input system parameters. Based on an initial (small) set of snapshots, the algorithm

uses snapshot correlation to quantify the snapshot diversity with respect to the system input

parameters. Then, the algorithm iteratively applies surrogate-model optimization to iden-

tify the next set(s) of system input parameters to be evaluated with full-order analyses to

create additional “optimal” snapshots. Although generally applicable to a variety of physical

processes, the ROM approach with the iterative snapshot generation algorithm is presented

within the context of steady-state dynamic solid mechanics of heterogeneous media. Two
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simulated case studies are then presented involving forward analysis and inverse characteri-

zation of semi-localized Youngs modulus distributions in structural components as could be

relevant to nondestructive evaluation problems. The iterative snapshot generation algorithm

is shown to produce ROMs that can accurately estimate displacement response fields over a

wide range of material parameters, and which are substantially more accurate than ROMs

created from randomly generated snapshot sets. Moreover, the accurate generalization of

the iteratively generated ROMs is shown to be sufficient to consistently produce accurate

inverse characterization solution estimates with a fraction of the computational expense that

would be required to do so with full-order analyses.

1.2 INTRODUCTION

There are a wide range of efforts covering almost every engineering field seeking to con-

tinually develop and improve methods for the solution of inverse problems relating to the

mechanics of structures and system, including design, control, and characterization of system

properties at many different scales and involving many different physical processes [110, 6].

However, often at the core of these efforts is the nearly omnipresent ill-posedness, with these

inverse problems suffering from some level of solution non-uniqueness, non-existence, and/or

instability. One result of this ill-posedness is that surrogate mappings of the inverse rela-

tionship or other such attempts to directly connect components of the desired or measured

forward response to system (inverse problem) unknowns are often inapplicable in the general

quantitative case. Therefore, computational inverse problem solution approaches (i.e. com-

putational inverse mechanics approaches) that combine computational forward mechanics

with optimization methods are often the only feasible solution strategy. Several computa-

tional inverse mechanics approaches have been developed in recent years for a variety of

applications, including estimation of thermal material properties (e.g., [6, 7, 9, 2, 3]), struc-

tural characterization and/or damage detection (e.g., [3, 17, 47, 92, 107]), microstructural

design (e.g., [41, 113, 1]), and optimal control (e.g., [30, 88, 76, 56, 32]).
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The typical approach to computational inverse problem solution methods is to combine

a numerical representation of the system being considered with a nonlinear optimization

technique to identify the properties that minimize some measure of the difference between the

numerical representation and the experimental measurements (or desired behavior). Without

accurate forward modeling, an inverse solution may be unattainable, or worse yet, any

apparent solution may be dramatically incorrect. Even with the continued advancements

in computing processors and grid-computing capabilities, there is still a significant need to

reduce the associated computational costs for these inverse problem solution approaches.

Therefore, while implementing the highest resolution multiphysics modeling possible will

provide for the optimal solution accuracy, the resulting computational expense is expected

to cause most realistic inverse applications to become infeasible.

To address the issues of computational expense, many currently employed inverse prob-

lem solution approaches either reduce the model size through assumptions about the nature

of the system response (e.g., [72, 12, 70, 69]),which simplifies the nature of the inverse prob-

lem search space and leads to fewer required forward simulations (e.g., [98]), but may be

impractical for some applications.

More generally, in computational forward modeling several approaches have been de-

veloped to create accurate numerical models of physical systems with dramatically reduced

computational expense. Most recent developments(as will be applied in the present work)

do not replace the physics-derived governing equations of the system, as is the case for

surrogate- (i.e. meta-) model methods [18, 89], but rather seek to identify a basis that is

optimally incorporated into a numerical method to solve the governing equations (e.g., as

the approximation functions for the weak-form Galerkin method) [5]. Therefore, similar to

typical FE (Finite Element) approaches, these reduced order models (ROMs) are capable of

approximating whatever physical process is desired (not just structural mechanics behavior),

still include the physics of the given boundary value problem, and are not necessarily depen-

dent on one specific set of system inputs such as an initial constitutive model (as in modal

superposition). By using a global approximation, ROMs can have orders of magnitude fewer

degrees of freedom than traditional FE methods, which dramatically reduces the computa-

3



tional expense to obtain forward numerical solutions, yet are often simple to implement into

existing computational mechanics codes.

Although they are not often both addressed, in general there are two fundamental steps

for most approaches to create bases for ROMs: (1) acquisition of an ensemble of possible

solution fields for the system under consideration and (2) data processing of the ensemble to

create a basis. Most commonly the focus is placed on the data processing (Step (2)), and the

ensemble, which can be obtained experimentally or numerically, is assumed to be given in

some sense. For example, the proper orthogonal decomposition (POD) method (in some cases

interchangeably referred to as Karhunen-Loeve transform or principal component analysis) is

one such processing method that has been used in several examples to process ensemble data

to produce ROMs, and has been shown in many cases to provide bases for accurate numerical

representations for complex systems with minimal computational cost [46, 48, 65, 23]. POD

has also been applied to several ROMs within inverse problem solution methodologies, such

as optimal control [88, 76, 8, 59], microstructural design [1], and nondestructive testing and

system identification [11, 40, 53, 57, 84, 18]

As stated, relatively little work has been done thus far to specifically develop methods for

generating the necessary data ensembles with a limited number of full-order analyses (e.g.

traditional FE analyses of the system) that will lead to optimally accurate ROMs. Further-

more, the majority of this previous work has been focused on a priori sampling strategies,

that define a fixed distribution of the values in the parameter space based upon the physical

bounds on the parameters and the total number of snapshots to be generated with these

parameter values. Several of these studies have considered ROM accuracy alone (i.e., not

in the context of inverse problem solution capabilities) with respect to purely mathematical

sampling strategies (i.e., not considering the physics of the problem in determining the sam-

pling), including Latin hypercube sampling [78] and centroidal voronoi tessellation sampling

[31, 91], which have shown varying improvements in performance (accuracy and/or efficiency)

when compared to random, uniform, and/or other a priori sampling techniques. One of the

few examples that has explored in detail the effect of ensemble generation on inverse solution

strategies with ROMs is [51], which showed for a damage identification inverse problem that

using a priori sampling to create an ensemble by uniformly varying the damage parameters
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lead to as good, and many times better, inverse identification capabilities than a random

sampling. Alternatively, [18] attempted to take into account the physics of the problem of

interest, and hypothesized and tested an approach for “maximum diversity” to optimally

derive an ROM ensemble a priori for inverse problems to characterize rate-dependent solid

material behavior. However, while they are straightforward approaches, many of the a priori

sampling approaches (particularly those closest to uniform sampling) can require an exces-

sive number of samples (beyond the feasible limit on evaluations in some cases) to sufficiently

cover the parameter space. Moreover, there is naturally a fundamental limitation in only

considering a priori sampling, particularly without any consideration of the physics of the

model as related to the parameters being sampled [73]. With these a priori techniques there

is no problem-specific reasoning for the choice of the samples, leading to the potential for

significant samples being overlooked or a large number of samples being required for accu-

racy. In contrast, iterative sampling approaches seek to incrementally select the next best

sample(s) based on problem-related information that can be derived from the ensemble that

has been evaluated to that point in the procedure. One of the few examples of an iterative

sampling approach is the certified reduced basis methods [97, 96, 86] that center on the use

of a posteriori error estimates for ROMs. These certified reduced basis methods attempt to

create the least number of ensemble members through full-order numerical analyses to suit-

ably bound the error estimate. This approach could potentially provide an elegant means to

create and/or update a ROM basis to be optimal (for the given order) by choosing simulation

parameters for new ensemble members that have the highest a posteriori error estimate, and

would thus most significantly reduce the error estimate for the subsequent updated ROM.

However, this approach hinges on the ability to generate the a posteriori error estimate for

the ROM, which is nontrivial to determine. Moreover, the assumption that the optimal

ensemble member has the maximum a posteriori error estimate for the current basis may

not be true for all cases.

This work presents a novel generally applicable algorithm for the iterative generation

of a data ensemble that can be used to create a ROM such that the accuracy of the ROM

is improved over a range of input system parameters. The algorithm is based upon the

assumption that maximizing the diversity of the data ensemble within the space of variable
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system input parameters will improve the generalization of the resulting ROM over the space

of input parameters, and thus improve the capabilities of the ROM within a computational

inverse problem solution method. Section 1.3 outlines the details of the iterative data ensem-

ble and reduced-order modeling strategy within the context of POD ROMs for steady-state

dynamic solid mechanics of heterogeneous solids. Then, Section 1.4 presents and discusses a

series of numerical examples displaying the capabilities of the ROM generation strategy in

terms of both forward modeling accuracy and inverse problem solution capabilities, which is

followed by the concluding remarks in Section 1.5.

1.3 OPTIMAL BASIS GENERATION FOR REDUCED-ORDER

MODELING

The following discussion of an approach to create optimally accurate physics-based reduced-

order models is presented within the context of steady-state harmonic solid mechanics of

heterogeneous solids with a range of potential material parameters. Such a reduced-order

model could be particularly applicable to a computational solution procedure for an inverse

problem relating to characterization or design of the heterogeneous material properties for a

solid that is tested or utilized with some type of harmonic excitation (e.g., [17, 18, 83] [109].

By providing high accuracy and low computational cost predictions of the system response

over the range of potential material properties, an inverse solution procedure would be able

to relatively quickly search through the potential solutions to identify an accurate estimate

of the true (or optimal) material properties. However, a critical point is that the concepts

presented are intended to be generalizable to a wide variety of applications. As stated the

reduced-basis reduced-order modeling approach has been shown to be applicable to a wide

variety of boundary value problems for a variety of physical systems, including not just solid

mechanics, but also heat transfer and fluid mechanics, among others, and the basis generation

approach is implementable for any one of these applications. More importantly, the optimal

basis generation approach is applicable to generate an optimal basis with respect to a wide

variety of variable system inputs, including material properties (as discussed herein) and
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boundary conditions, and is independent of their parameterization (i.e., the basis generation

algorithm can be used with whatever parameters control the variable/unknown input of the

model).

1.3.1 Steady-State Solid Mechanics Governing Equations and Weak Form

Assuming that the solid considered is excited harmonically to a steady-state, and therefore

the system variables vary harmonically in time with angular frequency ω, and neglecting body

forces, the governing equations and boundary conditions (i.e., boundary value problem) from

conservation of momentum can be written as:

∇ · σ(~x, ω) + ω2ρ(~x)~u(~x, ω) = ~0, ∀~x ∈ Ω, (1.1)

σ(~x, ω) · ~n(~x) = ~T (~x, ω), ∀~x ∈ ΓT , (1.2)

and

~u(~x, ω) = ~u0(~x, ω), ∀~x ∈ ΓU , (1.3)

where ~x is the spatial position vector, σ(~x, ω) is the stress tensor, ρ(~x) represents the density

of the solid, ~u(~x, ω) is the steady-state displacement amplitude field, ~T (~x, ω) is the applied

traction amplitude vector, ~u0(~x, ω) is the applied displacement amplitude, Ω is the domain

of the solid, ~n(~x) is the unit outward normal vector to the surface of the domain, Γ, and ΓT

and ΓU are the portions of the domain surface where traction and displacement are applied,

respectively, such that ΓT
⋃

ΓU = Γ and ΓT
⋂

ΓU = ∅. Assuming for simplicity small strain

linear elastic behavior, the constitutive equations can be written as:

σ(~x, ω) = CIV : ε(~x, ω), (1.4)

with

ε(~x, ω) =
1

2

(
∇~u(~x, ω) +∇~u(~x, ω)T

)
(1.5)

where ε is the standard small strain tensor and CIV is the fourth-order elasticity tensor.

The standard weak form Galerkin approach [90] was employed herein to approximate

the solution of the boundary value problem described by Eqs. (1.1)-(1.5) using an arbitrary
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approximation function of the steady-state harmonic displacement field. As such, the weak

form of the steady-state dynamic solid mechanics problem can be expressed as:∫
Ω

∇δ~u(~x) : σ(~x, ω)d~x−
∫

Ω

ω2ρ(~x)δ~u(~x) · ~u(~x, ω)d~x−
∫

ΓT

δ~u(~x) · ~T (~x, ω)d~x = 0, (1.6)

where δ~u(~x) is an arbitrary weight function vector that satisfies δ~u(~x) = 0, ∀x ∈ Γu. There-

fore, all that is necessary to complete the Galerkin approach is to substitute an approximation

for the displacement field and the weight function (using the same basis for both) to obtain

a discretized form and a linear system of equations for each excitation frequency. The com-

mon finite element approach would be to discretize the spatial domain into elements and

use polynomial approximations within each element to discretize then assemble a system of

equations. However, as is commonly known, this finite element approach (referred to as the

full-order modeling approach herein) typically requires at least many thousands of degrees

of freedom, even for relatively simple two-dimensional problems to accurately represent the

physics of the system. Alternatively, as stated in the introduction, the objective of the

reduced-basis form of reduced-order modeling is to identify a basis that is optimal in some

sense for representing the physics of the system under consideration with far fewer degrees

of freedom than the full-order model. One such approach to generating a reduced-basis is

through POD, and implementing this basis for reduced-order modeling is detailed in the

following.

1.3.2 Reduced-Order Modeling with Proper Orthogonal Decomposition

The core hypothesis of the reduced-basis reduced order modeling approach considered in the

present work is that a relatively small number of full-order (i.e., traditional finite element)

analyses based upon different values of the input parameters of interest (material parameters

herein) contain fundamental information about the potential solution fields of the BVP

(Boundary Value Problem) and can be used to derive a low-dimensional basis that can

predict the solution fields for a range of input parameters (not just the specific parameter

values used to generate the set of full-order analyses) with reasonably sufficient accuracy.

The POD approach specifically derives the low-dimensional basis such that the difference
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between the original full-order data and the best approximation to that data with this basis

is minimized in an L2 average sense. Thus, the problem to determine the POD basis can be

cast as an optimization problem to determine the set of m modes {φi(~x)}mi=1 given a set of n

full-order analysis fields (where generally m is much smaller than n) {u(~x,~γk)}nk=1, for each

variation of the input parameters of interest ~γk, such that:

Minimize
{φi(~x)}mi=1∈L2(Ω)

〈
‖~u(~x,~γk)− ~̂u(~x,~γk)‖2

L2(Ω)

〉
, (1.7)

where:

〈~uk〉 =
1

n

n∑
k=1

~uk, (1.8)

‖~u(~x)‖2
L2(Ω) = (~u(~x), ~u(~x)) , (1.9)

(~u(~x), ~v(~x)) =

∫
Ω

~u(~x) · ~v(~x)d~x, (1.10)

and assuming an orthonormal basis, the best approximation can be defined by the projection

onto the basis as:

~̂u(~x,~γk) =
m∑
i=1

(
~φi(~x), ~u(~x,~γk)

)
~φi(~x). (1.11)

Through several manipulations, including applying the method of snapshots, the POD

optimization problem defined by Eq. (1.7) can be transformed into the following n-dimensional

eigenvalue problem (see [18] and the references therein for additional details on the POD

formulation):

1

n

n∑
k=1

AjkCk = λCj, (1.12)

where

Ajk =

∫
Ω

~u(~x,~γj) · ~u(~x,~γk)d~x. (1.13)

An optimal set of as many as n orthogonal basis functions (i.e., POD modes) can then be

determined from the solution of the above eigenvalue problem by:

~φi(~x) =
1

λ(i)n

n∑
k=1

~u(~x,~γk)C
(i)
k , for i = 1, 2, ..., n, (1.14)
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where C
(i)
k is the kth component of the ith eigenvector from the solution of (1.12) and λ(i)

is the corresponding eigenvalue. λ(i) is often considered a measure of the “importance of

the corresponding mode” (~φi(~x)) for approximating the given dataset of potential solution

fields. Therefore, a common procedure (as was done herein) is to only use the m modes with

the highest corresponding eigenvalues, with m < n, for any subsequent solution approxi-

mation, and the remaining modes are discarded (a typical heuristic is to use the set with

corresponding eigenvalues that represent around 99% of the total sum of the n eigenvalues).

The m-dimensional basis obtained from applying POD to the given set of full-order

analyses can be implemented to create a ROM by simply applying this new low-dimensional

basis to approximate the components of the weight function vector and the displacement

vector in the weak form shown in Eq. (1.6) as:

δ~u(~x) =
m∑
i=1

di~φi(~x) (1.15)

and

~u(~x,~γ) =
m∑
i=1

ai(~γ)~φi(~x), (1.16)

where di are the arbitrary coefficients for the weight functions and ai(~γ) are the coefficients

to be determined by the numerical analysis to approximate the displacement response of

the system given a new set of system input parameters (~γ), such as material parameters

and/or excitation frequency. (Note, that in the case of non-homogeneous essential boundary

conditions, the approach can be modified slightly by applying POD to the modified snapshots

as ~̆u(~x,~γ) = ~u(~x,~γ)− 〈~uk〉, and replacing Eq. 1.16 with ~u(~x,~γ) = 〈~uk〉+
∑m

i=1 ai(~γ)~φi(~x).)

Eliminating the arbitrary weight function coefficients, the linear system of equations for

the reduced-order model to determine the vector of modal coefficients {a} can be written

as:

([Kφ]− [Mφ]) {a} = {Rφ} , (1.17)

where

[Kφ] =

∫
Ω

[Bφ]T [C][Bφ]d~x, (1.18)

[Mφ] =

∫
Ω

ω2ρ(~x)[Φ]T [Φ]d~x, (1.19)
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{Rφ} =

∫
ΓT

[Φ]T ~T (~x, ω)d~x, (1.20)

[Φ] is the matrix of the m POD modes, [Bφ] is the matrix of derivatives of the POD modes

(as needed to calculate the strain using the displacement approximation), and [C] is the

material stiffness matrix, assuming a transformation of Eq. (1.6) to Voigt notation. Note

that in the general case the amplitude fields could be complex numbers to account for

differences in phase (as could be caused by material dissipation, or otherwise), which could

be implemented by simply approximating the real and imaginary components independently

as shown in Eq. (1.16).

The above derivation of the POD reduced-order modeling follows the standard imple-

mentation of the Galerkin weak form finite element method. The only significant difference

from the standard finite element approach is that the POD basis approximation is spatially

global in this reduced-order model case, rather than defined locally over each individual ele-

ment in a mesh. More importantly, one critical question still remains unanswered from the

above formulation, which is how to select the set of input parameters used to create the set

of full-order analyses to then use for creating the POD basis. In particular, this dataset must

be generated in such a way to limit the number of full-order simulations necessary to ensure

sufficiently accurate generalization of the reduced-order model over the admissible range of

the input parameters of interest. The following presents just such an approach to iteratively

generate the input parameters that will be used to simulate full-order response fields to create

accurate POD reduced-order models. More specifically, this iterative snapshot generation

approach seeks to create a set of full-order analyses that captures all significant features of

the potential solution fields in the space of the parameters of interest with a limited number

of full-order analyses to ensure accurate subsequent reduced-order modeling, or alternatively,

to improve the ROM accuracy for a fixed number of full-order analyses.

1.3.3 Iterative Snapshot Generation to Improve Generalization

Extending the work in [18], the core hypothesis of the proposed iterative snapshot genera-

tion method is that maximizing the diversity of the snapshots created within the space of
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the input parameters of interest will improve the generalization of the resulting reduced-

order model over that parameter space. The work in [18] showed that snapshot diversity for

viscoelastic material parameters could be (at least in part) quantified with respect to the

difference between the material energy dissipation as well as the energy storage defined by

the material parameter sets. A metric was presented to quantify this material diversity, and

this metric was shown to be capable of creating a diverse set of snapshot fields within the

parameter space, which then yielded significantly more accurate reduced-order models com-

pared to randomly generated snapshots for a fixed maximum number of full-order analyses.

However, this prior approach is limited in application to viscoelastic material parameters.

Alternatively, the present work seeks to establish a generalized approach that is applicable

to a wide variety of physical systems and input parameters of interest that will be used to

generate snapshots.

The first, most critical step in this approach to optimize snapshot generation is to form a

metric that quantifies the diversity of the snapshot fields. One way diversity can be directly

quantified for any pair of snapshots (based on the sets of input parameters used to simulate

the full-order models ~γi and ~γj) is through the correlation between the two snapshots as:

R(~γi, ~γj) =
|(~u(~x,~γi), ~u(~x,~γj))|

‖~u(~x,~γi)‖L2(Ω) · ‖~u(~x,~γj)‖L2(Ω)

. (1.21)

If this correlation is minimized between all snapshot fields, then the diversity of the set of

snapshots could be said to be maximized in some sense. However, this definition of snapshot

diversity cannot be used directly to generate a set of snapshots in practice, as it would

require full-order analyses to produce the response fields for each set of input parameters to

quantify the diversity, which is exactly what is trying to be avoided in an effort to improve

computational efficiency with reduced-order modeling. Alternatively, to maintain this direct

definition of snapshot diversity, but avoid excessive computational expense, the present work

proposes the use of iterative surrogate (i.e., meta) modeling to predict and minimize the

snapshot correlation with respect to the input parameters of interest.
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Given a set of n0 input parameters sets {~γi}n0

i=1 and the corresponding full-order analysis

response fields (i.e., snapshot), a measure of the total diversity of the ith snapshot (created

with input parameter set ~γi) within the set can be calculated as:

R∗(~γi) =

n0∑
j=1
j 6=i

R(~γi, ~γj). (1.22)

Then, provided with the diversity metric for each snapshot in the set {R∗(~γi)}n0

i=1, the ob-

jective of the surrogate model approach is to create an approximate mapping (i.e., surrogate

model) between the input parameters and the diversity metric. Any preferred machine learn-

ing technique can be used to generate the surrogate model, such as artificial neural networks

([39]) or support vector regression ([104, 44]), with the examples presented herein using

support vector regression. The surrogate model of the diversity RSM(~γ) can then be easily

minimized to estimate the optimal next set of input parameters (within the domain of the

parameters X) to use with the full-order model to generate another set of snapshots that

would maximize the diversity of the snapshot set, as in:

Minimize
~γ∈X

RSM(~γ). (1.23)

Note that since the computational cost of the surrogate model is negligible, then essen-

tially any preferred global optimization algorithm can be used, regardless of the algorithm

efficiency, with a genetic algorithm [39] being used for the examples herein. Due to the

expectation of some loss of accuracy in the surrogate model, an additional constraint on the

parameter sets was added to the surrogate model optimization for the present work. To

ensure that the input parameter sets are not overly clustered in the parameter space, the

new parameter set was constrained to be a specified minimum distance δ from every other

parameter set, such that:

‖~γ − ~γi‖ > δ for i = 1, 2, ..., n0, (1.24)

where ‖ · ‖ is the standard l2-norm. Once the new set of input parameters is determined

from the solution of Eq. (1.23) and Eq. (1.24), the input parameter set is used with the

full-order model to generate a new snapshot.
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Figure 1.1 shows a flowchart that describes the overall procedure for the iterative snapshot

generation algorithm to maximize snapshot diversity and as a result improving reduced-order

model accuracy. First, an initial set of n0 input parameter sets is randomly generated from a

uniform distribution within the parameter space X, and each set is evaluated with the full-

order model to create the initial set of snapshots. The diversity metric is calculated for each

snapshot in the set Eq. (1.22), and the surrogate model approach described above is applied

to determine the next “best” set of input parameters. A new snapshot is generated with

this input parameter set from the surrogate model approach and the corresponding diversity

metric is calculated. Lastly, the set of input parameter sets and corresponding diversity

metrics is expanded ({~γi}n0+1
i=1 and {R∗(~γi)}n0+1

i=1 ), and the surrogate model process is repeated

until some convergence criteria is reached (e.g., the increase in R∗ exceeds a tolerance or a

maximum number of full-order analyses has been performed). At the completion of the

snapshot generation algorithm a POD reduced-order model can be generated and utilized.

1.4 EXAMPLES AND DISCUSSION

To display the capabilities and potential applicability of the method presented for iterative

generation of optimal reduced-order models, two simulated case studies were considered

regarding efficient and accurate modeling of the deformation of structural members with

semi-localized Young’s modulus distributions. Although the concepts presented are intended

to be generally applicable to a variety of physical processes/properties and applications, this

specific example of solids with locally distributed stiffness was chosen for context based

on its potential applicability to nondestructive evaluation applications [83, 25, 60, 4, 21,

29]. Thus, the examples also examined the capabilities to then inversely characterize such

material property distributions using a computational inverse solution procedure relying on

this modeling. As such, the core question examined throughout the examples is: “Can the

iterative approach be used to create a ROM that can produce sufficiently accurate response

fields for any feasible set of parameter values for inverse characterization purposes?” In both

test cases POD ROMs were generated through the iterative approach to maximize diversity
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.

Figure 1.1: Flowchart describing the iterative snapshot generation algorithm.
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of the snapshot sets, and the accuracy of these ROMs was quantified with respect to full-order

analysis (i.e., traditional finite element analysis) and compared to the accuracy of similar

POD ROMs created from randomly generated snapshot sets. Then, the iteratively generated

ROM was incorporated into an inverse characterization solution procedure to show that the

iteratively generated ROM can be created with a sufficient forward solution accuracy to

allow for accurate and computationally efficient inverse solution processes.

1.4.1 Full-Order and Reduced-Order Forward Modeling

For both case studies it was assumed that the structures would be tested using frequency-

response-based nondestructive testing (NDT) to then determine the material properties with

nondestructive evaluation (NDE). Frequency-response-based NDT has proven diagnostic ca-

pability, and although displacement measurement is not particularly common, approaches

have been developed to acquire such measurements [105, 101]. For the examples discussed

here, the NDT consisted of a localized harmonic actuation applied normal to the surface

of the structure at a given excitation frequency and the resulting steady-state harmonic

vertical displacement amplitude was measured at a set of discrete sensor locations. There-

fore, the physics for both examples was assumed to be described by steady-state dynamic

solid mechanics, as described previously, and the full-order forward modeling was performed

using the finite element method. The material behavior was assumed to be linear elastic

with a homogeneous density and Poison’s ratio of 2700 kg/m3 and 0.3, respectively, and the

semi-localized Young’s modulus distribution was assumed to be defined with a radial basis

function (RBF) as:

E(~x) = E0

1− α · exp

−
∥∥∥~x− ~ζ∥∥∥2

c


 , (1.25)

where, ‖·‖ represents the l2-norm, E0 is the base Young’s modulus, α is the percentage of

the reduction in Young’s modulus, ~ζ is the center of the RBF, and c is the breadth of the

RBF. In other words, each Young’s modulus distribution considered was parametrized by

four parameters, such that ~γ = [α, ζ1, ζ2, c]
T . For the specific examples herein, the base
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Young’s modulus was assumed to be known as a standard nominal value for aluminum, such

that E0 = 69GPa.

An important note is that for all examples the excitation frequency of the NDT was

assumed to be a single fixed value (i.e., defined by the NDT), and therefore, only the pa-

rameters of the Young’s modulus distribution were considered as variables to generate the

ROMs. To apply the iterative snapshot generation approach to create the ROMs, the initial

sets of snapshots were generated with full-order modeling based on uniformly distributed

random values of the four unknown stiffness parameters (α, ζ1, ζ2, and c). Support vector

regression [104, 44] was applied to create the surrogate models that would map the stiffness

parameter values to R∗ Eq. (1.22) based on the current set of snapshots at a given itera-

tion of the iterative process. A genetic algorithm [39] was used to identify the new set of

parameters that minimized R∗ with respect to the surrogate model. The new parameter set

was then simulated with the full-order model, the surrogate model was updated based on

the expanded set of snapshots, and the process of iteratively generating the snapshots was

repeated until the predefined (as stated for each example) maximum number of snapshots

were generated. Finally, ROMs were created from the snapshot sets using the Galerkin weak

form approach described in Section 2.2.

In the following examples, the forward modeling accuracy of the ROMs was first tested

directly in comparison to the full-order modeling (i.e., the “gold standard” in terms of

accuracy, but computationally inefficient) for several parameter sets that were not included

in the snapshot sets, to directly quantify the generalization capabilities of the ROMs before

considering an inverse characterization problem. To test the ROM accuracy a standard

relative error metric was utilized for each parameter set as follows:

Error(~γ) =
‖~uROM(~x, ω,~γ)− ~uFOM(~x, ω,~γ)‖Ω

‖~uFOM(~x, ω,~γ)‖Ω

, (1.26)

where ~uROM and ~uFOM are the displacement response fields calculated with the ROM and

full-order model, respectively, and ‖ · ‖Ω is the chosen norm over the spatial domain, Ω, with

both the L2 and L∞ norms being considered in the following. To provide a baseline for

comparing the accuracy of the iteratively generated ROMs, ROMs were also created for the
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examples using an equivalent total number of randomly generated snapshots (generated in

the same format as the initial set for the iterative approach).

1.4.2 Inverse Problem

To test the efficacy of the resulting ROMs to be used in a computational inverse problem

solution procedure, each example case considered a corresponding set of tests in which the

ROMs were used in an NDE procedure to estimate the stiffness parameters of the structures

given simulated NDT measurements for several test cases. The simulated NDT for each

case was assumed to produce harmonic displacement amplitudes measured at ns discrete

locations throughout the domain of the structures considered. Thus, in order to simulate

NDT measurements, a set of material parameters were randomly selected and a full-order

model was analyzed to produce displacement responses. For the second example, to add

realism and avoid the inverse crime inherent in simulated experiments to some degree, Gaus-

sian white noise was added to the displacement amplitude response at each measurement

location.

Utilizing the ROMs, the inverse problem was cast as an optimization problem to deter-

mine the material parameters that minimize the relative difference between the simulated

experimental NDT measurements and the response predicted by the ROM as:

Minimize
~γ∈X

∑ns

i=1

(
~uROM(~xi, ω,~γ)− ~uexp(~xi, ω)

)2∑ns

j=1 (~uexp(~xj, ω))2 , (1.27)

where again X is the domain of the unknown stiffness parameters and ~uexp is the simulated

experimental displacement responses. A standard genetic algorithm was again applied to

solve the above optimization problem and identify the parameters to estimate the Young’s

modulus distributions, and therefore, estimate the solution to the inverse problem. After

optimization was completed, in addition to assessing the quality of the inverse characteri-

zation solutions, the measurement error for the final parameter estimates was recalculated

substituting the full-order model response field generated with the final parameter estimates

in place of the ROM response field in the objective functional in Eq. (1.27). In other words,

the results were tested to examine whether the error level achieved by using the ROM during
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the optimization process was comparable to the error that could have been obtained by the

full-order model instead (albeit, with much more computational expense). The quality of

the final inverse problem solution estimates were quantified through the relative L2-error

between the Young’s modulus distribution defined by the parameters used to create the

simulated experimental data and that estimated by the inverse characterization results as:(∫
Ω

(E(~x,~γexp)− E(~x,~γinv))
2
d~x
)1/2

(∫
Ω

(E(~x,~γexp))2 d~x
)1/2

, (1.28)

where ~γexp are the parameters used to create the simulated experimental measurement data

and ~γinv are the corresponding inverse solution estimates.

1.4.3 Example 1 - Plate

The first case study consisted of a 1m × 1m × 0.02m aluminum plate subject to a 1kPa

harmonic load applied to a 5cm region normal to the top surface of the plate, excited to

steady-state with an actuation frequency of 400Hz. The plate was assumed to be fixed

along the bottom boundary and free to displace along the other three boundaries. Fig. ??

shows the schematic of this first test case and the sensor locations, which were uniformly

distributed in each row, that were used for the NDE portion of the study.

For the iterative snapshot generation approach, an initial random set of 10 snapshots

was generated, and then the iterative surrogate modeling approach was iteratively applied

to generate the remaining snapshots in the set used to create the ROM. To examine the

dependence on the total number of snapshots, snapshot sets of 10 (i.e., the original randomly

generated set), 20, 30, 40, 50, and 60 were investigated, in turn. In addition, as noted

previously, snapshot sets of the equivalent total size were completely randomly generated

(i.e., no iteratively generated snapshots) for comparison purposes. In order to test the

accuracy of each ROM, 100 parameter sets were randomly generated and the relative error

between the ROM and the FOM responses Eq. (1.26) was calculated for each parameter set.

Figure ?? shows the average and standard deviation of the relative ROM error for the

100 test cases for both the iteratively generated ROMs and the randomly generated ROMs.
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As would be expected, for both approaches, the average error as well as the standard

deviation of the error for the resulting ROM decreased as the number of snapshots used to

construct the ROM increased. More interestingly, the ROM error corresponding to the iter-

atively generated snapshots was substantially lower than the the ROM error corresponding

to the randomly generated snapshots by approximately a factor of 2 or more for every size

of the snapshot set. In addition, the standard deviation of the error for the iteratively gen-

erated ROMs decreased considerably more quickly than the randomly generated ROMs, and

while the iteratively generated ROMs appeared to have a distinguishable better performance

in terms of decreasing L2 −Error at 50 snapshots, the randomly generated ROMs show no

such signs of performance.

To assess the capabilities to use the iteratively generated ROMs to approximate the

solution to an inverse problem, the iteratively generated ROMs were used to inversely ap-

proximate semi-localized Young’s modulus distributions, as described by Eq. (1.25), based

on the NDT and inverse solution procedure described above. In particular for this example,

the inverse solution process was tested with five different randomly generated material dis-

tributions (i.e., damage scenarios), and each scenario was approximated using the iteratively

generated ROMs constructed with 20, 40, and 60 total snapshots, in turn. The stopping

criteria for the genetic algorithm optimization for each trial was set to be a maximum of

2000 ROM evaluations.

Table 1.1 shows the material parameters used to create the simulated experimental mea-

surement data for the five scenarios considered and the corresponding parameters estimated

by the inverse solution process with the various ROMs (built from 20, 40, and 60 total snap-

shots), the respective ROM measurement error for the inverse solutions (as defined by Eq.

(1.27)), the respective FOM measurement error for the inverse solutions (substituting the

FOM in place of the ROM in Eq. (1.27)), and the error in the respective Young’s modulus

distributions predicted by the inverse solution estimates (as defined by Eq. (1.28)).

In addition, to provide further perspective on the relative accuracy of the Young’s modu-

lus distributions obtained by the inverse solution process, Figure 1.2 shows (as a representa-

tive example) the target (i.e., simulated experimental) Young’s modulus distribution for the

fourth scenario compared to the Young’s modulus distribution that was inversely estimated
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Table 1.1: Target (i.e., simulated experimental) values for the RBF amplitude (α), the

breadth of the RBF (c1), and the coordinate of the center of the RBF (ζ1, ζ2) defining

the Young’s modulus distribution, the corresponding parameters estimated with the inverse

characterization process using the ROMs created with 20 (ROM-20), 40 (ROM-40), and

60 (ROM-60) iteratively generated snapshots, and the respective ROM measurement error

(ME), the FOM measurement error (FE), and the error in the predicted Young’s modulus

distribution (YE) for the five test cases (i.e., damage scenarios) for Example 1 - Plate.

Test # Method α ζ1 ζ2 c ME(%) FE(%) YE(%)

1

Target 0.701 0.592 0.511 0.004

ROM-20 0.544 0.652 0.481 0.003 2.78 3.45 0.37

ROM-40 0.552 0.610 0.536 0.005 1.53 1.86 0.01

ROM-60 0.552 0.607 0.521 0.005 1.45 1.57 0.01

2

Target 0.416 0.841 0.832 0.002

ROM-20 0.310 0.763 0.782 0.003 0.72 3.12 0.04

ROM-40 0.384 0.803 0.791 0.002 0.52 2.73 0.02

ROM-60 0.405 0.824 0.801 0.002 0.49 1.67 0.07

3

Target 0.540 0.869 0.264 0.003

ROM-20 0.407 0.781 0.396 0.005 5.61 4.82 0.32

ROM-40 0.601 0.855 0.202 0.001 3.52 2.67 0.13

ROM-60 0.451 0.860 0.236 0.003 1.46 2.22 0.08

4

Target 0.639 0.544 0.647 0.005

ROM-20 0.558 0.598 0.607 0.003 2.89 5.14 0.48

ROM-40 0.583 0.576 0.683 0.004 2.4 2.39 0.27

ROM-60 0.608 0.532 0.651 0.004 2.11 1.5 0.24

5

Target 0.066 0.404 0.448 0.007

ROM-20 0.048 0.488 0.337 0.005 0.65 4.93 0.07

ROM-40 0.071 0.381 0.411 0.005 0.48 3.01 0.03

ROM-60 0.061 0.414 0.491 0.006 0.46 2.47 0.03
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Figure 1.2: Spatial distribution of the Young’s modulus from (a) the target (simulated

experiment) and (b) the inverse characterization estimate with the ROM built from 60

iteratively generated snapshots for the fourth test scenario for Example 1 - Plate.

using the ROM built from 60 iteratively generated snapshots. Overall, the optimization

process was able to sufficiently match the ROM response to the measurement data, with

only one scenario (the third scenario) having a ROM measurement error in excess of 5%.

Thus, the iteratively generated ROMs were able to at least produce response estimates that

relatively accurately matched the measurement data. More importantly, the FOM responses

with the inverse solution estimates also sufficiently matched the measurement data, even

though the optimization was performed with the ROM. Moreover, the FOM measurement

error was minimally higher than the ROM measurement error, again with only one scenario

(the fourth scenario for the FOM) having a FOM measurement error in excess of 5%. In

other words, the inverse problem solution estimates obtained with the ROMs were nearly as

accurate with respect to the FOM in terms of the measurement data, and were still within an

error range in terms of the FOM to be considered an inverse problem solution estimate. As

would be expected, corresponding to the accuracy in the measurement error, the resulting es-

timates of the Young’s modulus distributions were accurate for all five scenarios and all three

ROMs, with Young’s modulus reconstruction errors of less than 1% for every test. There

22



was a noticeable reduction in accuracy (in terms of the achievable measurement errors and

the Young’s modulus reconstruction) for the ROMs generated with 20 snapshots compared

to 40 and 60, which is not surprising considering the forward modeling accuracy shown in

Figure ??. However, even for the lowest-accuracy case of 20 snapshots, the inverse solution

process was able to be sufficiently applied to produce accurate inverse solution estimates

with the iteratively generated ROMs.

1.4.4 Example 2 - Airfoil

To examine a substantially more realistic and computationally expensive example, the second

simulated case study consisted of analysis of an aluminum airfoil structure based upon the

standard NACA-0012 cross section, shown schematically in Figure (??). The test consisted

of 1kPa harmonic loads applied simultaneously to two circular regions with 2cm radii normal

to the top surface of the airfoil, and the airfoil was excited to steady-state with an actuation

frequency of 400Hz. The airfoil was fixed on one side and free to displace along all of the

remaining boundaries. In order to slightly simplify the problem, the semi-localized change

in the Young’s modulus distribution was assumed to only occur in the upper portion of

the airfoil and the modulus value was kept constant through the thickness of the airfoil.

Therefore, the two-dimensional parameterization of the Young’s modulus described by Eq.

(1.25) was still applicable as the description of the in-plane Young’s modulus distribution of

the top half of the airfoil. A similar distribution of sensors was used for the NDE portion of

this second study as was used in the first example. The sensors were assumed to measure

the vertical displacement and the sensor layout is also shown in Figure (??).

The same iterative snapshot generation procedure was repeated as was used for the first

example, starting with 10 snapshots and then iteratively generating the remaining snapshots

for the sets to create the ROMs. Again, total snapshot sets of 20, 30, 40, 50, and 60 were

generated and analyzed, and equivalent sets of entirely randomly generated snapshots were

created for comparison. 100 new parameter sets were randomly generated and the relative

error Eq. (1.26) between the ROM and the FOM responses Eq. (1.26) was calculated for

each new parameter set.
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Figure 1.3 shows the average and standard deviation of the relative ROM error for the

100 airfoil test cases for both the iteratively generated and randomly generated ROMs.

Although the error levels were considerably higher (approximately doubled) for this second

(more complex) example, the reduction in the error as the number of snapshots increased and

the substantially lower error for the iteratively generated ROMs compared to the randomly

generated ROMs (by approximately a factor of 2 or more again) were nearly identical to the

first example. One noticeable difference between this example and the previous is that the

error level for the iteratively generated ROMs did not tend to be converged as it did for the

first example.

The capabilities to use the iteratively generated ROMs within an inverse solution pro-

cedure, as described above, was again examined for this airfoil example. As mentioned

previously, to add additional realism for this second example, 1% Gaussian white noise was

added to the simulated NDT displacement measurements for each sensor prior to applying

the inverse characterization procedure, such that:

~uexp(~x, ω) = ~uFOM(~x, ω,~γexp) · (1 + 0.01ℵ), (1.29)

where ℵ is a normally distributed random variable with zero mean and unit variance. For

this second example only two different randomly generated material distributions (i.e., dam-

age scenarios) were considered. However, to examine the consistency of the inverse solution

procedure with the ROM, particularly considering the stochastic nature of the inverse solu-

tion process described, the inverse characterization process was repeated 10 times for each

test case. Only the most accurate ROM (i.e., the ROM created from 60 iteratively gener-

ated snapshots) was utilized for the inverse solution procedure and the stopping criteria for

the genetic algorithm optimization for each trial was set to be a maximum of 5000 ROM

evaluations.

Table 1.2 shows the material parameters used to create the two sets of simulated ex-

perimental measurement data and the corresponding parameters estimated by the inverse

solution process with the ROM built from 60 iteratively generated snapshots, the respective

ROM measurement error for the inverse solutions (as defined by Eq. (1.27)), the respec-

tive FOM measurement error for the inverse solutions (substituting the FOM in place of
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Figure 1.3: Average and standard deviation (error bars) with respect to the 100 test cases of

the relative L2 and L∞ ROM errors for the randomly generated (Random) and the iteratively

generated (Iterative) ROMs for Example 2 - Airfoil.
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the ROM in Eq. (1.27)), and the error in the respective Young’s modulus distributions

predicted by the inverse solution estimates (as defined by Eq. (1.28)). To again provide

a representative example for perspective on the relative accuracy of the Young’s modulus

distributions obtained by the inverse solution process, Figure 1.4 shows the target Young’s

modulus distribution for the second scenario compared to the inversely estimated Young’s

modulus distribution. Similar to the first example, the optimization solution process was

successful in minimizing the measurement error with respect to the ROM in all trials, as

can be seen from the average ROM measurement error that was even lower than the first

example cases and an almost negligible standard deviation of that error. The FOM mea-

surement error was again higher than the ROM measurement error, but also consistently a

more than sufficiently low value to consider the inverse solution estimate to be legitimate.

Thus, all 20 solutions (10 solution trials for each of the 2 scenarios) produced nearly exact

(with a solution error less than 1%) estimate of the Young’s modulus, even in the presence

of measurement noise. What is particularly significant is that computing cost (i.e., CPU

time) of each ROM was only 0.8 seconds compared to the 63 seconds for the FOM. In other

words, the iteratively generated ROM was able to be consistently used to produce accurate

inverse solution estimates in approximately 1 hour of computing time, while the FOM would

have required 88 hours of computing time to produce equivalent estimates.

1.5 CONCLUSION

An approach was presented to efficiently create reduced-order models based on the Galerkin

weak-from approach for computational mechanics that are optimally accurate over a range of

system input parameters. The core component of the approach was the algorithm presented

for iteratively generating the ensemble of full-order model response fields used to create the

ROM to maximize the overall diversity of the ensemble, and thereby, improve the accuracy of

the resulting ROM. Although shown in the context of steady-state dynamic solid mechanics,

the approach is generally applicable to a broad range of physical processes and applications.

Through two case studies of harmonically excited structural components the iterative ap-
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Table 1.2: Target (i.e., simulated experimental) values for the RBF amplitude (α), the

breadth of the RBF (c1), and the horizontal and vertical locations of the center of the RBF

(ζ1, ζ2) defining the Young’s modulus distribution, the mean and standard deviation (from

the 10 repetitions) of the corresponding parameters estimated with the inverse characteriza-

tion process using the ROM created with 60 iteratively generated snapshots (ROM-60), the

respective ROM measurement error (ME), FOM measurement error (FE), and error in the

predicted Young’s modulus distribution (YE) for the two test cases (i.e., damage scenarios)

for Example 2 - Airfoil.

Test # Method α ζ1 ζ2 c ME(%) FE(%) YE(%)

1

Target Value 0.927 0.192 0.138 0.006

ROM-60

Mean 0.884 0.127 0.105 0.005 0.63 1.82 0.39

Std. Dev. 0.117 0.024 0.018 0.001 0.07 0.17 0.03

2

Target Value 0.093 0.525 0.861 0.004

ROM-60

Mean 0.090 0.491 0.895 0.004 0.49 1.37 0.06

Std. Dev. 0.004 0.051 0.090 0.001 0.05 0.15 0.01
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Figure 1.4: Spatial distribution of the Young’s modulus from (a) the target (simulated

experiment) and (b) the inverse characterization estimate with the ROM built from 60

iteratively generated snapshots for the second test scenario for Example 2 - Airfoil.

proach was shown to produce ROMs that could accurately estimate the system response over

a wide range of input material parameters, particularly in comparison to ROMs built from

randomly generated ensembles of FOM response fields. Moreover, the iterative approach

was shown to produce ROMs with sufficient accuracy and generalization over the range of

input system parameters to facilitate computationally inexpensive and consistently accurate

inverse characterization of material properties through a series of simulated nondestructive

evaluation problems.
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2.0 EVALUATION OF POD-BASED MODEL REDUCTION STRATEGIES

TOWARD EFFICIENT SIMULATION OF TURBULENT FLOWS PAST

BLUFF BODIES

2.1 ABSTRACT

A numerical investigation is presented regarding the efficiency and accuracy of a set of con-

temporary proper orthogonal decomposition (POD) based reduced-order modeling (ROM)

approaches for capturing the behavior of turbulent flows past bluff bodies. In particular, this

investigation seeks to evaluate the potential of the ROM approaches to predict not only the

variation in time of such flow systems, but also changes in the system response due to changes

in other input parameters, such as the system Reynolds (Re) number, while maintaining a

substantial reduction in computational cost compared to traditional computational fluid dy-

namics (e.g., finite volume). Two fundamentally different ROM approaches that similarly

utilize a POD basis are evaluated and compared: (1) the Galerkin projection approach, in

which the Navier-Stokes equations are projected onto the low dimensional POD basis, and

(2) a surrogate modeling approach in which the governing equations of the system are re-

placed with a surrogate mapping (e.g., radial basis function interpolation/extrapolation) of

the modal coefficients of the POD basis. These two ROM strategies are compared through

a set of numerical case studies for flow past a single cylinder as well as flow past a cluster of

four cylinders, both for a range of time and Re number variations. For all tests a standard

Unsteady Reynolds-Averaged Navier-Stokes (URANS) method was used both for generat-

ing the fluid velocity field datasets needed to create a POD basis and to compare with for

evaluating the ROM accuracies. For predicting responses in time with a fixed Re number for

a single cylinder, all of the ROMs were relatively accurate, but the surrogate model ROMs
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were significantly more accurate than the Galerkin projection ROMs, particularly at the

lower values of Re number. Alternatively, for predicting the flow response for varying Re

number, the surrogate model approach became ineffectual (errors greater than 100%), while

the Galerkin projection approach increased in error by a relatively small amount compared

to prediction with fixed Re number. For the example of flow past a cluster of four cylinders,

the accuracy of both ROM approaches was commensurate for predicting responses in time

with fixed Re number (i.e., the accuracy of the surrogate model approach decreased signifi-

cantly), and the maximum error of the ROM approaches increased by only a relatively small

amount compared to the single cylinder example. As before, the surrogate model approach

was unable to accurately predict variations in Re number, while the Galerkin projection

approach was approximately as accurate as for the single cylinder example.

2.2 INTRODUCTION

Despite improvements in computing power and progress of computational fluid dynamics

(CFD), the numerical solution of Navier-Stokes (NS) equations to describe the behavior

of a flow is still prohibitive for many applications. For example, CFD solvers often require

hundreds of thousands of degrees of freedom to accurately capture flow fields even of relatively

simple systems. For optimization problems, which require obtaining several solution fields,

or for feedback control problems for which real-time solutions are needed, it is not often

feasible to utilize traditional CFD solvers. Hence, some form of accurate and realistic model

reduction is necessary for enabling computational analysis to aid in a variety of engineering

applications [88],[16]. One example application that requires model reduction is simulating

flow within nuclear reactor components [26]. For example, Figure 2.1 shows a schematic of

a conceptual very high temperature reactor (VHTR) lower plenum. In this complex mixing

flow, anywhere from 50 to 100 fluid jets, with large inlet velocities (100 m/s) and large spreads

in temperatures (100◦C), turn 90 degrees and merge to create a cross-flow that negotiates

a bank of cylindrical supports. Simulating such a complicated thermo-fluid system with

turbulent mixing would likely be computationally infeasible with standard (i.e., full-order)
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CFD solvers. Moreover, even simulating components of such a system such as turbulent

flow over one or more cylinders can be computationally burdensome. There are a variety of

approaches that have been developed for model reduction for a wide range of applications

involving fluid mechanics [99], [24]. The particular focus herein is on those reduced-order

modeling strategies that seek to derive a relatively low-dimensional basis to represent the

response of the system of interest from an ensemble of possible response fields that have

been acquired a priori (often from a relatively small number of full-order analyses). Different

methods have been applied to process an ensemble of data to produce reduced-order bases,

including balanced truncation [42], Krylov subspaces [10], Proper Orthogonal Decomposition

(POD), and balanced POD [94]. Due to its optimality in the sense of minimizing the average

L2 error and convergence properties, the POD method is used in the present work to obtain

reduced-order bases. Furthermore, POD has been used in numerous applications to create

ROMs of fluid flows, including forward modeling of fluid dynamics [93], [54] as well as optimal

control applications [95].

One aspect that is clearly important when creating a reduced-order model (ROM) is gen-

erating a basis that is in some sense a good representation of the system considered under

any conceivable system variation. For example, in a fluid dynamics application a ROM may

need to be capable of capturing the flow behavior accurately not only for changes in time or

frequency, but also for changes in Re number. One approach to such ROM generalization

is the Generalized POD (GPOD) method [106], [100], which attempts to make a sufficiently

diverse initial dataset through sampling the potentially variable system parameters (e.g.,

time/frequency, material properties, Reynolds number, etc.) and generating response fields

with full-order models with those parameters such that the basis acquired is applicable to

all possible system variations. Alternatively, other approaches that have been developed

attempt to somehow manipulate the basis to be used in a ROM for a given set of system

parameters (i.e., to make the basis a function of the input parameters), such as the Inter-

polation of Reduced Basis Vector method [28] and the Subgrid Angle Interpolation Method

[68], [66], [67]. The present work utilizes a GPOD approach, based on the simplicity of the

implementation and the fact that the ROM built using the GPOD approach can be used for
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any set of system parameters desired without any need for updating (as would be the case

for the other approaches mentioned).

More importantly to the present work, once the low-dimensional basis is derived, there

are different approaches to utilizing these bases in order to produce a ROM. These approaches

can be divided into two categories: (1) those that project the low-dimensional basis onto the

original governing equations of the system (e.g., NS equations) and (2) those that instead

integrate the basis into a surrogate model (e.g., regression-based) strategy. An example

of the first strategy is the standard Galerkin projection (i.e., weighted integral) of the basis

onto the NS equations, which has been previously applied to several fluid dynamics problems,

such as simulation of shear layers [87], flow around an airfoil [61], cavity flow [20], and flow

past a cylinder [27], [64]. Similarly, surrogate modeling approaches have also been previously

applied in the context of fluid dynamics, including [108] that presented a number of surrogate

modeling approaches for aerodynamic simulation and [80] that used radial basis function

regression for approximating the 3D Lorenz model as well as turbulent flow, among others.

Generally, these two ROM approaches have a tradeoff between accuracy and computational

efficiency. Projection approaches are typically more accurate, as they include the physics-

derived governing equations of the system in comparison to surrogate modeling approaches,

but are considerably more computational expensive as they still require numerical integration

over the system domain and potentially the solution of an ordinary differential equation (if

the system is transient).

Towards understanding the potential capability of ROM strategies to capture the complex

behavior of turbulent flows that may occur within nuclear reactor components (such as the

lower plenum shown in Figure 2.1), the present work focuses on the benchmark example of

isothermal flow past one or more cylinders. The example of flow past a cylinder was chosen as

it has a simple geometry, coherent structures (i.e., basis functions obtained by POD) can be

captured easily, and the behavior involves both vortex shedding phenomenon and separated

flow [112]. Previous studies have similarly investigated physics-based ROM for flow past

bluff bodies. The work in [81] introduced the concept of a shift-mode representing the mean-

field correction, which was shown to describe the Reynolds-number dependence of a flow

with reasonable accuracy. Galletti et al. [37] studied the validity of POD-ROM of a laminar
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Figure 2.1: Lower plenum geometry including support posts and inlet jets [77]

flow past a square cylinder for Reynolds numbers that are different from those for which

the model was derived, and showed that the long-term dynamics can be accurately captured

with some variations of the Reynolds number. Siegen et al. [102] proposed a double proper

orthogonal decomposition (DPOD) approach to capture the evolution of the limit cycles

for flow past a single cylinder in the laminar regime. Alternatively, the focus of the present

study is on comparing and contrasting the capabilities of two ROM strategies: (1) a Galerkin

projection approach and (2) a surrogate modeling approach for ROM of turbulent flows past

cylinders. In addition, the present work examines the effectiveness of these ROM strategies

with respect to predicting in time and with variations in Reynolds number, as well as for

increasing the system complexity with the inclusion of more than one cylinder in the flow

field.

The following section details the POD reduced-order modeling methods utilized herein,

including the Galerkin projection approach and the surrogate modeling approach (i.e., surro-

gate model approach). Then, the ROM approaches are evaluated and compared numerically

through a set of flow past cylinder(s) example problems in Section 2.4, which is followed by

concluding remarks in Section 2.5.
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2.3 POD REDUCED-OREDER MODELING OF INCOMPRESSIBLE NS

EQUATIONS

The core hypothesis of any POD-ROM approach is that a relatively small number of full-order

(i.e., traditional CFD solvers) analyses based upon different values of the input parameters

of interest (Re number or time levels herein) contain fundamental information about the

potential solution fields of the Boundary Value Problem (BVP) and can be used to derive

a low-dimensional basis that can predict the solution fields for a range of input parame-

ters (not just the specific parameter values used to generate the set of full-order analyses)

without substantially less accuracy compared to the full-order model. The problem of de-

termining the POD basis can be cast as an optimization problem to determine the set of

m modes {φi(~x)}mi=1 given a set of n full-order analysis fields (where generally m is much

smaller than n) {u(~x,~γk)}nk=1, for each variation of the input parameters of interest ~γk, such

that the average L2 error between full-order analysis and its projection on the subspace

is minimized. Through several manipulations, including applying the method of snapshots

[103], the POD optimization problem can be transformed into the following n-dimensional

eigenvalue problem:
1

n

n∑
k=1

AjkCk = λCj, (2.1)

where

Ajk =

∫
Ω

~u(~x,~γj) · ~u(~x,~γk)d~x. (2.2)

An optimal set of as many as n orthogonal basis functions (i.e., POD modes) can then be

determined by:

~φi(~x) =
1

λ(i)n

n∑
k=1

~u(~x,~γk)C
(i)
k , for i = 1, 2, ..., n, (2.3)

where C
(i)
k is the kth component of the ith eigenvector from the solution of equation 2.1 and

λ(i) is the corresponding eigenvalue. λ(i) is often considered a measure of the usefulness of the

corresponding mode ~φi(~x) for approximating the given dataset of potential solution fields.

Therefore, a common procedure (as was done herein) is to only use the m modes with the

highest corresponding eigenvalues, with m<n, for any subsequent solution approximation,
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and the remaining modes are discarded (In the present work the set with corresponding

eigenvalues that represent approximately 99% of the total sum of the n eigenvalues is used).

The percentage of kinetic energy that each mode contains can be calculated as follows:

E(i) =
λ(i)

n∑
i=1

λ(i)

(2.4)

2.3.1 POD-Galerkin Projection Approach for Reduced-Order Modeling

Once the POD modes are obtained, the NS equations can be projected onto these modes

through a standard Galerkin procedure [90]. The incompressible NS equations can be shown

as:

ρ(
∂

∂t
~u(~x, t) + ~u(~x, t) · ∇~u(~x, t)) = −∇p(~x, t) + µ∇2~u(~x, t) (2.5)

ρ∇ · ~u(~x, t) = 0, (2.6)

where ρ is the fluid density which is assumed to be constant, and, µ is the fluid viscosity

which is also assumed to be constant. The weak form (see for example [90]) of Equations

2.5 and 2.6 can be derived by taking the inner product of Equation 2.5 with test functions

which satisfy ~v ∈ L2(Ω), where, L2(Ω) is a set of functions that are square-integrable along

with their first derivative in the domain Ω. Then, integrating over the domain, the weak

form of the BVP can be written as:∫
Ω

ρ~v(~x)· ∂
∂t
~u(~x, t)d~x+

∫
Ω

ρ~v(~x)~u(~x, t)∇·~u(~x, t)d~x−
∫

Ω

p∇·~v(~x)d~x+

∫
Ω

µ∇·~v(~x)∇·~u(~x, t)d~x = 0.

(2.7)

To implement the POD modes into the above weak form to create a ROM all that is then

necessary is to apply the m previously obtained vector modes, {φji}mj=1, as the test and trial

functions such that:

~v(~x) = ~φq(~x), for q = 1, 2, ...,m, (2.8)

and

~u(~x, t) = ~̄u(~x) +
m∑
r=1

ar(t)~φr(~x), (2.9)
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where ~̄u(~x) is the average velocity field calculated from the ensemble used to generate the

modes and ar is the modal coefficient corresponding to the rth POD mode (i.e., the coefficients

to be solved for in the ROM velocity numerical approximation). Noting that if the modes

are generated from an ensemble that assumes incompressibility (as is the case herein), then

the modes will be divergence-free. Substituting Equation ?? and Equation 2.8 into Equation

2.7 results in the following equation:∫
Ω

ρ~φq(~x)(
∂

∂t
~u(~x, t)+~u(~x, t)∇·~u(~x, t))+µ∇· ~φq(~x)∇·~u(~x, t)d~x−

∫
Γ

p(~x, t) ~φq(~x) ·~n(~x)d~x = 0,

(2.10)

where ~n(~x) represents the normal vector to each boundary.

The second integral in Equation 2.10, which is over the boundaries, requires careful

consideration since it involves the pressure term. As long as the POD modes are symmetric,

so that the inlet fluxes and the outlet fluxes cancel with each other, the second integral in

Equation 2.10 can be eliminated. In the present work, as will be explained later, the POD

modes are symmetric, and therefore the aforementioned integral can be eliminated.

Substituting the solution expansion (Equation 2.9) into Equation 2.10, a non-linear evo-

lution equation for the coefficients can be obtained as:

ρȧq +
m∑
s=1

m∑
r=1

(Aqrsaras +Bqrar) + Cq = 0, for q = 1, 2, ...,m, (2.11)

where

Aqrs =

∫
Ω

~φq(~x) · (~φr(~x) · ∇)~φs(~x)d~x, (2.12)

Bqr =

∫
Ω

~φq(~x)·(~̄um(~x)·∇)~φr(~x)d~x+~φq(~x)·(~φr(~x)·∇)~̄um(~x)d~x+

∫
Ω

∇·~φq(~x)∇·~φr(~x)d~x, (2.13)

and

Cq =

∫
Ω

~φq(~x) · (~̄um(~x) · ∇)~̄um(~x)d~x+

∫
Ω

∇ · ~φq(~x)∇ · ~̄ud~x. (2.14)

The initial condition for Equation 2.11 is as follows:

aq|t=0 =

∫
Ω

~φq(~x) · ~u(~x, t)|t=0 d~x. (2.15)

Equation 2.11 can be solved with any standard nonlinear ordinary differential equation so-

lution method to determine the values of each modal coefficient over the time domain of the

problem considered, aq(t), and thereby approximate the flow field through a ROM.
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2.3.2 Surrogate Model Approaches

Surrogate model approaches are relatively more straightforward and computationally inex-

pensive in comparison to the POD-Galerkin approach. The use of a surrogate model ap-

proach with POD for prediction of new solution fields requires the transformation of modal

coefficients, ai, from the discrete sample space for which they have been computed to a con-

tinuous space through some form of regression. If it is assumed that ai varies as a smooth

function with the change in system parameters, then a surrogate model may be used to de-

termine the modal coefficients at intermediate parametric values not included in the original

data ensemble.

The first step in surrogate model approaches is snapshot reconstruction. Each snapshot

can be reconstructed using the obtained POD modes based on the following equation:

~u(~x,~γq)− ~̄u(~x) =
N∑
j=1

α̂j(~γq) ~φj(~x) for q = 1, 2, ..., n (2.16)

where, α̂j(~γq) is the modal coefficient for the qth velocity field with the jth mode, which can

be obtained from the following:

α̂j(~γq) =

∫
Ω

~φq(~x)(~u(~x,~γq)− ~̄u(~x)) d~x. (2.17)

Then, some method for interpolating/extrapolating these modal coefficients is applied, with

two options considered herein: radial basis functions (RBF) and Kriging. The RBF approach

constructs a linear space from which the interpolation functions are chosen dependent upon

the position of the data points in the parameter space. The RBF formulates this dependency

as a linear combination of functions with radial symmetry about each parameter set as:

α̂j(~γ) =
n∑
i=1

ζiϕ(||~γ − ~γi||), (2.18)

where ζi is the ith weighting coefficient (to be determined by regression), the norm is the

Euclidean norm, and ϕ is the chosen RBF. Various options are available for the form of the

function ϕ such as linear, cubic, Gaussian, etc [50]. Similar to the work done by Gunes [43],
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for Kriging approach, this study employed the DACE method [71]. The form of the Kriging

interpolation function is:

α̂j(~γ) =
n∑
i=1

ζi exp (−
d∑
j=1

ϑ||~γ − ~γi||pj), (2.19)

where ζi is again the ith weighting coefficient and pj is an additional coefficient to be deter-

mined by regression, the norm is again the Euclidean norm, and ϑ is the Kriging function (see

[71] for additional details). Once the chosen surrogate model approximation of the modal

coefficients has been created, any new velocity field can be predicted simply using:

~u(~x,~γ) = ~̄u(~x) +
m∑
i=1

α̂j(~γ)φij(~x). (2.20)

2.4 EXAMPLES

To evaluate and contrast the ROM approaches described (both Galerkin projection and sur-

rogate modeling), a set of numerical case studies was performed consisting of turbulent flow

past a single cylinder as well as turbulent flow past a cluster of multiple cylinders. Table

2.1 lists all Re numbers considered for both examples and the corresponding inlet velocities.

For all test cases, standard Unsteady Reynolds Averaged Navier-Stokes (URANS) [35] sim-

ulations were used to acquire the ensembles of velocity solution fields (i.e., snapshot sets) to

use to generate the POD modes. As an example, Table 2.1 also provides the resulting vortex

shedding periods and the Strouhal numbers produced by this URANS full-order modeling

of each Re number for flow past a single cylinder, which was used to confirm the accuracy

of these solutions.

The time sampling to generate the snapshot sets was performed such that the velocity

fields were acquired at 15 uniformly spaced time points within one complete vortex shedding

period for each Re number. The vortex shedding periods were characterized by the time

history of the simulated lift coefficients, such as the example for flow past a single cylinder
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Table 2.1: Summary of Re numbers, inlet velocity (Vin), vortex shedding period (VSP),

Strouhal number (St), and the vortex shedding interval (VSI) that snapshots were chosen

within for the flow past a single cylinder cases considered

Re Vin (m/s) VSP (s) St VSI (s)

2900 0.0424 49.65 0.23 [790, 839.65]

3500 0.0511 43.15 0.22 [989.35, 1032.5]

4800 0.0701 33.4 0.21 [716.7, 750.1]

5500 0.0803 29.9 0.20 [586.6, 616.5]

6000 0.0876 28 0.20 [774, 802]

6600 0.0964 26.5 0.19 [476.5, 503]

7190 0.105 23.8 0.20 [774.5, 798.3]

with a Re number of 4800 shown in Figure 2.2. As an example, the final column of Table 2.1

shows the time interval of the vortex shedding period used for the case of flow past a single

cylinder corresponding to each Re number.

For all Galerkin projection ROM analyses, a standard Runge-Kutta nonlinear initial

value differential equation solver was used to solve the ODEs described in Equation ??. To

evaluate the accuracy of the results of all ROM analyses (Galerkin projection and surrogate

modeling), the predicted velocity fields were compared to the corresponding URANS full-

order model (FOM) velocity fields through the following error metric:

Error(~γ) =
||uFOM(~x,~γ)− uROM(~x,~γ)||

||uFOM(~x,~γ)||
, (2.21)

where uFOM(~x,~γ) and uROM(~x,~γ) are the velocity fields estimated by the FOM and ROM,

respectively (note again that ~γ is the set of input parameters, including the specified time

point and Re number), and || · || represents a specified metric norm, with both the L2 and

L∞ norms being used for the results presented in the following.
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Figure 2.2: The variation of the lift coefficient on the cylinder for flow past a single cylinder

at Re=4800.

Results of flow past a single cylinder are presented in Section 2.4.1. First, in Section

2.4.1 the various ROM strategies were analyzed for applicability to flow past a single cylinder

considering prediction of velocity fields at different time levels for fixed Re numbers. Then,

in Section 2.4.1.2, using a GPOD technique, ROMs were created to be valid for a range

of Re numbers, and their corresponding accuracy was tested. At the end of the Section

2.4.1.2 the dependence of the size of the snapshot set on the resulting ROM accuracy was

also evaluated. Section 2.4.2 presents the results for flow past a cluster of four cylinders.

Similarly, prediction in time was considered for the multiple cylinder case first in Section

2.4.2.1, which was followed by prediction across time and Re number in Section 2.4.2.2.

2.4.1 Example 1: Flow Past a Single Cylinder

This example consisted of a single rigid cylinder of radius 0.5m located at the center of a

cylindrical fluid domain, with a uniform inlet velocity boundary condition specifies a constant

horizontal fluid flow velocity applied to the left half of the cylinder as specified in Table 2.1,
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and a pressure boundary condition of fixed static pressure of the environment into which

flow exhausts is applied to the right half of the cylinder. The size of the fluid domain was

chosen so that no fluctuation of flow fields can be seen close to the boundaries. Figure 2.3

shows a schematic for the first test case.

Figure 2.3: Schematic for flow past a single cylinder. The small filled circle represents the

cross section of the cylinder with radius of 0.5m and the larger circle shows the fluid domain

of interest with radius of 50m.

2.4.1.1 Predicting time variation for fixed Re numbers: For the first set of tests,

POD was applied separately to each set of 15 snapshots corresponding to a separate Re

number (i.e., POD was applied seven separate times to obtain modes). Figure 2.4 shows a

representative example of the first four modes (i.e., modes with four highest corresponding

eigenvalue from highest to lowest) obtained for the analysis with Re number 2900 and Figure

2.5 shows examples of the cumulative modal energy for Re numbers 5500, 4800, and 3300.

The cumulative modal energy for the Kth mode from the set of n modes can be calculated

as follows (note the modes are numbered from highest eigenvalue magnitude to lowest):

CM(K) =

∑K
j=1 λ

(j)∑n
i=1 λ

(i)
. (2.22)
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Figure 2.4: The first four POD modes for flow past a single cylinder at Re =2900 (Note that

the color contours represent the amplitude of the POD mode).
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Figure 2.5: The convergence of percentage of cumulative energy corresponding to each eigen-

value for three simulations of flow past a cylinder.

One point of interest is that the first two and second two modes appear to form pairs in

a sense, with one seeming to be close to the mirror image of the other, which was similar for

the other Re numbers considered. In addition, the first two modes of all cases captured the

majority of the energy of the systems (over 95%), and four modes were sufficient in all cases

to capture more than 99% of the cumulative modal energy. However, this may change for Re

numbers greater than those considered, as it can be seen that the rate of convergence of the

cumulative modal energy decreases as the Re number increases, with the higher numbered

modes becoming more important to capturing the system behavior at higher Re numbers.

Using the four highest energy POD modes obtained, both the Galerkin projection method

and the surrogate model method were applied to create ROMs to predict the time variation

of the flow velocity for each Re number separately. For the surrogate modeling method, the

modal coefficients were interpolated/extrapolated using a Gaussian RBF and the Kriging

approach described with d = 4. Each approach was applied to predict the response at four

time levels that were not included in the original snapshot sets: three that were within the

bounds of the corresponding vortex shedding interval (i.e., interpolation) and one outside of

that interval (i.e., extrapolation). The L2 and L∞ errors of each prediction were calculated
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and their corresponding averages over the four test times are summarized in Table 2.2 for

three representative Re numbers for each approach.

Both surrogate model approaches produced nearly the same error levels for all Re num-

bers considered, and had significantly lower error than the Galerkin projection for all cases.

However, the error for the surrogate model methods increased significantly as the Re num-

ber increased, with the error levels at the highest Re number being on the same level as

the Galerkin projection results. In contrast, the error in the Galerkin projection appeared

to be highly consistent and independent of Re number. The increased error in the Galerkin

projection compared to the surrogate model methods is not necessarily unexpected since the

snapshots and test sets were generated with URANS simulation while the Galerkin projec-

tion is applied to the standard NS equations (which are not solved exactly with a URANS

result). The relative simplicity of this single cylinder example also likely contributes to the

capability of the surrogate model methods to produce accurate results, which would explain

the decrease in accuracy as the flow becomes more complex with increasing Re number.

Furthermore, if the observed pattern continued, it would be expected that the Galerkin

projection results would begin to become comparatively more accurate than those from a

surrogate model for larger Re numbers. Yet, overall for the cases considered, all ROM ap-

proaches produced relatively accurate and consistent (all variances in the errors were also

low) estimates of the time variation of flow fields around a single cylinder at various fixed

Re numbers. Moreover, these relatively accurate ROM results were achieved at a substan-

tially lower computational cost than the URANS FOM. For example, the Galerkin projection

ROM for a single Re number (which is orders of magnitude more computationally expensive

than the surrogate model approaches) required less than 10 seconds of computing time on a

standard PC compared to more than 24 hours for URANS on the same machine.

2.4.1.2 Predicting variations in time and Re number: To evaluate the capability

of the ROM approaches to predict flow fields at varying Re number in addition to time,

for the second set of tests the time samples at multiple Re numbers were combined into

one snapshot set for POD, and these modes were applied to predict the response in time

for new Re numbers (not included in the snapshot set). Note that this does not affect the
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Table 2.2: The average L2 and L∞ errors for the ROM response predictions by the POD

Galerkin (Galerkin) and surrogate model (surrogate) methods over the four given test times

for three representative Re numbers for flow past a single cylinder

Re Test Times L2 (%) L∞ (%)

Galerkin Surrogate Galerkin Surrogate

2900 795.95 808.37 834.71 842.13 4.02
Gaussian RBF: 0.03

5.44
Gaussian RBF: 0.05

Kriging: 0.03 Kriging: 0.05

5500 593.62 600.64 604.65 619.55 5.55
Gaussian RBF: 0.78

5.93
Gaussian RBF: 0.86

Kriging: 0.77 Kriging: 0.91

7190 780.92 787.35 796.15 800.20 4.26
Gaussian RBF: 3.93

4.78
Gaussian RBF: 4.18

Kriging: 4.12 Kriging: 4.29

implementation of the Galerkin projection approach, but for the surrogate model approaches

Re number is now part of the input of the interpolation/extrapolation equations in addition

to time to estimate the modal coefficient variations. Four different test cases were considered,

each with a different set of Re numbers from the original dataset (Table 2.1) used to create

the combined snapshot set and with the remaining Re numbers used as the test set to

calculate the prediction errors. The first three test cases all considered interpolation of Re

number (i.e., the Re numbers in the snapshots bounded those in the test sets), while the

final test considered extrapolation.

The first test case included five Re numbers in the snapshot set: 2900, 3500, 5500, 6000,

and 7190, for a total of 75 snapshots (in time and Re number). In contrast to the previous

examples that considered each Re number separately, considerably more modes were required

to capture the majority of the system energy, with 12 modes being needed in this case to

capture more than 99% of the system energy. For an example of the modal characteristics,

Figure 2.7 shows the first 6 highest energy modes for this case. These modes obtained for

multiple Re numbers were similar to those shown for a single Re number, but with more
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mirrored pairs in the set from multiple Re numbers. Using the first 12 modes, the Galerkin

projection and surrogate model methods were then applied to predict the response at four

time levels for the two Re numbers not included in the snapshot set: 4800 and 6600. Again,

a Gaussian RBF and the Kriging approach were considered for the surrogate modeling, with

d = 4 for the Kriging method. Table 2.3 summarizes the average (over time) L2 and L∞ errors

for the Galerkin projection prediction at the two new Re numbers. However, the results for

the surrogate modeling are not shown since the prediction errors were all in excess of 100%,

and thus not informative in detail. The surrogate modeling becoming ineffective highlights

the limitations of these approaches. For perspective, Figure 2.6 shows the variation of the first

modal coefficient with respect to time and Re number estimated by the surrogate model with

Kriging compared to the Galerkin projection results (noting that the Galerkin projection is

substantially more accurate). Even with an increase in dimensionality of the input of only

one, the relatively small increase in the dataset (i.e., number of snapshots) is insufficient

to facilitate the regression to capture the increased complexity of the response surface with

the surrogate model. In stark contrast, the accuracy of the Galerkin projection approach

for predicting Re number variations is nearly equivalent to that for fixed Re numbers. The

Galerkin projection results were also highly consistent again, with low error variances over

time.

The second and third test cases considered the effect of the number/diversity of snapshots

on the prediction capability of the Galerkin projection approach. The second test case

included four Re numbers in the snapshot set: 2900, 4800, 6000, and 7190, for a total of 60

snapshots. The third test case included three Re numbers: 2900, 5500, and 7190, for a total

of 45 snapshots. For consistency, the first 12 modes were again utilized for the ROM in both

test cases (with 12 clearly exceeding 99% of the system energy in both cases). Tables 2.4 and

2.5 summarize the average L2 and L∞ errors for the Galerkin projection prediction at the

new Re numbers for the second and third test cases, respectively. The accuracy of the test

case with four Re numbers in the snapshot set is again consistent with the previous Galerkin

projection results presented, and the errors can be considered relatively low. However,

the error increased significantly when the number of Re numbers included in the snapshot

set dropped to three, with the error for the two higher Re numbers even exceeding 10%.
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Figure 2.6: The variation of the first modal coefficient with respect to time and Re number

predicted by the POD-Galerkin ROM (colored mesh) and Kriging surrogate model ROM

(black circles).
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Figure 2.7: The first six POD modes for flow past a single cylinder obtained from the

ensemble of 75 snapshots from Re numbers 2900, 3500, 5500, 6000, and 7190 (Note that the

color contours represent the amplitude of the POD mode).
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Table 2.3: The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 5500, 6000, and 7190, for the given Re

numbers over the four given test times for flow past a single cylinder.

Re Test Times L2 (%) L∞ (%)

4800 481.8 487.1 492.4 497.7 5.61 6.01

6600 723.3 730.6 736.7 743.4 5.77 6.79

Although this third test case included only one less Re number in the snapshot set, the error

more than doubled for some predictions.

The fourth and final test case examined the capability of the Galerkin projection ROM

to extrapolate in Re number. As such, four Re numbers were included in the snapshot set:

2900, 3500, 4800, and 5500, and two larger Re numbers were used to test the ROM accuracy:

6000 and 6600. Table 2.6 again summarizes the average errors in the ROM predictions with

the first 12 modes for the four test times with the two test Re numbers. While four Re

numbers in the snapshot set had relatively low error previously for the Re interpolation test

(Table 2.4), with the same snapshot set size the error increased significantly for estimating

Re numbers outside of the range of those included in the snapshot set. Although, the level

of error in this example may be acceptable for many applications, it is important to note

that the ability to extrapolate in Re number is limited, and the error appears to increase as

the Re number becomes farther from the range included in the snapshot set.

2.4.2 Example 2: Flow Past a Cluster of Four Cylinders

To take a step toward understanding the capability of POD-based ROMs for approximating

turbulent flows in more complex systems than flow past a single cylinder (such as the reactor

lower plenum example shown in Figure 2.1), an example of flow past a cluster of four cylinders

was considered. Figure 2.8 shows a schematic of this multiple-cylinder example. The four

cylinders were arranged in a 2m × 2m square pattern with two cylinders centered on each
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Table 2.4: The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 4800, 6000, and 7190, for the given Re numbers

over the four given test times for flow past a single cylinder

Re Test Times L2 (%) L∞ (%)

3500 997.98 1006.61 1015.24 1023.87 4.27 4.97

5500 592.58 598.56 604.54 610.52 6.58 7.36

6600 481.82 487.14 492.47 497.70 5.89 6.12

Table 2.5: The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 5500, and 7190, for the given Re numbers

over the four given test times for flow past a single cylinder.

Re Test Times L2 (%) L∞ (%)

3500 997.98 1006.61 1015.24 1023.87 8.65 8.89

4800 723.38 730.06 736.74 743.42 7.97 8.91

6000 779.63 785.21 790.85 796.44 10.24 12.36

6600 481.82 487.14 492.47 497.70 12.01 12.49

Table 2.6: The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 4800, and 5500, for the given Re numbers

over the four given test times for flow past a single cylinder

Re Test Times L2 (%) Linf (%)

6000 779.63 785.21 790.85 796.44 8.24 9.37

6600 481.82 487.14 492.47 497.70 10.09 14.29
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axis, and the same sized fluid domain and inlet/outlet conditions were applied as were used

for the single-cylinder tests. The time variation of the lift coefficient of the nearest cylinder

to the inlet was utilized to define the vortex shedding period for the snapshot sampling

process.

Figure 2.8: Schematic for flow past a cluster of four cylinders. The small filled circles

represents the cross section of the cylinders with radius of 0.5m each which were located on

the vertices of a 2m × 2m square,and the larger circle shows the fluid domain of interest

with radius of 50m.

2.4.2.1 Predicting time variations for fixed Re numbers: Figure 2.9 shows a rep-

resentative example of the first two highest energy POD modes obtained for the analysis

with Re number 5500. As would be expected, the spatial distributions of the modes are

considerably more complex than those for the single cylinder examples. However, the first

two modes were similarly dominant, capturing over 84% of the total system energy for this

example.

As before, using the eight highest energy POD modes obtained, both the Galerkin pro-

jection method and the surrogate model method were applied to create ROMs to predict the

time variation of the flow velocity around the four cylinders for each Re number separately.

Again, a Gaussian RBF and the Kriging approach with d = 4 were used for the surrogate
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Figure 2.9: The first two POD modes for flow past multiple cylinders at Re =5500 (Note

that the color contours represent the amplitude of the POD mode).
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Table 2.7: The average L2 and L∞ errors for the ROM response predictions by the POD

Galerkin (Galerkin) and surrogate model (surrogate) methods over the four test times for

three representative Re numbers for flow past a cluster of four cylinders.

Re L2 (%) Linf (%)

Galerkin Surrogate Galerkin Surrogate

2900 5.19
Gaussian RBF: 6.24

5.75
Gaussian RBF: 7.49

Kriging: 4.97 Kriging: 6.12

5500 5.74
Gaussian RBF: 5.16

6.22
Gaussian RBF: 6.38

Kriging: 5.05 Kriging: 5.76

7190 5.86
Gaussian RBF: 5.60

6.18
Gaussian RBF: 6.21

Kriging: 4.44 Kriging: 6.03

modeling. The L2 and L∞ errors of each prediction were calculated and their corresponding

averages over the four test times (three interpolation and one extrapolation) are summa-

rized in Table 2.7 for three representative Re numbers for each approach. Of note is that

the error of the Galerkin projection method is only a relatively small amount larger than

for the equivalent results for the single-cylinder example (i.e., the accuracy is almost the

same). Alternatively, the increased complexity of this example case led to a significantly

more substantial increase in the error of the surrogate modeling results compared to the sin-

gle cylinder example. In particular, the accuracy of the Gaussian RBF surrogate model was

actually less than the Galerkin projection method in some cases. The Kriging approach was

consistently more accurate than both other methods, but only by a relatively small amount.

2.4.2.2 Predicting variations in time and Re number: For the final test case, the

capability of the POD-Galerkin ROM approach to predict flow variations with respect to

changes in both time and Re number for flow past the cluster of four cylinders was evaluated.

Note that the surrogate model approaches were again inadequate for the case of varying Re
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number, and are thus not discussed further. This test case included five Re numbers in

the snapshot set: 2900, 3500, 4800, 6000, and 6600, for a total of 75 snapshots. Then, the

accuracy of the POD-Galerkin ROM with the 15 highest energy modes was evaluated for

again predicting the response at four time levels for two Re numbers not included in the

snapshot set: 5500 (i.e., interpolation of Re number) and 7190 (i.e., extrapolation of Re

number).

Table 2.8 summarizes the average L2 and L∞ errors for the Galerkin projection pre-

diction at the two new Re numbers for flow past the four cylinders. The accuracy of the

POD-Galerkin ROM was again highly consistent with the previous single-cylinder test cases,

regardless of the increase in complexity of the problem. Highlighting the potential of this

ROM approach, the error for Re number interpolation was lower than the equivalent predic-

tion for the single cylinder example. However, extrapolation in Re number again showed a

marked decrease in the accuracy of the ROM prediction compared to interpolation.

Table 2.8: The average L2 and L∞ errors for the POD Galerkin ROM obtained from the

ensemble of snapshots from Re numbers 2900, 3500, 4800, 6000 and 6600, for the given Re

numbers over the four test times for flow past a cluster of four cylinders.

Re L2 (%) Linf (%)

5500 5.20 6.07

7190 9.48 10.12

2.5 CONCLUSIONS

Two different approaches for proper orthogonal decomposition-based model reduction for

simulating turbulent flows were presented and numerically evaluated: (1) a Galerkin projec-

tion of the Navier-Stokes equations onto a POD basis, which sacrifices some computational

efficiency to incorporate the physics of the system into the ROM, and (2) a surrogate mod-

eling approach, which achieves a relatively higher computational efficiency, but replaces the
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governing equations of fluid dynamics with a regression based mapping between the input

parameters and POD modal reconstruction coefficients. For the numerical evaluation, two

different test cases were considered to examine the potential accuracy of the ROM approaches

for turbulent flows: (1) flow past a single cylinder, which is a simple and well-studied test

case, and (2) a significantly more complex system of flow past a cluster of four cylinders.

Furthermore, these numerical tests focused on the capabilities of the ROMs for a range of

Reynolds numbers in the turbulent regime, as well as predictions of flow fields with respect

to time. In all test cases when predicting the time variation of the flow fields around a single

cylinder for a fixed Re number, the surrogate model approach produced significantly lower

error than the Galerkin projection approach, although all ROMs were relatively accurate

(and a substantial savings in computational cost compared to FOMs). However, when the

system complexity increased for the four-cylinder case, the error for the surrogate model pre-

dictions in time for fixed Re number increased significantly, while the error of the Galerkin

projection was more similar to that of the single cylinder results, and was lower than the

surrogate model method in some cases. Moreover, in all cases (both single-cylinder and

four-cylinder) when the ROM input was expanded to include both time and Re number, the

results of the surrogate model approach were unacceptable (i.e., errors greater than 100%),

while the Galerkin projection approach was able to again produce consistently accurate pre-

dictions. Additional tests showed that the ROM error increased significantly (by nearly a

factor of 2) when extrapolating in Re number compared to interpolating, and this error was

further sensitive to the number of Re numbers used to produce the initial snapshot sets. An

important final note is that the accuracy of the Galerkin projection could likely be increased

even further by utilizing snapshots generated from direct numerical simulation of the NS

equations, rather than URANS that was utilized in the present study.
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3.0 REDUCED-ORDER MODELING FOR COMPUTATIONAL SOLUTION

OF CONTROL PROBLEMS FOR ROTARY CYLINDERS IN FLUID FLOWS

3.1 ABSTRACT

An approach for utilizing reduced-order modeling within a computational procedure to opti-

mally control rotary cylinders for drag reduction in fluid flows is presented and numerically

evaluated. More specifically, the objective of the optimal control problem considered is

reduction of the drag coefficient acting on one or more embedded cylinders while simultane-

ously utilizing the least amount of energy through control of the rotational velocity of the

cylinder(s) for a specified flow through a channel. The effect of the pressure field on the

drag on the cylinder(s) is included in the objective, in addition to the effect of the fluid ve-

locity gradient, to provide a physically accurate measure of the drag. For the reduced-order

modeling, the proper orthogonal decomposition (POD) method is utilized to obtain a low

dimensional basis (i.e., modes) from a previously obtained set of representative velocity fields

for the system (e.g., velocity fields previously obtained from standard computational fluid

dynamics solutions with potential control parameter realizations). Then, a reduced-order

model for simulating the flow past cylinders for any potential set of control parameters is

created through a Galerkin projection of the Navier-Stokes equations onto the POD basis.

Lastly, the optimal control problem is formulated in terms of the POD modal coefficients and

gradient-based optimization with the adjoint method is used to estimate an optimal control

solution. Two simulated case studies are presented to evaluate the computational proce-

dure: the first involving flow past a single rotary cylinder and the second involving flow past

two in-line rotary cylinders. In all test cases the solution procedure is shown to determine

a set of control parameters to substantially reduce the drag coefficient of the system with
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significantly less computational expense than if standard computational fluid dynamics had

been used. In addition, a significant tradeoff is shown between the objective of reducing the

drag coefficient and the objective of minimizing the energy cost of rotating the cylinder(s),

particularly for the two-cylinder case.

3.2 INTRODUCTION

The ability to control flow fields is important in many engineering applications, such as mi-

crofluidic devices [36] and transportation systems [58]. The main objective of flow control is

to act on a fluid system at a few selected locations, and/or by altering boundary conditions

of the system (e.g., inlet velocity, outlet pressure, moving wall boundaries, etc.) to ob-

tain/maintain a desired behavior while keeping the cost of the alteration as low as possible.

In flow control problems the state equations used are typically Navier-Stokes equations and

the time interval involved is often very large. Therefore, standard numerical methods, such

as the finite element method or finite difference method are computationally prohibitive in

these types of problems. Furthermore, although there are some strategies for the problem

of flow control that are based on linearized Navier-Stokes equations, which are applicable

for a large class of control techniques [52], many of these strategies are limited to relatively

low-dimensional systems (i.e., O(103)), while the numerical discretization of fluid flows in-

variably result in much larger dimensional systems, typically O(106). Thus, model reduction

has an undeniable role in solving flow control problems.

There are several approaches to create accurate reduced-order models (ROMs) of physical

systems with significantly reduced computational expense compared to standard full-order

modeling (e.g., finite element method). One promising ROM approach (as will be focused

on in the present work) does not replace the physics-derived governing equations of the sys-

tem, as is the case for surrogate- (i.e. meta-) modeling methods, and instead is based on

projecting the governing equations (e.g., Navier-Stokes equations) onto subspaces consisting

of basis elements (i.e., reduced basis functions) that are derived to contain characteristics of

the expected solution. This is in contrast to finite element (or similar) techniques, where the
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elements of the subspaces are not necessary related to the physical properties of the system

that they approximate. There are numerous methods for obtaining such reduced-basis func-

tions, such as: Lagrange basis [96], Hermite basis [49], Taylor basis [85], Proper Orthogonal

Decomposition (POD) [75], Krylov subspace [111], Centroidal Voronoi Tessellations (CVT)

[19], etc. POD bases are used in this paper due to their optimality in the sense of minimizing

the average L2 error and its convergence properties [48]. Furthermore, in the present work

the POD bases are obtained from solutions of a full-order model (i.e., using a finite element

solver, finite volume solver, etc), referred to as snapshots. The POD method can be viewed

as a technique to remove redundant information or compress the information that the snap-

shots contain to produce a basis. Naturally, the ability of the POD modes to represent the

system is limited by the original snapshots that are used. Therefore, generating informa-

tive snapshots that are representative of the overall system is crucial in creating generalized

ROMs that can be applied later to solve control problems.

The POD-Galerkin projection approach for creating ROMs of fluid flows was first de-

veloped by Lumely [74], and it has been popular in recent years for dealing with control

problems of fluid flows. There are several studies that utilized the POD-Galerkin projection

approach for flow control problems, such as optimal control of flow over a backward-facing

step [88], control of flow around a circular cylinder by a synthetic jet positioned at the back

stagnation point [34], and control of the Burger’s equation [55]. Bergmann and Brancher

[13] used an ad-hoc time-dependent excitation that is rich in transients to generate snap-

shots to then obtain POD modes to create the ROM. Bergmann and Cordier [14] proposed a

Trust-Region Proper Orthogonal Decomposition (TRPOD) approach, which was originally

introduced by Fahl [33], to update ROMs during the optimization process. The present in-

vestigation utilizes the global POD method (GPOD) [106] to generate informative snapshots

that will produce ROMs suitable for control optimization. The basic idea behind the GPOD

approach is to enrich the snapshot matrix with solutions corresponding to different values

of the variable system parameters, so that the POD bases obtained from these snapshots

can represent the system for a broad range of these parameters. The benefit of using GPOD

in constructing ROMs over some of the alternatives mentioned is that there is no need to

update the ROM at each step of the optimization process. Once the ROM is built based

58



on GPOD, it can be used for (almost) any new system parameter without any updating or

interpolation.

The present work is particularly focused on flow control problems with the objective

of reducing the drag force on a bluff body. When the flow separates from a bluff body,

the resulting wake exhibits vortex shedding, which leads to a sharp rise in drag, noise, and

fluid-induced vibration [38]. The key motivation in research on drag reduction is to develop

new technology that will result in the design of flow systems with significantly lower fuel

consumption. In particular, the present work focuses on control of flow around circular

cylinder(s) by rotating the cylinder(s). This example was chosen as the single-cylinder case

is a relatively well-studied benchmark problem, while the multiple-cylinder case allows for

a novel exploration of the potential for more complex systems. As noted, the present study

utilized the GPOD technique and Galerkin projection to create ROMs for simulating these

fluid systems. In addition, a snapshot modification strategy was used to produce modes with

homogeneous boundary conditions and avoid inclusion of the pressure field in the ROM,

which further improves computational efficiency [82]. Moreover, in contrast to much of the

related flow control work, in the present study the pressure field on the cylinder(s) was

calculated through a post-processing step to include in the control objective functional. By

including the pressure term in addition to the velocity gradient, a more accurate estimate of

the drag coefficient (and its potential reduction through control) can be calculated. Section

3.3 describes the forward problem used for simulating flow around one or more cylinders and

the control objective functional based on these flow fields to be optimized. Then, Section 3.4

presents the ROM approach for flow around a stationary cylinder, followed by the necessary

modifications to account for rotary cylinders. Section 3.5 presents the optimization-based

formulation and solution strategy for the optimal control problem with the ROM. Lastly,

Section 3.6 presents and discusses a series of numerical examples displaying the capabilities

of the ROM optimal control strategy, which is followed by the concluding remarks in Section

3.7.

59



Figure 3.1: Schematic for flow past a cylinder in a channel.

3.3 FORWARD PROBLEM AND CONTROL OBJECTIVE

Figure 3.1 shows a schematic of the two dimensional flow past a cylinder problem considered

herein for the case of a single rotating cylinder (noting it can generalized in the same format to

multiple cylinders). Assuming incompressibility, the forward problem used herein to describe

flow past a rotating cylinder can be described by the unsteady Navier-Stokes equations as:

ρ(
∂

∂t
~u(~x, t) + ~u(~x, t) · ∇~u(~x, t)) = −∇p(~x, t) + µ∇2~u(~x, t) (3.1)

ρ∇ · ~u(~x, t) = 0, (3.2)

where ~u(~x, t) is the fluid velocity vector, p is the pressure field, ρ is the fluid’s density, and,

µ is fluid viscosity. The boundary conditions considered, including rotation of the cylinder,

can be shown as follows:

~u(~x, t) = Ce1, ∀~x ∈ Γin (3.3)

~u(~x, t) = 0, ∀~x ∈ Γt and ~x ∈ Γb (3.4)
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∂u2(~x, t)

∂x1

= 0 and p− 1

Re

∂u1(~x, t)

∂x1

= 0, ∀~x ∈ Γout (3.5)

~u(~x, t) = Θreθ, ∀~x ∈ Γc, (3.6)

where C is the magnitude of the inlet velocity of the flow and Θr is the rotational velocity,

which can be formulated as follows:

Θr(t) = Asin(ωt), (3.7)

where A is the amplitude and ω is the frequency of the cylinder rotational velocity.

Based on the forward problem defined, the optimal control problem considered herein

was defined as an optimization problem to find values for A and ω to minimize the drag

on the cylinder. In addition, since the purpose of drag minimization is often intended to

decrease energy consumption of the system, the energy used to rotate the system should also

be minimized. Therefore the objective functional of the optimal control problem was defined

as:

J(A, ω) =

T∫
0

CD(t)dt+ α

T∫
0

Θr(t)

C
dt, (3.8)

where CD is the drag coefficient which is a function of the fluid material properties, pressure,

and velocity around the cylinder (note: a specific CD definition is provided in the example

section). The second term in Equation 3.8 quantifies the energy required to rotate the

cylinder, and the contribution of this objective to the optimization is controlled through the

penalization factor α, so that the trade-off between the drag reduction and the energy used

to rotate the cylinder can be investigated.

The optimal control problem can be solved using any preferred optimization strategy

such as stochastic search methods or gradient-based methods [79]. However, due to the

relatively high computational expense of the forward problem, some form of model reduction

is necessary for this solution strategy to be practical in many applications. The following

section describes the POD-Galerkin projection approach for model reduction of flow past a
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cylinder in a channel (i.e., the forward problem). The methodology is first presented for a

stationary cylinder case, and then extended for the case of rotating cylinder.

3.4 POD-GALERKIN PROJECTION APPROACH FOR ROM

The core hypothesis of the POD-Galerkin projection approach for reduced-order modeling

is that a relatively small number of full-order (i.e., traditional CFD solvers) analyses based

upon different values of the control parameters of interest contain fundamental information

about the potential solution fields of the boundary value problem (BVP) and can be used

to derive a low-dimensional basis that can predict the BVP solution fields for a range of

control parameters (not just the specific parameter values used to generate the set of full-

order analyses) with reasonably sufficient accuracy. As such, the POD-Galerkin projection

approach to create a ROM is a two-step process: (1) apply POD to the previously obtained

full-order model response field to obtain a basis and (2) apply Galerkin-projection of the

BVP governing equation onto the POD basis.

3.4.1 POD Basis Generation

The POD approach specifically derives the low-dimensional basis such that the difference

between the original full-order data and the best approximation to that data with this basis

is minimized in an L2 average sense. This problem of determining the POD basis can be

cast as an optimization problem to determine the set of m modes {~φi(~x)}mi=1 given a set of n

full-order analysis fields {~u(~x,~γk)}nk=1, where ~γk is the kth vector of the input parameters of

interest, such that the average L2-error between full-order analyses and their projection on to

the subspace is minimized. Through several manipulations, including applying the method

of snapshots [103], the POD optimization problem can be transformed into the following

n-dimensional eigenvalue problem:

1

n

n∑
k=1

AjkCk = λCj, (3.9)
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where

Ajk =

∫
Ω

~u(~x,~γj) · ~u(~x,~γk)d~x. (3.10)

An optimal set of as many as n orthogonal basis functions (i.e., POD modes) can then be

determined from the solution of the above eigenvalue problem by:

~φi(~x) =
1

λ(i)n

n∑
k=1

~u(~x,~γk)C
(i)
k , for i = 1, 2, ..., n, (3.11)

where C
(i)
k is the kth component of the ith eigenvector from the solution of Equation 3.9 and

λ(i) is the corresponding eigenvalue. λ(i) is often considered a measure of the usefulness of the

corresponding mode ~φi(~x) for approximating the given dataset of potential solution fields.

Therefore, a common procedure (as was done herein) is to only use themmodes (m < n) with

the highest corresponding eigenvalues, for any subsequent solution approximation, and the

remaining modes are discarded (The present work uses the set with corresponding eigenvalues

that represent around 99% of the total sum of the n eigenvalues). See [22] and [63] for

additional details on POD basis generation.

3.4.2 ROM for Flow Around a Stationary Cylinder

Once the POD modes are obtained, the Navier-Stokes equations can be projected onto these

modes using a standard Galerkin approach. Starting with weak form of the BVP:∫
Ω

ρ~v(~x)· ∂
∂t
~u(~x, t)d~x+

∫
Ω

ρ~v(~x)~u(~x, t)∇·~u(~x, t)d~x−
∫

Ω

p∇·~v(~x)d~x+

∫
Ω

µ∇·~v(~x)∇·~u(~x, t)d~x = 0.

(3.12)

Note that in the formulation used here, the POD modes are created from an ensemble of

fluid velocity fields (sampled at various times and/or with varying input parameters) with

the average velocity of the ensemble subtracted from each field as:

{~u(~x,~γk)− ~̄u(~x)}nk=1,

with

~̄u(~x) =
1

n

n∑
j=1

~u(~x,~γj),
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To implement the POD modes derived from this ensemble into the above weak form to create

a ROM, all that is then necessary is to apply the m obtained vector modes, {~φj}mj=1, as the

test and trial functions such that:

~v(~x) = ~φq(~x), for q = 1, 2, ...,m, (3.13)

and

~u(~x, t) = ~̄u(~x) +
m∑
r=1

ar(t)~φr(~x), (3.14)

where ar is the modal coefficient corresponding to the rth POD mode (i.e., the coefficients

to be solved for in the ROM velocity numerical approximation). Noting that if the modes

are generated from an ensemble that assumes incompressibility (as is the case herein), then

the modes will be divergence-free. Substituting equation 3.14 into Equation 3.12, and using

product rule and divergence theorem results in the following equation:∫
Ω

ρ~φq(~x)(
∂

∂t
~u(~x, t)+~u(~x, t)∇·~u(~x, t))+µ∇· ~φq(~x)∇·~u(~x, t)d~x−

∫
Γ

p(~x, t) ~φq(~x)·~n(~x)d~x = 0, for q = 1, 2, ...,m,

(3.15)

where ~n(~x) represents the normal vector to each boundary.

The second integral in Equation 3.15, which is over the boundaries, requires careful

consideration since it involves the pressure term. If the POD modes are symmetric, the

inlet fluxes and outlet fluxes will be equal and opposite, and the second integral in Equation

3.15 is eliminated. As it will be discussed later, for the present work the POD modes will

consistently be symmetric with respect to the horizontal line passing through the center of

the cylinder.

Substituting the solution expansion (Equation 3.14) into Equation 3.15, a nonlinear

evolution equation for the coefficients can be obtained as:

ρȧq +
m∑
s=1

m∑
r=1

(Aqrsaras +Bqrar) + Cq = 0, for q = 1, 2, ...,m, (3.16)

where

Aqrs =

∫
Ω

~φq(~x) · (~φr(~x) · ∇)~φs(~x)d~x, (3.17)
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Bqr =

∫
Ω

~φq(~x)·(~̄um(~x)·∇)~φr(~x)d~x+~φq(~x)·(~φr(~x)·∇)~̄um(~x)d~x+

∫
Ω

∇·~φq(~x)∇·~φr(~x)d~x, (3.18)

and

Cq =

∫
Ω

~φq(~x) · (~̄um(~x) · ∇)~̄um(~x)d~x+

∫
Ω

∇ · ~φq(~x)∇ · ~̄ud~x. (3.19)

The initial condition for Equation 3.16 is defined by inner product of each mode by the FOM

solution field at time zero and can be shown as:

aq|t=0 =

∫
Ω

~φq(~x) · ~u(~x, t)|t=0 d~x. (3.20)

The ordinary differential equation defined by Equation 3.16 can then be solved with any

standard nonlinear ordinary differential equation solution method to determine the values of

each modal coefficient, aq(t), over the time domain of the problem considered, and thereby

approximate the flow field through a ROM.

3.4.3 ROM for Flow Around a Rotating Cylinder

For the case when the BVP involves a rotating cylinder, the boundary conditions on the

cylinder become inhomogeneous and time-dependent. As a consequence, the POD basis

functions used in the Galerkin projection are also inhomogeneous on the cylinder boundary,

and the second integral in Equation 3.15, which is related to the pressure cannot be elimi-

nated. However, through a manipulation of the ensemble of snapshots (i.e., {~u(~x,~γk)}nk=1), a

modified set of POD modes (i.e., {~φi(~x)}mi=1 ) that are homogeneous on the cylinder boundary

can be obtained.

The first step in creating the modified ensemble of snapshots is to separate the motion

of the fluid on the cylinder from the rest of the domain with a new velocity expansion as:

~u(~x, t) = ~uc(~x, t) + ~̂u(~x, t), (3.21)
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where ~uc(~x, t) is the reference flow field that describes how the control action influences the

flow, which is equal to the rotational velocity on the boundary of the cylinder and zero

elsewhere as:

~uc(~x, t) =

Θr(t)eθ ∀x ∈ Γc,

0 ∀x ∈ Γ/Γc,

(3.22)

Then, the POD ROM procedure can be applied in a nearly identical fashion as the previous

section, but with the ensemble used to generate the POD modes {~φi(~x)}mi=1 defined as:

{~̂u(~x, t)− ~̄u(~x)}mk=1

and now with

~̄u(~x) =
1

n

n∑
j=1

~̂u(~x, ~γj)

To implement the modified POD modes into the weak form the test functions are defined as

before (Equation 3.13), but the trial functions are defined such that:

~u(~x, t) = ~uc(~x, t) + ~̄u(~x) +
m∑
r=1

ar(t)~φr(~x). (3.23)

By using this modified decomposition the modes are such that the second integral in Equation

3.15, which includes the pressure term, is again zero. As such the ROM for flow past a

rotating cylinder can be shown as:

ρȧq+Aqrsaras+Bqrar+Cq+Dq||u̇c||+(Eq+Fqrar)||uc||+Gq(||uc||)2 = 0, for q = 1, 2, ...,m,

(3.24)

where

Dq =

∫
Ω

φqiucid~x, (3.25)

Eq = µ

∫
Ω

φqiuckūi,kd~x+ µ

∫
Ω

φqiūkuci,kd~x+

∫
Ω

φqi,kuci,kd~x−
∫

Ω

ucq,kφqid~x, (3.26)

Fqr =

∫
Ω

φqiφrkuci,kd~x+

∫
Ω

φqiuckφrk,id~x, (3.27)

Gq =

∫
Ω

φqiuciuci,id~x, (3.28)
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Note that the coefficients defined in Equations 3.25 - 3.28 are the additional terms due to

the rotation of the cylinder, while the remaining terms match those defined in Equations

3.17-3.19. Lastly, the initial condition for Equation 3.24 is as follows:

aq|t=0 =

∫
Ω

φqi (ui|t=0 − uci |t=0 − ūi(~x)) d~x, for q = 1, 2, ...,m. (3.29)

3.5 UTILIZATION OF ROM FOR OPTIMAL CONTROL SOLUTION

In order to utilize the ROM for the solution of the optimal control problem, the objective

function (Equation 3.8) must first be converted to be in terms of the POD modal coefficients

(i.e., ai) . Note that the velocity field can be obtained from the ROM (Equation 3.24), but

the pressure needs to somehow be calculated to account for its effect on the drag coefficient.

In many of the recent similar works [14], the effect of pressure on drag is neglected, and

instead a drag-related cost functional is minimized that quantifies the reduction of the wake

unsteadiness (i.e. the energy contained in the wake). Alternatively in present work, the

effect of pressure is taken into account by first calculating the pressure field from the pressure

Poisson equation (PPE). The PPE is derived from the momentum equation by taking the

divergence of Equation 3.1 and applying the divergence free condition (Equation 3.2) to

produce the following:

p,jj = (ukui,k),i. (3.30)

The PPE BVP can be solved through any preferred method (finite difference was used in the

present study), noting that the boundary conditions are the same as the boundary conditions

for the original BVP (Equations 3.1 and 3.2). After calculating the pressure field from the

velocity fields provided by the ROM using PPE, the total drag coefficient over the surface

of the cylinder can be calculated as follows:

CD(t) = 2

2π∫
0

pn1dθ −
2

Re

2π∫
0

u1,inidθ. (3.31)
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Since the pressure field is obtained from the velocity field, both fields depend upon the

POD modal coefficients, and therefore the entire drag coefficient can be thought of as a

function of modal coefficients. Thus the optimal control problem can be formulated as a

ODE-constrained optimization problem using the objective functional defined previously by

Equation 3.8 as follows:

minimize
c

J(a, c)

subject to N (a, c) = 0,

(3.32)

where a is the vector of m modal coefficients and c is the vector of control parameters

(c = [A, ω]T ), and the constraint N (a, c) corresponds to the ROM system of m ODEs for

the forward problem of flow past a rotating cylinder (Equation 3.24). In the present work

this optimization problem was solved using a conjugate gradient optimization method and

the adjoint method as described in the following.

3.5.1 Adjoint Method

The optimization problem in Equation 3.32 can be written equivalently as the minimization

of the following Lagrangian functional:

L(a, c, ζ) =
1

T

∫ T

0

(
Ĵ(a, c)−

m∑
i=1

ζiNi(a, c)

)
dt, (3.33)

where Ĵ(a, c) is the sum of instantaneous total drag coefficient and the work done by the

forcing resource in terms of the modal coefficients and the control parameters, ζi is the

ith Lagrange multiplier to enforce the ODE constraints. As explained in [45], the optimal

solution is the stationary point of the Lagrangian, which can be defined by setting the total

variation of the Lagrangian to zero as:

δL =
m∑
i=1

(
∂L

∂ai
δai

)
+
∂L

∂c
δc+

m∑
i=1

(
∂L

∂ζi
δζi

)
= 0, (3.34)

where δa, δc, and δζ are arbitrary variations of the respective variables. Since each term

in the total variation is independent of one another, the three component variations can be

considered and set to zero individually. Setting the first variation of L with respect to the
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Lagrange multiplier ζ equal to zero recovers the ROM ODEs (Equation 3.24). Setting the

first variation of L with respect to the modal coefficients equal to zero results in the following

adjoint equation:

dζi(t)

dt
= −ai(t)−

m∑
j=1

(
Bij + Θr(t)Fij +

m∑
k=1

(Aijk + Ajki)ak(t)

)
ζj(t), for i = 1, 2, ...,m,

(3.35)

with the final condition (needed for backward time integration):

ζi(T ) = 0 for i = 1, 2, ...,m. (3.36)

Taking the derivative of the Lagrangian with respect to the control variables, c, results in

the following equation, which provides the gradient of the cost functional with respect to the

control parameters:

∇cJ =
1

T

∫ T

0

(
m∑
i=0

Li(t)

)
∇cΘr(t)dt, (3.37)

where,

Li(t) = −Di
dζi
dt

+ αΘr(t) + (Ei +
m∑
j=1

Fij + 2GiΘr)ζi , for i = 1, 2, ...,m. (3.38)

Equation 3.24, along with adjoint equation (Equation 3.35) and optimality condition equa-

tion (Equation 3.37), lead to a system of equations that need to be solved simultaneously to

solve the optimal control problem. The iterative procedure for solving this optimal control

problem is to first guess a vector of control parameters, and then solve the state equation

(Equation 3.24) to obtain modal coefficients, a. Then, using modal coefficients, one can solve

Equation 3.35 for the adjoint variable, and the gradient of the functional can be obtained

from Equation 3.37. Using the estimate of the gradient, the vector of control parameters can

be updated. In the present work, the conjugate gradient method [15] was used to update

the control parameters at each iteration as follows:

c(n+1) = c(n) + r(n)d(n), (3.39)

where

d(n) = −∇cJ
n + θ(n)d(n−1), (3.40)
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where θ coefficients are given by the following equation:

θ(n) =
||∇cJ

(n)||2

||∇cJ (n−1)||2
(3.41)

The parameter r(n) in Equation 3.39 represents the relaxation factor, which aids in conver-

gence of the optimization process.

3.6 RESULTS AND DISCUSSION

To evaluate the capability of the optimal control strategy with reduced-order modeling,

the example case utilized throughout the formulation of drag coefficient reduction for flow

past a single cylinder with its rotation controlled was first analyzed. Then, to examine the

more general applicability of the control strategy presented to more complex systems, the

algorithm was extended to an example case of flow past two cylinders (specifics detailed in

Section 3.6.3).

For both example cases the inlet velocity was taken to be 2×10−4m/s, which yields a Re

number of 200. The standard Unsteady Reynolds Averaged Navier Stokes (URANS) CFD

approach [35] was used as the full-order model to generate the snapshot ensemble provided

to POD for the examples. In addition, the control parameters of A and ω were assumed to

be within the range of [0.1, 5] and [0.01, 1], respectively, for the example cases. Note that

in practice the range of control parameters depends on the available forcing source, but for

the numerical tests herein the aforementioned intervals for these parameters were chosen

arbitrarily.

3.6.1 Snapshot Generation and POD Modes for a Single Cylinder

The snapshot sets were generated by sampling the space of the control parameters and then

taking 10 velocity fields equally spaced in time over one complete vortex shedding period

from the full-order model for each control parameter set. For the single cylinder test case,

the snapshot parameters included a stationary cylinder (i.e., A = ω = 0) as well as every
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contribution of five values of the forcing amplitude (A) and four values of forcing frequency

(ω), with both sampling uniformly spaced within the specified parameter ranges. Therefore

the ensemble of snapshots provided for the single cylinder example has 210 elements (200

with a rotating cylinder and 10 with a stationary cylinder).

To first examine the effect of the cylinder rotation on the POD results from the flow fields

(i.e., the coherent structures), Figure 3.2 compares the percent cumulative energy of the 10

modes obtained from decomposing only the 10 snapshots for the stationary cylinder along

with the modes obtained from decomposing only the 10 snapshots for the cylinder with a

rotational velocity of Ω(t) = 1.73sin(0.505t). Note that the rotating cylinder results for the

chosen forcing parameters were representative of the results for all forcing parameter sets

considered. The percent cumulative energy is defined as the ratio of the total energy (i.e.,

sum of the corresponding eigenvalues) of the set of the highest energy modes up to the given

mode number to the total energy of all modes. Of interest is that the percent cumulative

energy of the stationary cylinder converges to 100% significantly faster than that for the

rotating cylinder. For example, three POD modes would be sufficient to capture 99% of the

energy of the stationary cylinder, whereas 7 modes would be necessary to capture 99% of

the energy of the rotating cylinder. This behavior illustrates the significant increase in the

complexity of the flow fields obtained from the rotating cylinder compared to the stationary

cylinder, and the resulting need to include significantly more modes to accurately capture

the behavior of the latter case with a ROM.

3.6.2 Optimal Control Results for Flow Past a Sing Cylinder

The specified set of 210 snapshots was decomposed with POD, and the 34 highest-energy

modes were used to create a ROM for the optimization procedure of flow past a single cylinder

(as detailed in Sections 3.4 and 3.5). Three scenarios for the objective function (Equation

3.8) were considered based on different values of α (i.e., different importance weighting

for minimizing the energy used to rotate the cylinder). First, α was set to zero, which

completely neglects the required input energy for rotation. Next, α was arbitrarily assigned

a value of 0.5, and then 1.0. To be consistent, the optimization process for each case was
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Figure 3.2: The convergence of the cumulative energy of POD modes for the stationary

cylinder and one rotating cylinder with rotational velocity of Ω(t) = 1.73sin(0.505t).

set to terminate at a fixed number of iterations of 40. Also, the initial guess for the control

parameters of each trial was set to A = 0.1 and ω = 0.01. An important note is that the

entire ROM optimization process (80 ROM analyses) for each trial required approximately

one hour of total computing time, while a single full-order model analysis of the flow past a

rotating cylinder for one vortex shedding period required more than 24 hours on the same

machine. Thus, there was multiple orders of magnitude reduction in the computing cost by

using a ROM in place of a full-order model within the optimization process.

Figure 3.3 shows the iterative decrease in the cost functional over the optimization process

for the three trials. The cost functional for the trial with α = 0 appeared to be converging

to a final solution after the 40 iterations. However, although the other two trials that

account for the rotation energy show a substantial decrease in the respective cost functionals

over the optimization process, neither appears to be at a similar convergence point after 40

iterations. To compare the final solutions of the three trials, Table 3.1 shows the estimate

of the optimal control parameters after the 40 iterations, along with the percent reduction

in the total cost functional relative to the initial guess (RC), and the percent reduction in

the drag coefficient relative to a stationary cylinder (RD) for each trial. All three trials

produced similar relatively large reductions in their respective total cost functionals, which
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further highlights the success of the optimization procedure. More importantly, Table 3.1

shows the significance of the weight given to the energy cost of rotating the cylinder (α). All

three values of the weighting produced significantly different final estimates for the rotation

control parameters. Thus, as would be expected, as α increases and more importance is

placed on the energy cost of rotating the cylinder, the amount of reduction achieved in the

drag coefficient substantially decreases.

3.6.3 Extension to Control of Flow Past Two Cylinders

Figure 3.4 shows a schematic of the test case considered for the control of flow past two

cylinders. For simplicity, both cylinders were taken to be the same size and the two cylinders

were assumed to be controlled with the same amplitude and frequency, so that the control

parameters still consisted of only A and ω and Equation 3.7 was applied to both cylinders.

The cost functional can be extended for this two-cylinder example to account for the drag

and energy of both cylinders as:

J(A, ω) =

T∫
0

(CD1(t) + CD2(t))dt+ 2α

T∫
0

Ω∗tdt, (3.42)

where CD1 and CD2 are drag coefficients corresponding to the cylinder nearest to the inlet

and the cylinder nearest to the outlet respectively.

The same procedure described for the single cylinder was applied to create the ROMs and

perform the control optimization for this two-cylinder case. However, due to the increase in

the complexity of the flow fields for this second example, it was necessary to generate more

snapshots than for the previous example to ensure the ROMs maintained sufficient accuracy.

10 velocity fields were again sampled uniformly over a single vortex shedding period for

each set of control parameters, and the first set was again the case of both cylinders being

stationary. Then, snapshots were generated for every combination of 10 values of the forcing

amplitude and eight values of the forcing frequency sampled uniformly within the specified

parameter ranges. The total ensemble of snapshots provided for POD of the two-cylinder

example had 810 elements. The set of 810 snapshots was decomposed with POD, and the
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Figure 3.3: Evolution of the cost functional at each iteration of the optimization for three

scenarios of the weight parameter α.

Table 3.1: Summary of the control parameters at the end of the optimization process, corre-

sponding relative cost functional reduction (RC), and relative drag reduction (RD) for each

scenario of the optimal control of flow past a single cylinder.

Scenario A ω RC (%) RD (%)

α = 0 2.54 0.67 62.35 27.61

α = 0.5 1.69 0.55 66.44 17.44

α = 1 0.77 0.34 63.95 9.28
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Figure 3.4: Schematic for flow past two cylinders in a channel.

47 highest-energy modes were used to create a ROM for the optimization procedure of flow

past two cylinders. For this example, only two scenarios for the objective functional were

considered: α = 0 (i.e., neglecting energy cost) and α = 1. The same initial guess for the

control parameters as the previous example was used of A = 0.1 and ω = 0.01, and again

the optimization was terminated after 40 iterations.

Figure 3.5 shows the iterative decrease in the cost functional over the optimization process

for the two trials. Although the change in the cost functional for both trials appeared to be

slowing towards the end of the optimization process, neither trial appeared to be converging

to a final solution estimate in the same manner as the first trial of the previous example.

However, the optimization process was again successful in decreasing the cost functional in

both trials, and the rate of this decrease was similar to the previous example. Table 3.2 shows

the estimate of the optimal control parameters after the 40 iterations, along with the percent

reduction in the total cost functional relative to the initial guess, and the percent reduction

in the drag coefficient relative to the two cylinders being stationary for both trials. Again,

both trials produced relatively large reductions in their respective total cost functionals, and

the change in the weighting parameter significantly affected the optimal control parameter

estimates. In contrast, both the drag coefficient reduction when the energy cost was ignored
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and the difference between the drag coefficient reduction when the energy was included

and when it was ignored increased compared to the previous single cylinder example. The

increase in the drag coefficient reduction when ignoring energy cost is reasonable, since with

two cylinders a larger portion of the flow field can be affected than with one. To interpret the

change in outcome when the energy cost is included, it is important to note that when two

cylinders are in line, the drag force on the downstream cylinder is significantly lower than

that of the upstream cylinder [62]. Therefore, the effect of the rotation of both cylinders

on the flow field is not equal, even though both cylinders were forced to have the same

rotational control, resulting in an increase in the energy cost for a disproportionate decrease

to the drag coefficient reduction in contrast to the single cylinder example.

Although not considered herein for the sake of brevity, a relatively simple solution to

improve the efficiency of the two-cylinder example could be to allow the two cylinders to be

controlled independently. In particular, the contribution of the drag coefficient of the down-

stream cylinder on the total drag coefficient depends on the distance between the cylinders,

and it reaches a maximum when L
D

= 3.6, where L is the distance between the cylinders

and D is the diameters of the cylinders [62]. Hence, when L
D

is relatively far from 3.6, the

two cylinders could be set to be controlled independently, and a new cost functional that

accounts for the rotational energy cost independently for each cylinder could be utilized for

the optimization.

3.7 CONCLUSIONS

An approach was presented and numerically evaluated to utilize proper orthogonal decomposition-

based reduced-order modeling to estimate a solution for optimal control of rotary cylinders for

drag reduction in fluid flows. This approach utilized the Galerkin projection ROM method,

and the ROM formulation of the control objective included the effect of the pressure field

in quantifying the cylinder drag, in addition to the effect of the velocity gradient. Through

two test cases, one involving flow past a single cylinder and the other involving flow past

two in-line cylinders, the strategy was capable of finding control solutions to significantly
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Figure 3.5: Evolution of the cost functional at each iteration of the optimization for two

scenarios of the weight parameter α.

Table 3.2: Summary of the control parameters at the end of the optimization process, corre-

sponding relative cost functional reduction (RC), and relative drag reduction (RD) for each

scenario of the optimal control of flow past two cylinders.

Scenario A ω RC (%) RD (%)

α = 0 3.87 0.71 67.40 34.44

α = 1 0.65 0.32 56.50 7.39
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reduce the drag coefficient on the cylinder(s) with substantially less computational cost than

if full-order modeling had been used. Furthermore, the tradeoff between the conflicting ob-

jectives of reducing the drag while minimizing the energy required for the control process

was revealed with the ROM-optimization procedure as well. This tradeoff was particularly

evident for the case of flow past two in-line cylinders, where the energy cost of controlling

the downstream cylinder was far greater than the relative drag reduction. However, it is ex-

pected that significant improvement in the overall optimization of a multiple-cylinder system

would be obtained through a slight modification of the formulation to allow for independent

control of each cylinder.
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4.0 CURRENT CAPABILITIES AND FUTURE DIRECTIONS

Throughout the present work proper orthogonal decomposition-based reduced-order mod-

eling was utilized and evaluated for the solution of computationally expensive problems in

computational mechanics. Toward this end, two different types of problems were considered:

(1) relatively numerically simple (i.e., inexpensive) problems with high dimensional param-

eter spaces and (2) numerically more complex problems with low dimensional parameter

spaces. For the first type of problems, even though solving the full-order model of the sys-

tem is not considered to be computationally expensive for a specific set of input parameters,

since the space of input parameters is large, several orders of magnitude of full-order model

simulations are often required to solve an inverse/optimization problem for such a system

which makes the process computationally expensive and reduced-order modeling required.

For the second type of problems, the full-order model simulation of the system is itself

computationally expensive, and even though a relatively small number of full-order model

simulation would be required to solve an inverse/optimization problem, the total computa-

tional cost of the process makes the use of full-order modeling prohibitive and some form of

model reduction is necessary.

In the context of the first class of problems, a generally applicable algorithm for the

iterative generation of data ensembles to efficiently create accurate ROMs for use in compu-

tational approaches to approximate inverse problem solutions was developed and numerically

evaluated. The algorithm considers characteristics of the problem, rather than a priori sam-

pling the parameter space, to generate snapshots. The core hypothesis of the algorithm is

that maximizing the diversity, as defined in a measurable sense, of the full-order models

used to create the ROM will improve the accuracy of the ROM over a broad range of input

system parameters. Based on an initial (small) set of snapshots, the algorithm uses snapshot

79



correlation to quantify the snapshot diversity with respect to the system input parameters.

Then, the algorithm iteratively applies surrogate-model optimization to identify the next

set(s) of system input parameters to be evaluated with full-order analyses to create addi-

tional “optimal” snapshots. The main advantage of the proposed algorithm is its capability

to sample large dimensional parameter spaces. The algorithm automatically determines the

regions of the parameter space that need additional sampling to improve approximation ca-

pability efficiently. Although the present work examined the capabilities of this algorithm for

two numerically simple test cases, the proposed algorithm is potentially capable of creating

accurate ROMs for more complex systems to be used in NDT problems, or in general, any

type of inverse problem. The proposed algorithm could also have benefit for creating accu-

rate ROMs for numerically complex systems, since the algorithm does not require a large

initial ensemble of FOM solution fields (which are computationally expensive to generate).

Therefore, the process of creating accurate ROMs for numerically complex systems could be

computationally efficient as well.

For the second class of the problems discussed (i.e., numerically complex problems with

low dimensional parameter spaces), sampling the parameter space is not as important as

it is for the first type of problems, and the focus is on creating accurate ROMs that are

valid over a broad range of the system input parameters. To this end, the present work first

investigated different approaches of POD-based reduced-order modeling for the numerically

complex problem of flow past a single cylinder and flow past a cluster of four cylinders. Two

fundamentally different ROM approaches that similarly utilize a POD basis were evaluated

and compared: (1) the Galerkin projection approach, in which the Navier-Stokes equations

are projected onto the low dimensional POD basis, and (2) a surrogate modeling approach,

in which the governing equations of the system are replaced with a surrogate mapping (e.g.,

radial basis function interpolation/extrapolation) of the modal coefficients of the POD ba-

sis. For predicting responses in time with a fixed Re number for a single cylinder, all of

the ROMs were relatively accurate, but the surrogate model ROMs were significantly more

accurate than the Galerkin projection ROMs, particularly at the lower values of Re number.

Alternatively, for predicting the flow response for varying Re number, the surrogate model

approach became ineffectual (errors greater than 100%), while the Galerkin projection ap-
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proach increased in error by a relatively small amount compared to prediction with fixed Re

number. For the example of flow past a cluster of four cylinders, the accuracy of both ROM

approaches was commensurate for predicting responses in time with fixed Re number (i.e.,

the accuracy of the surrogate model approach decreased significantly), and the maximum

error of the ROM approaches increased by only a relatively small amount compared to the

single cylinder example. As before, the surrogate model approach was unable to accurately

predict variations in Re number, while the Galerkin projection approach was approximately

as accurate as for the single cylinder example. In other words, while surrogate modeling per-

forms better than the Galerkin-projection approach for problems that do not have complex

POD bases and the original set of snapshots are enriched sufficiently, the Galerkin projection

approach maintains the same level of accuracy when it comes to complex problems with a

relatively small number of snapshots in the original ensemble. The framework developed in

the present work can be extended to more complex problems, such as flow past a bundle

of cylinders (e.g., turbulent flow in the lower plenum of a VHTR), and as it was discussed

above, for complex geometries, the Galerkin projection approach is a more robust method

to create accurate ROMs that are valid over a range of parameters. On the other hand, for

numerically complex problems with simple geometries, such as boundary layer flows, shear

layer flows, or flow past any bluff body, it is expected that a surrogate modeling method

is a more computationally efficient approach to create accurate ROMs (compared to the

Galerkin projection method).

Lastly, to study the capability of reduced-order modeling in solving optimization prob-

lems for complex systems, an approach for utilizing reduced-order modeling within a com-

putational procedure to optimally control rotary cylinders for drag reduction in fluid flows

was developed and numerically evaluated. More specifically, the objective of the optimal

control problem considered was reduction of the drag coefficient acting on one or more em-

bedded cylinders in a flow field while simultaneously utilizing the least amount of energy

through control of the rotational velocity of the cylinder(s). The effect of the pressure field

on the drag on the cylinder(s) was included in the objective, in addition to the effect of the

fluid velocity gradient, to provide a physically accurate measure of the drag. The optimal

control problem was formulated in terms of the POD modal coefficients and gradient-based
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optimization with the adjoint method was used to estimate an optimal control solution.

Two simulated case studies were used to evaluate the computational procedure: the first

involving flow past a single rotary cylinder and the second involving flow past two in-line

rotary cylinders. In all test cases the solution procedure was shown to determine a set of

control parameters to substantially reduce the drag coefficient of the system with signifi-

cantly less computational expense than if standard computational fluid dynamics had been

used. In addition, a significant tradeoff was shown between the objective of reducing the

drag coefficient and the objective of minimizing the energy cost of rotating the cylinder(s),

particularly for the two-cylinder case. The computational procedure to solve the optimal

control problem can be potentially applicable to more realistic test cases with more complex

geometries. To improve the efficiency of the computational procedure, the forcing resource

can be distributed for each cylinder based on its contribution in the total drag coefficient of

the system. In other words, if the drag coefficient on cylinder A is always less than the drag

coefficient on cylinder B, one can make the search space of the control parameters of cylinder

A smaller than the search space for control parameters of cylinder B, thereby improve the

efficiency of the optimization process as well as the quality of the control solution obtained.
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