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Huntington’s disease (HD) is a uniformly fatal genetic disease causing progressive degeneration 

of the central nervous system in approximately 250,000 people worldwide. Unlike other 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, HD is explicitly 

caused by a single genetic defect – a CAG codon expansion in the huntingtin gene, which codes 

for polyglutamine (polyQ) in the protein huntingtin (htt). People carrying 40 or more 

CAG/glutamine repeats will develop HD by early adulthood, while those with 36 or less are 

unaffected. Despite this discovery over two decades ago, there are still no treatments to cure, 

prevent, or delay the underlying progression of HD. 

The physical state of the huntingtin “exon1” fragment responsible for triggering HD 

pathology (amyloid aggregates, non-β oligomers, or monomers) is a controversial roadblock that 

limits therapeutic discovery. Previous attempts to determine the toxic species have recently been 

identified as flawed or inconclusive. Herein, we describe mutated htt-exon1 analogs containing 

only 22-24 glutamine residues that deliver atypical aggregation: a “hyper-amyloid” analog that – 

despite its short glutamine repeat lengths – aggregates into amyloid fibrils comparable to 

pathogenic huntingtin, and “hypo-amyloid” analogs whose aggregation stops at the non-β 

oligomer stage. Hyper-amyloid htt-exon1 produces inclusions, cytotoxicity in rat neurons, and 

decreased lifespans with movement deficits in flies. Neurons and flies expressing hypo-amyloid 
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htt-exon1 alone have no detectible HD phenotype. Our data strongly supports a toxic amyloid 

hypothesis, and we find no evidence of a toxic non-β oligomer. 

Furthermore, the non-toxic hypo-amyloid analogs are also able to inhibit amyloid 

formation of pathogenic repeat length htt-exon1. Co-expression of hypo-amyloid htt-exon1 with 

pathogenic htt-exon1 reduces aggregation in vitro, inhibits toxicity in neuron cultures, and 

rescues behavioral and lifespan HD phenotypes in flies. These exciting results offer novel, 

rationally designed approaches to HD therapeutics. 
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Scheme 1: General Aggregation Mechanisms of Huntingtin. (1) Htt-ex1 monomers are composed of three 

intrinsically disordered segments (htt
NT

, green; polyQ, orange; proline rich domain, black) that are capable 

of two distinct, but similar amyloid nucleation pathways. The first pathway follows a two-step process, 

where the first step is the rate limiting nucleation of aggregation via an inter- or intra-molecular 

rearrangement of polyQ into a critical nucleus structure (8), which is able to initiate rapid elongation of 

amyloid via monomer additions to the growing fibril (9). Alternatively, and if htt-ex1 has a functional htt
NT

 

domain, htt-ex1 monomers can self-assemble into α-helical rich bundle formations (2). In the oligomeric 

phase, the local concentration of polyQ is artificially increased, accelerating nucleation of aggregation (3) 

to generate β-sheet rich fibril formation (4) that elongates via monomer addition (5). One strategy to limit 

nucleation is the initial presence of htt
NT

-containing peptides, which can compete for initial oligomer 

formation and limit the artificial increase in local polyQ concentration (6). Alternatively, the elongation 

mechanisms of aggregation can be inhibited with Pro-interrupted polyQ tracts that can add to htt-ex1 fibrils 

and block further additions (7).  
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Table 1: Protein Sequences described in this study 

Peptide Name                            Amino Acid Sequence 

htt-ex1 (htt exon1) MATLEKLMKAFESLKSF------------------QN-------------------------PRD 

K2QNK2 KK-----------------------------------------------QN--------------------------KK 

AcWQ11pGQ11WTGK2 --------------------------------------AcW-Q11pGQ11-WTG---------------KK 

βHP KK--------------------------------GGW-Q11PGQ11-WTG----------------KK 

βHP-P1 KK--------------------------------GGW-Q5PQ5PGQ11-WTG------------KK 

βHP-P2 KK--------------------------------GGW-Q11PGQ5PQ5-WTG------------KK 

βHP-P1,2 KK--------------------------------GGW-Q5PQ5PGQ5PQ5-WTG--------KK 

htt-ex1P10-QN MATLEKLMKAFESLKSF--------------------QN-----------------------P10KK 

htt-ex1P10-βHP MATLEKLMKAFESLKSF------GGW-Q11PGQ11-WTG-----------P10KK 

htt-ex1P10-βHP-P1 MATLEKLMKAFESLKSF----GGW-Q5PQ5PGQ11-WTG--------P10KK 

htt-ex1P10-βHP-P2 MATLEKLMKAFESLKSF----GGW-Q11PGQ5PQ5-WTG--------P10KK 

htt-ex1P10-βHP-P1,2 MATLEKLMKAFESLKSF---GGW-Q5PQ5PGQ5PQ5-WTG----P10KK 

htt-ex1-QN-EGFP MATLEKLMKAFESLKSF--------------------QN------------------PRD-EGFP 

htt-ex1-βHP-mCh MATLEKLMKAFESLKSF------GGW-Q11PGQ11-WTG-------PRD-mCh 

htt-ex1-βHP-P2-mCh MATLEKLMKAFESLKSF----GGW-Q11PGQ5PQ5-WTG-----PRD-mCh 

htt-ex1-βHP-P1,2-mCh MATLEKLMKAFESLKSF---GGW-Q5PQ5PGQ5PQ5-WTG--PRD-mCh 

 

PRD = PPPPPPPP PPPQLPQPPP QAQPLLPQPQ PPPPPPPPPP GPAVAEEPLH RP; Ac = 

acetyl group; p = d-Pro; EGFP = enhanced green fluorescent protein; mCh = mCherry 

fluorescent protein. 
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1.0  INTRODUCTION 

1.1 AMYLOID DISEASES 

Protein misfolding, particularly protein misfolding into β-sheet rich amyloid, is increasingly 

being recognized as a hallmark of over 50 diseases 
1
, many of which are becoming more 

common as the average life expectancy increases 
2
 and as the obesity endemic leads to new cases 

of type II diabetes 
3
. A number of metastable proteins that are prone to misfolding into amyloid 

also have neurodegenerative phenotypes. Alzheimer’s disease involves the aggregation of the 

amyloid-β peptide, which is a cleavage product of the amyloid precursor protein (APP), into β-

sheet rich amyloid plaques 
4
. In Parkinson’s disease, α-synuclein forms insoluble fibrils to form 

molecular pathologies characterized by Lewy bodies 
5
. Huntingtin and other expanded 

polyglutamine-containing proteins also aggregate into amyloid fibrils in vitro 
6
, in model 

organisms 
7
, and in human brains 

8
. Although less prevalent in humans, the conversion of α-

helical rich prion protein (PrP
C
) into insoluble β-structured PrP

Sc
 to cause spongiform 

encephalopathies is a classical example of infectious proteinopathy 
9,10

.  

Amyloid diseases are not restricted to simply the CNS and neurodegeneration, but can 

affect the entire body. Immunoglobulin light chain can aggregate into amyloid causing amyloid 

light chain amyloidosis, a condition typically affecting the heart 
11

. In type II diabetes, increased 

cosecretion of insulin and pro-IAPP results in granule formation that can seed aggregation of 
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IAPP (amylin) 
12

. This process may be partially responsible for the loss of islet β-cells in type II 

diabetes 
12

.  

Of the amyloid associated diseases, prion diseases are currently the only protein 

misfolding disease labeled as infectious. There are a number of documented cases supporting the 

spread of prion, such as in the disease Kuru, where transmission of the infectious prion particle is 

passed through ritualistic cannibalism 
13

. Similarly, Creutzfeldt-Jakob disease can be acquired by 

the ingestion of contaminated meat containing scrapie prions 
14–17

 or by blood transfusions with 

affected patients 
18

. This transmissible phenotype between humans has not been documented for 

HD or other neurodegenerative diseases, but recent work suggests that infectivity may be 

possible: patients treated with pituitary-derived growth hormone contaminated with Aβ seeds 

were recently identified as being significantly more likely to develop vascular Aβ pathology 

typical of early onset Alzheimer’s disease 
19

. Indeed, because of the recurring similarities 

between prions and protein misfolding diseases in neurodegeneration, many neurodegenerative 

diseases are being reinvestigated as being potentially prion-like in their mechanisms of 

transmission and toxicity. Although the misfolded protein in many of these diseases has been 

clearly identified, the mechanism by which amyloid generates toxicity is unclear. The primary 

sequences and cellular roles between different amyloid causing diseases are distinct from one 

other, with the only commonality being their inherent capacity to aggregate into insoluble 

amyloid, which involves a cross β-sheet quaternary structure and a dehydrated hydrophobic core 

20,21
. Cross seeding of amyloid structure between different proteins is possible, but requires 

sufficient primary sequence and structural homology between the seed and the soluble protein. 

For example, amyloid proteins that are too dissimilar, such as IAPP relative to Aβ, show poor 

cross seeding 
22

. 



 3 

Because of these striking similarities between amyloid formation and toxicity, many 

researchers have proposed a common toxic amyloid hypothesis, though some evidence may also 

point to other aggregated protein conformations or a misfolded toxic monomer (Section 1.3). 

Isolating the monomeric, oligomeric, and amyloid species of these proteins and identifying their 

individual toxic contribution is not yet technologically feasible, due to such factors as the 

tendency of the metastable monomeric and oligomeric forms to ultimately transition to a 

thermodynamically stable amyloid, and the challenge of detecting and quantifying various 

aggregates states in vivo in real time.  

1.2 HUNTINGTON’S DISEASE 

George Huntington first described Huntington’s disease (HD) in detail in 1872 
23

. It wasn’t until 

1993 that the affected gene, huntingtin, was found at chromosome 4p16.3 
24

. Therefore, unlike 

Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and several other 

neurodegenerative diseases, HD is a monogenetic disorder. This makes diagnosis, prediction of 

disease progression, the generation of model organisms, and many other clinical aspects of HD 

relatively less difficult compared to AD and other neurodegenerative diseases. HD, which affects 

approximately 1 in 7,300 people in Western populations 
25

, is therefore a prime candidate to 

model both neurodegeneration as well as amyloid diseases as a whole. 

In unaffected persons, the huntingtin gene HTT contains a variable CAG repeat domain 

of 6-35 repeats. CAG repeats of 36-39 coincide with a potential risk of developing HD, while 

CAG repeats ≥ 40 are highly penetrant. The CAG codon repeat is unstable and prone to 

expansion, particularly during meiotic transmissionwhose instability increases with increasing 
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CAG repeat length 
26

. Therefore, parents with 35-39 CAG repeats that do not experience HD 

may pass on a fully penetrant copy of HTT to their offspring. CAG repeats above 40 correlate 

with earlier onset of disease and more severe symptoms 
26

. A single copy of the mutant HTT 

gene is sufficient to cause HD, though it is unclear if a second copy of mutant HTT worsens 

disease. This autosomal dominant inheritance pattern suggests a toxic gain-of-function disease, 

as opposed to other recessive loss-of-function monogenetic diseases, such as Cystic Fibrosis or 

Fragile X Syndrome 
27–29

. The nature of how huntingtin gains toxic function, potentially through 

a conformational change in the protein, is discussed in greater detail in Section 1.3.  

HD patients experience a number of locomotor, cognitive, and behavioral defects 

affecting the CNS, as well as the entire body, that categorically progresses with age. Onset and 

clinical diagnosis of HD typically occurs in adulthood, where latent pre-manifest and prodromal 

symptoms become more pronounced. Following clinical diagnosis and the onset of locomotor 

dysfunction, progression of the disease is uniformly fatal with a median survival of 18 years after 

initial motor impairment 
30

. Core symptoms of HD include, most notably, a progressive 

degeneration of locomotor control leading to spastic movements termed chorea, cognitive 

impairment, and behavioral abnormalities. MRI and CT scans confirm progressive 

neurodegeneration evident by striatal atrophy, particularly medium GABAergic neurons of the 

striatum, as well as atrophy in the cortex, caudate, and basal ganglia 
31,32

. For reasons that are not 

yet clear, the cerebellum and brain stem are relatively spared. This can be partially explained by 

the differential expression levels of mhtt in different brain regions, differing vulnerabilities 

between varying neuronal populations, or altered binding partners between different cell types. 

For example, the striatal-enriched GTPase Rhes is thought to bind to and SUMOylate mhtt, 
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altering its toxicity. Ectopic expression of GTPase Rhes in the cerebellum of HD mice leads to 

loss of balance, caspase 3 activation, and lesions within the cerebellum 
33

.  

The HTT gene encodes a 3,144 amino acid protein whose wild type function is largely 

unknown. A smaller fragment of huntingtin, htt-exon1, is produced through a number of 

proteolytic cleavage events 
34

 or by alternative splicing 
35,36

. Htt-exon1 is approximately 100 

amino acids long and contains three sequence domains: the huntingtin N-terminus (htt
NT

) of 17 

amino acids, a CAG repeat polyQ segment of variable length, and a 51 amino acid proline rich 

domain (PRD). Expression of polyQ-expanded htt-exon1 fragment is both sufficient and 

necessary to cause HD-like phenotypes in model organisms 
7
. However, the mechanistic details 

of how a polyQ-expanded htt-exon1 causes disease is highly debated. Neither the molecular form 

of htt that causes toxicity, nor its primary cellular targets leading to HD symptoms, are known 

with certainty. Monomeric, oligomeric, and amyloid protein conformations have all been 

proposed as toxic species and are discussed in more detail in Section 1.3.1 through 1.3.4. 

Oligomer formation of htt-exon1 is visible biochemically by separation in SDS-free gels 

with large pore sizes, such as Agarose Gel Electrophoresis for Resolving Aggregates (AGERA) 

37
, by microscopy methods such as fluorescence correlation spectroscopy  (Sahoo 2016 

Manuscript Submitted), by biophysical methods such as analytical ultracentrifugation (AUC) 
38

, 

and by electron microscopy 
39

. Conversely, large aggregates with fibrillary substructures formed 

by expanded polyQ versions of huntingtin are evident in vitro 
6
, in model organisms 

7
, and in HD 

patient brain tissues 
40

. These aggregates can range from >100,000,000 molecule conglomerates 

41
 to the more recently identified smaller aggregates of <100,000 huntingtin fragments 

42–44
. 

Mirroring the polyQ repeat length threshold of disease in humans, longer polyQ repeat lengths in 

vitro correlate with more efficient nucleation of aggregation and faster overall kinetics to 
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amyloid formation 
45

. Indeed, the idea of prion-like transmission and propagation of amyloid 

aggregates in vivo is gaining favorability. Mature polyQ amyloid aggregates are capable of 

seeding the aggregation of other metastable polyQ-containing proteins. This is reminiscent of 

prion diseases, and may include a cell-to-cell infectious remission, also seen in prion disease 
46

. 

Additional evidence in favor of a toxic amyloid is the toxicity associated with delivering 

preformed polyQ aggregates to mammalian cells in culture 
47

.  

Molecular pathogenesis of huntingtin includes a myriad of dysfunctional biochemical 

pathways, some of which are tied to the proposed functions of wild type huntingtin, including: 

ER stress 
48

, changes in basal chaperone function 
49

, changes in chromatin architecture 
50

, 

alterations in the ubiquitin-proteasome system 
51

, autophagy dysregulation 
52

, transcriptional 

anomalies 
53

, mitochondrial impairment 
54,55

, synaptic dysfunction 
56

, and many others. 

Additionally, huntingtin shuttles between the cytoplasm and the nucleus, serves a role in the 

development of the CNS, influences the release of brain-derived neurotrophic factor (BDNF), 

and potentially has a wild type role in autophagy 
57

, all of which may be linked to a potential 

loss-of-function pathogenesis as huntingtin is sequestered into insoluble amyloid. The roles of 

these pathways and their contribution to disease progression – whether they are symptoms or 

primary drivers of disease – is unknown. Nevertheless, these pathways represent some of the 

better candidates for potential disease modifying drug interventions, discussed in Section 1.6. 

Despite intense efforts, there are no treatments to slow or prevent disease progression. 

Because of HD’s monogenetic nature, there are several well-defined clinical outcomes, 

including qualitative rating scales such as the Unified Huntington’s Disease Rating Scale 

(UHDRS) and biochemical assays to monitor brain-specific proteins in the CNS, such as soluble 

huntingtin or cytokines 
58,59

. Neuroimaging via structural MRI can sensitively measure caudate 
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atrophy and give feedback on how drug interventions may delay brain atrophy on a relatively 

short timescale of 6-18 months 
31,32

. A combination of the monogenetic nature of the disease, 

research into the mechanism of amyloid aggregation, identification of key pathways involved in 

the cellular response to mhtt, and well-defined clinical outcomes will hopefully accelerate future 

drug discovery. 

 

1.3 MECHANISM OF MUTANT HUNTINGTIN TOXICITY 

1.3.1 Biological Function of Wild Type Huntingtin 

The huntingtin gene HTT, like several of the polyQ-expanded diseases, is largely known for its 

role in causing disease and is sparsely studied for its wild type function. Wild type huntingtin, as 

well as several of the other polyQ-expanded proteins, does not have a well-defined cellular 

function, though there are several clues suggesting a highly conserved role in the development 

and maintenance of the CNS and other organ systems. Huntingtin is expressed ubiquitously, but 

is found at higher concentrations in CNS neurons 
60

. The huntingtin protein and its expression 

patterns are highly conserved from human to mouse to Drosophila to the lowly sea urchin. 

Huntingtin knockout mouse models are embryonically lethal during the initial stages of CNS 

development, solidifying its important role in the developing brain 
61–63

. These huntingtin 

knockout mice exhibit poor neuronal growth and ultimately die during embryonic day 8.5, 

coinciding with gastrulation and formation of the nervous system 
64–66

. Huntingtin continues to 

play an active role in the maintenance of the adult brain. Inactivation of huntingtin in the adult 



 8 

mouse brain can be accomplished using a Cre/loxP-mediated recombination, generating a null 

allele where the loxP-modified Hdh allele was. Expression of cre can be driven to postnatal 

mouse forebrain by the promoter of the gene Camk2a (the α-subunit of calcium/calmodulin-

dependent protein kinase II) 
67,68

. Inactivation of huntingtin in a mouse adult brain leads to 

neurodegeneration, memory problems, and sterility in males, which is due to an unclear role of 

huntingtin in spermatogenesis 
62

. In this study (as is common within the field), huntingtin was 

only examined within the context of the brain, testis, and ovaries because of its obvious 

expression patterns in these organs. More recent studies indicate that huntingtin – either mhtt or 

endogenous WT huntingtin – may play active roles outside of the brain, such as in the heart and 

skeletal muscles 
69–71

.  Many proposed methods to genetically suppress mutant huntingtin, some 

of which are planned to enter clinical trials, may also suppress expression of the non-pathogenic 

allele 
72

. Because complete knockout of HTT is also toxic, it’s therefore critical that researchers 

proceed with caution when considering lowering both pathogenic and non-pathogenic huntingtin 

alleles in humans. 

Another hint of huntingtin’s wild type function is the identification of HEAT repeat 

domains 
73,74

. In other proteins, such as protein phosphatase 2A and the yeast kinase TOR1, 

HEAT repeats are responsible for mediating protein-protein interactions 
73

. Given the relatively 

large size of the full-length huntingtin protein (~350 kDa) and the fact that huntingtin interacts 

promiscuously in Co-IPs 
75

, wild type huntingtin’s function may be as a scaffolding protein. 

Coinciding with the promiscuous nature of scaffolding proteins, in a stringent proteomics study 

by Shirasaki et al., full-length huntingtin isolated from wild-type mouse brain was found to 

interact with 576 different proteins encompassing a multitude of networks: proteostasis, pre-

synaptic function, post-synaptic function, calcium signaling/mitochondria, actin cytoskeleton, 
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and aging 
75

. More recently, huntingtin was proposed to have an Atg11-like function in selective 

autophagy, again consistent with a scaffold protein function 
57

. These data include structural 

homology between the C-terminal domain of full-length huntingtin and Atg8/11, via the 

presence of a WXXL domain, also known as a LC3-interacting region (consensus sequence 

W/F/Y-X-X-L/I/V/F). Full-length htt coimmunoprecipitates with known Atg11 interacters, such 

as LCB3 (mammalian homolog of Atg8) and GABA receptor-associated proteins 

(GABARAPL1), in a WXXL-dependent manner. Although the function of wild type huntingtin 

remains unclear, its ability to cause disease in a polyQ-dependent fashion remains a central tenet 

of the field - much of the time and resources have been spent focusing on the disease-causing 

aspects of polyQ expanded huntingtin.   

1.3.2 The Toxic Amyloid Hypothesis 

Despite decades of groundbreaking research, a precise mechanism by which polyQ expansion in 

the huntingtin protein causes neurodegeneration remains elusive. The development of an 

effective therapy for slowing, preventing, or reversing Huntington’s disease will require a better 

and more detailed mechanism of how huntingtin exerts its toxicity. Exemplifying this is the fact 

that non-hypothesis driven drug screens have systematically failed to find a disease-modifying 

therapy, though there are certainly several drugs to manage symptoms (Section 1.6.1). There are 

several proposed hypotheses of how mutant huntingtin protein achieves its toxic gain-of-

function: a toxic misfolded monomer, a toxic oligomeric species of which several have been 

proposed, large soluble aggregates, mature insoluble aggregates, inclusion bodies, and more. 

This thesis work aims to test several of these, most notably the toxic amyloid hypothesis and 

toxic oligomer hypothesis. 
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The toxic amyloid hypothesis states that the process of amyloid formation (including the 

presence of amyloid itself) represents the toxic factor in HD. This model gained early traction 

from simple observations of post-mortem human HD brains, which have large intracellular 

inclusion bodies containing insoluble protein material 
40

. The levels of insoluble protein deposits 

correlates with severity and progression of the disease. Historically, in particular with other 

amyloid diseases, dyes to detect amyloid, such as Congo Red, have been used to identify and 

histologically score amyloid inclusion formation in post-mortem brains. Animal models 

expressing polyQ expanded huntingtin also reveal a similar pattern of nuclear huntingtin 

aggregation using antibodies and neuron death 
7
.  

The pathological repeat length of disease in humans, which begins around 37 glutamines 

in HD, is roughly mirrored by a similar repeat-length dependence of aggregation in vitro 
76

. The 

predicted time to aggregate into amyloid for a simple polyQ peptide in PBS at 1 nM with 23-25 

glutamine repeats is 100,000 - 1,000,000,000 years; far too slow to be physiologically relevant. 

However, polyQ repeats of 26-37 are calculated to aggregate on the order of 10-100 years, 

roughly the age of onset of HD and well within a humans’ average lifespan 
77

. The propensity of 

simple polyQ sequences to aggregate in vitro with increasing polyQ repeats correlates well with 

cellular aggregation and cell death in many of the polyQ diseases. Even simple expanded polyQ 

peptides, which lack protein context, can cause disease. For instance, flies expressing expanded 

polyQ peptides have similar neurodegenerative phenotypes as mhtt flies 
78

. Complementing this, 

pre-formed simple polyQ aggregates added to PC12 cell culture media are toxic on their own 
47

. 

Additional biophysical evidence comes from mathematical modeling, which maintains that 

disease onset and progression rates are consistent with a nucleation-dependent aggregation 

process 
79,80

. The correlation between an expanded polyQ sequence’s ability to aggregate into 
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amyloid in vitro and in vivo and its toxicity would appear to be overwhelmingly in support of the 

toxic amyloid hypothesis. 

Contesting the toxic amyloid hypothesis, several in vitro studies using live-cell tracking 

in primary neuron culture systems demonstrated that inclusion body formation is potentially a 

cellular protection mechanism: cultured striatal neurons that form intracellular inclusions have 

better odds of survival than neurons that failed to do so 
81,82

. This research suggested that 

inclusion body formation best predicts improved survival and leads to decreased level of mutant 

huntingtin elsewhere, which they believe to be the toxic species. While this research suggests 

that one form of large aggregates, cytoplasmic inclusion bodies, are less toxic than thought, some 

research groups have over-interpreted this to mean that all aggregated species are non-toxic. This 

has caused many researchers in the field to pursue other potential toxic species, such as a soluble 

toxic oligomer or misfolded monomer, discussed in the next Sections. 

Recently, inclusion bodies were found to have their own toxicity associated with them, 

and are not as benign as previously believed 
83

. To further address this, Moerner’s laboratory 

confirmed the suspicion that not all huntingtin aggregates are sequestered into the handful of 

bright large inclusion bodies seen by standard fluorescence microscopy methods 
42–44

. By 

photobleaching the fluorescence signal from excessively bright inclusion bodies and using super-

resolution microscopy techniques, smaller aggregates of <1,000,000 monomers become visible, 

which appear to take on amyloid-like morphologies. These smaller and relatively less bright 

aggregates were previously obscured in the soluble signal; in many studies, cells containing these 

small aggregates may have been erroneously labeled as soluble monomeric or oligomeric 

populations. Other sensitive techniques, such as fluorescence correlation spectroscopy, can 

detect small diffusible aggregates in cell lysates and in live cells 
84

 (Sahoo 2015 Manuscript 
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Submitted). These results reignite the possibility that aggregated proteins, such as amyloid, 

protofibrils or other relatively large β-sheet rich aggregates, can participate in causing cell death. 

This is a particularly salient point if these smaller aggregates have not yet been targeted by the 

protein quality control mechanisms of the cell. 

Ultimately, to date, the field is not unified on the mechanism of how polyQ expanded 

huntingtin causes Huntington’s disease, nor is there a consensus on the nature of the toxic 

species. Further work defining the contribution and mechanism of huntingtin amyloid to HD 

pathology is crucial to developing effective hypothesis driven therapies. 

 

 

1.3.3 The Toxic Oligomer Hypotheses 

More recently, alternative hypotheses have been developed in order to explain the toxic effects 

of mutant huntingtin, namely the toxic oligomer hypothesis, which states that some non-amyloid, 

soluble oligomer of huntingtin is the toxic species 
85–89

. A number of key experiments question 

the direct correlation between amyloid aggregation and toxicity. Small molecules that enhance 

autophagy and the clearance of large aggregates in cells do not rescue HD phenotype in animals 

90
. Primary cultured rat neurons that successfully form large inclusion bodies survive longer than 

those without inclusion body formation 
81

. Other experiments correlate the apparent timing of 

different huntingtin species with cellular markers of toxicity, such as ER stress 
91

. The 

serendipitously developed “shortstop” form of human huntingtin exon1, which is truncated at 

amino acid 117, forms widespread inclusions in transgenic mice, but no neurodegeneration or 

behavioral defects 
87

. However, later studies demonstrated that expanded shortstop is less 
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capable of forming amyloid than htt-exon1, which was interpreted to mean that oligomers are 

toxic 
86

. All together, a number of groups have proposed that the formation of large inclusion 

bodies leads to a lower toxic cellular protective response 
92,93

. 

Altogether, his has led many research groups to study the role of soluble non-amyloid 

oligomers in HD pathogenesis. Takahashi et al. found that mhtt fragments that increased levels 

of oligomerization correlated with increased cytotoxicity, however, this study utilized split-GFP 

constructs to report dimerization, which may act to promote oligomerization independent of or in 

concert with htt 
94

. Split-GFP proteins have their own affinity to bind to one another and form a 

fluorescently active reporter GFP protein – this process may very likely accelerate the 

oligomerization of the huntingtin proteins they are fused to. Other studies incorporate the 

serendipitously discovered huntingtin shortstop, which is a 117-amino acid fragment of 

huntingtin that forms aggregates in mice, but is non-toxic 
87

. Shortstop oligomeric species are not 

recognized by the antibody 3B5H10, which is claimed to detect a toxic conformation of 

polyglutamine in htt fragments 
86

.  

A possible mechanism of oligomer toxicity is the inhibition of endoplasmic reticulum-

associated degradation (ERAD), which induces ER stress before the formation of visible 

inclusions 
95

. Another paper found that oligomeric mutant huntingtin accumulates in the nucleus 

and can inhibit transcription factors, such as TATA-binding protein and CREB-binding protein 

96
. 

However, many of these studies rely on the correlative timing of molecular events or rely 

on the lack of appearance of bright inclusion bodies to determine whether or not aggregation into 

amyloid has taken place. Subsequent reexamination of cells expressing mhtt-ex1 using super-

resolution microscopy has shown that a multitude of small, previously undetected amyloid-like 
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aggregates exist outside of inclusion bodies, further reigniting this complex problem 
42–44

 (Sahoo 

2016 Manuscript Submitted). These relatively small, fibrillar aggregates are not readily visible 

within the resolution limits of confocal microscopy and were previously categorized as part of 

the soluble non-amyloid portion of htt-ex1 in the cell. Previous interpretations of a toxic 

oligomer that relied on the absence of massive inclusion bodies or assumed a homogeneous 

mixture of huntingtin conformers in vivo need to be thoroughly re-evaluated in light of this new 

evidence. 

 

1.3.4 The Toxic Monomer Hypothesis 

Support for a toxic misfolded monomer comes from a number of experiments. First is evidence 

purporting that chemically synthesized polyQ peptides can exist as a stable β-sheet monomeric 

form 
97

; however, these results were likely an artifact from the peptide synthesis process, which 

can introduce pre-aggregated contaminates that can rapidly seed further aggregation of the 

soluble portion. Chemically synthesized polyQ peptides that have undergone rigorous 

disaggregation protocols show an initial state of random structure for simple polyQ peptides 
98,99

.   

Further support for the toxic monomer hypothesis stems from work using antibodies to 

correlate the presence of huntingtin epitopes with toxic folding events. Preferential binding of the 

1C2 antibody to soluble expanded polyQ sequences was initially thought to be due to 

conformational changes within the monomeric form of expanded polyQ huntingtin, which could 

represent a toxic species 
100

. Additionally, the antibody 3B5H10 recognizes a species of 

huntingtin protein that predicts neuronal death 
101

. However, a linear lattice model 
98,102,103

 

explains how these antibodies bind with additional affinity and stoichiometry as the number of 
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epitope regions increases in expanded polyQ sequences. Thus, MW1 and other similar polyQ 

antibodies likely do not recognize a distinct conformation of the monomer or oligomer, but bind 

to the additional available polyQ epitopes with increased avidity. 

A number of independent studies using varied techniques find no evidence for a 

significantly populated structured huntingtin monomer in water. Firstly, fluorescence correlation 

spectroscopy studies in vitro and in cells demonstrate that polyQ-expanded huntingtin rapidly 

forms oligomers, with little detectible monomer (Sahoo 2016 Manuscript Submitted). Secondly, 

studies using solution NMR 
104,105

 or circular dichroism 
106,107

 to monitor crude secondary 

structure show that expanded polyQ sequences adopt a random structure in aqueous solution and 

only gain β-structure as it aggregates into amyloid 
102,107

. In fact, even with the addition of the β-

hairpin enhancing motifs, the effect on the monomer structure in solution is not detectible by 

circular dichroism (CD), a measure of ensemble protein secondary structure 
108

. Thirdly, the 

amide functional group in glutamine provides ample opportunity for H-bonding. Previous papers 

using fluorescence correlation spectroscopy report that water is a poor solvent for polyglutamine, 

which forms a collapsed compact coil, brought on by glutamine side chain amides H-bonding to 

the main chain amide groups 
109

. Fourthly, the equilibrium constant between unstructured 

monomer and a structured nucleus in simple polyQ peptides ranges from 10
-10

 to 10
-15

 depending 

on polyQ repeat length 
77,108

. Therefore, the population of soluble huntingtin in this nucleus form 

is infinitesimally small, making it a poor candidate for a toxic species. However, an unstructured 

toxic monomer may come about from an increased affinity of expanded polyQ huntingtin to bind 

partners with higher affinity 
98,110

 . 
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1.3.5 Alternative Hypotheses 

In addition to the toxic aggregate, toxic oligomer, and toxic monomer hypotheses in HD, there 

are several alternative mechanisms of toxicity. However, to date it remains difficult to tease out 

which toxic events are primary, and which are secondary symptoms. Whatever the toxic 

mechanism may be, the inevitable result is a global cellular crisis that obscures primary and 

secondary toxic events; mitochondrial dysfunction, impaired axon transport, altered transcription 

and DNA methylation, synaptic and neurotransmitter dysfunction, and pro-apoptotic signaling all 

precede eventual cell death.  

A loss-of-function phenotype has also been proposed. Adult HD KO mice and 

Drosophila have impaired neurological function, including motor phenotypes and reduced 

lifespan 
62,111

. However, a loss-of-function phenotype can also be rationalized as the dominant 

gain-of-function of mutant huntingtin’s capacity to recruit soluble huntingtin into a growing 

amyloid fibril. 

Aggregated mutant htt may be able to sequester other polyQ-containing proteins into a 

growing amyloid aggregate. Aggregation of polyQ or Aβ proteins may also be capable of 

promiscuously co-aggregating with other dissimilar proteins 
75,112,113

. Huntingtin aggregates have 

been found to co-immunoprecipitate with other meta-stable proteins that contain short, normally 

benign polyQ repeat lengths (Q > 7) 
114

. These large aggregates may act as a sink to sequester 

other soluble proteins into the growing amyloid, causing a synchronous loss-of-function from 

dozens of proteins. 

Similar to the recruitment hypothesis, large amyloid aggregates may also act as a sink of 

heat shock proteins. DNAJB/HSP40 
115–117

, HSP70 
117,118

, HSF-1 
50,119

, TRiC 
120,121

, αB-

crystallin 
122,123

, CHIP 
124

 and other heat shock response proteins are protective in cell and some 
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animal models of HD. This makes logical sense, as heat shock response proteins capable of 

interacting with misfolded mhtt may be capable of catalyzing the refolding of misfolded mhtt or 

facilitating the degradation of misfolded mhtt. However, if an excess of misfolded mhtt places an 

excessive demand on the heat shock response system, cellular protein quality control may suffer. 

Recent work has demonstrated that inclusion bodies precede the appearance of diffusible sub-

diffraction amyloid-like species in cells, suggesting that inclusion bodies of mhtt stress the heat 

shock response system past a certain breaking point, where the cell’s heat shock response system 

is no longer able to maintain the solubility of other metastable proteins 
42

. Additionally, the 

steady state heat shock protein response is dampened in HD animal models, which are unable to 

launch an appropriate heat shock protein response even when given HSF1 activating compounds 

50
. This may be due to a number of factors, including sequestering a limited number of important 

molecules from the ubiquitin proteasome system, restructured chromatin 
50

, or by inhibiting 

clatherin-mediated endocytosis by sequestering chaperones 
125

. 

1.4 POLYGLUTAMINE REPEAT DISORDERS 

1.4.1 DNA Repeat Diseases 

Fragile X syndrome (FXS) is a genetically inherited disease that causes cognitive disability in 

about 1 in 3,600 males and 1 in 6,000 females 
126

 making it the most prevalent trinucleotide 

repeat disorder. Because this developmental disorder is linked to the X chromosome, it 

particularly affects boys. The culprit of FXS is a trinucleotide repeat expansion of CGG in the 

Fragile X mental retardation 1 (FMR1) gene 
127

, where unaffected individuals carry less than 45 
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CGG repeats while Fragile X patients may carry 200 or more CGG repeats. This mutation results 

in a loss-of-function of the fragile X mental retardation protein (FMRP), which is involved in the 

transport of RNAs along neuronal dendrites required for synaptic maturation 
128

.  

A variety of other triplet repeat expansions cause disease in both an autosomal recessive 

and dominant fashion. A GAA expansion in the FXN gene results in Friedreich’s ataxia 
129

. The 

GAA expansion, which is located in a non-coding intron, reduces mRNA and protein levels of 

the FXN gene, leading to a deficiency of the mitochondrial protein frataxin 
130

. Conversely a 

CTG triplet repeat in the DMPK gene, which codes for myotonic dystrophy protein kinase 

expressed in skeletal muscle, results in the autosomal dominantly inherited disease myotonic 

dystrophy type 1 (DM1), which causes a more severe disease with increased CTG repeats 
131

. 

The CTG trinucleotide repeat expansion in DM1, similar to Friedreich’s ataxia, is located in a 

non-protein-coding intron sequence. However, this CTG repeat is linked to an RNA toxic gain-

of-function. The resulting CUG-containing RNA transcripts interfere with RNA-protein 

interactions 
132–136

. Furthermore, not all DNA expansion diseases are trinucleotide; myotonic 

dystrophy type 2 (DM2) is caused by a tetranucleotide expansion of CCTG in the ZNF9 gene and 

is also a toxic RNA gain-of-function disease 
131

, but is considerably more rare. 

Other trinucleotide repeat disorders involve expansion of a repeat of the CAG codon in 

exons, which codes for the amino acid glutamine. Genetic instability of CAG repeats trend 

toward an increase in total CAG repeat during meiotic transmission 
26

. Curiously, the CAA 

codon, which also codes for glutamine, is not associated with DNA expansion or disease. In 

vitro, pure CAG repeats are more prone to expansion than pure CAA repeats or mixed 

CAA/CAG repeats 
137

. Mixed CAA/CAG repeats are also associated with a lower rate of 

trinucleotide expansion in human versus pure CAG repeats in vivo 
138–140

. The preference for 
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CAG expansion over other trinucleotides is not completely understood, but may result from a 

number of factors, including imperfect base excision and other aberrant DNA repair mechanisms 

(which allow the formation of loop structures stabilized by CAG repeats) and subsequent loop 

incorporation, nucleotide excision repair, and polymerase slippage 
141–143

. For instance, one lab 

found that certain histone deacetylase complexes, such as Hda1, promote the expansion of 

CTGCAG codons specifically 
144

, while others have implicated a role of imperfect 3’ to 5’ 

exonuclease proofreading of DNA polymerase III in E. coli 
145

. Strand “slippage” of DNA may 

be more likely to occur in multiple CAG repeats, as opposed to other codon repeats, as a result of 

stable hairpin formation 
146

, which can be mitigated by CAA insertions 
147

. Furthermore, 

expansion of the CAG repeat in an RNA transcript may alter RNA splicing, resulting in a htt-

exon1 splice form 
35

. Uncovering the mechanism of CAG repeat expansion may lead to new 

ways of preventing expansion of the HTT gene from parents to offspring. 

 

 

1.4.2 Polyglutamine Repeat Disorders 

To date, there are at least ten diseases linked to a polyglutamine repeat expansion 
26,148–150

: 

Huntington’s Disease, spinocerebellar ataxia (SCA) type 1, 2, 6, 7, and 17, Machado-Joseph 

disease (SCA3), spinal bulbar muscular atrophy (SBMA), and dentatorubral pallidoluysia 

natrophy (DRPLA). All ten diseases are autosomal dominantly inherited, suggesting a common 

gain-of-toxic-function associated with the expanded polyQ/CAG repeats. This type of 

inheritance pattern is expected for a dominant gain-of-function prion or prion-like mechanism 
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(similar to PrP
Sc

) of disease and contrasts with many genetic loss-of-function diseases, such as 

recessively inherited cystic fibrosis, sickle cell anemia, or fragile X syndrome. 

One key symptom of expanded polyQ-containing proteins is the accumulation of large, 

insoluble, protein aggregates in the CNS and other tissues. Aggregation of the defective polyQ-

expanded protein has been observed in vitro or in vivo for SCA 1 
151,152

, SCA 2 
153,154

, SCA 3 

122,155–158
, SCA 6 

159
, SCA 7 

160–162
, SMBA 

163
, SCA 17 

164
, and DRPLA 

165–167
. A significant 

amount of attention has been paid to Huntington’s disease, which readily forms amyloid in vitro 

6
 and in animal models 

7,168,169
. Large insoluble aggregates are also found in post-mortem human 

HD patient brain tissue 
40

. In each polyQ disease, there are characteristic neurodegenerative 

patterns involving neuronal dysfunction and subsequent loss of neurons in the CNS, which have 

varying regional differences between diseases. Despite elucidating the mutant polyQ/CAG repeat 

expansion responsible for Huntington’s disease over two decades ago 
24

, the precise mechanism 

by which expanded polyQ sequences grant toxic-gain-of-function remains uncertain (Discussed 

in Section 1.3). The lack of a detailed mechanism of toxicity has greatly hampered hypothesis-

driven therapeutic design.  

The expression profiles and wild type functions of the polyQ-expanded proteins all have 

some level of RNA transcription and protein expression within the CNS 
60

. Beyond this, their 

roles in the CNS are varied or largely unknown. For instance, TATA-box binding protein 

(SCA17) is a general transcription factor that is evolutionarily highly conserved and ubiquitously 

expressed throughout the human body 
60

. Another transcription factor, the androgen nuclear 

receptor partially responsible for sexual dimorphism, is also affected by polyQ expansion 

resulting in SBMA 
170,171

. However, the affected gene of SCA6, CACNA1A, encodes a subunit of 

a P/Q voltage-dependent calcium channel CaV2.1 
172

 and Ataxin 3 is a deubiquitinating enzyme 
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173
. Many of the other polyQ disease proteins, such as several of the ataxin proteins, have very 

poorly understood wild type function. Additionally, the endogenous function of polyQ domains 

in general and what kind of evolutionary advantage they bestow, if any, is also unclear. 

 

 

1.4.3 Simple Polyglutamine Models 

1.4.3.1 Rationale for Simple PolyQ Models As previously discussed, a wide range of 

seemingly unrelated proteins are affected by polyQ repeat expansion: the androgen receptor 

(Spinobulbar muscular atrophy), the CaV2.1 P/Q voltage-dependent calcium channel 

(Spinocerebellar ataxia type 6), the TATA-binding protein (Spinocerebellar ataxia type 17), 

huntingtin (Huntington’s Disease), and six others. The lowest common denominator between 

these proteins is their polyQ domains, which causes neurodegenerative phenotypes in a repeat 

length dependent manner. In each instance, expanded polyQ domains also gain a propensity to 

aggregate into amyloid in vitro, in vivo, and in human patients 
6–8

. Additionally, expanded polyQ 

domains alone aggregate and are toxic when expressed in C. elegans 
174

, Drosophila 
78

, when 

simple polyQ aggregates are delivered to cell culture media 
47

, and when CAG repeats are 

inserted into phosphoribosyltransferage (HPRT), which is not associated with any of the ten 

CAG repeat diseases 
175

. Collectively, these data point toward a common and central role of 

aggregation of expanded polyQ domains in the toxic gain-of-function of each disease. 

Studying the lowest common denominator, the expanded polyQ sequence, is therefore an 

attractive research pursuit; the properties of expanded polyQ sequences may represent a 

universal mechanism of aggregation and toxicity. Therefore, mechanisms of simple polyQ 
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aggregation are immediately relevant and therapeutics targeting simple polyQ aggregation and 

toxicity could prove beneficial to the polyQ repeat diseases.  

Additionally, the effect that protein context (N- and C-terminal flanking sequences, 

expression profiles, etc.) has on expanded polyQ domains can be best understood in the context 

of how “naked” polyQ peptides behave. For instance, in some polyQ diseases, N- and C-terminal 

flanking sequences alter the aggregation mechanism of the associated polyQ domain, such as the 

Josephin domain of Ataxin 3 
155,156

 and the htt
NT

 segment of huntingtin 
176

, which undergoes a 

more complex intermediate oligomer formation step 
39,176

 (Section 1.4.4).  

Finally, the polyQ repeat-length dependence of disease and aggregation in vivo is 

mirrored by simple polyQ repeat-length aggregation kinetics in vitro 
77,107

. Simple polyQ 

peptides recapitulate a portion of the aggregation pathway by forming similar final β-sheet rich 

amyloid-like structures by FTIR and EM 
176

. The final aggregates have their own toxicity 

associated with them, and can bestow toxicity when delivered to cell media 
47

, or when 

expressed in Drosophila 
78

. 

 

1.4.3.2 Simple PolyQ as a Model The fibril elongation reaction of simple polyQ peptides, which 

undergo a single nucleation step, can be mathematically modeled to initial aggregation kinetics 

by applying the Eaton-Ferrone model 
22,107,177,178

, represented by the Equation 1, where Kn* is the 

equilibrium constant of nucleation, k
2

+ is the aggregate elongation constant (11,400 liters/mol*s) 

177
, t is time in seconds, and C is the initial monomer concentration.  
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Equation 1: Eaton-Ferrone Kinetics Model of Nucleation 

 

 

 

 Information about the nucleation and elongation processes can be obtained by plotting the 

decay in monomer concentration for early reaction time points versus t
2
 to yield a slope of 

(1/2)(Kn*)(k
2

+)(C
n*+2

), which is a representation of the initial reaction rate. A plot of the log of 

this rate versus the log of the starting concentration, for a series of reactions at different starting 

concentrations, yields a slope equal to n* + 2. Using this model, nucleus size n*, nucleus 

equilibrium constant kn*, and the Gibbs free energy of nucleus formation ΔGn* can be calculated 

experimentally 
108,177

. The Eaton-Ferrone model of aggregation provides descriptive features of 

aggregation phenomenon that follow a simple single-step nucleation. Not only are these 

parameters important for describing the behavior and mechanism of polyQ aggregation, but also 

can be used to diagnose how future aggregation inhibitors affect the aggregation mechanism. 

In HD, the age of onset decreases as polyQ repeat length increases. In vitro, the kinetics 

of nucleation and aggregation are enhanced as polyQ repeat length increases. PolyQ peptides 

with as few as 8-10 glutamine repeats may be capable of aggregating into β-rich amyloid-like 

structures in vitro 
38,76,179

, albeit extremely slowly. These short polyQ peptides likely aggregate 

too slowly to escape protein quality control mechanisms in vivo. PolyQ peptides with fewer than 

25 glutamine repeats receive an enhancement to aggregation kinetics with each additional 

glutamine repeat; however, after 25 glutamine repeats, additional glutamines drastically enhance 

aggregation by altering the mechanism of aggregation. Kar et al. found that longer simple polyQ 

peptides (Q ≥ 25) nucleate aggregation efficiently with a monomeric nucleus, n* = 1 (a single 
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molecule is required for nucleation, likely through intramolecular rearrangement), while shorter 

polyQ peptides have an inefficient tetrameric nucleus of n* = 4 (four molecules required to 

initiate and template amyloid aggregation) 
77

. The enhancement of nucleation efficiency results 

in a substantial boost in kinetics of nucleation between Q ≤ 23 and Q ≥ 25, which can be 

rationalized as the generic difference in kinetics between inter- versus intra-molecular reactions. 

The initial nucleation event is extremely rare, even for expanded polyQ sequences, 

resulting in a lag-phase in the kinetics profile, followed by a rapid elongation phase. Even 

expanded K2Q47K2 has a tremendously small portion of monomers exploring the nucleus state at 

any given time in solution (Kn* = 2.6 * 10
-9

). The rate limiting lag-phase can be bypassed if pre-

formed polyQ aggregates are added to soluble polyQ peptides, resulting in seeded elongation. 

Addition of pre-formed aggregate seeds eliminates the energy barrier in the formation of the 

initial nucleation event, thus removing the lag-phase and proceeding directly to the rapid 

elongation phase. This process is relevant to disease, as seeding elongation may occur in vivo as 

part of a prion-like transmission and propagation of mutant huntingtin 
180–182

. Simple polyQ 

models may be useful to screen for or validate molecules that block seeding competency, that 

dampen nucleation formation, or limit polyQ elongation efficiency. 

 

1.4.4 Role of the Huntingtin N-Terminus in Aggregation 

The aggregation prone polyQ domains of each polyQ disease are flanked by N- and C-terminal 

amino acids that vary between proteins. In huntingtin, the disease-causing polyQ core is flanked 

by a short N-terminal 17 amino acids (htt
NT

 or N17) and a C-terminal poly-proline/proline-rich 

region. Addition of the 17 amino acid htt
NT

 region has a drastic enhancing effect on the 



 25 

aggregation kinetics of polyQ by altering its aggregation mechanism 
176,183

. Htt
NT

-polyQ peptides 

still retain their polyQ repeat length dependence of aggregation kinetics and final β-sheet rich 

amyloid product, but also introduce an intermediate step of oligomer formation 
176

.  

When htt
NT

-polyQ peptides are initially solubilized as monomers, they are largely 

unstructured by CD 
107,184

. Upon incubation, htt
NT

 alters the mechanism of polyQ aggregation by 

introducing intermediate oligomer formation. These oligomers are detectible by EM 
39

, AUC 

analysis 
38

, biochemical assays 
37,185

, and FCS (Sahoo 2016 Manuscript Submitted). Even htt
NT

 

alone forms homo-α-oligomers in a concentration dependent manner 
38

 that are pelletable by 

ultracentrifugation 
186

. α-helical secondary structure of htt
NT

 is also predicted by computational 

modeling 
187

 and can be detected by CD in htt
NT

-polyQ peptides at higher concentration before 

their transition into β-sheet rich aggregates 
38

. Disrupting α-helical propensity of htt
NT

 by 

strategic alanine substitutions or serine 13/16 phosphorylation 
188

 reduces nucleation efficiency, 

presumably by making htt
NT

-mediated nucleation within the oligomer inoperable and forcing 

nucleation to occur through the slower simple polyQ nucleation mechanism (Scheme 1). 

Another piece of evidence supporting the role of htt
NT

-mediated oligomer formation is 

varied resistance to trypsin digest: htt
NT

 is sensitive to trypsin digest in both monomeric (to 

residues 6, 9, and 15) and amyloid huntingtin (to residue 6), but resistant to trypsin digest in the 

oligomeric state 
176,188

. This further suggests that htt
NT

 is buried and is playing an active role in 

oligomer formation, consistent with a coiled-coil domain.  

In simple polyQ peptide aggregation, there is only a single nucleating step, which can be 

modeled mathematically 
107,178

. The intermediate oligomers formed by htt
NT

-containing polyQ 

peptides change the mechanism of nucleation of aggregation; there is not yet a mathematical 

model for this more complex aggregation pathway. Applying the Eaton-Ferrone model to htt
NT

-
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polyQ aggregation kinetics results in non-real values, such as a critical nucleus size of -1 for 

htt
NT

-Q30-P6 in contrat to n* = 1 for K2Q30K2 
183

. Such non-real values cannot be directly 

interpreted, but nonetheless provide a consistent signature for peptides following a nucleation 

mechanism featuring an intermediate oligomer. This allows identification of this more complex 

mechanism by carrying out the standard analysis of initial aggregation rate vs. initial 

concentration. 

The model of htt
NT

-mediated oligomerization as an accessory to polyQ aggregation is 

further supported by htt
NT

 based inhibitors of aggregation. A synthetic peptide comprised of only 

the htt
NT

 region (17 amino acids) can kinetically compete with htt
NT

-polyQ monomers for 

oligomeric bundle formation 
189

. Because the synthetic htt
NT

 inhibitor does not bring with it an 

associated polyQ sequence, the mixed α-helix rich oligomers statistically contain fewer polyQ 

strands per oligomer. The polyQ domains effectively dilute and slow the rate limiting nucleation 

step in a stoichiometry-dependent fashion. However, htt
NT

 peptides require super-stoichiometric 

ratios to achieve significant delays in target htt
NT

-polyQ aggregation. Even at high ratios, the 

thermodynamic driving force of amyloid formation eventually overcomes these inhibitory effects 

189
. Nonetheless, in the cell environment where multiple kinetic pathways of aggregation exist, 

even a modest acceleration to aggregation kinetics may be sufficient for proteins to misfold fast 

enough to escape the protein quality control mechanisms and have significant cellular 

consequences.  In addition, further research addressing the mechanisms of nucleation inhibition 

could yield more potent aggregation inhibitors with greater therapeutic potential.  
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1.4.5 Role of the Huntingtin C-Terminus in Aggregation 

The C-terminus portion of htt-exon1 immediately following the polyQ domain is a poly-

proline/proline rich domain (PRD), which is a total of 51 amino acids in length and consists of 

two unbroken P10 and P11 segments. The exact role of the C-terminal PRD is unknown, but may 

have co-evolved alongside the growing polyQ domain to limit its aggregation potential. The 

proline-rich tail can adopt a poly-proline type II structure 
190

 and in some cases may interact with 

the htt
NT

 helix of shorter polyQ repeat peptides 
191,192

. In some experiments, the PRD has a 

modest affect in delaying polyQ aggregation 
193

, but does not change the overall aggregation 

mechanism in the way that the N-terminal htt
NT

 domain does. 

Synthetic huntingtin peptides that include the entire PRD, which are significantly more 

difficult to synthesize, behave similarly to peptides with truncated poly-proline sequences, such 

as P10, and follow the same two step aggregation mechanism 
194

. For these reasons, the Wetzel 

laboratory uses abbreviated htt-exon1 constructs (htt-ex1
P10

; Table 1). 

 

1.4.6 Huntingtin Exon1 and Full Length Huntingtin as models 

The huntingtin gene is comprised of 31 exons yielding a protein of just over 3100 amino acids or 

around 350 kDa. The disease-causing portion of huntingtin, the polyQ repeat, is limited to the 

extreme N-terminus of the first exon starting after only 17 amino acids into the sequence (AKA 

the N17 domain or htt
NT

). Flanking sequences between all of the polyQ diseases have no obvious 

commonality; however, flanking sequences may play an accessory role in protein aggregation 

kinetics, thermodynamics, and toxicity of each disease protein. For example, htt
NT

 in cis with 
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polyQ sequences greatly accelerates nucleation of aggregation by promoting an alternative 

mechanism of nucleation via the formation of α-helical-like bundles 
38,176,183,186,188

  (Schematic 

1). Conversely, htt
NT

 in trans with polyQ delays amyloid nucleation by competing for mixed 

oligomers 
189

.  

 Huntingtin inclusions in post-mortem HD brains are not the entire full-length huntingtin 

protein, but rather a short fragment representing roughly the first exon. Antibodies recognizing 

the N-terminal regions (CCAG53b: AA 18-40; HP1: AA 80-113) stain HD neurons with an 

intranuclear inclusion pattern, while antibodies against the C-terminal portion of full-length 

huntingtin (P2: AA 1187-1207; HF1: AA 1981-2110) gives a granular cytoplasmic stain 
195

. 

These data highly suggest that a protein fragment corresponding to roughly the first exon of htt is 

produced in HD patients, and that this N-terminal fragment (which contains the pathogenic 

expanded polyQ sequence) is aggregation prone. How this fragment is produced is not yet 

understood. A number of caspase and calpain cleavage sites exist between amino acids 469 to 

586, which could result in the cleavage product of roughly the first exon of huntingtin 
34

. In 

Drosophila, expression of any of these potential fragments (ranging from 469-586 AA in length, 

including a 90 and 108 AA truncated htt peptide) is toxic, with a true htt-exon1 fragment of AA 

586 being the most severe in Drosophila 
196

. Additionally, new evidence indicates a portion of 

this abbreviated huntingtin could be generated through alternative splicing of the first exon 
35

. 

Finally, the full-length protein of huntingtin is not required to generate HD symptoms in animal 

models. Expressing just mhtt-exon1 is both sufficient and necessary to cause HD 
7
.  

Htt-exon1 is commonly used as the model protein in HD for several reasons: modeling all 

3,000+ amino acids of full-length huntingtin is technologically difficult, the disease-causing 

sequence is contained to the first exon 
7,195

, the first exon alone is both necessary and sufficient 
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to cause disease 
7
, and an exon1 fragment is generated endogenously in HD patients and animal 

models 
35,195

. Full-length huntingtin animal models have also been constructed 
168,197

, and their 

disease phenotypes are less severe and appear later in life than htt-ex1 models, likely because 

full-length expression requires an extra step to generate the more toxic htt-exon1 fragment.  

In order to characterize how the huntingtin exon1-like fragments behave biophysically, 

synthetic and recombinantly expressed proteins can be used. Producing huntingtin protein 

through recombinant protein expression methods requires the use of an N-terminal solubilizing 

tag, such as GST, to help solubilize the poorly behaved expanded polyQ sequence 
6
. Subsequent 

cleavage of the GST tag results in residual amino acids that are non-native to the huntingtin 

protein and may affect huntingtin’s ability to aggregate in vitro. Current chemical synthetic 

approaches allow better control of the primary amino acid sequence, particularly of the htt
NT

 

domain; however, more recent advances in recombinantly expressed proteins have a cleavage 

site that leaves the htt
NT

 intact at the Met residue 
21

, which would be cleaved with a subsequent 

acetylation if expressed in vivo 
198

. Chemical synthesis comes with its own limitations, such as a 

limit to the absolute amino acid length, making full length htt-exon1 extremely challenging and 

full-length htt not yet possible. Because of these various limitations, the Wetzel laboratory uses 

synthetic huntingtin analogs to model polyQ and/or huntingtin aggregation in vitro and htt-ex1 

expression in cells and animal models. 

 

1.4.7 Role of β-hairpin Structure in Nucleation 

Work by Chen et al., and later Kar et al. uncovered an intramolecular monomeric nucleation 

event in simple polyQ peptides with sufficient polyQ repeat length (Q ≥ 26) 
77,107

. The structure 
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of this nucleating event was unknown, but was thought to contain either a β-turn or β-arc element 

for a number of reasons: monomeric nucleation should by definition contain an intramolecular 

fold, polyQ-containing peptides gain β-sheet character by circular dichroism as aggregation 

progresses 
107

, FTIR signatures of the final aggregates are dominated by β-sheet signal 
38,77

, 

magical angle spinning solid-state NMR studies reveal an interdigitated β-hairpin core of the 

final fibrils 
21

, β-sheet layering is seen by time-resolved fluorescence decay 
199

, and finally, only 

β-hairpins can form dimers with sufficient lifetimes to be able to act as key intermediates during 

amyloid nucleation 
200

.  

Due to technological limitations and the extremely rare nature of nucleation of 

aggregation, the nucleus structure cannot be detected or characterized directly. As an indirect 

probe into the structure of the nucleus, Kar et al. employed a series of substitutions installed into 

a polyQ peptide to enhance a β-hairpin fold 
108

. These alterations consist of: (1) columbic 

interactions (two N-terminal negatively charged aspartic acid residues and two C-terminal 

positively charged lysine residues), (2) l-proline-glycine turns, which do not necessarily 

promote, but are compliant with a turn structure, (3) the stronger d-proline-glycine turn, which 

does independently promote turn formation, (4) a cysteine disulfide bond across the N- and C-

terminus, (5) tryptophan zipper motifs, which rely on edge-edge stacking of two aromatic 

tryptophans, as well as additional hydrogen bonding, and (6) various combinations and 

permutations of these motifs, such as the tryptophan zipper motif plus a d-proline-glycine turn. 

All of these substitutions (except for the weakly β-hairpin promoting l-proline-glycine 

substitution), when installed into a K2Q23K2 simple polyQ peptide, significantly enhanced the 

overall aggregation kinetics. EM of the aggregates showed typical amyloid-like ribbon structures 

of the final aggregates seen in other simple polyQ aggregates while FTIR of the final aggregates 
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had β-sheet signature banding at 1604-1606 cm
-1

 for glutamine N-H bending, 1625-1628 cm
-1

 for 

β-sheet, and 1656-1658 cm
-1

 for glutamine C=O stretching 
108

. Circular dichroism of these 

analogs mirrored the same time-dependent shift from random gross secondary structure to 

becoming β-sheet dominated, indicating that the monomeric ensemble does not gain appreciable 

β-structure in spite of the β-hairpin enhancing motifs. These results suggest that installation of β-

hairpin encouraging motifs enhances, but does not alter, the aggregation pathway of simple 

polyQ peptides. These motifs achieve this by promoting the intramolecular folding required for 

nucleus formation, providing strong indirect evidence that polyQ nucleation of amyloid involves 

β-hairpin structure. 

Applying the Eaton-Ferrone model to these peptides reveals that β-hairpin enhanced 

peptides, despite their short absolute polyQ repeat length, have a decrease in critical nucleus size 

previously only seen with expanded polyQ repeat lengths 
77

. All of the β-hairpin enhanced 

peptides tested, which should have a nucleus size of n* = 4 due to their short polyQ repeat 

length, had a decrease of nucleus size to a monomeric n* = 1. The decrease in nucleus size is 

indicative of a more efficient intramolecular nucleation event granted by installation of these β-

hairpin motifs. As a result, the time spent in the lag phase, which is directly related to nucleation 

formation, is greatly shortened 
108

. Thus, by installing motifs that enhance intramolecular β-sheet 

folding, Kar et al. demonstrated that a β-hairpin structure plays a role in efficient nucleation of 

amyloid aggregation for simple (i.e. without confounding effects of flanking seuqneces) 

polyglutamine peptides. 

Together, these results indicate that enhancing β-hairpin formation mimics the 

biophysical characteristics of expanded polyQ in vitro. This insight into the mechanism of 

aggregation of polyglutamine may lead to better designed therapeutic approaches that are 
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capable of targeting the nucleation event to prevent aggregation and potential subsequent 

toxicity. 

 

1.5 MODEL SYSTEMS OF HUNTINGTON’S DISEASE 

1.5.1 Monitoring Polyglutamine Aggregation in vitro 

HD patient brains initially hinted at an aggregated state of huntingtin being the culprit of HD 
195

. 

Indeed, the first HD mouse model, which was constructed in 1996, mimicked the characteristic 

protein aggregation and intranuclear neuronal inclusion formation seen in human HD patients 
7
. 

Shortly after, polyglutamine aggregation was first observed in vitro using a cleavable GST 

solubilizing tag fused to huntingtin exon-1, which found a concentration and polyQ repeat length 

dependence of aggregation 
6
. Electron micrographs and filter retardation assays were utilized to 

show a high molecular weight, SDS-insoluble amyloid aggregate reminiscent of scrapie prions 

and β-amyloid fibrils in Alzheimer’s disease. Since then, a plethora of in vitro systems have been 

constructed to conveniently and accurately model the protein aggregation aspect of HD. Atomic 

force microscopy 
201–203

, dynamic light scattering 
99

, circular dichroism 
107

, and more recently 

super-resolution microscopy 
43

 and fluorescence correlation microscopy 
84

 (Sahoo 2016 

Manuscript Submitted) are all viable tools for quantitatively monitoring the aggregation process 

in real or near real time. Indirect biochemical methods of monitoring aggregation kinetics use 

rigorous disaggregation techniques coupled with centrifugation and HPLC to monitor loss of 

soluble protein 
99

. Data derived from the kinetics of aggregation can be modeled using the Eaton-
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Ferrone model to determine nucleus size n*, nucleus equilibrium constant kn*, and Gibbs free 

energy of nucleus formation ΔGn* experimentally. Highly sensitive high throughput assays of 

this process allow for rapid screening of aggregation modifiers that is not possible with cell 

based methods. Advances in the understand of the biophysical mechanisms of huntingtin 

aggregation and how aggregation generates toxicity (i.e. whether there is a single “toxic 

species”) will help guide more sophisticated screening methods to identify aggregation and 

disease modifying drugs. 

 

1.5.2 In vivo Models 

1.5.2.1 Cell Culture Models A wide variety of immortalized HD cell lines exist to study 

huntingtin aggregation and cell toxicity. Historically, PC12 cells, derived from a 

pheochromocytoma of a rat adrenal medulla, were used as a convenient cell model for HD. PC12 

cells are neuro-endocrine in origin and can be differentiated into neuron-like dopamine-

synthesizing cells with the addition of nerve growth factor (NGF) 
204

. These differentiated PC12 

cells become post-mitotic, release vesicles containing dopamine, and form axonal branches. 

PC12 cells therefore offer a convenient cell model system without requiring primary neuron 

cultures. Stably inducible cell lines expressing WT human htt-Q25-exon1-EGFP or pathogenic 

htt-Q97-exon1-EGFP are readily available, easily cultured, and can be useful to screen for 

aggregation inhibitors in the context of a mammalian cell. Cell lines expressing mhtt have a 

polyQ repeat length and time dependence to inclusion formation, which appear to be perinuclear 

205
. PC12 cells have also been an excellent cell culture system to study how structural limitations 

of a polyQ protein affects its ability to aggregate and cause toxicity 
206

. However, PC12 cells 
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have recently come under scrutiny, as they do not wholly mimic the nuclear inclusions found in 

human HD neurons and are not as sensitive to the toxic effects of mutant huntingtin as primary 

neurons 
207

. Other cell lines, such as SH-SY5Y 
208

, derived from a human neuroblastoma, or 

SThdhQ111/111, derived from HD knock-in mouse striatal neurons, offer similar benefits in 

terms of ease of use and robust cytoplasmic aggregation. Unfortunately, as with PC12 cell lines, 

most non-primary neurons exhibit minimal toxic effects when expressing mhtt (cell death, 

caspase activation, etc.) and may only be useful to quickly screen for general cytoplasmic 

aggregation modifiers. 

 

1.5.2.2 Primary Neurons Primary cortical, hypothalamic, or striatal neurons from rats or mice 

offer a more appropriate and sensitive cell culture model than immortalized cell lines. In human 

HD, the striatum and cortex are burdened with a heavy huntingtin aggregate load and selective 

neurodegenerative loss 
209

. Rat 
210

 and mouse models expressing mutant human huntingtin, such 

as the R6/2 or YAC128, also mimic the spatio-temporal sensitivity of cortical and striatal 

neurons to mutant huntingtin 
7,168

. Therefore, these regions are of interest when designing ex-vivo 

cell culture models. 

Embryonic rat primary cortical neurons can be robustly transfected and recapitulate 

valuable mutant huntingtin disease phenotypes, such as inclusion body formation 
81

, intranuclear 

aggregation, and cell death 
211

. Cell death and aggregate formation in primary neuron cultures 

often mirrors neuron loss and behavioral abnormalities in animal models. Primary cortical 

neurons have also been useful for screening small molecule inhibitors of aggregation 
212

 and to 

study the role of wild type huntingtin 
57

.  
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In human HD, selective loss of medium GABAergic striatal neurons of the striatum is 

associated with the first brain regions to undergo massive neurodegeneration, followed by 

cortical neurons in the prefrontal cortex. This neuron-specific sensitivity is also seen in rat 

primary neurons: striatal and cortical neurons are both sensitive to mutant huntingtin toxicity, 

while striatal neurons have a modestly higher risk of death 
211

. Thus, primary neurons offer a 

sensitive and physiologically relevant cell culture method to monitor aggregation and neuron 

viability. 

 

1.5.2.3 Drosophila as a tool to study neurodegeneration Drosophila provide a unique 

approach to modeling neurodegenerative diseases. Drosophila have been extensively utilized as 

a genetic model, including one of the first complete genome sequencing of any animal 
213

. As 

such, the Drosophila model comes with a uniquely extensive molecular and genetic toolbox. 

Unlike many other model organisms, dozens of Drosophila lines have been engineered for site-

specific ΦC31 integrase-mediated transgenesis 
214

. This technology allows for non-random 

integration of a gene-of-interest into a variety of established gene loci. In combination with 

exhaustively characterized Gal4 lines 
215,216

 and a UAS-promoter sequence 
217

, spatio-temporal 

expression of a gene of interest with minimal disruption to the genome can be achieved relatively 

easily. Together, these technologies give rise to the Gal4-UAS expression system, which is 

widely used to generate transgenic Drosophila 
218

.  

In addition to their ease and precision of transgenesis, Drosophila models also provide 

several robust endpoints for monitoring neurodegeneration. Many of the cells in the compound 

eye, such as the photoreceptor cell, are neuronal in origin and play supporting roles in the 

structure and health of the eye 
219

. Degeneration of the structure, organization, and pigmentation 
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of the compound eye correlates well with CNS degeneration 
220

. Additionally, the eye is not 

necessary for the viability of the animal, so lethal compounds can be studied (or vice versa, 

compounds can be screened as modifiers of extremely toxic diseases). Therefore, eye 

morphology and depigmentation of the eye can be used as an indirect measure to quickly screen 

for neurodegeneration. This process is commonly used to screen for small molecule drugs and 

RNAis that modify disease states, which can be further studied more in depth in Drosophila or in 

other models 
221–223

.  

Drosophila also mirror the shortened lifespan 
224,225

, dysfunctional locomotion 
226

, and 

histological pathologies seen in human HD patients 
223

. Therefore, Drosophila provide an 

optimal balance between robustness of endpoints and the power to study multiple transgenic 

lines in a cost and time efficient manner. HD Drosophila lines constructed by other labs tend to 

include greater than 100 glutamine repeats, which decreases median Drosophila lifespan to 20-

45 days (down from ~65-80 days for wild type at 25 C or 29 C) 
224,225

. The severe lifespan 

decrease associated with highly expanded polyQ mhtt strongly mirrors the shortened lifespan 

seen in juvenile HD patients. 

In addition to lifespan studies, Drosophila behavioral defects can be monitored as a 

function of age. Locomotion decline can be measured by a Rapid Negative Geotaxis Assay 

(RING), which challenges flies to climb an arbitrary vertical distance in some amount of time 
226

. 

As flies age or develop locomotor defects, they are less capable of completing the climbing 

challenge. This assay is of particular significance to locomotor diseases, and is regularly 

employed when studying HD in flies. 

Dozens of Drosophila HD models have already been constructed using a knock-in of the 

mutant human huntingtin gene. Full-length huntingtin 
197

, htt-exon1 thru 12 
225

, htt-exon-1 
222,223

, 
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and truncated htt-exon-1 
196,224,227–230

 have all been constructed with variations of N- and C-

terminal fluorescent proteins and polyQ lengths ranging from 0 to 150+. These models differ in 

the fluorescent protein used (if any), the location of the gene insertion, expression level, and 

CAG/polyQ repeat length, though many of the different HD lines show a similar severity of HD 

phenotype between comparable CAG repeats. Additionally, other polyQ Drosophila models, 

such as Spinocerebellar ataxia type 1 (SCA1, ATXN1) 
152,231

 and expanded polyQ peptides 

without protein context 
78

, all mirror the neurodegenerative phenotypes seen in human 

pathologies. 

Therefore, Drosophila provide a convenient model to rapidly and thoroughly examine 

neurodegenerative phenotypes. They offer a strong compromise between ease of use, statistical 

power, and powerful genetic tools, while still having a complex CNS network capable of testing 

more sophisticated behavioral outcomes. 

 

1.5.2.4 Other animal models of Huntington’s Disease Other than Drosophila, mice and C. 

elegans have also been used to model Huntington’s disease extensively. Mice have been 

historically useful in determining that polyQ-expanded htt-exon1 alone is sufficient and 

necessary to generate HD 
7
. Both full-length and htt-exon1 HD mice exhibit reduced brain and 

body mass, hind-limb clasping, aggregate formation in the CNS, reduced balance via rota-rod 

performance, and premature death. Additionally, full-length polyQ-expanded htt-exon1 also 

generates a similar protein fragment, either through alternative splicing 
35

 or proteasomal 

cleavage 
34

. Mice expressing the htt-exon1 fragment appear to have accelerated disease onset, 

but this is difficult to directly compare between mice of different backgrounds, polyQ repeat 

lengths, and expression levels. Unfortunately, mice are costly, take years to develop new lines, 
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and can take months to years to run experiments. Even existing lines require a large time and 

financial commitment to achieve sufficient statistical power.  

In contrast to mice, C. elegans are quick to develop and can be readily manipulated. 

Adult C. elegans contain a simple and well-defined set of exactly 302 neurons making up their 

nervous system. This simplifies some complications of studying neurodegeneration, but the 

nervous system of C. Elegans may not have the complex interconnectivity needed to accurately 

model a human brain. Despite this limitation, C. Elegans have been useful in studying the heat 

shock protein response to aggregated polyQ proteins 
232,233

 and provide a convenient model to 

quickly screen for HD modulating drugs. 

 

1.6 CURRENT THERAPEUTIC APPROACHES 

1.6.1 Small Molecular inhibitors of polyglutamine aggregation 

Dozens of disease-modifying small molecules have shown promise pre-clinically in cell and 

animal models. Several have advanced into human clinical trials, but currently no drug therapy 

has been approved by the FDA to slow, delay, or prevent the progression of HD in humans. Most 

therapies have instead failed to show efficacy in Phase III 
234

. 

Methylene Blue, a dye originally used to visualize amyloid aggregates, shows promise as 

a disease-modifying drug. Methylene Blue is already FDA approved for treating 

methemoglobinemia and can cross the blood-brain barrier. Recent findings in cells, Drosophila, 

and R6/2 HD mice show that Methylene Blue can decrease mhtt oligomer size as well as 
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decrease the accumulation of large insoluble mhtt aggregates 
212

. Methylene Blue also increases 

lifespan in HD Drosophila and R6/2 mice, but only when given before symptoms appear 
212

. In 

clinical trials, Methylene Blue showed promise after successfully completing a Phase IIb clinical 

trial for mild to moderate Alzheimer’s Disease, slowing AD progression by 81% over one year 

235
. Subsequent trials (conducted under TauRx Therapeutics) have not been filed. A newer 

Methylene Blue analog LMTXTM is currently being tested in other tauopathies in Phase II trials. 

C2-8 is a polyQ aggregation inhibitor first identified in a yeast screen 
236

. In mice, C2-8 

was shown to inhibit mhtt polyQ aggregation in transiently transfected mammalian cells and 

R6/2 brain slice cultures 
237

. C2-8 also has a dose-dependent rescue of neurodegeneration using a 

Drosophila photoreceptor assay 
236

. Furthermore, in R6/2 mice, C2-8 is non-toxic, orally 

available, crosses the blood-brain barrier, and reduced mhtt aggregate size 
237

. An independent 

study confirmed that C2-8 crosses the blood-brain barrier, is well tolerated, and reduced mhtt 

nuclear aggregate size 
238

. However, C2-8 had no benefit to lifespan, Rotarod performance, 

hang-wire tests, or striatal pathology in mice. No further work or clinical trials have since been 

published on C2-8. The unfortunate results of C2-8’s failures are similar with several other 

compounds, such as the benzothiazole aggregation inhibitor riluzole, which reduces mhtt 

aggregate burden in R6/2 brain slices, but is ineffective when administered to mice 
239

.  

There are several reasons why anti-aggregation small molecules seem promising during 

in vitro screens but are not effective in vivo. For instance, drugs may inhibit aggregation at high 

concentrations in vitro, but may not be able to achieve those concentrations in vivo due to 

toxicity, lifetime, and bioavailability. Secondly, because these screens are not mechanistic based, 

many of the anti-aggregation small molecules found have generic colloidal activity, which have 

not been successful in vivo 
240

, or simply redirect aggregation to other non-amyloid pathways, 
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which do not provide therapeutic effect in vivo 
241

. Third, several screens also suffered from 

flawed screening protocols. Protocols using recombinantly expressed htt-exon1, such as htt-

exon1 produced by the cleavage of htt-exon1 from a solubilizing GST tag 
45

, would mutilate a 

significant portion of the htt
NT

 domain. Thus, these screens were not capable of identifying anti-

aggregation inhibitors that go through an htt
NT

-based aggregation mechanism. There is therefore 

a need to develop a better understanding of the aggregation pathways of huntingtin and what role 

different huntingtin aggregates play in causing neurodegeneration. In this way, more 

sophisticated screening methods could be developed that better address a relevant toxic species 

of huntingtin. 

 

1.6.2 Small Molecules to Target Biological Pathways 

As an alternative approach to identifying anti-aggregation compounds, other groups are targeting 

biological pathways whose augmentation or manipulation may lead to a better cellular response 

to toxic mutant huntingtin. 

FTY720 is a sphingosine analog that acts on four sphingosine-1-phosphate receptors 

242,243
 and is a current treatment for multiple sclerosis 

244
. FTY720 shows good blood-brain 

barrier penetration 
245

, where it acts to increase BDNF production  and reduce NMDA excito-

toxicity 
246

. This type of activity may have a therapeutic effect in other neurodegenerative 

diseases. In HD R6/2 mice, FTY720 shows only a modest increase in lifespan and ladder tasks 

when given before disease onset 
247

. FTY720 has not yet entered clinical trials. 

Several lines of evidence suggest copper, zinc, and other metals may play a role in 

neurodegenerative diseases, including HD 
248–250

. Whether altered metal accumulation plays a 



 41 

primary or secondary role in neurodegeneration is unclear. PBT2, a second-generation metal 

protein-attenuating compound, acts to restore copper and zinc ion homeostasis. Reach2HD ran a 

Phase II trial of PBT2 showing safety and tolerability, but failed to meet seven out of eight of its 

secondary outcomes (for which it was not statistically powered for). The only secondary 

outcome met, a reduction in brain atrophy, involved only two brain scans from placebo and drug 

patients. The efficacy of PBT2 and other metal chelaters to ameliorate HD in humans remains to 

be seen.   

Transglutaminase can cross-link huntingtin protein and trigger aggregation 
251,252

, and 

may therefore be involved in the etiology of HD. Cysteamine, which is a competitive inhibitor of 

transglutaminase, may be able to ameliorate this process. Cysteamine is already FDA approved 

to break up cysteine crystals in the kidney for nephropathic cystinosis patients 
253

. Cysteamine 

prolongs survival in HD mice 
254,255

 and is also neuroprotective in R6/2 
256

 and YAC128 HD 

mice models 
257

. A recent phase II trial at 450-1800 mg/day showed good tolerability, but no 

significant differences in the Unified Huntington’s Disease Rating Scale (UHDRS), cognitive, 

behavioral, or functional tests. However, the study was unpowered to test HD outcomes, lasting 

only 16 weeks with 16 patients. Raptor Pharmaceuticals is conducting a Phase II/III trials with 

cysteamine (RP103). After 3 years, RP103 showed a 58% slower progression of Total Motor 

Score worsening. While promising, these results used non-pre-specified subgroups that were 

stratified post-hoc, not controlled for concomitant medications, and should therefore be 

interpreted cautiously. 

Several other drugs are currently being tested for safety and tolerability in Phase II trials, 

with secondary efficacy outcomes. Phosphodiesterase 10A (PDE10A) hydrolyzes the secondary 

messengers cyclic adenosine monophosphate and cyclic guanosine monophosphate 
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predominantly in medium spiny neurons of the striatum 
258

 and may play a role in the changed 

neurotransmission seen in HD 
259,260

. PDE10A inhibition partially ameliorates striatal pathology 

in R6/2 HD mice 
261

. Omeros (OMS824) and Pfizer (PF-02545920) are testing such inhibitors, 

but Omeros suspended a Phase II trial in humans for safety concerns from parallel pre-clinical 

studies in rats, where adverse observations were seen in rats receiving OMS824 dosing several 

times higher than that measured in humans.  

Deep brain stimulation provides beneficial outcomes in some Parkinson’s disease 

patient’s symptoms and may also work to help manage chorea symptoms in HD 
262,263

. Deep 

brain stimulation in HD is being addressed in a small Phase II trial to assess UHDRS-TMS 

primary endpoints (clinical trial NCT00902889 at clinicaltrials.gov). 

Many small molecule drugs have been systematically screened as potential therapies in 

HD, but none have been found. Many promising leads, such as Antinomycin D identified from a 

11,000 natural product extract screen 
264

, PGL-135 identified from a 184,000 small molecule 

screen 
239,265

, screens identifying hits from the NINDS NIH Custom Collection of 1,040 

compounds 
207

, screens targeting autophagy 
266,267

, and many others have all been fruitless. While 

there is still continued research developing small molecule modifiers of HD, it is important to 

also continue hypotheses-driven therapeutic approaches in parallel with designing more 

sophisticated screening methods. 

1.6.3 Huntingtin Lowering Strategies 

Because Huntingtin is an autosomal dominant genetic disease, many groups have hypothesized 

that reducing or eliminating huntingtin expression of the mutant allele will prevent or reverse 

disease. Work by Dr. Reits shows that mhtt aggregates can be cleared, albeit painstakingly, from 
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the cell when mhtt expression is turned off. In this system, disease progression is reversed 
268,269

. 

This gives hope to mhtt lowering strategies that likely will be given to post-symptomatic 

patients. 

Early studies using RNA interference (RNAi) showed improved phenotypes in HD 

mouse models as mutant htt levels were lowered 
270–272

. Many other research groups later 

contributed to this work by designing improved AAV-mediated delivery systems, modifying 

RNAi to enhance their half-life, and improvements to allele-selectivity 
273,274

. Although this 

avenue is promising, allele-selectivity may play a critical role in maintaining a healthy CNS. 

Complete reduction of wild type htt leads to progressive neurodegeneration and other CNS 

pathologies 
62,275

, but a partial reduction of 25-35% had no adverse effects in mice after 9 months 

of treatment 
276

.  

DNA editing strategies may also become a viable option. Deletion of the aberrant mhtt 

gene can be achieved via specifically engineered zinc finger nucleases 
277

. Zinc fingers can be 

engineered as sequence-specific endonucleases that induce double strand breaks of the target 

gene loci 
278,279

. Zinc finger repressors targeting mhtt already have exciting preliminary results in 

an R6/2 HD mouse model 
280

, but will still likely require the same allele-specific approaches as 

RNAi designs. Additionally, recent advances in CRISPR/Cas9 offer a potentially more powerful 

gene-editing tool. Use of the CRISPR/Cas9 technology has generated some preliminary results 

of homologous recombination rates up to 12% in an induced pluripotent stem cell HD model 
281

. 

Advances in these systems may prove efficient enough to one day silence the mhtt gene. 
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1.6.4 Peptide Based Inhibitors of Aggregation 

If mutant huntingtin gains toxicity as a symptom of aggregation into amyloid, then identifying 

anti-aggregation strategies is a logical step in generating HD therapeutics that treat the 

underlying cause of HD onset and progression. Despite a large amount of resources being spent 

on the high-throughput drug screens of small molecules, no viable drug candidate has been found 

238,239
; targeting protein-protein interactions using small <500 Da molecules to interrupt large 

featureless surfaces may prove a Sisyphean task. That is, small molecules, which are unable to 

make sufficient non-covalent interactions with their target, may be inherently poor aggregation 

inhibitors. One alternative strategy to small molecule screening is designing hypothesis-driven 

aggregation modifiers of larger peptidomimetic molecules, which could be capable of making a 

sufficient number of contacts with mhtt in order to influence its aggregation properties.  

A number of peptides and proteins have shown anti-polyQ aggregation activity, though 

their mechanism of action is unclear. P42 is peptide comprised of 23 amino acids form the 

huntingtin protein (amino acid sequence: AASSGVSTPG SAGHDIITEQ PRS) that decreases 

aggregate burden by filtertrap assay and partially rescues HD Drosophila phenotype 
282

. The 

peptide QBP1 (amino acid sequence: SNWKWWPGIF D) was found in a phage display search 

for amino acid sequences that bind polyQ and inhibits aggregation in vitro with an IC50 of around 

5 µM 
283,284

. As with P42, the mechanism by which QBP1 inhibits aggregation is unknown and 

this lack of knowledge limits the potential to develop more potent inhibitors. Neither of these 

inhibitors has been independently reported to achieve efficacy in a pre-clinical setting. Other 

peptides have a proposed mechanism of inhibition, such as bivalent suppressors developed by 

Kazantsev et al., which rescues HD phenotype in Drosophila 
285

.  
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Several other protein screens found polyQ aggregation inhibitors that also contain a 

polyQ domain. Many yeast proteins found to suppress htt103Q toxicity in proteome-wide 

screens are other glutamine- and asparagine-rich prion-like proteins 
286,287

. Other polyQ-

containing proteins, such as histone deacetylase 4 
288,289

, glycine threonine serine repeat protein, 

nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1 
290

 

also modulate mhtt aggregation and toxicity. These results reveal that polyQ and other prion-like 

domains can interact with and modulate each other. A better understanding of how this processes 

works could lead to new therapeutic avenues, which may have more success at inhibiting polyQ 

aggregation than small molecules.  

Modified polyQ peptides have shown some promise in inhibiting polyQ aggregation in 

vitro. Polyglutamine peptides with N-methylation of either the backbone or the side chain amides 

are inhibitors of polyglutamine aggregation 
291

. Of these, the most potent inhibitors were those 

that left a portion of the polyQ chain intact with occasional side chain glutamine amide 

methylations. Further work in simple polyQ peptide inhibitors comes from Kar et al., who 

confirmed that a number of chemical modifications inhibit polyQ aggregation both in cis and in 

trans (Kar et al. Manuscript Submitted). These modifications include main chain amide 

methylation and substituting l-glutamine for d-glutamine. Other non-chemical modifications, 

such as glutamine to proline substitutions, can also inhibit polyQ aggregation, particularly 

elongation, both in cis and in trans 
292

. Thakur demonstrated that these polyQ inhibitors could 

participate in the dock (an initial reversible binding) and lock (completion of the elongation 

cycle) mechanism on the growing end of amyloid, but block subsequent steps by essentially 

crippling the surface of the growing end. Elongation is therefore blocked until the inhibitor 

eventually dissociates. Although these inhibitors primarily target the elongation mechanism, they 
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may also inhibit nucleation of aggregation, due to the nucleus requiring some level of elongation 

to become stable enough to sustain itself 
178

. This work exemplifies the importance of how 

peptiomimetics may be able to make sufficient non-covalent interactions between the inhibitor 

and its target polyQ peptide, thus modifying mutant huntingtin’s aggregation properties. 

Beyond simple polyQ peptides, huntingtin’s N-terminus (htt
NT

) is also involved in the 

aggregation mechanism of huntingtin (Section 1.4.4). Taking advantage of this, Mishra et al. 

showed that htt
NT

 peptides are able to compete with htt
NT

-Q37P10K2 for oligomer formation 
189

. 

This processes delays the nucleation of aggregation; however, this inhibitory effect is eventually 

overcome, even when superstoichiometric ratios of inhibitor are used. This is likely due to both 

the statistical likelihood of some mhtt oligomers forming without the htt
NT

 inhibitor and other 

inhibited mhtt peptides nucleating through the less efficient simple polyQ nucleation mechanism 

183
. Scrambled htt

NT
 sequences were less capable of inhibiting htt

NT
-Q37P10K2 aggregation; 

however, a few scrambled htt
NT

 sequences that retained an ability to form α-helical oligomers 

continued to exhibit inhibitory effects, strongly suggesting that htt
NT

’s ability to compete for α-

helical coiled coils is part of its mechanism of inhibition. Indeed, post-translational modifications 

to the htt
NT

 domain, such as phosphorylation of Ser13 or Ser16, limits nucleation and 

aggregation efficiency, presumably by disrupting the ability of htt
NT

 to form α-helical bundles 

188,189
. 

Small peptides that offer a combination of the above strategies may be more effective 

inhibitors; for instance, linking a proline-interrupted polyQ elongation inhibitor (Kar 2016 

Manuscript Submitted) with the htt
NT

 domain. This class of peptides could be able to both 

compete for α-helical tetramer formation and inhibit nucleation and also inhibit elongation of 

pre-formed growing amyloid fibrils 
189

. Whether or not these aggregation inhibitors can mitigate 
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HD progression in vivo remains to be seen. Peptidomimetics also pose a challenge of drug 

delivery; large peptides will not likely be able to passive diffuse through the blood brain barrier 

or pass through cell membranes. Advances in peptide delivery technologies will be vital to the 

feasibility of using peptidomimetics in the clinic. However, until those technologies are 

developed, peptidomimetics will remain as proof-of-principle research tools. 

 

 

 

1.7 MATERIALS AND METHODS  

Water (HPLC grade), acetonitrile (99.8% HPLC grade), formic acid, and HFIP (99.5%, 

spectrophotometric grade) were from Acros Organics. Trifluoroacetic acid (99.5%) was from 

Pierce and phosphate buffered saline from Invitrogen. 

Peptide Synthesis and Preparation: All peptides were synthesized at the Small Scale 

Synthesis facility at the Keck Biotechnology Resource Laboratory of Yale University and 

supplied crude. All peptides were purified and disaggregated as previously described 
77,293

. 

Sedimentation Assay: Following rigorous disaggregation, ultracentrifugation (100,000 

rpm, 4 C, 2 hours), and passage through a 0.02 µm filter, samples were allowed to aggregate in 

PBS buffered water. At specific times, aliquots of the reaction were centrifuged (21,000 g, 4 C, 

30 minutes), and the supernatant concentrations were measured using analytical HPLC based 

standard curves, as previously described 
99

. Nucleation analysis was carried out using the initial 
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rates from the sedimentation assay to generate concentration and t
2
 plots, as previously described 

77,107,293
. 

Electron Microscopy: Electron microscopy was conducted as described previously 
77

 in 

the Structural Biology Department's EM facility using a Tecnai T12 microscope (FEI) operating 

at 120 kV and 30,000× magnification and equipped with an UltraScan 1000 CCD camera 

(Gatan). 

Fourier Transform Infrared Spectroscopy: Aggregates from end time points of each 

reaction were isolated and analyzed on an ABB Bomem FTIR instrument. A total of 400 scans 

were collected at room temperature with 4 cm-1 resolution. Residual buffer absorption was 

subtracted to yield second-derivative minima. PROTA software (Biotools, Inc.) was used to 

identify spectral components.  

Circular Dichroism: Far-UV CD measurements were performed on a JASCO J-810 

spectropolarimeter using a 1-mm path length cuvette. CD samples were prepared in parallel to 

sedimentation assays (10-30 µM). CD spectra were analyzed using the CONTINLL program 

from the CDPro package.  

Statistical analysis. All sedimentation assays contain error bars representing standard 

error of the mean as technical replicates of n = 3; in some cases error bars are smaller than the 

datapoint symbols and so are not evident. Critical nucleus error is presented as a 95% confidence 

interval of the slope from log-log plots. Primary neuron toxicity and aggregation data error bars 

representing standard deviation, analyzed using one-way ANOVA multiple comparison’s with 

Tukey’s multiple comparisons test. Primary neuron colocalization analyzed using a Pearson’s 

correlation. Drosophila survival was statistically analyzed using Log-rank Mantel-Cox test of 

Kaplan-Meyer survival curves, *** = p < 0.0001. Drosophila locomotor activity error bars 
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representing standard error of the mean, analyzed using two-way ANOVA with Bonferroni’s 

multiple comparisons test *** = p < 0.01. All statistical data was analyzed using GraphPad Prism 

software. At 80% power, 5% significance, assuming a standard deviation of 10 days, a sample 

size of 100 flies per condition was found to be sufficient to detect a change in mean lifespan of 4 

days. The value of 10 days for lifespan standard deviation was estimated from previous survival 

curves of wild type and HD flies. 

Primary Neurons. Rat Primary Cortical Neurons were isolated from E18 day pups. 2 

million neurons were co-transfected with 1.5 + 1.5  µg DNA and plated with Gibco Neurobasal 

Medium (ThermoFisher #21103-049) + L-glutamine on poly-D lysine coated (100 µL at 0.1 

mg/mL, overnight) glass bottom dishes (MatTek) for live imaging or glass coverslips. Because 

one of our cell models combines co-expression of a pathogenic htt-ex1 with an inhibitory htt-ex1 

derivative, we performed co-transfections using vectors encoding EGFP or mCherry to 

standardize the number of transgenes and total DNA content. For viability assays, live neurons 

were imaged on a Nikon A1 Confocal Microscope (40x oil immersion lens at 2.0 zoom) at room 

temperature. Samples for confocal imaging were sequentially scanned with individual lasers 

(488, 561, and 640 nm) and appropriate emission band pass filters (500-550 and 575-625 nm) or 

long pass filter (650LP). 75 µL of fresh NucRed Dead 647 (ReadyProbes) in 1 mL imaging 

saline was added to neurons and incubated at 37 °C for 20 minutes. Neurons were imaged for the 

following 45 minutes. At least 50 neurons per condition were captured. For aggregate counting, 

neurons grown on coverslips were fixed in 4% paraformaldehyde and imaged using an Olympus 

Fluoview 1000 confocal microscope (60x oil immersion lens) at room temperature. Random 

fields were scored blind (>100 cells per condition over 3-5 independent experiments) for the 



 50 

percentage of Map2 positive neurons also positive for EGFP or mCherry puncta. Images were 

analyzed using ImageJ software. 

Drosophila. Huntingtin analogs were sub-cloned into identical pUAS plasmids 

containing a w
[+]

 marker and an AttB construct. Site-specific insertion was achieved using the 

AttP18 site on the X chromosome. Genetic Services performed the embryo injections. Flies were 

screened for the w
[+]

 marker and balanced over FM0. Flies were then mated to yield homozygous 

huntingtin alleles on either X chromosome, and elav-Gal4 on the 2
nd

 chromosome for expression. 

Upon eclosion, non-virgin female flies were selected and kept at 29 C in 12 hour light cycles, 16 

flies per vial on standard fly food. Media was changed every other day and the number of live 

and dead flies was counted. A minimum of 100 flies per condition was tested. 

Drosophila Behavioral Assay. Rapid Iterative Negative Geotaxis (RING) assay was 

performed at the indicated ages. Age-matched samples were transferred to fresh media-free vials 

and allowed 1 minute to acclimate. The flies were knocked down with gentle tapping and filmed. 

Height climbed after 8 seconds was recorded, with 5 vertical cm being the maximum. A 

minimum of 30 flies per condition was tested. 
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2.0  THE ROLE OF BETA-STRUCTURE IN NUCLEATION AND AGGREGATION 

OF HUNTINGTIN  

2.1 INTRODUCTION 

Huntington’s disease (HD) is one of at least ten expanded CAG repeat diseases 
26,27,150,292

. The 

huntingtin protein (htt) totals around 3,200 amino acids and 350 kDa, but pathogenesis is 

contained to the first exon (htt-exon1), which contains the polyglutamine (polyQ) expansion 

107,179,294
. The N-terminal exon-1 accounts for ~3 % of the total huntingtin protein, and has been 

found as a cleaved product in transgenic animal models and human brains, which correlates with 

neuropathology 
8,40,195,295

, but may also be formed as a mis-spliced exon1 
35

. Htt-exon1 contains 

three sequence regions: the 17 amino acid N-terminus (htt
NT

), followed by the disease causing 

polyQ sequence, and finally a poly-proline/proline-rich segment. Many of the polyQ diseases 

have a pathological repeat length threshold of 30+ glutamines in their encoded disease-specific 

proteins, though this varies between diseases. In SCA6, for instance, the threshold for disease is 

as few as 21-30 glutamine repeats 
296

. In Huntington’s disease, the repeat threshold begins at 36 

glutamine repeats, and gains full penetrance by 40 
297,298

. Generally, a higher polyglutamine 

repeat length results in an increase of disease risk and decreased age of onset in vivo and increase 

aggregation kinetics in vitro 
6,26

. A detailed mechanism of how expanded polyQ tracts grant 
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huntingtin a toxic gain-of-function remains unclear and is one major hurdle limiting hypothesis-

driven therapeutics. 

Previous work from the Wetzel laboratory showed that simple polyQ peptides (primary 

sequence format K2QNK2) aggregate according to a nucleated growth polymerization mechanism 

77
. Kar et al. demonstrated that polyQ peptides with ≥ 26 polyQ repeats nucleate aggregation as a 

monomer, resulting in a substantial boost to nucleation efficiency and kinetics. Additionally, 

installing β-hairpin encouraging motifs in simple polyQ peptides also promotes monomeric 

nucleation, suggesting a role of β-hairpin architecture in nucleation 
108

. However, flanking 

sequences in polyQ proteins can alter the aggregation mechanism, which ultimately has a 

significant impact on aggregation kinetics 
38,176,188,189

. For example, the htt
NT

 region of huntingtin 

has a dramatic enhancing effect on the aggregation kinetics and toxicity of polyQ sequences 
176

. 

Htt
NT

 achieves this by introducing an intermediate oligomeric phase, which has a net result of 

accelerating huntingtin’s aggregation mechanisms 
183

. The htt
NT

 segment mediates 

oligomerization and accelerates nucleation by forming homo-oligomers via α-helical-like 

bundles therefore bringing together their associated polyQ sequences and artificially increasing 

the local concentration of aggregation prone polyglutamine domains 
183

.  

The detailed mechanism by which the htt
NT

 flanking sequence and its subsequent 

oligomerization accelerates nucleation of aggregation is poorly understood. This lack of a 

detailed mechanism limits the ability to design hypothesis driven inhibitors of nucleation. In 

order to indirectly probe the mechanism of nucleation, we employed a modified version of the 

previously described β-hairpin enhancing motifs 
108

. If β-hairpin architecture plays a role in htt-

exon1 nucleation, we would expect htt-exon1 harboring β-hairpin encouraging motifs to have 

accelerated nucleation kinetics, similar to the results from simple polyQ peptides. However, if 
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nucleation occurs through a different process, a β-hairpin encouraging motifs may dampen or be 

neutral towards nucleation kinetics. A more detailed understanding of how htt-exon1 nucleates 

aggregation in the oligomer phase is crucial to designing target-based aggregation inhibitors. 

Additionally, there is currently a robust debate over the major toxic species (Section 1.3). 

A number of toxic species have been proposed: misfolded monomer, tetramers, oligomers, 

spheroids, protofibrils, soluble β-rich aggregates, protofibrils, amyloid, and inclusion bodies. 

Studies attempting to identify the toxic species heavily rely on correlations between the 

appearance of huntingtin species and toxic events. However, one significant hurdle in identifying 

the toxic species is huntingtin’s potential to rapidly generate a heterogeneous mixture of 

monomer, oligomer, and a diverse array of higher ordered species in vitro and in vivo (Sahoo 

2015 Manuscript Submitted). Other recent studies identified the presence of small aggregates in 

what were previously thought of as a soluble monomer or oligomer pool in cells 
42–44

. These 

recent findings bring the methodology of correlative studies into question and create new 

questions regarding the toxic conformational species of huntingtin. That is to say, it is entirely 

plausible that previously undetected small and diffuse amyloid-like aggregates could contribute 

significantly to toxicity; previous studies may be difficult to reinterpret in this new light, as 

traditional confocal microscopy could blur the distinction between monomer, oligomer, and 

diffuse aggregate. 

As a means to circumvent these technological limitations, we have generated a series of 

huntingtin analogs capable of rapid fibril formation (“hyper-amyloid”) or are incapable of 

forming amyloid and are blocked at the oligomeric phase (“hypo-amyloid”) (Section 3.0). The 

hyper-amyloid analog, in spite of its short absolute polyQ repeat length, rapidly fibrillizes. The 
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toxicity profiles of these peptides may help shed light on whether inherent amyloidogenesis or 

oligomerization is responsible for HD phenotype.   

In this study, we use chemically synthesized peptides to explore two separate but related 

issues. Firstly, we designed peptides that contain a β-hairpin enhancing motif in a polyQ 

sequence that is compatible with htt-exon1 flanking sequences. Previously studied motifs, such 

as an α-acetyl tryptophan zipper, could not incorporate N-terminal flanking sequences, which are 

crucial to huntingtin aggregation. By redesigning this structural element, we can now study what 

role, if any, β-hairpin motifs play in a htt-exon1 background. A clearer understanding of the 

nucleation events that take place in oligomeric htt-exon1 is critical to designing future inhibitors 

of nucleation and aggregation. Secondly, these new β-hairpin motifs no longer require special 

chemical modifications. This allows us the ability to use standard genetic tools to express the 

hyper-amyloid construct in vivo to test its associated toxicity. Any toxicity associated with the 

expression of a hyper-amyloid protein may help identify how polyQ sequences gain toxic 

function. 

 

2.2 RESULTS 

2.2.1 Design of a β-hairpin peptide compatible with htt-exon1 

We previously described a series of simple polyQ peptides demonstrating a relationship between 

enhanced intramolecular β-hairpin formation and accelerated nucleation of aggregation 
108

. By 

installing these β-hairpin enhancing motifs, simple polyQ peptides formed efficient monomeric 
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nuclei (critical nucleus, n* = 1), had reduced lag-phase kinetics, and accelerated overall kinetics 

of amyloid aggregation, despite a nominal polyQ repeat length. The most amyloid competent 

peptide, AcWQ11pGQ11WTGK2, formed amyloid-like aggregates significantly faster than a 

K2Q37K2 positive control. Based on these results, we reasoned that if similar motifs could be 

introduced into a htt-exon1 type background, we could address unresolved issues about the 

relative roles of polyQ repeat length and the presence of the htt
NT

 segment in controlling 

nucleation of amyloid formation.  We also realized that if such sequences could be arranged to 

be compatible with ribosomal synthesis, we could address important questions about polyQ 

toxicity in HD using a novel approach.  

To accomplish this, we modified AcWQ11pGQ11WTGK2, a previously employed β-

hairpin enhance peptide 
108

 (Table 1), by first altering the tryptophan zipper (trp-zip) by 

substituting the α-acetylated tryptophan with two small flexible glycines. Loss of the α-acetyl 

group is predicted to destabilize the capping ability of the trp-zip motif by ~4 kJ/mol 
299

, but its 

removal is required to allow installation of the upstream htt
NT

 segment. Secondly, in order to 

make cellular expression possible, we replaced the previously employed D-Pro-Gly β-turn with L-

Pro-Gly. Since L-Pro-Gly does not actively enhance aggregation kinetics like D-Pro-Gly, but 

rather is only relatively passively compatible with β-turns 
179,300,301

, it was not clear that the L-

Pro-Gly sequence would impart any aggregation rate enhancement. L-Pro-Gly would also 

destabilize other secondary structures, such as an extended β-chain or α-helix. Together, the 

modified trp-zip and L-Pro-Gly are predicted to theoretically stabilize a β-hairpin conformation 

approximately -2 to -3 kJ/mol 
299

. This is roughly in line with other modifications, such disulfide 

bonds between the chain termini (-4 to -4.5 kJ/mol 
302

), Coulombic effects at chain termini (-1.5 

to -2.5 kJ/mol 
299

), L-Pro-Gly alone (-1.4 kJ/mol), and the stronger acetylated tryptophan zipper 
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(-6.9 kJ/mol) 
108

. Thus, the final product is a hyper-amyloid competent β-hairpin enhanced 

peptide that is also compatible with the endogenous htt flanking sequences and can feasibly be 

expressed in vivo using standard expression methods (“βHP”; Table 1). 

Furthermore, these motifs are unlikely to contribute to other secondary structures; 

proline, glycine, and tryptophan have relatively low propensities to directly participate in α-helix 

or β-sheet secondary structure 
303,304

. Therefore, if the true nucleus structure were other than a β-

hairpin, the addition of these motifs would likely act to destabilize the nucleus and retard 

aggregation.  

We first tested our in vivo compatible β-hairpin construct using a simple polyQ model 

(format K2QNK2). Negative control K2Q23K2 aggregates with a long lag phase, even at relatively 

high concentrations of 130 µM (Figure 1). Positive control K2Q37K2 reaches t1/2 at 140 hours at 

15 µM, while the βHP peptide aggregates with t1/2 = 45 hours at 18 µM (sequence: 

KKGGWQ11PGQ11WTGKK, Table 1), despite only containing 22 total glutamines. Thus, βHP 

aggregates substantially faster than a comparable K2Q23K2 and even somewhat faster than 

K2Q37K2. The aggregation kinetics profile of the βHP peptide exhibits a shortened lag-phase, 

suggesting that nucleation of aggregation is relatively more efficient compared to K2Q23K2 and 

even a peptide at the disease-repeat threshold, K2Q37K2. 
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Figure 1: Sedimentation Analysis of Simple PolyQ Peptides. Time-dependent loss of monomeric peptide 

from solution upon incubation in PBS at 37 °C. 

 

The initial aggregation kinetics of simple polyQ peptides can be mathematically modeled 

using an Eaton-Ferrone kinetics model given in Equation 2 
107,178

, where Kn* is the equilibrium 

constant of nucleation, k+
2
 is the aggregation elongation constant (11,400 liters/mol*s) 

177
, t is 

time in seconds, C is the initial monomer concentration, and Δ is the molar concentration of the 

soluble fraction converted to insoluble aggregates at time t. 

 

Equation 2: Eaton-Ferrone Simple PolyQ Nucleation Model 
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Information about the nucleation and elongation process can be obtained by plotting the 

decay in soluble concentration Δ for early reaction time points (typically any data point with 

>85% remaining solubility) versus t
2
, which isolates a slope of m, given in Equation 3: 

 

Equation 3: t
2
 Plot 

 

 

Equation 3 thus yields SlopeA = 1/2(k+
2
)(Kn*)(C

(n*+2)
), which contains the elongation 

constant k+
2
, a known value, the equilibrium constant Kn*, the initial monomer concentration C, a 

known value, and the critical nucleus size n*. To isolate n* from Equation 3, one can plot the log 

of the rate Δ versus the log of SlopeA for a series of reactions with varying starting 

concentrations (Equation 4). The slope of that resulting “log-log” plot equals n* + 2 (i.e. if the 

slope of the log-log plot is 6, then n* = 4, a tetramer). Equation 3 would be implemented for each 

reaction of varying starting concentration, resulting in a single data point per kinetic profile. A 

minimum of 3-5 points can be used to generate a line in the log-log plot. These steps are 

necessary in order to rearrange the Eaton-Ferrone nucleation kinetics model and isolate the 

nucleus size n*.  
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Equation 4: log-log Plot 

 

 

In order to determine the critical nucleus size for βHP, we first characterized the 

concentration dependence of βHP aggregation at varying initial concentrations (Figure 2), then 

generated a t
2
 plot from the early data points (Figure 3) and subsequent log-log plot (Figure 4) as 

previously described 
77,108,177,184

. 

In a simple polyQ model, short polyQ repeats inefficiently form a tetrameric nucleus 

(polyQ ≤ 24, n* = 4), while longer polyQ repeats are monomeric (polyQ > 26, n* = 1). Based 

purely on its modest absolute polyQ repeat length of 22, the βHP peptide is predicted to 

aggregate via an inefficient tetrameric nucleus (n* = 4). Despite this, the βHP peptide efficiently 

builds a monomeric nucleus (n* = 1), similar to pathogenic repeat lengths of polyQ (Figure 4). 
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Figure 2: Concentration Dependence of Aggregation for the βHP peptide.  
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Figure 3: Time Squared Plot of βHP Aggregation. Time-squared plots using the initial aggregation rates 

from the concentration dependence plot above are necessary to generate the log-log dependence of initial 

rate on initial concentration. 
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Figure 4: Log-Log Plot of Simple PolyQ and htt-ex1
P10

 peptides. Slopes and subsequent n* values for the 

various peptides are as follows: K2Q23K2 (slope = 5.9 ± 0.5; n* = 4); K2Q37K2 (slope = 3.0 ± 0.2; n* = 1); 

βHP (slope = 2.9 ± 0.3; n* = 1); AcWQ11PGQ11WTGK2 (slope = 3.0 ± 0.3; n* = 1); htt-ex1
P10

-βHP (slope 

= 0.3 ± 0.2); htt-ex1
P10

-Q37 (slope = 0.9 ± 0.3). Data for K2Q23K2 and K2Q37K2 are from reference 
77

 and 

data from AcWQ11PGQ11WTGK2 is from reference 
108

. 

 

ΔGfolding, the Gibbs free energy associated with forming the nucleus of aggregation, is 

substantially more favorable in the βHP peptide than a comparable simple polyQ. ΔGfolding values 

were derived from log-log plots, as previously described 
77,177,293

. Typical ΔGfolding values for 

proteins that spontaneously fold range from -10 to -60 kJ/mol, with the negative symbol 

corresponding to a favorable fold. For the K2Q47K2 peptide, ΔGfolding = +12.2 kJ/mol, 

emphasizing how tremendously unfavorable it is for simple polyQ peptides to initiate nucleation 

of aggregation 
177

. In the βHP peptide, ΔGfolding is further stabilized to +10.5 kJ/mol, which 

roughly matches the theoretically predicted stabilization of 2-3 kJ/mol. Thus, spontaneously 

forming a nucleus for the βHP peptide is still an exceedingly rare and largely energetically 
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unfavorable event, but it is nonetheless substantially more favorable than for K2Q37K2. Thus, the 

energy barrier of initiating amyloid aggregation is lowered for the βHP peptide compared to 

comparable polyQ peptides, or even some polyQ peptides with pathologically relevant repeat 

lengths.  

It is important to note that these β-hairpin enhancing substitutions, while strongly 

enhancing aggregation by encouraging nucleation of aggregation, are not expected to appreciably 

form β-hairpin structured monomers. The change in the nucleation equilibrium constant between 

K2Q37K2 and the βHP peptide is a shift from Kn* = ~10
-12

 to Kn* = ~10
-10

 (roughly 1 in 

1,000,000,000,000 K2Q37K2 molecules adopting a β-hairpin nucleating structure at any given 

time in solution, versus 1 in 10,000,000,000 for the βHP peptide). Therefore, the accelerated 

aggregation kinetics of βHP can be rationalized as an order of magnitude enhancement in 

nucleation efficiency compared to K2Q37K2, but the absolute number of molecules adopting this 

structure remains vanishingly small. 

The final aggregates of each peptide were characterized using Fourier Transform Infrared 

Spectroscopy (FTIR) and Electron Microscopy (EM). FTIR was used to ensure that the final 

aggregate of βHP contains the same “fingerprint” structural absorbencies at ~1605 cm
-1

 (Gln 

side-chain N-H bending), ~1625-1630 cm
-1

 (β-sheet), and ~1654-1658 cm
-1 

(Gln side-chain C=O 

stretching). Indeed, the FTIR traces of the final βHP aggregate overlay with traces from K2Q23K2 

and K2Q37K2 aggregates (Figure 5). Additionally, electron microscopy images of βHP aggregates 

show rigid amyloid-like structures (Figure 6a), which are comparable to K2Q23K2 (Figure 6b) or 

K2Q37K2 aggregates (Figure 6c). 
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Figure 5: FTIR Traces of Simple PolyQ Peptides. Second derivative FTIR spectra was taken at the end of 

each aggregation reaction. Samples were centrifuged at 30,000 RPM for 30 minutes to isolate large 

aggregated pellets. The FTIR spectra are dominated by three signals at ~1625-1630 cm
-1

 (β-sheet), ~1605 

cm
-1

 (Gln side-chain N-H bending) and ~1654-1658 cm
-1

 (Gln side-chain C=O stretching). 

 

 

 

Figure 6: Electron Microscopy Images of Simple PolyQ Peptides. Bar = 50 nm (a) βHP (b) K2Q23K2 (c) 

K2Q37K2 

a                b          c 
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2.2.2 β-hairpin enhanced huntingtin fragments aggregate through a htt
NT

-mediated 

mechanism 

The htt
NT

 (also referred to as N17) domain is implicated in accelerating huntingtin amyloid 

formation by first mediating oligomer formation via homo-α-helical like bundles 
38,176,305

. This 

nucleation pathway is distinct from the simple polyQ mediated nucleation (Schematic 1). Given 

the primary role of the htt
NT

 sequence to alter the aggregation mechanism and enhance 

nucleation of aggregation, it was unclear whether installing the β-hairpin enhancing architectures 

into a htt-ex1 background would produce any aggregation rate effect at all. If a rate effect were 

to be observed, it is also unclear if the β-hairpin enhancing motifs would cooperate with the htt
NT

 

mediated nucleation pathway, or prefer the simple polyQ mediated nucleation pathway. To test 

this, we incorporated both the endogenous htt
NT

 17 amino acids with a truncated C-terminal 

P10K2 segment (htt-ex1
P10

, Table 1), as previously described 
194

.  

We found that htt-ex1
P10

-βHP, which contains only 22 total glutamines, aggregates faster 

than a comparable htt
NT

-ex1
P10

-Q25, and even slightly faster than a positive control htt
NT

-ex1
P10

-

Q37 (Figure 7). Due to its complex aggregation mechanism, there is currently no known 

mathematical model to determine the critical nucleus size of htt
NT

-containing polyQ peptides. 

Erroneously applying the Eaton-Ferrone model, which successfully models simple polyQ 

nucleation, to htt
NT

-containing peptides consistently returns non-real values. Both htt-ex1
P10

-βHP 

and htt-ex1
P10

-Q37 return the same signature non-real values (n* = -1), indicating that β-hairpin 

motifs are no longer aggregating via simple a polyQ mediated mechanism, and likely cooperate 

with an htt
NT

-mediated nucleation event (Figure 4). FTIR traces of the final aggregates show the 

same signature peaks between htt-ex1
P10

-βHP and htt-ex1
P10

-Q37 (Figure 8).  
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Figure 7: Sedimentation Analysis of htt-ex1
P10

 Peptides. Time-dependent loss of monomeric peptide from 

solution upon incubation in PBS at 37 °C.  

 

 

Figure 8: FTIR Traces of htt-ex1
P10

 Peptides. Second derivative FTIR spectra was taken at the end of each 

aggregation reaction. Samples were centrifuged at 30,000 RPM for 30 minutes to isolate large aggregates 

pellets. The FTIR spectra are dominated by three signals at ~1625-1630 cm
-1

 (β-sheet), ~1605 cm
-1

 (Gln 

side-chain N-H bending) and ~1654-1658 cm
-1

 (Gln side-chain C=O stretching). The α-helix peak from the 

htt
NT

 segment is obscured by the Gln band. 
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Figure 9: Electron Microscopy Images of htt-ex1
P10

 Peptides. (a) htt-ex1
P10

-βHP (b) htt-ex1
P10

-Q25 (c) (b) 

htt-ex1
P10

-Q37.  

 

EM images of the final aggregates illustrate morphologically similar amyloid fibrils for 

htt-ex1
P10

-βHP (Figure 9a), htt-ex1
P10

-Q25 (Figure 9b) and htt-ex1
P10

-Q37 (Figure 9c). A circular 

dichroism trace of htt-ex1
P10

-βHP, which measures gross ensemble secondary structure, confirms 

that the initial monomeric ensemble is randomly structured and only gains appreciable β-sheet 

character upon aggregating (Figure 10). Typical huntingtin fragment peptides transition from 

random compact coil (204 nm minimum) to β-sheet (217 nm minimum and ~200 nm maximum) 

as they aggregate into amyloid fibrils 
38,107

. CD signatures obtained from htt-ex1
P10

-βHP 

aggregation reactions show the same transition from random compact coil to β-sheet (Figure 10). 

Plotting the change in absorption at 204 nm as a function of time, the transformation from 

random coil to β-sheet follows the same kinetics as aggregation from the HPLC-based 

sedimentation assay (Figure 11). 

 

a          b            c 
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Figure 10: Circular Dichroism Traces of the htt-ex1
P10

-βHP Peptide. Time-dependent far-UV CD was 

analyzed in a 1 mm path-length cuvette using the same freshly disaggregated monomeric solution in 

parallel to sedimentation assays. CD time course was done in Tris buffer (50 mM Tris-Cl pH 7.5, 150 mM 

NaCl) at 37 °C. 32 µM htt-ex1
P10

-βHP shows a time-dependent transition from initial random coil structure 

to anti-parallel β-sheet. 
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Figure 11: Overlay of Circular Dichroism and Sedimentation Analysis Kinetics for htt-ex1
P10

-βHP. 20 µM 

htt-ex1
P10

-βHP was measured from parallel reactions by sedimentation assay (Figure 7) and by CD (Figure 

10). CD progression is calculated as the percentage of progress in the 204 nm ellipticity.  

 

2.2.3 htt
NT

Q22P10K2-βHP seeds can recruit huntingtin into amyloid fibrils 

One key test for functional amyloid is the ability to seed aggregation of soluble huntingtin. 

Seeded elongation bypasses the rate-limiting nucleation phase and allows aggregation to proceed 

directly into the rapid elongation phase 
22

. However, this process requires some degree of 

structural homology, as htt aggregates can seed soluble htt, but less so Aβ 
22,306

. We asked 

whether htt-ex1
P10

-βHP amyloid had sufficient structural homology to seed soluble htt-ex1
P10

-

Q25. Based on previous results using 10-20% weight/weight seeds for seeded elongation 
108

, we 

found that a 20% seed of htt-ex1
P10

-βHP is equipotent to a htt-ex1
P10

-Q25 self-seed in recruiting 



 69 

soluble htt-ex1
P10

-Q25 (Figure 12). Thus, β-hairpin motifs enhance, but do not alter, pathogenic 

huntingtin aggregation mechanisms. Only the kinetics of amyloid formation are affected. 

 

 

Figure 12: Seeded Elongation of htt-ex1
P10

-Q25. Time-dependent loss of solubility requires the rate limiting 

step of nucleus formation (Scheme 1). This step can be bypassed if exogenous amyloid aggregates with a 

suitable degree of sequence and structural homology are added to the soluble portion. htt-ex1
P10

-βHP is 

equipotent at seeding htt-ex1
P10

-Q25 as a htt-ex1
P10

-Q25 self-seed. 

2.3 DISCUSSION 

Previous reports from the Wetzel laboratory established a role for β-hairpin architecture in 

nucleus formation of a simple polyQ model. An array of different β-hairpin encouraging motifs 

successfully reduced the nucleus size of K2Q23K2 from tetrameric to monomeric (n* = 4 to n* = 

1) with a subsequent boost to aggregation kinetics. However, these β-hairpin enhanced peptides 

were confined to a simple polyQ model and were not tested in the context of huntingtin exon-1. 

Herein we redesigned the tryptophan zipper and D-pro-gly β-turn, two motifs to enhance β-
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hairpin architecture, for use in a htt-exon1 background and for future use in in vivo systems. 

These β-hairpin enhanced huntingtin peptides, if aggregation competent, could be a useful model 

to determine the biological ramifications of polyQ aggregation into amyloid. These peptides may 

also be useful tools to disassociate absolute polyQ repeat length from aggregation propensity, 

which may shed light as to how mutant htt gains its toxic function. For instance, a recent paper 

from the La Spada laboratory claims that expanded polyQ sequences within the huntingtin 

protein preferentially bind to, sequester, and ultimately repress peroxisome proliferator-activated 

receptor delta (PPAR-δ), a critical protein for neuron survival 
307

. If this type of altered protein 

binding is responsible for an HD phenotype, we would expect our βHP peptide, with a nominal 

polyQ region, to be non-toxic or well tolerated.  

We present here that β-hairpin motifs constructed from only L-amino acids (which can be 

expressed in cells via standard genetic methods) retain the ability to shift the nucleus size of 

K2Q23K2 from tetrameric to monomeric, resulting in a reduction of time spent in the lag phase 

and a boost to overall aggregation kinetics. The resulting enhancements are similar to previously 

employed β-hairpin encouraging motifs in other simple polyQ models. Because the hyper-

amyloid construct βHP no longer requires chemical modification, it can be now be built into a 

htt-ex1 background, which makes it possible to probe the impact of β-hairpin enhancement of 

polyQ on the htt-ex1 nucleation mechanism. 

The addition of the htt
NT

 segment alters the aggregation mechanism of polyQ by 

introducing an intermediary oligomeric phase that adds an addition step to the nucleation 

mechanism, therefore no longer following the Eaton-Ferrone mathematical model (steps 2-5 of 

Scheme 1). The simple polyQ aggregation mechanism (steps 8-9 of Scheme 1) is still functional, 

but is outcompeted by the significantly more competent htt
NT

-mediated aggregation mechanisms. 
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It was therefore a concern that the β-hairpin enhancing substitutions, even in the context of htt
NT

, 

may still favor the simple polyQ aggregation mechanism.  

Using a synthetic htt
NT

-ex1
P10

 model of htt-exon1, we show that aggregation can be 

drastically enhanced with the installation of β-hairpin motifs despite a modest polyQ repeat 

length. Aggregation kinetics, secondary structure changes, FTIR spectra, and EM morphology of 

htt
NT

-ex1
P10

-βHP all indicate that β-hairpin motifs enhance, but do not alter, the same 

aggregation pathways used by mutant htt-exon1.  

One additional method to address whether or not the βHP motifs cooperate with an htt
NT

-

mediated aggregation mechanism is to determine whether the critical nucleus changes to non-real 

values. For example, the Eaton-Ferrone mathematical model returns real values for the simple 

polyQ peptide K2Q37K2 (n* = 1), but yields non-real values for htt-ex1
P10

-Q37 (n* = -1). 

Similarly, the critical nucleus size of βHP also shifts from n* = 1 in the simple polyQ format to 

n* = -1 for htt
NT

-ex1
P10

-βHP, indicating that the βHP motifs are cooperating with the htt
NT

-

mediated mechanisms of aggregation. If the htt-ex1
P10

-βHP peptide primarily aggregated through 

enhanced simple polyQ aggregation mechanisms, we would have anticipated a real value, such 

as n* = 1. These findings support a model inclusive of β-hairpin architecture participating in htt-

exon1 nucleus formation within the oligomeric phase.  

Finally, we wanted to ensure that the β-hairpin enhanced peptides formed aggregates with 

structural likeness to typical mhtt amyloid. FTIR, EM, CD, and other biophysical tools help 

solidify that htt-ex1
P10

-βHP aggregates have comparable gross morphology and secondary 

structure to htt-ex1
P10

-Q37, but these techniques do not address issues of finer structural likeness. 

As a probe into this structural likeness, we challenged htt-ex1
P10

-βHP aggregates to seed the 

elongation of monomeric htt-ex1
P10

-Q23. We found the htt-ex1
P10

-βHP aggregates were 
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equipotent to a htt-ex1
P10

-Q23 self seed, demonstrating that the fibril aggregates generated by htt-

ex1
P10

-βHP are structural compatible with htt-ex1
P10

-Q23. Additionally, the process of elongation 

and/or the seeding potential of polyQ aggregates is one proposed toxic mechanism of mhtt. This 

efficient seeding potential is preserved in our β-hairpin enhanced peptides; whether or not these 

β-hairpin enhanced peptides generate an HD phenotype in vivo may provide further clues to the 

toxic mechanism of mhtt. 

Thus, the hyper-amyloid competent htt
NT

-ex1
P10

-βHP peptide can be used in future 

studies to test the toxic amyloid hypothesis in vivo. Because the hyper-amyloid htt
NT

-ex1
P10

-βHP 

is capable of robust aggregation, in spite of its relatively short polyQ repeat length, htt
NT

-ex1
P10

-

βHP makes an excellent diagnostic tool to test the toxicity of amyloid. Htt
NT

-ex1
P10

-βHP can 

essentially decouple absolute polyQ repeat length from its inherent propensity to aggregate into 

amyloid without leading to measurable levels of monomeric β-hairpin forms of htt-ex1, as 

demonstrated by CD. Whether or not a hyper-amyloid peptide like htt
NT

-ex1
P10

-βHP is toxic in 

cells or animals would provide valuable insight into the nature of the toxic species of huntingtin. 

A more detailed understanding of the mutant huntingtin aggregation pathway and how polyQ 

repeat expansion causes toxicity in vivo is crucial to developing new lines of therapies and 

designing more sophisticated mechanistic-oriented drug screens. 
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3.0  DESIGNING HUNTINGTIN AMYLOID INHIBITORS THAT STOP 

HUNTINGTIN AGGREGATION AT NON-BETA OLIGOMERS 

3.1 INTRODUCTION 

The toxic species of expanded polyQ huntingtin is fiercely debated in the literature, as is the 

mechanism by which mutant huntingtin exerts its toxic gain-of-function. Several hypotheses 

have been put forward, including the toxic amyloid hypothesis (Section 1.3.2), the toxic 

oligomer hypothesis (Section 1.3.3), and a toxic monomer hypothesis (Section 1.3.4). There is 

currently no consensus within the field how mutant huntingtin gains toxicity, thereby delaying 

hypothesis-driven therapeutic drug design. A better and more detailed understanding of how 

expanded polyQ huntingtin generates toxicity is critical in designing effective therapies that can 

slow or prevent HD onset. 

The toxic oligomer hypothesis states that some non-β-structure, non-amyloid, diffusible 

oligomer of huntingtin is the toxic species 
85,86

. In some experiments, neurons successfully 

forming large inclusion bodies survived better than those without inclusion body formation 
81

. 

These findings have been interpreted to mean that large inclusion bodies are non-toxic or are a 

cellular protective response 
92,93

. Other experiments have correlated the appearance of huntingtin 

species with the timing of toxic events, concluding that some soluble portion of huntingtin 

generates toxicity 
91

. In separate studies, a truncated huntingtin analog discovered 
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serendipitously (truncated at amino acid 117, which lies beyond the polyQ core), has significant 

inclusion formation in transgenic mice, but little detectible neurodegeneration and behavioral 

defects seen in other HD mice 
87

.  

More recently, large inclusions were shown to have their own toxic effects by disrupting 

the nuclear membrane 
83

. Furthermore, super-resolution microscopy has shown that small 

amyloid-like aggregates exist outside of inclusion bodies 
42–44,308

. These small aggregates were 

not initially visible due to being smaller than the diffraction limits of confocal microscopy and to 

the intense obscuring brightness of inclusions within the same cell. The contribution of non-β 

huntingtin oligomers in HD is heavily debated. As with large β-structure amyloid, directly 

assigning a contribution of each huntingtin species is extremely difficult, due to how rapidly 

huntingtin adopts a multitude of forms, including monomeric, oligomeric, and small β-rich 

aggregates (Sahoo 2016 Manuscript Submitted). Correlative studies that rely on the timing of 

toxic events with the appearance of huntingtin species, while informative, need to be reevaluated 

in light of these recent findings.  

In order to circumvent these technological limitations, we have designed amyloid-

incompetent huntingtin analogs that remain as soluble non-β oligomers essentially indefinitely. 

Previous work from the Wetzel laboratory showed that chemical modifications of simple polyQ 

peptide’s backbone amide nitrogen by methylation or L-Glutamine to D-Glutamine substitution 

was sufficient to block aggregation (Kar 2016 Manuscript Submitted). Glutamine to proline 

substitutions or L-glutamine to D-glutamine substitutions within simple polyQ peptides also 

diminish the ability of these peptides to self-aggregate 
292

. Unlike htt
NT

-based inhibitors, these 

hypo-amyloid polyQ peptide designs primarily act to limit elongation. 
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We introduce here a series of “hypo-amyloid” simple polyQ peptides with strategically 

placed glutamine to proline substitutions that significantly limit aggregation in vitro. We then 

expanded the hypo-amyloid polyQ design to incorporate the htt-ex1
P10

 flanking sequences. These 

inhibited htt-ex1
P10

 peptides are capable of rapidly forming intermediate oligomers via the htt
NT

 

domain, but are severely compromised in their ability to nucleate aggregation. These peptides 

can be feasibly expressed in vivo and offer new tools to test the toxic amyloid hypothesis and 

toxic oligomer hypothesis.  

In addition to being a test of the toxic oligomer hypothesis, these hypo-amyloid peptides 

may also be a proof-of-principle aggregation inhibitor with potential therapeutic effects. The 

htt
NT

 segment plays an accessory role in aggregation by forming α-helical bundles with other 

htt
NT

 segments, thereby bringing together aggregation prone polyQ sequences (Section 1.4.4). 

Mishra et al. showed that “naked” htt
NT

 peptides can compete with huntingtin for oligomer 

formation 
189

. This process essentially dilutes the aggregation prone polyQ segments, which 

limits the ability of expanded polyQ huntingtin to nucleate aggregation within the intermediate 

oligomer phase. However, statistically some portion of pathogenic huntingtin oligomers can be 

expected to contain a low number of htt
NT

 inhibitors, increasing the likelihood that nucleation 

will occur. Additionally, pathogenic huntingtin can also overcome htt
NT

 inhibition by nucleating 

aggregation via the slower htt
NT

-independent simple polyQ aggregation mechanism 
183

. Together 

these two “escape” mechanisms explain why amyloid nucleation is not completely stopped, but 

only delayed, by the simple htt
NT

 peptide inhibitor. 

To combine these strategies, we designed and tested hypo-amyloid constructs containing 

both an htt
NT

 domain as well as a proline interrupted polyQ core. These peptides are capable of 
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inhibiting both the nucleation and elongation steps of huntingtin aggregation and therefore are 

effective aggregation inhibitors.  

These hypo-amyloid peptides offer a number of valueable insights. First, they 

demonstrate that interruption of the polyQ core with even a single glutamine to proline 

substitution is sufficient to block nucleation of huntingtin. Second, due to their hypo-amyloid 

nature, they provide a new tool to diagnose the contribution of huntingtin oligomers on toxicity. 

Thirdly, their ability to inhibit aggregation has helped detail further structural detail about 

potential mechanisms to limit aggregation. Finally, the therapeutic effect (if any) of these hypo-

amyloid peptides to slow mutant huntingtin aggregation into amyloid will provide a further 

confirmation of the toxic species of huntingtin. 

 

3.2 RESULTS 

3.2.1 Rational design of a competitive peptide-based inhibitor of nucleation 

Peptide-based inhibitors of nucleation of aggregation and/or elongation of huntingtin amyloid 

fibrils are modeled after previous findings, which used chemically modified glutamine residues 

or glutamine to proline substitutions to limit aggregation 
183,291,292

 (Kar 2016 Manuscript 

Submitted). Proline is a unique amino acid in that it strongly disfavors being in α-helixes or β-

sheet secondary structures, but can be found in ordered structures such as β-turns and as Type II 

poly-proline α-helixes 
309,310

. A glutamine to proline substitution is predicted to lose some intra-

strand hydrogen bonding required for β-hairpin formation, and may “kink” the backbone to 
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further destabilize β-sheet structure 
311

. Other chemical modifications, such as D-glutamine or Nα-

methyl glutamine, which also disfavor β-sheet formation, were not used due to the limited 

potential of in vivo expression. 

We present here the rational design of htt-ex1 analogs that contain a htt
NT

 segment, which 

can compete for mixed oligomer formation, a polyQ segment which may enhance oligomer 

formation (Sahoo 2016 Manuscript Submitted), a β-hairpin backbone, which may enhance 

recognition and incorporation of the inhibitor into the growing end of an amyloid fibril, and one 

or more glutamine to proline substitutions within the polyQ track to limit amyloid formation 

(Table 1).  

Working with these constraints, several peptide designs were developed: A single proline 

substitution in the first polyQ sequence (P
1
), a single proline substitution in the second polyQ 

sequence (P
2
), and a double proline substitution (P

1,2
) (Table 1, Schematic 1). These substitutions 

were incorporated into both a simple polyQ format as well as huntingtin analog peptide htt
NT

-

ex1
P10

 format. The simple polyQ inhibitors (βHP-P
N
) are predicted to limit elongation only, 

while the htt
NT

-containing huntingtin analogs (htt-ex1
P10

-βHP-P
N
) should interfere with both the 

nucleation and elongation mechanisms of huntingtin. The glutamine → proline substitution 

peptides also act as a control for the htt
NT

-ex1
P10

-βHP peptide. That is, it is possible that the 

addition of tryptophan, proline, and glycine residues into htt-ex1
P10

-βHP could produce toxicity 

and aggregation through mechanisms other than enhanced amyloidogenesis. As a control, these 

hypo-amyloid htt analogs contain the same background βHP motif. 
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3.2.2 Glutamine to Proline substitutions block amyloidogenesis 

Well placed proline substitutions in certain polyQ settings can drastically diminish the ability of 

simple polyQ peptides to aggregate. K2Q23K2 aggregates slowly over time at high concentrations, 

while β-hairpin enhancing motifs drastically enhance this aggregation, as discussed in Section 

2.0 (Figure 1). Despite having β-hairpin enhancing motifs, a single (βHP-P
2
) or double (βHP-

P
1,2

) glutamine to proline substitution nearly eliminates any noticeable sedimentation, even after 

several hundred hours (Figure 13). In fact, these hypo-amyloid analogs aggregate slower than a 

peptide with a non-pathogenic repeat length, K2Q23K2.  

 

 

Figure 13: Sedimentation Analysis of Hypo-Amyloid Peptides. Time-dependent loss of monomeric peptide 

from solution upon incubation in PBS at 37 °C. 

 

After characterizing and confirming that the simple polyQ proline substitution analogs do 

not sediment significantly in vitro, these peptides were extended to include the htt
NT

 region, 
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which is important for oligomerization and acceleration of the nucleation of aggregation (Section 

1.4.4), and the P10 region, the endogenous C-terminal flanking sequence of huntingtin (Section 

1.4.5). The single proline substitution peptides, htt-ex1
P10

-βHP-P
1
 and htt-ex1

P10
-βHP-P

2
 

aggregate very poorly, slowing losing a small fraction of solubile material (~80% remains 

soluble) over 400 hours at 15 and 20 µM concentrations, respectively (Figure 14). Aggregation is 

slowed dramatically for the proline-substituted peptides and is even slower than for a comparable 

non-pathogenic htt-ex1
P10

-Q25. Htt-ex1
P10

-βHP-P
1,2

, the double proline substitution, remains near 

100% solubility for at least 400 hours (Figure 14). Circular dichroism of the hypo-amyloid 

peptide htt-ex1
P10

-βHP-P
2
 initially shows a random coil structure and persists in this state (Figure 

15). Electron microscopy images of htt-ex1
P10

-βHP-P
1
, htt-ex1

P10
-βHP-P

2
, and htt-ex1

P10
-βHP-

P
1,2

 taken after 2,000+ hours incubation show only scattered small amorphous structures, which 

resemble oligomers, spheroids, or small non-β non-amyloid amorphous aggregates (Figure 16). 

 

 

Figure 14: Sedimentation Analysis of htt-ex1
P10

 Hypo-Amyloid Peptides. Time-dependent loss of 

monomeric peptide from solution upon incubation in PBS at 37 °C. 
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Figure 15: Circular Dichroism Traces of htt-ex1
P10

-βHP-P
2
. Time-dependent far-UV CD was analyzed in a 

1 mm path-length cuvette using the same freshly disaggregated monomeric solution in parallel to 

sedimentation assays. CD time course was done in Tris buffer (50 mM Tris-Cl pH 7.5, 150 mM NaCl) at 

37 °C. 25 µM htt-ex1
P10

-βHP-P
2
 shows a random coil structure that is unchanged over 24 hours. 

 

 

Figure 16: Electron Microscopy Images of Hypo-Amyloid htt-ex1
P10

 Peptides. (a) htt-ex1
P10

-βHP-P
2
 (b) 

htt-ex1
P10

-βHP-P
1,2

 

a           b 
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3.2.3 Hypo-Amyloid huntingtin analogs as proof-of-principal polyQ aggregation 

inhibitors 

Htt
NT

 plays a crucial role in huntingtin oligomerization and nucleation of amyloid aggregation. 

Previous work hinted at the potential of the htt
NT

 17 amino acid segment to act as an inhibitor of 

huntingtin amyloid nucleation by competing for oligomer formation and inhibiting nucleus 

formation in the oligomeric phase 
189,292

. These htt
NT

 fragment inhibitors were imperfect in their 

ability to significantly delay synthetic htt
NT

Q30P6K2 aggregation, requiring molar excess to 

achieve a 2 or 3-fold delay in t1/2 aggregation kinetics. Adding several molar excess repeatedly 

throughout the time course of htt
NT

Q30P6K2 aggregation only delayed aggregation modestly and 

incompletely. Herein we describe new, more potent inhibitors, which can be feasibly tested in 

vivo using genetic expression models. 

In vitro, 10 µM htt-ex1
P10

-Q37 aggregates to t1/2 in 14 hours and to completion in less than 

48 hours (Figure 17). Addition of 20 µM of the inhibitor htt-ex1
P10

-βHP-P
1
 delays htt-ex1

P10
-Q37 

aggregation to t1/2 = 54 hours, a 4-fold delay. Htt-ex1
P10

-βHP-P
2
 and htt-ex1

P10
-βHP-P

1,2
 are even 

more potent, significantly delaying htt-ex1
P10

-Q37 aggregation to t1/2 = 125 hours, almost an order 

of magnitude (Figure 17).  

Stoichiometric (Figure 18) and sub-stoichiometric (Figure 19) ratios are also effective at 

delaying target huntingtin aggregation. While the kinetics of htt-ex1
P10

-Q37 aggregation are 

delayed in each case, the final thermodynamic product remains the amyloid fibril. EM images 

taken after the completion of each inhibited reaction shows amyloid fibrils similar to uninhibited 

htt-ex1
P10

-Q37 (Figure 20). 
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Figure 17: Sedimentation Analysis of Hypo-Amyloid Inhibition 10:20. Time-dependent loss of monomeric 

htt-ex1
P10

-Q37 in the presence of absence of different mid-strand Pro analogs. Freshly disaggregated 

peptides were incubated alone or in co-mixtures. 
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Figure 18: Sedimentation Analysis of Hypo-Amyloid Inhibition 10:10. Time-dependent loss of monomeric 

htt-ex1
P10

-Q37 in the presence of absence of different mid-strand Pro analogs. Freshly disaggregated 

peptides were incubated alone or in co-mixtures. 
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Figure 19: Sedimentation Analysis of Hypo-Amyloid Inhibition 10:5. Time-dependent loss of monomeric 

htt-ex1
P10

-Q37 in the presence of absence of different mid-strand Pro analogs. Freshly disaggregated 

peptides were incubated alone or in co-mixtures. 

 

 

 

Figure 20: Electron Microscopy Images of the Hypo-Amyloid Inhibited Reaction. (a) htt-ex1
{10

-Q37 alone 

(b) htt-ex1
{10

-Q37 + htt-ex1
{10

-βHP-P
2
 (c) htt-ex1

{10
-Q37 + htt-ex1

{10
-βHP-P

1,2
 

 

On their own, the three hypo-amyloid analogs resist aggregation for an extended period 

of time (Figure 14), but in the presence of their target htt-ex1
P10

-Q37, they co-aggregate in a 1:1 

ratio with their target mutant huntingtin (Figure 21). Changing stoichiometry to 1:2, 1:1, or 2:1 
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does not effect the 1:1 parallel aggregation. To test the contribution of htt
NT

 to the inhibitory 

action of these hypo-amyloid analogs, we synthesized inhibitors lacking the htt
NT

 segment. These 

peptides have severely reduced inhibitory potency limited to the elongation phase, and no longer 

co-aggregate in the presence of their target (Figure 22). Thus, the htt
NT

 domain is critical to the 

inhibitory action of these hypo-amyloid analogs. 

 

 

Figure 21: Co-Aggregation of the Hypo-Amyloid Peptides with its target htt-ex1
P10

-Q37. Time-dependent 

loss of monomeric htt-ex1
P10

-Q37 in the presence of absence of different mid-strand Pro analogs. The hypo-

amyloid htt-ex1
P10

-βHP-P
1,2

 co-aggregates with its target htt-ex1
P10

-Q37.  
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Figure 22: Lack of Inhibition or Co-Aggregation Between without htt
NT

. Time-dependent loss of 

monomeric htt-ex1
P10

-Q37 in the presence of absence of different mid-strand Pro analogs.  

 

 

Interestingly, the inhibitor βHP-P
2
 was synthesized both with and without an acetylated 

trp-zip motif – a stronger inducer of β-hairpin formation. This stronger β-hairpin formation 

correlates with a stronger elongation inhibition, confirming that the ability to engage in a β-

hairpin structure upon the docking of an inhibitor onto the growing edge of the fibril enhances its 

inhibitory power (Figure 23). When both Q11 strands were blocked, such as in the βHP-P
1,2

 

peptide, no inhibition of elongation took place, confirming that at least one uninterrupted polyQ 

face is necessary for inhibition of elongation (Figure 22). 
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Figure 23: Stronger βHP Motifs Correlate with Stronger Inhibition. Deletion of the htt
NT

 and P10 segments 

from the elongation inhibitor htt-ex1
P10

-βHP-P
2
 results in weaker inhibition of target htt-ex1

P10
-Q37 (βHP-

P
2
). Peptides with stronger βHP encouraging motifs (Ac-WQ11PGQ5PQ5WTGKK) are stronger inhibitors 

of elongation. 

3.3 DISCUSSION 

In this work, we demonstrate that disruption of the polyQ sequence using glutamine to proline 

substitutions in a βHP background drastically diminishes the ability of both simple polyQ 

peptides and htt-ex1
P10

 format peptides to participate in aggregation. In the case of htt-ex1
P10

 

format hypo-amyloid constructs, we show that an intact htt
NT

 domain is sufficient to generate an 

intermediate oligomeric phase visible by EM, but subsequent amyloid formation is efficiently 

blocked, which is in agreement with the previously defined mechanism of htt
NT

’s involvement in 

oligomer formation 
183

. These hypo-amyloid constructs do not gain appreciable β-structure over 

time and remain soluble for longer than a comparable htt-ex1
P10

-Q25. Because these hypo-

amyloid analogs stably form non-β oligomers in vitro, they offer an ideal tool to circumvent 
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technological limitations that have prevented identification of the toxic species of huntingtin. If 

expressed in model organisms, toxicity (or lack thereof) of these peptides could help better 

understand the toxic oligomer hypothesis. In addition, with the hyper-amyloid βHP peptide from 

Section 2.0, we can probe the robustness of the link between repeat length and pathology, as well 

as test the contribution of rapid amyloid formation to disease pathology. 

Sedimentation assays, EM, CD, and other biophysical tools used here strongly support a 

model of the proline substituted peptides forming non-β oligomers, which do not progress to 

amyloid. However, these techniques cannot quantitatively assign what proportion of the 

population exists as an oligomeric aggregate versus monomer. With these proline substituted 

inserts, we expect some level of monomer to remain in equilibrium with the oligomeric phase. 

One potential method to address this problem is the use of analytical ultracentrifugation (AUC). 

For instance, AUC has been previously employed to determine the molecular size distribution of 

htt
NT

-containing huntingtin peptides 
38

. Quantifying the molecular size distribution for these 

proline-substituted peptides would more definitively determine whether these peptides’ preferred 

conformation is oligomeric or monomeric. Secondly, one could also incorporate fluorescent 

labels into our peptides and determine the size distribution using fluorescence correlation 

spectroscopy. A final alternative experimental approach to AUC could be size exclusion 

chromatography (SEC), although previous attempts to determine molecular size distributions of 

huntingtin oligomers using this method have generated conflicting results, potentially due to 

either the shearing forces of SEC, from interactions between the huntingtin peptides and the 

column, or due to an effect of the buffers used.  

We additionally show that these hypo-amyloid constructs can effectively delay 

aggregation of a target htt-ex1
P10

-Q37 peptide by as much as an order of magnitude. However, 
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htt-ex1
P10

-Q37 eventually overcomes these inhibitors to form a thermodynamically stable 

amyloid; only the kinetics of nucleation and aggregation are changed. During this process, the 

inhibitors are drawn into the growing amyloid fibril in a 1:1 ratio in a mechanism that is 

dependent on the presence of htt
NT

. This data suggests a possible role of htt
NT

 in the inhibition of 

nucleation and/or elongation. It is unclear how htt
NT

 achieves this, though there is previous 

evidence to suspect that htt
NT

 plays a role in the final β-sheet structure of the amyloid, which 

could help stabilize the addition of monomers in a dock and lock type mechanism 
312

. 

Interestingly, these hypo-amyloid analogs vary in their mechanisms of inhibition 

depending on the position of the glutamine to proline substitution. Hypo-amyloid constructs 

whose substitution is near the htt
NT

 domain (htt-ex1
P10

-βHP-P
1
 and htt-ex1

P10
-βHP-P

1,2
) strongly 

inhibit nucleation, but have a minimal impact on delaying elongation. Conversely, glutamine to 

proline substitutions near the C-terminal portion of the polyQ domain (htt-ex1
P10

-βHP-P
2
) has a 

strong inhibition of the elongation phase, but very little effect on delaying nucleation. This can 

be rationalized by how the polyQ domains arrange themselves within the oligomeric phase. 

Residual structure from the htt
NT

 domain, which actively participates in forming α-helical coiled-

coil tertiary structure, may align a portion of the polyQ domain immediately following the 

coiled-coil structure. Within the oligomeric phase, alignment of this portion of the polyQ domain 

makes rational sense as the most likely initiator of early β-sheet formation and nucleation of 

aggregation, and preventing β-sheet formation at this step would potently interrupt nucleation of 

aggregation. Conversely, we can rationalize that the growing end of an amyloid fibril requires an 

uninterrupted polyQ to interact with in order to continue elongation. Thus, βHP-P
2
, which 

contains one uninterrupted Q11 stretch, is a much better inhibitor of elongation than βHP-P
1,2

, 

whose longest unbroken polyQ stretch is only Q5. However, this does not explain why htt-ex1
P10

-
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βHP-P
1 

is only an inhibitor of nucleation, but seems incapable of being an inhibitor of 

elongation.  

We have shown that these hypo-amyloid analogs provide a tool to dissect the mechanism 

of huntingtin aggregation. Moreover, they provide a novel means of testing the toxic amyloid 

hypothesis and the toxic oligomer hypothesis, if expressed in model organisms. Any toxicity 

associated with these hyper- or hypo-amyloid analogs can be directly linked to their inherent 

relative capacities for β-structured amyloid formation.  It will also be interesting to see whether 

or not these hypo-amyloid constructs, which efficiently delay aggregation in vitro, have any 

therapeutic effect in HD model organisms. Additionally, due to the incompletely understood 

abilities of these hypo-amyloid peptides to preferentially inhibit either nucleation or elongation, 

it will be thought provoking to test whether these inhibitors have variable therapeutic effects in 

vivo. 
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4.0  VALIDATING & TRANSLATING BIOPHYSICAL OBSERVATIONS IN CELL 

MODELS 

4.1 INTRODUCTION 

Previous studies from Section 2.0 demonstrated the construction of a hyper-amyloid β-hairpin 

enhanced huntingtin analog peptide capable of rapid fibrilization, while Section 3.0 discussed  

hypo-amyloid huntingtin analogs that rapidly aggregate into non-β oligomers and resist further 

aggregation. These peptides have a number of substitutions that either enhance or severely 

compromise their ability to nucleate aggregation of amyloid. This makes them ideal biological 

tools to circumvent current technological limitations and help identify the toxic species in HD – 

a toxic amyloid, a toxic non-β oligomer, or other. Additionally, the hypo-amyloid constructs 

delay aggregation of htt-ex1
P10

-Q37 by roughly an order of magnitude in vitro. These extremely 

potent aggregation inhibitors could provide therapeutic benefit and prevent or delay HD onset if 

aggregation of amyloid is the major toxic species. In order to probe the identity of the toxic 

species and investigate the potential therapeutic benefit of the hypo-amyloid peptides, we first 

utilized cell culture systems. 

A number of cell culture systems can be used to model HD, of which we chose PC12 

cells. Historically, PC12 cell culture has been extensively used. The PC12 cell model provides a 

number of benefits and can be used to screen for several cellular outcomes, such as inclusion 
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body formation, cytoplasmic aggregation, apoptosis initiation, and cell death. Because of their 

ease of culture, PC12 cells offer a convenient mammalian cell culture model. Other immortalized 

cell lines, such as SH-SY5Y and SThdhQ
111/111

 provide similar benefits.  

In contrast to immortalized cell lines, primary cultures of neurons are more 

physiologically relevant in their origin, form intranuclear inclusions similar to animal models 

and human patients, and are more sensitive to mutant huntingtin expression than immortalized 

cell systems. Primary mouse and rat cortical, striatal, and hippocampal neurons have been used 

to better understand drug mechanisms of action, htt and mhtt lifecycle and proteostasis, and 

mitochondrial dynamics. For instance, work by Cattaneo et al. showed that cholesterol 

homeostasis is disturbed in HD 
313

;  primary neurons were used in conjunction with SIRT2 

inhibitors to modulate sterol biosynthesis, which showed promising therapeutic results 
314

, but 

were ultimately not effective in an R6/2 genetic mouse model of HD crossed for SIRT2 ablation 

315
. Mhtt lifecycle studies in primary neurons have revealed a pivotal role of calpain cleavage in 

htt protein turnover 
316

 (which was later corroborated in Drosophila 
317

), while others detailed a 

role of serine 16 phosphorylation in the accumulation of htt in the nucleus 
318

. A number of 

studies using primary neurons to study mitochondrial dysfunction have identified a number of 

potential therapeutic targets, such as an altered interaction between polyQ expanded htt and 

PPAR-δ, a nuclear hormone transcription factor critical in lipid homeostasis, glucose 

metabolism, energy production, and mitochondrial health 
307

. Primary neuron cultures have also 

been used to verify aggregation inhibitors 
212

, as well as test the relationship between structure-

function of mhtt and neuron toxicity 
301

. Thus, primary neurons allow for a detailed analysis of 

HD phenotype in a physiologically relevant cell culture system. For these reasons, we tested the 

expression of our huntingtin analogs in both PC12 cells and rat primary cortical neurons. 
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Herein we report that expression of the hyper-amyloid htt-ex1-βHP results in cytoplasmic 

inclusion formation in PC12 cells as well as perinuclear and intranuclear aggregation and cell 

death in primary rat cortical neurons. Conversely, the hypo-amyloid htt-ex1-βHP-P
2
 peptide does 

not exhibit aggregation or cell death in PC12 cells or primary rat cortical neurons. Co-expression 

of htt-ex1-βHP-P
2
 mitigated both the toxicity and number of intracellular aggregates caused by 

htt-ex1-Q94 expression. Similar to how the hypo-amyloid peptides co-aggregate with their target 

in vitro, we present evidence of colocalization between htt-ex1-βHP-P
2
 and htt-ex1-Q94 puncta in 

live cells, whereas htt-ex1-βHP-P
2
 forms no puncta alone. These results collectively point 

towards (a) a toxic amyloid species in HD, (b) disfavor a toxic oligomer hypothesis, (c) support 

the mechanism of action of our hypo-amyloid aggregation inhibitors, (d) provide a rationally 

designed therapeutic, and (e) provide a proof-of-principle target. 

 

4.2 RESULTS 

4.2.1 Transient Transfection of the β-Hairpin Enhanced htt Analogs in PC12 cells 

PC12 cells are neuroendocrine in nature and are derived from a phenochromocytoma of the rat 

adrenal medulla 
319

. PC12 cells respond to NGF by differentiating into neuron-like dopamine-

synthesizing cells 
204,319

. Both neuronal-like and undifferentiated PC12 cells respond to mutant 

huntingtin insult by undergoing caspase 3/7 mediated apoptosis 
320

, cell death, and visible puncta 

formation 
308,321,322

. PC12 cells therefore offer a convenient cell model that can be used to rapidly 

screen for disease-modifiers 
323

.  
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To determine whether any toxic effect is seen in the hyper-amyloid βHP or hypo-amyloid 

mid-strand Pro insertion peptides, we nucleofected PC12 cells to express the htt-exon1 

constructs under control of a CMV promoter (Methods). At 48 hours post-transfection, as 

expected, htt-ex1-Q25-EGFP forms no visible puncta by fluorescence microscopy, while htt-ex1-

Q46-EGFP forms at least one visible punctum in 23.8 ± 2.5% of PC12 cells (Figure 24). The 

hyper-amyloid htt-ex1-βHP, despite only containing 22-24 glutamines, forms aggregate puncta 

in PC12 cells (23.0 ± 9.4%) to a similar extent as pathogenic Q46. Conversely, a single proline 

substitution that blocks aggregation in vitro also surpresses aggregation in PC12 cells; htt-ex1-

βHP-P
2
 forms visible puncta in only 9.9 ± 3.5% of cells (Figure 24).  
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Figure 24: Percentage of PC12 Cells with Visible Puncta. PC12 cells were nucleofected with 2.0 µg of 

appropriate DNA vector. PC12 cells were cultured for 48 hours, fixed, and imaged via fluorescence 

microscopy. The percentage of cells expressing the construct that were also positive for puncta are 

reported. n = 2, with at least 100 cells imaged per condition. Htt-ex1-Q25-EGFP was completely absent of 

visible puncta. 

 

In vitro, the hypo-amyloid analogs delay aggregation of pathogenic huntingtin (Section 

3.0). To assess whether these constructs are able to inhibit aggregation in live cells, we co-
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expressed htt-ex1-Q94-EGFP alongside untagged mCherry, htt-ex1-βHP-P
2
-mCherry, or htt-ex1-

βHP-P
1,2

-mCherry. Htt-ex1-Q94-EGFP/mCherry showed 30.3% (n = 1, >100 cells) of cells with 

aggregates, while htt-ex1-Q94-EGFP/ htt-ex1-βHP-P
1,2

-mCherry (20.3%, n = 1, >100 cells) and 

htt-ex1-Q94-EGFP/ htt-ex1-βHP-P
2
-mCherry (15.1%, n = 1, >100 cells) showed fewer PC12 

cells with visible puncta. Preliminary work using PC12 cells as a model ended after identifying 

their poor cell death response, even when expressing bona fide pathogenic huntingtin. For this 

reason, inclusion body formation studies were ended at n = 1. 

Cell death measured by LDH release revealed no significant toxicity in any transfection 

scenario at 48 hours, including positive control htt-ex1-Q46-EGFP. This is likely due to a number 

of factors, including the relatively short expression time of 48 hours, the hardiness of PC12 cells 

compared to more sensitive primary neurons, poor transfection efficiencies, and the limited 

discriminating power of ensemble-based cell death assays. To overcome these hurdles, we 

moved on to assess the toxicity of our constructs in primary rat cortical neurons, which can 

express the same plasmids for weeks. We expect primary neurons to be more sensitive to mhtt 

due to longer expression times leading to more time to exert toxicity and a reduced capacity to 

divide, as asymmetric division of damaged proteins is a coping mechanism of dealing with 

aggregates 
324

. Additionally, we employed a more sensitive fluorescence based cell death assay 

to quantify viability on a cell-by-cell basis.  
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4.2.2 β-Hairpin Enhanced Huntingtin Analogs are toxic in primary rat cortical neurons. 

Oligomeric huntingtin analogs are well tolerated and rescue htt-ex1-Q94 associated toxicity. 

Rat primary cortical neurons were isolated on E18 and nucleofected as previously described 

325,326
. At day in vitro (DIV) 14 and 21, neurons were fixed and imaged for aggregates and the 

percentage of Map2 positive neurons with visible inclusions was scored blind. Live neurons were 

also imaged at DIV 14 and 21 for cell viability using a NucRed 647 Dead exclusion assay. 

Negative control htt-ex1-Q25-EGFP + mCherry (2.5 ± 3.9%) and had very few neurons with 

visible puncta at DIV 14 (Figure 25, 26). The positive control htt-ex1-Q94-EGFP + mCherry 

(87.2 ± 10.9%) showed nearly all expressing neurons positive for aggregates. In sharp contrast to 

the polyQ repeat length dependence of aggregation above, htt-ex1-βHP-EGFP (which contains 

only a modest 22 glutamines) should not be sufficient to aggregate appreciably in vivo based on 

its nominal polyQ repeat length. However, because of its hyper-amyloidogenic β-hairpin 

enhancing motifs, 39.3 ± 4.2% of neurons expressing htt-ex1-βHP-EGFP were positive for 

aggregates. Expression of the proline substituted htt construct htt-ex1-βHP-P
2
-mCherry + EGFP, 

which does not aggregate appreciably beyond oligomers in vitro, did not show any significant 

puncta formation (4.8 ± 4.3%). While expression of the htt-ex1-Q94-EGFP construct alone 

revealed widespread puncta, the htt-ex1-Q94-EGFP + htt-ex1-βHP-P
2
-mCherry (59.9 ± 12.2%) 

had significantly fewer neurons with puncta (Figure 25, 26). Therefore, inclusion and aggregate 

formation in vivo are more closely associated with inherent amyloidogenesis and less dependent 

on absolute polyQ repeat length. The amyloid-incompetent htt analog htt-ex1-βHP-P
2
-mCherry, 

whose aggregation stalls at the non-β oligomer phase in vitro, was insufficient to trigger visible 

aggregation in primary neurons. Co-expression of htt-ex1-βHP-P
2
-mCherry alongside pathogenic 
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htt-ex1-Q94-EGFP was sufficient to statistically significantly reduce puncta burden (from 87.2 ± 

10.9% down to 59.9 ± 12.2%) 
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Figure 25: Percentage of Expressing Neurons Positive for Puncta. Rat primary cortical neurons were co-

transfected with 1.5 + 1.5 µg DNA, cultured for 14 days, fixed and stained for Map2, and then scored blind 

for puncta in 4-5 independent experiments. Error bars are standard error of the mean. 

 



 98 

 

Figure 26: Representative confocal images from Figure 25 used in puncta quantification. 
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Using our hyper- or hypo-amyloid huntingtin analogs, we tested whether their expression 

alone was toxic in rat primary cortical neurons on DIV14 and 21 using a NucRed 647 Dead 

exclusion assay. In this assay, healthy cells reject the dye, which neurons with compromised cell 

membranes allow the dye to diffuse into the nucleus and bind to DNA and increase in 

fluorescence. As expected, htt-ex1-Q94-EGFP expression is overtly toxic (45.8 ± 4.2% viability 

at DIV 14 and 21) (Figures 27 & 28). The negative control htt-ex1-Q25-EGFP is largely non-

toxic (84.4 ± 4.1% viability), showcasing a polyQ repeat length dependence of HD phenotype in 

this model. Depending on which is the toxic species in HD, we expected either the hypo-amyloid 

construct, which stably forms non-β oligomers in vitro, or the hyper-amyloid huntingtin analog, 

which rapidly progresses to an amyloid fibril endpoint, to be toxic. The non-β hypo-amyloid 

huntingtin analog htt-ex1-βHP-P
2
-mCherry was very well tolerated (74.8 ± 9.3% viability) in 

primary neurons and had no statistically significant difference from a negative control htt-ex1-

Q25-EGFP. Conversely, the hyper-amyloid htt-ex1-βHP-EGFP was toxic (47.1 ± 7.8% viability) 

to the same extent as our positive control htt-ex1-Q94-EGFP. As an additional test of the toxic 

species of huntingtin, the inhibitor htt-ex1-βHP-P
2
-mCherry was expressed alongside htt-ex1-

Q94-EGFP. Htt-ex1-βHP-P
2
-mCherry significantly rescued the overt toxicity of htt-ex1-Q94-

EGFP for a 61% level of protection (69.3 ± 7.1% viability, up from 45.8 ± 4.2%) (Figure 28). 
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Figure 27: Viability of Neurons at DIV14.  Rat primary cortical neurons were co-transfected with 1.5 + 1.5 

µg DNA and cultured for 14 days. Viability was measured in 4-5 independent experiments using a NucRed 

647 Dead assay in live neurons at DIV14. Error bars are standard error of the mean. 
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Figure 28: Viability of Neurons at DIV21. Rat primary cortical neurons were co-transfected with 1.5 + 1.5 

µg DNA and cultured for 21 days. Viability was measured in 4-5 independent experiments using a NucRed 

647 Dead assay in live neurons at DIV21. Error bars are standard error of the mean. 

 

 

As discussed Section 3.0, the proline substituted inhibitors co-aggregate with their target 

huntingtin in vitro. To determine if this occurs in neurons, we used confocal microcopy to 

quantify colocalization. As expected, line intensity profiles of htt-ex1-Q94-EGFP + mCherry 

show no correlation between the bright localized EGFP puncta of Htt-ex1-Q94-EGFP and the 

diffuse mCherry signal (Figure 29, Pearson’s correlation = 0.17 ± 0.05 for 15 random cell 

images). However, htt-ex1-Q94-EGFP + htt-ex1-βHP-P
2
-mCherry co-expression shows 

significant overlap between bright EGFP puncta and bright mCherry puncta (Figure 30, 

Pearson’s correlation = 0.86 ± 0.07 for 15 random cell images), illustrating that these inhibitors 

are able to find and co-aggregate with their huntingtin targets both in vitro and in vivo. This co-
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aggregation phenomenon likely results from specific details of the inhibitor mechanism of htt-

ex1-βHP-P
2
. 

 

 

Figure 29: Example Line Trace Between htt-ex1-Q94-EGFP and mCherry. Primary rat cortical neurons 

expressing htt-ex1-Q94-EGFP and mCherry were fixed and stained for Map2 (blue) at DIV14. Fluorescence 

intensity line traces along a straight line path shows no obvious colocalization between the intense scattered 

green puncta signal and the diffuse mCherry signal. 15 cells were randomly chosen to generate one-

dimensional line intensity profiles taken over 3 cultures, yielding an average Pearson’s coefficient of 0.17 ± 

0.05 
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Figure 30: Example Line Trace Between htt-ex1-Q94-EGFP and htt-ex1-βHP-P
2
-mCherry. Primary rat 

cortical neurons expressing htt-ex1-Q94-EGFP and htt-ex1-βHP-P
2
-mCherry were fixed and stained for 

Map2 (blue) at DIV14. Fluorescence intensity line traces along a straight line path shows significant 

colocalization between the intense scattered green puncta signal and the intense red puncta. 15 randomly 

generated one-dimensional line intensity profiles were taken from a total of 15 cells over 3 cultures, 

yielding an average Pearson’s coefficient of 0.86 ± 0.07. 

 

4.3 DISCUSSION 

The toxic species of huntingtin is highly contested and must be resolved before therapeutics can 

be rationally designed. The toxic protein conformer of huntingtin has been technologically 

difficult to study due to the ability of huntingtin to rapidly adopt a multitude of heterogeneous 

conformers in solution (Sahoo 2016 Manuscript Submitted). Many studies attempting to identify 

the toxic conformer of huntingtin rely on the correlation between the timing of when huntingtin 

species appear and the onset of molecular pathologies.  
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To circumvent these technological limitations, we designed a series of huntingtin analogs 

that in vitro are either hyper-amyloid (Section 2.0) and rapidly nucleate aggregation into amyloid 

formation, or are hypo-amyloid (Section 3.0) and stall at the non-β oligomer phase. These analog 

proteins make ideal tools to (a) decouple absolute polyQ repeat length from aggregation and (b) 

parse the toxic contribution of soluble non-β oligomers. We expressed these constructs in 

mammalian cells and in primary rat cortical neurons to determine their capacity to generate an 

HD phenotype in vivo. 

The hyper-amyloid htt-ex1-βHP, which aggregates rapidly in in vitro experiments, forms 

large puncta aggregates in both PC12 cells and primary cortical neurons. Additionally, htt-ex1-

βHP-EGFP expression is associated with poor viability in primary neurons. Thus, we determined 

that absolute polyQ repeat length is not necessary to generate a toxic HD phenotype, but rather it 

is the intrinsic capacity of polyQ to aggregate into amyloid that most closely correlates with 

toxicity. These results have a broad impact in the interpretation of toxic models of HD, such as a 

toxic RNA which relies on absolute CAG repeat length, as well as other toxic models that rely on 

absolute polyQ repeat length. That is, the correlation between absolute CAG/polyQ repeat length 

and HD progression is derived from an increased propensity to aggregate into amyloid. 

Conversely, the hypo-amyloid htt-ex1-βHP-P
2
-mCherry, which forms stable non-β 

oligomers in vitro, does not appreciably form amyloid in cells. The hypo-amyloid construct does 

not have any apparent toxicity and is well tolerated in both PC12 cells and primary rat neurons. 

Therefore, we find no evidence in favor of a toxic oligomer hypothesis by this direct test. 

Finally, in vitro, the hypo-amyloid peptides, when added to soluble htt-ex1
P10

-Q37, delay 

its amyloid formation by as much as an order of magnitude (Section 3.0), while presumably 

leading to an intermediate build-up of mixed oligomers (Figures 17-19, 21, Scheme 1). This 
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mechanism involves the co-aggregation of the normally soluble hypo-amyloid analogs into the 

growing htt-ex1
P10

-Q37 fibril. In primary neurons, the hypo-amyloid analog htt-ex1-βHP-P
2
-

mCherry rescues the toxic effect of htt-ex1-Q94-EGFP. Thus, neurons expressing both htt-ex1-

Q94-EGFP + htt-ex1-βHP-P
2
-mCherry show fewer puncta than neurons expressing htt-ex1-Q94-

EGFP + mCherry. Additionally, similar to the mechanism of inhibition demonstrated in vitro, we 

find that the inhibitor htt-ex1-βHP-P
2
-mCherry co-aggregates with its target htt-ex1-Q94-EGFP 

in primary neurons. Since this mechanism depends on the formation of mixed non-β oligomers 

with prolonged lifetimes before amyloid nucleation, these data also suggest further, indirect 

evidence against the toxic oligomer hypothesis. 

Previous experiments utilizing super-resolution microscopy have demonstrated that the 

previously labeled “soluble” portion of htt in cells can be populated by small aggregated species, 

including small amyloid-like structures 
42,44,308

. Given the use of confocal microscopy to identify 

aggregation in vivo in this chapter, it is a salient point to remember the significant limitations of 

this approach. These cell studies were only able to identify the largest aggregated structures –  

inclusion bodies – and cannot easily differentiate between small amyloid, oligomeric, and other 

aggregated structures from the monomeric population. One technique that could potentially 

overcome this hurdle is fluorescence correlation spectroscopy (FCS). FCS could be used on live 

cells to estimate the molecular size distribution of fluorescently labeled particles and differentiate 

between monomers, small oligomers (4-20mer), and large diffusible aggregates. Additionally, 

inclusion bodies may also be quantified in this model. For instance, cell lysates could be 

centrifuged to isolate inclusion bodies, which could then be disaggregated similar to the 

disaggregation of chemically synthesized peptides 
77,99,293

. The solubilized inclusion bodies could 

then be semi-quantified by Western Blot by comparing densitometries of htt-exon1-GFP to a 



 106 

recombinant GFP protein standard. In this way, we could attempt to quantify the mass of 

inclusion bodies present in neurons.  

Together, these data strongly support the toxic amyloid hypothesis and not the toxic 

oligomer hypothesis. The hyper-amyloid construct generates an HD phenotype despite its 

nominal absolute polyQ repeat length, while the hypo-amyloid peptides are well tolerated and 

rescue mutant huntingtin HD phenotype, likely by sequestering and stalling mutant huntingtin in 

the non-toxic oligomer phase before the inevitable thermodynamically favorable amyloid 

aggregate overwhelms neurons. 
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5.0  DROSOPHILA AS A MODEL OF NEURODEGENERATION 

5.1 INTRODUCTION 

Several pathologies of HD, such as protein aggregation and cell death, can be conveniently 

modeled using in vitro and cell culture systems; however, more complex symptoms of HD are 

derived from changes in the connectivity and communication between disparate neuronal 

populations 
327

, which cannot feasibly be modeled without using whole organisms. Since the 

discovery of the mutant CAG expansion in the huntingtin gene that causes HD, a number of HD 

animal models have been constructed, such as: C. elegans 
174,233

, zebrafish 
328

, mice 
7,168

, and 

more recently non-human primates 
329,330

. Each model brings its own tool set, benefits, and 

resource constraints. Mice and other mammals have the benefit of being genetically and 

anatomically more related to humans than zebrafish or worms. In Huntington’s disease, this 

becomes evident as humans and mice brains share anatomical structures, such as a striatum and 

cortex, which are classically the first brain regions to undergo neurodegeneration in humans. 

Conversely, the entire adult C. elegans nervous system contains only 302 neurons, which has its 

own benefits and draw backs. 

Drosophila offer an excellent compromise between a robustness of end points, CNS 

anatomical homology, ease of use, and powerful genetic tools. Drosophila HD models are well 

characterized, mimic the age and polyQ-repeat dependence of HD pathophysiology in humans, 
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and have well defined quantitative and qualitative outcomes 
78,197,225

. Drosophila therefore are a 

powerful model that recapitulate many key aspects of HD in humans. 

To take advantage of this system, we generated a series of female flies homozygous for 

htt-exon1 C-terminally fused with a fluorescent protein (EGFP or mCherry). We drove 

expression pan-neuronally using the elav-Gal4 promoter and analyzed age-dependent behavior 

phenotypes as well as lifespan. Flies expressing these huntingtin analogs mirrored the results 

found in vitro and in PC12 and primary neuron cultures: the hyper-amyloid htt-ex1-βHP is 

associated with locomotor and lifespan defects, while the hypo-amyloid htt-ex1-βHP-P
2
 and htt-

ex1-βHP-P
1,2

 are non-toxic. Additionally, when co-expressed alongside pathogenic htt-ex1-Q94, 

htt-ex1-βHP-P
2
 and htt-ex1-βHP-P

1,2
 improve lifespan and locomotor function associated with 

toxic htt-ex1-Q94.  

 

5.2 RESULTS 

5.2.1 Constructing a Drosophila HD model 

We generated Drosophila expressing our transgenes using the Gal4/UAS expression system 
218

, 

where Gal4 is a soluble protein that actively promotes genes immediately downstream from UAS 

promoter sequences. In this system, expression of a gene of interest can be modulated by when 

and where Gal4 is expressed. Placing the Gal4 gene downstream from various regulatory 

elements can grant specific spatial or temporal expression patterns of the Gal4 protein., therefore 

conferring spatio-temporal expression of our gene of interest. 
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Currently, hundreds of Gal4 lines have been developed and characterized for tissue-

specific expression. Of interest is the embryonic lethal abnormal visual system (elav) gene, 

which is required for Drosophila nervous system development and maintenance 
215,331,332

. 

Promoter fragments from the elav sequence were used to generate elav-Gal4, which allows for 

Gal4 expression in all neurons of larva and adult Drosophila 
333

. elav-Gal4 is transiently 

expressed to a lesser extent in neuroblasts and glial cells of the Drosophila CNS 
334

. The elav-

Gal4 is commonly used in Drosophila models to study neurodegeneration. 

A UAS element followed by the heat shock protein 70 basal promoter was placed 

upstream from the GOI, which is expressed in the presence of Gal4. The combined UAS-htt 

sequence is placed within a pUAS-attB vector, which contains a marker for successful gene 

insertion, w
+
, as well as an attB site suitable for homologous recombination 

335
. To stably 

integrate our UAS-htt into the fly genome, there are currently dozens of Drosophila stocks 

containing AttP landing sites on all chromosomes available through Genetic Services, Inc. 

(Cambridge, MA). This allows for site-specific insertion to ensure minimal perturbation to the 

Drosophila’s endogenous genome. Insertion into the genome is accomplished using site selection 

homologous recombination via a ϕC31 integrase system 
214

. Drosophila with successful 

integration are identified by a marker, typically w
+
, and mated with balancer chromosomes. For 

our studies, we selected AttP18 located at 6C12 of chromosome X, and chose the X chromosome 

balancer FM0. Insertion of our gene of interest onto the X chromosome has the benefit of using 

the male Y chromosome as a natural balancer during future genetic crosses. As a consequence, in 

order to generate homozygotes of our construct, we must use two X chromosomes, thus the need 

for female flies in the following experiments. AttR flies were also constructed, which underwent 
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the same genetic engineering process, but do not have a UAS-htt element for Gal4 to act on. 

Mating schemes to achieve co-expression and homozygous expression are found in Scheme 2. 
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Scheme 2: Drosophila mating scheme 
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5.2.2 Hyper-amyloid huntingtin analogs, and not hypo-amyloid analogs, have locomotor 

and lifespan defects.   

To quantify HD phenotype in our Drosophila model, we employed a Rapid Iterative Negative 

Geotaxis assay (RING) to measure locomotor function 
226

, which challenges flies to climb a 

maximum of 5 vertical centimeters in 8 seconds. Additionally, we recorded death events every 2 

days while changing media to measure lifespan. Occasionally, flies may become trapped 

between the wall of the vial and the media, the media may become overly wet and drown flies, or 

flies may become tangled in the cotton tops of the vials. In these instances, the fly deaths were 

ruled as non-natural and those events were not included in the final lifespan tallies. 

Homozygous female flies expressing our huntingtin analogs under elav-Gal4 control 

were aged at 29 C post-eclosion (Day 0). Wild type AttR were used as controls that underwent 

the genetic engineering process. These flies contain the pUAS-attB-IVS
8/9

 backbone vector and 

UAS promoter sequence inserted into AttP18, elav-Gal4 on chromosome 2, but lack any htt gene 

associated with the UAS promoter sequence to be expressed. The AttR control and htt-ex1-Q25-

EGFP showed normal locomotor function with age (Figure 31). Htt-ex1-Q46-EGFP flies, 

featuring a polyQ repeat length in the same range as most HD patients, exhibit a moderately 

accelerated decrease in RING performance with age. Furthermore, htt-ex1-Q94-EGFP flies, 

featuring a polyQ repeat length comparable to very aggressive juvenile HD in humans, show a 

severe drop in performance at all ages tested. Starkly breaking this trend of increased polyQ 

repeat length on disease, the htt-ex1-βHP-mCherry flies have severely and statistically 



 113 

significantly compromised locomotor function at nearly all ages, with severity ranging between 

htt-ex1-Q46-EGFP and htt-ex1-Q94-EGFP (Figure 31).  

However, a single (htt-ex1-βHP-P
2
-mCherry) or double (htt-ex1-βHP-P

1,2
-mCherry) 

proline substitution, which stalls aggregation in vitro at the non-β oligomer form in vitro, is 

sufficient to block the toxic effect of the β-hairpin enhancing motifs (Figure 31).  

 

 

Figure 31: Rapid Iterative Negative Geotaxis (RING) Assay Testing Locomotor Function. Flies were 

challenged with a RING test at various ages. A total of at least 30 flies and three technical repeats with 10 

flies per vial were used per condition. A two-way ANOVA using Bonferroni’s multiple comparisons test 

was used to determine statistical significant versus htt-ex1-Q25. *** p < 0.001, error bars are standard error 

of the mean. 

 

The same polyQ repeat length dependent trend was observed for longevity, with htt-ex1-

Q25-EGFP flies exhibiting normal longevity (median survival 68 days) comparable to that of 

AttR control flies. Htt-ex1-Q46-EGFP flies have moderate lifespan defects (52 days) and htt-ex1-
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Q94-EGFP flies show severely reduced longevity (36 days) (Figure 32). Our htt-ex1-Q94-EGFP 

lifespans are on par with other HD Drosophila lines, which tend to include ~128-150 glutamine 

repeats, and result in a median lifespan of 20-45 days (down from ~65-80 days for Q0, Q15, or 

white+ flies aged at 25 C or 29 C) 
225,306

. As expected, polyQ repeat length inversely correlates 

with HD severity in our model. Again breaking the polyQ repeat threshold of disease, htt-ex1-

βHP-mCherry exhibits significantly shortened lifespan (56 days, Figure 32). htt-ex1-βHP-

mCherry severity is roughly on par with htt-ex1-Q46-EGFP. Thus, as in the primary neuron 

experiments, pathology is less associated with absolute polyQ content, and more associated with 

the demonstrated ability of each protein to support amyloid formation.  
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Figure 32: Lifespan Analysis of Drosophila. Survival curves of flies aged at 29 °C after eclosion. Dead 

flies were counted and removed every 2 days. A log-rank Mantel-Cox comparison of survival curves was 

used to determine the statistical significant versus htt-ex1-Q25-EGFP flies. *** p < 0.0001.  
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Conversely, both the htt-ex1-βHP-P
2
-mCherry and htt-ex1-βHP-P

1,2
-mCherry flies have 

uncompromised lifespan (70 days, Figure 32), which is consistent with their uncompromised 

locomotion (Figure 31). Thus, hypo-amyloid htt-ex1 analogs are well tolerated, while the hyper-

amyloid peptide htt-ex1-βHP-mCherry exhibits severe HD phenotype.  

 

5.2.3 Hypo-amyloid huntingtin analogs rescue htt-ex1-Q94 associated toxicity 

To confirm the inhibitory effects of the mid-strand proline versions of htt-ex1-βHP in vitro 

(Figures 17-20) and in primary neurons (Figures 25-30), we generated Drosophila co-expression 

models. Four expression-balanced lines were constructed, each containing one copy of htt-ex1-

Q94-EGFP plus a second alternate copy of either htt-ex1-Q94-EGFP, htt-ex1-Q25-EGFP, htt-ex1-

βHP-P
2
-mCherry, or htt-ex1-βHP-P

1,2
-mCherry.  

The lifespan of the htt
Q94

/htt
Q25

 flies (36 days) was indistinguishable from that of the 

htt
Q94

/htt
Q94

 flies (36 days) (Figure 33), both exhibiting reduced longevity from that of control 

flies. Likewise, we found that the htt
Q94

/htt
Q25

 flies exhibited an age-dependent decline in 

locomotor function nearly as severe as that of the htt
Q94

/htt
Q94

 flies described above (Figure 34). 

In contrast, flies expressing a combination of htt-ex1-Q94 and either of the two mid-strand 

proline-substituted analogs exhibit normal locomotion and improved longevity. The age-

dependent locomotion observed for the htt
Q94

/htt
P2

 and htt
Q94

/htt
P1,2

 flies is comparable to that of 

control flies and dramatically improved from htt
Q94

/htt
Q25

 and htt
Q94

/htt
Q94

 flies (Figure 34). 

Lifetimes of htt
Q94

/htt
P2

 (52 days) and htt
Q94

/htt
P1,2

 flies (54 days) were also remarkably 

improved compared to htt
Q94

/htt
Q94

 (36 days) or htt
Q94

/htt
Q25

 (36 days) (Figure 33). This is 

equivalent to a ~40% rescue with respect to the normal median longevity of ~68 days in AttR or 
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htt-ex1-Q25-EGFP flies. Thus, co-expression of a mid-strand Pro analog of htt-ex1-βHP 

drastically abrogates the toxic effects of mutant htt-ex1. 
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Figure 33: Lifespan Rescue Analysis of Rescue HD Drosophila. Survival curves of flies aged at 29 °C after 

eclosion. Dead flies were counted and removed every 2 days. A log-rank Mantel-Cox comparison of 

survival curves was used to determine the statistical significant versus htt-ex1-Q94/htt-ex1-Q25. *** p < 

0.0001. 
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Figure 34: Locomotor Rescue of Rescue HD Drosophila. Flies were challenged with a RING test at various 

ages. A total of at least 30 flies and three technical repeats with 10 flies per vial were used per condition. A 

two-way ANOVA using Bonferroni’s multiple comparisons test was used to determine statistical 

significant versus htt-ex1-Q94/htt-ex1-Q25. *** p < 0.001, error bars are standard error of the mean. 

 

5.3 DISCUSSION 

The mechanism by which mhtt gains toxic function is controversial and is a central roadblock in 

designing hypothesis driven therapeutics. Herein we present data from whole animal Drosophila 

expressing hyper- and hypo-amyloid htt-ex1 analog constructs. These data are consistent with 

the results from primary neurons, PC12 cell culture, and in vitro biophysics. We find that the 

absolute polyQ repeat length is less important than its amyloidogenicity – a protein’s inherent 

propensity to misfold and aggregate into amyloid.  
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In constructing our Drosophila model controls (homozygous Q25, Q46, Q97), we 

identified a system in which pathologically relevant repeat lengths, such a Q46, give a robust HD 

phenotype. Drosophila expressing htt-ex1-Q46-EGFP showed an age-dependent decline in 

locomotor capacity as well as a decrease in median lifespan. At the time of this work, and to our 

knowledge, there are no other animal models showing lifespan and behavioral defects using 

polyQ repeat lengths near that of the typical human HD patient (polyQ = 37-50). Our findings 

may be due to a number of factors, including (a) potentially increased expression using 

homozygotes (b) potentially increased translation by incorporating a splicing intronic sequence 

IVS
8/9

 (c) a large ‘n’ value, granting high statistical power in our statistical analysis, and (d) 

robust and highly reproducible assays, such as the RING assay for locomotion. These htt-ex1-

Q46-EGFP fly models could be used as a more biologically relevant model to screen for disease 

modifying drugs that may be effective enough to limit htt-ex1-Q46 toxicity (a polyQ repeat length 

similar to most human HD patients), but note excessively aggressive htt-ex1-Q94.  

A second unique observation that came from our control flies was the identification of 

poor allele specificity in determining HD progression in animal models. Previous reports suggest 

that humans homozygous for the mutant huntingtin allele have a similar age-of-onset of disease 

to their heterozygous counterparts 
336

. We found that homozygous Q97/Q97 Drosophila showed 

no statistically significant difference in median lifespan versus heterozygous Q97/Q25 strains. 

However, the heterozygous Q97/Q25 flies did perform moderately better in locomotor assays. 

Our results are consistent with the literature, suggesting that homozygosity of the mutant htt 

allele does not significantly affect age-of-onset compared to heterozygotes, but homozygous 

carriers may have more severe symptoms, which is recapitulated in our locomotion RING 

assays. 
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As in primary neuron cultures, Drosophila expressing the hyper-amyloid htt-ex1-βHP 

exhibit HD-like phenotypes characterized by locomotor defects and shortened lifespans. It is 

possible that htt-ex1-βHP gains its toxic function from a mechanism other than by enhancing 

nucleation of aggregation into amyloid, but this process would require some other attribute not 

shared with htt-ex1-Q25. Amyloid formation is the only known process that connects the βHP 

enhanced peptide to mhtt. This culmination of data supporting a toxic HD-like phenotype 

associated with a hyper-amyloid construct further strengthens polyQ aggregation into amyloid as 

the toxic species in HD. 

In sharp contrast, the hypo-amyloid htt constructs, htt-ex1-βHP-P
2
 and htt-ex1-βHP-P

1,2
, 

which are incapable of forming amyloid and only ever progress to non-β oligomers in vitro, are 

well tolerated when expressed in Drosophila. Furthermore, the presence of these mid-strand Pro 

insertion substitutions can delay aggregation of htt-ex1
P10

-Q37 into amyloid in vitro. In neurons 

co-expressing pathogenic htt-ex1-Q94 alongside htt-ex1-βHP-P
2
, we showed that the glutamine to 

proline substituted peptides delay the emergence of visible aggregates and cytotoxicity 

associated with htt-ex1-Q94. Similarly, Drosophila expressing htt-ex1-βHP-P
2
 or htt-ex1-βHP-

P
1,2

 alongside htt-ex1-Q94 have significantly improved lifespans and locomotion versus htt-ex1-

Q94 alone. Collectively these data do not support a toxic oligomer model of HD. In fact, 

sequestering htt-ex1-Q94 into soluble oligomers and delaying the emergence of amyloid 

represents a potential therapeutic approach. For example, Frydman et al. recently reported the 

delayed emergence of a multitude of small amyloid-like htt aggregates following the formation 

of an inclusion body, which may very well represent a major turning point for a given cell’s fate 

44
. 
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Although our in vitro data strongly support that htt-ex1-βHP rapidly fibrillizes while htt-

ex1-βHP-P
2
 or htt-ex1-βHP-P

1,2
 aggregate to – and stall at – relatively soluble oligomers, we 

have not confirmed that these protein conformations are populated when expressed in vivo. The 

technological limitations of quantifying protein conformations in living systems are extremely 

challenging. However, FCS could be used on fresh brain lysates to estimate molecular size 

distributions of fluorescently labeled proteins - this method would rely on the assumption that 

lysing neurons would not significantly impact the aggregated states of huntingtin. Alternatively, 

the massive aggregates trapped in inclusion bodies could be better quantified by taking 

Drosophila brain lysates and centrifuging to isolate the inclusion bodies. These could then be 

disaggregated similar to the disaggregation of chemically synthesized peptides 
77,99,293

, 

resuspended, and semi-quantified by Western Blot using an anti-GFP detection of htt-ex1-GFP 

compared to a recombinant GFP protein standard. 

In future experiments, this Drosophila model may also be used to gain a more detailed 

timeline of when pathology happens and when anti-aggregation inhibitors perform their 

therapeutic benefit. By placing the inhibitory protein (htt-ex1-βHP-P
2
 or htt-ex1-βHP-P

1,2
) 

downstream from an inducible promoter, such as a tetracycline 
337

, we could vary the age at 

which therapeutic intervention begins. By doing this, we would potentially identify how effective 

anti-aggregation inhibitors remain when given later in life. If anti-aggregation inhibitors exert a 

significant portion of their therapeutic benefits only by delaying very early aggregation events, 

we would expect later-in-life intervention to be less effective. However, if these anti-aggregation 

inhibitors have continuous therapeutic effects by limiting ongoing or subsequent amyloid 

aggregation, they may be beneficial even after some level of amyloid has formed. Identifying the 

stage of disease progression at which anti-aggregation inhibitors lose their benefits is especially 
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relevant when considering anti-aggregation therapies in human HD patients, many of whom are 

pre- or post-symptomatic. 

All together, these results suggest that the amyloid aggregation pathway is most 

associated with HD toxicity and is therefore the best target for the development of novel 

therapeutic interventions. Additionally, we demonstrate a proof-of-principle benefit using an 

amyloid inhibition approach that suggests a number of possible therapeutic approaches. 
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6.0  CONCLUSIONS 

6.1 EVIDENCE SUPPORTING A BETA-STRUCTURED AMYLOID HUNTINGTIN 

TOXIC SPECIES 

The toxic species of polyQ expanded huntingtin could potentially be any number of different 

protein conformers: a β-sheet rich amyloid (Section 1.3.2), a non-β oligomer (Section 1.3.3), an 

aberrantly folded monomer (Section 1.3.4), some other protein classification, or a toxic RNA 

(Section 1.4.1). Previous attempts to determine the toxic contribution of each protein conformer 

were plagued by the technological limitations of identifying individual protein conformers within 

complex heterogeneous mixtures in vitro or in cells. For instance, portions of cells that were 

once thought to be a homogenous population of soluble huntingtin, either monomeric or 

oligomeric, were recently identified to also contain small amyloid-like fibrils 
44

. Currently, there 

are no techniques to feasibly parse through the toxic contribution of each protein conformer in 

vivo. Microscopy, spectroscopy, and biochemical techniques rely on the correlation between the 

timing of appearance of different huntingtin species and the timing of cellular pathology. Recent 

work in the Wetzel laboratory has shown that mutant huntingtin can rapidly adopt a large 

distribution of molecular weight sizes in vitro and in vivo (Sahoo Manuscript Submitted). While 

correlative studies can be useful, they have so far been limited in their ability to identify a toxic 

conformer of huntingtin from a complex heterogeneous mixture. 
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To circumvent this technological limitation, we installed a series of amino acid 

substitutions within a huntingtin exon1 peptide to enhance htt’s aggregation potential into 

amyloid. These aggregation enhancers were based on previously described modifications from 

the Wetzel laboratory that enhance intramolecular β-hairpin formation 
108

, the proposed 

intramolecular fold involved in nucleation of aggregation of polyQ proteins. These peptides have 

accelerated nucleation kinetics as a result of shifting the critical nucleus from an intermolecular 

tetramer (n* = 4) to a more efficient intramolecular monomer (n* = 1). These results strongly 

supported a role for intramolecular β-hairpin architecture in the nucleation of simple polyQ 

aggregation into amyloid. 

Herein we describe similar β-hairpin enhancing motifs in the context of a synthetic htt-

exon1-like peptide in vitro or full htt-exon1 in vivo. We show that β-hairpin architecture plays a 

role in htt
NT

-mediated nucleation of amyloid. These htt-ex1-βHP peptides have accelerated 

aggregation kinetics and form morphologically similar amyloid-like fibrils to htt-ex1
P10

-Q37, 

while no longer aggregating through a simple polyQ mechanism. Therefore, these β-hairpin 

enhanced analogs help clarify some questions about the molecular mechanism of nucleation 

within huntingtin oligomers and also make an ideal molecular tool to test the toxic amyloid 

hypothesis of HD. Their ability to decouple their amyloid aggregation propensity apart from their 

absolute polyQ repeat length makes them an extremely valuable tool. For instance, a recent paper 

from the La Spada laboratory claims that expanded polyQ sequences within the huntingtin 

protein preferentially bind to, sequester, and ultimately repress peroxisome proliferator-activated 

receptor delta (PPAR-δ, a critical protein for neuron survival) in a polyQ repeat length dependent 

manner 
307

. If this type of altered protein-protein binding were responsible for an HD phenotype, 

we would have expected our βHP peptide, with a nominal polyQ region, to be non-toxic or well 
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tolerated. Instead, the βHP peptide, which does not have an expanded polyQ domain and differs 

from benign htt-ex1-Q23 mainly in its propensity to aggregation into amyloid, generates an HD 

phenotype in both cell and animal models. Thus, the toxic nature of the βHP brings into question 

several proposed mechanisms of mhtt toxicity, including polyQ-repeat dependent alterations in 

protein-protein binding, as well as a toxic conformer that is non-amyloid. 

When expressed in mammalian PC12 cells and in rat primary cortical neurons, the hyper-

amyloid htt-ex1-βHP analog is associated with aggregation into perinuclear and/or intranuclear 

puncta, similar to the HD phenotype of neurons expressing expanded pathogenic mhtt in other 

animal models and in human HD patient brains. Despite its low nominal absolute polyQ repeat 

length of 22-24, expression of htt-ex1-βHP not only aggregates into puncta, but is also 

detrimental to the viability of neurons, similar to the HD phenotype associated with a bona fide 

pathogenic htt-ex1-Q94 in these model systems. When expressed in the CNS of Drosophila, the 

hyper-amyloid htt-ex1-βHP shortens lifespans and has a severe impact on the age-dependent 

decrease in locomotor functionality. These βHP expressing flies, which have a nominal polyQ 

repeat length but enhanced propensity to aggregate into amyloid, have an HD phenotype about as 

severe as htt-ex1-Q46, a polyQ repeat length on par with the typical human HD patient.  

Thus, in in vitro, cell experiments, primary neuron cultures, and animal models, the htt-

ex1-βHP analog uniformly aggregates beyond what would be predicted by its absolute polyQ 

repeat length. Furthermore, htt-ex1-βHP unequivocally generates a toxic HD phenotype in cell 

experiments, primary cortical neuron cultures, and Drosophila. These data are strongly in 

support of the toxic amyloid hypothesis and suggest that the inherent tendency of an expanded 

polyQ protein to aggregate, and not necessarily its absolute polyQ repeat length, is most closely 

associated with HD phenotype. These results ultimately give us better structural insights into the 
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aggregation mechanisms of polyQ proteins. In this work, we have seen a strong correlation 

between (a) enhanced intramolecular β-hairpin folding of the polyQ domain, (b) enhanced 

propensity to nucleate aggregation of amyloid, and (c) a resulting HD phenotype whose 

severity far outpaces what would be predicted based solely on the βHP peptide’s nominal polyQ 

repeat length. Thus, these results support a toxic amyloid model in Huntington’s disease and 

provide structural insights into a candidate drug target. 

6.2 EVIDENCE SUPPORTING A SOLUBLE NON-BETA, NON-AMYLOID 

HUNTINGTIN TOXIC SPECIES 

As discussed above, the toxic mechanism of how expanded polyQ huntingtin protein causes 

Huntington’s disease is unknown. Several lines of evidence that support the toxic oligomer 

hypothesis rely on flawed antibody experiments that claim to identify a particular toxic fold of 

huntingtin (discussed in Section 1.3.3) or rely on the correlation of timing of incompletely 

visualized molecular events. Namely, these studies relied on the timing of the appearance of 

inclusion bodies to determine whether aggregation into amyloid has begun. Recent experiments 

using super-resolution microscopy or fluorescence correlation spectroscopy have identified the 

presence of small amyloid-like aggregates within what was previously thought to be a 

homogeneous pool of monomeric or oligomeric huntingtin 
42–44,308

 (Sahoo 2016 Manuscript 

Submitted). Additionally, large inclusion bodies have been found to have their own toxic effects 

83
. Given these new results, there is a need for fresh interpretations of regarding whether 

monomers or non-β oligomers of huntingtin contribute to HD. This has been a major 

technological hurdle due to the technological limitations of identifying specific protein 
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conformers in complex heterogeneous solution, let alone the individual toxic contribution each 

one may exert. At this time, directly observing the flux of different protein conformers in vivo 

and assigning them a given toxicity is not yet feasible. 

In addition to the toxic oligomer hypothesis, a toxic monomer form of huntingtin cannot 

be completely ruled out, though its likelihood is increasingly improbable for a number of 

reasons. A toxic monomer conformation of htt would presumably require secondary structure, 

for which we see no evidence of using circular dichroism at early time points, even with β-

hairpin enhanced analogs (Figure 10, 15). Given the relative sensitivity of CD, a toxic structured 

monomer, if it exists, would need to populate an undetectable proportion of the htt ensemble. 

Fluorescence correlation spectroscopy studies have demonstrated that monomeric polyglutamine 

peptides predominantly populate collapsed structures, whose diffusion time (τD) increases 

monotonically with increasing polyQ repeat length, showing no evidence for dramatic structural 

changes in solution with increasing chain length 
109

. Other studies relying on antibodies to 

determine altered monomeric conformations of htt 
338

 have been explained as a linear lattice 

effect, where expanded polyQ domains present an increased number of binding sites that allow 

increased affinity of  antibody binding 
98

. Thus, a toxic monomer of htt cannot be completely 

ruled out, but is increasingly unlikely. 

To circumvent previously met technological limitations and to test the toxic oligomer 

hypothesis, we designed hypo-amyloid huntingtin analog peptides that stably adopt a non-β 

oligomeric form in vitro. Even after several thousand hours of incubation (even longer than a 

typical lifetime of Drosophila) and at concentrations higher than would be found 

physiologically, these hypo-amyloid peptides resist amyloid formation with the only structures 

visible by EM being small amorphous oligomers that have no detectible β-structure by CD. 
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These peptides therefore offer a novel tool to determine the toxic contribution that non-β 

oligomers have on HD.  

When expressed in PC12 mammalian cells or in primary rat cortical neurons, we did not 

observe any significant aggregation into large puncta, nor did we observe any cytotoxicity 

associated with these peptides. Furthermore, when expressed in the CNS of Drosophila, fly 

lifespans are statistically identical to wild type or negative control htt-ex1-Q25 flies. The hypo-

amyloid expressing flies also did not show any decrease in locomotor activity when aged, which 

was drastic in the hyper-amyloid and htt-ex1-Q94 flies. Thus, in both cell and animal models, we 

find no evidence to support toxicity associated with these hypo-amyloid htt peptides. 

We cannot rule out that the proline substituted peptides htt-ex1-βHP-P
2
 and htt-ex1-βHP-

P
1,2

 are non-toxic for reasons other than their reduced amyloidogenicity. For example, if the 

toxicity of non-β oligomers is somehow dependent on unbroken stretches of polyQ, glutamine to 

proline substitutions may compromise that integrity. Furthermore, a glutamine to proline 

substitution may alter huntingtin’s capacity to explore certain types of oligomer conformations, 

some of which may be more inherently toxic than others.  

Collectively, these data demonstrate that the non-β oligomers formed by these hypo-

amyloid analogs are well tolerated and likely do not represent a toxic conformer of huntingtin. 

Therefore, we strongly propose that future avenues exploring therapeutic strategies should target 

the aggregation pathway into amyloid, which is found to be uniformly toxic in our studies. 
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Scheme 3: Representation of the Toxic Species of Huntingtin 

6.3 THE POTENTIAL OF TARGETING AGGREGATION FOR DISEASE-

MODIFYING THERAPIES 

Small molecules or peptides identified from high throughput screens ultimately showed poor 

efficacy in preventing HD symptoms in animal models (Section 1.3.1 and 1.3.4). Many of the 

small molecule compounds were found to have generic colloidal properties, which can show 

promising anti-aggregation properties in some in vitro screens, but may not be able to 

specifically inhibit aggregation of amyloid at safe concentrations in the complex environment of 

the cell. Previously used screening systems have been flawed due to an incomplete 

understanding of the htt-ex1 aggregation mechanism and how it is altered by subtle structural 

changes. Screens that take the full mechanism of htt aggregation into account (for instance not 

using htt derived from GST-cleavage that destroys a portion of the htt
NT

 domain) may be able to 
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find viable and efficacious small molecule amyloid inhibitors. As an alternative strategy, this 

work aims to take a rational approach to design hypothesis-driven inhibitors of aggregation. 

These inhibitors therefore can provide further mechanistic insight into the aggregation 

mechanisms of huntingtin. This approach also allows us to take an evidence-based system to 

understand the basis for how these and future aggregation inhibitors might work. 

In vitro, the hypo-amyloid peptides potently inhibit the aggregation of target htt-ex1-Q37 

by nearly an order of magnitude in a 2:1 stoichiometry. These inhibitors, which do not aggregate 

into large fibrils on their own, co-aggregate with htt-ex1-Q37 in a 1:1 ratio, showcasing their 

efficient incorporation in growing amyloid fibrils. We show that the ability of the inhibitor to co-

aggregate and contribute to fibril elongation is not entirely driven by the polyQ core domain as 

previously thought, but is also highly dependent on the presence of htt
NT

. 

Curiously, the placement of the glutamine to proline substitution has a defining impact on 

the mechanism of inhibition. Hypo-amyloid constructs whose glutamine to proline substitution is 

near the htt
NT

 domain (htt-ex1
P10

-βHP-P
1
 and htt-ex1

P10
-βHP-P

1,2
) strongly inhibit nucleation, 

but have a minimal impact on delaying elongation. Conversely, the glutamine to proline 

substitution near the C-terminal portion of the polyQ domain (htt-ex1
P10

-βHP-P
2
) has a strong 

inhibition of the elongation phase, but very little effect on delaying nucleation. These effects can 

be rationalized by how the polyQ domains arrange themselves within the structures of the 

oligomer or the amyloid nucleus. Residual structure from the htt
NT

 domain, which actively 

participates in forming α-helical coiled-coil tertiary structure, may align a portion of the polyQ 

domain immediately following the coiled-coil structure. In the oligomeric phase, alignment of 

the polyQ domain immediately C-terminal from the htt
NT

 domain makes rational sense as the 

most likely initiator of early β-sheet formation and nucleation of aggregation, and preventing β-
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sheet formation in this step (i.e. P
1
 glutamine to proline substitution) would potently interrupt 

nucleation of aggregation. Conversely, we can rationalize that the growing end of an amyloid 

fibril requires a clean, uninterrupted polyQ to interact with in order to continue elongation. Thus, 

βHP-P
2
, which contains one uninterrupted Q11 stretch, is a much better inhibitor of elongation 

than βHP-P
1,2

, whose longest unbroken stretch is only Q5. We also showed that the htt
NT

 domain 

plays a role in the inhibition of elongation of htt-ex1 amyloid, since mid-strand proline versions 

of the βHP polyQ peptide are ineffective inhibitors if they lack the htt
NT

 segment (Figures 21, 22, 

23). It may be that the growing amyloid fibril prefers to interact with a combined htt
NT

-polyQ 

segment (possible with htt-βHP-P
2
) and that glutamine to proline substitution near the htt

NT
 

domain (such as with htt-βHP-P
1
) limits this interaction to just the more C-terminal polyQ 

portion. These interesting results highlight some of the mechanistic insights gained from using 

rationally derived inhibitors of aggregation. 

When expressed alongside pathogenic mutant huntingtin in mammalian PC12 cells and in 

primary rat cortical neurons, these hypo-amyloid constructs delay the emergence of large 

aggregates and significantly improve viability. We used confocal microscopy to determine the 

cellular distribution of these proteins. On its own, the hypo-amyloid peptides exhibit an even 

distribution and appear soluble throughout the cytoplasm of the cell (of which confocal 

microscopy cannot distinguish between monomers or small oligomers), while htt-ex1-Q94 

aggregates into an intense puncta pattern. When expressed together, the hypo-amyloid peptide 

forms puncta that colocalize with the intense puncta of htt-ex1-Q94. This colocalization strongly 

agrees with the co-aggregation mechanism seen between these two proteins in vitro. 

Furthermore, when co-expressed in Drosophila, these hypo-amyloid constructs greatly reduced 
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the age-dependent decline in locomotion associated with htt-ex1-Q97 expression and also 

improved the lifespan in HD flies.  

In summary, these hypo-amyloid peptides are potent inhibitors of expanded polyQ 

huntingtin aggregation both in vitro and in vivo. The anti-aggregation effects are also met with 

improved viability and a dampened HD phenotype in cell and animal models. All in all, we 

provide evidence that these aggregation-inhibiting hypo-amyloid peptides provide a therapeutic 

benefit by delaying amyloid formation likely by sequestering pathogenic huntingtin into non-

toxic oligomers. Not only are these data a further confirmation of the toxic amyloid hypothesis 

and a contradiction to the toxic oligomer hypothesis, they also represent a proof-of-principle of a 

therapeutic approach featuring an anti-amyloid inhibitor. Furthermore, potentially even more 

potent inhibitors could be developed based on these studies, though delivery of these peptides or 

their successors to neurons in the CNS will be a challenge. 

Lipinski’s rule of five attempts to crudely estimate whether a molecule has favorable 

drug properties and includes: (1) No more than 5 hydrogen bond donors, (2) No more than 10 

hydrogen bond acceptors, (3) A molecular mass of less than 500 daltons, and (4) a partition 

coefficient in water not greater than 5, although there are certainly many exceptions to these 

rules. While these rules generally predict important drug properties, such as their absorption, 

distribution, metabolism, and excretion, they do not address the drug’s activity. As such, this 

may be one of several reasons for the failure of many small molecule screens, whose 

methodology might not yet be sophisticated enough to fully incorporate proper huntingtin 

targets. It may be unfeasible to demand a small molecule with limited hydrogen bonding 

potential to interact with large relatively featureless 2-dimensional surfaces, such as the 

polyglutamine domain of huntingtin. Instead, this thesis proposes an alternative to blind screens 
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of small molecules by focusing on rationally designed aggregation inhibitors that can make 

sufficient contacts with huntingtin. 

However, this approach comes at a significant cost, in that delivery of these hypo-

amyloid aggregation inhibitors, which are roughly >5,000 Da in size, to affected neurons in HD 

patients will be technologically difficult. Cell penetrating peptide sequences may allow passage 

from the general circulation past the cell membrane 
339

, but these sequences to date tend to have 

their own cytotoxicity, are inefficient, would add to the size of the peptide, may generally 

become sequestered in intracellular organelles, and would not address the need to bypass the 

blood-brain barrier 
340

.  

One alternative approach is the genetic delivery of DNA or RNA coding for these hypo-

amyloid peptides. Recent advances in AAV technology have made delivery the of RNAi 

oligonucleotides to the CNS of rats possible, which may be capable of silencing htt expression 

341
. AAV serotype 9, when injected intrajugularly, efficiently crosses the blood brain barrier and 

transduces both neurons and glia throughout the CNS in multiple mouse models. The largest htt-

exon1 versions of our hypo-amyloid inhibitors are less than 100 amino acids in length, or less 

than 300 base pairs when coded by DNA or RNA. This makes them easily within the range of 

being carried by AAV vectors as DNA or RNA constructs to be expressed. Future avenues in the 

genetic delivery of these peptides to mice or humans may be one exciting direction worth 

pursuing.  
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