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ABSTRACT 

Osteoporosis is a major public health concern characterized by low bone mineral density 

(BMD) and deterioration of bone tissue, causing increased bone fragility and risk of fracture.  

Though current research has focused primarily on bone health in the elderly, early bone health, 

including peak BMD attainment, is a strong predictor of bone health later in life. Twin and family 

studies have demonstrated a strong genetic component in peak BMD, though the specific genes 

influencing variation in bone development are largely unknown. Moreover, the question of 

whether the genes influencing bone health during childhood are the same as those influencing bone 

health later in life is currently unknown. Therefore, to identify variants and genes implicated in 

childhood bone health, we performed separate genome-wide association studies (GWAS) for ten 

bone health phenotypes (bone mineral content [BMC] and BMD of the hip, spine, and head, BMC 

of the whole body, and four measures of hip geometry) in 296 Caucasian children aged 5 years 

(mean = 5.3) who were enrolled in the Iowa Bone Development Study. Linear regression while 

adjusting for sex, height, and weight was used to test 548,051 genetic polymorphisms and 7.4 

million imputed variants for evidence of association.  Genomic regions showing statistical 

association were scrutinized for relevant gene functions related to bone biology. Five genome-

wide significant (P≤5x10-8) and 30 suggestive (P<10-6) loci were identified in total. Implicated 

genes may represent significant roles in the converging pathways that regulate BMD, embryonic 

bone development, and bone remodeling. Furthermore, understanding the genetic determinants of 
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bone health during childhood may have implications across the lifespan. Though osteoporosis is 

usually viewed as an age-related disorder, risk of osteoporosis is impacted much earlier in life, 

including phases of bone mineral acquisition during youth. Therefore, the public health 

significance of this study is that identifying the genetic factors contributing to early skeletal health 

may ultimately lead to screening programs, which identify children with a genetic predisposition 

to bone disease. This allows for targeted interventions to optimize bone health in adolescence, 

promote management of bone health across the lifespan, and lower risk for osteoporosis later in 

life.  
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1.0  INTRODUCTION 

Skeletal health is instrumental to overall health and longevity. While some consider the skeleton 

as hard and lifeless, bones are in actuality living, growing tissue that have a major impact on overall 

health1. Bones have many functions in the body including providing structural support, protecting 

organs, fastening muscles and storing essential minerals2,3. Healthy bones are vital at every age 

and many factors affect bone health. However, poor bone health and bone disease represent a 

defining health problem of our aging society. This represents a serious public health threat due to 

adverse health consequences related to poor bone health, morbidity, and expensive treatment costs. 

Bone health is, therefore an important subject of research with the ultimate goal of improving 

disease prevention and treatment4. 

While we can take steps that optimize strong and healthy bones, understanding the 

molecular processes and regulation of bone growth and remodeling may allow us to implement 

new, targeted interventions. Bone is a rigid yet dynamic organ, which is constantly being molded, 

shaped and mended. Bone microarchitecture is determined by the physiological needs of the 

organism with the aim of maximum strength with minimal mass5. Throughout life, bone is 

continuously being built–up (bone formation) and broken down (bone resorption) as the result of 

many tightly regulated pathways. The current understanding of the contributors to bone health is 

that there are multiple factors including a strong genetic contribution6,7. While the knowledge of 

the specific genes that regulate bone growth has dramatically increased over the last decade, there 
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is still a large gap in our understanding of the genes responsible for bone variability and the 

interaction of multiple genes with each other and with environmental factors across the lifespan. 

The following sections present a comprehensive review of the current state of knowledge of the 

field. 

1.1 BACKGROUND 

1.1.1 Bone Function and Composition 

Bone is a unique and highly specialized connective tissue that provides several essential functions 

for the body. The primary function of bone is to provide mechanical support and to provide a shield 

for the body’s internal organs and tissues. Bone also acts a reservoir for minerals essential for 

many cellular processes of the body8.  

Morphologically, there are two forms of bone. First, accounting for approximately 80% of 

skeletal mass is cortical or compact bone8. Cortical bone is located in the shaft regions of long 

bones and is found primarily in the appendicular skeleton, such as the radius in the arm or the 

femur in the leg. Cortical bone provides the greatest mechanical and protective properties of bone 

because it consists of densely packed collagen fibrils, which causes cortical bone to be stiffer and 

stronger than trabecular bone, the other type of bone7,9. Trabecular or cancellous bone consists of 

a porous network, which allows this type of bone more flexibility. Trabecular bone is located in 

bone cortex and at the ends of long bones. This type of bone predominates the axial skeleton, such 

as the ribs and the spine. Due to its composition, the primary function of trabecular bone is 

metabolic functions, such as regulating calcium homeostasis8. 
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The three major components of bone are the specialized bone cells, organic matrix, and 

mineral. Approximately 70% of mature bone consists of mineral9. The skeleton provides the major 

source of many essential minerals; these minerals are released when bone is broken down. The 

organic matrix is mostly comprised of calcium and phosphate crystals. Smaller amounts of 

magnesium, carbonate, and sodium are also found. The mineral crystals provide rigidity and the 

load-bearing strength of bones. Additionally, the distribution and size of mineral crystals within 

the bone matrix influence mechanical properties8. 

Approximately 30% of bone mass is organic matrix, of which the major constituent is type 

1 collagen. Collagen fibrils play a role in providing the structural framework as well as the 

elasticity and flexibility of the skeleton. The remainder of organic materials are proteoglycans and 

non-collagen molecules, which are involved in bone mineralization and regulation of growth 

factors8. 

Lastly, approximately 2% of the mass of bone is specialized bone cells that maintain bone 

homeostasis. Genetic factors and molecular pathways tightly control the formation and 

differentiation of these specialized cells. 

1.1.2 Bone Cells 

There are four distinct sorts of specialized cells within bone. Osteoblasts, osteoclasts, and bone 

lining cells are found on the bone surface, while osteocytes are found implanted in the mineralized 

interior4,8. 

Osteoblasts are derived from multipotent mesenchymal stem cells and regulate bone 

growth and the production of bone extracellular matrix2. Mature osteoblasts are formed from bone 

lining cells and osteocytes. The differentiation and activity of osteoblasts negatively regulate 
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osteoclast activity. Osteoblasts also regulate mineralization of newly formed bone. From birth to 

adolescence, osteoblast activity and bone formation predominates, resulting in constant 

accumulation of skeletal mass7. 

Osteoclasts are specialized cells that are derived from the monocyte/macrophage 

hematopoietic lineage. These cells release acidic and lytic enzymes to degrade bone cells and 

induce bone resorption5. Degraded products such as collagen fragments and minerals are processed 

within the osteoclast and then released into circulation to be utilized in other cellular processes2. 

Osteoclasts are the key participant of bone remodeling during adult life. Most people in the U.S. 

lose approximately 0.5% of bone mass each year after age 40 due to the predominance of osteoclast 

activity10. Imbalances of remodeling can result in serious changes to the skeletal structure and 

potentially morbidity, affecting the lifespan. Most adult skeletal diseases are due to excessive 

osteoclastic activity; these diseases include osteoporosis, multiple myeloma, rheumatoid arthritis, 

and metastatic cancers5. 

Osteocytes are the most abundant and longest-lived bone cell type, and together they form 

the interconnecting network of bone cells that communicate through gap junctions9. Osteocytes 

are essentially osteoblasts that are encased in bone. Due to the signaling network of osteocytes, 

bone tissue is able to sense and transduce mechanical stress which is crucial to maintaining 

homeostasis4. Osteocytes can also detect micro-cracks, weight-bearing trauma, and changes in the 

hormonal state of bone in order to initiate the bone remodeling process8. 

Lastly, bone lining cells are flat, elongated bone cells. Bone lining cells are thought to be 

inactive though, if necessary can distinguish back into osteoblasts. The main function of bone 

lining cells is to act as a barrier for certain ions8. 
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Altogether, these specialized bone cells are vital to the constant process of bone 

remodeling. Continuous remodeling is necessary in order to allow bones to adapt to changes in 

weight bearing load, and to repair the damage caused by recurrent microtraumas7. 

Bone homeostasis is essential for strong, healthy bones; however, the specialized bone cells 

must remain close to an equilibrium between bone production and bone resorption in order for 

bones to have the optimal strength and support the body. Bone mass varies based on the 

equilibrium between bone synthesis by osteoblasts and bone resorption by osteoclasts. Genetic 

factors that contribute to the regulation of this equilibrium, and more importantly genetic 

polymorphisms that cause variability in this equilibrium are essential to understand in order to 

identify individuals at risk for poorer bone health6. 

1.1.3 Bone Mineral Density and Content 

Bone growth is characterized by longitudinal growth and the changes in skeletal size and shape8. 

Markers of bone growth and bone health include bone mineral content (BMC) and bone mineral 

density (BMD). BMC reflects the absolute amount of mineral in the selected bone11. BMD refers 

to the relative amount of bone mineral divided by projected area of the selected bone, or BMC 

divided by the area of the bone. Bone mass is accrued at different rates throughout the skeleton, 

which is why different sites demonstrate different rates of bone growth. BMD is a highly genetic 

trait that is commonly used for both the assessment of bone health in children and later in life, the 

diagnosis of osteoporosis12. Twin and family studies have demonstrated that the heritability of 

BMD and other factors of bone health, such as skeletal geometry, bone turnover, and ultrasound 

properties is high13 Further, familial similarity of BMD and bone markers is higher during 

adolescence and early adulthood rather than later in life14. 
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1.1.3.1 Bone Densitometry in Children and Adolescents 

Bone tissue is influenced by genetic, metabolic, and behavioral elements. A number of disorders 

are known to affect bone development and bone mineral accrual in children, resulting in poor 

growth and/ or delayed bone maturation15,16. Tools to assess bone health is needed to identify 

pediatric patients at risk for poor bone health or at risk of osteoporosis due to low BMD17. Dual x-

ray absorptiometry (DXA) is the most commonly utilized technique for determining BMD and 

BMC. DXA is ideal for pediatric measurements because it is widely available, has a rapid scan 

time, and low radiation exposure17,18. DXA is an effective, noninvasive and quantitative method 

for assessing the risk of fractures9. Reference curves for BMD and BMC at several body sites have 

been reported for children ages 5 -20 years from the Bone Mineral Density in Childhood Study 

(BMDCS), a national study of childhood standardized DXA measurements17. 

1.1.4 Peak Bone Mass 

Bone growth during childhood and adolescence is a strong predictor of the lifetime risk of bone 

disease8. Peak bone mass, which is reached by early adulthood, is the point of bone homeostasis 

in which bone formation predominates shifts to the period in which bone resorption predominates. 

On average, peak bone mass is achieved around the age of 25 years and is the key determinant of 

the lifetime risk of osteoporosis4. Along with its impact on growth, puberty plays a fundamental 

role in the acquisition of bone mass8. Skeletal mass approximately doubles during the period 

between onset of puberty and young adulthood 8. Puberty is a critical time in which the amount of 

bone mass accumulated is equal to the amount of bone typically lost throughout life. The current 

accepted belief is that the higher the peak bone mass achieved during adolescence, the less impact 

bone resorption at older ages has before and individuals begins experiencing compromised skeletal 
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function and risk of osteoporosis and fractures. Because of this, optimizing peak bone mass is 

important to lower the risk of osteoporosis and fractures. Interventions that aim to optimize peak 

bone mass are the most beneficial as lifetime risk of fracture incidence is reduced by an estimated 

40% for each gain of 5% (0.5 Standard Deviation) in peak bone mass19. Up to 80% of the variation 

in peak bone mass has been accredited to genetic factors16. Therefore, programs that could identify 

individuals with genetic risk factors to low peak bone mass as well as implement effective 

intervention strategies to maximize peak bone mass could prove to be a successful osteoporosis 

prevention initiative. 

1.1.5 Genetic Regulators of Bone Biology 

Studies over the past forty years have repeatedly established a strong genetic component to bone 

mass and development20. Genetic factors have been recognized as having an essential role in the 

pathogenesis of osteoporosis due to the variance in peak bone mass as well as other key indices of 

bone health including osteoporotic fracture risk, bone geometry, bone turnover, muscle strength, 

and body mass index13. Studies have estimated a heritability of BMD as high as 92%21,22 as well 

as a 50-80% heritability of other markers of bone health, including bone turnover and bone 

geometry8,21. Several approaches have been implemented to distinguish candidate genes; these 

approaches include association studies, linkage analysis, model organisms, and twin studies13,21,23. 

1.1.5.1 Candidate Genes Implicated in Previous Literature 

Many genes have been suggested as likely candidate genes for the regulation of bone health 

through several techniques. Studies have demonstrated genes that regulate bone homeostasis have 
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site specific and gender specific effects21. The most widely studied genes are listed in the table 

below24,25. 

Table 1: Candidate Genes of Bone Development from Previous Literature 

Candidate Gene Proposed Function 
RANK/RANKL RANK/RANKL signals the formation of osteoclast precursors, 

activation, and survival in normal bone remodeling 5,26,27. Mice 
deficient in RANKL and RANK develop osteopetrosis because 
of the inability to form osteoclasts28,29. 

OPG This gene acts as a negative regulator of bone resorption. 
Overexpression blocks osteoclast formation inducing 
osteopetrosis. Gene knockout results in enhanced bone 
remodeling and bone loss, resulting in osteoporosis5. 

COL1A1/2 Encode matrix proteins. The expression of these genes and the 
balance of collagen fibrils are essential for proper formation of 
bone. Poor collagen quality results in reduced bone strength. 
Mutations in the COL1A1 gene results in osteogenesis 
imperfect, a genetic condition with a phenotype of extremely 
severe osteoporosis8,20,21. 

LRP5 A receptor for canonical Wnt signaling. Wnt signaling is 
involved in processes including apoptosis, limb development, 
and osteoblast and chondrocyte differentiation. Knockout mice 
have shown low bone mass is a result of decreased osteoblast 
proliferation13,30.  

TGF-β1 Abundant in bone matrix, the released TGF-B1 protein is an 
essential controller of osteoblast proliferation and 
differentiation. Gene knockout results in osteopenic 
phenotype31.  

Osterix Transcriptional regulator expressed in chondrocytes and in 
osteoblasts. Targeted inactivation of this gene led to the 
complete absence of bone synthesis throughout the skeletal and 
a loss of most markers of bone differentiation20.  

VDR The first candidate gene to be investigated in the osteoporosis 
field, the VDR gene encodes the vitamin D receptor, which 
allows the body to metabolize vitamin D 21. 

ESR1 Encoding estrogen receptor, believed to have a role in 
modulating osteoclast differentiation and function. Several 
polymorphisms in this gene have been connected with the rate 
of bone loss after menopause20. 
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TNF-α TNF-alpha is believed to reduce osteoblast mediated 
mineralization while simultaneously inducing osteoclast 
differentiation 32,5. 

RUNX2 Key transcription factor that induces proliferations and 
differentiation into preosteoblasts and mature osteoblasts 
and therefore bone formation2. 

SOST  The SOST gene encodes the protein sclerostin in osteocytes. 
The main role of this protein is to inhibit bone formation by 
interfering with Wnt signaling. Sclerostin may also promote 
apoptosis in bone cells, further inhibiting bone growth.21. 

SOX9 A critical transcription factor for BMP1 induced chondrocyte 
differentiation and osteoblast activity33.  

SMAD1 This gene is believed to play a key role in bone development 
and postnatal bone formation. SMAD proteins control the 
expression of RUNX234. 

1.1.5.2 Previous Published GWAS of Bone Health 

Genome-wide association studies (GWAS) are a technique for researchers to detect genes involved 

with human disease. This method searches the genome for small variation, or single nucleotide 

polymorphisms (SNPs) that are associated with a particular disease or trait. This research allows 

hypotheses to be made on the gene that influence a person’s risk of developing that disease35. 

Previous GWAS have been performed on BMD and bone geometry in order to identify SNPs 

associated with bone phenotypes as well as to identify new genes that may contribute to the many 

pathways that control bone homeostasis. Published GWAS have already established 63 genomic 

loci associated with BMD in adult populations36. While individual variants at these loci have 

modest contributions to the variability in bone health, collectively many variants can significantly 

account for trait variation between individuals. In performing a GWAS on a common, 

multifactorial disease, we would expect to find many common genetic variants that on their own 

have a small impact but together represent a greater cause of variability26,27,30,37–42. 

Table 1 Continued
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1.1.5.3 Polymorphisms Known to Influence BMD 

Previous GWAS of bone markers have identified several polymorphisms that have associated with 

BMD and bone health. The majority of these studies have studied adult bone health, however there 

are several publications that focused on a pediatric population. For example, common variants in 

the LRP5 gene are related to BMD and osteoporotic fracture, the sp1 binding site polymorphism 

in the COL1A1 gene has been determined to decrease bone mass and is associated with an 

increased risk of osteoporotic fractures in elderly women43, the PvuII  polymorphism in the 

COL1A2 gene is a risk factor for osteoporosis, and the  the PvuII  polymorphism in the ESR1 gene 

is associated with BMD in postmenopausal women. 

While the vast majority of studies assessing the genetics of bone health have used adult 

populations, several studies have recently been published investigating the number of BMD- 

lowering polymorphisms at known adult GWAS-implicated loci to determine an overall genetic 

risk score for osteoporosis for pediatric patients. A higher genetic risk score had a negative effect 

on BMD and BMC at the age of 13 and was associated with a slower rate of bone accrual between 

the ages of 13 and 1722. Researchers are beginning to look into the difference in the genetic 

regulation of bones at difference life stages and finding that bone development during youth is 

strongly impacted36. 

In the few GWAS, previous to this study, done on childhood bone health, researchers found 

that there were common genetic influences on BMD in children and  in adults, especially in the 

ESR1 and Wnt signaling pathway genes22,44. For example, Estrogen receptor gene polymorphisms 

were associated with BMD in adolescent boys45, Osterix and WNT1637 gene polymorphisms were 

associated with childhood total BMD through a primary effect on growth44, RANKL 

polymorphisms were associated with cortical BMD26, and  VDR gene polymorphisms were 
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determined to be associated with child spin BMD8,46. A meta-analysis GWAS for BMD as part of 

the Bone Mineral Density in Childhood Study, researching of longitudinal pediatric BMD 

measurements, found that several adult BMD associated genes to be associated. This study also 

found significant associations for SNP-by-age interactions, suggesting multiple variants associated 

with adult BMD are in fact exerting effects early in life18. Lastly, a previous study utilizing the 

Iowa Bone Development Study investigated the impacted associations of eight candidate genes 

(COL1A1/2, osteocalcin, osteonectin, osteopontin, VDR, ERα, and AR) with BMD and BMC and 

ages 4.5- 6.5 years. This study detected the strongest association with COL1A2 and Osteocalcin. 

These results also showed a significant gene by gene interaction, suggesting that the combination 

of genotypes at several loci may be as significant as a single genotype for BMD and BMC47. Many 

of the previous genetic studies on BMD and bone markers during childhood have reported links 

with variants in osteoblast – related genes (such as COL1A1/2, osteocalcin, PTHR1, LRP5, and 

ESR1)44. This is consistent with the idea that bone formation is predominant in childhood, before 

peak bone mass is reached, and under tight genetic regulation early in life. 

1.1.5.4 Genetic Syndromes Associated with Low BMD 

Monogenic syndromes associated with low BMD, while not likely the cause of individual 

variability in bone phenotypes, do pinpoint several genes influencing bone development in which 

common polymorphisms may influence normal variation in BMD. Several well-known genetic 

syndromes that are associated with findings of low BMD and early onset osteoporosis include the 

conditions in Table 28,48,49. 
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Table 2: Genetic Syndromes Associated with Low BMD 

Genetic Disorder Gene Inheritance 

Glycogen Storage Disease 1 G6PC AR 

Loeys- Dietz Syndrome Type 2 TGFBR2 AD 

Osteogenesis Imperfecta COL1A1 

COL1A2 

CRTAP 

P3H1 

AD 

Hemochromatosis Type 1 HFE AR 

Cystic Fibrosis CFTR AR 

Duchenne Muscular Dystrophy DMD X-linked 

Down Syndrome Chr. 21 Sporadic 

Fragile X Premutation Carriers FMR1 X-linked 

Beta- Thalassemia HBB AR 

Prader- Willi Syndrome Chr. 15q11.2-q13 Sporadic 

Turner Syndrome 45, X Sporadic 

1.1.5.5 Agonistic Pleiotropy 

The differences in genetic regulation and contributors of bone homeostasis at different periods of 

life can be connected to hypotheses of genetics and aging. George Williams initially proposed the 

agonistic pleiotropy hypothesis as an evolutionary explanation of biological aging in 1957. 

Agonistic pleiotropy means that a single gene may influence several phenotypes (pleiotropy) and 

that these effects may impact fitness in different ways at different life stages. Williams proposed 

that a gene caused both increased reproduction and fitness in early life and aging in later life. This 
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idea is built on the idea that organisms are under competing environmental constraints and that 

genetic variants can be adaptive for growth early in life and maladaptive later in life50,51. This 

hypothesis connects with the previous findings and hypotheses of the genetics of bone 

development in that as environmental factors and exposures change throughout life, genetic 

variants can have different impacts and power in bone development at different periods of life. 

1.1.6 Environmental Factors and Regulators of Bone Health 

While bone health is believed to be highly familial and genetic, it is also influenced greatly by 

environmental and medical factors16,27. Nutrition, physical activity, and hormonal balances 

represent environmental factors that impact bone development and health and can be targeted for 

bone health interventions. The expected growths in bone size and mass during childhood and 

adolescents are only reached when there are favorable environmental factors19. Demonstrating this, 

studies have shown a 35-65% increase in common childhood fractures over the past four decades. 

These trends raise worries that current lifestyles are compromising childhood bone health. Trends 

of childhood obesity and a higher body mass index coupled with less nutritious diets and less daily 

physical activity have a negative impact on early bone health and as an effect, osteoporosis risk 

later in life19  

1.1.6.1 Nutrients 

Nutrition and bone health are closely connected. A healthy diet can help avoid and or treat bone 

disease and related musculoskeletal disorders by promoting bone formation and maintenance. 

Conversely, deficiencies in essential vitamins and minerals can increase risk for poor bone health. 

Two crucial nutrients for bone health are calcium and vitamin D52. 
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Calcium 

Calcium is vital for normal skeletal growth and development. Calcium is a major component of 

bone tissue as the skeleton houses 99% of the body’s calcium source53. When the body is deficient 

in calcium, the skeleton acts as a calcium reservoir to tap into. Therefore, when calcium is needed, 

bone resorption, through osteoclast activity, will prevail to release calcium into the bloodstream. 

Prolonged and excess osteoclast activity due to low levels of calcium will result in decreased bone 

mass and low BMD2. Adequate calcium intake is crucial for reaching the  optimal peak bone mass 

and lowering the rate of age- related bone loss52. A high intake of milk and dairy during childhood 

is linked with a higher bone mass at maturity16. In a study of 10 year old identical twins, calcium 

citrate supplements given for 3 years significantly increased bone mass when compared to the 

control group16. Additionally, studies have estimated that BMD in the third decade could be 

increased by 1% with a calcium intake of 200mg per day up to 16% with an intake of 2100 mg per 

day19. Lactose intolerance has also been shown to be connected with lower bone mass and 

increased bone fragility due to the limited calcium intake54.  

Besides the dietary intake of calcium, the absorption and metabolism of calcium intake is 

an essential factor in determining the availability of calcium for bone development. Calcium 

metabolism and the regulation of calcium homeostasis have been shown to have genetic 

contributors. The literature reports a heritability of calcium metabolism up to 52%55. Additionally, 

studies have begun to see a connection between epigenetics, the study of alterations in gene 

expression other than sequence changes, and bone development. Researchers have hypothesized 

that placental calcium transporters may be significant in epigenetic regulation of bone growth56. 
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Vitamin D 

Vitamin D is a critical factor necessary for mineralization of bone tissue16.  Vitamin D, a 

secosteroid, made in the skin through exposure to sunlight and obtained from diet, is a key 

regulator of calcium and phosphate levels55. Vitamin D is an important factor of the strength and 

mineralization of bone. An insufficient level will induce amplified bone resorption, lead to bone 

loss, and reduce muscle mass. Muscle loss can impact neuromuscular function and balance; 

therefore increasing the risk for falls and fractures, further influencing bone health4.  However, 

sunlight exposure can result in greater BMD in vitamin D deficient bones and lead to the 

prevention of further fractures54. As of 2010, five out of nine studies researching the impact of 

vitamin D supplementation alone, and 16 out of 22 studies investigating vitamin D in conjunction 

with calcium, demonstrated significant positive effects on BMD. Several studies reported 

significant benefits seen within five weeks of supplementations in participants with vitamin D 

deficiency and osteoporosis/ osteopenia57. 

Vitamin D metabolism has also been to seen to have genetic regulators, with a heritability 

ranging from 43%- 65%55. Researchers have also implicated an epigenetic effect of maternal 

vitamin D status during pregnancy. While studies investigating the effect of epigenetics and 

variability in bone development are in the early stages, these results further demonstrate the vitality 

of vitamin D in bone development56. 

1.1.6.2 Physical Activity 

Weight bearing physical activity causes new bone formation and results in greater bone strength. 

Strains on bone greater than minimally required for constant remodeling yield a response that 

stimulates bone production to meet the increasing load requirement. This adaptive response occurs 

predominantly during times of drastic growth and with habitual physical activity58. A previous 
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study of bone markers and exercise in children of the Iowa Bone Development Study demonstrated 

that there are statistically significant associations between exercise and bone health during early 

childhood, well before peak bone mass is reached58. Daily exercise alone explains 1.5 to 9% of 

variance in child bone markers and is associated with bone health throughout childhood58. Further, 

physical activity during childhood and adolescence may in fact account for up to 17% of variance 

in BMD in the late 20’s16.  

Interventions that promote physical activity are needed because young children are not 

participating in enough physical activity to boost bone health during the period in life where they 

may be the most active. Studies have demonstrated that physical activity is associated with BMC 

and bone geometry in a dose dependent manner, and that bone health is significantly improved 

with high physical activity when compared to physically inactive or moderately active 

counterparts59. Studies have also demonstrated site-specific differences in how the skeleton 

responds to repetitive physical activity and weight bearing exercises in children. This is especially 

seen in children involved in sports such as gymnastics and baseball60. The influence of sports and 

physical activity on bone development and mineralization is greatest before puberty compared to 

exercise in adulthood. Additionally increased bone mass acquired with intensive physical activity 

in childhood continues into adult life. Former runners, gymnasts, and dancers have BMD 

measurements as high as 8-12% greater than their age-matched controls, even years after they have 

retired from the sport.19 

1.1.6.3 Hormones 

Many hormones affect bone growth and remodeling. These include growth hormones, parathyroid 

hormones, estrogens, calcitonin and thyroid stimulation hormones, osteoprotegrin, leptin, and 



17 

serotonin. Parathyroid hormones and sex steroids represent major influencers of bone development 

and maturation55. 

Parathyroid Hormones 

Bone resorption can be triggered by parathyroid hormone (PTH) in response to hypocalcemia. 

PTH stimulates osteoclast production. PTH has an significant function in bone synthesis and 

preventing osteoblast and osteocyte apoptosis61. Recurrent low level doses of PTH increases 

osteoblast activity, bone production, and bone mass and is currently an established anabolic 

treatment for osteoporosis61. Heritability of parathyroid hormone regulation is suggested to be 

60%.55

Sex Steroids 

Before puberty is reached, bone growth is largely contingent on growth hormones, however, sex 

steroids are critical for complete bone maturation and mineral accrual in the teenage years8. It is 

well established that estrogen is the vital regulator of bone metabolism in both men and women, 

affecting bone growth, remodeling, and homeostasis8,62. With roles in the regulation of osteoblast 

mediated bone synthesis and osteoclast activity in multiple pathways, including progenitor cell 

recruitment, proliferation, differentiation and apoptosis8. One of the best predictors of bone loss in 

women is estrogen deficiency at the time of menopause. There is a 10-year cumulative loss in 

BMD of 9-10% associated with menopause62. Menopause is the most common cause of osteoclast 

activity that leads to higher fracture risk and increased mortality of osteoporosis2.  

Androgens also impact bone growth and may contribute to some gender- related 

differences in bone development. Androgens stimulate male sexual differentiation before birth and 

sexual maturity during puberty and may provide protection against osteoporosis. During puberty, 

males develop greater bone mass than females due to increased perosteal apposition. Estrogens in 
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females also induce epiphyseal closure earlier in women, resulting in longer bones in males. While 

the rate of osteoclastic activity is similar in both sexes after puberty, the net loss in bone tissue is 

less in men due to a greater bone length, larger bone perimeters, and a larger cortical volume in 

males compared to females. Therefore, elderly men maintain cancellous bone integrity and bone 

strength significantly in comparison with postmenopausal women63.  

1.1.7 Osteoporosis 

Known candidate genes of bone biology do not only influence the risk of low BMD. These genes 

can affect bone growth and development, and can cause diseases that are inherited in a classical 

Mendelian manner. These disorders include bone dysplasia, osteopetrosis, osteogenesis imperfect, 

and osteoporotic-psuedoglioma syndrome13. While there are a variety of bone and skeletal 

disorders, osteoporosis is the most common disorder with the largest public health burden. 

Osteoporosis is a skeletal disorder diagnosed by low bone mass and microarchitectual deterioration 

of bone tissue, which in turn causes increased bone fragility and susceptibility to fracture. 

Osteoporosis is diagnosed when BMD lies than 2.5 standard deviations below the average4. 

1.1.7.1 Osteoporosis and Public Health Burden 

Osteoporosis risk increases with age and is a major health threat to millions of elderly worldwide41. 

Osteoporosis is a common condition that affects 10.3% of the general population, affecting up to 

30% of women and 12% of men at some point in life48,13. In the U.S. alone, almost 54 million 

women and men are affected by osteoporosis and low bone mass38. Worldwide, osteoporosis 

causes more than 8.9 million fractures each year, meaning there is an osteoporotic fracture every 

three seconds54.  
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Osteoporosis is a major cause of morbidity and mortality. Hip fractures, in particular are a 

common serious concern for individuals with osteoporosis with a high one-year mortality and 

morbidity rate.  Thirty percent of individuals that suffer from a hip fracture die within the first year 

following the fracture, and many more will experience significant functional loss64,65. Though 

osteoporosis is not the acute cause of death, an osteoporosis related fracture serves as the 

precipitating event that leads to loss of mobility and subsequent rapid decline in health across 

months.  

The cost of osteoporosis-related treatment in the U.S. was reported as $22 billion in 200866. 

However, costs of osteoporosis far exceed that of just treatment. Quality of life and ability to work 

are also strongly impacted. Those diagnosed with osteoporosis are more likely to have a disability 

(52.6%) compared to unaffected individuals. People affected with osteoporosis also report twice 

as many mentally and physically poor days as unaffected individuals. Adults with osteoporosis are 

also more likely to perceive their health as being poor (45.4% reporting health as fair or poor) than 

individuals with healthy bones66. In women over the age of 45, osteoporosis accounts for more 

hospitalized days than any other disease, including heart disease, diabetes, and breast cancer54. 

With the trend of an aging population, the public health threat of osteoporosis continues to 

affect more patients with an increasing cost of treatment. It is predicted that if these trends 

continue, 61 million individuals in the U.S. will be affected with osteoporosis by the year 202054. 

Even if the rates of osteoporosis among the elderly remain constant, the aging trend of the world 

population is believed to increase the number of osteoporotic bone fractures and treatment costs 

by 48%, resulting in more than 3 million fractures and treatment costs of $25.3 billion by 2025 in 

the U.S67. 
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1.1.7.2 Risk Factors for Osteoporosis 

Many contributors impact osteoporosis lifetime risk. These factors include diet, physical activity, 

mediation use, and coexisting conditions. The first major risk factor is age. The age related increase 

in oxidative stress has the most impactful detrimental effect on bone homeostasis.  Men and women 

both experience a progressive decline in BMD with age that begins as soon as peak bone mass is 

reached4. In the elderly, the strongest clinical risk factor is a positive family history for 

osteoporosis, emphasizing the genetic implications of bone health13.  

Race has been shown to impact BMD. BMD has been shown to be significantly higher in 

individuals of African descent and osteoporosis incidence is higher among Caucasian and Asian 

individuals66,68. 

A poor diet plays a significant role in the risk of osteoporosis. The dietary intake of the 

essential vitamins, such as vitamin D and calcium, explained previously, a higher protein intake is 

also associated with a lower rate of age-related bone loss. Additionally, high intake of alcohol also 

results in a significant risk of fractures due to reduced BMD and BMC54. Chronic excessive 

drinking affects bone metabolism and inhibits bone formation while increasing bone resorption4.  

Smoking can also lead to reduced BMD and increased bone fragility. The mechanism in 

which smoking results in poor bone health is not yet clear because smoking negatively impacts 

many body tissues and regulatory pathways4. 

Physical inactivity and a sedentary lifestyle are major risk factors for developing 

osteoporotic fractures. Impaired neuromuscular function, including weakened muscle strength and 

impaired gait and balance, are also risk factors for fractures. Studies have repeatedly demonstrated 

that BMD in postmenopausal women can be preserved or increased with therapeutic exercises. 
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However, low body weight and extreme weight loss is related with increased bone loss and a higher 

risk of fracture69.  

Several medical conditions and medications can cause secondary osteoporosis. Conditions 

known to cause secondary osteoporosis include rheumatoid arthritis, hypogonadism, 

hyperparathyroidism, hyperthyroidism, kidney disease, GI disorders, such as Crohn’s and celiac 

disease, and Type 1 Diabetes69. The additional consequence of prolonged use of medications such 

as corticosteroids, anxiolytics, proton pump inhibiting drugs, neuroleptics, sedatives, and 

antidepressants have also been shown to significantly increase the risk of osteoporosis-related 

fractures48. 

An advantage of pediatric cohorts is that while osteoporosis risk is the interaction of genetic 

factors and environmental risk factors such as physical activity, alcohol, smoking, and 

medications, children because have limited exposures (in amount and time period exposed) to the 

environmental risks compared to adults. Because of this, the genetic assessment and genes found 

to be associated with pediatric bone health may have more power due fewer environmental and 

behaviors confounding variables. 

1.1.7.3 Current Interventions for Osteoporosis 

Treatment of diagnosed osteoporosis is cost-effective no matter the age in which treatment is 

begun54. Recognizing and treating patients at risk for fracture before the first osteoporotic related 

fracture will substantially lessen the long-term burden of the disease. Reducing the chance of the 

first fracture from 8% to 2% can reduce the 5-year fracture risk from approximately 34% to 10%54. 

However, poor compliance is the most significant issue with osteoporotic treatment. Studies have 

shown that only 40% of patients still continue treatment beyond a year and that only 20% of 

patients are compliant after two years54. 
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As the biology of bone disease is better understood, better treatments and therapies for 

osteoporosis are available. Treatments depend on the current knowledge of osteoblast and 

osteoclast pathways in order to either inhibit osteoclast activity or increase osteoblast activity. 

Several current approved therapies include cytokine inhibition, inhibition of osteoclastogenesis 

pathways, blocking osteoclast activity, enhancing osteoblast activity, and interfering with 

osteoblast inhibition. Several treatment strategies of osteoporosis have utilized known candidate 

genes of bone growth. One example includes, Denosumab, an anti-osteoclast treatment that targets 

RANKL with a human monoclonal antibody. Osteoblast differentiation is also promoted by a 

pro-anabolic treatment that targets LRP5 by inhibiting DKK-1 activity. Another example is the 

inhibition of sclerostin to interfere with osteoblast inhibition due to studies that demonstrated 

SOST gene (which encodes sclerostin) mutations were associated with high bone mass2. 

BMD screening has become widely recommended. The U.S. Prevention Services Task 

Force has recommended that all women 65 years or older without fractures or secondary 

osteoporosis and women less than 65 years with a 10 year fracture risk greater or equal to that of 

a 65 year old women should have BMD screening through DXA66. Additionally patients and 

providers can assess the 10-year fracture risk with the FRAX risk assessment tool available 

through the World Health Organization66. Because osteoporosis and related costs of mortality and 

morbidity pose such a large public health burden, implementation of effective treatments and 

prevention protocols are crucial in the hope of promoting healthier bones on a population scale. 
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1.2 PUBLIC HEALTH SIGNIFICANCE OF GWAS OF CHILDHOOD BONE 

PHENOTYPES 

Skeletal growth and bone health during childhood and adolescence is a strong predictor of the 

lifetime risk of osteoporosis, which poses a serious public health threat worldwide. Due to the 

significant influence of behavioral factors early in life, tight genetic regulation of bone homeostasis 

during early bone development, and the fact that the majority of bone formation is reached during 

adolescence, osteoporosis should be considered a delayed onset disease with pediatric origins. 

Despite advances in treating bone fragility, there is currently no cure for osteoporosis. More 

research is needed to fully understand the causes of individual variation in bone health and early

prevention strategies to lower osteoporosis risk8. 

With the ultimate goal of preventing osteoporosis, it is important we increase our 

knowledge of the pathologic mechanism of the disease. While the knowledge of genetic factors 

influencing bone health and osteoporosis have increased dramatically, there are still many 

unanswered questions. First, the bulk of genetic association studies have been performed in with 

adult populations and adult bone measurements, though the genetic regulation of bone health is 

possibly stronger and more impactful during early development. Secondly, we do not currently 

understand gene-gene interactions in bone-related pathways or the effect of interactions between 

genetic variations and environmental factors. 

This study is one of the first GWAS investigating bone health in children. This is also a 

wide-ranging GWAS in which we investigated associations with ten different bone health 

phenotypes across multiple skeletal sites. The public health significance of this study is that if we 

know the genetic contributors and polymorphisms associated with poor bone health and a genetic 

predisposition to osteoporosis later in life, then we can detect these genetic variants in order to 
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identify children with greater genetic risk. This will allow for more targeted interventions in those 

most at risk to hopefully lower the incidence of osteoporosis in the future. 

New approaches towards treatment and, more importantly, osteoporosis prevention will 

require efforts in which the progress and insights from biological research are paired with clinical 

utility20. Because the foundation of bone health is established so early in life, osteoporosis 

prevention interventions should begin by heightening bone health throughout childhood19. This 

research can reach clinical and public health practices if one day genetic screening programs are 

available to identify children with a genetic predisposition to osteoporosis later in life. Effective 

bone health interventions, including promoting healthy nutrition and exercise, can then be 

recommended and initiated early in “high-risk” children, optimizing peak bone mass reached. 

1.3 RESEARCH QUESTIONS AND SPECIFIC AIMS 

1.3.1 Research Questions 

Question 1: 

Are there loci that are significantly associated with childhood bone health phenotypes? 

Question 2: 

Do significant loci contain genes with function related to bone development and 

homeostasis? 
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1.3.2 Specific Aims 

Aim 1: 

Perform a genome-wide association analysis for ten bone health phenotype measurements 

obtained on 296 Caucasian children (average age 5y) from the Iowa Bone Development Study in 

order to identify SNPs associated with bone health early in life. 

Aim 2: 

Perform annotation of the neighboring genes of significant and suggestive SNPs (p-values 

less than 10-6) associated with each bone phenotype. Develop a working mechanism or pathway, 

based on previous literature, of the genetic link to bone health. 
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2.0  METHODS 

2.1 STUDY POPULATION 

The Iowa Bone Development Study was initiated in 1998 and is a longitudinal study of childhood, 

adolescent, and young adulthood bone health. Children and parents for this study are  volunteer 

participants from 890 families previously recruited to participate in the Iowa Fluoride Study70. 

Infant participants and their parents were originally recruited from eight Iowa hospitals between 

1992 and 1995 immediately postpartum and followed-up throughout infancy, childhood, and 

adolescence58. The ongoing study is assessing bone development over time through assessments 

including bone mineral composition and geometry, dietary intake, physical activity, 

anthropometric measurements, demographics, and parental factors71. Assessments of bone 

development were made at target ages 5, 9, 11, 13, 15, and 17 years. The study is currently 

completing bone assessments of participating young adults who are now ages 19-23 years72. This 

study will focus on assessments when the participants were ages four to seven years old (mean age 

= 5.3 years). This cohort includes 296 healthy, Caucasian children that completed bone 

measurements. Written informed consent was provided by the parents and assent was provided by 

child participants. The study was approved by the University of Iowa Institutional Review Board 

(Human Subjects)71. The analysis of this data was approved by the University of Pittsburgh 

Institutional Review Board. 
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2.2 BONE PHENOTYPES 

Bone mineral density (BMD) and bone mineral content (BMC) measurements were derived from 

whole body and left hip scans using a Hologic 2000 dual-energy x-ray absorptiometer (DXA) with 

a fan-beam geometry and a multiple detector array58. To reduce operator-related variability, all 

measurements were performed on the same device and quality control scans were conducted 

daily11. Coefficients of variation were found to be 1-2% in BMD of the hip, spine, and total body58. 

Studies have consistently demonstrated DXA to be an accurate and precise tool to assess lean 

tissue mass when animal subjects, approximately the weight of a child, were studied73. Further, 

DXA is the preferred method for evaluating child BMD because it is believed to be safe, precise, 

low in cost, and associated with a low dose of radiation15,74–76. 

Bone mineral density (in units of grams/ square centimeters) is the relative value of amount 

of bone mineral divided by the 2-dimensional projected area of the selected bone. Bone mineral 

content (in units of grams) reflects the absolute amount of mineral in the selected bone58. The 

following mineral measurements were obtained: hip, spine, and head bone mineral density (g/cm2) 

and hip, spine, head, and whole body (excluding head) bone mineral content (g). 

Structural bone geometry measurements were determined from hip DXA images using the 

Hip Structure Analysis program (HAS version 2.1). The program locates the cross-section 

traversing the femoral neck at its narrowest point and the following measurements are obtained: 

femoral neck cross-sectional area (CSA, cm2), femoral neck width (cm), and femoral neck section 

modulus (cm3)11. While lower BMD is a strong determinant of bone strength, bone geometry is 

also a major determinant of osteoporosis risk. Little work has been done to determine genetic 

regulators of bone geometry; these measurements may in fact be better predictors of fracture risk 

and monitoring responses to osteoporosis therapy. This study is one of the first GWAS studying 
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bone geometry measurements in children. More extensive details regarding the measurements this 

program uses to calculate structural geometry have previously been extensively described11. 

2.3 COVARIATES 

Data on several potential covariates were collected, and included in the tests of genetic association: 

sex, height (cm), weight (kg), age (years) at the time of the bone measurements. The rationale for 

making covariate adjustments was that these factors may be sources of considerable phenotypic 

variance that may obscure the comparative smaller portions of variance attributable to specific 

genetic variants. Therefore, making covariate adjustments may aid in identifying the associated 

genetic variants.  Furthermore, some of the covariates (e.g., height and weight) are themselves 

under genetic control, but identifying the genes influencing these is not desirable for the goals of 

this particular study.  By adjusting for these covariates, our genome-wide scans will be insulated 

from the genetic factors influencing body size, rather than bone, per se.  In other words, covariate 

adjustment helps ensure that associated genetic variants will be reflective of specific mechanisms 

relevant to bone phenotypes, rather than reflective of mechanisms relevant to general growth and 

body size. 

2.4 GENOTYPING AND IMPUTATION 

Details regarding allele calling, data cleaning, and quality assurance metrics have been previously 

described in detail77 and are also publicly available from dbGAP78,79. 



29 

In brief, the Illumina Human610-Quadv1_B BeadChip80 and Illumina Infinium II assay 

protocol81 were used for this study. All genotyping was performed on behalf of the NIH GENEVA 

consortium by the Johns Hopkins University Center for Inherited Disease Research (CIDR). 

Among 620,901 SNPs released by the CIDR, 2,671 SNPs were filtered out due to the Hardy-

Weinberg Equilibrium test filter P-value less than 0.001; 32,417 SNPs were excluded from 

analysis due to a missing call rate greater than 10%; 69,818 SNPs were filtered out due to a minor 

allele frequency less than 2%. After applying these filters, 548,051 SNPs were used in the 

statistical analysis. 296 children were successfully genotyped82. 

Imputation was performed in order to produce information on unobserved SNPs as well 

as fill in sporadic missing genotype calls among observed SNPs.  This was accomplished using 

publically available haplotype data from the 1000 Genomes Project Phase 3 reference panel83.  

Pre-phasing was performed using SHAPEIT284 and imputation was performed using 

IMPUTE285,86. In total, 7.4  million87 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html) SNPs passing the Hardy- 

Weinberg Equilibrium and minor allele frequency filter were imputed.   

2.5 PRINCIPAL COMPONENTS OF ANCESTRY 

A limitation of GWAS is that population stratification can be a confounding variable. If not 

accounted for, population stratification can yield false positive associations88,89. Principal 

component analysis is a statistical technique that can be used to identify structure in the distribution 

of genetic variation across ethnic backgrounds and to adjust for ancestry90. Including principal 
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components of ancestry in tests of genetic associations avoids false positive findings due to 

epidemiological confounding by ancestry-informative genetic variants. 

The principal components were generated using PLINK (version 1.9)91,92. To develop a set 

of SNPs on which to perform PCA, SNPs with a minor allele frequency less than 0.05 and SNPs 

missing for more than 5% of the participants were removed, yielding 518,187 SNPs. This set of 

SNPs was then pruned to remove blocks of highly correlated, highly variable SNPs using pairwise 

correlation within a sliding window of 50 SNPs (as implemented in PLINK91,92). After linkage 

disequilibrium-based pruning, 95,384 SNPs were retained and included in the principal component 

analysis. Our GWAS analysis included adjustment for one principal component of ancestry which 

was sufficient to capture population structure because the study population consisted of all 

Caucasian children from Iowa (i.e., a fairly genetically homogenous population). 

2.6 STATISTICAL ANALYSIS AND RESULTS ANNOTATION 

Association between each bone health phenotype and each SNP was tested using the genetic 

software PLINK91,92. SNP filters for association scans included: 
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Table 3: Filters Included for Association 

Filter Effect on Association Threshold 

Missingness Per 
Individual 

Individuals removed 
for low genotyping 

call rate > 0.1 

Allele Frequency SNPs failed frequency 
test 

minor allele frequency 
< 0.02 

Missingness Per 
Marker 

SNPs failed 
missingness test 

call rate > 0.1 

Hardy- Weinberg 
Equilibrium 

Markers excluded 
based on Hardy-
Weinberg Equilibrium  
(HWE) test 

P ≤0.0001 

Linear regression was used to test each SNP individually under the additive genetic model 

while simultaneously adjusting for covariates and principal components of ancestry.  Results were 

visualized by creating Manhattan plots, quantile-quantile (Q-Q) plots, and calculating genomic 

inflation factors (λ) using the RStudio statistical environment93. Following, the adopted standard 

in the field, genome-wide significance was reached if a SNP P-value surpassed the P = 5 x 10-8 

threshold, this is an extremely conservative threshold based on a Bonferroni correction for one 

million SNPs94. This threshold is represented by a solid line on each phenotype Manhattan plot. 

Because we view GWAS as a hypothesis-generating approach, we additionally scrutinized 

“suggestive” associations that passed the threshold of P < 10-6.   

LocusZoom95 was used to plot association signals for loci of interest meeting significant 

and suggestive P-value thresholds. All genes within the 400kb flanking region of significant SNPs 

were annotated. Based on gene function (including previous research supporting a role in bone 

development and bone homeostasis, previously reported genetic associations with BMD or 

osteoporosis, previous model organism studies, and associated transcription factor binding sites, 
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and suggested interactions) and proximity to the significant SNP, we selected promising genes to 

report as possible genetic contributors and susceptibility genes to childhood bone health.  

To present an illustration of the detailed literature review performed on implicated genes, 

pathways were constructed. These pathways show the interactions of the promising genes detected 

in this study and well-known candidate genes in bone biology. These pathways also demonstrate 

the possible mechanism in which a variation in the implicated genes could lead to variation in bone 

health. Pathways based on previous studies were created using the ePath3D Online software96. 
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3.0  RESULTS 

Sample characteristics are summarized in Table 4. Our study population included 296 Caucasian 

children with a mean age of 5.3 years. Males accounted for 46.96% of the population and females 

accounted for 53.04%. The mean and range for each bone health phenotype are included in the 

table below. 

Table 4: Descriptive Statistics of Study Population 

Sample Characteristics 

Sample Size 296 
Percent Male 46.96 % 
Percent Female 53.04 % 
Mean Age (Range) (years) 5.282 (4.350 – 7.900) 
Mean Height (Range) (cm) 111.8 (98.5 – 135.2) 
Mean Weight (Range) (kg) 20.48 (13.30 – 44.80) 
Mean Hip BMD (Range) (g/cm2) 0.5565 (0.4203 – 0.7192) 
Mean Hip BMC (Range) (g) 6.015 (3.104 – 13.136) 
Mean Spine BMD (Range) (g/cm2) 0.5324 (0.3646 – 0.6853) 
Mean Spine BMC (Range) (g) 14.418 (7.988 – 23.823) 
Mean Head BMD (Range) (g/cm2) 1.375 (1.006 – 1.859) 
Mean Head BMC (Range) (g) 244.0 (162.3 – 342.8) 
Mean Whole Body (excluding head) BMC (Range) (g) 254.25 (79.42 – 556.75) 
Mean Femoral Neck Cross- Sectional Area (Range) (cm2) 0.9084 (0.5700 – 1.5610) 
Mean Femoral Neck Width (Range) (cm) 2.116 (1.635 – 2.728) 
Mean Femoral Neck Section Modulus (Range) (cm3) 0.2833 (0.1530 – 0.5830) 

The results of the statistical analysis and gene annotation are organized below by the 

phenotype of the genome-wide association scan. While the results are reported separately by 

phenotype, we hypothesize that the genetic associations are not necessarily specific to one skeletal 

site. Our goal was to determine plausible genes that play a role in the genetic regulation of bone 

homeostasis of children before peak BMD attainment is reached. While genetic contributions to 
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bone health can differ by skeletal site, our goal for this study was primarily understanding, in 

general, the possible roles and interactions the following genes play in the intricate processes of 

bone development and remodeling during childhood years.  

GWAS of ten phenotypes were performed.  Phenotypes are grouped in this chapter into the 

categories BMD, BMC, and bone geometry. For each bone phenotype we present results in the 

following order:  First, the loci reaching genome-wide significance are outlined with a focus on 

the most plausible genes based on known function relevant to bone regulation. A complete list of 

all the genes surrounding each significant SNP can be found in Appendix A. Following this, the 

loci reaching suggestive significance are enumerated. Again, genes that were found to have a 

connection with bone biology are emphasized. A complete list of all of the genes in the vicinity of 

suggestive loci along with the LocusZoom plots of all suggestive loci in Appendix B. 

Again, the nominated genes of this study are simply the candidate genes with the clearest 

biologically plausible story. We cannot determine from the statistical evidence if genetic variation 

influencing these genes is truly involved in normal variation of bone development.  

Q-Q plots were created for each phenotype to determine the genomic inflation factor (λ). 

An inflation factor of 1.0 indicates that there is no evidence of systemic p-value inflation due to 

inadequate adjustment for population structure or model misspecification. The lambda values for 

the bone phenotypes range from 0.999135 to 1.012036, suggesting that there was no significant 

systemic bias. The Q-Q plots for each phenotype can be found in Appendix C. 
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Table 5: Genomic Inflation Factor Values for Bone Phenotypes 

Phenotype Genomic 
Inflation Factor 
(λ) 

Standard Error 

Hip BMD 1.000347 2.182E-6 
Hip BMC 0.999135 2.385E-6 
Spine BMD 1.007295 1.726E-6 
Spine BMC 1.002187 2.126E-6 
Head BMD 1.003153 1.914E-6 
Head BMC 1.010449 2.473E-6 
Whole Body BMC (excluding head) 1.000723 2.331E-6 
Femoral Neck Cross- Sectional Area 1.009225 1.949E-6 
Femoral Neck Width 1.009364 3.730E-6 
Femoral Neck Section Modulus 1.012036 2.958E-6 

3.1 BONE MINERAL DENSITY GWAS 

The significant and suggestive signals detected through the GWAS of hip, spine, and head BMD 

are presented in Table 6. 

Table 6: GWAS Findings for BMD Phenotypes 

Phenotype Number of 
Significant Loci 

Number of 
Suggestive Loci 

Implicated Genes 

Hip BMD 1 3 COL13A1 
Spine BMD 0 2 ----------- 
Head BMD 0 1 ----------- 

3.1.1 Hip Bone Mineral Density GWAS 

The Manhattan plot for the GWAS of hip BMD is shown in Figure 1. 
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Figure 1: Manhattan Plot for Hip BMD 

Figure 2: LocusZoom Plot for Significant Loci Associated with Hip BMD 

Figure 2 shows the genome-wide significant (P-value = 1.514E-08) association with hip 

BMD observed for rs72801121 on chromosome 10.  Of the genes in this region, the COL13A1 
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gene, immediately downstream of the associated SNP, has the strongest relation to bone biology. 

COL13A1 encodes the alpha chain of a nonfibrillar collagen. While the specific function of this 

protein is not yet known, its expression in all connective tissue producing cells suggests a general 

role in connective tissues. Unlike the majority of the collagens, which are released into the 

extracellular matrix, collagen XIII (which is a trimer composed of one or more alpha chain 

isomers), contains a transmembrane domain, and the protein complex is localized to the plasma 

membrane97. Previous studies have suggested that collagen XIII is involved in the cell-matrix and 

cell-cell adhesion. Collagen XIII may therefore be involved in endochondral ossification. In mice 

studies, overexpression of collagen XIII caused a massive bone- overgrowth, however there were 

no defects in early skeletal development, suggesting that collagen XIII is an important regulator in 

the early osteoblast differentiation and bone remodeling98. COL13A1 is also suggested to have a 

role in the coupling of bone mass and mechanical stress99. 

Three suggestive signals were observed for the hip BMD phenotype. The table below 

enumerates the genes surrounding the suggestive loci that were found to have plausible functions 

related to bone biology and a possible connection to childhood bone health. A suggestive signal 

on chromosome 12 is especially of interest because the neighboring region includes a homeobox 

C gene cluster, a highly conserved family believed to have a role in cartilage differentiation and 

regulation. Additionally several genes in this region have been implicated in a previous GWAS 

meta-analysis for BMD and risk of fracture in adults42. 
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Table 7: Suggestive Genes Associated with Hip BMD 

Suggestive 
SNP 

Gene Chr. Suggestive 
P-value 

Gene Function Relevance to 
Bone Biology 

rs57205518 CDHR1 10q23.1 3.161e-07 This gene is a member of the cadherin 
family of calcium-dependent cell 
adhesion molecules and may be related 
to calcium homeostasis100. 

rs2366139 ATF7 12q13.13 1.578e-07 The loci was identified in a GWAS for 
adult height101. The gene also is 
believed to have a role in vitamin D 
hypersensitivity of osteoclast precursors 
in Paget’s disease102. 

rs2366139 HOXC10 12q13.13 1.578e-07 Another cluster of the highly conserved 
homeobox genes were identified. 
Hoxc10 knockout mice have bone 
changes in thoracic, lumbar, sacral 
vertebrae, the pelvis, along with 
changes in the development and 
ligaments of the hindlimbs. Implicated 
for a role in the regulation of 
chrondrogenesies and bone formation in 
the hindlimb, and a specific role in 
shaping femoral architecture103. 

rs2366139 HOXC8 12q13.13 1.578e-07 This gene product may be involved in 
the regulation of cartilage 
differentiation104. It could also influence 
chondrodysplasias or other cartilage 
disorders105. The interaction between 
this gene and SMAD1 have 
demonstrated the induction of osteoblast 
differentiation and bone formation106. 

rs2366139 HOXC5 12q13.13 1.578e-07 Identified in a previous GWAS meta-
analysis for bone mineral density and 
risk of fracture42. 

rs2366139 NFE2 12q13.13 1.578e-07 Mice deficient in this transcription 
factor have an increased bone mass 
phenotype and greater total bone area, 
cortical bone area and cortical thickness 
as well as increased BMD107,108. 

rs2366139 HNRNPA1 12q13.13 1.578e-07 Mutations in this gene are associated 
with body myopathy with early-onset 
Paget disease without frontotemporal 
dementia type 3. This is an autosomal 
dominant disease described with 
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disabling muscle weakness and 
osteolytic bone lesions109. 

rs2366139 ATP5G2 12q13.13 1.578e-07 Identified in previous GWAS for adult 
height loci110. 

rs2366139 CALCOCO1 12q13.13 1.578e-07 Mouse knockout studies show 85-95% 
notable differences in BMD and 
BMC111. 

rs2366139 HOTAIR 12q13.13 1.578e-07 Targeted deletion of HOTAIR RNA in 
mice studies leads to changes in the 
spine and malformation of bones. This 
gene may be involved in maintaining 
the chromatin state of Homeobox 
genes.112 

rs2366139 HOXC11 12q13.13 1.578e-07 Gene expression is detected in the 
posterior neural tube, prevertebrae 
dorsal root ganglia, and hindlimbs. 
Expression is seen in the mesenchyme 
posterior to the region forming the 
femur. Previous studies demonstrate 
severe malformations of the 
appendicular skeleton in mice 
overexpressing hoxc11113. 

rs2366139 HOXC4 12q13.13 1.578e-07 Identified in a previous GWAS meta-
analysis for BMD and risk of fracture42. 

rs2366139 HOXC6 12q13.13 1.578e-07 Identified in a previous GWAS meta-
analysis for BMD and risk of fracture. 
Several targets and pathways regulated 
by HOXC6 impact bone development 
and may facilitate metastasis of prostate 
cancers to the bone 
microenvironment114. BMP7 is a direct 
repression target of HOXC6 that 
induces bone formation. While 
microdeletions involving the HOXC 
gene cluster are rare, phenotypic 
features of this deletion include skeletal 
anomalies, dysmorphism, and 
intellectual disability115. 

rs9960845 CCBE1 18q21.32 8.350e-07 The function of this gene includes 
calcium ion binding and collagen 
binding116. 

rs9960845 PMAIP1 18q21.32 8.350e-07 PMAIP1 deficient mice exhibited 
severe osteoporotic phenotype due to an 
increased level of osteoclasts due to a 
prolonged survival of osteoclasts117. 

Table 7 Continued
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3.1.2 Spine Bone Mineral Density GWAS 

The Manhattan plot for the GWAS of spine BMD is shown in Figure 3. 

   Figure 3: Manhattan Plot for Spine BMD 

No genome- wide significant signals were detected for this phenotype, however, two 

suggestive significance signals were observed for the spine BMD phenotype.  

Table 8: Suggestive Genes Associated with Spine BMD 

Suggestive 
SNP 

Gene Chr. Suggestive 
P-value 

Gene Function Relevance to Bone 
Biology 

7-64494136 ZNF92 7q11.21 9.675e-07 The ZNF92 gene promoter is a transcription 
factor binding site for the STAT5B gene118. The 
STAT5B gene may regulate the pattern of long 
bone growth in males that is found in many 
species119. 

11-121887592 UBASH3B 11q24.1 3.204e-07 The UBASH3B gene stimulates negative 
regulation of bone resorption by osteoclasts120. 

11-121887592 HSPA8 11q24.1 3.204e-07 The HSPA8 gene promoter is a transcription 
factor binding site for the STAT1 and STAT3 
genes121. 
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3.1.3 Head Bone Mineral Density GWAS 

The Manhattan plot for the GWAS of head BMD is shown in Figure 4. 

  

     Figure 4: Manhattan Plot for Head BMD 

No genome- wide significant signals were detected for this phenotype, however, one 

suggestive signal was observed for the head BMD phenotype.  

Table 9: Suggestive Genes Associated with Head BMD 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone 
Biology 

rs76178935 ANKRD28 3p25.1 1.952e-07 The ANKRD28 gene is overexpressed in the bone 
tissue122. 
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3.2 BONE MINERAL CONTENT GWAS 

The significant and suggestive signals detected through the GWAS of hip, spine, head, and whole 

body (excluding head) BMC are presented in Table 10. 

Table 10: GWAS Findings for BMC Phenotypes 

Phenotype Number of 
Significant Loci 

Number of 
Suggestive Loci 

Implicated Genes 

Hip BMC 1 1 COL11A1 
Spine BMC 0 2 ------------ 
Head BMC 0 3 ------------ 
Whole Body 
(excluding head) 
BMC 

0 1 ------------ 

3.2.1 Hip Bone Mineral Content GWAS 

The Manhattan plot for the GWAS of hip BMC is shown in Figure 5.  

  

Figure 5: Manhattan Plot for Hip BMC 
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Figure 6: LocusZoom Plot for Significant Loci Associated with Hip BMC 

Figure 6 shows the significant (P-value = 2.756e-08) loci with hip BMC observed for 

rs12564863 on chromosome 1.  The significant association was observed downstream of another 

collagen, COL11A which has plausible biological roles related to bone development. This gene 

encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen.  Collagen is 

an integral aspect of the extracellular matrix structure, providing strength to the connective tissues 

that support the body. Type XI collagen is typically found in cartilage, of which the majority is 

then converted to bone97. Mutations in this gene cause Type II Stickler syndrome and  

Marshall syndrome.  Stickler syndrome is associated with hearing and vision loss as well as 

abnormalities of the bones and joints123. A previous GWAS found that polymorphism in this gene 

is also associated with lumbar disc herniation124. This loci was also identified in a GWAS meta-

analysis associated with bone mineral density and risk of fracture42.  A number of previous studies 

implicate the COL11A1 gene as an essential gene for normal skeletal development. COL11A1 is 

believed to play an essential role in endochondral ossification, and negatively regulating osteoblast 
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maturation123,125. Additionally, COL11A1- deficient mice were found to have changes in bone 

microstructure125. 

One suggestive signal was observed for the hip BMC phenotype. The most significant SNP 

was rs71337766 on chromosome 2 (P-value = 2.357 x 10-7). No genes in this region have functions 

related to bone biology or a connection to childhood bone health. 

3.2.2 Spine Bone Mineral Content GWAS 

The Manhattan plot for the GWAS of spine BMC is shown in Figure 7.  

  

Figure 7: Manhattan Plot for Spine BMC 

 

For the spine BMC phenotype, no genome-wide significant signals were detected. However, two 

suggestive signals were observed. 
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Table 11: Suggestive Genes Associated with Spine BMC 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone Biology 

rs8132933 DSCR4 21q22.13 2.850e-07 The DSCR4 gene is included in the Down syndrome 
critical region and has been linked to the pathogenesis 
of Down syndrome. A small number of studies have 
indicated that bone density in adults with Down 
syndrome is lower than in the general population and 
thus increasing the risk for osteoporosis, especially in 
the spine. Childhood BMD in individuals with Down 
syndrome was compared to a control group and found 
to be significantly lower. There was also found to be 
an approximately two year delay in the BMD 
reference curve126. Additionally this gene promoter is 
a transcription  factor binding site for the ATF-2, 
PPAR- Gamma-1 genes127. ATF-2 may be involved in 
trabecular bone formation and PPAR- Gamma-1 
promotes osteoclastic activity128,129. 

 

3.2.3 Head Bone Mineral Content GWAS 

The Manhattan plot for the GWAS of head BMC is shown in Figure 8.  
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Figure 8: Manhattan Plot for Head BMC 

 

For the head BMC phenotype, no significant signals were detected. Three total suggestive 

significance signals were observed. 
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Table 12: Suggestive Genes Associated with Head BMC 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone 
Biology 

rs11858767 SEMA6D 15q21.1 3.274e-07 The SEMA6D gene is stimulated during 
osteoclast differentiation through the receptor 
complex Pleixn-A1/TREM-2/DAP12 in 
osteoclast  cell precursors130,131. 

rs1495931 FBXW8 12q24.22 7.635e-07 The gene is expressed in embryonic bones. Null 
mutations resulted in small stature. It is 
suggested that FBXW8 loss of function reduces 
the contribution of bone and muscle to the 
overall growth in mice studies132. Another study 
of 19,000 people of European ancestry found 
that this gene was associated with an increase in 
hippocampal volume, this study links this 
association with the head BMC phenotype133. 

rs1495931 NOS1 12q24.22 7.635e-07 A polymorphism in this gene was associated 
with BMD in Korean postmenopausal women in 
a previous study134. This variant was found to 
have a 3.7 fold higher prevalence of 
osteoporosis at the femoral neck. 

 

3.2.4 Whole Body (Excluding Head) Bone Mineral Content GWAS 

The Manhattan plot for the GWAS of whole body (excluding head) BMC is shown in Figure 9. 
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Figure 9: Manhattan Plot for Whole Body (Excluding Head) BMC 

 

For the whole body (excluding head) BMC phenotype, no significant signals were detected. 

One suggestive significance signal was observed. 
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Table 13: Suggestive Genes Associated with Whole Body (Excluding Head) BMC 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone Biology 

2-87831421 RGPD2 2p11.2 1.046e-06 The RGPD2 gene promoter is a transcription factor 
binding site for GATA-1 and ER-alpha135.The GATA-1 
gene is believed to play a significant role in bone 
regulation as knockout studies have reported that mice 
deficient in GATA-1 may have the potential to rescue 
osteoporotic bone phenotype136. Estrogen receptors have 
been well studied in their impact on bone. The ER-alpha 
plays a vital role in mediating estrogen-dependent bone 
maintenance. It is believed that estrogen prevents bone 
loss via the ER-alpha in osteoclasts137. Additionally, ER-
alpha has been observed in osteoblasts and osteocytes, 
predominantly in cortical bone138,139. 

2-87831421 CD8A 2p11.2 1.046e-06 The CD8A gene promoter is a transcription factor binding 
site for STAT1140. 

2-87831421 PLGLB2 2p11.2 1.046e-06 The PLGLB2 gene promoter is a transcription factor 
binding site for FOXO1141. The FOXO1 gene is a positive 
regulator of bone formation in osteoblasts. This 
transcription factor has been found to be central to an 
intricate process that translates the signal of oxidative 
stress and serotonin to regulate bone remodeling142.  In 
mice, FOXO1 knockout has a severe effect on 
skeletogenesis and craniofacial development143,144. 

3.3 BONE GEOMETRY GWAS 

The significant and suggestive signals detected through the GWAS of femoral neck cross-sectional 

area, section modulus, and width are presented in Table 14. 
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Table 14: GWAS Findings for Bone Geometry Phenotypes 

Phenotype Number of 
Significant Loci 

Number of 
Suggestive Loci 

Implicated Genes 

Femoral Neck 
Cross- Section 
Area 

1 2 TRAT1 

Femoral Neck 
Section Modulus 

2 8 HOXD Cluster 
NAV3 

Femoral Neck 
Width 

0 3 --------- 

 

3.3.1 Femoral Neck Cross-Sectional Area GWAS 

The Manhattan plot for the GWAS of femoral neck cross-sectional area is shown in Figure 10.  

  

Figure 10: Manhattan Plot for Femoral Neck CSA 
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Figure 11: LocusZoom Plot for Significant Loci Associated Femoral Neck CSA 

Annotation of the genes surrounding significant (P-value = 3.512 x 10-8) signal rs73204757 

on chromosome 3 suggests that the TRAT1 gene (about 350kb upstream of the SNP) has the 

strongest relation to bone biology. However, the TRAT1 gene promoter is one of the  transcription 

factor-binding sites for STAT3 transcription factor145. STAT3 is expressed in bone and joint cells, 

including osteoclasts, osteocytes, osteoblasts, and chondrocytes. The STAT3 transcription factor 

is activated by a variety of growth factors and cytokines that regulate the differentiation of 

osteoblast and osteoclasts as well as the proliferation of chondrocytes. Additionally, STAT3 was 

found to be responsive to mechanical stimulators and may play a role in the mechanical signal 

transduction of bone146. Hyper IgE syndrome is caused by loss of function mutations in the STAT3 

gene. Patients with this genetic condition frequently experience osteopenia and pathologic 

fractures. Further, mice deficient in STAT3 have increased osteoclast activity yieled a decrease in 

bone mass147. This previous research could suggest that the TRAT1 gene might be involved in the 
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tightly regulated system of transcription factors that are necessary bone development and 

homeostasis. While this is a weaker biological story that other implicated genes, it is possible that 

genetic variation in the TRAT1 promoter could alter expression and activity of the STAT3 

transcription factor. 

Two suggestive significance signals were observed for the femoral neck cross-sectional 

area phenotype. Of particular interest is that loci including the NAV3 gene reached suggestive loci. 

This loci reached GWAS significance for the femoral neck section modulus phenotype and was 

found to have relevance to bone homeostasis because the NAV3 promoter includes a transcription 

factors binding site for STAT1 transcription factor, a well-studied regulator of osteoblast 

proliferation148. 

Table 15: Suggestive Genes Associated with Femoral Neck CSA 

Suggestive 
SNP 

Gene Chr. Suggestive 
P-value 

Gene Function Relevance to Bone 
Biology 

rs77689273 NAV3 12q21.2 5.795e-07 The NAV3 gene promoter is a transcription factor 
binding site for the STAT1 transcription factor149. 

21-9935897 TPTE 21p11.2 5.427e-07 The TPTE gene is involved in the signal 
transduction pathways of the endocrine function of 
the testes. This gene is overexpressed in bone and 
testes150. 

 

3.3.2 Femoral Neck Section Modulus GWAS 

The Manhattan plot for the GWAS of femoral neck section modulus is shown in Figure 12. 
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Figure 12: Manhattan Plot for Femoral Section Modulus 

 

          

Figure 13: LocusZoom Plot for Significant Loci Associated with Femoral Neck Section Modulus 
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Two signals reaching genome-wide significance were detected for the femoral neck section 

modulus phenotype. The locus indicating the strongest evidence of association (P=1.11E10-8) was 

identified as the region of chromosome 2q31.1 and contains a homeobox D cluster of genes. The 

homeobox genes encode a highly conserved family of transcription factors are involved in limb 

development and skeletal differentiation. Previous studies have shown that deletions of the HOXD 

gene cluster result in a dominantly inherited disease resulting in synpolydactyly and lib 

malformations151.  Cartilage and bone defects have also been characterize in detail with this 

deletion152. The first phase of HOXD gene expression is necessary for the forearm and upper arm 

long bone development. In later stages HOXD genes also play a crucial role in the development 

of the vertebrae153. Previous studies have implicated them in the specification of positional 

identity, as growth regulators, and involved in the timing of differentiation154. Further HOXD-13 

mutations result in the shortening of the long bones, including the femur, tibia, fibula, and the 

tarsometatarsals. Targeted disruption of HOVD-10 produced mice with hindlimb defects in gait 

and adduction due to alterations in the vertebral column and in the bones of the hindlimb155. Other 

studies targeting the HOXD-3 gene demonstrated that mutations of the gene produced mice with 

radically remodeled skull156. Many functional animal studies have proven this cluster of genes 

essential in bone development. 
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Figure 14: LocusZoom Plot for Significant Loci Associated with Femoral Neck Section Modulus 

 

The second significant signal was identified as, rs77689273, which neighbors the NAV3 

gene. This gene is a member of the neuron navigator family and is primarily expressed in the 

nervous system157. However, the NAV3 gene promoter is a transcription factor-binding site for 

STAT1 transcription factor149. Studies have shown that STAT1 is an inhibitor of osteoblast and 

osteoclast differentiation. Mice deficient in STAT1 were shown to have increased osteoclast 

activity, despite showing increased BMD and increase bone formation. These results implicate that 

STAT1 is involved in multiple pathways that independently regulate bone homeostasis148. The 

STAT1 gene is a critical regulator for both osteoclastogenesis and osteoblast differentiations in 

skeletal fracture healing. Again, while this is a weaker biological story that other implicated genes, 
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it is possible that genetic variation in the NAV3 promoter could alter expression and activity of the 

STAT1 transcription factor. 

Eight total suggestive significance signals were observed for the femoral neck section 

modulus phenotype. Genes found to have relevance to bone regulation are listed below. 

Of particular interest is the region including the TRAT1, which was implicated with the femoral 

neck CSA phenotype and reached suggestive significance for the femoral neck section modulus 

phenotype. Additionally a loci on chromosome 14 was determined to have suggestive significance, 

this region includes the BMP4 gene. This gene is a highly conserved, well-studied candidate gene 

that induces cartilage and bone formation158. BMP4 also binds with BMPR1A, which is located at 

another suggestive locus associated with femoral neck width. This complex induces 

osteoblastogenesis and regulates the expression of the SOST gene, which encodes sclerosin, a key 

regulator of bone homeostasis159. 
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Table 16: Suggestive Genes Associated with Femoral Neck Section Modulus 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone Biology 

rs470186 GALR1 18q23 2.616e-07 Functional studies of GALR1 found that the 
distribution of GALR1 was more extensive in reserve 
zone chondrocytes. The concentration of ligand for 
this receptor, galanin, was significantly increased in 
rats with rib fracture. This study strongly implicated 
Galanin and GALR1 as involved in cartilage growth 
plate physiology and fracture repair160. 

rs1583390 ASIC2 17q12 5.462e-07 Found to be abundant in specialized human bone 
cells, this gene was nominated as a candidate gene for 
sensing and regulating bone balances serum pH 
variations. pH sensing Acid- sensing channels 2 
(ASIC2) are found in both osteoblasts and osteoclasts 
and may explain how bone cell function can be 
modulated by environmental pH under physiological 
and pathological conditions161. 

rs72915032 ACYP2 2p16.2 8.288e-07 The ACYP2 gene is involved in hydrolysis of 
phosphoenzyme intermediates of different membrane 
pumps, particularly the Ca2+/Mg2+-/ATPase from 
sarcoplasmic reticulum of skeletal muscle162. This 
loci was identified as significant in previously 
published GWAS studies on the genetic determinants 
of heel bone properties, bone mineral density, and risk 
of fractures163. 

rs73204757 TRAT1 3q13.13 1.687e-07 The TRAT1 gene promoter is a transcription factor 
binding site for the STAT1 gene145. 

Rs73294246 CSNK1G3 5q23.2 9.949e-07 Identified in previously published association study of 
blood pressure and bone mineral density164. 

rs111708633 BMP4 14q22.2 7.829e-07 The BMP4 is a highly conserved member of the bone 
morphogenetic protein family, a family that 
stimulates growth and differentiation factors. The 
gene induces cartilage and bone formation. The 
BMP4 gene also acts in limb formation, tooth 
development, mesoderm induction, and fracture 
repair. A reduction in expression has been linked with 
a number of bone diseases including Fibrodysplasia 
Ossificans Progressiva, a dominantly inherited 
disorder of aberrant joint formation and heterotropic 
bone formation158,165–169. 
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3.3.3 Femoral Neck Width GWAS 

The Manhattan plot for the GWAS of femoral neck width is shown in Figure 15.  

  

Figure 15: Manhattan Plot for Femoral Neck Width 

 

For the femoral neck width phenotype, no genome-wide significant signals were detected. 

Three suggestive significance signals were observed for the femoral neck width phenotype. A SNP 

neighboring the BMPR1A gene was found to have a suggestive association. The BMPR1A gene 

interacts with many candidate genes of bone biology and many previous studies have demonstrated 

the impact BMPR1A has bone osteoblast activity, bone turnover, and age dependent bone 

development170. 
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Table 17: Suggestive Genes Associated with Femoral Neck Width 

Suggestive 
SNP 

Gene Chr. Suggestive  
P-value 

Gene Function Relevance to Bone 
Biology 

rs12982091 ZNF98 19q12 6.812e-07 The ZNF98 gene promoter is a transcription factor 
binding site for GATA-1171. 

rs75188850 BMPR1A 10q22.3 1.316e-06 The BMPR1A gene encodes the bone morphogenetic 
protein receptor which ligands to the transforming 
growth factor beta (TGF-β) pathway. When the 
BMPR1A / TGF-β complex is bound the SMAD 
protein complex is activated. Research investigating 
osteoblast-specific disruption of the BMPR1A gene 
yielded normal numbers of osteoblasts, however, 
irregular calcification, low bone mass, and reduced 
bone resorption and bone turnover. Studies have 
demonstrate critical and age-dependent roles for 
BMP signaling by BMPR1A in osteoblasts for bone 
remodeling. Similarly, deletion of BMPR1A gene in 
osteoclasts increases osteoblastic bone formation, 
suggesting that BMPR1A signaling negatively 
regulates osteoclast differentiation. Soluble 
BMPR1A protein inhibitor is now being researched 
as a therapy to stimulate bone formation and restore 
bone mass in mice with low BMD170,172,173. 

rs75188850 MMRN2 10q22.3 1.316e-06 The MMRN2 gene promoter is a transcription factor 
binding site for the STAT1 and PPAR-Gamma-1 
genes174. 

rs75188850 SNCG 10q22.3 1.316e-06 The SNCG gene promoter is a transcription factor 
binding site for the PPAR-Gamma-1 gene175.  

rs75188850 FAM25A 10q22.3 1.316e-06 The FAM25A gene promoter is a transcription factor 
binding site for the GATA-1, FOXO1A and ER-alpha 
genes176. 

rs75188850 AGAP11 10q22.3 1.316e-06 The AGAP11 gene promoter is a transcription factor 
binding site for the STAT1 and PPAR-Gamma-1 
genes177. 

rs75188850 GLUD1 10q22.3 1.316e-06 The GLUD1 gene promoter is a transcription factor 
binding site for the ER-alpha gene178. 

rs75188850 MINPP1 10q22.3 1.316e-06 The MINPP1 gene encodes an enzyme that removes 
3-phosphate from inositol phosphate substrates in 
order to regulate cellular levels of inositol 
pentakisphosphate. This conserved gene may play a 
role in bone development, specifically endochondral 
ossification. Although Minpp1 expression is highly 
upregulated during endochondral ossification, 
normal chondrocyte differentiation and longitudinal 
bone development were observed in Minpp1-
deficient mice179. 
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4.0  DISCUSSION 

Osteoporosis is a serious public health concern that results in increased bone fragility and risk of 

fracture for millions of individuals in the U.S. Though current research has focused primarily on 

bone health in the elderly, early bone health, including peak BMD attainment, is the strongest 

determinant of bone health later in life. Twin and family studies have consistently established a 

strong genetic component in peak BMD, though the specific genes influencing variation in bone 

development are largely unknown180. Moreover, the question of whether the genes influencing 

bone health during childhood are the same as those influencing bone health later in life is currently 

unknown. In this study we performed ten separate GWAS scans to detect genetic variants 

associated with ten different bone phenotypes including site specific bone mineral density, bone 

mineral content, and bone geometry measurements. We successfully identified five GWAS 

significant loci and nominated many potential bone specific genes. Implicated genes are believed 

to be involved in a variety of possible processes such as embryonic bone development, bone 

remodeling, and fracture repair, which is consistent with the prevailing view that the genetic 

etiology of bone health includes many genes acting through multiple pathways.  

 This study is one of the first studies to determine genetic associations with childhood bone 

health. We successfully identified four novel, significant genomic loci and overall, 30 loci 

significantly or suggestively associated with childhood bone health.  Our hypothesis generating 

investigation of common variants of the genome provides novel insights into bone biology, 

implicating several genes clustering in pathways influencing bone development. 

 Our results highlight the polygenic nature underlying bone development and variation in 

bone health and the essential role of several biological pathways that influence osteoporosis risk. 
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Pathways have been constructed, utilizing previous literature, in order to propose interactions 

between the genes implicated in this study and well known candidate genes. Further these 

pathways illustrate how changes or variations in our implicated genes can lead to changes in bone 

health during development. 

Below is a table of well-known candidate genes of bone biology that are believed to also 

be interacting with the implicated genes of this study. 

Table 1: Candidate Genes of Bone Development for Previous Literature 

Candidate Gene Proposed Function 
RANK/RANKL RANK/RANKL signals the formation of osteoclast precursors, 

activation, and survival in normal bone remodeling 5,26,27. Mice 
deficient in RANKL and RANK develop osteopetrosis because 
of the inability to form osteoclasts28,29. 

OPG This gene acts as a negative regulator of bone resorption. 
Overexpression blocks osteoclast formation inducing 
osteopetrosis. Gene knockout results in enhanced bone 
remodeling and bone loss, resulting in osteoporosis5. 

COL1A1/2 Encode matrix proteins. The expression of these genes and the 
balance of collagen fibrils are essential for proper formation of 
bone. Poor collagen quality results in reduced bone strength. 
Mutations in the COL1A1 gene results in osteogenesis 
imperfect, a genetic condition with a phenotype of extremely 
severe osteoporosis8,20,21. 

LRP5 A receptor for canonical Wnt signaling. Wnt signaling is 
involved in processes including apoptosis, limb development, 
and osteoblast and chondrocyte differentiation. Knockout mice 
have shown low bone mass is a result of decreased osteoblast 
proliferation13,30.  

TGF-β1 Abundant in bone matrix, the released TGF-B1 protein is an 
essential controller of osteoblast proliferation and 
differentiation. Gene knockout results in osteopenic 
phenotype31.  

Osterix Transcriptional regulator expressed in chondrocytes and in 
osteoblasts. Targeted inactivation of this gene led to the 
complete absence of bone synthesis throughout the skeletal and 
a loss of most markers of bone differentiation20.  
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VDR The first candidate gene to be investigated in the osteoporosis 
field, the VDR gene encodes the vitamin D receptor, which 
allows the body to metabolize vitamin D 21. 

ESR1 Encoding estrogen receptor, believed to have a role in 
modulating osteoclast differentiation and function. Several 
polymorphisms in this gene have been connected with the rate 
of bone loss after menopause20. 

TNF-α TNF-alpha is believed to reduce osteoblast mediated 
mineralization while simultaneously inducing osteoclast 
differentiation 32,5. 

RUNX2 Key transcription factor that induces proliferations and 
differentiation into preosteoblasts and mature osteoblasts 
and therefore bone formation2. 

SOST  The SOST gene encodes the protein sclerostin in osteocytes. 
The main role of this protein is to inhibit bone formation by 
interfering with Wnt signaling. Sclerostin may also promote 
apoptosis in bone cells, further inhibiting bone growth.21. 

SOX9 A critical transcription factor for BMP1 induced chondrocyte 
differentiation and osteoblast activity33.  

SMAD1 This gene is believed to play a key role in bone development 
and postnatal bone formation. SMAD proteins control the 
expression of RUNX234. 

Table 1 Continued
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 Figure 16: Pathway of COL11A1 Interactions 

COL11A1 is directly and indirectly involved in numerous pathways throughout the cell. 

First, COL11A1 is believed to regulate osteoblastogenesis and terminal osteoblast differentiation. 

The protein also reacts with BMP2 and BMP4, key components in osteoblast production and the 

translation of sclerosin, which is a critical regulator of osteoblast activity. Mechanical stress is also 

hypothesized to inhibit collagen formation. COL11A1 inhibits PARP1, of which the enzymatic 

activity contributes to reduced bone mass. Lastly, COL11A1 promoter is a transcription factor 

binding site for PPAR and SOX9. SOX9 is involved in the activation of COL2A1 and PPAR is 

involved in the regulation of HOXD10 and HOXD13123,125,181–192. 
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 Figure 17: Pathway of COL13A1 Interactions 

 

COL13A1 is indirectly involved with the Vitamin D receptor, a candidate gene in bone 

biology. COL13A1 is also believed to be indirectly involved in the calcium homeostasis process. 

COL13A1 interacts with COL11A, which as described above, inhibits osteoblast differentiation. 

COL13A1 may lead to osteoblast differentiation and therefore increase bone formation97,99,193–195. 
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 Figure 18: Pathway of HOXD Gene Cluster Interactions 

 

The Homeobox D cluster of genes is an evolutionarily conserved family that is involved in 

limb development and skeletal differentiation. HOXD proteins form a complex with SMAD1 that 

impacts the expression of RUNX2, a vital regulator of osteoblast proliferation and differentiation, 

indirectly regulates BMP2 and BMP4, key components in osteoblast production, and reacts with 

SHH, known to enhance bone regeneration. BMP4 gene protein also acts as a binding site for 

HOXD13 to influence RUNX2 expression and therefore bone formation2,151,155,196–200. 
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 Figure 19: Pathway for TRAT1 and NAV3 Gene Interactions 

 

The promoter of the TRAT1 gene is a transcription factor binding site for STAT3. STAT3 

activates BMP2, a key regulator of bone homeostasis. STAT3 also creates a complex with SMAD1 

and p300, which can stimulate osteoblast activity, chondrocyte production, as well as 

osteoclastogenesis. The promoter of the NAV3 gene is a transcription factor binding site for 

STAT1. STAT1 can negatively regulate osteoblast and osteoclast activity during bone 

development. STAT1 also reacts with RUNX2, which induces osteoblast differentiation145,147–

149,201. While these two implicated genes have a weaker relevance and biological connection to 
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bone development compared to other nominated genes, these genes have the potential to impact 

bone variation. 

 Our study nominated five significant loci, four of these loci are novel and have not 

previously been implicated in GWAS studies of child or adult bone health. The significant signal 

for hip BMC observed for rs12564863 on chromosome 1q21 has previously been identified in a 

GWAS meta-analysis associated with BMD and risk of fracture in adults. These results suggest 

that the genetic contributors to bone health and normal bone variation may change in their 

regulation of bone development over time however, some candidate genes may play a significant 

role throughout the lifespan.  

 Overall, the results of this study forward our understanding of the genetic contributors to 

bone health early in life.  Investigations, such as this, into the genetics of bone development in 

children may also yield insight into the genetic factors that contribute to bone health later in life. 

This research has major public health significance because this information may ultimately aid in 

determining if some individuals have a high genetic risk for poor bone health. This idea could lead 

to screening programs aimed at specifically identifying children that have a genetic predisposition 

or genetic risk factors for osteoporosis later life. In the high-risk children that may be identified, 

effective, targeted interventions could be implemented early in order to promote optimal bone 

health before peak bone mass is reached. 

4.1 LIMITATIONS 

While this study has many strengths, including well-defined bone phenotypes, high-quality GWAS 

data, and extensive gene annotation, our study has limitations.  A major limitation is the lack of 
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replication with a small sample size. This issue is partly lessened by the compelling biological 

evidence of the implicated genes in mechanisms related to bone health. However, this study 

included 296 children with an average age of 5 years. Observed genetic associations need to be 

replicated in independent data sets. Additional research with a larger sample will allow our 

findings to be confirmed, identify any missed loci, and many give more information on the effect 

size of each variant. Due to the small sample size, this study suffered from low power to detect 

any particular variant, therefore we most likely missed other true associations. Areas of suggestive 

significance would also benefit greatly from a larger study to see if in fact associations with those 

loci are statistically significant. 

Another potential limitation to this study is the possible influence of un-modeled sources 

of phenotype variation in the GWAS analysis. Covariates included age, height, sex, weight, and 

principle components. Future analysis could include the lifestyle data recorded for the children as 

part of the Iowa Bone Development Study. These lifestyle data include diet and exercise 

measurements. Because of the known impact of a balanced diet, including essential vitamins and 

minerals for bone development, and physical activity on bone health, these factors surely influence 

bone phenotype measurements. Including these data in our analysis may increase the power to 

detect genetic factors by reducing phenotypic variance due to environmental factors known to 

contribute to bone health. On the other hand, inclusion of additional covariates would consume 

additional degrees of freedom in the statistical model, thereby reducing power to detect genetic 

association.  Each approach has costs and possible benefits, and it is not known whether or not 

adjustment for additional sources of phenotypic variance would ultimately benefit the study. 

Nevertheless, omission of lifestyle data or other un-modeled environmental sources of phenotypic 

variation would not bias the present analysis (i.e., would not cause false positive associations) 
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because the constitutional genome is inherited and therefore not susceptible to confounding by 

environmental factors. 

Lastly, the SNPs identified in this study are not necessarily causal variants. It is likely that 

some or most of the SNPs identified are in linkage disequilibrium with the underlying causal 

variants. It was our goal to determine plausible causal genes underlying the GWAS signals. 

However, follow-up studies are needed to verify the nominated genes and to identify the causal 

variants.  Ultimately, functional analysis of the genes and causal variants will be required in order 

to understand the biological mechanisms through which they exert their effects. 

4.2 FUTURE WORK 

Because there are still many unanswered questions and unknown factors in bone biology and 

specifically the genetic regulators that contribute to bone health, there are many possible future 

directions for this research. Possible directions are outlined below. 

4.2.1 A Priori Research 

As the GWAS has matured as an approach for studying complex disease, several methods have 

been proposed to more effectively utilize the wealth of data created. These methods include a priori 

information, such as gene expression and biological function202. While this information was 

included in this study by annotating top hits, future studies could include a more in depth analysis 

of a priori candidate gene information. This information will allow us to identify all of the previous 

implicated loci and candidate genes related to bone health and determine the significance of those 
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genetic variants with our GWAS data. This method not only allows us to analyze the significance 

of well-known candidate genes in child populations but also acts as positive control measure. If 

we are able to confirm associations with known candidate genes, then we can interpret our findings 

of novel loci and implicated genes with more confidence. 

4.2.2 Genetic Risk Score 

While GWAS is hypothesis generating and aiming to determine genes associated with variations 

in bone health, future work could incorporate this information to predict the risk of poor bone 

health and osteoporosis later in life. Several recent publications have utilized loci associated with 

adult bone mineral density to develop a genetic risk score algorithm that calculates the number of 

genetic risk variants for bone health. These genetic risk scores were then used to investigate the 

effect of reported GWAS-implicated BMD variants in children. These studies found that a higher 

genetic risk score (associated with a higher number of BMD-lowering variants) was negatively 

associated with BMD and BMC during childhood and adolescence and was associated with a 

slower rate of bone accrual during adolescence36. Rather than detecting single variants, with 

potentially small effect sizes, associated with poor bone health to identify children with a genetic 

predisposition to osteoporosis, calculating genetic risk scores could be more effective. 

 Future analysis could use this study’s genome-wide significant loci and suggestive variants 

to develop a genetic risk score. Statistical analysis would determine if bone phenotype 

measurements were significantly different with a corresponding genetic risk score. 
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4.2.3 Longitudinal Data 

This study focused on bone health for one target age, with the average age of 5 years, ranging from 

4 to 7 years old. Future studies could include GWAS performed on the same bone phenotypes at 

several different ages of these children. As the Iowa Bone Development Study is a longitudinal 

study, this information would be readily available. This research could be repeated utilizing bone 

measurements at ages 11, 15, and 20 to determine if the genetic variants with a strong significance 

have the same the same significance at different ages at bone accrual rates. This information would 

shed light on the tightly regulated genetic pathways that influence bone health throughout the 

childhood and adolescence and the possible differences of genetic factors at different 

developmental periods. Moreover, longitudinal analysis methods, that simultaneously model the 

trajectory of bone phenotypes over time, could also be used for gene-mapping of the changes in 

bone health from childhood to adolescence to adulthood. 

4.3 CONCLUSIONS 

In summary, this study aimed to identify genetic variants that contribute to the variation in bone 

health in children. Research on the genetics of bone health has predominantly been performed in 

adult populations, however, it is our hypothesis that the genetic regulators of bone health may be 

stronger in childhood during a higher amount of bone production, bone accrual, and in the lack of 

many environmental factors that influence poor bone health in adults. To identify variants and 

genes implicated in childhood bone health, we performed separate genome-wide association 

studies for ten bone health phenotypes. Five genome-wide significant (P ≤ 5 x 10-8) and twenty-
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eight suggestive (P<10-6) loci were identified in total. Associated loci included several genes with 

plausible roles related to bone health, such as COL11A1, COL13A1, TRAT1, NAV3, and a HOXD 

gene cluster. Implicated genes may represent significant roles in the converging pathways that 

regulate BMD, embryonic bone development, and bone remodeling. Furthermore, understanding 

the genetic determinants of bone health during childhood may have implications across the 

lifespan.  Though osteoporosis is usually viewed as an age-related disorder, risk of osteoporosis is 

impacted by events occurring much early in life, including phases of bone mineral acquisition 

during youth. Therefore, identifying the genetic contributors for early skeletal health, such as genes 

implicated in this study, may ultimately lead to screening programs to identify children with a 

genetic risk factors for poor bone health and targeted interventions for those at high risk, to 

optimize bone health in adolescence, promote management of bone health across the lifespan, and 

lower risk for osteoporosis later in life. 
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5.0  PUBLIC HEALTH APPLICATION 

As the knowledge of bone biology and the genetic contributions of bone health increases, efforts 

must be made to incorporate this understanding into the clinical realm. Incorporating genomics 

into clinical and public health practice is a way to identify high-risk individuals, emphasize 

prevention of disease, and promote the overall health of the community. If genetic risk factors for 

osteoporosis and poor bone health can be identified then a population-based health intervention 

could be implemented to identify children with a genetic predisposition in order to maximize the 

benefits of nutritional and physical interventions to optimize peak bone mass achieved during 

young adulthood. This chapter aims to propose a pilot childhood bone health screening program 

and intervention program for individuals found to be at higher risk. 

Bone health is particularly amenable to a population- and community-based intervention 

because 1) bone fractures and osteoporosis affect a large portion of the population, 2) there is a 

widespread lack of knowledge about osteoporosis prevention and when peak bone mass is 

acquired, 3) state and local governments have incentives to promote this approach due to the cost 

of treating bone disease, and 4) the benefits of community based interventions extend to other 

areas of health, including diet and physical activity203,204.  
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5.1 PREVIOUS EXAMPLES OF PUBLIC HEALTH GENETIC SCREENING 

PROGRAMS 

Public health genetic screening programs have been utilized for decades in order to identify 

patients and families at risk for genetic conditions in order to change medical management and 

optimize the prognosis. The most prominent example of public health genetic screening is 

Newborn Screening (NBS). NBS screens for genetic conditions that negatively impact a child’s 

long-term health or survival. Early detection, diagnosis, and treatment can prevent death or 

disability in identified children and can enable children to reach full potential. NBS identifies more 

than 6,000 babies with genetic conditions each year and represents the “public health success story 

of this decade205.” The Recommended Uniform Screening Panel (RUSP) must approve conditions 

screened for with NBS. Evaluation for additions to NBS is based on a set of criteria that includes 

the natural history of the disorder, availability and accuracy of screening, availability of treatment, 

cost- effectiveness, clinical validity and utility, and time-sensitive nature206.  This set of criteria is 

used as a benchmark for many public health programs to determine need and effectiveness. More 

evidence is needed to prove that a bone health screening program meets this set of criteria. 

However, NBS provides a successful example for future public health screening programs with 

the goal of early intervention and treatment in order to benefit long- term health. 

 Another recent public health genetic screening initiative includes Familial 

Hypercholesterolemia (FH) screening. FH is an autosomal dominant genetic condition 

characterized by abnormally high concentrations of LDL cholesterol, which causes a 

predisposition to premature heart disease and death. FH is one of the most common inherited 

disorders, and early diagnosis can initiate life style changes and the most effective disease 

management earlier. Overall, estimates are that less than 25% of those affected with FH are 
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diagnosed and the majority remains untreated or improperly treated. FH screening, through 

cholesterol screening, is a key public health program that aims to identify patients with FH, begin 

proper medical management, improve prognosis, reduce disease costs, and extend the program to 

cascade screening in order to other family members with this genetic risk factor to heart disease207. 

A recent meta-analysis of published data on cholesterol levels in FH individuals showed that when 

LDL was measured between 1 year and puberty, 96% of those with FH were detected with a false-

positive rate of 1%208. Due to the evidence of early identification and management, the American 

Academy of Pediatrics (AAP) has recently cholesterol screening between the ages of 9 and 11 

years to the schedule of screening and assessments for well-child visits209. FH screening is a nice 

parallel for bone health screening, specifically in children, because FH and osteoporosis do not 

necessarily cause serious health concerns from an early age, but early management and prevention 

can prevent serious outcomes later in life. 

 Lastly, another public health screening program that could serve as an example for a 

proposed bone health-screening program is universal immunohistochemistry (IHC) screening of 

all colon and uterine tumors. Universal screening of all newly diagnosed colon and uterine cancers 

through immunohistochemistry is a way to identify patients that may have Lynch syndrome, one 

of the most common hereditary cancer syndromes, in which 95% of affected individuals are 

undiagnosed210. IHC screens for a germline mutation in a mismatch repair gene which causes 

increased lifetime risk for cancers including colon, uterine, stomach, ovarian, bowel, as well as 

other types211. Diagnosis, through gene sequencing following screening, of this condition through 

universal screening can give insight into the potential risk for other types of cancer for the patient 

and family members, allowing for increased screening and possible surgeries to either prevent 

cancer or detect cancer early. While this screening program is different from the previous examples 
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because it is a screening tool for individuals that have already developed cancer, it is useful in 

identifying individuals with a single gene disorder that can be affected by environmental influences 

and early medical management.  

 NBS, FH, and Lynch syndrome screening are all included on the Centers for Disease 

Control and Prevention Office of Public Health Genomics Tier 1 List of genomic applications. 

This department aims to provide “timely and credible information for the effective and responsible 

translation of genome- based discoveries into public health and health care”212. A tiered system is 

used to distinguish between methods and tests of sufficient evidence of validity, clinical utility, 

promising evidence, and insufficient evidence. Tier 1 is the highest level of evidence, in which 

these tests inform are required to inform medical management, testing is covered by insurance, 

and clinical practice guidelines are based on systematic review supporting these tests. A genetic 

screening program for bone health in children would currently most likely fall under the Tier 3 

level. This is because there is insufficient evidence of cost and clinical effectiveness. In order to 

obtain evidence, pilot studies need to be initiated, studying the best protocol for a program such as 

this212. 

 There are many examples of public health genetic screening programs that provide models 

to build a bone health genetic screening program off of. These past examples include a focus on 

health promotion and disease prevention through the ability to identify individuals suspected of 

strong genetic risk factors in order to begin interventions and treatment early to in turn reap the 

most benefits and optimize health prevention later in life. These programs also have a strong 

emphasis on the implications of other family members and cascade family strategies. The core 

goals of these past programs can be easily applied to childhood bone health and implementing a 
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genetic screening program, bringing the understanding of the genetics of bone health into the 

practice and demonstrating the clinical validity of this information. 

5.2 PROPOSAL FOR BONE HEALTH SCREENING 

While there are still many unanswered questions regarding the genetics of bone biology and the 

variation in bone health, the increase in understanding in the field has increased dramatically in 

the past decade and could be used in the near future to improve bone health in children in order to 

prevent bone disease later in life. This approach emphasizes disease prevention early in life rather 

than disease treatment later in life, which is direction of the majority of research and care for 

osteoporosis. 

This proposal for a bone health screening program would be a future research study that 

utilizes well known SNPs associated with variation in BMD, BMC, and bone geometry, as well as 

the genome-wide significant results of this current study. This proposed program would also act 

to inform public health practice and guidelines for management of children with genetic risk 

factors for poor bone health.  

The goals of a bone health screening program include 1) identifying children at risk for 

poor bone health later in life, 2) begin interventions early in childhood to optimize peak BMD, and 

3) provide skills and knowledge to high risk children in order to maintain healthy bones over time. 

A calculated genetic risk score will be used to identify children with higher risk for poor 

bone health. This genetic risk score will take into account the number of SNPs (identified in 

previous literature as well as this study) associated with low BMD and BMC and poor bone 

geometry, sex, race, family history of bone disease, and age. A threshold will be established and 
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children with a genetic risk score above that threshold will be considered “high-risk” and will be 

recommended for further interventions. The approach of a genetic risk score was utilized in another 

recently published study36. This study used adult identified BMD-lowering variants and generated 

genetic risk scores to determine if previously identified variants in adults are associated with 

variation in BMD during childhood. A higher genetic risk score was found to be negatively linked 

with BMD and BMC at the age of 13 and was associated with a slower rate of bone accrual between 

the ages of 13 and 17 years36. While this study did not include sex or multiple site phenotypes, 

clinical validity was proven between a calculated genetic risk score and identifying individuals 

with poorer childhood bone health. 

The genes and SNPs tested to determine a genetic risk score should include well-studied 

candidate genes and loci in adults as well as the genes and loci implicated in studies focused on 

children. Because the current research on candidate genes associated with bone health has been 

primarily focused on the elderly population and research on genes involved in bone development 

in children still needs further investigation, genes of interest will change as knowledge and 

understanding of genetic regulators of bone development increases as well as when we better 

understand the difference in genetic contributors to bone homeostasis at different periods of life. 

However, for the purpose of this pilot study, the panel of genes will stay the same; adjustments 

can be made in subsequent applications. Rapid changes in the genes on available panels is however 

a challenge for genetics in setting and is not something necessarily unique to bone genetics or this 

pilot study. 

This proposal is for a future program, therefore there are significant limitations and 

assumptions being made currently. Assumptions that must be made in order for this program to be 

successful include: 
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1. The genes sequenced are significant and impactful in childhood bone health. 

2. There are no other significant and impactful genes that affect childhood bone 

health. 

3. A Next Gen Sequencing Panel (NGS) can be built to include well-known candidate 

genes and SNPs for bone health in adults and children. 

4. Variations and mutations that are associated with lower peak bone mass are known 

and can be identified via NGS 

5. The detection rate for these variations and mutations is over 90%. 

6. The sensitivity, specificity, and positive predictive value for these variations and 

mutations are significant for poor bone health later in life. 

It is clear given the above assumptions that need to be met that this program is for a future time. 

More research is needed to make this proposal a reality. However, given the significant public 

health burden of osteoporosis and the popularity of research on the genetics of bone health, this 

proposal may be a reality in the near future. If the above assumptions could be met and this 

screening program could be implemented, the associated interventions that would be 

recommended are outlined below. 

 The proposed pilot research study will take place in the city of Pittsburgh. The 

population will include five hundred healthy children; age 5 years that are seeing Pittsburgh 

primary care physicians (PCPs) for checkups and wellness visits. For the purpose of this 

proposal, the age of 5 years was decided because of the age of interest studied in the GWAS 

previously. Deciding on the age to target for a screening program proved to be a complicated 

matter. We want the program and interventions to begin early enough that skills are able to 

become habit, but also at an age when children will be compliant to diet and exercise changes.  
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Previous intervention studies have targeted children as young as seven years. Again, the decision 

to target children age 5 years is based on the population studied for our previous research, 

however, age may need to be adjusted in subsequent applications. 

 In order to reach this population, education of Pittsburgh PCPs on the genetic risk 

factors of poor bone health and the effectiveness of interventions during childhood will be 

needed. This educational plan for the local providers will include a baseline survey of current 

PCP knowledge on bone health as well as a continuing education online module for PCP’s 

focused on the background issues of this program. Print material for all families meeting the 

above criteria will be created to give families information on 1) general strategies to maintain 

and optimize bone health during childhood and in adulthood, 2) genetic testing and associated 

benefits and risks, and 3) the recommended interventions of the program to optimize bone health. 

This print material will be provided to all local PCPs and will be handed out by the PCPs. 

Families that are interested in the screening program will schedule a pre-test counseling session 

with a genetic counselor prior to any genetic testing or the calculation of a genetic risk score. 

Children who have undergone genetic testing and are found to have a high genetic risk score will 

be recommended to participate in the interventions outlined below. 

5.3 PROPOSED INTERVENTIONS 

While a number of population based interventions have been implemented and studied to promote 

bone health, very few have been targeted at children, and even fewer have combined so many 

factors, including education, diet, and physical activity. Previous examples of interventions 

focused on bone health have also been established on a community level without any associated 



  81 

screening program to identify those in the community at a higher risk based on race, genetic risk 

factors, or family history of bone disease. This proposed intervention intends to include as many 

of the factors that contribute to osteoporosis as possible in order to provide the most effective and 

all-encompassing prevention strategy. 

Children identified as high-risk for bone disease later in life, through the above screening 

program, will be recommended to participate in this intervention program. Those that wish to 

participate will be instructed to undergo baseline BMD, BMC, and bone geometry measurements 

using DXA. Additionally a survey will be issued to the child’s parents to assess the child’s activity 

level, diet, and any exposures in the household. Following the baseline measurements, children in 

this program will be scheduled sessions to meet with a nutritionist and a physical trainer. 

The first aspect of this intervention program is to ensure a healthy and sufficient diet rich 

in the nutrients need for healthy bones. As outlined in the Introduction chapter of this paper, 

vitamin D, calcium, vitamin K, potassium, and magnesium are necessary for strong bones. 

Additionally limiting salt intake, caffeine, and phosphate can promote favorable bone health52. In 

order to educate families and give the tools to promote and practice this healthy diet, this program 

intervention includes sessions with a nutritionist once a month for the first three months of the 

program and then once every four months following that.  

Previous studies have demonstrated the effectiveness of dietary strategies on bone health. 

In one study, the DASH (Dietary Approaches to Stop Hypertension) diet, a calcium rich diet that 

is made up of mostly fruits, vegetables, and low fat dairy products, significantly reduced bone 

turnover, improved BMD, and improved calcium metabolism in adults213. Another study 

investigating the effects of a 30-month dietary intervention, combined supplements of dairy 

products fortified with calcium and vitamin D3 alongside nutrition and lifestyle counseling, on 
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BMD of postmenopausal women. The result of this study demonstrated that this dietary 

intervention significantly increased arm, spine, and total body BMD214. Based on the evidence of 

previous intervention programs, nutrition counseling is a key aspect of this program that will not 

only promote healthier bones but also have benefits towards children’s overall health and hopefully 

have a positive impact on the family as a whole. 

The second aspect of this intervention program is to increase the physical activity of 

children. Weight-bearing physical activity initiates bone remodeling and bone formation, making 

bones stronger as a result. Weight-bearing physical activity includes actions such as walking, 

running, jumping rope, playing tennis, hockey, and basketball, dancing, hiking, and lifting weights. 

It is recommended that children and adolescents should have sixty minutes of physical activity 

every day and that bone-strengthening activities should be done at least three days a week215. 

To maximize the benefit of physical activity on childhood bone health, this program will 

include group family physical training classes. These classes will allow for six family groups each, 

each group including any interested family member, and will occur once every two weeks for the 

first four months and then once per month for the following six months. The goals of these classes 

are to promote habitual physical activity, provide examples of bone-strengthening activities, and 

promote exercise as a family activity. At least one parent is required to be present with the child 

at each class and there is an expectation that the families will continue exercises in between classes 

and after the classes are finished. 

Many previous studies have demonstrated the positive impact of exercise on bone health. 

One previous intervention program implemented in Sweden studied the influence of a three year 

school exercise program, in which children had physical education for 40 minutes each day, and 

results showed that this moderately intense exercise program in 7-9 year old children increased 
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bone mass, BMC, without increasing fracture risk216. Another study studied the relationship 

between habitual physical activity and bone geometry in premenarcheal girls. This study showed 

that physical activity affects bone health in a dose-depended manner. Girls that participated in a 

high level of physical activity had greater bone thickness, cross-sectional area, BMC, and BMD 

when compared to their physically inactive or moderate active counterparts. Additionally studies 

have shown that children and young adults who participate in intensive weight- bearing activity in 

elite sports have significantly greater BMD than less active controls and that the effects of activity 

on bone are site specific59. 

For this pilot study, we have elected not to include a control group to determine 

effectiveness of the interventions. Determining a suitable comparison group was not a 

straightforward issue. Several options of a control group included children determined to have a 

low genetic risk score that continue with the proposed interventions, children that are determined 

to have a low genetic risk score but are found to have poor bone health, through baseline 

measurements, that continue with the proposed interventions, or children determined to have a 

high genetic risk score that do not participate in the proposed interventions. Because each of these 

possibilities would be comparing the effectiveness of the intervention in a specific genetic risk 

score group or would be withholding beneficial interventions from those at high risk, rather than 

measuring the effectiveness of the interventions when children at risk are identified and participate 

in interventions early in life, we elected not to include a control group. 

In order for this intervention program to be successful, several assumptions were made. 

These assumptions include: 

1. These interventions will improve bone health outcomes of children with high 

genetic risk factors. 



  84 

2. Skills and knowledge initiated at this age will be able to become habitual and 

implemented into life routine. 

3. Guidelines have not yet been established for the recommendations of 

management of children found to be genetically predisposed to poor bone health.  

4. This program would be a research study in order to inform public health practice 

and guidelines for management of at–risk children. 

5. Families will comprehend the education provided in nutrition counseling and 

physical training sessions and will activity try to implement these skills into daily 

life. 

6. Expected child bone growth curves are available for comparison. 

5.4 INTERVENTION OUTCOMES AND EVALUATIONS 

The projected outcomes of these interventions and the ways in which the impact of these 

interventions will be measured and evaluated are outlined in the Logic Model below (Figure 16). 

Short term goals are that 60% of families take the provided print materials with information on the 

bone health program, 30% of families schedule a genetic counseling session for pre-test 

counseling, and 10% of families decide to participate in the program within one year of the 

program’s initiation. Short term outcomes will be evaluated by the uptake of print materials, the 

number of scheduled genetic counseling sessions, and the number of families that undergo baseline 

BMD measurements, genetic testing, and complete a lifestyle survey.  
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Figure 20: Logic Model 
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Medium-term goals are that 60% of children found to have a higher genetic risk score begin 

the planned interventions of meeting with a nutritionist and physical trainer, and that participating 

children will attend at least 80% of the program events. Reminder calls and messages can be used 

to remind families of program events. The medium-term goals are projected to be met within 2 

years of the program’s initiation. Medium-term outcomes will be evaluated through nutritionist 

and physical trainer schedules and the rate of no-shows or cancelations.  

Long-term goals are that 70% of the children undergoing the recommended interventions 

will show at least a 10 percentile increase in bone mineral density after participating in the program 

for 1 year. Further, 20% of the children that began the program will continue to maintain healthy 

nutrition and physical activity promoted by the intervention. Ultimately, it is aimed that 70% of 

the children who continue the promoted lifestyle practices will optimize peak BMD by 20 

percentile of their expected BMD. These goals are based on results of previous interventions and 

the increase seen in treatment groups. Long-term outcomes will be assessed through BMD 

measurements performed at two and three years following the initiation of the program in 

comparison to the baseline measurements. This data will also be assessed for trends or differences 

at different ages and for gender. Additionally, a post survey will be issued to determine if the 

intervention skills are still utilized. Lastly, a follow-up stakeholders meeting will be conducted to 

assess overall attitudes towards the program and benefits and challenges that were felt by the 

community. 

A stakeholders meeting will also be planned following sort, medium, and long-term goals 

to assess any changed attitudes or concerns to the program and the impact on the community. 
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5.5 ROLES OF A GENETIC COUNSELOR 

As the genetic field continues to learn more about the genetic contributions of multifactorial traits 

and diseases, the roles of genetic counselors must adapt to meet families’ concerns, address trends 

in direct-to-consumer testing, and be able to speak to recurrence risk of complex disorders. For the 

purpose of genetic screening to identify children with a high risk for bone disease later in life, there 

are three main skills that must be slightly adapted to meet the unique needs of such a program; 

these skills include disease education, preservation of patient autonomy, and informed consent. 

Multifactorial disease education is an essential skill for genetic counselors in any setting; 

however, education is largely done on well-known genetic conditions in which the cause, risks, 

medical management, and familial implications are well studied. The genetics of bone 

development and the genetic contribution to osteoporosis is lacking in each of the above areas; the 

interactions of genetics and environment are still largely unknown, the predictive value of genetic 

risk factors is not known, medical management for children with a genetic predisposition is not 

established, and we cannot speak to familial risks of osteoporosis or the patterns of inheritance of 

genetic variants. Counselors should be transparent about the many areas of bone biology that are 

not clear during pre-test counseling. There should be a clear and understandable illustration of 

multifactorial inheritance for patients to understand that genetic risk factors and lifestyle factors 

are both important when discussing risk of osteoporosis. Pre-testing counseling is also a time in 

which better bone health practices for all members of the family, such as exercise and nutrition, 

can be shared. While osteoporosis is not often thought to be a disease explained by genetic 

counselors, counselors have the skill and expertise to clearly explain the genetic contributors and 

environmental factors that pose a risk to patients. 
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Because this program would act as a research study with fairly extensive commitments 

including x-rays, genetic testing, and sessions with several specialists, participant autonomy must 

be stressed. Parents have the ability to decide to opt-in for genetic test and have the ability to opt-

out at any time during the screening or intervention program. Again, the training of genetic 

counselors prepares them to consent, with a nondirective nature, families into studies and clearly 

explain the benefits and risks that should be considered. 

Lastly, informed consent is required for any patient pursuing genetic testing or participating 

in a study. This particular screening program does involve some important risks and considerations 

that parents should be aware of before deciding to pursue genetic testing, even if for variants that 

affect bone health. First, this screening program is technically genetic testing of minors for an adult 

onset disease. Genetic testing of minors for adult onset disorders is not recommended until the 

child can make their own decisions, unless there would be a change in medical management. While 

there is no treatment that would be initiated based on the genetic testing results, interventions that 

have been proven to improve bone health before peak bone mass can have significant impact on 

bone health later in life, improving the overall health and prognosis later in life. Knowing if there 

is a genetic predisposition to bone disease is only helpful if appropriate interventions are utilized.  

Another important thought that needs to be considered with families interested in the screening 

program is the potential familial implications. A high genetic risk score may suggest that other 

family members also have a genetic predisposition to osteoporosis. While this could mean other 

family members, particularly older individuals, are evaluated earlier for poor bone health, 

interventions for older family members may not be as effective as when the interventions are 

implemented during childhood. However, a low genetic risk score does not mean that there is no 

risk of osteoporosis and strategies can still be implemented to maintain bone health. These are 



  89 

several important issues to a bone health genetic screening program that must be conveyed to 

families before they participate in the program, and a critical role of a participating genetic 

counselor is the ability to explain these issues to families and ensure informed consent is being 

prioritized. 

In summary, osteoporosis represents a major public health concern, and while efforts are 

currently more focused on treatment of the disease later in life, prevention strategies should begin 

during childhood in order to maximize peak bone mass. Individual variation in bone health and 

peak bone mass is largely controlled by genetics in addition to environmental and behavioral 

factors. If the genetic variants that are associated with poor bone health, there is a possibility of 

initiating a public health genetic screening program aimed at identifying children with genetic 

predispositions to osteoporosis later in life. Identifying these children will allow us to implement 

effective interventions, such as promoting healthy nutrition and physical activity, early, optimizing 

the benefit while bone mass is still being formed and developed. Ultimately, the combination of a 

genetic screening program and corresponding intervention program aims to utilize the genetics of 

bone disease in osteoporosis prevention. 
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APPENDIX A:  GENES NEIGHBORING GWAS SIGNIFICANT LOCI 

A.1.1 Hip BMD 

HKDC1, HK1, TACR2, TSPAN15, NEUROG3, C10ORF35, COL13A1 

A.1.2 Hip BMC 

OLFM3, DNAJA1P5, COL11A1 

A.1.3 Femoral Neck CSA 

TRAT1, GUCA1C, MORC1, FLJ22763, LINC00488, DPPA2, DPPA4, FLJ25363 

A.1.4 Femoral Neck Section Modulus 

Chromosome 2: 

KIAA1715, EVX2, HOXD13, HOXD12, HOXD11, HOXD10, HOXD9, HOXD8, HOXD-

AS2, MIR10B, HOXD4, HOXD3, HOXD-AS1 

Chromosome 12: 

 NAV3 

creid
Typewritten Text
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APPENDIX B: LOCUSZOOM PLOTS OF SUGGESTIVE LOCI 

B.1.1 Hip BMD 

 
Figure 21: LocusZoom Plot for Hip BMD Suggestive Locus #1  
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Figure 22: LocusZoom Plot for Hip BMD Suggestive Locus #2 

 

  

Figure 23: LocusZoom Plot for Hip BMD Suggestive Locus #3 
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B.1.2 Hip BMC  

  

Figure 24: LocusZoom Plot for Hip BMC Suggestive Locus #1 
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B.1.3 Spine BMC  

 

Figure 25: LocusZoom Plot for Spine BMC Suggestive Locus #1 

  

Figure 26: LocusZoom Plot for Spine BMC Suggestive Locus #2 
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B.1.4 Head BMC 

 

Figure 27: LocusZoom Plot for Head BMC Suggestive Locus #1 

 

  

Figure 28: LocusZoom Plot for Head BMC Suggestive Locus #2 
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Figure 29: LocusZoom Plot for Head BMC Suggestive Locus #3 

B.1.5 Whole Body BMC (Excluding Head) 

  

Figure 30: LocusZoom Plot for Whole Body BMC (Excluding Head) Suggestive Locus #1 
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B.1.6 Femoral Neck CSA 

  

Figure 31: LocusZoom Plot for Femoral Neck CSA Suggestive Locus #1 

 

Figure 32: LocusZoom Plot for Femoral Neck CSA Suggestive Loci #2 
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B.1.7 Femoral Neck Section Modulus  

  

Figure 33: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #1 

 

  

Figure 34: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #2 
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Figure 35: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #3 

 

  

Figure 36: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #4 
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Figure 37: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #5 

 

  

Figure 38: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #6 
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Figure 39: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #7 

 

Figure 40: LocusZoom Plot for Femoral Neck Section Modulus Suggestive Locus #8 
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B.1.8 Femoral Neck Width 

  

Figure 41: LocusZoom Plot for Femoral Neck Width Suggestive Locus #1 

 

  

Figure 42: LocusZoom Plot for Femoral Neck Width Suggestive Locus #2 
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Figure 43: LocusZoom Plot for Femoral Neck Width Suggestive Locus #3 
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APPENDIX C: QQ PLOTS FOR BONE PHENOTYPES 

  

Figure 44: QQ Plot for Hip BMD 
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Figure 45: QQ Plot for Spine BMD 

 

  

Figure 46: QQ Plot for Head BMD 
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Figure 47: QQ Plot for Spine BMC 

  

Figure 48: QQ Plot for Hip BMC  
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Figure 49: QQ Plot for Head BMC 

  

Figure 50: QQ Plot for Whole Body BMC (Excluding Head) 
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Figure 51: QQ Plot for Femoral Neck Width 

  

Figure 52: QQ Plot for Femoral Neck Section Modulus  
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Figure 53: QQ Plot for Femoral Neck CSA  
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