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Neuroscientists present data in a 3D form in order to convey a better real world 

visualization and understanding of the localization of data in relation to brain anatomy and 

structure. The problem with the visualization of cortical surface of the brain is that the brain has 

multiple, deep folds and the resulting structural overlap can hide data interweaved within the 

folds. On one hand, a 2D representation can result in a distorted view that may lead to incorrect 

localization and analysis of the data.  On the other hand, a realistic 3D representation may 

interfere with our judgment or analysis by showing too many details. Alternatively, a 3D 

generalization can be used to simplify the model of the brain in order to visualize the hidden data 

and smooth some of the details. This dissertation addresses the following research question: Is 

3D generalization of a brain model a viable approach for visualizing neuroanatomical data? 
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1.0  INTRODUCTION 

1.1 BACKGROUND 

Visualization is indispensable in promoting an understanding of different representations of 

experimental, simulated, and observational data. Visualization can be applied at all stages of the 

problem-solving process, from development of a hypothesis, through data analysis, 

representation of data and evaluation. With the advancement of computer hardware and software, 

we now have a vast amount of digital data that needs to be analyzed in order to answer complex 

questions that arise from these data. The human visual system can be a powerful processing 

system when combined with technologies such as image processing, computer graphics, 

animation, simulation and virtual reality. Over the years, especially in Geographic Information 

Science (GIS), cartographers have focused on transforming data into a more understandable and 

simplified form. These simplifications are often two-dimensional (2D) flattened representations 

of more complex multidimensional data. At the same time, a more realistic three-dimensional 

(3D) representation has been sought after to provide the viewer with the ability to sense depth 

and maximize the level of details. Both of these representations have their own set of 

shortcomings. For example, a 2D representation of the earth’s surface requires transformation of 

the latitudes and longitudes of locations onto a plane. This creates a significant amount of spatial 

distortion. A classic example of area exaggeration is the comparison of landmasses on the map. 
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Greenland appears bigger than South America and comparable in size to Africa, while in reality 

it is about one-eight the size of South America and one-fourteenth the size of Africa. Similarly, a 

3D reconstruction of the human brain (as shown in Figure 1-1) can be extremely difficult to 

visualize due to its structural complexity. The cortical surface of the brain has multiple folds and 

structural overlap that can make it difficult to identify different layers of the surface and the cells 

interweaved within the folds. A primate brain has relatively simple structural properties (Figure 

1-2, insets) and has been intensively studied in neuroscience.  

 
 
 

 

Figure 1-1: The many folds and valleys of a single human brain surface (Credit M. F. Glasser and D.C. Van 

Essen for the WU-Minn HCP Consortium) 
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2D representation of the primate brain has been used for decades in neuroscience research 

involving neuronal tracer substances including neurotropic viruses to label neurons and 

demonstrate connectivity. With the advancement of computer hardware and software, 

researchers are now inclined towards a more realistic 3D representation. The shift from a 2D 

representation to a 3D representation is probably due to the fact that successful visual inspection 

or analysis is highly dependent on identifying key anatomical landmarks. The more realistic and 

concrete the visual representation is, the easier it is to identify the landmarks. But the problem 

associated with each of these representations still exists. On one hand, a 2D representation can 

give a distorted view (Figure 1-2 shows the flattened representation of the primate cortex) that 

may lead to incorrect analysis of the data.  On the other hand, a 3D representation may clutter 

our judgment or analysis by showing too many details. One way to solve the latter problem is to 

generalize away from reality. “Generalization” in GIS means decreasing the Level Of Details 

(LOD) to simplify the representation for the viewer (Ruas, 2000). 3D generalization has been 

used in GIS to simplify virtual city 3D models by grouping building models and replace them 

with cellblocks, while preserving local landmarks. Although the structural complexity of the 

brain is not nearly comparable to the city 3D model, one can apply the concept of 

generaliozation to simplify the model of the brain. In addition, a formal evaluation of the 

technique used to simplify the complex model is essential to understand how effective these 

methods are. 
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Figure 1-2: Color-coded representation of different cortical areas on the cortical map of the complete 

hemisphere of the macaque monkey. Insets show lateral and medial views of the hemisphere (Drury et al., 

1996) 

 
 
 
 Spatial visualization is deeply rooted in the visualization of Neuroanatomical data. Surface 

modeling and cluster analysis as part of the spatial data visualization is employed to represent 

and draw inference from the data. Visualization of neuroanatomical data often involves visual 

inspection of different layers of data (i.e. labeled cells) in relation to the anatomical data layer 

(Bakola, Passarelli, Gamberini, Fattori, & Galletti, 2013; Borra, Gerbella, Rozzi, & Luppino, 
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2011; Dum & Strick, 1991, 2005; Yuqing Liu, Yttri, & Snyder, 2010; Prevosto, Graf, & Ugolini, 

2009; Van Essen et al., 2001; Zaborszky et al., 2015). Since judging the spread of the labeled 

cells and  how dense the cells are in identifiable regions elucidates brain connections, it is 

important that the representation provides the viewer with  accurate information about brain 

anatomy and the location of the labeled neurons . Both 2D and 3D data modeling have been used 

for representing and conveying the knowledge to the user. However, the effectiveness of these 

modeling techniques has rarely been studied. With the added Z dimension, representation can be 

tricky since occlusion, shading, surface texture and perception of depth from the 3D model plays 

a crucial role in drawing inference from the data. 3D representation of data may seem intuitive 

but the cognitive, perceptual, and technological cost of the added dimension can outweigh the 

benefits (Fabrikant, Montello, & Mark, 2010; Ware, 2010). In addition, studies (Montello, 

Fabrikant, Ruocco, & Middleton, 2003) have  shown that perception of width and height in 3D is 

different from the 2D. A review of the literature shows that the most common representations 

are: 3D, inflated 3D (generalized), and 2D (flattened). For the reasons mentioned above, it is 

advantageous to find how effectively these different representation techniques convey the right 

message. In this research, I focus on developing ways to generalize and visualize 

neuroanatomical data. In addition, I designed a quantitative human factors study  to evaluate the 

effectiveness of the different representation techniques used.  

1.2 RESEARCH OBJECTIVE 

Establishing a fundamental framework is the key to understanding the human neuroanatomy. To 

establish this framework, one needs to successfully interpret the results of the imaging 
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technology used for humans (Dice, 1945; Fiez, Damasio, & Grabowski, 2000; Inoue, 

Madhyastha, Rudrauf, Mehta, & Grabowski, 2014; Zhang, Kimberg, Coslett, Schwartz, & Wang, 

2014)). Noninvasive techniques like fMRI (functional magnetic resonance imaging) and DTI 

(diffusion tensor imaging) has been used widely for human subjects but it is difficult to trace 

connection or identify lesion locations at the microscopic level without intervention. 

Observations from neuroanatomical studies in non-human primates provide the required 

intervention and aid in interpreting fMRI and DTI in human subjects. Since techniques (i.e. viral 

tracing) used for elucidating brain connection or separation of lesioned from non-lesioned tissue 

(lesion segmentation) in non-human primates are different from techniques used for human, it is 

essential to correctly interpret homologies between the non-human primate brain and the human 

brain from different representation used for different methods (Mah, Jager, Kennard, Husain, & 

Nachev, 2014). In this dissertation, I have developed ways to represent volumetric data acquired 

from histology, which conventionally uses 2D illustration, and represent them in a form that is 

analogous to the 3D representation generally used for fMRI or DTI. The generalization of the 

homologies between the non-human primate brain and the human brain provides ancillary 

benefits to interpret and translate the primate data in relation to similar displays of human 

imaging data. Since anatomical data can be very complex, the generalization is done in multiple 

steps. An application using Java and a combination of self-developed algorithms and 

Visualization Toolkit (VTK) library functions is developed to generalize and visualize the 

neuroanatomical data in 3D. To answer the research question in this dissertation, an approach, 

with a generalization component and a visualization component, is proposed. The primary 

research question in this thesis is: 

“Is a 3D generalization of the brain a viable approach for visualizing neuroanatomical data?” 
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The generalization of the 3D models helps us to visualize cells deep inside the structure in 

the context of the brain without completely distorting the anatomical structure. Landmark 

identification is the key to observe variations in the data from one animal to another. Statistical 

analysis is often not possible because data are compared between two animals with significant 

variation in anatomical structure. A visual inspection of the density relative to landmarks is the 

key to analyzing such data. Since there is a tradeoff between exposing the hidden data and 

identification of key landmarks using the generalization technique, the proposed research is 

approached by: 

1. Conducting a thorough literature review of neuroanatomical data visualization and 

visualization in general 

2. Developing algorithms for the generalization of neuroanatomical data 

3. Developing a tool that implements the proposed visualization methods 

4. Conducting a pilot study to refine the dependent variables list gathered from Section 3.B 

when the three (2D, Generalized 3D, and Full 3D) conditions are applied 

5. Conducting an experiment to find the effectiveness of the three (2D, Generalized 3D, and 

Full 3D) conditions on visualizing neuroanatomical data. 

Overall, in this work I will provide insight into how techniques that are used to draw insights 

from a 2D representation compare with those in a 3D representation of neuroanatomical data and 

whether the viewer’s knowledge gain can be enhanced by the proposed generalized display 

technique of the 3D brain. 
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2.0  BACKGROUND WORK 

 Considerable effort has been directed at elucidating the connections between different areas of 

the brain. Understanding these connections is important to unravel the functional mechanisms of 

each area of the brain.  This understanding, in turn, may help us tackle diseases that are affected 

by these areas.  Several methods have been used to demonstrate the connections in the brain. 

Neurons can be labeled by injecting tracers that travel from one neuron to the other. These 

labeled neurons then can be identified by taking sections of the brain and marking them under 

the microscope. However, it is important to understand how data are acquired using this 

technique and why surface modeling and cluster analysis are employed to analyze the data in 

details. I surveyed several seminal papers that used rabies virus as tracers and investigated 

different visualization techniques used to represent the data. The first section in this chapter 

focuses on how data are currently analyzed and displayed and what challenges we encounter in 

visualizing such data. The purpose of this survey is to gather domain specific knowledge about 

the visualization techniques used. The following section gives an overview of techniques used to 

generalize 3D city and brain models. The last section identifies specific visualization challenges 

that we encounter when visualizing complex structures (i.e. cortical surface). 
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2.1 VISUALIZATION IN NEUROSCIENCE 

Visualization of neuroscientific data is met with similar challenges when dealing with 

data from other domains, like storage and retrieval of big data, reconstruction, visualization of 

multimodal data - to name a few. Although the obvious problem of such data is the sheer size of 

it (in petabytes), the crux of the problem with dealing such data lies in its interpretation. Since all 

the analysis and techniques evolve around the characteristics of biological data, it is imperative 

to understand in detail what it is and why certain analysis is important for such data. 

2.1.1 Biological Data Characteristics 

 Most biological volume datasets are acquired by scanning biological object of interest 

using Magnetic Resonance Imaging (MRI), Computer- aided Tomography (CT), Positron 

Emission Tomography (PET), and/or Sonogram machines. Another source of volume dataset is 

through laser scanning confocal and other high power microscopes. However, a downside of 

histological data acquisition using a microscope is that the biological specimen usually must be 

sacrificed to capture the underlying phenomena or to simply fit it under the microscope. It is 

important to make the distinction between these two types of data because histological data often 

requires additional spatial aligning due to distortion inherent in tissue processing. Analysis of 

multiple specimens of the same species is also difficult because of different anatomical shape 

and sizes. Data from multiple specimens are prone to registration errors and data at microscopic 

level is spatially dislocated during the alignment correction phase. The first step involving such 

spatial data analysis involves volume rendering. Volume data usually represents the anatomical 

structure of the biological sample. 
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2.1.2 Challenges of Visualizing Biological Data 

 The visualization of biological data can be quiet challenging due to the anatomical and 

functional complexity. Within the nervous system alone, type of cells and their functions varies a 

lot and often these varied population of cells coexist which makes it difficult to track both 

functional and structural connectivity within those cells.  Jeff Lichtman (Lichtman & Denk, 

2011) identified five general problems in understanding the relation between the structure of the 

nervous system and its function. The first problem in analyzing biological data, especially 

neurobiological data, is the immense diversity of nervous cell types. Although it is possible to 

identify different cell types using immunohistochemistry, the plotting and mapping pose a big 

challenge.  The second problem is the imaging of electrical and chemical activity. This problem 

poses a challenge of mapping multimodal (electrical & chemical) responses of the nervous 

system. The third problem is that neurons extend over vast volumes. This can be a difficult focus 

+ context problem to solve because simple interaction of localized volume may not be sufficient 

in understanding the extent of the functional response. Another similar and fourth problem is the 

level of details. The critical details of neuronal connectivity occur at the level of the synapse. It is 

easy to forget the structural context when mapping very minute levels of details. The fifth and 

the final problem identified by Lichtman is the need for even more dense and saturated 

construction to avoid functional overlaps. 

Imaging and functional data are often multidimensional, noisy and dense. Reconstructing 

such high volumes can be difficult and require considerable time to execute queries on them. The 

biggest challenge is to understand the functional activity in the context of the entire brain. In 

addition, answering domain specific knowledge-based queries can be challenging due to 

different processing techniques. The final output of the analyzed data may not be identifiable by 
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experts from one domain to the other. For example, reconstruction of fMRI data and histological 

data are quite different due to lack of high-resolution data in fMRI. Histological volume 

reconstruction contains cellular level details that are absent in fMRI. Finally, producing the tools 

for interacting with a 3D model is not easy. The popularly used ray casting method can identify 

objects right on the 3D display screen but it is not entirely accurate, especially when occlusion 

and noisy data are present.   

2.1.3 Towards Effective Visualization 

 One must consider the characteristics of human visual processing  in order to create an 

effective visualization. Colin Ware  (Ware, 2013) describes the human visual thinking process 

and its components. Based on his description of these components and their limitations, we can 

map out an effective solution for the visualization problem. A few key areas where effective 

visualization methods have been applied are discussed below. 
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Figure 2-1: Sub-windows allow details to be compared while the overall context can also be seen (GeoZui3D 

interface). (Ware, 2013) 

 
 
 
Maintaining “Focus + Context” when visualizing the level of details is a big challenge in 

anatomical data visualization. The brain is organized over six orders of magnitude. The 

functional activity can be seen at the micron level whereas even the mouse brain is 100,000 

times larger.  . One way to overcome this problem of viewing fine levels of detail while 

maintaining context is to apply distortion-oriented presentation techniques. This kind of 

technique involves distortion of the information space by showing certain information larger and 

shrinking others. The polyfocal display (Kadmon & Shlomi, 1978) , fisheye view (Furnas, 1981), 

bifocal display (Spence & Apperley, 1982) and perspective wall (Mackinlay, Robertson, & Card, 

1991) are examples of such display techniques.  Although these techniques can hide important 

information, this problem can be mitigated by implementing a user determined degree-of-
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relevance factor.  The generalization technique used to abstract information for both the 3D city 

model and the brain model (as proposed in this work) tackles some of the challenges that are 

inherent to the “Focus + Context” problem. Another interesting way of exploring details while 

maintaining context is the multiple window approach (Plumlee & Ware, 2002) which takes into 

account the limitations of the visual working memory. The authors show that having multiple 

windows working as a placeholder for the working memory increases the user’s ability to 

compare more patterns in larger space. This can theoretically alleviate the problem of visualizing 

multiple data sets (varied anatomical models) in a large space. 

 Interacting in 3D with the nodes that represent data points or objects can be tricky. Most 

of the interaction in neuroscientific data visualization focuses on dealing with neuronal 

connection represented in a form of graph. Novel ways to select nodes of the network data have 

already been applied in NAViGaTOR (McGuffin & Jurisica, 2009), a software package for 

visualizing and analyzing biological networks. The authors show that rearrangement of selected 

nodes and compact context menu help maintain context. However, these kinds of selection 

techniques are useful when observing short chain networks. The interactions involved in 

inspecting 3D models are a little different since the user has to constantly view the model from 

different perspectives while maintaining context. The interaction technique must also engage the 

user in eliminating the obscuring of data by solid body  (Livingston et al., 2003).  

 Dynamic queries are also part of an interaction technique to visualize and navigate 

through discrete multidimensional data. An interface developed by Ahlberg (Ahlberg & 

Shneiderman, 1994) shows how dynamic queries are used to narrow down points using range 

sliders. Another nice way to construct sliders is to use the distribution of the variables to 

combine distribution information of the objects along with the ability to even select 
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discontinuous regions (Eick, 1994). Usage of magic lens filter for dynamic query is also useful. 

Fishkin in his paper (Fishkin & Stone, 1995) showed that stacking magic lenses to reveal the 

chain transformation can be an enhancement to dynamic queries. Although these interaction 

techniques are useful in some data exploration task, they are highly subjective and applying them 

to neuroanatomical data visualization remains to be investigated.  

 
 
 

(a) (B) 

 

 

 

Figure 2-2 : 2D/3D hybrid visualization(a) Multiple 2D/3D layers in hybrid display over a 3D base terrain. 

The vertical translation of each layer is set with its associated control ball. (b) A landmark layer a ground-

level (top) and at the flattening level (bottom) (Brooks & Whalley, 2008) 
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Gaining insight from 3D spatial datasets can be particularly challenging. Self-occlusion 

prevents the user from viewing data all at once. It can be even more challenging when 

multivariate data need to be presented in a meaningful way. Another challenging part of 3D 

visualization is to find the best way to simultaneously visualize multiple types of data (i.e 

different functional data). In geographical information systems (GIS), a lot of research effort has 

been made to find a solution to this problem. Studies show that 2D views are often used to 

establish precise relationships, while 3D views help in the acquisition of qualitative 

understanding (Springmeyer, Blattner, & Max, 1992). Since both viewing modes have distinct 

advantages, a hybridized viewing mechanism may be useful in interpreting the spatial 

relationship. Following this concept, Brooks & Whalley (2008) came up with a unique 

visualization system for spatial data. In their hybrid system, the 3D terrain can be projected into a 

2D plane (and vice versa).  This process allows the user to view the 2D data in direct relation to 

the 3D view on the same screen.  In their system, the user also has the ability to construct 

multiple 2D/3D layers that can be separated and viewed for analysis. Figure 2-2(a) shows the 

two different layers in the same view. Figure 2-2(b) demonstrates the projection of the building 

layer to a 2D layer. In volumetric data visualization, this type of overlay technique can useful 

after the surface has been constructed and different data layers have been registered to the 

corresponding surface and landmarks. Unlike the earth’s surface, the volumetric object can have 

complex structure (i.e. brain cortical surface), which makes overlay of different data layers very 

complex and tricky. The specific challenges are discussed in later chapters.  
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2.2 ELUCIDATING BRAIN CONNECTIVITY: HOW, WHAT, AND WHY 

Revealing the organization of multi-synaptic circuits in the central nervous system has been a 

ubiquitous quest in neuroscience research. Some of this research has included development of 

new techniques to elucidate the circuitry in the brain. The use of neurotropic  viruses to trace 

neural connections is one such technique. For example, rabies virus  is capable of infecting nerve 

cells and moves from neuron to neuron exclusively at the synaptic connections.   After 

transferring across a synapse, rabies virus moves from the axon terminals to the cell body in the 

retrograde direction.  In the cell body, the rabies virus replicates and thereby, amplifies the tracer 

signal.  This process can be repeated at subsequent synaptic connections  to reveal chains of 

synaptically linked neurons in a time dependent manner .  This process has been termed 

“retrograde transneuronal transport” of virus. The fact that rabies virus rarely causes the infected 

cell to rupture and contaminate the extracellular space makes this virus a good candidate for 

transneuronal tracing. The rabies virus allows us trace the connections from a given brain region 

back to the source of the signal. Since this connectivity cannot be traced in real time, the animal 

is sacrificed at different stages of virus infection and connections are deduced from multiple 

experiments.  Figure 2-3 shows labeled Purkinje cells in the cerebellar cortex (source) when the 

rabies virus  was injected into the primary motor cortex (destination) of the animal.  
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Figure 2-3. Purkinje cells in the cerebellar cortex labeled through retrograde transneuronal transport of 

rabies from the arm area of the primary motor cortex of a Cebus monkey.Transport of three orders of 

interconnected neurons can be visualized. From first-order neurons in the thalamus to ‘second-order’ 

neurons in the dentate nucleus to ‘third-order’ Purkinje cells in the cerebellar cortex (Kelly & Strick, 2000) 

 
 
 
In addition to locating the primary origin of the signals that control our movements, 

scientists are increasingly interested in learning  the spatial organization  within the  regions that 

control one particular type of movement. These topographic divisions help neuroscientists 

understand and locate areas that can in turn be used to treat diseases involving those areas in the 

brain. For example Dum, Li, and Strick (2002) reported a topographic map of the functional 

output to the monkey dentate using the herpes simplex virus (HSV1), another virus that is 

transported transneuronally. In their study, when the monkeys were injected with the HSV1 into 

specific parts of the primary motor cortex (M1), the viruses traveled through the neuronal 

connections to reveal the output source of those targeted areas of M1. A flattened map of the 

dentate was created in order to visualize the density. Figure 2-4 shows the flattened map of the 
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dentate nucleus, where compact clusters of neurons were identified that project via the thalamus 

to representations of the leg, arm and face in M1.  

 
 
 

 

Figure 2-4. Somatotopic organization of dentate output channels to M1.Unfolded maps of the dentate 

illustrate the neurons labeled after HSV1 injection into the leg (A), arm (B), and face (C) representations of 

M1. 

 
 
 
From these density maps (Figure 2-4 A,B and C) and further experiments with injections into 

non-motor regions of cerebral cortex, the authors were able to create a topographic map of the 

dentate nucleus as shown in Figure 2-5.  On the map (Figure 2-5A), the authors placed a label at 

the location of the greatest density from the density maps (Figure 2-4).  The map reveals, as the 

authors report, that the dentate provides afferents to both motor and non-motor areas of the 

cerebral cortex. This is in contrast to the classical view that the dentate provides afferents only to 

motor areas of the cerebral cortex. Not only that, the map shows that there are spatially 
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segregated domains that target the motor and non-motor areas of the cerebral cortex. The 

representation of the data (a 2D map in this case) provides a way for the viewer to understand 

this segregation.  However, the map by itself does not provide any context to the viewer with 

respect to the brain.  

 
 
 

 

Figure 2-5. Topography within the cerebello-thalamocortical circuit.(A) Dentate output channels. Labels 

mark the location of the highest concentration of the dentate projections to each cortical area studied. (B) 

Selected cortical targets of cerebello-thalamocortical circuit. Color shding designates regions of the lateral 

hemisphere that project to the cerebellum via pons. (C) Upside down view of the ventrolateral thalamus to 

indicate the correspondence between the topography and that of dentate. 

 
 
 
The use of transneuronal tracing with viruses has led to changing views of brain function. 

One of the classical views is that the cerebellum and basal ganglia are separate subcortical 

systems. . Recent studies have shown that the basal ganglia and cerebellum are  reciprocally 
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connected . Bostan et al. (2013) reported the existence of synaptic pathways connecting the 

cerebellum with the basal ganglia. These authors found that the projections from motor and non-

motor regions of the subthalamic nucleus terminated in both motor and non-motor regions of the 

cerebellar cortex. This observation indicates that basal ganglia influence both motor and non-

motor functions within the cerebellum. This continuing expansion of connectivity maps of the 

brain may play an important role in identifying and treating neurological diseases. For example, 

neuroimaging studies have shown the involvement of the basal ganglia in reward prediction and 

reward-based learning with the cerebellum. Since the cerebellum is thought to be involved in 

adaptive modification of behaviors, functional MRI studies on addicted individuals provide 

compelling evidence (Figure 2-6C) that cerebellum is active when addicted individuals interact 

with conditioned drug cues that increase craving.  This evidence also may explain why lesions in 

both regions impair reward-based learning and explain functional interaction between the 

cerebellum and basal ganglia. Activation in the cerebellum and basal ganglia in Tourette 

syndrome tic generation has also been shown in other neuroimaging studies (Figure 2-6D), 

confirming the existence of a connection between the cerebellum and basal ganglia. The finding 

of a connection between different functional regions of the brain has led us to better explain why 

abnormal activity in one can have a pervasive effect on the other.  

Observations from neuroanatomical studies in non-human primates provide a 

fundamental biological framework for understanding human neuroanatomy and are particularly 

informative for interpreting fMRI and tract tracing methodologies (DTI) in human subjects. 

Neuroscientists who are engaged in fMRI and tract tracing in human subjects are often 

unfamiliar with the primate neuroanatomy and brain morphology.  Results from neuroanatomical 

studies in non-human primates are qualitative and displayed in relation to key morphological 



 21 

features of the primate brain.   Determining and interpreting the homologies between the non-

human primate brain and the human brain is impeded by their complex cortical structures. Our 

goal in producing a generalized brain model for displaying non-human primate neuroanatomical 

results is enable the viewer to interpret and translation the primate data in relation to similar 

displays of human imaging data. 

 
 
 

 

Figure 2-6. The image shows cerebellar activation associated with learning paradigms and neuropsychiatric 

conditions.(A) Functional MRI study of appetitive conditioning with a pleasant taste reward. Activation 

(white) in the basal ganglia and the cerebellum correlates with temporal difference prediction error. (B) 

Functional MRI study of higher-order aversive conditioning. Activation (yellow/orange colors) in the basal 
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ganglia and cerebellum correlates with temporal difference prediction error. (C) Cerebellar involvement in 

addiction. Summary results of cerebellar activation associated with cue-induced craving. Different shapes 

indicate results from different studies. (D) Tics in Tourette syndrome (tics minus sleep contrast) activate both 

the cerebellum and basal ganglia. In all panels, blue arrows point to sites of cerebellar activation and orange 

arrows point to sites of basal ganglia activation. 

2.3 3D GENERALIZATION  

Generalization is essential for effective visualization. 3D generalization can be used to remove 

unnecessary details that may  interfere with the viewer’s successful insight into the data.  

Generalization can also reduce the level of details (LODs) for more efficient storage and 

computation. Generalization is a well studied process in cartography and is defined as a method 

that represents information on the map in way that adapts to the scale and the purpose of the map 

(Ruas, 2000). Although the development of the generalization process in GIS has increased 

dramatically, the generalization concept is rarely used when visualizing a 3D brain model.  

 
 
 
 
 
 



 23 

 

Figure 2-7 : The graph shows the interplay of different modules in reconstruction and generalization towards 

high-resolution 3-D models. Dashed lines indicate optional processing steps (Schoor et al., 2009) 

 
 
 
The processing pipeline for creating 3D models of the brain and of cities are similar with the 

exception of the data acquisition process and preprocessing. Figure 2-7 shows the general 

pipeline for creating a 3D model for biological data. The raw data are converted into 2D contours 

lines or 3D point clouds from 2D image slices. The source for these image slices is typically 

MRI image stacks or brain histology slices. Similarly, as shown in Figure 2-8, the 3D city model 

is converted into a 3D point cloud from Image data, GPS or range data. To construct a surface 

from a set of structured or unstructured points, triangulation algorithms are used. In both cases, 

the generalization process must take place after the digital model has been created where features 

can be extracted for generalization.  
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Figure 2-8 : The multi-sensor and multi-resolution 3D modeling pipeline based on passive and optical active 

sensors for the generation of point clouds and textured 3D models (Fabio, 2003) 

  
 
 

For 3D generalization of city models, existing approaches focus on simplifying complex 

structures, like buildings.  Kada (2002) demonstrated a generalization method that uses a least 

squares adjustment to preserve building regularities. The process involves building a constrained 

model as the first step. Once the coplanarity, parallelism and rectangularity of two faces in the 

model are detected, the planes are grouped to form a hierarchy of constraints. Complex features 

are generated from the hierarchy of constraints and removed. After removing the features, a least 

square adjustment is applied to the original points to achieve the final shape. Thiemann and 

Sester (2004) proposed a different approach where they segment the volumetric model of the 

building with one or more planes. All segmented parts are evaluated with respect to model scale 

and resolution. Once segmented, the generalization is done in two steps. The generic step 

excludes any feature that is “sticking out” from the 3D-body depending on the size. The second 

step takes the specific characteristics of the segments into account and ranks them. For example, 
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characteristics such as inclination of the plane, horizontal or vertical orientation, and height of a 

feature over ground level are ordered. Once the segments are arranged, they are stored as a cell 

model, which represents the topological adjacency of the features, and as a CSG (Constructive 

Solid Geometry) tree, which represents the history of the segmentation. The cell model and the 

CSG tree are then used to merge the features and create a generalized model of the building.  

 Mathematical morphology has also been used to generalize 3D city models. Kimia, 

Tannenbaum, and Zucker (1995) introduced a methodology called the reaction-diffusion-space 

that sequentially combines a reaction step and a diffusion step . In the reaction part, 

mathematical morphology is used to incrementally shift the segments inwards or outwards. The 

second step, used for more complex structures, utilizes the curvature information of the shape to 

determine the direction of the shift. Forberg (2007) used a similar scale-space approach to 

generalize the shape of 3D building structures. The method involves computing the distance 

between the parallel facets and moving them towards or away from each other, given a distance 

threshold (Figure 2-9).  

 
 
 

 

Figure 2-9 : Parallel facets under a certain distance are shifted towards each other (Forberg, 2007) 
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 Generalization methods used for more complex polyhedral building models have been 

discussed by Rau, Chen, Tsai, Hsiao, and Hsu (2006). In their method, the generalization takes 

place in two steps: 1) Polyhedron Merging, and 2) Wall collapsing with Regularization. The 

polyhedral merging is achieved by flattening the sloped building rooftops, merging two 

connected polyhedrons with a small height difference and removing smaller enclosed 

polyhedrons. In the wall-collapsing step, the principle structure of the building is determined to 

maintain the structural integrity and the rest of the segments are collapsed to simplify the 

structure. These methods applied in GIS are useful to know when reconstructing the cortical 

surface of the brain from a set of contours because individual contours (i.e. overlaps) can be 

corrected prior to reconstruction. 

 In GIS, generalization falls under focus + context visualization, where the viewer is 

engaged in understanding a location in the context of a map while focusing on certain areas that 

are identified as key landmarks to be preserved in the process of generalization. In computational 

anatomy (Grenander & Miller, 1998; Miller et al., 1997), the focus is placed  on developing 

mathematical and software tools to visualize and understand the variability of brain anatomy in 

humans and primate monkeys. This goal is accomplished by generalizing the structure into an 

amenable form, often into a flat map. The problem with deforming a complex structure, like the 

brain, is that the key landmarks can be deformed to a point where the viewer can no longer 

identify them. However, this is not the only problem with deformation. Data associated with the 

structure can also be misinterpreted as the structure is deformed to a simpler form. Since 

reconfiguration and representation of the brain surface is essential to visualize and identify 

variability of brain anatomy, a variety of methods are available for generalizing the cortex. 
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 The cortical surface is complex and non-convex. To study the functional architecture and 

neural maps embedded in them, the curved and convoluted surface is often flattened to a planar 

representation. This is difficult to achieve because fine tessellation is needed to preserve the 

topological integrity of the original surface. Schwartz, Shaw, and Wolfson (1989) were able to 

flatten the cortical surface by first constructing a matrix of the geodesic distances of each vertex 

to other vertices. The surface was then projected randomly to a plane that minimizes the mean-

squared error between the original distance matrix and that of the flattened surface. Dale and 

Sereno (1993) used a different approach where local forces were estimated based on the 

curvature information for each vertex. The surface was then relaxed towards minimal surface 

tension, and thereby,  minimizing the local geometric distortion (shown in Figure 2-10).  

 
 



 28 

 

Figure 2-10 : Partially flattened representation of the cortex. Locations on the initial folded surface with large 

positive curvature (i.e. sulci) are colored red, while location with large negative curvature are colored green. 

 
 
 
Similar methods to generalize the surface were also used by Carman, Drury, and Van Essen 

(1995), and Drury et al. (1996). One advantage to using such methods to flatten the surface is 

that it can be applied to the entire cortical hemisphere. In addition, the partial flattening has the 

advantages that it exposes hidden sulcal cortex and retains the global shape. Seminal work has 

been done by Fischl et al. (1999) where the cortical surface was inflated to expose the activity 

buried inside the sulci using spring forces to smooth the surface and metric-preservation to retain 
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some of the original topology. The authors also described methods to completely flatten or 

transform the original surface into a sphere for the purpose of better visualization and for 

mapping coordinates to facilitate quantitative analysis.  

 
 
 

 

Figure 2-11: Flattened (left), inflated (center), and spherical (right) representations of the same surface 

(Fischl, Sereno, & Dale, 1999) 

 
 
 
 The generalization techniques described above for both generalizing 3D city models and 

cortical surfaces have one thing in common – abstraction. In both cases, by minimizing the level 

of details, we are able to remove the unnecessary clutter and visualize data without having to 

interact too much with the data. However, as evident from Figure 2-11, the different 

representation requires significant effort from the viewer to transform the distorted view into a 

more natural shape that is easily recognizable.  
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2.4 VISUALIZATION OF CORTICAL STRUCTURE 

Visualization of the cortical structure is difficult due to its structural complexity. As part 

of the survey of papers that best represent visualization of neuroanatomical data using both 

conventional and transneuronal tracer, I attempted to outline some of the challenges and current 

methods that are being used to overcome these challenges. 

Context 

Mapping of labeled neurons provides an accurate representation of the topographic distribution 

of neurons in the brain. A simple plot of the neuron density tends to distort the actual 

representation of the density. The raw data comprises typically of slices that are arranged at an 

interval. Figure 2-12A shows the plot of labeled cell distributions, which makes it difficult to 

visualize the density and the spatial location of the distribution without any frame of reference.  

A frame of reference or context can instantly make the data more recognizable, as shown in 

Figure 2-12B.  
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(A) 

 

(B) 

 

Figure 2-12 (A) A simple plot of labeled neuronal cells (B) The same cell distribution with reconstructed 

surface for frame of reference. 

 
 
 

Visualizing the hidden data 

Occlusion of neurons on serially arranged histological sections poses a big problem in 

visualizing the density. To overcome this problem, many techniques are used to accurately 

represent the neuronal density. For example, Dum and Strick (1991); (Zaborszky et al., 2015) 

used flattened reconstruction and histograms to represent neuronal density. In the paper, the 

authors extended the functional mapping of motor control in the frontal lobe. Using a retrograde 

conventional tracer, the authors showed that the primary motor cortex and six premotor areas in 

the frontal lobe project to cervical segments of the spinal cord. After inoculating the non-human 

primate with the conventional tracer in the spinal cord, the animal was terminated and brain 

sections were processed to reveal the labeled neurons. For visualization purposes, the sections 
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were further processed to create flattened map by taking each individual sections and 

“unfolding” them to reconstruct a flat map as shown in Figure 2-13.  

 
 
 

 

Figure 2-13. Schematic diagram of motor areas in frontal lobe.Individual coronal sections of cortex (far right) 

were straightened (middle) to form a flattened reconstruction (left) of the frontal lobe. The corresponding 

locations are shown with capital letters on the schematic diagram. 

 
 
 
The reconstructed flat map, Figure 2-14, showed that the corticospinal projections to cervical 

segments of the spinal cord originate from the same areas of the premotor cortex that project to 

the arm area of the primary motor cortex.   

 
 



 33 

 

Figure 2-14. Reconstructed flat map of corticospinal neurons in frontal lobe. Every fourth section was used to 

construct this map. 

 
 
 
The spatial locations of the labeled neurons provide location and extent of the arm representation 

of the premotor cortex.  These areas include SPcS (superior precentral sulcus), SMA 

(supplementary motor area), CMAd (caudal cingulate motor area, dorsal bank), APA (arcuate 

pre-motor area), CMAr (rostral cingulate motor area) and CMAv (caudal cingulate motor area, 

ventral bank). They created  a density mapby dividing the map into small bins and then counting 

and color-coding each bin based on the number of cells in each bin (Figure 2-15). These 

quantitative measures indicated that the size of the corticospinal system from the premotor areas 

equals or exceeds that from the arm representation of the primary motor cortex. The analysis 

showed that as much as 40% of the corticospinal projection originate from the premotor area 
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identified in the paper. In other words, these premotor areas have direct access to the spinal cord 

that influences the generation of movement independently of the primary motor cortex, which 

had been was considered to be the main source of motor signals in the corticospinal tract. This 

precise identification of premotor areas may help further understand the complex mapping of 

motor control in the brain. 

 
 
 

 

Figure 2-15. Density of corticospinal neurons in frontal lobe: medial wall of hemisphere(top) and lateral 

surface (bottom). The color blocks represent density bins . (i.e. bins in which the number of labeled neurons 

was in the upper 10% of the total sample of 200-um bins) 

 
 
 
 
 



 35 

Visualizing without depth 

Representing the data using flat maps has been an effective way to visualize the distribution and 

density of labeled cells. Dum and Strick (2005) used these techniques to further understand the 

organizational structure of the connections within the brain. With the help of conventional 

fluorescent tracers, the paper expands the functional mapping of the brain between the primary 

motor cortex (M1), the dorsal premotor area (PMd), and the ventral premotor area (PMv). After 

identifying the digit representation areas using electrophysiological stimulation, the authors 

injected non-human primates with distinct retrograde tracers (fluorescent dyes) and analyzed the 

density of labeled cells using the two dimensional reconstruction technique described in their 

previous paper (Dum & Strick, 1991). Figure 2-16, Figure 2-17 and Figure 2-18 show the 

injection site and the spread of tracers in pertinent areas of the frontal lobe.  

 
 
 

 

Figure 2-16. Frontal lobe input to the digit representations of M1 and PMd.A) Location and density of 

neurons labeled after DY (diamidino yellow fluorescent dye) injections into the digit representation of M1. 

Yellow shading around the injection site in M1 indicates zones 1 and 2 of the spread of the DY. The region 

surrounding the injection sites where neurons were too dense to plot is indicated by gray shading. B) Location 
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and density of neurons labeled in the frontal lobe after FB (fast blue fluorescent dye) injections into the digit 

representation of the PMd. Blue shading around the injection site in the PMd indicates zones 1 and 2 of the 

spread of FB. C) Overlap of the input to the digit representations of the PMd and M1. Red shading (overlap 

bins) indicates bins that have a high density of cells projecting to each injection site. Yellow shading 

represents bins that have a high density of cells projecting to M1. Blue shading represents bins that have a 

high density of cells projecting to the PMd. 

 
 
 
The result shows that primary motor area (M1) receives strong input from premotor areas (PMv 

and PMd) of the brain as shown in Figure 2-16A and Figure 2-17A. The overlap map shows bins  

(red shading in Figure 2-17C and Figure 2-18C)  where there is a high concentration of neurons 

projecting to the injection site in the PMv and to the injection site in the PMd. . Analogously, M1 

projects to the digit representation of PMv and PMd as shown in Figure 2-18.   

 
 
 

 

Figure 2-17. Frontal lobe input to the digit representations of M1 and the PMv.A) Location and density of 

neurons labeled after FB injections into the digit representation of M1. B) Location and density of neurons 

labeled after DY injections into the digit representation of the PMv. C) Overlap of the input to the digit 

representations of the PMv and M1. Red shading (overlap bins) indicates bins that have a high density of cells 
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projecting to each injection site. Blue shading represents bins that have a high density of cells projecting to 

M1. Yellow shading represents bins that have a high density of cells projecting to the PMv. 

 
 
 
This result substantiates that both PMv and PMd are interconnected with the hand area of M1. In 

addition to the interaction between these three areas, the authors  observed that the 

supplementary motor area (SMA) projects more strongly to PMv and PMd than M1 (Figure 

2-16, Figure 2-17, Figure 2-18).   

 
 
 

 

Figure 2-18. Frontal lobe input to the digit representations of the PMd and PMv.A) Location and density of 

neurons labeled after FB injections into the digit representation of the PMv. B) Location and density of 

neurons labeled after DY injections into the digit representation of the PMd. C) Overlap of the input to the 

PMd and PMv. Red shading (overlap bins) indicates bins that have a high density of cells projecting to each 

injection site. Blue shading represents bins that have a high density of cells projecting to PMv. Yellow 

shading represents bins that have a high density of cells projecting to the PMd. 
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A quantitative analysis of relative inputs to M1, PMv and PMd is shown in Figure 2-19. The 

analysis of the density map along with the quantitative analysis is then used to create a schematic 

diagram showing the interconnected network for the generation and control of hand movements 

(Figure 2-20). These result supports the view that the premotor areas have the potential to 

influence spinal cord mechanisms and motor output through pathways that are independent of 

M1 since PMv and PMd seems to operate at the same level as M1.  
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Figure 2-19. Normalized strength and density of 

input from cortical areas in the frontal lobe to the 

digit representations of M1, the PMd, and the 

PMv.The strength (numbers of labeled neurons in 

an area) and density (average number of labeled 

neurons per bin in an area) were normalized to the 

cortical area with the most labeled cells or the 

highest density. The lowest possible value for the 

normalized density (equivalent of 1 cell per bin) is 

indicated (dashed line marked by arrow). Light 

shading indicates cortical motor areas. Dark 

shading indicates prefrontal areas. 

Figure 2-20. Frontal lobe network for hand 

movements.The size of the arrows indicates the 

relative strength of an input. Shaded circles 

indicate motor areas on the lateral surface. Un- 

shaded circles are motor areas on the medial wall. 

The square indicates prefrontal areas of the 

cortex. Abbreviations are as in Figures 1 and 4. 
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3-D visualization and problem with depth 

Although effective, data representation in 2-D is gradually being taken over by 3-D 

representation or more appropriately - 2-D projection of 3-D data representation. However, lack 

of interaction can hinder understanding of 3-D data. For example, a wire frame diagram of 3-D 

data offers some spatial context but offers no sense of depth. Prevosto et al. (2009) illustrated the 

distribution of labeled cells with such diagram (Figure 2-21).  

 
 
 

 

Figure 2-21. 3-D reconstruction of the cerebellar cortex, showing the organization of labeled Purkinje cells 

providing trisynaptic inputs to MIP (3 days). 3-D reconstructions were made using Neurolucida. 
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This type of wireframe illustration is difficult to follow, due to the lack of hidden surface 

removal that prevents determination of the viewpoint orientation.  Shaded models, on the other 

hand, may be  a better choice for representing anatomical structures since shading and rendering 

can greatly enhance the realism of the model.  

 

3-D surface visualization 

In a recent paper (Borra et al. (2011), the authors used both 2-D and 3-D reconstruction images 

to show cell distribution and density. They reported that the non-human ventrolateral prefrontal 

(VLPF) Area 12r is involved in higher-order nonspatial information processing. After injecting 

the animal with retrograde tracers, the distribution of the cells were presented using 3-D 

reconstruction and 2-D drawings of brain slices as shown in Figure 2-22.  
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Figure 2-22. Distribution of the retrograde (red) and anterograde (green) labeling observed after injections in 

caudal area 12r,shown in dorsolateral and bottom views of the 3-D reconstructions of the injected 

hemispheres (top left), in 2-D reconstructions of the STS (bottom left), and in drawings of coronal sections 

arranged in a rostral to caudal order (a–j; right). PMT, Posterior middle temporal sulcus. 

 
 
 
The 3-D reconstruction  shows the overall distribution of the cells whereas the 2-D drawings 

show  retrogradely labeled neurons located in the superficial (II–III) versus deep (V–VI) layers 

of the cerebral cortex.   The 2-D images not only show the laminar distribution of labeled cells 
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that is not visible in the 3D reconstruction but also allow interpretation of the hierarchical 

architecture of the cortico-cortical connections. These representations along with the quantitative 

analysis, Figure 2-23, show connections between different parts of the brain and three distinct 

zones of Area 12r (rostral, intermediate, and caudal). The topographic map shows that the 

intermediate zone of area 12r is densely connected with area 46v and several orbitofrontal areas.  
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Figure 2-23. Summary view of the major ipsilateral cortical connections of the rostral, the intermediate, and 

the caudal area 12r sector and mean percentage distribution of the retrograde labeling.In the brain drawings, 

areas connected with one or two area 12r sectors are shown in darker gray, and those connected to the entire 

area 12r are shown in lighter gray. In the bar graph, only connections with mean value  1% are shown. 

 
 
 
In contrast, the rostral zone has strong connectivity with rostral prefrontal areas. This 

heterogeneity  suggests that the different zones of 12r contribute to different functions. One 
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important thing to notice is that in the topographic map (Figure 2-22), the fundus of each sulcus 

(inward folds) has been exposed but the cells on the walls of each sulcus are obscured. This kind 

of visibility problem is common when projecting a 3-D scene onto a 2-D plane. To overcome 

this problem, Bakola et al. (2013) (Figure 2-24) presented a flattened map of the reconstructed 3-

D surface to display the density of the cells on both surface and within sulci. The authors looked 

at the corticocortical afferent projections of area PE of the non-human primate brain. Since area 

PE is believed to be involved in goal-directed movement, the authors injected at various areas 

within PE with retrograde tracer and observed the projection to PE. Figure 2-24 shows the 

sagittal sections after the injection and the two-dimensional reconstructions of cortex.  

 
 
 

 

Figure 2-24. Location of injection site in lateral PE  and cortical distribution of retrograde-labeled 

cells.Sagittal sections (A–F ) were taken at the levels indicated on the brain silhouette. Bottom right, Two-

dimensional reconstruction illustrating the distribution and density of labeled cells in case 1. Color scale 
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indicates the relative density of labeled cells as a percentage of the maximum unit value. Darker shades of 

gray on the flat maps represent sulcal depth; intermediate shades of gray, cortical convexity; white color, 

sulcal lip. 

 
 
 
The reconstruction and the density were obtained with the CARET software (Van Essen et al., 

2001). The density maps were created by projecting the location of each neuron to the nearest 

mid-thickness contour, along with marks noting the architectonic borders of cortical areas. After 

comparing several density maps, where the different areas of PE were injected with tracers, the 

authors were able to compose a topographic projection map to area PE as shown in Figure 2-25.  

 
 
 



 47 

 

Figure 2-25. Summary of significant projections to area PE.Top, Average percentages of labeled cells in 

different cortical areas after all tracer injections within PE. Bottom, Boxes represent cortical areas with 

significant numbers of labeled cells and are organized according to their approximate location in the brain 

(medial to the right, caudal to the bottom). The thickness of the bars shows the proportion of cells in each of 

the areas connecting with PE 

 
 
 
The authors concluded that, area PE receives nearly 60% of its projections from the parietal areas 

that are involved with the somatosensory system. Another 30% arrives mainly from primary 

motor and medial premotor cortex. In contrast, the authors did not find any direct connection 
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between PE and visuomotor parietal areas involved in reaching or grasping movements. This 

type of representation exemplifies the problem of distortion where the anatomy can get distorted 

beyond recognition. Moreover, since every brain exhibits some morphological variation, finding 

spatial similarities and identifying landmarks in the flattened representation is difficult.  

Hidden data problem with 3-D and transparency 

3-D reconstruction of histological slices is becoming a mainstay for communicating spatial 

context to a broader audience with superficial understanding of the brain anatomy. One way to 

represent labeled cell density in anatomical context without having to distort the anatomical 

structure, is to “cut out” certain parts of the brain to expose data in hidden structures . Zaborszky 

et al. (2015) represented the neuronal projections in the basal forebrain (BF) by  reconstructing 

the outermost layer of the BF and then cutting out chunks of it to expose the labeled cell density. 

Since the basal forebrain area is anatomically complex and its involvement in cortical activation 

is not well understood, the authors injected distinct retrograde tracers into various frontal and 

posterior cortical areas, and mapped retrogradely labeled neurons in the BF. Visualization of the 

reconstructed surface along with the cell distributions, color coded according to different cortical 

targets, reveals band like structures (Figure 2-26).  
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Figure 2-26. Comparative 3-D distribution of cholinergic and noncholinergic projection neurons in the BF 

demonstrating the gross topography of projection.A,B: neurons projecting to medial targets in the frontal 

cortex are located medially and rostrally in the BF, while cells projecting to more lateral targets in the frontal 

cortex occupy more lateral and caudal locations in the BF. C,D: similar mediolateral topographical 

organization can be observed among cells in the BF that project to different mediolateral sectors in more 

posterior cortical areas. E,F: show the distribution of cells projecting to mediolaterally located caudal cortical 

areas. 
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This distinct topography shows that laterally located targets in the frontal cortex receive their 

input from more caudal levels of the BF. From this observation, the authors postulated that the 

populations of projecting neurons in the BF are not diffuse but segregated. Since the different 

populations of labeled neurons can be obscured by visual occlusion  one way to distinguish the 

different population visually  is by using variable transparency when rendering the surface of 3-

D data objects. An example of the use of transparency for hierarchical data visualization  is 

shown in the Figure 2-27 (Zaborszky et al. (2015). 

 
 
 

 

Figure 2-27. Distribution of retrogradely labeled cells in the cortex using 3-D surface rendering tools of the 

Micro3-D software.Upper row: outside-in view: the labeled cells are viewed through a semitransparent layer 

that is interpolated from the section contour outlines, lower row: inside-out view: the labeled cells are in front 

of a surface that represent the outside contours of the sections. The gray-white surfaces represent a rendering 

generated from the outlines of the mapped sections. Case numbers are indicated in the middle. 
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Location, Location, Location 

This review of the literature suggests that a major advantage of visualizing surface in 3-D is that 

the spatial location of the labeled cells can be easily ascertained. Identifying the exact location of 

the distribution can have a significant impact on understanding the connectivity within the same 

region of the brain. In this context, 3-D visualization of anatomical data must take into account 

the following important attributes:   

• Context is essential to provide a frame of reference that can promote instant recognition 

of the object being displayed (i.e. the brain).  

• Revealing hidden data is important since complex anatomical structures (especially 3D) 

can obscure data located inside the folds of the brain. 

• Visualizing without depth can hinder our ability to identify key landmarks 

• 3D representation can provide a sense of realism that promotes the perception of depth 

necessary for identifying landmarks.  

• Accurate localization of the data on the rendered object, especially in relation to 

identifying spatial landmarks, is crucial for comparison between different subjects.  In 

such comparisons, regions of activation (fMRI) or neuroanatomical labeling (non-human 

primate research) are often judged according to their distance from known landmarks.   

In conclusion, any visualization method used in interpreting complex structures should address 

the challenges mentioned above. In this dissertation, all of these challenges have been addressed 

and evaluated for a 3D generalization model of the non-human primate brain.  
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3.0  METHODOLOGY 

Visualization of cortical surface of the brain difficult because it has multiple folds and structural 

overlap that can hide data interweaved within the folds. A flattened 2D representation can give a 

very distorted view that may lead to incorrect analysis of the data. On the other hand, a 3D 

representation may clutter our judgment or analysis by showing too many details. We want to 

minimize the level of details so that we can visualize the hidden data and reduce distortion at the 

same time. In this dissertation I have developed ways to represent volumetric data in simpler 

form that can do exactly that. First we “fix” the contour to make a complete surface and then 

simplify it. Since anatomical data can be very complex, the simplification is done in multiple 

steps. An application using Java and a combination of self-developed algorithms and 

Visualization Toolkit (VTK) library functions has been developed to generalize and visualize the 

neuroanatomical data in 3D. To answer the research question in this dissertation, an approach, 

with a generalization component and a visualization component, was implemented. 

3.1 3D GENERALIZATION OF BRAIN MODEL 

The generalization component deals with reconstruction of the brain surface from a stack of 

polygons that have been traced from brain histology.  

The steps of the generalization component are: 
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• The vector data is gathered from the histological sections of the brain, and is then used to 

create individual polygons for each section 

• The polygons are then inspected and corrected for overlaps and minimum distance 

required between folds to create a surface without disconnected components or “islands” 

• The polygons are then stacked together to create a set of contours 

• The “vtkVoxelContoursToSurfaceFilter” from the Visualization Toolkit (VTK) library is 

used to create a structured points dataset of signed floating point number and applies 

contouring filter to generate 3D surfaces from a stack of 2D contour distance slices  

• “vtkSmoothPolyDataFilter” from VTK library is used to smooth or “relax” the mesh. The 

method uses Laplacian smoothing. Laplacian smoothing was selected because it reduces 

high frequency information in the geometry of the mesh thus reducing features and 

“opening” up the overlapped structures 

• “vtkLinearSubdivisionFilter” from VTK library is used to further subdivide the surface 

triangles to give it a smoother appearance  

3.1.1 Contour Generalization 

Diffeomorphic methods have been studied for the purpose of registering one brain to the 

other. In this research the inspiration of “inflating” the surface comes from GIS or more 

specifically mathematical morphology used in GIS to generalize the model. The cortex is like a 

sheet of tissue adjoined on its inner side by subcortical white matter (see Figure 3-1). 
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Figure 3-1: Schematic representation of key structural features of cerebral cortex (Van Essen et al., 2001) 

 
 
 

Each cross-section of the cortical surface gives a polygon from which the iso-surface is 

generated.  Since the cortical walls are so close to each other in certain locations, two major 

problems arise when reconstructing the surface. First, the contour lines can overlap due to 

deformation of the brain tissue slices when they are physically mounted onto the microscope 

slide.  This overlap results in the “filling” of the gap at the top of a sulcus (inward fold) (Figure 

3-2.a).   
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(a) 

 

 

(b) 

 

 

Figure 3-2 : (a) Shows Contour overlap due to mounting that results in filling effect on the right (b) Shows 

disconnected areas (islands) because the contour walls are too close. 

 
 
 

Second, the triangulation algorithm ignores areas that are too close to each other resulting 

in “islands” (Figure 3-2.b). This problem can be solved by employing the dilation operator used 

in mathematical morphology.  Mathematical morphology is well suited for biological image 

analysis because it offers ways of extracting image components. These components in turn allow 

us to represent regions of interest and manipulate them for further pre- or post-processing.  

Morphological operations have widely been used in computer vision and image processing. 

Examples include problems in nonlinear filtering, noise suppression, and contrast enhancement  

(Heijmans, 1994; Maragos, 1998; Maragos & Schafer, 1990; Serra, 1983).  In this research, we 
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are only interested in the dilation operator, which is one of the two basic operators in 

mathematical morphology. The basic effect of the dilation operator is to enlarge gradually the 

boundaries of the original structure. The calculation of the new point for dilation is described as 

follows (for sets in 𝑅𝑅𝑛𝑛):  

Definition (Van Den Boomgaard & Smeulders, 1994): Let X be the compact set of the 

original structure where the boundary of a set 𝑋𝑋 is denoted by 𝜕𝜕𝜕𝜕 and S is the structuring 

element. Let 𝑥𝑥 ∈  𝜕𝜕(𝑋𝑋 ⊕ 𝑆𝑆) then 𝑆̃𝑆𝑥𝑥 hits the boundary of 𝑋𝑋. According to the definition of 

dilation,  

𝑋𝑋⊕ 𝑆𝑆 = {𝑥𝑥 | 𝑋𝑋 ∩ 𝑆̃𝑆𝑥𝑥 ≠ ∅} 

So, for a point 𝑥𝑥 on the boundary of 𝑋𝑋⊕ 𝑆𝑆 such that 𝑋𝑋 ∩ 𝑆̃𝑆𝑥𝑥 ≠ ∅. 𝑆̃𝑆𝑥𝑥 with 𝑥𝑥 ∈  𝜕𝜕(𝑋𝑋 ⊕ 𝑆𝑆)  may 

hit 𝜕𝜕𝜕𝜕 at infinite number of points. In this research, we consider the dilation of set 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 with 

disk of radius 𝜌𝜌 (denoted as 𝜌𝜌𝜌𝜌). Point 𝑃𝑃 ∈  𝜕𝜕(𝑋𝑋 ⊕ 𝜌𝜌𝜌𝜌) is chosen such that (𝜌𝜌𝜌𝜌)𝑦𝑦 hits 𝜕𝜕𝜕𝜕 in 

one point, so that 𝑋𝑋⊕ 𝜌𝜌𝜌𝜌 has a unique normal at 𝑃𝑃 denoted as 𝑁𝑁𝑋𝑋⊕𝜌𝜌𝜌𝜌(𝑦𝑦). We assume that our 

structuring element is convex (i.e. circle), and there exists a well-defined normal at each point 𝑥𝑥. 

We further limit our dilation only to points that are close to edges that are not immediate to the 

point. Alternatively, we only dilate points that test positive in searching for edges close to it after 

excluding edges that are connected to the point 𝑥𝑥. Under these assumptions, the dilated point can 

be calculated as: 

𝑃𝑃 = 𝑥𝑥 + 𝜌𝜌𝜌𝜌𝑋𝑋⊕𝜌𝜌𝜌𝜌(𝑥𝑥) 

As illustrated in Figure 3-5.a, the contour line of a square (blue area) can be dilated (indigo 

area) by moving a disk of radius r along the contour line. In this research, the dilation technique 

is used on the contour line to dilate only the areas that are within the radius of the disk. Since the 

distance between any three points are fairly consistent and vertices are ordered, the normal 𝑁𝑁 at 
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point 𝑥𝑥 is calculated the following way. A detailed explanation of the projection methods 

described below can be found in Beyer (1978); Eisenberg and Sullivan (1996); Foley and Van 

Dam (1982); Gellert (2012); Honsberger (1985); Kern and Bland (1938); Singer (1995). 

 

Definition: Let 𝐴𝐴, 𝐵𝐵 & 𝐶𝐶 be the three points of an arc, where, B is is assumed to be the exact 

middle of the arc. The normal 𝑁𝑁 between points 𝐴𝐴 and 𝐶𝐶 is given by, 

𝑁𝑁 = ⟨(𝑦𝑦𝐴𝐴 − 𝑦𝑦𝐶𝐶), (𝑥𝑥𝐶𝐶 − 𝑥𝑥𝐴𝐴)⟩ 

𝑁𝑁 is the normal vector perpendicular to the line connecting points point 𝐴𝐴 & 𝐶𝐶. The magnitude 

of the vector is given by, 

‖𝑁𝑁‖ = �𝑁𝑁𝑥𝑥2 + 𝑁𝑁𝑦𝑦2
2

  

The normal vector can further be normalized by, 

𝒏𝒏 =  ��𝑁𝑁𝑥𝑥 ‖𝑁𝑁‖� � , �𝑁𝑁𝑦𝑦 ‖𝑁𝑁‖� �� 

So, for a structuring element with radius 𝜌𝜌 the point 𝑃𝑃 can be calculated at point B as: 

𝑃𝑃 =  𝐵𝐵 +  𝜌𝜌 𝒏𝒏 

𝑃𝑃(𝑥𝑥, 𝑦𝑦) = (𝐵𝐵𝑥𝑥 +  𝜌𝜌 𝒏𝒏𝒙𝒙 , 𝐵𝐵𝑦𝑦 +  𝜌𝜌 𝒏𝒏𝒚𝒚) 

The normal is calculated for every point that’s exceed the minimum distance from an 

edge. In this work, each point is checked against every edge making algorithmic complexity of 

finding the edge 𝑂𝑂(𝑛𝑛2). Since the number of vertices are not exceedingly big, an implementation 

of a Quad Tree (Finkel & Bentley, 1974), which can reduce the complexity to 𝑂𝑂(log 𝑛𝑛) time, has 

not been implemented. So, for a set of vertices 𝑉𝑉 and their corresponding set of edges 𝐸𝐸, the 

algorithm can be written as shown in Figure 3-4.  
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Figure 3-3 : Flowchart for inflating contour points using dilation 
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Algorithm for dilation: 
 
for each 𝑣𝑣 ∈ 𝑉𝑉, in linearized order { 

   get new set 𝐸𝐸′ ⊆ 𝐸𝐸 with adjacent edges to 𝑣𝑣 excluded 

   for each 𝑒𝑒 ∈ 𝐸𝐸′ { 

      dist(𝑣𝑣) = distance from point 𝑣𝑣 to edge 𝑒𝑒 

      if(dist(𝑣𝑣)< minimum distance) then { 

         normal(𝑣𝑣) = calculate normal at point 𝑣𝑣 

         𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = minimum distance - dist(𝑣𝑣) 

         point(𝑣𝑣) = new point on normal(𝑣𝑣) at 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

         𝑣𝑣 = point(𝑣𝑣)          

      } 

   } 

} 

 
Figure 3-4 : Dilation algorithm used to inflate the contours 

 
 
 
 Figure 3-5.b shows a small segment of the cortical contour line where the distance between 

the two walls creates a gap when reconstructed (Figure 3-5.d). When dilation is applied by 

moving a circle along the contour line that creates enough gap for the reconstruction algorithm to 

create a whole surface (Figure 3-5.e) and gives an inflated look. This step fixes the overlap and 

proximity of the walls problem mentioned earlier. Contour generalization is the first step towards 

generalization of the reconstructed surface. Once the contours are generalized, the next step is to 

reconstruct the surface using contouring filter available in the VTK library.  
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(a) 

 

(b) (c) 

  

(d) (e) 

  

Figure 3-5: Dilation in visualization(a) The dilation of dark-blue square by a disk, resulting in the light-blue 

square with rounded corners (b) A small segment of the cortical contour showing how close the contour walls 

can be (c) Dilation is applied to the contour shown in “b” which opens up the gap (d) The reconstruction of 

the contour without dilation creates an island (e) Reconstruction of the dilated contour fixes the island 

problem 
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Surface Generalization  

 Visualization Toolkit (VTK) library (Martin, Schroeder, & Lorensen) is used to create the 

final surface. The “vtkVoxelContoursToSurfaceFilter” takes a set of polygons and applies a 

contouring filter to generate a 3D surface. This surface is then smoothed using 

“vtkSmoothPolyDataFilter”. As mentioned earlier, the filter uses Laplacian smoothing. 

Laplacian smoothing is widely used for mesh smoothing because of its ability to stay true to the 

original geometry. In Laplacin smoothing, local information (immediate neighbors) is used to 

select the new position of the vertices.  

 
 
 

(a) rf = 0;  i = 0 (b) rf = 0.2;  i = 5 (c) rf = 0.4;  i = 10 

   
(d) rf = 0.6;  i = 15 (e) rf = 0.8;  i = 20 (f) rf = 1.0;  i = 25 

   
 

Figure 3-6: A reconstructed model of a primate frontal lobe with different RelaxationFactor (rf) and 

NumberOfIterations (i) 
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The biggest advantage is that the Laplacian operator depends on the mesh topology and 

not the location of the vertices thus making it an ideal candidate for the smoothing needed to 

generalize the surface. In VTK, the relaxation of the surface is controlled by “RelaxationFactor” 

and “NumberOfIterations”. The RelaxationFactor controls the amount of displacement of the 

vertex over number of iteration specified. It is important to note that there is a shrinkage factor 

associated with the number of iteration. Figure 3-6 shows the smoothing effect on reconstructed 

primate cortical surface for different RelaxationFactor and NumberOfIterations. The 

progressively smoothed surface shows that the primary landmarks are still visible with a very 

high value for RelaxationFactor and NumberOfIterations while opening up the sulcal bank. This 

effect is especially noticeable in the inferior frontal sulcus (IF) and the superior temporal sulcus 

(STS) area.  

3.2 VISUALIZATION OF BRAIN MODEL 

 

The visualization component deals with visualization of the neuroanatomical data or the labeled 

cells after the reconstruction process has gone thru the generalization steps.  

The steps of the visualization component are: 

1. Once the generalized surface is generated, the labeled cells (hidden data) are projected 

onto the smoothed surface by calculating first the surface normal and then finding the 

projection point onto the surface, 
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2. Once the cells are projected to the surface, a hierarchical clustering algorithm is used to 

spatially cluster the cells in order to create a density representation, 

3. Step two is reiterated with different values to progressively shrink the cluster size, 

4. The density map is transferred to the surface of the brain by determining which surface 

vertices belong to the area enclosed by each cluster and colorizing them. 

 

3.2.1 Cell Projection On To Cortical Surface 

A customized method similar to the surface relaxation method described earlier is used to 

project labeled cells to the generalized surface.  For each cell, the closet surface normal is 

calculated. The cell is then projected to the normal projection point given a threshold to avoid 

cells being projected beyond the desired depth. The calculation of normal is similar to the 

contour inflation method. One of biggest advantage of using an iso-surface for projection of the 

cells is that the normal of the triangles is pre-computed during the tessellation process. This 

normal is calculated for the triangle plane that is perpendicular to the triangle facing the outward 

direction of the surface. The normal of a triangle is computer the following way: 

Definition: Let 𝐴𝐴, 𝐵𝐵 & 𝐶𝐶 be the three points of a triangle. Two possible directional vectors 

representing the plane of that surface are: 

𝑣𝑣1 = 〈𝐵𝐵𝑥𝑥 − 𝐴𝐴𝑥𝑥, 𝐵𝐵𝑦𝑦 − 𝐴𝐴𝑦𝑦, 𝐵𝐵𝑧𝑧 − 𝐴𝐴𝑧𝑧〉 

𝑣𝑣2 = 〈𝐶𝐶𝑥𝑥 − 𝐵𝐵𝑥𝑥, 𝐶𝐶𝑦𝑦 − 𝐵𝐵𝑦𝑦, 𝐶𝐶𝑧𝑧 − 𝐵𝐵𝑧𝑧〉  

The cross product of these two vectors will yield the normal perpendicular to the plane,  

𝑁𝑁𝑥𝑥 =  𝑣𝑣1𝑦𝑦 × 𝑣𝑣2𝑧𝑧 − 𝑣𝑣1𝑧𝑧 × 𝑣𝑣2𝑦𝑦 
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𝑁𝑁𝑦𝑦 =  𝑣𝑣1𝑧𝑧 × 𝑣𝑣2𝑥𝑥 − 𝑣𝑣1𝑥𝑥 ×  𝑣𝑣2𝑧𝑧 

𝑁𝑁𝑧𝑧 =  𝑣𝑣1𝑥𝑥 × 𝑣𝑣2𝑦𝑦 − 𝑣𝑣1𝑦𝑦 ×  𝑣𝑣2𝑥𝑥 

The magnitude of the vector is given by, 

‖𝑁𝑁‖ = �𝑁𝑁𝑥𝑥2 + 𝑁𝑁𝑦𝑦2 + 𝑁𝑁𝑧𝑧2
2

  

The normal vector can further be normalized by, 

𝒏𝒏 =  ��𝑁𝑁𝑥𝑥 ‖𝑁𝑁‖� � , �𝑁𝑁𝑦𝑦 ‖𝑁𝑁‖� � , �𝑁𝑁𝑧𝑧 ‖𝑁𝑁‖� ��� 

This normal is already provided for each triangle as mentioned earlier. The projection is done by 

finding the point on the plane parallel to the normal and not the centroid of the triangle. The 

calculation is done the following way: 

Definition: For a plane given by three points 𝐴𝐴, 𝐵𝐵 & 𝐶𝐶,  

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 = 𝑑𝑑  

and its normal 𝒏𝒏 =  〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉, we want to calculate the projection, 𝑥𝑥 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), of a point 𝑥𝑥0 =

(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) on the plane. Since the normal and the vertices are known, one way to calculate 𝑑𝑑 is,  

𝑑𝑑 = 𝐴𝐴𝑥𝑥𝒏𝒏𝑥𝑥 + 𝐴𝐴𝑦𝑦𝒏𝒏𝑦𝑦 + 𝐴𝐴𝑧𝑧𝒏𝒏𝑧𝑧  

So, for a point that lies on the plane it need to satisfy the equation of the plane 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 =

𝑑𝑑. Alternatively, we need to find a parameter 𝑡𝑡 such that, 

𝑥𝑥 = 𝑥𝑥0 − 𝑡𝑡 𝒏𝒏  

𝑡𝑡 can be obtained by  

𝑡𝑡 = 𝑥𝑥0𝒏𝒏𝒙𝒙 + 𝑦𝑦0𝒏𝒏𝒚𝒚 +  𝑧𝑧0𝒏𝒏𝒛𝒛 

Once we have 𝑡𝑡, the projected point can be calculated as, 

𝑥𝑥 = 𝑥𝑥0 − 𝑡𝑡 𝒏𝒏𝒙𝒙  

𝑦𝑦 = 𝑦𝑦0 − 𝑡𝑡 𝒏𝒏𝒚𝒚  
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𝑧𝑧 = 𝑧𝑧0 − 𝑡𝑡 𝒏𝒏𝒛𝒛  

 The calculation of projection for 𝑛𝑛 cell on 𝑚𝑚 triangle is at the order of 𝑂𝑂(𝑛𝑛𝑛𝑛). The 

complexity can be reduced in several ways. In this research, however, we used a conditional 

operator to reduce the number of calculations (of normal projection) needed for each triangle by 

defining a rectangular cube around the cell and only calculating for the triangles bounded by the 

cube. The process is shown in Figure 3.7. 
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Figure 3-7: Flowchart for projecting cells onto the surface 

 

 

 

Start

Get Cell location from 
hashtable?

Get triangle from hashtable?

Is triangle 
within the 
bounding 

cube?

Calculate normal, projection 
point  and distance from cell

Is this 
triangle the 

closest?

Update the cell location to 
the projection pointCalculate 
new point on normalUpdate 

coordinates of the point

End

NO 

NO Discard triangle 



 67 

The algorithm shown below describes the process mentioned above for a set of cells 𝐶𝐶 to 

be projected onto the surface described by a set of triangle 𝑇𝑇. The algorithm checks if the triangle 

is within the projection range first. This is done because anatomically the cells can only be 

within certain distance of the contour. For example, a cell closer to the frontal lobe should be 

projected on to the frontal lobe and not the occipital lobe even if a projection exists in latter lobe. 

Once the projections has been found for the candidate triangles, the closest triangle is picked.  
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Algorithm for cell projection: 
 
for each cell 𝑐𝑐 ∈ 𝐶𝐶 { 

   minimum projection distance from cell to triangle, 𝑑𝑑 ;  

   𝑑𝑑 = set a value that is greater than minimum projection 

   for each triangle  𝑡𝑡 ∈ 𝑇𝑇 { 

      if(𝑡𝑡 is within the bounding cube of 𝑐𝑐) then { 

         normalprojection(𝑐𝑐) = calculate normal projection of 

         𝑐𝑐 on triangle 𝑡𝑡 

         𝑑𝑑𝑐𝑐,𝑡𝑡 = calculate distance for each 𝑡𝑡 from 𝑐𝑐 

         if(𝑑𝑑𝑐𝑐,𝑡𝑡 < minimum projection distance, 𝑑𝑑){ 

            𝑑𝑑 =  𝑑𝑑𝑐𝑐,𝑡𝑡; 

            𝑐𝑐 = normalprojection(𝑐𝑐) ; 

         } 

      } 

   } 

} 

 
Figure 3-8 : Dilation algorithm used to inflate the contours 

 
 
 
For the cells that cannot be projected onto the surface (i.e. edges), are projected to the closest 

vertex. This is reasonable since anatomically the cortical surface does not have sharp unnatural 

edges.  

This method is distinctly different from the 2D flattening method because the cell follows 

the 3D surface as opposed to being perpendicularly projected onto the contour polygon. This 
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projection method eliminates the “stack effect” and improves the distribution of the cells (Figure 

3-9: (A) Shows The “Stack Effect” Of Cells In 2d (B) Shows The Stack Effect In 3d (C) The 

Stack Effect Is Minimized By Projecting To The Surface).  

 
 
 

(A) (B) (C) 

 
  

Figure 3-9: (A) Shows The “Stack Effect” Of Cells In 2d (B) Shows The Stack Effect In 3d (C) The Stack 

Effect Is Minimized By Projecting To The Surface 

 
 
 

The DBSCAN (Peter & Antonysamy, 2010) clustering algorithm (density based spatial 

clustering algorithm) is used to cluster the projected labeled cells because it finds clusters 

starting from the estimated density distribution. It groups points that are closely packed together. 

The advantages of using DBSCAN are: 

1. As opposed to k-means algorithm, it is not required to know the number of clusters in the 

data, 

2. It can find arbitrarily shaped cluster. This feature is useful because the cluster shape can 

stay true to the data distribution and is reflected on the surface density, 
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3. Domain experts can set the parameters used for clustering. This helps to fine tune the 

map if the data is well understood. 

The clustering process creates multiple clusters with different population of cells. These clusters 

are then mapped onto the surface by identifying the area of the cluster and then checking if the 

surface vertices belong to that area. Once identified, the vertices are colorized according to the 

user defined color map. Figure 3-10 (a) shows the labeled cell distribution on the reconstructed 

surface. After performing DBCSAN, each cluster area was transferred onto the surface. In the 

figure, we see different levels of color (ranging from red to yellow to white) to show the different 

levels of density. The initial density (red area) values are set by the domain expert and are then 

progressively constricted to show the peak of density (white area). 

 
 
 

(a) (b) 

  

Figure 3-10 : (a) Distribution of labeled cells that has been projected onto the reconstructed surface (b) 

Density mapping of the labeled cells onto the surface 
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3.3 CASE STUDIES 

Two data sets from Systems Neuroscience Institute at the University Of Pittsburgh were 

generalized and visualized to show the ways in which the visualization is improved with the 

proposed method. 

 

Case 1:  Labeled neurons in the frontal lobe after retrograde transneuronal transport of rabies 

virus from a neck muscle: 

 Figure 3-11 shows a comparison of different representations used to distinguish the 

labeled neurons in the frontal lobe of the primate brain following retrograde transneuronal 

transport of rabies virus from a neck muscle. Figure 3-11 (a) is the 2D flattened representation, 

where the labeling of the cells hidden deep inside the arcuate sulcus (AS) and central sulcus (CS) 

are shown separately. They must be shown separately, because it is not possible to display the 

data without deforming the 2D representation. The 2D map is divided into small bins, and the 

density representation in the 2D map is achieved by counting the number of cells in each bin 

(white represents 4–10 cells per bin). Figure 3-11 (b) shows a generalized 3D view of the same 

data. The density map overlaid on the reconstructed surface reflects the density shown in the 2D 

map. The inside of the central sulcus can be clearly seen in the generalized 3D view. The 

accuracy of the spatial density in 3D is comparable to the 2D density mapping using a binning 

system. The “hot spots” visible inside the arcuate sulcus, the central sulcus, and on the lateral 

surface are visible on the 3D view. This shows that the two maps are not only comparable, but 

also that in 3D, the density shows peaks where the population is the highest. In addition, the 3D 

view provides a context with respect to the whole brain that enables the viewer to easily 

recognize key landmarks on its surface. For example, the central sulcus in the 2D flattened 
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representation needs to be imagined from the two bounding lines, and determining its context 

within the brain requires piecing together the flattened CS map (Figure 3-8a, right) with the 2D 

map of the whole brain (Figure 3-8a, center). In the 3D representation, that mental 

transformation is not necessary, as the activation of the central sulcus in the bank can be instantly 

visualized in the appropriate context. 

 
 
 

(a) 
2D map of the Arcuate Sulcus  2D map of the Lateral surface of 

the hemisphere 
Unfolded map of the Central 

Sulcus 

 
 

(b) Generalization of the hemisphere and density mapping of labeled cells 

 
Figure 3-11: Barebrain visualization of Case 1(a) A flattened representation of the frontal lobe; density 

showing labeled neuron inside the arcuate sulcus, central sulcus, and on the lateral surface; (b) A generalized 

representation of the same data with density mapped on the reconstructed surface 
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Case 2: Labeled neurons in the frontal lobe after retrograde transneuronal transport of rabies 

virus from the adrenal medulla: 

 Figure 3-12 shows the data representation of labeled neurons after the rabies virus was 

injected into the adrenal medulla. The images on the left show a 2D flattened representation and 

a generalized 3D representation of the lateral surface. The images on the right show the 2D 

flattened representation (Figure 3-12(a), left) and a generalized 3D representation (Figure 

3-12(b), left) of the medial wall. A corresponding cluster of high-density labeling in each 

representation is indicated with an asterisk (*) symbol. In this 2D dataset, the central sulcus has 

not been unfolded, since the labeling inside the CS is not the focus of this study. However, 

labeling can be seen inside the CS without changing the perspective of the 3D generalized view. 

In both representations, three distinct hot spots can be seen on the lateral surface. On the medial 

wall, multiple hotspots can be seen in both representations. In the generalized representation of 

the medial wall (Figure 3-12), the cingulate sulcus (CC) can be instantly recognized, and the 

density can be seen in the bank of cingulate sulcus. This observation is nearly impossible to view 

in the 2D flattened map (Figure 3-12(a), right) without the boundary drawings. Similar to Case 

Study 1, the key landmarks are instantly recognizable in the generalized 3D representation, while 

landmarks in the 2D flattened representation can only be recognized by their outlines and text 

labeling. 
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(a) 
2D flattened representation of the lateral surface of 

the hemisphere  
2D flattened representation of the medial wall of 

the hemisphere  

  
(b)  

Generalized representation of the lateral surface of 
the hemisphere  

Generalized representation of the medial wall of the 
hemisphere  

  

 
Figure 3-12: Barebrain visualization of Case 2(a) A 2D flattened representation of the frontal lobe – lateral 

surface (left) & medial wall (right); density showing labeled neurons on the lateral surface; (b) A generalized 

representation of the same data with density mapped on the reconstructed surface - lateral surface (left) & 

medial wall (right). The correspondence of density is shown with “*” on the maps. 
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3.4 ANALYSIS OF EXPERT INTERVIEWS 

Guided expert interviews were conducted (Appendix B) to gather domain expert requirements, in 

order to accurately represent experimental data. This is an important step, since the analysis 

varies widely, depending on the type of data and the acquisition process. A typical exploratory 

analysis is rendered ineffective in neuroanatomical data analysis, since regions of interest are 

already known; and statistical analysis cannot be done, due to expense and scarcity of the data. 

Therefore, the most effective way to find out how visualization techniques can be improved is to 

gather an experimenter’s query into the data and what message he or she is trying to convey with 

its representation. Figure 3-13 shows the analysis of interviews using a “wordcloud” (Fellows, 

2012) shows the commonality of words used during the interview. A “wordcloud” is used to 

highlight the most commonly used word in a text; in our case, this text is the transcribed 

interviews. The frequency of each word is counted, and the more frequently a word is used, the 

larger and bolder it is displayed. The guided interview focused on experimenter data and current 

representation methods, as well as what an experimenter expects to see or expects others to see 

with their representation. It also focused on how the representation can be improved to gain 

better understanding of the data. The “wordcloud” obtained shows that the experimenters want to 

have a representation that enabled them to see different regions of the brain by mapping. It also 

shows that interpretation of the data is closely associated with correct identification of the 

anatomical structure, due to anatomical variation within the same species and mapping data 

hidden deep inside complex anatomical structures. Further analysis of the interviews can be 

summarized in queries that a domain expert wishes to perform when analyzing or showing the 

data. 
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Figure 3-13: A “wordcloud” representation of the expert interviews showing the commonality of words being 

used. 

 
 
 
These queries include: 

1. Can we identify the areas of the brain that are affected by the data? 

2. Can we localize the areas where the density is the highest? 

3. Can we identify which part of the brain we are viewing when we view a small portion of 

the brain? 
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4. What hypothesis can we construct by viewing the data? 

5. How much do we understand about the data? 

6. Can we describe patterns in the data? Does the data follow any particular anatomical 

structure? 

7. When looking at labeled cells, can we assess the amount of labeled cells in the data? 

 

These queries are representative of the data sense making process that the domain expert 

utilizes when viewing experimental data. While conducting the interviews, the users expressed 

an increasing interest to represent data in three-dimensional form. The primary reason for that is 

a better grasp of context and understanding of anatomy. Due to structural complexity, the 

interviewees found that two-dimensional flattened representation of the brain creates distortion 

and cannot show true data distribution. This leads the question whether a three-dimensional 

representation can really aid in data interpretation. One immediate benefit of the three-

dimensional reconstruction is that the viewer does not have to perform mental transformation of 

the two-dimensional flattened model to fit the generic three-dimensional model of the brain 

regardless of the variation among species. The brain model can be readily recognized as a ‘brain’ 

and the viewer can move on to perform more complex analysis by comparing various structural 

landmarks. However, exposing data that are hidden by the surface can be a challenge. Unfolding 

the cortical surface is made difficult by varied shape and size of the brain and its complex 

overlapping structure.  With help of generalization, we should be able to show data in context of 

a quasi brain model without the structural complexity. On the other hand, the generalized brain 

model, which is also in 3D, is not without flaws. “Conversely, a cost associated with using 3D 

displays is that any projection of a 3D world inevitably produces an inherent perceptual 
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ambiguity” (Y Liu, 1997). Infinite 3D perspective for a single point in 2D hinders the user’s 

judgment on relations or values along any axis, especially when attempting to judge the distance 

between two points along the line of sight (Liu, 1997). In addition, 3D displays are susceptible to 

clutter (Garner, 1970). 3D choice may seem like a natural choice to display biological data, but a 

2D display may aid in judging distance. With the help of the generalization, we expect to lessen 

some of the underlying issues with 2D and 3D representations. A human factors experiment is 

proposed to find exactly this performance gain across all three representations. 

3.5 PILOT STUDY 

Experimental Conditions 

 We designed two conditions for the purpose of this dissertation. One is the 2D flattened 

condition, where the user visualizes the flattened brain map, and the other is the generalized 3D 

condition, where the user is presented with an generalized view of the brain. The two were 

compared in a counterbalanced repeated measure design. The pilot study questionnaire was 

designed, based on the expert interview that was previously discussed. Both conditions were 

created using identical data sets. The 2D flattened reconstruction was produced by 

“straightening” the layer IV of the cortical structure, redrawn from the histological slices. The 

layer IV on the medial wall of the hemisphere was unfolded and reflected upward, and the lateral 

surface of the hemisphere was unfolded and reflected downward (Dum & Strick, 1991). The 

generalized 3D reconstruction was generated by first correcting for contour overlaps, and then 

dilated using the smoothing technique described in the “3D GENERALIZATION of brain 

model” section. In the flattened condition, the operator can rotate the model to get the right 
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perspective. In the generalized condition, the operator has the six degrees-of-freedom (DoF) 

required to view the model from any perspective. 

 

Participants & Procedure 

 

10 participants were recruited from the University of Pittsburgh who had a prior 

knowledge of primate brain anatomy. Participants read the description of both conditions and 

were instructed on how to control the camera view for the second (generalized) condition, 

followed by a 15-minute training session. It was verified that the participants understood the 

different cytoarchitectonic areas of the brain that were used to score the answers during the 

training. The participant then spent time answering the questionnaire for each condition. In the 

first condition, the participants spent their time observing the 2D flattened model and the density 

map that was plotted on the map. For the second condition, the participant spent their time 

moving the generalized 3D model and inspecting the density map projected on the generalized 

surface. 

In both conditions, participants were instructed to answer specific questions about the 

model to access their ability to draw inference from the model (Table 1). These questions were 

designed after an analysis of the expert interview. Participants were provided with a schematic 

diagram of the brain map with cytoarchitectonic areas of the brain labeled for answering 

questions that required localization of areas of activation or density. The amount of time spent on 

answering questions about each representation was also recorded. A “Spatial Orientation Test” 

(Hegarty & Waller, 2004) was given prior to the training session to test the user’s spatial ability 
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to imagine different perspectives or orientations in space. Answers were scored based on correct 

answer provided by the expert analysis. 

 
 
 

Table 1 : Questions asked during the evaluation of the 2D Flattened and Generalized 3D conditions 

Number Questions 

1 Identify which part of the brain this is 

2 Identify key landmarks 

3 Localize areas with highest density 

4 Identify closest landmark(s) to the highest density 

5 
Identify location of the highest density in a given area that follows the following 

structure?  I) Surface II)  Sulcus & III) Sulcal Bank 

6 Identify the area with highest density by judging the shape and size of cluster 

 
 
 
Results and Discussion 

Data were analyzed using a repeated-measures ANOVA analysis that compared the 2D Flattened 

condition to the Generalized 3D condition. Since the sample size was too small to obtain 

statistical significance using ANOVA, Pearson correlation coefficients were also measured 

against the user’s spatial test score, and are shown in Table 2. The general idea of the pilot study 

was to understand the effect of each condition on visualizing neuroanatomical data. When the 

user was asked to identify the part of the brain that was represented, there were no statistical 

significance between the 2D Flattened and the Generalized 3D conditions. When users were 

asked to identify key landmarks (Question No. 2) in the represented brain, there was a 
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marginally negative correlation (-0.143) between the 2D Flattened condition and the user’s 

spatial abilities: in short, users with higher spatial abilities did poorly in identifying landmarks in 

the flattened representation. A total score of correctly identified landmarks in this condition also 

shows an advantage over the flattened representation (Figure 3-14.a). Similarly, when the user 

was asked if the density mapped in the 2D Flattened condition followed any anatomical structure 

(namely, the sulcal bank of the central sulcus, as in Question No. 5), users with high spatial 

ability performed the worst in the 2D Flattened condition. (-0.406).  

 
 
 

Table 2: Pearson correlation coefficients against the user’s spatial test score. Values are between +1 and −1 

inclusive, where 1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation. 

Number Questions 
2D 

Flattened 

3D 

Generalized 

1 Identify which part of the brain this is 0.132 0.132 

2 Identify key landmarks -0.143 0.092 

3 Localize areas with highest density 0.418 0.0 

4 Identify closest landmark(s) to the highest density 0.083 0.250 

5 

Identify location of the highest density in a given area 

that follows the following structure?  I) Surface II)  

Sulcus & III) Sulcal Bank 

-0.406 0.056 

6 
Identify the area with highest density by judging the 

shape and size of cluster 
-0.263 0.263 

Total time spent 0.208 -0.376 
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A similar effect can be seen in Question No. 6, where the user was asked to identify the location 

of highest density (-0.263). However, the average score between the two conditions for 

identifying the location of the highest density showed no significant difference (Figure 3-15.a). 

A positive correlation (0.418) for Question No. 3 indicates that users with a higher spatial score 

did better in localizing areas with the highest density. The total scores calculated for correctly 

identifying areas with the highest density also shows that users scored better in the generalized 

representation (Figure 3-14.b). One notable observation in this pilot data analysis is the total time 

it took for the user to complete the questionnaire (Figure 3-15.b). It shows that users with higher 

spatial ability took less time and that users with low spatial ability took more time. The negative 

correlation coefficient (-0.376) found in the generalized condition also supports this observation. 

 
 
 

(a) (b) 

  

 

Figure 3-14: (a) Score of total landmarks identified for each representation; (b) Score of correctly identified 

areas with the highest density. 
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 The effect (or the absence of it) of the generalized condition is what we would expect 

form the pilot study indicating that regardless of spatial ability, all users scored comparably. The 

fact that users with low spatial ability performed better could be due to the similarity of the 

schematic diagram provided during the answer and the 2D Flattened representation. This can be 

avoided by rotating the initial representation in a counterbalanced manner. Also, stricter scoring 

rules should be applied when checking the answers for marking areas of high density, and a 

better schematic diagram showing all the folds should be provided for the answers. 

 
 
 

(a) (b) 

  

 

Figure 3-15: (a) Scores for correctly identifying the area with highest activation for each representation; (b) 

Total time spent for each condition. 

 
 
 
From the results of the pilot study, a quick calculation of the sample size shows that 35–40 

subjects should confirm the effect of the generalized condition (reject the null hypothesis H0; μ = 

mean of flattened condition score) for a two-tailed test, with a 95% confidence interval and a 

70% probability of correctly rejecting the null hypothesis when it is false. 
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4.0  EVALUATION 

To evaluate the visualization technique used for neuroanatomical data in this research, we 

decided to conduct a series of laboratory studies. User requirements gathered from the expert 

interview, along with the results from the pilot study, were used to evaluate the usability of the 

visualization method. 

 The research question we hoped to answer from the studies were appropriate for an 

exploratory approach that allowed us to learn users’ search strategies to effectively visualize 

neuroanatomical data, and explore possible directions and design guidelines for future 

visualization technologies. From a thorough (although not exhaustive) literature review of 

neuroanatomical visualization, we found that there is a limited amount of previous information 

available on similar problems regarding factors or design guidelines that lead to the effective 

interpretation of neuroanatomical data. In addition to examining the design guidelines, the effect 

of being a novice versus an expert on neuroanatomical data visualization was explored. 

4.1 APPARATUS 

The following reported study and evaluation experiment were conducted using the BareBrain 

application developed for this dissertation with a combination of Java, a number of self-
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developed algorithms and the Visualization Toolkit (VTK) library. Data used and conditions 

compared for the experiment are discussed in details below.  

Data  

Three different sets of data were used in a counterbalanced experimental design. The first data 

set was comprised of neurons in the frontal lobe of the primate brain that were labeled by 

retrograde transneuronal transport of rabies virus injected into a neck muscle. The other two data 

sets were comprised of labeled neurons that were labeled when rabies virus was injected into 

adrenal medulla. The brain was then extracted and further processed to identify the labeled cells. 

The contour of the cortical surface and locations of the cells were drawn using a microscope and 

saved in a file that contained the vertices of the contour and cells.   

Conditions 

Three different representations were created for each digitized histological data.  

 The Flat map was created using ReconWin (Dum & Strick, 1991) application by taking 

each individual sections and “unfolding” them and mapping density based on the relative 

location of the cells on the unfolded surface. The 2D flattened reconstruction was produced by 

“straightening” the layer IV of the cortical structure redrawn from the histological slices. The 

layer IV on the medial wall of the hemisphere was unfolded and reflected upward, and the lateral 

surface of the hemisphere was unfolded and reflected downward (Dum & Strick, 1991). In the 

flattened condition, the operator could only view the representation and did not interact with the 

map.  

 The Generalized map was created using the BareBrain application where an abstract 

cortical surface was created in 3D. The generalized 3D reconstruction was created by correcting 

for contour overlaps first and then dilated using smoothing technique described in “3D 
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GENERALIZATION of brain model” section. After generating the generalized surface, labeled 

cells were projected onto the surface. Spatial density clustering to reveal densest areas and 

mapped onto the surface. In the generalized condition, the operator had the 6 degrees-of-freedom 

(DoF) to view the model from any perspective.  

The Full 3D map was also created using the BareBrain application where no 

generalization methods were applied to the cortical surface. For the full 3D representation, the 

cortical surface was reconstructed without any inflation of smoothing filters. The cell density 

was mapped similarly to the generalized representation. The map in full 3D contained all the 

landmarks and were unaffected by generalization. The operator had the 6 degrees-of-freedom 

(DoF) to view the model from any perspective.  

All three representations were presented to the user on a 2560 x 1600 LCD Retina 

display. The computer used for the displaying the representations was a MacBook Pro with an 

Intel Core i7 processor with 8 GB of RAM using Intel HD Graphics 4000 with 1536 MB 

VRAM. Participants interacted with the software using a standard mouse and keyboard. 
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(a) 
2D map of the Arcuate Sulcus  2D map of the Lateral surface of 

the hemisphere 
Unfolded map of the Central 

Sulcus 

 
 

(b) Generalized 3D model of the hemisphere and density mapping of labeled cells 

 
(c) Full 3D model of the hemisphere and density mapping of labeled cells 

 
Figure 4-1: Experimental conditions(a) The Flat map condition where the user visualizes the map and makes 

inference. The map is a representation of the frontal lobe; density showing labeled neuron inside the arcuate 

sulcus, central sulcus, and on the lateral surface; (b) A generalized representation of the same data with 

density mapped on the reconstructed surface; (c) A Full 3D map of the same data with density mapped on the 

reconstructed surface. ** The density scale is not the same across representations. 
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4.2 VISUALIZATION USER STUDY 

4.2.1 Survey Question Design and Measures 

In all three conditions, participants were instructed to answer specific questions about the brain 

and the represented areas of activation in order to access their ability to draw inference from the 

model. These questions were designed following an analysis of several interviews with experts in 

the field of neuroanatomical neuroscience. These guided interviews focused on the scientist’s 

data and current representation methods, and what the scientist expects to see or wants others to 

see with his or her representation. From the analysis of the transcribed interview, we focused on 

two essential factors for interpreting the data: correct landmark identification and accuracy of 

locating density. It is important for the user to correctly identify the exact location because 

activation in the sulcal bank, for example, is not the same as activation that occurs deep inside 

the sulcus. Since our results from the pilot study showed a plausible effect, we retained our 

questions from the pilot study and added measures to keep track of the time and number of 

keystrokes used for the Generalized 3D and the Full 3D representations. We also measured 

performance for the between-animal variation, where the users were shown maps (either Flat or 

Generalized 3D) from two different animals with corresponding areas of activation. Users were 

asked to identify common areas of activation when they compared maps of two different brain. 

These types of between-animal comparisons are important when comparing and/or validating the 

results from a control study. 
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4.2.2 Participants 

To understand the accuracy of different representations of the reconstructed brain, we recruited 

two different groups of participants from the University of Pittsburgh community. Each group 

was balanced between genders and each participant was offered $15 per hour compensation. 

Twenty participants were recruited for the “Anatomy” group. These participants had prior 

experience in visualizing anatomical data where 2D flat maps are commonly used. Twenty 

participants were recruited for the “fMRI” group. These participants had prior experience in 

visually evaluating fMRI data, where 3D brain displays are more common than in the 

visualization of neuroanatomical data. In addition, the fMRI group had more experience in 

visualizing human brains, as opposed to visualizing the primate brain. 

4.2.3 Procedure 

Participants were given general information about different models of the brain and how 

neuronal cells are activated in different areas of the brain. A paper-based Spatial Orientation Test 

(Hegarty & Waller, 2004) was used to assess participants’ spatial ability (SpA), especially 

regarding perspective. The test was followed by two training sessions where the user was given a 

thorough description of primate anatomy and of where to find key landmarks in the brain. In the 

trial sessions, the user familiarized themselves with a sample of each of the three representations. 

The participant then practiced drawing areas of activation on the standardized map. For each 

question, the standardized map was provided to mark the area/s of activation when present. The 

standardized map contained marking showing the cytoarchitectonic areas of the brain. In the 

training session, participants used specific instructions to learn to manipulate the 3D interactive 
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models (Generalized and full 3D). Three test sessions followed where each subject answered 

visualization questions for all three different representations. The experimental conditions and 

data were counterbalanced between participants in each group. 

4.2.4 Analysis / Performance Metrics 

Area of activation: 

The area of activation drawn by the participants on a paper-based standardized map was 

evaluated by counting the total number of 1𝑚𝑚𝑚𝑚2 squares against the correct answer (area of 

activation) identified by the expert. We measured the following: 

Overlapping Area: 

• True positive (TP): Overlapping area/s of activation 

• False positive (FP): Non-overlapping area/s of activation 

• Total mean response: Total area/s identified as activation 
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(a) Expert Response (𝒎𝒎𝒎𝒎𝟐𝟐) (b) User Response (𝒎𝒎𝒎𝒎𝟐𝟐) 

 
 

(c) Measurement of overlapping and non-overlapping (𝒎𝒎𝒎𝒎𝟐𝟐) areas 

 
 
Figure 4-2: Measure of agreement with expert response(a) The expert response was used for the correct area 

of activation; (b) Activation area marked by the user; (c) The two responses provided on the standardized 

maps were compared. The overlapping area was identified as a true positive (TP). Areas that that did not 

overlap, were identified as a false positive (FP). 

 
 
 
We measured the answers at three different levels. First, we checked the answers against the area 

of activation that was drawn by the expert. Second, we checked the participant’s answers against 

the correct area of activation that had its area increased by 1mm in all directions (relaxation of 

criteria). Second, we checked the participant’s answer against a correct answer that was 

increased by 2𝑚𝑚𝑚𝑚2. Figure 4-3 illustrates this increase. 
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Expert Response Accuracy Levels 

 

Figure 4-3: Expert response with different levels of relaxation. Each block represents an area of 𝟏𝟏𝒎𝒎𝒎𝒎𝟐𝟐. 

 
 
 
Highest area of activation: 

The participants were asked to identify the most intensely active area. Again, the overall 

accuracy was measured. 

Number of landmarks: 

Each represented dataset had a set of landmarks that the user had to identify correctly. Type I & 

II measures were taken for correctly identified landmarks. 

Time: 

The time taken by the participants to analyze the data for each representation was recorded in 

minutes. 

Number of Keystrokes: 

The total number of keystrokes that the participant used during the interaction with the 

Generalized 3D model and the full 3D models were recorded. The 2D representation did not 

involve any interaction, so the number of keystrokes was not recorded in this condition. 

Spatial Ability (SpA) Score: 

A paper-based Spatial Orientation Test (Hegarty & Waller, 2004) was scored and used to 

measure the participant’s spatial abilities. 
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Variability In Overlap Across Two Brains: 

We measured overlap of the participant’s localization of density with the expert answer when 

representations (Flat condition and Generalized condition) of two different brain from same 

species were compared. True positive (overlapping areas) and false positive (non-overlapping 

areas) results were reported.  

4.2.5 User Response Bias: 

Human information processing capabilities are limited and systematically biased. In this 

research, the fMRI group is familiar with 3D visualization whereas the Anatomy group is 

familiar with 2D visualization of brain maps. To deal with this bias, we chose the repeated 

measures design for our evaluation. All three conditions were counterbalanced with three 

different datasets. The datasets were particularly chosen to have significant anatomical variation 

and activation from different sources (namely, neck muscle and adrenal medulla). There is a 

possibility of transfer bias when the user identified the areas from 2D map to a standardized map. 

2D maps used for evaluation in this dissertation varied significantly from the standardized map 

since they were created from different animals and had all the inherent anatomical variation. 

Also, in one 2D representation, the sulci were unfolded and shown separately where the user had 

to mentally piece together these maps creating contrast with the standardized map. 
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4.2.6 Results 

The data were analyzed using a repeated-measures ANOVA that compared the 2D Flattened 

representation with the Generalized 3D and Full 3D representations between the fMRI and 

Anatomy groups. 

 

Areas of activation: 

As discussed above, we measured the area of overlap of the response provided by the 

users from both groups and the expert answer. A true positive result indicates the overlap. Figure 

4-4 shows the mean overlap or the area (in 𝑚𝑚𝑚𝑚2) that was identified by the user. Figure 4-4 (a-

left) shows that when the accuracy of the expert answer is not relaxed, there was no significant 

difference between the fMRI or Anatomy group (F(1,38)=3.30, p=0.08) including no 

significance between representations (F(2,38)=1.56, p=0.21) or interaction between group and 

representation (F(2, 38) = 0.45, p = 0.64). The percentile of the true positive result shows that the 

users were able to identify an average of 10.7% of the total true positive answers (expert 

answers) in the Flat condition and 15.3% in the Generalized condition (Figure 4-4 (a-right)). 

When we relaxed the accuracy of the expert answer by 1mm, we see a marginal difference 

between representations (F(1, 38) = 2.96, p=0.06), with users from both groups scoring higher in 

the Generalized condition, but no difference between groups (F(1, 38) = 2.96, p = 0.09) or 

interactions between group and representation (F(2, 38) = 0.48, p = 0.62). Users were able to 

identify an average of 8.5% of the total true positive answers in the Flat condition and 13.6% in 

the Generalized condition (Figure 4-4 (b-right)). When we relaxed the accuracy of the expert 

response by 2mm, users scored significantly higher in the generalized condition (F(2, 38) = 3.65, 

p = 0.03) but there was still no difference between groups (F(1, 38) = 2.48, p = 0.12) or 
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interactions between group and representation (F(2, 38) = 0.661, p = 0.519) . When accuracy was 

relaxed by 2 mm, users were able to identify an average of 7.4% of the total true positive 

answers in the Flat condition and 13% for the Generalized condition (Figure 4-4 (c-right)). The 

percentage shrinks as the accuracy is relaxed, because the total number of true positives (expert 

answers) increases against the user response. 
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Mean Overlap Score Mean Overlap Score (Percentile) 
(a) 

  
(b) 

  
(c) 

  
 

Figure 4-4: Shows the mean accuracy (true positive) or area correctly identified by the users from both 

groups;the left column shows the mean true positive score and the right column shows the percentile of true 

positives. (a) Shows the mean response when accuracy was not relaxed; (b) Shows the mean response when 

accuracy was relaxed by 1mm; (c) Shows the mean response when accuracy was relaxed by 2mm. 
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The false positive results show the area/s that did not overlap with the expert answered. 

 
 
 

Mean Non-overlap Score 
(a) (b) 

  
(c) 

 
Figure 4-5: Shows the mean non-overlap (false positive) identified by the users from both groups.(a) Shows 

the mean response when accuracy was not relaxed; (b) Shows the mean response when accuracy was relaxed 

by 1mm; (c) Shows the mean response when accuracy was relaxed by 2mm. 

 
 
 
The result shows that when the accuracy of the expert answer is not relaxed (Figure 4-5 (a)), 

there is no significant difference in non-overlapping areas between the fMRI or Anatomy groups 

(F(1, 38) = 0.34, p = 0.57), including no significance between representations (F(2, 38) = 2.481, 

p = 0.09) or interaction between group and representations (F(2, 38) = 0.16, p = 0.85). When we 

relaxed the accuracy of the expert answer by 1mm, we still see no difference between groups 
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(F(1, 38) = 0.05, p = 0.82), including no significance between representations (F(2, 38) = 1.84, p 

= 0.17) or interaction between group and representations (F(2, 38) = 0.16, p = 0.85) (Figure 4-5 

(b)). Similarly, no significance was observed between the fMRI or Anatomy groups (F(1, 38) = 

0.00, p = 0.99), including no significance between representations (F(2, 38) = 1.30, p = 0.29) or 

interaction between group and representations (F(2, 38) = 0.10, p = 0.90) (Figure 4-5 (c)). 

 The results shown above also prompt us to question if the total response or size of the 

response given by the users were different in all the conditions. As a result, we measured the 

total mean response of the users for the Flat, Generalized 3D, and Full 3D conditions. The results 

shown in Figure 4-6 indicate that although the responses across representations are not 

statistically significant (F(2, 38) = 0.56, p = 0.57), the users in the Generalized condition 

responded about 15% more. 

 
 
 

Total Mean User Response 

 
Figure 4-6: The mean response (𝒎𝒎𝒎𝒎𝟐𝟐) given by the users from both groups 

 
 
 
The area of highest activation: 

Since it was essential for the user to be able to identify the area with highest activation, we asked 

the users to identify one area that they considered to be the highest.  We again measured the true 
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positive response with three different levels of accuracy – no relaxation, 1mm relaxation and 

2mm relaxation. The results show that when the accuracy of the expert answer is not relaxed, the 

fMRI and Anatomy groups (F(1,38)= 5.53, p = 0.02) scored differently(Figure 4-7 (a-left)). The 

fMRI group scored high in both the Flat and Generalized conditions with an average of 23.1% of 

the total overlapping area, while Anatomy scored 11.9% (Figure 4-7 (a-right)). 
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Mean Overlap Score Of Highest Density  Mean Overlap Score (Percentile) Of Highest 
Density 

(a) 

  
(b) 

  
(c) 

  
 

Figure 4-7: The mean overlap (true positive) identified by the users from both the groups;the left column 

shows the mean true positive score and the right column shows the percentile of true positives. (a) Shows the 

mean response when accuracy was not relaxed; (b) Shows the mean response when accuracy was relaxed by 

1mm; (c) Shows the mean response when accuracy was relaxed by 2mm. 
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No significance between representations (F(2, 38) = 0.02, p = 0.98) or interaction between group 

and representation (F(2, 38) = 0.34, p = 0.71) was found. When we relaxed the accuracy of the 

expert answers by 1mm, we again see the fMRI and Anatomy group (F(1, 38) = 4.99, p = 0.03) 

scoring differently (Figure 4-7 (b-left)). The fMRI group scored high in both the Flat and 

Generalized conditions with an average of 17.3% of the total correct answers, while the Anatomy 

group scored only 7.3% (Figure 4-7 (b-right)). No significance between representations (F(2, 38) 

= 0.05, p = 0.95) or interactions between group and representations (F(2, 38) = 0.203, p = 0.817) 

was found. When the accuracy was relaxed by 2mm, we see a similar effect with both the fMRI 

and Anatomy groups (F(1, 38) = 3.92, p = 0.05) scoring differently (Figure 4-7 (c-left)). The 

fMRI group scored high in both the Flat and Generalized conditions with an average of 13.4% of 

the total correct answers, and the Anatomy group scored only 7.7% (Figure 4-7 (c-right)). No 

significance between representations (F(2, 38) = 0.06, p = 0.95) or interactions between group 

and representations (F(2, 38) = 0.31, p = 0.73) was found. 

 

Number of landmarks: 

We asked users to correctly identify a total of seven landmarks in all three 

representations. Correct identification of these landmarks required some knowledge of brain 

anatomy. It is important to mention that some features or landmarks do partially exist in each 

representation, since it is impossible to draw an exact boundary in biological data, especially in 

3D. A true positive result shows the number of landmarks that the users were able to correctly 

identify; a false positive result shows the number of landmarks that the users incorrectly 

identified; and a false negative result shows the number of landmarks that were present in the 

model but that the user did not identify. For a true positive score, the results shows no significant 
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difference between the fMRI or Anatomy groups (F(1, 38) =0.48, p = 0.49), including no 

significance between representations (F(2, 38) = 1.07, p = 0.35) or interaction between group and 

representation (F(2, 38) = 0.29, p = 0.75) (Figure 4-8 (a)). In contrast, the false positive result 

shows a significant difference between representations (F(2, 38) = 5.84, p = 0.004), but no 

significant difference between the fMRI and Anatomy groups (F(1, 38) = 1.31, p = 0.26) or 

interactions between group and representations (F(2, 38) = 0.089, p = 0.92) (Figure 4-8 (b)). 

However, it is important to note that the average number of incorrectly identified landmarks does 

not exceed 1 in either case. The  number of landmarks that were not identified by users even 

though they existed (false negative) shows that there was no significant difference between the 

fMRI or Anatomy groups (F(1,38)= 0.48, p= 0.49), including no significance between 

representations (F(2,38)= 1.07, p= .35) or interaction between group and representations (F(2, 

38) = 0.29, p = 0.75) (Figure 4-8 (c)). 
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Landmark Identification Score 
(a) (b) 

  
(c) 

 
Figure 4-8: The mean landmark identification scores(a) Shows landmarks correctly identified, or a true 

positive result; (b) Shows landmarks incorrectly identified, or a false positive result; (c) Shows landmarks not 

identified even though they existed, or a false negative result. 

 
 
 
Time: 

The total time spent for each representation was recorded. Results show a significant difference 

between representations (F(2, 38) = 5.14, p = 0.008) with users in the Generalized condition 

spending more time(Figure 4-9). However, no significant difference was found between the 

fMRI and Anatomy groups (F(1, 38) = 1.88, p = 0.18) or interaction between group and 

representations (F(2, 38) = 0.99, p = 0.38). 
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Average Time Spent 

 
Figure 4-9: Shows the average time spent for each representation 

 
 
 
Since users in the Generalized condition spent more time, but scored higher in accurately 

identifying area of activation, we looked at the correlation between time spent and overlap score. 

No correlation was found: r(38) = -0.12, p > 0.05. However, there was a significant correlation 

(Figure 4-10) between the landmark identification score and time spent in the Generalized 

condition, with r(38) = 0.31, p < 0.05. No other correlation with time was found. 

 
 
 

Time Correlation 

 
Figure 4-10: Correlation between landmark identification score and time spent 

 
 
 
Number Of Keystrokes: 
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The total number of keystrokes was recorded for the Generalized condition and the full 3D 

condition. The interaction with the model demonstrates how much the user is engaged with 

visualizing the model. A higher number of keystrokes may explain the greater difficulty in 

visualizing a complex structure. Results show no significant difference between the fMRI or 

Anatomy group (F(1, 38) = 0.006, p = 0.94) including no significance between representations 

(F(2, 38) = 0.21, p = 0.66), or interactions between group and representations (F(2, 38) = 0.16, p 

= 0.69) (Figure 4-11). 

 
 
 

Keystrokes 

 
Figure 4-11: Average number of keystrokes for the Generalized 3D and Full 3D conditions. 

 
 
 
Spatial Ability (SpA) Score: 

The spatial ability score was obtained by administering a paper-based spatial orientation test 

(Hegarty & Waller, 2004), but the score shows no significant correlation between mean 

activation area accuracy and SpA for the Generalized condition. No correlation exists when 

accuracy is not relaxed: r(38) = 0.2, p > 0.05. Additionally, a correlation does not exist when the 

accuracy is relaxed by 1mm (r(38) = 0.08, p > 0.05), as well as when accuracy is relaxed by 

2mm (r(38) = 0.17, p > 0.05), as shown in Figure 4-12. 
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SpA Correlation 
(a) (b) 

  

(c) 

 
Figure 4-12: Correlation between density localization accuracy vs. SpA score in the Generalized condition. 

 
 
 
Variability In Overlap Across Two Brains: 

As discussed above, we measured the overlap of the response, provided by the users against the 

expert response, from both groups in only the Flat and Generalized conditions. The true positive 

result indicates that the user identified area overlapped with expert response. Figure 4-13 (a) 

shows that when the accuracy of the expert answer is not relaxed, there is no significant 

difference between the fMRI or Anatomy groups (F(1,38)=0.76, p=0.39) including no 

significance between representations (F(1, 38) = 1.73, p = 0.2) or interactions between group and 

representations (F(1, 38) = 0.000, p = 0.99). When we relaxed the accuracy of the expert answer 

by 1mm, we see no significant difference between the fMRI or Anatomy groups (F(1,38)=1.96, 

p=0.24), including no significance between representations (F(1, 38)=1.73, p = 0.17) or 
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interactions between group and representations (F(1, 38) = 0.08, p = 0.78) (Figure 4-13 (b)). 

When we relax the accuracy of the expert answer by 2mm, we still see no significant difference 

between the fMRI or Anatomy groups (F(1, 38) = 1.47, p = 0.23), including no significance 

between representations (F(1, 38) = 2.89, p = 0.1) or interactions between group and 

representations (F(1, 38) = 0.005, p = 0.94) (Figure 4-13 (c)). 

 
 
 

Overlap Across Two Different Brains 
(a) (b) 

  
(c) 

 
Figure 4-13: Shows the mean overlap (true positive) or area (𝒎𝒎𝒎𝒎𝟐𝟐) correctly identified by the users from 

both the groups.(a) Shows the mean overlap when accuracy was not relaxed; (b) Shows the mean overlap 

when accuracy was relaxed by 1mm; (c) Shows the mean overlap when accuracy was relaxed by 2mm. 
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 Non-overlapping areas were also measured for density localization between two brains. 

The statistical result shows no significant difference when the accuracy of expert answers is not 

relaxed. However, when the accuracy is relaxed by 1mm, we see a marginal significance in 

interaction between group and representation (F(1, 38) = 3.83, p = 0.058), but no significance 

between the fMRI or Anatomy groups (F(1, 38) = 0.11, p = 0.74), including no significance 

between representations (F(1, 38) = 2.89, p = 0.1). When the accuracy was relaxed by 2mm, we 

see a significance in interactions between group and representations (F(1, 38) = 4.59, p = 0.039) 

but no significance between the fMRI or Anatomy groups (F(1, 38) = 0.26, p = 0.62), including 

no significance between representations (F(1, 38) = 2.0, p = 0.17). However, this result is trivial 

since the interaction is significant and disordinal. We also performed a Oneway ANOVA 

analysis to examine each of these variables and did not find any difference between groups for 

either the Flat condition (F(1, 39) = 1.08, p = 0.31) or the Generalized condition (F(1, 39) = 1.02, 

p = 0.32). A through explanation of these results can be found in the discussion section. 
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Non-overlap Across Two Different Brains 
(a) (b) 

  
(c) 

 
Figure 4-14: Shows the mean non-overlap (false positive)(a) Shows the mean non-overlap when accuracy was 

not relaxed; (b) Shows the mean non-overlap when accuracy was relaxed by 1mm; (c) Shows the mean non-

overlap when accuracy was relaxed by 2mm. 

 
 
 

4.2.7 Discussion 

Areas of activation: 

Assessing how accurately the user can identify areas of activation is important, as we found out 

from our expert interviews. Correctly identifying activated areas can help us understand which 

part of the brain contributes to certain body movements, or to understand connectivity within the 

brain and ultimately understand this connectivity at a much granular level. Our results show that 



 110 

the agreement between the expert and the user (area of overlap) improves in the generalized 

condition when we relax the accuracy by both 1 and 2 mm. Users from both groups were able to 

consistently capture about 13% of the overlap in the Generalized condition, as compared to about 

half of the overlap in the Flat condition. A noticeable difference is that in the Full 3D condition, 

users did not perform as well as in the Generalized condition, which validates the hypothesis that 

3D is not always better when visualizing neuroanatomical data, due to overall structural 

complexity. Also, users in the fMRI group performed consistently better in all three conditions, 

as compared to the Anatomy group, which shows that a good knowledge of neuroanatomy and 

experience with volumetric data has a positive effect on visualization. Despite good performance 

in the Generalized representation, users in this group did not do so great in capturing overall 

areas of activation. There might be other factors that affect this overall result. One explanation is 

that our representations of the brain in all three conditions are a fabrication of the real data. In 

each representation, the data is manipulated in some ways that creates significant distortion. This 

is not the case for MRI data and representation created from MRI images. MRI datasets have 

very little distortion, but do not have the resolution required to identify cellular level activation. 

Since histology is the only way to track cellular activity, such distortion can be minimized, but 

not entirely avoided. By reconstructing the histology in 3D and generalizing it, we can stay as 

close to the ground truth as possible while minimizing overall distortion. 

 The non-overlapping results supports the positive effect of the Generalized condition 

when visualizing anatomical data. The false positive results in all three conditions were of 

comparable magnitude. However, the inaccuracy in Flat condition is not as adverse as we 

expected it to be. It can be argued that users in the Generalized condition did better simply 

because they identified a bigger region. This is unlikely, because when we analyzed the total user 
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response for each representation, we did not find any statistical significance between 

representations. 

 

The area of highest activation: 

Results for identifying the highest area of activation show that the fMRI group was superior in 

localizing, scoring almost twice as higher than the Anatomy group. Users in the fMRI group 

have a good knowledge of neuroanatomy in addition to visualizing volumetric data that involves 

perceiving activation or lesion from 2D slices and volumetric reconstruction in 3D. In other 

words, users in the fMRI group are more experienced observers than those in the Anatomy 

group. Fiez et al. (2000) found similar results that slightly favored the experienced users. In their 

task of identifying lesions to a standardized brain map, the experienced users did slightly better, 

which indicates that naïve users can learn and become proficient, given sufficient anatomical 

knowledge. 

 Volumetric data involves 2D slices and orthographic projections of 3D volumes. The 

general problem of visualizing such data (namely, through CT, MRI, and fMRI) involves an 

accurate estimation of size, shape, and location of the activation or lesion. Studies have shown 

that slice visualization and projection are not an optimal way to understand shapes or relative 

positions in 3D space (Rehm et al., 1998; Tory, 2003). John, Cowen, Smallman, and Oonk 

(2001) have found that 3D displays hamper judging relative positions, but facilitate shape 

understanding. Our task of identifying areas of activation is essentially a relative position 

identification task where the user has to identify position of the activation on the cortical surface. 

Users in our Generalized condition did better than the Flat (2D) and 3D condition. This result 

supports our hypothesis that generalization is a viable approach for improving the presentation of 
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brain neuroanatomy. Additionally, effective training can increase a user’s ability to comprehend 

both shape and size in 3D (Osborn & Agogino, 1992).  In our case, the task of identifying the 

area of highest activation involves understanding the shape and size of the activation. Our result 

shows that the fMRI group who had more training visualizing data in both 2D and 3D indeed 

performed better in all three conditions. This result indicates that providing effective training to 

the user can enhance user performance. 

 

Number of landmarks: 

Identifying anatomical landmarks from different representations primarily depends on the user’s 

anatomical knowledge and overall ability to understand the spatial landscape. 3D displays are 

useful when trying to understand the general shape of the object (Frisby, 1979; John et al., 2001). 

In our result of landmark identification, users in the Generalized condition did not perform better 

than those in the Flat condition. As a matter of fact, users in the Generalized condition 

incorrectly identified landmarks that were not present on the model. When we take a closer look 

at the user response, we see that users often mistakenly recognize the reconstructed frontal and 

partial parietal lobe as a full brain, though it does not include the occipital lobe and landmarks 

contained within. We can find two plausible explanations for this. First, our Generalized model 

contains a partially reconstructed parietal area and its landmarks. It is impossible to draw the 

exact boundary for anatomical data, which makes the reconstruction of only the frontal lobe 

virtually unattainable. The partially reconstructed landmarks in the Generalized model often lead 

to false positive results—though this is not the case in a flat map. A flat map can easily be 

manipulated by simply not drawing the landmarks that are of no interest. Second, the smoothing 

of the reconstructed model in the Generalized condition blurs the exact boundaries of the 
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landmarks. The more we smooth, the more we lose edges. This can create a misperception of the 

reconstructed model, as users perceive the blob-like structure as a whole brain. This is especially 

the case when a user does not know the exact anatomy of the primate brain. One way to 

overcome this problem is to put markers that define the boundary of landmarks on the 

Generalized model. This will help the user identify the exact boundary of the landmarks, while 

maintaining an overall context of the brain. Drawing these markers is much easier and accurate 

in a 3D model, since we can identify these landmarks in the histological sections and reconstruct 

without distorting the location. Figure 4-15 shows an illustration of edges being drawn on the 

reconstructed surface. We can clearly identify the sulcus (dotted line) and see that one of the 

areas of activation is right in the middle. 

 
 
 

 

Figure 4-15: Illustration of reconstructed medial wall with landmark edges drawn on the surface. Cingulate 

sulcus (CgS); corpus callosum (CC). 
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Time: 

There was a significant difference in the total time spent in the Flat condition and the 

Generalized condition. Users spent more time in the Generalized condition and identified more 

landmarks as they spent more time. Although this does not mean that users who spent more time 

in the Generalized condition did better than those in the Flat condition when identifying 

landmarks, examining the interaction time may lead to a better understanding of the Generalized 

model and also lead to better accuracy. 

 

Number of Keystrokes: 

User engagement with the model shows that there was no difference between the Generalized 

condition and the 3D condition. We also did not find any correlation with engagement and any of 

the other dependent variables. 

 

Spatial Ability (SpA) Score: 

No significance was found between the user’s spatial ability and accuracy scores. One reason for 

this effect (or lack of effect) is that there was little diversity of spatial ability in our population 

(M = 10.9, SD = 1.39). Velez, Silver, and Tremaine (2005) ran into similar issues in trying to 

explain how spatial ability relates to visualization comprehension. The authors concluded that for 

visualization experiments, one needs to have a large enough sample of subjects to observe any 

effect. In our case, the participants were from a population group where the ability to effectively 

perceive data in different modalities is a must. Hence, it is not surprising that there was very little 

diversity in the results. 
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Variability In Overlap Across Two Brains: 

Judging the corresponding areas of activation between two brains of the same species can be 

challenging, because the overall shape and size of the brain may vary significantly. When 

analyzing and comparing peak activation areas within species, this variation can have a huge 

effect in understanding the corresponding areas. Identifying similar areas can corroborate a 

functional connectivity. However, this comparison is often done between two brains and is 

infrequently standardized, due to structural variability. In our task of finding corresponding areas 

of activation between two brains, we did not find any significance in overlap (with the expert 

response) between the Flat condition and the Generalized condition. This shows that the Flat 

representation is as good as the Generalized representation when finding corresponding peaks 

and drawing them on the standardized map. A remarkable result is that both the Anatomy group 

and the fMRI group performed similarly when mapping activation from multiple brains to a 

standardized map. Our result is consistent with the results of the study conducted by Fiez et al. 

(2000). Fiez found small differences between the intraobserver variability for the experienced 

observer vs. intraobserver variability for the inexperienced observer for lesion segmentation. In 

our experiment, the fMRI group was more experienced in visualizing volumetric data and 

performed slightly better in accurately marking areas of activation. 

 The main effect of the false positive result is unremarkable, because of the disordinal 

interaction effect. A disordinal result involves crossing lines, and in our study, the fMRI group 

has fewer false positives in the Flat condition than in the Generalized condition. On the other 

hand, the Anatomy group showed an opposite effect. Because of this result, we performed a 

Oneway ANOVA test and did not find any significance between groups. 
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5.0  CONCLUSION 

This dissertation focuses in the generalization of the 3D models to help us visualize cells deep 

inside the structure in the context of the brain without completely distorting the anatomical 

structure. Viewer’s agreement with the domain expert hinges on accurate landmark identification 

and representation of the data. Since a qualitative analysis of the neuroanatomical study is often 

used to understand and communicate results, presenting high-resolution visualizations of the 

brain in a way that can facilitate a Neuroscientist’s efforts is worth exploring.  

5.1 THESIS CONTRIBUTION 

As stated in Section 1.2, the objective of this research is to provide insight into how techniques 

that are used to draw insights from a 2D representation compare to those used in a 3D 

representation of neuroanatomical data and whether the viewer’s knowledge gain can be 

enhanced by the proposed generalized display technique of the 3D brain. 

 This work contains several contributions to neuroanatomical data visualization. First, a 

comprehensive review of state-of-the neuroanatomical data visualization, methods and 

integration in addition to a formal interview of domain experts been provided. Second, 

generalization algorithms were developed to tackle inconsistencies in the data. Third, a 

visualization tool that implements the proposed visualization methods has been developed, with 
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a fully functional interface, and is currently being used at the Systems Neuroscience Institute at 

the University Of Pittsburgh. Fourth, a user study was conducted to find the effectiveness of all 

three conditions (2D, Generalized 3D, and Full 3D) on visualizing neuroanatomical data. 

 From our analysis of the data gathered from the user study, we discovered a few 

guidelines that may help when designing future visualization applications. They are: 

1. Generalization of complex neuroanatomical structures aids in end user visualization 

in 3D. Generalization combines the strategies employed by the user in both 2D and 

3D. Thus, generalization promotes better localization accuracy while maintaining 

correct landmark identification. 

2. Adding a third dimension provides the user with the realism of the biological 

structure, but can confuse a user who is analyzing partially reconstructed structures. 

Users with limited knowledge of the structure under analysis may confuse a partial 

structure for a whole. This is especially noticeable in the Generalized model, since the 

edges of the structure are not as salient, which can make the user’s perception of 

boundaries non-uniform. 

3. Effective training can increase a user’s ability to understand the anatomical data. In 

our research, experienced users performed better across modalities. 

4. The Generalized model can be enhanced by explicitly identifying the edges of the 

landmarks by either coloring different areas or by simply drawing lines. 

5. Determination of the degree to which a user’s spatial ability has an effect on 

visualization comprehension requires a large and diverse enough sample to include 

users with a range of spatial abilities. 
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5.2 FUTURE WORK 

There are a few limitations to this research, which require further investigation. First, the source 

of neuroanatomical data and its analysis varies among experimental approaches. Even within one 

approach, the data varies depending on the question the researcher is asking. For example, 

histological data may not require a 3D reconstruction if the research only focuses on a number of 

cells in a focused area. In that case, there is no contour information available to create the 

surface. A wide array of algorithms is required to implement a complete visualization tool and 

accommodate different data types. However, it is useful to find visualization guidelines that 

enhance end user performance and to refine them, and our research focuses on exactly that issue. 

 Second, anatomical structures can be much more complex (for example, the cerebellum) 

than those presented in this research. Our algorithm is ineffective for data that includes severe 

deformations or overlaps in the slice. Standardization to an atlas is one way to solve this 

problem. However, in recent work, we have found that a multistep generalization technique can 

create a much more coherent surface. This multistep process involves using a morphological 

operation for contour data (as described in this research as a first step), converting the cleaned 

contour to a binary image, performing a morphological operation on the image, and then 

converting it back to contour for reconstruction. Third, it would be exciting to see how our 

guidelines affect end user performance. By increasing the sample size, we would hope to 

introduce a degree of diversity in users’ overall spatial abilities and observe its effect. 

Finally, a robust landmark-based slice registration technique would be useful for reconstruction. 

We cannot use an off-the-shelf registration algorithm, since our data is often messy, due to 

human error, and widely available rigid-body registration cannot be applied to our dataset. 

Currently, we manually align slices based on different recurring landmarks. Another big 



 119 

challenge is that we almost always reconstruct a partially cut brain in the lab. A block of the 

brain is extracted from the full brain and sliced. These slices are then individually processed, 

thus losing any alignment information, except for the block plane. When drawing from these 

individual slices, the experimenter often ignores the plane and focuses on the cortical structure, 

which makes accurate registration even more difficult. 
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APPENDIX A 

CYTOARCHITECTONIC AREAS OF THE PRIMATE BRAIN 

The map of the brain is shown below with labeled areas discussed in this article. The numbers 

refer to cytoarchitectonic areas of the brain. 

 
 
 

 

Figure AppendixA-1: Cytoarchitectonic map of the Macaque Monkey brain. Modified from (Bostan, Dum, & 

Strick, 2013) 
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AIP Anterior Intraparietal Area 

AS Arcuate Sulcus 

CA Calcarine Sulcus 

CS Central Sulcus 

CB Cerebellum 

CMA Cingulate Motor Area 

CgS Cingulate Sulcus 

IPS Inferior Intraparietal Sulcus 

IOS Intraoccipital Sulcus 

LS Lateral Sulcus 

Lu Lunate Sulcus 

M1 Primary Motor Cortex 

S1 Primary Somatosensory Cortex 

PS Principal Sulcus 

PMd Secondary Motor Area Dorsal 

PMv Secondary Motor Areas Ventral 

STS Superior Temporal Sulcus 

STS Superior Temporal Sulcus 

SMA Supplementary Motor Area 

V1 Visual Area 1 (Primary Visual Cortex) 
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APPENDIX B 

GUIDED INTERVIEW DATA 

This appendix contains transcripts of domain expert interviews recorded with the interviewees 

permission. An important value of the recorded interviews was having access to the exact words 

spoken by the interviewees. The names of the interviewees were initialized for confidentiality 

purposes. 

B.1 INTERVIEW 1 

S: You can describe what data you use now and what kind of representation you use now.  So 

what do you think? What is your data? Do you use rabies virus? 

AB:  Yeah, so we have the rabies virus, and I mostly use 2-D representations right now, in the 

cortex, and other parts of the brain.  

S: So when you inject the rabies virus and you see the infection at any point of time, at any order, 

what do you expect to see, for your purposes? 

AB: Just the distribution of neuron, of points in the space. 

S: In which part of the brain? 
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AB: I look throughout the whole brain, basically. 

S: Ok, Not just basal ganglia or anything? 

AB: No. I mean, sometimes. Depending on the experiment and the question. 

S: Why do you look at the whole brain, is it because you’re trying to find connections between 

areas in the whole brain, or – what is the purpose? 

AB: Yeah, basically.  To look at connections. 

S: Any particular example that you want to give me? 

AB: Well, so for example, you can look at, say, inputs to the cerebellum and you’re looking in 

cortex to see what kind of network projects to the cerebellum.  So it’s usually, it can be an 

interconnected cortical network, and then, so you see the distribution of the whole   ??? 

(1:41). 

S: I mean, why – and this is something I was reading in the paper, and I guess it makes sense, but 

I want to hear it from you.  I guess we have pre-defined regions where we inject the 

retrograde or anterograde virus, and we want to see where it ends up, right? 

AB: Right. 

S: Why does it necessarily mean that there’s a connection between those two areas? 

AB:  Well, because the virus transports at synapses. 

S: But does it necessarily give you functionality, or a sense of functionality, or are we just saying 

that area A is connected to area B? What is the objective here? 

AB:  The objective can be different depending on the experiment.  So for example, when I inject 

in, say, the cerebellum to look at the cortical inputs or outputs, it’s like, there’s parts of the 

cerebellum that we don’t really understand their function.  And basically the function, 

whatever it does, it does through its connection to these other areas that we have more 
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information about.  So this will give us an insight into its function, seeing the areas with 

which it’s connected, can provide us some insight into what its function may be. 

S: The review paper that you have, I read through it, and you were also talking about, the 

cerebellum is connected to the basal ganglia, and the cerebellum is connected to the motor 

area, so I guess there are three different regions that are interconnected, and I that makes 

sense because… I guess the reason that you want to look at the connection is because if 

there is a disease that affects one area, we should be able to figure out if it affects the other 

areas that are connected? 

AB: Yeah. And how, and the idea is, if you have a disease in the basal ganglia, then the 

abnormal activity in that area will cause abnormal activity in other areas that it’s connected 

with, or other areas that it’s connect with may be able to compensate for deficits, so, there’s 

different things that you can look at. 

S:  The rest of the question is to discuss, why do we use flat maps? Let’s say if you’re showing 

your data to me, and I have very little understanding of the brain anatomy, what do you 

want me to see? Is it just, hey, look, I have labeling in basal ganglia, or do you want to look 

at sub-regions in the basal ganglia? 

AB: A lot of the reasons for showing these maps is to show that, yes, it’s connected to this area.  

But we also use it a lot to compare between different experiments.  So, say I inject two 

cerebellar regions and one is connected to the motor regions of the basal ganglia cortex and 

the other is connected to  more ??? (5:04) regions.  You want to be able to see that 

difference in the maps that you’re showing.  And a lot of times that’s kind of the main 

reason for doing these maps. 
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S: When you’re looking at those maps, are you looking for particular sublocations or, I should 

say, cytoarchitectonic areas?  In the brain, from one animal to the other, it’s always this 

gray line between the areas, but you can always find out what the motor areas are, right, 

they’re bigger regions, but how important are the subregions? Like, say, SMA, or PMV, 

PMD ? 

AB: Well, you can have connections with all of the motor areas or just some motor areas, and 

that may provide insights into function, too.  So it really depends on the… 

S: I guess what I’m trying to get at is, let’s say, in one animal, the motor area is not so prominent 

anatomically, and in another monkey… 

AB: In terms of labeling? 

S: Right, in terms of labeling.  Well, not in terms of labeling, but anatomically, they’re not the 

same. 

AB: I don’t think that happens. 

S: You don’t think it happens that much? 

AB: No.  

S: Some landmarks can be very prominent, as opposed to, in other animals, they might not be 

that prominent? 

AB: Some, yes.  So say that – 

S: So how do you locate those areas?  Let’s say the labeling could be the same.  Do you always 

have a control, and then you have an experimental brain, or do you always have two 

animals? 

AB: The anatomy, at least in the animals that we use, is more or less consistent, in the cortex, 

say, or in the basal ganglia, thalamus.  There’s a lot of consistency in what we’re looking 
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at.  But there are individual differences in sort of size and organization.  But I think they’re 

not as … 

S: As diverse? 

AB: No. 

S: But let’s say there are individual differences.  How do you look at your data? How do you 

compare? 

AB:  You can use cytoarchitecture, or just landmarks, so like, sulci, and things that are more 

consistent than others.  So that’s what we usually use, the central sulcus and then you know 

you’re in the  motor area, and then, the arcuate sulcus, and in front of that there’s cognitive 

areas and behind that there’s motor areas. 

S: So you’re always eyeballing where those areas are? 

AB: Yes. 

S: There are no defined regions? 

AB: No, and one way to look at it is based on seeing connections, too.  So, say you’re looking at 

a motor area.  So then, when you inject the muscle, you will get labeling in the motor area, 

so that’s how you define the motor area.  And then regions that are connected with that, 

are, say, pre-motor areas.  And so that’s a way to define the regions, based on connections.  

Based on previous experiments and so on.  But you can’t identify all the areas functionally 

in all your monkeys.  I mean, you could, but I don’t know how you would do that. 

S: So any disadvantage that you have right now – I always hear Richard saying that whenever 

I’m presenting this data to an M.D., the guy doesn’t have any idea about – 

AB: The flattened maps. The  flattened maps are really hard to explain. 

S: Why is it hard?   
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AB: Because it’s not obvious. 

S:  Is it so you can identify those landmarks. 

AB: Well, so there’s two reasons.  One, I guess, is familiarity with the model. So maybe they’re 

not as familiar with the monkey brain because they don’t look at it every day.  And the 

other is that once you stretch things out in a flattened map, it doesn’t really look like a brain 

anymore. 

S: So it’s distorted? 

AB: Yeah.  And a lot of M.D.’s and people are used to looking at human imaging data, and that’s 

usually presented on the brain so that they know where it is and how to translate it. 

S: I guess we talked about how you draw inference, you look at the anatomical regions and then 

– ok.  Do you think – I guess it’s a redundant question – 3-D might help the limitations of 

2-D? Do you want to add anything to it? Why do you think if we present the data in 3-D, it 

will help us? 

AB: Well, it’ll be more straightforward.  It’ll be easier for people to recognize – 

S: To recognize the brain as a brain. 

AB: Yes.  So, the only disadvantage that I can see is, you have to interact with it, because 

otherwise you – if you have a flat map you can see the midline and the outside and the 

underneath, kind of, even though you have to put them together in your head, but you have 

to be able to interact with a 3-D structure.  Otherwise it obscures some of the data.  

S: Right.  So the occlusion is a problem. In 2-D all the data is represented all at once, as opposed 

to, in   3-D you have to have multiple perspective. 
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AB: And also, stuff that’s buried in the sulci sometimes, depending on how your  3-D 

presentation is.  If most of your data is within sulci and what you’re showing is just the 

surface… 

S: I guess in 2-D, what I have seen in Richard’s data, again, or any data that we produce, is that, 

in the   2-D, sometimes you have to open it and present it that way. 

AB: And that makes it harder to know what you’re looking at, even more. 

S:  The other problem with 3-D is that, if you have data in different layers.  Do you have data in 

different layers? 

AB: I try not to. 

S: Because you cannot see it? 

AB: Because you can’t see it, and also, once you get to, say, if you’re looking at outpost from 

cortex, if you get to the third layer, it can be connections within different cortical – you get 

into another level of connectivity that is harder to … 

S: So for example, Richard was saying that from layer 2 to layer 5, obviously layer 5 is going to 

have more … more or less? I forget. 

AB: Layer 5 is the outpost, so layer 5 always has more.  And then layer 3, is basically, based on 

connections – 

S: A projection of layer 2 to layer 3, or the other way? 

AB: 3 projects to 5, yeah.  So then you’ll get, if you have an extra layer you can have layer 3. 

But then once you have lots of things in layer 3, it can be connections between, not your 

injection site, but different cortical areas talk to each other too, so it won’t be as 

informative.  But it could be, so… 
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I have a lot of, within brains, basal ganglia data, which are like nuclei. So for them, it would be, 

we don’t have 3-D maps, because we don’t do that.  But those would be useful, too, 

because it’s hard to…. So if I have a ball structure and then I’m just showing sections 

through it.  It’s harder to compare between two animals, because you get rotation, you 

know what I mean? So if you have a picture of the 3-D structure, it might be more useful to 

look at and compare. 

S: In context of… it’ll give you more context – is that what you’re saying? That you have the 

anatomical structure and you have the presentation of the data, and comparing them both it 

might give you more information and understanding? 

AB: Mmm-hmm. Because if you flatten it, it gets really hard to look at.  So if you have a C-

shaped structure that starts like this, and then it goes up, and then it goes down, so there’s a 

bit more variability.  But if you flatten it, then it’s hard to tell if you have a rostral-caudal 

distribution.  It’s hard to show rostral-caudal and dorsal-ventral distributions if you just 

flatten it all together.  And there can be differences that are hard to show, if you don’t have 

the 3-D…  Because with the flattened map you’re getting like a maximum intensity plot, 

kind of thing.  And it can look the same if you have lots of cells rostrally, or lots of cells 

caudally, when you flatten it, it’s going to look very similar. 

S: All projected to a plane. 

AB: Yeah.   

S:  I guess that concludes with number 10, if you had an ideal world and you wanted to present 

your data, how would you represent it?  I guess your answer would be, in 3-D. 

AB:  Yeah. Well, I’d like one of those, you know, like a hologram, where you can move it 

around. 
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S: And you can manipulate the data, sort of like in an immersive display technique where you 

can manipulate the data? 

AB: Yeah, and you can take some layers off and you can look at it.  That’s what would be ideal, 

but it’s not going to happen. 

S: What if you were going to take off some data and keep some data? What would be those data 

that you would take away and visualize?  Would it be a different population of labeling? 

AB:  It would depend on the experiment, really.  So say if you had the composite data from 

many experiments, so different questions, it would be nice to be able to take out part of it. 

S: Sort of like a dynamic query. 

AB: Yeah. Something like that, I think.  

B.2 INTERVIEW 2 

S: Let’s start. 

C: So I guess we’ll just start with what I expect to observe. 

S: You can say that there’s a data set that you are working with, and if you want to add to that, 

that’s fine.  What inference do you draw from looking at the data? 

C: Okay. Since what I’m doing is a muscle injection, what I’m looking for is the neural substrate 

that controls that particular muscle.  And now I know that, because of the way that rabies 

infects, it’s going to bloom a little bit but we know at some point any of the labeled cells 

are projecting down to that muscle, that there may be other projections that we’re also 

picking up.  So I guess that’s kind of what I’m expecting to see. 
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S: So when you cut open the brain and you slice them, what do you expect to see?  Obviously 

you have a defined region or a target region that you already have in mind.  In addition to 

that, there are other places where the virus might spread? 

C: To some extent you have a target region, but you also don’t want to go in thinking, the place 

I’m going to find cells will be here, because you could be wrong. That’s why we’re doing 

the work.  And, I mean, yeah, if you inject it into the eye, you should really see labeled 

cells in very specific places along the pathway, but it turns out, when they did the work, 

they found these other places that had never been picked up before.  So that’s why you 

have to do it. 

So I try to go in with low expectations, because I don’t want to have – at least with the first case.  

After you’ve done a few cases, it’s really hard to do that because you kind of know what 

pattern you should see.  But at least with the early cases you try to go in with low 

expectations, if you can. 

I: It’s almost like a double blind – you don’t want to bias your work because otherwise you’ll  

catch your reporting – sorry. 

S: So I guess you have, I guess that’s what I meant by target region that you already have.  But 

then, if you’re showing this data to somebody, what do you expect them to see? 

C: For my work, what I want them to see is some of the stuff that hasn’t been reported before, 

because I have cells that are down in the sulcus that, from the previously published 

physiology, they would say, that shouldn’t be there, but it’s clearly connected to the 

muscle, and the physiology was done on the surface, so of course they didn’t get anything 

in the sulcus.  They couldn’t have found it with the previous techniques.  So now we’re 

adding this new technique to find something new. 
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S: So I guess then the second question is, what kind of representation do you use now? 

C:  Right. So, for this data, what I’m doing right now is reconstructing the plots into the 2-D flat 

map. Kind of the standard map that we’ve been using. 

S: Why do you use the flat map? 

C: The advantage of using the flattened cortex is that you can compare within an area and across 

areas and see the whole aerial pattern of projections at once.  Whereas, if you’re just 

looking at a single slice, you can see the cells that are on that slice, but you don’t know 

what’s going on before or after.  So you can see the global picture of where all your labeled 

cells are.  And if you have multiple different things injected, you can see a sense of 

topography. It’s something I used to do a lot of. You’d inject different colors across a 

whole-body representation, and I could see that all the projections from these four areas are 

organized, but from this one it’s all mixed together.  And is there physiology data, is there 

perception data that explains why you would see those differences between the projection 

patterns of those areas? 

S: So you’re sort of generalizing in terms of the global overview of where the labeling is. 

C: Yeah. And within that, if you’re writing a paper, you’re going to have your global overview 

and then you’re going to go and point out your specific things that you think are important.  

But you just want to show everything, because somebody else may be doing something and 

be like, wait, there are cells there? That’s really cool, and I’m going to drill down on that. 

S: So this is another thing that we want to measure, is how detailed – so the cytoarchitecture,  

there’s a gray line from animal to animal, and I guess if we see spread of infection, then 

how do we identify each sub cytoarchitectonic area?  How do you identify those areas? 
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C: in terms of that for now,  I’m using some of the information from my cytos, which are just 

Nissl stains, and so you can, it’s a good way to find the middle, most classical part of your 

area, but yeah, on the borders it’s going to be fuzzy.  You can add other types of stains. 

That’s one way to do it.  But right now I’m using a lot of cues from my Nissl stained 

sections, and then also measurements from previously published - Because even though 

there’s a range, you can kind of take that and fit that to your brain and get a good idea.  

And then if we have something where we’re like, well, this is really interesting, we might 

again go back to the cyto and try to get something more precise. 

S: Number five is – we talked about the advantages and disadvantages.  What kind of inference 

do you draw – what I mean by that is, for your data, when you’re injecting into the muscle, 

you expect to see… 

C: Cells throughout the cortex, yeah. 

S: Okay.  What does it tell you? 

C: Well, it tells me, you know, what is the network that’s projecting to that muscle, and then it 

gives me interesting nodes within that network.  Like, what are the earliest areas that 

project to that? So then I can go in and inject there, and ask more questions and see if there 

are loops through subcortical regions.  And then, I have cases who went too far, so I’m 

labeling quite a lot of the brain at that point.  But you can see the hotspots – those would be 

the earliest areas. How many steps do we think we’ve crossed, so, how many steps,  for 

instance, since I’m doing vocalization, how many steps does it take from the auditory 

cortex that processes vocalization to get that information to the motor cortex so that you 

can make a response? 
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S: Then I move on to the 3-D map, and what do you think – we don’t do 3-D maps now in the 

lab, but I don’t know if you’ve used any previously? 

C: I haven’t, because I used to just randomly unfold the cortex, so some of the problems were 

avoided with that.  But I can see an advantage to 3-D.  When you’re actually cutting the 

brain, and we are, you’re – you have to cut the brain in stereotyped ways, and so, you can 

kind of get different looks to your 2-D map from doing that.  So a 3-D, if you can put it all 

there and you can – okay, I can just rotate this around and I could cut it here or I could cut 

it here, or I can cut it this way, so I can change how I’m viewing things. Which is really 

nice. 

S: So a different perspective matters. 

C:  And then also when you have these – something that’s on the surface or continues into a 

sulcus, or, there’s whole regions where there’s a lot of debate about which three areas are 

in the sulcus, in 3-D that’s going to be a lot easier to understand, because you have parts 

where it kind of curls back on itself or whatever, so that can be kind of hard to figure out 

from the sections alone. But when you put them all together – 

S: It makes sense, right.  So when you have a sense of depth in an actual model of the brain, you 

can see that the data follows a certain contour. 

C: Right.  And you can tell the difference between, if a sulcus is shaped like a U, or more like a 

hockey stick, that could really throw off where you think your cells are in a flat map.  But 

then, when you can actually see that, oh, yes, this is in M1 and it hasn’t crossed into 3a yet 

because 3a is over here, not right here, then that’s really helpful. 

S: All right. That’s important.  The next thing that I was wondering is, obviously 2-D versus 3-D, 

in both types of representation, it’s always projected data. 
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C: Right.   

S: So the obvious question is, in 3-D you have the ability to see the data in layers.  But for our 

purposes, we don’t have data in different layers.  Or do we? 

C:  Well, it depends on how far  - so I have one case that’s my good case that I did the grant on – 

and I do have cells in layer 3.  And now that I have this other case that seems to be earlier, 

so there are cells in layer 3, but it’s like tenfold fewer, if not more than that.  So at some 

point, Peter’s going to want me to compare the two layer-3 maps, and see if that gives us a 

clue where the virus got first.  So, having a way to do that layer information in turn - view 

all your cells, and right now I just have them in two different colors, so, view all your cells 

all together and then view just your layer 5 and just your layer 3 and then I can do a 

comparison that helps you tell how far the virus went, and where it got first. 

S: But doing it in 3-D, do you think, the only way to do it is some sort of change in transparency 

– do you think that would add anything to the visualization of it? 

C: Do you mean, when you do the projection, they become, angled? 

S: Right, everything projects to the surface.  One way to do it is to do two different kinds of 

density and see if there’s an overlap.  A cluster overlap.  That’s one way to do it.  The other 

is to keep them separate, have two or three different surface layers, and visualize the 

density that way.  But that doesn’t seem as intuitive as – 

C: No. Even in a projection – what they’re doing now, they get intermingled together.  The layer 

3 goes on top of the layer 5, and if you hide that…   So that’s less of an issue as long as you 

can independently control what you’re seeing and see either both or none, it’s fine, it can 

be useful. 
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S: So if you had an ideal world where you could represent your data however you want, what 

would it be? 

C:  I would be able to have a 3-D map that I can then flatten the way I want to so that it doesn’t 

distort the brain.  Because that’s the issue with flat maps that are computer-aided, they 

distort the brain. Whereas, like I said, I used to physically unfold the cortex, and so, the 

distortions you get there are cuts and tears that you put in, so that you know, at some point 

the tissue just doesn’t have the strength to hold together, it just won’t.  So you put a cut in 

and you know exactly what’s what, and there’s stereotyped ways to do that so that you get 

the best overall picture of the brain, so that continuous areas are the most continuous. 

S: But flattening it would always create distortion, right? 

C: It does.  Like I said, it’s dependent of what distortion.  Because the distortion that caret makes 

when you flatten it are really extreme, and so it can make two things that are supposed to 

be next to each other look like they’re not. 

S: Okay. So spatial location is very important. 

C: Right, because if you have, say you’re going through sequential areas that are next to each 

other, and all of a sudden this third area is over, seemingly in a different part of the brain, it 

makes a little bit  less sense because then people are going, well, why is that so far? 

Because there’s a bias against long connections.  It’s a metabolic issue.  The longer the 

connection, the more metabolically expensive, so it seems like evolution has tried to 

shorten the connection length.  So if you all of a sudden see this thing that looks like a 

really long connection, it’s suddenly interesting, when in fact, they’re just next to each 

other.  And it’s just going stepwise. 

S: That’s it. 
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B.3 INTERVIEW 3 

RD: “When presented with the data where the brain has been infected with rabies, what do you 

expect to observe?” 

So we want to observe the location of cells and their density, and we’d like to plot them with 

respect to known cytoarchitectonic areas.  And there’s even been times when we’ve plotted 

relative to, say, a physiological experiment to identify an area ahead of time. Or, it could be 

post-experiment.  With rabies it would probably be ahead of time. 

S: This is one question that I had.  Those specific areas that we just talked about, architectonic 

areas, how specific are they?  The line between VM1 and V – the paper that you have - 

RD: Sure. There’s easily a millimeter of uncertainty. If you’re in the center of one 

cytoarchitectonic region and move to the center of another one, you can get a fairly good 

idea that they’re different.  But where the exact border is, there’s a region of clear 

uncertainty in transition. 

S: Because when I thought of doing the experiment – let’s say we would present the data to a 

potential user and a person who’s looking at the data, trying to figure out… What do you 

want them to see?  

You want them to see where the density is and be able to identify that location, right 

RD: Right, to be able to identify the location in the quickest manner possible, and, to  identify it, 

but also be able to compare it to work of previous authors.  So the comparison – that’s part 

of science, is comparison. 

S: That brings me to a  different question. We’re talking about building knowledge here.  

Something that you already know, prior to seeing this data.  And that affects a lot, that 

means a lot in terms of discovering what we see.  So what do you think is the prior 
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knowledge that we need for our data?  Because often Peter has said, “I want to convey the 

message of anatomy,” and that’s not usually enough, because a person, let’s say a biology 

student who has some idea of what the brain looks like and what the areas are.  But they’re 

not going to know why we’re doing this without the background and the story behind it.  

So what do you think is the knowledge that we need? 

RD: Well, I do think that’s a difficult question, because I’ve gotten to the point that I have such a 

knowledge base that there are so many things I assume already.  And that’s what makes it 

difficult.  People need to know something about the basic structure of the brain. The 

different regions, the concept that different regions tend to do different things, and that 

there are parts that are motor, somatosensory, visual areas, auditory areas, and some areas 

that kind of – they call them association cortex, but they meld various disparate forms of 

information that come in through separate sensory systems and they’re designed to get it 

out through the motor system. As well as, there’s an autonomic nervous system that 

controls all the internal functions of the body.  So that’s some of the basic knowledge. 

S: Because ultimately, we are trying to understand connection, right? 

RD: Yes. Another thing that people do is simply just do a connectome. It’s really a matrix of 

who’s connected to whom. 

S: How is that different from what we do? 

RD: Well, that can actually just - it looks like a checkerboard, and then, it could be a plus or 

minus for yes or no, or it could some gradation of the strength of the connection.  I think 

they call it “graphical.” I could show you a paper of where they’ve done that. 

S: I know from Harvard, Jeff Mitchum, is the guy who did the brain bowl.  But that’s 

anatomically tracing – 
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RD: Anatomically tracing, and I think it’s mostly in a mouse.   And we haven’t – and that’s 

because they’re able to genetically manipulate the mouse.  We can’t genetically manipulate 

the least higher primates.  Whether that would be possible in the marmoset, I don’t know.  

But even the marmoset brain is a lot bigger than the mouse brain.  But there are 

possibilities along those lines.   

S: When I went to the talk they were literally slicing these brains and reconstructing it through 3-

D. 

RD: Right. 

S: The traced or marked neurons helped them figure out which neurons – how should they 

connect, one layer to each other layer. 

RD: You can look at both the layers.  We’re not doing a lot of layer-to-layer connections for 

ours; our is a more macro organization. 

S: Right. We’re most interested in certain areas of the brain and how they’re connected. 

RD: Well, we’ve concentrated on motor areas, but we’ve done some sensory areas and we keep 

branching out.   

“What type of representation do you use now?” Well, typically we’re using flat maps and 

sometimes we show individual sections.  So historically people had – there were various 

ways of doing it, but some people have plotted it out, so that they would look under the 

microscope and actually do x-y plotting, which is what we do to get the basic knowledge 

for each individual section.  And then, the way people have reconstruct is, I think they 

would look at those sections and they would have a schematic of the brain, some average 

brain that maybe they took a photograph when they took one out, and then they would put 

dots on that brain, what they thought was the density.  
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So that’s how location was, it wasn’t very precise, density was difficult to represent because it 

was a density of dots and it was what you saw on a plot of individual sections, to putting 

the right place on this map, and then getting the density right.  And some people then also 

did other forms of density, where they, well, you can put dots or you can put lines about 

how much, so you can have this varying-width line. Or you could just plot cells. And I 

think I gave you one paper where they just plot cells.  

But what I find, and I don’t really know what the psycho-physical transformation is, but really 

dense… 

What happens, I think is that areas of a few cells tend to be more prominent than they should be, 

relative to the areas that are really dense.  And you can’t really represent the level of 

density that you see.   

An example is that people would say they would use a plus system, like, 1 plus – low level, 2 – 

medium, 3- pretty high, and 4 - the most dense.  And my experience of having done 

quantitative analysis, I think it’s more like a squared projection.  The two plus’s is really 4, 

and 3 is really 9, and 4 is really 16, times as many cells, as a rough estimate of what was 

going on.  But each person also would be doing their own estimation.   

So quantitation has become more important so that you can get some idea of the relative balance 

between different areas that project, one area to another. 

So we’ve used a flat map, and there are advantages and disadvantages. 

One is, when you flatten the map, then it’s like flying sort of over the surface and looking down 

at it directly.  So you see what’s directly underneath you.  Just in comparison to a 3-D map, 

your perspective is very important to what it looks like, and it looks more like the brain that 

you see and that’s certainly useful if you’re trying to go back in and record, or compare to 
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other – but you don’t always get the view that you wanted every time.  You might have to 

turn it in ways that foreshorten some parts and exaggerate other parts, which is one of the 

things that I’m noticing.  And then the flattened map also allows you to do a density – 

you’ve collapsed all the cells to a theoretical layer 4 or layer 3 to 5 junction, and then you 

can count the number of cells along whatever amount of distance you want.  200 microns is 

what we’ve often used, but it may be bigger, anywhere from 200 to 500 microns. 

It’s all how fine-grained you really want your map to be.  And then you can say, how many cells 

were there, and  form some kind of representation of the density of what you’re visualizing. 

S: We also have the same problem with 3-D, right? Because of the surface, we can only see one 

layer, and it’s always the projected one. 

Yes, it’s always the projected layer. Now, you could leave it in 3-D so that you’ve looked at it 

with a semi-transparent surface, but then when you look at it, your perspective becomes 

even more important.  Because when you look through, you’ll see a surface one place, and 

you’ll be looking directly at – you’ll lose a sense of depth, and I’ve never found that very 

useful, in my experience. 

S:  The last paper that you gave me, or the latest, they had a similar representation where they 

increased the transparency, and you just see a cloud, and you have no idea which is in the 

front and which is in the back. 

RD: Right, you just see a cloud. And particularly for cortex, I think that’s a big problem. 

Another problem with 2-D maps is that when you’re cutting through a sulcus – so the cingulate 

sulcus is 90 degrees to the plane of section.  So when you fold it, it folds very nicely.  But 

there are some that start to become parallel to your plane of section.  And that means that 

you’re getting more cells there, and when you flatten it, it gets in a distorted position.  So 
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you have to do some kind of transformation, like when we do the central sulcus, sometimes 

we rotate that so it’s perpendicular to the lip of the sulcus, is one way to do it. But then you 

can’t display the whole thing at once. 

Every one has ways in which it’s blocking some of the information or making it more accessible.  

So you have to trade off these advantages.  And also when you then do something like that 

– the cingulate sulcus because it’s perpendicular or 90 degrees to your plane of section – 

well, everything stretches out and distorts a bit, but it’s all distorted similarly.  If you do 

that on the lateral sulcus, or the lateral surface, there are places where, there’s a sulcus and 

if you go down to the sulcus and flatten that out, that’s going to greatly distort that piece of 

tissue, and then the next one may not have as much sulcus, and then the tissue will have 

something really big, and then it’ll get small, and they’ll lose their relationship to each 

other .  There’s various ways around it – you can cut out that sulcus and display it 

somewhere else, but then people are forced to piece things together in their minds.  I don’t 

think any way is completely ideal, or solves all these problems. 

The 3-D one is also useful in that it is somewhat easier to relate it to the human functional 

imaging data that is often shown.  So that people often do maps where they show things on 

the surface of the human brain.  So that is one way to make it slightly easier for people to 

go between the two.  If they’re not familiar – functional imaging data sometimes inflates 

brains and things like that, and it takes away some of the, all the convolutions of the human 

brain and makes it simpler, and then it may be easier to correlate between the two different 

animals. 
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So that’s one reason why we’d use a 3-D map.  But I’ve already seen – because we’re seeing a 

perspective as you rotate it. If you want to see something in the sulcus, then you have to 

rotate it and you can’t see things on the surface and other places.   

So typically we haven’t done real fine-layer data on our brains.  It’s hard to do just even when 

you’re looking at the cytoarchitecture alone, just to decide where the layers are. And when 

you’re actually plotting it, it’s possible to do what we would call super-granular, the dorsal 

half vs the ventral half.  I think that’s do-able, and I have done that sometimes in the 

plotting.  You could compare what the two are in separate maps, side by side.  But I 

haven’t really figured out a way to place that in 3-D.  I probably could think of some ways.   

It probably requires some kind of change in programming a little bit, but you say oh, I want 

to make one on top of the other, like you do a density of the deep stuff, and then maybe a 

density of the superficial stuff, so that you could say, well, look, some places have 

superficial, and other places only have deep.  

S: Sort of like an overlapping – 

RD: Yes, sort of like an overlapping.  But then it would give you the much the same information 

that a density map would do also.  They would probably correlate very well, because if you 

have cells -  when you have cells of the superficial layers, they often are because they’re 

projecting to the deeper layers.  It’s the typical columnal organization of the cortex.  So the 

superficial layers project to the deeper layers, and then, because you have this stack of cells 

you’re going to have a higher density.  Simply because they’re all through all layers.  If 

they’re mostly in the output layer, which is layer 5, then they’re going to be thinner, 

because it’s not as thick a layer, there are just fewer of those cells. 
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So as the infection progressed, you’re going to get these vertical columns appearing, and of 

course they’re denser. It makes lots of sense. 

So really, changing to the different layers probably may give a little additional information but 

I’m not sure what the usefulness is at this point. 

The other thing is, to do it truly properly, you have to have the cytoarchitecture at the same time. 

You have to figure how to designate those cells at that time.  Or we’d have to come back in and 

do some cytoarchitecture  put that in the next section and then group those cells and rename 

them. And it’d be really laborious, and you’d have to say, what is the purpose of this 

laborious work.  Is it going to give me some information that I really need to know, or is it 

going to be somewhat…  Is the effort really going to be worth the gain?  I’m not sure that it 

is. 

So, we talked about the different layers.  We talked somewhat about the advantages and 

disadvantages of the 2-D.  And we talked a little about the complexity of the data.  There’s 

really no ideal way to show the data.  I suppose the ideal way is that someday it will be, for 

instance, if it’s a 3-D, you would actually just have encapsulated the 3-D image there that 

the person could rotate on their own.   

S: So interaction or perspective or the way of looking at the data is important in 3-D? 

RD: Yes. 

S: Whereas, in 2-D, the lack interaction is, it’s an advantage - 

RD: It’s an advantage for flat print. 

S: And in terms of understanding the knowledge, that’s something that maybe we can measure.  

Does it really work. 
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RD: So it works in flat print but it does create a somewhat distorted map, and there’s also the 

carat method of creating a flat map, and that causes a different kind of distortion.  I don’t 

know if it’s greater or less.  Some things don’t stay in true relationship to each other and 

it’s very complicated to look at.  I’m sure that people who do Carat all the time say, oh, 

yeah, I know this.  But when I look at it, it takes me a long time to do it.  I look at my flat 

map and of course I’ve been living with it so it’s very easy for me to do it.  But, when you 

show it to someone else, sometimes…. 

S: There’s a learning curve. 

RD: There’s a learning curve.  

S: And we need to minimize that 

RD:  So I think the advantage of 3-D is theoretically it has the lowest learning curve, because it 

looks the most like the whole brain that’s somebody’s going to show in a picture.  So that 

would be the theoretical thing.  Except for the disadvantage of that it’s not always – you 

can’t have it in interactive form on the flat page.  

S: Yeah, that kind of summarizes… 

RD: … What you’re thinking.  And so part of is hopefully that making the 3-D brain makes it 

more accessible to more people, so they don’t have to go into the details of understanding 

how a flat map has been constructed. 

S: If we wanted to show details of a flat map versus details on a 3-D map, what would be that 

detail?  I’m just thinking out loud here.  The detail information is that in 3-D, I don’t know 

what’s behind the surface, so that’s one detail that we’re missing unless we move it, rotate 

it, figure it out, but in flat map, it’s instantly available, but it’s distorted.  So… 
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RD: So one advantage that I have noticed with the 3-D map is, say, the arcuate sulcus is a 

problem, because it sits like this, so you’re cutting it very tangentially. And so if there are 

cells all along this face, when you come here, you’re going to get a very high density of 

cells.  And the way we cut things, well, that might actually project up onto the surface for a 

2-D map. 

And some of them might show up in the sulcus, but it won’t be an accurate representation of 

their density.  Because you’re taking this flat surface and now you put it like this and then 

you get all these extra cells in it.  So you’re gathering the concept there.  And therefore, 

you’re projecting a flat surface, the end of a flat surface, up to a single location. And the 

nice thing about your 3-D program is that then it has a surface out there, it projects to the 

closest surface, not to an artificial surface.  It’s created one, it’s supposed to be.  And 

therefore, it’s a more accurate representation of density in location. 

Really, I do not think there’s any adequate way to convey it in a flat map. And it’s just a matter 

because, you cannot cut, you want to cut different parts of the brain at different angles. And 

then on the flat map you just can’t piece them all together.  But there’s no way to do that, 

but you can take all these slices and now you can reconstruct the brain.  So it is one of the 

nice things that I enjoyed about using the 3-D program.  It placed them in the proper 

perspective. 

B.4 INTERVIEW 4 

I: “With rabies virus as a neural marker, what do you expect to observe?” 

S: Right, that’s question number one. Yes. 
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I: I’m expecting to see infection. And what is infection, is infected neuron.  I’m expecting also, 

linked to that, an organizational level.  So organization, distribution of labeling, and 

eventually density of labeling, difference of density from one area of the cortex to the 

other. So there is topography, and there is a density. Make sense? 

S: Yeah. 

I: “What type of representation do you use now?”  So there is different kind of representation.  

There is what we call, the section by section representation, so those are raw data, r.a.w. . 

And the other representation is, what I’ve been spending a month in doing, is flat map, ok? So 

you want to represent all the regions of the cortex, and you have the flat map, the 2-D, and 

eventually the 3-D.   

“Do you use flattened map?” yes. It gives you a sense of region and density in one part of the 

cortex. Whatever you choose. 

“What are the advantage and disadvantage of 2-D  flat map?”  

Advantage is to show the general organization and density of your labeling. 

Disadvantage is, if you’re not a neuroanatomist, it’s very difficult to figure out where you are at 

the level of the cortex or wherever.  I’m working at the level of the cortex.  But it’s really 

difficult to nail down exactly the region you are situated.  And what I was telling you 

before, we really want 3-D, because we want our friend, physiologist or whatever, to put 

their electrode there and get to the next step, into the interpretation and analysis of data. 

“What inference do you go from your” - you make interpretation.  

S: So when you see density in a certain location, what does it tell you? 
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I: It tells me this region in particular is connected to the region I injected.  After multi-

synaptically connected neuron is what is sensed first.  This region of the brain is connected 

to where I inject. 

S: What if there are multiple activation? 

I: So, multiple activation means they are connected to my injection site.  Now, the next step to 

understand is, is there an order into those sites, that counting, labeling. Meaning, between 

all those guys, those regions, is there a region connected before or earlier than the other 

regions? 

So it’s for this that we reach the level of maybe 5 first, so when you see labelling of maybe two 

and three, supra, I mean, as what I was saying -  

S: So these are time dependent? 

I: That’s right. It’s like an order, a neuronal order. Time dependent is how the virus is working.  

But the first thing that comes into your mind is, all those regions are connected to your 

injection site.  Then you work to a different level of interpretation.  Which one comes 

before the other. 

And to know that, is what I tell you, is the difference of a layer in which the labeling is. But also, 

you’re using all the prior literature that we’re using just mono-synaptic tracer and told you, 

this region is connected to that region, this part is connected to that part, so is an ensemble, 

not only of the virus that I’m injecting into the layer, but also what we have in the 

literature, what we know from prior work.   

So you conjugate both of those and you have your answer. 
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“Would using 3-D map help overcome the limitation?”?  Definitely. There is a huge limitation. 

When I see the 3-D of the brain, I know exactly where I am.  So it’s, attach your data to 

something most of the people in the world know. 

S: It’s more recognizable. 

I: Recognizable. I know how look a brain.  A flat map is really tough. Now you can use your 3-D 

and from the 3-D get to the 2-D to have that micro-organization. So you would not use the 

same organ. 

You want first your audience to understand where is the labeling and what is connected to the 

injection site and so on.  The versatility of the 2-D map can answer other questions. 

Microorganization 

“Why would you use 3-D maps” so we have discussed about this, the recognition is the same. 

“Do you have data at different layers?” Of course. 

“How do you represent this data?”  So what we saw is, there is different way of doing this.  

Either you say, ok, I’m going to separate my layers in my different representations, and 

layer 5 being that first stage, and then 2, 3, and 6 is like one step further. 

Or, you have the way of using the raw data that you present in different color, your different 

layers. 

So let’s imagine black will be layer 5, and then 2, 3, 6 in red. Because you’re expecting to have 

much less labeling in 2, 3, and 6, since they are additional order of labeling than your layer 

5. 

So you can do that, and you can represent them in density.  If you do it in density, you need to 

separate your data. 
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There is another way you can represent it. When you want to demonstrate there is columnar 

organization in the cortex, you use overlap. So you set a threshold or a cutoff.  Meaning, I 

want to represent just 75% of my population of cells.  So you cut off 25%. 

And I’m going to represent, for example, here, in my case, the 75% of the eye in blue, and the 

75% of the neck in yellow. 

And what is overlapping -  or even  eye, 2, 3, and eye 5 in different color, and what is 

overlapping can demonstrate either overlap between two different systems or whether there 

is a columnar   organization between the different layers of labeling. 

So it depends on the question you want to answer, but layers, either it’s raw data, different color 

of cells, or you want density, you separate your brain. 

S: How do you think 3-D would help in understanding this columnar distribution? 

I: I don’t think it would bring more to the 2-D, it’s just always having a model that is more 

recognizable.  Effectively, when we discussed last time we were thinking of opacity and 

changing maybe the opacity of the cortex, so that you can see transparency.  Things are, it 

is very difficult to put this on paper or in a publication.  Unless you have really an 

interactive brain and you are turning around…  

The 2-D map according to me is better in this respect, because you’re really flattening things and 

seeing if they can respond.  So you don’t have to play with the 3-D, or with the volume.   

I: Question nine -  “What type of complexity  in the data prevent you from conveying your 

message across?” 

S: Are there complexity that you run into that you cannot represent your data the way you 

present it now? 

I: I don’t see any for now. 
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S: Ok. So, anything that you produce are instantly represented - 

I: Yes, there is a complexity, sorry about this.  I see one.  Did you see when I tried to represent 

the gyrus and the sulcus at the same time, ok?  So I need to clean up some part of the map I 

don’t want so I can plug in or I can approximate my flat map that is in the sulci.  So there is 

no sense really of depth, or whatever, and it can be very tough to really imagine that curve 

and how is the labeling, you know? 

S: If the density or the data follows a certain curve, why is it important? 

I: It’s not systematically that it is important, what I’m telling you is that the neuron of this region 

that follow each other from gyrus to – are part of the same system. A part of labeling, they 

arrive at the same time there. They may be a functional unit within themselves.  So they 

may give you a sense of boundaries within your cortex.  Or it can be, M1, and M1 what we 

know about it, there is a part that is the pre-central gyrus, but there is a part also in the 

gyrus, in the anterior, back, and here we said, huh, it’s a unit, it’s M1. So it can also help 

you in drawing those boundaries, and then, instead of saying, well, there is this part at the 

surface, and this part, you see what I mean? So it’s much more in terms of functionality. 

“What would be the most ideal way to represent your data?”  I think there is good and bad in 2-D 

and 3-D.  A combination of both, plus, I didn’t insist enough about this, I told you about 

section, showing row data on a section, because it’s what neuroanatomy is, first off, 

everything, we re-construct from individual sections. So it’s good to go back to the roots of 

the problem. 

Just to show the rawest form of the data? 

That’s right. And then I give it a black dot of a certain diameter, and it would represent a square 

200x200 micrometer.  So, it’s not just a surface, it’s not just a density. It’s also a 
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representation of, where is my cells? Basically, what would be most ideal would be 

everything converged. Everything is good; it depends on the message you want to convey.   

B.5 INTERVIEW 5 

S: I’ll let you start with the first question, I guess.  For all our data, everybody I’ve asked,  we all 

pretty much use some kind of tracer.  It doesn’t necessarily have to be rabies, it can be any 

tracer.  So for your data, what do you expect to see when you inject an animal with the 

tracer and you’re looking at the brain?  What do you see or what do you expect to see?  The 

other question would be, what do you want the potential observer to see? 

M:  So we want to see what regions in the brain contain labeled neurons. And that tells me what 

regions are connected to my injection site. 

S: So what kind of representation do you use now? 

M: So I use multiple 2-D flattened maps, and the reason I use multiple flattened maps is because 

my data spans the whole brain, and you can’t see all sides of the brain at once.  I have data 

on the medial surface, the lateral surface, the dorsal and ventral surfaces of the brain.  And 

so, in order to view those in 2-D, I have to, the best way to do it is to break it down into 

understandable chunks and then flatten those chunks. 

S: I guess one thing I ran into when I was talking to Mike yesterday is, 2-D shows you 

everything at once.  So why do you want to do 3-D?  Or do you want to do 3-D?  If 2-D is 

showing the data you want to show, then why do you even bother to show 3-D? 

M:  When you flatten the brain, you lose information.  When you flatten the brain, you stretch 

certain parts, you make it more difficult to recognize that, to recognize the brain, but a 



 153 

picture in 3-D is easier to recognize as a brain, and you can better identify the locations 

within the brain that are labeled. 

S: So I guess that answers the question of what are the advantages and disadvantages of 2-D flat 

maps.  The advantage would be to see everything all at once, the disadvantage would be 

that the brain is kind of deformed, it doesn’t have the canonical form of the brain.  And we 

don’t know which part is which. 

M: And what happens is that each lab kind of develops their own version of flattening, and that 

makes it hard to compare your data to others’ data.  That’s another disadvantage of the 2-D 

map. 

S:  So now, about the inference that you make from the 2-D map – what do you observe when 

you look at density against some anatomical region in the 2-D map, what inference do you 

draw? 

M: So, I can tell which regions of the brain contain the most labeled neurons.  In other words, 

which regions of the brain have the densest projection to my injection site.  And I know 

where those densely-labeled regions are, because when I look at my 2-D map, I can see 

landmarks that are common across brains, like particular sulci or gyri will show up in the 

flattened map, and those are my landmarks that will help me say, oh look, here is the 

primary motor cortex.  I know it’s the primary motor cortex because it’s this far away from 

this sulcus and this far away from this sulcus.  So it’s density and location. 

S: Together. 

M: Mmm-hmm. 

S: Okay. So number six is, would using 3-D map help overcome these limitations, do you think? 

M: Yeah, absolutely. 
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S: How?   

M: The 3-D map can look like a brain.  And that’s a universal image that’s understood by brain 

researchers, at least for a particular animal.  Even if it’s across species, all brains, or many 

brains, look a little bit similar.  So I can understand more looking at a 3-D representation of 

a mouse brain than I would be able to take away from looking at a 2-D representation of a 

mouse brain, even though I don’t study the mouse.   

S: What about landmarks, like certain areas of the brain that are – maybe certain features of the 

brain, across animals, the same species, may be different? 

M: So you’re talking about individual differences? 

S: Individual differences, yes. 

M: So the way to get around that would be to have some kind of an average brain, such as the 

brain that they use for MRI data analysis. 

S: So, now let’s talk about the important stuff, which is, I was talking to Mike again yesterday 

and he was saying that - I thought of the idea of using the 3-D brain because there are 

multiple layers of data and we’re visualizing.  The 2-D doesn’t allow you to see multiple 

unless there’s as Venn Diagram kind of deal, where you see only overlaps.  But the 

moment you, even if you do it in 2-D and if you overlay information, and you have some 

sort of transparency set up, then that becomes a 3-D, and it has the same 3-D visualization 

problem that an actual 3-D representation has.  So how do you – well, first of all, do you 

have information in different layers? 

M: I have labeling on the surface of the cortex, I have labeling inside sulci, which are generally 

below the surface, and I also have labeling in deep brain regions that don’t show up on a  - 
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that aren’t usually mapped at all, they have their own special maps.  So I wouldn’t show 

those with the cortex, which is most of my other data. 

S: So how do you visualize them now? 

M: I haven’t analyzed them, but if I was to analyze them using the techniques that we have now, 

I would create a whole new type of map that showed the sections in a different way.  And 

I’d have to learn a whole new way of looking at that particular part of the brain. 

S: So essentially you would create a 2-D map of each individual area of interest? 

M: Yes. That’s the best we can do right now. 

S: Because one thing that Jean-Alban was saying that right now, the problem with 2-D is, a. for 

cortex, which is relatively simple in terms of anatomical structure, if you flatten it the 

distortion is minimal.  However, there are complex structures that cannot be – what we do 

is, we do region by region to minimize the distortion.  So I guess the same thing applies in 

your case. 

M: Yes, the same thing would. 

S:  So that was the answer to number nine.  So if you had an ideal world, how would you present 

your data? 

M:  So the best way to show my data would be in like a video format, where all of the cortical 

neurons were labeled and you could spin the brain around so that you could see the 

different regions that are labeled. And to show the deep structures, then I would want to be 

able to poof away the cortex and leave the core, deep-brain structures, make them 

transparent and be able to spin them around and show where the labeling is.  And, at the 

same time, I’d want to have a second brain doing the same thing so that you can see across 
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animals or across two different types of experiments, how the labeling differs between 

animals. 

B.6 INTERVIEW 6 

S: So going to the first question… 

JA: So basically when we do this type of experiment, we inject the virus somewhere, and the 

virus is neurotropic – meaning that it grows and is transported in neurons, or nervous 

system cells, and because of that property, and because it grows in them, replicates so the 

signals amplify, we can look at regions that contain the virus and that are connected in 

some ways with the site of injection. 

So what we expect to observe when we do these types of experiments are the regions in the brain 

that are connected through the known or specified number of synapses with the place you 

injected. 

So, for example, you inject a limb muscle, you can look at the region of the brain that are 

connected with that muscle, and therefore that can control the action of that muscle. 

“What type of representation do we use now?”  Mostly 2 representation.  The 2 derives from 

processing the tissue.  So, we extract brain tissue and we cut it in sections, we slice it, and 

we keep the slices in order.  That’s how we know where they’re placed in the brain or the 

block that we cut.  And one representation is just through the section that you cut, so you 

look at a microscope and you look through the section, and you look for the neurons that 

contain the rabies virus, so, there’s a way to show that, and we can see sections and 

location of neurons. 
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But then, from this, we might want to have a better idea of the 3-D spread of populations of 

neurons, and therefore we need to look at multiple sections that have neurons, and 

understand where these neurons are located in the 3-D space of the brain. 

So one way to do that, and that addresses question 3, is to use a flattened map. That’s one way.  

But really, I think the main constraint of how we’re going to represent this 3-D volume 

depends on which structure you look at.  So, the cortex, a good way to represent it is a flat 

surface, because the cortex is a sheet of tissue in rodents, in some animals, it’s a sheet of 

tissue that’s relatively flat, that covers the brain.  So, it’s not flat, but it’s not folded, at 

least. It’s kind of smoother along the brain.  Which makes a representation, a flattened 

reconstruction, relatively easy.  But in higher monkeys, the cortex is folded, and it makes 

the flattened unfolding a little bit trickier.  But because it’s a sheet of tissue, it’s a valid way 

of representing.  If you were to look inside a nucleus, for instance, which could be like a 

sphere or an ovoid or something, more like a ball, distorted or not, but more like a ball, 

then maybe a flattened reconstruction would not be appropriate and you would need to 

devise a different way to represent.   

So usually that’s when we use a cross-section and just pure drawing. That might be a way we can 

show a different level.  So we show three or four sections to convey that. That’s one way of 

showing it.  But maybe it might be interesting to create a 3-D model of that region. 

“What are the advantages and disadvantages of the 2-D flat map?”   

So the main advantage is, it’s the same space as a sheet of paper, so it enables us to print or 

publish in regular papers, the maps, and, again, I insist, if you were to do a flat map of a rat 

brain, there are limited distortions because it’s a relatively flat surface, so, although it’s not 

quite equal, it’s very similar to the actual brain to do a flat map of the rat brain.   
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The disadvantage is that the more unfolding you do to flatten, the more distortion you create, and 

then you enter into the whole problematic of people making a geographical map – how do 

you represent a 3-D volume on a sheet of paper?   

“What inference do you draw from 2-D flat maps?”  I’d say multiple, but …. 

S: So, for instance, are people looking at – obviously they’re looking at densities, right? So 

there’s a region, it’s a topographic map. There are certain regions in the brain, and we want 

to see where the density is.  So, I guess, location, or the subsection of the brain, are 

important, and where the density, compared to that section is important. 

JA:  So a few things that I’ve looked at – on the map, we can represent the location of the 

borders between different regions, and so, you can look at the first of all the spread of 

labelling in a particular region, but also, as you said, the actual density or the relative 

number, as compared to another region in the same animal.  So that’s one thing, yes.   

So the spread of the whole population is something that you might want to look at. If the 

population makes one blob, or one peak, or several peaks, is another thing you might want 

to look at.  You can color-code your labeling on a map or a 2-D map and get a very quick 

visual of this relative density in the different regions as well.  And then, another idea that 

just pops into my mind, is that you can make your individual maps fit a model of a map and 

try to overlap the data from different animals and see if labeling from two different 

injection sites are in the same region or in different regions. 

S: But why would you want to fit it to a model?  Is it because the anatomy is different across 

animals? 

JA:  So, as you move across the phylogenetical line, yes, the differences between animals will 

increase.  So, in rats, for instance, from a rat to another rat it’s very consistent, the shape 
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and size and location of the different regions in these animals are very similar.  In a 

monkey, it’s another story.  The folding of the brain follows general guidelines, but the 

exact shape of each fold can vary (10:46)  ???? 

Some little dimples in the brain are very pronounced, very well-marked in some animals, and 

others don’t have them.  But the type of inference that we can draw from a 2-D flat map is, 

comparison across animals as well, yes.  So intra-animal comparison, but also, across-

animal comparison. 

“Would using a 3-D map help overcome [limitations], and why would you use a 3-D map?”  So, 

I said a few things about it. But I think the problem we’re working on together can be 

touched here – one problem when cutting a brain, in particular a monkey brain, is you have 

to select a plane of section, and that plane of section will be optimal to make a 2-D 

reconstruction of a particular region, but might make a different region of the brain not 

optimal at all to make a 2-D reconstruction, just because the plane of section, the way it’s 

cut through that region, makes it very difficult to reconstruct and know where you are in 

the brain.  You can lose your references.  To explain to a child that, I would like to, I don’t 

know if I can make an image, but - 

I don’t know, if you cut a banana and want to make slices, you can cut the banana to make round 

slices or you can make oval slices or you can make a band of bananas.  And if you have 

bands of bananas, figuring out, without knowing the banana at all, that, if you were to cut a 

different direction, you would get circles.  It becomes something really difficult to 

represent in your brain.  So, making the circles appear from bands of bananas is tricky.  So 

that’s kind of similar, problematic.  So by making a 3-D reconstruction, the hope is that you 

can erase some of the distortion due to cutting and due to flattening, when you do 2-D 
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maps, and therefore regain something that’s not entirely lost, but regain a vision of where 

labeling in an outside region of your first area of interest is coded in the brain. 

S: This is a question that I run into.  The other purpose of doing 3-D, other than anatomy, is that 

if you have labeling in different layers – so, for example, if this is a surface, you have 

labeling here and you have labeling up top. Obviously in 3-D, you don’t see the labeling at 

the bottom. 

JA: You’re perfectly right.  Making a 3-D map, you lose one dimension. 

S: And it’s the same with 2-D. 2-D would be, either you do supra or you do infra, and then you 

compare side by side. 

JA: And that’s what I’m saying, with 2-D you lose a dimension.  You lose the z-dimension.  And 

so yes, the cortex is a sheet of tissue but it’s layered, and so, as you said, if you want to 

know, if your labeling in that sheet of tissue in a certain layer, in a 2-D map you have to 

trick the system. So, for instance you can color-code cells that are in a certain layer, a 

different color for a different layer, and then you can kind of represent your three layers on 

that same map. But still you lose the dimension – ok, it’s in that layer, but is there a dip in 

that layer, or is it on the surface in that layer? 

S: Is that important? 

JA: It could be. It depends what you’re looking at.  But to some extent you shrink that z-

dimension. And so, if the essence of the data you want to present or talk about is in that z-

dimension, than the flat map is no longer ideal.  You could use a cross-section.  The cross-

section will lose another dimension, but will show you the dimension.  So it’s not 

necessarily impossible, just with cross-section and 2-D, to show something about that z-
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dimension.  But if you want to do similar things that you are doing with the map, then you 

can’t.   

S: So then question number 9 was, how complex is your data? 

JA: So, I think that touches on something I’ve wanted to talk about, or is implicit, but when you 

do 2-D reconstruction on a monkey brain, because of the unfolding that you have to do and 

the distortion that it creates, you basically have to do small region by small region of 

cortex, and kind of a mosaic of – you can’t unflatten the whole monkey brain, because at 

the edges of your map, you don’t know what you’re looking at, it’s too distorted, it’s too 

weird.  And a 2-D map, you can unfold the sheet of cortex, but then you lose whatever is 

inside the brain, the deeper structures, so if you want to show that, that’s a different figure, 

that’s a different type of  labeling, that’s a different reconstruction, so one of the main 

advantage of a 3-D representation is to show everything at once, if possible, if you can see 

that 3-D model of the brain, that you can zoom in if you want to see a particular region, you 

can rotate to appreciate the distribution, you can see everything in one same space. 

S: You can make a mental model by looking at all of these locations simultaneously. 

JA: Right.  So you have everything there at once. 

S: Which you still do in 2-D, but it’s kind of distorted, or sometimes not possible because you 

said you have to do smaller regions. 

JA: Right. In 2-D you can’t have that everything together. So that’s one complexity that 3-D will 

help appreciate, is what’s the big picture, what’s the general thing.  And the other part is, 

because of the 2-D unfolding and the fact that you have to plot things together, regions that 

have no to very little cells, you tend to ignore, you don’t show them, there is nothing in 

there.  And so, one thing that you would appreciate in a 3-D reconstruction is maybe how 
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localized the labeling is, in the brain, because everything is there and there is nothing in 

another region for that injection.  Or, in that half of the brain, it’s scattered all over, but in 

the other half there’s nothing, or something like that. So you would also appreciate the 

places that don’t have labeling. 

So what would be the most ideal way to represent your data? My answer is, there is not one ideal 

way.  The question to me is, the key word is “represent.” So when you want to represent 

data, it already is implicit that you’re making a choice, that you no longer show the real 

data, which is the section or which is the brain tissue that you have.  You are already 

transforming that real data in a representation.  And a representation is biased towards 

whatever it is that you want to say.  And so depending on what it is you want to say, 

depending on what you feel is appropriate, you want to say, and depending on the media,  

the origins, any type of parameters, it will modify your representation.  And so the idea is 

to find the best one, the one that you think is the best, to convey what it is you want to say, 

but there is not one solution for that. 
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