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THE ROLE OF GENOMIC IMPRINTS IN PLACENTAL BIOLOGY 

Erik Alexander Koppes, PhD 

University of Pittsburgh, 2016 

 

Genomic imprinting is a process by which heritable epigenetic marks at a subset of genomic loci 

are established in a sex-specific manner in parental gametes and then maintained in nascent 

offspring. This study probes the poorly understood function of genomic imprints in placental 

biology. Genomic imprints are responsible for the regulation of parent-of-origin specific 

monoallelic expression of clusters of imprinted genes. The primary epigenetic mark that 

distinguishes parental alleles at imprinted loci is 5-methylcytosine in the context of cytosine-

guanine (CpG) dinucleotides within differentially methylated domains (DMDs). The Dnmt1 gene 

encodes the maintenance DNA methyltransferase, an enzyme responsible for replicating CpG 

methylation that is critical throughout the process of genomic imprinting. Genetic disruption of 

the oocyte specific isoform of Dnmt1 (Dnmt1o) results in partial and wide-spread loss of DMD 

methylation during preimplantation development and has strong effects on embryonic and 

extraembryonic development. In this dissertation the morphology of DNMT1o-deficient 

placentas is examined and their abnormal phenotypes correlated with loss of methylation at 

specific DMDs. A strong association between loss of methylation at the Kcnq1 DMD and 

accumulation of trophoblast giant cells was made. In addition, an association between loss of 

methylation at the Peg10 DMD and loss of fetal viability and placental labyrinthine volume was 

made. In conjunction with my study of the Dnmt1Δ1o model, I have engineered a novel targeted 

deletion of the imprinted Klf14 gene and found it has an effect on placental growth. My thesis 

unambiguously shows that genomic imprints are essential for placental development.  
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1.1.1  Discovery of genomic imprints 

In 1984 two different research groups firmly established that maternal and paternal genomes are 

non-equivalent in their developmental potential (1-4). These studies used pronuclear transfer 

techniques to remove one pronucleus and replace it with another to generate either bimaternal 

(gynogenetic) or bipaternal (androgenetic) genomes. They found that gynogenetic eggs are 

capable of developing into a 25-somite fetus but failed to properly generate extraembryonic 

tissue, whereas androgenetic eggs develop ample extraembryonic tissues but poorly developed 

fetuses. These results supported earlier research in mice that neither parthenogenetic (activated 

oocytes) nor gynogenetic conceptuses can survive (5-7). In addition, these results confirmed the 

clinical findings that parthenogenesis is not tolerated in human fetal development, and that 

androgenetic, dispermic conception results in molar pregnancies with excessive extraembryonic 

growth (6, 8, 9). In short, these studies found that the potential for embryonic development of 

male and female pronuclear genomes are different, with maternal genomes capable of initiating 

fetal but not extraembryonic development, and paternal genomes favoring extraembryonic 

growth.  

1.0  INTRODUCTION 

1.1  GENOMIC IMPRINTING 
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Around the same time mouse geneticists using different recombination driven models 

including uniparental disomies (UPDs), reciprocal translocations (symmetrical rearrangement of 

non-homolgous chromosomes) and Robertsonian translocations (fusion of two acrocentric 

chromosomes) identified chromosomes that are responsible for parent-of-origin effects (10, 11). 

Research on phenotypes observed from inheritance of Robertsonian reciprocal translocations, in 

which offspring had either two maternal or two paternal copies of a chromosomal segment, are 

particularly informative (12, 13). These studies recognized mouse chromosomes 2, 6, 7, 11 and 

17 as having parent of origin effects on fetal and/or placental growth (10). For example, in 

regards to chromosome 6, maternal uniparental disomy (matUPD) is lethal whereas paternal 

uniparental disomy (patUPD) is viable (10). Further studies into the early 90s using finer 

translocation breakpoints and chromosomal deletions narrowed down parent-of-origin effect 

regions (imprinted loci) to specific chromosomal bands (14, 15). This research led to speculation 

that these chromosomal regions have unique epigenetic marks that imprinted functionality based 

on which germline they passage through (16). 

 DNA methylation was determined to be the primary heritable epigenetic modification at 

endogenous genomic imprints in experiments using transgenes expressed from a single paternal 

allele under the control of upstream regulatory elements (17-22). It was found that DNA 

methylation at these transgene regulatory elements is established in germ cells (ie. oocytes and 

spermatocytes) in a sex-specific manner and that germline passage is associated with the allelic 

expression pattern in resultant offspring. For example, the RSVIgmyc transgene is a cloned DNA 

fragment that contains the RSV long terminal repeat (LTR) from the Rouse sarcoma virus (RSV) 

and the c-myc gene transposed within the immunoglobulin (Ig) locus. In this context, when 

integrated on an autosome, c-myc is expressed exclusively in myocardial tissue only when 
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paternally inherited; when maternally inherited it is not expressed. It was found that DNA 

methylation of the RSVIgmyc transgene occurs when the transgene is transmitted through the 

maternal germline but is erased (or not established) when transmitted through the paternal 

germline. Not only did this research establish DNA methylation as the key epigenetic mark in 

genomic imprinting, but it also provided evidence for erasure and establishment of imprinted 

DNA methylation during both male and female gametogenesis. 

 Through a combination of biochemical and genetic experiments endogenous genomic 

imprints were conclusively shown to be heritable DNA methylation marks at discrete loci 

scattered throughout the genome. Each chromosomal region identified as having parent-of-origin 

effects (10) was subsequently found to harbor one or more imprinted genes expressed from a 

single parental allele that are regulated by DNA elements methylated on one parental allele: 

mouse chromosome 2 harbors the Gnas and Nnat imprinted loci; mouse chromosome 6 harbors 

maternal imprints at the Peg10, Nap1l5 and Mest loci; mouse chromosome 7 contains three 

maternal imprints at the Kcnq1, Snrpn and Peg3 loci and one paternal imprint at H19; mouse 

chromosome 11 contains maternal imprints at the Grb10 and Zrsr1 loci; and mouse chromosome 

17 has a maternal imprint at the Igf2r locus. A summary of all known and putative imprinted loci 

can be found at the online mouse book resource (23). 

Imprinted regulatory DNA sequence regions have been named differentially methylated 

domains (DMDs), and alternatively called differentially methylated regions (DMRs), imprinting 

centers (ICs) and imprinting control regions (ICRs) in the scientific literature (24). There are 

subtle differences in the meanings of these terms; ICRs refer directly to the sequences controlling 

imprinted gene expression and often overlap with DNA binding sites for the insulator protein 

CTCF, whereas DMDs and DMRs refer to the larger imprinted methylated region including the 
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ICR. Confirmation of the role of DMDs was provided by the result of experimental insertion of 

Snrpn DMD sequences in place of the RSV sequences in the RSVIgmyc transgene; this 

SnrpnIgmyc transgene is consistently maternally imprinted in mice (25). Each set of imprinted 

genes and their regulatory DMD can be considered a single epigenetic unit termed an imprinted 

gene cluster. There are 24 imprinted clusters in the mouse with the majority of these conserved 

in humans (26). In section 1.5 I have reviewed 15 of the most functionally relevant clusters to 

placental biology. 

1.1.2  Establishment and maintenance of imprinted DNA methylation 

The DNA methyltransferase class of enzymes (DNMTs) catalyze the addition of methyl groups 

to the 5′ carbon of cytosine nucleosides (reviewed by (27)). This class of enzymes is divided into 

two groups. So called “de novo” DNA methyltransferases establish methylation in the absence of 

prior methylation and include the DNMT3a, DNMT3b and the non-catalytic DNMT3l. In 

contrast, the “maintenance” methyltransferase, DNMT1, along with its essential binding partner 

UHRF1, perpetuate CpG methylation after each round of DNA replication by recognizing and 

acting on hemi-methylated DNA templates. The DNMT2 enzyme, despite its homology and 

designated nomenclature, does not function to methylate DNA but rather acts on tRNA and other 

non-genomic substrates. The boundary between de novo and maintenance methyltransferases has 

recently become blurred, as they often work in tandem to establish and maintain DNA 

methylation. 

 The mammalian genome is methylated at roughly 70-80% of all CpGs in adult somatic 

tissues (28). However, during embryogenesis genomic methylation is dynamic as it is depleted 

during preimplantation and germ cell development and is then reacquired (29-32). DNA 
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methylation occurs at CpGs throughout the genome including intergenic regions, transposable 

elements, CpG islands (CGIs), gene bodies, inactivated X-chromosomes and imprinted DMDs 

(28, 33). Intergenic regions including microsatellites and other repetitive elements are sparsely 

populated with CpGs but are heavily methylated where they occur (28, 33). DNA methylation 

also occurs at endogenous retroviral elements and acts to suppress transcription and possibly 

transposition (34, 35). CpG islands are an interesting feature of the mouse genome because they 

are CpG rich sequences found at 70% of gene promoters but also within gene bodies, or at genic 

termini (36). They are largely unmethylated (at both active and inactive genes) except in some 

repressive heterochromatin contexts during development (31, 36). The majority of gene bodies 

outside of CGIs are highly methylated (33). In female conceptuses paternally inherited X 

chromosomes are inactive due to the absence of DNA methylation at the X inactivation center 

located at the promoter of the Xist gene (reviewed by (37)). The imprinted X-chromosome state 

is maintained in extraembryonic tissues (e.g. trophoblast) but is undone in the embryonic 

(epiblast) lineages of rodents prior to random X-inactivation (37). 

DNA methylation at imprinted DMDs occurs in a monoallelic manner based on allele 

parent-of-origin and is stably inherited through nearly all cell types (24). DMDs have many of 

the same features as CGIs and are located within gene promoters, introns and intergenic regions 

(36). However unlike non-imprinted CGIs and other types of genomic methylation, imprinted 

DMDs do not undergo the same dynamic changes in their methylation levels during development 

(30-32). Not surprisingly imprinted DMD methylation, unlike other types of genomic 

methylation, follows a unique developmental dynamic cycle during which DMD methylation is 

erased in primordial germ cells (PGCs), reestablished in a sex-specific manner within gametes, 

and then faithfully perpetuated throughout embryonic and postnatal development (24, 38). 
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Although DNA methylation is the primary epigenetic mark at DMDs, imprinted loci contain 

histone modifications on methylated alleles (e.g. H3K9me3) and on unmethylated alleles (e.g. 

H3K4me3) that are acquired during the normal genomic imprinting process (39, 40). 

 The experiments previously discussed using imprinted RSVIgmyc transgenes firmly 

established that imprinted methylation marks are erased in PGCs. There has been recent 

controversy as to whether this demethylation event is through passive or active mechanisms (41, 

42). PGCs are initially established in the proximal-posterior epiblast at embryonic day 6.25 

(E6.25) of mice and then proliferate and migrate up the genital ridges toward their somatic sex 

organ niches between E8.5 and E12.5 (43, 44). Both imprinted and non-imprinted CpGs are 

markedly demethylated in PGCs at E12.5 (44-47). The initial handful of cells, estimated to be 

approximately 6-32 in number at E7 undergo numerous rounds of cell division to establish the 

gametic stem cell pool. During this time maintenance DNA methylation activity does not occur, 

leading to passive loss of DNA methylation (41). It is postulated that an active de-methylation 

mechanism involving the cytosine deaminase AID, the glycosylases TDG and MBD4, and 

components of the base excision repair pathway PARP1, XRCC1 and APE1 are also involved to 

insure complete erasure of methylation patterns (48, 49). Aid1 homozygous null PGCs have three 

times more DNA methylation than controls (49). In addition, the 5-methylcytosine dioxygenase 

TET1 is present in PGCs leading to elevated levels of 5-hydroxymethyl-cytosine (5hmC) in PGC 

genomes (48). It is unclear if 5hmC is involved in active demethylation, as it is not a substrate 

for glycosylases, although both the 5hmC deamination product 5-hydroxymethyluracil and the 

TET catalyzed carboxylated nucleoside 5-carboxylcytosine are TDG substrates (41, 48, 50-52). 

Alternatively, it has been suggested that 5hmC and bound TET proteins may act to inhibit 

DNMT1 activity thereby leading to passive loss (42). 
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 The timing of DNA methylation acquisition in gametes, a process mediated by the de 

novo methyltransferases, differs between male and female germlines (53). The RSVIgmyc 

transgene experiments suggested that imprinted DNA methylation occurs during 

spermatogenesis by the pachytene stage prior to meiosis I, whereas in the female germline 

methylation is observed after meiosis I in mature (MII) oocytes (18). During spermatogenesis the 

H19 DMD is methylated on the paternally inherited allele in spermatogonia and acquires 

methylation on the maternally inherited allele by the pachytene stage (54). DNA methylation at 

various CGIs and repetitive elements also increases during transition between spermatogonia and 

pachytene spermatocytes (55). During oogenesis the Snrpn DMD is methylated gradually during 

postnatal development, increasing from minimal methylation at postnatal day 0, to 50% 

methylation at postnatal day 10 and full methylation in MII oocytes at maturity (56). Genome 

wide methylation analysis has confirmed that in female mice oocyte genomic methylation 

gradually increases from very low levels in immature (postnatal day 5) oocytes through the 

germinal vesicle (GV) and MII mature stages (32). The overall level of DNA methylation is 

higher in sperm than female pronuclei, however the paternal pronuclear genome is rapidly 

demethylated within hours of fertilization (30, 57). Methylation at DMDs is known to shift, 

expand and recede at different loci and is evident in the comparison of gametic and mid-

gestation embryonic DMD sizes (58). There are roughly 1600 CGIs (including imprinted and 

non-imprinted sequences) that are differentially methylated between sperm and oocytes, and 

roughly half of these are resistant to erasure during preimplantation development (59). 

 Maintenance of genomic imprinting during preimplantation development prior to zygotic 

Dnmt1 activation is dependent on maternally inherited DNMT1 protein that is stored in oocytes 

(60-63). Oocytes produce somatic (DNMT1s) and oocyte-specific (DNMT1o) isoforms that 
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function in the zygote. Oocyte produced DNMT1s is 1620 amino acids in length, is sequestered 

in ooplasm but migrates to the zygotic nucleus, and functions to maintain imprints during the 

first and second zygotic cell divisions (60, 61). Dnmt1 transcription from an upstream oocyte-

specific promoter generates the mRNA template for the DNMT1o isoform, which is shortened 

by 118 amino acids at the N-terminus, and is sequestered in the ooplasm until the 4th mitotic 

division (60, 62, 63). The combination of maternal DNMT1s and DNMT1o maintains imprints 

up to the 32 cell stage when zygotically produced DNMT1s acquires the full maintenance 

responsibility (60, 61).  

Imprinted DMD methylation is perpetuated on one parental allele of each genomic DMD 

during early mammalian development despite fluctuating levels of genomic methylation (29-32). 

The genome of mature spermatocytes contains higher overall levels of CpG methylation than 

oocytes (30, 57). Immediately following fertilization, the 5-methylcytosine sites within the male 

pronulclear genome are converted to 5hmC by the 5-methyl-cystosine dioxygenase TET3 (64-

68). The female pronuclear genome, and a minority of CpG sites within male pronuclei are 

protected by maternal and zygotic stores of DPPA3 bound to dimethylated histone 3 lysine 9 

(H3K9me2) chromatin (69, 70). Maternal deletion of Dppa3 results in increased 5hmC 

abundance in the maternal pronuclear genome (69, 70). Both parental genomes are demethylated 

during preimplantation at the majority of sites (except at imprinted DMDs), however the effect is 

more pronounced in male pronuclear genomes due to their higher initial DNA methylation levels 

and rapid reduction (30, 32, 64, 67). In addition to the mechanism involving DPPA3 it is thought 

that DMDs are also protected from demethylation, through the recruitment of DNA-binding 

protein ZFP57 and TRIM28 (71-76). Maternal-zygotic deletion of Zfp57 results in mid-gestation 

embryonic lethality with loss of methylation at the Snrpn, Peg1, Peg3 and Nnat DMDs but 
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normal methylation at the H19 and Dlk1 DMDs and repetitive Line1 and Iap elements (71, 72). 

Trim28 homozygous null embryos have a loss of methylation at the H19 and Snrpn but not Peg3 

DMDs (74). In ES cells Zfp57 deletion results in loss of DMD methylation whereas Trim28 

deletion results in decreased H3K9me3 (75). These results combined with recent biochemical 

and structural data provide a model whereby ZFP57 binds methylated DMDs at the 

hexanucleotide TGCCGC, recruits TRIM28 via its KRAB domain, which promotes 

heterochromatin formation through the recruitment of the H3K9 methyltransferase EHMT2, 

DNMT1 and DNMT3 isoforms (72-76). 

This preimplantation wave of demethylation occurs simultaneously with the phenomenon 

known as nuclear reprogramming whereby the zygotic genome transitions from a totipotent 

epigenetic state to a pluripotent state to be able to generate the many cell types required for 

embryonic and extraembryonic development (Recently reviewed in (77-79)). During cellular 

differentiation DNA methylation at various promoter CGIs is modulated (e.g. Oct4, Nanog and 

Ets5) thereby altering the expression of key components of important developmental programs 

(31, 80, 81). During the many waves of de novo methylation during the process of differentiation 

imprinted DMDs remain methylated only on one parental allele, indicating that there are 

mechanisms that prevent the establishment of methylation at unmethylated DMDs. The 

processes by which both de novo and maintenance DNA methyltransferases are regulated are the 

subjects of ongoing research in the field of epigenetics.  
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1.1.3  DNA methyltransferase mouse models 

Targeted mutation of members of the Dnmt gene family have major effects due to loss of DNA 

methyltransferase activity at critical times during gametogenesis and preimplantation 

development (reviewed by (27, 82)). All three classes of DNMTs contain a catalytic C-terminal 

S-adenyl-methionone (SAM)-dependent methyltransferase domain. Dnmt1 encodes a 1620 

amino acid protein with an extensive N-terminal domain containing a nuclear localization, 

replication foci targeting sequence (RFTS), a CXXC zinc finger that recognizes umethylated 

DNA and a tandem bromo-adjacent homology (BAH) domains (83-85). DNMT1 is understood 

to function as homodimer, mediated through interactions with its N-terminus, at hemimethylated  

DNA (86). The de novo methyltransferase genes Dnmt3a and Dnmt3b encode much shorter 

proteins (908 and 776 amino acids respectively) with a N-terminal DNA binding PWWP motif 

and an unmethylated H3K4 binding plant homeodomain like (PHD) domain (87-89). The 

Dnmt3l gene encodes a catalytically inactive methyltransferase lacking an N-terminal PHD 

domain that interacts, stimulates and co-localizes with DNMT3a and DNMT3b at 

heterochromatin loci (87, 90, 91). DNMT3A interacts with DNMT3L to form tetramers that can 

bind CpGs with a periodicity of 8-10 base pairs (92). 

Targeted mutations of the genes encoding de novo DNMTs (i.e. Dnmt3a, Dnmt3b and 

Dnmt3l) have profound developmental effects based on the failure to establish DNA 

methylation. Heterozygous null Dnmt3a and Dnmt3b as well as compound heterozygotes are 

normal and can be intercrossed to generate homozygous null offspring (93). Dnmt3a 

homozygous offspring die at 4 weeks after birth and are growth restricted but have normal 

imprinted and non-imprinted genomic methylation (93). Dnmt3b null mice die in late gestation 

and have reduced IAP and centromeric satellite DNA methylation similar to the loss-of-function 
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DNMT3B mutations associated with ICF syndrome (93). Compound homozygous 

Dnmt3a/Dnmt3b null mice die around gastrulation and have loss of IAP and centromeric DNA 

methylation (93). Methylation in each of these models does not affect imprints and is higher at 

repetitive elements than observed in Dnmt1 null models indicating that imprints and some 

genomic methylation established prior to implantation (i.e. in the germline) is maintained (93).  

Dnmt3l homozygous null mutants survive to adulthood but are infertile (91, 94). In males 

absence of DNMT3L results in germ cell mitotic catastrophe, lack of spermatocytes and 

infertility, and a lack of DNA methylation at the H19 paternal DMD and repetitive DNA 

elements (91, 95, 96). Female homozygous Dnmt3l dams generate oocytes that lack all maternal 

imprinted and non-imprinted DNA methylation and yield progeny that fail to develop past E9.5 

(91, 94, 97-99). This embryonic lethality is thought to be caused by extraembryonic defects 

including failure of chroio-allantoic fusion and trophoblast cell differentiation defects that are 

reviewed in comparison to my results in section 3.5.4 (94, 97, 99). Conditional germ cell deletion 

of Dnmt3a, but not Dnmt3b, recapitulates the many of the same phenotypes of Dnmt3l null 

models including a maternal effect from the maternal germline and mitotic catastrophe from the 

paternal germline providing definitive evidence that DNMT3A and DNMT3L work in concert 

(100). 

Targeted inactivation of Dnmt1 is severely detrimental to mouse embryonic development. 

The Dnmt1n allele is a N-terminal partial loss-of-function mutation (101). Homozygous Dnmt1n 

mice have a 70% reduction in total genomic methylation including at imprinted DMDs and arrest 

development at 9.5 primarily due to failure of hematopoiesis (101, 102). Two complete loss of 

function null alleles that target the replication targeting region (Dnmt1s) and the catalytic C-

terminus (Dnmt1c) respectively have even lower methylation levels (95% loss) and arrest 
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development in homozygous embryos at E8.5 (103). Residual genomic methylation is likely due 

to de novo methyltransferase activity (103). Intriguingly, despite the drastic loss of DNA 

methylation, homozygous Dnmt1 null embryonic stem cells are viable and proliferate until they 

are induced to differentiate (101, 103). This suggests that DNA methylation is not vital for stem 

cell survival and proliferation but is required for complex mammalian development. These 

Dnmt1 models are indicative of the importance of DNA methylation but cannot distinguish 

which types of genomic methylation targets are critical for mammalian development. 

Maternal homozygous deletion of the oocyte specific promoter of Dnmt1 (Dnmt1o) 

eliminates DNMT1o protein from resulting oocytes and preimplantation embryos and results in 

partial loss of DMD methylation, but normal non-DMD methylation levels (104). These 

conceptuses are mosaic for loss of imprinting and some survive to term (104). Many DNMT1o-

deficient mutants have severe fetal phenotypes, and preliminary findings also indicate placental 

defects (105). A detailed introduction of the Dnmt1Δ1o model is provided in Section 2.2. The 

Dnmt1Δ1o model is superb for investigating the direct effects of loss of DMD methylation 

because it specifically results in primary epigenetic mutations only at imprinted DMDs. The 

Dnmt1v allele constitutively expresses the Dnmt1o isoform in all tissues (106). Homozygous 

Dnmt1v/v mice are normal, however maternal-zygotic lethality is observed in compound Dnmt1v 

and Dmap1 null embryos (106, 107). This epistatic interaction is likely direct because the N-

terminus of DNMT1, which the DNMT1o isoform lacks, contains a DMAP binding motif, and 

their interaction is eliminated in compound mutant offspring (107).  

How DNMT1 is able to distinguish between imprinted and non-imprinted sequences 

during times of dynamic methylation changes is an important biological question. An interesting 

finding in homozygous Dnmt1c ESCs is that the majority of DNA methylation, but not imprinted 
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DMD methylation, returns after transfection of a functional Dnmt1 minigene, further validating 

that imprints require germline passage to be established (108, 109). Building on this finding a 

Dnmt1 TET-Off allele was engineered to suppress expression of Dnmt1 in vitro with addition of 

tetracycline to culture media, and then allow recovery of expression after replacement with 

tetracycline depleted media (110, 111). Similar to the minigene system genomic methylation 

largely recovers (110, 111). However imprints and a select group of promoter CGIs do not 

recover their methylation (110, 111). Many of these CGIs are located at developmentally 

important regulators, indicating that DNMT1 is required for maintenance of imprint-like 

sequences that are established in heterologous contexts.  

The DNMT1 protein contains an intrinsically disordered domain from amino acids 100-

400 that is a strong candidate for autoregulation of DNMT1 activity and its interaction with other 

proteins (110). This region has no predicted structure, is rich in charged amino acids (making it 

hydrophilic) and contains multiple proline residues that block secondary structures such as alpha 

helices (110). Amino acids 190-350 of DNMT1 within the disordered domain, like the process of 

genomic imprinting, is specific to mammals (110). Although deletion of the whole mammalian 

specific region has no effect on genomic methylation smaller deletions have distinct effects in 

ESCs (110). Deletion of the coding region for amino acids 255-291 results in loss of DMD and 

non-DMD methylation, deletion of amino acids 191-324 results in loss of DMD but not non-

DMD methylation and deletion of amino acids 297-309 results in loss of non-DMD methylation 

but normal DMD methylation (110). Furthermore replacement of murine Dnmt1 codons 328-333 

with a rat specific sequence, produces a hypomorphic allele with lower overall levels of 

methylation and embryonic growth restriction (112). These studies indicate that the mammalian 
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specific DNMT1 region is involved in distinguishing DMD and non-DMD sequences and has 

species-specific features. 

Because DNMT1 is able to distinguish between imprinted and non imprinted sequences 

during dynamic developmental processes it is speculated that it must be regulated in some 

allosteric manner. The structure of DNMT1 in the absence of DNA reveals that the RFTS 

domain is situated in the catalytic DNA interacting region (85). In complex with unmethylated 

DNA a DNMT1 autoinhibitory loop between the CXXC and BAH domains blocks catalytic 

domain access to CpG dinucleotides and a linker between the BAH2 and the catalytic domains 

blocks target recognition (83, 84). These allosteric auto-inhibitory conformations are relaxed at 

hemimethylated DNA and are likely modulated by interactions with multimeric heterochromatin 

protein complexes. DNMT1 interacts with multiple proteins including UHRF1, DMAP, ZFP57, 

TRIM28, DNMT3 isoforms and others (75, 76, 107). Mutations in the genes encoding the 

DNMT1 interactome not surprisingly alter genomic methylation. A better understanding of the 

complexes DNMT1 is part of will likely provide clues to how DNMT1 has differential activity at 

DMD and non-DMD CpG sites during periods of development when there is upheaval of 

genomic methylation patterns. 

One of the reasons it is important to study genomic imprints is because the etiologies of multiple 

severe congenital developmental disorders are based on genetic and epigenetic changes at 

imprinted genomic loci (Table 1). The Beckwith-Wiedemann (BWS), Silver-Russel (SRS), 

1.2  GENOMIC IMPRINTS IN HUMAN DEVELOPMENTAL DISORDERS 
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Prader-Willi (PWS), and Angelman (AS) syndromes are all classified as imprinting disorders. In 

addition both Pseudohypothyroidism Type I (PHP1a) and transient neonatal diabetes mellitus 

(TNDM) are metabolic diseases caused by loss of imprinting at other loci. It is clear from these 

disorders that the dosage of imprinted genes is critical, and that neither loss nor gain of imprinted 

gene expression is well tolerated. Because these disorders can be diagnosed and in some cases 

manifest symptoms prior to parturition it is plausible that the symptoms are in part based on 

placental dysfunction. It is my hope that some of my dissertation research on the role of genomic 

imprints in mouse placental biology will provide insight into the prenatal disease mechanisms of 

these disorders. 

1.2.1  Beckwith Wiedemann Syndrome 

Beckwith-Wiedemann Syndrome (BWS; OMIM 130650) is a neonatal overgrowth syndrome. It 

is characterized by the major traits of overgrowth (macrosomia), large tongue (macroglossia), 

protusion of the umbilical cord and/or gut (exomphalos), enlarged internal organs 

(visceromegaly), renal abnormalities and an increased incidence of embryonic tumors (e.g. 

Wilms tumor) (113, 114). Minor traits associated with BWS include enlarged placenta 

(placentamegaly), certain facial structures (e.g. anterior earlobe creases) and neonatal 

hypoglycemia (113, 114). The overgrowth seen in BWS children is often considered 

hemihyperplasitic and hemitrophic because overgrowth is confined to certain internal organs and 

uneven in extremeties. It is thought that hemihyperplasia can be caused by the development of 

mosaic early embryos composed of epigenetically normal and imprint-defective cells. 

  Both the clinical phenotypes and etiology of BWS are heterogeneous. The majority of 

BWS cases are sporadic with no apparent familial history (114, 115). The genomic region 
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involved in BWS is a large imprinted region on 11p15.5 that includes both the KCNQ1 and H19 

imprinting clusters (115-121). The rare heritable cases are usually attributed to maternal 

inheritance of loss of function mutations within the paternally imprinted CDKN1C gene (122). 

The majority of sporadic cases of BWS are caused by loss of DNA methylation on the maternal 

allele of the KCNQ1 DMD (clinically referred to as IC2 or KvDMR) (114). Gain of methylation 

on the maternal allele of the H19 DMD (clinically referred to as IC1 or H19DMR) is responsible 

for about 5% of sporadic BWS cases. Infrequent translocations, duplications and inversions of 

this region are also causative mutations of BWS. The loss of imprinting and paternalization of 

the 11p15.5 region results in loss of expression of one (e.g. CDKN1C) or more paternally 

imprinted genes within the KCNQ1 cluster and increased expression of the maternally imprinted 

IGF2 in the H19 cluster, manifesting in the abnormal growth phenotypes (115). The biallelic 

overexpression of IGF2, a potent mitogen, is a major factor in the overgrowth phenotype as well 

as the enhanced prevalence of fetal and infantile Wilms tumor in BWS. 

1.2.2  Silver-Russell syndrome 

The major clinical phenotypes of Silver-Russell syndrome (SRS; OMIM 180860) are intrauterine 

growth restriction and diminished postnatal growth along with minor traits such as facial 

disproportion, body asymmetry, syndactly and short stature. There is a broad spectrum of SRS 

and SRS-like clinical manifestations that include growth restriction to varying degrees in 

compilation with one or more minor traits (123, 124). Birth weights and postnatal growth greater 

than two standard deviations less than the mean are typical for SRS patients, and growth 

hormone is the standard treatment for this growth disorder (123, 124). Intriguingly the 11p15.5 

region (H19 DMD) implicated in the overgrowth syndrome BWS is also involved in SRS. The 
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majority (estimated at 31-55%) of SRS patients have loss of methylation at the H19 DMD, or 

maternal UPD11p15 (~4%), with subsequent downregulation of IGF2 (125-129). The abundance 

of IGF2 in BWS and its paucity in SRS demonstrates the strong influence of IGF2 levels on fetal 

growth. Although SRS and BWS are opposing imprinting disorders based at 11p15.5 (H19 

DMD), SRS appears to be a multi loci disorder with alternative etiologies based on molecular 

abnormalities on chromosome 7 in 7-10% of cases (125, 130). 

Maternal UPD7 is the genetic eitology of a minority of Silver-Russell patients (125, 130). 

Human chromosome 7 has three distinct imprinting centers at the GRB10 (7p12.1), PEG10 

(7q21.3) and MEST (7q32.2) loci. Reports of matUPD7p21 including GRB10 and the non-

imprinted insulin binding protein genes IGBP1 and IGBP3 in SRS patients is parsimonious given 

their role in IGF2 signaling (131, 132). Maternal duplication of the 7q31qter inclusive of the 

MEST imprinting locus has also been identified as a cause of SRS however it is unclear which 

imprinted genes within this cluster are directly involved (133). 

One explanation for the heterogeneity of clinical phenotypes and molecular etiologies in 

SRS and SRS-like cases is that it is a multigenic syndrome involving imprinting loci that co-

regulate key growth pathways. It has been shown that some SRS patients have tissue-specific 

epigenotypes at imprinted loci, suggesting that mosaic loss of methylation may occur early in 

development and perhaps modulate the SRS phenotypic outcome (134, 135). Quantitative 

methylation studies have been informative in making correlations between specific epigenetic 

loci involved in SRS and phenotypic traits (129). Hypomethylation at 11p15.5 is associated with 

the classical SRS phenotypes of facial asymmetry, 5th finger clindactyl, and congenital defects; 

whereas matUPD7 is associated with a triangular facial structure, global developmental delay 

and need for speech therapy (129). However, the degree of loss of methylation is not indicative 
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of the severity of SRS phenotypes (129). This study is proof that correlation of DMD 

methylation can be predictive of quantitative traits.  

1.2.3  Prader-Willi syndrome and Angelman syndrome 

Prader-Willi syndrome (PWS; OMIM 176270) and Angelman syndrome (AS; OMIM 105830) 

are reciprocal developmental disorders whose molecular etiologies are based on genetic or 

epigenetic abnormalities in the SNRPN imprinted cluster at 15q11.2 (reviewed by (136, 137)). 

PWS is characterized by prenatal fetal inactivity, neonatal muscular hypotonia, growth hormone 

insufficiency, hypogonadism and juvenile onset obesity. Hyperphagia-induced obesity in PWS is 

associated with elevated ghrelin orexigenic hormone levels that lower satiety sensitivity, and can 

be treated through a combination of recombinant growth hormone and behavioral therapy (137). 

Patients with AS have severe mental retardation with deficiencies in motor, balance, speech and 

language (136). Although both PWS and AS are primarily recognized as postnatal disorders, 

they appear to have fetal origins, therefore it is worthwhile to investigate whether the SNRPN 

cluster has a role in placenta development (136, 137). 

While PWS is based on the lack of expression of paternally expressed genes within the 

SNRPN locus, AS is caused by lack of expression of adjacent maternally expressed genes within 

the same genetic locus (136, 137). The molecular etiologies of both diseases range from de novo 

inherited deletions, UPD15q11-13, imprinting disorders and single gene mutations (136, 137). 

The majority (~70%) of PWS and AS cases are due to inherited de novo deletions of a 5-6 MB 

region encompassing the 2MB SNRPN imprinting cluster (136, 137). PWS patients inherit this 

deletion on the maternal allele whereas AS patients inherit the deletion from the paternal allele 

(136, 137). The large PWS and AS deletions arise from common recombination breakpoints 
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centromeric of the PWS paternally expressed genes and a series of three telomeric breakpoints 

telomeric to the AS genes (136, 137). Maternal UPD15q11-13 is the cause of approximately 20% 

of PWS cases whereas paternal UPD15q11-13 is a cause of approximately 1-2% of AS cases 

(136, 138, 139). 

A minority of PWS (~1-3%) and AS (~2-4%) cases result from loss of imprinting at the 

SNRPN locus (136, 137). This is primarily due to alteration of the genomic methylation patterns 

at the SNRPN DMD (136, 137). A small fraction (~15%) of loss of imprinting cases in PWS and 

AS have interstitial deletions ranging from a 10kb to 800bp that abolish imprinted expression 

patterns (140-143). These loss of imprinting deletions have identified non-overlapping IC 

sequences that are causative of PWS (when paternally inherited), or AS (when maternally 

inherited) (140-143). The PWS IC overlaps SNRPN exon 1, and the AS IC is centered at SNRPN 

upstream exon u5 (140-143). Normally these regions are oppositely methylated with the PWS IC 

methylated on the maternal allele and the AS IC methylated on the paternal allele.  

Single gene mutations of members of the SNRPN imprinted gene cluster are also causes 

of PWS and AS. Maternal inheritance of genetic mutation at UBE3A is a cause of 2-5% of AS 

cases (136, 144, 145). UBE3A encodes a ubiquitin ligase responsible for marking proteins for 

degradation that is up-regulated in neuronal tissues (144, 145). Roughly 10-15% of AS cases 

have unknown genetic etiologies suggesting the involvement of additional genes (136). 

Paternally inherited mutations in the maternally expressed small nucleolar RNA (snoRNA) gene 

116 (SNORD116) within the SNRPN locus has recently been identified as an etiology of a small 

minority of PWS and PWS-like cases (146, 147). The SNRPN locus is discussed in more detail in 

section 1.5.8 with emphasis on PWS and AS models that target the syntenic Snrpn region in 

mouse. 
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1.2.4  Pseudohypothyroidism type I 

Pseudohypothyroidism type Ia and Ib (PHP Ia; OMIM 103580 and PHP Ib; OMIM 603233) have 

etiologies based on alteration of the imprinted GNAS cluster at 20q13.32 (148).  PHP Ia, also 

known as Albright hereditary osteodystrophy, manifests in patients as short stature, obesity, 

round faces, sub-cutaneous ossification, brachydactyl and other skeletal abnormalities. These 

features arise due to resistance to parathyroid hormone (PTH), thyroid stimulating hormone 

(TSH) and gonadotropins. PHP Ia is caused by maternal inheritance of loss-of-function 

mutations in the gene encoding a variant guanine nucleotide exchange factor alpha subunit (149). 

In an opposite manner genetic mutation of paternally inherited GNAS allele is the cause of 

progressive osseous heteroplasia (POH; OMIM 166350) and pseudopseudohypothyroidism 

(PPHP; OMIM ) which show many of the same muscular and skeletal symptoms of PHPIa but 

without endocrine abnormalities (150). 

PHP Ib is characterized by obesity and resistance to parathyroid hormone within the renal 

proximal tubule. This results in hypocalcemia and hyperphophatemia, and compensatory 

increase in PTH levels. PHP Ib is caused by epigenetic mutation (loss of methylation) of the 

maternal exon 1a GNAS DMD, resulting in loss of GNAS-XL expression in a tissue specific 

manner (151). These results indicate that some tissues are more stringent in their exclusive 

parent-of-origin monoallelic imprinted gene expression. 

1.2.5  Transient neonatal diabetes mellitus Type 1 

Transient neonatal diabetes mellitus type I (TNDM1; OMIM 601410) is characterized by 

intrauterine growth restriction and hyperglycemic infancy that resolves in half of patients within 
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a few months but can reoccur in adulthood (152) . It is caused by loss of imprinting at 6q24 

including patUPD 6, 6q24 paternal duplications and maternal hypomethylation at the PLAGL1 

DMD (152-154). These changes result in a double dosage of the normally paternally expressed 

PLAGL1, a gene encoding a zinc finger transcription factor that controls a network of genes 

regulating insulin sensitivity (155). The prenatal and postnatal clinical phenotypes of TNDM1 

indicate that this disease may be in part modulated by the role of PLAGL1 in the placenta.  
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Imprinted Disease Clinical Phenotypes Genomic Loci & Molecular Etiologies DMDs 

Beckwith-Wiedemann Syndrome 
(BWS; OMIM 130650) 

Macrosomia, hemihyperplasia, 

visceromegaly, macroglossia, 

exomphalos, , embryonic tumors 

placentamegaly, neonatal hypoglycemia, 

facial characteristics 

11p15.5 

Genetic and epigenetic mutations; CDKN1C genetic mutations, 

loss of KCNQ1 DMD methylation, gain of H19 DMD 

methylation, paternal UPD of 11p15.5, 

KCNQ1, 

H19 

Silver-Russell Syndrome            
(SRS;OMIM 180860) 

Intrauterine and neonatal growth 

restriction, body asymmetry, syndactyl, 

triangular face, short stature 

11p15.5, 7q21.3, 7q32.2  

Loss of H19 methylation, matUPD11q15, matUPD7 

H19, 

GRB10, 

MEST 

Prader-Willi Syndrome                 
(PWS; OMIM 176270) 

Fetal inactivity, neonatal hypotonia, 

juvenile onset obesity,  hyperphagia, low 

GH levels, elevated ghrelin,  short 

stature, hypogonadism, small hands and 

feet 

15q11.2 

Paternal deletion of SNRPN imprinted cluster, matUPD15, 

SNRPN imprinting mutations, SNORD116 mutations  

 

SNRPN 

Angelman Syndrome                   
(AS; OMIM 105830) 

Mental retardation, motor and balance 

deficiency, language and speech 

problems 

15q11.2 

Maternal deletion of SNRPN imprinted cluster, patUPD15, 

SNRPN imprinting mutations, UBE3A mutations 

SNRPN 

Pseudohypothyroidism Type Ia 
(Albright hereditary 
osteodystrophy; 
PHPIA OMIM 103580) 

Short stature, obesity, PTH and TSH 

resistance, round faces, subcutaneous 

ossification, brachydactyl, skeletal 

abnormalities 

20q13.32 

Maternal inheritance of non-functional GNAS allele 

GNAS 

Pseudohypothyroidism Type Ib 
(PHPIB; OMIM 603233) 

Obesity, PTH resistance in renal PT, 

hypocalcemia, hyperphosphatemia 

20q13.32 

Loss of GNAS exon 1a DMD methylation 

GNAS 

Transient Neonatal Diabetes 
(TNDM1; OMIM 601410) 

Intrauterine growth restriction, infantile 

hyperglycemia 

6q24 

PatUPD6, paternal 6q24 duplications, loss of PLAGL1 DMD 

methylation 

PLAGL1 

Table 1.  Syndromes and disorders associated with genomic imprints. See section 1.2 for references  

 



23 

 

1.3.1  Requirements for prenatal development 

Normal fetal development and pregnancy outcome depends on the genetic integrity of the fetus, 

health of the mother and function of the placenta. Adverse pregnancy outcomes include 

miscarriages, malformations, pre-term delivery and low birth weight. Genomic disorders can be 

inherited or arise spontaneously in the germline and affect single genes to whole chromosomes 

(156). Chromosome imbalance (aneuploidy) in mammals originates from oocyte meiosis I non-

disjunction events, it affects roughly 5% of all pregnancies and usually results in miscarriage 

although a handful of trisomies are viable to birth including trisomy 13 (Patau syndrome), 

trisomy 18 (Edwards syndrome) trisomy 21 (Down syndrome) and sex chromosome trisomy 

XXY (Klinefelter syndrome), XXX and XYY (157-159). 

The fetal genome has a large contribution to pregnancy outcome, however it is not 

completely deterministic. It has been shown that birth weights of half siblings are more 

correlated when there is a common mother than when the father is common indicating that the 

maternal intrauterine environment is a major factor in fetal growth ((160) and references therein). 

Diet, obesity, insulin-resistance, hypertension, smoking, alcohol consumption and drug use are 

all strong maternal influences on pregnancy outcome. The placenta is the interface between 

mother and fetus and is critical for the exchange of nutrients, wastes and as an immunological 

barrier. The proper development and function of the placenta is therefore critical for optimal fetal 

1.3  PLACENTAL INFLUENCE ON PREGNANCY OUTCOME 
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health. Intrauterine growth restriction, preeclampsia and gestational diabetes mellitus are three 

common pregnancy complications that if left untreated lead to poor outcomes. 

1.3.2  Intrauterine growth restriction 

Intrauterine growth restriction (IUGR) is a term synonymous with fetal growth restriction (FGR) 

describing reduced growth of a fetus during pregnancy. IUGR often leads to pre-term delivery 

and small for gestational age (SGA; lowest 10th percentile of birth weights) babies. The causes of 

IUGR include conditions such as hypoxia, preeclampsia, genetic determinants and placental 

insufficiency (161). Maternal smoking causes placental hypoxia and IUGR without preeclampsia 

(162). Smoking during pregnancy also increases the risk for ectopic pregnancies, spontaneous 

abortions, teratogenesis, pre-term birth, and sudden infant death syndrome and is also associated 

with postnatal childhood obesity and diabetes mellitus and psychological problems (162). Fetal 

alcohol syndrome is a neurological and developmental disorder with IUGR (163). Illicit drug use 

also increases the risk of IUGR, pre-term birth and low birth weight (164). Many genetic IUGR 

determinants encode components of the insulin like growth factor (e.g. IGF1, IGF2, IGF2R and 

IGFBP1), placental growth factor (i.e. PGF), stress related cortisol (e.g. CRH and 11bHSD) and 

growth hormone (i.e. GH) signaling pathways (165). However, only IGF2 has been directly 

linked through genetic and epigenetic (i.e. H19 loss of methylation in SRS) mutations to cause 

IUGR (166). 
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1.3.3  Preeclampsia 

Preeclampsia (PE) is a maternal vascular disease associated with poor placental perfusion that 

occurs in roughly 3-5% of all pregnancies (167-169). Clinically, PE is defined by gestational 

hypertension and proteinuria after 20 weeks gestation. Risk factors for PE include a number of 

metabolic, coronary, genetic and environmental conditions. PE can have severe effects on fetal 

and neonatal morbidity and mortality and accounts for 30-40% of IUGR pregnancies, 25% of 

SGA babies and 15% of pre-term births. If left untreated PE can transition into maternal 

eclamptic seizures. It is thought that factors released from the placenta and the lack of 

trophoblast induced vascular remodeling and vascularization combined with maternal influences 

(e.g. obesity) results in maternal vasoconstriction and hypertension (170). Endothelial cellular 

signaling pathways influence PE including vascular endothelial growth factor and angiotensin 

signaling (171). In addition, there is evidence that fetal genetic determinants (e.g. STOX1, MMP-

9 and ANG) are predicative of PE pregnancies (171).  

1.3.4  Gestational diabetes mellitus 

Metabolic disease is a common occurrence in post-industrial societies and encompasses obesity, 

insulin resistance, dyslipidaemia and accompanying hypertension (172). During normal 

pregnancy maternal insulin levels generally rise and can induce maternal diabetes mellitus 

(GDM). Obese mothers (BMI>30) are at greater risk for the pregnancy complications gestational 

diabetes mellitus (GDM) and PE (172). An increase in fetal and neonatal body mass due to 

adipose deposition is observed in offspring from mothers with GDM (172). Although GDM 
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resolves after partition both the mother and offspring are at increased risk for metabolic disorders 

later in life (172). 

1.3.5  Fetal origins of adult diseases 

The period of prenatal development is a critical time that has great influence on the overall health 

of individuals throughout their lifetime (173-175). This concept of the fetal origins of adult 

diseases has a strong backing of evidence. For example, low birth weight is tightly correlated 

with hypertension and coronary-based mortality (173, 174). The placenta is the organ at the 

maternal-fetal interface and thus is intimately involved in fetal development and therefore the 

lifelong health of individuals (176). Placental characteristics such as weight, length and breadth 

have been linked with systolic blood pressure, and the adult diseases hypertension, asthma and 

colo-rectal cancer (176). It is therefore extremely important to understand how the placenta 

functions to support normal fetal growth and optimize the lifetime health of offspring. 

1.3.6  Maternal influences on placental function 

The placenta functions as a physical and immunological barrier between mother and fetus, as a 

transporter of nutrients, gasses and wastes as well as a site of active metabolism and hormone 

production (177, 178). Maternal physiology is known to influence placental development 

through blood flow, nutrition and toxicology. For example, obese mothers have increased 

placental triglycerides, malondialdehyde, carbonyl protein, and reduced glutathione, as well as 

increased placental oxidative stress response (179). Maternal smoking induces hypoxic responses 

(e.g. vascularization) within the placenta thereby decreasing the risk of PE, but increasing the 
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risk for placentaprevia and placenta abruptia (162). Alcohol exposure, a cause of IUGR in 

humans, has been shown in rats to modulate placental insulin like growth factor signaling (180). 

1.4.1  Comparison of human and mouse placental structure and development 

The placenta is a temporary organ that sustains and supports fetal growth during gestation and is 

a defining feature of mammalian development (177, 178). It is made up of cells derived from 

maternal, embryonic and extraembryonic origins. The primary extraembryonic cell lineage in the 

placenta is trophoblast. Human and mouse placentas are both defined as hemochorial because 

maternal blood is in direct contact with trophoblast. In both species during pregnancy, at the site 

of implantation, the uterine endometrium becomes the highly vascularized decidua basalis and 

bathes the placenta with maternal blood The human and mouse placenta share common genetic 

networks that regulate placental development. However, the placental structures of the two 

species are distinct. The human placenta consists of microvilli that branch from the chorionic 

plate and are bathed in maternal blood. Each microvillous consists of an outer 

syncytiotrophoblast (SynT) layer, a diploid columnar epithelium, and innermost fetal vessels and 

supporting mesenchyme. The mouse placenta on the other hand consists of three distinct layers 

with unique functions. The labyrinthine zone (LZ) layer is the site of nutrient and waste 

exchange while the junctional zone (JZ) and trophoblast giant cell (TGC) layers have endocrine 

functions.  

1.4  PLACENTAL DEVELOPMENT AND FUNCTION 
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Cytotrophoblast and SynT are two types of trophoblastic cells that are common between 

mouse and human placentas (177, 178). The cytotrophoblast are diploid single nucleated cells 

and are called spongiotrophoblast (SpT) in mouse. In humans there are three types of 

cytotrophoblast: the villous-cytotrophoblast separate the SynT from the villous mesenchyme and 

fetal endothelium; the extravillous-cytotrophoblast invade the maternal decidua; and the 

columnar-cytotrophoblast, which reside at the tips of the microvilli and abutting the maternal 

decidua serve as a source of precursors to other cytotrophoblasts and SynT cell types. The 

spongiotrophoblast in mouse similarly resides between the decidua and the labyrinth within the 

so called junctional zone (JZ), however they do not serve as precursors to SynT. In the mouse 

placenta the SpT performs many of the endocrine functions delegated to SynT in human placenta 

(178). 

The syncytiotrophoblast are multi-nucleated cells formed from cell fusion which funnel 

and contain maternal blood pools, transport nutrients and have active metabolism. There is only a 

single layer of SynT in human microvilli but a bilaminar layer in the mouse labyrinth. A third 

type of trophoblasts, trophoblast giant cells are polyploid and found only in mouse, they have 

similar function as extra-villous cytotrophoblast in induction of decidualization and maternal 

vascular remodeling. Arterial blood vessels extending from the umbilical cord into the chorionic 

plate (base of the placenta) and branching adjacent to SynT line maternal blood are composed of 

extraembryonic mesoderm derived fetal endothelial cells in both species.  

The common cell types and developmental processes make the mouse a superb model for 

placental research (177, 178). The genetic networks important in trophoblast differentiation and 

function are highly conserved in human and mouse (181, 182). Placental gene expression in 

human and mouse is greatly conserved, particularly for those genes with known placental 
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phenotypes associated with gene mutations (181). Intriguingly, both rodent-specific and primate-

specific genes, many of which originated from gene duplication, are enriched for preferential 

placental expression, indicating an organ undergoing recent evolutionary adaptation (182). The 

short generation time, and ease of genetic and physiological manipulations, are major reasons 

why the mouse is a superb system to study placental development. Targeted genetic studies have 

unearthed the central pathways in early trophoblast differentiation and placental function. 

However, there will also be incongruities in comparing placental development across 

mammalian species, and this must be kept in mind when extrapolating experimental data from 

mouse to discern the function of genes in human. 

1.4.2  Preimplantation development 

The period of time from fertilization to implantation is a critical time for the establishment and 

differentiation of trophoblast lineages (reviewed by (183-188)). After fertilization of an egg the 

maternal and paternal pronuclei replicate their haploid genomes, fuse and then undergo cell 

division (183, 189). Early rounds of mitotic cleavage are symmetric and produce totipotent cells 

(183). The earliest cell fate specification event, which distinguishes the trophectoderm (TE) from 

the inncer cell mass (ICM), occurs at the 8 and 16 cell stages (183). In the 8-cell embryo the 

outer apical surface of each blastocyst tightens and these cells become polarized, and divide into 

distinct outer and inner daughter cells (183). Expression of the TE specific transcription factor 

Cdx2 begins at the 8-cell stage in the outer cells concomitantly with expression of the ICM 

specific transcription factor Oct4 within the inner cells (190, 191). This initial fate specification 

event is mediated by the cell-contact dependent hippo signaling pathway kinases STK3 and 

LATS2, that suppress YAP1 through phosphorylation (192). YAP1 is the coactivator for the 
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transcription factor TEAD4, which is the master regulator of TE differentiation (192). The 

TEAD4/YAP1 complex promotes a cascade of transcription factors beginning with activation of 

the Cdx2, Gata3, Eomes and Tfap2a/c genes that define TE lineages, followed by transcriptional 

activation of genes that maintain TE fate including Ets2, Elf5, Essrb, Foxd3 and Sox2/3, and 

subsequently transcription factors such as Gcm1, Ascl2, Hand1 and Stra13 that promote specific 

trophoblastic lineage differentiation (183-185, 193, 194). 

At the 32 cell morula stage, the embryo begins to hollow out and compact to one pole to 

form a blastocyst by E4.5 (189). The blastocyst is a cellular sphere consisting of the outer TE 

layer, the ICM clumped at one pole and a cavity called the blastocoel (Figure 1). The ICM is 

subdivided into the epiblast, which generates the fetus, and the primitive endoderm, a layer of 

cells between the epiblast and the blastocoel that gives rise to the parietal and visceral endoderm 

as well as the yolk sac (183). The polar TE overlying the ICM is the progenitor of most 

trophoblast lineages, whereas the mural TE encasing the blastocoel generates only TGCs upon 

implantation (183, 185, 189). The TE, epiblast and primitive endoderm are comprised of 

pluripotent cells expressing distinctive lineage markers; they are called trophoblast stem cells 

(TSCs; marked by Cdx2), embryonic stem cells (ESCs; marked by Oct4, Nanog and Sox2) and 

extraembryonic stem cells (XEN; marked by Gata6) respectively (195). TSCs are a unique cell 

type that can be cultured from blastocyst and ectoplacental cone extracts up to E7.5 on 

inactivated fibroblasts in ESC conditioned media replete with serum and infused with FGF4 

(186, 196). 

 Expression of the growth factors Fgf4 and Nodal by the ICM sustain TSCs pluripotency 

and identity (186, 196-198). Following TE specification and up through postimplantation 

development FGF4 is required for the maintenance of TSCs (196). FGF4 is produced by ESCs in 
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the ICM, binds to the FGFR2 receptor on TSCs, thereby activating the RAS-MAPK signaling 

pathway promoting proliferation and inhibiting differentiation (186, 197, 198). Induced 

activation of Ras (iRas) can convert ESCs to TSC like states (198, 199). However, their 

trophoblast developmental potential is limited, indicating that earlier specification events trigger 

epigenetic barriers to full TSC induction (198, 199). The nodal signaling pathway is also 

required for TSC maintenance. Nodal is expressed by the ICM and is activated by proteases 

secreted by the TE (197). Preimplantation embryos with deletion of Spc1 and Spc4, two genes 

encoding nodal proteases secreted by TE, have a reduced population of TSCs and diminished 

expression of early trophoblast differentiation markers (197). The combined activity of Fgf4 and 

Nodal signaling on TE prevents terminal differentiation (197). 

1.4.3  Implantation 

At the time of implantation the polar TE is subdivided into the extraembryonic ectoderm (EXE) 

that is proximal to the ICM, and the ectoplacental cone (EPC) that is distal to the ICM (Figure 1) 

(185-188). The EXE is the default state of polar TE and expresses a transcription factor network 

including Tead4, Cdx2, Eomes, Tcfap2c, Gata3, Essrb, Elf5 and Ets2 (185-188). The EPC 

differentiates from this basal state and represses transcription of Cdx2 and Eomes while 

increasing expression of Tead4, Ets2 and Gata3, and gaining expression of Ascl2 and Tpbpa 

(185-188). The EXE is the progenitor of the chorion and syncytiotrophoblast, where as the EPC 

generates TGCs and SpT. Fgf4 and Nodal signaling continues to act on both the EXE and EPC to 

maintain TS populations in both through E7.5 (185-188). 

 Progesterone secreted by the corpus luteum following ovulation induces decidualization, 

a process by which the maternal uterine endometrium prepares for implantation by increasing 
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glandular secretion, vascularity and vascular permeability (200). Blastocyst implantation into the 

receptive maternal uterine endometrium (decidua) is mediated by the primary outermost parietal-

TGCs (P-TGCs) that have differentiated from the EPC and the mural TE. These P-TGCs 

integrate into the extracellular matrix in an interstitial manner and further remodel the uterine 

environment. Some TGCs (SpA-TGCs) invade into the maternal decidua and embedd within the 

spiral arteries where they remodel the vasculature to be dilated and fenestrated to increase 

placental perfusion. Prior to implantation the fetus survives on internal energy stores but 

postimplantation subsistence is dependent on the transfer of nutrients and wastes between fetus 

and mother as mediated by the placenta. Therefore it is not surprising that many targeted gene 

deletions are embryonic lethal immediately following implantation (~E9.5) due to placental 

defects (201, 202). 

1.4.4  Labyrinthine zone development 

The placental labyrinthine zone (LZ or labyrinth) layer is composed of cells derived from both 

the TE lineages and epiblast derived extraembryonic mesoderm fetal vessels extending from 

allantois (umbilical cord) (185, 201, 203-205). The mouse placental labyrinth is analogous to the 

single syncytial layer and vascular components of the human microvillous placental structure, 

and both function to mediate the exchange of nutrients and wastes between maternal and fetal 

circulation (177, 204, 205). Syncytiotrophoblast (SynT) are the primary trophoblast cell type 

found in the labyrinth layer. They are post-senescent, elongated and multinucleated cells formed 

from the fusion of multiple diploid EXE precursors (206). The transcription factor Gcm1 is a 

marker and master regulator for SynT lineages (188, 203-205). Targeted deletion of Gcm1 

results in greatly diminished branching of the SynT lined network of maternal blood passages 
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(207-209). Diminished GCM1 expression in humans is associated with an increase in fetal 

vascular tissue in microvilli (and a corresponding decrease in SynT), which is a placental state 

indicative of preeclampsia (209). The SynA and SynB genes, derived from retroviral envelope 

genes, code for coopted factors that enable the fusion of neighboring diploid EXE cells (210, 

211). The syncytiotrophoblast forms a bilaminar layer that channels and pools maternal blood. 

SynT layer I lines the maternal blood pools, whereas SynT layer II is in contact with fetal 

vasculature (204). Sinusoidal trophoblast giant cells (S-TGCs) and channel TGCs (C-TGCs) , 

derived from the EXE, form a thin layer adjacent SynT layer I at the borders of maternal blood 

pools and channels (204). 

The fetal vasculature within the murine placenta is derived from the allantois (212). The 

allantois is formed from the extraembryonic mesoderm at the posterior end of the primitive 

streak. It extends upwards from the dorsal aorta forming the umbilical cord and then fuses with 

the chorion at E8.5 and afterwards integrates into the chorionic plate and branches upwards to 

vascularize the placenta. Many of the genes involved in angiogenesis are involved during this 

process including members of the VEGF signaling pathway (e.g. Vegf, Flt, Flk) and other extra 

cellular matrix proteins and signal transducers (e.g. Fibronectin, Cathepsin, Mek1, Mek2) (213). 

The allantois and chorion also have limited hematopoietic properties (214).  

Because SynT is intimately involved in transferring nutrients across the maternal-fetal 

interface it expresses a multitude of facilitated and passive transporters along the polarized 

microvillus and basal membranes. Circulating levels of IGF2 and insulin among other effectors 

modulate the expression of glucose, amino acid and fatty acid transporters within the SynT 

(215). Trans-placental fatty acid transport is a complex process mediated by SynT involving 

uptake of triacylglycerides from maternal circulation, intracellular transport and lipolysis 



34 

 

(Reviewed by (216)). Free fatty acids generated by lipolysis undergo -oxidation in SynT 

mitochondria to supply acetyl-CoA for the TCA cycle, or can be stored within intracellular lipid 

droplets and eventually exported to fetal circulation (216). 

The peroxisome proliferator-activated receptor (PPAR) family of proteins is vital to 

placental labyrinth development (217). These nuclear receptors bind small molecule ligands and 

interact with co-activator nuclear factors (e.g. RXR, RAR and LCOR) to modulate gene 

expression patterns (217). Homozygous null Pparγ mutation is embryonic lethal at E10.5 due to 

lack of fetal vasculature and ruptured maternal blood sinusoids within the placental labyrinth in 

combination with fetal heart defects (218). One key SynT gene that PPARγ and RXR regulate is 

Muc1, which encodes a protein that coats the lining of the maternal blood pools; the lack of its 

expression may in part explain the hemorrhaging of these spaces in Pparγ homozygous null 

placentas (219). In addition to Pparγ, Pparδ and Rxrα are crucial to early placental development 

(217). The lethality of targeted Pparδ alleles is strain dependent. Targeted Pparδ mutation is 

embryonic lethal due to failure of full chorio-allantoic fusion at E8.5 and diminished JZ 

development on pure B6 and FvB strains but not on hybrid backgrounds (220). Homozygous 

Rxrα null placentas manifest labyrinth abnormalities at E14.5 with excessive pooling of maternal 

blood, thickened SynT lamina and thinner and necrotic fetal vessels (221). Both Pparγ and Rxrα 

null mice display a reduced amount of lipid droplets in SynT layers I and II (218, 221). 

The cell types within the labyrinth layer are marked by expression of different genes. 

Early in labyrinth development the chorion and early SynT are marked by the transcription 

factors Gcm1 and Tfeb expression. Later in development, at E12.5 and beyond, the leptin 

receptor (LepR) is strongly expressed in SynT. The markers of C-TGCs and S-TGCs are 

discussed in section 1.3.7. The fetal vasculature within the placenta, like most arterial vessels, is 
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marked by CD31 (VE-Cadherin). Interestingly, expression of the imprinted genes Mest and Dlk1 

are both highly expressed in fetal vessels and can be used as in situ lineage markers. Many 

targeted imprinted gene deletions have phenotypes that occur within the labyrinth including 

Peg10 and Rtl1, which are discussed in detail within section 1.5. 

1.4.5  Junctional zone development 

The junctional zone layer (JZ or spongiotrophoblast) is composed almost entirely of 

spongiotrophoblast (SpT), a diploid cell type derived from the ectoplacental cone (188, 203). It is 

structurally analogous to the columnar cytotrophoblast of human placenta that forms epithelium 

at the tips of each microvillus (177, 178). Expression of Ascl2 and Tpbpa is used to delineate 

SpT by in situ hybridization. The SpT lineage marker Tpbpa encodes a secreted peptide of the 

cathepsin family, and is expressed ubiquitously throughout gestation in all SpT subtypes (188, 

203). Ascl2 is an imprinted gene strongly expressed in the EPC and during early SpT 

differentiation. It encodes a basic helix-loop-helix transcription factor which inhibits the default 

EPC differentiation pathway leading to TGCs (222, 223). Deletion of Ascl2, results in 

placentation based prenatal lethality with pronounced reduction in both LZ and JZ layers and 

excessive accumulation of TGCs (222). Insertional mutagenesis of the Nodal gene has a similar 

early embryonic lethality as the Ascl2 null, with loss of SpT and expansion of TGCs, indicating 

the importance of the nodal signaling pathway in SpT specification (224). 

 The junctional zone has strong endocrine functions that support pregnancy through the 

secretion of members of the prolactin family, lactogens and other cytokines that stimulate corpus 

luteum progesterone expression and other maternal physiological responses (178, 225). Secretion 

of a soluble anti-angiogenic isoform of the VEGF receptor (s-Flt1), and the vasoinhibin 
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precursor proliferin (Plf1; Prl2c2) by SpT also inhibits maternal endometrial vascularization into 

the placenta (226, 227). 

Glycogen cells (GCs) are a specialized subtype of SpT that contain large glycogen stores 

and are marked by the expression of Pcdh12 and Igf2 (228, 229). Glycogen cells are detectable 

as early as E7.5, start accumulating glycogen by E10.5, proliferate rapidly at E12.5 and then 

migrate into the neighboring decidua around E14.5 (228, 229). By E17.5 GCs within the decidua 

undergo lysis and release their glycogen content into lacunae with maternal blood; this is thought 

to provide a burst of energy for the end stages of fetal growth and partition (229). Mouse GCs 

are analogous to human columnar cytotrophoblasts closest to the decidua, and interstitial decidua 

embedded cytotrophoblast both of which contain glycogen vacuoles (177). The imprinted genes 

Igf2, Igf2r, Ascl2, Cdkn1c and Phlda2 are known to influence SpT and GC development and are 

discussed in detail in section 1.5 (230).  

1.4.6  Trophoblast giant cells 

Trophoblast giant cells (TGCs) are polyploid cells formed via genomic amplification without cell 

division (endoreduplication) of diploid precursors (reviewed by (231, 232)). The polyploidy 

genomes of TGCs are also polytene, having distinct chromosome bands of both highly active and 

highly repressed chromatin. TGCs have extensive rough endoplasmic reticulum indicative of 

their elevated protein secretion pathways. In these respects, TGCs are similar to hepatocytes. 

TGCs are the default fate of TE development. In the absence of FGF4 and conditioned media 

TSCs differentiate within 4-5 days into TGCs (196). The expression of Ascl2 within the EPC 

(and in TSCs) suppresses the TGC differentiation programing. ASCL2 antagonizes the activity 

of HAND1, a basic helix-loop-helix transcription factor that promotes TGC differentiation, 
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either through transcriptional repression or competition for common promoters (233, 234).Tthe 

interacting HAND1 and STRA13 transcription factors negate FGF4 suppression of trophoblast 

terminal differentiation and promote differentiation into TGC (233-235).  

 There are four subtypes of TGCs found in the mouse placenta (reviewed by (231, 232)). 

They can be distinguished by their expression of different members of the prolactin/placental 

lactogen and prolactin-like gene family. Each of the 23 members of this family is a 22-33 kDa 

peptide related to growth hormone (225, 227). The earliest TGCs are formed from the mural TE 

and EPC just prior to implantation. These cells are parietal TGCs (P-TGCs) because they form 

the outermost surface of the placenta. P-TGCs express proliferin (Prl; Plf1; Prl2c2) and 

prolactin-1 (Pl1; Prl3d1) at E9.5, and then transition to primarily prolactin-2 (Pl2; Prl3b1) at 

E12.5 and later gestational time points (232). These cells are vital to implantation and 

decidualization. P-TGCs express a multitude of integrins that interact with maternal uterine ECM 

components fibronectin, laminin, vitronectin and collagen (231). Spiral artery TGCs (SpA-

TGCs) integrate into the maternal spiral arteries to remodel the vascular blood flow. These cells 

phenocopy many of the functions of normal endothelial cells and are analogous to human 

endovascular cytotrophoblast (201). The trophoblast decidual invasion is shallower in mice than 

in human pregnancy, and some of the vascular remodeling is thought to be instigated by uterine 

natural killer cells in mice (177). 

SpA-TGCs are present by E10.5 and express Prl2c2. The chorion gives rise to the C-

TGCs and S-TGCs starting at E10.5, these are marked by expression of Prl3b1 but can be 

distinguished by expression of Prl2c2 in C-TGCs and Ctsq in S-TGCs (231, 232). The 

expression of the prolactin gene family, which is found in large cluster of duplicated genes on 

mouse chromosome band 13qA1, is both a defining and functional feature of TGCs (227, 236). 
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Prolactins are secreted proteins with both paracrine functions that modulate decidualization and 

have endocrine functions that alter maternal physiology and behavior (225, 227). In the 

polypolid P-TGCs there is overamplification of genomic regions harboring gene clusters of the 

prolactin (including Prl2c2, Prl3b1, and Prl2d1), Cathepsin (including Ctsq1, and Tpbpa), Serpin 

(intracellular serine proteases) and NK/Clec (Natural-killer/C-type lectins) families (237). 

Although the human placenta does not have TGCs the extravillous cytotrophoblast provide many 

of the same functions during implantation and the more invasive cell types are polypoloid, 

although not to the same extent as mouse TGCs (238).  

 

 

Figure 1.  Mouse placental development from preimplantation to E12.5+. Abbreviations: 

Trophectoderm (TE), Epiblast (Epi), Visceral Endoderm (VE), Decidua (Dec), Spiral Artery 

(SpA),  Ecto Placental Cone (EPC), Chorion (Ch), Allantois (Al), Trophoblast Giant Cells 

(TGCs), Yolk Sac (YS), Fetus (Fe), Spiral Artery TGCs (SpA-TGCs), Parietal TGCs (P-TGCs), 

Sinusoidal TGCs (S-TGCs), Spongiotrophoblast (SpT), Glycogen Cells (GCs), 

Syncytiotrophoblast (SynT), Fetal Vessels (FV). In each stage cell populations are color coded 

based on lineage origin. At the preimplantation stage the Polar TE is light green, the mural TE is 

dark green, the Epi is blue and the VE is yellow. At the implantation stage Dec is orange, TGCs 

are dark green, the EPC is light green, the Ch is purple, the YS is yellow and the Fe and Al are 

blue. Postimplantation all TGCs are dark green (irrespective of origin), SpT is light green, GC 

are gray-green, SynT is purple and magenta, Fv are light blue and the chorion is Purple. Maternal 

and fetal blood (unlabeled are red and dark blue respectively. 
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I chose to study 15 out of the 24 known genomic imprints based on their known involvement in 

prenatal fetal and placental phenotypes. These genomic imprints and the genes within the 

clusters they regulate are discussed in detail below. Many of these imprinted gene clusters harbor 

genes that exhibit parent-of-origin specific monoallelic expression exclusively in extraembryonic 

tissues. Different types of mouse models have been instrumental in providing insight the role of 

each genomic imprint and the imprinted genes they regulate. The study of mouse embryos with 

UPDs and robertsonian translocations revelaed parent-of-origin specific prenatal developmental 

effects attributable to specific imprinted genomic regions. Targeted mouse genetic approaches 

including gene deletions and transgenic duplications identified the role of single imprinted genes. 

Similarly, targeted deletion of DMDs in mice has been used to investigate imprinting 

mechansism and their functional significance in development. Although the research reviewed 

herein has brought to light unique placental functions of imprinted loci, the integrated role of 

individual imprinted clusters and imprinted DNA methylation per se is largely unknown.  

1.5.1  Nnat 

The neuronatin (Nnat) imprinted gene cluster is a microimprinted domain found on mouse 

chromosome band 2qH4 with a syntenic region on human chromosome 20q11.2-12 (239-242). 

The Nnat gene resides within the single intron of the much larger Blcap (239). The Nnat DMD is 

located at the Nnat  promoter, which transcribes in reverse orientation relative to Blcap (239). 

1.5  GENOMIC IMPRINTS WITH POSSIBLE PLACENTAL FUNCTIONS 
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Expression of Nnat is silenced on the methylated maternal allele, whereas the unmethylated 

paternal allele is transcriptionally active (239). Mice with matUPD of distal chromosome 2 are 

deficient in Nnat, expression, are growth restricted and have decreased cerebral folding (243). 

The expression of neither Blcap nor any other gene in the local vicinity is imprinted (239). 

Hypomethylation of the Nnat DMD and resultant overexpression of Nnat is known to occur in 

Wilms Tumor, similar to the effects on the H19 DMD and Igf2 expression (244). There is 

evidence that the Nnat DMD is hypermethylated in term mouse placenta (245). 

The NNAT protein is a plasma membrane bound proteolipid cation channel (240). It is 

involved in both neural development and regulation of metabolic pathways including 

gluconeogenesis and glucose transport (recently reviewed in (246)). In pigs (Sus domesticus), 

NNAT is paternally expressed during gestation in uterine glandular and luminal epilethelial cells, 

and in the placental chorionic plate (247). The expression of porcine NNAT in utero is co-

regulated with many components of metabolic pathways (e.g. GLUT1, AKT, IRS1, MTOR and 

PI3K) indicating either a downstream or congruent regulation (247). Based on the parent-of-

origin growth effects of proximal chromosome 2, the expression profile of Nnat and potential 

role in placental metabolism it would be of interest to determine if loss of the Nnat imprint 

influences mouse placental development.  

1.5.2  Gnas 

The Gnas imprinting cluster resides on mouse distal chromosome band 2qH4 within the region 

identified in recombination models as having parent-of-origin effects. A homologous region is 

located on human chromosome band 20q13. The Gnas transcriptional unit produces three unique 

isoforms: the biallelically expressed (except in kidney proximal tubule) Gnas, the paternally 



41 

 

expressed Gnas-xl and the maternally expressed Nesp from unique promoters that share a 

common exon 2 (248). Additionally, Nesp has an antisense transcript (Nespas) that initiates 

transcription from a promoter that is adjacent and in opposite orientation to the Gnas-xl promoter 

(249). Gnas encodes a guanine exchange factor -subunit (250). The Gnas-xl isoform also 

encodes the cell membrane bound ALEX protein from an alternative open reading frame (250). 

The Nesp gene encodes a neuropeptide of unknown function (248). 

Several targeted mutations at the Gnas locus have been generated to model PHPIa and 

PHPIb. Targeted deletion of maternally inherited Gnas-xl results in reduced viability, with the 

few surviving pups having lower adiposity, increased lean mass, increased glucose tolerance, 

low insulin levels and altered sympathetic neuronal activity (251, 252). Heterozygous deletion of 

the Gnas exon 2 has different effects based on parental inheritance (253). Similar to the 

difference in PHPIa and PPHP patients, maternal null mouse pups have both skeletal defects and 

are PTH resistant, whereas paternal null pups have skeletal defects, do not suckle, but are not 

PTH resistant (253). Further parental inheritance experiments established that Gnas is imprinted 

in a tissue specific manner in the kidney (254). In the distal tubule and collecting ducts Gnas is 

not imprinted and has no parent-of origin-effects when Gnas exon 2 is deleted (254). However, 

in the proximal tubule Gnas is imprinted and PTH resistance occurs with maternal but not 

paternal inherited Gnas exon 2 deletion (254). Two models of Exon1a deletion manifest in 

postnatal growth retardation when paternally inherited (255). The Ex1a-T model truncates 

transcripts originating from both Gnas exon 1a and Gnas-xl promoters has along-term phenotype 

with hyperactive metabolism and decreased bone growth, whereas a mutation of Gnas exon 1a 

eliminates all transcription from that promoter but enables both Gnas exon 1 and full length 
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Gnas-xl transcription, which results in transient postnatal growth retardation during the first 6-10 

weeks after birth (255). 

The Gnas cluster harbors three imprinted DMDs. A paternally imprinted DMD is found 

overlapping the Nesp promoter, a maternally imprinted DMD overlapping the Nespas and Gnas-

xl promoter, and a maternally imprinted DMD at Gnas exon1a (256-259). The DMD region 

overlapping the Nespas promoter is the primary germline DMD, the Gnas-xl promoter and Gnas 

exon 1a DMDs acquire methylation secondarily in the germline, and the Nesp promoter DMD is 

only imprinted during postimplantation development in certain somatic tissues (256). Paternal 

inheritance of a Nespas DMD deletion increases Gnas Exon 1a methylation and decreases Nesp 

DMD methylation, mimicking the maternal allele’s epigenetic state and resulting in increased 

transcription from the Nesp and Gnas exon 1 promoters (259). A compound mutation of 

maternally inherited Gnas loss-of-function and paternally inherited Nespas DMD deletion 

partially rescued neonatal edema observed in the former (259). The role of the Nespas non-

coding RNA (ncRNA) is important for the establishment of the Nesp DMD, as shown genetically 

by paternally inherited truncation of Nespas results in loss of Nesp DMD methylation and in 

increase in its transcription (260). Paternal inherited deletion of the Exon1a DMD results in 

derepression of Gnas exon 1 expression and can rescue the metabolic and neonatal growth 

defects of maternally inherited Gnas mutations in compound heterozygotes (257, 258). Because 

of the importance of Gnas to metabolic and endocrine regulation it is plausible, although 

previously unsubstantiated, that Gnas plays a role in placental hormone production and 

metabolism during prenatal development and is worthwhile to study the effects of loss of 

imprinting at this locus on placental development. 
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1.5.3  Mest 

The long arm of mouse chromosome 6 has multiple imprinted loci. Reciprocal translocations 

involving chromosome arm 6q from centromere to the 6G3 telomeric band are embryonic lethal 

in matUPD6q offspring but support viable development in patUPD6q offspring (10). The parent-

of-origin specific region was narrowed to the region between the centromere and a breakpoint in 

chromosomal 6qB3 and is now known to harbor the Peg10, Mest (also known as Peg1), and 

Nap1l5 imprinting clusters (261). Furthermore bimaternal inheritance of the region between the 

centromere and a proximal breakpoint at 6qA3.2 between the Mest and Peg10 loci is viable, 

demonstrating that the lethal matUPD6q phenotype cannot be attributed to the sub-proximal 

Mest and therefore is likely attributable to the Peg10 cluster (262). A fetal growth restriction 

phenotype is associated with matUPD of the sub-proximal region between 6qA3.2 and 6qC2 

including Mest and Nap1l5, whereas fetal overgrowth is associated with patUPD of the same 

region, suggesting the 6q sub-proximal imprinting region is a regulator of fetal growth (262, 

263). Placental weights were normal in both sub-proximal matUPD and patUPD offspring (262, 

263). In humans, matUPD7 and Mest DMD hypermethylation are causes of a minority of SRS 

cases (125, 264). 

 The Mest DMD is located at a 550bp CGI overlapping Mest exon 1 as well as 157bp of 5′ 

promoter and 120bp of 3′ intron 1 DNA sequence (265). The Mest DMD is maternally 

methylated on the inactive allele; therefore in this context DNA methylation is repressive (265, 

266). The full DMD extends in both 5′ and 3′ direction to cover 2.4kb in total in embryonic 

tissues (265). Imprinted methylation patterns at the Mest DMD control the monoallelic 

expression of a cluster of imprinted genes including the paternally expressed Mest, and the 

maternally expressed Copg2, Cpa4 and Klf14 (265-270). 
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 The Mest (mesoderm expressed transcript) gene is as a transcript enriched in fetal 

mesodermal tissues in both mouse and man (271, 272). It is located at mouse chromosomal band 

6qB1 and human chromosome band 7q32 (271-273). The MEST protein is a putative beta-

hydrolase with unknown substrates, although it is speculated to function as a lipid hydrolase 

(268). A targeted mutation of Mest, in which an IRES-βGeo cassette is inserted in place of exons 

3-8, maintains normal methylation patterns but reduces viability (274). Fetuses and placentas of 

paternal null conceptuses at E18.5 are growth restricted by approximately 15% (274). Maternal 

behavior of placentaphagia and nesting are decreased in paternal Mest null F1 female mothers 

(274). These growth restriction phenotypes are similar to the sub-proximal translocation mouse 

with loss of Mest expression, however no maternal behavioral changes were observed in that 

model (262). The placental growth restriction phenotype is particularly interesting given that 

Mest is expressed within extraembronic mesoderm lineages within the placenta including the 

chorionic plate, fetal vessels and hemangioblast precursors (275). In human placenta Mest is also 

expressed in cytrophoblasts (275). Mest isoform 2 (which encodes a protein shorter by 7 amino 

acids) transcribed from upstream exon 1a is the predominant form expressed in the human 

placenta and has a promoter CGI that is maternally methylated specifically in the placenta; a 

similar genetic structure suggests a homologous mechanism in mouse (276). Stochastic loss of 

Mest imprinting (biallelic expression) is correlated with increased body, spleen and kidney 

weight in interspecific hybrids of Mus musculus and M. spretus, suggesting not only that Mest is 

involved in somatic growth, but also that maintenance of imprints is not as robust in inter-species 

crosses (277). 

 Copg2 (nonclatharin coat protein  2) is paternally imprinted in adult and late gestation 

fetal brain (278). Its transcription is directionally opposed and abutting Mest. Neuronal 
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expression of Mest-xl, an alternatively polyadenylated Mest transcript that incorporates a 3′ UTR 

that runs through Copg2 intron 20, occludes paternal Copg2 expression via transcriptional 

interference (278). Additionally, Mest contains an intronic (between exon1a and exon1) 

paternally expressed antisense transcript emanating from the Mest DMD as well as harboring the 

microRNA (miRNA or Mir) gene Mir335 downstream of exon1. Upstream of Mest resides  a 

series of carboxypeptidase paralogs (Cpa1, 2, 4 and 5), of which only Cpa4 is imprinted 

(paternally) (267, 269). Roughly 21kb downstream from Mest resides the paternally imprinted 

Klf14 (Krüppel-like factor 14). Klf14 is a parent-of-origin specific expression quantitative triat 

loci (eQTL) that modulates diabetes mellitus and elevated HDL risk (279-281). A handful of 

single nucleotide polymorphsims (SNPs) upstream of the Klf14 promoter decrease Klf14 

expression and increase risk for the above metabolic diseases when maternally inherited (279-

281). The same SNPs also regulate a network of metabolic genes in trans (282, 283). These 

findings implicate the KLF14 transcription factor as a master regulator of metabolic pathways 

(282, 283). A more thorough introduction to Klf14 and results from a novel targeted deletion 

model are presented in Chapter 4. The evidence presented here indicates that the Mest cluster is 

involved in the regulation of fetal growth, and deserving of further study of its function in 

prenatal development with a particular focus on placental function. 

1.5.4  Nap1l5 

The maternally imprinted Nap1l5 resides 30Mb distal to Mest in mouse chromosomae band 

6qB3 (263, 284). It is located within the same sub-proximal breakpoint region as Mest that is 

associated with matUPD growth restriction and patUPD overgrowth (263). The Nap1l5 promoter 

is a maternally methylated DMD that represses Nap1l5 transcription, mechanistically resulting in 
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either double or zero dosage of Nap1l5 transcription in sub-proximal 6q matUPD and patUPD 

mice respectively (263, 285). Nap1l5 is an intronless retrotransposed copy of a gene encoding 

nucleosome assembly protein-1 (Nap1) (263). It is located within an intron of the Herc3 host 

gene. (284) While Herc3 is not imprinted per se, it does undergo allele specific polyadenylation 

through transcriptional interference (286). Herc3, which encodes a ubiquitin ligase, is transcribed 

into a non-functional truncated isoform (Herc3b) from the unmethylated paternal allele, and a 

full length isoform (Herc3a) from the methylated allele (286). A syntenic homologous region is 

found on human chromosome 7 near MEST. Mouse embryonic neuronal and heart tissues 

express Nap1l5, but its expression has  not been studied in placenta (263, 284). Due to its 

location in the sub-proximal breakpoint region the Nap1l5 imprinted locus must be considered a 

candidate for the regulation of placental and fetal growth. 

1.5.5  Peg10 

Mouse chromosome band 6qA1 and human chromosome 7q21.3 harbor the Peg10 imprinting 

cluster (287, 288). A maternally methylated imprinted DMD is found at this shared promoter and 

regulates monoallelic gene expression of Peg10, Sgce, as well as the downstream maternally 

expressed genes Pon2, Pon3, and Ppp1r9a (288).The gene order of the syntenic Peg10/PEG10 

regions in mouse and man is identical (288). Peg10 is a intronless endogenous retrovirus derived 

gene of the suchi-ichi family (289, 290). It encodes gag and pol retroviral derived transcripts 

from two distinct open reading frames (291). Transcription of Peg10 runs adjacent and in 

opposite orientation from a shared promoter of the paternally expressed sarcoglycan protein 

epsilon gene (Sgce) (288). Peg10 is expressed in trophoblast lineages early within the 

ectoplacental cone and chorion and later in both P-TGCs and S-TGCs (292). Paternally inherited 
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deletion of Peg10 is embryonic lethal at E9.5 due to failure of LZ and JZ layer development 

(293). The lethality of matUPD of proximal chromosome arm 6q may be attributed to loss of 

Peg10 expression (262, 293). The role of imprinted genes within the Peg10 cluster and the 

function of Peg10 DMD methylation in placental biology is worthwhile to study further. 

1.5.6  H19 

The subtelomeiric chromosomal band 7qF5 in mouse has parent-of-origin effects derived from 

both bimaternal and bipaternal inheritance. This region is homologous with 11p15.5 in humans 

that contains the H19 and Kcnq1 imprinting clusters. Bipaternal inheritance of distal 

chromosome arm 7q results in fetal overgrowth, whereas bimaternal inheritance in growth 

restriction (294). The H19 imprinting cluster consists primarily of maternally expressed ncRNA 

H19 and the paternally expressed insulin-like growth factor 2 (Igf2). Differential DNA 

methylation has been observed at the H19 gene body and promoter and at the Igf2 promoter, 

however it is paternally inherited methylation at the H19 5′ upstream flanking regions that is the 

primary genomic imprint (295, 296). Deletion of the H19 DMD within the 5′ flanking region 

relieves strict monoallelic expression (297). Paternal inheritance of the H19 DMD deletion 

activates H19 expression and attenuates Igf2 expression, whereas maternal inheritance has the 

reciprocal effect of decreasing H19 expression and increasing Igf2 expression (297). 

Adulteration of the CTCF binding site within the H19 DMD has a similar effect of Igf2 

activation when maternally inherited (298). Based on these genetic models a mechanistic 

explanation of the H19 imprinting cluster has been proposed by which DNA methylation at the 

H19 DMD blocks chromatin access of the insulator protein CTCF thereby protecting Igf2 from 

being spooled into a transcriptionally inactive chromatin loop (299). 
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 The H19 imprinting cluster has strong influences on prenatal growth. Paternally inherited 

targeted deletion of Igf2 causes severe postnatal growth restriction, and explains the growth 

restriction associated with bimaternal inheritance of distal chromosome arm 7q (300). Transgenic 

overexpression of Igf2 results in prenatal overgrowth and phenocopies many of the changes 

observed in BWS (301). Paternally inherited deletion of the placenta specific Igf2p0 isoform, 

normally expressed within the SynT, results in both fetal and placental growth restriction (302). 

The efficiency of placental transport is decreased in these placenta (302). A study of both the 

Igf2 and Igf2p0 paternal null placentas indicate that the Igf2 deletion has a disproportionate 

decrease of JZ volume whereas the Igf2p0 deletion decreases LZ and JZ volume proportionately 

(303). In contrast, only the Igf2p0 knockout altered placental diffusion transport (303). In a 

targeted model of H19 in which 5kb of the H19 gene body and 10kb of upstream region were 

deleted, IGF2 expression was increased and placentas were overgrown with an abundance of 

GCs (304, 305). The H19 ncRNA primary transcript is processed into Mir675 in late gestation 

placenta but not in embryonic tissues (306). A 3kb deletion of the Mir675 region induces 

placental overgrowth indicating that H19 itself is a negative regulator of growth mediated 

through repression of identified Mir675 targets including Igfr1 (306). In addition to H19 and 

Igf2, imprinted expression of Ins2 and the ncRNAs Igf2os and Mir483 (both antisense to Igf2) 

have been reported in extraembryonic tissues (307). Given the strong placental and fetal 

phenotypes of the various H19 and Igf2 genetic models it is valuable to study the direct effects of 

loss of imprinting at this cluster. 
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1.5.7  Kcnq1 

The Kcnq1 imprinting cluster is roughly 500Mb distal to H19 within subtelomeric band 7qF5 in 

mouse. It is one of the largest and most important imprinting clusters in mammalian 

development. The Kcnq1 cluster includes the paternally expressed Kcnq1ot and several 

maternally expressed genes including Aslc2, Cdkn1c, and Phlda2 (118, 120, 125, 308). The 

regulation of a greater number of imprinted genes has been reported as specific to placental and 

extraembryonic lineages including Th, Tspan32, Cd81, Tssc4, Nap1l4, and Osbpl5 (118, 309). 

The Kcnq1 DMD resides at the promoter of Kcnq1ot, an antisense ncRNA transcript emanating 

from within Kcnq1 intron 5 (308, 310). An allele in which the Kcnq1 DMD is deleted mimics the 

maternally methylated imprinted state (310). Paternal inherited deletion of the Kcnq1 DMD 

deletion results in fetal growth restriction and overexpression of Ascl2, Cdkn1c and Phlda2 

(310). These phenotypes are opposite of those observed in BWS cases where there is loss of 

Kcnq1 DMD methylation (310). 

 The importance of the Kcnq1 cluster in placenta biology is most evident in targeted single 

imprinted gene deletion mouse models. Maternally inherited targeted deletion of Ascl2 is 

embryonic lethal at E10.5 due to failure of placental formation (222). Trophoblast lineage 

differentiation is strikingly abnormal in these placenta with a vast proliferation of TGCs at the 

expense of JZ and LZ development (222). Embryonic Ascl2 maternal null lethality can be 

rescued by tetraploid complementation, indicating placental maldevelopment was independent of 

fetal development (222). A hypomorphic Ascl2 allele is viable but growth restrictive and results 

in expansion of TGCs at the expense of LZ development (311). Similar placental phenotypes to 

Ascl2 maternal null mice are observed in and Dnmt3l maternal effect offspring that lack all 

maternally imprinted DMD methylation (including at Kcnq1), suggesting that Ascl2 is an 
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imprinted gene at the focal point of placental development (94, 97, 99). Maternal inherited 

deletion of either the Phlda2 or Cdkn1c genes, which also reside in the Kcnq1 cluster, results in 

placental overgrowth (312, 313). In contrast, transgenic over-expression of either Phlda2 or 

Cdkn1c results in poor placental growth (314-316). Deletion of Phlda2 has recently been shown 

to increase placental glycogen cell abundance and glycogen content suggesting that Phlda2 may 

limit maternal resource allocation (317). Based on the aforementioned studies it would be of 

interest to determine if loss of Kcnq1 DMD methylation has similar effects on placental 

development. 

1.5.8  Snrpn 

The central region of mouse chromosome 7 (7qB5-7qC) has a parent-of-origin postnatal lethality 

phenotype when two maternal copies are inherited (318). This genetic locus is homologous to a 

syntenic region on human chromosome 15q11.2 implicated in the imprinting disorders PWS and 

AS (reviewed in section 1.2.3). The Snrpn cluster contains the maternally expressed Ube3a, and 

the paternally expressed Snrpn, Magel2, Mkrn3, Peg12 and a cluster of C/D snoRNAs genes 

(Snord64, 107, 114, and 116) (319). The imprinted genes within the Snrpn cluster are regulated 

by a maternally inherited imprinted methylation mark at the promoter and first exon of Snrpn 

(320). The Snrpn gene is a bicistronic transcript encoding the mRNA splicing factor SmN and a 

neuropeptide encoded by Snurf from an uprstream reading frame (321). Snrpn, the Snord cluster 

and Ipw are part of a contiguous transcriptional unit that runs from the Snrpn promoter through 

Ube3a in an anti-sense orientation (319). The components of the Snrpn cluster are involved in 

numerous cellular processes including alternative splicing, transcription and neurogenesis. A 
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cluster of Mir334 transcripts are also found within the cluster but have not been firmly 

established as imprinted. 

 An array of targeted genetic mouse models have been generated to study the Snrpn 

imprinting cluster with a focus on understanding PWS and AS (recently reviewed by (319)). 

Deletion of the Snrpn DMD replicates the growth restriction and hypotonia traits observed in 

PWS cases with imprinting mutations (320). Paternal inherited deletion of the Snrpn DMD 

results in loss of expression of the maternally imprinted Ndn, Ipw and Mkrn3 genes, indicating 

that Snrpn DMD deletion imitates the maternally methylated state, and that the paternally 

unmethylated Snrpn DMD acts as a bidirectional promoter (320). A 6.8MB paternal deletion of 

the Snprn region encompassing the totality of the imprinted cluster as well as some genes 

upstream of Ube3a results in fetal and neonatal growth restriction, and abnormal endocrine 

pancreatic structure and function that culminates in in neonatal lethality (322, 323). The loss of 

Snord products in this model alters alternative splicing patterns (324). Targeted deletion of the 

Snord116 cluster in mouse results in both growth restriction and hyperphagia, two hallmarks of 

PWS (325). Although no specific role has been ascribed for any member of the Snrpn cluster in 

placenta biology, it is plausible they are involved in placental function based on their ubiquitous 

expression, the prenatal phenotypes found in Snrpn deletion models, and the endocrine functions 

the placenta has during in utero development 

1.5.9  Peg3 

The Peg3 imprinting cluster resides on proximal mouse chromosome 7 in chromosomal band 

7qA1 (326). A homologous region is found on human chromosome 19q13.4 (327, 328). The 

Peg3 cluster consists of paternally expressed Peg3, Peg3os, Usp29 and Zfp264, and the 
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maternally expressed Zim1, Zim2 and Zim3 (329). Peg3 and Zim1-3 encode zinc finger 

transcription factors, whereas Usp29 encodes a ubiquitin-specific protease (328, 330, 331). The 

PEG3 protein is a transcriptional repressor containing an N-terminal KRAB domain and 12 C-

terminal C2H2 Krüppel-type zinc finger DNA binding motifs (329, 332). The germline Peg3 

DMD resides in the bidirectional promoter between Peg3 and Usp29. A secondary somatic DMD 

is established during preimplantation development at the bidirectional promoter of Zim3 and 

Zfp64 (333). Peg3 and the majority of imprinted genes in this cluster are highly expressed in 

human ovary, placenta, testis and hypothalamus (328). Based on gene expression patterns and 

the phenotypes described below, it is evident that this locus is involved in reproductive, 

metabolic and hormonal pathways and placental function. 

Multiple genetic models have been made to study the function of the Peg3 cluster in 

mouse (most recently reviewed by (329)). The first reports of targeted deletion of Peg3 showed 

that paternal inheritance of the null allele leads to growth retardation from E17.5 to adult, and 

that paternal null dams have poor maternal behavior that results in partial perinatal lethality 

(334). In addition, paternal null offspring have increased abdominal subcutaneous fat, 

hypophagia, elevated circulating leptin, resistance to leptin, reduced metabolic rate and 

resistance to cold. These changes are concomitant with alterations in hypothalamic gene 

expression, indicating the involvement of Peg3 in metabolic regulation (335). A second targeted 

Peg3 deletion model has slightly different phenotypes with perinatal lethality, reduced suckling 

and altered fetal brain gene expression (336). Intriguingly, the brain of paternal null fetuses have 

altered expression of metabolic genes (e.g. Clec2d, Cidea and Pparg), and express placenta-

specific genes of the prolactin (ie. Prl3b1, Prl2b1), cathepsin (ie. Ctsj and Ctsq) and ceacam (ie. 

Ceacam11 and Ceacam12) families (336). Based on the derepresion of many genes in the Peg3 
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null model concomitant with reduction in repressive H3K9me3 suggests that the PEG3 KRAB 

domain interacts with TRIM28 and SETDB1 and/or EHMT2 to modulate chromatin structure at 

target genes (329).  

A deletion of the Peg3 DMD, when paternally inherited, results in fetal growth restriction 

and partial embryonic lethality (337). Gene expression is altered in these mice with increased 

Zim1 and reduced Peg3 expression indicating the Peg3 DMD null recapitulates a maternal 

(methylated) allele (337). Based on these results, the effects of direct loss of Peg3 DMD 

methylation may have an opposite phenotype as the Peg3 DMD deletion, with fetal overgrowth 

rather than growth restriction. It would be interesting to examine placental phenotypes in the 

absence of the Peg3 imprint given the expected increase in Peg3 expression and its known 

involvement in placental gene regulation. 

1.5.10  Plagl1 

Plagl1, previously called Zac1, is an imprinted gene on mouse chromosome band 10qA2 and 

human chromosome 6q24 that is a single imprinted gene cluster (reviewed by(338)). A 

maternally imprinted DMD found 5′ of the Plagl1 gene body regulates the expression of the 

paternally expressed Plagl1 and Hymai transcripts (338). Plagl1 encodes a zinc finger 

transcription factor with multiple alternative splicing isoforms (338). Hymai is a ncRNA with 

possible epigenetic function transcribed in the same direction as Plagl1 and sharing the same 

first exon (338). The boundaries of the Plagl1 imprinted locus are defined by CTCF sites and 

exclude the neighboring genes Phactr2 and Stx11 (339). 

Loss of PLAGL1 imprinting via patUPD6, pat6q24 duplication or mat6q24 

hypomethylation causes TNDM1 with associated fetal pancreatic glucose insensitivity and IUGR 
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(152-154). Transgenic over-expression of Plagl1 in mouse captures many of the phenotypes of 

TNDM1 (340). Paternal inherited deletion of Plagl1 in mouse results in fetal but not placental 

growth restriction and reduced neonatal survival (341). Based on meta-analysis of co-expressed 

genes in micro-array data, PLAGL1 is part of a network of imprinted genes which regulate 

embryonic growth, including members of the H19, Peg3, Kcnq1, Mest, Gnas, and Dlk1 clusters 

(341). Neither PLAGL1 DMD methylation nor imprinted expression is altered in term placentas 

from IUGR pregnancies (155). However, overall expression levels of HYMAI is increased in 

IUGR placentas and PLAGL1 is decreased in female IUGR placentas (155). Chromatin immuno-

preicipitation has identified PLAGL1 binding to the H19 enhancer and DMD, as well as to the 

promoters of metabolic regulators GLUT4, TCF4 and PPARG1 in human term placentas (155). 

Given these finding it is important to determine the direct effects of loss of imprinting at the 

PLAGL1 locus on placental development. 

1.5.11  Grb10 

Robertsonian translocations involving proximal chromosome 11 have parent-of-origin specific 

effects. A homologous imprinted region on human chromosome 7q11.2-12 is a candidate SRS 

locus (342). Proximal chromosome 11 matUPD neonates are growth restricted whereas patUPD 

neonates are larger (10). These growth abnormalities occur prenatally in E12.5-E17.5 mid 

gestation  placentas and fetuses, and likely begin at E7.5 (343). The Grb10 gene at 11qA1 within 

this region is maternally expressed in fetuses and placentas, but is paternally expressed in adult 

brain tissues from an alternative promoter (344). The genes flanking Grb10, Ddc and Cobl, are 

imprinted in an isoform and tissue specific manner (309, 345). Ddc is preferentially paternally 

expressed from exon 1 in yolk and liver, and from exon 1a in whole embryo and neonate heart 
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(345). Cobl is preferentially maternally expressed in yolk (345). The GRB10 protein is an 

adaptor for receptor tyrosine kinases including the insulin and insulin-like growth factor 

receptors, and is an intermediate between receptor-ligand binding and downstream signaling 

(342). 

 Similar to the proximal UPD11 phenotypes, targeted deletion of the Grb10 gene results in 

altered embryonic growth. Maternal inheritance of the Grb10 null allele eliminates embryonic 

Grb10 expression in non-brain tissues, and results in both fetal and placental overgrowth (346). 

Placental overgrowth in Grb10 maternal null placentas is a direct result of LZ expansion (347). 

This phenotype is independent of the Igf2 pathways as evidenced by the partial rescue of the Igf2 

null growth restriction in compound heterozygotes (346). At maturity maternal Grb10 null mice 

are lean (reduced adiposity and greater muscle mass) and have enhanced insulin sensitivity and 

glucose responsiveness (348). These effects are likely mediated through increased insulin 

receptor signaling (348). These results indicate that in the mouse fetus, placenta and adult the 

maternal Grb10 allele has growth restricting functions mediated through its inhibition of insulin 

receptor signaling. 

The maternally methylated Grb10 DMD resides adjacent its brain specific promoter 

(Exon 1b) (349, 350). The brain specific promoter is downstream of the major promoter (Exon 

1a) and splices into conserved exons 2-17. Exons 1a and 1b encode unique 3′ UTRs. A mouse 

specific region overlapping the Grb10 DMD contains CTCF binding sites and may be 

responsible for an insulator mechanism of imprinting by regulating promoter access to 

downstream enhancers (350). Neuronal expression from the paternal Exon 1a promoter is driven 

by tissue specific epigenetic changes. The maternal Grb10 allele in neurons has an expanded 

DMD extending across exon 1b (349). On the paternal allele, bivalent chromatin (with activating 
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H3K4me2 and repressive H3K27me3) at the Grb10 1b promoter resolve into active chromatin 

during neuronal differentiation (351, 352). 

Genetic ablation of the Grb10 DMD effectively makes the allele analogous to the 

maternally methylated state (345). Paternal inheritance of the Grb10 DMD deletion allele results 

in biallelic expression of Grb10 from the major promoter, decreased Ddc expression and 

increased (biallelic) Cobl expression (345). These mice are fetal and placental growth restricted 

from E10.5 onwards (345). Adult paternal Grb10 DMD deletion mice are growth restricted and 

do not recover (345). The results from these studies show the maternal Grb10 imprint regulates 

expression of a small cluster of imprinted genes critical for prenatal development and warrants 

further study. 

1.5.12  Zrsr1 

Located at mouse chromosome 11qA3.2 the Zrsr1 gene contains a maternally methylated DMD 

at its promoter (353, 354). Zrsr1, formerly known as U2af1-rs1, is a retrotransposed copy of an 

auxiliary alternative splicing factor inserted in an antisense orientation within intron 1 of the 

Commd1 (Murr1) gene (353, 354). This transposition event is specific to rodents and is not 

found at the non-imprinted human COMMD1 locus at 2p15 (355). The maternally methylated 

Zrsr1 allele is transcriptionally silenced, whereas the unmethylated paternal allele is active in 

preimplantation embryos, embryonic and adult neuronal tissue and all other adult mouse tissues 

analyzed (353, 354). Commd1 is exclusively maternally expressed in adult neuronal tissue and 

preferentially maternally expressed in other adult tissues (356). In contrast, fetal tissues do not 

show Commd1 parental allelic expression bias (354, 356). It is speculated that the paternal 
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imprinting of Commd1 expression is due to anti-sense transcriptional interference from Zrsr1 

(356, 357). 

Imprinted expression of neither Zrsr1 nor Commd1 within the placental compartment has 

been confirmed. However, homozygous deletion of Commd1 in mouse is embryonic lethal at 

E9.5 in part due to failure of placental vasculogenesis and over activation of Hif1a (358). The 

COMMD1 protein is critical for copper metabolism and other cellular processes (359). Commd1 

is expressed in the mouse allantois and chorionic plate as well as in the human chorionic villi 

(358). The Commd1 null allele was generated by insertion of a neo cassette in place of exon 2, 

and has no effect on Zrsr1 expression (358). There are currently no genetic models targeting 

Zrsr1 or the Zrsr1 DMD specifically. It would be interesting to see if loss of Zrsr1 DMD 

methylation influences placental development. 

1.5.13  Dlk1 

Whole and distal chromosome 12 disomies have parent-of-origin effects on mouse development 

(360, 361). A syntenic imprinted region found at human 14q32-31 is thought to be responsible 

for clinical developmental phenotypes associated UPD14 (362-364). In mice, maternal UPD12 

offspring have fetal and placental growth restriction starting at E15.5, reduced skeletal muscle 

fiber thickness, and 50% neonatal lethality (360). Paternal UPD12 progeny have placental 

overgrowth at E18.5, increased skeletal muscle fiber thickness, 50% late gestation (E18.5) 

lethality, and 100% lethality at birth (360). The phenotypes of maternal and paternal distal 

UPD12, revealed from studies of reciprocal translocation T(4;12)47H, collaborate the whole 

chromosome UPD12 findings (361). Maternal distal UPD12 results in fetal and placental growth 

restriction at E15.5 onwards together with decreased fetal skeletal muscle fiber widths and 
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delayed bone ossification (361). Paternal distal UPD12 is non-viable past E15.5 and shows a 

gradual decline in fetal:placental ratio from E13.5 when it is higher than control littermates, to 

E15.5 where it substantially lower than control littermates (361). 

 Genetic studies have attributed the UPD12 parent-of-origin effects to the large Dlk1 

imprinted gene cluster at distal chromosomal band 12qF1 (365). This cluster contains the 

paternally expressed protein coding genes Dlk1, Rtl1 and Dio3 and numerous maternally 

expressed ncRNAs including Meg3 (also called Gtl2), Rtl1as, Meg8 (Rian) and Meg9 (Mirg) 

(366). The Dlk1 imprinting cluster is regulated by an intergenic DMD (IG-DMR; herein called 

Dlk1 DMD) between the Dlk1 and Meg3 promoters and secondarily by differentially methylated 

CGIs at the Meg3 and Dlk1 promoter (364, 365, 367). Imprinting of the Dlk1 cluster arose during 

eutherian evolution with the insertion of Rtl1, ncRNAs and intergenic DMD sequences between 

the ancestral Dlk1-Dio3 locus found in more primitive vertebrates (368). 

Dlk1 encodes a transmembrane protein with EGF like extracellular domains similar to the 

juxtacrine signaling Notch ligand Delta in Drosophila, but can also undergo proteolytic cleavage 

to produce a soluble extracellular ligand involved in intercellular signaling (369). Dlk1 is 

expressed at sites of branching morphogenesis during embryonic development (e.g. lungs, liver, 

and adrenal cortex) as well as connective tissues and skeletal muscle (370). Within 

extraembryonic lineages expression of Dlk1 is detected in the fetal endothelium of the placental 

labyrinth and yolk-sac blood pools (370). Genetic ablation of Dlk1 results in late gestation 

(E18.5) growth restriction and partial neonatal lethality in both homozygous and paternal null 

offspring (371). These mice also have postnatal growth retardation, increased adiposity and 

increased circulating lipid metabolites (371). Conditional deletion of Dlk1 within myoblasts 

reduces body mass, muscle fiber count and myocyte differentiation, whereas overexpression of 
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Dlk1 in myoblasts promotes differentiation indicating DLK1 has muscle-specific functions 

(372). 

Rtl1, like Peg10,  is a paternally expressed endogenous retrovirus of the suchi-ichi family 

(289, 290, 373). However it is encodes a larger protein complete with retroviral derived pol, gag 

and env domains that have been subverted to mammalian function (289, 290, 373). An antisense 

transcript, Rtl1as, is transcribed in opposite orientation to Rtl1 and encodes miRNAs Mir431, 

Mir434, Mir432 and Mir136 that directly overlap the Rtl1 coding region (374). Paternal inherited 

deletion of Rtl1 results in prenatal growth restriction and neonatal lethality (374). At E15.5 

placental morphological abnormalities are observed including fractured SynT basement 

membranes, lysosomes in SynT layer II, clogged fetal capillaries and phagocytic uptake of fetal 

endothelium by SynT leading to placental infarction (374). Maternal deletion on the other hand 

results in 150% placentomegaly with expanded fetal capillary spaces, and vacuoles in SynT layer 

II that are evidence of trophoblast starvation (374). These results display the opposing effects of 

Rtl1 and Rtl1as on placental development. 

 A plethora of maternally expressed ncRNAs arise from the 12qF1 imprinted region from 

a continuous transcript including, from 5′ to 3′, the Meg3, Rtl1as, Meg8 and Meg9 genes (375, 

376). No fewer than 65 Refseq miRNA genes are found within this region, as well as a series of 

snoRNAs that have not yet been annotated within Meg8 (376). A model in which Meg3 exons 1-

5 are deleted along with the Meg3 promoter CGI, reveals a strong developmental role for this 

cluster (377). The maternal knockout offspring die within 0-4 weeks due to lung and liver defects 

and have decreased Meg8 and Meg9 expression (and lower levels of the miRNA and snoRNAs 

they encode), but increased Rtl1 expression (377). No changes in Dlk1 or Dio3 expression are 

observed in Meg3 maternal null offspring (377). In contrast, paternal inheritance of the Meg3 
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null allele results in 50% perinatal lethality and 50% postnatal lethality, with one quarter 

surviving to a viable and fertile but growth restricted adulthood (377). Expression of Dlk1, Dio3 

and Rtl1 are decreased in the paternal null offspring. Surprisingly homozygous null offspring, 

generated from F1 hybrid crosses of viable paternal knockout offspring, survive but have lower 

birth weights (377). Because the Meg3 null mutation does not affect methylation at the Dlk1 

DMD it is unlikely that there is de facto loss of imprinting (377). It is hypothesized that maternal 

Meg3 promoter CGI deletion results in direct loss of ncRNA products and derepression of Rtl1 in 

trans (377). However, paternal inheritance of the Meg3 null allele is thought to lead to repression 

of Dlk1 and Dio3 in cis due to ablation of the secondary DMD (377). There is a need for finer 

mutations targeting individual miRNAs and snoRNAs to better understand the function of 

ncRNAs in this cluster. 

 Deletion of the Dlk1 DMD that resides between the 3′ end of Dlk1 and the Meg3 

promoter, results in developmental defects based on parental inheritance (367). Maternal Dlk1 

DMD null conceptuses have late gestation lethality (~E16) with increased expression of Dlk1, 

Rtl1 and Dio3, and decreased Meg3, snoRNA and miRNA expression (367). However, paternal 

inheritance results in normal transcriptional profiles and viable offspring (367). These results 

indicate that the Dlk1 DMD is the primary germline-DMD regulating the 12qF1 cluster, and that 

its deletion effectively creates a paternal (methylated) allele (367) 

 Additional research on the importance of the Dlk1 imprinting cluster in fetal and 

placental development is warranted. The Dlk1 cluster has been implicated in animal husbandry 

research as the genetic determinant of the calligpye allele in sheep, which has parent of origin 

effects that result in lean muscle hypertrophy (378). In humans, maternal and paternal UPD14 

cases can also be caused by Dlk1 DMD deletion and hypomethylation (362, 363). Intriguingly, 
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one of the phenotypes associated with UPD14 is placentomegaly (363). The fetal and placental 

phenotypes observed in the Dlk1, Rtl1, Meg3 and DMD deletions discussed above demonstrate 

that the Dlk1 cluster has a critical role in prenatal development. Lastly, there are only 2 paternal 

imprinted DMDs shared in mouse and human (H19 and Dlk1), and both are required for 

embryonic development from induced pluripotent stem cell and bimaternal embryonic 

development in mouse (379-381). These disparate but important phenomenon may be related to 

modulation of placental function by the Dlk1 imprinted loci. 

1.5.14  Igf2r 

The insulin receptor growth factor type 2, Igf2r, is maternally expressed and resides within the 

larger Tme locus that when deleted in maternal lineages is lethal at E15.5 (10, 382). Igf2r and its 

human homolog are found on chromosomal bands17qA1 and 6q25.3 respectively. The Igf2r 

DMD is maternally methylated in both species, however in humans and other primates Igf2r is 

biallelically expressed in the majority of individuals ((383) and references therein). A maternally 

methylated DMD sequence within intron 2 of Igf2r can confer imprinting of YAC transgenes in 

mice (384, 385). The Igf2r DMD is situated at the promoter of Airn (antisense Igf2r RNA), a 

long antisense ncRNA (385, 386). Transcription of Airn occurs on the unmethylated paternal 

allele that is associated with a silenced Igf2r (385, 386). Truncation of the Airn transcript by 

insertion of poly-adenylation sequences mitigates Igf2r silencing independent of DNA 

methylation (387, 388). It is therefore hypothesized that the act of Airn transcription is directly 

responsible for Igf2r maternal inactivation (387). However, it has also been noted that in the 

placenta full length but not truncated Airn ncRNA associates with the Slc22a3 promoter and 

recruits the H3K9 methyltransferase EHMT2 to invoke lineage-specific imprinting (389). 
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 In the majority of embryonic and adult tissues imprinting at the Igf2r locus is limited to 

the expression of Igf2r and Airn. However, in the placenta and extra embryonic visceral yolksac 

the downstream Slc22a2 and Slc22a3 transcripts, encoding molecular transporters of unknown 

function, are preferentially expressed from the maternal allele (307, 309, 390). The expansion of 

the imprinted locus in extraembryonic tissues is similar to that found at other loci including 

Kcnq1, Igf2, Peg10 and Grb10 (309). The IGF2R protein is a receptor for IGF2 expressed in 

SynT as both a plasma membrane and cleaved soluble form (391). IGF2R exerts negative inputs 

to IGF2 signaling by acting to bind and clear excess IGF2, but may also have signaling 

properties (391). Targeted deletion of Igf2r (deletion of exons 13-18) when maternally inherited 

results in fetal and placental overgrowth (392, 393). Maternal Igf2r null conceptuses have 

elevated levels of IGF2 and IGF2-binding proteins (392). Deletion of the Igf2R DMD generates 

an allele that effectively mimics the maternal methylated state, and when paternally inherited 

results in increased Igf2r expression and embryonic and neonatal growth restriction (394). Due to 

increased Igf2r expression, paternally inherited the Igf2r DMD deletion can rescue maternally 

inherited Tme mutations (394). Based on these studies Igf2r is a growth suppressor. Based on the 

importance of the Igf2r locus in growth and its expanded boundaries in extraembryonic tissues it 

is important to determine the effects of loss of imprinting at the Igf2r DMD in placental 

development  

1.5.15  Impact 

The Impact gene resides on chromosomal band 18qA1 and is equated with parent-of-origin 

specific embryonic developmental delays observed with patUPD in studies of Robertsonian 

translocations involving chromosome 18 (395, 396). The paternally imprinted and ubiquitously 
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expressed Impact contains 11exons, and has a maternally methylated DMD within its first intron 

(397). Impact is adjacent to the non-imprinted proximal Osbpl1 and the distal Hrh4 (398). In 

humans, IMPACT is found in the same genomic context on chromosome band 18q11.2-12.1 but 

is not imprinted and lacks an intronic DMD (397, 398). Intriguingly a similar arrangement of 

Osbpl2 and Hrh3 but lacking an Impact paralog is found between the tandem duplicated Lama3 

and Lama5 genes on mouse chromosome 2qH4 near the Nnat and Gnas clusters, and within a 

syntenic region on human chromosome 20q13.3 (398). Expression of Impact is much higher in 

rodent species where it is imprinted (e.g. mouse, rat and rabbit) than in pigs and primates where 

it is not (399). This suggests that the regulation of Impact gene dosage can explain the difference 

in imprinting status between mammalian clades (399). 

 The IMPACT protein is homologous to the ancestral yeast protein YIH1 involved in 

nutrient starvation responses (395, 397). In fact, IMPACT participates in the same translational 

regulation molecular pathways as its yeast homolog. IMPACT binds to GCN1 and inhibits the 

activity of GCN2 inactivating phosphorylation of Ser51 on the eukaryotic translational initiation 

factor 2 (eIF2) (400). Unphosphorylated eIF2 inhibits translation of many proteins and 

activates translation of a few stress response genes (400). High levels of IMPACT in the 

hypothalamus and low levels of phosphorylated eIF2 are thought to be involved in nutrient 

deprivation and feeding behavior stress responses (400). In addition, IMPACT associates with 

ribosomes in post-differentiation neurons to promote neuritogenesis (401). Given the expression 

of Impact within the placenta and its role in mediating nutrient stress response it is plausible this 

gene has important functions within this essential organ. 
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Figure 2.  15 Imprinted gene clusters. (A-O) 15 imprinted loci implicated in placental 

development are labeled by mouse chromosomal bands and refseq gene names. Each gene is 

represented by a filled rectangle and arrows give transcriptional direction. The color of each gene 

box indicates its imprinting status as maternally expressed (Pink), paternally expressed (Blue) or 

biallelic (Gray). DMDs are indicated as rectangle of lesser height outside above the gene 

diagram and are colored as to indicate their DNA methylation as maternal (purple) or paternal 

(green) in origin with secondary DMDs in lighter shades. Triangulated lines indicate alternative 

splicing, where relevant to genomic imprinting. This figure is the summation of the numerous 

works cited within section 1.5.1-15. Figure not drawn to scale. 

 My dissertation research tests the hypothesis that genomic imprints are essential during 

placental development and aims to define their importance in this fundamental mammalian 

organ. In my introduction I have described the importance of genomic imprinting in mammalian 

development and human disease. I have discussed the dynamics of methylation changes during 

germ cell and preimplantation development with a focus on imprinted DMD methylation. In 

addition, I have reviewed the function and development of the mouse placenta highlighting 

aspects relevant to modeling the human placenta. Herein, I have also described in detail fifrteen 

imprinted gene clusters with possible involvement in placental development. The placental 

function of imprinted gene clusters as an integrated unit, including both imprinted genes and the 

DMD methylation that controls their parent-of-origin specific expression, are incompletely 

understood. My thesis research builds off the knowledge presented within the introduction and 

seeks to identify the roles of genomic imprints in placental development by studying placental 

development in their absence. 

In Chapters 2 and 3 of my dissertation I address the first two aims of my dissertation 

which examine the effects of partial loss of genomic imprints on placental development using the 

1.6 SPECIFIC AIMS  
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Dnmt1Δ1o maternal effect model. The first aim of my dissertation research is to determine which 

placental processes are influenced by genomic imprinting. To these ends I described the range of 

placental morphological and molecular phenotypes of Dnmt1Δ1o maternal effect (DNMT1o-

deficient) placentas across murine gestation from E9.5 to E17.5. Considerable emphasis was 

placed on quantifying changes in the following attributes: cellular composition, fetal viability, 

labyrinth vascularity, glycogen and lipid deposition, and gene expression. This section reveals 

many aspects of placental development are dependent on normal genomic imprinting as a whole.  

The second aim of my thesis is to identify specifically which imprints are responsible are 

responsible for placental phenotypes associated with loss of imprinting. I started by describing 

the spectrum of mosaic loss of genomic imprinting in DNMT1o-deficient placentas by assaying 

imprinted gene expression and DMD methylation levels Then I tested for associations between 

placental phenotypes quantified in Chapter 2 and loss of imprints at specific DMDs using linear 

regression analysis. These results enabled the direct interpretation of functional significance of 

individual imprinted clusters in placental biology. 

My third, and final dissertation research aim is to generate and describe a novel targeted 

deletion of the imprinted Klf14 gene. This allele was designed and engineered using 

recombineering and was used to test the maternal-specific expression of Klf14 in the placenta, 

and to record any phenotypes associated with its loss of expression. These results aide in the 

understanding of the role of the Mest imprinting cluster in its entirety in placental biology. The 

sum of my thesis aims is to provide pillars of evidence that unequivocally demonstrate the 

importance of genomic imprinting in placental development and identify specific placental 

functional and developmental processes that genomic imprints regulate.  
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The Dnmt1Δ1o maternal effect model produces DNMT1o-deficient embryos with partial loss of 

genomic imprints and grossly abnormal morphology (60, 104, 105, 402). As a consequence, 

DNMT1o-deficient fetuses do not survive until birth except on rare occasion. It is suspected that 

the poor developmental outcome of DNMT1o-deficient embryos is in part due to the failure of 

normal placental development. In this chapter I show that DNMT1o-deficient placentas exhibit 

variable abnormal phenotypes throughout gestation. Early in gestation Dnmt1Δ1o maternal effect 

mutant placentas were found to have considerable loss of LZ development and an increased 

abundance of TGCs. In mid to late gestation DNMT1o-deficient placentas were found to have 

ectopic SpT extensions into the LZ, dilated fetal blood vessels, SynT lipid droplet accumulation 

and increased glycogen cell abundance. The balance of placental and fetal growth was 

dysregulated in late gestation Dnmt1Δ1o maternal effect placentas. In addition, placental gene 

expression patterns were altered revealing that the imprinted gene network regulates important 

transcriptional pathways including oxidative stress response, molecular transport, lipid transport, 

and lipid metabolism. This evidence that placental development is disrupted in the Dnmt1Δ1o 

maternal effect model is interpreted as support for the hypothesis that genomic imprints regulate 

key processes in trophoblast differentiation and placental development.  

2.0  PLACENTAL PHENOTYPES OBSERVED IN THE DNMT1Δ1o MOUSE MODEL  

2.1  SUMMARY 
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2.2.1  The Dnmt1Δ1o model 

The Dnmt1 oocyte-specific isoform deletion (Dnmt1Δ1o) model is a unique genetic system in 

which absence of the maternal effect DNMT1o protein in oocytes results in offspring with partial 

and mosaic loss of imprinted DMD methylation. It is unique in that its primary genetic mutation 

compromises the integrity of epigenetic inheritance of genomic imprints. This model is 

particularly useful because it yields a myriad of loss of imprinting epigenotypes unlike other 

available genetic models used to study genomic imprinting. Inactivating mutations of Dnmt1, 

which eliminate maintenance methyltransferase activity throughout development, are embryonic 

lethal and erase all imprinted DMD methylation as well as other genomic methylation (101-103). 

In addition, offspring of the Dnmt3l null maternal effect model are homogenous in their 

complete loss of maternal imprints and early embryonic lethality at E9.5 due to placental failure 

(94, 97, 99). Furthermore, nearly all DMD deletion models (reviewed in section 1.5) acquire the 

imprinted state of the methylated allele. The Dnmt1Δ1o model provides a means to directly study 

the effects of loss of DMD methylation on embryonic and placental development. 

2.2.2  Identification of Dnmt1o  

DNA methylation is perpetuated during each mitotic S-phase by the maintenance DNA 

methyltransferase DNMT1 at replication foci (403). The DNMT1 protein contains the modular 

2.2  INTRODUCTION 
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RFTS, CxxC Zn finger, BAH, and methyltransferase catalytic domains from N- to C-terminal as 

well as a disordered domain between amino acids 100 and 400 (27, 83-85, 110). DNMT1 is a 

component of multimeric complexes that dynamically modulate the epigenome through its 

interactions with other epigenetic regulators including DMAP, ZFP57, TRIM28, and DNMT3 

isoforms (75, 76, 107). At least three mRNA isoforms of Dnmt1 are produced from transcription 

of alternative promoters yielding different 5′ exons (62). The mouse somatic, Dnmt1s isoform is 

transcribed in the majority of tissues and encodes a 1620 amino acid protein (DNMT1s) with a 

molecular weight of 190kDa. Two sex-specific isoforms are generated from alternative 

promoters of Dnmt1 in germ cells (62). Spermatagonia at the pachytene stage transcribe Dnmt1p 

from a downstream promoter immediately adjacent to the Dnmt1 exon 1s 3′ splice juncture (62). 

The Dnmt1p exon 1p contains a much weaker translation initiation sequence and does not 

produce DNMT1 protein (62). The Dnmt1o promoter initiates approximately 7.5kb upstream 

from the Dnmt1s promoter and yields a protein product that is shortened by 118 amino acids at 

the N-terminus (62) 

The oocyte specific DNMT1o isoform was first identified by the discovery of a truncated 

DNMT1 protein isoform in oocytes and preimplantation embryos that had a molecular weight of 

approximately 175kDa (404). The truncated N-terminus of DNMT1o as compared with 

DNMT1s ablates the sequences required for interaction with DMAP but enables the interaction 

of the N-terminus with annexin V (ANXA5) (62). The importance of the interaction between 

DNMT1 and DMAP is particularly important based on the epistatic lethality of the Dnmt1v 

(constitutive Dnmt1o expression) and Dmap1 null alleles (107). ANXA5 is a phospholipid 

binding protein at the plasma membrane of mature oocytes, and has been shown to interact with 

DNMT1o but not DNMT1s, suggesting that the longer N-terminus of DNMT1s may block this 
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interaction (62, 405). The ANXA5-DNMT1o interaction is likely responsible for the 

sequestration of DNMT1o to the cytoplasm and plasma membrane in oocytes until it translocates 

to the nucleus at the 8-cell stage (see section 2.2.4) and may explain differences in maternally 

produced DNMT1s and DNTM1o stability and activity in preimplantation embryos (62, 63, 

104). The research presented in the remaining introduction ascribes the primary function of 

DNMT1o to maintain imprinted DMD methylation during the rapid preimplantation genomic 

demethylation event. 

2.2.3  Targeted deletion of Dnmt1o 

The Dnmt1Δ1o allele was generated using homologous recombination in ESCs to eliminate a 

260bp region spanning Dnmt1 exon 1o and part of the 5′ 1o promoter (104). The targeting 

construct contained a loxp-neo-TK-loxp cassete in place of the 260bp to be deleted. Homologous 

recombinant ESCs were positively selected using neomycin and then transfected with a CRE 

expressing plasmid to induce deletion and then negatively selected for using the thymidine 

kinase substrate ganciclovir. These ESCs were used to derive a line of chimeric males that 

passed the Dnmt1Δ1o allele through the germline to establish a colony that was backcrossed onto 

the 129Sv background. Heterozygous and homozygous offspring of crosses between 

heterozygous parents develop normally, however homozygous females had progeny that could 

not survive, indicating a maternal effect. 

 Howell et al.(2001) studied DNMT1o-deficient embryos, derived from the Dnmt1Δ1o 

maternal effect model, for changes in their DNA methylation patterns (104). Methylation 

sensitive Southern blot analysis showed that global methylation was unchanged. Furthermore, 

both γ-satellite and IAP repetitive elements were proven to be normally methylated by 
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methylation sensitive Southern blotting and bisulfite sequencing in DNMT1o-deficient embryos. 

Genomic imprints on the other hand were not normally methylated in the Dnmt1Δ1o maternal 

effect offspring. 

 A severe reduction in genomic imprinting was observed in DNMT1o-deficient embryos 

(104). A single nucleotide polymorphism extension assay using conceptuses derived from 

crosses between the C57/B6 mus musculus homozygous Dnmt1Δ1o females and mus castenous 

wild-type males provided evidence of biallelic H19 and Snrpn expression in an example 

DNMT1o deficient embryo. Using the same interspecific crosses an approximately fifty percent 

loss of methylation was observed at the H19, Snrpn and Peg3 DMDs by bisulfite genomic 

sequencing. Imprinting in oocytes was shown to be normal, indicating a failure to maintain 

imprints in the zygote rather than a defect in the establishment of maternal imprints. 

Transplantation of DNMT1o-deficient pro-nuclei into wild-type oocytes resulted in full rescue of 

the methylation defect. The majority of Dnmt1Δ1o maternal effect progeny die between E12.5 and 

term and very few survive through the neonatal period of development. 

2.2.4  Localization of DNMT1 in preimplantation embryos 

Early studies on DNMT1 using the PATH-52 anti-DNMT1 antibody found that oocytes and 

preimplantation embryos express a shorter form (later named DNMT1o) than somatic cells 

(404). Immunoflourescense of oocytes and preimplantation embryos using the PATH-52 

antibody showed that DNMT1 was concentrated in the subcortical cytosplasm in oocytes and 2-

cell embryos, in cytoplasmic granules at the 4-cell stage and nuclear at the 8-cell stage (62, 404). 

Further studies using C-terminal truncated Dnmt1-β-galactosidase fusion genes identified regions 

required for cytoplasmic sequestration C-terminal to the RFTS domain (406).  
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 Two new anti-DNMT1 antibodies, UPTC21 and UPT82, enabled a clearer picture of 

DNMT1 localization during preimplanation development (63). These antibodies have greater 

sensitivity than PATH52, and UPT82 can distinguish between full length somatic DNMT1 and 

the shorter DNMT1o. UPTC21 is an antiserum raised against DNMT1 amino acids 636-1108 

and recognizes all DNMT1 isoforms, whereas UPT82 is an antiserum raised against the DNMT1 

118 N-terminal amino acids and thus recognizes the longer somatic form of DNMT1 (DNMT1s) 

but not DNMT1o. The presence of a UPT-82 band in western blot analysis of oocytes showed 

that oocytes express DNMT1s in addition to the shorter DNMT1o isoform identified with the 

PATH-52 isoform. Immunofluorescence revealed UPT82 signal within ooplasm and 2-cell 

nuclei indicating maternal DNMT1s present and likely to be active early in zygotic development. 

UPTC21 immunoflourescene was detected in ooplasm and in the zygote cytoplasm up until the 

8-cell stage, results interpreted to mean that DNMT1o is sequestered within the cytoplasm during 

early cleavage events. The amount of maternal effect DNMT1o protein far exceeds maternal 

DNMT1s in oocytes and preimplantation embryos, and provides an explanation for observations 

of the apparent absence of DNMT1s in the nucleus of 2- and 4- cell embryos using pan DNMT1 

antibodies. Furthermore replacement of the 1o exon with the 1s coding sequence increased the 

amount of DNMT1s in 4-cell embryos. Reverse transcription PCR was also used to confirm 

expression of both Dnmt1s and Dnmt1o isoforms in the mouse oocyte (63). 

 The Dnmt1Δ1o and Dnmt1v models provided an excellent confirmation of the above 

immunofluorescence assays (60). Wildtype embryos from 2 to 8-cells had nuclear UPT82 

staining, whereas embryos from homozygous Dnmt1v dams showed no UPT82 staining at the 1-

cell stage and only gradually increased through the morula stage. Additionally, heterozygous 

Dnmt1v females crossed with homozygous Dnmt1v males all had nuclear UPT82 signal in the 1-
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cell embryo, but only half had maintained UPT82 signal beyond that point. These results indicate 

that maternally derived DNMT1s is a nuclear protein during early cleavage prior to zygotic 

Dnmt1s transcriptional activation. Furthermore, loss of DMD methylation at H19 and Snrpn 

DMDs could be prevented in Dnmt1Δ1o maternal effect offspring by transgenic overexpression of 

Dnmt1s in occytes driven by the zona pelucida Zp3 promoter. This result was interpreted as 

evidence that there may not necessarily be anything inherently different between maternally 

acquired DNMT1o and DNMT1s recognition of methylation targets. Rather, DNMT1o is more 

effectively stored in oocytes, thus ensuring accurate maintenance of imprints (DMDs) in 8-cell 

embryos.  

2.2.5  Preimplantation function of DNMT1o 

The role of DNMT1o during preimplantation development is to maintain the integrity of 

genomic imprints. The initial report of loss of DMD methylation in Dnmt1Δ1o maternal effect 

offspring showed a fifty percent loss at three different DMDs in the analysis of a handful of 

samples and speculated that loss of methyltransferase activity at the 8-cell stage and random 

chromosomal assortment at the 5th mitosis would result in mosaic partial loss of genomic 

imprinting (104). A more thorough analysis confirmed these findings and found a profound level 

of epigenetic mosaicisim in Dnmt1Δ1o maternal effect offspring (402). Loss of Snrpn and H19 

DMD methylation could be detected as early as the morula stage by allele-specific bisulfite 

genomic sequencing and ranged from 13% to 65% methylation on the normally fully methylated 

parental alleles. The TR2+3 /Igmyc maternally imprinted transgene was crossed onto Dnmt1Δ1o 

females and used to determine that loss of methylation occurs as early as the 8-cell embryo and 

resolves to approximately 51% methylation at the blastocyst stage (402). Combined bisulfite 



78 

 

sequencing and restriction analysis (COBRA) was used to further validate that different 

DNMT1o-deficient ESC derived lines had varying levels of H19 and Snrpn DMD methylation. 

At E9.5 loss of imprinted methylation at the H19 and Snrpn DMD in DNMT1o-deficient 

embryos and placentas was observed alongside loss of monoallelic imprinted gene expression 

patterns. These studies firmly established the role of DNMT1o in preventing epigenetic variation 

at imprinted loci during preimplantation development and provided the framework for our 

current understanding of the Dnmt1Δ1o maternal effect model (Figure 3). 

2.2.6  Fetal development of Dnmt1Δ1o maternal effect offspring 

It is not surprising that the epigenetic mosaic predicted in the maternal effect model results in 

profound and variable embryonic morphology. A study of DNMT1o-deficient embryos focusing 

on fetal development at E9.5 revealed that mutant fetuses scored lower in nearly all 

morphological developmental features as compared to wild-type (105). DNMT1o-deficient 

fetuses were developmentally delayed on average 12hrs, had shorter crown-rump lengths and 

decreased number of somites. Although there were DNMT1o deficient fetuses that were 

morphologically normal, others had features such as failure of axial rotation, failure of anterior 

neuropore closure, poor heart morphogenesis and some that were in states of disintegration and 

reasbsorption. This varied and mosaic nature of DNMT1o-deficient fetal defects were in line  
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Figure 3.  Inheritance of a maternal imprint in normal and Dnmt1Δ1o maternal effect 
embryos. During gametic development genomic imprints are erased in primordial germ cells and 

then reestablished in a sex-specific manner, such that in this example the maternal gamete 

contains a methylated imprint. In the wild-type zygote the combined action of maternally 

inherited DNMT1s, DNMT1o and zygotic DNMT1s account for maintenance of imprinted DMD 

methylation during preimplantation development. In DNMT1o-deficient conceptuses the lack of 

DNMT1o at the 4th mitotic event generates hemimethylated DNA that is then replicated, 

generating a mosaic of cells with half completely lacking the maternal imprint. Because this 

occurs at 24 different imprints scattered on various independently segregating autosomes, a great 

number of partial loss of imprinting permutation of can occur. Therefore, each DNMT1o-

deficient 32-cell morula contains 16-normal cells and a mosaic of 16 cells with unique loss of 

imprinting epigenotypes.  
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with the molecular model of partial and varied loss of genomic imprinting and suggest a 

numerous roles for imprinted loci in early fetal development. 

2.2.7  Placental development of Dnmt1Δ1o maternal effect offspring 

Initial reports also suggest that the placental compartment is affected by loss of imprinting in the 

Dnmt1Δ1o maternal effect model. DNMT1o-deficient fetal and placental epigenomes are not 

always congruent. In fact, in a small set of E9.5 DNMT1o-deficient embryos, neither H19 nor 

Snrpn DMD methylation was eqivalent in corresponding fetal and placental DNA samples (402). 

Preliminary research on placental morphology in E9.5 Dnmt1Δ1o maternal effect offspring 

revealed that many DNMT1o-deficient placentas had shell shaped placentas draped around the 

conceptuses suggestive of trophoblast hyperplasia (407). This phenotype was more common in 

female than male conceptuses. Further studies examining loss of X-chromosome imprinting in 

extraembryonic lineages and placental trophoblast hyperplasia and diminished LZ development 

were performed by McGraw and colleagues (2013) contemporaneously with my own dissertation 

work (408). 

2.2.8  Chapter 2 aims 

The aim of this section is to utilize the Dnmt1Δ1o maternal effect model of partial loss of 

imprinting to better understand the role of genomic imprints in placental biology. The Dnmt1Δ1o 

maternal effect model is based on a genetic mutation that manifests loss of DMD methylation as 

the primary defect. This model produces a mosaic of epigenetic mutants that provide an 

opportunity to study the effects of loss of imprinting as a whole on placental development. In this 
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chapter I have tested the functional significance of genomic imprints in placental biology and 

tried to determine what layers and cell lineages are affected by describing DNMT1o-deficient 

placentas across gestation from E9.5 to E17.5. To assess placental efficiency and the balance of 

fetal and placental growth wet weight measurements of DNMT1o-deficient placentas and fetuses 

were made. To examine placental layer and cell type composition DNMT1o-deficient placentas 

were histologically analyzed using an array of tissue staining techniques. Placental metabolism 

in DNMT1o-deficient placentas was studied by triglyceride quantification and qualitatively by 

lipid and glycogen histological staining. The description and analyses of DNMT1o deficient 

placentas has been performed to delineate which placental processes genomic imprints are 

involved in and to lay the foundation for further research and modeling of the role of genomic 

imprints in placental development. 

2.3.1  Animal husbandry 

All mice were maintained and used in accordance with guidelines from the Institutional Care and 

Use Committee (IACUC) at the University of Pittsburgh. The Dnmt1Δ1o allele was maintained on 

a 129Sv (Taconic) background by backcrossing heterozygous females to 129Sv males. Placentas 

from crosses between heterozygous Dnmt1Δ1o females and 129Sv males were used as wild-type 

(wt) controls. Crosses between homozygous Dnmt1Δ1o females and 129Sv males generated 

DNMT1o-deficient (Dnmt1Δ1o maternal effect) mutant (mt) conceptuses. 

2.3  MATERIALS AND METHODS 
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2.3.2  Genotyping 

Genotyping was carried out on DNA isolated by phenol-chloroform extraction and ethanol 

precipitation of tails snipped at weaning or during embryonic collection. In addition, the 

genotype of pregnant mouse dams that were dissected for placental analysis was confirmed using 

DNA isolated from tail and spleen extracted at the time of dissection. Dnmt1Δ1o genotyping PCR 

used 350ng of starting genomic DNA and used the following thermocylcer program with Taq 

polymerase (Invitrogen): 95°C 5′ denaturing followed by 35 cycles of 95°C 30″, 56°C 30″; 72°C 

45″, a 72°C 10′ final extension and indefinite hold at 4°C. PCR products were run on a 1 or 1.5% 

agarose gel to look for the presence of a wild-type (380bp) or mutant (120bp) band. Sex 

genotyping of embryos was performed using primers specific to the Zfy gene on the male sex 

chromosome. PCR conditions were as follows: 95°C 5′ denaturing followed by 35 cycles of 

95°C 30″, 56°C 30″; 72°C 30″, a 72°C 7′ final extension and indefinite hold at 4°C. PCR 

products from the Zfy reaction were run on a 2% agarose gel to look for the presence of a 200bp 

band indicating male identity. The PCR primer sequences used for genotyping are given in 

Appendix A. 

2.3.3  Collection of placentas 

Embryonic day 0.5 (E0.5) was established based on the presence of a post-copulatory vaginal 

plug. Fertilization was assumed to have occurred at 12am based on the nocturnal nature of 

mating in Mus species. Pregnant females were sacrificed by CO2 asphyxiation and conceptuses 

were collected at embryonic day 9.5, 12.5, 15.5 and 17.5 (E9.5, E12.5, E15.5 and E17.5). 

Dissections were carried out under low magnification (0.8X-2.5X) with a 350MZ dissection 
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microscope (Leica) using fine 8mm forceps. The whole uterus of sacrificed pregnant dams was 

isolated following cesarean section. Incision at the fat pad of each ovary and at the cervix 

facilitated removal of the uterus, which was placed in a 10cm petri dish of phosphate buffer 

saline (PBS) pH 7.5. 

 Each individual conceptus was removed from the uterine myometrium and placed in a 

60mm petri dish with PBS leaving the embryo, yolk sac, placenta and decidua and inner 

myometrium intact. Whole E9.5 conceptuses were immediately placed in 4% paraformaldehyde 

(4% PFA). E12.5, E15.5 and E17.5 placentas were collected by the below protocol. The inner 

myometrium was carefully removed leaving the embryonic tissues and decidua intact. The yolk 

sac was excised away from the base of the placenta leaving the embryo exposed. The umbilical 

cord was pinched for 20″ to stop blood flow and stimulate clotting to stem leakage from both the 

fetus and placenta. The umbilical cord was then cut at the base of the chorionic plate and fetal 

abdomen. Each placenta and fetus was then weighed to the nearest tenth of a milligram. A small 

tail piece was cut and used for embryonic sex genotyping. Placentas were immersed in PBS 

again, then paced on a glass microscope slide with labyrinth facing down and cut in half with a 

sterile razor blade. One half was then placed back in fresh PBS and the other in 4% PFA for 

fixation. The half immersed in PBS was then cleaned of the decidua cap and any remaining yolk-

sac and allantois. The E12.5 half samples were placed in RNA later, whereas the E15.5 and 

E17.5 samples were cut into two quarters, one placed in RNA later and the other snap frozen on 

dry ice for lipid extraction. Samples at each gestational age were labeled by litter (Letter A-G) 

and individual embryo (Number 1-8) for those used in DMD methylation analysis in Chapter 3. 
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2.3.4  Cryo-histology 

Following fixation in 4% PFA, placental halves were suspended through a sucrose gradient up to 

20% weight per volume, and then embedded in Tissue-Tek O.C.T compound (Sakura). Placental 

cryosections of 5μm and 10μm thickness were cut with a CM1850 cryostat (Leica) for 

histological analysis. Regressive hematoxylin and eosin (H&E; Sigma or Leica) staining was 

performed on a series of 5 micron meridian placental sections. In brief cryosections were fixed 

with O-Fix (Leica) for 30″, flushed with tap water for 30″, placed in hematoxylin for 45″ then 

washed for 1′ in water, placed in bluing reagent for 1′, water for 30″ and then 70% EtOH for 7-

dips, alcoholic eosin for 16″, 95% EtOH for 7-dips, two washes in 100% EtOH of 7-dips and two 

washes in xylene of 7-dips before being mounted in a xylene based mounting medium. Periodic 

Acid-Schiff (PAS; Sigma) staining was carried out on E15.5 samples using standard instructions 

with the addition of a 5′ methyl-green (0.5%) nuclear staining prior to dehydration steps. In brief, 

PAS staining was carried out in coplin jars by placing cryosections in O-Fix for 1′, washing with 

water for 1′, placing in periodic acid solution for 5′, washing with water for 1′,, placing in 

Schiff’s reagent for 15′, washing with water for 5′, placing in distilled deionized water for 1′, in 

5′ methyl-green (0.5%) for 5′, rinse in water for 1′, and then run through 95-100-100% EtOH 

dehydration steps of 7-dips and then cleared  in xylene for 7-dips twice and coverslipped in 

xylene based medium. All E9.5 and E12.5 histology was performed on cryosections, however 

some E15.5 and E17.5 H&E, PAS and immunocytochemistry was performed on paraffin 

embedded samples with the assistance of the MWRI histology core. 
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2.3.5  In situ hybridization 

A series of 10μm sections were stained by in situ hybridization (ISH) with Digoxigenin-11-

dUTP (Roche) labeled antisense RNA probes. ISH probes of the placental marker genes Tpbpa, 

Tfeb, LepR, Pchdh12, Mest, Prl2c2, Prl3b1 and Prl3d1 were in-vitro transcribed (Promega) from 

cDNA cloned into pBluescript, and used to identify the labyrinth (Tfeb), SpT (Tpbpa), SynT 

(LepR), GCs (Pchdh12), fetal vascular (Mest) and TGCs (Prl2c2, Prl3b1 and Prl3d1) 

respectively. ISH probes of the imprinted genes Ascl2, Phlda2 and Igf2 were similarly generated. 

RNA probes were purified using a G50 column (GE Healthcare) to remove unincorporated 

nucleotides, ammonium acetate ethanol precipitation, and dissolved in 30μl of water. RNA 

concentration was then determined by using a nanovue spectrometer (GE Healthcare) and diluted 

in ISH hybridization buffer (50% Formamide, 5X SSC, 5X Denhardt’s, 0.25mg/ml tRNA, 

0.5mg/ml herring sperm DNA) to a concentration of 200ng/μl. 

 Cryosections were stored at -70°C and warmed to 30°C to dry before starting ISH 

processing. Slides were fixed in 4% PFA for 10′, washed with PBS 3x for 3′ and digested with 

proteinase K for 5′. Following digestion slides were placed back into 4% PFA for 5′, washed 3x 

with PBS and then placed in an acetylation reaction (200ml aqueous solution of 0.1M 

triethanolamine and 0.2M HCl, initiated with 500μl of acetic anhydride immediately prior to use) 

for 10′. Slides were then washed with PBS 3x for 5′, tissue sections outlined with a pap-pen and 

were pre-incubated with ISH buffer for 2h at room temperature. At the end of 2h ISH probes 

were heated to 75-80°C for 5′ on hot beads, placed on ice for 3′ and spun down and then diluted 

(10μl probe +140μl ISH buffer per section). 125μl of diluted probe was added to each slide, a 

cover slip placed on top, the slides placed in a humidified slide box wrapped with paraffin tape 

and incubated overnight at 65°C. The following day slides were washed with 5x SSC to remove 
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coverslips, and incubated with 0.2X SSC for 2h at 70°C. After cooling down to room 

temperature samples were incubated with buffer B1 (0.1M Tris pH7.5 and 0.15M NaCl) for 5′ 

then incubated with B2 (B1 +5% Fetal Goat Serum) for 1 hour and then with B1 + anti-DIG 

alkaline phosphatase (AP) conjugated antibody (1:5000) overnight at 5°C. On the third day 

slides were washed three times with B1 and then equilibrated with B3 (0.1M Tris pH9.5, 0.1M 

NaCl and 50mM MgCl2) for 5′. Slides were then incubated in the dark with B4 (B3+levamisole 

and NBT/BCIP) for 3-24 hours depending on strength of probe. AP reactions were stopped using 

TE buffer, the slides air-dried, passed through an ethanol dehydration gradient and xylene 

clearing step and cover slipped with a xylene based media. 

2.3.6  Immunohistochemistry 

E17.5 10μm paraffin sections were stained by immunohistochemistry (IHC) using an anti-CD31 

antibody. Briefly, samples were processed according to IHC kit instructions (Pierce): Slides were 

deparaffinized and rehydrated using xylene and ethanol washes, then were washed with exposed 

3% hydrogen peroxide for 10′, washed with PBST (PBS + 1% Tween 20) blocked with horse 

serum, incubated overnight with 1:200 rabbit polyclonal anti-CD31 (Vector Labs) at 4°C, 

washed, incubated with biotinylated secondary, washed and then stained using the Vectastain 

ABC reagent (Pierce), and counter stained with hematoxylin. 

2.3.7  Immunofluorescence 

E17.5 cryosections were stained with a combination of DAPI, LipidTOX (Invitrogen) and anti-

CD31 fluorescent reagents. Briefly samples were washed with PBST, blocked with 5% goat 
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serum, incubated with primary anti-CD31 (Jackson ImmunoResearch Labs) overnight at 4°C, 

washed with PBST, incubated with 1:200 alexa-555 or -488 goat anti-rat IgG (BD) for 1h at 

room temperature, washed with PBST, stained with 1:250 LipidTOX for 30′ in the dark, washed 

with PBST and then coverslipped with DAPI containing medium. E12.5 samples were stained 

with DAPI and coverslipped to count TGCs. 

 

2.3.8  Stereology and morphometrics 

All images of placental tissue sections were taken using a DMI4000B inverted microscope 

(Leica) using 1.6x, 5x, 10x, 20x or 40x objectives and a 10x multiplier. Morphometric area 

measurements were made using the Image J (NIH) grid tool. The area of JZ and LZ layers were 

determined using random grid sampling within 2-3 central 50x or 16x fields of view of H&E 

stained sections for E12.5 and E15.5 placentas respectively. H&E images were overlaid with a 

random offset grid with 0.050 or 0.125mm2 per point respectively based on image magnification. 

The placental cell layer of each point (or upper left quadrant at boundary areas) was determined 

based on cell morphology of JZ (compact diploid SpT layer) or LZ (integrated SynT, fetal 

vasculature and maternal blood spaces). The chorionic plate was excluded from LZ 

measurements. Areas were integrated across the known distance (~250μm) between serial 

sections to generate a central LZ and JZ volume metric. Area and volume measurements were 

confirmed by analysis of adjacent slides stained by ISH of lineage markers. P-TGCcount 

measurements were obtained from 2-3 central 10μm DAPI stained sections. The polyploidy P-

TGC nuclei were readily distinguished from the diploid nuclei of the neighboring decidua and 

SpT cells at greater than 100x total magnification. The average cell count per 10μm section was 
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used as the reported metric. The identity of trophoblast giant cells was confirmed with ISH of 

adjacent sections. 

2.3.9  Lipid extraction  

Placenta samples cleaned of maternal decidua were stored at -70C for up to 3 months prior to 

lipid extraction. Samples were weighed and reduced to 25mg total weight. Samples were then 

placed in a dounce homogenizer with 250μl of deionized water with 5% NP40 and completely 

homogenized. Samples were then transferred with a Pasteur pipette to a clean glass test tube and 

cycled through a beaker of hot (80-100°C) water and room temperature two times to precipitate 

cell debris. The samples were then transferred to microcentrifuge tubes and centrifuged at 

13000rpm for 5′ to pellet debris. Supernatant was transferred to a clean glass test tube, covered 

with paraffin film and stored for up to 1 week at 5°C. A triglyceride assay kit (Biovision) was 

used to quantify lipid content using a colorimetric assay in 96 well flat bottom plates. Duplicate 

standard controls of 10, 20, 30, 40 and 50 ng/well were used to generate a standard curve. 

Samples were plated in triplicate using 10μl of placental triglyceride extract and 40μl of sample 

buffer per well. Samples and controls were incubated with 2μl of lipase for 20′ at room 

temperature and then incubated with a reaction mix containing 46μl of buffer, 2μl of triglyceride 

probe and 2μl of enzyme mix per well and incubated for 1 hour at RT with gentle shaking. 

Absorbance at 570nm was the colormetric readout. Sample concentrations were back calculated 

as nmol triglyceride per mg of tissue using the standard curve and known mg per volume of 

sample.  
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2.3.10  Biostatistics 

Mean mutant and wild-type phenotypic averages were calculated for all quantitative traits. The 

phenotypic data was also subdivided into dead/alive and male/female subgroups to determine the 

influence of fetal viability and sex on placental phenotypes. The distribution of each data set was 

tested for normality using the Kolmogorov-Smirnov, Shapiro-Wilk and Anderson-Darling tests 

of normality. When distributions approximated normality the students t-test was used to compare 

the distribution of mutant and wild-type phenotypes as well as the phenotypes observed in 

subgroups. Likewise, where the data was non-normally distributed the Mann-Whitney U (Rank-

sum) test was used to compare the sample averages. Phenotypic data is most often displayed in 

charts showing mean + SEM. 

2.3.11  Microarray analysis 

E17.5 placental halves cleaned of maternal decidua were used to analyze global gene expression. 

Four wild-type controls, four low E/P DNMT1o-deficient and four high E/P DNMT1o-deficient 

placentas were analyzed. An even number of males and females were included in each group to 

minimize sex-specific expression differences. RNA was extracted from placental samples using a 

DNA/RNA combined kit (Qiagen). Illumina mouse WG-6-V2.0 Expression bead chips were 

used for whole genome expression profiling of 45,200 transcripts. Data was normalized and then 

mean expression values were determined for each subgroup. Ingenuity pathway analysis (IPA) 

was used to determine which biological pathways had altered gene expression patterns in low 

and high E/P ratio DNMT1o-deficient placentas. 
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2.4.1  Dnmt1Δ1o maternal effect embryonic viability 

DNMT1o-deficient placentas exhibited a large spectrum of phenotypic abnormalities in the 

placental compartment across gestational development from E9.5 to E17.5. The number of live 

DNMT1o-deficient embryos decreased across gestation such that a greater number of litters was 

required late to collect the same number of placental samples for each gestational age (Table 2). 

These results revealed a strong selection event between E9.5 and E12.5 that reduced the number 

of viable embryos. The results reported here differ slightly from those I published in 

Developmental Biology (409) and PLoS One: Epigenetics (410) because of less stringent 

viability criteria at E9.5 used herein. 

A diverse array of placental phenotypes was observed in the Dnmt1Δ1o maternal effect 

across gestation from E9.5 to E17.5. Early in development I observed decreases in the central 

volume of JZ and LZ layers and expansion of trophoblast giant cells. While placentas were 

smaller than average at E12.5, those recovered at E17.5 were overgrown. At mid (E15.5) and late 

(E17.5) gestational time points DNMT1o-defiicent placentas had reduced fetal vascular surface 

area, labyrinth hemorraghing, increased GCs abundance, increased lipid content and a prevalence 

of SpT extensions within the LZ. In addition, the balance of fetal and placental growth was 

disrupted 

 

2.4  RESULTS 
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Gestational Age (dpc) # Litters # Placentas(a) #Live Embryos(b) 
E9.5 4 30 29 

E12.5 3 24 10 

E15.5 4 23 11 

E17.5 5 23 14 

Table 2.  Survival of DNMT1o-deficient embryos and placentas.  (a) Only intact placentas 

that were not necrotic, reabsorbing or hydatidiform moles were counted. (b) Based on structural 

integrity at E9.5 and presence of active circulation at E12.5 and later. 

2.4.2  E9.5 Phenotypes 

I performed histological analysis on E9.5 whole mount cryo-embedded conceptuses from 3 

Dnmt1Δ1o maternal effect litters. A single example of a DNMT1o-deficient litter with 7 

conceptuses (M1-M7) is shown in Figure 4 alongside an exemplary wild-type (wt) control. 

Abnormalities in placental layers were identified in central placental H&E stained sections. 

Central sections were determined based on presence of the maternal spiral artery, a triangular 

shaped maternal artery at the apex of trophoblast implantation. Maternal and fetal blood was 

distinguished by the presence of hematoxylin stained nuclei in fetal erythrocytes and absence in 

erythrocytes of maternal origin. In wild-type placenta a large maternal artery was observed for 

all samples and each placental layer was intact (wt; Figure 4). Not all mutant placentas observed 

had a dilated maternal artery, indicating a defect in implantation (DNMT1o-deficient mutants 

M2, M5 and M7; Figure 4). Poor structural integrity of the labyrinth and expansion of 

trophoblast giant cells was noticeable in many of the mutants. DNMT1o-deficient placentas M2, 

M3, M4, M5 and M7 had underdeveloped LZ. DNMT1o-deficient placentas M2 and M7 had an 

easily discernible overabundance of trophoblast giant cells. 

To confirm the cell identities and phenotypes interpreted from H&E histology I 

performed in situ hybridization with a set of trophoblast lineage markers (Figure 4). The 

prolactin family member Prl2c2 was used as a TGC marker. Expansion of the TGC layer from 1-
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3 cells thick to 5-6 cells was observed in DNMT1o-deficient mutants M2 and M7 (Figure 4). An 

antisense probe to the transcription factor Tfeb cDNA was used to identify EXE derived 

chorionic plate and SynT progenitors. DNMT1o-deficient mutant M2, M3, M4, M5 and M7 

showed decreased expression and less structural development of maternal blood spaces (Figure 

4). In wild type placenta Tfeb had a complex spatial expression pattern of raised and convoluted 

chorionic trophoblast, whereas the abnormal DNMT1o-deficient placentas displayed flattened 

labyrinth chorionic trophoblast. An antisense probe for the ectoplacental cone specific 

transcription factor Tpbpa was used to identify SpT and progenitors. In wild-type placentas 

Tpbpa marks an apex area around the maternal spiral artery. DNMT1o-deficient mutants M3 and 

M4 have a marked decrease in Tpbpa expression. 

In conjunction with ISH of placenta lineage markers I probed adjacent E9.5 whole-mount 

DNMT1o-deficient placenta with antisense probes to the imprinted genes Ascl2, Phlda2 and Igf2 

(Figure 4). We expected and observed a decrease in the spatial expression pattern for each 

imprinted genes. Ascl2 is expressed in the EPC in wild-type E9.5 placentas whereas Phlda2 is 

expressed primarily in the labyrinthine EXE derived lineages. Loss of methylation at the Kcnq1 

DMD should have the predicted effect of decreased Aslc2 and Phlda2. DNMT1o-deficient 

mutants M3 and M4 had severely restricted expression of both Aslc2 and Phlda2 (Figure 4). Igf2 

is ubiquitously expressed in placental and embryonic tissues. Loss of H19 DMD methylation is 

expected to result in diminished Igf2 expression. The majority of DNMT1o-deficient mutants 

had minimal Igf2 staining, with the exceptions being M6 and M7 (Figure 4). Discordant Igf2 

expression patterns were observed between placenta and fetus and also between EPC (SpT and 

TGC) and EXE (chorion and SynT) derived trophoblast lineages. These results indicate that the 
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DNMT1o-maternal effect model has early wide-ranging phenotypes in placental structure and 

imprinted gene expression. 

 

 

Figure 4.  E9.5 Histology of wild-type (wt) and DNMT1o-deficient placentas (M1-M7). A 

broad range of morphologic and gene expression abnormalities is present in an exemplary single 

litter of E9.5 DNMT1o-deficient placentas. H&E staining and ISH of adjacent central placental 

sections are shown. ISH probes are listed on the left bar include placenta lineage markers Prl2c2 

(TGCs), Tpbpa (EPC), Tfeb (Chorion) and imprinted genes Ascl2, Phlda2 and Igf2. Scale bar 

500um. 

2.4.3  E12.5 Phenotypes 

I performed histological analysis on 24 E12.5 whole mount cryo-embedded conceptuses from 3 

Dnmt1Δ1o maternal effect litters (E12.5 Litters A-C). Two wild-type litters, with a total of 16 

conceptuses were used as controls. H&E staining was used to observe overall abnormalities and 

wt M1 M2 M3 M4 M6 M7M5

H&E

Prl2c2

Tfeb

Tpbpa

Ascl2

Phlda2

Igf2
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in situ hybridization in order to confirm cell type identities. DNMT1o-deficient and wild-type 

placentas differed in many ways at E12.5, particularly in weight, central JZ volume, central LZ 

volume and number of TGCs (Figure 5). There was a trend toward decreased placental weight in 

DNMT1o-deficient placentas (P<0.05; Figure 5A). Additionally, there were significant decreases 

in measured central LZ volume (P<0.005; Figure 5B) and central JZ volume (P<0.005; Fig 5B) 

in the DNMT1o-deficient placentas compared to wild-type controls. A marked increase in the 

number of TGCs per central section was measured in the E12.5 DNMT1o-deficient placentas 

compared to wild-type controls (P<0.01; Figure 5C). These findings are in line with my previous 

findings of distorted placental layer development at E9.5 (Section 2.4.2; (409)). 

 

Figure 5.  Phenotypic comparison of wild-type (wt) and DNMT1o-deficient (mt) placentas 
at E12.5. (A) Measurements of wet placenta weight, (B) Spongiotrophoblast and Labyrinth 

central volume, and (C) the number of TGCs per slide of a cohort of wt and mt placentas are 

displayed as open and filled bars respectively. Data are plotted as mean +SEM. *(P<0.05)  and 

**(P<0.005) denote significant differences between wt and mt averages by the Rank-sum test, wt 

n=21 for placental weights and wt n=12 for layer volumes, mt n=24 for all.  

 

 To determine the effects of fetal viability and sex on placental phenotypes in the 

Dnmt1Δ1o maternal effect mouse model we compared live/dead and male/female mutant and 

wild-type cohorts (Figures 6 and 7). We compared the phenotypes of DNMT1o-deficient 
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placentas that harbored live and dead fetuses and found that those placentas that did not support a 

viable fetus had less labyrinth volume than those that did support a live fetus (Figure 6). In a sex 

comparison of DNMT1o-deficient placentas we discovered that female placentas on average had 

smaller central LZ volumes than mutant males (P<0.05; Figure 7). In addition, DNMT1o-

deficient females had significant differences from wild-type counterparts at all measured 

phenotypes whereas mutant males only differed from wild-type males in LZ central volume and 

TGC number (Figure 7). These results are in line with preliminary reports earlier placental 

phenotypes that are more prominent in female than male Dnmt1Δ1o maternal effect offspring 

(407). 

 

Figure 6.  Phenotypic comparison of wild-type (wt) and DNMT1o-deficient (mt) live and 
dead placentas at E12.5. (A) Measurements of wet placenta weight, (B) Spongiotrophoblast and 

Labyrinth central volume, and (C) the number of TGCs per slide of a cohort of wt and mt-Live 

and mt-Dead placentas are displayed as white, black and gray bars respectively. Data are plotted 

as mean + SEM. *(P<0.05) and **(P<0.005) denote significant differences between wt, mt-live 

and mt-dead averages by the Rank-sum test. wt n=21 for placental weights, n=12 for layer 

volumes, mt(live) n= 11, mt(dead) n=13. 
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Figure 7.  Phenotypic comparison of wild-type (wt) male and female, and DNMT1o-
deficient (mt) male and female placentas at E12.5. (A) Measurements of wet placenta weight, 

(B) Spongiotrophoblast and Labyrinth central volume, and (C) the number of TGCs per slide of a 

cohort of wt-male, mt-male, wt-female and mt-female placentas are displayed as white, black, 

light-gray and dark-gray bars respectively. Data are plotted as mean + SEM. *(P<0.05) and 

**(P<0.005) denotes significant differences between wt-male, wt-female, mt-male and mt-

female averages by the Rank-sum test. wt-male n=11 and wt-female n=10 for placental weights, 

wt-male n=6 and wt-female n=6 for layer volumes, mt-male n=12, mt-female n=12.  

 

Labyrinth morphology was noticeably abnormal with hemorrhaging of maternal blood 

pools and poor fetal vasculature development (see Figure 37 in section 3.4.5 for H&E staining of 

DNMT1o-deficient placentas associated with loss of Peg10 DMD methylation). To confirm the 

poor vascular development in DNMT1o-deficient samples ISH with an RNA probe antisense to 
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the Mest transcript was used to identify fetal vessels. Although Mest is an imprinted gene, its 

expression is expected to increase rather than decrease with loss of methylation at the Mest 

DMD. Therefore, any reduction in expression observed should be due to loss of fetal vasculature 

and not loss of imprinting at the Mest locus. In one maternal effect litter of eight (Figure 8 C1-

C8), four have normal fetal vessel branching (C1, C5, C6 and C7), two have stumped and 

underdeveloped vasculature (C2 and C3) and two completely lacked vasculature (C4 and C8). 

Not surprisingly the placentas with diminished or no vasculature did not support a viable fetus. 

Although these results indicate imprinting is important for placental fetal vasculature 

development it does not tell us whether it is imprinting within the fetal derived vascular 

endothelium or trophoblast components of the placenta that is critical. 

 The spongiotrophoblast layer was examined by ISH expression analysis of Tpbpa and 

Ascl2 (Figures 9 and 10). In wild type placentas a distinct JZ layer was present at the boundary 

of the LZ and maternal decidua consisting of SpT that stained strongly for Tpbpa (WT; Figure 

9). ISH staining for Tpbpa in DNMT1o-deficient placentas ranged from normal (C2 and C7; 

Figure 9) to abnormal, showing ectopic expression in the LZ or decidua (C1, C6, C7 and C8; 

Figure 9) and/or diminished and dispersed signal (C1, C3 and C4 and C8; Figure 9). Expression 

of Ascl2 marks SpT but does not stain as strongly in wild-type placentas at E12.5 than at E9.5 

(wt, Figures 4 and 10). However, at E12.5 Ascl2 is also detected in C-TGCs and S-TGCs and 

remaining TSC populations embedded in the LZ (WT; Figure 10). DNMT1o-deficient mutant 

placentas exhibited a wide spectrum of Ascl2 spatial expression patterns (C1-8; Figure 10). 

Dnmt1Δ1o maternal effect mutants showed near normal (C1), partial loss (C3, C6, C8) or 

complete loss (C4) of Ascl2 expression, consistent with varying degrees of partial loss of Kcnq1 

DMD methylation. Intriguingly, DNMT1o-deficient placenta C3 has partial loss of Ascl2 
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expression on the same junctional zone side that lacks Tpbpa expression, and has stunted 

vascular development; whereas DNMT1o-deficient placenta C4 with complete loss of Ascl2 has 

neither Tpbpa expression nor vascular development. Some DNMT1o-deficient placentas had 

stronger than normal Ascl2 staining with the LZ (C1, C5 and C7) suggesting that undifferentiated 

EPC progenitors, C-TGCs or S-TGCs may be accumulating. 

Excessive abundance of TGCs is shown in three examples of DNMT1o-deficient 

placentas by DAPI nuclear staining (Figure 11; also See Figure 38 in section 3.4.5) for H&E and 

in situ analysis of TGC accumulation in E12.5 placentas with loss of Kcnq1 DMD methylation). 

DAPI TGC nuclei were counted for 2-3 central sections and averaged for each placenta. Wild-

type and Dnmt1Δ1o maternal effect mutant cohort TGC count averages were compared with 

extended analysis of live/dead and male/female subgroubs (Figures 5C, 6C, and 7C). 

Accumulation of TGCs in DNMT1o-deficient placentas was most evident in placentas lacking a 

viable fetus, and was significant in both male and female conceptuses. DNMT1o-deficient 

placentas C1, C3 and C8 had elevated TGC counts and abnormal (although not absent) Ascl2 and 

Tpbpa expression. These results suggest that the maldevelopment of each layer is interdependent 

in DNMT1o-deficient placentas. 
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Figure 8.  E12.5 Mest ISH of a Wild-type (WT) and a litter of eight DNMT1o-deficient (C1-
C8) placentas. Mest expression marks fetal endothelium and chorionic plate. Note the normal 

fetal vessel branching patterns in WT and C1, C5, C6, and C7, stumped in C2 and C3, and lack 

of in C4 and C8. 4x objective Scale bar is 1000um. 

Mest WT C1 C2

C3 C4 C5

C6 C7 C8
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Figure 9.  E12.5 Tpbpa ISH of a Wild-type (WT) and a litter of eight DNMT1o-deficient 
(C1- C8) placentas. Tpbpa expression marks the spongiotrophoblast. Notice the strong staining 

and compact layer in WT and mutant C2. However, other DNMT1o-deficient placentas show 

Ectopic (C6) diffuse (C1, C3, C4 and C8) or ectopic (C5, C6 and C7) expression. 4x objective 

Scale bar is 1000um  

Tpbpa WT C1 C2

C3 C4 C5

C6 C7 C8
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Figure 10.  E12.5 Ascl2 ISH of a Wild-type (WT) and a litter of eight DNMT1o-deficient 
(A-H) placentas. Ascl2 marks primarily the spongiotrophoblast and scattered S-TGCs and C-

TGCs in the labyrinth Notice the compact SpT layer in WT and DNMT1o-deficient placentas 

C1, C2, 5 and C7; whereas placentas C3, C4, C6 and C8 have have a range of loss of Ascl2 

expression from partial to complete. 4X objective, scale is 1mm.   

Ascl2 WT C1 C2

C3 C4 C5

C6 C7 C8
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Figure 11.  DAPI nuclear staining of TGCs in a wild-type (WT) and three DNMT1o-
deficient E12.5 placentas. A yellow asterisk highlights the nucleus of each TGC. 20X objective, 

orange scale bar is 100μm. 

 

2.4.4  E15.5 phenotypes 

The variability in phenotypic metrics observed at E15.5 was smaller than that seen at E12.5. 

Specifically, at E15.5 neither JZ central volume nor LZ central volume phenotypic metrics 
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significantly differed between wild-type and mutant cohorts (Figure 12C). However, there was 

an increase in both placental and fetal weights in DNMT1o-deficient placentas compared to 

gestational age matched controls (Figures 12A and 12B). In the comparison of live and dead 

mutants, viable DNMT1o-deficient placentas and fetuses were overgrown (P<0.005; Figures 

13A and 13B). Mutant female placentas weighed more than wild-type females (P<0.05) but 

males did not differ from their wild-type counterparts (Figure 14A).  

Although there was no quantitative difference in JZ central volume between wild-type 

and DNMT1o-deficient placentas (Figure 12C), there were noticeable qualitative changes. Wild-

type Tpbpa ISH staining in E15.5 controls showed a single compact layer of JZ (WT; Figure 15). 

DNMT1o-deficient placentas ranged from having a thin JZ layer (C3; Figure 15), to having an 

increased JZ layer (C6 and D2; Figure 15). Many of the E15.5 Dnmt1Δ1o maternal effect 

placentas exhibited extensions of Tpbpa positive SpT within the LZ. Much of the SpT including 

the extensions were rich in GCs. Three examples of GC rich placentas are shown with PAS 

staining to highlight glycogen content (Figure 16). These findings suggest that volumetric 

estimates may not be indicative of the full phenotypic spectrum of placental layer development.  
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Figure 12.  Phenotypic comparison of wild-type (wt) and DNMT1o-deficient (mt) placentas 
and fetuses at E15.5. (A) Wet placental weight, (B) Wet fetal weight, (C) Spongiotrophoblast 

volume and labyrinth zone volume of a cohort of wt and mt samples are displayed as open and 

filled bars respectively. Data are displayed as mean + SEM.  * (P<0.05) and **(P<0.005) denote 

significant differences between wt and mt averages by the Rank-sum test. wt n=27 for placental 

and fetal weights, wt n=9 for layer fractions, and mt n=21 for all measurements 

 

 

Figure 13.  Phenotypic comparison of wild-type (wt) and DNMT1o-deficient (mt) live and 
dead placentas at E15.5. (A) Measurements of wet placenta weight, (B) Wet fetal weight and 

(C) Spongiotrophoblast and Labyrinth central volume of a cohort of wt and mt-live and mt-dead 

placentas are displayed as white, black and gray bars respectively. Data are plotted as mean + 

SEM. *(P<0.05) and **(P<0.005) denote significant differences between wt, mt-live and mt-

dead averages by the Rank-sum test. wt n=27, mt-live  n= 14 and mt-dead n=7. 
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 The concentration of triacylcglycerides (lipids) within E15.5 DNMT1o-deficient 

placentas was measured. This analysis compared four wild-type and twenty Dnmt1Δ1o maternal 

effect placentas. Wild-type E15.5 placentas had an average triacylglyceride concentration of 5.70 

nmol/mg compared to the DNMT1o-deficient placental average of 7.36 nmol/mg (P>0.05; 

Figure 17A). Additionally, neither fetal viability nor embryonic sex significantly differed from 

wild-type nor within mutant subgroups (P>0.05; Figures 17B and 17C). This data is interpreted 

as evidence that there may be changes to trophoblast lipid accumulation at E15.5 but that 

elevated levels may not occur to a great enough degree or in a sufficient fraction of samples to 

reach significance in a comparison of means. LipidTOX fluorescence of E15.5 DNMT1o-

deficient placenta shows that lipid droplets primarily accumulate in SynT rather than CD31 

positive fetal endothelium (Figure 18). 

 



106 

 

 

Figure 14.  Phenotypic comparison of wild-type (wt) male and female, and DNMT1o-
deficient (mt) male and female placentas at E15.5.  (A) Measurements of wet placenta weight, 

(B) wet fetal weight and (C) spongiotrophoblast and labyrinth central volume of a cohort of wt-

male, mt-male, wt-female and mt-female placentas are displayed as white, black, light-gray and 

dark-gray bars respectively. Data are plotted as mean + SEM. *(P<0.05) and **(P<0.005) 

denotes significant differences between wt-male, wt-female, mt-male and mt-female averages by 

the Rank-sum test. wt-male n=4 and wt-female n=17 for placental and fetal weights, wt-male 

n=2 and wt-female n=7 for layer fractions, mt-male n=9 and mt-female n=12 for all 

measurements. 
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Figure 15.  Tpbpa ISH of wild-type (WT) and DNMT1o-deficient E15.5 placentas. Tpbpa is 

a marker of spongiotropbhoblast, which is present as a compact layer in WT but ranges from a 

thin layer to thickened and having projections in to the labyritnth in DNMT1o-deficient mutant 

placentas. Scale bar is 2mm. 1.6X objective. 

 

Figure 16.  PAS in E15.5 DNMT1o-deficient placentas. Vacuolated and glycogen rich (purple) 

GCs indicated by Yellow arrows and zoomed in areas in orange boxes. Scale bars 1mm and 

100μm. 
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Figure 17  E15.5 triacylglyceride Levels.  (A) Comparison of wild-type (wt) and DNMT1o-

deficient (mt) placental lipid concentrations. (B) Comparison of wt and mt-live and mt-dead 

placentas. (C) Comparion of wt and mt-male and mt-female placentas. Mean and SEM of each 

sample distribution are shown. All comparions were not siginificant (P>0.05) by rank sum test. 

wt n=4, mt n=20, mt-live n=13, mt-dead n=7, mt-male n=9, mt-female n=11 

 

 

Figure 18. Fluorescent imaging of E15.5 DNMT1o-deficient placentas. Nuclei are shown in 

blue (DAPI), lipid droplets in red (LipdTOX), fetal vasculature in green (CD31) and composite 

RBG merged image. Note that lipid droplets occur primarily in SynT that are negative for CD31 

staining. Images taken with 40X objective, orange scale bar is 100μm. 
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2.4.5  E17.5 placental phenotypes 

Placental and fetal weights at of DNMT1o-deficient placentas recovered at E17.5 were greater 

than wild-type controls (P<0.005; Figure 19A). Conceptuses supporting live fetuses harbored 

heavier placentas (P<0.005) and fetuses (P<0.005) than those that were not viable (Figures 20A 

and 20B). Both male and female mutant placentas were heavier than wild-type controls (P<0.005 

and P<0.05; Figure 21A). These results suggest that DNMT1o-deficient placentas that survive 

into late-gestation are overgrown. 

 The ratio of embryonic to placental weight (E/P) is a standard metric of placental 

efficiency as it directly measures the placental capacity to support fetal growth normalized to the 

amount of placenta present. An analysis of fetal and placental weights from 17 wild-type and 62 

DNMT1o-deficient placentas revealed that mutant placentas are widely variable in their 

placental efficiency. Wild-type placentas had an average an E/P ratio of 9.99 and when plotted 

cluster into a tight group (Figures 22A and 22B). DNMT1o-deficient placentas showed a wide 

range in E/P ratios with a significantly lower than wild-type average of 6.08 and when plotted 

show a scattered distribution (P<0.001; Figures 22A and 22B). Not surprisingly mutant placentas 

that did not support growth had a lower E/P ratio than those that could (E/P of 3.13 versus 8.36), 

and formed distinct groups when plotted (Figures 22A and 22B). 

To determine if the wild-type, mutant-live and mutant-dead samples formed distinct E/P groups 

the Kmeans clustering algorithm was applied to all E17 embryo and placenta data. The number 

of clusters (K) was set to 5, because the data as plotted in Figure 22B appeared to have one wild-

type placenta group and four DNMT1o-deficient groups: normal placenta with large embryo, 

large placenta with large embryo, normal placenta with small embryo, and small placenta with 

small embryo. Kmeans clustering returned these expected groups (Figure 22C). Cluster 2 
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included all wild-type samples, along with one live mutant and one dead mutant and had a 

centroid E/P ratio of 9.62, close to that of wild-type samples (Figure 22C). Cluster 1 contained 

18 live mutants and one dead mutant, and had a centroid E/P ratio of 8.78 with enhanced fetal 

growth (Figure 22C). Cluster 3 contained 14 live mutants with a centroid E/P ratio of 8.5 with 

large placentas and fetuses (Figure 22C). Cluster 4 had 7 dead mutants and a centroid E/P ratio 

of 2.9; these samples had extremely small placentas and fetuses (Figure 22C). Lastly, Cluster 5 

contained 18 deceased mutants and one live mutant with a centroid E/P ratio of 2.7; these 

samples had normal placental weights but small fetuses and therefore were very inefficient 

(Figure 22C). These results highlight that DNMT1o-maternal effect placentas without a viable 

fetus are very inefficient, whereas those that survive are slightly less efficient than normal but 

can be extremely overgrown. The range of fetal weights found in cluster 1 show that within the 

live-mutant population that have slightly above average placental weights some placentas are 

more efficient (supporting higher fetal weight) than others (supporting lower fetal weight). 

Placentas within cluster 1 with high and low E/P are compared in transcriptional analysis 

described at the end of this results section.  

 In a cohort of E17.5 DNMT1o-deficient placentas substantial phenotypic variance was 

unearthed. The volume fraction of JZ increased whereas the volume fraction of the LZ layer 

decreased (P<0.05; Figures 23B and 23C). Strong qualitative phenotypes were also noticed. The 

JZ layer of many placentas had ectopic extensions of SpT into the LZ visible on H&E and Tpbpa 

ISH histological sections (left column; Figure 24). Much of the excess SpT was positive for the 

glycogen cell marker Pcdh12 (data not shown) and contained glycogen vacuoles visible in PAS 

staining (right columns; Figure 24).  
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Figure 19.   Comparison of wild-type (wt) and DNMT1o-deficient placental and fetal 
weights at E17.5. (A) Wet placental weights and (B) wet fetal weights of wt and mt cohorts are 

shown as open and filled bars respectively. Data are displayed as mean +SEM. ** (P<0.001) by 

the Rank-Sum test, wt n=17, mt n=23. 

 

 

Figure 20.  Phenotypic comparison of wild-type (wt) and DNMT1o-deficient (mt) live and 
dead placentas at E17.5.  (A) Measurements of wet placenta weight and (B) Wet fetal weights 

of wt and mt cohorts are shown as open and filled bars respectively. Data are displayed as mean 

+SEM. ** (P<0.001) by the Rank-Sum test. wt n=17, mt-live n=14 and mt-dead n=9. 
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Figure 21.  Phenotypic comparison of wild-type (wt) male and female, and DNMT1o-
deficient (mt) male and female placentas at E17.5.  (A) Measurements of wet placenta weight 

and (B) Wet fetal weights of wt and mt cohorts are shown as open and filled bars respectively. 

Data are displayed as mean +SEM. ** (P<0.001) by the Rank-Sum test. wt-male n=12, wt-

female n=5, mt-male n=13 and mt-female n=10. 

 

 The labyrinth layer of E17.5 DNMT1o-deficient placentas was also abnormal. Expression 

of SynT marker Lepr was sporadic or diminish to varying degrees in mutant placentas (left 

column; Figure 25). IHC staining with antibodies against the fetal vascular endothelium marker 

CD31(VECAM) enabled detailed resolution of both fetal vessels and maternal blood pools (right 

column; Figure 25). This IHC analysis showed that many DNMT1o-deficient placentas have 

dilated maternal blood sinuses (asterisks; Figure 25). However, it was of note that unlike at 

E12.5 all placentas at E17.5 had intact fetal vasculature, indicating that those showing severe 

labyrinth defects at E12.5 cannot survive to E17.5. Taken together this evidence demonstrates 

that DNMT1o-deficient placentas exhibit variable abnormal labyrinth morphology. 
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Figure 22.  Analysis of E/P ratio in wild-type and DNMT1o-deficient E17.5 offspring. (A)  

Bar chart of E/P ratio in wild-type, mutant live and mutant dead samples. (B) Plot of E/P ratio for 

each subgroup: wt n=17, mt-live n=67, mt-dead n=34. (C) Kmeans clustering with K=5. 

**P<.001 with two tailed unequal variance T-test. 
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Histological analysis of E17.5 DNMT1o-deficient placentas by ORO staining revealed an 

abundance of lipids in the LZ (Figure 26A-D). There was a wide range in the staining from 

extremely abundant staining to similar levels as wild-type. Quantification of triaclyclgeride 

content revealed an overabundance of lipids in DNMT1o-deficient placentas that was 

statistically significant (P<0.0 Figure 26E). The robust lipid deposition combined with the 

overabundance of GCs is evidence that the metabolic states of late gestation DNMT1o-deficient 

placentas are altered. 

A microarray gene expression analysis was performed to determine what cellular 

pathways are altered in the Dnmt1Δ1o maternal effect model in E17.5 placentas with high and low 

E/P ratios (Figure 27). Hierarchical clustering analysis of all samples revealed a structured 

hierarchy in which wild-type samples were highly similar, and high and low E/P samples 

separated into distinct mutant sub-groups (Figure 27A). Of the genes down-regulated 1.3 fold or 

more there was significant overlap in the low and high E/P groups (Figure 27B); and these were 

enriched in genes involved in oxidative response (Figure 27C). On the other hand there was less 

overlap in genes up-regulated by both low and high E/P ratio DNMT1o-deficient placentas 

placentas (Figure 27B). Genes involved in lipid metabolism were up-regulated by both groups. 

In contrast, only high E/P ratio had up-regulated genes enriched for molecular transport and lipid 

metabolism pathways. Overall, my description of DNMT1o-deficient at E17.5 and throughout 

mid-gestation demonstrate a large gamut of placental developmental and structural defects. 
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Figure 23.  H&E Histology and volume fraction measurements of E17.5 DNMT1o-deficient 
placentas. (A) Histology of H&E stained paraffin embedded wild-type (WT) and DNMT1o-

deficient (M1-M4) placentas. (B) Box plots showing spongiotrophoblast and labyrinthine wild-

type and DNMT1o-deficient volume fractions medians and upper and lower quartiles. 

Abbreviations de decidua; sp spongiotrophoblast; lb labyrinthine.1.6X ojective, Scale is 400μm 
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Figure 24.  Tpbpa ISH and PAS staining of a wild-type and three E17.5 DNMT1o-deficient 
placentas. (A-D) Tpbpa ISH of a wild-type and 3 representative DNMT1o-deficient placentas. 

(E-H) Adjacent sections from the same samples with PAS glycogen staining. Abbreviations: de 

decidua; sp spongiotrophoblast; lb labyrinthine. Left and center panels 5x objective, scale bar is 

400μm; Right panel 10X objective scale bar is 100μm. 
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Figure 25.  Lepr ISH and CD31 IHC histology of DNMT1o-deficient E17.5 placentas. (A-E) 

Lepr ISH staining of SynT in a wild-type and four representative DNMT1o-deficient placentas. 

(F-J) CD31 IHC staining of fetal vessels in a different set of representative DNMT1o-deficient 

placentas. Left panel 5X objective, scale bar is 400μm. Right panel 40X objective, scale bar is 

50μm. * dilated maternal blood pools. 
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Figure 26.  Lipid accumulation in E17.5 DNMT1o-deficient placentas. (A-D) Staining with 

Oil-Red-O in a single wild type and three DNMT1o-deficient placentas. (E) Quantification of 

triaclyglyceride concentrations. (F) Quantification of cholesterol concentrations. (G) Inverse 

relationship of triglyceride concentration and embryonic weight revealed by linear regression. 

Abbreviations: TGs Trigylcerides; wt Wild-type; de decidua; sp spongiotrophoblast; lb 

labyrinthine. Left panel 1.6X objective, scale is 400um. Right panel 40x objective, scale is 

100μm. * P-values from Kruskal-Wallis test. 
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Figure 27.  E17.5 microarray analysis of DNMT1o-deficient placentas. (A) Hierachical 

clustering derived dendrogram describing genome-wide expression patterns. The X-axis is 1 

minus the correlation coefficient. (B) Ven diagrams showing overlapping subsets of genes 

common to low and high E/P ratio DNMT1o-deficient placentas and (C) enriched gene ontology 

pathways determined by Ingenuity Pathway Analysis.  
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2.5.1  Fetal viability and growth 

Partial mosaic loss of imprinting in the Dnmt1Δ1o maternal effect model has a profound impact on 

placental development and fetal growth that progresses across gestation. The most prominent and 

obvious phenotype in DNMT1o-deficient placentas was the inability to support a viable fetus. At 

E9.5 the majority of embryos are alive, at E12.5 roughly half of each litter is deceased, and by 

E15.5 and E17.5 only a fraction of normal litter sizes are recovered (Table 2). This gradual mid-

gestation lethality points to a temporal juncture between E9.5 and E12.5 in genomic imprinting 

that is critical for proper development. While the embryonic lethality observed in the Dnmt1Δ1o 

maternal effect model is likely due to loss of imprinting in both the fetal and placental 

compartment, given the severe placental abnormalities and similar stage of gestational 

developmental arrest in known placental lethal mutants (e.g. Ascl2, Rtl1, Peg10, Pparδ and 

Pparγ) it is likely that placental development is the major factor. 

 At E12.5 Dnmt1Δ1o maternal effect litters were similar in size to wild-type litters in 

having 8 conceptuses. The partial embryonic lethality observed at E12.5 was an opportunity to 

observe placental abnormalities associated with loss of fetal viability. Two distinct groups of 

placentas were observed in a representative E12.5 DNMT1o-deficient litter that were either able 

to support a viable fetus (C1, C5, C6 and C7; Figures 8, 9 and 10) or were unable to (C2, C3, C4, 

C8; Figures 8, 9 and 10). Notably expression of the fetal endothelium marker Mest was normal to 

2.5  DISCUSSION 
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slightly expanded in placenta with viable fetuses but stunted or nearly absent placenta from non-

viable conceptuses (Figure 8). Likewise, three out of four non-viable placentas had diminished 

Ascl2 staining and abnormal Tpbpa spatial gene expression patterns (C3, C4, and C8; Figures 9 

and 10). I interpret these results to indicate that fetal vasculature in the labyrinth is an absolute 

requirement for fetal development. In addition, I interpret these results as evidence that that loss 

of placental Ascl2 imprinting resulting in lower expression may predispose embryonic lethality 

through abnormal JZ and LZ layer development. However, these results do not enable the 

determination as to whether the absence of fetal vasculature is the cause or effect of loss of 

imprinting in the fetus proper, extraembryonic mesoderm derived fetal vessels or trophoblast 

derived cellular subtypes. 

The parental conflict hypothesis, put forth by Haig and Moore suggests that genomic 

imprinting evolved to balance maternal health and fetal growth (411). The majority of 

mammalian species are not monogamous, therefore having multiple less taxing litters over a long 

lifetime increases maternal reproductive fitness by increasing the total number of offspring, 

whereas having vigorous fecund offspring with little regard to maternal resources and post-

nurturing maternal health increases male reproductive fitness by ensuring robust and viable 

offspring. Imprinted genes generally follow the canonical dogma of the parental conflict 

hypothesis with maternally expressed genes restricting placental and fetal growth (e.g. Phlda2, 

Igf2r) and paternally expressed genes enhancing placental and fetal growth (e.g. Igf2, Mest, 

Grb10). Based on this theory, a widespread disruption of genomic imprinting such as predicted 

in the Dnmt1Δ1o maternal effect model, should result in a broad range of placental and fetal 

weights. 



122 

 

In fact, this is exactly what was observed in DNMT1o-deficient placentas (Figures 22). 

At E12.5 DNMT1o-deficient placentas were on average growth restricted, particularly those 

associated with either non-viable or female conceptuses (Figures 5A, 6A and 7A). At E15.5 

DNMT1o-deficient placentas and fetuses were overgrown, particularly with those associated 

with either a viable or female conceptus (Figures 12A, 12B, 13A, 13B and 14A and 14B). 

However, at E17.5 only placental weight, but not fetal weight was significantly increased in 

DNMT1o-maternal effect placenta (Figures 19A, 19B, 20A, 20B, 21A and 21B). At E17.5 

placenta efficiency (E/P ratio) trended lower and showed great variation between samples 

(Figure 22). It was lowest in conceptuses associated with a non-viable fetus (Figure 22). The E/P 

ratio of wild-type samples was clustered in a tight group but in DNMT1o-deficient mutants 

formed expansive clusters segregated by fetal viability (Figures 22B and 22C). In addition, we 

found specific gene ontology pathways (i.e. oxidative stress response and lipid metabolism) that 

were altered in high and low E/P placentas and others that were specific to high E/P placenta 

(molecular transport and lipid metabolism) suggesting that loss of placental imprinting has major 

effects on placental metabolism (Figure 27). These findings were further corroborated in analysis 

of placental glycogen and lipid content in the JZ and LZ layers. A number of imprinted genes 

have been implicated in regulating placental efficiency including Igf2 (enhances efficiency) and 

Grb10 (represses efficiency) (347, 412, 413). Overall these results suggest that the balance of 

fetal and placental growth is disrupted in the Dnmt1Δ1o maternal effect partial loss of imprinting 

model. 
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2.5.2  Placental labyrinth phenotypes 

In early gestation DNMT1o-deficient placentas exhibit under development of the placenta LZ. 

At E9.5 the labyrinth marker Tfeb as well as the imprinted gene Phlda2 show a decreased and 

less convoluted labyrinth structure in the majority of DNMT1o-deficient samples (M2, M3, M4, 

M5 and M7; Figure 4). While the chorionic plate appears intact, there is poor integration of the 

EXE derived chorionic trophoblast and fetal derived vessels with the EPC, resulting in less 

definition of maternal blood spaces and diminished percolation of maternal blood. At E12.5 the 

phenotype is pronounced as evidence of the overall decrease in placental LZ central volume and 

decreased penetration and branching of fetal vessels (Figures 5B and Figure 8). The decrease in 

LZ central volume is most pronounced in female DNMT1o-deficient placentas (Figure 7B). 

These findings of an exacerbated phenotype in female DNMT1o-deficient placenta are similar to 

those made by a group led by Trasler (408). In their study a coarse scoring system was used to 

show that female placentas had reduced LZ development (408). In addition they found female 

placentas to have placental hyperplasia at E9.5 indicative of TGC proliferation (408). Many of 

the E9.5 and E12.5 DNMT1o-deficient placentas studied herein had a combination of diminished 

labyrinth development and expanded TGCs, indicating that these two phenotypes are connected. 

 Late in gestation DNMT1o-deficient placentas that lacked fetal vasculature were not 

recovered. In contrast E15.5 placentas had nearly normal LZ central volumes and E17.5 

placentas displayed a large range of LZ volume fractions that were on average slightly lower 

than wild-type. However strong qualitative differences were observed in the structure of the LZ. 

For instance, many DNMT1o-deficient placentas had engorged maternal blood spaces and 

dilated fetal vessels. Furthermore, ultrastructural SEM of DNMT1o deficient placentas, 

performed by colleagues, showed that SynT basement membrane was thickened (414). The 
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findings presented here demonstrate that loss of genomic imprinting is detrimental to both LZ 

structural development and suggest that the placental SynT development is more robust and less 

of an absolute requirement than fetal vessels in the partial absence of genomic imprints. 

In addition to the structural defects both E15.5 (not significant) and E17.5 (P<.001) had 

increased triacylglyceride content (Figures 18 and 26E). These triglycerides accumulated in 

SynT within lipid droplet organelles as seen in both LipidTOX and ORO staining (Figures 18 

and 26B-D). A broader metabolomics survey of DNMT1o-placental tissue performed by my 

colleague Katherine Himes, MD., revealed accumulation of mitochondrial metabolites (414). 

Excess carnitine derivatives in DNMT1o-deficient placentas indicated disrupted -oxidation of 

triacylglycerols. Reduced acontinase activity and accumulation of the TCA cycle intermediate 

citrate suggested mitochondrial oxidative stress. These results were interpreted as evidence that 

triacylglycerides accumulate in lipid droplets because their catabolism by -oxidation and the 

TCA cycle is blocked. In combination with ultrastructual findings that mitochondria were 

bloated, Dr. Himes has hypothesized that the mitochondria of DNMT1o-deficient placenta are 

dysfunctional. Furthermore, the transcriptional changes to molecular transport and lipid 

metabolism genes in high and low E/P placenta provide two additional lines of evidence that 

genomic imprints directly regulate fetal and placental growth through metabolic pathways 

(Figure 27). 

 The disorganized and abnormal labyrinth structure seen in DNMT1o-deficient placentas 

is similar to targeted deletions of both imprinted and non-imprinted genes. For example, Peg10, 

Ascl2 and Rtl1 genes are imprinted genes that when deleted have detrimental consequences on 

LZ placental development and embryonic survivorship. Peg10 is an imprinted gene within a 

cluster of imprinted genes on chromosome 6 (Section 1.5.5) that is expressed in many 
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trophoblast cell types. When Peg10 is paternally deleted the resulting phenotype is embryonic 

lethal at E9.5-E10.5 due to vastly diminished LZ development as well as a near complete 

absence of JZ (293). However, the connection with the DNMT1o-deficient phenotype is 

counterintuitive because loss of Peg10 DMD methylation on the maternal allele should result in 

an increase in Peg10 expression rather than a decrease. Ascl2 is a maternally expressed 

transcription factor within the Kcnq1 imprinting cluster (Section 1.4.7) that is expressed in the 

EPC, and when maternally deleted results in diminished LZ and JZ layers and an expanded TGC 

population (222). Rtl1 is a paternally expressed gene within the Dlk1 cluster (Section 1.4.13) that 

is expressed in the fetal endothelium (374). Paternal deletion of Rtl1 results in a trophoblast 

phagocytic response to invading fetal endothelium, placental infarction, and late-gestation 

growth restriction and lethality (374). Based on my results in combination with the information 

garnered from individual imprinted gene deletions it is evident that imprinted genes are 

important both for early SynT differentiation and LZ development as well as normal late 

gestation LZ integrity. 

 It is also of note that some DNMT1o-deficient placentas exhibited phenotypes similar to 

targeted deletion of Pparγ, Pparδ and Rxrα (Section 1.3.5). Deletion of Pparγ is embryonic 

lethal at E10.5 due to maternal blood space hemorrhaging and lack of fetal vasculature, two 

phenotypes commonly observed in E12.5 DNMT1o-deficient placentas (218). The Pparδ null 

model shows attenuated chorio-allantoic fusion, which is also observed in many E9.5 DNMT1o-

deficient placentas (220). Lastly, both Pparγ and Rxrα mutants display an accumulation of lipid 

droplets within the SynT (218, 221). I interpret these common phenotypes to indicate that loss of 

genomic imprinting may alter the genetic pathways vitally important for placental development 
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2.5.3  Placental junctional zone phenotypes 

Early in placental development at E9.5 and E12.5 Dnmt1Δ1o maternal effect placentas exhibited 

mosaic, patchy and sporadic SpT layers that often extended into the LZ. At E9.5 in situ 

hybridization with the SpT marker Tpbpa, and the imprinted EPC marker Ascl2 revealed that 

many placentas had decreased SpT with corresponding decreases of both markers (Figure 4). At 

E12.5 these phenotypes progressed into overt structural abnormalities. On average E12.5 

DNMT1o-deficient placentas had a diminished SpT central volume (Figure 6B). E12.5 placentas 

stained with Tpbpa showed very distinct patterns with some having minimal SpT development 

(C3 and C8; Figure 9), others having a sporadic staining patterns (C4; Figure 9), while others had 

expanded SpT with LZ extensions (C2, C6 and C7; Figure 9). The staining pattern for Tpbpa 

matched the pattern of sporadic Ascl2 (Figure 10). I interpret these results to indicate that 

reduction in Ascl2 expression, as modulated by loss of imprinting at the Kcnq1 cluster, has a 

direct impact on SpT development. However, it is also plausible that the changes in Ascl2 spatial 

expression patterns are passive secondary changes associated with abnormal SpT development 

due to loss of imprinting at other loci. 

 In mid- to late-gestation, DNMT1o-deficient placentas had either a thinner layer of SpT 

or an expanded layer of SpT with LZ extensions and accumulation of GCs (Figures 9, 15, 16 23, 

24). A transition from diminished JZ central volume at E12.5 to no difference at E15.5 to an 

increase in JZ volume fraction at E17.5 occurs in DNMT1o-deficient cohorts. This indicates that 

those DNMT1o-deficient placentas with severely diminished SpT layers either compensate 

during mid-gestation or do not survive. While some E12.5 DNMT1o-deficient placentas show 

SpT extensions into the LZ, it is much more pronounced at E15.5 and E17.5 (Figures 9, 15, 23A, 

24A-D). Both the junctional zone as well as the ectopic extensions are enriched in GCs and 
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glycogen content (Figures 16, 24E-H). There generally appears to be a correlation between GC 

enrichment and SpT volume, although this has not been quantified. These results, in combination 

with the previously discussed accumulation of lipid droplets, suggest that loss of genomic 

imprinting alters placental energy storage. 

 The diminished spongiotrophoblast observed herein is similar to phenotypes observed in  

Ascl2 and Peg10 targeted deletion models that disrupt both JZ and LZ development, indicating 

that early placental layer developent are dependent on each other (222, 293). Igf2 and Igf2p0 null 

placentas also have decreased SpT development (303). The mid- to late-gestation SpT and GC 

expansion phenotypes observed in DNMT1o-deficient placentas have similarities and differences 

with Phlda2 deletion and overexpression models (316, 317). Ablation of Phlda2 expression 

promotes placental and fetal overgrowth with excessive SpT and GCs (317). Given the endocrine 

role of spongiotrophoblast one interpretation is that expansion of this layer and increased 

glycogen stores due to loss of genomic imprinting enhances fetal growth. In contrast, 

overexpression of Phlda2 in mouse results in growth restriction with reduced SpT and GCs, 

however protrusion of SpT into the LZ, similar to that seen in the Dnmt1Δ1o maternal effect 

model does occur (316). It has been suggested by Tunster et al., that these ectopic SpT and GCs 

within the late gestation LZ are due to failure of these cells to migrate (316).  

2.5.4  Trophoblast giant cell phenotypes 

Early in development at E9.5 and E12.5 there was a marked increase in the number of P-TGCs 

found between the JZ and decidua (Figures 4 and 5C). The accumulation of P-TGCs was often 

accompanied by a lack of LZ development. However, at E15.5 and E17.5 none of the recovered 

placentas displayed an abundance of P-TGCs (data not shown). These findings suggest a 
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selection event against placentas with an overabundance of P-TGCs early in development. These 

results can also be interpreted to indicate that TGC accumulation is a common response to failing 

embryonic development and may facilitate reabsorption. The similarities to placental 

development in the absence or muted Ascl2 expression implies a direct role of this imprinted 

gene in the dysregulation of TGCs in DNMT1o-deficient placentas (222, 311). In addition, the 

accumulation of TGCs was the most prominent phenotype in Dnmt3l maternal effect placentas at 

E9.5, suggesting that this is the strongest early phenotype caused by loss of maternal imprints 

(95, 97, 99). 

2.5.5  Conclusion 

The wide range of placental phenotypes observed in DNMT1o-deficient placentas begs the 

question of what are the causative epigenetic changes that drive these abnormalities. Previous 

work in the Chaillet lab has shown that the Dnmt1Δ1o maternal effect model generates a mosaic of 

conceptuses with partial loss of genomic imprinting (60, 402), however no prior attempts to link 

these alterations with phenotypic measurements have been made. Herein I have quantified 

placental phenotypic metrics in across mid to late-gestation which will enable using quantitative 

measurement of imprinted gene expression and DMD methylation the association of specific 

phenotypes and epigenotypes. The array of distinct phenotypes ranging from early lethality to 

overgrowth, as well as specific placental layer disruptions fits in with the model in which each 

placenta of a litter has a unique set of DMDs with loss of imprinting. While it may be difficult to 

make 1:1 associations between loss of imprinted DMD methylation and placental metrics in 

order to better understand the role of genomic imprinting in placental biology. 

  



129 

 

My dissertation results in Chapter 2 revealed that the Dnmt1Δ1o maternal effect model produces 

varied and abnormal placentas. Previous studies, focusing primarily on the fetus, determined that 

the Dnmt1Δ1o maternal effect model generates a mosaic and partial loss of imprinting. In this 

section I have confirmed that DNMT1o-deficient placentas are also subjected to this mosaic 

partial loss of imprinting by measuring imprinted gene expression by quantititative RT-PCR, by 

allele specific DMD methylation analysis by bisulfite genomic sequencing, and by quantifying 

imprinted methylation at a broad array of DMDs using EpiTYPER-mass array technology. 

Imprinted gene expression was altered at many imprinted gene clusters examined but did not 

always fit the pattern expected to be associated with loss of DMD methylation late in gestation. 

Regression analysis revealed a direct association between Mest expression and E/P ratio, and an 

inverse association between Ascl2 expression and E/P ratio. Allele specific methylation analysis 

revealed partial loss of methylation on the normally methylated allele of the H19, Snrpn, Peg1, 

and Kcnq1 DMDs in some but not all DNMT1o-deficient placentas, and provided no evidence of 

compensatory methylation of the normally unmethylated allele. EpiTYPER DNA methylation 

analysis of 15 DMDs in E12.5, E15.5 and E17.5 DNMT1o-deficient placental cohorts revealed a 

3.0 LOSS OF GENOMIC IMPRINTING IN DNMT1o-DEFICIENT PLACENTAS IS 

ASSOCIATED WITH SPECIFIC PLACENTAL ABNORMALITIES 

3.1  SUMMARY 
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mosaic partial loss of genomic imprinting. Methylation of some imprinted DMDs, most notably 

Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the 

notion that cells having lost methylation on these DMDs do not contribute significantly to 

placental development. Most imprinted DMDs however showed a wide range of methylation loss 

among DNMT1o-deficient placentas. Furthermore, I have revealed significant associations 

between strong placental phenotypes and loss of methylation at specific imprinted loci. At E12.5 

two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted 

DMD associated with decreased embryonic viability and decreased LZ volume. Second, loss of 

methylation at the Kcnq1 imprinted DMD was strongly associated with TGC expansion. I 

conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function. 

3.2.1  Loss of genomic imprinting in DNMT1o-deficient placentas 

The Dnmt1Δ1o maternal effect model generates offspring with a mosaic and partial loss of 

genomic imprinting due to the absence of DNMT1o maintenance methyltransferase activity 

during preimplantation development (Section 2.2 for full review). This has previously been 

confirmed at a small subset of DMDs in the embryonic (H19, Snrpn, Mest and Dlk1) and 

placental (H19 and Snrpn only) compartments. DNMT1o-deficient placentas have profoundly 

abnormal phenotypes (Section 2.3 for description). At E9.5 and E12.5 attenuated LZ 

development and TGC accumulation is common in DNMT1o-deficient placentas. Later in 

3.2  INTRODUCTION 
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gestation, at E15.5 and E17.5, SpT extensions, dilated fetal vessels, and triacylgylceride 

accumulation are prevalent features. It is of note that Dnmt1Δ1o maternal effect offspring have 

sporadic phenotypes with large variation within and between litters that is similar to the 

predicted mosaic nature of  imprinting in this model. In this chapter, I test the hypothesis that the 

wide-ranging phenotypes are associated with loss of imprinted methylation at specific DMDs in 

DNMT1o-deficient placentas. 

 Loss of genomic imprinting in the Dnmt1Δ1o maternal effect model has previously been 

validated by DNA methylation and gene expression analysis at a limited set of imprinted loci. 

Bisulfite genomic sequencing, bisulfite converted restriction analysis, and methylation Southern 

blots provided the original evidence that the Dnmt1Δ1o maternal effect model generates partial 

loss of methylation at DMDs but not other genomic loci (e.g. Iap and Line1 repetitive elements) 

(104, 402). Restriction fragment polymorphisim analysis of RT-PCR products of imprinted 

genes within the Kcnq1 cluster of Dnmt1Δ1o maternal effect trophoblast and embryo displayed 

biallelic maternally biased expression of the normally exclusively paternally expressed Kcnq1ot 

but had no effect on allelic bias of maternally expressed genes within the cluster (415). 

Quantitative RT-PCR gene expression analysis of Kcnq1ot and seven maternally expressed 

genes (Osbpl5, Phlda2, Cdkn1c, Kcnq1, Tssc4, Cd81 and Ascl2) within the Kcnq1 cluster 

revealed that in DNMT1o-deficient E10.5 trophoblast Kcnq1ot expression was increased, while 

the expression of the maternally expressed genes decreased (415). Intriguingly, despite this 

transcriptional repression, the H3K4me3 active chromatin mark levels at these maternally 

imprinted genes was not statistically altered in DNMT1o-deficient trophoblast (415). In addition, 

loss of H19, Igf2 and Snrpn imprinting has been observed in a handful of Dnmt1Δ1o maternal 
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effect placentas (402). However, transcriptional analysis of the majority of imprinted gene 

clusters has not been performed in either DNMT1o-deficient embryonic or placental lineages.  

3.2.2  Transcriptional analysis of imprinted genes 

Out of the 24 confirmed genomic imprints in mouse there are reasons to suspect at least 15 of 

them harbor imprinted genes that are integral to placental development (Section 1.5). There is 

particularly strong genetic evidence derived from targeted gene deletion mouse models for the 

involvement of imprinted genes in the Kcnq1, H19, Peg10, Mest, Grb10, Dlk1 and Igf2r clusters 

in placental developmental pathways (222, 274, 293, 302, 312, 313, 347, 374, 392). In this 

chapter, quantitative RT-PCR was used to test the hypothesis that Dnmt1Δ1o maternal effect 

placentas have loss of imprinted gene expression, with some transcripts increasing in expression 

(presumably biallelic), while others becoming fully repressed. Specifically, imprinted gene 

expression from the following clusters were analyzed: Peg10 (Peg10, Sgce and Pon2), Dlk1 

(Dlk1, Meg3, and Rtl1), H19 (H19 and Igf2), Igf2r (Igf2r and Slc22a2), Mest (Mest and Klf14), 

Kcnq1 (Phlda2 and Ascl2) and Grb10 (Grb10). 

3.2.3  Imprinted DMD methylation analysis 

The exact genomic coordinates of DMDs in oocyte and embryonic genomes are overlapping but 

significantly different, suggesting that the physical extent of differential methylation is dynamic 

during embryonic development (58). Both gametic and embryonic DMD boundaries are defined 

by biallelic methylated regions (58). It is unclear if the exact DMD coordinates in the genome of 

trophoblast lineages are closer to those in gametes or embryos. In my dissertation research I have 
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examined imprinted DNA methylation at sequences that are common to both germline and 

embryonic DMDs. Bisulfite genomic sequencing was used to confirm loss of imprinting in the 

placenta compartment. A survey of DNA methylation at 15 DMDs across gestation was 

performed using EpiTYPER technology to quantify DMD methylation at 15 different loci in 

cohorts of mid-gestation DNMT1o-deficient placentas and to correlate loss of methylation with 

placental phenotypic metrics. 

Imprinted DNA methylation patterns have been analyzed over the years using an array of 

techniques. Early studies performed methylation sensitive Southern blots that utilized 

isoschizomeric restriction enzyme pairs in which one enzyme is methylation-sensitive (e.g. 

HpaII) and the other is methylation-insensitive (e.g. MspI) and sequence specific genomic 

probes. This approach analyzes a handful of CpG dinucleotides at a time. The use of sodium 

bisulfite (NaSO4) based techniques enabled methods of DNA methylation analysis that can 

provide a readout of multiple CpGs at specific sequences (416). High sodium bisulfite 

concentrations at elevated (85°C) temperatures and low pH (5.0) deaminate unmethylated 

cytosine nucleosides to uracil (416). PCR amplification of bisulfite treated genomic DNA using 

targeted primers replicates the ribonucleoside uracil into the deoxy-ribonucleoside thymidine 

(416). These bisulfite treated DNA amplicons can be analyzed by DNA sequencing (BGS: 

bisulfite converted genomic sequencing) or by restriction analysis (COBRA: combined bisulfite 

restriction analysis) to infer the ratio of unmethylated to methylated CpG methylation by the 

amount of CT converted and unconverted product (416, 417). Both BGS and COBRA have 

their limitations: BGS requires the sequencing of many amplicons to obtain a good 

representation of the allelic population; and the COBRA assay, similar to methylation sensitive 

Southern blotting, only analyzes a handful of CpGs at a time (416, 417). 
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EpiTYPER analysis is a novel technique that provides a readout of many CpGs at a time 

from the whole allelic population of a sample (418). Ehrich and colleagues (2005) invented 

EpiTYPER DNA methylation analysis as a high-throughput bisulfite conversion based method to 

identify methylation differences of targeted sequences in normal and neoplastic lung tissue 

(418). In brief, EpiTYPER analysis is performed as follows: DNA is treated with bisulfite 

reagent; targeted genomic regions are PCR amplified using sequence specific primers with a T7 

polymerase promoter attached; ssRNA is in vitro transcribed from the bisulfite PCR amplicon 

templates; the ssRNA is then cut with a nucleotide specific RNase; and the digestion products 

are analyzed by mass spectrometry to determine the sizes of the products (which are different if 

they incorporated a C or a T) (418). This technique gives a readout of 8-25 informative mass 

spectrometry fragments containing 1-4 CpGs each across amplicons ranging from 200-800bp 

(418). 

Bisulfite converted DNA has also been used to measure genome wide methylation 

patterns using reduced representation bisulfite genomic sequencing (RRBS; a technique that cuts 

DNA with methylation insensitive MspI, and sequences 200-250bp fragments enriched in CpG 

islands) and by microarray analysis (e.g. Illumina 450k human array), however these approaches 

are not as cost efficient for detailed analysis of small sets of genomic sequences such as 

imprinted loci which represent a minute fraction of the genome (419, 420). 

3.2.4  Association of  loss of imprinting and placental phenotypes 

In the results of Chapter 2 (Section 2.3) I quantified phenotypic metrics in cohorts of mid-

gestation Dnmt1Δ1o maternal effect placentas. Herein, the DMD methylation profiles of 

individual placentas from the same DNMT1o-deficient cohorts were quantified by EpiTYPER 
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analysis. A separate cohort of E17.5 DNMT1o-deficient placentas had both phenotypic 

measurements and quantified imprinted gene expression. Linear regression was used to examine 

the relationship between E/P ratio and expression of imprinted genes in those E17.5 placentas. 

Having the phenotypic and DMD methylation data sets enabled me to test for meaningful 

phenotype-epigenotype associations. Logistic regression analysis was used to determine if fetal 

viability, a binary variable, was associated with methylation at any individual DMD. Likewise, 

linear regression analysis was used to test for meaningful associations between continuous 

placental metrics (e.g. weight, layer volumes, TGC counts and triacylglyceride content) and loss 

of methylation at specific DMDs. It was expected that only the strongest phenotype-epigenotype 

associations would emerge due to the complications of epigenetic pleiotropic and epistatic 

interactions associated with mosaic loss of DMD methylation in the Dnmt1Δ1o model. 

3.2.5  Chapter 3 aims 

In this chapter I have analyzed placental DMD methylation patterns in the Dnmt1Δ1o maternal 

effect model. This analysis aimed to confirm loss of imprinting in DNMT1o-deficient placentas 

consistent with prior observations in the embryo and limited preliminary extraembryonic 

analysis using a combination of quantitative RT-PCR and BGS. The extent of epigenetic 

mosaicism in DNMT1o-deficient placentas was probed using EpiTYPER analysis of 15 different 

DMDs. This enabled logistic regression analysis of which epigenotypes are viable and which are 

not. Ultimately, I attempted to connect loss of DNA methylation at specific DMDs to 

quantitative placental phenotypic metrics using linear regression analysis. The overarching goal 

of this section was to gain insight into the collective and individual role of genomic imprints in 

placental biology and identify those imprints most crucial for normal placental development.  
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3.3.1  DNA and RNA purification  

Genomic DNA was extracted from placenta tissues cleaned of maternal decidua contamination 

and with minimal umbilical cord and yolksac membranes. Samples were stored in RNA later 

(Sigma-Adlrich) prior to extraction. Whole (E9.5) half (E12.5), or quarter (E15.5 and E17.5) 

placenta samples weighing <30mg were minced with a razor on a glass microscope slide and 

placed in 600ml of RLT buffer pre mixed with 6ul of 2’mercaptoethanol in a 2ml 

microcentrifuge tube with homogenization microbeads, and then homogenized using two 

45second cycles with a mini-beadbeater (Biospec). Nucleic acids were then extracted using the 

DNA/RNA combined extraction mini kit (Qiagen) or the RNeasy kit (Qiagen) following the 

manufacturer’s protocols.  

3.3.2  Imprinted gene quantitative real-time RT-PCR 

Quantitative real-time reverse transcription PCR (qPCR) was carried out on purified RNA 

samples from E9.5, E12.5, E15.5 and E17.5 wild-type and DNMT1o-deficient placentas using 

the standard methods described below and gene specific primers (Appendix B). Contaminating 

DNA was digested either on column during purification (with the RNeasy kit) or using an RQ1 

RNase free DNase digest before cDNA preparation. cDNA was prepared from 1μg of RNA 

using the high capacity cDNA reverse transcription kit (Applied Biosystems). qPCR was 

3.3  MATERIALS AND METHODS 
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performed in triplicate using SYBR Green PCR Master Mix (Applied Biosystems) in total 

reaction volume of 10μl on the 7900HT Fast Real-Time PCR machine. Dissociation curves were 

run on all reactions to ensure amplification of a single product. A control without RT (-RT) was 

run for each sample and a control without template (-template) was run for each primer set. 

Samples were analyzed using the ΔΔct method method relative to the Rpl32 housekeeping gene. 

Five wild-type placentas were analyzed at each gestational age (421).  

3.3.3  Bisulfite genomic sequencing 

Genomic bisulfite conversion was carried out using an EpiTect bisulfite conversion kit (Qiagen). 

500ng to 1μg of genomic DNA was converted based the amount extracted from each sample. 

The DNA was diluted with water to 20μl volume, and mixed with 85μl of bisulfite conversion 

mix and 35μl of DNA protect buffer. Conversion was carried out in 200μl PCR tubes using the 

following thermocycler program: 99°C 5′, 60°C 25′, 99°C 5′, 60°C 85′, 99°C 5′, 60°C 90′, 20°C 

hold. Columns and reagents provided by the EpiTect bisulfite kit were used per manufacturers 

instruction to purify converted DNA in 100μl of elution buffer. Nested bisulfite converted 

genomic PCR was used to amplify targeted DMDs (primers in Appendix C). The first round of 

nested PCR used 125ng of bisulfite converted DNA and in a 25 μl Taq Polymerase (Invitrogen) 

reaction with the following thermocycler program: Precycle: 94°C 4′, 55°C 2′ , 72°C 2′, 94°C 4′, 

55°C 2′, 72°C 2′; followed by 35 amplification cycles: 94°C 1′, 55°C 2′, 72°C 2′; and a short 

72°C 30″ extension and indefinite hold at 4°C. The second round of nested PCR was primed 

from 2.5 or 5μl of the first PCR and used a standard thermocycler program: 95°C 5′ denaturing 

followed by 35 cycles of 95°C 30″, 60°C 30″; 72°C 30″, a 72°C 7′ final extension and indefinite 

hold at 4°C. Bisulfite PCR reactions were run on 1.5% agarose gels at 80V and the appropriate 
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sized bands excised and gel purified using Qiaquick gel extraction kits (Qiagen). PCR amplicons 

were cloned using the TOPO-TA cloning kit (Invitrogen), transformed into competent E.coli 

cells, and plated onto LB + ampicillin agar plates coated with β-galactose and IPTG. 15-30 white 

opaque colonies were picked and sequenced in both directions using M3 and T7 promoter 

primers. Sequences were viewed and shortened to include only relevant genomic (and not 

plasmid) sequence and positioned in the same DNA strand orientation using CLC sequence 

viewer (CLC Bio). Bisulfite PCR amplicons from each placenta were aligned to fully converted 

DMD sequences with the Clustalomega multi-sequence alignment program and then exported to 

a text document where CG dinucleotides were underlined to easily identify converted and 

unconverted CpGs. Maternal and paternal DMD alleles were determine by use of SNPs between 

Mus musculus domesticus (maternal) and M.m castenous (paternal) strains. Results were 

transcribed into original figures in adobe illustrator. 

3.3.4  Epityper analysis 

EpiTYPER DNA methylation was used as a high-throughput bisulfite conversion based method 

to identify DMD methylation differences between wild-type and DNMT1o-deficient placentas 

(See section 3.1.3 for review). Genomic bisulfite conversion, bisulfite converted genomic PCR, 

and EpiTYPER (TM – Sequenom) mass-array DNA methylation analysis was performed at the 

Center for Genetics and Pharmacology at the Roswell Park Cancer Institute. Pre-validated 

bisulfite PCR primers for imprinted DMD genomic regions were used for the imprinted 

methylation analysis (Appendix D). All bisulfite amplcion sequences overlapped known primary 

imprinted DMDs ((26), and references therein). Bisulfite converted PCR amplification primers 

for all but H19 were chosen from a publicly available mouse imprinted panel (Sequenom). H19 
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primer sequences were originally published by McGraw et al. (2013) (408). Each EpiTYPER 

amplicon was further validated by internal control wild-type placenta DNA (50% imprinted 

DMD methylation), Dnmt1-null (Dnmt1c/c) ES cell DNA (0% imprinted DMD methylation) and 

1:2 (16.6% imprinted DMD methylation) and 2:1 (33.3% imprinted DMD methylation) mixtures 

of the two. Only amplicons that produced a linear relation between control genomic DNA 

expected and observed methylation fractions were selected for use in this study 

3.3.5  Biostatitics and bioinformatics 

EpiTYPER absolute methylation levels were calculated as the unweighted average CpG 

methylation fraction across each individual imprinted DMD amplicon. Overall imprinted DMD 

methylation was determined from 12 non-redundant DMD EpiTYPER amplicons (Appendix D) 

To determine if the wild-type and mutant sample methylation levels were normally distributed 

Kolmogorov-Smirnov, Shapiro-Wilk and Anderson-Darling tests of normality were applied to 

the data in Matlab (Mathworks). Because the mutant data were non-normally distributed we 

compared distributions using a Mann-Whitney U (Rank-Sum) test. In addition Fisher’s exact test 

was used to compare the number of low DMD methylation (less than 0.75 or 0.5 wild-type 

levels) placentas for each individual DMD across gestation. Bar graphs and scatter plots of 

overall and individual imprinted DMD methylation levels were originally generated with Matlab 

and then adapted into Adobe Illustrator. 

 To display the variability in DMD methylation intrinsic to the Dnmt1Δ1o maternal effect 

model we constructed heat maps. Mutant imprinted DMD methylation levels were normalized to 

wild-type by dividing each sample’s imprinted DMD absolute methylation fraction by the 

average wild-type methylation level for that imprinted DMD and gestational age. The relative 
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methylation levels were then log2 transformed and clustered using the clustergram function in 

Matlab. Each clustergram was adapted into a grayscale Adobe Illustrator file. 

 To associate individual placental DMD methylation defects with particular placental 

phenotypic abnormalities I performed regression analyses in Matlab. Logistic regression was 

performed to find associations between individual imprinted DMD methylation levels and the 

binary fetal viability variable. Bivariate linear regression analysis was used to associate 

imprinted DMDs with the continuous phenotypic metrics for LZ volume, JZ volume, trophoblast 

giant cell count and fetal/placental weights. Similarly, P/E ratio and aberrant imprinted gene 

expression was tested for meaningful associations using linear regression analysis. Stepwise 

forward linear regression modeling was performed to generate models that explain the Dnmt1Δ1o 

maternal effect phenotypic variation based on DNA methylation of the least number of 

significant DMDs. Phenotypes with strong associations (P<0.05) identified by bivariate 

regression were plotted against DMD methylation or imprinted gene expression. 

3.4.1  Loss of imprinted gene expression 

The epigenotypes of DNMT1o-deficient placentas showed a wide-range of loss of imprinting 

across gestation. Expression of genes from 7 imprinted loci (Peg10, Dlk1, H19, Igf2r, Mest, 

Kcnq1 and Grb10) were analyzed by qPCR with the expectation that loss of DMD methylation at 

any imprinted cluster would cause expression of some imprinted genes to increase and others to 

3.4  RESULTS 
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decrease. The observed average imprinted gene expression patterns of cohorts of DNMT1o-

deficient placentas are shown in Figure 28. The expected loss of imprinting gene expression 

patterns are displayed at the bottom of Figure 28. Abnormal imprinted gene expression patterns 

were observed by qPCR as early as E9.5 and continued through mid (E12.5 and E15.5) and late 

(E17.5) gestation. Early in gestation many imprinted genes behaved in the manner expected with 

loss of methylation at neighboring ICRs. For example, placental expression of Pon2, Igf2, Igf2r, 

Klf14 and Grb10 were down regulated in DNMT1o-deficient placentas relative to wild type at 

E9.5 (Figure 28). However, by E17.5 the expected loss of imprinted gene expression patterns 

was not as encompassing. At E17.5 DNMT1o-deficient placentas showed loss of imprinted gene 

expression within the Mest cluster congruent with expected results; with Mest expression up 

regulated and Klf14 down regulated. In contrast, within the Peg10 cluster, Sgce and Pon2 were 

up regulated in a manner incoherent with loss of Peg10 DMD methylation (Figure 28). 

Unexpected upregulation was also observed for Dlk1, Phlda2 and Ascl2 but did not reach 

significance compared to wild-type (Figure 28). This transcriptional analysis is evidence that the 

partial loss of imprinting observed in the Dnmt1Δ1o maternal effect model changes across 

gestation. 

 Linear regression was used to determine if the expression of any imprinted gene was 

associated with the E/P ratio placental efficiency metric in DNMT1o-deficient placentas. Both 

Ascl2 and Mest expression were significantly associated with E/P ratio (P<0.01; Figure 29). 

Expression of Ascl2 had an inverse association with with E/P ratio (Figure 29A), whereas 

expression of Mest had a direct association (Figure 29B). Furthermore, in multivariate linear 

regression modeling the expression of Ascl2 and Mest accounted for 82% of the variance in E/P 
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ratio. These relationships were maintained when controlling for gender (P<0.001; data not 

shown). 

3.4.2  Bisulfite genomic sequencing 

DMD methylation patterns were also disrupted in DNMT1o-deficient placentas. Allele specific 

loss of DMD methylation as measured by BGS was observed at E9.5 and E17.5 (Figures 30 and 

31). Strict parent-specific DMD methylation was observed for both paternally imprinted (H19) 

and maternally imprinted (Kcnq1, Snrpn, and Mest) DMDs in a wild-type placentas. In contrast, 

significant deviations from parent-specific methylation were observed in DMDs of all DNMT1o-

deficient placentas analyzed. For example, at E9.5 nearly complete loss of Mest DMD 

methylation was observed in all DNMT1o-deficient placentas (M1-M3; Figure 30). A large 

range of variation in the extent of methylation loss at individual DMDs was observed across 

placental samples. For example, whereas M1 showed a pattern of strict parent-specific 

methylation for the Snrpn DMD, M2 showed a near complete loss. In any individual E9.5 

placenta there was no correlation among the four different DMDs for the extent of methylation 

loss. For example, M1 showed nearly complete loss of DMD methylation of the H19 and Mest 

DMDs, yet normal methylation of the Snrpn DMD, whereas M2 showed nearly complete loss of 

DMD methylation 
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Figure 28.  Imprinted gene expression patterns in DNMT1o-deficient placentas across 
gestation. Bar graph columns show mean expression (+SEM) of 15 imprinted genes in 

DNMT1o-deficient placentas compared to wild-type (n=5). Normalization to the Rpl32 gene 

using the ΔΔct method. (n = the number of DNMT1o-deficient placentas studied). * Denotes 

significant (P<0.05) differences in expression between DNMT1o deficient and wild-type 

ascertained by Kruskal Wallis test. Expected expression changes with loss of DMD methylation 

for each imprinted gene cluster. Green up arrows indicates expected increase in expression; Red 

down arrows represent expected decreased expression. 
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Figure 29.  Linear regression of E/P Ratio and imprinted gene expression in E17.5 
DNMT1o-deficient placentas. (A) Negative association between Ascl2 expression and E/P 

ratio. (B) Positive association between Mest expression and E/P ratio. 
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precise makeup of mosaics transforms during the second half of gestation such that it is 

uncommon to recover certain patterns of DMD methylation. 

 

 

Figure 30.  Variable loss of DMD methylation in E9.5 DNMT1o-deficient placentas. 
Bisulfite genomic sequencing of the H19, Kcnq1, Snrpn and Mest DMDs in a wild-type and 

three DNMT1o-deficient placentas. Abbreviations: M Maternal allele, P Paternal allele. Position 

of methylated CpGs are indicated as filled circles. Parantheses indicate intraquartile range. (*) 

significantly lower methylation than wild-type by Kruskal Wallis (P<0.05). 
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Figure 31.  Variable loss of DMD methylation in E17.5 DNMT1o-deficient placentas. 
Bisulfite genomic sequencing of the H19, Kcnq1, Snrpn and Mest DMDs in a wild-type and 

three DNMT1o-deficient placentas. Abbreviations: M Maternal allele, P Paternal allele. Position 

of methylated CpGs are indicated as filled circles. Parantheses indicate intraquartile range. (*) 

significantly lower methylation than wild-type by Kruskal Wallis (P<0.05). 
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3.4.3  EpiTYPER imprinted DMD methylation analysis 

 To understand the role of imprinted methylation on the wide-range of placental 

abnormalities seen in the Dnmt1Δ1o model, DNA methylation was measured at 14 imprinted 

DMDs at three times during the latter half of gestation. The average methylation fraction across 

12 non-redundant DMD EpiTYPER amplicons was calculated for both wild-type and DNMT1o-

deficient placental samples at each time point. Methylation was reduced in DNMT1o-deficient 

placentas at E12.5, E15.5 and E17.5 (Figure 32A). At E12.5 there was a significant decrease in 

the average methylation across all DMDs (P<0.001) from 0.388 for wild-type to 0.232 for 

mutant placentas.  In a collection of 23 E15.5 DNMT1o-deficient placentas, the average DMD 

methylation was 0.283, significantly lower than the wild-type average of 0.382 (P<0.001). 

Similarly in a collection of 24 E17.5 placentas average DMD methylation was 0.272, 

significantly lower than the wild-type average of 0.407 (P<0.001). There was a trend toward 

mutants approaching wild-type levels of imprinted DMD methylation levels as gestation 

progressed; average DMD methylation increased from E12.5 to E15.5 (P<0.01) and from E12.5 

to E17.5 (P<0.001) but not from E15.5 to E17.5 (not significant). These findings show that total 

DMD methylation levels in DNMT1o-deficient placentas do not remain constant across gestation 

but rather resolve to more normal levels, suggesting selection against low DMD methylation 

epigenotypes that do not support placental development and function. 

There was a large range in loss of DMD methylation at most, but not all, individual 

imprinted DMDs in DNMT1o-deficient placentas. The hypergeometric distribution was used to 

categorize DMDs as being enriched, depleted or within the expected range of loss of methylation 

(<0.75 wild-type levels) at E12.5 as compared to the total E12.5 DMD measurements. The 

Grb10, Plag1, Igf2r, Kcnq1, and H19 DMDs had a number of low methylation samples within 
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the expected range (Figures 32B-F). Other DMDs including Peg10, Peg1, Peg3, and Impact 

were hyper-variable and had a greater number of samples with low methylation values (Figures 

32G-K). A third group of DMDs was hypovariable and depleted for low methylation values, 

these included Dlk1, Nespas, and Snrpn (Figures 32L-P). Adjacent DMD amplicons were 

analyzed to confirm the hypervariable Impact and hypovariable Nespas and Dlk1 measurements. 

These findings are interpreted as evidence for early selection against loss of Nespas, Snrpn  and 

Dlk1 DMD methylation in trophoblast. 

Concomitant with the increasing average imprinted DMD methylation from E12.5 to 

E15.5 in DNMT1o-deficient placentas (Figure 32A), I observed a steady reduction in the range 

of methylation among the examined placentas for many but not all individual DMDs (Figures 

32B-P). Based on this, three distinct temporal patterns of methylation were defined by 

comparing median methylation levels across gestation for each DMD with the Rank-sum test. A 

group of five DMDs had higher average methylation at E15.5 than at E12.5 (Mest, Snrpn, 

Dlk1.A, Dlk1.B, and Nespas.B; P<0.025; Figures 32 G, L, O and P). Other DMDs had a more 

gradual increase in methylation from E12.5 to E17.5 (Peg10, H19 and Peg3; P<0.025; Figures 

32D, H and K). Five DMDs comprise a third DMD class that did not significantly change their 

average methylation across gestation in DNMT1o-deficient placentas (Igf2r, Kcnq1 Plagl1, 

Impact.A, Impact.B, Nespas.A, and Nespas.B; Figures 32B, C, F, I, J, M and N). Out of the three 

imprinted DMDS for which duplicate adjacent EpiTYPER amplicons were selected (Dlk1, 

Impact and Nespas), only Nespas showed a discordant trend with Nespas.A not differing 

between gestational cohorts and Nespas.B transitioning to higher average methylation between 

E12.5 and E15.5 (Figures 32M and N). Additionally the Grb10 DMD displayed opposing 



149 

 

changes from E12.5 to E15.5 and E15.5 to E17.5, and did not significantly differ between E12.5 

and E17.5 (Figure 32E). 

Fisher’s exact test was used to confirm these temporal patterns by comparing the number 

of low methylation placentas using a cutoff of <0.75 or <0.5 wild-type levels. These findings 

were slightly different. Using a low methylation cutoff of <0.5 wild-type the Fisher’s exact test 

revealed that Mest and Kcnq1 DMDs had significantly fewer low methylation samples at E15.5 

than at E12.5, and the Peg3 DMD had a significant gradual decrease in low methylation samples 

from E12.5 to E17.5. With a less stringent low methylation cutoff of <0.75 the Fisher’s exact test 

revealed that Nespas and Mest had a significant decrease in low methylation samples between 

E12.5 and E15.5, and Dlk1.B had a significant decrease in low methylation samples between 

E12.5 and E17.5. No significant changes were unearthed within the E15 to E17 transition using 

Fisher’s exact test with either cutoff. These results indicate selective pressure against loss of 

methylation of the Mest, Kcnq1, Nespas, Peg3 and Dlk1 DMDs during mid-gestation. 

Three additional imprinted DMDs were examined in E12.5 and E15.5 cohorts (Zrsr1, 

Nnat and Nap1l5), and only Zrsr1 had a significant difference between wild-type and the 

Dnmt1Δ1o mutant average methylation levels (Figures 32Q-S). Each of these DMDs is within a 

putative microimprinted domain (Section 1.5.1, 1.5.4 and 1.5.12; Figures 2A, D and L). In 

DNMT1o-deficient placentas Zrsr1 remained variable and did not differ between E12.5 and 

E15.5. Overall, the observed trends in DMD methylation during gestation suggest that there are 

strong biological influences blocking the loss of imprints at specific DMDs during mid-gestation. 
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Figure 32.  Imprinted DMD methylation levels in wild-type (wt) and DNMT1o-deficient 
(mt) placentas across mid gestation (E12.5, E15.5 and E17.5). (A) Bar graphs showing 

average mean and standard deviation of total imprinted DMD methylation of wt (open bars) and 

mt (filled bars) across mid-gestation. (B-S) Binned scatter plot showing individual wt and mt 

placentas across mid-gestation and the sample mean for the following imprinted DMDs: (B) 

Igf2r, (C) Kcnq1, (D) H19, (E) Grb10, (F) Plagl1, (G) Mest (H) Peg3 (I) Impact.A, (J) Impact.B, 

(K) Peg10, (L) Snrpn, (M) Nespas.A, (N) Nespas.B, (O) Dlk1.A, (P) Dlk1.B, (Q) Zrsr1, (R) 

Nnat, and (S) Nap1l5. Small brackets indicate significant differences between gestational age 

matched sample populations of wt and mt DMD methylation medians. Larger brackets indicate 

significant differences between mutant DMD methylation medians at different gestational ages. * 

(P<0.01), and **(P<0.001) denote significant differences of mutant median imprinted DMD 

methylation compared to wild type, or between gestational ages of mutant sample population by 

the Rank-sum test. DMDs are organized by hypergeometric distribution as having a number of 

low methylation samples falling within the expected range (B-F), greater than the expected range 

(G-K) or less than expected range (L-P). 
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 The spectrum of methylation among 12 DMDs for each individual E12.5 DNMT1o-

deficient placenta is displayed in the form of a heat map clustergram (Fig 33). Among the 24 

E12.5 placentas represented in this manner, the majority of placentas have a unique DMD 

methylation profile not found in other placentas, although there are a few cases of high 

similarity. For example placentas A8 and B2 have identical DMD methylation profiles. Placentas 

A4 and B5 differ only at Grb10, Kcnq1 and H19 DMDs, and placentas A3 and C1 are unique at 

only the Plagl1 DMD. Clustering of the DMDs at E12.5 indicate the genetically linked Peg10 

and Mest DMDs as well as the linked Kcnq1 and Snrpn DMDs vary in conjunction. Although 

there is a trend toward more normal DMD methylation levels at E15.5 and E17.5, each 

DNMT1o-deficient placenta at these stages still has a unique imprinted epigenotype (Figures 33 

and 34). These comparisons among placentas across the latter half of gestation point out the 

intrinsic power of the Dnmt1Δ1o maternal effect model to produce diverse and abnormal patterns 

of imprinted DMD methylation. 
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Figure 33.  Hierarchical clustering of 24 E12.5 DNMT1o-deficient placentas based on DMD 
methylation. Data is shown as the log2 transformed ratio of mt:wt DMD methylation. The heat 

map displays normally methylated DMDs as dark boxes whereas loss of methylation is indicated 

by lighter shades. The upper and side dendrograms display linkage between imprinted DMDs 

and DNMT1o-deficient samples respectively. Imprinted DMDs are labeled across the bottom 

axis. DNMT1o-deficient samples are labeled down the right hand side by cohort litter (Letters A-

C) and conceptus (Numbers 1-8).  
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Figure 34.  Hierarchical clustering of 23 E15.5 DNMT1o-deficient placentas based on DMD 
methylation. Data is shown as the log2 transformed ratio of mt:wt DMD methylation. The heat 

map displays normally methylated DMDs as dark boxes whereas loss of methylation is indicated 

by lighter shades. The upper and side dendrograms display linkage between imprinted DMDs 

and DNMT1o-deficient samples respectively. Imprinted DMDs are labeled across the bottom 

axis. DNMT1o-deficient samples are labeled down the right hand side by cohort litter (Letters A-

D) and conceptus (Numbers 1-8). 
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Figure 35.  Hierarchical clustering of 23 E17.5 DNMT1o-deficient placentas based on DMD 
methylation. Data is shown as the log2 transformed ratio of mt:wt DMD methylation. The heat 

map displays normally methylated DMDs as dark boxes whereas loss of methylation is indicated 

by lighter shades. The upper and side dendrograms display linkage between imprinted DMDs 

and DNMT1o-deficient samples respectively. Imprinted DMDs are labeled across the bottom 

axis. DNMT1o-deficient samples are labeled down the right hand side by cohort litter (Letters A-

G) and conceptus (Numbers 1-8). 
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3.4.4  Decreased fetal viability is associated with loss of Peg10 DMD methylation 

Logistic regression was used to identify those imprinted DMDs that exerted the greatest 

influence on fetal viability at E12.5 through placental imprinting (Table 3). The logistic 

regression coefficient (logit) is reported as a measure of the effect of DMD methylation levels on 

the odds ratio of fetal survival. A positive association was discovered between Peg10 DMD 

methylation and fetal viability at E12.5 (P<0.05) indicating that placentas with loss of the Peg10 

methylation imprint are less likely to support a viable fetus. A negative association between Nnat 

DMD methylation and fetal viability was observed (P<0.05). The only significant association 

identified between imprinted DMD methylation and fetal viability at either E15.5 or E17.5 was a 

negative association between Nespas.B DMD methylation and viability at E15.5 (P<0.05; Table 

3). These findings suggest that in the context of the Dnmt1Δ1o maternal effect mouse model, 

nearly normal Nnat and Nespas imprinting may decrease viability. 

 

Gestational Age DMD Logit P-Value 

E12.5 (n=24) Peg10 +2.17 3.25E-02 

 Nnat -2.49 4.12E-02 

E15.5 (n=23) Nespas.B -1.05 3.69E-02 

E17.5a (n=23)    

Table 3.  Logistic regression of E12.5, E15.5 and E17.5 DNMT1o-deficient placentas based 
on DMD methylation and fetal viability. Only significant (P<0.05) associations established by 

logistic regression analysis between dependent fetal viability and independent imprinted DMD 

methylation values are shown. The log odds ratio(logit) is the coefficient indicating the direction 

and strencth of the relationship. (a) no significant associations were found at E17.5. 
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3.4.5  Placental abnormalities are associated with loss of DMD methylation 

Because of the broader range of abnormal DMD methylation, histomorphological 

abnormalities and effects on fetal viability at E12.5 I focused primarily on phenotype-

epigenotype regression analysis at the E12.5 time point. Bivariate linear regression analysis was 

used to determine which imprinted DMDs underlie the observed E12.5 placental abnormalities. 

The most significant (P<0.05) DMD associations for each phenotype are displayed in Table 3 

and Figure 36. The regression coefficient (β) is reported as the change in phenotype associated 

with modulation of the DMD methylation fraction (0 to 1.0). Placenta weight is negatively 

associated with DMD methylation at Nespas.A (Table 4 and Figure 36A) although not at 

Nespas.B. For each 1% decrease in Nespas.A DMD methylation (0.01 methylation fraction) 

placental weight increased by a corresponding 1.275 milligrams (95% CI: 0.648, 1.902). 

Spongiotrophoblast volume was negatively associated with both analyzed Nespas regions as well 

as the H19 DMD (Table 4 and Figures 36B-D). Each 1% decrease in DMD methylation at 

Nespas.A, Nespas.B and H19 increased JZ volume by 0.0399 (95% CI: 0.0258, 0.054), 0.0266 

(95% CI: 0.035, 0.0497) and 0.0170 (95% CI: 0.0017, 0.0323) mm3 respectively. 

Linear regression analysis revealed a strong association between Peg10 DMD 

methylation and LZ volume (Table 4 and Figure 36E). Diminishment of Peg10 DMD 

methylation by 1% corresponds to a 0.0217 (95% CI: 0.002, 0.066) mm3 decrease in LZ central 

volume. Labyrinth structures in three DNMT1o-deficient placentas with low Peg10 DMD 

methylation are shown in Fig 4. Labyrinths in these samples are noticeably smaller, disorganized 

and hemorrhagic. Notably, methylation of the Nnat DMD is negatively associated with LZ 

volume (Table 4 and Figure 36F), counter to the observed trend of decreased LZ in DNMT1o-
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deficient placentas; a 1% decrease in Nnat DMD methylation resulting in a 0.0249 (95% CI: 

0.043, 0.111) mm3 increase in LZ central volume. 

 

Placental Phenotype DMD β P-Value 

Placental Weight (mg) Nespas.A -127.5 6.21E-04 

Spongiotrophoblast Central Volume (mm3) Nespas.A -3.99 1.41E-05 

 Nespas.B -2.65 3.54E-02 

 H19 -1.7 4.08E-02 

Labyrinth Central Volume (mm3) Peg10 +3.58 3.12E-02 

 Nnat -7.72 2.82E-04 

Trophoblast Giant Cell Count (#/section) Kcnq1 -508 1.87E-05 

 Snrpn -674 2.31E-04 

 Plagl1 -438 1.97E-02 

 Nespas.B -575 4.38E-02 

Table 4.  Bivariate regression analysis of 24 E12.5 DNMT1o-deficient placentas based on 
DMD methylation and placental phenotypes. Only significant (P<0.05) associations 

established by bivariate regression analysis between dependent placental phenotypes and 

independent imprinted DMD methylation values are shown. β is the linear regression coefficient.  

 

 Bivariate regression analysis revealed a significant negative association between Kcnq1 

DMD methylation and accumulation of TGCs (Table 3 and Figure 36G). A 1% decrease in 

Kcnq1 DMD methylation corresponds to an increase of 5.08 (95% CI: 3.25, 6.91) TGCs per 

histological section. Representative H&E and ISH stained histological sections of wild-type and 

DNMT1o-deficient placentas with very low Kcnq1 DMD methylation and pronounced expansion 

of parietal TGCs bordering the JZ are displayed in Figure 5. Positive ISH staining for the pan-

TGC transcripts Prl2c2 and Prl3b1 was observed in both parietal TGCs and JZ layers (Figure 5). 

Intriguingly, the early TGC marker Prolactin-1 (Prl3d1) was ectopically expressed in the parietal 

TGCs of DNMT1o deficient placentas with low Kcnq1 DMD methylation, where as it should be 

restricted to TGCs embedded within maternal spiral arteries by E12.5. 
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Figure 36.  Linear regression plots of imprinted DMD methylation versus placental 
phenotypic metrics in a cohort of E12.5 DNMT1o-deficient placentas. (A) Negative 

association between Nespas.A DMD methylation and placental weight. (B) Negative association 

between Nespas.A DMD methylation and spongiotrophoblast volume. (C) Negative association 

between Nespas.B DMD methylation and spongiotrophoblast volume. (D) Negative association 

between H19 DMD methylation and spongiotrophoblast volume. (E) Positive association 

between Peg10 DMD methylation and labyrinth volume. (F) Negative association between Nnat 

DMD methylation and labyrinth volume. (G) Negative association between Kcnq1 DMD 

methylation and TGC counts. (H) Negative association between Snrpn DMD methylation and 

TGC counts. (I) Negative association between Plagl1 DMD methylation and TGC counts. (J) 

Negative association between Nespas.B DMD methylation and TGC counts. R2 is unadjusted R-

square value. 
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Figure 37.  Histology of hematoxylin and eosin (H&E) stained labyrinth of one wild-type 
(wt) and three DNMT1o-deficient low-Peg10 DMD methylation placentas. The scale bars for 

50X, 100X and 200X magnification are 500, 200 and 100 μm respectively. Yellow lines in 50x 

and 100x magnification images outline the labyrinthine zone (LZ). 
 

 DNA methylation at the genetically linked Snrpn DMD (both Kcnq1 and Snrpn DMDs 

are on mouse chromosome 7) also inversely associated with TGC accumulation (Table 3 and 

Figure 36H). For every 1% decrease in Snrpn DMD methylation there is a corresponding 

increase of 6.74 (95% CI: 3.73, 9.75) TGCs per section. A weaker inverse association between 

both Plagl1 and Nespas.B DMD methylation and TGC number was also identified (Table 3 and 

Figures 36I and 36J). Decreases of 1% methylation at Plagl1 and Nespas.B modulate an increase 

in TGCs per section of 4.38(95% CI: 0.970, 7.79) and 5.75(95% CI: 0.500, 11.0) respectively.  

Imprinted DNA methylation at the Peg3 DMD, which like Kcnq1 and Snrpn is a maternally 

derived methylation imprint on mouse chromosome 7, was not significantly associated with TGC 
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accumulation (P=0.40). Linear regression model building confirmed the major DMD methylation 

influence of TGC accumulation to that of just the Kcnq1 and Snrpn DMDs (S2 Table). 

 

 

Figure 38.  In situ hybridization analysis of TGCs in E12.5 wild-type and DNMT1o-
deficient placentas with low Kcnq1 DMD methylation. All images were taken at 100X 

magnification. The scale bar is 100μm. Yellow lines delineate the layer containing trophoblast 

giant cells (TGCs) in the top row displays histology of hematoxylin and eosin (H&E) stained 

sections. ISH for the prolactin gene family members Prl3d1, Prl3b1 and Prl2c2 on adjacent 

sections to H&E are shown in the lower three rows. 
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Parameter Estimate SE P-Value 

Intercept +310 36.8 3.54E-08 

Kcnq1 Regression Coefficient (β) -364 109 3.11E-03 

Snrpn Regression Coefficient (β) -350 160 4.01E-02 

Table 5.  Stepwise forward linear regression analysis of associations between imprinted 
DMD methylation and TGC accumulation in E12.5 DNMT1o-deficient placentas. N=24, 

df=21, model P-value=1.54x10-5 

 

I performed bivariate linear regression to determine if there were any phenotype-

epigenotype associations at E15.5 and E17.5. Spongiotrophoblast central volume inversely 

associated with Impact.B and Mest methylation at E15.5  (P<0.05; Table 6). Each 1% decrease in 

Impact.B and Mest methylation increased JZ central volume by 0.0717 (95% CI: 0.043, 0.1004) 

and 0.0449 (95% CI: 0.0275, 0.0623) mm3 respectively. Using a relaxed significance threshold 

only three meaningful phenotype-epigenotype associations were found at E17.5 (P<0.075; Table 

7). Placental weight was positively associated with Dlk1.A methylation: each 1% decrease in 

Dlk1.A methylation corresponded to a 1.166 (95% CI: 0.591, 1.741) milligram decrease in 

placental weight. Fetal weight was associated with placental methylation at the Igf2r and Mest 

DMDs: for each 1% decrease in Igf2r and Mest methylation fetal weight decreased by 20.40 

(95% CI: 11.17, 29.63) and 16.81 (95% CI: 8.05, 25.57) milligrams respectively. 

 

Placental Phenotype DMD β P-Value 

Spongiotrophoblast Central Volume (mm3) Impact.B -7.72 1.45E-02 

 Mest -4.49 1.87E-02 

Table 6.  Bivariate Regression analysis of 21 E15.5 DNMT1o-deficient placentas based on 
DMD methylation and placental phenotypes. Only significant (P<0.05) associations 

established by bivariate regression analysis between dependent placental phenotypes and 

independent imprinted DMD methylation values are shown. β is the linear regression coefficient. 
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Placental Phenotype DMD β P-Value 

Placental Weight (mg) Dlk1.A +116 5.52E-02 
Fetal Weight (mg) Igf2r +2041 3.82E-02 
 Mest +1668 7.07E-02 

Table 7.  Bivariate regression analysis of 23 E17.5 DNMT1o-deficient placentas based on 
DMD methylation and placental phenotypes. Only significant (P<0.075) associations 

established by bivariate regression analysis between dependent placental phenotypes and 

independent imprinted DMD methylation values are shown. β is the linear regression coefficient. 

 

Linear regression analysis revealed an association between loss of Mest DMD 

methylation and triacylglyceride accumulation in E17.5 DNMT1o-deficient placentas (Figure 

29B). Mest was the only DMD that associated with lipid accumulation. In contrast to the prior 

regression analysis the methylation variable used in this regression analysis was normalized as 

the ratio of mutant:wild-type. In section 3.3.1 I showed that imprinted gene expression within the 

Mest imprinting cluster is altered at E17.5 in a manner indicative of loss of imprinting. Both 

Mest and Klf14 encode factors with functions in lipid metabolism as a putative lipid hydrolase 

and as a key metabolic transcription factor respectively. However, these results leave open the 

possibilities that loss of Mest DMD methylation causes placental lipid accumulation in a direct 

fashion through abnormal Mest and Klf14 imprinted gene expression or via an indirect 

developmental defect (e.g. poor SynT or fetal vessel development). 
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Figure 39.  Linear regression plot of Mest DMD methylation and placental triglycerides at 
E17.5. Loss of methylation at Mest is associated with elevated placental triacylglycerol 

concentrations. 

3.5.1  A broad spectrum of loss of imprinting is revealed in DNMT1o-deficient placentas 

 In the results of Chapter 3 I expected and found a large range of loss of imprinting 

between DNMT1o-placentas and individual DMDs underscoring the mosaicism of this model. 

Analysis of imprinted gene expression from 7 different imprinted loci revealed many of the 

expected patterns of loss of imprinting that yielded increased (biallelelic) or reduced (diminished 

monoallelic) expression at E12.5 (Figure 28). However, at E15.5 and to a greater extent at E17.5, 

imprinted gene expression was not as expected with certain genes behaving in unexpected and 

opposite ways (Figure 28). I reconcile these results to indicate that the primary effects of loss of 

DMD methylation in the Dnmt1Δ1o maternal effect model are manifested directly on gene 
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expression early in development, but become increasingly influenced by secondary factors such 

as trophoblast layer distribution and undefined compensatory mechanisms. In addition, novel 

associations were revealed between the expression of the Mest and Ascl2 genes with E/P ratio 

(Figure 29). DMD methylation was also highly variable but not static between gestation ages. 

My initial BGS results show variable methylation levels at all DMDs analyzed in at least some 

DNMT1o-deficient placentas at E12.5 but not for every DMD at E17.5, suggestive of an 

changing population of surviving DNMT1o-deficient placentas in late gestation in terms of both 

imprinted gene expression and DMD methylation (Figure 30 and 31). These results are further 

corroborated by EpiTYPER analysis of 14 DMDs in larger cohorts of DNMT1o-deficient mid- 

and late- placentas. 

Quantitative EpiTYPER DNA methylation analysis was used to ascribe placental 

functions for DMDs in two ways: by identifying nearly normal DMD methylation in DNMT1o-

deficient placentas; and by correlating highly variable DMD methylation with placental 

phenotypes. We expected total wild-type placental DMD methylation to be approximately 50%, 

but found the wild-type average to be just under 40% at each time point. These results are 

consistent with the slightly lower levels of DMD methylation found in control placentas than 

embryos in prior studies (408). E12.5 Wild-type placentas showed a large range of methylation 

across individual DMDs with Peg3 (32.7%) on the low end and Dlk1.A (57.7%) on the high. 

Based on the current understanding of DNMT1o action it is predicted that on average a 50% loss 

of methylation at each DMD should be observed in cohorts of DNMT1o-deficient placentas (60, 

104, 402). However, using the hyper-geometric distribution, I found that the Dlk1, Nespas and 

Snrpn DMDs were hypovariable and near normal in their methylation levels in E12.5 DNMT1o-

deficient placentas (Figures 32G-K). These findings suggest that many epigenotypes with these 
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DMDs poorly methylated may be incompatible with early trophoblast survival and/or 

proliferation resulting in selection against specific epigenotypes at the cellular and organismal 

level. 

Interrogation of the association of DMD methylation and placental phenotypes by 

regression analysis confirmed the importance of DMD methylation in placental development and 

function. Significant associations were observed between diminished imprinted methylation of 

the DMDs Peg10, Kcnq1, H19 and Nespas, and specific placental phenotypes in DNMT1o-

deficient E12.5 placentas (Tables 3, 4 and 7; Figure 36). Additional associations were found 

between the Impact.B, Mest, Dlk1, and Igf2r DMDs and placental phenotypes at E15.5 and 

E17.5 (Tables 6 and 7; Figure 39). Importantly, this approach using the Dnmt1Δ1o maternal effect 

model to gain insight into the role of imprinted genes in placental development and function is 

fundamentally different in two significant ways from genetic approaches that either inactivate 

single imprinted genes or remove ICRs. First, the Dnmt1Δ1o maternal effect model produces 

epigenetic mutant offspring with loss of DMD methylation, while retaining the genetic sequence 

of ICRs and imprinted genes. Second, the Dnmt1Δ1o maternal effect model produces broadly 

variable methylation effects across many DMDs. This permits DMD methylation to be treated as 

a continuous variable in a quantitative trait analysis, thus revealing strong associations between 

loss of methylation at particular DMDs and histo-morphological placental phenotypes. The 

recognition of these associations offers new insights into the integral role of genomic imprints on 

placenta development. 
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3.5.2  Association between Ascl2 and Mest gene expression with E/P ratio 

Overall my findings of wide-ranging E/P ratios in DNMT1o-deficient conceptuses supports the 

idea that a subset of imprinted genes is vitally important in placental function. Expression of 

Ascl2 and Mest accounts for a significant proportion of the observed variation in E/P ratio 

observed in DNMT1o-deficient offspring. There was a direct correlation between Mest 

expression and E/P ratio, and an inverse correlation between Ascl2expression and E/P ratio. 

Furthermore, Mest expression is predicted to increase with loss of methylation at the Mest DMD. 

In mouse placentas, Mest expression is limited to the fetal derived extraembryonic mesoderm 

and is most prominent in mid to late gestation placentas in the capillary endothelial cells of the 

LZ. Investigations suggest that Mest is involved in angiogenic sprouting in the LZ (275). An 

insertional disruption of the Mest gene when paternally inherited is associated with fetal and 

placental growth restriction at E18.5 of 86.4% and 87.5% respectively compared to wild-type 

(274). However, Mest null mutant placentas contained congruent LZ and JZ layers indicative a 

general growth defect rather than a disruption of a single layer. Loss of Mest DMD methylation, 

and concomitant upregulation of Mest, may thus be expected to increase the size of both embryo 

and placenta, and perhaps increase the placenta efficiency resulting an out-sized effect on fetal 

growth. It is also possible that Mest expression is a proxy for loss of imprinting of other genes 

within the Mest cluster (e.g. Cpa4, Copg2 or Klf14) that are actually the main effectors. 

Although expression of Klf14 is reduced in E17.5 placentas, no association was made between its 

expression and E/P ratio. 

 The inverse association between Ascl2 expression and E/P ratio is more difficult to 

rationalize due to the unexpected increase in average methylation levels. Taken at face value the 

expected decrease in Ascl2 expression associated with loss of Kcnq1 DMD methylation should 
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be most similar to either the Ascl2 null or hypomorphic alleles depending on how uniform the 

loss of imprinting is (222, 311). Maternally inherited deletion of Ascl2 is embryonic lethal at 

E10.5 due to excessive TGC accumulation and a lack of LZ and JZ layer development (222). 

Ascl2 hypomorphs on the other hand are viable but growth restricted with a lesser degree TGC 

expansion and diminished LZ (311). One explanation for the inverse relationship would be that 

decreased Ascl2 expression restricts placental growth disproportionately compared to fetal 

growth. However, there is also a cluster of four placental samples that have elevated Ascl2 

expression and lower E/P ratio, suggesting elevated Ascl2 expression may be indicative or 

causative of inefficient placentas. It is also plausible that Ascl2 expression is a proxy for other 

maternally expressed genes in the Kcnq1 cluster (e.g. Cdkn1c and Phlda2). Although expression 

of Phlda2 was also unexpectedly upregulated, its expression did not associate with E/P ratio. 

Intriguingly, transgenic over-expression of either Phlda2 or Cdkn1c results in placental growth 

restriction (314-316). Lastly, it is important to note that the unexpected increase in the maternally 

expressed members of the Kcnq1 cluster at E17.5 may be due to compensatory changes in 

placental layer contribution, selection for particular epigenotypes or gene expression patterns. 

3.5.3  Peg10 viability and labyrinth phenotypes 

A strong association was observed between loss of Peg10 DMD methylation and decreased fetal 

viability and LZ volume at E12.5 (Tables 3 and 4; Figure 36). Most placentas with loss of Peg10 

DMD methylation and decreased LZ volume were unable to support fetal development. I 

interpret these associations, and the gradual trend toward normal Peg10 DMD methylation levels 

from E12.5 to E17.5 (Figure 32K), as a progressive requirement for Peg10 methylation to sustain 

fetal viability during later gestation. The decreasing Peg10 DMD methylation variability and 
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lack of phenotypic association at E15.5 and E17.5 could be explained by selection against certain 

low Peg10 DMD methylation epigenotypes. The DMD methylation epigenotype of placentas 

with low Peg10 methylation at E12.5 is different than the epigenotype of placentas with low 

Peg10 DMD methylation recovered at E15.5 and E17.5 (Figures 33, 34 and 35). The 

combination of low Peg10 DMD methylation (<50% wild-type level) plus low Dlk1, Kcnq1, 

Nespas or Snrpn DMD methylation (<50% wild-type) was observed at E12.5 (samples A5, A7, 

B1 and C3; Fig 33) but does not occur in any DNMT1o-deficient placentas at either E15.5 or 

E17.5 (Figures 34 and 35). In summary, my analysis of DNMT1o-deficient placentas reveals a 

novel link between placentas with low Peg10 DMD methylation, poor LZ development and the 

inability to sustain fetal development. 

A strong linkage between Mest and Peg10 DMD methylation was found at E12.5 and 

E17.5 (Figures 34 and 35). This was expected given the proximity of the two DMDs on mouse 

chromosome 6, however Mest did not show significant associations with early placental 

phenotypes in this study. This observation does not preclude a role for Mest later in gestation, 

and in fact several associations were made between Mest DMD methylation and placental 

phenotypes at E15.5 and E17.5. An inverse association between Mest DMD methylation and 

spongiotrophoblast volume at E15.5, and a positive association between Mest and fetal weight at 

E17.5 were uncovered (Tables 6 and 7). Furthermore, regression analysis revealed a link 

between loss of Mest DMD methylation and placental lipid accumulation at E17.5 (Figure 39). I 

suggest that Mest and Peg10 DMDs may exert their influence on placental development in a 

serial manner; loss of Peg10 DMD methylation impairs LZ development early in gestation, 

which predisposes these placentas to metabolic abnormalities associated with lost Mest DMD 

methylation later in gestation. 
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The lethality and labyrinth failure in DNMT1o-deficient placentas with low Peg10 DMD 

methylation is similar to the phenotype observed in chromosome 6 translocations and Peg10 null 

mice (10, 261, 262, 293). Although the expected result of loss of Peg10 DMD methylation is 

increased Peg10 expression, I failed to detect significant changes in Peg10 expression in 

DNMT1o-deficient placentas at any time point between E9.5 and E17.5 (Figure 28). However, I 

did observe a significant increase in Sgce and Pon2 expression in late gestation DNMT1o-

deficient placentas (Figure 28). It is difficult to correlate DMD methylation with imprinted gene 

expression in Dnmt1Δ1o maternal effect placentas because of the confounding factors of a mosaic 

model, cell-type expression biases and differential effects of loss of DMD methylation. Based on 

my direct observation that partial loss of a maternally methylated Peg10 imprint is detrimental to 

placental development, I suggest that strict monoallelic dosage of Peg10, and/or other imprinted 

genes within the Peg10 imprinted cluster is critical for placental development. 

3.5.4  Loss of Kcnq1 DMD methylation and TGC expansion 

Mouse chromosome arm 7q contains three maternally methylated DMDs from proximal to distal: 

Kcnq1, Snrpn and Peg3. Not surprisingly, we found that the methylation status of the Kcnq1 and 

Snrpn DMDs was linked at E12.5 in DNMT1o-deficient placentas (Figure 33). However, Peg3 is 

situated closer to Snrpn than Kcnq1 but does not show linkage to the other two at any time point 

and is hypomethylated in DNMT1o-deficient placentas (Figure 32H and Figures 33-35). I found 

A strong association between DNA methylation at both the Kcnq1 and Snrpn DMDs and 

accumulation of TGCs (Tables 4; Figure 36). Based on our forward step-wise regression model 

the combination of DMD methylation levels of Kcnq1 and Snrpn is the best predictor of TGC 

abundance (Table 5). I speculate that the association between Snrpn methylation and TGC 
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accumulation is a passive effect due to close linkage with the Kcnq1 cluster and consistent with 

lack of known placental function for Snrpn (422), although the possibility of the involvement of 

the Snrpn in TGC development cannot be ruled out completely. The in situ staining of TGCs for 

Prl3d1 in DNMT1o-deficient placentas, an early TGC marker, indicates that not only is 

proliferation altered but also TGC differentiation (Figure 38). The morphology of DNMT1o-

deficient placentas with low Kcnq1 DMD methylation is similar to those described in null and 

hypomorphic Ascl2 mouse models in which expansion of TGCs was observed (222, 311). These 

findings are substantiated by the diminished expression of Ascl2 in DNMT1o-deficient E9.5 and 

E12.5 placentas (Figure 28).  

The accumulation of TGCs observed in the Dnmt1Δ1o maternal effect model shown herein 

is remarkably similar to placentas derived from Dnmt3L null mothers, which lack all maternal 

imprinted DMD methylation (97, 99). One mechanistic explanation of the TGC expansion that is 

common between the Dnmt1Δ1o, Dnmt3L and Ascl2 models is that a decrease in Ascl2 expression 

(by gene deletion or loss of Kcnq1 DMD methylation) results in derepression of Hand1, a 

transcription factor that promotes differentiation of the EPC, and terminal differentiation of SpT 

into TGCs (188, 231, 234). Loss of Kcnq1 DMD methylation in DNMT1o-deficient placentas 

has a distinct phenotype from paternal deletion of the Kcnq1 ICR, which mimics a maternal 

(methylated) state with resulting increased maternal expression of Ascl2, Phlda2, and Cdkn1c, 

and growth restriction (310). Regression analysis did not reveal meaningful associations between 

loss of Kcnq1 DMD methylation and placental overgrowth at E15.5 or E17.5 that might be 

expected based on targeted deletion mouse models of Phlda2 and Cdkn1c, which exhibit 

pronounced placental overgrowth (312, 313). These findings taken together with prior research 

suggest that the imprinted gene Ascl2 is a focal point for early placental development. 
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3.5.5  Loss of Nespas and H19 DMD and junctional zone development  

In addition to the effects of reduced Peg10 and Kcnq1 DMD methylation discussed above, 

regression analysis revealed weaker, but nonetheless significant, associations between loss of 

imprinted Nespas and H19 DMD methylation and increased JZ volume (Table 4, and Figures 

36B-D). Although both Nespas DMD amplicons assayed associated significantly with JZ 

expansion at E12.5 (Table 4 and Figures 36B and C), an association was not observed at E15.5 

(Table 6), indicating this phenotype may resolve to a more normal one during development. 

The observed association between loss of H19 DMD methylation and JZ expansion 

bordered the significant cutoff (P=0.048, Table 4 and Figure 36D). H19 DMD methylation 

gradually increased from E12.5 to E17.5 in DNMT1o-deficient placentas, indicating selection 

against loss of imprinting at this cluster (Figure 32D). Loss of methylation at the H19 DMD is 

expected to depress transcription of the growth factor Igf2. Expression of of Igf2 in DNMT1o-

deficient placentas was reduced at E9.5 and E12.5 but was near normal levels at E15.5 and E17.5 

(Figure 28). It is known that Igf2 is paternally expressed throughout the placenta, and that the 

placenta specific isoform (Igf2P0) is expressed exclusively in SynT (302, 303). Paternal 

inheritance of either the Igf2 null or Igf2P0 null allele results in placenta with reduced JZ volume 

(303) . Based on this knowledge one explanation for the observed trend is that 

spongiotrophoblast is less dependent on IGF2 signaling than labyrinthine cell types, and may 

increase as an early compensatory mechanism to low placental Igf2 expression. The association 

between H19 DMD methylation and JZ volume is not found at E15.5 reflecting the resolving of 

both H19 methylation levels and JZ volume toward normal levels. 
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3.5.6  No placental phenotypes associated with Dlk1, Igf2r or Grb10 DMD methylation 

At the onset of performing regression analysis I expected to find associations between imprinted 

DNA methylation at the Dlk1 DMD and LZ development, and between both the Grb10 and Igf2r 

DMDs and placental growth based on evidence from genetic models (347, 374, 393). In 

DNMT1o-deficient placentas imprinted DNA methylation at the Dlk1 DMD did not significantly 

differ from wild-type although it did increase across gestation (Figures 32O and 32P). This 

pattern is perhaps indicative of early selection against cellular epigenotypes with loss of Dlk1 

DMD methylation during trophoblast differentiation and proliferation. No associations were 

found between Dlk1 DMD methylation and placental phenotypes at E12.5 nor at E15.5, but a 

positive association between Dlk1.A methylation and placental weight at E17.5 was revealed 

(Table 7), indicating loss of Dlk1 methylation restricts placental growth. Although there was 

substantial variation in DMD methylation at the Igf2r and Grb10 DMDs (Figures 36B and 36E), 

associations between placental weight and DMD methylation were not significant for either loci 

at E12.5 and at E15. However, I discovered a positive relationship between Igf2r DMD 

methylation and fetal weight at E17.5 (Table 7), a counter intuitive finding given that loss of 

Igf2r methylation should repress expression of this growth suppressor. Regression analysis failed 

to identify DMDs responsible for the overgrowth of late gestation placentas and embryos but 

rather identified ones that promoted growth restriction. I interpret these results as evidence that 

in the context of the Dnmt1Δ1o mosaic loss of imprinting model, the mid to late gestation growth 

effects of the Grb10 and Igf2r DMDs may be obscured by epigenetic epistatic interactions with 

loss of imprinting at other prominent DMDs within both placental and embryonic compartments. 

The clinically relevant dysregulation of placental and fetal growth associated with loss of 

imprinting previously highlighted in Chapter 2 is likely due to these complex interactions 
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between imprinted regions. In contrast, the stronger associations between both Peg10 and Kcnq1 

and E12.5 placental phenotypes were not occluded by confounding epistatic effects. 

3.5.7  Zrsr1 is an imprinted DMD in placenta but Nnat and Nap1l5 are not 

We measured the DNA methylation levels of three additional imprinted DMDs (Zrsr1, Nnat and 

Nap1l5) in wild-type and DNMT1o-deficient E12.5 and E15.5 placentas (Figures 36Q-S). The 

mouse genomic coordinates for these three DMDs were previously established (26), but were not 

examined in placenta. EpiTYPER analysis showed that the Commd1 DMD was methylated at a 

level consistent with imprinting in wild-type placenta, which was then lost in DNMT1o-deficient 

placentas (Figure 36Q). Both the Nnat and Nap1l5 DMDs showed a methylation pattern that was 

not indicative of imprinted DMDs (Figure 36R and 36S). Both DMDs also had higher 

methylation levels in wild-type placentas than other imprinted DMDs tested (DMD methylation 

fraction >0.7), and furthermore, neither DMD lost methylation in DNMT1o-deficient placentas. 

We conclude that Nnat and Nap1l5 are not imprinted DMDs that are perpetuated from gametes 

to mature trophoblast lineages, and that although the Zrsr1 DMD is imprinted in the placenta, 

loss of imprinting at this locus is tolerated. Recent genome methylation studies have provided 

evidence that the Nap1l5 but not the Nnat DMD retains its imprinted status in the human 

placenta (423, 424). 

3.5.8  Conclusion 

In summary, I have validated the placental epigenetic variability inherent in the Dnmt1Δ1o 

maternal effect model using a broad survey of imprinted gene expression and DMD methylation. 
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I revealed that the expression of both Mest and Ascl2 are associated with E/P ratio at E17.5. I 

also discovered a novel association between loss of imprinting at the Peg10 loci with fetal 

viability and placental labyrinth maldevelopment. In addition, I found a strong association 

between loss of imprinting at the Kcnq1 cluster and TGC accumulation, validating prior genetic 

models. I conclude from the lack of Dlk1 DMD methylation variability at E12.5 that Dlk1 has an 

essential early trophoblast function. This chapter highlights the direct epigenetic effects of loss of 

imprinting on placenta development. My findings provide additional rationale to further dissect 

the Peg10 and Kcnq1 imprinting clusters for their roles in placental development. 
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In the previous chapter I revealed two strong associations between loss of imprinting at the Mest 

locus and placental phenotypes. First, Mest gene expression was directly associated with the 

placental efficiency metric E/P ratio. Second, Mest DMD methylation was inversely associated 

with placental triacylglyceride levels. In this chapter I sought to interrogate the role of Klf14, a 

maternally expressed gene within the Mest imprinted locus, to determine if loss of its expression 

recapitulated any of the phenotypes observed in DNMT1o-deficient placentas. To these ends I 

generated a novel targeted deletion of Klf14 in mouse. Using this new model, I confirmed that 

Klf14 is an imprinted gene expressed from the maternal allele in the placenta. Although the Klf14 

gene appears to be non-essential based on the near Mendelian inheritance observed in 

heterozygous intercrosses, there were some placental differences. Homozygous late gestation 

placentas were larger than either heterozygous or wild-type littermates, suggesting a role for 

Klf14 in limiting placental growth. No differences in placental layer fractions were observed 

between genotypes indicating that the placental overgrowth was symmetrical and not localized to 

one trophoblast cell type. In addition, placental triacylglyceride levels were unchanged in 

heterozygous intercrosses, however increased levels were observed in maternal null offspring 

4.0  KLF14 IS AN IMPRINTED GENE REGULATING PLACENTAL GROWTH  

4.1  SUMMARY 
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from homozygous null mothers fed a high fat diet. These results leave open the possibility that 

Klf14 may regulate placental growth and mediate metabolic responses to dietary inputs.  

4.2.1  Klf14 is part of the Mest imprinting cluster 

Klf14 is a paternally imprinted (maternally expressed) gene within the Mest imprinted loci at 

mouse 6qB3 (See section 1.5.3; Figure 2C). Bimaternal inheritance of Robertsonian 6q 

translocations is embryonic lethal [10]. The proximal 6q Peg10 imprinting cluster is most likely 

responsible for the lethal phenotype, whereas a more subtle intrauterine growth retardation 

phenotype is observed in embryos with bimaternal inheritance of the subproximal 6q region 

encompassing Mest (262). Epigenetic analysis of this region revealed that the Mest DMD is 

located in the promoter and exon 1 of the Mest gene and is maternally methylated (265). 

Multiple imprinted genes are regulated by the Mest DMD within a 400MB region including the 

paternally expressed Mest and the maternally expressed Copg2, Cpa4, and Klf14 (265-270). 

The Klf14 gene was first identified as a maternally expressed transcript in mouse using 

RT-PCR restriction length polymorphism analysis of offspring of JF1 and BL6 inter-strain 

crosses (270). Maternal-specific expression of Klf14 is dependent on Mest DMD methylation and 

is lost in Dnmt3anull/+ maternal effect offspring (270). Additionally, I have shown that DNMT1o-

deficient placentas show a strong reduction in Klf14 expression throughout mid-gestation (Figure 

28). Maternal-specific Klf14 expression has also been confirmed in humans by sequence 

4.2  INTRODUCTION 
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comparison of maternal and fetal Klf14 cDNAs using informative SNPs (270). Furthermore, 

human monochromosomal somatic cell hybrids with exclusively maternal or paternal 

chromosome 7 show either elevated or absent Klf14 expression respectively (270). These results 

in mouse and man demonstrate a conserved Klf14 imprinting mechanism and maternal-specific 

expression. 

4.2.2  The Mest imprinting cluster is implicated in placenta development 

In the previous chapter I uncovered four novel associations between loss of imprinting at the 

Mest locus and mid to late gestation placental phenotypes. At E15.5 Mest DMD methylation 

inversely associated with JZ central volume (Table 6). At E17.5 the placental efficiency metric 

E/P ratio is directly associated with Mest expression (Figure 29B). In addition, I found that 

methylation at the Mest DMD is positively associated with fetal weight (Table 7) and inversely 

associated with placental triacylglyceride levels (Figure 39). These results, using the Dnmt1Δ1o 

maternal effect model, suggest a role of the Mest imprinting cluster in regulating placental 

growth and metabolism. 

 The Mest gene itself is well studied, although the exact function of its encoded putative 

/ hydrolase protein is unclear (119, 266, 268, 271-276). The Mest gene is expressed in the 

vascular endothelium of the mouse placenta where it is thought to influence branching 

morphogenesis (275). When paternally inherited insertional mutagenesis of the Mest gene 

completely eliminates its expression, and results in placental growth restriction (274). These 

prior studies, corroborated by my findings in Chapter 3, suggest that Mest expression modulates 

placental and fetal growth. However, they do not fully explain the phenotypic findings of fetal 

growth restriction and labyrinth lipid accumulation in DNMT1o-deficient offspring. 
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4.2.3  KLF14 is a transcription factor regulating metabolism  

There are 17 mammalian genes encoding Krüppel-like factors (KLFs) including Klf14 (425, 

426). KLF proteins share a conserved C-terminal DNA-binding domain composed of a triad of 

C2H2 type zinc fingers. Each zinc finger is a 23-25 amino acid  peptide fold that coordinates 

a Zn2+ cation in a tetrahedral arrangement. The conserved KLF DNA-binding domains recognize 

similar CACCC or CGCCC sequence motifs and therefore may compete for DNA-binding sites 

(425). KLFs are classified into clades based on their N-terminal peptide sequences. The N-

termini of KLFs are known sites of interactions with DNA-binding cofactors. Many KLFs harbor 

CTBP binding sites whereas others have SIN3A binding motifs. KLF14 falls into the latter group 

with a putative, although biochemically unconfirmed SIN3A interacting motif (an -helical 

AA/VXXL peptide). SIN3a is a histone deacetylase repressive cofactor that acts as a multi-

domain scaffold for HDAC1/2, NCOR, SMRT, IKAROS MAD, UMA6 and other chromatin 

modulators. KLF14 is most closely related to KLF16 based on peptide sequence homology. 

Moreover, because Klf14 is an intronless gene, it has been suggested that it arose through 

retrotransposition during early protoeutherian evolution, whereby it acquired imprinting due to 

proximity of the Mest DMD (270). Intriguingly, Klf14 has undergone recent human specific 

evolution with genetic changes predominantly in the N-terminal coding region (270). 

 The Cabut KLF-like family member in Drosophila is a TGF responsive developmental 

regulator and evolutionary precursor to mammalian KLFs 9, 10, 11, 13, 14 and 16 (427, 428). 

These proteins contain a similar tripartite transcriptional regulatory domain (TRD) (428). The N-

terminal TRD1 contains SIN3A and HDAC interacting motifs whereas the more centrally 

located C-terminal contains proline rich domains that interact with WW and WD40 domain 
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containing proteins including numerous GTPases (428). The zinc finger domain, or TRD2, 

interacts with both DNA and histone acetyltransferases (428). The mammalian Cabut-related 

genes are divided into TGF inducible early growth response genes (Klf10 and Klf11) and basic 

transcription factors (Klf9, 13,14 and 16) (428). The conservation of metabolic regulation is 

exemplified by Klf11 which is mutated in maturity onset diabetes of the young (MODY7; OMIM 

610508) and neonatal diabetes (428). 

 Although Klf14 is not thought to be a TGF inducible early growth response gene it is 

involved in TGF signaling (429). In a human pancreatic epithelial cancer cell line (Panc-1) 

KLF14 and TGFRII are upregulated by exposure to TGF ligand (429). However, rapid 

upregulation of TGFRII is tempered by the delayed transcription of Klf14 in an inhibitory 

feedback circuit. Within TGF stimulated Panc-1 cells expression of a luciferase reporter driven 

by the TGFRII promoter is repressed by KLF14 bound at CG rich sequences (429). 

Furthermore, TGF stimulation increases the presence of the repressive histone modification 

H3K20me3 and decreases the amount of the active histone marks H3K9ac and H4ac at the 

endogenous TGFRII promoter (429). It was also revealed in vitro that FLAG-tagged KLF14 in 

Panc-1 cells pulls down SIN3A and HDAC2 (429). In addition, co-stimulation of Leydig cells 

with TGF and progesterone increases Klf14 expression and leads to increased KLF14 based 

activation of the endoglin gene promoter (430). The endoglin protein is a co-receptor for ALK1 a 

component of larger TGF receptor complexes (430). These two studies show that KLF14 is a 

non-canonical (i.e. non-SMAD) protein effector of TGF that has both positive and negative 

feedback on TGF signaling. They also provide direct evidence that KLF14 can function as 

either an activator or repressor of transcription. 
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 The mammalian family of KLFs have diverse physiological functions in cardiovascular, 

respiratory, digestive, hematological, and immune organ systems as well as in stem cells and 

tumor biology (425). It has recently been suggested that KLF14 is a master transcriptional 

regulator of adipose metabolism based on genome wide association studies (GWAS). Two 

separate microarray based studies utilizing human SNPs revealed strong parent-of-origin effects 

for allelic variants at rs4731702 and rs972283, roughly 14kb upstream of the KLF14 promoter, 

that are associated with increased risk of type 2 diabetes when maternally inherited (279, 281). In 

the case of rs4731702, correlations were also made to elevated HDL levels (280). Furthermore, it 

has been shown that both of these risk alleles are associated with decreased adipose expression 

of Klf14 in cis, when maternally, but not paternally inherited; thereby confirming that these 

alleles are parent-specific expressed quantitative trait loci (eQTLs) (279, 281). 

 To determine the mechanism by which the KLF14 eQTL modulates metabolic activity 

researchers looked for trans changes in gene expressions associated with rs 4731702 (282, 283). 

This approach was justified based on the assumption that KLF14 encodes a transcription factor 

that modulates expression of a network of genes. This approach identified 10 genome wide 

significant trans (GWST) parent-of-origin specific associations between rs4731702 and the 

following genes in adipose tissue: TPMT, ARSD, PRMT2, SLC7A10, C8ORF82, APH1B, NINJ2, 

KLF13, GNB1 and MYL5. Nearly all these genes were up-regulated (with SLC7A10 the lone 

exception) in conjunction with the rs4731702 risk allele suggesting that KLF14 is in fact a 

repressor at this set of genomic loci. Furthermore, amongst these 10 genes, the majority were 

independently associated with other metabolic syndrome traits in GWAS studies. The promoters 

associated with a set of 50 GWST associations with a relaxed significance threshold, were 

enriched with CACCC KLF binding motifs. These results taken together suggest that Klf14 



184 

 

expression is imprinted and that it regulates a network of genes that modulate insulin response in 

adipose tissue. With this in mind it is important to understand whether Klf14 has a similar role in 

regulating metabolism in mouse placental physiology given its high expression within the tissue, 

and to ascertain what targets it may regulate there. 

4.2.4  Recombineering is a genetic engineering technique 

I employed recombineering technology to construct a targeting vector and generate Klf14flox and 

Klf14null alleles. Recombineering utilizes bacterial strains that induce gap-repair recombination 

enzymes under certain conditions (i.e. temperature) that catalyze recombination between 

homologous 200-500bp sequences (homology boxes) enabling efficient exchange of sequences 

from one vector to another (for reviews see (431, 432)). A 13.5kb region encompassing Klf14 

and surrounding sequences was retrieved from a bacterial artificial chromosome (BAC) onto a 

plasmid adjacent to a diphtheria toxin gene (Dta). I then engineered plasmids to insert LNL and 

LFNTF cassettes to generate a targeting allele. Standard methods of ES cell transfection, 

homologous recombination, Flp electroporation, Neomycin/Ganciclovir positive/negative 

selection and blastocyst injection were used to generate a novel transgenic Klf14flox mouse line. 

This line was then crossed with Sox2:CRE transgenic females to generate a constitutive null 

allele (Klf14null). I then used this novel mouse line to study the imprinted expression profile and 

functional role of Klf14 in placental biology. Further details on the generation of this mouse line 

are provided in the material and methods (Sections 4.3.1-4.3.4). 



185 

 

4.2.5  Aims of chapter 4 

I genetically engineered a novel targeted deletion to determine if Klf14 downregulation was 

responsible for any of the placental phenotypes associated with loss of imprinting at the Mest 

loci in the Dnmt1Δ1o maternal effect model. This model was used to address important open 

questions including whether Klf14 is an essential gene that when deleted results in a lethal 

phenotype. I also examined litters of heterozygous Klf14null intercrosses at E16.5 for abnormal 

placental growth, layer development and lipid content. In addition, I attempted to provide 

absolute genetic proof of the maternal-specific expression of Klf14 in mouse placentas. These 

efforts explored the functional role of Klf14 in placenta biology. 

4.3.1  Recombineering 

Primers were designed to amplify homology boxes (HB1-6) containing unique nonrepetitive 

DNA sequences with 5′ extensions that added restriction endonuclease sites and GCGC clamps 

(Appendix E). HB1-6 were amplified from a murine 129Sv BAC containing an 80KB genomic 

contig including Klf14 (bMQ6044J02; Source Bioscience Lifesciences). HB1 primers were 

designed to amplify a region 5.5kb downstream of the Klf14 3′ UTR and added 3′ BglII and 5′ 

MluI restriction sites. HB2 primers amplified a region 4.4kb upstream of the Klf14 TSS and 

added 5′ HindIII and 3′ MluI restriction sites. Both HB1 and HB2 were cloned into the HindIII 

and BglII restriction sites in place of the PGKneo and adjacent to the PGKdta cassettes in 

4.3  MATERIALS AND METHODS 
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plasmid vector PGKneolox2DTA.2 (addgene plasmid #13449). The resulting 

PGKHB2HB1DTA.2 was linearized with MluI and used as a Klf14 retrieval plasmid. Prior to 

retrieval, E.coli strain SW106 was transfected with bMQ6044J02, selected for by 

chloramphenicol, and verified by PCR. On the day of retrieval, the bMQ6044J02 transfected 

SW106 was heat induced at 42°C and then directly co-transfected with the linearized Klf14 

retrieval plasmid. Positive recombinants were selected for by ampicillin resistance, then cloned 

and verified to contain PGKDta2 with a 13kb retrieved Klf14 region by restriction digest and 

DNA sequencing. 

Primers to generate HB3 and HB4 amplified adjacent 400bp regions centered less than 

300bp downstream from the Klf14 3′UTR and incorporated 5′BamHI and 3′ internal KpnI and 

external BssHII restriction sites for HB3, and 5′SalI and 3′HindIII restriction sites for HB4. 

Restriction digested HB3 and HB4 amplicons, derived from PCRs using BMQ6044J02 as a 

substrate, were cloned together with a BssHII and XhoI digested loxp-frt-neomycin-TK-frt-loxp 

(LFNTF) cassette and a BamHI and HindIII linearized pBluscript backbone in a quadruple 

ligation reaction. 

Primers to generate HB5 and HB6 amplified adjacent 400bp regions roughly 3kb from 

the TSS and incorporated 5′BglII and 3′KpnI restriction sites for HB3, and 5′SalI and 3′HindIII 

restriction sites for HB6. In addition, an endogenous BglII restriction site was removed from the 

3′ end of HB3. Restriction digested HB3 and HB4 amplicons derived from PCRs using 

BMQ6044J02 as a substrate were cloned together with a loxp-neomycin-loxp (LNL) cassette 

(isolated by restriction digest of by KpnI and XhoI ) and a BamHI and HindIII linearized 

pBluscript backbone in a quadruple ligation reaction. 
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 HB5-LNL-HB6 was excised from pBS with NotI and XhoI, transfected into heat induced 

SW106 cultures pre-transfected with the Klf14 positive retrieval plasmid and then plated onto 

Kanamycin/Ampicillin agar plates. Colony PCR was used to select clones with LNL inserted 

into the correct region upstream of Klf14 within the retrieval plasmid, and then subcloned to 

ensure a single Klf14 positive retrieval plasmid with a LNL cassette. The neomycin cassette of 

the LNL was then removed by transfection into SW106 arabinose inducible strain followed by 

ampicillin selection, and confirmation by HB5/6 PCR and lack of Kanamycin resistant colonies. 

Electrocompetent heat induced PGK-Klf14-5′loxp-Dta.2 transformed SW106 were transfected 

with linearized HB3LFNTFHB4 and plated onto dual Kanamycin/Ampicillin agar plates and 

subcloned to individual single vector colonies harboring the primary Klf14 targeting plasmid. 

The Klf14 targeting construct was confirmed by restriction digest analysis and full sequence 

coverage of the plasmid. To confirm the LFNTF cassette and Klf14 gene could be deleted, the 

targeting construct was transfected into SW106 with arabinose induced FLP and SW105 with 

arabinose induced CRE respectively. Recombineering plasmid maps are shown in Figure 40 for 

clarity. 

4.3.2  Transfection and selection of ESCs 

30μg of the Klf14 targeting construct was linearized by NotI and electroporated into murine J1 

ESCs using standard protocols (30μg of pDNA) and plated at various dilutions on irradiated 

murine fibroblasts. After 48 hours, positive selection with G418 was initiated to eliminate non 

recombinant ESCs. Within 7-10 days individual colonies were picked and plated onto 96-well 

plates which were then passaged into 24-well plates after 70% confluence was observed. 

Homologous recombinants were screened by Southern blot using 5′ and 3′ probes external to the 
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targeting construct in conjunction with BglII and KpnI digests (Section 4.3.4). The LFNTF 

cassette was deleted (leaving behind a loxp site and ~100bp of additional sequence) by transient 

transfection of a Flp recombinase plasmid. Colonies surviving ganciclovir negative selection 

were determined to have deletion of the Neo-TK selectable marker, which was confirmed by 

PCR and ScaI based Southern digest.  

4.3.3  Mouse colony establishment and CRE induced deletion 

All mice were humanely cared for in adherence to IACUC guidelines at the University of 

Pittsburgh. Mouse 129Sv ESCs heterozygous for the Klf14flox allele were injected into wild-type 

B6 blastocysts. Male chimeric offspring were bred with B6 females to test whether recombinant 

ESCs had been incorporated in the germline which manifests as yielding agouti offspring in 

those crosses. Agouti offspring were then genotyped for the presence of the Klf14flox allele. Male 

heterozygous Klf14flox offspring were mated to Sox2:CRE transgene positive females and the 

resultant offspring were screened for the combined presence of Sox2:CRE (via PCR), and null 

alleles (via ScaI Southern and PCR). The Klf14flox and Klf14null alleles, once established in mice, 

were backcrossed as heterozgotes for greater than five generations to both 129Sv and C57BL/6 

(Taconic) strains prior to use in experiments. 

4.3.4  Klf14 genotyping 

Southern blot genotyping was carried out using standard protocols utilizing agarose gel 

electrophoresis, capillary based transfer in alkaline buffer to charged nylon membranes, and 

hybridization with P32 radiolableled DNA probes.  Primers that amplified probe templates from 
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bMQ6044J02 are shown in Appendix E. Probes were generated using random hexamer primed 

Klenow fragment polymerase based PCR with a nucleotide mixture with radiolableled cytosine 

(Perkin Elmer). Southern blots were exposed to X-ray film from 2hrs to 2 weeks depending on 

signal strength. Homologous recombinant ESCs were identified by Southern blotting using 10μg 

of genomic DNA digested with BglII, run on a 0.7%gel and probed with an external 5′ probe 

(Klf14wt band of 4kb and Klf14targ of 9.4kb). Incorporation of the 3′ targeting region was 

confirmed with a KpnI digest and 3′ external probe (Klf14wt band of 16.1kb and Klf14targ of 

13.3kb). ScaI digestion and 5′ probes showed deletion of the PGKneo-tk marker (Klf14wt and 

Klf14flox bands of 11kb and Klf14targ band of 12.7kb). Floxed alleles were confirmed by Southern 

blotting of BglII digests with an external 5′ probe (Klf14wt band of 4kb and Klf14flox band of 

9.2kb). Null alleles were distinguished from wild-type and floxed alleles by Southern blot of 

ScaI digested genomic DNA with an external 5′ probe (Klf14wt and Klf14flox bands of 11kb and 

Klf14null band of 6kb).  

Klf14 floxed, null and wild-type alleles were also genotyped by semi-nested PCR using 

primers abutting homology boxes 4, 5 and 6 (Appendix A) using 350ng of genomic DNA and 

the following thermocycler program: 95°C 5′ denaturing followed by 35 cycles of 95°C 30″, 

60°C 30″, 72°C 30″, a 72°C 7′ final extension and an indefinite hold at 4°C. PCR products were 

run on a 1.5% agarose gel to look for the presence of 200bp (Klf14wt), 300bp (Klf14flox) and 

400bp (Klf14null) alleles. Sox2:CRE transgenes were also genotyped by PCR using primers 

provided by the Barak lab (Appendix E) 
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4.3.5  RT-PCR 

Nucleic acids were isolated using All-Prep or RNeasy kits (Qiagen) as previously described from 

fresh placental tissues, and other embryonic and adult tissues isolated by microdissection. Prior 

to reverse transcription, RNA was treated with RQ1 DNase for 1h to remove genomic 

contaminants. Reverse transcription was carried out using MMLV-RT (Promega) from 

approximately 500ng to 1ug of RNA template oligo dT primers. RT-PCR of Klf14 was 

performed using Taq polymerase, approximately 200ng, and primers previously reporter by 

Parker-Katiraee et al. ((270) ; Appendix B )). The housekeeping gene Gapdh was used as a 

positive control.  The RT-PCR themocycle was the following: 95°C 5′ denaturing followed by 30 

cycles of 95°C 30″, 60°C 30″, 72°C 60″, a 72°C 7′ final extension and an indefinite hold at 4°C. 

PCR products were run on a 2.0% agarose gel and examined for the presence of an 800bp Klf14 

band. 

4.3.6  Mest DMD methylation analysis 

The methylation status of the Mest DMD in wild-type and null placentas was examined by BGS 

and COBRA assays. Bisulfite genome conversion and PCR of wild-type and Klf14null placental 

DNA was carried out as previously described using the same reagents and nested primers 

(Section 3.3.3, Appendix C). The BstBI restriction enzyme was utilized to cut 1ug of bisulfite 

converted Mest PCR amplicon in order to examine for the presence of unconverted (methylated) 

sites within the Mest DMD. Bisulfite genomic sequencing of the same populations of alleles and 

generation of dot-pot figures was performed as previously described (Section 3.3.3). 
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4.3.7  Embyronic and placental analysis 

Placental analysis focused on the offspring of heterozygous Klf14null intercrosses. Dissections 

were performed at E17.5 in the same manner as previously described (Section 2.3.3). Placenta 

and embryonic wet weights were recorded. Half of each placenta was preserved for cryo-

histology as described earlier (Section 2.3.4). Portions of the remaining half were taken for 

genotyping, gene expression or lipid content analysis. Placental triacylglyeride content was 

measured as previously described (Section 2.3.6). Placental layer fractions were determined 

using the ratio of the average JZ and LZ area determined by random grid sampling of a single 

central placental section for each sample. Comparisons were made between wild-type, 

heterozygous and null placentas using students t-test and/or Rank-sum tests.   
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Figure 40.  Recombineering plasmids.  (A) Plasmid used to retrieve 13.5Kb region around 

Klf14 from bMQ6044J02. (B) Plasmid used to place 3′ LFNTF selectable marker on the targeting 

construct. (C) Plasmid used to place a 5′ LNL selectable marker on the targeting construct.′   
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4.4.1  Confirmation of Klf14 null allele 

I engineered a novel targeting construct using recombineering to produce a targeted deletion of 

Klf14 in mice (Figure 41A). Chimeric floxed allele mice were initially generated by blastocyst 

injection of 129Sv strain homologous recombinant ESCs into wild-type B6 blastocysts. Chimeric 

male offspring were crossed with B6 females and screened for passage of the agouti fur color 

trait indicating germline passage of the recombinant J1 ESCs. Offspring were then screened for 

the presence of a Klf14flox allele by Southern blot consisting of a BglII restriction digest and an 

external 5′ probe (Figure 41B). The wild-type BglII band is 4.9kb whereas the floxed allele is 

9.2kb (Figure 41B). Full incorporation of the targeting construct was confirmed by Southern blot 

with KpnI digestion and an external 3′ probe to differentiate the 16.1kb wild-type allele and 

the13.2 kb floxed allele (Data not shown). Confirmed heterozygous Klf14flox males were mated 

to Sox2:CRE transgenic females to generate Klf14null heterozygous offspring (Figure 41A). The 

presence of a Klf14null allele was confirmed by Southern blot with ScaI restriction digest and the 

same external 5′ probe. The wild-type ScaI band is 11kb whereas the null allele is 6kb (Figure 

41C). Semi-nested genomic PCR was used to assess genotyping of offspring as both the floxed 

and null alleles were backcrossed onto inbred 129Sv and B6 mouse strains. Using this strategy, 

the wild-type allele amplified a 200bp band from primer pairs b and c, whereas the floxed allele 

generated a 300bp doublet from primer pairs b and c, and the null allele generated a 400bp 

4.4  RESULTS 
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fragment from primers a and c (Figure 41D). These genotyping results clearly show the 

generation and stable inheritance of floxed and null Klf14 alleles. 

 

 

Figure 41.  Targeted deletion of Klf14 in mice. (A) Design and targeting of Klf14. (B) 

Southern blot confirming floxed allele in mice. (C) Southern blot confirming null allele in mice. 

(D) Genotyping PCR confirming flox and null alleles in mouse. Key: rectangles represent gene 

elements Klf14 gene, PGK-neomycin-thymidine kinase cassette, PGK-diptheria toxin cassette; 

triangles represent loxp sites Abbreviations: S-ScalI, B-BglII, K-KpnI, N-NotI; a,b and c- semi-

nested PCR primers. Scale bar is 1kb.  
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4.4.2  Klf14 is an imprinted gene expressed in the placenta 

I measured Klf14 expression in an array of fetal and adult tissues by RT-PCR and found that 

expression levels were highest in yolk sac, fetal intestine and placenta and to a lesser degree in 

fetal brain, fetal liver, adult kidney and adult heart. However, Klf14 expression was not detected 

in adult spleen, adult liver and homozygous null placenta (Figure 42A). Next, I sought to 

genetically confirm reports that Klf14 expression is exclusively from the maternal allele in the 

mouse placenta. To these ends I compared expression of Klf14 in wild-type (Klf14+/+), maternal 

null (Klf14null/+,), paternal null (Klf14+/null), and homozygous null (Klf14null/null) placentas using 

RT-PCR. Half of the offspring from heterozygous null dams crossed to wild-type males were 

Klf14null/+ and had no detectable expression of Kl1f14 after 35 RT-PCR cycles, and were 

queivalent in placental Klf14 gene expression to that of Klf14null/null placentas derived from 

offspring of interbred heterozygotes (Figure 42A). Expression of Klf14 in Klf14+/null placentas on 

the other hand were observed to be at or near Klf14+/+ levels. These results provide definitive 

proof that Klf14 is a maternally expressed gene within the mouse placenta. 

 To determine whether imprinting at the Mest DMD was altered in Klf14null/null placentas I 

assayed DNA methylation by COBRA and BGS. Bisulfite conversion and PCR amplification of 

a 550bp region of the Mest DMD yields two BstBI restriction sites, however if CT conversion 

is blocked by DNA methylation these sites will not be generated. Approximately half of the 

bisulfite PCR product in Klf14+/+ samples was undigested by BstBI, indicating roughly 50% 

methylation. Similar results were found in Klf14null/null placentas suggesting no changes in Mest 

DMD methylation in Klf14null transgenic placenta. However nearly all amplicons recovered from 

Dnmt1c/c ESCs were undigested by BstBI, indicative of the low methylation state of these cells. 
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Figure 42.  Klf14 is expressed in the mouse placenta and is an imprinted gene. (A) RT-PCR 

based expression assay for Klf14 in an array of fetal (Fe) and adult (Ad) tissues as well as 

extraembryonic tissue including homozygous null placenta. (B) Expression of Klf14 in wild-

type, heterozygous null and homozygous null E16.6 placentas. NTC-no template control. 
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 I confirmed the COBRA assays by sequencing 16 cloned bisulfite converted PCR 

amplicons of the Mest DMD from Klf14+/+ and Klf14null/null placentas (Figure 43A). Wild-type 

samples revealed the expected pattern of containing both fully methylated and fully 

unmethylated alleles. The average wild-type methylation value was 57.6%. Homozygous null 

placentas showed a similar pattern of Mest DMD methylation with both fully methylated and 

completely unmethylated alleles. The average Mest DMD CpG methylation in Klf14null/null 

placentas was 54.6%. These results further confirm that Mest DMD methylation is not altered by 

deletion of Klf14 

Due to the tissue specific expression patterns of Klf14 and the location of a CGI 

overlapping the Klf14 transcriptional start site and 5′-end of the gene I hypothesized that there 

may be tissue specific methylation at this region. The EagI and MluI CpG methylation sensitive 

restriction enzymes have unique restriction sites within the Klf14 coding region (Figure 43C). 

The EagI site falls within the CGI whereas the MluI site falls 3′ of it. Genomic DNA from an 

array of wild-type tissues was digested with ScaI in combination with either MluI or EagI, and 

probed with a 5′ internal radioprobe. The fetal liver was the only tissue in which partial digestion 

was observed in the ScaI-EagI double digest indicating partial methylation of the CGGCCG EagI 

CGI site (Figure 43C). Partial digestion was observed in genomic DNA derived from placental 

and adult liver samples suggesting partial methylation of the ACGCGT restriction sequence 

within the Klf14 gene body (Figure 43C). I interpret these results as evidence that the Klf14 CGI 

and gene body are generally hypomethylated but may have some tissue specific DNA 

methylation patterns  
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Figure 43.  DNA methylation at the Mest DMD is normal in homozygous Klf14 null 

placentas. (A) Mest DMD COBRA assay. (B) Mest DMD bisulfite genomice sequencing of 16 

wild-type and Klf14null/null alleles. (C) Methylation-sensitive Southern blotting of the Klf14 CGI 

and gene body. Abbreviations B-BstBI, S-ScaI, E-EagI, M-MluI.  
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4.4.3  Klf14 null mice are viable and fertile 

Heterozygous null mice were both viable and fertile regardless of sex, strain background or 

parent-of-origin of the Klf14 null allele. The offspring of heterozygous intercrosses were found 

to contain wild-type, heterozygous null and homozygous null genotypes at near mendelian 1:2:1 

frequency (Tables 8 and 9, Chi-square test P>0.05). Moreover, homozygous null mice of both 

sexes were viable and fertile on 129Sv and B6 strains. No differences were observed in the 

growth curves of wild-type, heterozygous and homozygous null littermates from weaning 

through postnatal day 90 (Data not shown). These results suggest that Klf14 is not essential for 

murine development or reproduction, but do not rule out more sublte developmental or metabolic 

defects in null mice. Therefore, it was still important to determine if any abnormalities were 

present in developing Klf14 null placentas. 

 

Genotype Obs Exp  Genotype Obs Exp 

Wild-type 37 27  Female Wild-type 18 13.5 
Heterozygous Null 50 54  Female Heterozygous Null 26 27 
Homozygous Null 21 27  Female Homozygous Null 11 13.5 
Total 108 108  Male Wild-type 19 13.5 
Chi-Square (df = 2) 5.33 (P>0.05)  Male Heterozygous Null 24 27 

    Male Homozygous Null 10 13.5 
    Total 108 108 
    Chi-Square (df = 5) 5.48 (P>0.05) 

Table 8.  Near Mendelian inheritance of the Klf14 null allele in 129Sv strain heterozygous 
intercrosses. (Left) Chi-square analysis without gender influence. (Right) Chi-square analysis 

including gender. Abbreviations: Obs, Observed; Exp, Expected; df, degrees freedom; P, P-

value. 
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Genotype Obs Exp  Genotype Obs Exp 

Wild-type 20 16.5  Female Wild-type 8 8.25 
Heterozygous Null 29 33  Female Heterozygous Null 18 16.5 
Homozygous Null 18 16.5  Female Homozygous Null 9 8.25 
Total 66 66  Male Wild-type 13 8.25 
Chi-Square (df = 2) 1.36 (P>0.05)  Male Heterozygous Null 11 16.5 

    Male Homozygous Null 8 8.25 
    Total 66 66 
    Chi-Square (df = 5) 4.79 (P>0.05) 

Table 9.  Near Mendelian inheritance of the Klf14 null allele in B6 strain heterozygous 
intercrosses. (Left) Chi-square analysis without gender influence. (Right) Chi-square analysis 

including gender. Abbreviations: Obs, Observed; Exp, Expected; df, degrees freedom; P, P-

value. 

 

4.4.4  Overgrowth in homozygous Klf14 null placentas 

Even though homozygous Klf14 null animals were viable and fertile we examine E17.5 litters to 

determine if there were any growth effects on either heterozygous or homozygous null embryos 

and placentas. Average placental and fetal weights from wild-type and mutant offspring from 

litters of heterozygous Klf14 null intercrosses are displayed in Figure 44. Homozygous null 

placentas were approximately 10% heavier than wild-type littermates (P<0.05; Figure 44A). The 

intermediate phenotype observed in heterozygous Klf14 null placenta is most likely due to equal 

distributions of Klf14+/null and Klf14null/+ that either had a functional or non-functional Klf14. 

Although the standard error of the mean (SEM) placenta weight is lower in heterozygotes than 

either wild-type or homozygous null littermates the standard error (uncorrected for sample size) 

is larger in heterozygotes. No difference in fetal weights was observed between genotypes from 

these crosses (Figure 44). 
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 To determine whether there was an imprinting effect on placental development in 

heterozygous offspring I analyzed E17.5 litters of Klf14null/+ mated to wild-type 129Sv males. 

Average placental and fetal weights from wild-type and Klf14-/+ offspring are shown in Figure 

45. The maternal null placentas were significantly heavier than wild-type littermates (P<0.05; 

Figure 45A). These results are interpreted as evidence rejecting a role for Klf14 within the 

mother from influencing placental size. Rather the data suggest loss of active maternal Klf14 in 

offspring autonomously enhances fetal growth. Similar to the offspring of heterozygous 

intercrosses no significant difference in fetal weights was detected in the offspring of Klf14null/+ 

dams (Figure 45B). 

 

 

Figure 44.  E17.5 Placental and fetal weights in offspring of heterozygous Klf14 null 
intercrosses. (A) Wet placental weight of wild-type (wt, n=17), heterozygous (het, n=43) and 

homozygous null (hom, n=12) littermates (B) Corresponding fetal weights (C) Placental layer 

fractions *P<0.05 2-way Students T-Test.  
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Figure 45.  E17.5 Placental and fetal weights in offspring of maternal Klf14 null dams. (A) 

Wet placental weight of wild-type (wt, n=9), and maternal null heterozygous (het, n=10) 

littermates (B) Corresponding fetal weights (C) Placental layer fractions *P<0.05 2-way Students 

T-Test. 

 

4.4.5  Placenta layer structure in Klf14 null placentas 

I chose to further investigate the placental overgrowth phenotype using histological methods in 

order to determine if there were any structural abnormalities. The LZ and JZ layer fractions of 

homozygous and heterozygous Klf14 null placentas from heterozygous intercrosses were not 

significantly different from wild-type littermates (44C). These results indicate that the observed 

placental overgrowth is evenly distributed between layers rather than attributable to expansion of 

either JZ or LZ. 
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4.4.6  Placental lipid content increased by high fat diet in Klf14 null placentas 

In the prior chapter loss of imprinting at the Mest cluster was determined to be associated with 

increased lipid content in the Dnmt1Δ1o maternal effect model. Therefore, it was important to 

determine if the increased placenta weight in the Klf14 null model was due to lipid accumulation. 

However, I observed no difference in placental triacylglyceride concentrations in wild-type and 

Klf14-/- placentas (Figure 46). I challenged wild-type and Klf14-/- females with a high fat diet 

(HFD) for 6-weeks prior to and then during pregnancy to determine if placental lipid content was 

contingent on diet. Placentas recovered from pregnant Klf14-/- females challenged with HFD 

were significantly higher than those from wild-type dams fed with normal chow (Figure 46). 

However, no difference was found in wild-type litters fed with HFD nor was there a significant 

difference between offspring of Klf14-/- females compared with wild-type HFD offspring. These 

preliminary data suggest Klf14 may regulate placental lipids in the context of HFD. 

 

Figure 46.  Lipid Accumulation in Klf14 null offspring. Comparison of litters from wild-type 

and homozygous null females fed either normal or high fat diet (HFD) chow. *P<0.05 2-tailed 

Students T-Test  
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4.5.1  Opposing effects of Klf14 and Mest on placental growth 

The results presented in this section that show Klf14 influences placental growth suggest that its 

loss of expression in the DNMT1o-deficient model may be in part responsible for the 

associations between loss of imprinting at the Mest cluster and placental phenotypes. In 

DNMT1o-deficient placentas the expression of Klf14 is decreased more than 2-fold at E9.5, 

E15.5 and E17.5 whereas Mest expression is increased significantly only at the two later time 

points (Figure 28). Although the reciprocal changes in Klf14 and Mest were concomitant, only 

Mest was identified by linear regression as associated with DNMT1o-deficient placental 

efficiency suggesting that Mest is either a marker of highly vascularized efficient placentas or 

that loss of imprinting of Mest influences the ratio of fetal and placental weight. Although fetal 

growth was unaffected in Klf14 null mice, the E/P placental efficiency ratio was not significantly 

decreased despite the moderate placenta overgrowth (data not shown). Congruent placental and 

fetal growth restriction is observed in mice with a paternally inherited Mest null allele (274). 

Therefore, it is expected, although unconfirmed, that Mest overexpression would increase 

placental and fetal growth evenly. Based on my results regarding the Klf14 null and the 

aforementioned Mest null model it is likely that the collective loss of imprinting at the Mest 

cluster integrates disparately towards fetal overgrowth. My results also show that Klf14 and Mest 

have opposing influences on placental growth.   

4.5  DISCUSSION 
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 In Chapter 3 I revealed novel associations between loss of Mest DMD methylation and 

accumulation of spongiotrophoblast at E15.5, and accumulation of placental triacylglycerides at 

E17.5. The latter phenotype is particularly relevant given my findings in this section that 

placental lipid accumulation occurred in offspring of homozygous null Klf14 females maintained 

on HFD during and six weeks prior to pregnancy. However, the lipid accumulation in DNMT1o-

deficient placentas was more pronounced and occurred without HFD administration. I interpret 

these results to indicate that mosaic loss of DMD methylation in the context of Mest DMD 

hypomethylation and HFD in the context of maternal Klf14null development are insults to 

placental metabolism that result in excess lipid deposition. Based on my research herein, a 

further investigation into the role of genes within the Mest imprinting cluster with a focus on 

Klf14 and Mest in fetal endothelial, syncytiotrophoblast and adipose lipid metabolism is 

warranted. 

 Klf14 null mice did not recapitulate the altered layer development observed in DNMT1o-

deficient placentas. Despite the increase in spongiotrophoblast associated with loss of Mest 

DMD methylation in DNMT1o-deficient placentas I did not observe any changes in SpT layer 

fraction in E16.5 homozygous null placentas compared to littermates. Similarly, no difference in 

placental structure was observed in the growth restricted Mest null placentas. This suggests that 

either another gene within the Mest cluster was responsible for this phenotype or that epistatic 

interactions within the Mest loci or between the Mest loci and other clusters. Previously it has 

been pointed out that the components of the H19, Grb10, Kcnq1 and Plagl1 clusters are involved 

in SpT development and are part of a larger integrated network of imprinted genes to which 

Klf14 and Mest may belong. 
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4.5.2  Placental and maternal influence on metabolism 

Placental function and maternal environment during prenatal development has strong influences 

on the lifelong health of individuals. The association between adult metabolic disease and SNPs 

upstream of Klf14 could be mediated by long lasting effects due to either maternal Klf14 

susceptibility alleles in either mother or placenta. Therefore, it was particularly of interest that 

homozygous null Klf14 females when fed HFD had offspring with placentas enriched in 

triacylglycerides. These results show that Klf14 may modulate lipid metabolism in pregnant 

females in a way that alters placental lipid deposition. This is exemplary of environmental 

influences being integrated through a genetic pathway. Further studies should be performed to 

validate my findings using a greater sample number of wild-type and homozygous Klf14 null 

females. In addition, it would be interesting to determine if heterozygous maternal null or 

paternal null (i.e. Klf14null/+ or Klf14+/null) dams mated to wild-type males and fed HFD also yield 

increased placenta triacylglycerides in either wild-type or heterozygous offspring. Such a study 

would confirm that placental triacylglyceride accumulation is the result of HFD plus maternal 

Klf14 deletion or provide evidence that the phenotype is caused by HFD plus placental Klf14 

deletion. Lastly, it might be interesting to perform a uterine transfer of wild-type embryos into 

homozygous Klf14 null females to verify that lipid accumulation occurs independent of offspring 

genotype. 

4.5.3  Comparison with other targeted Klf14 models 

During the time I was investigating the role of Klf14 in placenta biology three different groups 

published reports on the effects of Klf14 deletion in mouse (433-435). However, none of these 
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studies examined in utero fetal or placental development. These three groups utilized different 

targeted deletion models and examined diverse facets of mouse biology influenced by Klf14 

ranging from sphingosine-1-phosphate signaling in the liver, hepatic cholesterol metabolism, and 

centromere amplification (433-435). The fact that each of these groups published findings on 

homozygous Klf14 null mice confirms my finding that Klf14 is not an essential gene. 

 A group from the Mayo clinic utilized a neomycin insertion-deletion mouse available 

from the KOMP repository at UC Davis in their study of hepatic sphingosine kinase-1 (Sk1) 

transcriptional regulation (435). Using a luciferase assay this group observed that FGF2/FGFR1 

induced Sk1 promoter activity is dependent on GC rich sequences overlying KLF14 binding sites 

(435). They found that in HUVEC cells that Klf14 siRNA reduces FGF2 stimulated Sk1 

expression, whereas Klf14 overexpression increases basal and FGF2 stimulated Sk1 expression 

(435). They also showed that KLF14 dependent FGF2 stimulation resulted in accumulation of 

activating histone marks (increased H4K8ac and H3K14ac) and a decrease in repressive marks 

(decreased H3k9me3 and H3K27me) at the Sk1 promoter (435). Furthermore, they showed that 

epitope tagged KLF14 binds the endogenous Sk1 promoter and interacts directly with the histone 

acetyltransferase p300 (435). This study provides firm genetic proof that KLF14 is a 

transcriptional regulator that can interact with more than just SIN3A, and is a mediator of FGF2 

signaling.  

 Following up on the role of Klf14 in liver a second group generated a liver-specific 

conditional null by mating a floxed Klf14 allele with an Albumin:CRE mouse (433). They 

initially became interested in Klf14 due to the GWAS studies linking it to T2D and HDL levels 

and their preliminary findings that Klf14 expression is decreased in HFD fed wild-type mice, 

Apoe null coronary heart disease mouse model and in the leptin deficient (ob/ob) murine obesity 
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model (433). Overexpression of Klf14 by adenoviral infection in vivo resulted in increased HDL-

C and APO-A1 (433). Hepatocyte in vitro adenoviral induced Klf14 overexpression showed a 

clear increase in ApoA1 transcription that was dependent on two CACCC boxes bound by Klf14 

within the ApoA1 promoter (433). Furthermore, Klf14 expression was increased in perhexaline 

treated Apoe homozygous null mice and partially rescued the cardiac plaque phenotype in a 

manner independent of carnitine palmitoyltransferase1 inhibition by perhexaline (433). These 

results are particularly interesting given my findings that placentas derived from homozygous 

null Klf14 dams are more susceptible to lipid accumulation. In addition, it was noted in 

DNMT1o-deficient placentas that mitochondrial carnitine efflux was highly distorted (414).  

A third Klf14 null model was developed using TALON zinc finger nucleases (434). This 

group became interested in Klf14 when they discovered that it encodes a transcription factor that 

binds to and represses polo-like kinase-4 (Plk4) (434). It has previously been established that 

overexpression of Plk4 induces centrosome amplification (434). They found that 13-14 month 

old homozygous Klf14 null mice had more frequent tumors of the lung, lymph and spleen than 

wild-type (434). Homozygous Klf14 null mice were also more susceptible to azoxymethane 

chemically induced colon tumors (434). They established homozygous Klf14 null murine 

embryonic fibroblast cultures and found that roughly 12% of cells were polyploid. Additionally, 

they found that siRNA knockdown of Klf14 in HeLa cells resulted in increased Plk4 expression, 

centrosome amplification and misaligned metaphase plates, whereas Klf14 overexpression 

provoked mitotic catastrophe (434). These results may in part explain why imprinting of Klf14 is 

beneficial due to hazards of overexpression While I did not find any evidence of tumors in my 

Klf14 null colony, I did not observe them beyond 9 months. 
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In Chapter 2 I described an array of abnormal placental phenotypes present in the Dnmt1Δ1o 

maternal effect offspring. Early in development trophoblast differentiation was severely 

disrupted leading to diminished LZ development and increased TGC abundance. Many of the 

abnormal placentas found at E12.5 could not support a viable fetus and lacked fetal vasculature 

in the placental labyrinth. The phenotypes in late gestation DNMT1o-placentas were very 

different. Although at E15.5 placental layers were not significantly different than wt, by E17.5 

the fraction of JZ relative to LZ was increased. I observed extensions of SpT into the LZ in many 

E15.5 and E17.5 DNMT1o-deficient placentas. I also found that DNMT1o-deficient placentas 

recovered at E15.5 and E17.5 were enriched in glycogen deposits and lipid droplets. At E17.5 

the ratio of fetal and placenta growth was highly dysregulated and revealed that both high and 

low E/P ratio placentas had unique gene expression profiles. Taken together these results 

demonstrate the strong effects on placenta development that occur in the the Dnmt1Δ1o maternal 

effect model. 

 In Chapter 3 I described the breadth of loss of imprinting in DNMT1o-deficient placentas 

and correlated these molecular changes with placental abnormalities. In DNMT1o-deficient 

placenta imprinted gene expression was disrupted across gestation. At later gestational ages the 

5.0  OVERALL DISCUSSION 

5.1  SUMMARY AND SIGNIFICANCE 
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directionality of imprinted gene expression changes was not always congruent with the changes 

expected with loss of DMD methylation. Novel associations between Mest and Ascl2 expression 

levels and E/P ratio were revealed. A broad survey of 15 imprinted DMDs in DNMT1o-deficient 

placentas confirmed the epigenetic mosaicism previously postulated to occur in this model. 

DMD methylation was higher in the E17.5 than E12.5 placental cohorts suggesting selection 

against certain hypomethylated epigenotypes. In addition, methylation at some DMDs (e.g. Dlk1 

and Nespas) appeared less mutable than others. Ultimately, I used regression analysis to reveal 

novel associations between individual DMDs and placental phenotypes. Amongst the more 

notable associations were: a relationship between loss of Peg10 DMD methylation and both 

reduced fetal viability and diminished labyrinth central volume at E12.5; a relationship between 

loss of Kcnq1 DMD methylation and TGC accumulation at E12.5; and a relationship between 

loss of Mest DMD methylation and triacylglyceride accumulation at E17.5. These results provide 

an impetus to further dissect these three imprinting clusters for roles in placental development. 

 In my final results section, Chapter 4, I focused on the generation and study of a novel 

targeted deletion of the imprinted Klf14 gene. I used this model to confirm previous assertions 

that Klf14 is an imprinted gene expressed in the placenta. Although Klf14 null mice were viable 

and fertile even in homozygous genotypes, I observed changes in the placenta. Both homozygous 

conceuptuses from heterozygous intercrosses, and heterozygous conceptuses from homozygous 

maternal null dams had significantly heavier placentas at E17.5 than wild-type littermates. In 

addition, placentas from homozygous null dams fed HFD were enriched in lipids. These results 

suggest a role for Klf14 in regulating placental growth and metabolism and highlight the need for 

further investigation of this model. 
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The results presented within my dissertation significantly add to the scientific 

understanding of the role of genomic imprints in placental development. In characterizing the 

range of phenotypic and molecular abnormalities seen in DNMT1o-deficient placentas I have 

explicitly demonstrated that disruption of the inheritance of genomic imprinting has direct 

biological effects on trophoblast differentiation and metabolism and the balance of placental and 

fetal growth. Using this data, I was able to reveal novel associations between individual 

imprinted DMDs and specific placental phenotypes. This analysis revealed particular importance 

of the Kcnq1, Peg10, and Mest imprinting clusters for placental development. This study 

demonstrates the feasibility and importance of epigenotype-phenotype association studies. 

Lastly, my work developing and studying the imprinted Klf14 gene revealed its role in regulating 

placental growth. My findings are summarized in Figure 47 demonstrate that mosaic loss of 

imprinting in the Dnmt1Δ1o maternal effect model lead to placental abnormalities, some of which 

can be replicated by deletion of Klf14.  

 

Figure 47.  Dissertation summary model. The Dnmt1Δ1o maternal effect model results in partial 

and mosaic loss of genomic imprinting early in embryonic development. This influences 

abnormal placental development at early and late gestational time points resultin in specific 

phenotypes. Deletion of the Klf14 gene also results in late gestation placenta overgrowth and 

when confronted with high fat diet increases lipid stores. 

 

Dnmt1Δ10
Mosaic

Loss of Imprinting
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5.2.1  Coevolution of genomic imprinting and placentation 

Genomic imprinting is a fascinating molecular phenomenon that has co-evolved with 

mammalian placentation. It is of note that prototheria (monotremes), metatheria (marsupials) and 

eutherian (placental mammals) have an increasing number of genomic imprints and reliance on 

in utero gestation (436). Furthermore, the boundaries of imprinted clusters are expanded to 

impose parent-of-origin specific expression to additional neighboring genes in extraembryonic 

tissues including the placenta and vitelline yolk sac (307, 309). For example, in extraembryonic 

tissues the Igf2R imprinted cluster includes Slc22a1 and Slc22a3, the Kcnq1 imprinted cluster 

includes Th, Ascl2, Tspan32, Nap1l4, and Osbpl5, the Peg10 imprinted cluster includes Tfpi2, 

Ppp1r9a, Pon2 and Pon3, the H19 imprinted cluster includes Ins2 and the Grb10 cluster inclues 

Cobl (307, 309). The mechanisms by which this expansion occurs may have to do with unique 

nuclear architecture and chromatin topology in extraembryonic lineages that enable long distance 

interactions of ICs with expanded sets of imprinted genes and distant enhancers and repressors 

(437). Revealing the full scope of genomic imprinting within the placenta and the mechanisms 

that enable the expansion of imprinting boundaries will aide in the effort to ascribe placental 

functions to imprinted loci. 

 By understanding the evolutionary history of genomic imprinting we should be better 

equipped to understand the function of genomic imprints in mammalian biology. Therefore, I 

5.2  FUTURE DIRECTIONS 
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think it is important to better grasp what placental physiological adaptations coincide with the 

acquisition of specific imprints. For example, the H19 imprint (and paternal allele-specific Igf2 

expression) originated in the common ancestor of metatherian and eutherians possibly reflecting 

the changes in maternal/offspring resource allocation with the evolutionary acquisition of 

placentation (438-440). Peg10 (but neither Sgce nor Ppp1r9a) and Mest are also imprinted in 

metatherians, but members of the Snrpn, Kcnq1 and Dlk1 cluster are not, suggesting the former 

are involved in early placentation while the latter are involved in eutherian-specific phenomena 

such as prolonged in utero development (441, 442). Furthermore, the Impact and Zrsr1 imprints 

are specific to rodents (442). Intriguingly, strict IGF2R allele specific expression has been lost in 

primates, despite retention of imprinted IGF2R DMD methylation, perhaps indicative of changes 

in placental and fetal growth and maternal resource allocation in extended gestation of single 

conceptuses (383, 439). It is interesting to question whether the relaxation of Igf2r imprinting 

was due to a different adaptation to limit its expression, or changes in the threshold of IGF2 

signaling, or to differences in the recognition of imprints in primates versus other mammals. The 

answers to these questions and more should help us understand our own genome and aid in the 

era of genomic medicine 

The expansion of imprinted clusters to regulate additional genes in murine 

extraembryonic lineages is not conserved in humans. For example, in humans, the Igf2r DMD is 

maternally imprinted but expression of IGF2R, SLC22A2 and SLC22A3 is polymorphic and only 

imprinted in some but not all human term placentas (383). The expanded placenta-specific 

imprinting within the Kcnq1 cluster is also lost in humans resulting in only the core KCNQ1 

cluster (KCNQ1ot, KCNQ1, PHLDA2 and CDKN1C) and not the centromeric (NAP1/4 and 

OSBPL5) nor telomeric (CD81, TSPAN32 and ASCL2) adjacent genes retaining monoallelic 
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expression in trophoblast cells in vivo and in vitro (383, 443). Similarly, the extraembryonic 

paternally imprinted X chromosome inactivation phenomenon found in rodents is not conserved 

in humans, rather random inactivation analogous to the embryo proper occurs (444). The 

commonality of extraembryonic imprinted X-chromosome inactivation and expanded 

extraembryonic imprinted clusters processes suggests a co-evolution of an extraembryonic-

specific imprinting mechanism that was lost during human evolution (436). The possibility of a 

mechanism involving ncRNA and repressive histone modifications that spread imprinting 

beyond core loci is particularly attractive (436). 

There are three theories that explain how genomic imprinting arose during evolution 

(440). Each one postulates in its own way a selective advantage to the inheritance of parent-of-

origin specific epigenetic information (440). The most prominent theory is the kinship theory in 

which a conflict of interest over maximizing reproductive fitness in maternal and paternal 

genomes exists (411, 440). In this paradigm the maternally inherited genome will be most 

successful if there are a large number of siblings across multiple litters from the same mother and 

favors an allocation of maternal resources that limits fetal growth so that it is not an impedance 

on future litters (411, 440). Paternally inherited genomes, particularly in non-monogamous 

mammals such as mice, maximize reproductive fitness by producing large vigorous offspring at 

the expense of future litters from the mother (411, 440). The kinship theory thus predicts and is 

validated by the fact that paternally expressed genes promote growth (e.g. Igf2, Peg1), whereas 

maternally expressed genes restrict growth (e.g. Grb10, Phlda2, Cdkn1c, Igf2r) (440). However, 

kinship theory is contradicted by the findings that many paternal UPDs result in growth 

restriction and/or embryonic lethality (261). Another argument against kinship theory is that it 

invokes a teleological argument that animates maternal and paternal genomes to selfishly direct 
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their own evolution towards different reproductive strategies. Theoretically, it is in the best 

interest of the species as a whole to have a balance of intra-litter and inter-litter fecundity to 

maximize species vitality. 

 The ovarian bomb theory is an alternative explanation to the evolution of genomic 

imprints (445). The central tenet to this theory is that genomic imprinting arose to prevent 

parthenogenetic oocyte activation from producing viable conceptuses or invasive trophoblastic 

diseases (i.e. ovarian teratomas) (445). This would limit trophoblastic disease to those derived 

from pregnancy (i.e. choriocarcinomas and molar pregnancies) (445). Like kinship theory, the 

ovarian bomb theory predicts that maternally expressed genes are growth limiting, and paternally 

expressed genes are growth promoting in order to overcome limitations the maternal genome has 

to promote growth (445). While this theory limits active selection to those genes involved in 

trophoblast development it does allow for new imprints to be acquired as passengers due to 

proximity or sequence similarity (445). 

The authors of both the kinship and ovarian bomb theories focus entirely on the function 

of maternally and paternally expressed genes rather than the genomic imprints (i.e. DMD 

methylation) per se because the maternal imprints (e.g. Kcnq1, Grb10, and Igf2r) associate with 

expression of maternal genes and paternal imprints (e.g. H19) associate with expression of 

paternal genes often through indirect ncRNA or secondary epigenetic mechanisms. The 

evolution of maternal genomic imprints may have had as much to do with silencing of repressive 

ncRNAs (e.g. Kcnq1ot) than with the maternally expressed genes themselves. Similarly, the H19 

and Dlk1 paternal imprints may have formed to silence the H19 and Meg3 ncRNAs rather than to 

promote the neighboring paternally expressed genes. I suggest that it may be more informative to 

ask how DMD methylation itself influences life history strategies to determine how genomic 
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imprints evolved. My results showed that loss of the maternal Kcnq1 imprint was associated with 

TGC accumulation which in many ways looks like hydatidiform molar trophoblastic disease. 

This evidence fits the ovarian bomb theory better than the kinship theory. However, loss of the 

Peg10 maternal imprint in DNMT1o-deficient mice results in diminished LZ development and 

fetal lethality, a result that neither the kinship nor ovarian bomb theory can adequately explain, 

suggesting that both theories may be too rigid. 

 A third theory on the evolution of genomic imprints suggests that haploid (monoallelic) 

expression enables rapid gene evolution (446). This theory is not mutually exclusive with the 

prior two. It is generally accepted among biologists that one of the benefits of diploid genomes is 

the robustness imparted by having two copies of each gene. However, when one allele is masked 

it can be mutated in compound fashion and bypass recessive lethal intermediates by not being 

expressed for multiple generations (446). In fact, it has been determined that many imprinted 

genes, including Klf14, are undergoing rapid evolution (270). It is also of note, although 

somewhat circumstantial, that most tissue-specific imprinted genes are either involved in 

placenta or the brain, the two fastest evolving organs in mammals (447). 

 Regardless of how genomic imprints initially evolved and what their selective fitness 

benefits are, they are clearly involved in reproductive isolation (448). In deer mice (Peromyscus) 

hybrids of Peromyscus maniculatus and P. polionotus have reciprocal parent-of origin effects 

(448-451). In crosses of  P.maniculatus females with P. polionotus males offspring are viable but 

growth restricted and their JZ is reduced at E13 (449-451). In contrast, the reciprocal cross of P. 

polionotus females with P.maniculatus males are overgrown and dysmorphic with altered E/P 

ratio and disorganized hemorrhaging labyrinth (449-451). These overgrown mice have abnormal 

imprinting at the Peg3, Mest, Snrpn, H19 and Plagl1 imprinting clusters (450, 451). It has been 
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suggested due to the broad nature of loss of imprinting that there is a maternal effect locus 

(possibly Dnmt1o or Dnmt3l) responsible for the interspecific hybrid phenotypes (450). 

Furthermore, the placental dysplasia resulting from loss of imprinting is the main reason for the 

reproductive isolation of these two species (448). One explanation for these findings of 

incomplete loss of imprinting is that a differential expression difference in DNMT1o protein and 

interacting maternal/zygotic partners (e.g. DMAP1 or ZFP57) in the two species when interbred 

do not reach a sufficient threshold to maintain more sensitive imprints. 

 Many imprinted genes arose through retrotransposition. This mechanism generates new 

genes by reverse transcribing mRNA and integrating the resulting cDNA into the genome at a 

new site. This process is mediated by LTRs that flank transposable elements and are recognized 

by retroviral transposases. Essentially, these gene duplications events enabled the evolution of 

novel functions and/or or expression profiles. There are three classes of imprinted 

retrotransposed genes. The first class are transposed copies or endogenous retroviral genes 

(ERVs) that have been coopted to serve unique mammalian function (e.g. Peg10, Rtl1) (289, 

290, 373). A second class of retrotransposed imprinted gene were derived from X-chromosome 

parent genes and inserted within introns of host genes (e.g. Nap1l5 and Zrsr1) (452). A third 

class of retrotransposed imprinted gene as exemplified by Klf14 are intronless transposed copies 

of autosomal genes (270). Each of these types of imprinted genes acquired imprinting following 

transposition. 

Both Peg10 and Rtl1 are copies of a Ty3/gypsy retrotransposon most similar to the Sushi-

ichi retrotransposon family found in other vertebrates (289, 290). Of the 9 mammalian Sushi-like 

retrotransponons 5 are located on the X chromosome, 2 are imprinted and 2 are autosomal non-

imprinted (289). It is likely that Peg10 initiated the formation of an imprinted loci to block its 



218 

 

expression after transposition, although the Peg10 DMD sequence does not have homology to 

other Sushi-ichi family members (289). The Peg10 locus is present in eutherian and marsupial 

mammals but not in monotremes further suggesting a link with placental evolution (453). Rtl1 

does contain a CGI, however there is no evidence of parent-specific methylation (289). Rtl1 

retrotransposition was an ancestral event to the acquisition of the intergenic DMD regulating the 

Dlk1 cluster and insertion of miRNAs and snoRNAs in eutherians (368). 

Retrotransposition of Nap1l5 and Zrsr1 resulted in novel micro imprinted domains that 

imposed parent-of-origin transcriptional effects on their host genes (454). The rodent-specific 

retrotransposition of Zrsr1 led to direct imprinting of Commd1. In the case of Nap1l5 

retrotransposition resulted in imprinted allele-specific polyadenylation of Herc3. The Nnat 

microimprinted domain is similar in structure to Nap1l5 and Zrsr1, and imprints its host gene 

Bclap. No ancestral gene has been identified, although a Nnat pseudogene exists on mouse 

chromosome 7 (239, 454, 455). It is perhaps not coincidental that alternative polyadenylation and 

transcriptional interference that occurs in these less complicated imprinted domains also occurs 

in the larger Kcnq1, Mest, and Igf2r domains. These findings on microimprinted domains have 

been interpreted as suggesting that such retrotranspositon events may have been the impetus for 

the earliest genomic imprints in eutherian development. My results showed that the Nnat, 

Nap1l5, and Zrsr1 DMDs are approximately 40- 60% methylated in wild-type placentas which is 

in line with expected levels of a genomic imprint (Figures 32 Q-S). However, only the Zrsr1 

DMD had significant loss of methylation in DNMT1o-deficient placentas indicating that the 

Nnat and Nap1l5 DMDs are either insensitive to loss of preimplantation maintenance 

methyltransferase activity or that they are absolutely required for TE development. 
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The final class of retrotransposed imprinted genes are copies of autosomal parent genes. 

For example, Klf14 most likely acquired imprinting status upon its transposition in proximity of 

Mest, which may have been beneficial to limit the dosage of the ancestral gene product Klf16 and 

enable its rapid evolution (270). Furthermore, retrotransposition of other genes have been vital to 

placental development in particular the syncytins SynA and SynB were coopted from viral 

envelope proteins to enable cell fusion of SynT progenitors within the labyrinth (210, 211). The 

syncytin 5′ LTR sequences are promoters dynamically regulated by DNA methylation in the 

human placenta (456). 

 It is also of note that species specific ERVs, or portions of their LTRs, are present in the 

promoters of many trophoblast expressed genes. These ERV promoters are enriched in binding 

sites for the placenta master transcriptional regulators ELF5, CDX2 and EOMES (457). These 

findings suggest a relationship between intergenic ERV transposition and adoption of trophoblast 

specific expression in mammalian genomes. It is clear from the above findings that 

retrotransposition had a strong impact on the evolution of both placentation and genomic 

imprinting. The placenta is a suitable target for live retroviruses and ERVs as it enables direct 

passage between generations as well as enabling horizontal transfer from heterozygous 

individuals to littermates in utero (458). In addition, the placenta may provide access to germline 

integration (458). ERVs once established would be maintained by positive selection if they were 

coopted to unique functions, efficiently silenced or genetically degraded (458). 

Retrotranspostition may be a key in the evolution of genomic imprinting because DNA 

methylation evolved as host genome defense mechanism used to silence transposable elements 

(459, 460). While not all imprinted loci contain transposed elements it is possible they are 

recognized by the same methylation machinery due to sequence similarities. It is still unclear 
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how imprinted DMDs, unlike the majority of the genome (including most ERVs), escape erasure 

and de novo DNA methylation during reprogramming. 

5.2.2  Imprint-like sequences 

Recently, imprint-like sequences that convey heritable epigenetic information from parental 

gametes have been identified. Methylation at these regions are similar to imprints in that they 

acquire parent-specific methylation patterns and are protected from DNA demethylation during 

preimplantation development. Much of the evidence of imprint-like sequences comes from the 

study of TET-off Dnmt1 cell culture model of early perimplantation development (110, 111). In 

the TET-off system addition of tetracycline reduces genomic DNA methylation in ES cells 

within days of tetracycline application, however DNA methylation is also lost at imprinted 

DMDs (110, 111). After removal of tetracycline, genomic DNA methylation gradually recovers 

due to the combined activity of de novo and DNMT1 methyltransferase activity. However, 

genomic imprints and a larger group of imprint-like sequences do not recover DNA methylation 

to prior levels (111). Among 90 genomic loci that have greater than 80% reduction in DNA 

methylation following transient DNMT1 inactivation in ESCs as measured by RRBS 15 are 

imprinted loci and the remainder are imprint-like sequences (111). Zfp787 is one imprint-like 

gene previously identified as a transient maternal DMD using the Dnmt3l maternal effect model 

(98). Zfp787 is maternally imprinted in gametes and is protected from preimplantation 

demethylation, but acquires paternal methylation methylation at implantation such that 

embryonic livers are biallelically methylated by E9.5 (98). Unfortunately, the Zfp787 DMD 

methylation status has not been determined in any extraembryonic lineage. A number of other 
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loci were co-identified in the TET-off and Dnmt3l maternal effect models but have not been 

further validated as imprinted DMDs or transient DMDs (98, 111). 

DNA methylation at a limited set of these imprint-like sequence was measured in 

DNMT1o-deficient embryos and placentas to determine if the loci identified in the TET-off 

system are similarly effected by loss of maintenance methyltransferase activity during early 

reprogramming events (111). Many of these loci showed partial loss of methylation in both 

compartments (e.g. Rnf216, Bbs9, Stk10 and Zfp676) while others showed loss of methylation 

only in the placenta (e.g. Xlr4a, Xlr4b, and Prdm1) or in the embryo (1700018B08rik) (111). 

This may indicate that the epigenetic status of some transient DMDs are inherited exclusively in 

embryonic or extraembryonic lineages while others are perpetuated in all lineages and are likely 

true DMDs. Intriguingly, Prdm1 is a transcriptional repressor that is critical for differentiation of 

SpA-TGCs (461). I propose to identify the full set of imprinted DMDs and imprint-like 

sequences that is disrupted in Dnmt1Δ1o maternal effect offspring (both fetal and placenta tissues) 

using a global DNA methylation analysis method such as RRBS. This data may even be used to 

determine if any of the imprint-like sequences associate with placental phenotypes. 

5.2.3  Role of placenta in imprinting disorders 

It was my hope that some of my dissertation results would shed light on human imprinting 

disorders. Many imprinting disorders alter prenatal and/or postnatal growth rates. For example, 

BWS manifests as overgrowth and sometimes occurs with placentomegaly (114). This syndrome 

can have epigenetic etiologies based on loss of methylation of the Kcnq1 DMD and gain of 

methylation of the H19 DMD (114). My results showed a correlation with loss of Ascl2 

expression in DNMT1o-deficient placentas and increased E/P ratio suggesting loss of imprinting 
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within the Kcnq1 cluster may increase placental efficiency in late gestation (Figure 29A). It was 

also intriguing that late gestation expression of both Ascl2 and Phlda2 was increased in 

DNMT1o-deficient placentas, as opposed to the decrease of expression expected with loss of 

Kcnq1DMD methylation, suggesting compensatory mechanisms that may alter late gestation loss 

of imprinting expression profiles and fetal and placental growth trajectories. I observed a strong 

correlation between loss of Kcnq1 methylation and TGC accumulation during mid-gestation was 

made (Table 4 and 36G). and it would be interesting to determine if the abundance of the 

analogous extravillous cytotrophoblast in BWS cases is altered. 

The SRS growth restriction clinical phenotype is due to loss of methylation at the H19 

DMD in the majority of cases and due to matUP7 or gain of Mest DMD methylation in a 

minority of cases (125, 130). I showed that loss of maintenance methyltransferase activity in 

DNMT1o-deficient conceptuses results in mosaic loss of Igf2 expression in the placental 

compartment (Figures 4 and 28). However, I did not find an association between H19 DMD 

methylation with either placental or fetal weight. I did however find an association between loss 

of H19 DMD methylation and JZ layer development at E12.5 (Table 4). In addition, higher E/P 

ratio was associated with increased Mest expression and loss of Mest DMD methylation was 

associated with placental lipid accumulation (Figures 29B and 39). These results in combination 

with the placental overgrowth phenotype observed in the Klf14 deletion (Figures 44A and 45A) 

suggest that the Mest cluster is involved in the growth phenotype of matUPD7 SRS cases where 

one would expect increased genetic dosage of Klf14 and decreased Mest expression. It would 

certainly be worthwhile to examine SRS associated placentas for changes in cytotrophoblast 

histology and in sycytiotrophoblast lipid content. 
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 The imprinting diseases PHPIa and Ib are caused by loss of imprinting at the Nespas and 

Gnas locus (148). I was intrigued to find that the Nespas DMD methylation was largely 

immutable in DNMT1o-deficient placenta, perhaps suggesting a developmental requirement 

(Figures 32M and 32N). While the placenta takes on some functions of thyroid and kidney 

during prenatal development it remains unclear what if any function the imprinted genes in this 

cluster do in the placenta. I revealed a positive association between loss of Nespas DMD 

methylation and spongiotrophoblast at E12.5 (Table 4). 

 Similarly, no known placental functions for the PWS/AS loci containing the SNRPN 

imprinting cluster have been described. My results using stepwise linear regression modeling 

suggest that both Kcnq1 and Snrpn are informative to predicting TGC accumulation (Table 5). 

Although it is possible that the Snrpn association is due to close linkage with Kcnq1 it may be 

informative to examine placentas associated with PWS/AS for abnormal extravillous trophoblast 

proliferation. Recently it has been shown that snoRNAs from the Snrpn cluster regulate 

alternative splicing of the serotonin receptor 5Htr2c, and separately that the placenta is a 

transient source of serotonin during early forebrain development (324, 462-464). I conjecture 

based on those two lines of evidence that the SNRPN cluster may regulate serotonin levels during 

prenatal development and be altered in PWS/AS conceptuses. It would be interesting to examine 

fetal and placental serotonin receptor isoform expression and serotonin levels in DNMT1o-

deficient offspring (with loss of Snrpn DMD methylation) and in Snrpn locus targeted mutation 

models (e.g. Snrpn DMD deletion, Snord114/116 deletion). I also propose that some imprinting 

disorders cases may be caused by failure to maintain imprints during preimplantaion. The 

findings of mosaic loss of imprinting, particularly in BWS and SRS cases, suggests that the 

severity of phenotypes may be based on the degree of mosaicism and the tissue types (including 
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the placenta) in which loss of imprinting is found. Finally, I suggest that there may be distinct 

epi-alleles in the population that are more prone to loss of imprinting during preimplantation 

development due to environmental factors and maternal effects. 

 The separation of placental and fetal phenotypes in the DNMT1o-model is difficult due 

to the entanglement and codependence of their development. One tool to better ascertain the 

placenta autonomous phenotypes from those that are intertwined or the result of fetal 

maldevelopment is through tetrapoloid trophoblast complementation. It would be informative to 

determine if the partial fetal lethality observed at E12.5 in DNMT1o-deficient placentas could be 

rescued by tetrapolid complementation of Dnmt1Δ1o maternal effect blastocysts. If survival to late 

gestation and neonatal time points was observed at a greater frequency, placental phenotypes 

could firmly be attributed as the main antagonist of early fetal lethality associated with loss of 

imprinting. Similarly, the reciprocal experiment could be performed and normal ES cells injected 

into Dnmt1Δ1o maternal effect blastocysts and examined for developmental outcome. If abnormal 

wild-type fetal development was observed in such conceptuses it would be arguably caused by 

placental imprinting defects, however this system would likely result in at least partially chimeric 

fetuses with some cells having partial loss of imprinting. I also suggest the development of both 

ESC and TSC lines from DNMT1o-deficient conceptuses that have loss of imprinting at a small 

number of loci with clinical relevance (e.g. Snrpn, H19, Kcnq1, Mest, Plagl1, Nespas). These 

cell lines could be studied for their potential to generate normal chimeric fetal or trophoblast 

tissue after blastocyst injection. The experiments I have proposed above may yield results that 

are informative on the contribution of genomic imprinting in the placenta on fetal development. 



225 

 

5.2.4  Reproductive technologies 

It has been reported that within the population of BWS patients there is enrichment for 

individuals conceived by assisted reproductive technologies (ART) (465-468). Although this 

suggests an increased incidence of imprinted diseases associated with ART, not all clinical 

research corroborates these findings (recently reviewed by (469, 470)). Nearly all cases of BWS 

associated with ART are concomitant with loss of methylation at IC1 (KCNQ1), whereas this is 

the case for only half of all BWS cases in the naturally conceived population (114, 471). 

Furthermore, loss of methylation in BWS cases from children born after ART is observed at a 

broad range of DMDs including Mest, Snrpn and Plagl1 (471, 472). This multigenic, and 

sometimes mosaic effect suggests that loss of imprinting occurs post-fertilization within the 

embryo. It is important for future studies to calculate the ART associated risk of SRS and 

TNDM1, which are most commonly associated with loss of methylation at the H19 and PLAGL1 

loci respectively (469). The gamete and embryo manipulation performed in ART procedures 

such as superovulation, in vitro fertilization and intra-cytoplasmic sperm injection directly 

expose both gametes and embryos during the window of time crucial for the maintenance of 

genomic imprints (473, 474). My results clearly show that the majority of DMDs, including 

Kcnq1, H19, Mest and Plagl1 can be affected, either in isolation or in tandem, by loss of 

DNMT1o activity Therefore, it is rather intuitive to suggest that ART may be detrimental to 

DNMT1o maintenance methyltransferase activity. 

 Similarly, both ART and cloning in mouse alter imprinted DMD methylation. Mouse 

embryos generated from IVF and cultured during preimplantation development in Whittens 

medium have lower levels of H19 methylation, and their placenta are afflicted with loss of 

imprinting to a greater degree than the fetus, showing biallelic expression of H19, Snrpn, Ascl2 
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and Peg3 (475, 476). Likewise, aberrant imprinted gene expression is observed in 

preimplantation embryos cultured in M16+FBS (477). Blastocysts, mid-gestation embryos and 

placentas derived from superovulated oocytes developing in vivo have a modest partial loss of 

imprinting at the Snrpn and H19 loci (478, 479). Both biallelic expression and loss of DMD 

methylation is greater in the placental compartment than in the embryo proper (478). 

Superovulated oocytes harbor normal imprinted DMD methylation ruling out superovulation 

induced effects on the establishment of imprints (480). Imprinted genes are overrepresented in 

those transcripts whose expression is increased or decreased more than 2-fold in placentas 

derived from in vitro fertilized superovulated oocytes (481). These results taken together suggest 

that environmental influences subject the early embryo to loss of imprinting during 

preimplantation development and that the maintenance of imprints is less robust in the TE than 

the ICM. It would certainly be of interest to determine the amount of DNMT1o present in 

superovulated oocytes and its activity in preimplantation in vitro culture. 

Reconstitution of an enucleated oocyte with a donor nucleus (either ES or somatic cell) 

reformats the epigenetic state of the donor genome to one that emulates a nascent zygote in a 

process known as “reprograming” (482, 483). Cloning by nuclear transfer is an inefficient 

process (484). Only10-20% of ES cell nuclear donors and 50-70% of somatic cell nuclear donors 

mature into blastocysts (484). Of uterine transferred blastocysts 5-20% of ES nuclear donor and 

1-3% of somatic nuclear donors survive to term and even fewer to adulthood (484). The majority 

of clones develop abnormally with fetal and placental overgrowth concomitant with altered 

imprinted gene expression and DMD methylation (484-487). Cloned placentas are overgrown 

almost 2-fold, have an expanded JZ enriched with GCs with SpT extensions into the LZ, have 

enlarged TGCs and a disorganized LZ (488). ESCs cultured from SCNT derived blastocysts are 
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epigentically equivalent to naturally fertilized blastocyst derived ESCs and can produce all fetal 

lineages when complemented with tetraploid TE further suggesting that extraembryonic 

development is the limiting factor in reproductive cloning (489, 490). The similarities between 

cloned mice and the JZ and GC expansions I observed in late gestation DNMT1o-deficient 

placentas is striking.  

My results also showed a disruption of E/P ratio and a general overgrowth of DNMT1o-

deficient placentas and fetuses surviving to late gestation which mirrors the findings in cloned 

animals and suggest that abnormal maintenance of imprints during preimplantation may be the 

central cause of cloning developmental failures. The work on reproductive cloning has 

implications for the large offspring syndrome observed in cloned livestock and in conservation 

efforts to restore native fauna and endangered species (491, 492). Interestingly, SCNT porcine 

embryos undergo replication dependent preimplantation partial demethylation of the H19 DMD 

(493). Because this demethylation occurs during the first two cell cycles and is mimicked by 

DNMT1 GV oocyte RNAi injection it implies that maternal DNMT1s activity is decreased in 

SCNT embryos (493). The above results taken together indicate that it is critical for reproductive 

biologists to better understand the details of maintenance methyltransferase activity in 

preimplantation development to improve the safety and efficacy of clinical ART and animal 

cloning. It would be insightful to determine if DNMT1o activity is altered in ART or nuclear 

transfer in mice, and whether ART or oocyte reconstitution can modulate the Dnmt1Δ1o maternal 

effect. 

 Reprogramming of somatic nuclei can also be carried out by transfection of the 4 

Yamanaka pluripotency factors (Oct3/4, c-Myc, Sox2 and Klf4) (494). A small percentage of 

these induced pluripotent stem (iPSCs) cells can generate high percentage chimerism when 
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injected into blastocysts and yield all iPSC pups from tetraploid TE complementation (495, 496). 

The most prominent transcriptional difference between iPSCs incapable of generating all iPSC 

pups via tetraploid complementation and genetically identical ESCs is found in the expression 

levels of maternally expressed Meg3 and Rian transcripts within the Dlk1 imprinting cluster 

(380, 381). Biallelic Dlk1 DMD methylation represses maternal ncRNA transcription in these 

iPSCs (380, 381). However, the subset of iPSCs that are competent to generate chimeras and all 

iPSC tetraploid complemented offspring have normal monoallelic methylation and Meg3 

expression (380, 381). The incompetent iPSCs can be made to generate all iPSC offspring by the 

addition of the HDAC inhibitor valproic acid (381). Lastly, the addition of ascorbic acid (vitamin 

C), a potent histone methyltranferase and TET enzyme cofactor, during iPSC induction prevents 

Dlk1 DMD hypermethylation and yields developmentally competent iPSCs (497). The fact that 

the Dlk1 DMD becomes biallecially methylated during iPSC reprogramming suggests that there 

are molecular mechanisms during in vivo reprogramming that prevent de novo methylation at 

this locus. My results that Dlk1 DMD methylation is invariable in DNMT1o-deficient placentas 

is in line with these findings and suggests an early selection against loss or gain of methylation at 

the Dlk1 DMD (Figures 32O and 32P). Furthermore, parthenogenetic development can be 

induced with inheritance of one allele of Dlk1 and H19 DMD deletion (both of which mimic the 

paternal imprinted state). I interpret these results to suggest that paternal imprints are required for 

embryonic development and as supporting evidence to the ovarian bomb theory.  

The limited developmental potential of SCNT and iPSCs is perhaps not surprising given 

that ES cells themselves, particularly inbred and long term passaged lines, are restricted in their 

fetal chimera contribution when injected into host blastocysts or complemented with tetrapoloid 

TE (484, 498, 499). Mice derived from ES cells are often overgrown and riddled with epigenetic 
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defects including at imprinted loci (498, 499). Clearly these results suggest that the maintenance 

of genomic imprints during reprogramming is a requirement for full embryonic developmental 

potential. It would be interesting to determine the extraembryonic developmental potential of ES, 

SCNT and iPSCs with imprinting defects that have been transformed via iRas to a TSC like 

state. 

5.2.5  Mechanisms of imprinting 

There are a number of unresolved issues regarding the molecular mechanisms involved in the 

maintenance of genomic imprints during preimplantation development. I have presented a 

summary of the factors present in the imprinting maintenance machinery including DNMT1, 

UHRF1, DNMT3, DMAP, ZFP57, TRIM28, and histone modifiers (Section 1.1.2). The 

maintenance of parent-of-origin specific monoallelic methylation during the dynamic genomic 

demethylation and remethylation events that occur with preimplantation reprogramming require 

that imprinted alleles be protected from demethylation and faithfully propagated, and the non-

imprinted allele to be resistant to de novo methylation. Genetic ablation of the factors involved in 

these processes effects imprinted DNA methylation. Deletion of either Zfp57 or Trim28 results in 

partial loss of DMD methylation with certain loci more affected than others (71, 72, 74). It is 

therefore reasonable to hypothesize that different imprinted loci have unique effectors and 

epigenetic readout, and that some are more robust than others. Furthermore, the maternal-zygotic 

lethality of compound Dnmt1v and Dmap null alleles suggests that the interaction between 

DMAP and maternal DNMT1s is essential for early reprogramming either via maintenance of 

imprints or the formation of the TIP60 epigenetic complex (107). Detailed clarification of the 
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epigenetic components involved in preimplantation and their interactions although difficult to 

procure from early embryos will be essential to fully elucidate this process.  

 The role of ncRNA in the establishment, maintenance and expansion of genomic imprints 

is also unresolved (500-502). The macro long ncRNAs Kcnq1ot, Airn, and Nespas have been 

implicated to act in cis to silence neighboring genes directly by transcriptional interference and 

through recruitment of heterochromatin factors including EHMT2 (500). The expansion of the 

Airn and Kcnq1ot ncRNA spread across chromatin in extraembryonic tissue is one plausible 

explanation for larger imprinted domains at the Igf2r and Kcnq1 clusters in placenta (500). In 

addition, the ncRNA may function in modulating nuclear architecture and long range chromatin 

interactions (437). Both the Kcnq1ot and Airn ncRNA are expressed in spermatagonia where the 

X-chromsome is imprinted via the Xist ncRNA and may share a common mechanism in 

regulation of their promoter (436). 

Other imprinted ncRNAs like the snoRNAs and miRNAs in the Snrpn and Dlk1 cluster 

likely function in trans to modulate alternative splicing, mRNA editing and overall gene 

expression levels of important developmental factors. For example, the miRNAs processed from 

the extended Meg3 transcript have are thought to modulate PRC2 components that influence 

expression of numerous genes (380). The snoRNA genes Snord114 and Snord116 within the 

Snrpn cluster alter alternative splicing and mediate prominent PWS/AS phenotypes (324, 325, 

464). The role of snoRNAs derived from Meg8 within the Dlk1 cluster nor the role of miRNAs 

from the same cluster are well defined. The snoRNAs from both the Dlk1 and Snrpn clusters 

form unique imprinted chromatin architecture in which one allele is transcriptionally active and 

produces long transcripts that are found at nuclear foci near their respective imprinted domains, 

that are spliced into snoRNA products and distributed throughout the nucleus (503). The H19 
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ncRNA is processed into Mir675, a miRNA that influences placental development (306). Other 

ncRNA antisense transcripts including Peg3as, Mestit, and Nespas are even less studied. 

Furthermore, the large primate specific C19MC miRNA cluster is imprinted and is involved in 

placental exosome mediated fetal and maternal immunity (504, 505). I conjecture that future 

research will better define the functional roles of imprinted ncRNAs in health and disease.   

 

5.2.6  Role of the Kcnq1 cluster in TGC development 

 One of the major findings in my dissertation was an association between loss of 

methylation at the Kcnq1 and Snrpn DMDs and accumulation of TGCs (Tables 4 and 5; Figures 

36G and 36H). The TGC accumulation phenotype mimicked the Dnmt3l maternal effect and 

Ascl2 targeted deletion models suggesting that loss of Aslc2 expression in trophoblast is the 

underlying cause. In humans, Ascl2 is expressed highly by intervillous and extravillous 

trophoblast but is not imprinted (506, 507). Complete hydatidiform molar pregnancies (which 

have a diploid paternally inherited genome) that are noninvasive do not express ASCL2, whereas 

invasive complete hydatidiform molar pregnancies do express ASCL2 (506). Although the lack 

of ASCL2 expression in the noninvasive molar pregnancies suggests paternal imprinting, it is 

more likely due to the predominance of microvillous-like cysts containing SynT and villous 

cytotrophoblast and the lack of extravillous cytotrophoblast which do not express ASCL2. The 

expression of ASCL2 in intervillous cytotrophoblast is congruent with Ascl2 expression in 

murine SpT, where it acts to repress TGC differentiation, but its expression in extravillous 

cytotrophoblst seems contradictory given their similar to TGCs. It would be interesting to 

determine if ASCL2 is absent from more specialized endovascular extravillous cytotrophoblast 

subtypes. 
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Other members of the KCNQ1 imprinted cluster that are imprinted in mouse 

extraembryonic lineages are not imprinted in humans including CD81, TSSC4, NAP1/4 and 

CARS (383). However, CDKN1C and PHLDA2 that are closer to the KCNQ1 imprinting center 

are ubiquitously imprinted in human and are normally expressed in various cytotrophoblast 

lineages (383, 508, 509). In complete hydatidiform moles neither CDKN1C nor PHLDA2 are not 

expressed (508, 509). Their expression is also limited in incomplete hydatidiform moles (triploid 

with diploid paternal and haploid maternal chromosome set) due to the single active maternal 

allele (508, 509). Although these correlative results suggest a possible role in molar pregnancies 

more profound evidence would be needed to rule out coincidental or passive associations. Many 

of the DNMT1o-deficient placentas collected at E9.5 presented hydatidiform molar-like cysts 

when viewed under the dissecting microscope (data not shown). I suspect that these may have 

been similar to the samples with expanded TGCs and flattened labyrinths, and diminish Ascl2 

and Phlda2 expression (Figure 4). Based on the E9.5 DNMT1o-deficient phenotypes and the 

E12.5 associations between loss of Kcnq1 DMD methylation and TGC accumulation along with 

the above hydatidiform molar molecular imprinting abnormalities I infer that loss of the KCNQ1 

imprint contributes to hydatidiform molar pregnancies.  

 The role of P-TGCs in mouse placenta development is to form a protective barrier 

between maternal endometrium and produce placental hormones (231, 232). Specifically, TGCs 

secrete choriogonadotropin hormone and the related family of prolactins (225, 227). In rodents 

this family of hormones has grown to include of 23 members in a large cluster and 3 additional 

members in a smaller cluster on mouse chromosome 13qA1 (225, 227, 236). While humans have 

a more limited set of prolactins their function in placenta development are poorly understood. 

The extravillous cytotrophoblast are similar to mouse TGCs and are polypoloid, but not to the 
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same extent as TGCs. Extravillous cytotrophoblast are however more invasive than their mouse 

counterparts extending into and taking up residence in the myometrium where they integrate into 

the maternal vascular system (177). Most studies on extravillous trophoblast have focused on 

their angiogenic and vascular remodeling properties in health and disease (e.g. PE). I think there 

may be crucial insights to be gained by studying their proliferation and secretion in loss of 

imprinting disorders. Given that placentomegaly is a common feature of BWS it would be 

pertinent to examine BWS associated placentas with loss of IC1 loss of methylation for 

extravillous cytotrophoblast numbers and examine whether Ascl2 expression is disrupted.  

5.2.7  Role of the Peg10 cluster in labyrinth development and fetal viability 

My regression studies revealed associations between loss of the maternal Peg10 imprint and 

diminished labyrinth development and embryonic lethality at E12.5 (Table 4; Figure 36E). While 

deletion of Peg10 results in similar neonatal lethality, loss of methylation is expected to lead to 

biallelic transcription of Peg10 and Sgce and suppression of paternal Pon2, Pon3 and Ppp1r9a 

transcription (288, 293). In fact, I found that Pon2 was significantly down regulated at E9.5 

(Figure 28). The study of commercially available Pon2, Pon3, and Ppp1r9a targeted deletion 

mouse models for placental phenotypes may be informative. I also suggest the generation of a 

Peg10 DMD deletion model which would likely replicate the imprinted allele due to the deletion 

of Peg10 and Sgce promoter elements, and phenocopy embryonic lethality in the paternal Peg10 

null and 6q bimaternal translocation models. The Peg10 DMD deletion may also reveal 

additional phenotypes from biallelic expression of maternally expressed genes in this cluster, 

particularly if crossed with a single copy Peg10 transgene to rescue early lethality. Transgenic 

overexpression of Peg10 and Sgce could mimic the loss of Peg10 DMD methylation phenotypes 
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observed in DNMT1o-deficient placentas and would be worthwhile to pursue. Lastly it has been 

presented in the literature that the Peg10 DMD regulates an expanded set of imprinted genes in 

extraembryonic tissues including Ppp19ra, and possibly other genes (e.g. Dlx5, Calcr and Asb4), 

therefore it is imperative to determine the exact boundaries of the Peg10 imprinted cluster in 

mouse placenta (263, 510). This could be done by examining expression of genes in proximity of 

Peg10 in DNMT1o-deficient E9.5 placentas with near complete loss of Peg10 DMD 

methylation. 

5.2.8  Identification of KLF14 transcriptional targets in mouse. 

My results in Chapter 4 show that Klf14 is an imprinted negative regulator of placental growth 

and that its deletion results in a significant increase in placental weight. It is important to 

determine what transcriptional targets are regulated by Klf14 during placental development. To 

these ends I am currently working on comparing the genome-wide gene expression profiles of 

Klf14 homozygous null and wild-type littermate placentas derived from heterozygous null 

intercrosses. Once significantly altered genes are identified I will test for enrichment of gene 

ontology pathways. I will also examine the promoters of up and down regulated genes for the 

presence of CACCC KLF14 DNA-binding sequence motifs. Transcriptional targets could be 

confirmed using luciferase reporter assays in trophoblast stem cells co-transfected with Klf14 and 

luciferase reporters driven by the promoter of putative KLF14 targets. Additionally, it would be 

of interest to examine the presence of the KLF14 interacting partners SIN3A and p300 as well as 

various histone modification at target genes of interest in homozygous null and wild-type 

placentas using chromatin immunoprecipitation. These experiments should further reveal the 

functional role of Klf14 in placental development. 
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 During my thesis research I was unable to determine where in the placenta Klf14 is 

expressed. It has been reported that Klf14 is present in the placental labyrinth, which is an 

amalgam of trophoblast and fetal derived cells. I attempted to use commercially available 

polyclonal antibodies to identify KLF14 localization by immunofluorescence to no avail (data 

not shown). I had mixed results using these antibodies in western blotting as well (data not 

shown). Here I propose three different experiments to determine whether Klf14 is expressed in 

trophoblast or fetal derived labyrinth cells. Heterozygous Klf14flox females could be crossed to 

male Sox2:CRE transgenics to generate epiblast specific Klf14 maternal null conceptuses. If the 

fetal vascular endothelial cells in the labyrinth are the only cell type that express Klf14 then 

fetuses that are heterozygous Klf14 null would lack placental Klf14 expression. Additionally, I 

could generate a trophoblast specific conditional deletion by crossing heterozygous Klf14flox 

females with Cyp19, Tpbpa, or Gcm1 driven CRE transgenic males to generate ubiquitous 

trophoblast specific deletion or targeted deletion within SpT or SynT layer II respectively (511). 

A second method to generate trophoblast specific null mice is through the use of peripheral 

blastocyst lentiviral CRE infection (a new technique that specifically targets the mural and polar 

TE at the blastocyst stage) (512). Finally, I could attempt to isolate either SynT or fetal 

endothelial cells by using various cell capture methods (ie. antigen specific magnetic bead 

capture, or flow cytometry) and examine Klf14 expression. 

 I also propose the construction of additional models to determine the role of the Mest 

imprinting cluster at large within the placenta. I think it would of interest to attempt to develop a 

Klf14 transgenic overexpression model, although this may be difficult given the mitotic 

catastrophe revealed in HeLa cell Klf14 overexpression (434). Engineering a targeted Mest DMD 

deletion model, while complicated due to the overlap with exon 1 and intron 1, would be 
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expected to generate an allele that replicates the methylated maternal allele. Paternal inheritance 

of a Mest DMD null might influence fetal and placental growth given the expected decrease in 

Mest expression and increase in Klf14. It is also important to define the function of MEST using 

biochemical in vitro experiments to determine putative hydrolase substrates. A Mest 

overexpression transgenic model may recapitulate the DNMT1o-deficient placental lipid 

accumulation phenotype and be insightful to determine causative mechanisms in a less 

heterogenous model. It would also be of particular interest to delete the placenta specific Mest 

promoter and/or exon and investigate whether placenta and/or fetal growth restriction still occurs 

similarly to the constitutive deletion. Each of these models suggested here could also be fed HFD 

to see whether metabolic phenotypes can be induced. Although I have focused on placental 

biology, it is likely that the Mest imprinting cluster has important roles in other organs.  

In conclusion, I have surveyed the placental morphological and epigenetic abnormalities in 

DNMT1o-deficient placentas and revealed unique roles for the Kcnq1, Peg10 and Mest 

imprinting clusters. My work to generate and study a targeted deletion of Klf14 has demonstrated 

a role for it in regulating placental growth. These findings add to the growing body of evidence 

that genomic imprints are vital for placental development. I hope that my dissertation research 

has added to our understanding of the mammalian genome. I look forward to further 

investigations by myself and others that resolve the functional roles and mechanisms involving 

the phenomenon known as genomic imprinting.   

5.3  CONCLUDING REMARKS 
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Primer Name Primer Sequence 

Dnmt1o Genotyping 
  

Egg6 AGGAAAACAGTGGAGGAAC 

Egg7 TACTTTGCACAGGGCTGTCCT 

Sex Genotyping   

ZFYfwd CCTATTGCATGGACAGCAGCTTATG 

ZFYrev GACTAGACATGTCTTAACATCTGTCC 

Sox2:CRE Genotyping   

SOX2fwd AGGTGTAGAGAAGGCACTTAGC 

SOX2rev CTAATCGCCATCTTCCAGCAGG 

Klf14 Genotyping   

HB3fwd CTGCTCTTCCTTTCCTCACT 

HB4rev GAGAGACTTTTCTTCGCAGC 

HB6rev TGATTAGGAGGGGGAAAACAC 

 

  

APPENDIX A 
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Primer Name Primer Sequence  

qPCR   

Peg10 TGCTTGCACAGAGCTACAGTC CTGAATCCAGCCATGTGGTAGA 

Sgce CGGATTCTTTGAAAAGCCGAGA GTCTGTGTGCATGGGAGGTAT 

Pon2 GCTCTGAGTTTGCTGGGCAT GGCAGTTTGGAAGGTCTACAGAT 

Dlk1 GGAACCATGGCAGTGCATCT CGAACGTCTATTTCGCAGAATTT 

Meg3 TCCTCACCTCCAATTTCCCCT GAGCGAGAGCCGTTCGATG 

Rtl1 CCTGTGCCAGGGGCTCAACG CTTGGGCGCGACTCAGGTGG 

Igf2 GTGCTGCATCGCTGCTTAC ACGTCCCTCTCGGACTTGG 

H19 GAACAGAAGCATTCTAGGCTGG TTCTAAGTGAATTACGGTGGGTG 

Igf2r AGCCTCGGCAGATTTATTTT CCCCATTGGTCCTCATGTCT 

Slc22a2 GAACGCTGAGCTGTACCCTACA GGGCAGAGCACACCATCAT 

Mest TCTCCAAAAGCTCCTCAAAG ATGAATGGGGATGGACACAG 

Klf14 CTCCGTGTGCCTCAACTAGC CAGGCGCATCCAGGATAGC 

Phlda2 CTCCGACGAGATCCTTTGCG ACACGTACTTAGAGGTGTGCTC 

Ascl2 AAGCACACCTTGACTGGTACG AAGTGGACGTTTGCACCTTCA 

Grb10 CCTGCCAAGCATGATGTCAAA CCAGGCACCTCTCTAATCCCA 

RT-PCR   

Klf14 TGGACACCCTCTCCAAAGTC AAGCGACATCAGTGCTCCTT- 
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Primer Name Primer Sequence  

Bisulfite Genomic Sequencing (nested)   

H19_R1 GAGTATTTAGGAGGTATAAGAATT ATCAAAAACTAACATAAACCCT 

H19_R2 GTAAGGAGATTATGTTTATTTTTG CCTCATTAATCCCATAACTAT 

Kcnq_R1 GGTTTAAAGGGTTTTAAGATTATTTTTG CTTCTTTTCCCTCTATAsTAATTCTAC 

Kcnq_R2 GTTTTTGTAAGTTTGGGTTATAAAG AACTTTTCTATTCAACTTAATTCCC   

Snrpn_R1 TATGTAATATGATATAGTTTAGAAATTAG AATAAACCCAAATCTAAAATATTTTAATC 

Snrpn_R2 AATTTGTGTGATGTTTGTAATTATTTGG ATAAAATACACTTTCACTACTAAAATCC 

Mest_R1 GATTTGGGATATAAAAGGTTAATGAG TCATTAAAAACACAAACCTCCTTTAC 

Mest_R2 TTTTAGATTTTGAGGGTTTTAGGTTG AATCCCTTAAAAATCATCTTTCACAC 
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Primer Name Primer Sequence for EpiTYPER Mass Array  

Primer 5′ tag    

 5' FWD Tag AGGAAGAGAG  

 
5' REV Tag 
(T7) CAGTAATACGACTCACTATAGGGAGAAGGCT 

Imprinted gDMR  Sequence (5' to 3') Genomic Coordinates (GRCm38) 

Dlk1.A FWD ATAGTATTGGTTTGGTATATATGGATG 12:109527424-109527853 

 REV CCATAACATAAACATAAAAATCCACAA 

Dlk1.B FWD GATGTGTTGTGGATTTAGGTTGTAG 12:109528138-109528138 

 REV ATCCCCTATACTCAAAACATTCTCC 

Grb10 FWD AGGAGTTGTTTATTATTTGGATTATTGT 11:12025702-12026046 

 REV CTCTAAACTCCAAAACCCTTTTTCT 

H19(*) FWD GTTGATGGTTTTAGAATTTTATAAGTTAG 7:142581609-142581931 

 REV CACAATACCACTAAAAAAACAAAACA 

Igf2r FWD GATAGGAGGATTTAGAGGGTTTTGT 17:12742752-12743024 

 REV AACCCCATTATCTACAACTCAAACA 

Impact.A FWD TTTGTATTAAGTAGGTTGTTTTAGGG 18:12972913-12973111 

 REV ACAACCAAACTAAAATTAACCAAACAA 

Impact.B FWD TTGTTTGGTTAATTTTAGTTTGGTT 18:12973084-12973497 

 REV TCATATAACAATACAACAAAACCTACTC 

Kcnq1 FWD TGGAGAGTTTTTTTGTTTAGTTTGG 7:150481809 -150481430 

 REV CAAAACCACCCCTACTTCTATAAAC 

Nespas.A FWD TGGGGGTTTTTGATTTTTTTATTTTG 2:174295281-174295599 

 REV TAAATCTCAACCACTAACCCACTCC 

Nespas.B FWD TTTTTTTTAGGGTTTTGTAGGTTAGATTTG 2:174295985-174296393 

 REV CCCCTCCTCCTTCTATTATAAACACC 

Mest FWD ATATGTTGGGGAGGGATTTTTTTAG 6:30737763-30738178 

 REV CAACAAAAACAACAAACAACAACTC 

Peg3 FWD GATTTTGTTTGGGGGTTTTTAATATTGAT 7:6683342 -6683054 

 REV CCACCAACCCAAAATAAACATCTCT 

Plagl1 FWD TATTTTTGTGGGGATGGAGGAATTA 10:13090467-13090791 
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 REV ATCCCAACCCAAACTAAATAACAAA 

Peg10 FWD TTAGGATTTGGTTATTGAAGGTTTG 6:4697732 -4697319 

 REV CCCCTCCTAAAATCTCTCTATATAAAAC 

Snrpn FWD TGTGATGTTTGTAATTATTTGGGAG 7:67150146 -67149901 

 REV CTAAAATCCACAAACCCAACTAACC 

Nnat FWD TTTAGGTGGTAAGAGGGTATTTAAGG 2:157560062-157560273 

 REV AATACATACTCACCTACAACAACAC 

Nap1l5 FWD AGTTTGGAATTTTTTGTTAAATTTGG 6:58906694-58907060 

 REV CAACTACAAAACCTCTCTAAACCAAC 

Zrsr1 FWD GGTAAGGTAGATAATTATTGTTTTAGTTGT 11:22972131-22972559 

 REV CATAAACCTACCCATACAATTACCC 

(*) From McGraw et al (2013)   
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