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ABSTRACT

Joint modeling of longitudinal and survival data has become increasingly useful for analyzing 

clinical trials data. Recent multivariate joint models relate one or more longitudinal out-

comes to one or more failure times (e.g., competing risks) in the same subject. We consider 

a case where longitudinal and survival outcomes are measured in subject pairs (e.g., married 

couples). In this dissertation, we propose a joint model incorporating within-pair correla-

tions, both in the longitudinal and survival processes. We use a bivariate linear mixed-effects 

model for the longitudinal process, where the random effects are used to model the temporal 

correlation among longitudinal outcomes and the correlation between different outcomes. 

For the survival process, we incorporate a gamma frailty into a Weibull proportional haz-

ards model to account for the correlation between survival times within pairs. The two 

sub-models are then linked through the shared random effects, where the longitudinal and 

survival processes are conditionally independent given the random effects. Parameter es-

timates are obtained by maximizing the joint likelihood for the bivariate longitudinal and 

bivariate survival data using the EM algorithm.

        The proposed methodology is applied to the spouse data from the Cardiovascular Health 

Study (CHS) to investigate the association of both longitudinal depression scores and sur-

vival times between husbands and wives, and to quantify the association of mortality and 

longitudinal depression with other covariates in husbands and wives after accounting for the 

within-spouse correlation. Public Heath Significance: Spouse studies seek to reveal the
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importance of both environmental and genetic influences on individuals. The analysis of such

information is useful in assessing long term health effects in spouse pairs and/or individuals

living together. The methodology we propose provides a valid statistical inference on the as-

sociation of longitudinal measurements and the time-to-events among paired subjects. This

methodology will contribute to the analysis of public health studies by ensuring that proper

prediction and inference are made when pairs of individuals are measured longitudinally.

Keywords: Joint models, spouse pairs, bivariate longitudinal data, bivariate survival data,

bivariate linear mixed-effects model, Weibull proportional hazards model with gamma

frailty, depression, mortality.
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1.0 INTRODUCTION

Joint modeling of longitudinal and survival data has become a valuable tool for analyzing

clinical trials data. The motivating idea behind this approach is to couple the survival

model, which is of primary interest, with a suitable model for the repeated measurements

of the endogenous outcome that will account for its special features. A well-known example

where this methodology is used is in immunodeficiency virus (HIV) clinical trials where

longitudinally measured immunologic and physiological status such as CD4 (a glycoprotein

found on the surface of immune cells such as T helper cells) count and viral ribonucleic acid

(RNA) copy number are considered as the predictors for time to progression to acquired

immunodeficiency syndrome (AIDS) or death (Thiébaut et al., 2005 [1]).

Most joint models developed so far have focused on relating a single or multiple lon-

gitudinal measurements to a time-to-event (Tsiatis et al., 1995 [2]; Henderson et al., 2000

[3]; Song et al., 2002 [4]; Lin et al., 2002 [5]; Guo and Carlin, 2004 [6]; Thiébaut et al.,

2005 [1]; Rizopoulos and Ghosh, 2011 [7]; Choi et al., 2014 [8]), to multiple time-to-events,

for example, competing risks (Elashoff, 2007 [9]), or recurrent events (Liu et al., 2008 [10];

Liu and Huang, 2009 [11]). Furthermore, all the subjects in these models are assumed to

be independent. However, this assumption is not adequate when the subjects are paired or

related in some way. A prototype example is twins, who have the same genes and also share

a similar childhood environment. Another example is married couples. The individuals in

a married couple do not have common genetic traits like twins but they might have other

common traits. For example, a non-smoker might prefer a non-smoker, leading to smoking

concordance within pairs. Shared traits or risks may also be due to coexistent life styles; for

example, even though a non-smoker choses a smoker, they will both have the risk from the

smoke, one as an active smoker, one as passive smoker. Furthermore, couples usually have
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similar diets and living environments. When the subjects are no longer independent, a more

complicated model is required to further account for the correlation between the subjects

within a pair.

It is of interest to understand the lifespan and the mental health in such a paired pop-

ulation, especially in married couples. Ciocco [12] first reported high correlations between

lifespan in married couples in 1940. A more recent refinement of assessing lifespan in married

couples involves investigating the effects of bereavement on a widowed spouse. In general,

studies report an increased risk of mortality in a widowed spouse, compared with non-

widowed spouses (Kaprio et al., 1987 [13]; Martikainen and Valkonen, 1996 [14]; Manor and

Eisenbach, 2003 [15]). For example, Hart et al. (2007) [16] studied how loss of a spouse af-

fects mortality risk in the widowed partner among married couples in Scotland. They found

widowed participants were at higher risk than non-widowed participants of dying from any

cause. Stahl et al. (2016) [17] assessed the associations among bereavement, cardiovascular

disease (CVD), and depressive symptoms on mortality in older spouses from the large Car-

diovascular Health Study (CHS) population-based cohort. They found the relation between

bereavement and mortality was different in men and women and varied by CVD status.

Bereavement decreased mortality in women with CVD and increased mortality in men with-

out CVD. Significant relationships between spouses’ psychological well-being have also been

reported in many studies. The idea that the mood or affective state of one individual might

influence that of another was first demonstrated by Coyne (1976) [18] in an experimental

study. He found that participants who spoke with a depressed person over the telephone ex-

pressed similar feelings such as depression, anxiety, and hostility following the conversation.

In contrast, those who spoke to a non-depressed person did not experience these negative

emotions. Coyne et al. (1987) [19] later studied the psychological distress in a sample of

adults (mostly spouses) who lived with a depressed patient. They found that those living

with a person experiencing depressive symptoms were quite depressed themselves. Galbaud

du Fort et al. (1994) [20] also found an significant relationship in symptoms of psychological

distress and feelings of general well-being between the spouses in a large population study

of Canadian adults. Tambs (1991) [21] examined similarities in psychological well-being in a

large sample of Norwegian nuclear families and found a significant correlation in feelings of
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anxiety and depression between husbands and wives in the entire sample as well as within

different age groups. Regarding the interdependence involved in marriage, Kelley (1981)

[22] reported that when one spouse experienced depressive symptoms, the other spouse’s

risk increased. Bookwala and Schulz (1996) [23] studied the spousal similarity of subjective

well-being in a CHS sample of older adults. They found that one spouse’s well-being and

depression predicted the other’s well-being even after controlling for known predictors of

the these outcomes. Townsend et al. (2001) [24] investigated correlation between spouses’

depressive symptomatology in middle-aged and older married couples in the Health and Re-

tirement Study (HRS) and the Study of Asset and Health Dynamics Among the Oldest Old

(AHEAD). They found that husbands’ and wives’ depressive symptoms were moderately

correlated.

The proposed joint model developed in this dissertation was primarily motivated by the

Cardiovascular Health Study (CHS) (Fried et al., 1991 [25]). CHS is a prospective, obser-

vational study designated to identify the risk factors for and consequences of cardiovascular

disease in older adults. A total of 5888 men and women aged 65 or older were enrolled from

four U.S. communities and underwent annual clinical examinations and completed an exten-

sive array of demographic and health assessments. The CHS sample included 1330 married

couples; we are specifically interested in this subsample. Depression is the most prevalent

mental health problem in adulthood and a significant public health concern (Fisher et al.,

1993 [26]). Epidemiological studies have found that 10–20% of community-dwelling elderly

persons report clinically significant depressive symptomatology (Blazer et al., 1987 [27]; Mur-

rell et al., 1983 [28]; Kennedy et al., 1989 [29]). However, findings of relationships between

depression and mortality in older population have been inconsistent across studies with some

investigators concluding that depression is associated with an increased risk of mortality and

others failing to find this association (Wulsin et al., 1999 [30]; Schulz et al.; 2000 [31]; Schulz

et al.; 2002 [32]). Methodological limitations may have contributed to inconsistent findings

about the relationship between depression and mortality (Zhang et al.; 2009 [33]). First,

most studies only have a one-time assessment of depression. However, depression status is a

dynamic process and the change in severity of depression may have temporal effects on mor-

tality, which cannot be captured by a single assessment. Second, most studies had relatively
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short follow-up periods to ascertain mortality, which captured a small number of deaths

and hence, produced potentially truncated and biased results. Therefore, it is necessary to

examine the association between depression and mortality in a large community sample that

utilizes longitudinal depression measures, while controlling for possible confounding factors.

The traditional time-varying Cox model is only appropriate for exogenous time-dependent

covariates and thus cannot easily handle longitudinal depression measures that are taken

on the subjects and thus typically require the survival of the subject for their existence. In

order to better quantify the association of mortality and longitudinal course of depression,

it is necessary to use a modeling approach to characterize both longitudinal and survival

processes jointly.

In this dissertation, we propose a joint modeling methodology for paired data where we

extend the current joint models to take into account the within-pair correlation, both in

the longitudinal and in the time-to-event processes. Specifically, we propose a joint model

to investigate the association between time to mortality and longitudinal depression scores

among married couples adjusted for the covariates related to mortality and longitudinal

depression separately.
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2.0 LITERATURE REVIEW

2.1 MODELS FOR BIVARIATE LONGITUDINAL DATA

Multivariate longitudinal data arise when a set of dependent outcomes is measured re-

peatedly over time. Bivariate longitudinal data refers to when paired outcomes are measured

repeatedly. The primary example we consider in this dissertation involves depression scores

of married couples in the CHS. There are two sources of correlations in such data: (1) serial

correlation of repeated observations on any given response in a pair and (2) cross correlation

of paired responses measured at a given time point. A popular approach to model such data

is to use a bivariate random-effects model where a random effect is assumed for each outcome

process and the two different processes are associated through a joint bivariate distribution

on the random effects. Let Xik(t) be a measurement of the response of the kth subject in the

ith pair at time t ≥ 0, where i = 1, . . . , n and k = 1, 2. Assume each longitudinal process

Xik(t) satisfies

Xik(t) = b0ik + b1ikt + · · · + b(qk−1)iktqk−1

=
[
1 t · · · tqk−1

]


b0ik

b1ik

...

b(qk−1)ik


= zik(t)bik

(2.1)

where zik(t) is a (1 × qk) vector of functions of time t, bik is a (qk × 1) random effects, and

zik(t) and bik may be different for each subject k. This allows flexibility in presenting the

time trajectory of each response via polynomial. The longitudinal responses Xik(t) are not
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observed directly; rather longitudinal measurements yik(t) on the kth response are taken at

times t, for each pair i, where

yik(t) = Xik(t) + eikj (2.2)

and eik ∼ N(0, σ2
k) that reflect both biological variation and measurement error. Thus,

together, Equations (2.1) and (2.2) contribute the bivariate random-effects model, and Xik(t)

can be regarded as the “inherent” or “latent” trajectory for the response of subject k in pair

i.

This approach has many advantages and it is applicable in a wide variety of situations.

An earlier model proposed by Reinsel (1982 [34], 1984 [35]) introduced a multivariate linear

random-effects model but that particular model could only be used to analyze complete and

balanced multivariate longitudinal data in which all outcomes are measured at the same

time point. In practice, however, the data can be highly unbalanced, where outcomes may

be measured at different time points. Reinsel’s work has been extended by Shah et al. (1997)

[36] to accommodate the case of arbitrary measurement times. Their approach employed

the EM algorithm for the parameter estimates. Schafer (1997) [37] and Schafer and Yucel

(2002) [38] developed a similar model which allowed for multiple imputation in cases when

there was missing data. Morrell et al. (2003) [39] used the multivariate linear mixed-effects

model in a Bayesian framework to predict hypertension based on Body Mass Index, systolic

blood pressure and triglyceride levels from the Baltimore longitudinal study of aging. Lin

et al. (2002) [5], Thiébaut et al. (2005) [1], and Chi et al. (2006) [40] also employed this

approach.

The approach described above can be used directly even when the underlying process

is nonlinear in time. This is achieved via employing the use of polynomials in the inherent

process. The newer approach is also applicable but must be modified somewhat when the

outcome processes are nonlinear functions of parameters or when splines are used. Compared

to polynomials, splines are usually preferred due to their local nature and better numerical

properties (Ruppert et al., 2003 [41]). For example, Song et al. (2002) [4] investigated for-

mally whether a quadratic pattern of outcome processes provides a better characterization

using a conditional F -test; Brown et al. (2005) [42] developed a data-driven Bayesian ap-

proach B-spline model to describe how two biomarkers (CD4 counts and HIV RNA levels)
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change over time and to estimate the impact of a set of covariates on the two biomarkers

in an AIDS clinical trial. Rizopoulos and Ghosh (2011) [7] considered natural cubic splines.

An alternative approach to model highly nonlinear shapes of subject-specific evolutions is

to incorporate an additional stochastic term in the bivariate linear random-effects model to

capture the remaining serial correlation in the observed measurements not captured by the

random effects. The model is considered to be of the form

Xik(t) = zik(t)bik + Uik(t), (2.3)

where Uik(t) is a mean-zero stochastic process, usually taken to be independent of bik. Sy

et al. (1997) [43] used the Fisher scoring to fit the model (2.3) and specified Uik(t) to be an

integrated Orstein-Uhlenbeck (IOU) process which includes Brownian motion as a special

limiting case. In many epidemiological studies, outcomes are related to covariates in a

nonlinear fashion. Coull and Staudenmayer (2004) [44] presented a self-modeling regression

model (SEMOR) (Lawton and Sylvestre, 1971 [45]) for flexible nonparametric modeling of

multiple longitudinal outcomes, which allows for such nonlinear relationship. The bivariate

random-effects model can be constructed joining different types of random-effects models

such as a combination of a linear random-effects model for a continuous outcome and a

generalized linear random-effects model for a binary outcome (Gueorguieva, 2001 [46]; Liu

et al., 2010 [47]; Choi et al., 2014 [8]).

2.2 MODELS FOR BIVARIATE SURVIVAL DATA

The traditional techniques to analyze survival data are based on the assumption that

the survival times of distinct individuals are independent of each other. However, this

assumption is violated when the study units are paired such as child and parents, twins, or

married couples. In the presence of the dependence between the event times, a joint survival

model is considered.
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Suppose there are two survival times, T1 and T2. Let S1(t1) and S2(t2) denote the

survival function of T1 and T2, respectively. The general form of a joint survival function of

two survival times can be written as

S(t1, t2) = Pr{T1 ≥ t1, T2 ≥ t2} (2.4)

2.2.1 Bivariate Exponential and Weibull Model

The exponential distribution plays a prominent role in statistics. The reason is that

it has a lot of interesting properties and it can be justified by many different mathemati-

cal constructions. Many authors have extended the univariate exponential distribution to

the multidimensional case because the dependence structure can be addressed directly in

the model. Gumbel (1960) [48] first proposed two bivariate distributions whose marginal

distributions are exponential:

S(t1, t2) = 1 − e−t1 − e−t2 + e−(t1+t2+θt1t2)

S(t1, t2) = (1 − e−t1)(1 − e−t2)(1 + e−(t1+t2+θt1t2)).
(2.5)

Freund (1961) [49] pointed out that Gumbel (1960) [48] did not discuss the appropri-

ateness of these models to particular physical situations. Thus, he presented a different

bivariate extension of the exponential distribution, which was particularly designed for the

life testing of two-component systems that can function even after one of the components

has failed. However, the margins in Freund’s bivariate model are not exponential but mix-

tures of exponentials. Marshall and Olkin (1967) [50] considered a two-component system

where the system survives or dies according to the occurrences of shocks to each or both

of the components. The occurrences of shocks are governed by three independent Poisson

processes, N1(t), N2(t) and N12(t) with intensities λ1, λ2 and λ12. The first two processes,

N1 and N2, control shocks to individual components, whereas N12 controls shocks to both

components. The bivariate distribution they formulated is

S(t1, t2) = exp{−λ1t1 − λ2t2 − λ12 max(t1, t2)}. (2.6)
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This distribution is the most known bivariate exponential distribution (BVE). Block and

Basu (1974) [51] presented an absolutely continuous bivariate extension of the exponential

distribution, and Proschan and Sullo (1974) [52] investigated the parameter estimation for

the three parameter version of bivariate exponential distribution proposed by Marshall and

Olkin [50].

The exponential models can be generalized to the more flexible Weibull case where it

allows for either proportional hazards or accelerated failure time models (Klein et al., 1989

[53]; Ghosh and Gelfand, 1998 [54]). However, in the exponential case, there does not exist a

unique natural extension of the univariate exponential distribution to bivariate or multivari-

ate case. Thus, there are different versions of bivariate or multivariate Weibull distributions

extended from the bivariate or multivariate exponential cases. For example, Hanagal de-

veloped various versions of multivariate Weibull distribution (MVW) and bivariate Weibull

distribution (BVW). He first proposed a MVW which was the extension of the multivari-

ate exponential of Marshall-Olkin (1967) (Hanagal, 1996 [55]) and a BVW by taking simple

transformation to the bivariate exponential of Freund (Hanagal, 2005 [56]). He applied these

models to censored samples with common covariates and derived maximum likelihood es-

timation (MLE) and a significance test for the covariates (Hanagal, 2004 [57], 2005 [56]).

He later proposed another new bivariate Weibull regression model that was an extension of

bivariate exponential of Proschan-Sullo (1974) with a frailty (a random effect shared by the

dependent subjects and will be described in detail in Section 2.2.2) generated from several

different distributions. This model was then applied to censored samples with covariates in

order to investigate whether the frailty had no effect when the covariates were included in

the model. The frailty distributions he considered include gamma, positive stable, and power

variance functions (Hanagal, 2009a [58], 2009b [59]). In 2010 [60], he developed a BVW with

a frailty generated by Weibull distribution and derived two-stage MLE procedure for the

parameters.

9



2.2.2 Shared Frailty Model

Vaupel et al. (1979) [61] and Lancaster (1979) [62] first introduced the notation of frailty,

a random effect, to represent the unobserved population heterogeneity. A frailty then was

defined as an unobservable random effect shared by all subjects within a cluster. This type

of model is becoming increasingly popular for modeling the association between individual

survival times within clusters. In the bivariate case, the model assumes given the frailty µ,

T1 and T2 are independent, that is,

S(t1, t2|µ) = S1(t1|µ)S2(t2|µ). (2.7)

This approach can be seen as a strategy to model the dependence in bivariate or multi-

variate data using univariate distributions (Sahu and Dey, 2000 [63]). A frailty is assumed to

act either multiplicatively or additively on the hazard rates of all subjects within a cluster.

In such models, clusters with large values of the frailty will experience the event at earlier

times than clusters with small values. Hence, the larger the frailty value, the more “frail” a

population tends to be.

Usually the frailty, µ, is assumed to act multiplicatively on proportional hazards, that

is, h(t|µ) = µh0(t), where h0(t) is the baseline hazard function. Under this assumption the

cumulative hazard function is H(t|µ) = µH0(t) and survival function is S(t|µ) = S0(t)µ

with corresponding baseline cumulative hazard function H0(t) and baseline survival function

S0(t), respectively. Suppose that µ has a density g(µ). Then the joint survival function can

be obtained by integrating out µ in the conditional bivariate survival function

S(t1, t2) =
∫ ∞

0
S(t1, t2|µ)g(µ)dµ

=
∫ ∞

0
S01(t1)µS02(t2)µg(µ)dµ

=
∫ ∞

0
e−µ[H01(t1)+H02(t2)]g(µ)dµ

(2.8)

Since the Laplace transform of a function, f(t), can be written as L(s) =
∫∞

0 e−stf(t)dt,

Equation (2.8) can be recognized as the Laplace transform of g(µ) evaluated at s = H01(t1)+

H02(t2). Thus,

S(t1, t2) = Lg{H01(t1) + H02(t2))} (2.9)
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There are some common distributions proposed in the literature for frailty. Gamma

distributions have been extensively studied due to their simple interpretation and mathe-

matical tractability. For example, they fit well to survival models due to the simplicity of

the derivatives of the Laplace transform. Suppose frailty, µ, has a one-parameter gamma

distribution with mean 1 and variance θ. Thus, µ has a density

g(µ) =
µ

1
θ

−1 exp(−µ
θ
)

Γ(1
θ
)θ 1

θ

. (2.10)

The Laplace transform of g(µ) is L(s) = (1/θ(1/θ + s))1/θ. A joint survival function can be

obtained by using the result

S(t1, t2) =
(

1
1 + θH01(t1) + θH02(t2)

)1/θ

(2.11)

The marginal survival function of T1 is S(t1) = S(t1, 0) = ( 1
1+θH01(t1))

1/θ. After doing some

algebra, we can obtain S(t1)−θ − 1 = θH01(t1). Similarly, S(t2)−θ − 1 = θH02(t2). Plugging

the results into Equation (2.11), we obtain the joint survival function as a function of the

two marginal survival functions:

S(t1, t2) = (S(t1)−θ + S(t2)−θ − 1)−1/θ (2.12)

As θ approaches 0, the marginal distributions S(t1) and S(t2) become independent. As θ

approaches ∞, S(t1, t2) approximates the Fréchet-Hoeffding bound on the maximum possible

positive association between two distributions with given marginals. In other words, the

model can range its association structure from independence to positive association but

can’t account for negative association. Clayton (1978) [64] proposed a continuous bivariate

survival model where the conditional hazard for subject 1 at time t1 given that the other

subject died at time t2 and the conditional hazard for subject 1 at time t1 given that the

other subject survived at least to t2 are proportional, that is,

λ1(t1|T2 = t2)
λ1(t1|T2 ≥ t2)

= 1 + Φ, (2.13)

where the hazard ratio 1+Φ is constant over time. This model can be interpreted in terms of

a proportional hazards model with a one-parameter gamma distributed frailty, µ , and Φ = θ.
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Oakes (1982) [65] considered the bivariate case without covariates and showed that θ (or Φ)

is closely related to a measure of dependence, Kendall’s τ , where τ = θ
θ+2 is calculated from

an uncensored sample or from a right-censored sample using only those pairs that can be

classified as either concordant or discordant. Clayton and Cuzick (1985) [66] later extended

the model to allow for covariates and adapted to study the problem of intra-class association

(e.g., litter-matched and matched-pair failure-time data). Guo and Rodriguez (1992) [67]

generalized Clayton’s model to the multivariate case and fitted the model using an accelerated

EM algorithm. Hanagal also has published many works on the gamma shared frailty model

(Hanagal, 2006 [68], 2007 [69]; Hanagal and Dabade, 2013 [70]; Hanagal and Pandey, 2014

[71]). In practice, however, the gamma frailty may not be suitable (Shih, 1998 [72]; Glidden,

1999 [73]; Fan et al., 2000 [74]). Positive stable distributions (Hougaard, 1986a [75]; Fine et

al., 2003 [76]) and inverse Gaussian distributions (Hougaard, 1986b [77]; Whitmore and Lee,

1991 [78]) are the useful alternatives because they have an attractive feature that the hazard

ratios decrease over time. However, the derivatives of their Laplace transforms are more

complicated, which make some calculations more difficult. Laird (1978) [79], Heckman and

Singer (1984) [80], and Guo and Rodriguez (1992) [67] considered estimating the distribution

of the frailty by non-parametric maximum likelihood. That strategy leads to a finite mixture

model where the frailty is assumed to have a discrete distribution. The nonparametric

maximum likelihood approach has the advantage of flexibility, but it does not share some of

the convenient properties of models with gamma frailties. Manda (2011) [81] considered a

nonparametric frailty distribution modeled completely with a Dirichlet process prior.

The hazard ratio can also be estimated as a function of time. Many approaches have

been developed to estimate a piecewise constant hazard ratio (Shih and Louis, 1995a [82],

1995b [83]; Nan et al., 2006 [84]; Li et al., 2008 [85]). Hu et al. (2011) [86] proposed a

time-dependent hazard ratio motivated by Clayton’s model and developed a pseudo-partial

likelihood approach to estimate the hazard ratio that is a continuous function of the bivariate

survival times.

Yashin et al. (1995) [87] noted that the shared frailty model does not satisfy some natural

conditions (e.g., combining identical and fraternal twin data sets) and suggested a correlated

individual frailty model for the analysis of twins data where the frailties of two twins in a
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pair are not necessarily the same as they are in the shared frailty. Thus, the specific feature

of the association of twins is captured by the correlation. Wienke et al. (2003) [88] suggested

a correlated gamma frailty by extending Clayon’s shared gamma frailty model to explain the

correlation within clusters in a breast cancer incidence data for Swedish female monozygotic

and dizygotic twin pairs.

2.2.3 Marginal and Copula Model

For bivariate survival data, a marginal model is useful when the main interest is to com-

pare the survival times of individuals across the pairs and to estimate the effect of covariates

on survival. Marginal approaches model the effect of covariates on the hazards of the individ-

ual events, taking into account the fact that observed event times are correlated but without

explicitly modeling this correlation. Specifically, the correlation is often ignored when es-

timating the covariate effects and the uncertainty of the parameter estimates is evaluated

by a “sandwich estimator” (Hardin and Hilbe, 2003 [89]) to ensure correct inference. It is

closely related to the so-called generalized estimating equation (GEE) methodology (Liang

and Zeger, 1986 [90]) and has mostly been considered in the context of proportional hazards

models. For example, Lee et al. (1995) presented marginal Cox models and Wei et al. (1989)

[91] considered the stratified Cox models.

When the correlation within pairs is also of interest, the marginal approach is not useful

because it does not provide any information on the dependence between the failure times

in pairs. Therefore, we need another approach to model the dependence structure, that is,

the copula. The idea behind a copula approach is to study the dependence when the effect

of the marginal distribution as function of time and covariates is removed. This removal is

obtained by assuming the margins are known (fixed). Copula models combine the marginal

model and the copula so that the margins are modeled by standard Cox models and the

dependence is modeled by some sort of copula. The copulas used are those corresponding

to the frailty models mentioned in Section 2.2.2. It is a multivariate approach that is more

consistent with the univariate model than the frailty model. This approach gives us frailty

models in simple cases. Copula models offer a way that the joint survival function of two
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failure times in a pair is modeled as a function of the marginal survival functions through

a copula. The copula, used to couple the marginal survivals functions and joint survival

function, determines the type of dependence.

A two-stage estimation procedure is usually used in the copula models. In the first stage,

the marginal parameters are estimated assuming independence. In the second stage, the es-

timated margins are used to estimate the association parameter in the copula by maximizing

the likelihood with respect to the copula parameter with the estimated marginal parameters.

This strategy was first suggested by Hougaard (1986a) [75] in the stable copula case. Shih

and Louis (1995b) [83] investigated two-stage parametric and two-stage semi-parametric es-

timation procedures in the case where each margin is modeled separately. Glidden (1999)

[73] studied the case where the margins are modeled by a stratified Cox model and the as-

sociation parameter is modeled by the gamma copula. Anderson (2005) [92] generalized the

approaches of Shih and Louis (1995b) [83] and Glidden (1999) [73] to allow one to estimate

the association while modeling the effect of covariates in the marginal model.

2.3 JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA

In longitudinal studies and clinical trials it is common to collect repeated measurements

on a continuous or discrete response, times to events of interest and additional covariate

information on each subject simultaneously. These longitudinal responses are measured with

error and often incomplete after a long follow-up period. It is often of interest to investigate

the association between the longitudinal response and the time-to-event in such studies. The

joint modeling approach has been developed to handle this association.

2.3.1 Time-Dependent Cox Model

When the interest is on inference for the model parameters of a time-to-event process, a

naïve method is to treat the longitudinal process as a time-varying covariate in a Cox model

(Cox, 1972 [93]; Rizopoulos, 2010 [94]). The hazard function for individual i at time t is
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then given by

hi(t) = h0(t) exp{wiγ + αyi(t)} , (2.14)

where h0 is the baseline hazard function, yi(t) is the observed longitudinal response with

corresponding regression parameter α, and wi is a vector of the fixed covariates with corre-

sponding regression parameter vector γ.

However, this Cox model approach assumes the covariates are external (not related to

the failure mechanism) (Kalbfleisch and Prentice, 2002 [95]; Rizopoulos, 2010 [94]) and

requires complete values of each covariate at each failure time for all individuals. Often,

the longitudinal measurements do not satisfy these conditions due to the fact that they are

collected with time-to-event on the same individual and are usually measured intermittently,

with error, and might not be available at all the observed event times. Moreover, the Cox

model is not able to take into account the measurement error of the covariates and thus can

introduce bias.

2.3.2 Linear Mixed-Effects Model

The most commonly used sub-model to model the longitudinal process in the joint mod-

eling is a linear mixed-effects model. This model incorporates random effects into a linear

model to account for the within-individual correlation caused by the repeated measures of

individuals collected over time. Let yi(t) be the longitudinal response of subject i at time t.

One linear mixed-effects model for the observed response yi(t) is given by

yi(t) = xi(t)β + bi(t) + εi(t) , (2.15)

where xi(t) is the design matrix for the fixed effects with corresponding regression parameters

β; bi(t) is the subject-specific random effects, typically given by bi(t) = b0i + b1it, where b0i

and b1i represent the random intercept and slope effects, respectively (e.g., Self and Pawitan,

1992 [96]; Tsiatis et al., 1995 [2]; Wulfsohn and Tsiatis, 1997 [97]). Also, εi(t) ∼ N(0, σ2)

is the measurement error, assumed to be independent of bi(t). Philipson et al. (2012) [98]

considered a random intercept only form and a random quadratic form for bi(t).

15



When the subjects show highly nonlinear longitudinal trajectories over time, high-order

polynomials or splines formulation of bi(t) is considered (Brown et al., 2005 [42]; Ding and

Wang, 2008 [99]; Rizopoulos et al., 2009 [100]; Rizopoulos and Ghosh, 2011 [7]). bi(t) may

also incorporate a stochastic component, which accounts for the within-individual biological

fluctuations in the observed measurements not captured by the random effects (Henderson

et al., 2000 [3]; Wang and Taylor, 2001 [101]). By doing this, the model characterizes

better the true overall longitudinal process. However, a stochastic component may cause

computational issues because of the increase in model complexity. Hence, a random effects

approach is relatively easier to implement in practice because it only requires an appropriate

specification of the random effects, bi(t).

The linear mixed-effects model by itself, of course, ignores any association between the

longitudinal and survival processes in the estimation of parameters. When there is an as-

sociation between them, this approach can cause biased estimates due to ignoring possible

informative censoring induced by the occurrence of an event (e.g., death) in the longitudinal

process (Ratcliffe et al., 2004 [102]; Ibrahim et al., 2010 [103]; Sweeting and Thompson, 2011

[104]).

2.3.3 Two-Stage Approaches

Tsiatis et al. (1995) [2] proposed a two-stage procedure with the attempt of reducing the

bias of the parameter estimates introduced by the use of the time-dependent Cox model that

incorporates a longitudinal covariate measured with error. In the first stage, a linear mixed-

effects model is fitted to estimate the true longitudinal process without measurement error.

In the second stage, the estimates obtained by the linear mixed-effects model are plugged into

a Cox proportional hazards model as covariates. However, this is not an unbiased approach

because no survival information is utilized when estimating the true longitudinal response

and possible selection bias due to informative dropout is not taken into account.
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2.3.4 Joint Likelihood Approach

An increasingly popular alternative is the use of a joint likelihood approach, where the

estimates of the parameters are obtained by maximizing the joint likelihood of the longitu-

dinal process and the survival time. The joint model is comprised of two linked sub-models,

one for the “true” longitudinal process and the other for the survival time along with addi-

tional specifications and assumptions that allow ultimately a full representation of the joint

distribution of the observed data. This approach uses all available information optimally

because both the longitudinal and survival data are utilized simultaneously. There are dif-

ferent ways to parameterize the joint likelihood of the longitudinal and survival processes,

including selection models, pattern-mixture models, and random effects models (Diggle et

al., 2008 [105]). Sousa (2011) [106] gives a good overview on selection and pattern-mixture

models and McCrink et al. (2013) [107] give a good overview on random effects models. We

focus on the random effects models in this dissertation because this kind of model has been

widely used in recent studies.

Joint random effects models are constructed by assuming conditional independence of

survival and longitudinal data, given the shared, latent random effects (Schluchter, 1992

[108]; Faucett and Thomas, 1996 [109]; Wulfsohn and Tsiatis, 1997 [97]; Henderson et al.,

2000 [3]; Tsiatis and Davidian, 2004 [110]; Diggle et al., 2008 [105]; Rizopoulos, 2010 [94]).

They are also known as “shared parameter” models. Let Y denote the longitudinal response,

T denote the failure time, and b denote the random variables shared by both Y and T and

thus b accounts for the association between both outcomes. The joint distribution of Y and

T takes the form

p(Y, T ) =
∫

b
p(b)p(Y |b)p(T |b) db (2.16)

Depending on the focus of the analysis, random effects joint models can be formulated to

handle: (1) a survival process with longitudinal covariates that are measured with error; (2) a

longitudinal process with informative censoring; or (3) the joint evolution of the longitudinal

and survival processes. In conjunction with these different formulations of joint models,

there are various types of joint models depending on the choice of sub-models used to link

the two processes.
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The most widely used random effects joint models combine a linear mixed-effects model

for the longitudinal process and a Cox proportional hazards model for the survival process.

The two sub-models are then linked through their shared random effects, which account for

the association between both outcomes. The formulation of a link (shared random effects)

between the longitudinal and survival processes depends on the focus on the joint model.

When the interest is on the survival process where we want to incorporate a time-

dependent covariate measured with error into a survival (also the primary interest in this

dissertation), the joint models can be formulated as follows. First, assume we know mi(t),

the true and unobserved value of the longitudinal response for subject i at time t, and a

hazard model can be defined:

hi(t|Mi(t)) = h0(t) exp
{
wiγ + αmi(t)

}
, (2.17)

where Mi(t) = {mi(s), 0 ≤ s < t} represents the longitudinal response history up to time t.

Assume that the hazard is taken to depend linearly on longitudinal response history through

the current value, mi(t), and α quantifies the effect of the true underlying longitudinal

response, mi(t), on the hazard for an event. Also, hi(t) is the hazard function, h0(t) is

the baseline hazard, wi is a vector of the baseline covariates with corresponding vector of

regression parameters, γ. Next, a linear mixed model is used to obtain a less biased and

thus more precise estimate of the longitudinal process, mi(t):

yi(t) = mi(t) + εi(t)

= xi(t)β + bi(t) + εi(t) ,
(2.18)

where xi(t) is the design matrix for the fixed effects with corresponding regression parame-

ter β. bi(t) is the subject-specific random effects, and εi(t) ∼ N(0, σ2) is the measurement

error, assumed to be independent of bi(t). Finally, the two processes are linked through the

random effects, bi(t), where the longitudinal and survival processes are conditionally inde-

pendent given bi(t). This means that these random effects account for both the association

between the longitudinal and survival processes, and the correlation between the repeated

measurements in the longitudinal process (Tsiatis and Davidian, 2004 [110]; Rizopoulos, 2010

[94]).
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When the interest is on the longitudinal process, where we want to take into account

the informative censoring due to a time-to-event or when the focus is on both processes,

where we want to make an inference regarding the relationship between the two processes,

the joint model can be formulated as follows. First, a linear mixed model is used to obtain

the estimate of the longitudinal process, yi(t).

yi(t) = xi(t)β + bi(t) + εi(t) , (2.19)

where xi(t) is the design matrix for the fixed effects with corresponding regression parameters

β, bi(t) is the subject-specific random effects, and εi(t) ∼ N(0, σ2) is the measurement error,

assumed to be independent of bi(t). Next, a proportional hazards model is used for the

survival data

hi(t) = h0(t) exp
{
wiγ + δbi(t)

}
, (2.20)

where δ represents the influence of the longitudinal random effects on the survival process

(Faucett and Thomas, 1996 [109]; Wulfsohn and Tsiatis, 1997 [97]; Diggle et al., 2008 [105]).

A separate association for the influence of the random effects on the survival process can

also be assumed by allowing different coefficients for the random intercept and slope (e.g.,

δ0b0i + δ1b1it). bi(t) can have other forms as was mentioned earlier in Section 2.3.2. Finally,

assume that given the random effects, bi(t), the longitudinal process and the survival time

are conditionally independent. The informative censoring can be accounted for through a

joint likelihood, and thus reduces the bias in the estimates in the longitudinal sub-model.

Because the parameters that describe the longitudinal process and the parameters that

describe the time-to-event as a function of the longitudinal process are estimated at the same

time, the joint model uses both the observed longitudinal data and survival information to

obtain estimates of the true longitudinal value at any time. Therefore, we are able to get more

precise and accurate estimates of the strength of the relationship between the longitudinal

process and the survival time.

19



2.3.5 Estimation of Joint Models

Maximum likelihood (ML) is the main estimation method used to estimate the param-

eters of joint models (Schluchter, 1992 [108]; Wulfsohn and Tsiatis, 1997 [97]; Henderson et

al., 2000 [3], 2002 [111]; Tsiatis and Davidian, 2004 [110]; Diggle et al., 2008 [105]; Rizopou-

los, 2010 [94]). This method involves maximizing the log likelihood of the joint distribution

of the longitudinal and survival processes given the shared random effects that are assumed

to link both processes. Let the observed data for each individual is {Yi, Ti, ∆i} where Yi is

the longitudinal response for subject i, Ti the event time, and ∆i the event indicator (∆i = 1

if the event occurs and ∆i = 0, otherwise). We do not observe the random effects bi. The

joint likelihood, L(ϕ) is given by

L(ϕ) =
n∏

i=1

∫
p(Yi|bi, ϕ)p(Ti, ∆i|bi, ϕ)p(bi|ϕ) dbi (2.21)

where p(Yi|bi, ϕ), p(Ti, ∆i|bi, ϕ), and p(bi|ϕ) are the densities of the longitudinal and survival

processes, and random effects, respectively; ϕ = (ϕy, ϕt, ϕb)T denote the full parameter

vector, with ϕy denoting the parameters for the longitudinal process, ϕt the parameters for

the survival process, and ϕb the parameters for the random effects covariance matrix.

The expectation–maximization (EM) algorithm is commonly used to maximize the joint

log-likelihood function. This is done by iterating between an E-step, where the expected log-

likelihood of the complete data conditional on the observed data and the current estimate of

the parameters is computed, and an M-step, where new parameter estimates are computed by

maximizing this expected log-likelihood. The EM algorithm has been traditionally preferred

in the literature mainly due to the fact that in the E-step some of the parameters have

closed-form update (Dempster et al., 1977 [112]). However, a major disadvantage of using

EM algorithm is its linear convergence rate that results in slow convergence especially near

the maximum.

To improve the slow linear convergence rates when using the ML techniques, Bayesian

estimation of joint models using Markov chain Monte Carlo (MCMC) techniques, first pro-

posed by Faucett and Thomas (1996) [109], has been considered by many authors (Xu and

Zeger, 2001a [113], 2001b [114]; Wang and Taylor, 2001 [101]; Song, Davidian, and Tsiatis.,
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2002 [4]; Guo and Carlin, 2004 [6]). However, Bayesian approaches are based on prior distri-

butions for the model parameters and thus the need to choose such prior distributions leads

to the requirement of sensitivity analysis during model validation. In contrast, Tsiatis and

Davidian (2001) [115] proposed an alternative estimation technique, the conditional score

approach, that requires no assumption on the distribution of random effects, and they de-

veloped a set of unbiased estimating equations to determine the parameter estimates, which

is less intensive than likelihood methods.

2.3.6 The Submodels for the Survival Data

A proportional hazards model is commonly used in joint models to represent the survival

process, where the form of the baseline hazard is either parametric or unspecified. In the

survival analysis context, the typical used parametric distributions for the baseline hazard

include the Weibull, the log-normal (Schluchter, 1992 [108]), and the Gamma. However, it

is customary in semi-parametric models to leave the baseline hazard unspecified in order to

avoid the mis-specification for the distribution of survival time. Recently, however, it has

been found that a completely unspecified baseline hazard can lead to an underestimation

of the standard errors of the parameter estimates (Hsieh et al., 2006 [116]) and that the

piecewise-constant hazard (Brown and Ibrahim, 2003 [117]) can increase efficiency compared

with an unspecified baseline (Slasor and Laird, 2003 [118]).

The proportional hazards model assumes not only that the covariates have a multiplica-

tive effect on the hazard for an event and but also that the hazard of the event at a certain

time only depends on the current value of the covariates and not on the history of the co-

variates. When these assumptions are violated, the joint models commonly incorporate the

accelerated failure time model to model the survival process (Tseng et al., 2005 [119]).

2.3.7 Joint Models for Multiple Longitudinal Outcomes

The extension of a joint model to handle more than one longitudinal outcome (either

continuous or categorical) has been studied by several statisticians (Song et al., 2002 [4];

Xu and Zeger, 2001b [114]; Lin et al., 2002 [5]; Thiébaut et al., 2005 [1]). The multivariate
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random effects models as we mentioned previously in Section 2.1 are widely used to model

the multiple longitudinal outcomes within the joint models. Estimation of the multivariate

joint models proceeds by maximizing the corresponding log-likelihood function, which is very

similar to the one presented in Equation 2.21. Assume we have the bivariate longitudinal

outcome, and the only difference is the density function for the longitudinal part that under

the bivariate model takes the form:

p(Yi|bi, ϕ) = p(Y 1
i , Y 2

i |bi, ϕ) =
{ ni1∏

j=1
f(Y 1

i |bi, ϕ)
}{ ni2∏

j=1
f(Y 2

i |bi, ϕ)
}

(2.22)

where Yi =
[

Y 1
i

Y 2
i

]
, Y 1

i and Y 2
i represent two longitudinal responses for subject i.

The main practical problem in fitting multivariate joint models is their computational

complexity due to the requirement for the numerical integration with respect to the random

effects. In particular, since we assume a different set of random effects per outcome, it is

obvious that the dimensionality of the random effects vector is considerably increased with

an increase in the number of longitudinal outcomes. When the subject-specific longitudinal

profiles are highly nonlinear, the high-order polynomials or splines forms for the random

effects have been considered by Rizopoulos and Ghosh (2011) [7], Chi and Ibrahim (2006)

[40], Brown et al. (2005) [42], and Lin et al. (2002) [5].
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3.0 DISSERTATION STATEMENT

The vast majority of the joint models developed so far in the literature have assumed that

the experimental units are independent. However, it is of interest to jointly model survival

data with longitudinal information in paired subjects, such as married couples. This latter

focus will drive the primary aim of this dissertation.

There are three objectives in this dissertation. First, we develop a new joint modeling

methodology for paired data where we extend the current joint models to take into account

the within-pair correlation, both in the longitudinal process and in the time-to-event pro-

cess. We use a bivariate linear mixed-effects model for the longitudinal process where the

random effects are used to model the temporal correlation among continuous longitudinal

outcomes and the correlation between different outcomes. For the survival process, we use

a Weibull proportional hazards model with a gamma frailty to account for the correlation

between survival times within pairs. The sub-models are then linked through shared random

effects, where the longitudinal and survival processes are conditionally independent given the

random effects. Parameter estimates are obtained by maximizing the joint likelihood for the

bivariate longitudinal and bivariate survival data using the Expectation-Maximization (EM)

algorithm. Second, we conduct simulations to evaluate the performance of the proposed

model. Finally, we apply the proposed joint modeling approach to the CHS spouse sample

with the following goals:

1. To investigate the association of both longitudinal depression score and mortality between

husbands and wives, controlling for covariates associated with depression and mortality,

respectively;

2. To quantify the husband- and wife- specific association of mortality with their longitu-

dinal depression scores.
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4.0 JOINT MODELING FRAMEWORK

4.1 THE BIVARIATE LONGITUDINAL PROCESS

When paired responses are measured over time, two levels of correlation structure need

to be considered in the observations of a pair. The first level is the correlation over time for

each response and the second level is the correlation between the two responses. We propose

a bivariate linear mixed-effects model to explicitly model the two sources of correlations.

Let yik(t) be the response of subject k in pair i at time t (i = 1, . . . , n; k = 1, 2). Each

subject’s response is described using a linear mixed-effects model:

yi1(t) = µ1(t) + vi1(t) + εi1(t)

yi2(t) = µ2(t) + vi2(t) + εi2(t) ,
(4.1)

where µ1(t) and µ2(t) refer to the average response trajectories, vi1(t) and vi2(t) are the

random effects to capture the subject deviation from the average profile, and εi1(t) and

εi2(t) are the measurement errors.

The average response trajectories can also be described by µ1(t) = xi1(t)β1 and µ2(t) =

xi2(t)β2, in which xi1(t) and xi2(t) represent the covariates (which can be either time-

invariant or time-varying) considered to be associated with the response, and β1 and β2

are their corresponding regression parameters, respectively.

We assume the subject-specific random effects have a form of

vi1(t) = zi1(t)bi1 = b0i1 + b1i1t

vi2(t) = zi2(t)bi2 = b0i2 + b1i2t ,
(4.2)
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where zi1(t) and zi2(t) are the design matrix of random effects with vector of corresponding

regression parameters bi1 and bi2; b0i1 and b0i2 represent the random intercept effects, and

b1i1 and b1i2 represent the random slope effects. Here, we allow both intercepts and slopes

to be random.

Thus, the two linear mixed-effects models can be re-written as

yi1(t) = xi1(t)β1 + zi1(t)bi1 + εi1(t)

yi2(t) = xi2(t)β2 + zi2(t)bi2 + εi2(t)
(4.3)

We propose a bivariate linear mixed-effects model to characterize the two responses

jointly, where the two response trajectories are tied together through a joint distribution for

the random effects

bi1

bi2

 =



b0i1

b1i1

b0i2

b1i2


∼ N(0, D) , (4.4)

where D, the covariance matrix of the random effects, has the following structure to reflect

the bivariate nature of the data:

D =



σ2
b01 σb01b11 σb01b02 σb01b12

σ2
b11 σb11b02 σb11b12

σ2
b02 σb02b12

σ2
b12


=

D1 D12

D21 D2

 (4.5)

D can be partitioned in four sub-matrices: (1) D1 =
[

σ2
b01

σb01b11
σ2

b11

]
, the variances and covari-

ances of random effects for the response of subject 1; (2) D2 =
[

σ2
b02

σb02b12
σ2

b12

]
, the variances and

covariances of random effects for the response of subject 2; (3) D12 = D21 =
[

σb01b02 σb01b12
σb11b02 σb11b12

]
,

the covariances between the random effects of the different responses. If D12 = D21 have all

entries equal to 0, both responses are assumed to be completely independent at any time.

The two measurement errors are assumed to follow a joint distribution given byεi1(t)

εi2(t)

 ∼ N(0, R) , (4.6)
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where R, the covariance matrix of the measurement errors, is assumed to be a diagonal

matrix with the form
[

σ2
1 0

0 σ2
2

]
, and σ2

1 and σ2
2 represent the variance of measurement errors of

each response. The structure of R characterizes the correlation between the two responses

at the same time and is assumed to be the same across time and pairs. We also assume the

measurement errors are independent of the random effects, which implies that conditional on

the random effects, both response trajectories are independent. We can combine the models

above into one single bivariate longitudinal model:

yik(t) = xik(t)βk + zik(t)bik + εik(t)

= mik(t) + εik(t), bi ∼ N(0, D), εi(t) ∼ N(0, R) ,
(4.7)

where mik(t) denotes the true and unobserved value of longitudinal response; xik(t) and

zik(t) are the design matrices of fixed and random effects, respectively, with vectors of

corresponding fixed and random effects parameters βk and bik; εik(t) is the measurement

error.

4.2 THE BIVARIATE SURVIVAL PROCESS

We propose a Weibull proportional hazards model with gamma frailty to jointly charac-

terize the two event times. We assume that the event times are conditionally independent

given the pair-specific random effect (the frailty), µi. The conditional hazard function at

time t for subject k (k = 1, 2) in pair i (i = 1, . . . , n) is as follows:

hik(t|µi) = h0(t)µi exp {w∗
ikγ∗

k + αkmik(t)} , (4.8)

where h0(t) is the baseline hazard; µi is the frailty for pair i; w∗
ik is the baseline covariate

vector considered associated with survival time and γ∗
k is the corresponding effect for subject

k; αk represents the effect of the true longitudinal response, mik(t), on the survival process

for subject k.
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Equation (4.8) formulates the variability of the event times, coming from two sources.

The first source is natural variability that is explained by the hazard function and the second

is variability common to individuals in the same pair that is explained by the frailty, µi.

We assume a flexible Weibull (parametric) distribution for the baseline hazard function

because it is very general with respect to characterizing different shapes of the associated

hazard function. We assume that the shape parameter of the Weibull baseline hazard is the

same for the two subjects. Thus, the conditional hazard function can be written as

hik(t|µi) = ρλktρ−1µi exp {w∗
ikγ∗

k + αkmik(t)}, ρ > 0, λk > 0

= ρtρ−1µi exp {log λk + w∗
ikγ∗

k + αkmik(t)}

= ρtρ−1µi exp {wikγk + αkmik(t)} ,

(4.9)

where ρ is the Weibull shape parameter, λk is the Weibull scale parameter for subject k, and

the intercept term in the baseline covariate vector (wik) corresponds to log λk.

We assume that the frailty, µi, has a one-parameter gamma distribution with mean

1 and variance θ, and acts multiplicatively on the hazard. The density of µi is g(µi) =
µ

1/θ−1
i exp (−µi/θ)

Γ(1/θ)θ1/θ . Larger values of θ reflect greater heterogeneity between pairs and stronger

association among individuals within a pair. The dependence of event time between the

paired individuals can be measured by Kendall’s τ using τ = θ
θ+2 . When θ = 0, both event

times are assumed to be independent.

The cumulative conditional hazard is given by

Hik(t|µi) =
∫ t

0
hik(s|µi)ds

=
∫ t

0
ρsρ−1µi exp {wikγk + αkmik(s)}ds

(4.10)

Thus, the joint survival function for pair i can be obtained by integrating out µi

S(ti1, ti2) =
∫ ∞

0
S(ti1, ti2|µi)g(µi)dµi

=
∫ ∞

0
exp

[
− H(ti1, ti2|µi)

]
g(µi)dµi

=
∫ ∞

0
exp

{
−
[
Hi1(t|µi) + Hi2(t|µi)

]}
g(µi)dµi

=
∫ ∞

0
exp

{
−

2∑
k=1

∫ t

0
ρsρ−1µi exp

[
wikγk + αkmik(s)

]
ds

}
g(µi)dµi

(4.11)
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4.3 JOINT LIKELIHOOD

Let the observed data for each pair be
{
Ti =

[
Ti1
Ti2

]
, ∆i =

[
∆i1
∆i2

]
, yi =

[
yi1
yi2

] }
(i =

1, . . . , n), where yi is the longitudinal response for pair i, Ti the event time, and ∆i the

event indicator (∆i = 1 if the event occurs and ∆i = 0, otherwise). Assume censoring

is independent of the frailty, µi. As previously, we assume that given the shared random

effects bi, the bivariate longitudinal response and the bivariate event time are conditionally

independent. This means that these random effects account for both the association between

bivariate longitudinal and bivariate survival outcomes, and the correlations between the

repeated measurements in each response and between the two responses in the bivariate

longitudinal process. Under these assumptions, we have that

p(Ti, ∆i, yi|bi; ϕ) = p(Ti, ∆i|bi, ϕ)p(yi|bi, ϕ), and

p(yi|bi, ϕ) =
2∏

k=1

nik∏
j=1

p[yik(tikj)|bi, ϕ] ,
(4.12)

where p(Ti, ∆i|bi, ϕ) and p(yi|bi, ϕ) are the joint densities of bivariate survival process and

bivariate longitudinal process, respectively; ϕ = (ϕT
y , ϕT

t , ϕT
b )T denotes the full parameter

vector, with ϕy denoting the parameters for the bivariate longitudinal process, ϕt the pa-

rameters for the bivariate survival process, and ϕb the parameters for the random effects

covariance matrix; k represents the kth subject in a pair (k = 1, 2); nik is the number of

repeated measurements of subject k in pair i.

We do not observe the random effects, bi. Hence, the log-likelihood of bivariate longitu-

dinal response and bivariate event time for pair i can be formulated as follows

log p(Ti, ∆i, yi; ϕ) = log
∫

p(Ti, ∆i, yi, bi; ϕ)dbi

= log
∫

p(Ti, ∆i|bi, ϕt, β)p(yi|bi, ϕy)p(bi|ϕb)dbi

=
∫ [

log p(Ti, ∆i|bi, ϕt, β) + log p(yi|bi, ϕy) + log p(bi|ϕb)
]
dbi

(4.13)
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with the conditional log-density of the survival part given by

log p(Ti, ∆i|bi, ϕt, β)

= log
∫ ∞

0

2∏
k=1

{
ρTik

ρ−1µi exp[wikγk + αkmik(Tik)]
}∆ik

exp
{

−
∫ Tik

0
ρsρ−1µi exp [wikγk + αkmik(s)]ds

}

× µ
1/θ−1
i exp(−µi/θ)

Γ(1/θ)θ1/θ
dµi

= Di log θ + log
Γ(Di + 1

θ
)

Γ(1
θ
)

+
2∑

k=1
∆ik

[
log (ρT ρ−1

ik ) + wikγk + αkmik(Tik)
]

− (Di + 1
θ

) log
{

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp[αkmik(s)]ds

}
,

(4.14)

where Di = ∑2
k=1 ∆ik. The joint log-density of the bivariate longitudinal response together

with the random effects takes the form

log
[
p(yi|bi, ϕy)p(bi|ϕb)

]

=
2∑

k=1

[
− nik

2
(

log 2π + log |R|
)]

−

(
yi − Xiβk − Zibi

)T
R∗−1

(
yi − Xiβ − Zibi

)
2

− qb

2
log 2π − 1

2
log |D| − bT

i D−1bi

2
,

(4.15)

where nik is the number of repeated measurements of subject k in pair i; R∗ is a (ni1 + ni2)

× (ni1 + ni2) dimensional square diagonal matrix with the elements consisting of variance

of measurement error of the corresponding response; qb denotes the dimensionality of the

random-effects vector, and other quantities are as defined earlier.
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Finally, the log-likelihood of bivariate longitudinal and bivariate survival data can be

formulated as follows:

ℓ(ϕ) =
n∑

i=1
log p(Ti, ∆i, yi; ϕ)

=
n∑

i=1
log

∫
p(Ti, ∆i, yi, bi; ϕ)dbi

=
n∑

i=1
log

∫
p(Ti, ∆i|bi, ϕt, β)p(yi|bi, ϕy)p(bi|ϕb)dbi

=
n∑

i=1

∫ [
log p(Ti, ∆i|bi, ϕt, β) + log p(yi|bi, ϕy) + log p(bi|ϕb)

]
dbi

=
n∑

i=1

∫ Di log θ + log
Γ(Di + 1

θ
)

Γ(1
θ
)

+
2∑

k=1
∆ik

[
log (ρT ρ−1

ik ) + wikγk + αkmik(Tik)
]

− (Di + 1
θ

) log
{

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp [αkmik(s)]ds

}

+
2∑

k=1

[
− nik

2
(

log 2π + log |R|
)]

−

(
yi − Xiβk − Zibi

)T
R∗−1

(
yi − Xiβk − Zibi

)
2

− qb

2
log 2π − 1

2
log |D| − bT

i D−1bi

2

dbi.

(4.16)

4.4 PARAMETER ESTIMATION USING THE EM ALGORITHM

In the joint modeling literature, the EM algorithm has been traditionally preferred (treat-

ing the random effects as ‘missing data’), mainly due to the fact that in the M-step some of

the parameters have closed-form updates. In this dissertation the EM algorithm was used

to estimate the parameters, ϕ = (ϕT
y , ϕT

t , ϕT
b )T , by maximizing the joint likelihood of the

observed data. This was done by iterating between the following steps until convergence.

1. An E-step, where we computed the expected log-likelihood (4.16) of the complete data

conditional on the observed data and the current estimate of the parameters. The com-

plete data for each individual were (yik, Xik, Tik, ∆ik, wik, ϕ). All components except ϕ

were observed, and
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2. An M-step, where new parameter estimates were computed by maximizing this expected

joint log-likelihood.

The E-step for joint models

The joint models we proposed in Sections 4.1 and 4.2 are as follows:

hik(t) = ρtρ−1µi exp
{
wikγk + αk[xik(t)βk + zik(t)bik]

}
µi ∼ GAM(1

θ
, θ),

yik(t) = xik(t)βk + zik(t)bik + εik(t)

bi ∼ N(0, D), εi(t) ∼ N(0, R),

(4.17)

ϕ = (ϕT
y , ϕT

t , ϕT
b )T with ϕy = (βk, σ2

1, σ2
2), ϕt = (θ, ρ, γk, αk) (γk contains log λk), ϕb =

vec(D). The aim of using the EM algorithm is to find the parameter values ϕ that maximize

the observed data log-likelihood ℓ(ϕ), but by maximizing instead the expected value of the

complete data log-likelihood with respect to the posterior distribution of random effects as

below.

ϱ(ϕ|ϕ(it))

=
n∑

i=1

∫
log p(Ti, ∆i, yi, bi; ϕ)p(bi|Ti, ∆i, yi; ϕ(it))dbi

=
n∑

i=1

∫ [
log p(Ti, ∆i|bi, ϕt, β) + log p(yi|bi, ϕy) + log p(bi|ϕb)

]
p(bi|Ti, ∆i, yi; ϕ(it))dbi

=
n∑

i=1

∫ Di log θ + log
Γ(Di + 1

θ
)

Γ(1
θ
)

+
2∑

k=1
∆ik

[
log (ρT ρ−1

ik ) + wikγk + αk{xik(Tik)βk + zik(Tik)bik}
]

− (Di + 1
θ

) log
{

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

}

+
2∑

k=1

[
− nik

2
(

log 2π + log |R|
)]

−

(
yi − Xiβk − Zibi

)T
R∗−1

(
yi − Xiβk − Zibi

)
2

− qb

2
log 2π − 1

2
log |D| − bT

i D−1bi

2

p(bi|Ti, ∆i, yi; ϕ(it))dbi.

(4.18)
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A key computational difficulty in the calculation of the log-likelihood above is that the

integral with respect to time in the survival function, as well as the integral with respect to

random effects, do not have closed-form solutions. Thus, it requires numerical approaches to

approximate these integrals. We employed the 7-point or 15-point Gauss-Kronrod quadra-

ture rule (Press et al., 2007 [120]) to approximate the one-dimensional integral with respect

to time in the survival function. Under Gauss-Kronrod rule, the integrals of any function f(s)

can be approximated by a weighted sum of integrand evaluations at m Gaussian quadrature

points as follows

∫ T

0
f(s)ds =

∫ 1

−1
f

(
T

2
x + T

2

)
T

2
dx ≈ T

2

m∑
i=1

f

(
T

2
ti + T

2

)
πi, (4.19)

where πi and ti are the weights and points at which to evaluate the function f(s). Using this

approach, the integral with respect to time in the log-likelihood (4.18) was approximated by

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

≈ Tik

2

m∑
g=1

πgρ tρ−1
g exp

[
αk{xik(tg)βk + zik(tg)bik}

]
,

(4.20)

where πg and t∗
g are the weights and points for a m-point Gauss-Kronrod quadrature rule

and tg = Tik

2 t∗
g + Tik

2 .

However, the integral with respect to random effects is computationally demanding to ap-

proximate as its dimensionality increases. In order to decrease the computational burden to

some degree, we extended the pseudo-adaptive Gauss-Hermite rules proposed by Rizopoulos

(2012) [121] to approximate the integral with respect to random effects. Rizopoulos’ approach

was used to approximate the integral of subject-specific random effects across individuals.

However, in this dissertation the random effects of each individual within a pair are tied

together through a joint distribution. Thus, we have extended this approach to approximate

the integral of subject-specific random effects across individuals and pairs. The idea behind

this approach is to first fit the bivariate mixed-effects model for the longitudinal outcome

and extract information regarding the location and scale of the posterior distribution of the

random effects given the bivariate longitudinal responses for each pair. This information is
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then used to approximately rescale the subject-specific integrals in the log-likelihood of joint

models. We first fitted the bivariate linear mixed model, then extracted the Bayes estimates

of the random effects, b̃i = arg maxbi
{log p(yi, bi; ϕy)}, and their covariance matrix H̃−1

i

with H̃i given by

H̃i = − ∂2

∂bi∂bT
i

log p(yi, bi; ϕ̃y)|
bi=b̃i

= − ∂2

∂bi∂bT
i

log
[
p(yi|bi, ϕ̃y)p(bi|ϕ̃b)

]

= − ∂2

∂bi∂bT
i

{ 2∑
k=1

[
− nik

2
(

log 2π + log |R̃|
)]

−

(
yi − Xiβ̃k − Zib̃i

)T
R̃∗−1

(
yi − Xiβ̃k − Zib̃i

)
2

− qb

2
log 2π − 1

2
log |D̃| − b̃T

i D̃−1b̃i

2

}

= 1
2

∂2

∂bi∂bT
i

[
(Zib̃i)T R̃∗−1(Zib̃i) + b̃T

i D̃−1b̃i

]
= ZT

i R̃∗−1Zi + D̃−1,

(4.21)

where ϕ̃y and ϕ̃b are the maximum likelihood estimates from the bivariate linear mixed-effects

model. Under the pseudo-adaptive Gauss-Hermite rules, and for any form A(·) function of

random effects, the integral in the definition of the log-likelihood was approximated by a

weighted sum of integrand evaluations at pre-specified points as follows:

E{A(ϕ, bi)|Ti, ∆i, yi; ϕ} =
∫

A(ϕ, bi)p(bi|Ti, ∆i, yi; ϕ)dbi

≈ 2qb/2|B̃i|−1 ∑
t1...tqb

πtA(ϕ, r̃t)p(r̃t|Ti, ∆i, yi; ϕ) exp (∥bt∥2),

(4.22)

where qb denotes the dimension of the random-effects vector;
∑

t1···tqb

is used as shorthand

for
K∑

t1=1
. . .

K∑
tqb

=1
with K denoting the number of Gauss-Hermite quadrature points; r̃t =

b̃i +
√

2B̃−1
i bt with B̃i denoting the Choleski factor of H̃i and bT

t = (bt1 , . . . , btqb
) the Gauss-

Hermite quadrature points with corresponding weights πt; ∥bt∥ = {
∑

t1...tqb

bt1 · · · btqb
}1/2. How-

ever, we implemented this procedure only once, at the beginning of the optimization, and

we did not further update the quadrature points forwards.
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Using both the Gauss-Kronrod quadrature rule and the pseudo-adaptive Gauss-Hermite

rules, the complete data log-likelihood (4.18) was computed as

ϱ(ϕ|ϕ(it))

=
n∑

i=1

∫ [
log p(Ti, ∆i|bi, ϕt, β) + log p(yi|bi, ϕy) + log p(bi|ϕb)

]
p(bi|Ti, ∆i, yi; ϕ(it))dbi

≈
n∑

i=1

2qb/2|B̃i|−1 ∑
t1···tqb

(
Di log θ + log

Γ(Di + 1
θ
)

Γ(1
θ
)

+
2∑

k=1
∆ik

[
log (ρT ρ−1

ik ) + wikγk + αk{xik(Tik)βk + zik(Tik)r̃t}
]

− (Di + 1
θ

) log
[
1 + θ

2∑
k=1

exp(wikγk) Tik

2

( m∑
g=1

πgρ tρ−1
g exp

[
αk{xik(tg)βk + zik(tg)r̃t}

])]

+
2∑

k=1

[
− nik

2
(

log 2π + log |R|
)]

−

(
yi − Xiβk − Zir̃t

)T
R∗−1

(
yi − Xiβk − Zir̃t

)
2

− qb

2
log 2π − 1

2
log |D| − r̃T

t D−1r̃t

2

)
p(r̃t|Ti, ∆i, yi; ϕ(it))πt exp (∥bt∥2)

,

(4.23)

where r̃t is pair-specific and thus all subjects in the same pair had an identical r̃t.

The posterior distribution of random effects is written as

p(bi|Ti, ∆i, yi; ϕ(it)) = p(Ti, ∆i|bi, ϕt, β)p(yi|bi, ϕy)p(bi|ϕb)
p(Ti, ∆i, yi; ϕ)

(4.24)

with mean, b̃i = E(bi|Ti, ∆i, yi; ϕ(it)) =
∫

bi p(bi|Ti, ∆i, yi; ϕ(it))dbi, and variance, ṽbi =

V ar(bi|Ti, ∆i, yi; ϕ(it)) =
∫
(bi − b̃i)T (bi − b̃i) p(bi|Ti, ∆i, yi; ϕ(it))dbi.

The M-step for joint models

In the M-step, we updated the parameters by

ϕ(it+1) = arg maxϕϱ(ϕ|ϕ(it)) (4.25)

Because the complete data log-likelihood consists of three parts, i.e., log p(Ti, ∆i, yi, bi; ϕ) =

log p(Ti, ∆i|bi, ϕt, β)+log p(yi|bi, ϕy)+log p(bi|ϕb), maximization of ϱ(ϕ|ϕ(it)) with respect

to ϕ involves only the parts where the respective parameters appear. The covariance matrix
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of the measurement errors in the bivariate longitudinal model and the covariance matrix of

the random effects have a closed-form solution and were updated using the expressions

R̂ =

σ̂1
2 0

0 σ̂2
2

 with

σ̂k
2 = N−1

k

n∑
i=1

(
yik − Xikβk)T

(
yik − Xikβk − 2Zikb̃ik

)
+ tr(ZT

ikZikṽbik) + b̃T
ikZT

ikZikb̃ik,

(4.26)

where Nk = ∑
i nik. Also,

D̂ = n−1
n∑

i=1

∫
(bi − b̄)T (bi − b̄)p(bi|Ti, ∆ik, yi; ϕ(it))dbi

= n−1
n∑

i=1

∫
bT

i bip(bi|Ti, ∆ik, yi; ϕ(it))dbi

= n−1
n∑

i=1
{ṽbi − b̃T

i b̃i}

(4.27)

The fixed effects β and the parameters of the survival submodel ϕt do not have a closed-

form solution and thus, we implemented the Newton-Raphson approach to update these

parameters in the M-step as follows:

β̂(it+1) = β̂(it) −
{∂S(β̂(it))

∂β

}−1
S(β̂(it)),

ϕ̂
(it+1)
t = ϕ̂

(it)
t −

{∂S(ϕ̂(it)
t )

∂ϕt

}−1
S(ϕ̂(it)

t ),
(4.28)

where β̂(it) and ϕ̂
(it)
t denote the values of β and ϕt at the current iteration, receptively;

∂S(β̂(it))/∂β and ∂S(ϕ̂(it)
t )/∂ϕt denote the corresponding blocks of the Hessian matrix,

evaluated at β̂(it) and ϕ̂
(it)
t , respectively. The components of the score vector of β and ϕt

have the form
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S(βk)

=
n∑

i=1

XT
i R∗−1(yi − Xiβk − Zib̃i) +

2∑
k=1

∆ikαkxik(Tik)

−
∫ (Diθ + 1)

2∑
k=1

exp(wikγk)
∫ Tik

0
ρsρ−1αkxik(s) exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds


p(bi|Ti, ∆i, yi; ϕ)dbi

(4.29)

S(θ)

=
n∑

i=1

∫ Diθ
−1 − I(Di > 0)

Di−1∑
l=0

(θ + lθ2)−1

+ θ−2 log
(

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds
)

−
(Di + θ−1)

2∑
k=1

exp(wikγk)
∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

p(bi|Ti, ∆i, yi; ϕ)dbi

(4.30)

S(ρ)

=
n∑

i=1

∫ 
2∑

k=1
∆ik(ρ−1 + log Tik)

−
(Diθ + 1)

2∑
k=1

exp(wikγk)
∫ Tik

0
(1 + ρ log s)sρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds


p(bi|Ti, ∆i, yi; ϕ)dbi

(4.31)
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S(γk)

=
n∑

i=1

∫ 
2∑

k=1
∆ikwik

−
(Diθ + 1)

2∑
k=1

wik exp(wikγk)
∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

p(bi|Ti, ∆i, yi; ϕ)dbi

(4.32)

S(αk)

=
n∑

i=1

∫ ∆ik{xik(Tik)βk + zik(Tik)bik}

−
(Diθ + 1) exp(wikγk)

∫ Tik

0
ρsρ−1{xik(s)βk + zik(s)bik} exp

[
αk{xik(s)βk + zik(s)bik}

]
ds

1 + θ
2∑

k=1
exp(wikγk)

∫ Tik

0
ρsρ−1 exp

[
αk{xik(s)βk + zik(s)bik}

]
ds


p(bi|Ti, ∆i, yi; ϕ)dbi

(4.33)

Both the Gauss-Kronrod quadrature (4.19) and pseudo-adaptive Gauss-Hermite (4.22) rules

were implemented to approximate the score functions above.

To compute the standard errors for the parameter estimates, we first calculated the score

vector

S(ϕ̂) =
n∑

i=1

∫ {
∂

∂ϕ
log

[
p(Ti, ∆i|bi, ϕ)p(yi|bi, ϕ)p(bi|ϕ)

]}
p(bi|Ti, ∆i, yi; ϕ) dbi |ϕ=ϕ̂ (4.34)

and the standard errors were calculated from

v̂ar(ϕ̂) = −{H(ϕ̂)}−1, with H(ϕ̂) =
n∑

i=1

∂Si(ϕ)
∂ϕ

∣∣∣∣∣
ϕ=ϕ̂

(4.35)
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5.0 SIMULATION STUDIES

5.1 DESCRIPTION OF SIMULATION DATA

In this section, we present a simulation study to evaluate the performance of our proposed

model. We consider three sets of simulations representing different levels of dependence (i.e.,

low, moderate, high) on the bivariate longitudinal measurement as well as the bivariate

survival time. In each simulation, we considered several sets of association parameters to

assess how well our model estimates the effect of longitudinal measurement on the risk of

event. We generated data with 600 female-male pairs as follows.

Simulation 1. Low dependence on both bivariate longitudinal and bivariate survival

outcomes: For the bivariate longitudinal outcome, we assumed seven repeated measurements

were taken at fixed times 0, 0.5, 1, 1.5, 2, 2.5, and 3 years. The measurement yikj of subject

k (k=1, female; 2, male) in pair i (i = 1, . . . , 600) at time tikj (j = 1, . . . , 7) was generated

from a bivariate linear mixed model with random intercept

yikj = β0k + β1ktikj + b0ik + εikj,

b0i =

b0i1

b0i2

 ∼ N(0, D), εi =

εi1

εi2

 ∼ N(0, R),
(5.1)

where the fixed intercept and slope,
(

β01
β11

)
=
( 2

0.2

)
and

(
β02
β12

)
=
( 1

0.1

)
, represent the av-

erage trend of longitudinal measurements over time in females and males, respectively;

D =
(

σ2
b1

σa1b1
σa1b1 σ2

b2

)
=
( 0.7 0.2

0.2 0.6

)
; we set σa1b1 = 0.2 to simulate a low correlation between the

two longitudinal measurements (i.e, r = 0.2√
0.6×0.7 = 0.3); R =

(
σ2

1 0
0 σ2

2

)
=
( 0.6 0

0 0.6

)
, assuming

the two measurements were independent conditional on the random effects.
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For the bivariate survival outcome, we first generated the hazard function hik(t) of subject k

in pair i at time t from a Weibull proportional hazards model with gamma frailty given by

hik(t) = ρtρ−1µi exp {log λk + wikγk + αk(β0k + β1kt + b0ik)},

µi ∼ GAM

(
1
θ

, θ

)
,

(5.2)

where λkρtρ−1 is the Weibull baseline hazard of subject k. We set ρ = 6 and (λ1, λ2) =

(0.1, 0.2) so that the median survival time was between 1.1-1.5 years and the maximum

survival time was ≤ 3.5 years among both genders. The frailty µi was generated from

a gamma distribution with mean 1 and variance θ = 0.5. We set θ = 0.5 to simulate a

low overall dependence between the two survival times (i.e., Kendall’s τ = 0.5
0.5+2 = 0.2).

Dichotomous covariate diseases (wi1, wi2) were both generated from a binomial distribution

with probability 0.5. The disease effect parameters (γ1, γ2) were set to (0.7, 0.6) with

corresponding hazard ratios (HR) = (2.01, 1.82) of disease vs. no disease in females and

males, respectively.

We considered four sets of association parameters: (1) (α1, α2) = (0.1, 0.05) represents a

small effect of longitudinal measurement on survival time for both genders (i.e., (HR1, HR2)

= (1.11, 1.05), per unit increase in longitudinal measurement); (2) (α1, α2) = (0.5, 0.3)

represents a moderate effect for both genders (i.e., (HR1, HR2) = (1.65, 1.35)); (3) (α1, α2)

= (1.0, 0.8) represents a large effect for both genders (i.e., (HR1, HR2) = (2.72, 2.23)); (4)

(α1, α2) = (1.0, 0.05) represents a large effect for females but a small effect for males.

The survival function is given by

Sik(t) = exp
{

−
∫ t

0
hik(s) ds

}
= exp

{
−
∫ t

0
ρsρ−1µi exp [log λk + wikγk + αk(β0k + β1ks + b0ik)] ds

} (5.3)

and it follows a uniform distribution on the interval from 0 to 1

Sik(t) ∼ U(0, 1) = U (5.4)
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Using Equations (5.3) and (5.4), we generated event times by randomly generating Sik(t)

then solving for t using the uniroot() and integrate() functions in R [122]:

U = Sik(t) = exp
{

−
∫ t

0
ρsρ−1µi exp [log λk + wikγk + αk(β0k + β1ks + b0ik)] ds

}
G(t) = log U +

∫ t

0
ρsρ−1µi exp [log λk + wikγk + αk(β0k + β1ks + b0ik)] ds = 0

(5.5)

Observations were censored with a probability of 0.2 for both genders. A censored sub-

ject’s censoring time was chosen uniformly over the interval (0, t). Finally, the longitudinal

measurements were censored when they were taken after the event times.

Simulation 2. Moderate dependence on both bivariate longitudinal and bivariate sur-

vival outcomes: With the same model settings in simulation 1, except here we set σa1b1 = 0.4

and θ = 2 to simulate a moderate dependence on both longitudinal (r = 0.6) and survival

(Kendall’s τ = 0.5) outcomes. We set ρ = 12 and (λ1, λ2) = (1.0, 1.0) so that the median

survival time was between 1.1-1.5 years and the maximum survival time was ≤ 3.5 years

among both genders. Three sets of the association parameters were considered: (α1, α2) =

(0.1, 0.05), (0.5, 0.3), and (1.0, 0.8).

Simulation 3. High dependence on both bivariate longitudinal and bivariate survival

outcomes: With the same model settings in simulation 1, except here we set σa1b1 = 0.5

(r = 0.8), θ = 6 (Kendall’s τ = 0.8), ρ = 40, and (λ1, λ2) = (1.2, 1.2). Three sets of the

association parameters were considered: (α1, α2) = (0.1, 0.05), (0.5, 0.3), and (1.0, 0.8).

True parameter values used in the simulation studies are presented in Table 5.1. For each

scenario, 1000 replications were conducted. We calculated the mean bias in the estimates,

the mean standard error of the estimates (SE), the mean squared error (MSE), and the

coverage probability (CP) of the estimated 95% confidence intervals to evaluate the model

performance.
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Table 5.1: True parameter values used in the three simulations.

Simulation 1 Simulation 2 Simulation 3
True True True

Submodel Parameter S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
β01 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
β02 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
β11 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
β12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Longitudinal σ2
1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

σ2
2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

σ2
b1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

σb1b2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5
σ2

b2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

θ 0.5 0.5 0.5 0.5 2.0 2.0 2.0 6.0 6.0 6.0
ρ 6.0 6.0 6.0 6.0 12.0 12.0 12.0 40 40 40
λ1 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.2 1.2 1.2

Survival λ2 0.2 0.2 0.2 0.2 1.0 1.0 1.0 1.2 1.2 1.2
γ1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
γ2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
α1 0.1 0.5 1.0 1.0 0.1 0.5 1.0 0.1 0.5 1.0
α2 0.05 0.3 0.8 0.05 0.05 0.3 0.8 0.05 0.3 0.8
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5.2 SIMULATION RESULTS

The results of three simulation studies are summarized in Tables 5.2, 5.3, and 5.4, re-

spectively. The results indicate that overall our model performs well under all simulated

circumstances from three perspectives. First, the biases of the estimates are all minimal.

Secondly, the mean standard errors of the estimates are in good agreement with the mean

squared errors. Finally, the coverage probabilities are close to or achieve the nominal level.

However, comparing the association parameter estimates (α1, α2) across all scenarios, rel-

atively larger biases of (α1, α2) (i.e., true vs. estimate(bias) = 1.0 vs. 0.911(-0.089) was

observed in females and 0.8 vs. 0.758(-0.042) in males) in the scenario 10 (Table 5.4, S10)

indicate that our model may slightly underestimate the association between the longitudi-

nal and survival outcomes when the true association is high with high dependence in both

bivariate longitudinal and bivariate survival outcomes.
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Table 5.2: Results of Simulation 1. Low dependence on both bivariate longitudinal and

bivariate survival outcomes with 20% censoring rate and 1000 replications.

S1 S2
Parameter True Est. Bias SE MSE CP True Est. Bias SE MSE CP

β01 2.0 2.000 0.000 0.044 0.045 0.949 2.0 1.998 -0.002 0.045 0.045 0.948
β02 1.0 0.999 -0.001 0.042 0.043 0.950 1.0 0.999 -0.001 0.043 0.042 0.949
β11 0.2 0.199 -0.001 0.041 0.041 0.949 0.2 0.195 -0.005 0.049 0.051 0.943
β12 0.1 0.099 -0.001 0.046 0.045 0.953 0.1 0.098 -0.002 0.048 0.047 0.959
σ1 0.77 0.774 -0.001 0.016 0.016 0.948 0.77 0.774 0.000 0.018 0.018 0.948
σ2 0.77 0.774 -0.001 0.017 0.017 0.949 0.77 0.773 -0.001 0.018 0.018 0.949
σ2

b1
0.7 0.701 0.001 0.046 0.053 0.911 0.7 0.699 -0.001 0.048 0.055 0.915

σb1b2 0.2 0.200 0.000 0.040 0.036 0.975 0.2 0.200 0.000 0.041 0.038 0.970
σ2

b2
0.6 0.599 -0.001 0.046 0.048 0.946 0.6 0.597 -0.003 0.046 0.049 0.935

θ 0.5 0.515 0.015 0.070 0.072 0.948 0.5 0.517 0.017 0.071 0.074 0.948
ρ 6.0 6.113 0.113 0.211 0.234 0.933 6.0 6.114 0.114 0.214 0.244 0.925

log λ1 -2.30 -2.393 -0.090 0.213 0.232 0.935 -2.30 -2.400 -0.097 0.226 0.244 0.941
log λ2 -1.61 -1.691 -0.081 0.140 0.164 0.915 -1.61 -1.691 -0.082 0.144 0.169 0.913

γ1 0.7 0.711 0.011 0.122 0.122 0.953 0.7 0.709 0.009 0.124 0.120 0.954
γ2 0.6 0.608 0.008 0.121 0.123 0.944 0.6 0.607 0.007 0.122 0.124 0.950
α1 0.1 0.099 -0.001 0.082 0.084 0.943 0.5 0.512 0.012 0.089 0.088 0.950
α2 0.05 0.052 0.002 0.091 0.091 0.946 0.3 0.308 0.008 0.094 0.095 0.950

S3 S4
Parameter True Est. Bias SE MSE CP True Est. Bias SE MSE CP

β01 2.0 1.998 -0.002 0.045 0.046 0.948 2.0 1.999 -0.001 0.045 0.045 0.938
β02 1.0 0.998 -0.002 0.043 0.043 0.952 1.0 0.998 -0.002 0.042 0.043 0.950
β11 0.2 0.190 -0.010 0.061 0.064 0.939 0.2 0.188 -0.012 0.061 0.064 0.936
β12 0.1 0.097 -0.003 0.053 0.054 0.947 0.1 0.101 0.001 0.046 0.045 0.954
σ1 0.77 0.773 -0.002 0.020 0.020 0.953 0.77 0.773 -0.002 0.020 0.020 0.957
σ2 0.77 0.774 -0.001 0.019 0.019 0.949 0.77 0.773 -0.001 0.017 0.018 0.944
σ2

b1
0.7 0.699 -0.001 0.050 0.059 0.914 0.7 0.701 0.001 0.050 0.058 0.917

σb1b2 0.2 0.202 0.002 0.041 0.038 0.972 0.2 0.201 0.001 0.041 0.037 0.975
σ2

b2
0.6 0.598 -0.002 0.048 0.049 0.929 0.6 0.600 -0.000 0.046 0.047 0.943

θ 0.5 0.515 0.015 0.075 0.077 0.949 0.5 0.509 0.009 0.073 0.075 0.947
ρ 6.0 6.125 0.125 0.230 0.255 0.934 6.0 6.100 0.100 0.222 0.228 0.951

log λ1 -2.30 -2.396 -0.093 0.254 0.254 0.963 -2.30 -2.351 -0.049 0.248 0.212 0.983
log λ2 -1.61 -1.698 -0.089 0.158 0.179 0.933 -1.61 -1.687 -0.077 0.142 0.161 0.936

γ1 0.7 0.708 0.008 0.130 0.124 0.955 0.7 0.706 0.006 0.129 0.129 0.948
γ2 0.6 0.610 0.010 0.127 0.129 0.950 0.6 0.608 0.008 0.122 0.121 0.950
α1 1.0 1.021 0.021 0.109 0.103 0.962 1.0 1.002 0.002 0.106 0.084 0.986
α2 0.8 0.825 0.025 0.108 0.109 0.953 0.01 0.054 0.004 0.091 0.090 0.951
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Table 5.3: Results of Simulation 2. Moderate dependence on both bivariate longitudinal and bivariate survival outcomes with

20% censoring rate and 1000 replications.

S5 S6 S7

Parameter True Est. Bias SE MSE CP True Est. Bias SE MSE CP True Est. Bias SE MSE CP

β01 2.0 2.000 -0.000 0.045 0.046 0.945 2.0 1.997 -0.003 0.045 0.045 0.949 2.0 1.999 -0.001 0.045 0.045 0.957

β02 1.0 0.999 -0.001 0.043 0.042 0.954 1.0 0.998 -0.002 0.043 0.043 0.949 1.0 0.997 -0.003 0.043 0.043 0.955

β11 0.2 0.201 0.001 0.056 0.056 0.955 0.2 0.200 0.000 0.062 0.063 0.952 0.2 0.194 -0.006 0.069 0.071 0.948

β12 0.1 0.100 0.000 0.054 0.054 0.951 0.1 0.100 0.000 0.056 0.056 0.947 0.1 0.098 -0.002 0.059 0.059 0.955

σ1 0.77 0.774 -0.001 0.019 0.019 0.948 0.77 0.774 0.000 0.020 0.020 0.958 0.77 0.773 -0.001 0.021 0.021 0.958

σ2 0.77 0.774 0.000 0.019 0.019 0.949 0.77 0.775 0.000 0.019 0.018 0.960 0.77 0.773 -0.001 0.020 0.019 0.957

σ2
b1 0.7 0.698 -0.002 0.049 0.058 0.886 0.7 0.699 -0.001 0.050 0.059 0.903 0.7 0.701 0.001 0.051 0.059 0.910

σb1b2 0.4 0.398 -0.002 0.045 0.041 0.968 0.4 0.398 -0.002 0.045 0.041 0.967 0.4 0.399 -0.001 0.045 0.042 0.967

σ2
b2 0.6 0.597 -0.003 0.050 0.050 0.950 0.6 0.597 -0.003 0.051 0.049 0.961 0.6 0.596 -0.004 0.051 0.052 0.952

θ 2.0 2.032 0.032 0.161 0.157 0.958 2.0 2.045 0.045 0.163 0.168 0.949 2.0 2.035 0.035 0.167 0.168 0.951

ρ 12.0 12.121 0.121 0.450 0.451 0.943 12.0 12.145 0.145 0.458 0.466 0.950 12.0 12.114 0.114 0.484 0.470 0.961

log λ1 0.0 -0.041 -0.041 0.279 0.284 0.950 0.0 -0.040 -0.040 0.286 0.302 0.950 0.0 0.003 0.003 0.303 0.281 0.972

log λ2 0.0 -0.036 -0.036 0.186 0.188 0.954 0.0 -0.035 -0.035 0.188 0.195 0.951 0.0 -0.042 -0.042 0.198 0.200 0.946

γ1 0.7 0.713 0.013 0.149 0.150 0.950 0.7 0.708 0.008 0.150 0.152 0.952 0.7 0.702 0.002 0.155 0.153 0.956

γ2 0.6 0.606 0.006 0.148 0.150 0.942 0.6 0.613 0.013 0.149 0.150 0.949 0.6 0.611 0.011 0.153 0.155 0.944

α1 0.1 0.102 0.002 0.114 0.115 0.945 0.5 0.509 0.009 0.120 0.124 0.942 1.0 0.991 -0.009 0.138 0.122 0.963

α2 0.05 0.048 -0.002 0.125 0.125 0.946 0.3 0.302 0.002 0.128 0.129 0.950 0.8 0.807 0.007 0.142 0.139 0.951
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Table 5.4: Results of Simulation 3. High dependence on both bivariate longitudinal and bivariate survival outcomes with 20%

censoring rate and 1000 replications.

S5 S6 S7

Parameter True Est. Bias SE MSE CP True Est. Bias SE MSE CP True Est. Bias SE MSE CP

β01 2.0 2.001 0.001 0.045 0.044 0.962 2.0 2.000 0.000 0.045 0.045 0.950 2.0 2.000 0.000 0.045 0.045 0.946

β02 1.0 1.002 0.002 0.043 0.044 0.938 1.0 1.000 0.000 0.043 0.045 0.934 1.0 1.000 0.000 0.043 0.044 0.948

β11 0.2 0.200 0.000 0.052 0.051 0.953 0.2 0.199 -0.001 0.054 0.056 0.955 0.2 0.200 0.000 0.056 0.055 0.950

β12 0.1 0.098 -0.002 0.051 0.052 0.948 0.1 0.099 -0.001 0.051 0.053 0.939 0.1 0.099 -0.001 0.053 0.053 0.952

σ1 0.77 0.773 -0.001 0.019 0.018 0.959 0.77 0.773 -0.001 0.019 0.019 0.956 0.77 0.771 -0.004 0.020 0.020 0.950

σ2 0.77 0.774 0.000 0.018 0.018 0.948 0.77 0.774 -0.001 0.019 0.018 0.957 0.77 0.773 -0.002 0.019 0.019 0.952

σ2
b1 0.7 0.701 0.001 0.048 0.056 0.903 0.7 0.699 -0.001 0.049 0.055 0.913 0.7 0.708 0.008 0.049 0.053 0.932

σb1b2 0.5 0.499 -0.001 0.047 0.042 0.968 0.5 0.499 -0.001 0.048 0.042 0.972 0.5 0.501 0.001 0.048 0.042 0.971

σ2
b2 0.6 0.599 -0.001 0.053 0.050 0.971 0.6 0.599 -0.001 0.053 0.050 0.967 0.6 0.600 0.000 0.053 0.048 0.974

θ 6.0 6.091 0.091 0.403 0.404 0.959 6.0 6.099 0.099 0.406 0.409 0.959 6.0 6.042 0.042 0.410 0.410 0.950

ρ 40.0 40.262 0.262 1.609 1.634 0.953 40.0 40.337 0.337 1.633 1.626 0.957 40.0 40.051 0.051 1.685 1.649 0.959

log λ1 0.18 0.175 -0.008 0.403 0.405 0.950 0.18 0.168 -0.015 0.407 0.408 0.957 0.18 0.357 0.175 0.415 0.392 0.960

log λ2 0.18 0.166 -0.016 0.267 0.273 0.946 0.18 0.163 -0.020 0.268 0.267 0.953 0.18 0.203 0.021 0.275 0.276 0.951

γ1 0.7 0.704 0.004 0.167 0.163 0.954 0.7 0.696 -0.004 0.168 0.166 0.945 0.7 0.700 0.000 0.171 0.169 0.951

γ2 0.6 0.607 0.007 0.166 0.169 0.946 0.6 0.608 0.008 0.167 0.166 0.945 0.6 0.598 -0.002 0.170 0.173 0.952

α1 0.1 0.097 -0.003 0.163 0.166 0.950 0.5 0.508 0.008 0.170 0.176 0.954 1.0 0.911 -0.089 0.183 0.163 0.957

α2 0.05 0.047 -0.003 0.178 0.179 0.950 0.3 0.305 0.005 0.182 0.182 0.952 0.8 0.758 -0.042 0.195 0.190 0.952
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6.0 APPLICATION: SPOUSE PAIR DATA FROM THE

CARDIOVASCULAR HEALTH STUDY (CHS)

In this chapter, we applied the proposed joint models to the spouse-pair data from the

CHS (1) to investigate the association of both longitudinal depressive symptoms scores and

mortality between husbands and wives in older adults, controlling for covariates associated

with depressive symptoms and mortality separately, and (2) to characterize mortality in both

genders based on their own longitudinal depressive symptoms score and other factors.

6.1 STUDY POPULATION

The sample used in the study was obtained from the CHS, a prospective, observational

study designated to identify the risk factors for and consequences of cardiovascular disease

(CVD) in older adults. Adults 65 years and older were recruited from random samples of

Medicare eligibility lists in four communities — Sacramento County, California; Washington

County, Maryland; Forsyth County, North Carolina; and Pittsburgh, Pennsylvania — and

from age-eligible participants in the same household. Potential participants were excluded

if they were wheelchair bound in the home, unable to participate in the examination at

the field centers, or under active treatment for cancer. A total of 5201 men and women

65 years or older were enrolled in 1989 to 1990 (cohort 1), and a supplemental cohort of

687 African Americans was enrolled from 1992 through 1993 (cohort 2). Further details

regarding CHS sampling and recruitment can be found in Fried et al. (1991) [25] and Tell et

al. (1993) [123]. Participants underwent annual clinical examinations and health assessments

and were followed for coronary events and mortality. The follow-up length is 18 years for
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cohort 1 and 15 years for cohort 2. For the present study, a total of 1330 married couples

from across the two cohorts (cohort 1, n=2520; cohort 2, n=140) were identified in the CHS

sample.

6.2 MEASURES

Extensive demographic and health information was collected by trained interviewers or

by clinical examinations.

Mortality — The CHS has complete follow-up on mortality (18 years for cohort 1 and

15 years for cohort 2). Deaths were confirmed through reviews of obituaries, medical records,

death certificates, and the Health Care Financing Administration healthcare database for

hospitalizations. The survival time was defined as the time from enrollment to death.

Depressive symptoms — Depressive symptoms were assessed annually up to 10 years

in cohort 1 and 6 years in cohort 2. Level of depressive symptoms was evaluated using the

previously validated 10-item Center for Epidemiological Studies Depression Scale (CES-D)

(Radloff, 1977 [124]; Andresen et al., 1994 [125]) at baseline and yearly throughout the

follow-up. The CES-D score was between 0 and 30 with a higher score indicating a greater

severity of depressive symptoms.

Other measures — Sociodemographic variables included: (a) age at entry into the

CHS cohort; (b) race, coded as white or non-white (primarily African American due to the

small number identifying as other racial groups); (c) education, coded as the highest grade

or year of school ever completed; (d) stressful life events (total of 10 possible stressful life

events in past 6 months); and (e) annual income. Health behavior included smoking status

(never, former, or current), alcohol consumption (drinks per week), and body mass index

(BMI), calculated as weight in kilograms divided by height in meters squared. Difficulty with

Activities of Daily Living (ADL)/Instrumental Activities of Daily (IADL): This variable is

used to assess functional disability. It was coded yes for the presence of any self-reported

difficulty in walking, getting in and out of a bed or chair, eating, dressing, bathing, or

47



using the toilet (ADL), or any difficulty with heavy housework, light housework, shopping,

preparing meals, managing money, or using the telephone (IADL) "because of health or

physical problems". It was coded no if the participants reported no difficulty across the 12

activities. Cognitive status was estimated using the modified Mini-Mental State Examination

(3MS), with a higher score (range 0-30) indicating better functioning (Teng and Chui, 1897

[126]). Caregiving status: Caregiving status is a known risk factor for depression (Schulz

et al., 2005 [127]). Participants were asked a single yes/no question at baseline concerning

whether they provided help to anyone with things like shopping, filling out forms, doing

repairs, providing child care, etc. CVD was evaluated at CHS entry by clinical and laboratory

examination. CVD was measured as follows: a) prevalent clinical disease including angina

pectoris, myocardial infarction, bypass, congestive heart failure, intermittent claudication,

stroke, and transient ischemic attack, and b) subclinical disease, indicative of risk for CVD

but without clinical manifestations, including the Rose questionnaires for claudication and

angina ratio of ankle to arm blood pressure, major electrocardiogram abnormality, and

carotid stenosis. The methods used to determine clinical and subclinical diseases in the CHS

have been previously published (Psaty et al., 1995 [128], Kuller et al., 1995 [129]). Anti-

depressant medication use: As part of an annual clinical assessment, participants brought

their prescription medication containers to the clinic, where interviewers transcribed the

drug name, strength, and dosing instructions from the medication labels. The participants

were then asked how many doses of each medication they actually took within the past 2

weeks. Antidepressant medication use was defined as taking any medication classified as an

antidepressant (i.e., non-tricyclic antidepressants other than monoamine oxidase inhibitors

(MAOIs), tricyclic anti-depressants, or tri-cyclic anti-depressants plus anti-psychotics).
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6.3 STATISTICAL ANALYSIS

Longitudinal submodel

To satisfy the normality assumption for longitudinal CES-D score, we took the square

root transformation of CES-D scores. We conducted bivariate linear mixed-effects models to

identify baseline factors related to longitudinal CES-D score. Education, income, stressful life

events, BMI, smoking status, alcohol consumption, caregiving status, ADL/IADL difficulty,

3MS score, prevalent clinical CVD, subclinical CVD, and antidepressant medication use

all were considered. Univariate analyses were first conducted to test the association of each

individual baseline variable with CES-D score. Significant variables in the univariate analyses

(P<.10) were then included in the multivariable models, controlling for age and race, and

retained if statistically significant (P<.05). Race was included in the multivariable models

to account for two cohorts combined where cohort 1 was almost white (97%) and cohort 2

was black. To model the trajectory of CES-D scores, linear and quadratic functions were

considered depending on which function fits the trajectory better. Different random-effects

structures (i.e., random intercept, random slope, random intercept and random slope) were

also tested. The best structure was chosen using information criteria (e.g., AIC and BIC).

Survival submodel

Similarly, we fitted Weibull proportional hazards models with a gamma frailty to identify

baseline factors related to mortality. Education, income, stressful life events, BMI, smoking

status, alcohol consumption, ADL/IADL difficulty, 3MS score, prevalent clinical CVD, and

subclinical CVD were considered. Significant variables in the univariate analyses (P<.10)

were then included in the multivariable models, controlling for age and race, and retained if

statistically significant (P<.05).

Joint models

The two submodels above were then linked together through the random effects used in

the bivariate linear mixed-effects models. Parameter estimates in joint models were obtained

by maximizing the joint likelihood for the two submodels using the EM algorithm. We first

looked at unadjusted joint models, where no covariate was included in the bivariate linear
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mixed-effects model or the Weibull proportional hazards model with gamma frailty. Then the

adjusted joint models were built, controlling for the covariates independently associated with

longitudinal CES-D score in the bivariate linear mixed-effects model as well as the covariates

independently associated with mortality in the Weibull proportional hazards model with

gamma frailty. The marginal correlation between husbands’ and wives’ CES-D score was

calculated and the dependence of husbands’ and wives’ mortality was measured by Kendall’s

τ .

Because the CHS includes two cohorts with different follow-up lengths and the CES-

D score in each cohort was assessed up to half of its entire follow-up, we truncated the

longitudinal CES-D score and the mortality at 6 years in both cohorts. In addition, we

repeated the analyses on two cohorts combined with different follow-up lengths (18-year

mortality and 10-year CES-D score in cohort 1; 15-year mortality and 6-year CES-D score

in cohort 2) and on each cohort as supplementary analyses.

To understand the impact of ignoring the correlation of CES-D score and the dependence

of mortality between husbands and wives on the model parameter estimates, we also fitted

data using a joint model where the correlations were not considered. For example, linear

mixed-effects models and Weibull proportional hazards models were used in the joint models.

6.4 RESULTS

Participant characteristics

Baseline characteristics of the analysis sample stratified by sex are presented in Table 6.1.

Comparing to husbands, wives were younger (median age 70 vs. 73 years) and had higher

3MS score (29 vs. 28) and CES-D score (4 vs. 3) , and a higher proportion were non-smokers

(59.4% vs. 32.3%), with ADL/IADL difficulty (30.2% vs. 21.1%), and on antidepressant

medication (5.1% vs. 2.5%), while a lower proportion had prevalent clinical CVD (17.4% vs.

32.1%) and subclinical CVD (56.5% vs. 70.7%) (P for all<0.05).
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Table 6.1: Baseline characteristics of husbands and wives (n=1330 spousal pairs).

Wives(N=1330)a Husbands (N=1330)a P
Age, y <.0001

Median (25th, 75th percentile) 70 (68,74) 73 (70,77)
Range 65-91 65-93

White, No. (%) 1229 (92.4) 1225 (92.1) 0.77
Education, y 0.10

Median (25th, 75th percentile) 12 (12,18) 12 (11,20)
Range 1-21 0-21

Income, No. (%) 0.99
<$5,000 13 (1.1) 13 (1.0)
$5,000 - $7,999 42 (3.5) 36 (2.9)
$8,000 - $11,999 91 (7.5) 96 (7.6)
$12,000 - $15,999 186 (15.3) 193 (15.3)
$16,000 - $24,999 270 (22.2) 295 (23.4)
$25,000 - $34,999 244 (20.1) 248 (19.7)
$35,000 - $49,999 165 (13.6) 168 (13.3)
>$50,000 203 (16.7) 213 (16.9)

Stressful life events 0.27
Median (25th, 75th percentile) 1 (0,2) 1 (0,2)
Range 0-5 0-6

Body Mass Index, kg/m2 0.09
Median (25th, 75th percentile) 25.9 (23.2,29.2) 26.2 (24.2,28.5)
Range 14.7-48.0 16.9-46.2

Smoking status, No. (%) <.0001
Never smoked 790 (59.4) 429 (32.3)
Former smoker 411 (30.9) 782 (58.9)
Current smoker 129 (9.7) 117 (8.8)

Alcohol consumption (drink/week), No. (%) <.0001
0 695 (52.4) 542 (41.0)
1-7 505 (38.1) 552 (41.7)
>7 126 (9.5) 229 (17.3)

Provide help with IADL, No. (%) 507 (44.6) 505 (43.8) 0.72
Any ADL/IADL difficulty, No. (%) 401 (30.2) 280 (21.1) <.0001
3MS score <.0001

Median (25th, 75th percentile) 29 (27,30) 28 (27,29)
Range 17-30 11-30

CES-D score <.0001
Median (25th, 75th percentile) 4 (1,7) 3 (1,5)
Range 0-26 0-24

Prevalent clinical CVD, No. (%) 232 (17.4) 427 (32.1) <.0001
Subclinical CVD, No. (%) 738 (56.5) 930 (70.7) <.0001
Antidepressant medication use, No. (%) 68 (5.1) 33 (2.5) <.001

Abbreviation: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily; CES-D, Center
for Epidemiological Studies Depression Scale; CVD, cardiovascular disease.
aThe number of participants across categories may not sum to the total number of participants because
of missing data.
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Mortality

Out of 1330 spouse pairs, there are 588 (44%) pairs in which both died, 538 (41%) pairs

in which one spouse died (419 husbands and 119 wives), and 204 (15%) pairs where both were

censored or alive at the end of study. In cohort 1, 682(54.1%) wives and 962(76.4%) husbands

died after 18 years of follow-up. In cohort 2, 25(35.7%) wives and 45(64.3%) husbands died

after 6 years of follow-up. After truncating survival times at 6 years, 117(8.8%) wives and

334 (25.1%) husbands died at 6 years.

Joint modeling of bivariate longitudinal depressive symptoms and bivariate mortality

The quadratic term of time was not significant in the bivariate linear mixed-effects models

and the model with random intercept fitted the data better with the smallest AIC and BIC

values. Thus, the bivariate linear mixed-effects models with random intercept were used to

model the longitudinal CES-D score in all analyses.

Table 6.2 shows the results of unadjusted and adjusted joint models for the two cohorts

combined with data truncated at 6 years. Without controlling for any covariate, one increase

of square root of CES-D score was associated with 82% (95%CI, 1.42-2.34) and 66% (95%CI,

1.40-1.96) higher risks of mortality in wives and husbands, respectively. The correlation of

CES-D scores and the dependence of mortality between husbands and wives were both low

(r=0.36; Kendall’s τ=0.21). CES-D score was still associated with mortality after adjusting

for the covariates, where the mortality increased 45% (95%CI, 1.10-1.91) in wives and 35%

(95%CI, 1.13-1.61) in husbands with one increase of square root of CES-D score. CES-D

score increased with time in both genders. Older age, less educated, and having stressful life

events, ADL/IADL difficulty, and prevalent clinical CVD, and on antidepressant medication

were independently related to longitudinal CES-D score in both genders. Non-white race was

associated to longitudinal CES-D score in husbands only. Older age, and having prevalent

clinical CVD and subclinical CVD were independently associated with mortality in both

genders. Having ADL/IADL difficulty was associated with mortality in husbands only. The

correlation of CES-D scores and the dependence of mortality between husbands and wives

became smaller after adjusting for the covariates (r=0.30; Kendall’s τ=0.13).
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Table 6.2: Results of joint modeling of bivariate longitudinal CES-D score and bivariate
mortality among spouse pairs in two cohorts combined with data truncated at 6 years.

Unadjusted Adjusted for covariates
(N=1330 spouse pairs) (N=1277 spouse pairs)

Estimate 95% CI HR 95% CI Estimate 95% CI AHR 95% CI
Longitudinal model:
Wives

Intercept 1.87 1.82-1.92 - - 1.19 0.46-1.92 - -
Time, per 1 y 0.07 0.06-0.08 - - 0.07 0.06-0.08 - -
Age, per 1 y - - - - 0.01 0.00-0.02 - -
White - - - - -0.07 -0.25-0.10 - -
Education, per 1 y - - - - -0.03 -0.04- -0.01 - -
Stressful life event, per 1 - - - - 0.12 0.08-0.16 - -
Any ADL/IADL difficulty - - - - 0.42 0.32-0.52 - -
Prevalent clinical CVD - - - - 0.18 0.06-0.30 - -
Antidepressant medication use - - - - 0.39 0.19-0.60 - -
σ1 0.76 0.75-0.77 - - 0.76 0.75-0.77 - -

Husbands
Intercept 1.56 1.51-1.61 - - 0.94 0.26-1.61 - -
Time, per 1 y 0.08 0.07-0.08 - - 0.08 0.07-0.09 - -
Age, per 1 y - - - - 0.01 0.00-0.02 - -
White - - - - -0.21 -0.38- -0.04 - -
Education, per 1 y - - - - -0.03 -0.03- -0.02 - -
Stressful life event, per 1 - - - - 0.12 0.07-0.16 - -
Any ADL/IADL difficulty - - - - 0.42 0.31-0.53 - -
Prevalent clinical CVD - - - - 0.19 0.10-0.29 - -
Antidepressant medication use - - - - 0.63 0.33-0.93 - -
σ2 0.76 0.75-0.77 - - 0.76 0.75-0.78 - -

σ2
b1

0.68 0.63-0.73 - - 0.57 0.52-0.62 - -
σb1b2 0.24 0.19-0.28 - - 0.17 0.13-0.21 - -
σ2

b2
0.66 0.61-0.71 - - 0.55 0.50-0.60 - -

Correlation 0.36 - - - 0.30 - - -

Survival model:
θ 0.52 0.08-0.97 - - 0.29 -0.06-0.65 - -
ρ 1.41 1.27-1.54 - - 1.47 1.33-1.61 - -
Wives

log λ1 -6.39 -7.07- -5.70 - - -15.11 -17.87- -12.35 - -
Age, per 1 y - - - - 0.11 0.08-0.15 1.12 1.08-1.16
White - - - - 0.39 -0.43-1.22 1.48 0.65-3.38
Any ADL/IADL difficulty - - - - 0.18 -0.25-0.60 1.19 0.78-1.83
Prevalent clinical CVD - - - - 0.63 0.21-1.05 1.87 1.23-2.86
Subclinical CVD - - - - 0.51 0.07-0.96 1.67 1.08-2.60
CES-D scorea, per 1 0.60 0.35-0.85 1.82 1.42-2.34 0.37 0.09-0.65 1.45 1.10-1.91

Husbands
log λ2 -4.79 -5.20- -4.37 - - -10.00 -11.72- -8.28 - -
Age, per 1 y - - - - 0.06 0.04-0.09 1.07 1.04-1.09
White - - - - -0.19 -0.60-0.22 0.83 0.55-1.25
Any ADL/IADL difficulty - - - - 0.70 0.44-0.97 2.02 1.55-2.64
Prevalent clinical CVD - - - - 0.27 0.03-0.51 1.31 1.03-1.67
Subclinical CVD - - - - 0.80 0.46-1.14 2.23 1.59-3.14
CES-D scorea, per 1 0.51 0.34-0.68 1.66 1.40-1.96 0.30 0.12-0.48 1.35 1.13-1.61

Kendall’s τ 0.21 - - - 0.13 - - -

Abbreviation: CI, confidence interval; HR, hazard ratio; AHR, adjusted hazard ratio; ADL, Activities of Daily
Living; IADL, Instrumental Activities of Daily; CVD, cardiovascular disease; CES-D, Center for Epidemiological
Studies Depression Scale.
aThe square root of the CES-D score.
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Table 6.3 shows the results of unadjusted and adjusted joint models for the two cohorts

combined. Without controlling for any covariate, both husbands and wives with higher CES-

D score had higher risks of mortality (HR[95%CI], 1.43[1.28-1.59] in wives and 1.43[1.30-1.58]

in husbands, per 1 square root of CES-D score). The correlation of CES-D scores and the

dependence of mortality between husbands and wives were both low (r=0.33; Kendall’s

τ=0.13). Age, race, education, stressful life events, ADL/IADL difficulty, prevalent clinical

CVD, and antidepressant medication use were independently related to CES-D score in the

longitudinal submodel. However, the adjusted joint models did not converge until the longi-

tudinal submodel was reduced to only include age. In the adjusted joint models, mortality

increased 23% (95%CI, 1.11-1.37) in wives and 19% (95%CI, 1.08-1.30) in husbands with one

increase of square root of CES-D score. CES-D score increased with time and age. Older

age and having ADL/IADL difficulty, prevalent clinical CVD, and subclinical CVD were

independently associated with mortality. The dependence of mortality between husbands

and wives became minimal after adjusting for the covariates (Kendall’s τ=0.03).

The results of joint models for cohort 1 only (Table 6.4) were similar to the results of

two cohorts combined except that more covariates were able to be adjusted in the longitu-

dinal submodel of CES-D score (i.e., age, race, education, stressful life events, ADL/IADL

difficulty, prevalent clinical CVD, and antidepressant medication use).

Due to a small sample size in cohort 2 (n=70 spouse pairs), the joint models did not

converge after including any covariate in either longitudinal or survival submodels. Table

6.5 shows the results of unadjusted joint models for cohort 2. Without controlling for any

covariates, the square root of the CES-D score was associated with mortality in husbands

(HR, 1.79; 95%CI, 1.08-2.95) but not in wives (HR, 1.55; 95%CI, 0.82-2.94). However, due to

a relatively small sample size, the model might be underpowered to detect these associations.

The correlation of CES-D score and the dependence of mortality between husbands and

wives in cohort 2 were both relative higher comparing to the other three situations (r=0.39;

Kendall’s τ=0.29).
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Table 6.3: Results of joint modeling of bivariate longitudinal CES-D score and bivariate
mortality among spouse pairs in two cohorts combined.

Unadjusted Adjusted for covariates
(N=1330 spouse pairs) (N=1292 spouse pairs)

Estimate 95% CI HR 95% CI Estimate 95% CI AHR 95% CI
Longitudinal model:
Wives

Intercept 1.89 1.84-1.95 - - 0.38 -0.33-1.08 - -
Time, per 1 y 0.05 0.05-0.06 - - 0.05 0.05-0.06 - -
Age, per 1 y - - - - 0.02 0.01-0.03
σ1 0.77 0.76-0.78 - - 0.77 0.76-0.78 - -

Husbands
Intercept 1.59 1.54-1.64 - - 0.00 -0.66-0.66 - -
Time, per 1 y 0.06 0.06-0.07 - - 0.06 0.05-0.07 - -
Age, per 1 y - - - - 0.02 0.01-0.03 - -
σ2 0.77 0.75-0.78 - - 0.77 0.76-0.78 - -

σ2
b1

0.66 0.61-0.71 - - 0.65 0.60-0.70 - -
σb1b2 0.22 0.18-0.27 - - 0.21 0.16-0.25 - -
σ2

b2
0.67 0.61-0.72 - - 0.64 0.59-0.69 - -

Correlation 0.33 - - - 0.33 - - -

Survival model:
θ 0.29 0.19-0.40 - - 0.06 -0.03-0.14 - -
ρ 1.73 1.64-1.81 - - 1.89 1.79-1.98 - -
Wives

log λ1 -6.04 -6.38- -5.71 - - -14.97 -16.25- -13.69 - -
Age, per 1 y - - - - 0.11 0.10-0.13 1.12 1.10-1.14
White - - - - 0.28 -0.05-0.61 1.33 0.96-1.84
Any ADL/IADL difficulty - - - - 0.21 0.04-0.37 1.23 1.04-1.45
Prevalent clinical CVD - - - - 0.34 0.15-0.53 1.40 1.16-1.69
Subclinical CVD - - - - 0.38 0.22-0.55 1.47 1.25-1.73
CES-D scorea, per 1 0.36 0.25-0.46 1.43 1.28-1.59 0.21 0.10-0.31 1.23 1.11-1.37

Husbands
log λ2 -5.17 -5.45- -4.89 - - -12.26 -13.35- -11.18 - -
Age, per 1 y - - - - 0.09 0.07-0.10 1.09 1.08-1.11
White - - - - -0.04 -0.29-0.21 0.96 0.75-1.23
Any ADL/IADL difficulty - - - - 0.47 0.30-0.63 1.59 1.35-1.87
Prevalent clinical CVD - - - - 0.33 0.19-0.47 1.40 1.21-1.61
Subclinical CVD - - - - 0.50 0.34-0.66 1.65 1.40-1.94
CES-D scorea, per 1 0.36 0.26-0.46 1.43 1.30-1.58 0.17 0.08-0.26 1.19 1.08-1.30

Kendall’s τ 0.13 - - - 0.03 - - -

Abbreviation: CI, confidence interval; HR, hazard ratio; AHR, adjusted hazard ratio; ADL, Activities of Daily
Living; IADL, Instrumental Activities of Daily; CVD, cardiovascular disease; CES-D, Center for Epidemiological
Studies Depression Scale.
aThe square root of the CES-D score.
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Table 6.4: Results of joint modeling of bivariate longitudinal CES-D score and bivariate
mortality among spouse pairs in cohort 1.

Unadjusted Adjusted for covariates
(N=1260 spouse pairs) (N=1210 spouse pairs)

Estimate 95% CI HR 95% CI Estimate 95% CI AHR 95% CI
Longitudinal model:
Wives

Intercept 1.89 1.83-1.94 - - 1.19 0.42-1.97 - -
Time, per 1 y 0.06 0.05-0.06 - - 0.06 0.05-0.06 - -
Age, per 1 y - - - - 0.01 0.00-0.02 - -
White - - - - -0.13 -0.43-0.17 - -
Education, per 1 y - - - - -0.02 -0.03- -0.01 - -
Stressful life event, per 1 - - - - 0.11 0.07-0.15 - -
Any ADL/IADL difficulty - - - - 0.42 0.32-0.52 - -
Prevalent clinical CVD - - - - 0.15 0.03-0.27 - -
Antidepressant medication use - - - - 0.39 0.18-0.60 - -
σ1 0.77 0.76-0.78 - - 0.77 0.76-0.78 - -

Husbands
Intercept 1.57 1.52-1.62 - - 0.91 0.19-1.64 - -
Time, per 1 y 0.06 0.06-0.07 - - 0.06 0.06-0.07 - -
Age, per 1 y - - - - 0.01 0.00-0.02 - -
White - - - - -0.29 -0.58- -0.01 - -
Education, per 1 y - - - - -0.02 -0.03- -0.01 - -
Stressful life event, per 1 - - - - 0.11 0.07-0.15 - -
Any ADL/IADL difficulty - - - - 0.41 0.30-0.52 - -
Prevalent clinical CVD - - - - 0.22 0.12-0.32 - -
Antidepressant medication use - - - - 0.67 0.36-0.99 - -
σ2 0.77 0.76-0.78 - - 0.77 0.76-0.78 - -

σ2
b1

0.66 0.61-0.71 - - 0.57 0.52-0.61 - -
σb1b2 0.22 0.17-0.27 - - 0.15 0.11-0.20 - -
σ2

b2
0.65 0.60-0.70 - - 0.54 0.49-0.58 - -

Correlation 0.34 - - - 0.27 - - -

Survival model:
θ 0.29 0.19-0.40 - - 0.07 -0.02-0.16 - -
ρ 1.74 1.65-1.83 - - 1.90 1.80-2.00 - -
Wives

log λ1 -6.07 -6.41- -5.73 - - -15.28 -16.67- -13.89 - -
Age, per 1 y - - - - 0.12 0.10-0.14 1.13 1.11-1.15
White - - - - 0.20 -0.33-0.74 1.23 0.72-2.09
Any ADL/IADL difficulty - - - - 0.20 0.03-0.38 1.23 1.03-1.46
Prevalent clinical CVD - - - - 0.32 0.12-0.51 1.37 1.13-1.67
Subclinical CVD - - - - 0.39 0.22-0.56 1.48 1.25-1.74
CES-D scorea, per 1 0.35 0.25-0.46 1.42 1.28-1.59 0.22 0.11-0.33 1.25 1.12-1.39

Husbands
log λ2 -5.19 -5.48- -4.91 - - -12.48 -13.66- -11.30 - -
Age, per 1 y - - - - 0.09 0.08-0.10 1.09 1.08-1.11
White - - - - 0.03 -0.38-0.44 1.03 0.68-1.55
Any ADL/IADL difficulty - - - - 0.40 0.24-0.57 1.50 1.26-1.78
Prevalent clinical CVD - - - - 0.37 0.22-0.52 1.45 1.25-1.68
Subclinical CVD - - - - 0.47 0.31-0.64 1.61 1.36-1.90
CES-D scorea, per 1 0.35 0.25-0.45 1.42 1.29-1.57 0.19 0.10-0.29 1.21 1.10-1.34

Kendall’s τ 0.13 - - - 0.03 - - -

Abbreviation: CI, confidence interval; HR, hazard ratio; AHR, adjusted hazard ratio; ADL, Activities of Daily
Living; IADL, Instrumental Activities of Daily; CVD, cardiovascular disease; CES-D, Center for Epidemiological
Studies Depression Scale.
aThe square root of the CES-D score.
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Table 6.5: Results of joint modeling of bivariate longitudinal CES-D score and bivariate
mortality among spouse pairs in cohort 2.

Unadjusted
(N=70 spouse pairs)

Estimate 95% CI HR 95% CI
Longitudinal model:
Wives

Intercept 2.08 1.83-2.33 - -
Time, per 1 y 0.02 -0.02-0.06 - -
σ1 0.75 0.69-0.82 - -

Husbands
Intercept 1.80 1.52-2.09 - -
Time, per 1 y 0.04 0.00-0.09 - -
σ2 0.74 0.67-0.80 - -

σ2
b1

0.67 0.41-0.92 - -
σb1b2 0.30 0.01-0.58 - -
σ2

b2
0.96 0.66-1.26 - -

Correlation 0.37 - - -

Survival model:
θ 0.82 -0.09-1.72 - -
ρ 1.65 1.20-2.09 - -
Wives

log λ1 -6.22 -8.34- -4.10 - -
CES-D scorea, per 1 0.47 -0.25-1.19 1.60 0.78-3.28

Husbands
log λ2 -5.51 -8.34- -4.10 - -
CES-D scorea, per 1 0.58 0.08-1.08 1.79 1.08-2.95

Kendall’s τ 0.29 - - -

Abbreviation: CI, confidence interval; HR, hazard ratio; CES-D,
Center for Epidemiological Studies Depression Scale.
aThe square root of the CES-D score.
*The joint models did not converge after including any covariate
in either longitudinal or survival submodels due to a small
sample size (n=70 spouse pairs).

The impact of ignoring the correlation of CES-D score and the dependence of mortality

between husbands and wives

The joint models with correlations ignored did not converge after including any covariate

in either longitudinal or survival submodels. Thus, we refitted the unadjusted joint model

for the two cohorts combined with data truncated at 6 years. In addition, we also refitted the

unadjusted joint model for cohort 2 because the dependence of mortality between husbands

and wives are higher comparing to other models.
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Table 6.6 shows the results of unadjusted joint models ignoring the correlations for two

cohorts combined with data truncated at 6 years and cohort 2 only. For two cohorts combined

with data truncated at 6 years, the longitudinal parameter estimates were similar to the

model taking into account the correlations in Table 6.2. The wives’ association parameter

estimate in the survival submodel was similar but the 95%CI was wider when ignoring the

correlations (i.e., HR(95%CI) = 1.83(1.38-2.43) in Table 6.6 vs. 1.82(1.42-2.34) in Table 6.2).

The husbands’ association parameter estimate was smaller when ignoring the correlations

(i.e., HR(95%CI) = 1.55(1.34-1.80) vs. 1.66(1.40-1.96)). For cohort 2, the longitudinal

parameter estimates were similar to the model accounting for the correlations in Table 6.5.

Both wives’ and husbands’ association parameter estimates were smaller when ignoring the

correlations (i.e., wives, HR(95%CI) = 1.51(0.79-2.88) in Table 6.6 vs. 1.60(0.78-3.28) in

Table 6.5; husbands, HR(95%CI) = 1.46(1.03-2.06) vs. 1.79(1.08-2.95)).

Table 6.6: Results of joint modeling of longitudinal CES-D score and mortality among spouse
pairs when the correlations were ignored.

Two cohorts combined truncated at 6 years Cohort 2 only
(N=1330 spouse pairs) (N=70 spouse pairs)

Estimate 95% CI HR 95% CI Estimate 95% CI HR 95% CI
Longitudinal modela:
Wives

Intercept 1.87 1.82-1.92 - - 2.10 1.86-2.34 - -
Time, per 1 y 0.07 0.06-0.08 - - 0.02 -0.02-0.06 - -

Husbands
Intercept 1.56 1.51-1.61 - - 1.87 1.62-2.11 - -
Time, per 1 y 0.08 0.07-0.08 - - 0.03 -0.01-0.07 - -

σ 0.76 0.75-0.77 - - 0.75 0.69-0.83 - -
σ2

b 0.67 0.62-0.72 - - 0.77 0.51-0.99 - -

Survival modelb:
ρ 1.37 1.24-1.50 - - 1.43 1.15-1.78 - -
Wives

log λ1 -6.34 -7.06- -5.62 - - -5.63 -7.28- -3.98 - -
CES-D scorec, per 1 0.61 0.32-0.89 1.83 1.38-2.43 0.41 -0.23-1.06 1.51 0.79-2.88

Husbands
log λ2 -4.65 -5.04- -4.27 - - -4.55 -5.67- -3.44 - -
CES-D scorec, per 1 0.44 0.29-0.59 1.55 1.34-1.80 0.38 0.03-0.73 1.46 1.03-2.06

Abbreviation: CI, confidence interval; HR, hazard ratio; CES-D, Center for Epidemiological Studies Depression
Scale.
aLinear mixed-effects models were used.
bWeibull proportional hazards models were used.
cThe square root of the CES-D score.
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6.5 DISCUSSION

We utilized a new joint modeling approach to simultaneously investigate the association

of both longitudinal depressive symptoms and mortality between husbands and wives and to

examine the effect of longitudinal depressive symptoms level on mortality among spouses in

a large population-based sample of older adults. We show that longitudinal CES-D score was

a significant independent risk factor for mortality in both husbands and wives after adjust-

ing for sociodemographic factors (i.e. age, race), prevalent clinical CVD, subclinical CVD,

and ADL/IADL difficulty. The inconsistent findings in the literature about the relationship

between depression and mortality in older population might be due to methodologic limi-

tations. The present joint modeling methodology attempted to overcome these problems.

First, most studies only had a one-time assessment of depression. However, depression sta-

tus is a dynamic process and the change in severity of depression may have temporal effects

on mortality, which cannot be captured by a single assessment. In contrast, our study had

6-10 annual assessments of depressive symptoms, which gave a better picture of how an in-

dividual’s depression status changed over time and reflected the chronic nature of depressive

symptoms. Second, most studies had relatively short follow-up periods with a small number

of deaths. Our study had 15-18 years of follow-up on mortality. With a longer follow-up

and a large community sample (1330 spouse pairs), we were able to capture more events of

mortality (53.2% in wives; 75.7% in husbands) and thus increase the statistical power to de-

tect the association. Even after truncating survival times at 6 years, we still had 117 (8.8%)

deaths in wives and 334 (25.1%) deaths in husbands. In addition, our study shows that the

associations between longitudinal depressive symptoms and mortality were slightly attenu-

ated after adjusting for age, race, prevalent clinical CVD, subclinical CVD, and ADL/IADL

difficulty. It is believed that depression-mortality effect is driven by an underlying psycho-

logical state that includes elements of health and functioning. We would expect this effect to

be shared and diluted among a wide range of health and functional status factors. Our study

also points out the importance of taking into account the correlations between husbands and

wives in the joint models. Ignoring such correlations may result in underestimating the true

association between the longitudinal depressive symptoms and mortality.
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Consistent with previous work, the longitudinal parameter estimates obtained from the

joint models indicated that older age, less educated, and having more stressful life events,

ADL/IADL difficulty, prevalent clinical CVD, and antidepressant medication use were inde-

pendently associated with depressive symptoms changes over time in both genders. However,

a significant association between antidepressant medication use and longitudinal CES-D score

does not mean that depressive symptoms were worse among those taking medication. This

association is not causal, and thus it is more possible that not antidepressant medication

caused symptoms but rather antidepressant medication use is a proxy for having clinical

depression (i.e., severe depressive symptoms).

From a clinical perspective, the current findings suggested that levels of depressive symp-

toms measured by existing screening tests should be taken seriously and further evaluated for

possible treatment to stop the progression of depressive symptoms, thus enhancing quality

of life and longevity in older people.

In spite of the advantages of the current study, there are at least two limitations in this

work. First, we did not have clinical diagnoses of depression or the psychiatric history of the

participants. The association between clinical depression and mortality may be stronger than

the association of depressive symptoms and mortality we observed in this study. Second,

there are increasing numbers of studies indicating a possible link between depression and

cardiovascular mortality. A further analysis linking depression to specific causes of death

will help us understand better these possible mechanisms.
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7.0 CONCLUSIONS

In this dissertation, we have proposed a joint modeling approach for paired data which

took into account the within-pair correlation, both in the longitudinal and in the time-to-

event processes. Our method offers a feasible approach to connect the long-term course of

psychiatric/physical conditions to the time to mortality in paired subjects and simultane-

ously investigate the association of both longitudinal psychiatric/physical conditions and

mortality within pairs. Application of the methodology and simulation evidence show that

it is accessible for routine use and provides reliable inference.

There is a lot of possible future work related to this research. We assume a parametric

Weibull function for the baseline hazard. The advantage of choosing a parametric propor-

tional hazards model with gamma frailty is that the marginal likelihood is fully parametric

and we can rely on classical maximum likelihood technique to estimate the parameters.

However, in many cases we may not know what the appropriate baseline hazard distribu-

tion is and it is preferred not to make any assumption on its distribution. We will extend

the Weibull proportional hazards model with gamma frailty to have a unspecified baseline

hazard function. In addition, besides gamma frailty there are other distributions proposed

in the literature for frailty, such as the positive stable and the inverse Gaussian distribu-

tions. The gamma distribution has been extensively used due to its simple interpretation

and mathematical tractability but there is a restriction that the gamma frailty model results

in hazard ratios (the ratio of the hazard for a spouse given the other spouse dead at time

t and the hazard for a spouse given the other spouse still alive at time t) that are time

invariant. It may not be suitable in married couples because an increased risk of mortality

in the widowed spouse usually occurs in the early years after loss. A positive stable frailty

model has hazard ratios decreasing to one over time and we will consider a positive stable

frailty in the future and then compare the preference of the two frailty models.
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APPENDIX A

R PROGRAM FOR THE BIVARIATE LINEAR MIXED MODEL

The R function “lme()” is used to conduct the bivariate linear mixed model, i.e., the model

fitted in Table 6.2.

fitLME <- lme(sqrt(depscr05) ~ -1 + female + male +
I(female*stdytime_yr) + I(male*stdytime_yr) +
I(female*agebl) + I(male*agebl) +
I(female*white) + I(male*white) +
I(female*grade01) + I(male*grade01) +
I(female*lescr05) + I(male*lescr05) +
I(female*anyADLb) + I(male*anyADLb) +
I(female*prevalent) + I(male*prevalent) +
I(female*depmedb) + I(male*depmedb),

random = ~ -1 + female + male | spouse,
weight = varIdent(form = ~ 1 | male),
corCompSymm(value = 0, form = ~ 1|spouse/male, fixed = TRUE),
data = CHS, control = list(apVar = TRUE))
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APPENDIX B

R PROGRAM FOR THE WEIBULL PROPORTIONAL HAZARDS MODEL

WITH GAMMA FRAILTY

The R function “WB.GMfrailty()” is created to conduct the Weibull proportional hazards

model with gamma frailty, i.e., the model fitted in Table 6.2.

fitPARFM <- WB.GMfrailty(formula = Surv(ttodth_yr2, death2) ~ -1 + female + male +
I(female*agebl) + I(male*agebl) +
I(female*white) + I(male*white) +
I(female*anyADLb) + I(male*anyADLb) +
I(female*prevalent) + I(male*prevalent) +
I(female*subclinical) + I(male*subclinical),

formula.cox = Surv(ttodth_yr2, death2) ~ female +
agebl + white + anyADLb + prevalent + subclinical +
female:agebl + female:white + female:anyADLb +
female:prevalent + female:subclinical,

cluster = "spouse", method = "BFGS", data = CHS.id)

WB.GMfrailty <-
function (formula, formula.cox, cluster = NULL, data, inip = NULL, iniFpar = NULL,

method = "BFGS", maxit = 500, Fparscale = 1) {
#------------------ Survival Process ---------------------------------------------
obsdata <- NULL
if (length(formula[[2]]) == 3) {

obsdata$time <- eval(formula[[2]][[2]], envir = data)
obsdata$event <- eval(formula[[2]][[3]], envir = data)

}
obsdata$x <- as.data.frame(model.matrix(formula, data = data))
obsdata$cluster <- eval(as.name("spouse"), envir = data)

obsdata$ncl <- length(levels(as.factor(obsdata$cluster)))
obsdata$di <- aggregate(obsdata$event, by = list(obsdata$cluster), FUN = sum)

[, , drop = FALSE]
cnames <- obsdata$di[, 1]
obsdata$di <- as.vector(obsdata$di[, 2])
names(obsdata$di) <- cnames
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#----- Dimensions -----------------------------------------------------------------
nFpar <- 1
obsdata$nFpar <- nFpar
nBpar <- 1
obsdata$nBpar <- nBpar
nRpar <- ncol(obsdata$x)
obsdata$nRpar <- nRpar

#----- Initial parameters ---------------------------------------------------------
coxMod <- phreg(formula = formula.cox, data = data, dist = "weibull", shape = 0,

control = list(maxiter = maxit))
logshape <- as.numeric(coxMod$coef[substr(names(coxMod$coef), 5, 9) == "shape"])
logscale <- as.numeric(coxMod$coef[substr(names(coxMod$coef), 5, 9) == "scale"])

if (nRpar==2) {
p.init <- numeric(nRpar)
p.init [1] <- -exp(logshape)*logscale + coxMod$coef[1]
p.init [2] <- -exp(logshape)*logscale

} else if (nRpar>2) {
p.init1 <- numeric(2)
p.init1 [1] <- -exp(logshape)*logscale + coxMod$coef[1]
p.init1 [2] <- -exp(logshape)*logscale

k <- (nRpar)/2-1
coef2 <- coxMod$coef[2:(2*k+1)]
p.init2 <- numeric(k*2)
for (i in 1:(k*2)) {

if (i %% 2 == 1) {
p.init2[i] <- coef2[(i+1)/2] + coef2[(i+1)/2+k]

}
else if (i %% 2 == 0) {

p.init2[i] <- coef2[i/2]
}

}
p.init <- c(p.init1, p.init2)

}

p.init <- c(logshape, p.init)
iniFpar <- 1
pars <- log(iniFpar)
pars <- c(pars, p.init)

# ---- Mloglikelihood: Minus the log-likelihood ----------------------------------
Mloglikelihood <- function(p) {

theta <- exp(p[1])
nFpar <- 1
rho <- exp(p[nFpar+1])
beta <- p[-(1:(nFpar+1))]
obs<- obsdata

cumhaz <- NULL
cumhaz <- aggregate(obs$time^(rho) * exp(as.matrix(obs$x) %*% c(beta))[,1],

by=list(obs$cluster),FUN=sum)[,2]
loghaz <- NULL
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loghaz <- aggregate(obs$event*(log(rho * obs$time^(rho-1)) +
as.matrix(obs$x) %*% c(beta)),

by=list(obs$cluster), FUN=sum)[, 2]
Mloglik <-sum(obs$di)*log(theta)-

sum((obs$di+1/theta)*log(1+cumhaz*theta)) + sum(loghaz) +
sum(sapply(obs$di,function(x)

ifelse(x==0,0,log(prod(x+1/theta-seq(1,x))))))
Mloglik<- -Mloglik
attributes(Mloglik)$cumhaz <- cumhaz
return(Mloglik)

}

# ---- Estimate the MLE ---------------------------------------------------------
Fparscale <- 1
res <- NULL
res <- optim(par = pars, fn = Mloglikelihood, method = method, hessian = TRUE,

control = list(maxit = maxit, parscale = c(rep(Fparscale, nFpar),
rep(1, nBpar + nRpar))))

res
attributes(res)
it <- res$counts[1]
lL <- -res$value loglikelihood

#----- Recover the estimates ------------------------------------------------------
theta <- exp(res$par[1:nFpar])
rho <- exp(res$par[nFpar+1])
beta <- res$par[-(1:(nFpar + nBpar))]
names(beta) <- paste(names(obsdata$x), sep = ".")
ESTIMATE <- c(theta = theta, rho = rho, beta = beta)

#----- Output ---------------------------------------------------------------------
resmodel<- ESTIMATE
Terms <- terms(formula, data = data)
y<-cbind(obsdata$time,obsdata$event)
rownames(y)<- rep(1:nrow(y))
colnames(y)<- c("time","event")
obsdata$x.cox <- as.data.frame(model.matrix(formula.cox, data = data))
output<-list(model=resmodel,

x = obsdata$x,
x.cox = obsdata$x.cox,
y = y,
formula = formula,
formula.cox = formula.cox,
terms = attr(Terms, "term.labels"))

return(output)
}
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APPENDIX C

R PROGRAM FOR THE JOINT MODELS

The R function “BivJM()” is created to conduct the joint models, i.e., the model fitted in

Table 6.2.
lmeObject <- fitLME # longitudinal submodel
survObject <- fitPARFM # survival submodel
timeVar <- "stdytime_yr" # time variable used in the bivariate linear mixed model
strata <- "female"
main.effect<- c("female", "agebl", "white", "anyADLb", "prevalent", "subclinical")
control <- list()

out<- BivJM(lmeObject = fitLME, survObject = fitPARFM, timeVar = "stdytime_yr",
strata = "female", main.effect = c("female", "agebl", "white", "anyADLb",

"prevalent", "subclinical"))
BivJM <-

function (lmeObject, survObject, timeVar, strata, main.effect, control=list()) {
#------------------ Survival Process ---------------------------------------------
formT <- formula(survObject)
W <- survObject$x
W.cox <- survObject$x.cox
Time <- survObject$y[, 1]
d <- survObject$y[, 2]
idT <- seq_along(Time)
spouseT<- rep(1:(length(idT)/2), each=2)
nRisks <- 1
nT <- length(unique(idT))

#------------------ Longitudinal Process ------------------------------------------
id <- rep(1:(2*max(lmeObject$data[,"spouse"])), rle(lmeObject$data[,"id"])$lengths)
spouse <- lmeObject$data$spouse
n.spouse <- max(lmeObject$data$spouse)
b <- cbind(rep(ranef(lmeObject)$female,each=2),rep(ranef(lmeObject)$male,each=2))
nY <- nrow(b)
if (nY != nT)

stop("sample sizes in the longitudinal and event processes differ; ",
"maybe you forgot the cluster() argument.\n")
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TermsX <- lmeObject$terms
data <- lmeObject$data[all.vars(TermsX)]
data <- data[complete.cases(data), ]
formYx <- formula(lmeObject)
mfX <- model.frame(TermsX, data = data)
X <- model.matrix(formYx, mfX)
formYz <- formula(lmeObject$modelStruct$reStruct[[1]])
mfZ <- model.frame(terms(formYz), data = data)
TermsZ <- attr(mfZ, "terms")
Z <- model.matrix(formYz, mfZ)
y.long <- model.response(mfX, "numeric")

#---------- check if there are any longitudinal measurements after the event times -----
data.id <- data[!duplicated(id), ]
data.id <- data.id[idT, ]
if (!timeVar %in% names(data))

stop("\n’timeVar’ does not correspond to one of the columns in the
model.frame of ’lmeObject’.")
max.timeY <- tapply(data[[timeVar]], id, max)
max.timeT <- tapply(Time, idT, max)
if (!all(max.timeT >= max.timeY)) {

idnams <- factor(lmeObject$groups[[1]])
stop("\nit seems that there are longitudinal measurements taken after the event times

for some subjects", "(i.e., check subject(s): ",
paste(levels(idnams)[(max.timeT < max.timeY)], collapse = ", "), ").")
}
data.id[[timeVar]] <- pmax(Time, 0)

#---------- Longitudinal outcome in the survival submodel ------------------------------
mfX.id <- model.frame(TermsX, data = data.id)
mfZ.id <- model.frame(TermsZ, data = data.id)
Xtime <- model.matrix(formYx, mfX.id)
Ztime <- model.matrix(formYz, mfZ.id)

#--------------------- Estimated longitudinal outcome --------------------------------
long <- c(X %*% fixef(lmeObject)) + rowSums(Z * b[id, ])

#------------ response vectors and design matrices -------------------------------------
y <- list(y = y.long, logT = log(Time), Time = Time, d = d)
x <- list(X = X, Z = Z, W = W, idT = idT, spouse = spouse, spouseT = spouseT,

n.spouse = n.spouse, nRisks = nRisks,
Xtime = Xtime, Ztime = Ztime)

#------------------ control values -----------------------------------------------------
con <- list(only.EM = FALSE, iter.EM = 50, iter.qN = 150, optimizer = "optim",

tol1 = 0.001, tol2 = 1e-04, tol3 = sqrt(.Machine$double.eps),
numeriDeriv = "fd", eps.Hes = 1e-06, parscale = NULL,
step.max = 0.1, backtrackSteps = 2, knots = NULL, ObsTimes.knots = TRUE,
lng.in.kn = 5, ord = 4, equal.strata.knots = TRUE,
GHk = if (ncol(Z) <= 3 && nrow(Z) < 2000) 5 else 3, GKk = 15,
verbose = TRUE)

control <- c(control, list())
namC <- names(con)
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con[(namc <- names(control))] <- control

#-------- extra design matrices for Weibull-PH-GH --------------------------------------
# Gauss-Kronrod
wk <- gaussKronrod(con$GKk)$wk
sk <- gaussKronrod(con$GKk)$sk
P <- as.vector(Time)/2
st <- outer(P, sk + 1)
dimnames(st) <- names(P) <- NULL
id.GK <- rep(seq_along(Time), each = con$GKk)
data.id2 <- data.id[id.GK, , drop = FALSE]
data.id2[[timeVar]] <- pmax(c(t(st)) , 0)
mfX <- model.frame(TermsX, data = data.id2)
mfZ <- model.frame(TermsZ, data = data.id2)
Xs <- model.matrix(formYx, mfX)
Zs <- model.matrix(formYz, mfZ)
x <- c(x, list(P = P, st = c(t(st)), wk = wk, Xs = Xs, Zs = Zs))

#------------------ initial values -----------------------------------------------------
VC <- lapply(pdMatrix(lmeObject$modelStruct$reStruct), "*", lmeObject$sigma^2)[[1]]
R.element<- (1/unique(attributes(lmeObject$modelStruct$varStruct)$weights)

*lmeObject$sigma)^2
R.female <- R.element[1]
R.male <- R.element[2]
Vs <- vector("list", n.spouse)
inv.VC <- solve(VC)
ni <- as.vector(tapply(spouse, spouse, length))
diag.R <- ifelse(id %% 2 == 0, R.male, R.female)
diag.R.s<- split(diag.R, spouse)
names(diag.R.s) <- NULL
for (i in 1:n.spouse) {

Z.i <- Z[spouse == i, , drop = FALSE]
R.i <- diag(diag.R.s[[i]],ni[i],ni[i])
Vs[[i]] <- solve(t(Z.i) %*% solve(R.i) %*% Z.i + inv.VC)

}
con$inv.chol.VCs <- lapply(Vs, function(x) solve(chol(solve(x))))
con$det.inv.chol.VCs <- sapply(con$inv.chol.VCs, det)
con$ranef <- b
con$ranef.spouse<- b[which(idT %% 2 == 1),]
init.parm <- initial.parm(Time, d, W, W.cox, id, idT, long = long,

cluster = "spouse")
initial.values <- c(list(betas = fixef(lmeObject), sigma = sqrt(R.element), D = VC),

init.parm)

#------------------ remove objects -----------------------------------------------------
rmObjs <- c(names(x), "y.long", "mfX", "mfZ")
rm(list = rmObjs)
gc()

#------------------ joint model fit ----------------------------------------------------
control <- con

#---- response vectors -----------------------------------------------------------------
spouse <- x$spouse
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spouseT<- x$spouseT
idT <- x$idT
Time <- as.vector(y$Time)
d <- as.vector(y$d)
d.spouse <- as.vector(rowsum(d, spouseT, reorder=FALSE))
y <- as.vector(y$y)

#---- design matrices -----------------------------------------------------------------
X <- x$X
Xtime <- x$Xtime
Xs <- x$Xs
Z <- x$Z
Ztime <- x$Ztime
Zs <- x$Zs
WW <- as.matrix(x$W)
X <- dropAttr(X); Z <- dropAttr(Z); WW <- dropAttr(WW)
Xtime <- dropAttr(Xtime); Ztime <- dropAttr(Ztime)
Xs <- dropAttr(Xs); Zs <- dropAttr(Zs)

#---- sample size settings -------------------------------------------------------------
ncx <- ncol(X)
ncz <- ncol(Z)
ncww<- ncol(WW)
n <- length(Time)
N <- length(y)
n.spouse <- x$n.spouse
nik<- as.vector(tapply(id, id, length))
ni <- as.vector(tapply(spouse, spouse, length))

#---- crossproducts and others ---------------------------------------------------------
XtX <- crossprod(X)
ZtZ <- lapply(split(Z, id), function (x) crossprod(matrix(x, ncol = ncz)))
names(ZtZ) <- NULL
ZtZ <- matrix(unlist(ZtZ), n, ncz * ncz, byrow=TRUE)
outer.Ztime <- lapply(1:n, function (x) Ztime[x, ] %o% Ztime[x, ])

#---- Gauss-Kronrod rule ---------------------------------------------------------------
st <- x$st
log.st <- log(st)
wk <- rep(x$wk, length(Time))
P <- as.vector(x$P)
id.GK <- rep(seq_along(Time), each = control$GKk)
id.GK.spouse <- rep(1:n.spouse, each = control$GKk*2)

#---- Pseudo-adaptive Gauss-Hermite quadrature rule components -------------------------
GH <- gauher(control$GHk)
b <- as.matrix(expand.grid(rep(list(GH$x), ncz)))
k <- nrow(b)
wGH <- as.matrix(expand.grid(rep(list(GH$w), ncz)))
wGH <- 2^(ncz/2) * apply(wGH, 1, prod) * exp(rowSums(b * b))
b <- sqrt(2) * b
dimnames(b) <- NULL
b2 <- if (ncz == 1) b * b else t(apply(b, 1, function (x) x %o% x))
VCdets <- control$det.inv.chol.VCs
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lis.b <- vector("list", n.spouse)
for (i in 1:n.spouse) {

lis.b[[i]] <- t(control$inv.chol.VCs[[i]] %*% t(b)) + rep(control$ranef.spouse[i, ],
each = k)

}
lis.b2 <- lapply(lis.b, function (b) if (ncz == 1) b * b else

t(apply(b, 1, function (x) x %o% x)))
Ztb <- matrix(NA,length(spouse),k)
Ztime.b <- matrix(NA,length(spouseT),k)
Zsb <- matrix(NA,length(id.GK.spouse),k)
for (i in 1:n.spouse) {

Ztb[spouse == i, ] <- Z[spouse == i, , drop = FALSE] %*% t(lis.b[[i]])
Ztime.b[spouseT == i, ] <- Ztime[spouseT == i, , drop = FALSE] %*% t(lis.b[[i]])
Zsb[id.GK.spouse == i, ] <- Zs[id.GK.spouse == i, ] %*% t(lis.b[[i]])

}

#---- initial values -------------------------------------------------------------------
betas <- as.vector(initial.values$betas)
sigma <- initial.values$sigma
gammas <- as.vector(initial.values$gammas)
alpha <- as.vector(initial.values$alpha)
theta <- initial.values$theta
rho <- initial.values$rho
D <- initial.values$D
diag.D <- !is.matrix(D)
if (!diag.D) dimnames(D) <- NULL else names(D) <- NULL

#---- fix environments for functions ---------------------------------------------------
environment(opt.survWBGM) <- environment(gr.survWBGM) <- environment()
environment(gr.longWBGM) <- environment(H.longWBGM) <- environment()
environment(LogLik.WBPH.GMfrailty) <- environment(Score.WBPH.GMfrailty) <- environment()
old <- options(warn = (-1))
on.exit(options(old))

#---- EM iterations --------------------------------------------------------------------
iter <- control$iter.EM
Y.mat <- matrix(0, iter + 1, ncx + 2)
T.mat <- matrix(0, iter + 1, ncww + 2 + 2)
B.mat <- if (diag.D) matrix(0, iter + 1, ncz) else matrix(0, iter + 1, ncz * ncz)
lgLik <- numeric(iter + 1)
conv <- TRUE

for (it in 1:iter) {
Y.mat[it, ] <- c(betas, sigma^2)
T.mat[it, ] <- c(theta, rho, gammas, alpha)
B.mat[it,] <- D
eta.yx <- as.vector(X %*% betas)
eta.tw <- as.vector(WW %*% gammas)
exp.eta.tw <-exp(eta.tw)
Y <- as.vector(Xtime %*% betas) + Ztime.b
Ys <- as.vector(Xs %*% betas) + Zsb
alpha.id <- rep(alpha, times=n.spouse)
alpha.GK <- rep(alpha.id, each = con$GKk)
eta.t <- eta.tw + alpha.id * Y
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eta.s <- alpha.GK * Ys

# E-step
mu.y <- eta.yx + Ztb
sigma.y <- ifelse(id %% 2 == 0, sigma[2], sigma[1])
logNorm <- dnorm(y, mu.y, sigma.y, log = TRUE)
log.p.yb <- rowsum(logNorm, spouse, reorder = FALSE)
dimnames(log.p.yb) <- NULL
cumhaz1<- NULL; cumhaz<- NULL
cumhaz1 <-rowsum(wk*exp(log(rho)+(rho-1)*log.st+eta.s), id.GK, reorder=FALSE)
cumhaz <- rowsum(exp.eta.tw * P * cumhaz1, spouseT, reorder=FALSE)
loghaz <- NULL
loghaz <- rowsum(d * (log(rho * Time^(rho-1)) + eta.t), spouseT, reorder=FALSE)
log.p.tb <- d.spouse*log(theta) + loghaz - (d.spouse+1/theta)*log(1+theta*cumhaz) +

log(gamma(d.spouse+1/theta)/gamma(1/theta))
log.p.b <- matrix(dmvnorm(do.call(rbind, lis.b), rep(0, ncz), D, log=TRUE),

n.spouse, k, byrow = TRUE)
p.ytb <- exp(log.p.yb + log.p.tb + log.p.b) * VCdets
p.yt <- c(p.ytb %*% wGH)
p.byt <- p.ytb / p.yt
post.b <- sapply(seq_len(ncz), function (i)

(p.byt * t(sapply(lis.b, "[", seq_len(k), i))) %*% wGH)
post.vb <- {

dd <- sapply(seq_len(ncz^2), function (i)
(p.byt * t(sapply(lis.b2, "[", seq_len(k), i))) %*% wGH)

bb <- apply(post.b, 1, function (x) x %o% x)
dd - if (ncz == 1) c(bb) else t(bb)

}
log.p.yt <- log(p.yt)
lgLik[it] <- sum(log.p.yt[is.finite(log.p.yt)])

if (control$verbose) {
cat("\n\niter:", it, "\n")
cat("log-likelihood:", lgLik[it], "\n")
cat("betas:", round(betas, 4), "\n")
cat("sigma squared:", round(sigma^2, 4), "\n")
cat("theta:", round(theta, 4), "\n")
cat("rho:", round(rho, 4), "\n")
cat("lambda:", round(exp(gammas[1:2]), 4), "\n")
cat("gammas:", round(gammas[-(1:2)], 4), "\n")
cat("alpha:", round(alpha, 4), "\n")
cat("D:", if (!diag.D) round(D[lower.tri(D, TRUE)], 4) else round(D, 4), "\n")

}

# check convergence
if (it > 5 && lgLik[it] > lgLik[it - 1]) {

thets1 <- c(Y.mat[it - 1, ], T.mat[it - 1, ], B.mat[it - 1, ])
thets2 <- c(Y.mat[it, ], T.mat[it, ], B.mat[it, ])
check1 <- max(abs(thets2 - thets1) / (abs(thets1) + control$tol1)) < control$tol2
check2 <- (lgLik[it] - lgLik[it - 1]) < control$tol3 * (abs(lgLik[it - 1])

+ control$tol3)
if (check1 || check2) {

conv <- FALSE
if (control$verbose)
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cat("\n\nconverged!\ncalculating Hessian...\n")
break

}
}
if (iter == 0) break

if (it == iter) {
out <- list(flag=1)
return(out)

}

# M-step
Zb <- rowSums(Z * post.b[spouse, ], na.rm = TRUE)
mu <- y - eta.yx
tZZvarb <- ZtZ * post.vb[spouseT, ]
tr.tZZvarb<- NULL
tr.tZZvarb[1] <- sum(tZZvarb[which(idT %% 2 == 1),], na.rm = TRUE)
tr.tZZvarb[2] <- sum(tZZvarb[which(idT %% 2 == 0),], na.rm = TRUE)
N.f<- length(y[which(id %% 2 == 1)])
N.m<- length(y[which(id %% 2 == 0)])
sigman<-NULL
sigman[1] <- sqrt(c(crossprod(mu[which(id %% 2 == 1)], (mu - 2 * Zb)[which(id %% 2 == 1)])

+ tr.tZZvarb[1] + crossprod(Zb[which(id %% 2 == 1)])) / N.f)
sigman[2] <- sqrt(c(crossprod(mu[which(id %% 2 == 0)], (mu - 2 * Zb)[which(id %% 2 == 0)])

+ tr.tZZvarb[2] + crossprod(Zb[which(id %% 2 == 0)])) / N.m)
Dn <- matrix(colMeans(dd, na.rm = TRUE), ncz, ncz)
Dn <- if (diag.D) diag(Dn) else 0.5 * (Dn + t(Dn))
scbetas <- gr.longWBGM(betas)
Hbetas <- H.longWBGM(betas)
betasn <- betas - c(solve(Hbetas, scbetas))
list.thetas <- list(logtheta=log(theta), logrho=log(rho), gammas=gammas, alpha=alpha)
list.thetas <- list.thetas[!sapply(list.thetas, is.null)]
thetas <- unlist(as.relistable(list.thetas))
optz.surv <- optim(thetas, opt.survWBGM, gr.survWBGM, method = "BFGS",

control = list(maxit = if (it < 5) 20 else 5,
parscale = if (it < 5) rep(0.01, length(thetas))

else rep(0.1, length(thetas))))
thetasn <- relist(optz.surv$par, skeleton = list.thetas)

if (is.nan(betasn[1]) | is.nan(betasn[2]) | is.nan(betasn[3]) | is.nan(betasn[4]) |
is.nan(sigman[1]) | is.nan(sigman[2]) |
is.nan(Dn[1,1]) | is.nan(Dn[1,2]) | is.nan(Dn[2,1]) | is.nan(Dn[2,2]) |
is.nan(thetasn$logtheta) | is.infinite(thetasn$logrho) |
is.infinite(thetasn$gammas[1]) | is.infinite(thetasn$gammas[2]) |
is.infinite(thetasn$gammas[3]) | is.infinite(thetasn$gammas[4]) |
is.infinite(thetasn$alpha[1]) | is.infinite(thetasn$alpha[2]) |
is.infinite(betasn[1]) | is.infinite(betasn[2]) |
is.infinite(betasn[3]) | is.infinite(betasn[4]) |
is.infinite(sigman[1]) | is.infinite(sigman[2]) |
is.infinite(Dn[1,1]) | is.infinite(Dn[1,2]) | is.infinite(Dn[2,1]) |

is.infinite(Dn[2,2]) |
is.infinite(exp(thetasn$logtheta)) | is.infinite(exp(thetasn$logrho)) |
is.infinite(exp(thetasn$gammas[1])) | is.infinite(thetasn$gammas[2]) |
is.infinite(exp(thetasn$gammas[3])) | is.infinite(thetasn$gammas[4]) |
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is.infinite(thetasn$alpha[1]) | is.infinite(thetasn$alpha[2])){
out <- list(flag=1)
return(out)

}

# update parameter values
betas <- betasn
sigma <- sigman
D <- Dn
theta <- exp(thetasn$logtheta)
rho <- exp(thetasn$logrho)
gammas <- thetasn$gammas
alpha <- thetasn$alpha

}

list.thetas <- list(betas = betas, sigma = sigma, D = if (diag.D) log(D)
else chol.transf(D),
theta = theta, rho = rho, gammas = gammas, alpha = alpha)

thetas <- unlist(as.relistable(list.thetas))
lgLik <- - LogLik.WBPH.GMfrailty(thetas)

#---- Calculate Score vector -----------------------------------------------------------
Score <- Score.WBPH.GMfrailty(unlist(thetas))
if (any(Score==0)) {

out <- list(flag=1)
return(out)

}

#---- calculate Hessian matrix --------------------------------------------------------
Hessian <- if (control$numeriDeriv == "fd") {

fd.vec(unlist(thetas), Score.WBPH.GMfrailty, eps = control$eps.Hes)
} else {

cd.vec(unlist(thetas), Score.WBPH.GMfrailty, eps = 1e-04)
}
se.thetas <- sqrt(diag(solve(Hessian)))
if (any(is.na(se.thetas)) | any(se.thetas>=100)){

out <- list(flag=1)
return(out)

}

#---- Final data ----------------------------------------------------------------------
names(betas) <- names(initial.values$betas)
names(sigma) <- c("sigma.f", "sigma.m")
if (!diag.D) dimnames(D) <- dimnames(initial.values$D) else

names(D) <- names(initial.values$D)
names(theta) <- "theta"
names(rho) <- "rho"
names(gammas) <- c("log.lambda.f","log.lambda.m")
names(alpha) <- c("alpha.f","alpha.m")

nams <- c(paste("Y.", c(names(betas), names(sigma)), sep = ""),
paste("B.", if (!diag.D) paste("D", seq(1, ncz * (ncz + 1) / 2), sep = "")

else names(D), sep = ""),
paste("T.", c(names(theta), names(rho), names(gammas), names(alpha)), sep = ""))
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dimnames(Hessian) <- list(nams, nams)
names(se.thetas) <- c(nams)
colnames(post.b) <- colnames(x$Z)

D.vector <- as.vector(D)[c(1,2,4)]
names(D.vector) <- c("D1", "D2", "D3")

if (conv == FALSE) conv <- 0

out<- list(flag=0, coefficients = c(betas, sigma, D.vector, theta, rho, gammas, alpha),
se = se.thetas, Score = Score, Hessian = Hessian, logLik = lgLik,
EB = list(iters = it, convergence = conv, n.spouse = n.spouse,

n = n, N = N, d = d))

#------------ check for problems with the Hessian at convergence -----------------------
H <- out$Hessian
if (any(is.na(H) | !is.finite(H))) {

warning("infinite or missing values in Hessian at convergence.\n")
} else {

ev <- eigen(H, symmetric = TRUE, only.values = TRUE)$values
if (!all(ev >= -1e-06 * abs(ev[1])))

warning("Hessian matrix at convergence is not positive definite.\n")
}
return(out)
}
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