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Measurement is the first step in predicting the growth of Internet. They can reveal information 

about traffic and topology characteristics of the Internet. Understanding traffic and topology 

characteristics are vital for evaluating the performance of networking protocols, creating accurate 

models for simulation and helping service providers to better utilize their resources. Using the 

data collected from a National Internet Service Provider in Kosovo, PTK, we report on traffic 

measurements and analyze some of the most important characteristics of Internet traffic such as 

self-similarity and long-range dependence. Also, we reveal information about the topology 

structure of Internet at IP level, from the perspective of our data. 
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1.0  INTRODUCTION 

Since its origin in ARPANET, Internet has continued to grow at fast speeds, become more 

complex and harder to be analyzed and understood. Analyzing and understanding its behavior is 

vital to developing more efficient protocols and better utilize resources. This requires of having 

accurate models which reflect the actual behavior of Internet. And, as we cannot replicate and 

study Internet as a whole, instead we rely on thorough analysis of sample network measurements 

taken from different parts of Internet. In general, measurements and analysis of Internet are done 

at two different levels: traffic level and topology level. 

Over the last two decades, studies about Internet traffic have been gradually concentrated 

into two school of thoughts. One school of thought refers to Internet traffic as smooth and such 

to be easy modelled and understood using traditional Teletraffic models introduced by Erlang 

(e.g. Poisson or Markovian) [1]. Others, view Internet traffic as bursty in many or all timescales 

and with long-memory [2] [3]. A more realistic approach is those who have shown that both can 

coexist, depending the scale of the observation [4]. Intuitively, we can think of these differences 

in terms of how they understand traffic characteristics [5] and, for example, how this affects 

traffic engineering for ensuring quality of service. If traffic was bursty, then in order to manage 

the inevitable peaks that exceed the planned capacity, very sophisticated buffers and packet 

scheduling would be required. On the other hand, if aggregated traffic is smooth, guaranteeing 

QoS would be only a function of long-term capacity planning because there would be no queue 

buildups. All this debate started with the seminal work of Leland et al [2] who showed that 

traffic is bursty in different timescales and it cannot be described using few parameters by 

Poisson processes. Internet and typical voice calls used in circuit switching have dramatically 

different statistical characteristics from each other. Internet sessions tend to be much more 

variable and longer in duration than voice calls. Therefore, they introduced the self-similar 

processes as a notion to better understand and model data traffic. 
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Likewise, understating and modelling Internet topology was enigmatic for a very long 

time and it was believed that can be described and modelled using random graphs [6], [7]. 

Internet topology, as any other type of complex network, consist of nodes connected to each 

other and placement of these nodes was considered to be random and such to be well described 

by Poisson [8]. Despite the random placement of the links, it was believed that most of the nodes 

will have approximately the same number of links and it would be extremely rare to find nodes 

that have considerably more or fewer links deviated from the mean. As the probability that a 

node is connected to  other nodes decreases exponentially for large  random nodes are also 

referred to as exponential. The discovery of Faloutsos brother in 1999 [4] that Internet topology 

obeys power-law distribution, invalidated all previous efforts in modelling Internet topology. 

Findings of authors in [4] had significant implications in designing efficient protocols and hard 

to be ignored. Later, authors in [8], referred to these types of networks as scale-free and explain 

the reasons behind by mechanisms of growth and preferential attachment. As new nodes appear, 

they tend to connect to more connected nodes and thus these popular nodes acquire more links 

over the time than their less connected neighbors. Consequently, we have some very highly 

connected nodes and many other low connected. 

1.1 MOTIVATION 

Long-range dependence of Internet traffic has been mostly attributed to file transfer sizes. 

Authors in [9] showed that causes of self-similarity are associated with heavy-tailed distribution 

of file transfers. Their conclusion is based on empirical data of WWW traffic collected at local 

area network Web server (NCSA Mosaic). Likewise, authors in [10] confirm the heavy-tailed 

distributions of file sizes directly affect the degree of self-similarity (and long-range dependence 

- LRD) and this phenomenon is likely to continue to happen even under network constrains (such 

as bottlenecks). But, Internet traffic over the past five years has drastically changed in terms of 

applications. As reported by Cisco [11], it is Internet video which is the dominant application 

and drives the growth instead of file-sharing. In addition, as the structure of Internet traffic is 

affected by demographic properties (user “think-time”) and as authors in [4] suggest that 
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different backbones might show different traffic structure, motivate us to revisit notions of self-

similarity, long-range dependence and power-laws of Internet traffic. 

The increased attention to privacy and data protection in one hand and the openness and 

flexibility of Internet on the other, gives the privileges to individual network administrators to 

use different policies and security protection mechanisms. This raises a major problem when 

using active measurements (usually used to map Internet at router-level) in order to obtain 

information about the topology of Internet. Measurements based on traceroute are biased due to 

number of firewalls, missing links and routing policies by individual administrators. Studies in 

[12] and [13] have shown that current techniques used to conduct measurements at AS level miss 

around 30% of links. In addition, a study in [14] shows that even if underlying node degree 

distribution was exponential, traceroute measurements resulted in power-law distribution. This 

motivates us to use the collected traffic traces, as slightly different approach, in order to study 

and reveal information about the Internet topology characteristics and its underlying strucuture. 

1.2 APPROACH 

Most of the recent and past studies of network traffic and topology patterns and characteristics 

rely on measurements reported by Center of Applied Internet Data Analysis (CAIDA) [20]. 

CAIDA datasets are a great resource but they contain anonymized passive traffic traces from 

monitors on specific Internet backbone-links belonging to more than one service provider which 

generate very high traffic volumes. In contrast, our goal is to have a broad picture of network 

traffic characteristics from single Internet service provider that shares all main properties, yet is 

smaller in scale and represents a different demographic part of the world. 

In this thesis work, traffic traces collected from a Service Provider, PTK, are analyzed. 

Traffic flows are captured using nfcapd (a Netflow capture daemon) where the machine 

collecting the data listens in a 1 Gbps link that connects two Internet Border Gateway routers that 

are responsible for routing the whole traffic at inter domain level as well as intra domain, as 

shown in Figure 1. Intuitively, this means that flow collector located at PTK captures all 

conversations between machines at PTK network and outside it. We have been collecting data 
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for a period of approximately three months, 28 December 2015 to 31 March 2016. Traces used in 

this study are taken between December 29th 2015 00:00:00 and January 4th 2016 23:59:00. They 

include 31,602,250 flows and generate  packets. 

 

 

Figure 1. The network at PTK 

1.3 GOAL 

The goal of this thesis work is to report on traffic measurements and characteristics of Internet 

traffic over two time scales, 24 hours and 7 days, in terms of traffic volume and packet sizes and 

time-series analysis. Finally, it aims to provide analysis of the topology structure, using graph 

metrics, based on the information about the traffic generated by any two communicating hosts. 

We focus on answering two main questions:  

- Is network data traffic still self-similar? 



 5 

- How does Internet topology look like from the perspective of Internet traffic? 

1.4 PRIVACY 

The data collected from PTK contains sensitive information about the network. Such information 

is not allowed to be disclosed by any party. Because of that, all the results in this thesis work will 

not show any actual IP or host address. 

1.5 STRUCTURE OF THE DOCUMENT 

The work is organized as follows. Section 2 provides definitions, metrics and a description of 

methods used to estimate and quantify variables of our interest for Internet traffic and topology, 

together with relevant background information. In Section 3, the collected dataset is described 

and general characteristics of these traces are shown. The section begins with a more detailed 

explanation of network under study, PTK, and the data collection phases and then shows, for 

instance, the packet size distribution, the composition of IP traffic from a data snapshot and most 

popular protocols. Later, Section 4 shows experiments together with the results. Byte counts and 

packet counts are examined with respect to self-similarity and long-range dependence in section 

4.1. Then, in section 4.2, communicating hosts are extracted and information about underlying 

degree distribution are shown together with other topology characteristics such as network 

diameter and assortativity. Finally, Section 5 summarizes and concludes the results and shows 

the future work. 
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2.0  BACKGROUND 

This Section starts with a literature review and related work which lead to definitions and metrics 

that are used to quantify underlying structure of Internet traffic and topology. In Section 2.1 

articles related to Internet traffic characteristics reviewed are given in a chronological order and 

then similarly in Section 2.2 reviewed work on the structure of Internet topology is shown. In 

Section 2.3 the mathematics used in these articles are presented, leading up to definitions and 

methods to quantify self-similarity and long-memory properties of Internet traffic followed by 

the metrics and definitions to compute node degree, assortativity coefficient and network 

diameter as chosen metrics for Internet topology.  

2.1 INTERNET TRAFFIC 

First step in understanding network traffic behavior and the main characteristics is the collection 

of traffic data. It was Leland et al [2] who first collected an extensive amount of traffic traces 

from Ethernet LAN’s (also known as Bellcore Data) over a three-year period (1989 to 1992) and 

showed some widespread patterns in data traffic, which until then were not known. More 

specifically, they showed that data traffic is characterized by “burstiness” on many time-scales. 

Findings of authors in [2] were considered striking for research community as that invalidated 

formal models that were used for telephone traffic analysis, such as Poisson models. Poisson 

based models were considered the most widely used Teletraffic models in the context of circuit 

switching traffic introduced by Erlang. Telephone systems were understood as homogenous 

systems where the notion of “generic” behavior, “typical” user and average statistics were 

sufficient in adequately describing and model of Teletraffic [15]. In addition, a traffic that is 

characterized by Poisson would be an ideal case to model and control data networks. It would 
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reduce complexity of design for routers and quality of service mechanisms. But, Poisson model 

has a very basic limitation; it cannot capture traffic “burstiness”. For example, if we consider a 

Poisson process with arrival rate  then timescale for “burstiness” is . 

Probability that a traffic burst occurs over other timescales decreases exponentially  [16]. This 

was true for circuit-switching traffic but traffic bursts in data networks is much more variable 

and happens at different time scales. This large variability in time (also in space) causes for the 

traffic to exhibit repeated statistical properties in different timescales, commonly referred to 

fractal or self-similar behavior. Up until then, fractals were mostly used to describe geometry of 

irregular shape objects by mathematicians (e.g. the famous Koch snow-flake) and brought to 

attention of statisticians by Mandelbrot [17] as a notion of self-similarity in time-series. 

After the evidence of self-similarity in Ethernet traffic, it was Paxson and Floyd [3], who 

evaluated 24 traces collected from a Wide Area Network (between 1993 and 1995, mostly at the 

Lawrence Berkeley National Laboratory and at Digital's Western Research Lab) and observed 

that Poisson models underestimate the burstiness of data traffic, especially at time scales below 

hundreds of milliseconds. At that time, they showed that only packet arrivals for TELNET and 

FTP control sessions with fixed rate of transmission can be modeled by Poisson, while other 

WAN arrival processes could be better described and modeled by self-similar processes. More 

specifically, they showed that inter-arrival times generated by a single connection best fit a 

Pareto distribution. 

With the rapid raise of WWW in late nineties, findings of [2] and [3] became even more 

evident and were confirmed in [9] and [10]. Authors in  [9] shade some more light about the 

causes of self-similarity and they associate it with heavy-tailed distribution of file transfers. Their 

conclusion is based on empirical data of WWW traffic collected at local area network Web 

server (NCSA Mosaic). Likewise, authors in [10] confirm the heavy-tailed distributions of file 

sizes directly affect the degree of self-similarity (or long-range dependence - LRD) and this 

phenomenon is likely to continue to happen even under network constrains (such as bottlenecks), 

topology changes or distribution of file request inter-arrival times. They show that transport layer 

protocol (TCP and its versions) plays the main role in preservation of a such relationship. 

In contrast to previous findings, authors in [18] argue that with the increase of number of 

connections between different pairs of sources and destinations, the notion of nonstationarity 
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must be considered as fundamental characteristic of data traffic and is more important than 

evidence of LRD and heavy-tailed distributions that characterize a self-similar time series. Using 

data collected at Bell Labs LAN link, they show that nonstationarity affects traffic variables 

through time. As the rate of connections increases, LRD becomes weaker (traffic will be less 

bursty) while packet inter-arrivals have a tendency toward Poisson and packet sizes toward 

independence. They suggest that Poisson assumptions would be even more evident in Core 

network, where the number of aggregated sources is much higher. 

More, a study in [19] analysis main variables of internet traffic (packet and byte counts) 

for a period of time between 2002 and 2003. They observed that LRD became significantly 

weaker for packet counts time series of 2003 compared to those in 2002. This observation is 

attributed to peer-to-peer file sharing application which caused high variability at some time 

scales. In contrast, for byte counts time-series they observed no difference. Another important 

finding and contradicting to [18] was that LRD was not affected by time of the day, implying the 

strength of self-similarity or LRD does not change as number of active sources change. It is 

important to note that this study was conducted using measurements taken in a university 

environment. 

Finally, Karagiannis et al. [4] show undoubtedly a more complete picture of network 

traffic in Wide Area Networks. Using three different types of datasets collected during 2002-

2003 from CAIDA monitors in a link that belonged to MFN (Metro Media Fiber Network, a 

former US Tier 1 ISP), they showed that both Poisson and LRD can coexist in traffic aggregated 

at Core network, depending the scale of observation. More specifically, authors analyzed two 

common variables of network traffic: byte counts and inter-arrival times. They found that packet 

size arrivals and inter-arrival time series at small timescales (sub-seconds) can be well described 

and modeled by Poisson. Beyond that traffic exhibits dominant characteristics of nonstationary 

and in addition shows self-similar properties. They attribute this finding to the evolution of 

Internet and backup the arguments showing that results are consistent from theoretical results for 

large-scale aggregations of renewal processes. In addition, they suggest that as Internet will 

continue to grow in number of applications and sources, traffic might become even more regular 

and we can abandon sophisticated traffic models instead of simple models such as those based on 

Poisson assumptions. Finally, they suggest that aggregated traffic from different backbone links 

might appear different. 



 9 

 

2.2 INTERNET TOPOLOGY 

While Internet traffic got the most of attention during nineties, Paxson and Floyd continued to 

challenge research community about many aspects of Internet behaviour. In the article [20], they 

discuss the challenges of simulating Internet topology due to the lack of understanding the 

behaviour of it. Internet topology is very complex and more importantly it changes drastically 

over the time (due to new connected networks, failure of some nodes, nature of routing protocols 

to balance the load in different paths, routing policies, etc). The architecture of Internet Protocol 

(IP) allows different technologies to converge and different networks to be administered based 

on different policies, yet to communicate seamleassly and allow many types of applications to be 

built on top of it. This flexibility comes together with the tradeoff of not having a clear picture of 

what is going on in the Internet. Hence, this challenges research community in designing 

efficient and scalable protocols and creating more robust and realistic models that can predict the 

behaviour of it. 

In 1999, it was Faloutsos brothers [21] who discovered that Internet has some regular 

shape. Despite its appearance as random, they showed that Internet obeys simple rules too. After 

they analyzed three datasets collected between November 1997 to December 1998 based on 

traceroute, they found that Internet is a scale-free network which can be modeled and understood 

by power-law degree distributions. It was considered as important as the work of Leland et al [2] 

and raised debates among reseach community. Internet was not excpected to show scale-free 

features as this invalidated another long believed theory based on classical random graphs, where 

the seminal work of Erdos and Renyi showed that networks grow randomly by adding new nodes 

and connections have an exponential distribution (well discribed by Poisson). Up until then, 

network protocols were designed for random graphs which perform poorly in scale-free 

networks.  

They studied internet topology at two granularities: router level (where each node is 

represented by a router) and inter-domain level (AS) where each domain represents a node and 
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each edge is connection between two nodes. And, metrics they identified to describe the 

properties of Internet topology as a graph are degree-rank power-law and eigenvalue-rank 

power-law. 

A major problem with such conclusions about Internet topology is the way measurements 

are conducted as they miss around 30% of the links at AS level [12] [13]. Research that is based 

on passive measurements usually rely on BGP routing tables which contain information about 

links from one AS to its neighors. Other types of datasets include those from RouteViews Project 

[22] and those obtained from Routing Information Service of RIPE [23]. On the other side, 

active measurements (usually used to map Internet at router-level) based on traceroute are even 

more biased due to number of firewalls, missing links and routing policies by individual 

administrators. An example of famous active measurements resource is skitter tool developed by 

CAIDA [24]. 

In order to better describe the structure of Internet, power-laws and degree distributions 

are not enough. Different networks might have the same degree distribution but totally different 

structural properties [25]. Thus, it is important to look beyond the degree distribution in order to 

have more acurately models which reflect the real properties of a network. To do so, authors use 

different metrics such as the correlation between node degrees to see wether high degree nodes 

tend to connect with high degree nodes or to low degree nodes (assortativity coefficient) [26] and 

how often a node or link (edge) can be found on the shortest path [27].  

In this thesis work, the focus is to show if the network traffic has changed and show 

network topology characteristics from a different perspective but using the same methodology 

and metrics used by the work of authors mentioned above. Therefore, in Section 2.3 mathematics 

of work mentioned are given and implementation of methods is shown. 

2.3 DEFINITIONS 

This Section shows the mathematics behind the definitions and notions found on the articles 

reviewed above that are required to understand and quantify metrics of interest for this study. 
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A random variable or a stochastic variable is discrete when it takes only countable 

number of individual values and it is continuous if it assumes that all values within a specific 

interval according to a density function . 

 

Cumulative Distribution Function or CDF of a stochastic variable  shows the probability that  

is less than or equal to a given value : 

 

 

Probability Distribution Function or PDF of  is the derivative of CDF and is given as: 

 

When  is a discrete, we use PDF of probability function . This tells us the 

probability that a values of  is equal to . Some of the mentioned distributions in the Section 

2.1 are: 

Exponential Distribution: 

 for  and mean is  

Poisson Distribution: 

 for  and mean is  

Pareto Distribution: 

 where ,  
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Pareto Distribution is the most popular heavy-tailed distribution where for , the 

distribution has infinite variance and for  it has infinite mean. 

Heavy-tailed distributions are used to understand underlying distribution of network 

traffic as observations of self-similarity and long-range dependence have been strongly related to 

the presence of heavy tailed distributions. As shown in [16], the probability that an event will 

persist in the future increases with the period of observation of such event. For example, the 

longer we observe a connection, the more certain we can be that it will repeat or continue in the 

future.  

In addition, network topology inferred from network traffic, both at router level and AS 

level are shown to have a node degree distribution that decays much slower than exponential 

[21]. A probability distribution of a function is given as: 

 for ,  

where  is the tail-index and C is a positive constant. 

To evaluate the presence of heavy tails, we plot probability density function for the 

variable of our interest in a log-log plot and observe for the presence of linear behavior in the tail 

of the data.  

In order to estimate the value of shape parameter  we use either least-square method or 

Maximum-likelihood estimation (MLE). Least-square regression is computed using polifit 

function in Matlab and MLE is computed using the method and code in [28]. Furthermore, to 

check the goodness of fit, in addition to visual inspection where we plot our data together with 

best fitted distribution, we calculate coefficient of determination , plot the residuals, and test 

the null hypothesis against generated synthetic data. 

In contrast to cumulative distribution function, index of central tendency is used to 

describe the measured data using a single meaningful value. The most widely used index is the 

mean or expected value: 
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Measures or indices of dispersion are used in addition to those of central tendency in 

order to have a more accurate and realistic conclusion typically when two measures are 

contrasted. They show the variability in a data. The ones that are mostly used are: 

 

Variance: 

 

Standard Deviation: 

 

Coefficient of Variation: 

 

 

Now, let  be a time discrete stochastic process which is created by periodic sampling 

across a series of fixed length and is a collection of random variables that represent the evolution 

of some system.   

Such stochastic process is said to be strictly stationary if: 

 and  

share the same distribution. That implies that a shifted process by  is equivalent to its original 

process with regard to finite dimensional distributions: 

. 

Strict stationarity is too restrictive and instead we are more interested in second-order or also 

known as covariance stationary stochastic processes. That is, covariance only depends between 

two time periods. For example, let’s say we have a time series of 5-hour byte counts. So, 
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covariance of byte counts between hour 1 and hour 2 should be the same as covariance of values 

between hour 3 and 4 (lay of 1 hour).  

Thus, we characterize the dependence between two values of stochastic processes at 

different times by evaluating the Autocorrelation Function (ACF). ACF of a time series at lag  

and mean  lies between -1 and 1 and is given by: 

 

 

As a result, if packet size arrivals or byte counts are uncorrelated, all ACF values for the 

calculated lags will lie around zero within 95% confidence interval. 

In contrast, if there are no zero correlation values in , then we say that a stationary 

stochastic process  is long-range dependent (LRD). That implies that the sum of all ACF 

values does not converge: 

 

There are couple of definitions of self-similarity in literature, but we follow the sources 

mentioned in the Section 2.1 and the most standard one states that a phenomenon is considered 

self-similar if the properties of an object are preserved irrespective the scale in time or space. A 

stochastic continuous time process  is self-similar with self-similar parameter H and scaling 

factor  if: 

 

This implies that  and its version scaled in time , after normalized by , follow the 

same distribution. Finally, a stochastic time-series is said to be second-order self-similar if the 

autocorrelation function, ACF, preserves the same structure regardless the aggregation in time. 
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Intuitively, self-similarity refers to scaling behavior of the distribution of a time-series while 

LRD observes the behavior of tail of the ACF of assumed stationary time-series. 

Self-similarity and long-range dependence can be quantified using only one parameter, 

Hurst parameter H. For  a second-order self-similar time-series is said to be long-range 

dependent. Such process demonstrates a very slowly decaying ACF and the curve under the 

slope has an area of infinity. In distribution terms, ACF has an exponential form of: 

 as , where  

and  

 

As , the degree of self-similarity and long-range dependence are higher. For , 

usuaylly means that a time-series is short-range dependent and ACF decays exponentially fast. 

For H=0.5 it would be a smooth Poisson traffic model. And, for values of  or , the 

result does not imply any useful information regarding the model. 

2.3.1 Estimating Hurst Parameter 

Hurst parameter can only be estimated and not calculated using the definitions. Thus, in order to 

test a time-series for self-similarity and long-range dependence, different properties of a finite 

time-series composed of traffic values such as slow decaying variance of partial sums or spectral 

density should be investigated. To do so, there are several Hurst estimate methods both in time 

domain and frequency domain. The reason behind existence of more than one estimator is the 

asymptotic nature of Hurst parameter itself [29]. We have used two estimators in time domain 

and two in frequency domain. In time domain, we have chosen to use rescaled-range statistics 

(R/S) and Variance-Time methods whereas in frequency domain we have chosen Periodogram 

and Whittle methods. Each estimator looks at different properties of time series and below we 

have described the four used ones. The relative accuracy of these estimators is discussed in [2]. 
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Methods for estimating Hurst parameter are implemented in Matlab using the reference code in 

[30] and after compared with scientific tool, Selfis, developed by Karaginis et al [29], it is 

observed that there are slight differences in results. Because Selfis is a more reliable tool and is 

widely used by research community, results that will be shown in this work are calculated with 

it. 

2.3.1.1 R/S Method 

For a time-series , sample mean  and standard deviation , R/S statistics is the range of 

partial sums of standard deviations from the mean, rescaled by . In our case, if we denote by  

the number of bytes at time  and if  

 

to be the cumulative of byte counts up to time , then R/S statistics is given by: 

   where 

 

 

and,  

 

One can estimate Hurst directly from a log-log plot of R/S versus the number of 

observations of an aggregated time series. This gives a straight line with a slope estimating Hurst 

parameter. The slope of a line fitted to the values in a graph is calculated by a least square 

method. In practice, R/S cannot be calculated for every value of t and k and instead an equal 
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number of non-overlapping blocks or intervals (lags) k are chosen. Because the least square 

method is applied to log-log plot, it is chosen to use the logarithmically spaced values of k. The 

dilemma in using R/S method is how to choose the adequate number of t and k values and the 

low and up cut-off values to include in calculation. This can be one reason that Matlab code and 

Java based tools, Selfis, show different results. 

2.3.1.2 Variance Method 

Let  be an aggregated time-series which is derived from non-overlapping blocks of size m of 

original time-series. That is, in one chosen interval or bin of let’s say 1 second we have 100 

observations of byte counts, then  is the value of byte counts during 1 second interval of 100 

observations. After calculating the non-overlapping blocks and the variance, , of the 

aggregated values in those blocks, the variance is plotted against the block size in a log-log plot. 

If the formed line, has a slope between  (applied by a least square method), it 

indicates for self-similarity and Hurst parameter, H, can be calculated as . Dilemma 

in computing Hurst with this method is how to choose the minimum and maximum cut-off block 

sizes to include in calculations. 

2.3.1.3 Periodogram Method 

In order to investigate the shape of spectral density properties and the distribution of frequencies, 

Periodogram is calculated using the definition below: 

 

where  is the frequency, N is the number of terms in a time-series, and X is the time-series. For 

a time-series to be long-range dependent, periodogram should be proportional to . This 
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implies that LRD is demonstrated in spectral density which is characterized by a power-law near 

the origin. The slope formed in the log-log plot of the periodogram of the time-series forms a 

straight line with . In practice, only the lowest 10-20% of approximately 

 frequencies are used to estimate H. 

2.3.1.4 Whittle 

Whittle does not provide us with a graphical approach but is considered one of the most stable 

estimator and estimating H together with 95% confidence interval is given by . 

This method is based on the minimization of likelihood function applied to the periodogram of 

the time-series. Because it requires to provide with an underlying stochastic process such 

Fractional Gaussian noise (FGN) or Fractional ARIMA and is relatively complex to implement, 

calculations are strictly relied on the scientific tool, Selfis. 

2.3.2 Properties of Topology 

The structure of Internet topology is built upon connections between hosts, routers or 

Autonomous Systems. Properties of Internet topology at different granularities can be analyzed 

and quantified using the metrics and notions of graph theory.  

The unit properties of a graph are number of nodes (vertices)  and number of links (edges)  

(Figure 2). In our case, we have considered undirected graph which means that nodes connected 

together have all the links bidirectional. Formally, a graph G with vertex set V and edge set E is 

given by .  

 



 19 

AS X

AS Y

Host Level 

Router Level

AS Level

Nodes 
(vertices)

Links 
(edges)

 

Figure 2. Unit Properties of graph at different granularities 

The Internet topology, from the perspective of collected data traffic, is studied at IP 

granularity (Router level), where one unique IP address is considered one router or one node. IP 

addresses are extracted from participating hosts in a session (flow) and the number of unique 

established connections that one IP has within interval  is the number of links or edges this IP 

address has acquired during this interval. Internet topology is studied at two timescales: 24 hours 

and 7 days.  

To quantify underlying structure of the topology, it is chosen to use some of the most popular 

metrics used in literature which are mentioned in Section 2.2. Such metrics include centrality 

metrics, correlation between node degrees and diameter of the graph. 

Centrality metrics can be classified into metrics based on the number of connections 

(degree) and metrics based on the shortest paths in the network. Degree centrality and 

eigenvector centrality are categorized based on the degree while betweeness centrality based on 

the shortest path. Degree centrality and degree distribution are many times considered 

illuminating as they only describe a network topology based on the number of connections a 

node has. But, network elements that are more visited are clearly more important for end users 

and thus are more critical for network topology and its properties. The node degree distribution is 

the probability that a randomly selected node is k degree: 
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where n(k) is the number of nodes n that have degree k. As mentioned in Section 2.2, degree 

distribution is shown to obey power-laws. Intuitively, this means that majority of nodes have low 

degree but small number of nodes, also known as hubs, have high degree. 

Beyond centrality metrics, assortativity mixing by degree, , is used to investigate the 

correlation between nodes. Assortativity mixing shows the preference of a high-degree node to 

attach to other high-degree ones. For evaluating  on a network under study, one can calculate 

Pearson correlation coefficient as stated in [26]: 

 

 

where ,  are the degrees of the nodes at the ends of th edge, with . This and other 

graph metrics are calculated using iGraph-R which are based on the implementation from [26]. 

The assortativity coefficient, r, can take values between . For negative a network is 

considered disassortatively mixed by degree and vice versa. Internet topology is known to be 

disassortatively mixed and shows that nodes with high degree are more connected to nodes with 

low degree. Networks that are disassortative are more vulnerable to attacks.  

 

Finally, the diameter  of a graph is the maximum number of links a message has to 

travel between any pair of nodes. That is,  is the greatest distance between any pair of vertices 

or, . To find the diameter of a graph, first the shortest path between each pair of 

nodes are calculated and then the greatest length of any of these paths is the diameter of the 

graph. Surprisingly, many networks have been shown to have a very small diameter, regardless 

https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
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the huge number of nodes and links. This is known as small-world phenomenon. There have 

been contradictions whether diameter increases over time with increased number of nodes in a 

graph or not [31], and still empirical studies show contradicting results. 
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3.0  DATA COLLECTION AND ANALYSIS 

In the previous Section metrics and defined methods to quantify characteristics of the network 

traffic and topological structure were described. In this Section, the network under study is 

shown. In addition, traffic measurements and general characteristics of the collected data are 

stated.  

The dataset of the network traffic used in this paper is from a National Tier 1 Service 

Provider, Post and Telecom of Kosovo (PTK), which serves more than one million broadband 

users and is considered the biggest one in the country. PTK offers fixed and mobile converged 

services. As most providers, it is also in the final transition phase from a telephony service 

provider towards integrated quad play service provider. 

PTK backbone is comprised of seven points of presence or aggregation sites (PoP) 

distributed in geographical areas of the country. Recent technical developments are leading 

towards convergence between fixed and mobile networks, especially in regards to broadband 

services, and PTK is an example of this trend. Two Internet Border Gateways enable 

communication to other upstream providers in global Internet. In this regard, we analyze traffic 

both at IP level and autonomous system level (ASN) and by upstream traffic we assume the 

traffic generated by any source IP address that falls in a range of allocated networks for PTK 

toward other providers (global Internet) and with downstream traffic, the traffic that has as a 

destination one of these IP addresses that falls in this range. An overview of the data 

measurement infrastructure is depicted in Figure 3 and is broadly divided into three main 

components: Monitoring, Collection and Analysis. 
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Figure 3. PTK Network and measurement infrastructure to collect data from all regions in Kosovo. b) 

Netflow definition for upstream/downstream traffic 

3.1  MONITORING 

First, IP Flow feature was enabled in two Internet Border Gateways (IBGs). In our case, NetFlow 

protocol was already configured. NetFlow is one of the most used passive network monitoring 

tools and was first developed and used by Cisco Operating Systems which later became a 

standard for other manufactures [32]. Lately, NetFlow has been widely used by network 

operators and found application in network capacity planning.  

A general definition of an IP Flow is a quintet or a five-tuple made up of source and 

destination IP address, source and destination port number and the protocol. From one flow, 

information about traffic volume in bytes and packets can be extracted, source and destination IP 

addresses, type of service, port numbers, protocol type, throughput in terms of packets per 
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second and other details found in a IP packet header. In Table 1 a summary information is 

depicted that can be found in a typical field of a NetFlow. From the table below, not all the fields 

are used for the purpose of this paper. Basically, input/output interfaces, type of service and next 

destination address did not contribute to this study at all. 

Table 1.  Netflow fields and their description 

Field Description Bytes 

%ts Unix start time of the flow 4 

%te Unix end time of the flow 4 

%sa IPv4 source address where flow is originated from 4 

%da IPv4 destination address where flow is destined to 4 

%sp IPv4 source port where is originated from 2 

%dp IPv4 destination port where flow is destined to 2 

%pr Protocols up to Layer 4: UDP, TCP, ICMP, ESP, etc. 1 

%flg TCP flag 1 

%tos IP type of service 1 

%ipkt Number of packets in one session or flow 4 

%ibyt Number of bytes for one session or flow 4 

%in Interface number where incoming flow is processed by 4 

%out Interface number where outgoing flow is processed by 4 

%smk Source subnet prefix based on BGP router’s table 1 

%dmk Destination subnet prefix based on BGP router’s table 1 

%sas Autonomous System where flow was originated from 4 

%das Autonomous System where flow is destined to 4 

%nh Next destination address 4 

Total Total Byte per Typical Flow 53 

 

In terms of access technologies, before we started collecting the data, we took a snapshot 

from a Cacti RRD tool (tool used for traffic monitoring by PTK) to get an idea of traffic 

utilization based on technologies. DSL&GPON comprise 94% of traffic (both upstream and 

downstream), 3G/LTE has around 4.69% and WiFi has only 0.57%. Also, Figure 4 shows the 

traffic load during seven days in PTK toward upstream providers a) and b), while, c) to e) shows 

the YouTube traffic. In total, downstream network utilization is around 11.5 GB from which 5.5 
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GB are only YouTube video. This implies that traffic in PTK network is more than 50% of 

Internet video. 

 

 

Figure 4. Traffic load in/out at gateways a) and b) and three Google Cache Servers located at PTK c)-e) 

3.2 DATA COLLECTION  

Second component is collecting and exporting IP flows using nfcapd, a netflow capture daemon 

which is configured in the local shared machine at PTK as in [33]. All these series of packets that 

share same quintet, or a flow, is saved on a IBGs either until buffer/cache is filled or every five-

minute interval. Whenever system clock hits five minutes interval or router IBG cash if filled, a 

file in a format of nfcapd.<datastamp> is created, e.g. nfcapd.201512280845 contains data from 
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Dec 28th 2015 08:45 onward. Data are stored in three folders (Source 1, Source 2 and Source 3) 

where each folder contains subfolders with all dump files for respective day, Figure 5. Based on 

a 5 min time interval, this results in 288 files per day. In Source 1 there are 92 subfolders (28 

December 2015 to 31 March 2016) and each subfolder has 288 nfcapd files, which corresponds 

to the interval of 5 minutes each (24*12=288). Same for Source 2 and Source 3. All the files 

stored in local folders can be read with nfdump using its syntax and boolean expressions to filter 

the data. For example, the command:  

nfdump -r nfcapd.201512291520 “proto tcp” 

 

selects all the flows in the file nfcapd.201512291520 and prints out ones that use TCP protocol 

and other information like 

… 

Date first seen          Duration Proto      Src IP Addr:Port          Dst IP Addr:Port   Packets    Bytes Flows 

2015-12-29 09:23:09.240     4.750 TCP      24.46.103.210:12733 ->   178.175.37.237:60651     2000    3.0 M     1 

2015-12-29 09:23:02.230    11.780 TCP    213.163.125.246:43058 ->    8.254.105.254:80        2000   104000     1 

… 

 

showing the timestamp, duration of the session is seconds, protocol (only TCP because we used 

the expression “proto tcp”), source IP address and the port number, destination IP address and 

port number, number of packets sent during this session, bytes and the flows. Usually, number of 

flows is 1 unless the connections that share the same parameters (src IP/port, dst IP/port and 

Protocol) are aggregated. Aggregation can be accomplished by using the -a option after the 

filename. 

Collectors specifications are: RAM 18 Gb, CPU Intel Xeon 2 GHz, HDD 100 Gb, GE 

NIC.  From the collector, data is crawled and transferred to a personal FTP server and then to 

University of Pittsburgh networking lab machine during night time using secure connection 

(SSH2).  
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Figure 5. Data Collection using nfcapd and sources for processing netflows 

3.3 DATA ANALYSIS 

In addition to nfdump which can compute simple statistics, data are processed using custom 

Python scripts in order to read large amount of flows in an efficient way and to store them in a 

human-readable format. In order to compute statistical analysis of the data, software such as 

Matlab, Selfis, R, Gephi and associated developed packages for them are used to get the most 

accurate results. 

Besides the question whether the Internet traffic shows self-similar and long-memory 

nature it is also important to know general characteristics of the data set such as distribution of 

packet sizes, traffic volume for inter and intra domain and what protocols are present and their 

proportion. In this Section, main characteristics of the dataset that are used for the purpose of this 

study are shown in Table 2. One can see an overview of the processed daily data that are used for 

analysis. In total we have worked with 31,602,250 flows, when aggregated. They generated 

 packets during seven-day interval. In addition, it shows the average number of 

packets per second, average bytes per packet as well as the number of unique connections during 

busy hours (11 AM to 3PM). 
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Table 2. Characteristics of Dataset used in this study 

Days Number 

of Flows 

Number of 

Packets 

Average 

Packets 

per second 

Average  

Bytes per 

packets 

Unique Connections 

during busy hour 

 (Upstream/Downstream) 

Day1 9,467,477 25,259,807,842 1947494 1068 160911 / 1864484 

Day2 4,261,459 20,526,364,391 2174049 1054 167047 / 1945073 

Day3 2,929,059 16,161,126,666 1496402 986 334513 / 3585167 

Day4 4,164,621 24,641,601,294 2085229 1058 227875 / 2705763 

Day5 4,150,023 23,951,432,184 2094708 1064 212447 / 2277633 

Day6 2,799,257 14,815,754,013 1371831 1065 183080 / 2122497 

Day7 3,830,354 22,163,825,619 2052211 1043 235895 / 1705700 

 31,602,250 147,519,912,009 13221924 1047  

 

Figure 6 below shows the number of packets that arrive each minute for 24 hours for the 

local traffic (intra-domain). In order to get information about the number of packets from the 

dump files, timestamp and filter only the local traffic, custom python script is executed for all 

files that should belong to a 24 h interval. To filter only local traffic, knowledge about 

subnetworks from IP-Plan obtained by PTK is used. In order to concatenate all files processed by 

python or nfdump, the classic unix tool, awk, is used all the times. For example, the script below 

concatenates all the files that share the same header information and creates a new file. 

… 

awk ' 

FNR==1 && NR!=1 { while (/^<header>/) getline; } 

1 {print} 

' *.csv >bytesDownstream.csv 

… 
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Figure 6. Local Packet Traffic 

There is a maximum of 4598000 packets in one minute at 13:51 and minimum of 372000 

packets at 23:59. The maximum number of bytes is 667001000 bytes at 08:47 which surprisingly 

is not contained by the maximum number of packets during this interval but corresponds to 

4321000 packets. This suggests that despite the fewer packet arrivals at 08:47, they are greater in 

size. The minimum number of bytes is 45597000 at 23:47. The local byte traffic during this 

interval is shown in Figure 7. 
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Figure 7. Local Byte Traffic 

While the local traffic does not exceed more than 0.6 GB in one minute, downstream 

traffic toward users within PTK network reaches a peak of 68.85 GB in one minute which 

corresponds to time interval around 16:19 and minimum of 0.045 GB at 23:47. One can observe 

that the peak interval is not the same for local and international downstream traffic. In addition, 

if graphs for local traffic and downstream international traffic are compared (Fig 6 and 7 versus 

Fig 8 and 9), it can be observed that international downstream traffic is much smoother than 

local traffic when aggregated at one minute. This implies that at large-scale aggregations of 

renewal processes where the number of sources and network traffic load increases, traffic tends 

toward Poisson as shown in [4]. In contrast to [2], which suggest that with the increase load of 

traffic, also the long-memory properties become even more evident, one should expect the 

opposite where the LRD strength, H parameter, should be lower during busy hours for 

downstream traffic. 
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Figure 8. International Downstream Packets 

 

 

Figure 9. International Downstream Bytes 
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Another way of expressing the load in a more common unit is by counting or computing 

bits per second or packets per second within interval of the interest. To do so, there is a simple 

way by utilizing the nfdump and filtering syntax. For example, to see the average bps and pps 

respectively during a 2-hour interval, one can use the following command: 

nfdump -M Folder1:Folder2:Folder3 -R . -t 2015/12/29.15:00:00-2015/12/29.17:00:00 

 

After it reads all the raw data, at the end of print it shows a summary of the processed flows: 

… 

Summary: total flows: 2232523, total bytes: 4813154636000, total packets: 4372031000, avg bps: 5347214353, avg 

pps: 607143, avg bpp: 1100 

Time window: 2015-12-29 14:57:31 - 2015-12-29 17:03:32 

… 

One can read the statistics about bits and packets per second during this interval. In this case, a 2-

hour interval was taken into consideration which corresponds to the peak hours on December 29 

2015. It shows that average bits in one second is 5347214353 (around 5.3 Gbps) and in average 

607143 packets in one second. 

3.3.1 Protocols 

The table below shows statistics about the proportion IP protocols which appears in the data 

collected during a one-day interval. This, also can be done easily using the nfdump syntax which 

can create a lot of top N statistics about protocols, destination or source IP addresses and others, 

ordered by any available field. In this case, the Table 3 shows six present protocols ordered by 

the volume (bytes) which is obtained using the syntax: 

nfdump -M Source1/20151229_0005:Surce2/20151229_0005:Source3/2015:1229_0005 -R . -s proto/bytes 

TCP continues to be the transport layer protocol that dominates the traffic with 

approximately 93.3% of the bytes and 82% of the packets. Nearly 6.5% of bytes and 17.8% of 

packets in one-day interval are UDP. TCP together with UDP comprise 99.9% of bytes and 

99.8% of packets in PTK network. Note that other IP protocols, appear with negligible 

probability. ESP and GRE, two IP encapsulation protocols that are mostly used in applications 

such as Virtual Private Networks, comprise nearly 0.1% of the total traffic. Despite the fact that 

organizations have been planning to move to IPv6 and its importance in new applications with 
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Internet of Things, only 24 MB per day are generated by machines running IPv6 in PTK 

network. 

Table 3. IP Protocols Proportion 

Proto Bytes (%) Packets (%) pps bps bpp 

TCP 48.7 T(93.3) 42.6 G(82.0) 492493 4.5 G 1144 

UDP 3.5 T( 6.6) 9.2 G(17.8) 106691 320.1 M 375 

ESP 33.0 G( 0.1) 70.4 M( 0.1) 814 3.1 M 468 

ICMP 5.4 G( 0.0) 55.1 M( 0.1) 637 502554 98 

GRE 4.2 G( 0.0) 8.9 M( 0.0) 103 387946 469 

IPv6 24.2 M( 0.0) 53000( 0.0) 1 3692 457 

 

3.3.2 Packet size 

In the Figure 10, the frequency of packet sizes is given from a dataset extracted between 15:00 

and 18:00 on December 29 2015. The smallest and largest packet sizes are 21 bytes and 1500 

bytes respectively. The ten most frequent packet sizes are 1430, 1450, 32 52, 1472, 1492, 21, 40, 

1480 and 1500. The smallest packet size of 21 bytes corresponds to the smallest possible data 

sent from the application layer (1 byte) which has to be encapsulated in a header for lower layers. 

The data (for example a keystroke of 1-byte character) is encapsulated in a TCP segment which 

adds 20 bytes making the smallest possible packet size of 20+1=21 bytes. Similar, the 1500-byte 

packet size corresponds to the most common maximum transmission unit (MTU) set by IP 

technologies, such as Ethernet, that a layer can pass onwards without handling fragmentation. 
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Figure 10. Frequency of Packet Sizes in PTK Network 

Cumulative distribution of packet sizes is shown in Figure 11. It shows that 30% of 

packets are small and less than 100 bytes, most of the packet sizes are distributed between 100 

and 1400 and almost 30% of packets are between 1430 and 1500. 
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Figure 11. Empirical Cumulative Distribution of Packet Sizes 
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4.0  EXPERIMENTS AND RESULTS 

In this Section we show experiments and results conducted from dataset illustrated in Section 3. 

It begins by showing whether sample data in PTK network is self-similar and long-range 

dependent and then the properties of network topology inferred from the same dataset with focus 

on node degree distribution at IP level and other statistical parameters such as assortativity and 

network diameter. Finally, other experiments conducted during this study are presented, where 

packet size arrival independence and temporal disitrubution of top 10 IP addresses and Port 

numbers is shown. 

4.1 IS PTK NETWORK TRAFFIC SELF-SIMILAR AND LONG-RANGE 

DEPENDENT? 

In this section results of investigated traffic captured in PTK network traces are shown with 

respect to self-similarity and long-range dependence. The definition of self-similarity and LRD 

are based on the assumptions that the traffic, or the time-series of byte counts (or packet counts), 

is stationary. This means that traffic that arrives at 1 second interval has the same mean and 

variance and co-variance only depends on the lag, irrespective the time of the day traffic is 

investigated. This would have not been true if we take into consideration intervals of 24-hours 

due to periodicity and daily trends as the number of users and their behavior is different at 

different time. The fact that stationarity is an elusive property of network traffic and it is very 

difficult to distinguish between time-series that is stationary and long-range dependent with the 

one that is non-stationary and short-range dependent, as a common rule is to examine traces in 

intervals as short as possible. In this case, traces in 30 min interval are investigated both at low 

hour and busy hour for seven days that arrive in bins of 1 second. 
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4.1.1 Pictorial view of Periodicity and Self-Similarity 

Before checking for self-similarity and LRD characteristics, we show the most well-known 

property of traffic time-series, daily periodicity, together with the so called fractal-behavior of 

network traffic. Figure 12 depicts some simple plots of the traffic volume (bytes per time unit) in 

different timescales for the upstream traffic generated by all the sources. In Figure 12a) we can 

observe the length of traffic bursts is present in even time scale of 10 s where traffic consists of 

“bursty” sub periods separated by less “bursty” sub periods as was shown in LAN traffic in [2].  

Then we consider one-day traffic in Figure 12c) and focus on a “randomly chosen” period Figure 

12b). The graph shares similar characteristics with Figure 12d) where we “zoomed in” by factor 

of 10 (1 s granularity). This is known as fractal-like behavior of network traffic or self-similarity.  
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Figure 12. Pictorial view of Periodicity and Self-similarity - a) weekly and c) daily periodicity; b) a random 

interval when d) zoomed by factor of 10 

4.1.2 Self-similarity and Long-range dependence 

In this Section, we show the results of seven-days traces for downstream traffic using four types 

of Hurst estimators, two in frequency domain and two in time domain. For each day we have 

1,800 aggregated measurement points for byte counts and packet counts in interval of 30 min 

during busy hour (15:30:00 to 15:59:59) and low hour (23:30:00 to 23:59:59) at 1 s granularity. 

Results show that Hurst parameter varies between 0.4 and 0.75 for other estimators except the 

R/S statistics computed by Selfis. For low hours, Hurst is slightly higher than for busy hours. 

Again, suggesting that with the increase load and number of users, traffic becomes smoother and 
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short-range dependent. Results of computed Hurst for all the traces are shown in the Table 5 (in 

Appendix A). Next, daily results for Hurst estimation are presented for: 

 

a) Busy-Hour Traffic (15:30:00 to 15:59:59) and 

b) Low-Hour Traffic (11:30:00 to 11:59:59) 

 

Busy-Hour: Periodogram shows that data fit for the slope at (-4.988) and thus it suggests 

that time-series is self-similar but short-range dependent, Figure 13. Likewise, Time-variance 

plot in Figure 14 shows a line with the slope of almost (-1), at around -1.048, and 

 The plot of R/S method shows a slope of ~0.53 which is clearly close 

to the line with slope , Figure 15. Finally, Whittle estimator shows  together with 

confidence interval  with 90% confidence level. Whittle estimator is the only 

one which does not provide us with graphical approach, but it has provided us with the most 

stable results at all timescales. Results for seven days are shown in Figure 16, from where it can 

be observed that all estimators show very similar results each day, suggesting that traffic in PTK 

network is short range dependent in large-time scales for all samples both for byte and packet 

counts. 
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Figure 13. Periodogram for Busy Hour  Byte Series 
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Figure 14. Time Variance for Busy Hour Byte Series 
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Figure 15. R/S for Busy Hour Byte Series 
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Figure 16. Hurst based on different estimators in busy hour for seven days a) Byte b) Packet counts 

Low-Hour: Figure 17 shows the variation of Hurst parameter during seven days for byte 

and packet counts during low-hour. In contrast to busy hour, Hurst is slightly higher (around 

0.02). Despite the ample evidence that Hurst parameter for time-series shows values H>0.75, we 

witness that overall PTK network traffic for investigated traces is short-range dependent. In 

addition, if results rely only on Whittle estimator, it can be observed that Hurst is within interval 

bounds of 0.461 and 0.573. This implies that these traces can be well approximated by classical 

models such as Poisson, because a H=0.5 is a pure Brownian Motion which shares the same 

independent and memoryless properties of Poisson. 



 44 

 

Figure 17. Hurst based on different estimators in low hour for seven days a) Byte b) Packet counts 

4.2 TOPOLOGY CHARACTERISTICS FROM THE NETWORK TRAFFIC 

In this Section results for underlying structure of network topology are shown based on the 

network traffic traces that are observed for 7 days. The structure of network topology is 

investigated with regards to node degree, network diameter and correlation between nodes. To 

calculate the degree of each node, we have extracted all pairs of IP addresses (source-destination 

pairs) from the communicating hosts using nfdump syntax. Because of an extensive amount of 

raw data during, in order to get information about all communicating hosts within one day, flows 

that last less than 1000 ms and those that transfer less than 100 bytes are filtered out. This has no 
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or negligible effect on number of IPs as the same IPs are shown in other sessions as well. 

Command used to filter source and destination IPs is done using nfdump syntax as: 

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and 

bytes>100' -o "fmt:%sa,%da" >Day1.csv 

which filters flows during 29 December 2015 and dumps into a csv format file only source and 

destination IP addresses. To get information about ASes, instead of extracting IP addresses, one 

can mine information from the AS field of a netflow (%sas and %das for source AS and 

destination AS respectively). Same procedure as per IP addresses follows with regards to 

labeling ASes and inferring information about connections between peers. 

It is important to mention that source-destination IP addresses can interchange their 

positions. For example, one connection originated by IP1 can be considered as IP1_to_IP2 and a 

connection originated from IP2 can be considered as IP2_to_IP1. After that, a python script is 

utilized to replace IP addresses with a numbering label instead of IP address format. For 

example, IP address 10.10.10.10 is replaced with a number, let’s say 1. Finally, Matlab was used 

to calculate the number of unique IP addresses and the number of connections each IP address 

has (undirected graph where one pair is considered one connection, despite which IP is source or 

destination of the connection). 

4.2.1 Node Degree Distribution 

This experiment shows the observed power-laws of the Internet topology inferred from daily 

traffic traces. Scaling parameter obeys the power-law behavior and lies between  

for seven day traces. 

Initial observation is done by using a log-log plot of PDF of node the degree  as can be 

seen in Figure 8 (left shows the histogram and right the PDF in log-log scale). After the initial 

observation, data is the power-law distribution is inspected visually for a fit of  and  

calculated based on MLE. 
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Figure 18. Initial inspection of power-law behaviour of Node degree 

Visual inspection: Figure 19 presents the results graphically for node degree distribution 

for seven-day traces together with respective values of estimated . Blue line represents our data 

points and red one the distribution fit using MLE, given our data. In addition, Figure 19 (last 

down-right) shows the stability of parameter . Parameter  for all datasets is  
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Figure 19. Node Degree distribution and exponential parameter alpha using MLE 

4.2.2 Other Topology Characteristics 

In the table below, a summary of measured metrics for seven days is given where n is the 

number of nodes, m is number of links, c(min) is the minimum degree, c(max) maximum degree, 

c(avg) is average degree, D is the farthest node distance, C is Global clustering coefficient and r 

is the assortativity coefficient. 
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Maximum number of connections a node has (node degree) is 136,447. This type of node when 

identified using online WHOIS databases, is associated to social media networks (Facebook for 

example). 

Diameter of the network varies between 17 to 26 and despite the contradictions that it increases 

or shrinks with the number of nodes in a network, we do not see any pattern here. For example, 

for traces in Day5, that has both fewer number of nodes and links than traces for Day6, diameter 

is higher. On the other hand, if we compare traces for Day2 and Day3 we have the opposite. 

Diameter of traces for Day2 has fewer nodes but same value, 22. 

Assortativity coefficient has values between -0.23 to -0.198 and shows similar that 

characterize Internet structure from other results. Meaning that low-degree nodes tend to connect 

more with high-degree nodes and the vice versa.  

Table 4. Main Topology Characteristics 

Day n m c(min) c(max) c(avg) D r 

1 151868 1566942 1 93180 20.63558 17 -0.22804 

2 157417 1560825 1 99529 19.83045 22 -0.23314 

3 188180 1859187 1 86866 19.75967 22 -0.20455 

4 155321 1688403 1 83962 21.74082 23 -0.23454 

5 171495 1745819 1 96424 20.36 26 -0.237074 

6 175167 1841772 1 136447 21.02876 20 -0.215368 

7 164153 1722727 1 132863 20.98928 20 -0.19837 

        

4.2.3 Topology Characteristics at AS Level 

At AS level, collected traffic data revealed information for BGP direct neighbor’s ISP has. This 

implies that netflow data shows BGP peering configuration and number of connections between 

AS of PTK and others. We identified that PTK has 4 direct BGP peers, from which 3 are other 



 49 

National Internet Service Providers to which PTK is connected through Internet Exchange Point 

(IXP) and the other is INIT7, a transit provider to reach other parts of global network. 

Information about other ASes through which traffic flows cannot be revealed and 

basically netflow identifies those as ASN zero. Because of this limitation, metrics for 

characterizing topological structure at AS-level does not give any useful information. Despite 

that, we calculated node degree and assortativity to understand how are the four identified 

domains connected with domain of PTK. As expected, the top domain is the transit domain, 

INIT7, with degree in average of 933,498 for 7 day traces. Others, the local peers, have a degree 

in average of 311,558, 146,464 and 40,133 respectively. Degree, in this case means the number 

of unique connections each AS has within one day. Assortative at AS level for seven day traces 

is in average -0.105. 

4.3 OTHER EXPERIMENTS 

In addition to self-similar nature of internet traffic and main characteristics of topology, below 

are other experiments that are very common in literature and articles reviewed in Section 2. First 

one is the independence of packet size arrivals in order to show the validity of Poisson 

assumptions in smaller time-scales. Second experiment aims to check the rank distribution of top 

10 IP and Port numbers for a period of 7 days. 

4.3.1 Independence of Packet Size Arrivals 

In this experiment we show the distribution of packet sizes of 1,000,000 consecutive packet 

arrivals from a snapshot of our dataset. Results show that packet size arrivals appear to be 

independent and consistent with findings in [4]. The independence of packet size arrivals is 

validated using three types of tests: 

a) The autocorrelation function (ACF) 

b) Box-Ljung Q-test 

c) Visual inspection using scatter plot 
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Autocorrelation function: Figure 20 presents the autocorrelation function calculated for 

200 lags of 1,000,000 packet arrivals for the packet size series. Packet sizes series consist of the 

packets as individual flows arrive, without aggregation. There is a trivial correlation for small 

lags, but it is close to zero with confidence level higher than 95%. 

Box-Ljung Statistic: The Box-Ljung Q-test statistic is used to test for correlation of 

packet size series. The Box-Ljung statistic is defined as: 

, 

where  is the autocorrelation function for lags  and  the length of the series. The null 

hypothesis for this test is that the first  autocorrelations are jointly zero. Using Matlab, we 

computed the test for lags  1 up to 200 and null hypothesis is rejected for any of  values with 

confidence level 95%. This indicates that packet size series can be considered independent and 

identically distributed. 

 

Visual inspection: In Figure 21 we visually examined packet size series with itself 

. Scatter plots are a graphical representation of relationship between two quantitative 

variables or can be used to test independence of a one variable when plotted with shifted version 

of itself. In X-axis we have the size of packets at time  and in Y-axis we have the packet size at 

. Because the plot is symmetric and no relationship can be observed, we can conclude that 

packet size series are independent. 
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Figure 20. Sample ACF of packet sizes. Correlation Coefficients are within 95% C.I. 

 

 

Figure 21. Scatter plot of 1,000,000 consecutive packet sizes. 
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4.3.2 Distribution of IP addresses and Port Numbers 

This experiment aims to check for temporal properties of the dataset under study. We show that 

distribution of frequencies for port numbers and IP addresses do not change over time. To do so, 

we evaluate daily measurements for most active destination IP addresses and port numbers for 

the upstream traffic and calculate parameter  where data can fit an exponential form of 

. We show that the number of days have very little impact in the distribution of most 

visited port numbers and IP addresses. Certainly, our calculations are for only seven days, but we 

have daily observations from a very rich number of sources and we do not expect that it changes 

if we calculate for longer period. Instead variation is more related to daily periodicity rather than 

number of days itself. It is important to mention that Network Address Translation (NAT) affects 

the accuracy of the results as it cover-ups IP addresses and Port numbers.  

Parameter  during 7-day observations for most visited port numbers is 

 with 90% confidence level, using t-test. And,  for most visited IP 

addresses is . It would be interesting to see for spatial diversity and 

variation of parameter . A study in [34] claims that distribution of port numbers and IP 

addresses varies from place to place. Data collected from this study considers university 

institutions across a country with similar properties (such as number of students, faculties and 

staff).  

In addition, we have shown the fitted data to the exponential distribution of the form 

discussed above and have checked the accuracy using: 

a) Visual inspection of distribution fit 

b) Residuals plot 

c) Coefficient of determination . 
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Visual inspection of distribution fit: Figure 22 and Figure 23 shows the best-fit parameter 

together with least square in logarithmic form and cumulative distribution. In log-log plot we can 

observe a piecewise linear line, which is an indication of heavy-tailed distribution. 

Residuals plot: In order to show that most active port numbers and IP addresses can be 

modeled using exponential distribution of a form , we can determine residuals. 

Residuals are plotted in Figure 24 as a result of the difference between observed value of the 

response variable and the value of the response value predicted by linear regression. For negative 

values, prediction is said to be lower than observed values and for positive it is higher than 

observed values. 

Coefficient of determination : Coefficient of determination measures the proportion of 

variation explained by the independent variable in a regression model and is given by  

where  is the variance of the predicted values and  is the variance of the calculated values 

from the measurements. Larger the  the better model can explain variations and can take 

values from zero to one, . For one day measurements, coefficient of determination is 

 for port numbers  and for IP addresses. 
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Figure 22. Cumulative distribution function of most popular port numbers 

 

 

 

Figure 23. Cumulative distribution function of most popular IP addresses for upstream traffic in one day. 
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Figure 24. Residuals from data of one-day port numbers and IP addresses 
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5.0  CONCLUSIONS 

In this thesis work, network traffic at PTK was captured and analyzed. It is shown that Internet 

traffic is characterized with daily periodicity and despite the aggregation in large time-scales (10 

s and 1 s), it preserves the burstiness.  

The downstream traffic at PTK is shown to be self-similar but not long-range dependent 

with Hurst parameter estimated to . Results suggest that the changes in overall network 

traffic have pushed the Internet in the general direction of better-behaved traffic models (i.e., the 

Poisson assumption) or at least not in the direction of sophisticated models. The value of Hurst 

depends on estimation method, bin size of measurements and the time measurements are taken. 

All estimators are easily tricked by stationarity and instead shorter intervals should be taken into 

consideration (seconds or minutes and not hours). In addition, the number of samples should be 

increased while aggregating the time series into non-overlapping blocks at orders of 

milliseconds. Also, as congestion is more problematic and evident in access network, results are 

not valid in that case and the analysis of traffic LRD properties are more important in that part of 

network. Most of backbones are overprovisioned and thus effect of traffic busrtiness in backbone 

and core is much less of interest. 

Then, we have used graph metrics to characterize topological properties interfered from 

network traffic at router (IP) and AS level. At IP level, degree distribution obeys power-law 

distribution with shaping parameter . Topology of PTK network inferred from 

traffic traces shows dissasortative behavior with assortativity coefficient between -0.23 to -0.198. 

And, diameter of the network varies between 17 to 26 and despite the contradictions that it 

increases or shrinks with the number of nodes in a network, results showed that there is no 

pattern from seven-day traces. At AS level, information about BGP peering configuration of an 
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ISP can be inferred from Netflow and their importance can be identified based on the number of 

connections. 

Traffic was also investigated with respect to which packet sizes and protocols are more 

present and their share. It is shown that most of the packets are small and TCP is still the largest 

transport protocol. 

Finally, it is shown that packet size arrivals at milliseconds granularity show no 

correlation between each other and thus indicating that they can be considered independent and 

identically distributed. And, top 10 IP addresses and Port numbers are stable and do not change 

during the course of 7 days in terms of distribution. 

5.1 FUTURE WORK 

As becoming more familiar with the techniques of mining network traffic data and concepts of 

network traffic in general, I consider this work as a first step toward a more rigorous analysis, 

including implications of self-similarity and metrics to describe graphs. 

First thing that should be done is to find an accurate technique to extract inter-arrival 

times and test if they are mutually independent and identically distributed. Thus, to validate 

hypothesis that Poisson can coexist together with LRD. Second, in this regard is to extract data at 

finer granularities and shorter periods, where stationarity is less illusive. 

As the structure of Internet traffic has changed, in terms of applications, it is very 

important to study the Internet video in particular and to show whether the session lengths (ON 

times) and video files sizes in Internet are the same with respect to distribution. 

Other work that is in progress includes: 

1. Detecting network anomalies using data mining techniques such as PARAFAC analysis. 

In particular, port-scanning attack is shown to be easily detected and isolated using 

multidimensional information as shown in [35]. 

2. Network topology visualization from where we can identify the role of the nodes in a 

network, observe the sparseness of nodes and growth together with preferential 

attachment phenomena over the time. In the Figure 25, it has been extracted 

communicating nodes from Netflows for 15 minute interval and using Gephi software an 
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undirected graph is constructed. It shows that only few nodes are highly connected, while 

the majority have couple of edges. This is a visual way of observing a power-law 

behavior of placement of nodes in a network. 

 

 

Figure 25. Network topology visualization sample 
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APPENDIX A 

CODE AND FILES FOR EXPERIMENTS 

This Appendix shows the codes that are used to conduct the experiments in this paper. In 

addition, together with the codes, it shows how the files are (pre)processed and what are the 

filenames of the processed raw data in order to use them for later purposes. 

 

1. Packets and Bytes arrived at each minute for 24 h interval (Figure 5, 6, 7, 8) 

#This script extracts packets and bytes that arrive at each minute together with Timestamp. It searches through all 

#files in folders and for each folder generates a file with a name #folder+Experiment1And2.csv. Required packages 

#before executing this script are also included. 

import numpy 

import pandas as pd 

from pandas import Series, DataFrame 

import pynfdump 

import os 

import sys 

from datetime import date 

import subprocess 

 

folders = [name for name in os.listdir(".") if os.path.isdir(name)] 

for folder in folders: 

 py2 = open(folder+'Experiment1And2.csv','w') 

 d=pynfdump.Dumper() 

 d.set_where(dirfiles=folder) #folders that one assumes flows of that interval are found in. 

#For figures 7 and 8, where only downstream traffic is queried, the below line becomes: 

# records=d.search(query="dst NET 213.163.125.0/19 or dst NET 178.175.0.0/17 or dst NET 185.47.188.0/22 and 

#not (src NET 213.163.125.0/19 or src NET  178.175.0.0/17  or src NET 185.47.188.0/22)") 

 records=d.search(query="src NET 213.163.125.0/19 or src NET 178.175.0.0/17 or src NET 

185.47.188.0/22 and (dst NET 213.163.125.0/19 or dst NET  178.175.0.0/17  or dst NET 185.47.188.0/22)")  

 tStart=[] 

 bytes=[] 

 packets=[] 

 for r in records: 

  tStart.append(r['first']) 

  bytes.append(r['bytes']) 
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  packets.append(r['packets']) 

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'tStart':tStart, 'PACKETS':packets}) 

 bytesSeries['tStart'] = pd.to_datetime(bytesSeries['tStart'], format='%Y-%m-%d %H:%M:%S.%f') 

 data = bytesSeries.groupby(['tStart']) 

 data2 = data.sum() 

 data3=data2.resample("1T", how='sum') 

 data3.to_csv(py2, sep=',', encoding='utf-8') 

 py2.close() 

 

#This script plots only the 24h interval specified as '2015-12-31 12:00:00':'2015-12-31 12:59:00’. 

#The same is used for byte and packet counts 

import pandas as pd 

import dateutil 

import csv 

import re 

from pandas import DataFrame, Series 

import numpy as np 

import matplotlib.pyplot as plt 

 

data20 = pd.read_csv("Local Traffic Bytes and Packets.csv") #Careful with the file name. 

data20[tStart] =  pd.to_datetime(data20[tStart], format='%Y-%m-%d %H:%M:%S') 

data30 = DataFrame(data20) 

data40 = data30.groupby([tStart]) 

data50 = data40.sum() 

data60 = DataFrame(data50[BYTES]) #change to <PACKETS> to plot the packet counts 

data70=data60['2015-12-31 12:00:00':'2015-12-31 12:59:00'] 

Data70.plot(colormap='winter', label='Series', style='k') 

plt.grid() 

manager = plt.get_current_fig_manager() 

manager.window.showMaximized() 

plt.savefig('ByteCounts1MBin.jpeg, format=jpeg, dpi=800) # Change the Name to <PacketCounts1MBin> 

plt.show() 

#Compute min, max for Byte and Packet counts  

min(data70['PACKETS']) 

max(data70[' PACKETS']) 

min(data70['BYTES']) 

max(data70[' BYTES']) 

 

2. Protocols proportion (Figure 7 and 8) 

 

# To simply show the present protocols ordered by volume (bytes) in a data set, we used the nfdump syntax 

nfdump -M Source1/20151229_0005:Surce2/20151229_0005:Source3/2015:1229_0005 -R . -s proto/bytes 

 

3. Packet size (Figure 9 and 10) 

 

#To get the packet size arrivals for one day, December 29 2015. 

nfdump -M Day1:D1P1:D1P2:D1S1P1:D1S1P2:D2P1:D2P2:D2P3:D2S1P1:D2S1P2:D2S1P3 -R . -a -t 

2015/12/29.15:00:00-2015/12/29.18:00:00 -o "fmt:%ts,%bpp" | sort > PacketSizesDec29BusyHours.csv 
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#Matlab code to see the frequency of packet sizes and to relative frequency plot 

unique_k = unique(Y); 
hist(Y,unique(unique_k)); 

min(Y); 
max(Y); 
ylabel('cumulative percentage'); 
xlabel('packet size (bytes)'); 
title({'Size of Packets arrived between 15:00:00 to 18:00:00, Dec 29 2015. Total packets: 2483248 Min=21, 

Max=1500'}); 
grid on; 
#Matlab code to plot the empirical cumulative distribution, ecdf 

ecdf(Y); 
ylabel('cumulative percentage'); 
xlabel('packet size (bytes)'); 
title({'Cumulative distribution of packet sizes'; '15:00:00 to 18:00:00, Dec 29 2015. Total packets: 2483248'}); 
grid on; 

#10 most frequent Packet sizes in the dataset 

load PacketSizesDec29BusyHoursOnlyPackets.csv; 

Y=PacketSizesDec29BusyHoursOnlyPackets; 

X = unique(Y); 

for j = 1:length(X) 

    Z =X(j);  

x = strmatch(Z, Y, 'exact'); 

ind(j) = length(x); 

end 

Packets = sort(ind,'descend');  

% get the top ten packet sizes 

for n = 1:10  

    [pack, inde] = find(ind==Packets(n)) 

    X(inde) 

end 

 

4. Periodicity and Self-similarity (Figure 11) 

#Extract the byte time-series from raw data in 10s granularity for upstream traffic that is generated by 

#users in two subnets of PTK: NET 178.175.0.0/19 NET 213.163.96.0/19 

folders = [name for name in os.listdir(".") if os.path.isdir(name)] 

for folder in folders: 

 py2 = open(folder+'.csv','w') 

 d=pynfdump.Dumper() 

 #ip = "178.175.27.127" and "17.154.66.73" 

 d.set_where(dirfiles=folder) 

 records=d.search(query='src NET 178.175.0.0/19 or src NET 213.163.96.0/19') ## these are two networks 

#of PTK. Confidential*** 

 bytes=[] 

 time=[] 

 for r in records: 

   bytes.append(r['bytes']) 

   time.append(r['first']) 

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'TimePeriod' : time}) 
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 bytesSeries['TimePeriod'] =  pd.to_datetime(bytesSeries['TimePeriod'], format='%Y-%m-%d 

%H:%M:%S') 

 data = bytesSeries.groupby('TimePeriod') 

 data2 = data.sum() 

 data3=data2.resample("10s", how='sum') #aggregate in 10 s bins. 

 data3.to_csv(py2, sep=',', encoding='utf-8') 

 py2.close() 

#Pot 11b) and c). 

data20 = pd.read_csv("PBUWeek1.csv") #open the file that was a result of concatenated files in previous script 

data20['TimePeriod'] =  pd.to_datetime(data20['TimePeriod'], format='%Y-%m-%d %H:%M:%S') 

data30 = DataFrame(data20) 

data40 = data30.groupby(['TimePeriod']) 

data50 = data40.sum() 

data60 = DataFrame(data50) 

#Resample now inevery 10s 

data70=data60['2016-01-02 00:00:00':'2016-01-02 23:59:50'] #c) 

data70=data70.resample("10s", how='sum') 

data71=data70['2016-01-02 11:00:00':'2016-01-02 14:59:50'] #b) 

data71=data71.resample("10s", how='mean') 

data71=DataFrame(data71) 

data72=DataFrame(data71, index=data70.index) 

 

#One day bytes in 1s granularity extracted using the same script as previous, only sampling done in 1s. 

data200 = pd.read_csv("Day5Bytes.csv") 

data200['TimePeriod'] =  pd.to_datetime(data200['TimePeriod'], format='%Y-%m-%d %H:%M:%S.%f') 

data300 = DataFrame(data200) 

data500 = data300.groupby(['TimePeriod']) 

data500 = data500.sum() 

data600 = DataFrame(data500) 

data650 = data600['2016-01-02 11:00:00':'2016-01-02 14:59:50'] #d) 

#Create Figure and plot. 

fig, axes = plt.subplots(nrows=2, ncols=2) 

data75.plot(ax=axes[0,0],colormap='winter', label='Series',kind='area') 

data70.plot(ax=axes[1,0],colormap='winter', label='Series',kind='area') 

data71.plot(ax=axes[0,1],colormap='winter', label='Series',kind='area') 

data650.plot(ax=axes[1,1],colormap='winter', label='Series',kind='area') 

plt.grid() 

manager = plt.get_current_fig_manager() 

manager.window.showMaximized() 

plt.savefig('FracatBehaviour.jpeg', format='jpeg', dpi=800) 

plt.show() 

 

5. Time-series for calculating Hurst Parameter and Methods  

import numpy 

import pandas as pd 

from pandas import Series, DataFrame 

import pynfdump 

import os 

import sys 

from datetime import date 

import subprocess 

 

folders = [name for name in os.listdir(".") if os.path.isdir(name)] 
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for folder in folders: 

 py2 = open(folder+'LRD.csv','w') 

 d=pynfdump.Dumper() 

 d.set_where(dirfiles=folder) #folders that one assumes flows of that interval are found in. 

records=d.search(query="dst NET 213.163.125.0/19 or dst NET 178.175.0.0/17 or dst NET 185.47.188.0/22") 

 tStart=[] 

 bytes=[] 

 packets=[] 

 for r in records: 

  tStart.append(r['first']) 

  bytes.append(r['bytes']) 

  packets.append(r['packets']) 

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'tStart':tStart, 'PACKETS':packets}) 

 bytesSeries['tStart'] = pd.to_datetime(bytesSeries['tStart'], format='%Y-%m-%d %H:%M:%S.%f') 

 data = bytesSeries.groupby(['tStart']) 

 data2 = data.sum() 

 data3=data2.resample("1S", how='sum') #Bins of 1 seconds. 

 data3.to_csv(py2, sep=',', encoding='utf-8') 

 py2.close() 

#Compute (Estimate) Hurst parameter using the code below (code in [30]) or directly from Selfis Tool 

#(download link in http://alumni.cs.ucr.edu/~tkarag/Selfis/Selfis.html) 

#Files that need/are uploaded containing time-series of bytes and packets. 

#All these files are extracted from the main file that contains a 7 day time-series of byte and packet counts: 

# BytesAndPackets_1Second_Downstream.csv 

 

%Files loaded for Bytes during Busy hour! 

load Busy_Bytes_Dec29_LRD.csv; 

a=Busy_Bytes_Dec29_LRD'; 

load Busy_Bytes_Dec30_LRD.csv; 

b=Busy_Bytes_Dec30_LRD'; 

load Busy_Bytes_Dec31_LRD.csv; 

c=Busy_Bytes_Dec31_LRD'; 

load Busy_Bytes_Jan1_LRD.csv; 

d=Busy_Bytes_Jan1_LRD'; 

load Busy_Bytes_Jan2_LRD.csv; 

e=Busy_Bytes_Jan2_LRD'; 

load Busy_Bytes_Jan3_LRD.csv; 

f=Busy_Bytes_Jan3_LRD'; 

load Busy_Bytes_Jan4_LRD.csv; 

g=Busy_Bytes_Jan4_LRD'; 

%Files loaded for Bytes during Low hour! 

load Low_Bytes_Dec29_LRD.csv; 

aa=Low_Bytes_Dec29_LRD'; 

load Low_Bytes_Dec30_LRD.csv; 

bb=Low_Bytes_Dec30_LRD'; 

load Low_Bytes_Dec31_LRD.csv; 

cc=Low_Bytes_Dec31_LRD'; 

load Low_Bytes_Jan1_LRD.csv; 

dd=Low_Bytes_Jan1_LRD'; 

load Low_Bytes_Jan2_LRD.csv; 

ee=Low_Bytes_Jan2_LRD'; 

load Low_Bytes_Jan3_LRD.csv; 

ff=Low_Bytes_Jan3_LRD'; 

load Low_Bytes_Jan4_LRD.csv; 

http://alumni.cs.ucr.edu/~tkarag/Selfis/Selfis.html
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gg=Low_Bytes_Jan4_LRD'; 

%Files loaded for Packets during Busy hour! 

load Busy_Packets_Dec29_LRD.csv; 

pa=Busy_Packets_Dec29_LRD'; 

load Busy_Packets_Dec30_LRD.csv; 

pb=Busy_Packets_Dec30_LRD'; 

load Busy_Packets_Dec31_LRD.csv; 

pc=Busy_Packets_Dec31_LRD'; 

load Busy_Packets_Jan1_LRD.csv; 

pd=Busy_Packets_Jan1_LRD'; 

load Busy_Packets_Jan2_LRD.csv; 

pe=Busy_Packets_Jan2_LRD'; 

load Busy_Packets_Jan3_LRD.csv; 

pf=Busy_Packets_Jan3_LRD'; 

load Busy_Packets_Jan4_LRD.csv; 

pg=Busy_Packets_Jan4_LRD'; 

%Files loaded for Packets during Low hour! 

load Low_Packets_Dec29_LRD.csv; 

paa=Low_Packets_Dec29_LRD'; 

load Low_Packets_Dec30_LRD.csv; 

pbb=Low_Packets_Dec30_LRD'; 

load Low_Packets_Dec31_LRD.csv; 

pcc=Low_Packets_Dec31_LRD'; 

load Low_Packets_Jan1_LRD.csv; 

pdd=Low_Packets_Jan1_LRD'; 

load Low_Packets_Jan2_LRD.csv; 

pee=Low_Packets_Jan2_LRD'; 

load Low_Packets_Jan3_LRD.csv; 

pff=Low_Packets_Jan3_LRD'; 

load Low_Packets_Jan4_LRD.csv; 

pgg=Low_Packets_Jan4_LRD'; 

#Time Variance Mathod 

function H = aggvar(sequence,isplot) 

% 

% Time variance method 

% 

% Inputs: 

%     sequence: the input sequence for estimate  

%     isplot: whether display the plot. without a plot if isplot equal to 0   

% Outputs: 

%     H: the estimated hurst coeffeient of the input sequence 

if nargin == 1 

    isplot = 0; 

end 

N = length(sequence); 

mlarge = floor(N/5); 

M = [floor(logspace(0,log10(mlarge),50))]; 

M = unique(M(M>1)); 

n = length(M); 

cut_min = ceil(n/10); 

cut_max = floor(6*n/10); 

V = zeros(1,n); 

for i = 1:n 

    m = M(i); 

    k = floor(N/m); 
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    matrix_sequence = reshape(sequence(1:m*k),m,k); 

    V(i) = var(sum(matrix_sequence,1)/m); 

end 

x = log10(M); 

y = log10(V); 

y1 = -x+y(1)+x(1); 

X = x(cut_min:cut_max); 

Y = y(cut_min:cut_max); 

p1 = polyfit(X,Y,1); 

Yfit = polyval(p1,X); 

yfit = polyval(p1,x); 

beta = -(Yfit(end)-Yfit(1))/(X(end)-X(1)); 

H = 1-beta/2; 

if isplot ~= 0 

    figure,hold on; 

    plot(x,y,'b*'); 

    h = plot(x,y1); 

    plot(X,Yfit,'r-','LineWidth',2); 

    plot(x(1:cut_min),yfit(1:cut_min),'r:','LineWidth',2); 

    plot(x(cut_max:end),yfit(cut_max:end),'r:','LineWidth',2); 

    xlabel('log10(Aggreate Level)','FontSize',10,'FontWeight','normal','Color','k'); 

    ylabel('log10(Viance)','FontSize',10,'FontWeight','normal','Color','k'); 

    T=title('Time Viance Method  - Day Six'); 

    set(T,'FontSize',12,'FontWeight','normal'); 

    %str = {'Hurst Estimated: ', num2str(H)}; 

    %text(1,16,str) 

    grid on; 

end 

function H = RS(sequence,isplot) 

% 

% R/S method. 

% 

% Inputs: 

%     sequence: the input sequence for estimate  

%     isplot: whether display the plot. without a plot if isplot equal to 0   

% Outputs: 

%     H: the estimated hurst coeffeient of the input sequence 

if nargin == 1 

    isplot = 0; 

end 

N = length(sequence); 

dlarge = floor(N/5); 

dsmall = max(10,log10(N)^2); 

D = floor(logspace(log10(dsmall),log10(dlarge),50)); 

D = unique(D); 

n = length(D); 

x = zeros(1,n); 

y = zeros(1,n); 

R = cell(1,n); 

S = cell(1,n); 

for i = 1:n 

    d = D(i); 

    m = floor(N/d); 

    R{i} = zeros(1,m); 

    S{i} = zeros(1,m); 
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    matrix_sequence = reshape(sequence(1:d*m),d,m); 

    Z1 = cumsum(matrix_sequence); 

    Z2 = cumsum(repmat(mean(matrix_sequence),d,1)); 

    R{i} = (max(Z1-Z2)-min(Z1-Z2)); 

    S{i} = std(matrix_sequence); 

    if min(R{i})==0 || min(S{i}) ==0 

        continue; 

    end 

    x(i) = log10(d); 

    y(i) = mean(log10(R{i}./S{i})); 

end 

% fit a line with middle part of sequence 

index = x~=0; 

x = x(index); 

y = y(index); 

n2 = length(x); 

cut_min = ceil(3*n2/10); 

cut_max = floor(9*n2/10); 

X = x(cut_min:cut_max); 

Y = y(cut_min:cut_max); 

p1 = polyfit(X,Y,1); 

Yfit = polyval(p1,X); 

H = (Yfit(end)-Yfit(1))/(X(end)-X(1)); 

  

if isplot ~= 0 

    figure,hold on; 

    bound = ceil(log10(N)); 

    axis([0 bound 0 0.75*bound]); 

   temp = (1:n).*index; 

    index = temp(index); 

    for i = 1:n2 

        plot(x(i),log10(R{index(i)}./S{index(i)}),'b.'); 

    end    

    x = linspace(0,bound,10); 

    y1 = 0.5*x; 

    y2 = x; 

    h1 = plot(x,y1,'b--','LineWidth',2); 

    h2 = plot(x,y2,'b-.','LineWidth',2); 

    plot(X,Yfit,'r-','LineWidth',3); 

    legend([h1,h2],'slope 1/2','slope 1',4) 

    xlabel('log10(blocks of size m)','FontSize',10,'FontWeight','normal','Color','k') 

    ylabel('log10(R/S)','FontSize',10,'FontWeight','normal','Color','k') 

    T=title('R/S Method - One Week'); 

    set(T,'FontSize',12,'FontWeight','normal');  

    %text(1,3,str) 

end 

function H = per(sequence,isplot) 
% 
%  periodogram 
% Inputs: 
%     sequence: the input sequence for estimate  
%     isplot: whether display the plot. without a plot if isplot equal to 0   
% Outputs: 
%     H: the estimated hurst coeffeient of the input sequence 
 if nargin == 1 
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    isplot = 0; 
end 
n = length(sequence); 
Xk = fft(sequence); 
P_origin = abs(Xk).^2/(2*pi*n); 
P = P_origin(1:floor(n/2)+1); 
x = log10((pi/n)*[2:floor(0.5*n)]); 
y = log10(P(2:floor(0.5*n))); 
% Use the lowest 20% part of periodogram 
X = x(1:floor(length(x)/5)); 
Y = y(1:floor(length(y)/5)); 
p1 = polyfit(X,Y,1); 
Yfit = polyval(p1,X); 
H = (1-(Yfit(end)-Yfit(1))/(X(end)-X(1)))/2; 
if isplot ~= 0 
    figure,clf,hold on; 
    plot(x,y,'b.'); 
    plot(X,Yfit,'r-','LineWidth',3); 
    xlabel('log10(Frequency)','FontSize',10,'FontWeight','normal','Color','k') 
    ylabel('log10(Periodogram)','FontSize',10,'FontWeight','normal','Color','k') 
    T=title('Periodogram Method - Norma Hour Day Five'); 
    set(T,'FontSize',12,'FontWeight','normal');  
    %str = {'Hurst Estimated: 1.122'}; //here is written parameter estimated by SELFIS (for more acurate res) 
    %text(-0.5,17,str) 
    grid on 
end 

#Figure 16 and 17, using the data from Table 5 for vectors AV, RS, PG, WT. 

%Comparing Hurst Parameters (Busy Hours) 

AV=[] 

RS=[] 

PG=[] 

WT=[] 

plot(AV,'-r*','LineWidth',1,'MarkerSize',6) 

hold on 

plot(RS,'-bo','LineWidth',1,'MarkerSize',6) 

hold on 

plot(PG,':gs','LineWidth',1,'MarkerSize',6) 

hold on 

plot(WT,':bs','LineWidth',1,'MarkerSize',6) 

ylim([0 2]) 

xlim([0.8,7.2]) 

grid on 

legend('AV','RS','Periodogram','Whittle','Location','northwest') 

ylabel('Estimated H'); xlabel('Daily'); title('H based on Different Estimators - Busy Hours') 
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Table 5. Hurst computed (up) using Selfis tool and (down) using Matlab codes 

Aggregate 

Variance
R/S Periodogram

Aggregate 

Variance
R/S Periodogram

Bytes 0.515 0.156 0.549 0.5 0.461-0.538 0.654 0.37 0.596 0.5 0.461-0.538

Packets 0.615 0.138 0.499 0.5 0.461-0.538 0.702 0.305 0.578 0.5 0.461-0.538

Bytes 0.663 0.179 0.587 0.5 0.461-0.538 0.698 0.348 0.555 0.536 0.498-0.575

Packets 0.658 0.141 0.598 0.5 0.461-0.538 0.721 0.303 0.535 0.534 0.495-0.573

Bytes 0.769 0.259 0.492 0.534 0.496-0.573 0.783 0.312 0.605 0.541 0.502-0.580

Packets 0.803 0.204 0.534 0.536 0.497-0.575 0.695 0.389 0.509 0.533 0.495-0.572

Bytes 0.438 0.207 0.571 0.5 0.461-0.538 0.612 0.335 0.485 0.5 0.461-0.538

Packets 0.512 0.142 0.536 0.5 0.461-0.538 0.629 0.259 0.373 0.5 0.461-0.538

Bytes 0.583 0.122 0.48 0.5 0.461-0.538 0.623 0.342 0.445 0.5 0.461-0.538

Packets 0.581 0.063 0.412 0.5 0.461-0.538 0.659 0.251 0.426 0.5 0.461-0.538

Bytes 0.572 0.14 0.507 0.5 0.461-0.538 0.695 0.389 0.509 0.533 0.495-0.572

Packets 0.572 0.14 0.507 0.5 0.461-0.538 0.684 0.307 0.474 0.52 0.481-0.558

Bytes 0.552 0.149 0.503 0.5 0.461-0.538 0.282 0.389 0.386 0.5 0.461-0.538

Packets 0.591 0.121 0.504 0.5 0.461-0.538 0.488 0.325 0.388 0.5 0.461-0.538

Aggregate 

Variance
R/S Periodogram

Aggregate 

Variance
R/S Periodogram

Day1 Bytes 0.524 0.5272 0.4988 0.5386 0.508 0.5625

Packets 0.5504 0.4976 0.487 0.6087 0.5016 0.5617

Day2 Bytes 0.6739 0.5069 0.6572 0.6244 0.4661 0.5575

Packets 0.6609 0.5179 0.6646 0.6506 0.4654 0.5709

Day3 Bytes 0.8697 0.6218 0.6559 0.7885 0.5031 0.6539

Packets 0.9227 0.6234 0.7273 0.8331 0.4593 0.7112

Day4 Bytes 0.7185 0.5817 0.6781 0.6667 0.5122 0.5401

Packets 0.7597 0.5933 0.7373 0.7157 0.517 0.5756

Day5 Bytes 0.6554 0.5033 0.5414 0.635 0.4938 0.5674

Packets 0.7078 0.4626 0.5006 0.6783 0.459 0.5345

Day6 Bytes 0.5236 0.5347 0.4723 0.638 0.528 0.5569

Packets 0.5306 0.518 0.4737 0.6566 0.5288 0.5341

Bytes 0.4687 0.4811 0.5111 0.4593 0.5025 0.4837

Packets 0.4875 0.4533 0.5781 0.4762 0.4949 0.464
Day7

Matlab Tool
Busy Hour Low Hour

Day2

Day3

Day4

Day5

Day6

Day7

Low HourBusy Hour

Day1

Whittle and

 C.I. @ 95 C.L

Whittle and

 C.I. @ 95 C.L

SELFIS Java TOOL

 

 

 

6. Topology Characteristics 

 

#Extracting only IPs from the Netflows with nfdump 

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and 

bytes>100' -o "fmt:%sa,%da" >FILENAME.csv 

#Files processed with IP addresses as Nodes and Edges 

graphDay1.csv 

graphDay2.csv 

graphDay3.csv 

graphDay4.csv 

graphDay5.csv 

graphDay6.csv 

graphDay7.csv 

#Convert IPs into Labels (numbers) 

import pandas as pd 

import csv 
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import re 

from pandas import DataFrame, Series 

import numpy as np 

import sys 

data2 = pd.read_csv("graphDay1.csv") 

data3 = DataFrame(data2) 

f = open('graphDay1Cleaned.csv','w') 

IPs={}; 

IP_ctr=1; 

for index, row in data3.iterrows(): 

    if not row['Source'] in IPs: 

        IPs[row['Source']] = IP_ctr 

        IP_ctr += 1 

    IP_source_as_cts = IPs[row['Source']] 

    if not row['Target'] in IPs: 

        IPs[row['Target']] = IP_ctr 

        IP_ctr += 1 

    IP_target_as_cts = IPs[row['Target']] 

         

    print >>f, ("{0},{1}".format(IP_source_as_cts, IP_target_as_cts)) 

f.close() 

#Files created after above script that contain only labels are named and loaded in Matlab as: 

load graphDay1Cleaned.csv 
load graphDay2Cleaned.csv 

load graphDay3Cleaned.csv 

load graphDay4Cleaned.csv 

load graphDay5Cleaned.csv 

load graphDay6Cleaned.csv 

load graphDay7Cleaned.csv 

 

#Calculate Node Degree 

edges = graphDay1Cleaned;%name of the file. 

adjacentList={}; 
for i=1:1:max(max(edges,1)) 

   a=find(edges(:,1)==i); 

   adjacentList{i,1}=edges(a,2)'; 

end 

%Node Degrees  

for i=1:1:size(adjacentList,1)   

    Nodes_degrees_List(i,1) = size(adjacentList{i},2); 

end 

#Initial Inspection plot 

uniquek = unique(Nodes_degrees_List); 

for k=1:1:length(uniquek) 

    b =find(Nodes_degrees_List==unique(k)); 

    k_occur(k,1) = length(b);  %frequency 

    end 

p_of_k = k_occur/sum(k_occur);  

figure(1) 

bar(uniquek,p_of_k)        

title('Probability Degree Distribution - Day1');  %name careful 
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xlabel('Node Degree (k)'); 

ylabel('P(k)'); 

xlim([0 100]);  

loglog(uniquek,p_of_k) 

title('Day1'); 

xlabel('Node Degree (k)'); 

ylabel('P(k)'); 

grid on 

 

#Calculate alpha and xmin 

#Codes are taken from http://tuvalu.santafe.edu/~aaronc/powerlaws/ as described in [28] 

%    Execute:  

% [alpha, xmin, L] = plfit(x); 

% 

%    The output 'alpha' is the maximum likelihood estimate of the scaling 

%    exponent, 'xmin' is the estimate of the lower bound of the power-law 

%    behavior, and L is the log-likelihood of the data x>=xmin under the 

%    fitted power law. 

vec     = []; 

sample  = []; 

xminx   = []; 

limit   = []; 

finite  = false; 

nosmall = false; 

nowarn  = false; 

% parse command-line parameters; trap for bad input 

i=1;  

while i<=length(varargin),  

  argok = 1;  

  if ischar(varargin{i}),  

    switch varargin{i}, 

        case 'range',        vec     = varargin{i+1}; i = i + 1; 

        case 'sample',       sample  = varargin{i+1}; i = i + 1; 

        case 'limit',        limit   = varargin{i+1}; i = i + 1; 

        case 'xmin',         xminx   = varargin{i+1}; i = i + 1; 

        case 'finite',       finite  = true; 

        case 'nowarn',       nowarn  = true; 

        case 'nosmall',      nosmall = true; 

        otherwise, argok=0;  

    end 

  end 

  if ~argok,  

    disp(['(PLFIT) Ignoring invalid argument #' num2str(i+1)]);  

  end 

  i = i+1;  

end 

if ~isempty(vec) && (~isvector(vec) || min(vec)<=1), 

 fprintf('(PLFIT) Error: ''range'' argument must contain a vector; using default.\n'); 

    vec = []; 

end; 

if ~isempty(sample) && (~isscalar(sample) || sample<2), 

 fprintf('(PLFIT) Error: ''sample'' argument must be a positive integer > 1; using default.\n'); 

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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    sample = []; 

end; 

if ~isempty(limit) && (~isscalar(limit) || limit<min(x)), 

 fprintf('(PLFIT) Error: ''limit'' argument must be a positive value >= 1; using default.\n'); 

    limit = []; 

end; 

if ~isempty(xminx) && (~isscalar(xminx) || xminx>=max(x)), 

 fprintf('(PLFIT) Error: ''xmin'' argument must be a positive value < max(x); using default behavior.\n'); 

    xminx = []; 

end; 

% reshape input vector 

x = reshape(x,numel(x),1); 

% select method (discrete or continuous) for fitting 

if     isempty(setdiff(x,floor(x))), f_dattype = 'INTS'; 

elseif isreal(x),    f_dattype = 'REAL'; 

else                 f_dattype = 'UNKN'; 

end; 

if strcmp(f_dattype,'INTS') && min(x) > 1000 && length(x)>100, 

    f_dattype = 'REAL'; 

end; 

% estimate xmin and alpha, accordingly 

switch f_dattype,  

    case 'REAL', 

        xmins = unique(x); 

        xmins = xmins(1:end-1); 

        if ~isempty(xminx), 

            xmins = xmins(find(xmins>=xminx,1,'first')); 

        end; 

        if ~isempty(limit), 

            xmins(xmins>limit) = []; 

        end; 

        if ~isempty(sample), 

            xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); 

        end; 

        dat   = zeros(size(xmins)); 

        z     = sort(x); 

        for xm=1:length(xmins) 

            xmin = xmins(xm); 

            z    = z(z>=xmin);  

            n    = length(z); 

            % estimate alpha using direct MLE 

            a    = n ./ sum( log(z./xmin) ); 

            if nosmall, 

                if (a-1)/sqrt(n) > 0.1 

                    dat(xm:end) = []; 

                    xm = length(xmins)+1; 

                    break; 

                end; 

            end; 

            % compute KS statistic 

            cx   = (0:n-1)'./n; 

            cf   = 1-(xmin./z).^a; 
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            dat(xm) = max( abs(cf-cx) ); 

        end; 

        D     = min(dat); 

        xmin  = xmins(find(dat<=D,1,'first')); 

        z     = x(x>=xmin); 

        n     = length(z);  

        alpha = 1 + n ./ sum( log(z./xmin) ); 

        if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction 

        if n < 50 && ~finite && ~nowarn, 

            fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); 

        end; 

        L = n*log((alpha-1)/xmin) - alpha.*sum(log(z./xmin)); 

    case 'INTS', 

        if isempty(vec), 

            vec  = (1.50:0.01:3.50);    % covers range of most practical  

        end;                            % scaling parameters 

        zvec = zeta(vec); 

        xmins = unique(x); 

        xmins = xmins(1:end-1); 

        if ~isempty(xminx), 

            xmins = xmins(find(xmins>=xminx,1,'first')); 

        end; 

        if ~isempty(limit), 

            limit = round(limit); 

            xmins(xmins>limit) = []; 

        end; 

        if ~isempty(sample), 

            xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); 

        end; 

        if isempty(xmins) 

            fprintf('(PLFIT) Error: x must contain at least two unique values.\n'); 

            alpha = NaN; xmin = x(1); D = NaN; 

            return; 

        end; 

        xmax   = max(x); 

        dat    = zeros(length(xmins),2); 

        z      = x; 

        fcatch = 0; 

        for xm=1:length(xmins) 

            xmin = xmins(xm); 

            z    = z(z>=xmin); 

            n    = length(z); 

            % estimate alpha via direct maximization of likelihood function 

            if fcatch==0 

                try 

                    % vectorized version of numerical calculation 

                    zdiff = sum( repmat((1:xmin-1)',1,length(vec)).^-repmat(vec,xmin-1,1) ,1); 

                    L = -vec.*sum(log(z)) - n.*log(zvec - zdiff); 

                catch 

                    % catch: force loop to default to iterative version for 

                    % remainder of the search 

                    fcatch = 1; 
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                end; 

            end; 

            if fcatch==1 

                % force iterative calculation (more memory efficient, but  

                % can be slower) 

                L       = -Inf*ones(size(vec)); 

                slogz   = sum(log(z)); 

                xminvec = (1:xmin-1); 

                for k=1:length(vec) 

                    L(k) = -vec(k)*slogz - n*log(zvec(k) - sum(xminvec.^-vec(k))); 

                end 

            end; 

            [Y,I] = max(L); 

            % compute KS statistic 

            fit = cumsum((((xmin:xmax).^-vec(I)))./ (zvec(I) - sum((1:xmin-1).^-vec(I)))); 

            cdi = cumsum(hist(z,xmin:xmax)./n); 

            dat(xm,:) = [max(abs( fit - cdi )) vec(I)]; 

        end 

        % select the index for the minimum value of D 

        [D,I] = min(dat(:,1)); 

        xmin  = xmins(I); 

        z     = x(x>=xmin); 

        n     = length(z); 

        alpha = dat(I,2); 

        if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction 

        if n < 50 && ~finite && ~nowarn, 

            fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); 

        end; 

        L     = -alpha*sum(log(z)) - n*log(zvec(find(vec<=alpha,1,'last')) - sum((1:xmin-1).^-alpha)); 

    otherwise, 

        fprintf('(PLFIT) Error: x must contain only reals or only integers.\n'); 

        alpha = []; 

        xmin  = []; 

        L     = []; 

        return; 

end; 

 

#Distribution Plots (Fig 19) 

%    PLPLOT(x, xmin, alpha) plots (on log axes) the data contained in x  

%    and a power-law distribution of the form p(x) ~ x^-alpha for  

%    x >= xmin. 

function h=plplot(x, xmin, alpha) 

% reshape input vector 

x = reshape(x,numel(x),1); 

% initialize storage for output handles 

h = zeros(2,1); 

% select method (discrete or continuous) for plotting 

if     isempty(setdiff(x,floor(x))), f_dattype = 'INTS'; 

elseif isreal(x),    f_dattype = 'REAL'; 

else                 f_dattype = 'UNKN'; 

end; 
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if strcmp(f_dattype,'INTS') && min(x) > 50, 

    f_dattype = 'REAL'; 

end; 

% estimate xmin and alpha, accordingly 

switch f_dattype, 

    case 'REAL', 

        n = length(x); 

        c = [sort(x) (n:-1:1)'./n]; 

        q = sort(x(x>=xmin)); 

        cf = [q (q./xmin).^(1-alpha)]; 

        cf(:,2) = cf(:,2) .* c(find(c(:,1)>=xmin,1,'first'),2); 

        figure; 

        h(1) = loglog(c(:,1),c(:,2),'bo','MarkerSize',3,'MarkerFaceColor',[1 1 1]); hold on; 

        h(2) = loglog(cf(:,1),cf(:,2),'k--','LineWidth',2); hold off; 

        xr  = [10.^floor(log10(min(x))) 10.^ceil(log10(max(x)))]; 

        xrt = (round(log10(xr(1))):2:round(log10(xr(2)))); 

        if length(xrt)<4, xrt = (round(log10(xr(1))):1:round(log10(xr(2)))); end; 

        yr  = [10.^floor(log10(1/n)) 1]; 

        yrt = (round(log10(yr(1))):2:round(log10(yr(2)))); 

        if length(yrt)<4, yrt = (round(log10(yr(1))):1:round(log10(yr(2)))); end; 

        set(gca,'XLim',xr,'XTick',10.^xrt); 

        set(gca,'YLim',yr,'YTick',10.^yrt,'FontSize',16); 

        ylabel('Pr(X \geq x)','FontSize',16); 

        xlabel('x','FontSize',16) 

        legend([xr,yr],'slope 1/2','slope 1') 

    case 'INTS', 

        n = length(x);         

        q = unique(x); 

        c = hist(x,q)'./n; 

        c = [[q; q(end)+1] 1-[0; cumsum(c)]]; c(c(:,2)<10^-10,:) = []; 

        cf = ((xmin:q(end))'.^-alpha)./(zeta(alpha) - sum((1:xmin-1).^-alpha)); 

        cf = [(xmin:q(end)+1)' 1-[0; cumsum(cf)]]; 

        cf(:,2) = cf(:,2) .* c(c(:,1)==xmin,2); 

 

        figure; 

        h(1) = loglog(c(:,1),c(:,2),'bo','MarkerSize',4,'MarkerFaceColor',[1 1 1]); hold on; 

        h(2) = loglog(cf(:,1),cf(:,2),'--r','LineWidth',1); hold off; 

        xr  = [10.^floor(log10(1)) 10.^ceil(log10(max(x)))]; 

        xrt = (round(log10(xr(1))):2:round(log10(xr(2)))); 

        if length(xrt)<4, xrt = (round(log10(xr(1))):1:round(log10(xr(2)))); end; 

        yr  = [10.^floor(log10(1/n)) 1]; 

        yrt = (round(log10(yr(1))):2:round(log10(yr(2)))); 

        if length(yrt)<4, yrt = (round(log10(yr(1))):1:round(log10(yr(2)))); end; 

        legend('Data',sprintf('MLE alpha=%.3f',alpha)); 

        axis equal square 

        set(gca,'XLim',xr,'XTick',10.^xrt); 

        set(gca,'YLim',yr,'YTick',10.^yrt,'FontSize',12); 

        ylabel('Pr(K \geq k)','FontSize',12); 

        xlabel('Node Degree (k)','FontSize',12) 

        T=title('Node Degree Distribution - Day7');  

        set(T,'FontSize',12,'FontWeight','normal');  

        grid on; 
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    otherwise, 

        fprintf('(PLPLOT) Error: x must contain only reals or only integers.\n'); 

        h = []; 

        return; 

end; 

#Compare for 7 Days Alpha 

%Comparing Hurst Parameters (Days of the Week) 

Alpha=[2.00, 2.0200, 2.0200, 2.0100, 2.0600, 2.0300, 2.0100]; 

plot(Alpha,'-r*','LineWidth',1,'MarkerSize',6) 

ylim([1.5 2.5]) 

xlim([0.8,7.2]) 

grid on 

legend('Alpha','Location','northwest') 

ylabel('Alfa'); xlabel('Daily'); title('Parameter Alpha using MLE') 

#R Code to calculate Assortativity and Node Diamater (Table 4). 

#In this workspace also other metrics are calculated such as: 

#Betweeness Centrality 

#Cluster Coefficitent 

#Egent Vector Centrality  

library(igraph) 

dat=read.csv(file.choose(),header=TRUE) 

el=as.matrix(dat) # data into a two-column matrix format 

el[,1]=as.character(el[,1]) 

el[,2]=as.character(el[,2]) 

 

g=graph.edgelist(el,directed=FALSE) # turns the edgelist into a 'graph object' 

 

 

Node_Degree=degree(g) 

dSorted=sort.int(Node_Degree, decreasing = TRUE) 

Average_Node_Degree=mean(degree(g)) 

Min_Node_Degree=min(degree(g)) 

Max_Node_Degree=max(degree(g)) 

#Diameter 

Graph_Diameter=diameter(g,directed = FALSE,unconnected = TRUE)#if directed=True it returns +1 larger than 

max number of vertices 

Farthest_Node_Diameter=farthest.nodes(g, directed = FALSE, unconnected = TRUE) 

#Assortativity 

Assortativity_Degree=assortativity.degree(g) 

Betweenes_Centrality = betweenness(g) 

bSorted=sort(Betweenes_Centrality,decreasing = TRUE) 

write.table(Betweenes_Centrality, "C:/Users/telecom/Desktop/artan/Day2_Betweenes_Centrality.csv", sep="\t") 

#Cluster Coeff (also called Transitivity) for local (each vercex) and global 

Global_Cluster_Coeff=transitivity(g,type=c("global")) 

Local_Cluster_Coeff=transitivity(g,type=c("local")) 

cSorted=sort.int(Local_Cluster_Coeff, decreasing = FALSE) 

#Egent Vector Centrality 

Egent_Vector_Centrality=evcent(g) 

#Same code for ASes, Files that are pre and po-processed are named: 
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ASD1.csv ASD1Cleaned.csv 

ASD2.csv ASD2Cleaned.csv 

ASD3.csv ASD3Cleaned.csv 

ASD4.csv ASD4Cleaned.csv 

ASD5.csv ASD5Cleaned.csv 

ASD6.csv ASD6Cleaned.csv 

ASD7.csv ASD7Cleaned.csv 

 

7. Independence of Packet Size Arrivals 

#Processed Files 

% load PacketSizeApart; 

% load PacketSizeApart1; 

% Apart=PacketSizeApart; 

% Apart1=PacketSizeApart1; 

%% SAMPLE ACF for Packet Size Series 

[ACF,lags,bounds] = autocorr(PacketSIzeAPART,[],2); 

autocorr(PacketSIzeAPART,200); ylim([-0.05 0.1]); 

ylabel('Sample Autocorrelation','FontSize',10,'FontWeight','normal','Color','k');  

xlabel('Lag','FontSize',10,'FontWeight','normal','Color','k'); 

T=title('Sample ACF - Packet Size');  

set(T,'FontSize',12,'FontWeight','normal');  

 

%% Scatter Plot of 1million packet size arrivals 

%%subplot(2,1,1) 

scatter(Apart,Apart1,'*b','LineWidth',0.01);  

ylabel('packet size (k+1)','FontSize',10,'FontWeight','normal','Color','k');  

xlabel('packet size (k)','FontSize',10,'FontWeight','normal','Color','k');  

T=title('Scatter Plot - Packet Size');  

set(T,'FontSize',12,'FontWeight','normal');  

 

%% BOX-JUNG STATISTIC TEST 

mA=mean(Apart); % 

mB=mean(Apart1); 

sA=std(Apart); 

sB=std(Apart1); 

X1=(Apart-mA)/sA; 

X2=(Apart1-mB)/sB; 

X=X1.*X2; 

n=length(Apart); 

r=(1/(n-1))*sum(X) %%Autocorrelation value 0.0065 

 

%%Box-Ljung using lbtest Matlab Function 

i=1:200; 

[h,pValue] = lbqtest(Apart,'lags',i,'alpha',0.05); 

if h==0 

    sprintf('There is not enough evidence to reject the null hypythesis') 

end 
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8. Distribution of 10 top IP addresses and Port Numbers (Figure 22, 23 Coef of Determination and Figure 24) 

#Extracting only IPs from the Netflows with nfdump 

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and 

bytes>100' -o "fmt: %da" >FILENAME.csv 

#Files processed with IP addresses  

 

Files pre-processed Files of IPs labeled Files for Port numbers (no need to convert into int.) 

IP1.csv IP1C.csv Ports1.csv 

IP2.csv IP2C.csv Ports2.csv 

IP3.csv IP3C.csv Ports3.csv 

IP4.csv IP4C.csv Ports4.csv 

IP5.csv IP5C.csv Ports5.csv 

IP6.csv IP6C.csv Ports6.csv 

IP7.csv IP7C.csv Ports7.csv 
 

#Convert IPs into Labels (numbers) 

import pandas as pd 

import csv 

import re 

from pandas import DataFrame, Series 

import numpy as np 

import sys 

data2 = pd.read_csv("graphDay1.csv") 

data3 = DataFrame(data2) 

f = open('graphDay1Cleaned.csv','w') 

IPs={}; 

IP_ctr=1; 

for index, row in data3.iterrows(): 

    if not row['Source'] in IPs: 

        IPs[row['Source']] = IP_ctr 

        IP_ctr += 1 

    IP_source_as_cts = IPs[row['Source']]         

    print >>f, ("{0}".format(IP_source_as_cts)) 

f.close() 

%% Powerlaw and CDF of port and IP addresses 

clear all; 

clf; 

load Ports7.csv;  

Y=Ports7; clear Ports7.csv; %careful with filenames. 

a=unique(Y); 

out=[a, histc(Y(:),a)]; 

out; 

Frequencies=out(:,2); 

sorted_Frequencies=sort(Frequencies,'descend'); 

Prob=sorted_Frequencies/sum(sorted_Frequencies); 

x=1:10 %Top 10 most frequent. 

y=Prob(1:10)'; 

logx=log(x); 

logy=log(y); 
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p=polyfit(logx,logy,1); 

plot(logx(1:10),logy(1:10),'bo'); 

axis equal square 

grid 

xlabel('log(x)'); 

ylabel('log(y)'); 

k=p(1); 

loga=p(2); 

a=exp(loga); 

hold on; plot(logx,k*logx+loga,'*-g') 

legend('Data',sprintf('log(y)=-alog(x)+log(b)')); 

T=title('Estimating with polifit (loglog linear form)');  

set(T,'FontSize',12,'FontWeight','normal');  

%%Plot CDF from PDF 

alfa=-k; 

figure 

P=cumsum(y); 

plot(x,P,'*-b'); 

hold on; 

%%For y2=0.457*x.^-2.155. Careful with equation, depends from values 

%calculated from polofit for slope and intercept.  

y3=0.444*x.^(-1.811); 

%y2=0.457*(x.^(-2.155)); 

P_fit=cumsum(y3); 

plot(x,P_fit,'-og'); 

legend('Data',['Fit a=', num2str(alfa)],'Location','NorthWest'); 

grid on; 

hold off; 

ylabel('CDF','FontSize',10,'FontWeight','normal','Color','k');  

xlabel('Rank of Port Numbers','FontSize',10,'FontWeight','normal','Color','k'); 

 

figure 

plot(x,y,'bo'); 

xlabel('x'); 

ylabel('y'); 

axis equal square 

grid 

hold on; plot(x,a*x.^k,'*-g') 

legend('Data',sprintf('y=%.3f{}x^{%.3f}',a,k)); 

hold off; 

T=title('Estimating with polifit (loglog linear form)');  

set(T,'FontSize',12,'FontWeight','normal'); 

%%Residual scatter plot 

Residuals=y3-y; 

scatter(x,Residuals,'rp'); 

lsline; 

ylabel('Residuals','FontSize',10,'FontWeight','normal','Color','k');  

xlabel('Rank of Port Numbers','FontSize',10,'FontWeight','normal','Color','k'); 

box on; 

variance_Ports=(var(y)); 

variance_Ports_estimated=(var(y3)); 
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r_Square=(variance_Ports_estimated).^2/(variance_Ports).^2; 

#Alpha for seven days and Coeff of Determ for port Numbers 

2.15 1.914 1.816 1.884 1.914 2.025 1.891 
A=[2.15, 1.914, 1.816, 1.884, 1.914, 2.025, 1.891] 

mean_A=mean(A) 

1.415*std(A)/(sqrt(7))%1.45 from T-test table for 90% C.L. 

 

#7 DAYS t-TEST 90%, Mean +- t[1-alfa/2;n-1]S/sqrt(n) 

A=[0.652, 0.646, 0.652, 0.621, 0.6708,0.959, 0.672] 

mean_A=mean(A); 

1.415*std(A)/sqrt(7); 
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