

INTERNET TRAFFIC AND TOPOLOGY CHARACTERISTICS

FROM A NATIONAL ISP PERSPECTIVE

by

Artan Salihu

B.S. in Electrical Engineering – Telecommunications, University of Prishtina, 2011

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

Master of Science in Telecommunications

University of Pittsburgh

2016

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This thesis was presented

by

Artan Salihu

It was defended on

April 28, 2016

and approved by

Kostas Pelechrinis, PhD, Associate Professor

Martin Weiss, PhD, Professor & Associate Dean

Prashant Krishnamurthy, PhD, Associate Professor

 Thesis Advisor: Kostas Pelechrinis, PhD, Associate Professor

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This thesis was presented

by

Artan Salihu

It was defended on

April 28, 2016

and approved by

Kostas Pelechrinis, PhD, Associate Professor

Martin Weiss, PhD, Professor & Associate Dean

Prashant Krishnamurthy, PhD, Associate Professor

Thesis Advisor: Kostas Pelechrinis, PhD, Associate Professor

 iii

Copyright © by Artan Salihu

2016

 iv

Measurement is the first step in predicting the growth of Internet. They can reveal information

about traffic and topology characteristics of the Internet. Understanding traffic and topology

characteristics are vital for evaluating the performance of networking protocols, creating accurate

models for simulation and helping service providers to better utilize their resources. Using the

data collected from a National Internet Service Provider in Kosovo, PTK, we report on traffic

measurements and analyze some of the most important characteristics of Internet traffic such as

self-similarity and long-range dependence. Also, we reveal information about the topology

structure of Internet at IP level, from the perspective of our data.

INTERNET TRAFFIC AND TOPOLOGY CHARACTERISTICS

FROM A NATIONAL ISP PERSPECTIVE

Artan Salihu, MST

University of Pittsburgh, 2016

 v

TABLE OF CONTENTS

PREFACE ... X

1.0 INTRODUCTION .. 1

1.1 MOTIVATION .. 2

1.2 APPROACH ... 3

1.3 GOAL.. 4

1.4 PRIVACY ... 5

1.5 STRUCTURE OF THE DOCUMENT .. 5

2.0 BACKGROUND .. 6

2.1 INTERNET TRAFFIC .. 6

2.2 INTERNET TOPOLOGY .. 9

2.3 DEFINITIONS ... 10

2.3.1 Estimating Hurst Parameter .. 15

2.3.1.1 R/S Method .. 16

2.3.1.2 Variance Method ... 17

2.3.1.3 Periodogram Method .. 17

2.3.1.4 Whittle .. 18

2.3.2 Properties of Topology .. 18

3.0 DATA COLLECTION AND ANALYSIS ... 22

 vi

3.1 MONITORING .. 23

3.2 DATA COLLECTION .. 25

3.3 DATA ANALYSIS ... 27

3.3.1 Protocols ... 32

3.3.2 Packet size .. 33

4.0 EXPERIMENTS AND RESULTS ... 36

4.1 IS PTK NETWORK TRAFFIC SELF-SIMILAR AND LONG-RANGE

DEPENDENT? ... 36

4.1.1 Pictorial view of Periodicity and Self-Similarity .. 37

4.1.2 Self-similarity and Long-range dependence.. 38

4.2 TOPOLOGY CHARACTERISTICS FROM THE NETWORK TRAFFIC44

4.2.1 Node Degree Distribution ... 45

4.2.2 Other Topology Characteristics ... 47

4.2.3 Topology Characteristics at AS Level ... 48

4.3 OTHER EXPERIMENTS ... 49

4.3.1 Independence of Packet Size Arrivals ... 49

4.3.2 Distribution of IP addresses and Port Numbers ... 52

5.0 CONCLUSIONS .. 56

5.1 FUTURE WORK ... 57

APPENDIX A .. 59

BIBLIOGRAPHY ... 80

 vii

 LIST OF TABLES

Table 1. Netflow fields and their description... 24

Table 2. Characteristics of Dataset used in this study .. 28

Table 3. IP Protocols Proportion ... 33

Table 4. Main Topology Characteristics ... 48

Table 5. Hurst computed (up) using Selfis tool and (down) using Matlab codes 68

 viii

LIST OF FIGURES

Figure 1. The network at PTK .. 4

Figure 2. Unit Properties of graph at different granularities ... 19

Figure 3. PTK Network and measurement infrastructure to collect data from all regions in

Kosovo. b) Netflow definition for upstream/downstream traffic ... 23

Figure 4. Traffic load in/out at gateways a) and b) and three Google Cache Servers located at

PTK c)-e) .. 25

Figure 5. Data Collection using nfcapd and sources for processing netflows 27

Figure 6. Local Packet Traffic .. 29

Figure 7. Local Byte Traffic ... 30

Figure 8. International Downstream Packets .. 31

Figure 9. International Downstream Bytes ... 31

Figure 10. Frequency of Packet Sizes in PTK Network ... 34

Figure 11. Empirical Cumulative Distribution of Packet Sizes .. 35

Figure 12. Pictorial view of Periodicity and Self-similarity - a) weekly and c) daily periodicity;

b) a random interval when d) zoomed by factor of 10 .. 38

Figure 13. Periodogram for Busy Hour Byte Series .. 40

Figure 14. Time Variance for Busy Hour Byte Series .. 41

 ix

Figure 15. R/S for Busy Hour Byte Series .. 42

Figure 16. Hurst based on different estimators in busy hour for seven days a) Byte b) Packet

counts .. 43

Figure 17. Hurst based on different estimators in low hour for seven days a) Byte b) Packet

counts .. 44

Figure 18. Initial inspection of power-law behaviour of Node degree ... 46

Figure 19. Node Degree distribution and exponential parameter alpha using MLE 47

Figure 20. Sample ACF of packet sizes. Correlation Coefficients are within 95% C.I. 51

Figure 21. Scatter plot of 1,000,000 consecutive packet sizes. .. 51

Figure 22. Cumulative distribution function of most popular port numbers 54

Figure 23. Cumulative distribution function of most popular IP addresses for upstream traffic in

one day. ... 54

Figure 24. Residuals from data of one-day port numbers and IP addresses 55

Figure 25. Network topology visualization sample .. 58

 x

PREFACE

I would like to express gratitude to my thesis advisor, Dr. Kostas Pelechrinis, and to my program

advisor Dr. Martin Weiss, and to Dr. Prashant Krishnamurthy for their help and offered

invaluable assistance, support and guidance throughout this work and during my studies.

I would like to thank Telecom of Kosovo and people who agreed, encouraged and helped

me to collect data. Without them, this work would have not been possible. My parents and Erza

have been a constant source of love and support, without whose encouragement; I would have

not pursued my masters degree.

 1

1.0 INTRODUCTION

Since its origin in ARPANET, Internet has continued to grow at fast speeds, become more

complex and harder to be analyzed and understood. Analyzing and understanding its behavior is

vital to developing more efficient protocols and better utilize resources. This requires of having

accurate models which reflect the actual behavior of Internet. And, as we cannot replicate and

study Internet as a whole, instead we rely on thorough analysis of sample network measurements

taken from different parts of Internet. In general, measurements and analysis of Internet are done

at two different levels: traffic level and topology level.

Over the last two decades, studies about Internet traffic have been gradually concentrated

into two school of thoughts. One school of thought refers to Internet traffic as smooth and such

to be easy modelled and understood using traditional Teletraffic models introduced by Erlang

(e.g. Poisson or Markovian) [1]. Others, view Internet traffic as bursty in many or all timescales

and with long-memory [2] [3]. A more realistic approach is those who have shown that both can

coexist, depending the scale of the observation [4]. Intuitively, we can think of these differences

in terms of how they understand traffic characteristics [5] and, for example, how this affects

traffic engineering for ensuring quality of service. If traffic was bursty, then in order to manage

the inevitable peaks that exceed the planned capacity, very sophisticated buffers and packet

scheduling would be required. On the other hand, if aggregated traffic is smooth, guaranteeing

QoS would be only a function of long-term capacity planning because there would be no queue

buildups. All this debate started with the seminal work of Leland et al [2] who showed that

traffic is bursty in different timescales and it cannot be described using few parameters by

Poisson processes. Internet and typical voice calls used in circuit switching have dramatically

different statistical characteristics from each other. Internet sessions tend to be much more

variable and longer in duration than voice calls. Therefore, they introduced the self-similar

processes as a notion to better understand and model data traffic.

 2

Likewise, understating and modelling Internet topology was enigmatic for a very long

time and it was believed that can be described and modelled using random graphs [6], [7].

Internet topology, as any other type of complex network, consist of nodes connected to each

other and placement of these nodes was considered to be random and such to be well described

by Poisson [8]. Despite the random placement of the links, it was believed that most of the nodes

will have approximately the same number of links and it would be extremely rare to find nodes

that have considerably more or fewer links deviated from the mean. As the probability that a

node is connected to other nodes decreases exponentially for large random nodes are also

referred to as exponential. The discovery of Faloutsos brother in 1999 [4] that Internet topology

obeys power-law distribution, invalidated all previous efforts in modelling Internet topology.

Findings of authors in [4] had significant implications in designing efficient protocols and hard

to be ignored. Later, authors in [8], referred to these types of networks as scale-free and explain

the reasons behind by mechanisms of growth and preferential attachment. As new nodes appear,

they tend to connect to more connected nodes and thus these popular nodes acquire more links

over the time than their less connected neighbors. Consequently, we have some very highly

connected nodes and many other low connected.

1.1 MOTIVATION

Long-range dependence of Internet traffic has been mostly attributed to file transfer sizes.

Authors in [9] showed that causes of self-similarity are associated with heavy-tailed distribution

of file transfers. Their conclusion is based on empirical data of WWW traffic collected at local

area network Web server (NCSA Mosaic). Likewise, authors in [10] confirm the heavy-tailed

distributions of file sizes directly affect the degree of self-similarity (and long-range dependence

- LRD) and this phenomenon is likely to continue to happen even under network constrains (such

as bottlenecks). But, Internet traffic over the past five years has drastically changed in terms of

applications. As reported by Cisco [11], it is Internet video which is the dominant application

and drives the growth instead of file-sharing. In addition, as the structure of Internet traffic is

affected by demographic properties (user “think-time”) and as authors in [4] suggest that

 3

different backbones might show different traffic structure, motivate us to revisit notions of self-

similarity, long-range dependence and power-laws of Internet traffic.

The increased attention to privacy and data protection in one hand and the openness and

flexibility of Internet on the other, gives the privileges to individual network administrators to

use different policies and security protection mechanisms. This raises a major problem when

using active measurements (usually used to map Internet at router-level) in order to obtain

information about the topology of Internet. Measurements based on traceroute are biased due to

number of firewalls, missing links and routing policies by individual administrators. Studies in

[12] and [13] have shown that current techniques used to conduct measurements at AS level miss

around 30% of links. In addition, a study in [14] shows that even if underlying node degree

distribution was exponential, traceroute measurements resulted in power-law distribution. This

motivates us to use the collected traffic traces, as slightly different approach, in order to study

and reveal information about the Internet topology characteristics and its underlying strucuture.

1.2 APPROACH

Most of the recent and past studies of network traffic and topology patterns and characteristics

rely on measurements reported by Center of Applied Internet Data Analysis (CAIDA) [20].

CAIDA datasets are a great resource but they contain anonymized passive traffic traces from

monitors on specific Internet backbone-links belonging to more than one service provider which

generate very high traffic volumes. In contrast, our goal is to have a broad picture of network

traffic characteristics from single Internet service provider that shares all main properties, yet is

smaller in scale and represents a different demographic part of the world.

In this thesis work, traffic traces collected from a Service Provider, PTK, are analyzed.

Traffic flows are captured using nfcapd (a Netflow capture daemon) where the machine

collecting the data listens in a 1 Gbps link that connects two Internet Border Gateway routers that

are responsible for routing the whole traffic at inter domain level as well as intra domain, as

shown in Figure 1. Intuitively, this means that flow collector located at PTK captures all

conversations between machines at PTK network and outside it. We have been collecting data

 4

for a period of approximately three months, 28 December 2015 to 31 March 2016. Traces used in

this study are taken between December 29th 2015 00:00:00 and January 4th 2016 23:59:00. They

include 31,602,250 flows and generate packets.

Figure 1. The network at PTK

1.3 GOAL

The goal of this thesis work is to report on traffic measurements and characteristics of Internet

traffic over two time scales, 24 hours and 7 days, in terms of traffic volume and packet sizes and

time-series analysis. Finally, it aims to provide analysis of the topology structure, using graph

metrics, based on the information about the traffic generated by any two communicating hosts.

We focus on answering two main questions:

- Is network data traffic still self-similar?

 5

- How does Internet topology look like from the perspective of Internet traffic?

1.4 PRIVACY

The data collected from PTK contains sensitive information about the network. Such information

is not allowed to be disclosed by any party. Because of that, all the results in this thesis work will

not show any actual IP or host address.

1.5 STRUCTURE OF THE DOCUMENT

The work is organized as follows. Section 2 provides definitions, metrics and a description of

methods used to estimate and quantify variables of our interest for Internet traffic and topology,

together with relevant background information. In Section 3, the collected dataset is described

and general characteristics of these traces are shown. The section begins with a more detailed

explanation of network under study, PTK, and the data collection phases and then shows, for

instance, the packet size distribution, the composition of IP traffic from a data snapshot and most

popular protocols. Later, Section 4 shows experiments together with the results. Byte counts and

packet counts are examined with respect to self-similarity and long-range dependence in section

4.1. Then, in section 4.2, communicating hosts are extracted and information about underlying

degree distribution are shown together with other topology characteristics such as network

diameter and assortativity. Finally, Section 5 summarizes and concludes the results and shows

the future work.

 6

2.0 BACKGROUND

This Section starts with a literature review and related work which lead to definitions and metrics

that are used to quantify underlying structure of Internet traffic and topology. In Section 2.1

articles related to Internet traffic characteristics reviewed are given in a chronological order and

then similarly in Section 2.2 reviewed work on the structure of Internet topology is shown. In

Section 2.3 the mathematics used in these articles are presented, leading up to definitions and

methods to quantify self-similarity and long-memory properties of Internet traffic followed by

the metrics and definitions to compute node degree, assortativity coefficient and network

diameter as chosen metrics for Internet topology.

2.1 INTERNET TRAFFIC

First step in understanding network traffic behavior and the main characteristics is the collection

of traffic data. It was Leland et al [2] who first collected an extensive amount of traffic traces

from Ethernet LAN’s (also known as Bellcore Data) over a three-year period (1989 to 1992) and

showed some widespread patterns in data traffic, which until then were not known. More

specifically, they showed that data traffic is characterized by “burstiness” on many time-scales.

Findings of authors in [2] were considered striking for research community as that invalidated

formal models that were used for telephone traffic analysis, such as Poisson models. Poisson

based models were considered the most widely used Teletraffic models in the context of circuit

switching traffic introduced by Erlang. Telephone systems were understood as homogenous

systems where the notion of “generic” behavior, “typical” user and average statistics were

sufficient in adequately describing and model of Teletraffic [15]. In addition, a traffic that is

characterized by Poisson would be an ideal case to model and control data networks. It would

 7

reduce complexity of design for routers and quality of service mechanisms. But, Poisson model

has a very basic limitation; it cannot capture traffic “burstiness”. For example, if we consider a

Poisson process with arrival rate then timescale for “burstiness” is .

Probability that a traffic burst occurs over other timescales decreases exponentially [16]. This

was true for circuit-switching traffic but traffic bursts in data networks is much more variable

and happens at different time scales. This large variability in time (also in space) causes for the

traffic to exhibit repeated statistical properties in different timescales, commonly referred to

fractal or self-similar behavior. Up until then, fractals were mostly used to describe geometry of

irregular shape objects by mathematicians (e.g. the famous Koch snow-flake) and brought to

attention of statisticians by Mandelbrot [17] as a notion of self-similarity in time-series.

After the evidence of self-similarity in Ethernet traffic, it was Paxson and Floyd [3], who

evaluated 24 traces collected from a Wide Area Network (between 1993 and 1995, mostly at the

Lawrence Berkeley National Laboratory and at Digital's Western Research Lab) and observed

that Poisson models underestimate the burstiness of data traffic, especially at time scales below

hundreds of milliseconds. At that time, they showed that only packet arrivals for TELNET and

FTP control sessions with fixed rate of transmission can be modeled by Poisson, while other

WAN arrival processes could be better described and modeled by self-similar processes. More

specifically, they showed that inter-arrival times generated by a single connection best fit a

Pareto distribution.

With the rapid raise of WWW in late nineties, findings of [2] and [3] became even more

evident and were confirmed in [9] and [10]. Authors in [9] shade some more light about the

causes of self-similarity and they associate it with heavy-tailed distribution of file transfers. Their

conclusion is based on empirical data of WWW traffic collected at local area network Web

server (NCSA Mosaic). Likewise, authors in [10] confirm the heavy-tailed distributions of file

sizes directly affect the degree of self-similarity (or long-range dependence - LRD) and this

phenomenon is likely to continue to happen even under network constrains (such as bottlenecks),

topology changes or distribution of file request inter-arrival times. They show that transport layer

protocol (TCP and its versions) plays the main role in preservation of a such relationship.

In contrast to previous findings, authors in [18] argue that with the increase of number of

connections between different pairs of sources and destinations, the notion of nonstationarity

 8

must be considered as fundamental characteristic of data traffic and is more important than

evidence of LRD and heavy-tailed distributions that characterize a self-similar time series. Using

data collected at Bell Labs LAN link, they show that nonstationarity affects traffic variables

through time. As the rate of connections increases, LRD becomes weaker (traffic will be less

bursty) while packet inter-arrivals have a tendency toward Poisson and packet sizes toward

independence. They suggest that Poisson assumptions would be even more evident in Core

network, where the number of aggregated sources is much higher.

More, a study in [19] analysis main variables of internet traffic (packet and byte counts)

for a period of time between 2002 and 2003. They observed that LRD became significantly

weaker for packet counts time series of 2003 compared to those in 2002. This observation is

attributed to peer-to-peer file sharing application which caused high variability at some time

scales. In contrast, for byte counts time-series they observed no difference. Another important

finding and contradicting to [18] was that LRD was not affected by time of the day, implying the

strength of self-similarity or LRD does not change as number of active sources change. It is

important to note that this study was conducted using measurements taken in a university

environment.

Finally, Karagiannis et al. [4] show undoubtedly a more complete picture of network

traffic in Wide Area Networks. Using three different types of datasets collected during 2002-

2003 from CAIDA monitors in a link that belonged to MFN (Metro Media Fiber Network, a

former US Tier 1 ISP), they showed that both Poisson and LRD can coexist in traffic aggregated

at Core network, depending the scale of observation. More specifically, authors analyzed two

common variables of network traffic: byte counts and inter-arrival times. They found that packet

size arrivals and inter-arrival time series at small timescales (sub-seconds) can be well described

and modeled by Poisson. Beyond that traffic exhibits dominant characteristics of nonstationary

and in addition shows self-similar properties. They attribute this finding to the evolution of

Internet and backup the arguments showing that results are consistent from theoretical results for

large-scale aggregations of renewal processes. In addition, they suggest that as Internet will

continue to grow in number of applications and sources, traffic might become even more regular

and we can abandon sophisticated traffic models instead of simple models such as those based on

Poisson assumptions. Finally, they suggest that aggregated traffic from different backbone links

might appear different.

 9

2.2 INTERNET TOPOLOGY

While Internet traffic got the most of attention during nineties, Paxson and Floyd continued to

challenge research community about many aspects of Internet behaviour. In the article [20], they

discuss the challenges of simulating Internet topology due to the lack of understanding the

behaviour of it. Internet topology is very complex and more importantly it changes drastically

over the time (due to new connected networks, failure of some nodes, nature of routing protocols

to balance the load in different paths, routing policies, etc). The architecture of Internet Protocol

(IP) allows different technologies to converge and different networks to be administered based

on different policies, yet to communicate seamleassly and allow many types of applications to be

built on top of it. This flexibility comes together with the tradeoff of not having a clear picture of

what is going on in the Internet. Hence, this challenges research community in designing

efficient and scalable protocols and creating more robust and realistic models that can predict the

behaviour of it.

In 1999, it was Faloutsos brothers [21] who discovered that Internet has some regular

shape. Despite its appearance as random, they showed that Internet obeys simple rules too. After

they analyzed three datasets collected between November 1997 to December 1998 based on

traceroute, they found that Internet is a scale-free network which can be modeled and understood

by power-law degree distributions. It was considered as important as the work of Leland et al [2]

and raised debates among reseach community. Internet was not excpected to show scale-free

features as this invalidated another long believed theory based on classical random graphs, where

the seminal work of Erdos and Renyi showed that networks grow randomly by adding new nodes

and connections have an exponential distribution (well discribed by Poisson). Up until then,

network protocols were designed for random graphs which perform poorly in scale-free

networks.

They studied internet topology at two granularities: router level (where each node is

represented by a router) and inter-domain level (AS) where each domain represents a node and

 10

each edge is connection between two nodes. And, metrics they identified to describe the

properties of Internet topology as a graph are degree-rank power-law and eigenvalue-rank

power-law.

A major problem with such conclusions about Internet topology is the way measurements

are conducted as they miss around 30% of the links at AS level [12] [13]. Research that is based

on passive measurements usually rely on BGP routing tables which contain information about

links from one AS to its neighors. Other types of datasets include those from RouteViews Project

[22] and those obtained from Routing Information Service of RIPE [23]. On the other side,

active measurements (usually used to map Internet at router-level) based on traceroute are even

more biased due to number of firewalls, missing links and routing policies by individual

administrators. An example of famous active measurements resource is skitter tool developed by

CAIDA [24].

In order to better describe the structure of Internet, power-laws and degree distributions

are not enough. Different networks might have the same degree distribution but totally different

structural properties [25]. Thus, it is important to look beyond the degree distribution in order to

have more acurately models which reflect the real properties of a network. To do so, authors use

different metrics such as the correlation between node degrees to see wether high degree nodes

tend to connect with high degree nodes or to low degree nodes (assortativity coefficient) [26] and

how often a node or link (edge) can be found on the shortest path [27].

In this thesis work, the focus is to show if the network traffic has changed and show

network topology characteristics from a different perspective but using the same methodology

and metrics used by the work of authors mentioned above. Therefore, in Section 2.3 mathematics

of work mentioned are given and implementation of methods is shown.

2.3 DEFINITIONS

This Section shows the mathematics behind the definitions and notions found on the articles

reviewed above that are required to understand and quantify metrics of interest for this study.

 11

A random variable or a stochastic variable is discrete when it takes only countable

number of individual values and it is continuous if it assumes that all values within a specific

interval according to a density function .

Cumulative Distribution Function or CDF of a stochastic variable shows the probability that

is less than or equal to a given value :

Probability Distribution Function or PDF of is the derivative of CDF and is given as:

When is a discrete, we use PDF of probability function . This tells us the

probability that a values of is equal to . Some of the mentioned distributions in the Section

2.1 are:

Exponential Distribution:

 for and mean is

Poisson Distribution:

 for and mean is

Pareto Distribution:

 where ,

 12

Pareto Distribution is the most popular heavy-tailed distribution where for , the

distribution has infinite variance and for it has infinite mean.

Heavy-tailed distributions are used to understand underlying distribution of network

traffic as observations of self-similarity and long-range dependence have been strongly related to

the presence of heavy tailed distributions. As shown in [16], the probability that an event will

persist in the future increases with the period of observation of such event. For example, the

longer we observe a connection, the more certain we can be that it will repeat or continue in the

future.

In addition, network topology inferred from network traffic, both at router level and AS

level are shown to have a node degree distribution that decays much slower than exponential

[21]. A probability distribution of a function is given as:

 for ,

where is the tail-index and C is a positive constant.

To evaluate the presence of heavy tails, we plot probability density function for the

variable of our interest in a log-log plot and observe for the presence of linear behavior in the tail

of the data.

In order to estimate the value of shape parameter we use either least-square method or

Maximum-likelihood estimation (MLE). Least-square regression is computed using polifit

function in Matlab and MLE is computed using the method and code in [28]. Furthermore, to

check the goodness of fit, in addition to visual inspection where we plot our data together with

best fitted distribution, we calculate coefficient of determination , plot the residuals, and test

the null hypothesis against generated synthetic data.

In contrast to cumulative distribution function, index of central tendency is used to

describe the measured data using a single meaningful value. The most widely used index is the

mean or expected value:

 13

Measures or indices of dispersion are used in addition to those of central tendency in

order to have a more accurate and realistic conclusion typically when two measures are

contrasted. They show the variability in a data. The ones that are mostly used are:

Variance:

Standard Deviation:

Coefficient of Variation:

Now, let be a time discrete stochastic process which is created by periodic sampling

across a series of fixed length and is a collection of random variables that represent the evolution

of some system.

Such stochastic process is said to be strictly stationary if:

 and

share the same distribution. That implies that a shifted process by is equivalent to its original

process with regard to finite dimensional distributions:

.

Strict stationarity is too restrictive and instead we are more interested in second-order or also

known as covariance stationary stochastic processes. That is, covariance only depends between

two time periods. For example, let’s say we have a time series of 5-hour byte counts. So,

 14

covariance of byte counts between hour 1 and hour 2 should be the same as covariance of values

between hour 3 and 4 (lay of 1 hour).

Thus, we characterize the dependence between two values of stochastic processes at

different times by evaluating the Autocorrelation Function (ACF). ACF of a time series at lag

and mean lies between -1 and 1 and is given by:

As a result, if packet size arrivals or byte counts are uncorrelated, all ACF values for the

calculated lags will lie around zero within 95% confidence interval.

In contrast, if there are no zero correlation values in , then we say that a stationary

stochastic process is long-range dependent (LRD). That implies that the sum of all ACF

values does not converge:

There are couple of definitions of self-similarity in literature, but we follow the sources

mentioned in the Section 2.1 and the most standard one states that a phenomenon is considered

self-similar if the properties of an object are preserved irrespective the scale in time or space. A

stochastic continuous time process is self-similar with self-similar parameter H and scaling

factor if:

This implies that and its version scaled in time , after normalized by , follow the

same distribution. Finally, a stochastic time-series is said to be second-order self-similar if the

autocorrelation function, ACF, preserves the same structure regardless the aggregation in time.

 15

Intuitively, self-similarity refers to scaling behavior of the distribution of a time-series while

LRD observes the behavior of tail of the ACF of assumed stationary time-series.

Self-similarity and long-range dependence can be quantified using only one parameter,

Hurst parameter H. For a second-order self-similar time-series is said to be long-range

dependent. Such process demonstrates a very slowly decaying ACF and the curve under the

slope has an area of infinity. In distribution terms, ACF has an exponential form of:

 as , where

and

As , the degree of self-similarity and long-range dependence are higher. For ,

usuaylly means that a time-series is short-range dependent and ACF decays exponentially fast.

For H=0.5 it would be a smooth Poisson traffic model. And, for values of or , the

result does not imply any useful information regarding the model.

2.3.1 Estimating Hurst Parameter

Hurst parameter can only be estimated and not calculated using the definitions. Thus, in order to

test a time-series for self-similarity and long-range dependence, different properties of a finite

time-series composed of traffic values such as slow decaying variance of partial sums or spectral

density should be investigated. To do so, there are several Hurst estimate methods both in time

domain and frequency domain. The reason behind existence of more than one estimator is the

asymptotic nature of Hurst parameter itself [29]. We have used two estimators in time domain

and two in frequency domain. In time domain, we have chosen to use rescaled-range statistics

(R/S) and Variance-Time methods whereas in frequency domain we have chosen Periodogram

and Whittle methods. Each estimator looks at different properties of time series and below we

have described the four used ones. The relative accuracy of these estimators is discussed in [2].

 16

Methods for estimating Hurst parameter are implemented in Matlab using the reference code in

[30] and after compared with scientific tool, Selfis, developed by Karaginis et al [29], it is

observed that there are slight differences in results. Because Selfis is a more reliable tool and is

widely used by research community, results that will be shown in this work are calculated with

it.

2.3.1.1 R/S Method

For a time-series , sample mean and standard deviation , R/S statistics is the range of

partial sums of standard deviations from the mean, rescaled by . In our case, if we denote by

the number of bytes at time and if

to be the cumulative of byte counts up to time , then R/S statistics is given by:

 where

and,

One can estimate Hurst directly from a log-log plot of R/S versus the number of

observations of an aggregated time series. This gives a straight line with a slope estimating Hurst

parameter. The slope of a line fitted to the values in a graph is calculated by a least square

method. In practice, R/S cannot be calculated for every value of t and k and instead an equal

 17

number of non-overlapping blocks or intervals (lags) k are chosen. Because the least square

method is applied to log-log plot, it is chosen to use the logarithmically spaced values of k. The

dilemma in using R/S method is how to choose the adequate number of t and k values and the

low and up cut-off values to include in calculation. This can be one reason that Matlab code and

Java based tools, Selfis, show different results.

2.3.1.2 Variance Method

Let be an aggregated time-series which is derived from non-overlapping blocks of size m of

original time-series. That is, in one chosen interval or bin of let’s say 1 second we have 100

observations of byte counts, then is the value of byte counts during 1 second interval of 100

observations. After calculating the non-overlapping blocks and the variance, , of the

aggregated values in those blocks, the variance is plotted against the block size in a log-log plot.

If the formed line, has a slope between (applied by a least square method), it

indicates for self-similarity and Hurst parameter, H, can be calculated as . Dilemma

in computing Hurst with this method is how to choose the minimum and maximum cut-off block

sizes to include in calculations.

2.3.1.3 Periodogram Method

In order to investigate the shape of spectral density properties and the distribution of frequencies,

Periodogram is calculated using the definition below:

where is the frequency, N is the number of terms in a time-series, and X is the time-series. For

a time-series to be long-range dependent, periodogram should be proportional to . This

 18

implies that LRD is demonstrated in spectral density which is characterized by a power-law near

the origin. The slope formed in the log-log plot of the periodogram of the time-series forms a

straight line with . In practice, only the lowest 10-20% of approximately

 frequencies are used to estimate H.

2.3.1.4 Whittle

Whittle does not provide us with a graphical approach but is considered one of the most stable

estimator and estimating H together with 95% confidence interval is given by .

This method is based on the minimization of likelihood function applied to the periodogram of

the time-series. Because it requires to provide with an underlying stochastic process such

Fractional Gaussian noise (FGN) or Fractional ARIMA and is relatively complex to implement,

calculations are strictly relied on the scientific tool, Selfis.

2.3.2 Properties of Topology

The structure of Internet topology is built upon connections between hosts, routers or

Autonomous Systems. Properties of Internet topology at different granularities can be analyzed

and quantified using the metrics and notions of graph theory.

The unit properties of a graph are number of nodes (vertices) and number of links (edges)

(Figure 2). In our case, we have considered undirected graph which means that nodes connected

together have all the links bidirectional. Formally, a graph G with vertex set V and edge set E is

given by .

 19

AS X

AS Y

Host Level

Router Level

AS Level

Nodes
(vertices)

Links
(edges)

Figure 2. Unit Properties of graph at different granularities

The Internet topology, from the perspective of collected data traffic, is studied at IP

granularity (Router level), where one unique IP address is considered one router or one node. IP

addresses are extracted from participating hosts in a session (flow) and the number of unique

established connections that one IP has within interval is the number of links or edges this IP

address has acquired during this interval. Internet topology is studied at two timescales: 24 hours

and 7 days.

To quantify underlying structure of the topology, it is chosen to use some of the most popular

metrics used in literature which are mentioned in Section 2.2. Such metrics include centrality

metrics, correlation between node degrees and diameter of the graph.

Centrality metrics can be classified into metrics based on the number of connections

(degree) and metrics based on the shortest paths in the network. Degree centrality and

eigenvector centrality are categorized based on the degree while betweeness centrality based on

the shortest path. Degree centrality and degree distribution are many times considered

illuminating as they only describe a network topology based on the number of connections a

node has. But, network elements that are more visited are clearly more important for end users

and thus are more critical for network topology and its properties. The node degree distribution is

the probability that a randomly selected node is k degree:

 20

where n(k) is the number of nodes n that have degree k. As mentioned in Section 2.2, degree

distribution is shown to obey power-laws. Intuitively, this means that majority of nodes have low

degree but small number of nodes, also known as hubs, have high degree.

Beyond centrality metrics, assortativity mixing by degree, , is used to investigate the

correlation between nodes. Assortativity mixing shows the preference of a high-degree node to

attach to other high-degree ones. For evaluating on a network under study, one can calculate

Pearson correlation coefficient as stated in [26]:

where , are the degrees of the nodes at the ends of th edge, with . This and other

graph metrics are calculated using iGraph-R which are based on the implementation from [26].

The assortativity coefficient, r, can take values between . For negative a network is

considered disassortatively mixed by degree and vice versa. Internet topology is known to be

disassortatively mixed and shows that nodes with high degree are more connected to nodes with

low degree. Networks that are disassortative are more vulnerable to attacks.

Finally, the diameter of a graph is the maximum number of links a message has to

travel between any pair of nodes. That is, is the greatest distance between any pair of vertices

or, . To find the diameter of a graph, first the shortest path between each pair of

nodes are calculated and then the greatest length of any of these paths is the diameter of the

graph. Surprisingly, many networks have been shown to have a very small diameter, regardless

https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)

 21

the huge number of nodes and links. This is known as small-world phenomenon. There have

been contradictions whether diameter increases over time with increased number of nodes in a

graph or not [31], and still empirical studies show contradicting results.

 22

3.0 DATA COLLECTION AND ANALYSIS

In the previous Section metrics and defined methods to quantify characteristics of the network

traffic and topological structure were described. In this Section, the network under study is

shown. In addition, traffic measurements and general characteristics of the collected data are

stated.

The dataset of the network traffic used in this paper is from a National Tier 1 Service

Provider, Post and Telecom of Kosovo (PTK), which serves more than one million broadband

users and is considered the biggest one in the country. PTK offers fixed and mobile converged

services. As most providers, it is also in the final transition phase from a telephony service

provider towards integrated quad play service provider.

PTK backbone is comprised of seven points of presence or aggregation sites (PoP)

distributed in geographical areas of the country. Recent technical developments are leading

towards convergence between fixed and mobile networks, especially in regards to broadband

services, and PTK is an example of this trend. Two Internet Border Gateways enable

communication to other upstream providers in global Internet. In this regard, we analyze traffic

both at IP level and autonomous system level (ASN) and by upstream traffic we assume the

traffic generated by any source IP address that falls in a range of allocated networks for PTK

toward other providers (global Internet) and with downstream traffic, the traffic that has as a

destination one of these IP addresses that falls in this range. An overview of the data

measurement infrastructure is depicted in Figure 3 and is broadly divided into three main

components: Monitoring, Collection and Analysis.

 23

Figure 3. PTK Network and measurement infrastructure to collect data from all regions in Kosovo. b)

Netflow definition for upstream/downstream traffic

3.1 MONITORING

First, IP Flow feature was enabled in two Internet Border Gateways (IBGs). In our case, NetFlow

protocol was already configured. NetFlow is one of the most used passive network monitoring

tools and was first developed and used by Cisco Operating Systems which later became a

standard for other manufactures [32]. Lately, NetFlow has been widely used by network

operators and found application in network capacity planning.

A general definition of an IP Flow is a quintet or a five-tuple made up of source and

destination IP address, source and destination port number and the protocol. From one flow,

information about traffic volume in bytes and packets can be extracted, source and destination IP

addresses, type of service, port numbers, protocol type, throughput in terms of packets per

SR7 A or B

Upstream

Any Source IP

address

Any Destination IP

address

Global Internet
KT

Downstream

 24

second and other details found in a IP packet header. In Table 1 a summary information is

depicted that can be found in a typical field of a NetFlow. From the table below, not all the fields

are used for the purpose of this paper. Basically, input/output interfaces, type of service and next

destination address did not contribute to this study at all.

Table 1. Netflow fields and their description

Field Description Bytes

%ts Unix start time of the flow 4

%te Unix end time of the flow 4

%sa IPv4 source address where flow is originated from 4

%da IPv4 destination address where flow is destined to 4

%sp IPv4 source port where is originated from 2

%dp IPv4 destination port where flow is destined to 2

%pr Protocols up to Layer 4: UDP, TCP, ICMP, ESP, etc. 1

%flg TCP flag 1

%tos IP type of service 1

%ipkt Number of packets in one session or flow 4

%ibyt Number of bytes for one session or flow 4

%in Interface number where incoming flow is processed by 4

%out Interface number where outgoing flow is processed by 4

%smk Source subnet prefix based on BGP router’s table 1

%dmk Destination subnet prefix based on BGP router’s table 1

%sas Autonomous System where flow was originated from 4

%das Autonomous System where flow is destined to 4

%nh Next destination address 4

Total Total Byte per Typical Flow 53

In terms of access technologies, before we started collecting the data, we took a snapshot

from a Cacti RRD tool (tool used for traffic monitoring by PTK) to get an idea of traffic

utilization based on technologies. DSL&GPON comprise 94% of traffic (both upstream and

downstream), 3G/LTE has around 4.69% and WiFi has only 0.57%. Also, Figure 4 shows the

traffic load during seven days in PTK toward upstream providers a) and b), while, c) to e) shows

the YouTube traffic. In total, downstream network utilization is around 11.5 GB from which 5.5

 25

GB are only YouTube video. This implies that traffic in PTK network is more than 50% of

Internet video.

Figure 4. Traffic load in/out at gateways a) and b) and three Google Cache Servers located at PTK c)-e)

3.2 DATA COLLECTION

Second component is collecting and exporting IP flows using nfcapd, a netflow capture daemon

which is configured in the local shared machine at PTK as in [33]. All these series of packets that

share same quintet, or a flow, is saved on a IBGs either until buffer/cache is filled or every five-

minute interval. Whenever system clock hits five minutes interval or router IBG cash if filled, a

file in a format of nfcapd.<datastamp> is created, e.g. nfcapd.201512280845 contains data from

 26

Dec 28th 2015 08:45 onward. Data are stored in three folders (Source 1, Source 2 and Source 3)

where each folder contains subfolders with all dump files for respective day, Figure 5. Based on

a 5 min time interval, this results in 288 files per day. In Source 1 there are 92 subfolders (28

December 2015 to 31 March 2016) and each subfolder has 288 nfcapd files, which corresponds

to the interval of 5 minutes each (24*12=288). Same for Source 2 and Source 3. All the files

stored in local folders can be read with nfdump using its syntax and boolean expressions to filter

the data. For example, the command:

nfdump -r nfcapd.201512291520 “proto tcp”

selects all the flows in the file nfcapd.201512291520 and prints out ones that use TCP protocol

and other information like

…

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes Flows

2015-12-29 09:23:09.240 4.750 TCP 24.46.103.210:12733 -> 178.175.37.237:60651 2000 3.0 M 1

2015-12-29 09:23:02.230 11.780 TCP 213.163.125.246:43058 -> 8.254.105.254:80 2000 104000 1

…

showing the timestamp, duration of the session is seconds, protocol (only TCP because we used

the expression “proto tcp”), source IP address and the port number, destination IP address and

port number, number of packets sent during this session, bytes and the flows. Usually, number of

flows is 1 unless the connections that share the same parameters (src IP/port, dst IP/port and

Protocol) are aggregated. Aggregation can be accomplished by using the -a option after the

filename.

Collectors specifications are: RAM 18 Gb, CPU Intel Xeon 2 GHz, HDD 100 Gb, GE

NIC. From the collector, data is crawled and transferred to a personal FTP server and then to

University of Pittsburgh networking lab machine during night time using secure connection

(SSH2).

 27

IBG2

IBG1
Source 1

Source 2

Source 3

nfcapd nfdump

Figure 5. Data Collection using nfcapd and sources for processing netflows

3.3 DATA ANALYSIS

In addition to nfdump which can compute simple statistics, data are processed using custom

Python scripts in order to read large amount of flows in an efficient way and to store them in a

human-readable format. In order to compute statistical analysis of the data, software such as

Matlab, Selfis, R, Gephi and associated developed packages for them are used to get the most

accurate results.

Besides the question whether the Internet traffic shows self-similar and long-memory

nature it is also important to know general characteristics of the data set such as distribution of

packet sizes, traffic volume for inter and intra domain and what protocols are present and their

proportion. In this Section, main characteristics of the dataset that are used for the purpose of this

study are shown in Table 2. One can see an overview of the processed daily data that are used for

analysis. In total we have worked with 31,602,250 flows, when aggregated. They generated

 packets during seven-day interval. In addition, it shows the average number of

packets per second, average bytes per packet as well as the number of unique connections during

busy hours (11 AM to 3PM).

 28

Table 2. Characteristics of Dataset used in this study

Days Number

of Flows

Number of

Packets

Average

Packets

per second

Average

Bytes per

packets

Unique Connections

during busy hour

 (Upstream/Downstream)

Day1 9,467,477 25,259,807,842 1947494 1068 160911 / 1864484

Day2 4,261,459 20,526,364,391 2174049 1054 167047 / 1945073

Day3 2,929,059 16,161,126,666 1496402 986 334513 / 3585167

Day4 4,164,621 24,641,601,294 2085229 1058 227875 / 2705763

Day5 4,150,023 23,951,432,184 2094708 1064 212447 / 2277633

Day6 2,799,257 14,815,754,013 1371831 1065 183080 / 2122497

Day7 3,830,354 22,163,825,619 2052211 1043 235895 / 1705700

 31,602,250 147,519,912,009 13221924 1047

Figure 6 below shows the number of packets that arrive each minute for 24 hours for the

local traffic (intra-domain). In order to get information about the number of packets from the

dump files, timestamp and filter only the local traffic, custom python script is executed for all

files that should belong to a 24 h interval. To filter only local traffic, knowledge about

subnetworks from IP-Plan obtained by PTK is used. In order to concatenate all files processed by

python or nfdump, the classic unix tool, awk, is used all the times. For example, the script below

concatenates all the files that share the same header information and creates a new file.

…

awk '

FNR==1 && NR!=1 { while (/^<header>/) getline; }

1 {print}

' *.csv >bytesDownstream.csv

…

 29

Figure 6. Local Packet Traffic

There is a maximum of 4598000 packets in one minute at 13:51 and minimum of 372000

packets at 23:59. The maximum number of bytes is 667001000 bytes at 08:47 which surprisingly

is not contained by the maximum number of packets during this interval but corresponds to

4321000 packets. This suggests that despite the fewer packet arrivals at 08:47, they are greater in

size. The minimum number of bytes is 45597000 at 23:47. The local byte traffic during this

interval is shown in Figure 7.

 30

Figure 7. Local Byte Traffic

While the local traffic does not exceed more than 0.6 GB in one minute, downstream

traffic toward users within PTK network reaches a peak of 68.85 GB in one minute which

corresponds to time interval around 16:19 and minimum of 0.045 GB at 23:47. One can observe

that the peak interval is not the same for local and international downstream traffic. In addition,

if graphs for local traffic and downstream international traffic are compared (Fig 6 and 7 versus

Fig 8 and 9), it can be observed that international downstream traffic is much smoother than

local traffic when aggregated at one minute. This implies that at large-scale aggregations of

renewal processes where the number of sources and network traffic load increases, traffic tends

toward Poisson as shown in [4]. In contrast to [2], which suggest that with the increase load of

traffic, also the long-memory properties become even more evident, one should expect the

opposite where the LRD strength, H parameter, should be lower during busy hours for

downstream traffic.

 31

Figure 8. International Downstream Packets

Figure 9. International Downstream Bytes

 32

Another way of expressing the load in a more common unit is by counting or computing

bits per second or packets per second within interval of the interest. To do so, there is a simple

way by utilizing the nfdump and filtering syntax. For example, to see the average bps and pps

respectively during a 2-hour interval, one can use the following command:

nfdump -M Folder1:Folder2:Folder3 -R . -t 2015/12/29.15:00:00-2015/12/29.17:00:00

After it reads all the raw data, at the end of print it shows a summary of the processed flows:

…

Summary: total flows: 2232523, total bytes: 4813154636000, total packets: 4372031000, avg bps: 5347214353, avg

pps: 607143, avg bpp: 1100

Time window: 2015-12-29 14:57:31 - 2015-12-29 17:03:32

…

One can read the statistics about bits and packets per second during this interval. In this case, a 2-

hour interval was taken into consideration which corresponds to the peak hours on December 29

2015. It shows that average bits in one second is 5347214353 (around 5.3 Gbps) and in average

607143 packets in one second.

3.3.1 Protocols

The table below shows statistics about the proportion IP protocols which appears in the data

collected during a one-day interval. This, also can be done easily using the nfdump syntax which

can create a lot of top N statistics about protocols, destination or source IP addresses and others,

ordered by any available field. In this case, the Table 3 shows six present protocols ordered by

the volume (bytes) which is obtained using the syntax:

nfdump -M Source1/20151229_0005:Surce2/20151229_0005:Source3/2015:1229_0005 -R . -s proto/bytes

TCP continues to be the transport layer protocol that dominates the traffic with

approximately 93.3% of the bytes and 82% of the packets. Nearly 6.5% of bytes and 17.8% of

packets in one-day interval are UDP. TCP together with UDP comprise 99.9% of bytes and

99.8% of packets in PTK network. Note that other IP protocols, appear with negligible

probability. ESP and GRE, two IP encapsulation protocols that are mostly used in applications

such as Virtual Private Networks, comprise nearly 0.1% of the total traffic. Despite the fact that

organizations have been planning to move to IPv6 and its importance in new applications with

 33

Internet of Things, only 24 MB per day are generated by machines running IPv6 in PTK

network.

Table 3. IP Protocols Proportion

Proto Bytes (%) Packets (%) pps bps bpp

TCP 48.7 T(93.3) 42.6 G(82.0) 492493 4.5 G 1144

UDP 3.5 T(6.6) 9.2 G(17.8) 106691 320.1 M 375

ESP 33.0 G(0.1) 70.4 M(0.1) 814 3.1 M 468

ICMP 5.4 G(0.0) 55.1 M(0.1) 637 502554 98

GRE 4.2 G(0.0) 8.9 M(0.0) 103 387946 469

IPv6 24.2 M(0.0) 53000(0.0) 1 3692 457

3.3.2 Packet size

In the Figure 10, the frequency of packet sizes is given from a dataset extracted between 15:00

and 18:00 on December 29 2015. The smallest and largest packet sizes are 21 bytes and 1500

bytes respectively. The ten most frequent packet sizes are 1430, 1450, 32 52, 1472, 1492, 21, 40,

1480 and 1500. The smallest packet size of 21 bytes corresponds to the smallest possible data

sent from the application layer (1 byte) which has to be encapsulated in a header for lower layers.

The data (for example a keystroke of 1-byte character) is encapsulated in a TCP segment which

adds 20 bytes making the smallest possible packet size of 20+1=21 bytes. Similar, the 1500-byte

packet size corresponds to the most common maximum transmission unit (MTU) set by IP

technologies, such as Ethernet, that a layer can pass onwards without handling fragmentation.

 34

Figure 10. Frequency of Packet Sizes in PTK Network

Cumulative distribution of packet sizes is shown in Figure 11. It shows that 30% of

packets are small and less than 100 bytes, most of the packet sizes are distributed between 100

and 1400 and almost 30% of packets are between 1430 and 1500.

 35

Figure 11. Empirical Cumulative Distribution of Packet Sizes

 36

4.0 EXPERIMENTS AND RESULTS

In this Section we show experiments and results conducted from dataset illustrated in Section 3.

It begins by showing whether sample data in PTK network is self-similar and long-range

dependent and then the properties of network topology inferred from the same dataset with focus

on node degree distribution at IP level and other statistical parameters such as assortativity and

network diameter. Finally, other experiments conducted during this study are presented, where

packet size arrival independence and temporal disitrubution of top 10 IP addresses and Port

numbers is shown.

4.1 IS PTK NETWORK TRAFFIC SELF-SIMILAR AND LONG-RANGE

DEPENDENT?

In this section results of investigated traffic captured in PTK network traces are shown with

respect to self-similarity and long-range dependence. The definition of self-similarity and LRD

are based on the assumptions that the traffic, or the time-series of byte counts (or packet counts),

is stationary. This means that traffic that arrives at 1 second interval has the same mean and

variance and co-variance only depends on the lag, irrespective the time of the day traffic is

investigated. This would have not been true if we take into consideration intervals of 24-hours

due to periodicity and daily trends as the number of users and their behavior is different at

different time. The fact that stationarity is an elusive property of network traffic and it is very

difficult to distinguish between time-series that is stationary and long-range dependent with the

one that is non-stationary and short-range dependent, as a common rule is to examine traces in

intervals as short as possible. In this case, traces in 30 min interval are investigated both at low

hour and busy hour for seven days that arrive in bins of 1 second.

 37

4.1.1 Pictorial view of Periodicity and Self-Similarity

Before checking for self-similarity and LRD characteristics, we show the most well-known

property of traffic time-series, daily periodicity, together with the so called fractal-behavior of

network traffic. Figure 12 depicts some simple plots of the traffic volume (bytes per time unit) in

different timescales for the upstream traffic generated by all the sources. In Figure 12a) we can

observe the length of traffic bursts is present in even time scale of 10 s where traffic consists of

“bursty” sub periods separated by less “bursty” sub periods as was shown in LAN traffic in [2].

Then we consider one-day traffic in Figure 12c) and focus on a “randomly chosen” period Figure

12b). The graph shares similar characteristics with Figure 12d) where we “zoomed in” by factor

of 10 (1 s granularity). This is known as fractal-like behavior of network traffic or self-similarity.

 38

Figure 12. Pictorial view of Periodicity and Self-similarity - a) weekly and c) daily periodicity; b) a random

interval when d) zoomed by factor of 10

4.1.2 Self-similarity and Long-range dependence

In this Section, we show the results of seven-days traces for downstream traffic using four types

of Hurst estimators, two in frequency domain and two in time domain. For each day we have

1,800 aggregated measurement points for byte counts and packet counts in interval of 30 min

during busy hour (15:30:00 to 15:59:59) and low hour (23:30:00 to 23:59:59) at 1 s granularity.

Results show that Hurst parameter varies between 0.4 and 0.75 for other estimators except the

R/S statistics computed by Selfis. For low hours, Hurst is slightly higher than for busy hours.

Again, suggesting that with the increase load and number of users, traffic becomes smoother and

 39

short-range dependent. Results of computed Hurst for all the traces are shown in the Table 5 (in

Appendix A). Next, daily results for Hurst estimation are presented for:

a) Busy-Hour Traffic (15:30:00 to 15:59:59) and

b) Low-Hour Traffic (11:30:00 to 11:59:59)

Busy-Hour: Periodogram shows that data fit for the slope at (-4.988) and thus it suggests

that time-series is self-similar but short-range dependent, Figure 13. Likewise, Time-variance

plot in Figure 14 shows a line with the slope of almost (-1), at around -1.048, and

 The plot of R/S method shows a slope of ~0.53 which is clearly close

to the line with slope , Figure 15. Finally, Whittle estimator shows together with

confidence interval with 90% confidence level. Whittle estimator is the only

one which does not provide us with graphical approach, but it has provided us with the most

stable results at all timescales. Results for seven days are shown in Figure 16, from where it can

be observed that all estimators show very similar results each day, suggesting that traffic in PTK

network is short range dependent in large-time scales for all samples both for byte and packet

counts.

 40

Figure 13. Periodogram for Busy Hour Byte Series

 41

Figure 14. Time Variance for Busy Hour Byte Series

 42

Figure 15. R/S for Busy Hour Byte Series

 43

Figure 16. Hurst based on different estimators in busy hour for seven days a) Byte b) Packet counts

Low-Hour: Figure 17 shows the variation of Hurst parameter during seven days for byte

and packet counts during low-hour. In contrast to busy hour, Hurst is slightly higher (around

0.02). Despite the ample evidence that Hurst parameter for time-series shows values H>0.75, we

witness that overall PTK network traffic for investigated traces is short-range dependent. In

addition, if results rely only on Whittle estimator, it can be observed that Hurst is within interval

bounds of 0.461 and 0.573. This implies that these traces can be well approximated by classical

models such as Poisson, because a H=0.5 is a pure Brownian Motion which shares the same

independent and memoryless properties of Poisson.

 44

Figure 17. Hurst based on different estimators in low hour for seven days a) Byte b) Packet counts

4.2 TOPOLOGY CHARACTERISTICS FROM THE NETWORK TRAFFIC

In this Section results for underlying structure of network topology are shown based on the

network traffic traces that are observed for 7 days. The structure of network topology is

investigated with regards to node degree, network diameter and correlation between nodes. To

calculate the degree of each node, we have extracted all pairs of IP addresses (source-destination

pairs) from the communicating hosts using nfdump syntax. Because of an extensive amount of

raw data during, in order to get information about all communicating hosts within one day, flows

that last less than 1000 ms and those that transfer less than 100 bytes are filtered out. This has no

 45

or negligible effect on number of IPs as the same IPs are shown in other sessions as well.

Command used to filter source and destination IPs is done using nfdump syntax as:

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and

bytes>100' -o "fmt:%sa,%da" >Day1.csv

which filters flows during 29 December 2015 and dumps into a csv format file only source and

destination IP addresses. To get information about ASes, instead of extracting IP addresses, one

can mine information from the AS field of a netflow (%sas and %das for source AS and

destination AS respectively). Same procedure as per IP addresses follows with regards to

labeling ASes and inferring information about connections between peers.

It is important to mention that source-destination IP addresses can interchange their

positions. For example, one connection originated by IP1 can be considered as IP1_to_IP2 and a

connection originated from IP2 can be considered as IP2_to_IP1. After that, a python script is

utilized to replace IP addresses with a numbering label instead of IP address format. For

example, IP address 10.10.10.10 is replaced with a number, let’s say 1. Finally, Matlab was used

to calculate the number of unique IP addresses and the number of connections each IP address

has (undirected graph where one pair is considered one connection, despite which IP is source or

destination of the connection).

4.2.1 Node Degree Distribution

This experiment shows the observed power-laws of the Internet topology inferred from daily

traffic traces. Scaling parameter obeys the power-law behavior and lies between

for seven day traces.

Initial observation is done by using a log-log plot of PDF of node the degree as can be

seen in Figure 8 (left shows the histogram and right the PDF in log-log scale). After the initial

observation, data is the power-law distribution is inspected visually for a fit of and

calculated based on MLE.

 46

Figure 18. Initial inspection of power-law behaviour of Node degree

Visual inspection: Figure 19 presents the results graphically for node degree distribution

for seven-day traces together with respective values of estimated . Blue line represents our data

points and red one the distribution fit using MLE, given our data. In addition, Figure 19 (last

down-right) shows the stability of parameter . Parameter for all datasets is

 47

Figure 19. Node Degree distribution and exponential parameter alpha using MLE

4.2.2 Other Topology Characteristics

In the table below, a summary of measured metrics for seven days is given where n is the

number of nodes, m is number of links, c(min) is the minimum degree, c(max) maximum degree,

c(avg) is average degree, D is the farthest node distance, C is Global clustering coefficient and r

is the assortativity coefficient.

 48

Maximum number of connections a node has (node degree) is 136,447. This type of node when

identified using online WHOIS databases, is associated to social media networks (Facebook for

example).

Diameter of the network varies between 17 to 26 and despite the contradictions that it increases

or shrinks with the number of nodes in a network, we do not see any pattern here. For example,

for traces in Day5, that has both fewer number of nodes and links than traces for Day6, diameter

is higher. On the other hand, if we compare traces for Day2 and Day3 we have the opposite.

Diameter of traces for Day2 has fewer nodes but same value, 22.

Assortativity coefficient has values between -0.23 to -0.198 and shows similar that

characterize Internet structure from other results. Meaning that low-degree nodes tend to connect

more with high-degree nodes and the vice versa.

Table 4. Main Topology Characteristics

Day n m c(min) c(max) c(avg) D r

1 151868 1566942 1 93180 20.63558 17 -0.22804

2 157417 1560825 1 99529 19.83045 22 -0.23314

3 188180 1859187 1 86866 19.75967 22 -0.20455

4 155321 1688403 1 83962 21.74082 23 -0.23454

5 171495 1745819 1 96424 20.36 26 -0.237074

6 175167 1841772 1 136447 21.02876 20 -0.215368

7 164153 1722727 1 132863 20.98928 20 -0.19837

4.2.3 Topology Characteristics at AS Level

At AS level, collected traffic data revealed information for BGP direct neighbor’s ISP has. This

implies that netflow data shows BGP peering configuration and number of connections between

AS of PTK and others. We identified that PTK has 4 direct BGP peers, from which 3 are other

 49

National Internet Service Providers to which PTK is connected through Internet Exchange Point

(IXP) and the other is INIT7, a transit provider to reach other parts of global network.

Information about other ASes through which traffic flows cannot be revealed and

basically netflow identifies those as ASN zero. Because of this limitation, metrics for

characterizing topological structure at AS-level does not give any useful information. Despite

that, we calculated node degree and assortativity to understand how are the four identified

domains connected with domain of PTK. As expected, the top domain is the transit domain,

INIT7, with degree in average of 933,498 for 7 day traces. Others, the local peers, have a degree

in average of 311,558, 146,464 and 40,133 respectively. Degree, in this case means the number

of unique connections each AS has within one day. Assortative at AS level for seven day traces

is in average -0.105.

4.3 OTHER EXPERIMENTS

In addition to self-similar nature of internet traffic and main characteristics of topology, below

are other experiments that are very common in literature and articles reviewed in Section 2. First

one is the independence of packet size arrivals in order to show the validity of Poisson

assumptions in smaller time-scales. Second experiment aims to check the rank distribution of top

10 IP and Port numbers for a period of 7 days.

4.3.1 Independence of Packet Size Arrivals

In this experiment we show the distribution of packet sizes of 1,000,000 consecutive packet

arrivals from a snapshot of our dataset. Results show that packet size arrivals appear to be

independent and consistent with findings in [4]. The independence of packet size arrivals is

validated using three types of tests:

a) The autocorrelation function (ACF)

b) Box-Ljung Q-test

c) Visual inspection using scatter plot

 50

Autocorrelation function: Figure 20 presents the autocorrelation function calculated for

200 lags of 1,000,000 packet arrivals for the packet size series. Packet sizes series consist of the

packets as individual flows arrive, without aggregation. There is a trivial correlation for small

lags, but it is close to zero with confidence level higher than 95%.

Box-Ljung Statistic: The Box-Ljung Q-test statistic is used to test for correlation of

packet size series. The Box-Ljung statistic is defined as:

,

where is the autocorrelation function for lags and the length of the series. The null

hypothesis for this test is that the first autocorrelations are jointly zero. Using Matlab, we

computed the test for lags 1 up to 200 and null hypothesis is rejected for any of values with

confidence level 95%. This indicates that packet size series can be considered independent and

identically distributed.

Visual inspection: In Figure 21 we visually examined packet size series with itself

. Scatter plots are a graphical representation of relationship between two quantitative

variables or can be used to test independence of a one variable when plotted with shifted version

of itself. In X-axis we have the size of packets at time and in Y-axis we have the packet size at

. Because the plot is symmetric and no relationship can be observed, we can conclude that

packet size series are independent.

 51

Figure 20. Sample ACF of packet sizes. Correlation Coefficients are within 95% C.I.

Figure 21. Scatter plot of 1,000,000 consecutive packet sizes.

 52

4.3.2 Distribution of IP addresses and Port Numbers

This experiment aims to check for temporal properties of the dataset under study. We show that

distribution of frequencies for port numbers and IP addresses do not change over time. To do so,

we evaluate daily measurements for most active destination IP addresses and port numbers for

the upstream traffic and calculate parameter where data can fit an exponential form of

. We show that the number of days have very little impact in the distribution of most

visited port numbers and IP addresses. Certainly, our calculations are for only seven days, but we

have daily observations from a very rich number of sources and we do not expect that it changes

if we calculate for longer period. Instead variation is more related to daily periodicity rather than

number of days itself. It is important to mention that Network Address Translation (NAT) affects

the accuracy of the results as it cover-ups IP addresses and Port numbers.

Parameter during 7-day observations for most visited port numbers is

 with 90% confidence level, using t-test. And, for most visited IP

addresses is . It would be interesting to see for spatial diversity and

variation of parameter . A study in [34] claims that distribution of port numbers and IP

addresses varies from place to place. Data collected from this study considers university

institutions across a country with similar properties (such as number of students, faculties and

staff).

In addition, we have shown the fitted data to the exponential distribution of the form

discussed above and have checked the accuracy using:

a) Visual inspection of distribution fit

b) Residuals plot

c) Coefficient of determination .

 53

Visual inspection of distribution fit: Figure 22 and Figure 23 shows the best-fit parameter

together with least square in logarithmic form and cumulative distribution. In log-log plot we can

observe a piecewise linear line, which is an indication of heavy-tailed distribution.

Residuals plot: In order to show that most active port numbers and IP addresses can be

modeled using exponential distribution of a form , we can determine residuals.

Residuals are plotted in Figure 24 as a result of the difference between observed value of the

response variable and the value of the response value predicted by linear regression. For negative

values, prediction is said to be lower than observed values and for positive it is higher than

observed values.

Coefficient of determination : Coefficient of determination measures the proportion of

variation explained by the independent variable in a regression model and is given by

where is the variance of the predicted values and is the variance of the calculated values

from the measurements. Larger the the better model can explain variations and can take

values from zero to one, . For one day measurements, coefficient of determination is

 for port numbers and for IP addresses.

 54

Figure 22. Cumulative distribution function of most popular port numbers

Figure 23. Cumulative distribution function of most popular IP addresses for upstream traffic in one day.

 55

Figure 24. Residuals from data of one-day port numbers and IP addresses

 56

5.0 CONCLUSIONS

In this thesis work, network traffic at PTK was captured and analyzed. It is shown that Internet

traffic is characterized with daily periodicity and despite the aggregation in large time-scales (10

s and 1 s), it preserves the burstiness.

The downstream traffic at PTK is shown to be self-similar but not long-range dependent

with Hurst parameter estimated to . Results suggest that the changes in overall network

traffic have pushed the Internet in the general direction of better-behaved traffic models (i.e., the

Poisson assumption) or at least not in the direction of sophisticated models. The value of Hurst

depends on estimation method, bin size of measurements and the time measurements are taken.

All estimators are easily tricked by stationarity and instead shorter intervals should be taken into

consideration (seconds or minutes and not hours). In addition, the number of samples should be

increased while aggregating the time series into non-overlapping blocks at orders of

milliseconds. Also, as congestion is more problematic and evident in access network, results are

not valid in that case and the analysis of traffic LRD properties are more important in that part of

network. Most of backbones are overprovisioned and thus effect of traffic busrtiness in backbone

and core is much less of interest.

Then, we have used graph metrics to characterize topological properties interfered from

network traffic at router (IP) and AS level. At IP level, degree distribution obeys power-law

distribution with shaping parameter . Topology of PTK network inferred from

traffic traces shows dissasortative behavior with assortativity coefficient between -0.23 to -0.198.

And, diameter of the network varies between 17 to 26 and despite the contradictions that it

increases or shrinks with the number of nodes in a network, results showed that there is no

pattern from seven-day traces. At AS level, information about BGP peering configuration of an

 57

ISP can be inferred from Netflow and their importance can be identified based on the number of

connections.

Traffic was also investigated with respect to which packet sizes and protocols are more

present and their share. It is shown that most of the packets are small and TCP is still the largest

transport protocol.

Finally, it is shown that packet size arrivals at milliseconds granularity show no

correlation between each other and thus indicating that they can be considered independent and

identically distributed. And, top 10 IP addresses and Port numbers are stable and do not change

during the course of 7 days in terms of distribution.

5.1 FUTURE WORK

As becoming more familiar with the techniques of mining network traffic data and concepts of

network traffic in general, I consider this work as a first step toward a more rigorous analysis,

including implications of self-similarity and metrics to describe graphs.

First thing that should be done is to find an accurate technique to extract inter-arrival

times and test if they are mutually independent and identically distributed. Thus, to validate

hypothesis that Poisson can coexist together with LRD. Second, in this regard is to extract data at

finer granularities and shorter periods, where stationarity is less illusive.

As the structure of Internet traffic has changed, in terms of applications, it is very

important to study the Internet video in particular and to show whether the session lengths (ON

times) and video files sizes in Internet are the same with respect to distribution.

Other work that is in progress includes:

1. Detecting network anomalies using data mining techniques such as PARAFAC analysis.

In particular, port-scanning attack is shown to be easily detected and isolated using

multidimensional information as shown in [35].

2. Network topology visualization from where we can identify the role of the nodes in a

network, observe the sparseness of nodes and growth together with preferential

attachment phenomena over the time. In the Figure 25, it has been extracted

communicating nodes from Netflows for 15 minute interval and using Gephi software an

 58

undirected graph is constructed. It shows that only few nodes are highly connected, while

the majority have couple of edges. This is a visual way of observing a power-law

behavior of placement of nodes in a network.

Figure 25. Network topology visualization sample

 59

APPENDIX A

CODE AND FILES FOR EXPERIMENTS

This Appendix shows the codes that are used to conduct the experiments in this paper. In

addition, together with the codes, it shows how the files are (pre)processed and what are the

filenames of the processed raw data in order to use them for later purposes.

1. Packets and Bytes arrived at each minute for 24 h interval (Figure 5, 6, 7, 8)

#This script extracts packets and bytes that arrive at each minute together with Timestamp. It searches through all

#files in folders and for each folder generates a file with a name #folder+Experiment1And2.csv. Required packages

#before executing this script are also included.

import numpy

import pandas as pd

from pandas import Series, DataFrame

import pynfdump

import os

import sys

from datetime import date

import subprocess

folders = [name for name in os.listdir(".") if os.path.isdir(name)]

for folder in folders:

 py2 = open(folder+'Experiment1And2.csv','w')

 d=pynfdump.Dumper()

 d.set_where(dirfiles=folder) #folders that one assumes flows of that interval are found in.

#For figures 7 and 8, where only downstream traffic is queried, the below line becomes:

records=d.search(query="dst NET 213.163.125.0/19 or dst NET 178.175.0.0/17 or dst NET 185.47.188.0/22 and

#not (src NET 213.163.125.0/19 or src NET 178.175.0.0/17 or src NET 185.47.188.0/22)")

 records=d.search(query="src NET 213.163.125.0/19 or src NET 178.175.0.0/17 or src NET

185.47.188.0/22 and (dst NET 213.163.125.0/19 or dst NET 178.175.0.0/17 or dst NET 185.47.188.0/22)")

 tStart=[]

 bytes=[]

 packets=[]

 for r in records:

 tStart.append(r['first'])

 bytes.append(r['bytes'])

 60

 packets.append(r['packets'])

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'tStart':tStart, 'PACKETS':packets})

 bytesSeries['tStart'] = pd.to_datetime(bytesSeries['tStart'], format='%Y-%m-%d %H:%M:%S.%f')

 data = bytesSeries.groupby(['tStart'])

 data2 = data.sum()

 data3=data2.resample("1T", how='sum')

 data3.to_csv(py2, sep=',', encoding='utf-8')

 py2.close()

#This script plots only the 24h interval specified as '2015-12-31 12:00:00':'2015-12-31 12:59:00’.

#The same is used for byte and packet counts

import pandas as pd

import dateutil

import csv

import re

from pandas import DataFrame, Series

import numpy as np

import matplotlib.pyplot as plt

data20 = pd.read_csv("Local Traffic Bytes and Packets.csv") #Careful with the file name.

data20[tStart] = pd.to_datetime(data20[tStart], format='%Y-%m-%d %H:%M:%S')

data30 = DataFrame(data20)

data40 = data30.groupby([tStart])

data50 = data40.sum()

data60 = DataFrame(data50[BYTES]) #change to <PACKETS> to plot the packet counts

data70=data60['2015-12-31 12:00:00':'2015-12-31 12:59:00']

Data70.plot(colormap='winter', label='Series', style='k')

plt.grid()

manager = plt.get_current_fig_manager()

manager.window.showMaximized()

plt.savefig('ByteCounts1MBin.jpeg, format=jpeg, dpi=800) # Change the Name to <PacketCounts1MBin>

plt.show()

#Compute min, max for Byte and Packet counts

min(data70['PACKETS'])

max(data70[' PACKETS'])

min(data70['BYTES'])

max(data70[' BYTES'])

2. Protocols proportion (Figure 7 and 8)

To simply show the present protocols ordered by volume (bytes) in a data set, we used the nfdump syntax

nfdump -M Source1/20151229_0005:Surce2/20151229_0005:Source3/2015:1229_0005 -R . -s proto/bytes

3. Packet size (Figure 9 and 10)

#To get the packet size arrivals for one day, December 29 2015.

nfdump -M Day1:D1P1:D1P2:D1S1P1:D1S1P2:D2P1:D2P2:D2P3:D2S1P1:D2S1P2:D2S1P3 -R . -a -t

2015/12/29.15:00:00-2015/12/29.18:00:00 -o "fmt:%ts,%bpp" | sort > PacketSizesDec29BusyHours.csv

 61

#Matlab code to see the frequency of packet sizes and to relative frequency plot

unique_k = unique(Y);
hist(Y,unique(unique_k));

min(Y);
max(Y);
ylabel('cumulative percentage');
xlabel('packet size (bytes)');
title({'Size of Packets arrived between 15:00:00 to 18:00:00, Dec 29 2015. Total packets: 2483248 Min=21,

Max=1500'});
grid on;
#Matlab code to plot the empirical cumulative distribution, ecdf

ecdf(Y);
ylabel('cumulative percentage');
xlabel('packet size (bytes)');
title({'Cumulative distribution of packet sizes'; '15:00:00 to 18:00:00, Dec 29 2015. Total packets: 2483248'});
grid on;

#10 most frequent Packet sizes in the dataset

load PacketSizesDec29BusyHoursOnlyPackets.csv;

Y=PacketSizesDec29BusyHoursOnlyPackets;

X = unique(Y);

for j = 1:length(X)

 Z =X(j);

x = strmatch(Z, Y, 'exact');

ind(j) = length(x);

end

Packets = sort(ind,'descend');

% get the top ten packet sizes

for n = 1:10

 [pack, inde] = find(ind==Packets(n))

 X(inde)

end

4. Periodicity and Self-similarity (Figure 11)

#Extract the byte time-series from raw data in 10s granularity for upstream traffic that is generated by

#users in two subnets of PTK: NET 178.175.0.0/19 NET 213.163.96.0/19

folders = [name for name in os.listdir(".") if os.path.isdir(name)]

for folder in folders:

 py2 = open(folder+'.csv','w')

 d=pynfdump.Dumper()

 #ip = "178.175.27.127" and "17.154.66.73"

 d.set_where(dirfiles=folder)

 records=d.search(query='src NET 178.175.0.0/19 or src NET 213.163.96.0/19') ## these are two networks

#of PTK. Confidential***

 bytes=[]

 time=[]

 for r in records:

 bytes.append(r['bytes'])

 time.append(r['first'])

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'TimePeriod' : time})

 62

 bytesSeries['TimePeriod'] = pd.to_datetime(bytesSeries['TimePeriod'], format='%Y-%m-%d

%H:%M:%S')

 data = bytesSeries.groupby('TimePeriod')

 data2 = data.sum()

 data3=data2.resample("10s", how='sum') #aggregate in 10 s bins.

 data3.to_csv(py2, sep=',', encoding='utf-8')

 py2.close()

#Pot 11b) and c).

data20 = pd.read_csv("PBUWeek1.csv") #open the file that was a result of concatenated files in previous script

data20['TimePeriod'] = pd.to_datetime(data20['TimePeriod'], format='%Y-%m-%d %H:%M:%S')

data30 = DataFrame(data20)

data40 = data30.groupby(['TimePeriod'])

data50 = data40.sum()

data60 = DataFrame(data50)

#Resample now inevery 10s

data70=data60['2016-01-02 00:00:00':'2016-01-02 23:59:50'] #c)

data70=data70.resample("10s", how='sum')

data71=data70['2016-01-02 11:00:00':'2016-01-02 14:59:50'] #b)

data71=data71.resample("10s", how='mean')

data71=DataFrame(data71)

data72=DataFrame(data71, index=data70.index)

#One day bytes in 1s granularity extracted using the same script as previous, only sampling done in 1s.

data200 = pd.read_csv("Day5Bytes.csv")

data200['TimePeriod'] = pd.to_datetime(data200['TimePeriod'], format='%Y-%m-%d %H:%M:%S.%f')

data300 = DataFrame(data200)

data500 = data300.groupby(['TimePeriod'])

data500 = data500.sum()

data600 = DataFrame(data500)

data650 = data600['2016-01-02 11:00:00':'2016-01-02 14:59:50'] #d)

#Create Figure and plot.

fig, axes = plt.subplots(nrows=2, ncols=2)

data75.plot(ax=axes[0,0],colormap='winter', label='Series',kind='area')

data70.plot(ax=axes[1,0],colormap='winter', label='Series',kind='area')

data71.plot(ax=axes[0,1],colormap='winter', label='Series',kind='area')

data650.plot(ax=axes[1,1],colormap='winter', label='Series',kind='area')

plt.grid()

manager = plt.get_current_fig_manager()

manager.window.showMaximized()

plt.savefig('FracatBehaviour.jpeg', format='jpeg', dpi=800)

plt.show()

5. Time-series for calculating Hurst Parameter and Methods

import numpy

import pandas as pd

from pandas import Series, DataFrame

import pynfdump

import os

import sys

from datetime import date

import subprocess

folders = [name for name in os.listdir(".") if os.path.isdir(name)]

 63

for folder in folders:

 py2 = open(folder+'LRD.csv','w')

 d=pynfdump.Dumper()

 d.set_where(dirfiles=folder) #folders that one assumes flows of that interval are found in.

records=d.search(query="dst NET 213.163.125.0/19 or dst NET 178.175.0.0/17 or dst NET 185.47.188.0/22")

 tStart=[]

 bytes=[]

 packets=[]

 for r in records:

 tStart.append(r['first'])

 bytes.append(r['bytes'])

 packets.append(r['packets'])

 bytesSeries = pd.DataFrame({'BYTES' : bytes, 'tStart':tStart, 'PACKETS':packets})

 bytesSeries['tStart'] = pd.to_datetime(bytesSeries['tStart'], format='%Y-%m-%d %H:%M:%S.%f')

 data = bytesSeries.groupby(['tStart'])

 data2 = data.sum()

 data3=data2.resample("1S", how='sum') #Bins of 1 seconds.

 data3.to_csv(py2, sep=',', encoding='utf-8')

 py2.close()

#Compute (Estimate) Hurst parameter using the code below (code in [30]) or directly from Selfis Tool

#(download link in http://alumni.cs.ucr.edu/~tkarag/Selfis/Selfis.html)

#Files that need/are uploaded containing time-series of bytes and packets.

#All these files are extracted from the main file that contains a 7 day time-series of byte and packet counts:

BytesAndPackets_1Second_Downstream.csv

%Files loaded for Bytes during Busy hour!

load Busy_Bytes_Dec29_LRD.csv;

a=Busy_Bytes_Dec29_LRD';

load Busy_Bytes_Dec30_LRD.csv;

b=Busy_Bytes_Dec30_LRD';

load Busy_Bytes_Dec31_LRD.csv;

c=Busy_Bytes_Dec31_LRD';

load Busy_Bytes_Jan1_LRD.csv;

d=Busy_Bytes_Jan1_LRD';

load Busy_Bytes_Jan2_LRD.csv;

e=Busy_Bytes_Jan2_LRD';

load Busy_Bytes_Jan3_LRD.csv;

f=Busy_Bytes_Jan3_LRD';

load Busy_Bytes_Jan4_LRD.csv;

g=Busy_Bytes_Jan4_LRD';

%Files loaded for Bytes during Low hour!

load Low_Bytes_Dec29_LRD.csv;

aa=Low_Bytes_Dec29_LRD';

load Low_Bytes_Dec30_LRD.csv;

bb=Low_Bytes_Dec30_LRD';

load Low_Bytes_Dec31_LRD.csv;

cc=Low_Bytes_Dec31_LRD';

load Low_Bytes_Jan1_LRD.csv;

dd=Low_Bytes_Jan1_LRD';

load Low_Bytes_Jan2_LRD.csv;

ee=Low_Bytes_Jan2_LRD';

load Low_Bytes_Jan3_LRD.csv;

ff=Low_Bytes_Jan3_LRD';

load Low_Bytes_Jan4_LRD.csv;

http://alumni.cs.ucr.edu/~tkarag/Selfis/Selfis.html

 64

gg=Low_Bytes_Jan4_LRD';

%Files loaded for Packets during Busy hour!

load Busy_Packets_Dec29_LRD.csv;

pa=Busy_Packets_Dec29_LRD';

load Busy_Packets_Dec30_LRD.csv;

pb=Busy_Packets_Dec30_LRD';

load Busy_Packets_Dec31_LRD.csv;

pc=Busy_Packets_Dec31_LRD';

load Busy_Packets_Jan1_LRD.csv;

pd=Busy_Packets_Jan1_LRD';

load Busy_Packets_Jan2_LRD.csv;

pe=Busy_Packets_Jan2_LRD';

load Busy_Packets_Jan3_LRD.csv;

pf=Busy_Packets_Jan3_LRD';

load Busy_Packets_Jan4_LRD.csv;

pg=Busy_Packets_Jan4_LRD';

%Files loaded for Packets during Low hour!

load Low_Packets_Dec29_LRD.csv;

paa=Low_Packets_Dec29_LRD';

load Low_Packets_Dec30_LRD.csv;

pbb=Low_Packets_Dec30_LRD';

load Low_Packets_Dec31_LRD.csv;

pcc=Low_Packets_Dec31_LRD';

load Low_Packets_Jan1_LRD.csv;

pdd=Low_Packets_Jan1_LRD';

load Low_Packets_Jan2_LRD.csv;

pee=Low_Packets_Jan2_LRD';

load Low_Packets_Jan3_LRD.csv;

pff=Low_Packets_Jan3_LRD';

load Low_Packets_Jan4_LRD.csv;

pgg=Low_Packets_Jan4_LRD';

#Time Variance Mathod

function H = aggvar(sequence,isplot)

%

% Time variance method

%

% Inputs:

% sequence: the input sequence for estimate

% isplot: whether display the plot. without a plot if isplot equal to 0

% Outputs:

% H: the estimated hurst coeffeient of the input sequence

if nargin == 1

 isplot = 0;

end

N = length(sequence);

mlarge = floor(N/5);

M = [floor(logspace(0,log10(mlarge),50))];

M = unique(M(M>1));

n = length(M);

cut_min = ceil(n/10);

cut_max = floor(6*n/10);

V = zeros(1,n);

for i = 1:n

 m = M(i);

 k = floor(N/m);

 65

 matrix_sequence = reshape(sequence(1:m*k),m,k);

 V(i) = var(sum(matrix_sequence,1)/m);

end

x = log10(M);

y = log10(V);

y1 = -x+y(1)+x(1);

X = x(cut_min:cut_max);

Y = y(cut_min:cut_max);

p1 = polyfit(X,Y,1);

Yfit = polyval(p1,X);

yfit = polyval(p1,x);

beta = -(Yfit(end)-Yfit(1))/(X(end)-X(1));

H = 1-beta/2;

if isplot ~= 0

 figure,hold on;

 plot(x,y,'b*');

 h = plot(x,y1);

 plot(X,Yfit,'r-','LineWidth',2);

 plot(x(1:cut_min),yfit(1:cut_min),'r:','LineWidth',2);

 plot(x(cut_max:end),yfit(cut_max:end),'r:','LineWidth',2);

 xlabel('log10(Aggreate Level)','FontSize',10,'FontWeight','normal','Color','k');

 ylabel('log10(Viance)','FontSize',10,'FontWeight','normal','Color','k');

 T=title('Time Viance Method - Day Six');

 set(T,'FontSize',12,'FontWeight','normal');

 %str = {'Hurst Estimated: ', num2str(H)};

 %text(1,16,str)

 grid on;

end

function H = RS(sequence,isplot)

%

% R/S method.

%

% Inputs:

% sequence: the input sequence for estimate

% isplot: whether display the plot. without a plot if isplot equal to 0

% Outputs:

% H: the estimated hurst coeffeient of the input sequence

if nargin == 1

 isplot = 0;

end

N = length(sequence);

dlarge = floor(N/5);

dsmall = max(10,log10(N)^2);

D = floor(logspace(log10(dsmall),log10(dlarge),50));

D = unique(D);

n = length(D);

x = zeros(1,n);

y = zeros(1,n);

R = cell(1,n);

S = cell(1,n);

for i = 1:n

 d = D(i);

 m = floor(N/d);

 R{i} = zeros(1,m);

 S{i} = zeros(1,m);

 66

 matrix_sequence = reshape(sequence(1:d*m),d,m);

 Z1 = cumsum(matrix_sequence);

 Z2 = cumsum(repmat(mean(matrix_sequence),d,1));

 R{i} = (max(Z1-Z2)-min(Z1-Z2));

 S{i} = std(matrix_sequence);

 if min(R{i})==0 || min(S{i}) ==0

 continue;

 end

 x(i) = log10(d);

 y(i) = mean(log10(R{i}./S{i}));

end

% fit a line with middle part of sequence

index = x~=0;

x = x(index);

y = y(index);

n2 = length(x);

cut_min = ceil(3*n2/10);

cut_max = floor(9*n2/10);

X = x(cut_min:cut_max);

Y = y(cut_min:cut_max);

p1 = polyfit(X,Y,1);

Yfit = polyval(p1,X);

H = (Yfit(end)-Yfit(1))/(X(end)-X(1));

if isplot ~= 0

 figure,hold on;

 bound = ceil(log10(N));

 axis([0 bound 0 0.75*bound]);

 temp = (1:n).*index;

 index = temp(index);

 for i = 1:n2

 plot(x(i),log10(R{index(i)}./S{index(i)}),'b.');

 end

 x = linspace(0,bound,10);

 y1 = 0.5*x;

 y2 = x;

 h1 = plot(x,y1,'b--','LineWidth',2);

 h2 = plot(x,y2,'b-.','LineWidth',2);

 plot(X,Yfit,'r-','LineWidth',3);

 legend([h1,h2],'slope 1/2','slope 1',4)

 xlabel('log10(blocks of size m)','FontSize',10,'FontWeight','normal','Color','k')

 ylabel('log10(R/S)','FontSize',10,'FontWeight','normal','Color','k')

 T=title('R/S Method - One Week');

 set(T,'FontSize',12,'FontWeight','normal');

 %text(1,3,str)

end

function H = per(sequence,isplot)
%
% periodogram
% Inputs:
% sequence: the input sequence for estimate
% isplot: whether display the plot. without a plot if isplot equal to 0
% Outputs:
% H: the estimated hurst coeffeient of the input sequence
 if nargin == 1

 67

 isplot = 0;
end
n = length(sequence);
Xk = fft(sequence);
P_origin = abs(Xk).^2/(2*pi*n);
P = P_origin(1:floor(n/2)+1);
x = log10((pi/n)*[2:floor(0.5*n)]);
y = log10(P(2:floor(0.5*n)));
% Use the lowest 20% part of periodogram
X = x(1:floor(length(x)/5));
Y = y(1:floor(length(y)/5));
p1 = polyfit(X,Y,1);
Yfit = polyval(p1,X);
H = (1-(Yfit(end)-Yfit(1))/(X(end)-X(1)))/2;
if isplot ~= 0
 figure,clf,hold on;
 plot(x,y,'b.');
 plot(X,Yfit,'r-','LineWidth',3);
 xlabel('log10(Frequency)','FontSize',10,'FontWeight','normal','Color','k')
 ylabel('log10(Periodogram)','FontSize',10,'FontWeight','normal','Color','k')
 T=title('Periodogram Method - Norma Hour Day Five');
 set(T,'FontSize',12,'FontWeight','normal');
 %str = {'Hurst Estimated: 1.122'}; //here is written parameter estimated by SELFIS (for more acurate res)
 %text(-0.5,17,str)
 grid on
end

#Figure 16 and 17, using the data from Table 5 for vectors AV, RS, PG, WT.

%Comparing Hurst Parameters (Busy Hours)

AV=[]

RS=[]

PG=[]

WT=[]

plot(AV,'-r*','LineWidth',1,'MarkerSize',6)

hold on

plot(RS,'-bo','LineWidth',1,'MarkerSize',6)

hold on

plot(PG,':gs','LineWidth',1,'MarkerSize',6)

hold on

plot(WT,':bs','LineWidth',1,'MarkerSize',6)

ylim([0 2])

xlim([0.8,7.2])

grid on

legend('AV','RS','Periodogram','Whittle','Location','northwest')

ylabel('Estimated H'); xlabel('Daily'); title('H based on Different Estimators - Busy Hours')

 68

Table 5. Hurst computed (up) using Selfis tool and (down) using Matlab codes

Aggregate

Variance
R/S Periodogram

Aggregate

Variance
R/S Periodogram

Bytes 0.515 0.156 0.549 0.5 0.461-0.538 0.654 0.37 0.596 0.5 0.461-0.538

Packets 0.615 0.138 0.499 0.5 0.461-0.538 0.702 0.305 0.578 0.5 0.461-0.538

Bytes 0.663 0.179 0.587 0.5 0.461-0.538 0.698 0.348 0.555 0.536 0.498-0.575

Packets 0.658 0.141 0.598 0.5 0.461-0.538 0.721 0.303 0.535 0.534 0.495-0.573

Bytes 0.769 0.259 0.492 0.534 0.496-0.573 0.783 0.312 0.605 0.541 0.502-0.580

Packets 0.803 0.204 0.534 0.536 0.497-0.575 0.695 0.389 0.509 0.533 0.495-0.572

Bytes 0.438 0.207 0.571 0.5 0.461-0.538 0.612 0.335 0.485 0.5 0.461-0.538

Packets 0.512 0.142 0.536 0.5 0.461-0.538 0.629 0.259 0.373 0.5 0.461-0.538

Bytes 0.583 0.122 0.48 0.5 0.461-0.538 0.623 0.342 0.445 0.5 0.461-0.538

Packets 0.581 0.063 0.412 0.5 0.461-0.538 0.659 0.251 0.426 0.5 0.461-0.538

Bytes 0.572 0.14 0.507 0.5 0.461-0.538 0.695 0.389 0.509 0.533 0.495-0.572

Packets 0.572 0.14 0.507 0.5 0.461-0.538 0.684 0.307 0.474 0.52 0.481-0.558

Bytes 0.552 0.149 0.503 0.5 0.461-0.538 0.282 0.389 0.386 0.5 0.461-0.538

Packets 0.591 0.121 0.504 0.5 0.461-0.538 0.488 0.325 0.388 0.5 0.461-0.538

Aggregate

Variance
R/S Periodogram

Aggregate

Variance
R/S Periodogram

Day1 Bytes 0.524 0.5272 0.4988 0.5386 0.508 0.5625

Packets 0.5504 0.4976 0.487 0.6087 0.5016 0.5617

Day2 Bytes 0.6739 0.5069 0.6572 0.6244 0.4661 0.5575

Packets 0.6609 0.5179 0.6646 0.6506 0.4654 0.5709

Day3 Bytes 0.8697 0.6218 0.6559 0.7885 0.5031 0.6539

Packets 0.9227 0.6234 0.7273 0.8331 0.4593 0.7112

Day4 Bytes 0.7185 0.5817 0.6781 0.6667 0.5122 0.5401

Packets 0.7597 0.5933 0.7373 0.7157 0.517 0.5756

Day5 Bytes 0.6554 0.5033 0.5414 0.635 0.4938 0.5674

Packets 0.7078 0.4626 0.5006 0.6783 0.459 0.5345

Day6 Bytes 0.5236 0.5347 0.4723 0.638 0.528 0.5569

Packets 0.5306 0.518 0.4737 0.6566 0.5288 0.5341

Bytes 0.4687 0.4811 0.5111 0.4593 0.5025 0.4837

Packets 0.4875 0.4533 0.5781 0.4762 0.4949 0.464
Day7

Matlab Tool
Busy Hour Low Hour

Day2

Day3

Day4

Day5

Day6

Day7

Low HourBusy Hour

Day1

Whittle and

 C.I. @ 95 C.L

Whittle and

 C.I. @ 95 C.L

SELFIS Java TOOL

6. Topology Characteristics

#Extracting only IPs from the Netflows with nfdump

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and

bytes>100' -o "fmt:%sa,%da" >FILENAME.csv

#Files processed with IP addresses as Nodes and Edges

graphDay1.csv

graphDay2.csv

graphDay3.csv

graphDay4.csv

graphDay5.csv

graphDay6.csv

graphDay7.csv

#Convert IPs into Labels (numbers)

import pandas as pd

import csv

 69

import re

from pandas import DataFrame, Series

import numpy as np

import sys

data2 = pd.read_csv("graphDay1.csv")

data3 = DataFrame(data2)

f = open('graphDay1Cleaned.csv','w')

IPs={};

IP_ctr=1;

for index, row in data3.iterrows():

 if not row['Source'] in IPs:

 IPs[row['Source']] = IP_ctr

 IP_ctr += 1

 IP_source_as_cts = IPs[row['Source']]

 if not row['Target'] in IPs:

 IPs[row['Target']] = IP_ctr

 IP_ctr += 1

 IP_target_as_cts = IPs[row['Target']]

 print >>f, ("{0},{1}".format(IP_source_as_cts, IP_target_as_cts))

f.close()

#Files created after above script that contain only labels are named and loaded in Matlab as:

load graphDay1Cleaned.csv
load graphDay2Cleaned.csv

load graphDay3Cleaned.csv

load graphDay4Cleaned.csv

load graphDay5Cleaned.csv

load graphDay6Cleaned.csv

load graphDay7Cleaned.csv

#Calculate Node Degree

edges = graphDay1Cleaned;%name of the file.

adjacentList={};
for i=1:1:max(max(edges,1))

 a=find(edges(:,1)==i);

 adjacentList{i,1}=edges(a,2)';

end

%Node Degrees

for i=1:1:size(adjacentList,1)

 Nodes_degrees_List(i,1) = size(adjacentList{i},2);

end

#Initial Inspection plot

uniquek = unique(Nodes_degrees_List);

for k=1:1:length(uniquek)

 b =find(Nodes_degrees_List==unique(k));

 k_occur(k,1) = length(b); %frequency

 end

p_of_k = k_occur/sum(k_occur);

figure(1)

bar(uniquek,p_of_k)

title('Probability Degree Distribution - Day1'); %name careful

 70

xlabel('Node Degree (k)');

ylabel('P(k)');

xlim([0 100]);

loglog(uniquek,p_of_k)

title('Day1');

xlabel('Node Degree (k)');

ylabel('P(k)');

grid on

#Calculate alpha and xmin

#Codes are taken from http://tuvalu.santafe.edu/~aaronc/powerlaws/ as described in [28]

% Execute:

% [alpha, xmin, L] = plfit(x);

%

% The output 'alpha' is the maximum likelihood estimate of the scaling

% exponent, 'xmin' is the estimate of the lower bound of the power-law

% behavior, and L is the log-likelihood of the data x>=xmin under the

% fitted power law.

vec = [];

sample = [];

xminx = [];

limit = [];

finite = false;

nosmall = false;

nowarn = false;

% parse command-line parameters; trap for bad input

i=1;

while i<=length(varargin),

 argok = 1;

 if ischar(varargin{i}),

 switch varargin{i},

 case 'range', vec = varargin{i+1}; i = i + 1;

 case 'sample', sample = varargin{i+1}; i = i + 1;

 case 'limit', limit = varargin{i+1}; i = i + 1;

 case 'xmin', xminx = varargin{i+1}; i = i + 1;

 case 'finite', finite = true;

 case 'nowarn', nowarn = true;

 case 'nosmall', nosmall = true;

 otherwise, argok=0;

 end

 end

 if ~argok,

 disp(['(PLFIT) Ignoring invalid argument #' num2str(i+1)]);

 end

 i = i+1;

end

if ~isempty(vec) && (~isvector(vec) || min(vec)<=1),

 fprintf('(PLFIT) Error: ''range'' argument must contain a vector; using default.\n');

 vec = [];

end;

if ~isempty(sample) && (~isscalar(sample) || sample<2),

 fprintf('(PLFIT) Error: ''sample'' argument must be a positive integer > 1; using default.\n');

http://tuvalu.santafe.edu/~aaronc/powerlaws/

 71

 sample = [];

end;

if ~isempty(limit) && (~isscalar(limit) || limit<min(x)),

 fprintf('(PLFIT) Error: ''limit'' argument must be a positive value >= 1; using default.\n');

 limit = [];

end;

if ~isempty(xminx) && (~isscalar(xminx) || xminx>=max(x)),

 fprintf('(PLFIT) Error: ''xmin'' argument must be a positive value < max(x); using default behavior.\n');

 xminx = [];

end;

% reshape input vector

x = reshape(x,numel(x),1);

% select method (discrete or continuous) for fitting

if isempty(setdiff(x,floor(x))), f_dattype = 'INTS';

elseif isreal(x), f_dattype = 'REAL';

else f_dattype = 'UNKN';

end;

if strcmp(f_dattype,'INTS') && min(x) > 1000 && length(x)>100,

 f_dattype = 'REAL';

end;

% estimate xmin and alpha, accordingly

switch f_dattype,

 case 'REAL',

 xmins = unique(x);

 xmins = xmins(1:end-1);

 if ~isempty(xminx),

 xmins = xmins(find(xmins>=xminx,1,'first'));

 end;

 if ~isempty(limit),

 xmins(xmins>limit) = [];

 end;

 if ~isempty(sample),

 xmins = xmins(unique(round(linspace(1,length(xmins),sample))));

 end;

 dat = zeros(size(xmins));

 z = sort(x);

 for xm=1:length(xmins)

 xmin = xmins(xm);

 z = z(z>=xmin);

 n = length(z);

 % estimate alpha using direct MLE

 a = n ./ sum(log(z./xmin));

 if nosmall,

 if (a-1)/sqrt(n) > 0.1

 dat(xm:end) = [];

 xm = length(xmins)+1;

 break;

 end;

 end;

 % compute KS statistic

 cx = (0:n-1)'./n;

 cf = 1-(xmin./z).^a;

 72

 dat(xm) = max(abs(cf-cx));

 end;

 D = min(dat);

 xmin = xmins(find(dat<=D,1,'first'));

 z = x(x>=xmin);

 n = length(z);

 alpha = 1 + n ./ sum(log(z./xmin));

 if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction

 if n < 50 && ~finite && ~nowarn,

 fprintf('(PLFIT) Warning: finite-size bias may be present.\n');

 end;

 L = n*log((alpha-1)/xmin) - alpha.*sum(log(z./xmin));

 case 'INTS',

 if isempty(vec),

 vec = (1.50:0.01:3.50); % covers range of most practical

 end; % scaling parameters

 zvec = zeta(vec);

 xmins = unique(x);

 xmins = xmins(1:end-1);

 if ~isempty(xminx),

 xmins = xmins(find(xmins>=xminx,1,'first'));

 end;

 if ~isempty(limit),

 limit = round(limit);

 xmins(xmins>limit) = [];

 end;

 if ~isempty(sample),

 xmins = xmins(unique(round(linspace(1,length(xmins),sample))));

 end;

 if isempty(xmins)

 fprintf('(PLFIT) Error: x must contain at least two unique values.\n');

 alpha = NaN; xmin = x(1); D = NaN;

 return;

 end;

 xmax = max(x);

 dat = zeros(length(xmins),2);

 z = x;

 fcatch = 0;

 for xm=1:length(xmins)

 xmin = xmins(xm);

 z = z(z>=xmin);

 n = length(z);

 % estimate alpha via direct maximization of likelihood function

 if fcatch==0

 try

 % vectorized version of numerical calculation

 zdiff = sum(repmat((1:xmin-1)',1,length(vec)).^-repmat(vec,xmin-1,1) ,1);

 L = -vec.*sum(log(z)) - n.*log(zvec - zdiff);

 catch

 % catch: force loop to default to iterative version for

 % remainder of the search

 fcatch = 1;

 73

 end;

 end;

 if fcatch==1

 % force iterative calculation (more memory efficient, but

 % can be slower)

 L = -Inf*ones(size(vec));

 slogz = sum(log(z));

 xminvec = (1:xmin-1);

 for k=1:length(vec)

 L(k) = -vec(k)*slogz - n*log(zvec(k) - sum(xminvec.^-vec(k)));

 end

 end;

 [Y,I] = max(L);

 % compute KS statistic

 fit = cumsum((((xmin:xmax).^-vec(I)))./ (zvec(I) - sum((1:xmin-1).^-vec(I))));

 cdi = cumsum(hist(z,xmin:xmax)./n);

 dat(xm,:) = [max(abs(fit - cdi)) vec(I)];

 end

 % select the index for the minimum value of D

 [D,I] = min(dat(:,1));

 xmin = xmins(I);

 z = x(x>=xmin);

 n = length(z);

 alpha = dat(I,2);

 if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction

 if n < 50 && ~finite && ~nowarn,

 fprintf('(PLFIT) Warning: finite-size bias may be present.\n');

 end;

 L = -alpha*sum(log(z)) - n*log(zvec(find(vec<=alpha,1,'last')) - sum((1:xmin-1).^-alpha));

 otherwise,

 fprintf('(PLFIT) Error: x must contain only reals or only integers.\n');

 alpha = [];

 xmin = [];

 L = [];

 return;

end;

#Distribution Plots (Fig 19)

% PLPLOT(x, xmin, alpha) plots (on log axes) the data contained in x

% and a power-law distribution of the form p(x) ~ x^-alpha for

% x >= xmin.

function h=plplot(x, xmin, alpha)

% reshape input vector

x = reshape(x,numel(x),1);

% initialize storage for output handles

h = zeros(2,1);

% select method (discrete or continuous) for plotting

if isempty(setdiff(x,floor(x))), f_dattype = 'INTS';

elseif isreal(x), f_dattype = 'REAL';

else f_dattype = 'UNKN';

end;

 74

if strcmp(f_dattype,'INTS') && min(x) > 50,

 f_dattype = 'REAL';

end;

% estimate xmin and alpha, accordingly

switch f_dattype,

 case 'REAL',

 n = length(x);

 c = [sort(x) (n:-1:1)'./n];

 q = sort(x(x>=xmin));

 cf = [q (q./xmin).^(1-alpha)];

 cf(:,2) = cf(:,2) .* c(find(c(:,1)>=xmin,1,'first'),2);

 figure;

 h(1) = loglog(c(:,1),c(:,2),'bo','MarkerSize',3,'MarkerFaceColor',[1 1 1]); hold on;

 h(2) = loglog(cf(:,1),cf(:,2),'k--','LineWidth',2); hold off;

 xr = [10.^floor(log10(min(x))) 10.^ceil(log10(max(x)))];

 xrt = (round(log10(xr(1))):2:round(log10(xr(2))));

 if length(xrt)<4, xrt = (round(log10(xr(1))):1:round(log10(xr(2)))); end;

 yr = [10.^floor(log10(1/n)) 1];

 yrt = (round(log10(yr(1))):2:round(log10(yr(2))));

 if length(yrt)<4, yrt = (round(log10(yr(1))):1:round(log10(yr(2)))); end;

 set(gca,'XLim',xr,'XTick',10.^xrt);

 set(gca,'YLim',yr,'YTick',10.^yrt,'FontSize',16);

 ylabel('Pr(X \geq x)','FontSize',16);

 xlabel('x','FontSize',16)

 legend([xr,yr],'slope 1/2','slope 1')

 case 'INTS',

 n = length(x);

 q = unique(x);

 c = hist(x,q)'./n;

 c = [[q; q(end)+1] 1-[0; cumsum(c)]]; c(c(:,2)<10^-10,:) = [];

 cf = ((xmin:q(end))'.^-alpha)./(zeta(alpha) - sum((1:xmin-1).^-alpha));

 cf = [(xmin:q(end)+1)' 1-[0; cumsum(cf)]];

 cf(:,2) = cf(:,2) .* c(c(:,1)==xmin,2);

 figure;

 h(1) = loglog(c(:,1),c(:,2),'bo','MarkerSize',4,'MarkerFaceColor',[1 1 1]); hold on;

 h(2) = loglog(cf(:,1),cf(:,2),'--r','LineWidth',1); hold off;

 xr = [10.^floor(log10(1)) 10.^ceil(log10(max(x)))];

 xrt = (round(log10(xr(1))):2:round(log10(xr(2))));

 if length(xrt)<4, xrt = (round(log10(xr(1))):1:round(log10(xr(2)))); end;

 yr = [10.^floor(log10(1/n)) 1];

 yrt = (round(log10(yr(1))):2:round(log10(yr(2))));

 if length(yrt)<4, yrt = (round(log10(yr(1))):1:round(log10(yr(2)))); end;

 legend('Data',sprintf('MLE alpha=%.3f',alpha));

 axis equal square

 set(gca,'XLim',xr,'XTick',10.^xrt);

 set(gca,'YLim',yr,'YTick',10.^yrt,'FontSize',12);

 ylabel('Pr(K \geq k)','FontSize',12);

 xlabel('Node Degree (k)','FontSize',12)

 T=title('Node Degree Distribution - Day7');

 set(T,'FontSize',12,'FontWeight','normal');

 grid on;

 75

 otherwise,

 fprintf('(PLPLOT) Error: x must contain only reals or only integers.\n');

 h = [];

 return;

end;

#Compare for 7 Days Alpha

%Comparing Hurst Parameters (Days of the Week)

Alpha=[2.00, 2.0200, 2.0200, 2.0100, 2.0600, 2.0300, 2.0100];

plot(Alpha,'-r*','LineWidth',1,'MarkerSize',6)

ylim([1.5 2.5])

xlim([0.8,7.2])

grid on

legend('Alpha','Location','northwest')

ylabel('Alfa'); xlabel('Daily'); title('Parameter Alpha using MLE')

#R Code to calculate Assortativity and Node Diamater (Table 4).

#In this workspace also other metrics are calculated such as:

#Betweeness Centrality

#Cluster Coefficitent

#Egent Vector Centrality

library(igraph)

dat=read.csv(file.choose(),header=TRUE)

el=as.matrix(dat) # data into a two-column matrix format

el[,1]=as.character(el[,1])

el[,2]=as.character(el[,2])

g=graph.edgelist(el,directed=FALSE) # turns the edgelist into a 'graph object'

Node_Degree=degree(g)

dSorted=sort.int(Node_Degree, decreasing = TRUE)

Average_Node_Degree=mean(degree(g))

Min_Node_Degree=min(degree(g))

Max_Node_Degree=max(degree(g))

#Diameter

Graph_Diameter=diameter(g,directed = FALSE,unconnected = TRUE)#if directed=True it returns +1 larger than

max number of vertices

Farthest_Node_Diameter=farthest.nodes(g, directed = FALSE, unconnected = TRUE)

#Assortativity

Assortativity_Degree=assortativity.degree(g)

Betweenes_Centrality = betweenness(g)

bSorted=sort(Betweenes_Centrality,decreasing = TRUE)

write.table(Betweenes_Centrality, "C:/Users/telecom/Desktop/artan/Day2_Betweenes_Centrality.csv", sep="\t")

#Cluster Coeff (also called Transitivity) for local (each vercex) and global

Global_Cluster_Coeff=transitivity(g,type=c("global"))

Local_Cluster_Coeff=transitivity(g,type=c("local"))

cSorted=sort.int(Local_Cluster_Coeff, decreasing = FALSE)

#Egent Vector Centrality

Egent_Vector_Centrality=evcent(g)

#Same code for ASes, Files that are pre and po-processed are named:

 76

ASD1.csv ASD1Cleaned.csv

ASD2.csv ASD2Cleaned.csv

ASD3.csv ASD3Cleaned.csv

ASD4.csv ASD4Cleaned.csv

ASD5.csv ASD5Cleaned.csv

ASD6.csv ASD6Cleaned.csv

ASD7.csv ASD7Cleaned.csv

7. Independence of Packet Size Arrivals

#Processed Files

% load PacketSizeApart;

% load PacketSizeApart1;

% Apart=PacketSizeApart;

% Apart1=PacketSizeApart1;

%% SAMPLE ACF for Packet Size Series

[ACF,lags,bounds] = autocorr(PacketSIzeAPART,[],2);

autocorr(PacketSIzeAPART,200); ylim([-0.05 0.1]);

ylabel('Sample Autocorrelation','FontSize',10,'FontWeight','normal','Color','k');

xlabel('Lag','FontSize',10,'FontWeight','normal','Color','k');

T=title('Sample ACF - Packet Size');

set(T,'FontSize',12,'FontWeight','normal');

%% Scatter Plot of 1million packet size arrivals

%%subplot(2,1,1)

scatter(Apart,Apart1,'*b','LineWidth',0.01);

ylabel('packet size (k+1)','FontSize',10,'FontWeight','normal','Color','k');

xlabel('packet size (k)','FontSize',10,'FontWeight','normal','Color','k');

T=title('Scatter Plot - Packet Size');

set(T,'FontSize',12,'FontWeight','normal');

%% BOX-JUNG STATISTIC TEST

mA=mean(Apart); %

mB=mean(Apart1);

sA=std(Apart);

sB=std(Apart1);

X1=(Apart-mA)/sA;

X2=(Apart1-mB)/sB;

X=X1.*X2;

n=length(Apart);

r=(1/(n-1))*sum(X) %%Autocorrelation value 0.0065

%%Box-Ljung using lbtest Matlab Function

i=1:200;

[h,pValue] = lbqtest(Apart,'lags',i,'alpha',0.05);

if h==0

 sprintf('There is not enough evidence to reject the null hypythesis')

end

 77

8. Distribution of 10 top IP addresses and Port Numbers (Figure 22, 23 Coef of Determination and Figure 24)

#Extracting only IPs from the Netflows with nfdump

nfdump -M Folder1:Folder2:Folder3 -R . -a -t 2015/12/29.00:00:00-2015/12/29.23:59:59 'duration > 10000 and

bytes>100' -o "fmt: %da" >FILENAME.csv

#Files processed with IP addresses

Files pre-processed Files of IPs labeled Files for Port numbers (no need to convert into int.)

IP1.csv IP1C.csv Ports1.csv

IP2.csv IP2C.csv Ports2.csv

IP3.csv IP3C.csv Ports3.csv

IP4.csv IP4C.csv Ports4.csv

IP5.csv IP5C.csv Ports5.csv

IP6.csv IP6C.csv Ports6.csv

IP7.csv IP7C.csv Ports7.csv

#Convert IPs into Labels (numbers)

import pandas as pd

import csv

import re

from pandas import DataFrame, Series

import numpy as np

import sys

data2 = pd.read_csv("graphDay1.csv")

data3 = DataFrame(data2)

f = open('graphDay1Cleaned.csv','w')

IPs={};

IP_ctr=1;

for index, row in data3.iterrows():

 if not row['Source'] in IPs:

 IPs[row['Source']] = IP_ctr

 IP_ctr += 1

 IP_source_as_cts = IPs[row['Source']]

 print >>f, ("{0}".format(IP_source_as_cts))

f.close()

%% Powerlaw and CDF of port and IP addresses

clear all;

clf;

load Ports7.csv;

Y=Ports7; clear Ports7.csv; %careful with filenames.

a=unique(Y);

out=[a, histc(Y(:),a)];

out;

Frequencies=out(:,2);

sorted_Frequencies=sort(Frequencies,'descend');

Prob=sorted_Frequencies/sum(sorted_Frequencies);

x=1:10 %Top 10 most frequent.

y=Prob(1:10)';

logx=log(x);

logy=log(y);

 78

p=polyfit(logx,logy,1);

plot(logx(1:10),logy(1:10),'bo');

axis equal square

grid

xlabel('log(x)');

ylabel('log(y)');

k=p(1);

loga=p(2);

a=exp(loga);

hold on; plot(logx,k*logx+loga,'*-g')

legend('Data',sprintf('log(y)=-alog(x)+log(b)'));

T=title('Estimating with polifit (loglog linear form)');

set(T,'FontSize',12,'FontWeight','normal');

%%Plot CDF from PDF

alfa=-k;

figure

P=cumsum(y);

plot(x,P,'*-b');

hold on;

%%For y2=0.457*x.^-2.155. Careful with equation, depends from values

%calculated from polofit for slope and intercept.

y3=0.444*x.^(-1.811);

%y2=0.457*(x.^(-2.155));

P_fit=cumsum(y3);

plot(x,P_fit,'-og');

legend('Data',['Fit a=', num2str(alfa)],'Location','NorthWest');

grid on;

hold off;

ylabel('CDF','FontSize',10,'FontWeight','normal','Color','k');

xlabel('Rank of Port Numbers','FontSize',10,'FontWeight','normal','Color','k');

figure

plot(x,y,'bo');

xlabel('x');

ylabel('y');

axis equal square

grid

hold on; plot(x,a*x.^k,'*-g')

legend('Data',sprintf('y=%.3f{}x^{%.3f}',a,k));

hold off;

T=title('Estimating with polifit (loglog linear form)');

set(T,'FontSize',12,'FontWeight','normal');

%%Residual scatter plot

Residuals=y3-y;

scatter(x,Residuals,'rp');

lsline;

ylabel('Residuals','FontSize',10,'FontWeight','normal','Color','k');

xlabel('Rank of Port Numbers','FontSize',10,'FontWeight','normal','Color','k');

box on;

variance_Ports=(var(y));

variance_Ports_estimated=(var(y3));

 79

r_Square=(variance_Ports_estimated).^2/(variance_Ports).^2;

#Alpha for seven days and Coeff of Determ for port Numbers

2.15 1.914 1.816 1.884 1.914 2.025 1.891
A=[2.15, 1.914, 1.816, 1.884, 1.914, 2.025, 1.891]

mean_A=mean(A)

1.415*std(A)/(sqrt(7))%1.45 from T-test table for 90% C.L.

#7 DAYS t-TEST 90%, Mean +- t[1-alfa/2;n-1]S/sqrt(n)

A=[0.652, 0.646, 0.652, 0.621, 0.6708,0.959, 0.672]

mean_A=mean(A);

1.415*std(A)/sqrt(7);

 80

BIBLIOGRAPHY

[1] J. Cao, W. S. Cleveland, D. Lin and D. X. Sun, "Internet Traffic Trends Toward Poisson and

Independendent as the Load Increases," in Nonlinear Estimation and Classification, New York,

Springer, 2003, pp. 83-109.

[2] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, "On the Self-Similar nature," IEEE/ACM

Transactions o Networking, 1994.

[3] V. Paxson and S. Floyd, "Wide-Area Traffic: The Failure of Poisson Modeling," ACM Transactions on

Networking, 1995.

[4] T. Karagiannis, M. Molle and M. Faloutsos, "A Nonstationary Poisson View of Internet Traffic," IEEE

INFOCOM, 2004.

[5] T. Telkamp, A. Maghbouleh, V. Sharma and S. Gordon, "Internet Traffic is not Self-Similar at

Timescales Relevant to Quality of Service," 2004.

[6] B. Bollobas, Random Graphs, London: Academic.

[7] P. Erdos and A. Renyi, Science, vol. 5, pp. 17-61.

[8] A. Barabasi and E. Bonabea, "Scale-Free Networks," Rev. Mod. Phys, vol. 74, p. 67–97, 2002.

[9] M. Crovella and A. Bestavros, "Self-similarity in WWW traffic: evidence and possible causes,"

IEEE/ACM Trans. on Networking 5 , p. 835– 846, 1997.

[10] K. Park, G. Kim and M. Crovella, "On the relationship between file sizes, transport protocols, and

self-similar network traffic," Tech. Rep. 1996-016, 1996.

[11] Cisco, "Cisco Visual Networking Index: Forecast and Methodology, 2014-2019 White Paper," Cisco,

2015.

[12] R. Cohen and D. Raz, "The Internet dark matter – on the missing links in the AS connectivity map,"

IEEE INFOCOM, p. 1–12, 2006.

[13] H. Chang, R. Govindan, S. Jamin, S. Shenker and W. Willinger, "Towards capturing representative

AS-level Internet topologies," Computer Networks Journal 44 , p. 737–755, 2004.

 81

[14] A. Lakhina, J. W. Byers, M. Crovella and P. Xie, "Sampling biases in IP topology measurements,"

INFOCOM/IEEE, pp. 332 - 341, 2003.

[15] W. W. a. V. Paxson, V. Paxson and W. Willinger, "Where Mathematics meet the Internet," American

Mathematical Society, vol. 45, 1998.

[16] K. Park and W. Willinger, "Self-similar network traffic: An overview," 2000. [Online]. Available:

https://www.cs.purdue.edu/nsl/intro-ss-chap.pdf. [Accessed 4 2016].

[17] B. Mandelbrot, "The Fractal Geometry of Nature," Freeman, 1983.

[18] J. Cao, W. S. Cleveland, D. Lin, D. X. Sun and M. Hill, "On the Nonstationarity of Internet Traffic,"

Springer, 2002.

[19] C. Park, F. Hernandez-Campos, J. S. Marron and F. D. Smith, "Long-Range Dependence in a Changing

Internet Traffic Mix," Computer Networks, pp. 401-422, 2005.

[20] V. Paxson and S. Floyd, "Why we don't know how to simulate the Internet," Proceedings of the 29th

conference on Winter simulation, pp. 1037-1044, 1997.

[21] M. Faloutsos, P. Faloutsos and C. Faloutsos, " On power–law relationships of the Internet topology,"

ACM SIGCOMM - Computer Communication Rev 29, pp. 251-261, 1999.

[22] "The Route Views project," University of Oregon, Eugene, [Online]. Available: http://www.

routeviews.org/.

[23] "RIPE, Routing information service," RIPE, [Online]. Available: http://www.ripe.net.

[24] The Cooperative Association for Internet Data Analysis - CAIDA, [Online]. Available:

http://www.caida.org.

[25] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker and W. Willinger, "Network Topology

Generators: Degree-Based vs. Structural," ACM SIGCOMM, p. 147–159, 2002.

[26] M. E. J. Newman, "Assortative mixing in networks," Phys. Rev. Lett. 89, 208701, 2002.

[27] P. Mahadevan, D. Krioukov, M. Fomenkov and B. Huffaker, "The Internet AS-Level Topology: Three

Data Sources and One Definitive Metric," ACM SIGCOMM Computer Communication Review, vol. 36

, no. 1, pp. 17-26 , 2006.

[28] A. Clauset, C. R. Shalizi and M. E. J. Newman, "Power-law distributions in empirical data," ACM, vol.

51, no. 4, pp. 661-703, 2009.

[29] T. Karagiannis, M. Faloutsos and M. Molle, "A User-Friendly Self-Similarity Analysis Tool," Special

Section on Tools and Technologies for Networking Research and Education, ACM SIGCOMM

Computer Communication Review, 2003.

 82

[30] C. Chen, "http://www.mathworks.com/," 11 Mar 2008. [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate.

[Accessed Mar 2016].

[31] J. Leskovec, J. Kleinberg and C. Faloutsos, "Graphs over Time: Densification Laws, Shrinking," ACM

SIGKDD international conference on Knowledge discovery in data mining, pp. 177-187 , 2005.

[32] "www.cisco.com," [Online]. Available: http://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/netflow/configuration/xe-3s/asr1000/nf-xe-3s-asr1000-book.pdf.

[33] "manpages.ubuntu.com," [Online]. Available:

http://manpages.ubuntu.com/manpages/gutsy/man1/nfdump.1.html.

[34] J. L. Garcia-Dorado, J. A. Hernandez, J. Aracil, J. E. d. Vergara, F. J. Monserrat and T. P. d. M. E.

Robles, "On the duration and spatial characteristics of internet traffic measurement experiments,"

IEEE/ACM Communications Magazine, vol. 46, no. 11, 2008 .

[35] E. Papalexakis and N. D. S. C. Faloutsos, "ParCube: Sparse Parallelizable Tensor Decompositions," in

Lecture Notes in Computer Science, vol. 7523 , Springer Berlin Heidelberg, 2012, pp. 521-536.

[36] P. Erdos and A. Renyi, Science, vol. 5, pp. 17-61.

[37] A. L. Barabasi and R. Albert, "Statistical mechanics of complex networks," Science, no. 286, pp. 17-

61.

[38] R. Jain, "Selection of Techniques and Metrics," in The Art of Computer Systems Performance

Analysis, New York, John Wiley & Sons, 1992, pp. 30-40.

[39] D. J. Watts and S H Strogatz, "Collective dynamics of ‘small-world’ networks," Nature , no. 393, p.

440–442, 1998.

[40] M. Newman, "Measures and metrics," in Networks: An Introduction, Published to Oxford

Scholarship Online, 2010.

[41] U. Brandes, "A Faster Algorithm for Betweenness Centrality".

[42] V. E. Krebs, "“Mapping Networks of Terrorist Cells”".

	TITLE PAGE

	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Netflow fields and their description
	Table 2. Characteristics of Dataset used in this study
	Table 3. IP Protocols Proportion
	Table 4. Main Topology Characteristics
	Table 5. Hurst computed (up) using Selfis tool and (down) using Matlab codes

	LIST OF FIGURES
	Figure 1. The network at PTK
	Figure 2. Unit Properties of graph at different granularities
	Figure 3. PTK Network and measurement infrastructure to collect data from all regions in Kosovo. b) Netflow definition for upstream/downstream traffic
	Figure 4. Traffic load in/out at gateways a) and b) and three Google Cache Servers located at PTK c)-e)
	Figure 5. Data Collection using nfcapd and sources for processing netflows
	Figure 6. Local Packet Traffic
	Figure 7. Local Byte Traffic
	Figure 8. International Downstream Packets
	Figure 9. International Downstream Bytes
	Figure 10. Frequency of Packet Sizes in PTK Network
	Figure 11. Empirical Cumulative Distribution of Packet Sizes
	Figure 12. Pictorial view of Periodicity and Self-similarity - a) weekly and c) daily periodicity; b) a random interval when d) zoomed by factor of 10
	Figure 13. Periodogram for Busy Hour Byte Series
	Figure 14. Time Variance for Busy Hour Byte Series
	Figure 15. R/S for Busy Hour Byte Series
	Figure 16. Hurst based on different estimators in busy hour for seven days a) Byte b) Packet counts
	Figure 17. Hurst based on different estimators in low hour for seven days a) Byte b) Packet counts
	Figure 18. Initial inspection of power-law behaviour of Node degree
	Figure 19. Node Degree distribution and exponential parameter alpha using MLE
	Figure 20. Sample ACF of packet sizes. Correlation Coefficients are within 95% C.I.
	Figure 21. Scatter plot of 1,000,000 consecutive packet sizes.
	Figure 22. Cumulative distribution function of most popular port numbers
	Figure 23. Cumulative distribution function of most popular IP addresses for upstream traffic in one day.
	Figure 24. Residuals from data of one-day port numbers and IP addresses
	Figure 25. Network topology visualization sample

	PREFACE
	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 APPROACH
	1.3 GOAL
	1.4 PRIVACY
	1.5 STRUCTURE OF THE DOCUMENT

	2.0 BACKGROUND
	2.1 INTERNET TRAFFIC
	2.2 INTERNET TOPOLOGY
	2.3 DEFINITIONS
	2.3.1 Estimating Hurst Parameter
	2.3.1.1 R/S Method
	2.3.1.2 Variance Method
	2.3.1.3 Periodogram Method
	2.3.1.4 Whittle

	2.3.2 Properties of Topology

	3.0 DATA COLLECTION AND ANALYSIS
	3.1 MONITORING
	3.2 DATA COLLECTION
	3.3 DATA ANALYSIS
	3.3.1 Protocols
	3.3.2 Packet size

	4.0 EXPERIMENTS AND RESULTS
	4.1 IS PTK NETWORK TRAFFIC SELF-SIMILAR AND LONG-RANGE DEPENDENT?
	4.1.1 Pictorial view of Periodicity and Self-Similarity
	4.1.2 Self-similarity and Long-range dependence

	4.2 TOPOLOGY CHARACTERISTICS FROM THE NETWORK TRAFFIC
	4.2.1 Node Degree Distribution
	4.2.2 Other Topology Characteristics
	4.2.3 Topology Characteristics at AS Level

	4.3 OTHER EXPERIMENTS
	4.3.1 Independence of Packet Size Arrivals
	4.3.2 Distribution of IP addresses and Port Numbers

	5.0 CONCLUSIONS
	5.1 FUTURE WORK

	APPENDIX A

	BIBLIOGRAPHY

