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TUKEY QUOTIENTS, PRE-IDEALS, AND NEIGHBORHOOD FILTERS

WITH CALIBRE (OMEGA 1, OMEGA)

Jeremiah Morgan, PhD

University of Pittsburgh, 2016

This work seeks to extract topological information from the order-properties of certain pre-

ideals and pre-filters associated with topological spaces. In particular, we investigate the

neighborhood filter of a subset of a space, the pre-ideal of all compact subsets of a space,

and the ideal of all locally finite subcollections of an open cover of a space. The class

of directed sets with calibre (ω1, ω) (i.e. those whose uncountable subsets each contain an

infinite subset with an upper bound) play a crucial role throughout our results. For example,

we prove two optimal generalizations of Schneider’s classic theorem that a compact space

with a Gδ diagonal is metrizable. The first of these can be stated as: if X is (countably)

compact and the neighborhood filter of the diagonal in X2 has calibre (ω1, ω) with respect

to reverse set inclusion, then X is metrizable. Tukey quotients are used extensively and

provide a unifying language for expressing many of the concepts studied here.

Keywords: directed sets, calibres, Tukey quotients, compact covers, P -paracompactness,

metrizability, productivity, Lindelöf Σ-spaces, neighborhood filters, strong Pytkeev prop-

erty, function spaces.
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1.0 INTRODUCTION

Given a set S, a pre-ideal on S is a collection A of subsets of S that is directed with respect

to set inclusion ⊆; that is, any pair of members of A are contained within a third member

of A. A pre-filter on S is a collection A of subsets of S that is directed with respect to

reverse set inclusion ⊇; that is, any pair of members of A contain a third member of A in

their intersection. A pre-ideal (respectively, pre-filter) A on S is called an ideal (respectively,

filter) if A contains every subset (respectively, superset) of each element of A, or in other

words, if A is ‘downwards-closed’ with respect to its relevant ordering. The broad aim of this

work is to investigate the relationship between (i) the order properties of several pre-ideals

and pre-filters which naturally occur in topology and (ii) the topological properties of the

spaces from which those pre-ideals and pre-filters are derived.

A3

A1

A2
A1 A2

A3

Figure 1: A pre-ideal (left) vs. a pre-filter (right)

This objective is by no means new. Indeed, many well-studied topological properties

are intimately linked to the order structure of pre-ideals and pre-filters. For example, a

fundamental property generalizing metrizability is the notion of first countability, which

requires that each point in a space has a countable neighborhood base. Recall that a subset
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C of a directed set P is called cofinal in P if for every p in P , there is a c in C such that

p ≤ c, and the cofinality of a directed set is the minimal cardinality of its cofinal subsets.

Thus, a neighborhood base for a point x in a space X is precisely a cofinal (with respect to

⊇) subset of the filter NX
x of all neighborhoods of x, and so X is first countable if and only

if NX
x has countable cofinality for each x in X. Similarly, a space X is called hemicompact

if the pre-ideal K(X) of all compact subsets of X has countable cofinality (with respect to

⊆), and this generalizes compactness.

More to the point, much of Chapters 3 and 4 below is inspired by Schneider’s classic

metrization theorem. Here the diagonal of X is the subset ∆ = {(x, x) : x ∈ X} of X2 and

NX2

∆ is the filter of all neighborhoods of ∆ in X2.

Theorem 1 (Schneider, 1945). For a compact space X, the following are equivalent:

(i) X is metrizable,

(ii) K(X2 \∆) has countable cofinality with respect to ⊆,

(iii) NX2

∆ has countable cofinality with respect to ⊇, and

(iv) ∆ is a Gδ subset of X2.

X

X

∆

an open neighborhood of ∆

a compact subset of X2 \∆

Figure 2: The diagonal of a compact space

The equivalence of (i) and (iv) in Theorem 1 is the usual statement of Schneider’s the-

orem, but compactness makes (iv) equivalent to the (generally stronger) condition that ∆

has a countable neighborhood base, which is precisely statement (iii). Also, the complement

of any open neighborhood of ∆ is a compact subset of X2 \∆, so (ii) and (iii) are easily seen

to be equivalent. Thus, Schneider’s theorem establishes a connection between the topolog-
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ical properties of a compact space X, the order properties of the filter NX2

∆ , and the order

properties of the pre-ideal K(X2 \∆).

This version of Schneider’s theorem illustrates a theme that will continue throughout this

work, namely that the order properties of interest will all be related to the ‘cofinal structure’

of the pre-ideals, pre-filters, and other directed sets studied here. To compare the cofinal

complexity of two directed sets, we will use Tukey quotients (see Section 2.2), which were

introduced by Tukey [48] for studying the convergence of what are today call nets. In most

contexts throughout this work, a Tukey quotient map from a directed set P to a directed

set Q will be an order-preserving map whose image is cofinal in Q, and the existence of such

a map is denoted by the relation ‘P ≥T Q’, which indicates that Q is no more cofinally

complex than P . Tukey quotients provide us a convenient notation for expressing many of

the order concepts relevant to our investigations. For example, a directed set P has countable

cofinality if and only if ω ≥T P , where ω is the first infinite ordinal (considered as the set of

all finite ordinals) with its usual ordering.

Let Y be any space. By a cofinal compact cover of Y , we mean a cofinal subset of the

pre-ideal K(Y ). Thus, K(Y ) has countable cofinality (in other words, Y is hemicompact) if

and only if Y has a countable cofinal compact coverA. We can enumerateA = {An : n < ω},

and by replacing An with A0 ∪ · · · ∪ An, we may assume An ⊆ An+1 for each n < ω. In

this way, A is not just countable, but also ordered like the directed set ω. If P is a directed

set, then we say a family S of subsets of a set S is P -ordered if S = {Sp : p ∈ P} where

Sp1 ⊆ Sp2 whenever p1 ≤ p2 in P . Using Tukey quotients, the existence of a P -ordered

cofinal compact cover for a space Y can be expressed by the relation ‘P ≥T K(Y )’. Thus,

Schneider’s theorem may be rephrased as:

Theorem 2 (Schneider, version 2). Let X be a compact space. If X2 \∆ has an ω-ordered

cofinal compact cover, in other words ω ≥T K(X2 \∆), then X is metrizable.

It is natural to ask: which directed sets can be used in place of ω in Theorem 2? Cascales

and Orihuela [6] showed that the directed set ωω consisting of all functions from ω to ω works

here when it is ordered pointwise (that is, α ≤ β in ωω if and only if α(n) ≤ β(n) for each

n < ω). Note that this result generalizes Schneider’s theorem because any ω-ordered family
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is also ωω-ordered. Indeed if A = {An : n < ω} is ω-ordered, then after defining Aα = Aα(0)

for each α in ωω, we have A = {Aα : α ∈ ωω} and A is ωω-ordered. This argument boils

down to the fact that the projection from ωω onto the first factor of ω is a Tukey quotient

map, so that ωω ≥T ω. Thus if ω ≥T K(X2 \ ∆), then transitivity of the Tukey quotient

relation shows that ωω ≥T K(X2 \∆) also.

Cascales, Orihuela, and Tkachuk [7] later showed that for any separable metrizable space

M , the pre-ideal K(M) can also be used in place of ω in Theorem 2:

Theorem 3 (Cascales et al, [7]). Let X be a compact space. If K(M) ≥T K(X2 \ ∆) for

some separable metrizable M , then X is metrizable.

This roughly says that if X is compact and the compact subsets of X2 \∆ are ordered

like the compact subsets of a separable metrizable space, then X itself must be a separable

metrizable space. Note that this generalizes the previous result by Cascales and Orihuela.

Indeed, Lemma 50 below shows that K(ωω) ≥T ωω, so if ωω ≥T K(X2 \∆), then transitivity

gives K(M) ≥T K(X2 \∆) for the separable metrizable space M = ωω.

In Section 2.3, we discuss the calibres of a directed set P as a means of measuring the

cofinal complexity of P , and in Lemma 55, we show that for every separable metrizable

space M , the pre-ideal K(M) has calibre (ω1, ω), which means that each uncountable subset

of K(M) contains an infinite subset with an upper bound in K(M). In Theorem 63 of

Chapter 3, we generalize Theorem 3 by proving that if P is any directed set with calibre

(ω1, ω), then P can be used in place of ω in Theorem 2. Moreover, we show in Theorem 67

that these are the only directed sets that can replace ω. Theorem 63 can also be stated as: if

X is compact and K(X2 \∆) itself has calibre (ω1, ω), then X is metrizable, so this really is

a link between the internal cofinal structure of the pre-ideal K(X2 \∆) and the topological

properties of X.

Although Tukey quotients provide a convenient notation for expressing the existence of

P -ordered cofinal compact covers, they lack the flexibility to address general (non-cofinal)

P -ordered compact covers, which are also considered in Chapter 3. Let Y be any space, and

note that we can identify Y with the subset of K(Y ) consisting of all the singletons. If A is a

compact cover of Y , then even if A is not cofinal in K(Y ), it is still ‘cofinal for Y ’ in the sense
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that each singleton subset of Y is contained in a member of A. In Section 2.2, we therefore

consider a relative version of Tukey quotients which is defined for pairs (P ′, P ) where P is

a directed set and P ′ is a subset of P . This allows us to express the statement ‘Y has a P -

ordered compact cover’ via the relation ‘P ≥T (Y,K(Y ))’. For example, a space Y is called

σ-compact if it has an ω-ordered compact cover, which we can indicate by ‘ω ≥T (Y,K(Y ))’,

and this should be compared to the fact that Y is hemicompact precisely when ω ≥T K(Y ).

In Chapter 4, we investigate a different sort of P -ordered cover. If C is a family of subsets

of a space X, then the family LF (C) of all locally finite subsets of C is an ideal on C, and

we can identify C with the subset of LF (C) consisting of all singletons. Given a directed set

P , we say C is P -locally finite if C has a P -ordered cover of locally finite subcollections, that

is, if C =
⋃
{Cp : p ∈ P} where each Cp is locally finite and Cp1 ⊆ Cp2 whenever p1 ≤ p2 in P ,

or equivalently, if P ≥T (C, LF (C)). We then define a space X to be P -paracompact if each

open cover of X has a P -locally finite open refinement, and we call a space P -metrizable if it

has a (P × ω)-locally finite base. We study these and closely related properties throughout

Chapter 4, with particular attention given to the case where P = K(M) for some separable

metrizable M . In Section 4.3.1, we even give a complete characterization of those spaces

which are K(M)-metrizable for some separable metrizable M .

If X is a compact space whose diagonal is a Gδ subset of X2, then X2 \∆ is σ-compact

and therefore paracompact. Hence, the following result by Gruenhage is yet another gener-

alization of Schneider’s Theorem.

Theorem 4 (Gruenhage, [28]). If X is compact and X2 \ ∆ is paracompact, then X is

metrizable.

In Section 4.2, we generalize Theorem 4 by showing that paracompactness can be replaced

with P -paracompactness for any P with calibre (ω1, ω). We then show that this generaliza-

tion is optimal in the sense that we cannot weaken the hypothesis to P -paracompactness for

P in some larger class of directed sets.

Thus, we have two optimal generalizations of Schneider’s theorem which demonstrate

the importance of the class of directed sets with calibre (ω1, ω), so we find it worthwhile to

study the properties of this class. Because Todorčević’s Example 13 from [45] shows that
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calibre (ω1, ω) is generally not a productive property, in Chapter 5 we investigate to what

extent calibre (ω1, ω) is preserved by various types of products. In particular, we show that

there is a large class Q of directed sets with calibre (ω1, ω) such that every Σ-product of

members of Q has calibre (ω1, ω), and this class includes every K(M) where M is separable

and metrizable. We also study directed sets whose countable powers have calibre (ω1, ω)

as well as those directed sets whose product with any other calibre (ω1, ω) directed set has

calibre (ω1, ω).

The focus in Chapter 6 shifts to neighborhood filters. Gabriyelyan, Ka̧kol, and Leiderman

showed in [22] that the order structure of neighborhood filters is related to the strong Pytkeev

property. Here, a space Y is said to have the strong Pytkeev property if for each point y in

Y , there is a countable family Dy of subsets of Y such that, whenever U is a neighborhood

of y and A is a subset of Y with y ∈ A \ A, there is a D in Dy such that D is contained

in U and D ∩ A is infinite. The family Dy is a sort of ‘network’ for the neighborhood filter

N Y
y since each neighborhood of y contains a member of Dy. So the strong Pytkeev property

for a space Y asserts that for each point y in Y , there is a countable ‘network’ for N Y
y with

‘nice’ properties. In Sections 6.1 and 6.2, we consider several variations of the strong Pytkeev

property formed by altering the meaning of ‘nice’. For example, relaxing the condition ‘D∩A

is infinite’ in the definition of the strong Pytkeev property to ‘D ∩A is nonempty’ produces

a property called (cn).

Gabriyelyan et al. proved the following result, where Ck(X) denotes the space of con-

tinuous real-valued functions on a space X with the compact-open topology, and 0 denotes

the zero function on X.

Theorem 5 (Gabriyelyan et al., [22]). Let X be a space, and suppose ωω ≥T NCk(X)
0 . Then

the following are equivalent:

(i) Ck(X) has the strong Pytkeev property, and

(ii) X is Lindelöf.

In Theorem 179 of Section 6.4, we completely characterize when Ck(X) has the strong

Pytkeev property by proving that this occurs if and only if X is Lindelöf cofinally Σ (a

property which is discussed in Section 6.3). Moreover, this result shows that several varia-
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tions of the strong Pytkeev property (including (cn)) are equivalent to the strong Pytkeev

property for spaces of the form Ck(X). We also prove that this is equivalent to Ck(X) being

countably tight and having P ≥T NCk(X)
0 for some directed set P in the class Q mentioned

in the above discussion of Chapter 5.

7



2.0 PRELIMINARIES

This chapter is devoted to introducing many of the order-theoretic concepts and related

topological notions which will be used extensively in the following chapters. Throughout

this work, topological spaces are usually assumed to be Tychonoff, or at least T3, unless

stated otherwise. The weight of a space X, denoted w(X), is the minimal cardinality of

a base for X, and the cardinality of the reals R (i.e. the cardinality of the continuum) is

denoted c = 2ω. We will identify a cardinal κ with the first ordinal of cardinality κ, and so

we will usually use the first infinite ordinal ω and the first uncountable ordinal ω1 in place of

ℵ0 and ℵ1, respectively. We will also identify an ordinal with the set of all smaller ordinals,

so for example, we have ω = {0, 1, 2, . . . , n, n+ 1, . . .}.

2.1 DIRECTED SETS, IDEALS, AND FILTERS

A partially ordered set is a set P with a binary relation ≤ that is reflexive, antisymmetric, and

transitive. If P and Q are partially ordered sets, then a map f : P → Q is order-preserving

if f(p1) ≤ f(p2) in Q whenever p1 ≤ p2 in P . The map f is an order-isomorphism (and P

and Q are order-isomorphic) if it is bijective and both f and its inverse are order-preserving.

For any p in a partially ordered set P , the down set of p is ↓p = {p′ ∈ P : p′ ≤ p}.

We say a subset P ′ of P is bounded above if P ′ is contained in ↓q for some q in P , and q

is called an upper bound of P ′. A directed set is a partially ordered set P such that every

finite subset of P is bounded above. Many of the results discussed below apply to partially

ordered sets, but for consistency and simplicity, we restrict our attention to directed sets.

A directed set P is called Dedekind complete if each subset of P that is bounded above

8



has a least upper bound. Examples of Dedekind complete directed sets include any ordinal

κ (considered as the set of all ordinals less than κ) as well as the power set P(X) of a set X,

that is, the family of all subsets of X, which is directed with respect to both set inclusion

⊆ and reverse set inclusion ⊇. In fact, most of the directed sets of interest in this work will

be subsets of power sets that are directed with respect to either set inclusion or reverse set

inclusion.

If X is a set, then a subset of P(X) which is directed by set inclusion is called a pre-ideal

onX. An ideal onX is a pre-ideal I such that whenever S is in I, each subset of S is also in I.

Similarly, a pre-filter on X is a subset of P(X) which is directed by reverse set inclusion, and

a filter on X is a pre-filter F such that whenever S is in F , each subset of X containing S is

in F . Every pre-ideal S on X generates an ideal ↓S = {A ⊆ X : ∃B ∈ S such that A ⊆ B},

and every pre-filter P on X generates a filter ↑P = {A ⊆ X : ∃B ∈ P such that A ⊇ B}.

For example, the set K(X) of all compact subsets of a topological space X is a pre-ideal

on X which generates the ideal of all subsets of X with compact closure. Likewise, the set

Nx of all neighborhoods of a point x in a space X is a filter on X, called the neighborhood

filter of x, which is generated by the pre-filter of all open neighborhoods of x. Note that a

neighborhood filter is proper – it does not contain the empty set – although our definition

of filter does not require this property.

For any set X, let cX : P(X)→ P(X) be the complementation map, cX(A) = X \A, and

for any family A of subsets of X, write cX(A) for the family {cX(A) : A ∈ A}. Clearly we

have:

Lemma 6. Let I and F be a (pre-)ideal and (pre-)filter on X, respectively. Then:

(1) cX(I) is a (pre-)filter on X which is order-isomorphic to I via cX , and

(2) cX(F) is a (pre-)ideal on X which is order-isomorphic to F via cX .

Thus, cX induces a natural duality between ideals and filters on X and between pre-ideals

and pre-filters on X.

Lemma 7. Let X be a set.

(1) If S is a pre-ideal on X that is closed under arbitrary intersections, then S is Dedekind

complete (with respect to ⊆).

9



(2) If P is a pre-filter on X that is closed under arbitrary unions, then P is Dedekind

complete (with respect to ⊇).

In particular, ideals and filters are always Dedekind complete.

Proof. Let A be a subset of S with an upper bound in S. Let B be the set of all upper

bounds of A in S. Then
⋂
B is the least upper bound of A in S, which proves the first

claim. The second claim is dual to (and follows from) the first; of course we must keep in

mind that a ‘least upper bound’ with respect to ⊇ is actually a greatest lower bound with

respect to ⊆.

Generally, the only filters we will be interested in are neighborhood filters, but in addition

to K(X), there are several other Dedekind complete (pre-)ideals that will find use throughout

this work. We list them below, where S denotes a set, X denotes a topological space, and C

denotes a family of subsets of X:

[S]<ω = {F ⊆ S : F is finite} CL(X) = {C ⊆ X : C is closed in X}

[S]≤ω = {C ⊆ S : C is countable} LF (C) = {L ⊆ C : L is locally finite in X}

K(X) = {K ⊆ X : K is compact} PF (C) = {L ⊆ C : L is point finite in X}

2.2 TUKEY QUOTIENTS AND DIRECTED SET PAIRS

A subset C of a directed set P is called cofinal in P if for any p in P , there is a c in C such

that p ≤ c. The cofinality of a directed set P , denoted cof(P ), is the minimal cardinality of a

cofinal subset of P . The properties of a directed set P that we are interested in are all related

to its ‘cofinal structure’ or ‘end behavior’. For example, if P = Nx is the neighborhood filter

of a point x in a space X, then x is a point of first countability if and only if Nx has countable

cofinality. Two directed sets do not need to be order-isomorphic to have the same cofinal

structure. Instead, we use Tukey quotients to compare the cofinal complexity of directed

sets.
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Let P and Q be directed sets. A map φ : P → Q is called a Tukey quotient map if every

cofinal subset of P is mapped by φ to a cofinal subset of Q. If such a map exists, we say Q

is a Tukey quotient of P and write P ≥T Q. If P ≥T Q and Q ≥T P , then we will say P

and Q are Tukey equivalent and write P =T Q. Tukey equivalence is an equivalence relation

on the class of directed sets, and the Tukey order, ≥T , is a partial order on the equivalence

classes.

Tukey quotients provide us a convenient notation for expressing many topological prop-

erties. For example, if x is a point in a space X, then x is isolated if and only if 1 ≥T Nx,

and x is a point of first countability if and only if ω ≥T Nx. Here, 1 denotes the singleton

{0} and ω is the first infinite ordinal. Similarly, X is compact if and only if 1 ≥T K(X),

and X is hemicompact (that is, X has a countable family of compact sets that contain every

other compact subset of X) if and only if ω ≥T K(X).

However, we are concerned not only with the order properties of directed sets, but also

with the relative properties of subsets of those directed sets. The definition of Tukey quotients

given above lacks the flexibility to address these concerns, so we will need an extended notion

of Tukey quotients. If P is a directed set and P ′ is a subset of P , then we call (P ′, P ) a

directed set pair. Note that P ′ itself is a partially ordered set but not necessarily a directed

set. We say a set C is cofinal for (P ′, P ) if C is a subset of P such that for each p′ in P ′,

there is a c in C with p′ ≤ c.

A directed set pair (Q′, Q) is called a (relative) Tukey quotient of the pair (P ′, P ), written

(P ′, P ) ≥T (Q′, Q), if there is a map φ : P → Q which takes cofinal sets for (P ′, P ) to cofinal

sets for (Q′, Q). Such a φ is called a (relative) Tukey quotient map. If P ′ = P , then we can

abbreviate the directed set pair (P ′, P ) to just P . In this way, the relation (P, P ) ≥T (Q,Q)

reduces to P ≥T Q, and this coincides with the notion of Tukey quotients of directed sets

given above. If (P ′, P ) ≥T (Q′, Q) and (Q′, Q) ≥T (P ′, P ), then we say the pairs are Tukey

equivalent and write (P ′, P ) =T (Q′, Q). Tukey equivalence is an equivalence relation on the

class of directed set pairs, and ‘≥T ’ is a partial order on the equivalence classes; in particular,

Tukey quotients are transitive.

Occasionally, the following alternate description of the Tukey quotient relation will be

useful. The non-relative version is well-known, and the proof of this version is given in [27].
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Lemma 8. (P ′, P ) ≥T (Q′, Q) if and only if there is a map ψ : Q′ → P ′ such that for any

subset U of Q′ that is unbounded in Q, ψ(U) is unbounded in P .

Additionally, the following lemma says that for Dedekind complete directed sets, we may

always assume our Tukey quotient maps have a nice form. The proof is also given in [27],

and again, the non-relative version is well-known.

Lemma 9. Let (P ′, P ) and (Q′, Q) be directed set pairs. If φ : P → Q is an order-preserving

map such that φ(P ′) is cofinal for Q′ in Q, then φ witnesses that (P ′, P ) ≥T (Q′, Q). Con-

versely, if Q is Dedekind complete and (P ′, P ) ≥T (Q′, Q), then there is an order-preserving

Tukey quotient map φ : P → Q witnessing (P ′, P ) ≥T (Q′, Q).

Our directed set pairs will usually have the following form. Let Y be a subset of a

set X, and let S be a pre-ideal on X such that S contains every finite subset of Y (or

equivalently, S contains every singleton subset of Y ). Then we can identify Y with the

subset [Y ]1 = {{y} : y ∈ Y } of S, so that (Y,S) is a directed set pair. Recall from the

introduction that if P is a directed set, then a family {Sp : p ∈ P} of subsets of a set X is

called P -ordered if Sp1 ⊆ Sp2 whenever p1 ≤ p2.

Lemma 10. Let P be a directed set, and let S be a Dedekind complete pre-ideal of subsets

of a set X such that S contains every finite subset of a subset Y of X. Then the following

are equivalent:

(1) Y has a P -ordered cover consisting of sets in S.

(2) P ≥T (Y,S).

Proof. Suppose {Sp : p ∈ P} is a P -ordered cover of Y such that each Sp is in S. Then the

map φ : P → S given by φ(p) = Sp is order-preserving and its image covers Y . Notice that

a subset of S covers Y if and only if it is cofinal for (X,S). By Lemma 9, φ is therefore

a Tukey quotient map witnessing (2). Since S is Dedekind complete, then Lemma 9 also

works in reverse to give the proof that (2) implies (1).

The previous lemma implies, for example, that a space X is σ-compact if and only if

ω ≥T (X,K(X)). Indeed, any countable compact cover {Kn : n < ω} of X generates an
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ω-ordered compact cover {K ′n =
⋃
i≤nKi : n < ω}. This should be compared with our

comment above that X is hemicompact if and only if ω ≥T K(X).

Lemma 11. If C is a cofinal subset of a directed set P , then (C is directed and) C =T P .

Proof. Let φ : C → P be the inclusion map. Then φ is order-preserving and its image is

cofinal in P , so C ≥T P by Lemma 9. Now let S be a subset of C and suppose φ(S) is

bounded in P , say by p. Since C is cofinal, there is a c in C such that p ≤ c, and so S = φ(S)

is bounded in C. Hence, φ also witnesses P ≥T C by Lemma 8.

We immediately obtain:

Corollary 12. Let X be a set.

(1) If S is a pre-ideal on X, then S =T ↓S .

(2) If P is a pre-filter on X, then P =T ↑P .

The previous corollary says that any pre-ideal (or pre-filter) has the same cofinal structure

as the ideal (or filter) that it generates. In principle, therefore, we should have no need of pre-

ideals (or pre-filters) since we could replace them with the generated ideals (or filters). While

it is true that the pre-filters of interest here will actually be filters (specifically, neighborhood

filters), it will often still be useful for us to consider pre-ideals, such as K(X), rather than the

ideals they generate. Indeed, the pre-ideal may have some other nice structure in addition to

its order structure. For example, K(X) has a natural topological structure via the Vietoris

topology (which is metrizable if X is metrizable).

Corollary 13. Let S and P be a pre-ideal and pre-filter, respectively, on a set X. If the

ideal generated by S is dual (via complementation) to the filter generated by P, then S =T P.

Proof. By Lemma 6, a dual ideal and filter are order-isomorphic, and therefore Tukey equiv-

alent. The result then follows from Corollary 12 and the transitivity of ‘=T ’.

The next result says that every Tukey equivalence class contains a neighborhood filter

and a pre-ideal of compact subsets. So directed sets of the form NX
x and K(X) are, in some

sense, universal.

Theorem 14. For any directed set P , we have:
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(1) P =T K(XP ) for some locally compact Hausdorff space XP .

(2) P =T NKP
xP

for some compact Hausdorff space KP and point xP in Kp.

(3) P =T NGP
e for some topological group GP with identity e.

(4) P × ω =T N LP
0 for some locally convex topological vector space LP .

Proof. Let D(P ) be P with the discrete topology. For each p in P , let Kp be the closure

of ↓p in the Stone-Cěch compactification βD(P ). Note that Kp is compact and open. Let

XP =
⋃
{Kp : p ∈ P} considered as a subspace of βD(P ). Then XP is locally compact and

Hausdorff. The map φ : P → K(XP ) given by φ(p) = Kp is clearly order-preserving, and

since Kp ∩D(P ) = ↓p , then in fact φ is an order-isomorphism between P and φ(P ). To see

that the image of φ is cofinal in K(XP ), note that if L is any compact subset of XP , then

L is covered by a finite subset F of φ(P ) (since each Kp is open), and since P is directed,

then F has an upper bound Kq in φ(P ), which gives L ⊆ Kq. By Lemma 11, we now have

P =T K(XP ), which proves (1).

Let KP = XP ∪ {xP} be the one-point compactification of XP . Then K(XP ) and NKP
xP

are Tukey equivalent by Lemma 13, which proves (2).

Let Z2 be the discrete two-point group under addition modulo 2, and define GP =

Ck(XP ,Z2), the group of all continuous maps of XP into Z2, with the compact-open topology.

For each compact subset K of XP , let BK = {g ∈ GP : g(K) ⊆ {0}}. Then B = {BK :

K ∈ K(XP )} is a neighborhood base for the zero function e = 0 in GP . Since XP is zero

dimensional, then the map K 7→ BK is an order isomorphism between K(XP ) and B. Hence,

K(XP ) is Tukey equivalent to B, which is Tukey equivalent to NGP
e by Lemma 12, which

proves (3).

Finally, let Lp = Ck(Xp) be the space of continuous real-valued functions on Xp with

the compact open topology (see Section 2.9). Then Lemma 62 below shows that N Lp
0 =T

K(Xp)× ω =T P × ω, and so (4) is proven.
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2.3 CALIBRES

In the previous section, we introduced Tukey quotients as a tool for comparing the cofinal

complexity of directed sets (or directed set pairs). In this section, we introduce a family of

properties which allow us to measure the cofinal complexity of a directed set (pair). Because

directed sets have a favored direction, we will say only that a subset of a directed set P is

‘bounded’ when we really mean ‘bounded above in P ’.

Consider any cardinals κ ≥ λ ≥ µ ≥ ν. We say a directed set P has calibre (κ, λ) if

every κ-sized subset of P contains a λ-sized bounded subset. We say P has calibre (κ, λ, µ)

if every κ-sized subset S1 of P contains a λ-sized subset S2 such that every µ-sized subset

of S2 is bounded. Finally, we say P has calibre (κ, λ, µ, ν) if every κ-sized subset S1 of P

contains a λ-sized subset S2 such that every µ-sized subset of S2 contains a ν-sized bounded

subset.

More generally, we say that a directed set pair (P ′, P ) has calibre (κ, λ) (or P ′ has relative

calibre (κ, λ) in P ) if each κ-sized subset of P ′ contains a λ-sized subset that is bounded in

P . The other calibres can be similarly relativized. Of course when P ′ = P , these relative

calibres reduce to the calibres defined in the previous paragraph.

Lemma 15. Consider any cardinals κ ≥ λ ≥ µ ≥ ν. The following implications hold for

the calibres of any directed set pair.

(1) calibre (κ, λ) =⇒ calibre (κ, λ, µ) =⇒ calibre (κ, λ, µ, ν)

(2) calibre (κ, λ) =⇒ calibre (κ, µ)

(3) calibre (κ, λ, µ) =⇒ calibre (κ, λ, ν)

(4) calibre (κ, λ, µ) =⇒ calibre (κ, µ)

(5) calibre (κ, λ) ⇐⇒ calibre (κ, λ, λ) ⇐⇒ calibre (κ, λ, λ, λ) ⇐⇒ calibre (κ, κ, κ, λ)

Proof. Statements (1)–(4) are immediate from the definitions. To show the first three cal-

ibres in (5) are equivalent, it therefore suffices to apply (1) and verify that the definitions

immediately show calibre (κ, λ, λ, λ) implies calibre (κ, λ). It is then also straightforward to

check that the definitions give the equivalence of calibres (κ, λ) and (κ, κ, κ, λ).

A cardinal is called regular if it is equal to its own cofinality.
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Lemma 16. Let f : S → T be any function between sets, and let κ be a regular cardinal.

Then for any κ-sized subset S ′ of S, there is a κ-sized subset S ′′ of S ′ such that f is either

one-to-one or constant on S ′′.

Proof. Let S ′ be a κ-sized subset of S. We have two cases to consider. If |f(S ′)| = κ, then

we can easily pick a subset S ′′ of S ′ consisting of one member of f−1(t) for each t in f(S ′),

and so f is one-to-one on S ′′.

Now suppose |f(S ′)| < κ instead, and note that S ′ =
⋃
{S ′ ∩ f−1(t) : t ∈ f(S ′)}.

Since S ′ has size κ and κ is regular, we see that there must be some t0 in f(S ′) such that

|S ′ ∩ f−1(t0)| = κ. Thus, f is constant on S ′′ = S ′ ∩ f−1(t0).

The key connection between calibres and Tukey quotients is given by the following lemma,

which says that (relative) Tukey quotients preserve (relative) calibres.

Lemma 17. Suppose (P ′, P ) ≥T (Q′, Q) and κ ≥ λ ≥ µ ≥ ν. If κ is a regular cardinal

and (P ′, P ) has any of the calibres (κ, λ), (κ, λ, µ), or (κ, λ, µ, ν), then (Q′, Q) has the same

calibre.

Proof. By Lemma 8, there is a map ψ : Q′ → P ′ such that ψ(U) is unbounded in P whenever

U is unbounded in Q. For statement 1, we prove the calibre (κ, λ, µ) case, and the others

are very similar. Let S1 be a κ-sized subset of Q′. By Lemma 16, we know there is a κ-sized

subset of S ′1 of S1 such that ψ is one-to-one or constant on S ′1. Suppose ψ is constant on S ′1,

then we can arbitrarily fix a λ-sized subset S2 of S ′1, and then any µ-sized subset S3 of S2

will have ψ(S3) = {p}, which is bounded in P , and so S3 is bounded in Q. If ψ is one-to-one

on S ′1 instead, then since (P ′, P ) has calibre (κ, λ, µ), we can find a λ-sized subset T of ψ(S ′1)

such that any µ-sized subset of T is bounded in P . Then let S2 = S ′1 ∩ ψ−1(T ), which has

size λ. Now for any µ-sized subset S3 of T , we know |ψ(S3)| = λ also, so ψ(S3) is bounded

in P , and therefore S3 is bounded in Q.

In fact, the proof of Lemma 17 really shows:

Lemma 18. Let (P ′, P ) and (Q′, Q) be directed set pairs, let κ be a regular cardinal, and

suppose there is a map ψ : Q′ → P ′ such that for any µ-sized subset E of Q′ which is

16



unbounded in Q, the image ψ(E) is unbounded in P . If (P ′, P ) has calibre (κ, λ, µ), then

(Q′, Q) also has calibre (κ, λ, µ).

Calibres are preserved by ‘small enough’ unions:

Lemma 19. Let κ be an infinite cardinal, let γ < cof(κ), let P be a directed set, and suppose

(P ′α, Pα) is a directed set pair such that Pα is contained in P for each α < γ. If each (P ′α, Pα)

has calibre (κ, . . .), then so does (
⋃
α<γ P

′
α, P ).

Proof. Let S be a subset of
⋃
α P

′
α with size κ. Since γ < cof(κ), then there must be a β < γ

such that S ′ = S ∩ P ′β has size κ. The result now follows from the fact that P ′β has relative

calibre (κ, . . .) in Pβ (and so also in P ).

Lemma 19 immediately gives:

Corollary 20. Let λ ≤ ω1. If (P ′n, Pn) has calibre (ω1, λ) and Pn is a subset of a directed

set P for each n < ω, then (
⋃
n P
′
n, P ) has calibre (ω1, λ).

Although calibres are generally not productive (see Example 13 in Chapter 5), we do

have the following nice relationship, which is one of the motivations for defining calibre

(κ, λ, µ, ν).

Lemma 21. Let κ ≥ λ ≥ µ ≥ ν be cardinals such that κ and µ are regular. If (P ′, P ) has

calibre (κ, λ) and (Q′, Q) has calibre (µ, ν), then (P ′ ×Q′, P ×Q) has calibre (κ, λ, µ, ν).

Proof. Fix a subset S1 of P ′ ×Q′ with size κ. By Lemma 16, there is a κ-sized subset S ′1 of

S1 such that the projection π1 : P ×Q→ P is one-to-one or constant on S ′1. In either case,

we can find a λ-sized subset S2 of S ′1 such that π1(S2) ⊆ P ′ is bounded in P .

Now fix an arbitrary subset S3 of S2 with size µ. Then Lemma 16 provides a µ-sized

subset S ′3 of S3 such that the projection π2 : P × Q → Q is one-to-one or constant on S ′3.

In either case, we can find a ν-sized subset S4 of S ′3 such that π2(S4) ⊆ Q′ is bounded in Q.

Since S4 is contained in S2, then S4 is bounded in P ×Q.

Throughout this work, we will be dealing primarily with the cardinals ω and ω1, both of

which are regular, so the previous two lemmas apply. In fact, we are particularly interested

in calibre (ω1, ω). A very important class of directed sets with calibre (ω1, ω) are those of
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the form K(M) for any separable metrizable M (see Section 2.8). Other examples include

any directed set with countable cofinality (since they are Tukey quotients of ω), as well as

those in the next lemma.

Lemma 22. Let S be any set.

(1) [S]≤ω has calibre ω (and so also calibre (ω1, ω)).

(2) [S]<ω has calibre (ω1, ω) if and only if S is countable.

Proof. To prove (1), it suffices to notice that if A is a countable subset of [S]≤ω, then
⋃
A

is in [S]≤ω and is an upper bound for A. Now we prove (2). If S is countable, then [S]<ω is

also countable, and so it is vacuously calibre (ω1, ω). On the other hand, if S is uncountable,

then no infinite subset of {{s} : s ∈ S} has an upper bound in [S]<ω, and so it does not have

calibre (ω1, ω).

In the next result, b is the minimal size of an unbounded subset of the directed set

(ωω, <∗), where for f and g in ωω, we say f <∗ g if and only if f(n) < g(n) for all but finitely

many n. See [27] for a proof.

Lemma 23. K(ωω) has calibre (ω1, ω1) if and only if ω1 < b.

Lemma 24. Suppose (P ′, P ) and (Q′, Q) are directed set pairs such that (P ′, P ) does not

have calibre (ω1, ω) and |Q′| ≤ ω1. Then (P ′, P ) ≥T (Q′, Q).

Proof. Since (P ′, P ) does not have calibre (ω1, ω), then there is an uncountable subset S of

P ′ such that every infinite subset of S is unbounded in P . Fix a one-to-one map ψ : Q′ →

S ⊆ P ′. If U is an unbounded subset of Q′, then U must be infinite since Q is directed.

Hence, ψ(U) is an infinite subset of S and so is unbounded in P . Then Lemma 8 implies

that P ≥T Q.

Corollary 25. (P ′, P ) does not have calibre (ω1, ω) if and only if (P ′, P ) ≥T [ω1]<ω.

Proof. Since [ω1]<ω has cardinality ω1, then Lemma 24 immediately gives one direction. The

other direction follows from Lemmas 17 and 22.
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In Chapter 5, we will see that a product of two directed sets with calibre (ω1, ω) need

not have calibre (ω1, ω), but the next lemma says that if we strengthen the calibre of one of

the factors, then the product will have calibre (ω1, ω).

Lemma 26. If (P ′, P ) has calibre (ω, ω) or (ω1, ω1), and if (Q′, Q) has calibre (ω1, ω), then

(P ′ ×Q′, P ×Q) has calibre (ω1, ω).

Proof. By Lemma 15, we know calibre (ω1, ω) is equivalent to the calibres (ω1, ω1, ω1, ω) and

(ω1, ω, ω, ω). Thus, it suffices to apply Lemma 21 in the case where κ = λ = µ = ω1 and

ν = ω, and in the case where κ = ω1 and λ = µ = ν = ω.

2.4 TYPES OF DIRECTED SETS

Let Q be a directed set and recall that a family {Sq : q ∈ Q} of subsets of a set S is called

Q-ordered if Sq ⊆ Sq′ whenever q ≤ q′ in Q. If R is a property of subsets of a directed

set, then we say a directed set pair (P ′, P ) is of type 〈Q,R〉 if P ′ is covered by a Q-ordered

family {Pq : q ∈ Q} of subsets of P such that each Pq has property R. A directed set P is

of type 〈Q,R〉 if (P, P ) is of type 〈Q,R〉. For any class Q of directed sets, let 〈Q,R〉 denote

the class of all directed sets with type 〈Q,R〉 for some Q in Q. Likewise, if R′ is a property

of directed sets, then 〈R′,R〉 denotes the class of all directed sets with type 〈Q,R〉 for some

directed set Q with property R′. We first mention some trivial types that a directed set

(pair) may have:

Lemma 27. Let R be a property shared by all directed sets that have a maximal element. If

there is an order-preserving map witnessing Q ≥T (P ′, P ), then (P ′, P ) has type 〈Q,R〉.

In particular, P has type 〈P , calibre (κ, λ, µ)〉 for any cardinals κ ≥ λ ≥ µ.

Proof. Fix an order-preserving map φ : Q → P whose image is cofinal for (P ′, P ). The

family { ↓φ(q) : q ∈ Q} is Q-ordered and covers P ′. Also, each ↓φ(q) has a maximal element

and therefore has property R.
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Lemma 28. Let κ be a regular cardinal, and suppose κ ≥ λ ≥ µ ≥ ν. If Q has calibre (κ, λ)

and (P ′, P ) has type 〈Q, relative calibre (µ, ν)〉, then (P ′, P ) has calibre (κ, λ, µ, ν).

Proof. Let {Pq : q ∈ Q} be a Q-ordered family of subsets of P covering P ′, where Q has

calibre (κ, λ) and each Pq has relative calibre (µ, ν) in P . Then we can choose a function

f : P ′ → Q such that p ∈ Pf(p) for each p in P ′. Let S1 be a subset of P ′ with size κ. By

Lemma 16, there is a κ-sized subset S ′1 of S1 such that f is one-to-one or constant on S ′.

Since Q has calibre (κ, λ), then in either case, we can find a λ-sized subset S2 of S ′1 such

that f(S2) is bounded, say by q, in Q. Then S2 is contained in Pq. The proof is completed

by applying the fact that Pq has relative calibre (µ, ν) in P .

Let R(P ) denote the family of all subsets of P with a property R, and say R is hereditary

if it is preserved by passing to subsets.

Lemma 29. Let (P ′, P ) be a directed set pair, and suppose R is a property of subsets of P .

(1) If R is preserved by finite unions, then R(P ) is a pre-ideal.

(2) If R(P ) is a pre-ideal, then R(P ) is an ideal if and only if R is hereditary.

(3) If R(P ) is a pre-ideal and R is preserved by arbitrary intersections, then R(P ) is Dedekind

complete (with respect to ⊆).

(4) If R(P ) is a pre-ideal and each singleton subset of P ′ has property R, then (P ′, R(P ))

is a directed set pair if we identify P ′ with the subset [P ′]1 of R(P ) (ignoring the partial

order P ′ inherits from P ).

Proof. Lemma 7 gives statement (3), and the other three statements are obvious.

Lemma 30. Let (P ′, P ) be a directed set pair, let Q be a directed set, and let R be a property

of subsets of P .

(1) (P ′, P ) has type 〈Q,R〉 if and only if there is an order-preserving map φ : Q → R(P )

whose image covers P ′.

(2) If (P ′, R(P )) is a directed set pair as in Lemma 29, and if (P ′, P ) has type 〈Q,R〉, then

Q ≥T (P ′, R(P )).
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Proof. Statement (1) is immediate from the definition of type 〈Q,R〉, and then statement

(2) follows from 1 and Lemma 9 since a subset of R(P ) is cofinal for (P ′, R(P )) if and only

if it covers P ′.

The next lemma shows, in particular, that when R(P ) is Dedekind complete, the impli-

cation in statement (2) of Lemma 30 can be reversed.

Lemma 31. Let (P ′, P ) be a directed set pair, and let R be a property of subsets of P

such that R(P ) is Dedekind complete pre-ideal and (P ′, R(P )) is a directed set pair as in

Lemma 29. Let Q and Q′ be any directed sets.

(1) (P ′, P ) has type 〈Q,R〉 if and only if Q ≥T (P ′, R(P )).

(2) If Q ≥T Q′, then type 〈Q′,R〉 implies type 〈Q,R〉.

(3) If Q′ is Dedekind complete, then 2 holds even if R(P ) is not Dedekind complete.

Proof. Statement (1) follows from Lemma 10, and then statement (2) follows from (1) and

transitivity of Tukey quotients. To prove (3), let φ1 : Q → Q′ be an order-preserving

map witnessing Q ≥T Q′, which exists by Lemma 9. If (P ′, P ) has type 〈Q′,R〉, then by

Lemma 30, there is an order-preserving map φ2 : Q′ → R(P ) whose image covers P ′. The

map φ2 ◦ φ1 then witnesses (via Lemma 30) that (P ′, P ) also has type 〈Q,R〉.

2.5 COUNTABLE DIRECTEDNESS AND DETERMINEDNESS

We call a directed set pair (P ′, P ) countably directed , or say P ′ is relatively countably directed

in P , if each countable subset of P ′ is bounded (above) in P . Of course, we say P is countably

directed if it is relatively countably directed in itself.

Lemma 32. Let (P ′, P ) be a directed set pair such that P ′ is directed (in itself). Then

(P ′, P ) is countably directed if and only if (P ′, P ) has calibre (ω, ω).

In particular, a directed set P is countably directed if and only if it has calibre (ω, ω).

Proof. The ‘only if’ part follows from Lemma 15, so now we assume (P ′, P ) is not countably

directed and show that (P ′, P ) does not have calibre (ω, ω). Suppose {sn : n < ω} is a
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countably infinite subset of P ′ with no upper bound in P . Since P ′ is directed, we can

inductively choose points pn in P ′ such that pn ≥ sn and pn+1 ≥ pn for each n < ω. Then no

infinite subset of {pn : n < ω} can have an upper bound in P , so P ′ does not have relative

calibre (ω, ω) in P .

Lemma 33. If Q has calibre (ω1, ω) and (P ′, P ) has type 〈Q, countably directed〉, then (P ′, P )

has calibre (ω1, ω).

Proof. Since countable directedness implies relative calibre (ω, ω), then this follows from

Lemma 28 and Lemma 15.

Unfortunately, the family of all countably directed (in themselves) subsets of a directed

set P is very often not Dedekind complete. For example, suppose P has two incomparable

elements p and p′, and suppose there are two distinct upper bounds q and q′ for the set

{p, p′}. Then {p, p′, q} and {p, p′, q′} are distinct minimal upper bounds for the subfamily

{{p}, {p′}} of R(P ), so {{p}, {p′}} has no least upper bound in R(P ). However, the family

of all relatively countably directed subsets of P is Dedekind complete for any directed set P

by Lemma 29.

Lemma 34. If P is Dedekind complete and P ′ is a subset of P , then the following are

equivalent:

(i) (P ′, P ) is of type 〈Q, relatively countably directed〉,

(ii) (P ′, P ) is of type 〈Q, countably directed〉,

(iii) D ≥T (P ′, P ) for some directed set D of type 〈Q, countably directed〉.

In particular, if D is of type 〈Q, countably directed〉, P is Dedekind complete, and D ≥T P ,

then P is also of type 〈Q, countably directed〉.

Proof. Of course (ii) implies (i), and we now show (i) implies (ii). Suppose {Pq : q ∈ Q} is a

Q-ordered cover of P ′ by subsets of P that are relatively countably directed in P . For each

countable subset C of Pq, let sup(C) denote the least upper bound of C in P . Observe that

P̂q = {sup(C) : C ∈ [Pq]
≤ω}, which contains Pq, is countably directed (in itself), and the

family {P̂q : q ∈ Q} is a Q-ordered cover of P ′.
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Next, we will show (ii) implies (iii), so assume (P ′, P ) has type 〈Q, countably directed〉,

as witnessed by some Q-ordered family P of subsets of P that are countably directed (in

themselves) and cover P ′. Then D =
⋃
P is a directed set of type 〈Q, countably directed〉,

and the inclusion map φ : D → P witnesses that D ≥T (P ′, P ).

Finally, we prove (iii) implies (ii). Assume D is of type 〈Q, countably directed〉, as

witnessed by D =
⋃
{Dq : q ∈ Q}, and suppose D ≥T (P ′, P ). By Lemma 9, there is an

order-preserving map φ : D → P whose image is cofinal for P ′. For each q in Q, define

Pq =
⋃
{ ↓p : p ∈ φ(Dq)}. Since φ is order-preserving, then P = {Pq : q ∈ Q} is a Q-

ordered family, and each Pq is countably directed since the corresponding φ(Dq) is countably

directed. Additionally, P covers P ′ since the image of φ is cofinal for P ′.

Corollary 35. Suppose (P ′, P ) has type 〈Q′, countably directed〉 and Q ≥T Q′. If P or Q′

is Dedekind complete, then (P ′, P ) also has type 〈Q, countably directed〉.

Proof. If P is Dedekind complete, then the result follows from part (2) of Lemma 31 and the

equivalence of (i) and (ii) in Lemma 34. If instead Q′ is Dedekind complete, then it follows

from part (3) of Lemma 31.

We call a directed set pair (P ′, P ) is countably determined , or say P ′ is relatively countably

determined in P , if whenever S is a subset of P ′ whose countable subsets are all bounded

in P , then S is bounded in P . Equivalently P ′ is relatively countably determined in P if

every relatively unbounded subset of P ′ contains a countable relatively unbounded subset.

Of course, we say P is countably determined if it is relatively countably determined in itself.

Lemma 36. Let P be a countably determined and Dedekind complete directed set with a

subset P ′, and let Q be any directed set. Then the following are equivalent:

(i) (P ′, P ) has type 〈Q, countably directed〉,

(ii) Q ≥T (P ′, P ).

Proof. Lemmas 9 and 27 show that (ii) implies (i), so now we prove the converse. By (i),

there is a Q-ordered family {Pq : q ∈ Q} of subsets of P , where each Pq is countably directed.

As P is countably determined, each Pq is bounded in P . Then the map φ : Q → P , where

φ(q) is the least upper bound of Pq in P , witnesses (ii).
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Lemma 37. Let S be a pre-ideal on a set X that contains every singleton from Y =
⋃
S.

Then we can identify Y with the subset [Y ]1 of S, and the following are equivalent:

(i) S is countably determined;

(ii) (Y,S) is countably determined; and

(iii) for any subset A of Y that is not contained in any member of S, there is a countable

subset A′ of A that is also not contained in any member of S.

Proof. The equivalence of (ii) and (iii) is immediate from the definition of countably deter-

mined after noticing that, for any subset Z of Y , the subset [Z]1 of S is unbounded in S if

and only if Z is not contained in any member of S.

Statement (i) certainly implies (ii), so it suffices to prove that (iii) implies (i). Let R

be an unbounded subset of S. Then there is no member of S containing A =
⋃
R ⊆ Y ,

so by (iii), there is a countable subset A′ of A that is also not contained in any member of

S. For each a in A′, pick a member Ra of R that contains a. Then the countable subset

R′ = {Ra : a ∈ A′} of R has no upper bound in S.

Duality between filters and ideals yields the following convenient description of when a

filter is countably determined.

Lemma 38. Let F be a filter of subsets of a set Y . Then the directed set (F ,⊇) is countably

determined if and only if every subset A of Y that meets each member of F contains a

countable subset A′ ⊆ A that also meets each member of F .

2.6 TOPOLOGICAL DIRECTED SETS AND Σ-PRODUCTS

A topological directed set is a directed set with a topology. Our primary example of a

topological directed set is the pre-ideal K(X) of all compact subsets of a space X, but we

will look closer at this example in Section 2.7. A topological directed set P is said to be

CSB (convergent sequences bounded) if every convergent sequence in P is bounded (above),

CSBS (convergent sequences [have] bounded subsequences) if every convergent sequence in

P has a bounded (above) subsequence, and KSB (compact sets bounded) if every compact
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subset of P is bounded (above). Clearly KSB implies CSB which implies CSBS. We also say

P is DK (down-sets compact) if ↓p is compact for each p in P .

Occasionally, the following strengthening of CSB will be useful. We say P is ECSB

(everywhere convergent sequences are bounded) if there is a base B for P such that whenever

B is in B and (pn)n is a sequence on B converging to p in B, then the sequence has an upper

bound in B. Note that if P is ECSB and has weight w(P ) ≤ κ, then we can find such a base

B of size |B| ≤ κ. Clearly ECSB implies CSB.

Lemma 39. Let P be a topological directed set with CSBS, and let P ′ be a subset of P . If

every uncountable subset of P ′ contains an infinite sequence that converges in P , then (P ′, P )

has calibre (ω1, ω).

Proof. Let E be an uncountable subset of P ′. Then there is an infinite sequence (en)n in

E that converges in P . By passing to a subsequence, we may assume en 6= em whenever

n 6= m. Since P is CSBS, there is a subsequence (enk)k of (en)n which is bounded in P .

Hence, {enk : k < ω} is an infinite, bounded subset of E.

Let X be any space. A subset A of X is called sequentially closed if A contains the limit

of every convergent sequence on A. Certainly every closed subset of X is sequentially closed,

but if the converse holds, then X is called a sequential space. Thus, sequential spaces are

those spaces whose topology is determined by sequences. Note that every Fréchet-Urysohn

space is sequential, and in particular, every first countable space is sequential. Here, X is

called Fréchet-Urysohn if whenever a point x in X is in the closure of a subset A of X, there

is a sequence on A converging to x.

Lemma 40. Let Q be a topological directed set, and let Q′ be a subset of Q.

(1) If Q′ is sequential (in particular, first countable) and has countable extent, and if Q is

CSBS, then (Q′, Q) has calibre (ω1, ω).

(2) If Q′ is locally compact and has countable extent, and if Q is KSB, then (Q′, Q) has

calibre (ω1, ω).

Proof. First we prove (1). Let S be an uncountable subset of Q′. By countable extent, we

know S is not closed and discrete in Q′, so there is a q in Q′ such that q is in the closure of
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S \ {q}. Since S \ {q} is not closed, then it is not sequentially closed, so there is a sequence

(qn)n on S \ {q} that converges to some q′ not in S \ {q}. The sequence is therefore infinite,

and so we may apply Lemma 39.

For the proof of (2), let S and q be as in the proof of (1). Since Q′ is locally compact,

there is a compact neighborhood C of q in Q′. Then C contains an infinite subset S0 of S,

and by KSB, C (and therefore S0) has an upper bound in Q.

Lemma 41. Let Q be a DK topological directed set, and let Q′ be a closed subset of Q. If

(Q′, Q) has calibre (ω1, ω), then Q′ has countable extent.

Proof. Suppose, to get a contradiction, that S is an uncountable closed discrete subset of Q′.

Then S contains an infinite subset S1 with an upper bound q in Q. Now, ↓q is a compact

subset of Q, but S1 is an infinite, closed, discrete subset of ↓q , which is a contradiction.

If {Pα : α < κ} is a family of directed sets, then the product
∏

α Pα is naturally a directed

set via the product order defined by (pα)α ≤ (qα)α if and only if pα ≤ qα for every α < κ.

Of course, if each Pα is a topological directed set, then we also equip the product with the

Tychonoff product topology.

Lemma 42. Let Pα be a (nonempty) topological directed set for each α < κ, and let R be

one of the properties CSB, KSB, DK, or Dedekind completeness. Then we have:

(1)
∏

α Pα has R if and only if each Pα has R.

(2) If κ = ω, then (1) is also true when R is CSBS.

Proof. Statement (1) is obvious for Dedekind completeness from the definition of the product

order, and the ‘only if’ portion of (1) is easy to prove for each remaining property R, so we

only prove the ‘if’ portion. Let P =
∏

α Pα. For CSB, it suffices to notice that a sequence

in P converges if and only if it converges pointwise, and it is bounded if and only if it is

bounded pointwise. The statement for KSB follows from the fact that if K is a compact

subset of P , then each projection πα(K) is a compact subset of Pα. Likewise, the statement

for DK follows from the fact that for any p = (pα)α in P , we have ↓p =
∏

α( ↓pα ).

Now we prove (2). Again, it is clear that if the product is CSBS, then so is each Pα, so

we prove the converse. Let (pn)n be a sequence in
∏

i<ω Pi, and write pn = (pni )i for each
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n < ω. Then for each i, the sequence (pni )n converges in Pi, and since each Pi is CSBS,

then we can inductively choose a decreasing sequence (Si)i of infinite subsets of ω such that

{pni : n ∈ Si} has an upper bound p′i in Pi for each i < ω. As each Si is infinite, we can

choose a strictly increasing sequence (ni)i such that ni is in Si for each i < ω. Then p′i is an

upper bound for {pnji : j ≥ i}, and since Pi is directed, we can find an upper bound pi for all

of {pnji : j < ω}. Then p = (pi)i is an upper bound for the subsequence (pni)i of (pn)n.

We will investigate the productivity properties of calibre (ω1, ω) in detail in Section 5,

but we note here that calibre (ω1, ω) is generally not preserved by countable (or even finite)

products. However, we do have the following result. Recall that a space is called second

countable (abbreviated 2o) if it has a countable base.

Theorem 43. The class of second countable directed sets with CSBS is closed under count-

able products, and each member has calibre (ω1, ω).

Proof. Closure under countable products follows from Lemma 42 and the fact that countable

products preserve second countability. That each member has calibre (ω1, ω) follows from

Lemma 40 since second countability implies both first countability and countable extent.

If {Pα : α < κ} is a family of sets and if bα is a point in Pα for each α, then the Σ-product

ΣαPα with base point b = (bα)α is the subset of
∏

α Pα consisting of all p = (pα)α whose

support suppb(p) = {α < κ : pα 6= bα} is countable. When each Pα is (Tukey equivalent to)

P , then we write ΣP κ for ΣαPα. If each Pα is a topological directed set, then the Σ-product

inherits the product order and topology from
∏

α Pα.

Note that for any directed set P , we can add an isolated point 0 to the ‘bottom’ of P

without affecting the cofinal structure of P , the relevant topological properties of P (such as

second countability, countable extent, or sequentiality), or any of the properties CSBS, CSB,

KSB, or DK. Thus, when forming Σ-products of topological directed sets, we will assume

each factor Pα has a minimum 0α and base the Σ-product at the point 0 = (0α)α. In this

case, we write supp(p) for supp0(p).

Lemma 44. Let Pα be a topological directed set with minimum 0α for each α < κ, and let C

be a countable subset of ΣαPα. If C is bounded in
∏

α Pα, then C is also bounded in ΣαPα.
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Proof. Let (pα)α be an upper bound for C in
∏

α Pα, and define A =
⋃
{supp(c) : c ∈ C}.

Now let qα = pα for each α in A and qα = 0α otherwise. Since A is countable, then (qα)α is

an upper bound for C in ΣαPα.

Lemma 45. Let Pα be a topological directed set with minimum 0α for each α < κ, and let

R be one of the properties CSBS, CSB, or DK. Then ΣαPα has R if and only if every Pα

has R.

Proof. If ΣαPα has R, then it is clear that each Pβ has R after we identify Pβ with the subset

{p ∈
∏

α Pα : supp(p) ⊆ {β}} of ΣαPα. Conversely, if R is CSB or DK and each Pα has R,

then we know
∏

α Pα has R by Lemma 42. Now if R is CSB, then Lemma 44 passes R on

to ΣαPα, while if R is DK, then it suffices to notice that for any p in the Σ-product, the

down-set of p in ΣαPα is the same as the down-set of p in
∏

α Pα.

It remains to show that if each Pα is CSBS, then so is the Σ-product. Let S be a sequence

in ΣαPα, and let A =
⋃
{supp(p) : p ∈ S}, which is a countable subset of κ. By Lemma 42,

we know that PA = πA(ΣαPα) =
∏
{Pα : α ∈ A} is CSBS, so there is a point (qα)α∈A in PA

which is an upper bound for πA(S ′), where S ′ is some subsequence of S. By defining qα = 0α

for each α not in A, we obtain an upper bound (qα)α<κ for S ′ in
∏

α Pα.

Notice that we cannot take R in the previous lemma to be the property KSB . Indeed,

if Pα = {0, 1} for each α < ω1, then K = {p ∈ ΣαPα : | supp(p)| ≤ 1} is compact but not

bounded in ΣαPα.

2.7 K(X) AND (X,K(X))

If X is any space, then the pre-ideal K(X) is naturally equipped with the Vietoris topology ,

which is generated by basic open sets of the form

〈U1, . . . , Un〉 =

{
K ∈ K(X) : K ⊆

n⋃
i=1

Ui and K ∩ Ui 6= ∅ ∀i ≤ n

}
,

where 0 < n < ω and each Ui is open in X.
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Lemma 46. For any Hausdorff space X, the pre-ideal K(X) is KSB, ECSB (hence CSB),

DK, and Dedekind complete.

Proof. Two well-known properties of the Vietoris topology on K(X) are that if X is compact,

then K(X) is also compact, and if A is a compact subset of K(X), then
⋃
A is a compact

subset of X. The first property implies K(X) is DK (since the down set of any K in K(X)

is K(K)), while the second property implies K(X) is KSB (since
⋃
A is an upper bound for

A in K(X)). Moreover, note that if A is a subset of some basic open set in K(X), then
⋃
A

is an element of that basic open set. By taking A to be a convergent sequence, it follows

that K(X) is ECSB. Finally, Dedekind completeness follows from Lemma 7.

Corollary 47. Every directed set is Tukey equivalent to a Dedekind complete topological

directed set with KSB and DK.

Proof. Combine Lemma 14 and Lemma 46.

Lemma 48. Let X be a space.

(1) If K(X) has calibre (ω1, ω), then K(X) has countable extent.

(2) If K(X) is sequential or X is locally compact, then the converse of (1) holds.

Proof. First, note that if X is locally compact, then so is K(X). Thus, both claims follow

immediately from Lemmas 46, 41, and 40.

Recall that we can identify a space X with the subset [X]1 of K(X), so that (X,K(X))

is a directed set pair. Thus, we may speak of the relative calibres of X in K(X) (in other

words, the calibres of (X,K(X))). We will usually omit ‘in K(X)’ and simply refer to the

‘relative calibres of X’. Note that X has relative calibre (ω1, ω) (in K(X)) if and only if each

uncountable subset of X contains an infinite subset with compact closure in X.

Lemma 49. Let X be any space.

(1) If X has relative calibre (ω1, ω) in K(X), then X has countable extent.

(2) If X is sequential or locally compact, then the converse of (1) holds.

Proof. Since X is a closed subspace of K(X), then this follows immediately from Lemmas 46,

41, and 40.
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If P is a topological directed set, then we can view P as a directed set itself or as a

subspace of the topological directed set K(P ) (while ignoring the original order on P ). The

following lemma says that for nice enough P , there is essentially no difference between these

two views.

Lemma 50. Let P be a Dedekind complete topological directed set with DK and KSB. Then

P =T (P,K(P )) =T K(P ). In particular, this applies to P = ω, P = ωω, and P = K(X) for

any space X.

Proof. We will show K(P ) ≥T (P,K(P )) ≥T P ≥T K(P ). First, note that the identity map

on K(P ) is order-preserving and its image covers P , so the first Tukey quotient is established.

The second Tukey quotient is witnessed by the map φ : K(P )→ P where φ(K) is the least

upper bound of K in P (which exists since P is KSB and Dedekind complete). Indeed, φ

is clearly order-preserving, and the image of [P ]1 = {{p} : p ∈ P} is the entirety of P . The

final Tukey quotient is witnessed by the map ψ : P → K(P ) given by ψ(p) = ↓p , which is

well-defined since P is DK. Indeed, ψ is clearly order-preserving, and its image is cofinal in

K(P ) since P is KSB.

For the final claim, it is clear that ω is Dedekind complete, DK, and KSB, and thus

ωω is also by Lemma 42. Additionally, Lemma 46 tells us that K(X) also satisfies these

properties.

Lemma 51. Suppose Y is an Fσ subset of a space X and λ ≤ ω1. If X has relative calibre

(ω1, λ) in K(X), then Y has the same relative calibre in K(Y ).

Proof. Say Y =
⋃
nCn where each Cn is closed in X. Fix n and let S be an ω1-sized subset of

Cn. Since X has relative calibre (ω1, λ), then there is a λ-sized subset S ′ of S with compact

closure in X. But since S
Cn

= S
X

, then we see that Cn has relative calibre (ω1, λ) in K(Cn).

Now the result follows from Lemma 20.

Lemma 52. For any spaces Xα, we have
∏

αK(Xα) =T K(
∏

αXα).

Proof. Consider the Tukey quotient maps (Kα)α 7→
∏

αKα, where each Kα is in K(Xα), and

K 7→ (πα(K))α, where K is in K(
∏

αXα) and πβ :
∏

αXα → Xβ is the projection.
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A space is called totally imperfect if every compact subset is countable. Bernstein sets

(subsets of R that intersect each uncountable closed subset of R but contain none of them)

are examples of totally imperfect subsets of the reals which have size c.

Lemma 53. If B is a totally imperfect subset of R with size c and S is any set with size

|S| ≤ c, then K(B) ≥T [S]≤ω.

Proof. Since |S| ≤ c we also have |[S]≤ω| ≤ c, so fix a surjection f : B → [S]≤ω. Define

φ : K(B)→ [S]≤ω by φ(K) =
⋃
{f(x) : x ∈ K}. This is a well-defined map into [S]≤ω since

each compact subset of B is countable. Clearly φ is order-preserving and surjective, and

hence a Tukey quotient map by Lemma 9.

Lemma 54. If X is first countable and totally imperfect, then K(X) is also first countable.

Proof. Let K ∈ K(X). Then we can enumerate K = {xi : i < ω} since X is totally imperfect.

For each i < ω, fix a countable neighborhood base (Bi,n)n for xi. For any n = (n0, . . . , nk)

where each ni < ω, define Tn = 〈B1,n1 , . . . , Bk,nk〉. Now let U = 〈U1, . . . , U`〉 be any basic

neighborhood of K, so K is contained in
⋃`
j=1 Uj and intersects each Uj.

For each i < ω, pick ni < ω such that xi ∈ Bi,ni ⊆
⋂
{Uj : xi ∈ Uj}. Since K is compact,

there is a 0 < k < ω such that {Bi,ni : i = 1, . . . , k} covers K. Since K intersects each Uj,

then by choosing k large enough, we can also ensure that for each j ∈ {1, . . . , `}, there is

some i ∈ {1, . . . , k} such that Bi,ni ⊆ Uj. For n = (n1, . . . , nk), it follows that K ∈ Tn ⊆ U .

Hence, K has a countable neighborhood base: {Tn : n ∈
⋃
m ω

m, K ∈ Tn}.

2.8 K(M) FOR SEPARABLE METRIZABLE M

Our interest in directed sets of the form K(M) where M is separable metrizable stems from

their use in the work of Cascales, Orihuela, and Tkachuk [7], and the following fact provides

one of our primary motivations for studying the property calibre (ω1, ω).

Lemma 55. Let M be a separable metrizable space, and let (P ′, P ) be a directed set pair

such that P is Dedekind complete. Then we have:
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(1) K(M) is second countable (2o), KSB, ECSB (so also CSB and CSBS), DK, and Dedekind

complete.

(2) K(M) has calibre (ω1, ω).

(3) If K(M) ≥T (P ′, P ), then (P ′, P ) has type 〈2o+ECSB, countably directed〉.

Proof. If M is separable and metrizable, then K(M) is also separable and metrizable via

the Hausdorff metric. Hence, K(M) is second countable, and the rest of (1) comes from

Lemma 46. Applying Theorem 43 then gives (2). Lemma 27 shows that K(M) has type

〈2o+ECSB, countably directed〉, so then Lemma 34 gives (3).

Lemma 55 shows that each K(M) is a member of the class of second countable directed

sets with CSB. We saw in Theorem 43 that this class is closed under countable products, and

the same is essentially true for directed sets of the form K(M) as well. Indeed, Lemma 52

gives:

Lemma 56. If Mn is separable and metrizable for each n < ω, then
∏

nK(Mn) =T K(M ′),

where M ′ is the separable metrizable space M ′ =
∏

nMn.

Let K(M) denote the class of all Tukey equivalence classes of directed sets of the form

K(M) for some separable metrizable M . Then K(M) is actually a set since each M is

homeomorphic to a subspace of the Hilbert cube. Applying Lemmas 56, 55, and 17, we

obtain:

Corollary 57. K(M) is closed under countable products and each member has calibre

(ω1, ω).

In particular, if Mn is separable metrizable for each n, then
∏

nK(Mn) has calibre (ω1, ω).

In fact, we can generalize this to Σ-products:

Theorem 58. Let {Mα : α < κ} be a family of separable metrizable spaces. Then ΣαK(Mα)

(with base point 0 = (∅)α) has calibre (ω1, ω).

Proof. Since each K(Mα) is second countable (hence cosmic) and CSB (hence CSBS), then

this is a consequence of Theorem 136 in Chapter 5 below.

32



Note that K(M) is a directed set under Tukey quotients since for any two separable

metrizable spaces M1 and M2, K(M1) and K(M2) are each Tukey quotients of K(M1⊕M2).

The next two results from Gartside and Mamatelashvili [27] tell us much more about the

order structure of K(M). The first result says when subsets of K(M) have upper bounds; it

implies that K(M) is countably directed. The second asserts the existence of an antichain

of maximal possible size in K(M).

Theorem 59 (Gartside and Mamatelashvili, [27]). Let {Mα : α < κ} be a family of separable

metrizable spaces.

(1) If κ ≤ c, then there is a separable metrizable M such that K(M) ≥T K(Mα) for all α.

(2) If κ > c and the Mα’s are all distinct subsets of a given separable metrizable space (or

pairwise non-homeomorphic), then for any separable metrizable space M , there is an α

such that K(M) 6≥T (Mα,K(Mα)).

Theorem 60 (Gartside and Mamatelashvili, [27]). There is a 2c-sized family A of separable

metrizable spaces such that if A and A′ are distinct elements of A then K(A) 6≥T (A′,K(A′))

and K(A′) 6≥T (A,K(A)).

If M is compact, then the cofinal structure of the pre-ideal K(M) is not very interesting.

Indeed, in this case K(M) =T 1. However, if M is not compact, then the following lemma

says that K(M) is at least as cofinally complex as ω.

Lemma 61. A metrizable space M is not compact if any only if K(M) ≥T ω. Hence,

K(M)× ω =T K(M) for any compact metrizable space M .

Proof. If M is compact, then K(M) =T 1 6≥T ω since ω has no maximum. On the other

hand, if M is not compact, then there is a sequence (xn)n<ω in M which has no convergent

subsequence. Note that any compact subset of M can contain at most finitely many members

of this sequence, so we may define a map φ : K(M)→ ω by φ(K) = min{n < ω : xn 6∈ K}.

Then φ is order-preserving and onto, so it witnesses K(M) ≥T ω.

For the second claim, note that K(M) × ω ≥T K(M) via the natural projection map,

and combining the map φ from the first claim with the identity map on K(M) gives a map

witnessing K(M) ≥T K(M)× ω.
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2.9 FUNCTION SPACES

Write C(X) for the set of all real-valued continuous functions on a space X. For any f in

C(X), subset S of X, and ε > 0, define B(f, S, ε) = {g ∈ C(X) : |f(x) − g(x)| < ε, ∀x ∈

S}. If S is a pre-ideal of compact sets covering X. Then the collection {B(f, S, ε) : f ∈

C(X), S ∈ S, ε > 0} is the basis for a locally convex topological vector space topology on

C(X). We denote C(X) with this topology by CS(X).

f

g

R

S
X

Figure 3: A basic neighborhood in CS(X)

Two special cases are of particular interest. If S = K(X), then CS(X) is C(X) with the

compact-open topology, denoted Ck(X), while if S = [X]<ω, then CS(X) is C(X) with the

topology of pointwise convergence, denoted Cp(X).

Lemma 62. Let X be a space, and let S be a pre-ideal of compact subsets covering X. Then

NCS(X)
0 =T S × ω.

Proof. Let B0 = {B(0, K, 1/n) : K ∈ S and 0 < n < ω}. Then B0 is cofinal in NCS(X)
0 (that

is, B0 is a neighborhood base for 0). Thus, NCS(X)
0 =T B0 by Lemma 11. Now note that

B(0, K, 1/n) = B(0, L, 1/m) if and only if K = L and n = m. Thus, the maps (K,n) 7→

B(0, K, 1/n+1) and B(0, K, 1/n+1) 7→ (K,n) are well-defined Tukey quotients showing that

B0 =T S × ω.
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3.0 P -ORDERED COMPACT COVERS

Recall that Theorem 3 by Cascales, Orihuela, and Tkachuk [7] says that if X is compact

and X2 \∆ has a K(M)-ordered cofinal compact cover for some separable metrizable M (i.e.

K(M) ≥T K(X2 \ ∆)), then X must be metrizable, and this result generalizes Schneider’s

Theorem 1. In Theorem 63 of Section 3.1, we generalize Theorem 3 by replacing K(M)

with any directed set P having calibre (ω1, ω). We further show in Theorem 67 that this

generalization is optimal in the sense that the class of directed sets with calibre (ω1, ω) cannot

be replaced by a larger class of directed sets. Theorem 63 can also be stated as: if K(X2 \∆)

has calibre (ω1, ω) and X is compact, then X is metrizable, and we show in Section 3.2 that

the hypothesis cannot be weakened to ‘X2 \∆ has relative calibre (ω1, ω) in K(X2 \∆)’.

In Section 3.3, rather than considering only the particular subset X2 \∆ of a square X2,

we consider what happens when for each subspace A of a space X, K(A) or (A,K(A)) has

calibre (ω1, ω) or is a Tukey quotient of a directed set of the form K(M). This section seeks

to answer several questions posed in [7].

3.1 A GENERALIZATION OF SCHNEIDER’S THEOREM

We now prove the following generalization of Theorem 3, which in turn generalizes Schnei-

der’s Theorem.

Theorem 63. The following are equivalent for any countably compact space X:

(i) X is compact and P ≥T K(X2 \∆) for some directed set P with calibre (ω1, ω),

(ii) X is compact and K(X2 \∆) has calibre (ω1, ω),
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(iii) P ≥T NX2

∆ for some directed set P with calibre (ω1, ω),

(iv) NX2

∆ has calibre (ω1, ω), and

(v) X is metrizable.

Proof. Lemma 17 shows that (i) implies (ii), and of course (ii) implies (i) since we can take

P = K(X2 \ ∆). So (i) and (ii) are equivalent, and similarly, (iii) and (iv) are equivalent.

Also, (v) implies that X is actually compact, and then Schneider’s theorem implies (iii)

with P = ω (since the diagonal in a compact square is Gδ if and only if the diagonal has a

countable neighborhood base). Hence, it suffices to show that (iv) implies (ii) and that (ii)

implies (v).

Claim (A): Statement (iv) implies statement (ii).

It suffices to show X is Lindelöf. Indeed, then X is countably compact and Lindelöf,

which gives compactness. By Lemma 13, K(X2 \ ∆) and NX2

∆ are Tukey equivalent for

compact X, so Lemma 17 shows that (iv) implies (ii). Thus, claim (A) follows from:

Claim (B): Statement (iv) implies X is hereditarily Lindelöf.

Assume not. Then X contains an uncountable right-separated sequence {yα : α < ω1};

that is, each yα has a neighborhood Uα such that yβ 6∈ Uα for all β > α. For each α < ω1,

let Vα = X \ {yα} and Nα = U2
α ∪ V 2

α , which is a neighborhood of the diagonal. By (iv), we

know there is an infinite A ⊆ ω1 and a neighborhood N of the diagonal such that Nα ⊇ N

for all α ∈ A. Without loss of generality, we may assume N =
⋃
W∈WW

2 for some open

cover W of X.

We will show that each member of W contains at most one point of the infinite set

{yα : α ∈ A}. Indeed, if yα, yβ ∈ W for some α, β ∈ A, then we see that (yα, yβ) ∈ W 2 ⊆

N ⊆ Nα = U2
α ∪ V 2

α . Now since yα 6∈ Vα, then we must have yβ ∈ Uα, which gives β ≤ α.

Similarly, we have (yα, yβ) ∈ U2
β ∪ V 2

β , which implies that α ≤ β, and so α = β. Hence, W

witnesses that {yα : α ∈ A} is an infinite closed discrete subset of X, which contradicts that

X is countably compact. Thus, claim (B) is proven.

Claim (C): Statement (ii) implies statement (v).

Let {(Uα
1 , U

α
2 ) : α < κ} be a one-to-one enumeration of the pairs of open sets in X that

have disjoint closures. Since X is compact, then it is normal, so for each α, we can find
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open sets V α
1 and V α

2 with disjoint closures such that Uα
` ⊆ V α

` for ` = 1, 2. We will say

that any α and β less than κ are comparable if Uα
` ⊆ V β

` and Uβ
` ⊆ V α

` for ` = 1, 2. By

an easy Zorn’s lemma argument, there is a maximal incomparable subset A of κ. For any

subsets E and F of X, let R(E,F ) = (E ×F )∪ (F ×E) ⊆ X2. Then for any α in A, define

Kα = (V α
1 × V α

2 ) ∪R(Uα
1 , C

α
1 ) ∪R(Uα

2 , C
α
2 ) where Cα

` = X \ V α
` for ` = 1, 2.

To establish (v), it suffices to show X2 \∆ is σ-compact since then the diagonal is Gδ,

so X is metrizable by Schneider’s theorem. Thus, claim (C) follows from:

Claim (D): K = {Kα : α ∈ A} is a countable subset of K(X2 \∆) covering X2 \∆.

Certainly each Kα is compact since it is closed in X2, and Kα is disjoint from ∆ since

V α
1 ∩ V α

2 = ∅ = Uα
` ∩Cα

` . To see that K covers X2 \∆, note that for any (x1, x2) in X2 \∆,

we can find an α < κ such that x` ∈ Uα
` for ` = 1, 2. By the maximality of A, there is a β in

A that is comparable with α. In particular, Uα
` ⊆ V β

` , and so (x1, x2) ∈ V β
1 ×V

β
2 ⊆ Kβ ∈ K.

Now suppose, to get a contradiction, that K is uncountable. Then by (ii), K contains

an infinite bounded subset K′. Thus,
⋃
K′ is contained in a compact set disjoint from the

diagonal, or equivalently, the closure of
⋃
K′ is disjoint from the diagonal. So to achieve our

desired contradiction, it suffices to find a point on the diagonal which is in the closure of⋃
K′.

Write K′ = {Kαi : i < ω} where each αi is in A and αi 6= αj whenever i 6= j. Since the

elements of A are incomparable, then for any i < j, there exists a point xi,j ∈ X witnessing

one of the following four conditions.

(1) Uαi
1 6⊆ V

αj
1 (2) Uαi

2 6⊆ V
αj

2 (3) U
αj
1 6⊆ V αi

1 (4) U
αj
2 6⊆ V αi

2

Applying Ramsey’s theorem, there is an infinite subset M of ω such that one of these four

conditions is witnessed by all xi,j with i, j ∈M and i < j.

Since X is compact, then K(X2 \∆) =T NX2

∆ , so (iv) holds, and claim (B) gives that X

is hereditarily Lindelöf. The singletons in X are therefore Gδ, and so by compactness of X,

we see that X is first countable. Now, since X is compact and first countable, then every

infinite subset of X has an accumulation point (and so a proper limit point), and whenever

a point is in the closure of a set, it is the limit of a sequence on that set.

Hence, we may inductively construct a decreasing sequence (Si)i of infinite subsets of M
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such that (xi,j)j∈Si converges to some point xi,∞ ∈ X for each i < ω. Next, we inductively

choose a strictly increasing sequence (jm)m such that jm ∈ Sm for each m < ω, and we let

J = {jm : m < ω}. Then there is an infinite subset J ′ ⊆ J such that (xj,∞)j∈J ′ converges to

some limit point x∞.

Fix any open neighborhood W of x∞. Pick an i ∈ J ′ such that xi,∞ ∈ W . Note that

for each m ≥ i, we have jm ∈ Sm ⊆ Si, and so J ′ ∩ Si is infinite. As (xj,∞)j∈J ′ converges to

x∞ ∈ W and (xi,j)j∈Si converges to xi,∞ ∈ W , then we can find a j ∈ J ′ ∩Si with j > i such

that xj,∞ ∈ W and xi,j ∈ W . There must then be a k ∈ Sj such that k > j and xj,k ∈ W .

So we found i < j < k in M such that xi,j and xj,k are both in W , and as noted above,

one of the four conditions (1)–(4) is witnessed by both xi,j and xj,k. If it is condition (1) or

(2), then for some ` ∈ {1, 2}, we have xi,j ∈ Uαi
` \ V

αj
` ⊆ C

αj
` and xj,k ∈ U

αj
` \ V

αk
` ⊆ U

αj
` . If

condition (3) or (4) is witnessed instead, then for some ` ∈ {1, 2}, we have xi,j ∈ U
αj
` \V

αi
` ⊆

U
αj
` and xj,k ∈ Uαk

` \ V
αj
` ⊆ C

αj
` . In any case, we have (xi,j, xj,k) ∈ R(U

αj
` , C

αj
` ) ⊆ Kαj .

Therefore (xi,j, xj,k) is in Kαj ∩W 2. Hence, every basic open neighborhood W 2 of (x∞, x∞)

meets some member of K′, and so (x∞, x∞) is in the closure of
⋃
K′. This gives the desired

contradiction to complete the proof of claim (D).

The next result and its corollary are an application of Theorem 63 in the spirit in which

Cascales and Orihuela originally proved their theorem (see [6]) that for compact X, metriz-

ability follows from the condition ωω ≥T K(X2 \∆).

Theorem 64. Let G be a topological group with identity e. If NG
e has calibre (ω1, ω), then

every compact subset of G is metrizable.

Proof. Let K be a compact subset of G. We write the group operation multiplicatively and

denote Cartesian products by ‘×’. Let ∆ = ∆(K) be the diagonal in K ×K, and consider

the map φ : NG
e → NK×K

∆ given by φ(N) = (K ×K) ∩
⋃
{gN × gN : g ∈ K}.

Note that φ is order-preserving, and we now check that its image is cofinal. Let U be

any neighborhood of ∆ in K × K. Then for each g in K, we can find a neighborhood

Bg of g in G such that (K × K) ∩ (Bg × Bg) ⊆ U . Choose a neighborhood Ng of e such

that NgNg is contained in g−1Bg. By compactness of K, there is a finite subset F of K

such that {fNf : f ∈ F} covers K. Let N =
⋂
{Nf : f ∈ F}, which is a neighborhood
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of e. Since each g in K is in fNf for some f in F , then gN ⊆ fNfNf ⊆ Bf . Hence,

φ(N) ⊆ (K ×K) ∩
⋃
{Bf ×Bf : f ∈ F} ⊆ U , so the image of φ is cofinal.

Thus, φ witnesses NG
e ≥T NK×K

∆ , so if NG
e has calibre (ω1, ω), then NK×K

∆ does also.

Hence, Theorem 63 implies that K is indeed metrizable.

Recall that Ck(X) denotes the space of continuous real-valued functions on X with the

compact-open topology.

Corollary 65. If K(X) has calibre (ω1, ω), then every compact subset of Ck(X) is metrizable.

Proof. By Lemma 62, we know K(X) × ω =T NCk(X)
0 . Note that ω has calibre (ω1, ω1)

vacuously, so if K(X) has calibre (ω1, ω), then Lemma 26 and Lemma 17 show that NCk(X)
0

also has calibre (ω1, ω), and we can apply the previous result.

As a simple consequence, we observe that for any cardinal κ, every compact subset of

Ck(κ) is metrizable. The previous results of this type in [6, 7] are restricted to cardinals

with cofinality no more than the continuum, so this gives a small example of the value of

our calibre result over Tukey quotients from K(M), where M is separable metrizable.

Our final goal in this section is to prove Theorem 67 below, which says that Theorem 63

is optimal. We start by proving the following lemma:

Lemma 66. If X is a compact space with weight ω1, then [ω1]<ω ≥T K(X2 \∆).

Proof. Let B be a base for X with size ω1. Let S = {B1×B2 : B1, B2 ∈ B and B1∩B2 = ∅}.

Then S is a subset of K(X2 \∆) with size ω1. Indeed, it is clear that |S| ≤ ω1, and if S was

countable, then X would have a Gδ diagonal and so be metrizable, which contradicts that

it has uncountable weight. Now define φ : [S]<ω → K(X2 \∆) by φ(F) =
⋃
F for any finite

F ⊆ S. Then φ is order-preserving, and since any compact subset of X2 \∆ can be covered

by finitely many members of S, then the image of φ is cofinal in K(X2 \∆).

Theorem 67. The following are equivalent for a directed set P :

(i) P has calibre (ω1, ω), and

(ii) For any compact X such that P ≥T K(X2 \∆), X must be metrizable.
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Proof. Theorem 63 shows that (i) implies (ii), and we now prove that the negation of (i)

implies the negation of (ii). Suppose P does not have calibre (ω1, ω). By Corollary 25, we

have P ≥T [ω1]<ω. Let X = A(ω1), the one-point compactification of the discrete space of

size ω1. Then X is compact and has weight ω1, so Lemma 66 gives that [ω1]<ω ≥T K(X2\∆).

Hence, P ≥T K(X2 \∆) by transitivity, but X is not metrizable.

Theorem 67 says that we cannot enlarge the class of directed sets P used in the first

equivalent condition of Theorem 63.

3.2 RELATIVE CALIBRES OF X2 \∆

Recall that the relative calibres of X2 \ ∆ refer to the calibres of the directed set pair

(X2 \∆,K(X2 \∆)) where we have identified X2 \∆ with the singletons in K(X2 \∆).

3.2.1 SMALL DIAGONALS

A space X is said to have a small diagonal if and only if every uncountable S contained

in X2 \ ∆ contains an uncountable subset S1 whose closure misses the diagonal. If X is

compact then S1 is a compact subset of X2 \∆. The next lemma is then immediate.

Lemma 68. Let X be compact. Then X2 \∆ has relative calibre (ω1, ω1) if and only if X

has a small diagonal.

Under various set theoretic hypotheses including PFA, it is known [12] that a compact

space with a small diagonal is metrizable. Combining with the previous lemma gives:

Corollary 69 (Consistently). If X is compact and X2 \∆ has relative calibre (ω1, ω1), then

X is metrizable.

We can now recover a result from [7], albeit with a stronger set theoretic assumption,

PFA rather than MA +¬CH.

Theorem 70 (PFA). If X is compact and K(M) ≥T (X2 \∆,K(X2 \∆)), where K(M) has

calibre (ω1, ω1), then X is metrizable. In particular, this holds when M = ωω.

40



This is because under PFA, ω1 < b, so K(ωω) has calibre (ω1, ω1) (see Lemma 23). Note

that in [27] it is shown that consistently (in particular, under PFA) there are separable

metrizable spaces M which are not Polish but such that K(M) has calibre (ω1, ω1).

3.2.2 A COUNTEREXAMPLE

In light of Theorem 63 and Corollary 69, it is natural to hope that if X is compact and X2\∆

has relative calibre (ω1, ω), then X must be metrizable, but we will see in Theorem 73 below

that this is not the case. To build the desired counterexample, we generalize the construction

of the Alexandrov duplicate of the unit interval, as follows. If τ is any topology on the

closed unit interval I = [0, 1], then AD(τ) will have the underlying set I×{0, 1}. We define

the topology on AD(τ) by giving points in I × {1} basic open neighborhoods of the form

U × {1} for U in τ , while points in I × {0} are given basic open neighborhoods of the form

(V × {0, 1}) \ (K × {1}), where V is open in the usual topology on I and K is a τ -compact

subset of I. Notice that if τ is the discrete topology, then AD(τ) is the usual Alexandrov

duplicate of the unit interval.

Lemma 71. If τ is a first countable, locally countable, locally compact topology on I refining

the usual topology, then AD(τ) is compact Hausdorff, first countable, and not metrizable.

Proof. Since I is Hausdorff, then any two distinct points (x, i) and (y, j) in AD(τ) can easily

be separated by open sets if x 6= y. That (x, 0) and (x, 1) can also be separated by open

sets follows from the fact that τ is locally compact. Indeed, pick any τ -open neighborhood

U of x that has compact closure in (I, τ). Then U ×{1} and AD(τ)\ (U
τ ×{1}) are disjoint

open neighborhoods containing (x, 1) and (x, 0), respectively.

Let U be an open cover of AD(τ). For each x ∈ I, find Ux ∈ U , Vx open in I, and a

τ -compact subset Kx of I such that (x, 0) ∈ Bx = (Vx × {0, 1}) \ (Kx × {1}) ⊆ Ux. Then

there is a finite F ⊆ I such that {Vx : x ∈ F} covers I, and so {Bx : x ∈ F} covers all

of AD(τ) except for a subset of the compact set (
⋃
{Kx : x ∈ F}) × {1}. Thus, AD(τ) is

compact.

Since τ is locally countable and I × {1} is an uncountable open subset of AD(τ) home-

omorphic to (I, τ), then AD(τ) has no countable base. Thus, AD(τ) cannot be metrizable
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(by compactness).

To prove AD(τ) is first countable, we just need to find a countable neighborhood base

for each point in I × {0}. Fix x ∈ I and a τ -open neighborhood U of x such that K =

U
τ

is τ -compact. Also, fix a countable neighborhood base {Vn : n < ω} of x in I. Let

Bn = (Vn × {0, 1}) \ (K × {1}) for each n. Suppose B = (V × {0, 1}) \ (L × {1}) is

any other basic neighborhood of (x, 0) in AD(τ). Then L \ U is τ -compact, and therefore

compact in the usual topology on I, so it is also closed in I. Then there is an n such that

Vn ⊆ V ∩ (I \ (L \ U)) = V ∩ ((I \ L) ∪ U) ⊆ (V \ L) ∪K. Hence, Vn \K is contained in

V \ L, and it follows that Bn is contained in B.

Lemma 72. Let A = (I, τ) denote I with some topology τ that refines the usual topology on

I, and let X = AD(τ). If both A and A2 have relative calibre (ω1, ω) (in K(A) and K(A2),

respectively), then X2 \∆ has relative calibre (ω1, ω) in K(X2 \∆).

Proof. Notice that X2 \∆ is the union of four subspaces which are naturally homeomorphic

to I2 \∆, I × A, A × I, and A2 \∆. By Lemma 20, it is sufficient to show that these four

spaces all have relative calibre (ω1, ω) in K(I2 \ ∆), K(I × A), K(A × I), and K(A2 \ ∆),

respectively.

We know both A and A2 have relative calibre (ω1, ω), and of course I and I2 have every

relative calibre since they are compact. So I × A and A× I have relative calibre (ω1, ω) by

Lemma 26. Also, ∆ is a Gδ subset of I2, and since τ refines the usual topology on I, then

∆ is also a Gδ subset of A2. Thus, both I2 \∆ and A2 \∆ have relative calibre (ω1, ω) by

Lemma 51.

Theorem 73. There is a first countable, compact space X which is not metrizable even

though X2 \∆ has relative calibre (ω1, ω) in K(X2 \∆).

Proof. By Lemma 71 and Lemma 72, it suffices to prove the existence of a first countable,

locally countable, locally compact topology τ on I refining the usual topology such that both

(I, τ) and its square have relative calibre (ω1, ω). Indeed, then X = AD(τ) is as desired.

Hence, this result follows from Proposition 74 below.
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3.2.3 A TOPOLOGY ON THE CLOSED UNIT INTERVAL

Our goal in this section is to prove:

Proposition 74. There is a first countable, locally countable, locally compact topology τ on

the closed unit interval I refining the usual topology such that both (I, τ) and its square have

relative calibre (ω1, ω).

To prove this result, our first step will be to show (in Lemma 76) that the relative

calibre portion of Proposition 74 follows from the property (λ2
1) described below. For any

set Z, a subset Y of Z × Z is called small if there is a countable subset C ⊆ Z such that

Y ⊆ (C × Z) ∪ (Z × C). In other words, Y is contained in the union of a countable family

of ‘horizontal’ and ‘vertical’ lines. Y is called big if it is not small. Consider the following

two properties, where τ denotes any topology on the closed unit interval I.

For any F ⊆ I2 such that F
I×I

is big, F
τ×τ

is uncountable. (λ2
1)

For any F ⊆ I such that F
I

is uncountable, F
τ

is uncountable. (λ1)

Lemma 75. If τ is a topology on I satisfying (λ2
1) above, then τ also satisfies (λ1).

Proof. For any F ⊆ I, consider ∆(F ) = {(x, x) : x ∈ F}. If F
I

is uncountable, then ∆(F )
I×I

is an uncountable subset of ∆(I), and so ∆(F )
I×I

is big since any horizontal or vertical line

meets ∆(I) in one point. Then by (λ2
1), ∆(F )

τ×τ
is uncountable, and it follows that F

τ
is

also uncountable.

Lemma 76. Let A = (I, τ), where τ is some first countable topology on I refining the usual

topology and satisfying (λ2
1). Then both A and A2 have relative calibre (ω1, ω).

Proof. We will first verify that A has relative calibre (ω1, ω) (in K(A)). Fix an uncountable

subset S of A. As I is hereditarily separable, we can find a countable subset C ⊆ S such

that S ⊆ C
I
. Then C

I
is uncountable, and since τ also satisfies (λ1) by Lemma 75, then C

A

is uncountable. Since A is first countable, we can therefore find an infinite sequence S1 ⊆ C

converging in A to a point x in C
A \ C. The A-closure of S1 is therefore S1 ∪ {x}, which is

compact.
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Now we will check that A2 has relative calibre (ω1, ω) in K(A2). Suppose S ⊆ A2 is

uncountable. If S is small, then we may assume, without loss of generality, that S is contained

in a horizontal or vertical line. Hence, we are done since this line is just a homeomorphic

copy of A, which has relative calibre (ω1, ω). So we will instead assume that S is big. Choose

a countable subset C ⊆ S such that S ⊆ C
I×I

. Then C
I×I

is also big, so (λ2
1) implies that

C
A×A

is uncountable. Since A2 is first countable, then as in the proof for A, we can find an

infinite sequence S1 in C converging in A2 to a point outside of C, so that S1 has compact

A2-closure.

The next lemma is proven by van Douwen in [11].

Lemma 77. For any big closed subset Y of R2 and for any subset S of R with |S| < c, there

is a point (y1, y2) in Y such that {y1, y2} ∩ S = ∅.

We are now ready to prove Proposition 74. Our construction below is nearly the same as

that of the space Λ by van Douwen in [11]. In fact, van Douwen introduces the condition (λ1)

and a clearly stronger condition (λω), and he proves that his space Λ satisfies a condition

(λ2
ω), which is an ‘upgrade’ of (λω) to dimension 2. Unfortunately, (λ2

ω) is a weak upgrade

and does not naturally imply (λ2
1). This is why we consider the property (λ2

1) given above,

which is the natural dimension 2 ‘upgrade’ of the condition (λ1). We therefore cannot simply

adopt van Douwen’s Λ, but instead opt to prove directly the existence of τ satisfying (λ2
1).

In doing so, we note that there is a gap in van Douwen’s construction and explain how to

correct it.

Proof of Proposition 74. Consider the family C of all countable subsets of I2 whose closures

in I2 are big. Note that |C| ≤ c, so we can enumerate C = {Cγ : γ < c} such that each

member of C is listed c times. Also, we may enumerate I = {xα : α < c} such that xα 6= xβ

when α 6= β. Then define Xα = {xβ : β < α} for each α < c.

Let π1, π2 : I2 → I be the natural projections. We will next construct injections ψ1, ψ2 :

c→ c \ ω satisfying the following conditions for each γ < c:

π1[Cγ] ∪ π2[Cγ] ⊆ Xψ1(γ) ∩Xψ2(γ), (3.1)
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(xψ1(γ), xψ2(γ)) ∈ Cγ
I×I

, and (3.2)

ψi(γ) 6= ψj(δ) for any i, j and δ 6= γ. (3.3)

Fix γ < c and suppose we have already defined ψ1(δ) and ψ2(δ) satisfying the above con-

ditions for every δ < γ. Since Dγ = π1[Cγ] ∪ π2[Cγ] is countable, then we may write

Dγ = {xβn : n < ω}. Since c has uncountable cofinality, then (βn)n is bounded above by

some α < c, and so Dγ is contained in Xα. Let αγ = min{α < c : Dγ ⊆ Xα}. So Dγ ⊆ Xα

for all α ≥ αγ. Note that αγ ≥ ω since Dγ is infinite.

Consider Ψγ = {ψi(δ) : δ < γ, i = 1, 2} and Sγ = {xβ : β ∈ αγ ∪ Ψγ}. Since |Sγ| < c,

then Lemma 77 shows that there is a point (y1, y2) in Cγ
I×I

such that y1, y2 6∈ Sγ. Now for

i = 1, 2, define ψi(γ) to be the unique ordinal less than c such that yi = xψi(γ). Then (3.2)

is satisfied immediately. Also, since yi is not in Sγ, then we have ψi(γ) ≥ αγ, which implies

that Dγ ⊆ Xψi(γ) for i = 1, 2. So (3.1) is satisfied. And of course, ψi(γ) ≥ αγ ≥ ω shows

that each ψi(γ) really is in c \ ω, as desired. We also see that ψi(γ) is not in Ψγ since yi is

not in Sγ, and so (3.3) is satisfied as well. Thus, by transfinite induction, our construction

of the injections ψ1 and ψ2 is complete.

Choose a countable base {Bi : i < ω} for I with B1 = I, and then define Ej(x) =
⋂
{Bi :

i ≤ j and x ∈ Bi} for each x ∈ I and j < ω. Then {Ej(x) : j < ω} is a neighborhood base

for x in I such that:

if y ∈ Ej(x) and i ≥ j, then Ei(y) ⊆ Ej(x). (3.4)

Let Ψ ⊆ c \ ω be the union of the images of ψ1 and ψ2. By (3.2) and (3.3), there are

well-defined sequences sα = (siα)i<ω for each α ∈ Ψ satisfying:

siα ∈ Ei(xα) for each α ∈ Ψ and i < ω, (3.5)

if ψ1(γ) 6= ψ2(γ), then (siψ1(γ), s
i
ψ2(γ)) ∈ Cγ for each i < ω, and (3.6)

if α = ψ1(γ) = ψ2(γ)1, then (s2i−1
α , s2i

α ) ∈ Cγ for each i < ω. (3.6′)
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Conditions (3.1), (3.6) and (3.6′) imply that the sequence sα lies entirely in Xα for each

α ∈ Ψ, so the following construction by transfinite recursion makes sense. For each α ∈ c\Ψ,

define Lj(xα) = {xα} for all j < ω. Now for any α ∈ Ψ (so α ≥ ω), we may assume Li(x)

has been defined for all x ∈ Xα and i < ω, and so we define Lj(xα) = {xα} ∪
⋃
i≥j Li(s

i
α) for

each j < ω. The next facts easily follow by transfinite induction on α and by (3.4):

each Lj(x) is countable, (3.7)

Lj(x) ⊆ Ej(x), and (3.8)

if y ∈ Lj(x), then Li(y) ⊆ Lj(x) for some i < ω. (3.9)

Since Lj+1(x) ⊆ Lj(x) for all x ∈ I and j < ω, then (3.9) implies that {Lj(x) : x ∈

I, j < ω} is a base generating a new topology on I. This new topology τ refines the usual

topology on I because of (3.8), and since {Lj(x) : j < ω} is a neighborhood base at x, then

τ is first countable. Also, τ is locally countable by (3.7). Additionally, it is easy to check

that each Lj(xα) is compact by transfinite induction, so τ is locally compact.

Note that the sequence sα converges (with respect to τ) to xα for each α ∈ Ψ, and so

by (3.6) and (3.6′), we have (xψ1(γ), xψ2(γ)) ∈ Cγ
τ×τ

for all γ ∈ c. Since each member of C

appears c times in the enumeration {Cγ : γ < c}, and since (xψ1(γ), xψ2(γ)) 6= (xψ1(δ), xψ2(δ))

for γ 6= δ (as the ψi are injections), then C
τ×τ

has cardinality c for each C ∈ C. This implies

(λ2
1), and thus by Lemma 76, τ has all the desired properties.

1In [11], it was asserted that we could always make ψ1(γ) < ψ2(γ), in which case (3.6′) would be

unnecessary. However, there is a γ such that Cγ ⊆ Q2 \∆ and Cγ
I×I

= Cγ ∪∆. The rationals in [11] are
each of the form xα for some α < ω, and since ψ1, ψ2 : c → c \ ω, then xψi(γ) 6∈ Q so (xψ1(γ), xψ2(γ)) 6∈ Cγ .
Hence, (3.2) implies (xψ1(γ), xψ2(γ)) ∈ ∆, so we are forced to have ψ1(γ) = ψ2(γ). As Cγ ∩∆ = ∅, we cannot
have (siψ1(γ)

, siψ2(γ)
) ∈ Cγ , which shows why a modified condition like (3.6′) is necessary.
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3.3 HEREDITARY COMPACT COVER PROPERTIES

Previously in this chapter, we have considered the pre-ideal K(A) where A is the particular

subset A = X2 \ ∆ of a square X2. Cascales, Orihuela, and Tkachuk posed a number of

questions in [7] asking what happens instead when for every subspace A of a space X, K(A)

or (A,K(A)) is a Tukey quotient of a directed set of the form K(M). In this section, we

study this hereditary situation and answer some of the questions posed by Cascales et al.

Recall that a space X is called Lindelöf Σ if X has a compact cover C and a countable

network N modulo C. Here we say N is a network for X modulo C if for any C in C and any

open set U containing C, there is an N ∈ N such that C ⊆ N ⊆ U . A space X is called ω-

bounded if every countable subset of X has compact closure in X. Of course compact spaces

are ω-bounded, so the next result by Cascales et al. shows that if K(M) ≥T (X,K(X)) for

some separable metrizable M , then X is ‘almost’ Lindelöf Σ.

Proposition 78 (Cascales et al., [7]). If X is a space and K(M) ≥T (X,K(X)), where M

is a separable metrizable space, then there is a cover C of X and a countable collection N of

subsets of X such that:

(1) every element of C is ω-bounded, and

(2) N is a network for X modulo C.

A space X is called an ℵ0-space if it has a countable network modulo all of K(X). Recall

also that X is called cosmic if it has a countable network (modulo the singletons). Also

recall that a space satisfies the countable chain condition (ccc) if every family of disjoint

open sets is countable. The next result answers questions 4.14-4.16 in [7].

Theorem 79. Let X be a space.

(1) If for every subspace A of X, there is some separable metrizable space MA such that

K(MA) ≥T K(A), then X is an ℵ0-space.

(2) If for every subspace A of a space X, there is some separable metrizable space MA such

that K(MA) ≥T (A,K(A)), then X is cosmic.

Proof. We can deduce the first claim from the second as follows. Let X be as in the first

claim. Since K(A) ≥T (A,K(A)), then from the second claim, we certainly know X is
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cosmic. So X has a coarser second countable topology, and hence K(X) has a coarser second

countable topology. Now since K(MX) ≥T K(X) =T (K(X),K(K(X)) (see Lemma 50),

then from Proposition 78, we know K(X) has a cover C of ω-bounded sets and a countable

network N modulo C. As K(X) has a coarser second countable topology, all the elements of

C must be compact. Thus K(X) is Lindelöf Σ and has a coarser second countable topology,

so it is cosmic. However, K(X) is cosmic if and only if X is an ℵ0-space.

Now let X be as in the second claim. Since each K(MA) has calibre (ω1, ω), then by

Lemma 41, every subspace of X has countable extent. Then X is hereditarily ccc and so

also hereditarily separable. Fix an arbitrary subset A of X. Then Proposition 78 gives a

collection C of ω-bounded subsets of A and a countable network N for A modulo C. By

hereditary separability, for each C in C, we can find a countable dense subset D of C, and

so C = D is compact by ω-boundedness of C. Hence, A is Lindelöf Σ and X is hereditarily

Lindelöf Σ. It follows that X is cosmic [31].

Instead of arbitrary separable metrizable spaces controlling the compact subsets of each

subspace of X, as in the preceding theorem, we can restrict the MA to be ωω, the irrationals.

In the relative case, we have the following characterization of such spaces, which will be

proved as part of Theorem 84 below.

Proposition 80. Let X be a space. Then X is countable if and only if K(ωω) ≥T (A,K(A))

for each subspace A of X.

For metrizable spaces, we can also characterize the non-relative case as follows. Recall

that separable completely metrizable spaces are called Polish, while a space X is scattered

if each nonempty subspace Y of X contains a point which is isolated in Y .

Proposition 81. Let X be a metrizable space. Then the following are equivalent:

(i) for every subspace A of X, we have K(ωω) ≥T K(A),

(ii) X is countable and Polish, and

(iii) X is countable and scattered.

The proof of Proposition 81 is deferred until after Theorem 84.

Call a space X hereditarily relative calibre (κ, λ, µ) if each subspace A of X has relative
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calibre (κ, λ, µ) in K(A) (and recall that calibre (κ, λ) is the same as calibre (κ, λ, λ)).

Note that X is hereditarily relative calibre (ω1, ω) (respectively, (ω1, ω1)) if and only if for

each uncountable S ⊆ X, there is an infinite (respectively, uncountable) S1 ⊆ S such that

S1
S

= S1 ∩ S is compact.

Observe that if X is a space such that ‘for every subspace A of X, there is some separable

metric space MA such that K(MA) ≥T (A,K(A))’, then it is also true that ‘X is hereditarily

relative calibre (ω1, ω)’. Similarly, observe that consistently (precisely when ω1 < b – see

Lemma 23), if X is a space such that ‘for every subspace A of X, we have K(ωω) ≥T
(A,K(A))’, then it is also true that ‘X is hereditarily relative calibre (ω1, ω1)’.

Call a space X hereditarily calibre (κ, λ, µ) if, for each subspace A of X, the partial order

K(A) has calibre (κ, λ, µ). Observe that if X is a space such that ‘for every subspace A of

X, there is some separable metric space MA such that K(MA) ≥T K(A)’, then it is also true

that ‘X is hereditarily calibre (ω1, ω)’. Similarly, observe that consistently (precisely when

ω1 < b – see Lemma 23), if X is a space such that ‘for every subspace A of X, we have

K(ωω) ≥T K(A)’, then it is also true that ‘X is hereditarily calibre (ω1, ω1)’.

Note also that ‘hereditarily calibre (κ, λ, µ)’ implies ‘hereditarily relative calibre (κ, λ, µ)’.

A further, and stronger, condition is that K(X) is hereditarily relative calibre (κ, λ, µ).

Lemma 82. Let X be a space. If K(X) is hereditarily relative calibre (κ, λ, µ), then X is

hereditarily calibre (κ, λ, µ).

Proof. Take any subspace A of X. Since K(A) is a subspace of K(X), then K(A) has relative

calibre (κ, λ, µ) in K(K(A)). So by Lemma 50, K(A) has calibre (κ, λ, µ).

We now compare and contrast the situation when for every subspace A of a space X, there

is a separable metrizable MA such that K(MA) ≥T (A,K(A)), versus all subspaces having a

(relative) calibre. In the weakest case, there is a clear difference between the two scenarios.

The second part of Theorem 79 says that if each subspace A of X has a separable metric

space MA such that K(MA) ≥T (A,K(A)), then X is cosmic. Weakening the hypothesis on

X to being hereditarily relative calibre (ω1, ω) does not suffice to deduce cosmicity of X.

For example, the Sorgenfrey line is not cosmic but is hereditarily ccc (so each subspace has

countable extent) and first countable, and so we can apply Lemma 40 to (Q′, Q) = (A,K(A))
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for any subspace A to see that the Sorgenfrey line is hereditarily relative calibre (ω1, ω). Nor,

consistently at least, is it sufficient to strengthen ‘X hereditarily relative calibre (ω1, ω)’ to

‘K(X) hereditarily relative calibre (ω1, ω)’.

Example 1 (b = ω1). There is an uncountable subspace X of the Sorgenfrey line such that

K(X) is first countable and hereditarily ccc (see [17]).

Hence K(X) is hereditarily relative calibre (ω1, ω) (and so X is hereditarily calibre (ω1, ω)

by Lemma 82), but X is not cosmic.

In [17] it is shown that under the Open Coloring Axiom (OCA), if K(X) is first countable

and hereditarily ccc, then X is cosmic. However, the argument given in that paper does not

obviously show that OCA implies that ‘if K(X) is hereditarily relative calibre (ω1, ω), then

X is cosmic’.

Moving from the relative calibre (ω1, ω) case to relative calibre (ω1, ω1), however, we get

equivalence between calibres and Tukey reduction, and equivalence to X being countable.

We will use the following result. Recall that a space is called analytic if it is separable

metrizable and a continuous image of a Polish space.

Theorem 83 (Christensen, [9]). If M is a separable metrizable space, then

(1) K(ωω) ≥T K(M) if and only if M is Polish, and

(2) K(ωω) ≥T (M,K(M)) if and only if M is analytic.

Theorem 84. Let X be a space. Then the following are equivalent:

(i) X is hereditarily relative calibre (ω1, ω1),

(ii) for every subspace A of X, we have K(ωω) ≥T (A,K(A)),

(iii) for every subspace A of X, we have ω ≥T (A,K(A)), and

(iv) X is countable.

Proof. We start by showing that (iv) implies (iii). Suppose X is countable and A is a

subspace of X. Enumerate A = {an : n < ω}. Define φ : ω → K(A) by φ(n) = {ai : i ≤ n}.

Then φ is order-preserving and its image is a compact cover of A, which gives (iii). Of

course (iii) implies (ii) since Lemma 50 shows that K(ωω) =T ωω and projecting onto the

fist coordinate gives ωω ≥T ω.
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Next, we will prove that (ii) implies (iv). So assume, for a contradiction, that X satisfies

(ii) but is uncountable. Then by Theorem 79, we know X is cosmic. Hence it has a coarser

separable metrizable topology τ . Since any subset of X which is compact in the original

topology is also compact in τ , we see that Xτ = (X, τ) also satisfies (ii). In particular,

K(ωω) ≥T (Xτ ,K(Xτ )), so Xτ is analytic by Christensen’s Theorem 83. Hence Xτ contains

a non-analytic subspace A (because an uncountable analytic space must contain a Cantor

set, which contains non-analytic subspaces). But then we cannot have K(ωω) ≥T (A,K(A)).

It is vacuously true that (iv) implies (i), so we complete the proof by showing that the

negation of (iv) implies the negation of (i). Suppose X is an uncountable space. We have to

show it contains a subspace A which is not relative calibre (ω1, ω1). Note that it suffices to

find a subspace A of X satisfying,

A is uncountable, and all compact subsets of A are countable, (3.10)

because then no uncountable subset of A can have compact closure in A. If X itself satisfies

(3.10), then we are, of course, done. If not, then X contains an uncountable compact

subspace, and so, without loss of generality, we can assume X is compact.

If X contains a right-separated subspace A of size ω1, then every compact subset of A is

contained in an initial (countable) interval, so A satisfies (3.10), and so we are done. If not

then X is hereditarily Lindelöf. Since X is also compact, we see that X is first countable.

Hence, X has size the continuum, c, and weight no more than c. Applying the fact that

X is hereditarily Lindelöf again, we see that X contains no more than c open subsets. So

the collection K of all uncountable compact subsets of X has |K| ≤ c. Observe that each

member of K has cardinality exactly c.

Next, we will follow the construction of Bernstein’s set to form an uncountable subspace

A ⊆ X that does not contain any element of K. Enumerate K = {Kα : α < c}, possibly

with repetitions. Using transfinite induction, we will construct uncountable sequences {xα :

α < c} and {yα : α < c} such that each xα, yα ∈ Kα. We will also ensure that xα 6= xβ

and yα 6= yβ whenever α 6= β, and that xα 6= yβ for any α, β < c. Indeed, if β < c

and if we have already constructed xα and yα for each α < β, then we can find distinct
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points xβ, yβ ∈ Kβ \ ({xα : α < β} ∪ {yα : α < β}) since |Kβ| = c and β < c. Now let

A = {xα : α < c}.

Then A is uncountable and does not contain any Kα since yα 6∈ A. Thus A satisfies

(3.10), and the proof is complete.

The Cantor-Bendixson process. For any space X, let I(X) denote the subset of all

points that are isolated in X and define X ′ = X \ I(X), which is called the derived set or

Cantor-Bendixson derivative of X. We can inductively define X(0) = X, X(α+1) = (X(α))′

for each ordinal α, and X(λ) =
⋂
α<λX

(α) for each limit ordinal λ. By considering the

cardinality of X, we can see that there must be an ordinal β such that X(α) = X(β) for all

α ≥ β. The smallest ordinal β with this property is called the Cantor-Bendixson rank of

X, while the subspace X(β) is called the perfect kernel of X since it is the largest perfect

(i.e. closed with no isolated points) subset of X. As mentioned above, X is called scattered

if each of its nonempty subspaces has an isolated point, and this is equivalent to its perfect

kernel being empty. If X is scattered, then its Cantor-Bendixson rank is also known as the

scattered height of X.

We are now ready to prove Proposition 81.

Proof of Proposition 81. That condition (ii) follows from (i) is immediate from Theorem 84

and Christensen’s Theorem 83. On the other hand, if X is countable and Polish, then every

subspace A of X is a Gδ subspace, hence also Polish, so K(ωω) ≥T K(A) by Christensen’s

theorem. Thus, (i) and (ii) are equivalent.

Now we prove (ii) and (iii) are equivalent, so assume X is countable. Using the notation

from the Cantor-Bendixson process above, note that each X(α) is closed in X. Let β be

the Cantor-Bendixson rank of X, so C = X(β) is the perfect kernel of X. Assume X is not

scattered, so C is nonempty. Since C has no isolated points, then the complement of each

singleton in C is open and dense in C, but the intersection of this countable family of open

dense sets is empty. Then the Baire category theorem shows that C is not Polish, so neither

is X as C is closed in X. Thus, (ii) implies (iii).

Now assume X is scattered, so C is empty, and let Yα = X \X(α), which is open in X

for each α. We will show Yα is Polish, by induction. Certainly Y0 = ∅ is vacuously Polish,
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so now assume Yα is Polish for some α < β. Note that Yα+1 = Yα ∪ Iα where Iα is the set of

isolated points in X(α). Since Iα is (countable and) discrete, then it is Polish, and so Yα+1

is also Polish. Indeed, we can embed X in a Polish space Z (such as the Hilbert cube), and

then a subspace of X is Polish if and only if it is Gδ in Z, and the union of two Gδ sets is Gδ.

Now let λ ≤ β be any limit ordinal, and assume we already know Yα is Polish for each α < λ.

Since X is countable, then so is λ, so we can find a sequence (αn)n of ordinals less than λ

which converge to λ. Thus, Yλ = X \X(λ) = X \
⋂
α<λX

(α) =
⋃
α<λ Yα =

⋃
n Yαn . Now, since

each Yαn is Polish and open in Yλ, and since Y is metrizable, then Yλ must also be Polish.

Indeed, Yλ is a continuous open image of the disjoint union
⊕

n Yαn , which is Polish, so we

can apply Exercise 5.5.8(d) in [13], and the induction is complete. In particular, Yβ = X is

Polish, so (iii) implies (ii).

Theorem 85. Let X be a metrizable space. Then the following are equivalent:

(i) X is hereditarily calibre (ω1, ω1), and

(ii) Either X is homeomorphic to the disjoint sum of a countable (possibly empty) disjoint

sum of convergent sequences and a countable (possibly empty) discrete space, or ω1 < b

and X is countable and scattered.

Proof. If X is homeomorphic to the disjoint sum of a countable (possibly empty) disjoint

sum of convergent sequences and a countable (possibly empty) discrete space, then every

subspace A of X is locally compact and countable, and so it is easily seen that K(A) has

calibre (ω1, ω1).

Now suppose ω1 < b and X is countable and scattered. Take any subspace A of X.

By the preceding theorem, K(ωω) ≥T K(A). It follows from ω1 < b that K(ωω) has calibre

(ω1, ω1). Hence, K(A) also has calibre (ω1, ω1), and so (ii) implies (i).

For the converse, suppose that for every subspace A of X, the partial order K(A) has

calibre (ω1, ω1). By Theorem 84, X is countable. Since K(Q) does not have calibre (ω1, ω1),

the rationals Q do not embed in X. It follows that X is scattered. If X has scattered height

0, then it is discrete. If X has scattered height 1, then it is homeomorphic to the disjoint sum

of a countable (non-empty) disjoint sum of convergent sequences and a countable (possibly

empty) discrete space.
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The remaining case is when X has scattered height at least 2. We have to show that

ω1 < b. From the scattered height restriction on X, it follows that X contains a subspace

A′ which is homeomorphic to a convergent sequence of convergent sequences. Removing the

limit points of the convergent sequences, but not the point that the sequence of convergent

sequences converges to, we obtain a subspace A of X which is homeomorphic to the metric

fan, F . By hypothesis, K(F ) has calibre (ω1, ω1). As shown in [27], K(F ) and K(ωω) are

Tukey equivalent, and so share the same calibres. Specifically, K(F ) has calibre (ω1, ω1) if

and only if K(ωω) has calibre (ω1, ω1), and this in turn holds if and only if ω1 < b.

Define K(1)(X) = K(X), and inductively, K(n+1)(X) = K(K(n)(X)).

Theorem 86. For any space X, the following are equivalent:

(i) K(n)(X) is hereditarily calibre (ω1, ω1) for every natural number n,

(ii) K(X) is hereditarily relative calibre (ω1, ω1),

(iii) K(X) is countable,

(iv) K(X) is countable and all compact subspaces of K(X) are finite, and

(v) X is countable and all compact subspaces of X are finite.

Proof. As noted previously, ‘hereditarily calibre (ω1, ω1)’ implies ‘hereditarily relative calibre

(ω1, ω1)’, so (ii) follows from (i). And by Theorem 84, (ii) is equivalent to (iii).

If (iii) holds, then X is also countable, and we will show that all compact subspaces

of X must be finite as follows. Suppose X has an infinite compact subspace K. Since K

is countably infinite and compact, it contains an infinite convergent sequence S. But then

S has uncountably many compact subspaces, which contradicts that K(X) is countable.

Hence, (iii) implies (v).

If X is countable, then it has only countably many finite subsets, so (v) implies (iii). In

fact, (v) implies (iv). To see this, assume (v) holds and K is a compact subset of K(X).

Then K̂ =
⋃
K is a compact subset of X, and so is finite. Hence, K is also finite since it is

a subset of the power set of K̂.

It remains to show that (iv) implies (i). Assume then that K(X) is countable and all

its compact subspaces are finite. First note that (iv) trivially implies (iii), and hence (iv)

and (v) are equivalent. Thus for every natural number n we have that K(n)(X) is countable
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and all its compact subspaces are finite. So for a fixed n, every subspace of K(n)(X) is

hemicompact, and thus has calibre (ω1, ω1).

We now apply our results above to the case when an order condition is imposed on the

compact subsets of each subspace of the square of a compact space. Claim (4) below answers

questions 4.17-4.20 from [7].

Theorem 87. Let X be compact.

(1) If X2 is hereditarily calibre (ω1, ω), then X is metrizable.

(2) It is consistent and independent that ‘X2 is hereditarily relative calibre (ω1, ω) implies X

is metrizable’.

(3) If X (and a fortiori X2) is hereditarily relative calibre (ω1, ω1), then X is countable and

metrizable.

(4) If for every subspace A of X (and a fortiori X2) there is a separable metrizable space

MA such that K(MA) ≥T (A,K(A)), then X is metrizable.

Proof. If X2 is hereditarily calibre (ω1, ω), then in particular K(A) has calibre (ω1, ω) when

A = X2 \ ∆, so Claim (1) follows from Theorem 63. Claim (3) follows immediately from

Theorem 84, while Theorem 79 gives Claim (4) since a compact space is cosmic if and only

if it is second countable and therefore separable and metrizable since it is T3.

Now suppose X2 is hereditarily relative calibre (ω1, ω). Then every subspace of X2 has

countable extent (Lemma 49), so X2 is hereditarily ccc. Under PFA [46] it follows that

X2 is hereditarily Lindelöf, and X is metrizable. However under the continuum hypothesis,

Gruenhage [29] has constructed a compact, first countable, non-metrizable space X, whose

square is hereditarily ccc (hence hereditarily has countable extent). Combining the first

countability and hereditary countable extent of X2 with Lemma 49, we deduce that X2 is

hereditarily relative calibre (ω1, ω).
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4.0 P -PARACOMPACTNESS AND P -METRIZABILITY

Let C be family of subsets of a space X, and let P be a directed set. As defined in the

introduction, we say C is P -locally finite (respectively, P -point finite) if C =
⋃
{Cp : p ∈ P}

where each Cp is locally finite (respectively, point finite) in X and Cp ⊆ Cp′ whenever p ≤ p′.

In other words, C is P -locally finite if it has a P -ordered cover consisting of locally finite

subcollections (and similarly for P -point finite). Note that 1-locally finite and ω-locally finite

are equivalent to locally finite and σ-locally finite, respectively.

We say X is P -paracompact (respectively, P -metacompact) if every open cover of X has

a P -locally finite (respectively, P -point finite) open refinement. Also, X is P -metrizable if

it has a (P × ω)-locally finite base. Note that 1-paracompactness and 1-metrizability are

equivalent to paracompactness and metrizability, respectively. In Section 4.1, we establish

some basic lemmas about these properties and other closely related properties. The first main

result of this chapter comes in Section 4.2, where we generalize Gruenhage’s Theorem 4 by

replacing paracompactness with P -paracompactness for P with calibre (ω1, ω). We then

show that this generalization is optimal in the sense that we cannot weaken the hypothesis

to P -paracompactness for P in some larger class of directed sets.

In Section 4.3, we take a closer look at the situation where the directed set P has the form

K(M) for some separable metrizable M , since these directed sets have more structure than a

general P with calibre (ω1, ω). In Section 4.3.1 in particular, this additional structure allows

us to characterize K(M)-metrizability, and partially characterize K(M)-paracompactness, in

terms of properties not referring to any separable metrizable space. Finally, in Section 4.4,

we give constructions of some P -metrizable and P -paracompact spaces that provide useful

counterexamples in Section 4.5.

Let κ be a cardinal, let C be a collection of subsets of a space, and let P be some property.
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Throughout this chapter, we will say that C is κ-P if C =
⋃
{Cα : α < κ} where each Cα has

P. Following tradition, we say ‘σ-P’ instead of ‘ω-P’.

4.1 BASIC RESULTS AND RELATED PROPERTIES

Let C be a collection of subsets of a space X. Since the family LF (C) of all locally finite

subcollections of C is an ideal on C containing all finite subsets of C, then we may identify C

with the subset [C]1 of LF (C), so that (C, LF (C)) is a directed set pair. We can now restate

the definition of P -locally finite in terms of Tukey quotients, as follows.

Lemma 88. Let C be family of subsets of a space X. Let P be a directed set. Then the

following are equivalent:

(i) C is P -locally finite,

(ii) there is an order-preserving map φ : P → LF (C) whose image is cofinal for (C, LF (C)),

(iii) P ≥T (C, LF (C)), and

(iv) P ≥T ([C]<ω, LF (C)).

Hence if C is P -locally finite and Q ≥T P for some directed set Q, then C is Q-locally finite.

Proof. The equivalence of (i) and (ii) is immediate once the definitions are unpacked (in

particular, ‘φ(P ) is cofinal for C in LF (C)’ means ‘
⋃
φ(P ) = C’). Since LF (C) is Dedekind

complete, then (ii) and (iii) are equivalent by Lemma 9.

Since [C]1 is contained in [C]<ω, then a Tukey quotient map witnessing (iv) will also

witness (iii), so (iv) implies (iii). Now it suffices to show that (ii) implies (iv), so we show

that any map φ as in (ii) will witness (iv) also. To this end, take any {C1, . . . , Cn} in [C]<ω,

and pick p1, . . . , pn in P such that Ci ∈ φ(pi) for i = 1, . . . , n. Because P is directed, there is

an upper bound, p0, of p1, . . . , pn, and since φ is order-preserving, then φ(p0) ⊇ {C1, . . . , Cn},

as required.

The final statement in the lemma follows from the equivalence of (i) and (iii) combined

with transitivity of Tukey quotients.

Lemma 88 allows us to simplify proofs by replacing a given directed set by anything
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equivalent or larger in the Tukey order. For example, a collection is (P × ω)-locally finite

if and only if it is (P × [ω]<ω)-locally finite. Lemma 88 (and the obvious analog for point

finiteness) immediately gives:

Corollary 89. If X is P -paracompact (respectively, P -metrizable, P -metacompact) and

Q ≥T P , then X is also Q-paracompact (respectively, Q-metrizable, Q-metacompact).

Instead of requiring the same directed set P to be used for every open cover of a space X,

we can generalize the notions of P -paracompactness and P -metacompactness as follows. If

P is a class of directed sets, then we say X is P-paracompact (respectively P-metacompact )

if every open cover U of X has a P -locally finite (respectively P -point finite) open refinement

V for some P in P (so P depends on U).

Also, we say a space X is κ-paracompact if each open cover of X has a κ-locally finite

open refinement. Recall that a collection of subsets of X is κ-locally finite if it is a union of

κ-many locally finite subcollections.

Lemma 90. Let C be a collection of subsets of a space X, let P be a directed set, and let P

be a class of directed sets whose members have cofinality at most κ, for some cardinal κ.

(1) If C is P -locally finite, then it is cof(P )-locally finite.

(2) If X is P-paracompact, then it is κ-paracompact.

(3) If X is P -paracompact, then it is cof(P )-paracompact.

Proof. Suppose that C is P -locally finite, say C =
⋃
{Cp : p ∈ P} is P -ordered and each Cp is

locally finite. Let Q be a cofinal subset of P of cardinality cof(P ). Then C =
⋃
{Cq : q ∈ Q},

so C is indeed the union of cof(P )-many locally finite subcollections. This establishes (1).

Statement (2) then immediately follows, and statement (3) is just a special case of (2).

Recall that X is called a Moore space if it is T3 and has a development , that is, a

countable collection {Gn : n < ω} of open covers such that: for any x in X and open U

containing x, there is an n < ω such that St(x,Gn) = {G ∈ Gn : x ∈ G} is contained in

U . Of course a P -metrizable space is always P -paracompact, and the next lemma says, in

particular, that for Moore spaces the two properties are equivalent.
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Lemma 91. Suppose P is a class of directed sets that is countably directed with respect to

the Tukey order, ≥T . If X is a P-paracompact Moore space, then X is P -metrizable for

some P in P. In particular:

(1) if X is a K(M)-paracompact Moore space, then X is K(M)-metrizable for some separable

metrizable M , and

(2) if X is a P -paracompact Moore space for some directed set P , then X is P -metrizable.

Proof. Let {Gn : n < ω} be a development for X, and for each n, find a Pn-locally finite

open refinement Un of Gn for some Pn in P . Since P is countably directed with respect to

≥T , then there is a P in P such that P ≥T Pn for every n. Thus, each Un is P -locally finite:

Un =
⋃
{Un,p : p ∈ P}. Define Bn,p =

⋃
{Ui,p : i ≤ n}. Then B =

⋃
{Bn,p : n < ω, p ∈ P} is

a (P × ω)-locally finite base for X, which completes the main claim.

Now note that (1) follows from Theorem 59 which shows thatK(M) is countably directed,

with respect to ≥T . Also, (2) follows by taking P = {P}.

A collection C of subsets of a space is relatively locally finite if it is locally finite in its

union, that is, for each point x in
⋃
C, there is an open neighborhood of x meeting only

finitely many elements of C. A space is called κ-relatively paracompact if every open cover

has an open refinement which is κ-relatively locally finite (i.e. is a union of κ-many locally

finite subcollections).

A space is screenable if every open cover has a σ-disjoint open refinement. Clearly a

space with a σ-disjoint base is screenable. Observe that a pairwise disjoint collection of open

sets is relatively locally finite, while a relatively locally finite family is point-finite. Hence:

Lemma 92. Every σ-disjoint family of open sets is σ-relatively locally finite, and every

σ-relatively locally finite family of open sets is σ-point finite.

Once again, we are primarily interested in directed sets with calibre (ω1, ω). Notice that

if the directed set P in Lemma 88 has calibre (ω1, ω), then by Lemma 17, the collection C

has relative calibre (ω1, ω) in LF (C). Thus, we make the following definition. A family C

of subsets of a space X is called (ω1, ω)-locally finite (respectively, (ω1, ω)-point finite) if C

has relative calibre (ω1, ω) in LF (C) (respectively, in PF (C)). Note that this is the same
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as requiring that every uncountable subcollection of C must contain an infinite subcollection

which is locally finite (respectively, point finite). We then call a space (ω1, ω)-paracompact

(respectively, (ω1, ω)-metacompact) if every open cover has an (ω1, ω)-locally finite (respec-

tively, (ω1, ω)-point finite) open refinement. We also say a space is (ω1, ω)-metrizable if it

has an (ω1, ω)-locally finite base.

Lemma 93. Let P be a directed set with calibre (ω1, ω), let P be a class of directed sets with

calibre (ω1, ω), and let C be a family of subsets of a space X.

(1) If C is P -locally finite (respectively, P -point finite), then it is (ω1, ω)-locally finite (re-

spectively, (ω1, ω)-point finite).

(2) Hence if X is P -paracompact (respectively, P -metrizable or P -metacompact), then it is

(ω1, ω)-paracompact (respectively, (ω1, ω)-metrizable or (ω1, ω)-metacompact).

(3) If X is P-paracompact (respectively, P-metacompact), then it is (ω1, ω)-paracompact

(respectively, (ω1, ω)-metacompact).

Proof. We essentially proved (1) at the start of this section. Indeed, if C is P -locally finite,

then P ≥T (C, LF (C)) by Lemma 88. Since P has calibre (ω1, ω), then Lemma 17 implies

that C has relative calibre (ω1, ω) in LF (C), which means C is (ω1, ω)-locally finite. We can

similarly prove that P -point finite collections are (ω1, ω)-point finite, which completes (1).

Statements (2) and (3) immediately follow from (1).

Clearly, (ω1, ω)-metrizability always implies (ω1, ω)-paracompactness, and similarly to

Lemma 91, we see that these properties are actually equivalent for Moore spaces:

Lemma 94. If X is an (ω1, ω)-paracompact Moore space, then X is (ω1, ω)-metrizable.

Proof. Let {Gn : n < ω} be a development of X, and let Un be an (ω1, ω)-locally finite

open refinement of Gn. Then U =
⋃
n Un is a base for X, and it is (ω1, ω)-locally finite by

Lemma 20 (take P = LF (U), Pn = LF (Un), and P ′n = Un = [Un]1).

Lemma 95. An (ω1, ω)-point finite collection of subsets of a space is point countable.

Proof. Let C be a collection of subsets of a space X, and suppose C is not point countable.

So there is a point x in X such that Cx = {C ∈ C : x ∈ C} is uncountable. Then every
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infinite subfamily of Cx contains x in its intersection, and so is not point-finite. Thus, C is

not (ω1, ω)-point finite.

Lemma 96. Every space with an (ω1, ω)-point finite base (in particular, every (ω1, ω)-

metrizable space) is first countable.

Proof. From Lemma 95, we see that a given (ω1, ω)-point finite base must be point-countable,

and so every point has a countable local base.

A space is called metaLindelöf if every open cover has a point countable open refine-

ment. By Lemma 95, we know that every (ω1, ω)-metacompact space (and so also every

(ω1, ω)-paracompact space) is metaLindelöf, and every (ω1, ω)-metrizable space has a point

countable base. From [37], we know that a countably compact space is (i) compact if it

is metaLindelöf and (ii) metrizable if it has a point countable base. The same is not true

for pseudocompact spaces. Indeed, there are pseudocompact spaces with a point countable

base (hence metaLindelöf) which are not compact (and so not metrizable) [43]. However, a

pseudocompact space is (i) compact if σ-metacompact and (ii) metrizable if it has a σ-point

finite base [49]. Similarly, we can prove:

Lemma 97. Let X be a pseudocompact space.

(1) If X is (ω1, ω)-paracompact, then X is compact.

(2) If X is (ω1, ω)-metrizable, then X is metrizable.

Proof. Recall that X is pseudocompact if and only if each locally finite family of open subsets

of X is finite. Thus, any open cover V of X with relative calibre (ω1, ω) in LF (V) must be

countable. Both claims are now immediate.

In the presence of separability, (ω1, ω)-paracompactness and (ω1, ω)-metrizability also

reduce to simpler properties. In fact, we have:

Lemma 98. Let X be a space with a dense σ-compact subset.

(1) If X is (ω1, ω)-paracompact, then X is Lindelöf.

(2) If X is (ω1, ω)-metrizable, then X is (separable) metrizable.
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Proof. Note first that if K is a compact subset of X and U is a locally finite family of subsets

of X, then there is an open V containing K which meets only finitely many elements of U .

So if U is (ω1, ω)-locally finite, then every compact subset of X meets only countably many

members of U . It easily follows that if X has a dense σ-compact subset, then an (ω1, ω)-

locally finite open refinement of a given open cover, or an (ω1, ω)-locally finite base, must be

countable.

4.2 ANOTHER GENERALIZATION OF SCHNEIDER’S THEOREM

Our main goal of this section is to prove Theorem 102 below, which generalizes Gruenhage’s

Theorem 4. We begin with a few lemmas, the first of which is extracted from the proof of

Theorem 4. Here, A(κ) denotes the one-point compactification of D(κ), the discrete space

of size κ. We call A(κ) the supersequence of size κ.

Lemma 99 (Gruenhage, [28]). Let X be compact and not metrizable. If X2 \ ∆ has a

partition S whose members are open in X2 \ ∆ and Lindelöf, then X contains a subspace

homeomorphic to the supersequence A(κ) for some uncountable κ.

Proof. Enumerate S = {Sα : α < γ}. Since each Sα is Lindelöf and open in X2 \∆, we can

write Sα =
⋃
n(Uα,n× Vα,n), where Uα,n and Vα,n are disjoint open sets in X for each n < ω.

Define W = {Uα,n : α < γ, n < ω} ∪ {Vα,n : α < γ, n < ω}. Then W is a T2-separating

open cover of X. Since any compact space with a point countable T1-separating open cover

is metrizable [37], and by hypothesis X is not metrizable, W cannot be point countable.

Hence, there is a point x ∈ X contained in uncountably many members of W .

Without loss of generality, there is an uncountable subset A ⊆ γ and an m < ω such

that x ∈
⋂
α∈A Uα,m. Because Uα,m × Vα,m ⊆ Sα, then {Uα,m × Vα,m : α ∈ A} is a discrete

collection in X2 \∆. It follows that {Vα,m : α ∈ A} is a discrete collection in X \ {x}. Thus,

if we choose a point yα ∈ Vα,m for each α ∈ A, then Y = {yα : α ∈ A} is an uncountable

closed discrete subspace of X \ {x}. As X is compact, Y
X

= {x} ∪ Y is the one-point

compactification of Y , so Y
X

is a copy of A(κ) in X, where κ = |Y |.
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Lemma 100. If κ > ω, then A(κ)2 \∆ is not (ω1, ω)-paracompact.

Proof. Let Y = A(κ)2 \∆, and write A(κ) = D(κ)∪{∞}. Consider the following open cover

of Y :

U = {({x} × A(κ)) ∩ Y : x ∈ D(κ)} ∪ {Y \ (A(κ)× {∞})}.

Let V be any open refinement of U . We will show that V does not have relative calibre

(ω1, ω) in LF (V).

For each x in D(κ), choose Vx ∈ V such that (x,∞) ∈ Vx. As V refines U , we have

Vx ⊆ {x} × A(κ). Then there is a finite set Fx ⊆ D(κ) such that Vx = {x} × (A(κ) \ Fx).

Suppose V does have relative calibre (ω1, ω) in LF (V). Then there is a countably infinite

subset C ⊆ D(κ) such that {Vx : x ∈ C} is locally finite. Let E =
⋃
{Fx : x ∈ C}, which

is countable, and choose any y ∈ D(κ) \ E. Then (x, y) ∈ Vx for each x ∈ C, so each

neighborhood of (∞, y) intersects all but finitely many members of the infinite locally finite

family {Vx : x ∈ C}, which is a contradiction.

Lemma 101. Let X be a space and x and point in X. If X \ {x} is (ω1, ω)-paracompact or

P -paracompact, then X has the same property.

Proof. We prove the (ω1, ω)-paracompact statement; the proof for P -paracompact is similar.

Let U be any open cover of X. Then there is an (ω1, ω)-locally finite open refinement V ′ of

the open cover U ′ = {U \ {x} : U ∈ U} of X \ {x}. Now choose any Ux ∈ U containing x.

Then V = V ′ ∪ {Ux} is also (ω1, ω)-locally finite and is an open refinement of U .

Now we generalize Gruenhage’s Theorem 4 to P -paracompactness.

Theorem 102. The following are equivalent for a pseudocompact space X:

(i) X2 \∆ is P -paracompact for some directed set P with calibre (ω1, ω),

(ii) X2 \∆ is P-paracompact, where P is a class of directed sets with calibre (ω1, ω),

(iii) X2 \∆ is (ω1, ω)-paracompact, and

(iv) X is metrizable.

Proof. We know (i) implies (ii) trivially, and Lemma 93 shows that (ii) implies (iii). We also

know (iv) implies (i) since every metrizable space is paracompact, i.e. 1-paracompact, so we
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just need to show that (iii) implies (iv). First, pick any point x ∈ X and note that, since

X \{x} is homeomorphic to a closed subspace of X2\∆, then X \{x} is (ω1, ω)-paracompact,

and so X is compact by Lemmas 101 and 97.

Now, X2 \∆ is locally compact and (ω1, ω)-paracompact, so we can find an open cover U

of X2 \∆ which is (ω1, ω)-locally finite and such that U
X2\∆

is compact for each U ∈ U . For

each n < ω, define a relation ∼n on U by U ∼n V if and only if there are U0, U1, . . . , Un ∈ U

such that U0 = U , Un = V , and Ui ∩ Ui−1 6= ∅ for all 0 < i < n. Then define an equivalence

relation ∼ on U by U ∼ V if and only if U ∼n V for some n < ω.

Now let {[Uα] : α < κ} be a one-to-one enumeration of the ∼-equivalence classes, and

let Sα =
⋃

[Uα]. Then {Sα : α < κ} is a partition of X2 \ ∆ consisting of open sets. Each

Sα is thus also closed in X2 \∆, and it follows that Sα =
⋃
{UX2\∆

: U ∈ [Uα]}. Hence, we

can show that each Sα is σ-compact by verifying that [Uα] is countable.

For each U ∈ U and n < ω, let [U ]n = {V ∈ U : U ∼n V }. Clearly [U ]0 = {U} is

countable for each U . Now suppose that [U ]1 is uncountable for some U in U . Since U has

relative calibre (ω1, ω) in LF (U), then there is an infinite subset V ⊆ [U ]1 which is locally

finite. But since U
X2\∆

is compact and V is locally finite, then there should be only finitely

many members of V intersecting U , which is a contradiction since every member of [U ]1

intersects U . Thus, each [U ]1 is countable, and since [U ]n+1 =
⋃
{[V ]1 : V ∈ [U ]n}, then

by induction, we see that each [U ]n is countable. Hence, [U ] =
⋃
{[U ]n : n < ω} is also

countable.

Suppose X is not metrizable. Since each Sα is σ-compact, then by Lemma 99, we can

find a subspace Y of X and an uncountable cardinal λ such that Y is homeomorphic to

A(λ). Since Y is compact, then Y 2 \ ∆ is a closed subspace of X2 \ ∆, so Y 2 \ ∆ is also

(ω1, ω)-paracompact. But this is a contradiction, according to Lemma 100.

Our final task in this section is to prove Theorem 104 below, which says that, in The-

orem 102, we cannot replace the class of all directed sets with calibre (ω1, ω) with a larger

class of directed sets. Thus, Theorem 102 is optimal, in the same sense as Theorem 63.

Lemma 103. Let P be a directed set which does not have calibre (ω1, ω). Let X be any space

with weight at most ω1. Then X has a P -ordered base B =
⋃
{Bp : p ∈ P} where each Bp is
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finite, and hence X is P -metrizable.

Proof. Fix a base B for X of size at most ω1. Since P does not have calibre (ω1, ω), there

is a subset S of P with size ω1 such that no infinite subset of S has an upper bound. Fix a

surjection f : S → B. For each p in P , define Bp = {f(s) : s ∈ S, s ≤ p}. Clearly if p1 ≤ p2,

then Bp1 ⊆ Bp2 , and since no infinite subset of S has an upper bound, then each Bp is finite.

Lastly, B =
⋃
{Bp : p ∈ P} since f is a surjection and S ⊆ P .

Theorem 104. The following are equivalent for any directed set P :

(i) P has calibre (ω1, ω), and

(ii) For any compact X such that X2 \∆ is P -paracompact, X must be metrizable.

Proof. Theorem 102 shows that (i) implies (ii), and we now prove that the negation of (i)

implies the negation of (ii). Suppose P does not have calibre (ω1, ω). Take any compact

space X which has weight precisely ω1 (for example, X = A(ω1)). By Lemma 103, X2 \∆

has a P -(locally) finite base, and so is P -paracompact, but X is not metrizable since it has

uncountable weight.

4.3 K(M)-PARACOMPACTNESS AND K(M)-METRIZABILITY

For any separable metrizable M , the pre-ideal K(M) is a second countable topological di-

rected set with CSB, so it has more structure than general directed sets with calibre (ω1, ω).

Therefore, we devote this section to investigating P -paracompactness and P -metrizability in

the case where P = K(M)1. The results of this section are joint with Ziqin Feng.

In Section 4.3.1, we completely characterize K(M)-metrizability, and partially character-

ize K(M)-paracompactness, in terms of properties not referring to any separable metrizable

space. In Section 4.3.2, we investigate the relationship of these K(M)-ordered properties

with normality, countable paracompactness, and the countable chain condition. Finally, in

Section 4.3.3, we give a method for constructing K(M)-metrizable spaces for every separable

metrizable space M .

1In fact, many of the results of this section apply not only to directed sets of the form K(M) for separable
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4.3.1 CHARACTERIZATIONS

Here we aim to give characterizations of when a space is K(M)-paracompact or K(M)-

metrizable, for some separable metrizable M in terms of properties not referring to a separa-

ble metrizable space. This is completely successful for K(M)-metrizability (see Theorem 108)

but only partially so for K(M)-paracompactness (see Theorem 109). Our first goal will be

to give an alternate description of K(M)-local finiteness in first countable spaces (see Propo-

sition 106).

Lemma 105. Suppose that X is first countable and V = {VK : K ∈ K(M)} is a K(M)-locally

finite family of subsets of X for some separable metrizable space M . Then for any x in X and

K in K(M), there is an open neighborhood T of K in K(X) such that VT =
⋃
{VL : L ∈ T}

is locally finite at x.

Proof. Suppose, instead, that we can find x and K such that for any neighborhood T of K,

the set VT is not locally finite at x. Then let {Bm : m < ω} be a decreasing local base

at x and {Tn : n < ω} be a decreasing local base at K. So for each m,n < ω, the set

{V ∈ VTn : Bm ∩ V 6= ∅} is infinite. We can then inductively find, for any m ≤ n < ω, a

set V m
n in VTn \ {V m

m , . . . , V
m
n−1} such that Bm ∩ V m

n 6= ∅. By definition of VTn , there is a

Km
n ∈ Tn such that V m

n ∈ VKm
n

.

Since {Tn : n < ω} is a decreasing local base at K, the set K = {Km
n : m ≤ n < ω}∪{K}

is a compact subset of K(M). Hence, K̂ =
⋃
K is a compact subset of M such that Km

n ⊆ K̂

whenever m ≤ n, and so we have {V m
n : m ≤ n < ω} ⊆ VK̂ . But since Bm intersects V m

n

whenever n ≥ m, then VK̂ is not locally finite at x, which is a contradiction.

By analogy with the property ‘weakly σ-point finite’ used in [24], we call a family C of

subsets of a space X weakly σ-locally finite if we can write C =
⋃
n Cn in such a way that:

∀x ∈ X,
⋃
{Cn : Cn is locally finite at x} = C. (4.1)

A space is weakly σ-paracompact if every open cover has a weakly σ-locally finite open

refinement.

metrizable M , but to any second countable topological directed set which is CSB.
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Proposition 106. Let V be a collection of subsets of a first countable space X. Then the

following are equivalent:

(i) V is weakly σ-locally finite, and

(ii) V is K(M)-locally finite for some separable metrizable M .

Moreover, (i) implies (ii) even if X is not first countable.

Proof. Assume (i) and write V =
⋃
n Vn where (4.1) is satisfied for each x ∈ X. Now, for

each V ∈ V , define σV ∈ {0, 1}ω by σV (n) = 1 if V ∈ Vn and σV (n) = 0 if V 6∈ Vn. Then let

M be the subspace {σV : V ∈ V} of the Cantor space {0, 1}ω. For any compact subset K of

M , let VK = {V ∈ V : σV ∈ K}. Then V =
⋃
{VK : K ∈ K(M)} is K(M)-ordered.

Now we check that each VK is locally finite in X. Fix K in K(M) and define Un = {σ ∈

M : σ(n) = 1} = {σV : V ∈ Vn}, which is open in M for each n. We claim that for any

x in X, {Un : Vn is locally finite at x} covers K. Indeed, if σV is in K, then (4.1) implies

that there is an m such that V is in Vm (so σV is in Um) and Vm is locally finite at x. Thus,

for each x in X, there is a finite subset Fx of ω such that {Un : n ∈ Fx} covers K and Vn
is locally finite at x for each n ∈ Fx. Tracing the definitions shows that VK is contained in⋃
{Vn : n ∈ Fx} for each x, and is therefore locally finite at each x. Thus, (i) implies (ii).

For the converse, assume V =
⋃
{VK : K ∈ K(M)} is K(M)-locally finite. Fix a

countable base B for K(M) and define VB =
⋃
{VK : K ∈ B} for each B ∈ B. Then for

each x ∈ X, Lemma 105 guarantees that
⋃
{VB : VB is locally finite at x} = V . Hence, V is

weakly σ-locally finite since B is countable.

Lemma 107. Let V be a weakly σ-locally finite family of subsets of a space X, and write

V =
⋃
n Vn satisfying (4.1) of the definition. Define Xn = {x ∈ X : Vn is locally finite at x}

and Wn = {V ∩Xn : V ∈ Vn} for each n < ω, and let W =
⋃
nWn.

Then each Wn is relatively locally finite, so W is σ-relatively locally finite. If V is an

open cover, then W is an open refinement of V, and if V is a base for X, then so is W.

Proof. Since
⋃
Wn is contained in Xn, and Vn is locally finite on Xn, then it follows that

Wn is locally finite in its union
⋃
Wn, which proves the first claim. Note that each Xn is

open and W refines V , so to prove the final two claims, it suffices to check that whenever

x ∈ V ∈ V , then there is a W ∈ W such that x ∈ W ⊆ V . Indeed, if x ∈ V ∈ V , then by
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property (4.1), there is an n such that V ∈ Vn and Vn is locally finite at x. Thus, W = V ∩Xn

is in W and x ∈ W ⊆ V .

Theorem 108. Let X be a space.

(1) If X is K(M)-metrizable for some separable metrizable M , then X is P -metrizable where

P has calibre (ω1, ω).

(2) If X is P -metrizable where P has calibre (ω1, ω), then X is (ω1, ω)-metrizable.

(3) X is K(M)-metrizable for some separable metrizable M if and only if X has a weakly

σ-locally finite base.

(4) If X is K(M)-metrizable for some separable metrizable M , then X has a σ-relatively

locally finite base.

(5) If X has a σ-disjoint base, then it has a σ-relatively locally finite base. If X has a

σ-relatively locally finite base, then X has a σ-point finite base.

Proof. First of all, claims (1) and (2) follow immediately from Lemmas 55 and 93, respec-

tively.

Proposition 106 shows that any weakly σ-locally finite base is K(M)-locally finite for

some separable metrizable space M , which gives one direction of (3). Conversely, if X is

K(M)-metrizable for some separable metrizable space M , then X is first countable by (1),

(2), and Lemma 96. So by Proposition 106, we can see that X has a weakly σ-locally finite

base, which completes the proof of (3).

Statement (4) follows from (3) and Lemma 107, and finally, Lemma 92 shows that (5) is

true.

We summarize these results in Figure 4. Arrows indicate implications, while examples

next to an arrow demonstrate that the converse fails. The referenced examples appear in

Section 4.5.

There is a clear logical difference between saying that a space is ‘metrizable’ and saying

that it is ‘paracompact’. Metrizability asserts the existence of a certain object (σ-locally finite

base), while paracompactness says that for every object of one type (open cover) there is a

certain object of another type (locally finite open refinement). This logical difference means

that there is a unique ‘K(M)-variant’ of metrizability (K(M)-metrizable, for some M) but
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weakly σ-locally finite base∃M : K(M)-metrizable

σ-relatively locally finite base

σ-disjoint base

σ-point finite base

∃P cal. (ω1, ω) : P -metrizable

(ω1, ω)-metrizable

Ex. 8, 7

Ex. 10

Q. 1

Ex. 5, 6

Ex. 4

Figure 4: P -metrizability and related properties (summary of Theorem 108)

two ‘K(M)-variants’ of paracompactness, depending on whether the M used to organize an

open refinement is chosen in advance (K(M)-paracompact) or with the refinement (K(M)-

paracompact). This results in a more complex range of implications and examples.

Theorem 109. Let X be a space.

(1) If X is K(M)-paracompact for some separable metrizable M , then X is also K(M)-

paracompact.

(2) If X is K(M)-paracompact, then X is P -paracompact for some directed set P with calibre

(ω1, ω).

(3) If X is P -paracompact for some directed set P with calibre (ω1, ω), then X is (ω1, ω)-

paracompact.

(4) If X is weakly σ-paracompact, then it is K(M)-paracompact and σ-relatively paracompact.

(5) If X is first countable and K(M)-paracompact, then X is weakly σ-paracompact (and

hence, σ-relatively paracompact).

(6) If X is screenable, then it is σ-relatively paracompact. If X is σ-relatively paracompact,

then X is σ-metacompact.

Proof. Claim (1) is immediate from the definitions. Claim (3) follows from Lemma 93.

For (2), suppose X is K(M)-paracompact. Let P = Σ{K(M) : M ⊆ Iω}. Then P

has calibre (ω1, ω) by Theorem 58. Take any open cover U of X. By hypothesis there is a
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separable metrizable M such that U has a K(M)-locally finite open refinement V . Without

loss of generality, we can suppose M is a subspace of the Hilbert cube Iω. Then, the

projection from P onto K(M) witnesses that P ≥T K(M), so V is P -locally finite.

For (4), suppose W is a weakly σ-locally finite open cover of X. By Proposition 106,

W is also K(M)-locally finite for some separable metrizable M . By Lemma 107, W has a

σ-relatively locally finite open refinement V .

Similarly, (5) follows immediately from Proposition 106 and Lemma 107, and finally,

Lemma 92 shows that (6) is true.

Again, we summarize these results in Figure 5. Arrows indicate implications, while

examples on their own next to an arrow demonstrate that the converse fails. Arrows with

‘+’-properties indicate that an additional assumption was used, and the adjacent example

demonstrates its necessity. The referenced examples appear in Section 4.5.

weakly σ-paracompact

K(M)-paracompact

σ-relatively paracompact

∃M : K(M)-paracompact

screenable

σ-metacompact
∃P cal. (ω1, ω) : P -paracompact

(ω1, ω)-paracompact

+1o Ex. 3
Ex. 9

Ex. 8

Ex. 10

Q. 1

Ex. 5, 6

Ex. 4

Figure 5: P -paracompactness and related properties (summary of Theorem 109)

4.3.2 WITH NORMAL, COUNTABLY PARACOMPACT, AND CCC

Recall that a space X is countably paracompact if and only if every increasing countable

open cover {Un : n < ω} of X is shrinkable, that is, it has an open refinement {Vn : n < ω}
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covering X such that Vn ⊆ Un; and X is normal and countably paracompact if and only if

every countable (not necessarily increasing) open cover of X is shrinkable.

By Lemma 92, every screenable space is σ-relatively paracompact. Question 1 at the

end of Section 4.5 asks if these two properties are distinct. If they are, then the next result

generalizes Nagami’s theorem [38] that a space is paracompact if and only if it is screenable,

normal, and countably paracompact.

Theorem 110. A space X is paracompact if and only if it is σ-relatively paracompact,

normal, and countably paracompact.

Proof. Of course paracompactness implies the other properties, so we only prove the ‘if’

portion. Let U be any open cover of X. Since X is σ-relatively paracompact, there is an

open refinement W of U covering X which has the form W =
⋃
{Wn : n < ω} where each

Wn is locally finite in Xn =
⋃
Wn.

Since X is normal and countably paracompact, then we may shrink the open cover

{Xn : n < ω} to get an open cover Y = {Yn : n < ω} such that Yn ⊆ Xn for each n. Let

Tn = {W ∩ Yn : W ∈ Wn}. Then Tn is locally finite in X and covers Yn since Wn covers Xn.

Now since Y covers X, then
⋃
n Tn covers X, and it is also a σ-locally finite open refinement

of U . Hence, X is paracompact.

Corollary 111. Let X be a first countable space. Then X is paracompact if and only if it

is K(M)-paracompact, normal, and countably paracompact.

Proof. Of course paracompactness implies the other properties. For the other direction, it

suffices to recall that every first countable K(M)-paracompact space is σ-relatively para-

compact (Theorem 109), so we may apply Theorem 110.

Since K(M)-metrizable spaces are first countable (Lemma 96), we deduce:

Theorem 112. Every K(M)-metrizable space which is normal and countably paracompact

is paracompact.

Then it follows from Lemma 91 that:

Theorem 113. Every K(M)-paracompact, normal Moore space is metrizable.
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We may ask if normality can be dropped in Theorem 113 (and replaced with countable

paracompactness), but there is a consistent counterexample, which we give next. A space

Y is called a ∆-space if whenever we write Y as an increasing union of subsets, Y =
⋃
n Sn

where Sn ⊆ Sn+1 for all n, there is a countable closed cover {Cn : n < ω} of Y such that

Cn ⊆ Sn for every n. A space Y is called a Q-space if every subset of Y is Gδ. Note that

every Q-space is a ∆-space. A subset A of R is a called a Q-set if it is an uncountable

Q-space, and A is called a ∆-set if it is an uncountable ∆-space.

Example 2 (Consistently). There is a K(M)-metrizable, countably paracompact Moore space

which is not normal.

Proof. Knight [33] has shown it is consistent that there is a ∆-set A which is not a Q-set. Fix

a subset A1 of A which is not a Gδ, and let A2 = A \A1. Let X denote the disjoint split X-

machine D(A;A1, A2) (see Section 4.4.3 below). Then X is a Moore space, K(M)-metrizable

for M = A1 × A2 (see Lemmas 128 and 130), and countably paracompact (Lemma 131).

As A2 is not an Fσ subset of X, then Lemma 130 also tells us that X is not metrizable

and so not normal (by Theorem 113).

For any directed set P with calibre (ω1, ω), we know (Lemma 98) that ‘separable plus

P -paracompact implies Lindelöf’ and ‘separable plus P -metrizable implies metrizable’. It

is natural to ask when ‘separable’ can be relaxed to ‘ccc’ (countable chain condition: every

pairwise disjoint family of open sets is countable).

The next lemma is well-known.

Lemma 114. Every locally finite open cover W of a ccc space Y contains a countable

subcollection whose closures cover Y .

Now we can give a positive answer to our question in the case when P is a K(M).

Theorem 115. Let X be a ccc space.

(1) If X is first countable and K(M)-paracompact, then X is Lindelöf.

(2) If X is K(M)-metrizable, then X is metrizable.

Proof. We prove (1) first. So suppose X is first countable and K(M)-paracompact. Then X

is σ-relatively paracompact. Take any open cover U . It has an open refinement V =
⋃
n Vn
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where each Vn is relatively locally finite, and (using regularity) we can additionally assume

that the closure of each V in V is contained in some member of U .

Fix n. Apply the preceding lemma to the ccc space Yn =
⋃
Vn and the locally finite

cover Vn to get a countable subcollection of Vn whose closures cover Yn. Recalling that the

closure of each V in V is contained in some member of U , we obtain a countable subcollection

of U covering
⋃
Vn. Taking the union over all n of these countable subcollections yields a

countable subcover of U .

Now we establish (2). Suppose X is K(M)-metrizable. Then every subspace is K(M)-

paracompact. In particular, every open subspace is K(M)-paracompact and ccc, and hence

Lindelöf. Thus X is hereditarily Lindelöf, so hereditarily ccc, and hence (see [25] for example)

any point-finite family of open sets in X is countable. But as X is K(M)-metrizable, it has

a σ-point finite base, which we now see must be countable. Thus X is indeed (separable

and) metrizable.

4.3.3 DIVERSITY OF K(M)-METRIZABLE SPACES

In Theorem 118 below, we show that there exist K(M)-metrizable spaces for every separable

metrizable M . Further, there is a maximal ‘antichain’ of separable metrizable spaces with

corresponding topological spaces which are K(M)-metrizable for one, and only one, member

M of the antichain. Our K(M)-metrizable spaces in Theorem 118 will be formed from a

construction which generalizes that of the Michael Line, as follows.

Let Y be a metrizable space and A any subset. Then define M(Y,A) to be the space

whose underlying set is Y , and whose topology refines that of Y by declaring the points in

A to be isolated. When Y = R and A is the set of irrationals, this gives the usual Michael

line. Recall that CL(Y ) denotes the pre-ideal of closed subsets of Y (with respect to the

original topology on Y ), and P(A) denotes the power set of A. Hence CL(Y ) ∩ P(A) is the

pre-ideal of subsets of A that are closed in Y . Since this pre-ideal contains each finite subset

of A, we may identify A with the subset [A]1 of CL(Y ) ∩ P(A).

Lemma 116. Let A be a subspace of a metrizable space Y , and let P be a directed set. Then

M(Y,A) is P -metrizable if and only if P × ω ≥T (A,CL(Y ) ∩ P(A)).
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Proof. Let Q = P × ω. Suppose, first, that M(Y,A) is P -metrizable. Then M(Y,A) has

a Q-ordered base B =
⋃
{Bq : q ∈ Q} where every Bq is locally finite. For each q, let

BAq = Bq ∩ {{a} : a ∈ A}, and Bq =
⋃
BAq . Since all points of A are isolated, the BAq form

a Q-ordered clopen cover of A by families locally finite in M(Y,A). Hence the Bq form a

Q-ordered cover of A by sets closed in M(Y,A). By definition of the topology on M(Y,A),

the closure in Y (with its original topology) of a Bq, call it Cq, is contained in A. Hence, the

family {Cq : q ∈ Q} witness that Q ≥T (A,CL(Y ) ∩ P(A)).

Now suppose {Cq : q ∈ Q} is a (P × ω)-ordered cover of A by subsets of A which are

closed in Y . Let B′ =
⋃
n B′n be a base for Y (with its original, metrizable topology) such

that B′n ⊆ B′m when n ≤ m and each B′n is locally finite. Define B =
⋃
{Bq,n : q ∈ Q, n < ω}

where Bq,n = B′n ∪ {{a} : a ∈ Cq}. Then each Bq,n is locally finite in M(Y,A) since Cq

is closed in Y , and so B is a (Q × ω)-locally finite base for M(Y,A). Hence, M(Y,A) is

P -metrizable since Q× ω = P × ω × ω =T P × ω.

Lemma 117. Let A be a subspace of a compact metrizable space Y . Then M(Y,A) is K(A)-

metrizable, and if M(Y,A) is P -metrizable for some directed set P , then P×ω ≥T (A,K(A)).

Proof. Since Y is compact, then CL(Y )∩P(A) = K(A), and note that K(A)×ω ≥T K(A) ≥T
(A,K(A)). Both claims now follow immediately from Lemma 116.

Theorem 118. For each separable metrizable space A, there is a hereditarily paracompact

K(A)-metrizable space MA such that: if A′ is any non-compact separable metrizable space

and MA is K(A′)-metrizable, then K(A′) ≥T (A,K(A)).

Hence there is a 2c-sized family A of separable metrizable spaces such that:

(1) If A is in A then MA is K(A)-metrizable, but

(2) If A′ is another member of A, then MA is not K(A′)-metrizable.

Proof. Fix a separable metrizable space A. Without loss of generality, we suppose A is a

subspace of Iω, the Hilbert cube. Let MA = M(Iω, A) (see Section 4.3.3). By Lemma 116,

MA is K(A)-metrizable. Let A′ be any non-compact separable metrizable space and suppose

MA is K(A′)-metrizable. By Lemma 117, we know K(A′)× ω ≥T (A,K(A)), and since A′ is

not compact, then K(A′)× ω =T K(A′) by Lemma 61, so we have K(A′) ≥T (A,K(A)).
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Now take A to be the 2c-sized ‘antichain’ of Theorem 60. No member of A is compact.

Statements (1) and (2) now immediately follow.

4.4 USEFUL CONSTRUCTIONS

In this section, we describe constructions for generating topological spaces with certain

properties that will be useful in the examples of Section 4.5.

4.4.1 THE X-MACHINE

For any space Y , let X(Y ) have the underlying set (Y 2 \∆)∪Y . Isolate all points of Y 2 \∆.

A basic open neighborhood of a point y in Y ⊆ X(Y ) is {y}∪ (U ×{y})∪ ({y}×U) for any

open neighborhood U of y in Y . Note that X(R) is (homeomorphic) to R × R with points

away from the x-axis isolated, and points on the x-axis have neighborhoods in the shape of

an ‘X’ — and the closed upper half plane of this latter space is Heath’s V-space. In other

words, X(R) is a symmetric version of Heath’s V-space.

y

y

Y

Y

Figure 6: The X-space produced from a space Y

Lemma 119. Let Y be any Hausdorff space. Then we have:

(1) X(Y ) is zero-dimensional and Hausdorff and hence Tychonoff.

75



(2) X(Y ) is a Moore space if and only if Y is first countable.

(3) If Y is first countable and X(Y ) is P -paracompact for some directed set P , then X(Y )

is P -metrizable.

(4) If Y is first countable and X(Y ) is (ω1, ω)-paracompact, then X(Y ) is (ω1, ω)-metrizable.

(5) If Y is first countable, then X(Y ) has a σ-point finite base.

Proof. For (1), it is straightforward to check that the base forX(Y ) provided above consists of

clopen sets, so X(Y ) is zero-dimensional, and it is easy to see X(Y ) is Hausdorff. Statement

(3) follows from (2) and Lemma 91, while (4) follows from (2) and Lemma 94, so now we

prove (2).

If Y is first countable, then fix a countable neighborhood base {Un(y) : n < ω} at each

y in Y . Then define Gn = {{y} ∪ (Un(y)×{y})∪ ({y}×Un(y)) : y ∈ Y } for each n < ω and

Gω = {{x} : x ∈ X(Y ) \ Y }. Then {Gn : n ≤ ω} is a development for X(Y ). Conversely, if

X(Y ) is a Moore space, then it is first countable, and by definition of the basic neighborhoods

of each y ∈ Y ⊆ X(Y ), we see that Y is first countable at y. So we have proven (2).

Note that when Y is first countable, then each family Gn above is also point finite in

X(Y ). Indeed, each point of Y is in precisely one member of Gn and each point in Y 2 \∆

is in at most two members of Gn. Let Vn be the set of singletons of points in Y 2 \ ∆ not

covered by Gn, and let G ′n = Gn ∪ Vn. Then each G ′n is point finite, and their union is a base

for X(Y ), so (5) is proven.

Let A be a subspace of a space Y . Then A is relatively countably compact if every subset

of A which is closed discrete in Y is finite. We say Y is RCCC if every relatively countably

compact subset of Y is countable. We note that a metrizable space Y is RCCC if and only

if every compact subset of Y is countable (in other words, Y is totally imperfect).

Lemma 120. Let Y be any space. If Y is RCCC, then X(Y ) is (ω1, ω)-paracompact. Hence,

if Y is RCCC and first countable, then X(Y ) is (ω1, ω)-metrizable. If Y is metrizable and

X(Y ) is (ω1, ω)-paracompact, then Y is RCCC.

Proof. Any open cover of X(Y ) has an open refinement of the form U = U1 ∪ U2, where U1

contains one basic open neighborhood Uy for each point y ∈ Y ⊆ X(Y ), and U2 consists of
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the singletons for each point in X(Y ) not already covered by U1. Notice that U2 is locally

discrete. Now assume Y is RCCC. Then to show X(Y ) is (ω1, ω)-paracompact, it suffices to

show that U1 is (ω1, ω)-locally finite.

Suppose V is an uncountable subset of U1, so V = {Uy : y ∈ A} for some uncountable

A ⊆ Y . Since Y is RCCC, then A is not relatively countably compact in Y , so there is

an infinite subset S of A that is closed and discrete in Y . It is then easy to check that

W = {Uy : y ∈ S} is an infinite locally finite subset of V . Thus, the first claim has been

proven, and the second claim follows from Lemma 119.

To prove the final claim, fix a metric generating the topology on Y , and for any y ∈ Y

and n < ω, let Bn(y) denote the open ball of radius 1/n+1 centered at y. Assuming X(Y )

is (ω1, ω)-paracompact, then for each y ∈ Y , we can find an ny < ω such that {Uy =

{y} ∪ (Bny(y) × {y}) ∪ ({y} × Bny(y)) : y ∈ Y } is (ω1, ω)-locally finite in X(Y ). Let A be

any uncountable subset of Y . By counting, there is an uncountable subset A1 of A and an

m < ω such that ny = m for all y ∈ A1. Then there is an infinite subset S of A1 such that

{Uy : y ∈ S} is locally finite.

We claim S is closed and discrete in Y , which shows that A is not relatively countably

compact in Y , so that Y is RCCC. To that end, suppose some z ∈ Y is in the closure of

S \{z}. So any basic neighborhood Bn(z) of z in Y contains an element yn of S \{z}. Hence,

any basic neighborhood {z} ∪ (Bn(z)× {z})∪ ({z} ×Bn(z)) of z in X(Y ) intersects Uyk for

each k ≥ max{n,m}, contradicting the fact that {Uy : y ∈ S} is locally finite.

Lemma 121. Let Y be a space such that w(Y ) < |Y |. Then X(Y ) is not w(Y )-relatively

paracompact.

Proof. Fix a base B for Y with cardinality κ = w(Y ), and suppose X(Y ) is κ-relatively

paracompact. Then there is a collection U = {Uy : y ∈ Y } =
⋃
{Uα : α < κ} where each Uy

is a basic neighborhood of y in X(Y ) and each Uα is locally finite in its union.

Since |Y | > κ, there is a β < κ such that Yβ = Y ∩ (
⋃
Uβ) has size greater than κ. Note

that {Uy : y ∈ Yβ} = Uβ is locally finite on Yβ ⊆ X(Y ), so by shrinking the elements of Uβ,

we can obtain a collection V = {Vy : y ∈ Yβ} where each Vy is a basic X(Y )-neighborhood of

y that intersects only finitely many other members of V . In fact, any two distinct members
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of V will intersect in at most two points, so without loss of generality, V is actually pairwise

disjoint.

For each y ∈ Yβ, write Vy = {y} ∪ (By ×{y})∪ ({y}×By) for some By ∈ B. Then there

is a B ∈ B and a subset S of Yβ such that |S| > κ and By = B for every y ∈ S. Note that

S is a subset of B. Now pick any two distinct points y1 and y2 in S. Then the point (y1, y2)

is in the intersection of Vy1 and Vy2 , contradicting that V is pairwise disjoint.

For any space Y denote by Yω the space with underlying set Y and topology obtained by

adding all co-countable subsets of Y to the original topology on Y . Note that if the original

topology on Y is Hausdorff, then so is Yω.

Lemma 122. Let Y be a space.

(1) X(Yω) is P -paracompact where P is the directed set [Y ]≤ω.

(2) If w(Y ) · ω1 < |Y |, then X(Yω) is not w(Y )-relatively paracompact.

Proof. To prove (1), it suffices to show that any open cover for X(Yω) of the form U = U1∪U2

as in the proof of Lemma 120 is P -locally finite. Write U1 = {Uy : y ∈ Yω} where each Uy is

a basic open neighborhood of y in X(Yω). Then for any countable subset C of Y , we have

that C is closed and discrete in Yω, so the family UC = {Uy : y ∈ C} ∪ U2 is locally finite in

X(Yω). Thus, U =
⋃
{UC : C ∈ P = [Y ]≤ω} is P -locally finite.

For the proof of (2), assume X(Yω) is κ-relatively paracompact, where κ = w(Y ), and

fix a base B for Y with size κ. Then {B \ C : B ∈ B, C ⊆ Y, |C| ≤ ω} is a base for Yω.

By only slightly modifying the proof of Lemma 121, we can find a B ∈ B, a subset S of B

with |S| > κ · ω1, and countable sets Cy ⊆ Y \ {y} for each y ∈ S such that the collection

V = {Vy = {y} ∪ ((B \ Cy)× {y}) ∪ ({y} × (B \ Cy)) : y ∈ S} is pairwise disjoint.

Choose an arbitrary subset A of S with size ω1, and let A′ = A∪ (
⋃
{Cy : y ∈ A}), which

also has size ω1. Then there is a y1 in S \A′ and a y2 in A\Cy1 . Hence, we have y1 ∈ B \Cy2
and y2 ∈ B \ Cy1 , which means Vy1 intersects Vy2 , which is a contradiction.
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4.4.2 THE SPLIT X-MACHINE

For any point y in a space Y , write y+ for (y,+) and y− for (y,−). For any subset S of

Y , let S+ = {s+ : s ∈ S} and S− = {s− : s ∈ S}. Let S(Y ) have the underlying set

(Y × Y \∆) ∪ Y + ∪ Y −. Isolate all points of Y 2 \∆. A basic open neighborhood of a point

y+ in S(Y ) is {y+} ∪ (U × {y}) for any open neighborhood U of y in Y . A basic open

neighborhood of a point y− in S(Y ) is {y−} ∪ ({y} × U) for any open neighborhood U of y

in Y . Note that S(R) is a symmetric version of Heath’s split V-space.

Lemma 123. Let Y be any Hausdorff space. Then we have:

(1) S(Y ) is zero-dimensional and Hausdorff and hence Tychonoff.

(2) S(Y ) is a Moore space if and only if Y is first countable.

(3) If Y is first countable and S(Y ) is P -paracompact for some directed set P , then S(Y ) is

P -metrizable.

(4) If Y is first countable and S(Y ) is (ω1, ω)-paracompact, then S(Y ) is (ω1, ω)-metrizable.

Proof. A slightly modified version of the proof for Lemma 119 works here.

Lemma 124. For any space Y , the split X-space, S(Y ), is screenable and therefore σ-

relatively paracompact. The space S(Y ) has a σ-disjoint base if and only if it has a σ-

relatively locally finite base if and only if Y is first countable.

Proof. Every open cover for S(Y ) has an open refinement of the form U0 ∪ U1 ∪ U2 where

U0 contains the singletons for every point in Y 2 \∆, U1 contains one basic neighborhood of

each point in Y +, and U2 contains one basic neighborhood for each point in Y −. Since each

Ui is pairwise disjoint, then S(Y ) is screenable.

Lemma 92 gives that every σ-disjoint base is σ-relatively locally finite. The same lemma

also shows that every σ-relatively locally finite base for S(Y ) is σ-point finite, and therefore

point countable, which implies first countability for Y . Finally, if Y is first countable, say

{Bn(y) : n < ω} is a countable base at y in Y , then S(Y ) has a σ-disjoint base V ∪
⋃
nWn,

where V contains the singletons for each point in Y 2 \∆ and Wn = {{y+} ∪ (Bn(y)×{y}) :

y ∈ Y } ∪ {{y−} ∪ ({y} × Bn(y)) : y ∈ Y }. So the three conditions in the second statement

are equivalent.
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Lemma 125. Let Y be any space. If Y is RCCC, then S(Y ) is (ω1, ω)-paracompact. Hence,

if Y is RCCC and first countable, then S(Y ) is (ω1, ω)-metrizable. If Y is metrizable and

S(Y ) is (ω1, ω)-paracompact, then Y is RCCC.

Proof. The proof for Lemma 120 can be easily modified to work here.

For a subset Y of R, define H(Y ) = {(y, y′) : y < y′, y, y′ ∈ Y } ∪ Y + ∪ Y − with the

subspace topology from S(Y ). For y in Y and n < ω, define Vn(y,+) = {y+}∪ (y− 1
n+1

, y)×

{y} and Vn(y,−) = {y−} ∪ {y}× (y, y+ 1
n+1

). These are basic neighborhoods of y+ and y−,

respectively. As alluded to above, Heath’s split V-space is (homeomorphic to) H = H(R).

This family of subspaces has some specific properties we identify.

Lemma 126. For any subspace Y of R, the space H(Y ) is (ω1, ω)-metrizable.

Proof. Let B = {{(y, y′)} : y < y′, y, y′ ∈ Y } ∪ {Vn(y,+) : y ∈ Y, n < ω} ∪ {Vn(y,−) : y ∈

Y, n < ω}. This is a basis for H(Y ). We show it is (ω1, ω)-locally finite.

Let B1 be any uncountable subset of B. There must be an n < ω and an uncountable

subset B2 of B1 as in one of the following three cases.

Case 1: Each element of B2 is a singleton of the form {(y, y′)}, where y + 1
n+1

< y′.

Then B2 is clearly locally finite in H(Y ).

Case 2: B2 = {Vn(y,+) : y ∈ Y ′} for some uncountable Y ′ ⊆ Y . Since R with the ‘left’

Sorgenfrey topology (in other words, with base {(a, b] : a < b}) has countable extent, then Y ′

contains a strictly increasing sequence (yk)k that converges in R. It is then straightforward

to check that B3 = {Vn(yk,+) : k < ω} is locally finite in H(Y ).

Case 3: B2 = {Vn(y,−) : y ∈ Y ′} for some uncountable Y ′ ⊆ Y . A similar argu-

ment (using the ‘right’ Sorgenfrey topology and extracting a strictly decreasing convergent

sequence) as for case 2 works here.

In any case, B1 contains an infinite locally finite subset, so the proof is complete.

Lemma 127. For any subspace Y of R that is not RCCC, the space H(Y ) is not P -

paracompact for any P with calibre (ω1, ω).

Proof. Fix a subspace Y of R, an uncountable relatively countably compact subset A of Y ,

and a directed set P with calibre (ω1, ω). To get a contradiction, suppose B is a P -locally
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finite base for H(Y ). Then according to Lemma 88, we have P ≥T ([B]<ω, LF (B)), and so

by Lemma 17, [B]<ω has relative calibre (ω1, ω) in LF (B).

For each y ∈ A, there are W+
y ,W

−
y ∈ B and an ny < ω such that Vny(y,+) ⊆ W+

y ⊆

V0(y,+) and Vny(y,−) ⊆ W−
y ⊆ V0(y,−). We can find an uncountable subset A1 of A and an

n < ω such that ny = n for all y ∈ A1. Then the uncountable subset {{W+
y ,W

−
y } : y ∈ A1}

of [B]<ω must contain an infinite subset with an upper bound in LF (B). Thus, there exists

an infinite A2 ⊆ A1 such that W =
⋃
{{W+

y ,W
−
y } : y ∈ A2} is locally finite.

If A2 contains an increasing sequence that converges to some point a in A, thenW fails to

be locally finite at a+, since Vn(y,−) ⊆ W+
y for each y ∈ A2. Thus, A2 does not contain any

increasing sequence that converges in Y , and similarly, we can show A2 does not contain any

decreasing sequence that converges in Y . But that contradicts the fact that A is relatively

countably compact in Y .

4.4.3 THE DISJOINT SETS SPLIT X-MACHINE

Here we highlight a useful subspace of the previous split X-space. Let Y be a space, and

A1, A2 be a partition of Y . Let D(Y ;A1, A2) be the subspace (Y 2 \∆) ∪A+
1 ∪A−2 of S(Y ).

Lemma 128. Let Y be any Hausdorff space with a partition A1, A2. Then we have:

(1) D(Y ;A1, A2) is zero-dimensional and Hausdorff and hence Tychonoff.

(2) D(Y ;A1, A2) is a Moore space if and only if Y is first countable.

(3) If Y is first countable and D(Y ;A1, A2) is P -paracompact for some directed set P , then

D(Y ;A1, A2) is P -metrizable.

(4) If Y is first countable and D(Y ;A1, A2) is (ω1, ω)-paracompact, then D(Y ;A1, A2) is

(ω1, ω)-metrizable.

Proof. Once again, we can slightly modify the proof of Lemma 119 to work here.

Lemma 129. For any space Y and partition A1, A2, the space D(Y ;A1, A2) is screenable

and hence σ-relatively paracompact.

The space D(Y ;A1, A2) has a σ-disjoint base if and only if it has a σ-relatively locally

finite base if and only if Y is first countable.
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Proof. The proof of Lemma 124 works here with only slight modifications.

Lemma 130. Let Y be a space with partition A1, A2. Let P be a directed set. If P ≥T
(Ai, CL(Y ) ∩ P(Ai)) for i = 1, 2, then D(Y ;A1, A2) is P -paracompact. If Y is metrizable

and D(Y ;A1, A2) is P -paracompact, then P × ω ≥T (Ai, CL(Y ) ∩ P(Ai)) for i = 1, 2.

Proof. Suppose P ≥T (Ai, CL(Y ) ∩ P(Ai)) for i = 1, 2. Then for each i = 1, 2, there is an

order-preserving map φi : P → CL(Y ) ∩ P(Ai) whose image covers Ai. Each open cover of

D(Y ;A1, A2) has an open refinement of the form U = U0 ∪ U1 ∪ U2, where U1 contains one

basic neighborhood Ux of each x in A+
1 , U2 contains one basic neighborhood Ux of each x in

A−2 , and U0 contains the singletons for each point not covered by U1 ∪ U2.

For each p ∈ P , let Up = {Ux : x ∈ φ1(p) ∪ φ2(p)} ∪ U0. Note that U1 is trivially locally

finite in D(Y ;A1, A2) \ A−2 , and since φ1(p) ⊆ A1 is closed in Y , then {Ux : x ∈ φ1(p)}

is locally finite in all of D(Y ;A1, A2). Similarly, the rest of Up is locally finite also. Thus,⋃
{Up : p ∈ P} = U is P -locally finite, which proves the first claim.

For the second claim, fix a metric for Y . Then for any y ∈ Y and n < ω, let Bn(y)

denote the open ball of radius 1
n+1

centered at y, and define Un(y) = {y+} ∪ (Bn(y)× {y})

when y ∈ A1 and Un(y) = {y−} ∪ ({y} × Bn(y)) when y ∈ A2. Since D(Y ;A1, A2) is P -

paracompact, then for any y ∈ Y , there is an ny < ω such that U = {Uny(y) : y ∈ Y } is

P -locally finite. Write U =
⋃
{Up : p ∈ P} where each Up is locally finite and Up ⊆ Up′

whenever p ≤ p′ in P .

Fix p ∈ P and n < ω and define Ai,p,n = {y ∈ Ai : Uny(y) ∈ Up, ny ≤ n}. We will check

that Ai,p,n
Y

is contained in Ai. Let a be in Y \Ai = A3−i. Then a has a basic neighborhood

Uk(a) with k ≥ n that intersects Uny(y) for only finitely many y in Ai,p,n, and since those

basic neighborhoods intersect in only one point, then we can actually assume Uk(a) does not

intersect any Uny(y) for y ∈ Ai,p,n. We claim that Bk(a) does not intersect Ai,p,n, which shows

that y is not in Ai,p,n
Y

. Indeed, if there were some y in Ai,p,n ∩ Bk(a), then a would be in

Bk(y) ⊆ Bny(y), so either (a, y) or (y, a) would be in Uny(y)∩Uk(a), which is a contradiction.

Then it is straightforward to check that φi : P×ω → CL(Y )∩P(Ai) defined by φi(p, n) =

Ai,p,n
Y

is order-preserving and its image covers Ai, so P × ω ≥T (Ai, CL(Y ) ∩ P(Ai)).

Recall that a space Y is called a ∆-space if whenever we write Y as an increasing union of
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subsets, Y =
⋃
n Sn where Sn ⊆ Sn+1 for all n, there is a countable closed cover {Cn : n < ω}

of Y such that Cn ⊆ Sn for every n.

Lemma 131. If Y is a ∆-space, then D(Y ;A1, A2) is countably paracompact.

Proof. Let Y be a ∆-space. Recall that a space X is countably paracompact if and only

if for every countable increasing open cover {Un : n < ω} of X, there is an open cover

{Vn : n < ω} of X such that Vn ⊆ Un for each n < ω. So, let {Un : n < ω} be an increasing

open cover of D(Y ;A1, A2).

For each n < ω and i = 1, 2, let Sin ⊆ Ai such that (S1
n)+ = Un∩A+

1 and (S2
n)− = Un∩A−2 ,

and then define Sn = S1
n ∪ S2

n. Then {Sn : n < ω} forms an increasing cover of Y , so there

is a closed cover {Cn : n < ω} of Y such that Cn ⊆ Sn for each n < ω. Let Ci
n = Cn ∩Ai for

each n < ω and i = 1, 2, so Ci
n ⊆ Sin and

⋃
nC

i
n = Ai.

For each y in C1
n, pick a basic open set By,n such that y+ ∈ By,n ⊆ Un, and for each y

in C2
n, pick a basic open By,n such that y− ∈ By,n ⊆ Un. Let W i

n =
⋃
{By,n : y ∈ Ci

n} for

i = 1, 2. Then W i
n is open and contained in Un.

Notice also that if z ∈ W 1
n \W 1

n , then z = a− for some a in A2∩C1
n ⊆ A2∩Cn = C2

n. Thus,

W 1
n is contained in W 1

n ∪ (C2
n)− ⊆ Un. Similarly, we also have W 2

n ⊆ Un. Let Wn = W 1
n ∪W 2

n .

Then Wn is open, its closure is contained in Un, and
⋃
nWn contains A+

1 ∪ A−2 .

Let T = D(Y,A1, A2)\
⋃
nWn, which is a clopen set of isolated points. Then Tn = T ∩Un

is also clopen for each n. Let Vn = Wn ∪ Tn. Then {Vn : n < ω} is an open cover of

D(Y ;A1, A2) such that Vn ⊆ Un. Thus, D(Y ;A1, A2) is countably paracompact.

4.5 COUNTEREXAMPLES

Here we give examples showing that the results of Section 4.3.1 do not hold if the given

additional hypotheses are dropped, nor if K(M) is weakened to P with calibre (ω1, ω). We

also give examples distinguishing all the relevant properties (K(M)-metrizable, P -metrizable

for P with calibre (ω1, ω), (ω1, ω)-metrizable, etc).
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Example 3 (¬CH). There is a space X that is K(M)-paracompact for some separable metriz-

able M (hence X is K(M)-paracompact) but such that X is not σ-relatively paracompact

(hence X is not weakly σ-paracompact).

Proof. Let Iω be I = [0, 1] with its topology refined by declaring each of its countable sets

to be closed, and consider the space X(Iω) (see Section 4.4.1). Note that I has a countable

base, so if we assume ¬CH, then w(I) · ω1 < c. By Lemma 122, we have that X(Iω) is

[I]≤ω-paracompact but not σ-relatively paracompact. We also know from Lemma 53 that

K(M) ≥T [c]≤ω = [I]≤ω, where M is a Bernstein set, and so X(Iω) is K(M)-paracompact.

Curiously, under CH the same example is paracompact.

Example 4. There is a Moore space which has a σ-disjoint base (and hence has a σ-relatively

locally finite base) which is not (ω1, ω)-paracompact and so not K(M)-paracompact.

Proof. Let X = S(I) (see Section 4.4.2). This space is well-known to be a Moore space with

a σ-disjoint base, and so, as observed above, it has a σ-relatively locally finite base. The

space X is not (ω1, ω)-paracompact (see Lemma 125), and so not K(M)-paracompact for

any separable metrizable M

Example 5. There is a Moore space with a σ-point finite base (hence, it is σ-metacompact)

which is not σ-relatively paracompact.

Proof. Take X = X(R) (see Section 4.4.1). Since w(R) = ω < |R|, we have that X(R) is not

σ-relatively paracompact by Lemma 121. By Lemma 119, we have that X(R) is a Moore

space with a σ-point finite base.

A space X is called perfectly normal if it is normal and each closed subset of X is Gδ.

Equivalently, X is perfectly normal if and only if each open subset U of X can be written

as U =
⋃
{Vn : n < ω} =

⋃
{Vn : n < ω} where each Vn is open. Recall the definition of

Q-set given before Example 2. It is consistent and independent from ZFC that there exists

a Q-set (for example, see [18]).

Example 6 (∃ a Q-set). There is a Moore space which is perfectly normal, has a σ-point

finite base, but is not σ-relatively paracompact.
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Proof. Let Q ⊆ R be a Q-set. By the same reasoning as in Example 5, X(Q) is a Moore

space with a σ-point finite base but not σ-relatively paracompact. It is well-known that the

Heath V -space on a Q-set is perfectly normal, and the same idea works here, but we include

the proof anyway. Let U be an open subset of X(Q), so we can write U = V ∪
⋃
{By : y ∈ Y }

where V is some subset of Q2 \∆ and By is a basic (X-shaped) neighborhood of y for each y

in some subset Y of Q. Since Q is a Q-set, then Y is an Fσ subset of Q, so write Y =
⋃
nCn

where each Cn is closed. Then Wn =
⋃
{By : y ∈ Cn} is a clopen subset of X(Q), as is

the set Vn of all points in V that have Euclidean distance at least 1/n from the diagonal.

Hence, each Un = Vn∪Wn is clopen, so U =
⋃
n Un =

⋃
n Un, which means X(Q) is perfectly

normal.

Recall that CL(Y ) denotes the pre-ideal of closed subsets of a space Y and P(A) denotes

the power set of a set A.

Lemma 132. Let {Aα : α < κ} be a family of separable metrizable spaces and define

P = ΣαK(Aα). Then there is a metrizable and locally separable space Y with a subspace A

homeomorphic to
⊕
{Aα : α < κ} such that:

(1) P ≥T (A,CL(Y ) ∩ P(A)), and

(2) if Q is a directed set such that Q ≥T (A,CL(Y ) ∩ P(A)), then Q ≥T (Aα,K(Aα)) for

each α < κ.

Proof. We may assume each Aα is a subspace of Yα, a copy of the Hilbert cube Iω. Let

Y =
⊕
{Yα : α < κ}. Define A =

⊕
{Aα : α < κ}. Then the map φ : P → CL(Y ) ∩ P(A)

given by φ((Kα)α) =
⊕

αKα is order-preserving, and its image covers A, which proves (1).

Now suppose Q ≥T (A,CL(Y ) ∩ P(A)) is witnessed by φ : Q → CL(Y ) ∩ P(A). Note

that if C is a subset of A that is closed in Y , then C ∩ Yα is a subset of Aα that is closed in

Yα, and since Yα is compact, then so is C ∩ Yα. Thus, we have a map φα : Q→ K(Aα) given

by φα(q) = φ(q) ∩ Yα that witnesses (2).

Example 7. There is a hereditarily paracompact, first countable space which is P -metrizable

for a directed set P with calibre (ω1, ω), but is not K(M)-metrizable for any separable metriz-

able space M .
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Proof. Take a family {Aα ⊆ Iω : α < c+} of distinct subsets of the Hilbert cube, Iω, and

let P = Σ{K(Aα) : α < c+}, which has calibre (ω1, ω) by Theorem 58. Then Lemma 132

provides a metrizable space Y with a subspace A such that P × ω ≥T P ≥T (A,CL(Y ) ∩

P(A)).

Let X = M(Y,A). Then X is first countable and hereditarily paracompact, and X is

P -metrizable by Lemma 116.

Suppose X is K(M)-metrizable for some separable metrizable space M , and let M ′ =

M × ω. Then Lemma 116 implies that K(M ′) =T K(M)× ω ≥T (A,CL(Y ) ∩ P(A)). Thus,

K(M ′) ≥T (Aα,K(Aα)) for each α < c+ by part (2) of Lemma 132, but that contradicts (2)

in Theorem 59.

Lemma 133. Let Y be a metrizable and locally separable space. Let A be a subspace of Y .

(1) There is a directed set P with calibre (ω1, ω) such that P ≥T (A,CL(Y ) ∩ P(A)). More-

over, P = ΣαK(Mα) where each Mα is separable metrizable.

(2) If the weight of Y is ≤ c, then we can take P = K(M) in (1) where M is some separable

metrizable space.

Proof. Using local separability, regularity and paracompactness of Y , we can find a closed

locally finite cover C = {Cα : α < w(Y )} of Y of separable sets. Define Aα = Cα ∩ A.

For (1), define P = ΣαK(Aα), which has calibre (ω1, ω) by Theorem 58. Any collection

{Kα : α < w(Y )} with Kα ∈ K(Aα) is locally finite in Y since C is locally finite. Therefore,⋃
αKα is closed in Y and is also a subset of A. The map ΣK(Aα) → CL(Y ) ∩ P(A) given

by (Kα)α 7→
⋃
αKα is then order-preserving, and its image covers A.

For (2), we use Theorem 59 to find a separable metrizable space M and Tukey quotient

maps φα : K(M)→ K(Aα) for each α < w(Y ) ≤ c. Then define φ : K(M)→ CL(Y ) ∩ P(A)

by φ(K) =
⋃
α φα(K), which witnesses K(M) ≥T (A,CL(Y ) ∩ P(A)).

Example 8. There is a Moore space with a σ-disjoint base which is P -metrizable for a

directed set P with calibre (ω1, ω), but is not K(M)-paracompact.

Proof. Let Y , A, and P be as in the proof of Example 7, and define B = Y \ A. By

Lemma 133, there is a Q = Σ{Mα : α < κ}, where each Mα is separable metrizable, such

86



that Q ≥T (B,CL(Y )∩ P(B)). Then P ′ = P ×Q is also a Σ-product of K(M)’s and so has

calibre (ω1, ω) by Theorem 58.

Arguing as in Example 7, but with Lemma 130 replacing Lemma 116, we see that

X = D(Y ;A,B) is P ′-paracompact but not K(M)-paracompact for any separable metriz-

able space M . Since Y is first countable, then X is P ′-metrizable by Lemma 128. Since

D(Y ;A,B) is a Moore space, it follows from Lemma 91 that it cannot beK(M)-paracompact.

Example 9. There is a space which is K(M)-paracompact but not K(M)-paracompact for

any separable metrizable M .

Proof. Let {Aα : α < c+} be a family of distinct subsets of the Hilbert cube Iω. For each

α < c+, set Yα = Iω, Bα = Yα \ Aα, and Xα = D(Yα;Aα, Bα). Then define X =
⊕

αXα,

and let X∗ be X with one additional point, ∗, where basic neighborhoods of ∗ have the form

UC = {∗} ∪
⊕
{Xα : α ∈ c+ \ C} for any countable subset C of c+.

Fix a separable metrizable space M . We check that X∗ is not K(M)-paracompact.

By Theorem 59, we have K(M × ω) 6≥T (Aα,K(Aα)) for some α < c+, and if X∗ were

K(M)-paracompact, then the closed subspace Xα would also be K(M)-paracompact. But

since Yα is metrizable, then by Lemma 130, we would have K(M × ω) =T K(M) × ω ≥T
(Aα, CL(Y ) ∩ P(A)). However, CL(Y ) ∩ P(A) = K(Aα) since Yα is compact, which gives a

contradiction.

Now we show X∗ is K(M)-paracompact. Let U be any open cover of X∗, and pick a U∗

in U containing ∗. Then there is a countable subset C of c+ such that U∗ contains Xα for

each α ∈ c+ \ C. By Lemma 130, each Xα is K(Mα)-paracompact where Mα = Aα × Bα.

By Theorem 59, there is a separable metrizable M such that M ≥T Mα for each α in C.

Thus, for each α in C, Xα is K(M)-paracompact, so we can find a K(M)-locally finite open

refinement Vα =
⋃
{Vα,K : K ∈ K(M)} of Uα = {U ∩ Xα : U ∈ U}. For each K ∈ K(M),

define VK = {U∗} ∪
⋃
{Vα,K : α ∈ C}. Then V =

⋃
{VK : K ∈ K(M)} is a K(M)-locally

finite open refinement of U since each Xα is open in X∗.

Example 10. There is a Moore space with a σ-disjoint base which is (ω1, ω)-metrizable but

not P -paracompact for any directed set P with calibre (ω1, ω).
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Proof. Consider Heath’s original split V space, H = H(R). This is a Moore space with

a σ-disjoint base. By Lemma 126, H is (ω1, ω)-metrizable. Lemma 127 implies H is not

P -paracompact for any directed set P with calibre (ω1, ω).

We know that ‘first countable plus K(M)-paracompact’ implies ‘σ-relatively paracom-

pact’ and ‘K(M)-metrizable’ implies ‘σ-relatively locally finite base’. The last pair of ex-

amples show that ‘K(M)-paracompact’ cannot be replaced above by ‘(ω1, ω)-paracompact’

or ‘P -paracompact, where P has calibre (ω1, ω)’; nor can ‘K(M)-metrizable’ be similarly

weakened.

Example 11. There is a Moore space (hence, first countable) which is (ω1, ω)-paracompact

but not σ-relatively paracompact, and so it is not K(M)-paracompact and not weakly σ-

paracompact.

Proof. Take X = X(B), where B is a Bernstein set. We can see that B is RCCC since

every compact subset of B is countable. By Lemma 120, X(B) is (ω1, ω)-paracompact.

Since |B| > ω0 and w(B) = ω0, we see that X(B) is not σ-relatively paracompact by

Lemma 121.

Example 12. There is a P -paracompact space, where P has calibre (ω1, ω), which is not

σ-relatively paracompact, and also not K(M)-paracompact.

Proof. Let Y = I c, and consider X = X(Yω). By Lemma 122, X = X(Yω) is [Y ]≤ω-

paracompact. Since the directed set [Y ]≤ω has calibre (ω1, ω), we have that X(Yω) is (ω1, ω)-

paracompact.

Notice that Y has weight w(Y ) = c. Therefore w(Y ) ·ω1 < 2c, so Lemma 122 also shows

that X(Yω) is not c-relatively paracompact, and hence, it is not σ-relatively paracompact.

Again, X(Yω) is not c-relatively paracompact, and so not c-paracompact. Since for every

M in M we have cof K(M) ≤ c, then from Lemma 90 we see that X(Yω) is not K(M)-

paracompact.

Answers to the next set of questions would help complete the diagrams in Section 4.3.1.
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Question 1. Is there a σ-relatively paracompact space which is not screenable? Is there a

K(M)-metrizable space without a σ-disjoint base? One which is a Moore space?
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5.0 PRODUCTIVITY OF CALIBRE (ω1, ω)

In Sections 3.1 and 4.2, the class of directed sets with calibre (ω1, ω) played a crucial role

in our generalizations of Schneider’s theorem, so it seems worthwhile to study this class

in its own right. In this chapter, we study the preservation of calibre (ω1, ω) under prod-

ucts. Generally, it is not a productive property, as the following example by Todorčević [45]

demonstrates. Here, a subset S of ω1 is called stationary if it intersects every subset of ω1

that is closed (in the order topology) and unbounded (i.e. uncountable), and S is called

co-stationary if ω1 \ S is stationary.

Example 13 (Todorčević [45]). If S is a stationary and co-stationary subset of ω1, then

K(S) and K(ω1 \ S) each have calibre (ω1, ω) but K(S) × K(ω1 \ S) does not have calibre

(ω1, ω).

However, some products do preserve calibre (ω1, ω). For example, if P has calibre (ω, ω)

or calibre (ω1, ω1) (each of which implies calibre (ω1, ω)) and if Q has calibre (ω1, ω), then

the product of P and Q does have calibre (ω1, ω) (see Lemma 26). Also, every finite power

of a calibre (ω1, ω) directed set has calibre (ω1, ω) since if P is directed, then P ≥T P n via

the map p 7→ (p, . . . , p). Further, Lemma 57 shows that any countable product of directed

sets in the class K(M) has calibre (ω1, ω).

5.1 UNCOUNTABLE PRODUCTS AND Σ-PRODUCTS

The following lemma shows that an uncountable product of directed sets with calibre (ω1, ω)

may fail to have calibre (ω1, ω), even when each factor is very simple.
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Lemma 134. The directed set ωω1 does not have calibre (ω1, ω).

Proof. For each α < ω1 fix an injection gα : α → ω, and then define fα : ω1 → ω by

fα(β) = gβ(α) if β > α and fα(β) = 0 otherwise. Then {fα : α < ω1} is uncountable but

every infinite subset is unbounded. To see this, take any countably infinite subset S of ω1,

and let β = supS + 1. Then for each α in S, we have fα(β) = gβ(α). Since S is infinite and

gβ is injective, we see that the family {fα : α ∈ S} is unbounded on β.

In particular, since ω =T K(ω), then an uncountable product of members of the class

K(M) need not have calibre (ω1, ω). In fact, we now show that uncountable products have

calibre (ω1, ω) only in trivial circumstances.

Theorem 135. If κ is an uncountable cardinal and Pα is a directed set for each α < κ, then∏
α Pα has calibre (ω1, ω) if and only if all countable subproducts have calibre (ω1, ω) and all

but countably many Pα are countably directed.

Proof. If
∏

α Pα has calibre (ω1, ω), then certainly all countable subproducts have calibre

(ω1, ω) since projections are Tukey quotients. And note that a Pα is not countably directed

if and only if Pα ≥T ω. So if uncountably many Pα’s are not countably directed, then∏
α Pα ≥T ωω1 , and so Lemma 134 shows

∏
α Pα does not have calibre (ω1, ω).

For the converse, let C = {α : Pα is not countably directed}. By hypothesis C is

countable and
∏
{Pα : α ∈ C} has calibre (ω1, ω). Since Pα is countably directed for each

α /∈ C, then
∏
{Pα : α /∈ C} is countably directed, or equivalently has calibre (ω, ω) (see

Lemma 32). Hence,
∏

α Pα =
∏
{Pα : α ∈ C} ×

∏
{Pα : α /∈ C} has calibre (ω1, ω) by

Lemma 26.

Thus, uncountable products are generally ‘too large’ to have calibre (ω1, ω), but we will

see that this is not the case for Σ-products. As mentioned in Section 2.6, we can ensure

that any topological directed set has a minimal element without altering any of its relevant

properties, so when we form a Σ-product ΣαPα of directed sets Pα for α < κ, we will assume

that each Pα has a minimal element 0α and base the Σ-product at the point (0α)α.

By Theorem 43, we know any countable product of second countable directed sets with

CSBS has calibre (ω1, ω), and the next result generalizes this fact. Recall that a space X is
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called cosmic if it has a countable network N ; that is, for any x in X and open neighborhood

U of x, there is an N in N such that x ∈ N ⊆ U .

Theorem 136. Let {Pα : α < κ} be a family of cosmic topological directed sets with CSBS.

Then ΣαPα has calibre (ω1, ω).

Proof. First, we simplify the factors. Suppose P is a topological directed set which is cosmic

and has CSBS. Take a countable network N for P . We may assume each member of N is

closed since P is T3. Now refine the topology on P by declaring the elements of N to be open

also. Then with this new topology, P is zero-dimensional, separable metrizable, and still has

CSBS. Thus, we may assume that each Pα is a subspace of the Cantor set C = {0, 1}ω, and

so ΣαPα is, topologically, a subspace of Cκ.

Fix a base B =
⋃
n Bn for C such that each Bn is a finite clopen partition of C and

Bn+1 refines Bn. Let πα : Cκ → C be the natural projection for each α < κ. Now, for any

finite subset F of κ, and for any n < ω, define C(F, n) = {ΣαPα ∩
⋂
α∈F π

−1
α Uα : Uα ∈

Bn for each α ∈ F}. Note that each C(F, n) is a finite clopen partition of ΣαPα.

By Lemma 45, we know ΣαPα is CSBS, so by Lemma 39, it suffices to show that any

uncountable subset of ΣαPα contains an infinite convergent sequence. So let E be an un-

countable subset of the Σ-product. For each subset G of ΣαPα, if G meets E then we select

a point e(G) in G ∩ E. Also, for each e = (eα)α in E, fix a surjection fe : ω → supp(e) =

{α < κ : eα 6= 0α}.

Let E0 be the singleton {e(ΣPα)}. Now, inductively define An = {fe(i) : e ∈ En, 1 ≤

i ≤ n}, Cn = C(An, n), and En+1 = En ∪ {e(C \ En) : C ∈ Cn and (C \ En) ∩ E 6= ∅}.

Then the En’s are finite subsets of E, the An’s are finite subsets of κ, and each Cn is a finite

clopen partition of ΣPα. We set E ′ =
⋃
nEn, A =

⋃
nAn, and C =

⋃
Cn. Note that A is the

union of {supp(e) : e ∈ E ′}. Observe also that the projections, {πA(C) : C ∈ C}, of C into

PA =
∏
{Pα : α ∈ A} form a base for PA.

Since E ′ is countable and E is uncountable, we can pick e in E \ E ′. For each n, there

is a (unique) Cn in Cn such that e is in Cn. Thus, (Cn \ En) ∩ E is nonempty for each n, so

by the inductive construction above, the point en = e(Cn \ En) is in En+1 \ En.

Write e = (eα)α, and let x = (xα)α be the point in ΣαPα given by xα = eα for each α in A
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and xα = 0α otherwise. The sets πA(Cn) form a decreasing local base at πA(x) = πA(e) in PA,

so the πA(en)’s converge in PA to πA(x). In fact, since xα = 0α for each α 6∈ A ⊇
⋃
n supp(en),

then (en)n converges to x in ΣαPα.

Theorem 137. Let Q be a class of directed sets. The following are equivalent:

(i) For any family {Pα : α < κ} of directed sets in the class Q, ΣαPα has calibre (ω1, ω).

(ii) For any family {Pα : α < κ} of directed sets in the class 〈Q, countably directed〉, ΣαPα

has calibre (ω1, ω).

Proof. By Lemma 27, a directed set Q always has type 〈Q, countably directed〉, so Q is

contained in 〈Q, countably directed〉, and (ii) immediately implies (i).

Assume (i) and let {Pα : α < κ} be a family of directed sets in the class 〈Q, countably

directed〉 such that each Pα has a minimal element 0α. So for every α < κ, we have a directed

set Qα in Q such that Pα =
⋃
{Pα,q : q ∈ Qα}, where each Pα,q is countably directed and

Pα,q1 ⊆ Pα,q2 whenever q1 ≤ q2 in Qα. We may assume that Qα contains a minimal element

0′α and that Pα,0′α = {0α}.

Fix a map ψα : Pα → Qα for each α < κ such that p ∈ Pα,ψα(p) for each p in Pα. We can

choose ψα so that ψα(0α) = 0′α. Then let ψ =
∏

α ψα :
∏

α Pα →
∏

αQα, which restricts to

a map from ΣαPα into ΣαQα. By (i), we know that ΣαQα has calibre (ω1, ω), so according

to Lemma 18, it suffices to show that for any unbounded countable subset E of ΣαPα, its

image ψ(E) is unbounded in ΣαQα.

Let E be a countable subset of ΣαPα, and suppose ψ(E) is bounded (above) by some

q = (qα)α in ΣαQα. Then for every e = (eα)α in E and any α < κ, we have ψα(eα) ≤ qα

and so eα ∈ Pα,ψα(eα) ⊆ Pα,qα . As Pα,qα is countably directed, there is a pα in Pα,qα such that

eα ≤ pα for each e ∈ E. Thus, p = (pα)α is an upper bound for E in
∏

α Pα. Moreover, since

Pα,0′α = {0α} for every α, then supp(p) ⊆ supp(q), and so p is in ΣαPα.

Combining Theorem 136 and Theorem 137 gives:

Corollary 138. If {Pα : α < κ} is a family of topological directed sets in the class

〈cosmic+CSBS, countably directed〉, then ΣαPα has calibre (ω1, ω).
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5.2 FINITE AND COUNTABLE PRODUCTS

5.2.1 DEFINITIONS AND QUESTIONS

As mentioned in the introduction to this chapter, any finite power of a directed set with

calibre (ω1, ω) has calibre (ω1, ω). We say a directed set P is powerfully calibre (ω1, ω) if

P ω is calibre (ω1, ω). By Lemma 57, we know that K(M) is powerfully calibre (ω1, ω) for

every separable metrizable M . Also, we say a directed set P is productively calibre (ω1, ω) if

P×Q is calibre (ω1, ω) for every directed set Q with calibre (ω1, ω). Todorčević’s Example 13

shows that a directed set with calibre (ω1, ω) need not be productively calibre (ω1, ω), but by

Lemma 26, we do know that if P has calibre (ω, ω) or calibre (ω1, ω1), then P is productively

calibre (ω1, ω). We will see in Corollary 140 below that calibre (ω, ω) and calibre (ω1, ω1)

each also imply powerfully calibre (ω1, ω).

Question 2. Is there any directed set P which is productively calibre (ω1, ω), but neither

calibre (ω1, ω1) nor calibre (ω, ω)?

In Section 5.3.2 below, we give an example of a directed set with calibre (ω1, ω) that is nei-

ther productively calibre (ω1, ω) nor powerfully calibre (ω1, ω). It is inspired by Todorčević’s

Example 13. The next question remains open:

Question 3. Is there a directed set P which is productively calibre (ω1, ω) but not powerfully

calibre (ω1, ω)?

On the other hand, in Section 5.3.3, we do give an example of a directed set (of the form

K(X)) which is powerfully calibre (ω1, ω) but not productively calibre (ω1, ω). However, we

would still like to answer:

Question 4. (a) Is K(ωω) productively calibre (ω1, ω)? The answer is ‘Yes’ when b > ω1,

in which case K(ωω) has calibre (ω1, ω1) (see Lemma 23). What about when b = ω1?

(b) Is every K(M), where M is separable metrizable, productively calibre (ω1, ω)? (We do

know each K(M) is powerfully calibre (ω1, ω).)

(c) If S is a stationary, co-stationary subset of ω1, then is K(S) powerfully calibre (ω1, ω)?

We would like a non-productive K(M) example and are hoping that the following is true:
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K(ωω) is productive iff K(ωω) is calibre (ω1, ω1) iff b > ω1. It remains to show: if b = ω1

then there is an X such that K(X) × K(ωω) is not calibre (ω1, ω). And the natural X is

M(Q ∪ U,U) where is U is an unbounded subset of ωω of size ω1. (It would follow that

under b = ω1 no non-locally compact separable metrizable space has productive K(M) –

since K(M) ≥T K(ωω).)

5.2.2 POSITIVE RESULTS

Lemma 139. If κ is an infinite regular cardinal and (P ′n, Pn) has calibre (κ, κ, ω) for each

n < ω, then (
∏

n P
′
n,
∏

n Pn) has calibre (κ, ω).

Proof. Let S be a κ-sized subset of
∏

n P
′
n. By Lemma 16, there is a κ-sized subset S ′0 of S

such that the projection π0 :
∏

n Pn → P0 is one-to-one or constant on S ′0. Since (P ′0, P0) has

calibre (κ, κ, ω), then we can find a κ-sized subset S0 of S ′0 such that for any countable subset

C of S0, π0(C) is bounded in P0. Continuing inductively, we obtain a decreasing sequence

(Sm)m<ω of κ-sized subsets of S such that for any m < ω and any countable subset C of Sm,

the projection πm :
∏

n Pn → Pm is bounded on C.

Now choose distinct xm in Sm for each m < ω. Since Cn = {xm : m ≥ n} is a countable

subset of Sn, then we can find an upper bound x∞n for πn(Cn) in Pn, and since Pn is directed,

then we can also find an upper bound zn for {x∞n }∪{πn(xm) : m < n} in Pn. Thus, z = (zn)n

is an upper bound for {xm : m < ω} in
∏

n Pn.

Corollary 140. Calibre (ω1, ω1) and calibre (ω, ω) each imply powerfully calibre (ω1, ω).

Proof. If P has calibre (ω1, ω1), then it also has calibre (ω1, ω1, ω), and so P ω has calibre

(ω1, ω) by Lemma 139. On the other hand, if P has calibre (ω, ω), then Lemma 139 shows

that P ω has calibre (ω, ω), which implies calibre (ω1, ω).

Lemma 141. Let κ be an infinite regular cardinal, and let Pn and Qn be directed sets for

each n < ω.

(1) If Pn has type 〈Qn, (relative) calibre (κ, κ, ω)〉 for each n < ω, then
∏

n Pn has type

〈
∏

nQn, (relative) calibre (κ, ω)〉.

95



(2) If Pn has type 〈Qn, countably directed〉 for each n < ω, then
∏

n Pn has type

〈
∏

nQn, countably directed〉.

Proof. For (1), we prove the relative calibre case. The proof of the calibre case can be

obtained by omitting the parts in square brackets. Say Pn =
⋃
{Pn,q : q ∈ Qn} where

Pn,q ⊆ Pn,q′ whenever q ≤ q′ in Qn and each Pn,q has [relative] calibre (κ, κ, ω) [in Pn]. For

each q = (qn)n<ω in
∏

nQn, define Rq =
∏

n Pn,qn . Then Rq has [relative] calibre (κ, ω) [in∏
n Pn] by Lemma 139, and {Rq : q ∈

∏
nQn} is a (

∏
nQn)-ordered cover of

∏
n Pn.

For (2), a similar proof works, but note that if each Pn,q is countably directed (in itself),

then so is each Rq.

Lemma 142. If Q is productively calibre (ω1, ω) and P has type 〈Q, relative calibre (ω, ω)〉,

then P is also productively calibre (ω1, ω).

Proof. Let S be any directed set with calibre (ω1, ω). By Lemma 27, S has type 〈S, relative

calibre (ω, ω)〉, and so by Lemma 141, P × S has type 〈Q× S, relative calibre (ω, ω)〉. Since

Q× S has calibre (ω1, ω), then by Lemma 28, P × S does also.

Corollary 143. If P =
⋃
n<ω Pn where each Pn has relative calibre (ω, ω) in P , then P is

productively calibre (ω1, ω).

Proof. We may assume Pn ⊆ Pn+1 for each n, and so P is of type 〈Q, relative calibre (ω, ω)〉,

where Q = ω is productively calibre (ω1, ω). Apply the previous Lemma.

Corollary 144. Let Q be a class of directed sets such that whenever Qn is in Q for each

n < ω, there is a Q in Q with Q ≥T
∏

nQn. Let D denote the class of all Dedekind complete

directed sets.

(1) The class D∩〈Q, countably directed〉 is closed under countable products.

(2) If Q ⊆ D, then 〈Q, countably directed〉 is closed under countable products.

Proof. We prove (1) first. Suppose that for each n < ω, Pn is Dedekind complete and has

type 〈Qn, countably directed〉 where Qn is in Q. By Lemma 141, P =
∏

n Pn has type

〈Q′, countably directed〉 where Q′ =
∏

nQn, and by assumption, there is a Q in Q such that
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Q ≥T Q′. Since each Pn is Dedekind complete, then so is P , and thus Lemma 35 implies

that P has type 〈Q, countably directed〉.

For (2), we use the same notation as for (1). If each Qn is Dedekind complete, then so

is Q′. Thus, even if P is not Dedekind complete, we can use Lemma 35 to conclude that P

has type 〈Q, countably directed〉.

Corollary 145. Suppose Pn has a type 〈Qn, relative calibre (ω, ω)〉 for each n < ω. If
∏

nQn

has calibre (ω1, ω), then so does
∏

n Pn. In particular:

(1) If κ = ω or κ = ω1, then any countable product of members of the class 〈calibre κ, relative

calibre (ω, ω)〉 has calibre (ω1, ω).

(2) Each member of the class 〈powerfully calibre (ω1, ω), relative calibre (ω, ω)〉 is powerfully

calibre (ω1, ω).

Proof. The main claim follows from Lemma 141 (with κ = ω) and Lemma 28 (with κ = ω1

and λ = µ = ω).

Statement (1) then follows from Corollary 140. Statement (2) is the special case of the

main claim where the Pn’s are all the same, and the Qn’s are also all the same.

Corollary 146. If P =
⋃
n<ω Pn where each Pn has relative calibre (ω, ω) in P , then P is

powerfully calibre (ω1, ω).

Proof. We may assume Pn ⊆ Pn+1 for each n < ω. Then P has type 〈Q, relative calibre

(ω, ω)〉, where Q = ω is powerfully calibre (ω1, ω), so we may apply (2) in the previous

corollary.

Theorem 147. Each member of the class 〈2o+CSB, countably directed〉 has calibre (ω1, ω).

In particular, each member of the class 〈K(M), countably directed〉 has calibre (ω1, ω). Ad-

ditionally, the following classes are closed under countable products:

(1) the class of all Dedekind complete directed sets with type 〈2o+CSB, countably directed〉

(2) 〈2o+CSB+Dedekind Complete, countably directed〉

(3) 〈K(M), countably directed〉.
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Proof. By Theorem 43, every second countable and CSB directed set has calibre (ω1, ω).

Since countably directed implies (relative) calibre (ω, ω), then Lemma 28 shows that the

members of the class 〈2o+CSB, countably directed〉 have calibre (ω1, ω). Closure under

countable products follows from Corollary 144, Theorem 43, and Lemma 56.

5.3 EXAMPLES

5.3.1 PRODUCTIVE AND POWERFUL

Example 14. Let I =
⋃
c<ω Ic, where Ic = {A ⊆ ω : |A∩ 2n| ≤ nc, ∀n ≥ 2}. Then I is an

ideal on ω (called the ideal of polynomial growth) and can naturally be viewed as a subspace

of the Cantor set, P(ω) = {0, 1}ω. We have:

(1) each Ic has relative calibre (ω, ω) in I,

(2) I is productively and powerfully calibre (ω1, ω), and

(3) I is second countable but not CSBS.

Proof. This is Example 1 from [35], where it is shown that: for all infinite S ⊆ Ic, there is an

infinite subset S ′ such that
⋃
S ′ ∈ Ic+1. This immediately gives (1). Statement (2) follows

from Corollaries 146 and 143, respectively.

Of course I is second countable as a subspace of the Cantor set, and we now show I

is not CSBS to complete (3). Consider An = [2n, 2n+1) ⊆ ω for each n < ω. Then each

An is in I since it is finite, and the sequence (An)n<ω converges to ∅. Let (Ank)k<ω be any

subsequence. Fix c < ω and find a j < ω such that 2m > 2mc for all m ≥ j. If A ⊆ ω

contains every Ank , then we have:

|A ∩ 2nj+1| ≥ |Anj | = 2nj =
2nj+1

2
>

2(nj + 1)c

2
= (nj + 1)c,

and so A is not in Ic. Thus (Ank)k<ω has no upper bound in I, and I is not CSBS.
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5.3.2 NOT PRODUCTIVE AND NOT POWERFUL

Lemma 148. Each stationary subset of ω1 has countable extent.

Proof. Let S be a stationary subset of ω1 and let E be a closed discrete subset of S. For

each s in S, there is an αs < s such that (αs, s] ∩ E ⊆ {s}. By the pressing down lemma,

there is a stationary subset S ′ of S and an α < ω1 such that αs = α for each s in S ′. It

follows that α is an upper bound for E, so E is countable.

Lemma 149. If M is separable metrizable, D is a dense subset of M , and K is a compact

subset of M disjoint from D, then there is a discrete subset D′ of D whose closure in M is

precisely D′ ∪K.

Proof. Fix a compatible metric ρ for X. Let A be a countable dense subset of K. Enumerate

A = {xn}n so that each element is repeated infinitely many times. For each n, pick dn in D

such that ρ(dn, xn) < 1/n. Let D′ = {dn}n. Clearly K is contained in the closure of D′, but

note also that if (dnk)k converges to x in M , then so does (xnk)k, and so all limit points of

D′ are in K. It follows that the closure of D′ is contained in D′ ∪K, and since D′ is disjoint

from K, then it also follows that D′ is discrete.

Example 15. There is a directed set P which is calibre (ω1, ω) but is neither powerfully

calibre (ω1, ω) nor productively calibre (ω1, ω).

Proof. Let I be the isolated points in ω1. Write ω1 as a disjoint union of stationary (and co-

stationary) sets, ω1 =
⋃
n S
′
n. Let Sn = S ′n ∪ I, and let Xn = M(ω1, Sn), that is, ω1 with its

topology refined by isolating the points in Sn. We consider P = K(X), where X =
⊕

nXn.

K(S1) is calibre (ω1, ω) since S1 is stationary (and co-stationary), but K(X)×K(S1) =T

K(X × S1) is not calibre (ω1, ω) according to Lemma 48 since K(X × S1) does not have

countable extent. Indeed, {(α, α) : α ∈ S1} is an uncountable closed discrete subset of

X1 × S1, which is a closed subset of X × S1, which in turn is a closed subset of K(X × S1).

Similarly K(X)ω =T K(Xω) does not have calibre (ω1, ω) because {(α, α, . . .) : α ∈ ω1} is an

uncountable closed discrete subset of
∏

nXn, which is a closed subset of Xω, which in turn

is a closed subset of K(Xω).
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It remains to show that K(X) has calibre (ω1, ω). Since K(X) =
⋃
nK(X1⊕· · ·⊕Xn), we

see that K(X) has calibre (ω1, ω) provided each K(X1 ⊕ · · · ⊕Xn) =T K(X1)× · · · ×K(Xn)

has calibre (ω1, ω). This follows from the following three claims:

Claim (A): For any stationary (and co-stationary) subset S of ω1 containing I we have

K(Y ) =T CD(S), where Y = M(ω1, S).

Define φ1 : CD(S)→ K(Y ) by φ1(E) = E
Y

and φ2 : K(Y )→ CD(S) by φ2(K) = K∩S.

Then φ2 is well-defined since, for any compact subset K of Y , the topologies K inherits from

Y and ω1 coincide. To see that φ1 is well-defined, first notice that for any closed subset E of

S, the subspaces E
Y

and E
ω1

are equal as sets, but if E is also discrete, then in fact, their

topologies coincide as well. By Lemma 148, each closed discrete subset E of S is countable,

so E
ω1

is compact and φ1 is well-defined.

Clearly φ1 and φ2 are order-preserving, so it remains to show that their images are cofinal

in K(Y ) and CD(S), respectively. Since φ2(φ1(E)) = E for every E in CD(S), we see that,

in fact, φ2 is onto.

Now we check that the image of φ1 is cofinal. Let K be a compact subset of Y , and let

E0 = φ2(K) ∈ CD(S). Then K ∩ S = E0 is contained in φ1(E0). We aim to find a closed

discrete subset E1 of S such that φ1(E1) contains K1 = K \ S. Then E = E0 ∪E1 will be a

closed discrete subset of S such that φ1(E) contains K.

Note that K1 is compact as a subspace of Y and so also compact as a subspace of ω1.

Hence, K1 is contained in some interval [0, α]. Now, [0, α] is countable and first countable,

so it is separable and metrizable. Since S contains I, then S ∩ [0, α] is dense in [0, α], and

since K1 is disjoint from S, then Lemma 149 provides a discrete subset E1 of S ∩ [0, α]

whose closure in [0, α] is E1 ∪K1. Since K1 is disjoint from S, then E1 is closed in S, and

E1
Y

= E1
[0,α]

. Hence, K1 is contained in φ1(E1), as desired.

Claim (B): For any subsets S1, . . . , Sn of ω1 we have CD(S1)× · · · ×CD(Sn) =T CD(S1⊕

· · · ⊕ Sn).

The map φ : CD(S1) × · · · × CD(Sn) → CD(S1 ⊕ · · · ⊕ Sn) given by φ(A1, . . . , An) =

A1 ⊕ · · · ⊕ An is a well-defined order-isomorphism, which gives claim (B).

Claim (C): Let S be a stationary subset of ω1, and let A be an uncountable subset of ω1. If

{Eα : α ∈ A} is a family of closed discrete subsets of S such that Bγ = {α ∈ A : Eα ⊆ [0, γ]}
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is countable for each γ < ω1, then there is a γ < ω1 and an uncountable A′ ⊆ A \ Bγ such

that supEα < min(Eβ \ [0, γ]) whenever α < β in A′.

Let S, A, Eα, and Bγ be as in the statement of claim (C). Fix a bijection f : ω1 → A

such that α < β if and only if f(α) < f(β). Each α in S has a neighborhood that intersects

Ef(α) in at most one point, and since S is stationary, then by the pressing down lemma, we

can find a stationary subset S ′ of S and a γ < ω1 such that (γ, α]∩Ef(α) ⊆ {α} for each α in

S ′. For any α in the uncountable set S ′ \ f−1[Bγ], we therefore have min(Ef(α) \ [0, γ]) ≥ α.

Note that, by Lemma 148, each Eα is countable. We can then inductively construct an

uncountable subset S ′′ of S ′\f−1[Bγ] such that β > supα∈S′′∩β supEf(α) for each β in S ′′. Let

A′ = f [S ′′] ⊆ A \Bγ. If f(α) < f(β) in A′, then we have supEf(α) < β ≤ min(Ef(β) \ [0, γ]),

which completes the proof of claim (C).

Claim (D): If S1, . . . , Sn are subsets of ω1 whose union is co-stationary then CD(S1⊕· · ·⊕

Sn) has calibre (ω1, ω).

Let S1, . . . , Sn be stationary subsets of ω1 such that
⋃
i Si is co-stationary. Let {Eα :

α < ω1} be an uncountable family of closed discrete subsets of S1 ⊕ · · · ⊕ Sn. Write Eα =

E1
α ⊕ · · · ⊕ En

α where Ei
α is a closed discrete subset of Si. We may assume that for every

i ≤ n and every γ < ω1, there are only countably many Ei
α contained in [0, γ] (for example,

by adding one point from Si ∩ [α, ω1) to Ei
α).

By applying claim (C) repeatedly, we can then find uncountable subsets A′1 ⊇ A′2 ⊇

· · · ⊇ A′n of ω1 and γ1, . . . , γn < ω1 such that for each i we have Ei
α 6⊆ [0, γi] for all α in

A′i and supEi
α < min(Ei

β \ [0, γi]) whenever α < β in A′i. Let γ = max{γ1, . . . , γn}. We

can find an uncountable subset A0 of A′n such that Ei
α 6⊆ [0, γ] for any α in A0 and any

i, and such that whenever α < β in A0, we have uα < `β; here uα = maxi supEi
α and

`α = mini min(Ei
α \ [0, γ]) for any α in A0.

Enumerate Si∩ [0, γ] = {sim : m < ω} for each i ≤ n. We construct a decreasing sequence

(Am)m<ω of uncountable subsets of A0 and open neighborhoods U i
m of sim in Si as follows.

Assume we have already defined Am−1 for some 0 < m < ω. Since Ei
α is closed discrete in Si

and sim has a countable neighborhood base in Si for each i ≤ n, we can find an uncountable

subset Am of Am−1 and open neighborhoods U i
m of sim in Si such that U i

m ∩ Ei
α ⊆ {sim} for

every α in Am.
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For each m < ω, let Cm = {uα : α ∈ Am}. Then C =
⋂
mCm

ω1
is closed and unbounded

in ω1, and so is the subset C ′ of all limit points in C. As
⋃
i Si is co-stationary, we can find a

u∞ in C ′ that is not in any Si. Hence, we can choose an increasing sequence (αm)m such that

αm is in Am and (uαm)m converges to u∞. Since supEi
αm ≤ uαm < `αm+1 ≤ min(Ei

αm+1
\[0, γ])

for each m, and since u∞ is not in Si, then we see that
⋃
m(Ei

αm \ [0, γ]) is closed discrete in

Si for each i. On the other hand,
⋃
m(Ei

αm ∩ [0, γ]) is also closed discrete in Si because for

any sik in Si∩ [0, γ], we have U i
k∩Ei

αm ⊆ {s
i
k} for every m ≥ k (since αm ∈ Am ⊆ Ak). Thus,⋃

mEαm is closed discrete in S1 ⊕ · · · ⊕ Sn, which completes the proof of claim (D).

5.3.3 POWERFUL BUT NOT PRODUCTIVE AND Σ-PRODUCTS

We now show that there is a directed set which is powerfully calibre (ω1, ω) but not produc-

tively calibre (ω1, ω). We simultaneously show that the restriction in Theorem 136 to cosmic

directed sets with CSBS is not arbitrary.

If ΣPα has calibre (ω1, ω) then every projection has the same calibre. In particular, every

countable subproduct of the Pα’s has calibre (ω1, ω). It is natural to hope that this necessary

condition for a Σ-product to have calibre (ω1, ω) is also sufficient. We show that this is not

the case, even when all the directed sets, Pα, are equal.

Example 16. There is a directed set P such that:

(1) the Σ-product, P × Σωω1 does not have calibre (ω1, ω), but every countable subproduct

does have calibre (ω1, ω); and

(2) ΣP ω1 does not have calibre (ω1, ω), but P ω has calibre (ω1, ω).

Hence both P and Σωω1 are powerfully calibre (ω1, ω) but not productively calibre (ω1, ω).

Proof. We prove the final claim first, so assume there is a directed set P satisfying (1) and

(2). From (2) P is powerfully calibre (ω1, ω). Since Σωω1 is clearly Tukey equivalent to its

countable power, from Theorem 136 we see that Σωω1 is also powerfully calibre (ω1, ω). Now

(1) says that neither P nor Σωω1 are productively calibre (ω1, ω).

So we need to show that there is a directed set P with properties (1) and (2). Let X be

any subset of the reals which is totally imperfect and has size ω1 (say an ω1-sized subset of

a Bernstein set — see the end of Section 2.7). Index X = {xα : α < ω1}. For each α let
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Uα = {xβ : β ≥ α} and Cα = X \ Uα = {xβ : β < α}. Refine the standard topology on

X (inherited from R) by adding the sets Uα, for α in ω1, as open sets. We write X for the

set X with this topology. It is a Hausdorff space. Let P = K(X). Then P is a Hausdorff

topological directed set with CSB and DK. We verify two claims:

Claim (A): K(X)× Σωω1 does not have calibre (ω1, ω)

Claim (B): K(X)ω is calibre (ω1, ω).

Since each compact subset of X is also a compact subset of R, then note that K(X) ≥T
K(X, τR) where τR is the topology X initially inherited from R, and since every R-compact

subset of X is countable, then (X, τR) is not compact, and so Lemma 61 shows that K(X) ≥T
ω. Thus, we have ΣK(X)ω1 ≥T K(X)× Σωω1 and K(X)ω ≥T K(X)× ωω. Hence claims (1)

and (2) follow from claims (A) and (B).

Proof of (A): By Lemmas 45 and 41, we know it suffices to show P × Σωω1 contains an

uncountable closed discrete set.

For each α, fix a decreasing local base, (Bα,n)n, at xα such that Bα,1 ⊆ Uα. Define

yα = (yα,β)β in Σωω1 by yα,β = min{n : xα 6∈ Bβ,n} if β < α and 0 for β ≥ α. Then let

E = {(xα,yα) : α < ω1} ⊆ P × Σωω1 . Obviously E is uncountable. We show E is closed

discrete in P × Σωω1

Since X is closed in P = K(X), it suffices to show E is closed and discrete in X ×Σωω1 .

Fix (xβ, z) in X × Σωω1 . We need to find an open neighborhood of (xβ, z) that contains at

most one member of E. Consider V = Vβ,z = Bβ,zβ × π−1
β {zβ}, which contains (xβ, z).

Suppose (xα,yα) is in E ∩ V . Then xα is in Bβ,zβ ⊆ Uβ, so β ≤ α. If β < α, then

yα,β = min{n : xα 6∈ Bβ,n} > zβ, which contradicts that yα is in π−1
β {zβ}. Thus, α = β, so V

contains at most one member of E, namely (xβ,yβ), which proves claim (A) since X is T1.

Proof of (B): We will show that P = K(X)ω is first countable and hereditarily ccc (all

discrete subsets are countable). Then P has countable extent, is first countable and CSB,

and so has calibre (ω1, ω) by Lemma 40.

That K(X) (and hence K(X)ω) is first countable follows from Lemma 54. So we focus

on showing K(X)ω contains no uncountable discrete subsets. It is a standard fact (and

straightforward to check) that the countable power Y ω of a space Y is herditarily ccc if and

only if every finite power if Y is hereditarily ccc. Thus, we show each finite power K(X)n is
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hereditarily ccc.

Recall that basic neighborhoods in K(X) (with the Vietoris topology) have the form

〈U1, . . . , Un〉 = {K ∈ K(X) : K ⊆
⋃
i Ui, K ∩ Ui 6= ∅ ∀i = 1, . . . , n} for some 0 < n < ω and

Ui open in X; further, the open sets U1, . . . , Un can be assumed to come from any specified

base for X.

Suppose K(X)n is not hereditarily ccc. Then there is an uncountable discrete subset

S = {Kλ = (Kλ
1 , . . . , K

λ
n) : λ < ω1} of K(X)n, enumerated in a one-to-one fashion. So for

each λ < ω1, there is a basic open Vλ =
∏n

i=1〈V λ
i,1, . . . , V

λ
i,mλ
〉 such that Vλ ∩ S = {Kλ}.

Let B be a countable base for the usual topology on X = {xα : α < ω1} ⊆ R, and define

C(α) = {xβ : β < α} = X \ Uα for each α < ω1. Then we can choose each V λ
i,j to have the

form V λ
i,j = Bλ

i,j \C(αλi,j) for some Bλ
i,j ∈ B and αλi,j < ω1. By replacing S with an appropriate

uncountable subset, we may assume there is some 0 < m < ω and Bi,j ∈ B for i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m} such that mλ = m and Bλ
i,j = Bi,j for each λ < ω1. Then Vλ is uniquely

determined by the corresponding n×m matrix (αλi,j)i,j.

Consider the countable subset {K` : ` < ω} of S. If there are k < ` < ω such that

αki,j ≤ α`i,j for each i, j, then V `
i,j = Bi,j \ C(α`i,j) ⊆ Bi,j \ C(αki,j) = V k

i,j, which implies that

V` ⊆ Vk. But that is a contradiction since K` is in V` \Vk. Hence, for any k < ` < ω, we

have αki,j > α`i,j for some i = i(k, `) ∈ {1, . . . , n} and j = j(k, `) ∈ {1, . . . ,m}.

By Ramsey’s Theorem, there is an infinite subset A of ω, an i ∈ {1, . . . , n}, and a

j ∈ {1, . . . ,m} such that for any k < ` in A, we have i(k, `) = i and j(k, `) = j. But

then {α`i,j : ` ∈ A} forms an infinite decreasing sequence in ω1, which contradicts that ω1 is

well-ordered. Therefore, such S cannot exist.

Corollary 150. There is a directed set P which is powerfully calibre (ω1, ω) but not produc-

tively calibre (ω1, ω).

Proof. Let P be the directed set in Example 16. By (2) in that example, we know P is

powerfully calibre (ω1, ω), and by (1), we know that P is not productively calibre (ω1, ω)

since Σωω1 has calibre (ω1, ω) according to Theorem 136.
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6.0 NETWORK PROPERTIES AND NEIGHBORHOOD FILTERS

Recall that Ck(X) denotes the space of continuous real-valued functions on a space X with

the compact-open topology. The main inspiration for this chapter comes from a result of

Gabriyelyan et al. [22] which says that for spaces of the form Ck(X) such that ωω ≥T NCk(X)
0 ,

the strong Pytkeev property is equivalent to countable tightness, and these are equivalent to

X being Lindelöf. Here, a space Y is said to have the strong Pytkeev property at a point y in

Y if there is a countable family Dy of subsets of Y such that, whenever U is a neighborhood

of y and A is a subset of Y with y ∈ A \ A, there is a D in Dy such that D is contained in

U and D ∩ A is infinite. A space then has the strong Pytkeev property if it has the strong

Pytkeev property at every point.

A

U

D

y

Figure 7: The strong Pytkeev property

The family Dy in the definition of the strong Pytkeev property is a sort of ‘network’

for the neighborhood filter N Y
y since each neighborhood of y contains a member of Dy (and

we could also assume each member of Dy contains y). So the strong Pytkeev property for

a space Y asserts that for each point y in Y , there is a countable ‘network’ for N Y
y with
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‘nice’ properties. We investigate several variations of the strong Pytkeev property formed

by altering the meaning of ‘nice’, some of which were introduced in [20]. For example,

relaxing the condition ‘D ∩A is infinite’ in the definition of the strong Pytkeev property to

‘D∩A is nonempty’, yields a property called (cn). In fact, we define these countable network

properties (each receiving a designation of the form ‘(c·)’) for any pre-filter in Section 6.2,

and we describe their dual versions (receiving designations of the form ‘(c·)′’) for pre-ideals

in Section 6.1. Throughout this chapter, we investigate the order properties of neighborhood

filters and their relationship with the (c·) and (c·)′ network properties.

Returning to the inspiration for this chapter, in Theorem 179 of Section 6.4, we give

a complete characterization of when the space Ck(X) has the strong Pytkeev property by

proving that this occurs if and only if X is Lindelöf cofinally Σ (a property which is discussed

in Section 6.3). We also prove that this is equivalent to Ck(X) being countably tight and

having P ≥T NCk(X)
0 for some directed set P in the class 〈2o+CSB, countably directed〉

(see Section 2.4). In fact, this result shows that several of the (c·) network properties

(including (cn)) are equivalent to the strong Pytkeev property for spaces of the form Ck(X).

In Theorem 181, we analogously characterize precisely when Cp(X) has the property (cn).

The class 〈2o+CSB, countably directed〉 also plays important roles elsewhere in this chap-

ter. For example, Gabriyelyan et al. proved in [21] that if a Fréchet-Urysohn topological

group G has ωω ≥T NG
e , where e is the identity in G, then G is metrizable. We generalize

this result in Corollary 187 by showing that if P is in the class 〈2o+CSB, countably directed〉,

then any Fréchet-Urysohn topological group G with P ≥T NG
e is metrizable.

6.1 THE (C·)′ PROPERTIES FOR PRE-IDEALS

Fix a pre-ideal S on a set X. We say a family N of subsets of X is a (pre-ideal) network for

S if each member of S is contained in some member of N , and if
⋃
N =

⋃
S. Below, we

define a family of properties (c·)′ that a countable network N for S may satisfy. We will also

say that S itself satisfies (c·)′ if there is a countable network N satisfying (c·)′ for S. Recall

that pre-ideals and pre-filters on X are in duality (see Lemma 6). Consequently, there is a
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family of dual properties (c·) for pre-filters, which we describe in the next section.

(cpω)
′ If S is in S, and if A is a countable subset of

⋃
S such that A \N is finite for each

N ∈ N containing S, then there is a T ∈ S such that A ⊆ T .

(cp)′ If S is in S, and if A is a subset of
⋃
S such that A \ N is finite for each N ∈ N

containing S, then there is a T ∈ S such that A ⊆ T .

(cs)′ If S is in S, and if A is a countably infinite subset of X such that A∩N is infinite for

each N ∈ N containing S, then there is a T ∈ S such that A ∩ T is infinite.

(cs∗)′ If S is in S, and if A is a countably infinite subset of X such that A \N is finite for

each N ∈ N containing S, then there is a T ∈ S such that A ∩ T is infinite.

(cn)′ For any S ∈ S, there is a T ∈ S such that S ⊆
⋂
{N ∈ N : S ⊆ N} ⊆ T .

(cn∗)′ If S is in S, and if A is a subset of
⋃
S such that A ⊆ N for each N ∈ N containing

S, then there is a T ∈ S such that A ⊆ T .

If X is a topological space, then we define the following additional properties (c·)′ which

a countable pre-ideal network N may satisfy for a pre-ideal S on X. Once again, we say S

itself has the property (c·)′ if there is a countable network N satisfying (c·)′ for S.

(cck)′ For any S ∈ S, there is a T ∈ S containing S such that for any closed, countably

compact C ⊆ X \ T , there is an N ∈ N such that S ⊆ N ⊆ X \ C.

(ck)′ For any S ∈ S, there is a T ∈ S containing S such that for any compact K ⊆ X \ T ,

there is an N ∈ N such that S ⊆ N ⊆ X \K.

(ck+)′ For any S ∈ S, there is a T ∈ S containing S such that for any compact K ⊆ X \ T ,

there is an N ∈ N such that T ⊆ N ⊆ X \K.

(cc)′ For any S ∈ S, there is a T ∈ S containing S such that for any closed C ⊆ X \ T ,

there is an N ∈ N such that S ⊆ N ⊆ X \ C.

(cc+)′ For any S ∈ S, there is a T ∈ S containing S such that for any closed C ⊆ X \ T ,

there is an N ∈ N such that T ⊆ N ⊆ X \ C.

In most of our cases of interest, the pre-ideal S will cover X, so that the requirement in

(cp)′ and some of the other (c·)′ properties that A be a subset of
⋃
S is redundant, as is the

requirement that a pre-ideal network N for S satisfy
⋃
N =

⋃
S.
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The following lemma says that, in the above properties, there is no difference whether

we consider a pre-ideal S or any other pre-ideal between S and the ideal ↓S generated by

S. In principle, then, we could simply use ideals and eliminate all use of pre-ideals, but in

practice, pre-ideals like K(X) are very natural and may have additional useful structure (like

a topology) that the generated ideal may not.

Lemma 151. Let S and S ′ be pre-ideals on X such that S ⊆ S ′ ⊆↓S . Let N be a countable

family of subsets of X, and let (c·)′ be any of the above properties. Then N is a network

satisfying (c·)′ for S if and only if N is a network satisfying (c·)′ for S ′.

Proof. We prove the lemma only for the property (cp)′ since the others are similar. First,

note that every member of S is contained in some member of N if and only if every member

of S ′ is contained in some member of N . Also,
⋃
S =

⋃
S ′. Thus, N is a network for S if

and only if it is a network for S ′. Now assume N satisfies (cp)′ for S ′. Let S be any element

of S and let A any subset of X such that A \N is finite for each N in N containing S. We

know there is a T ′A in S ′ such that A is contained in T ′A. Since S ′ is contained in ↓S , there

must be a TA in S containing T ′A, and so A ⊆ T ′A ⊆ TA.

Next, assume N satisfies (cp)′ for S. Let S ′ be any element of S ′, and let A be a subset

of X such that A \N is finite for each N in N containing S ′. Then we also know A \N is

finite for each N in N containing S, and so A is contained in some member of S, which is

thus also a member of S ′.

Our first goal in this section is to establish the basic relationships between these network

properties. We start by showing that (cn)′ and (cn∗)′ are equivalent, as are (cs)′ and (cs∗)′.

Lemma 152. Let S be a pre-ideal on a set X, and let N be a countable pre-ideal network

for S. Then N is (cn)′ for S if and only if N is (cn∗)′ for S.

Proof. Fix S in S and assume N satisfies (cn∗)′ for S. Note that A =
⋂
{N ∈ N : S ⊆ N} is

contained in
⋃
N , which equals

⋃
S since N is a network for S, and of course A is contained

in each member of N containing S. By (cn∗)′, we therefore have a T ∈ S such that A ⊆ T ,

which gives (cn)′. Conversely, if we assume (cn)′, then any A as in (cn∗)′ will be contained

in
⋂
{N ∈ N : S ⊆ N}, which is contained in some member of S, by (cn)′.
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Lemma 153. Let S be a pre-ideal on a set X, and let N be a countable network for S.

(1) If N is (cs∗)′ for S, then the family N ′ of all finite intersections of elements of N is

(cs)′ for S.

(2) If N is (cs)′ for S, then it is (cs∗)′ for S.

Proof. Statement (2) is immediate from the definitions of (cs)′ and (cs∗)′, so we check state-

ment (1). Let S be in S, and let A′ be a subset of X such that A′ ∩ N ′ is infinite for

each N ′ in N ′ containing S. Enumerate {N ∈ N : S ⊆ N} = {Nk : k < ω} and let

N ′k =
⋂
{Ni : i < k} ∈ N ′. Since each A′ ∩ N ′k is infinite, we can inductively find distinct

points xk in A′ ∩N ′k for each k < ω. Then each Nk contains all but finitely many elements

of A = {xk : k < ω}, so by assumption, there is a T in S such that A ∩ T is infinite. Thus,

A′ ∩ T is also infinite, as desired.

Theorem 154. Let S be a pre-ideal on a set X.

(1) If S is (cn∗)′ (equivalently, (cn)′) and contains every singleton of
⋃
S, then S is countably

determined (with respect to ⊆).

Now let N be a countable pre-ideal network for S.

(2) If N is (cp)′ for S, then it is (cn∗)′ (and hence (cn)′).

(3) If S contains every singleton of
⋃
S, then N is (cp)′ for S if and only if N is (cpω)′ and

S is countably determined.

(4) If N is (cpω)′ for S, then it is also (cs∗)′ (and hence is (cs)′ if N is closed under finite

intersections).

If X is a topological space, then we also have:

(5) If N is (cck)′ for S, then it is also (ck)′.

(6) If N is (ck+)′ for S, then it is also (ck)′.

(7) If N is (cc+)′ for S, then it is also (cc)′.

(8) If N is (cc)′ for S, then it is also (cck)′.

(9) If N is (cc+)′ for S, then it is also (ck+)′.

(10) If N is (ck)′ for S, then it is also (cn)′.

(11) Suppose every member of S is contained in a closed member of S, and S contains every

singleton of
⋃
S. Assume also that N is closed under finite intersections. If N is (cp)′
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for S, then it is also (cck)′.

Proof. We start by proving (1). The ‘equivalently’ part follows from Lemma 152. Fix a

countable network N satisfying (cn∗)′ for S. Let A be a subset of
⋃
S that is not contained

in any member of S. Then for each S in S, (cn∗)′ shows that there must be an NS in N

containing S but not containing A. Let N ′ = {NS : S ∈ S} which is countable, being a

subset of N . So for each N in N ′, there is a point aN in A \ N , and since NS contains S,

then in particular, aNS is not in S. Thus, A′ = {aN : N ∈ N ′} is a countable subset of A

not contained in any member of S, so S is countably determined by Lemma 37.

Statements (2) is immediate from the definitions, with the ‘hence’ part following from

Lemma 152. For (3), it is evident that (cp)′ implies (cpω)′, and according to (1) and (2),

(cp)′ also implies S is countably determined. The converse in (3) follows from Lemma 37.

Next we prove (4), so assume N is (cpω)′ for S. Let S be in S and suppose A is a

countably infinite subset of X such that A \N is finite for each N ∈ N containing S. Recall

that
⋃
N =

⋃
S since N is a network for S. Thus, A \

⋃
S is finite, so A0 = A ∩ (

⋃
S) is

countably infinite and A0 \N is finite for each N ∈ N containing S. By (cpω)′, there must

then be a T ∈ S containing A0. Thus, A∩T = A0 is infinite, which gives (cs∗)′. The ‘hence’

part follows from Lemma 153.

Statements (5)–(9) are all immediate from the definitions. To prove (10), let S be in S,

and take T as in (ck)′. Then for each x 6∈ T , there is an Nx in N such that S ⊆ Nx ⊆ X\{x}.

Thus,
⋂
{N ∈ N : S ⊆ N} ⊆

⋂
{Nx : x 6∈ T} ⊆ T .

Finally, we establish (11). Fix an arbitrary S in S. Since N is closed under finite

intersections, then there is a decreasing family NS = {Nk : n < ω} in {N ∈ N : S ⊆ N}

such that for any N in N containing S, there is a k with Nk ⊆ N . It then follows from (cp)′

that whenever A is a subset of X such that A \Nk is finite for each k, there is a member of

S containing A, and so by our additional assumption on S, there is a closed member of S

containing A. Also, S is countably determined by (3), and
⋂
N ⊆

⋃
N =

⋃
S since N is a

pre-filter network for S. Hence, we can apply Theorem 155 below to find a T in S such that

T ⊇
⋂
NS ⊇ S and such that for every closed, countably compact subset C of X \ T , there

is a member of NS disjoint from C. This shows that N witnesses (cck)′.
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Theorem 155. Let X be a space with a pre-ideal S that contains every singleton of
⋃
S

and is countably determined. Let N = {Nn : n < ω} be a decreasing sequence of subsets of

X satisfying: whenever A is a subset of X such that A \ Nn is finite for each n, there is a

closed member of S containing A. Further, assume
⋂
N is contained in

⋃
S.

Then there is a T in S containing
⋂
N such that, whenever C is a subset of X \ T

satisfying

C ∩ S is closed and countably compact for each closed S ∈ S, (6.1)

there is a member of N which is disjoint from C.

Proof. For a contradiction, suppose that for every member T of S containing L =
⋂
N ,

there is a subset CT of X \ T satisfying (6.1) that meets each member of N . Then we can

choose a point xT,n in CT ∩Nn for each n.

For each T in S containing L, let AT = {xT,n : n < ω}. Since xT,n ∈ Nm for all n ≥ m,

we see that AT \Nm is finite for every m. So by hypothesis, there is a closed ST in S such

that AT ⊆ ST . Thus, AT is contained in CT ∩ ST , which is closed and countably compact

by (6.1), so AT is a closed, countably compact subset of CT . Hence, AT has a limit point xT

in CT ∩ ST .

Let A = {xT : T ∈ S and T ⊇ L} ⊆
⋃
S. As xT is not in T , then A is not contained in

any member of S that contains L. Thus, A ∪ L is a subset of
⋃
S that is not contained in

any member of S. Since S is countably determined and contains each singleton of
⋃
S, then

Lemma 37 provides a countable subset A0 of A and a countable subset L0 of L such that no

member of S contains A0 ∪ L0.

Write A0 = {xTn : n < ω} and let A′ = {xTn,m : n ≤ m < ω}. Then we have

(A′ ∪ L) \ Nk = A′ \ Nk ⊆ {xTn,m : n ≤ m < k} is finite for each k. So by hypothesis,

there is a closed S in S containing A′ ∪ L. But then S ⊇ A′ ∪ L ⊇ A0 ∪ L0, which is a

contradiction.

Note that, in particular, (6.1) in Theorem 155 is satisfied whenever C itself is (closed,

countably) compact. Alternatively, if every closed member of S is (closed, countably) com-

pact, then (6.1) is satisfied for every closed set C.
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In the remainder of this section, we deduce network properties from the order properties

of a pre-ideal. More precisely, we show that if a pre-ideal is sufficiently simple, in the sense

that it has countable cofinality or is of type 〈2o+CSB, countably directed〉, then it has a

countable network satisfying some of the (c·)′ properties from above. This works best when

the pre-ideal (or pre-filter) is countably determined.

Lemma 156. Let S be a pre-ideal on a set X. If ω ≥T S, then S is (cc+)′.

Proof. Fix an increasing cofinal sequence (Sn)n for S, and let N = {Sn : n < ω}. Now,

given an S in S, we can find n such that Sn ⊇ S, and then choosing T = N = Sn fulfills

(cc+)′.

Theorem 157. Let S be a pre-ideal on a set X, and suppose S =
⋃
{Sq : q ∈ Q} wit-

nesses that S is of type 〈Q, countably directed〉, where Q is second countable and CSB. Fix a

countable base B for Q, and for each B in B, define SB =
⋃
{Sq : q ∈ B} and NB =

⋃
SB.

Now fix some q in Q, and select a decreasing local base (Bn)n ⊆ B for q. Define Cq =⋂
{NB : q ∈ B ∈ B} =

⋂
{NBn : n < ω}. Then the following statements hold.

(a) If An is a finite subset of NBn for each n, then there is an S in S such that
⋃
nAn ⊆ S.

(b) If An is a finite subset of NBn for each n, and if B witnesses that Q is ECSB, then for

every m, there is an Sm in SBm such that
⋃
n≥mAn ⊆ Sm.

(c) If A is a countable subset of X such that A \NBn is finite for all n, then there is an S

in S such that A ⊆ S.

(d) If S contains every singleton of
⋃
S and is countably determined, then statement (c)

holds even when A is uncountable.

(e) If S contains every singleton of
⋃
S and is countably determined, then Cq is contained

in some S from S.

(f)
⋃
Sq ⊆ Cq.

Proof. For (a), if A =
⋃
nAn is finite, then since S is directed, there is nothing to do. So

assume A is infinite. As the NBn ’s are decreasing we can assume each An is non-empty, say

An = {an1 , . . . , anrn}. Since An is contained in NBn , then for i = 1, . . . , rn, there are elements

qni in Bn and Sni ∈ Sqni such that ani ∈ Sni . Now {qni : n < ω and 1 ≤ i ≤ rn} is a sequence in
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Q converging to q, so by CSB, it has an upper bound q̂. Then {Sni : n < ω and 1 ≤ i ≤ rn}

is a subset of Sq̂, and the latter set is countably directed, so the former set is bounded in Sq̂,

say by Ŝ. It follows that
⋃
nAn ⊆

⋃
n,i S

n
i ⊆ Ŝ ∈ S, as required for (b).

The proof of (b) is just a slight modification of the proof of (a). In place of q̂, ECSB

provides an upper bound q̂m for {qni : n ≥ m and 1 ≤ i ≤ rn} in Bm for each m, and in place

of Ŝ, we obtain Ŝm ∈ Sq̂m ⊆ SBm which is an upper bound for {Sni : n ≥ m and 1 ≤ i ≤ rn}.

Let A be as in (c), and enumerate A∩Cq = {an : n < ω}. Now define A′ = A \NB0 and

An = (A∩NBn \NBn+1)∪{an}, which are finite. We may apply (a) to find S1 in S such that⋃
n<ω An ⊆ S1. Since S covers X and is directed, then we can find an S in S containing S1

and A′, so that A is contained in S.

Claim (d) follows from (c) and Lemma 37, and claim (e) follows from (d) since Cq\NBn =

∅ for each n. Finally, (f) is immediate from the definitions.

Corollary 158. Let X be a set with a pre-ideal S that contains every singleton from
⋃
S.

Suppose also that S is in the class 〈2o+CSB, countably directed〉, so it has a Q-ordered cover

{Sq : q ∈ Q} of countably directed subsets of S for some second countable Q with CSB. Using

the notation from Theorem 157, let N = {NB : B ∈ B}. Then:

(1) N is a (countable) pre-filter network for S satisfying (cpω)′, and

(2) if S is countably determined, then N is (cp)′ for S.

Proof. For any S in S, pick q in Q such that S is in Sq, and then note that for any B in B

such that q ∈ B, we have S ⊆
⋃
Sq ⊆

⋃
SB = NB. Thus, each member of S is contained in

some member of N , and of course
⋃
N =

⋃
S, so N is a network for S. If A is a countable

subset of X such that A \ N is finite for each N in N containing S, then A \ NB is finite

for each B in B containing q, so Theorem 157 (c) shows that some member of S contains A.

Thus, (1) has been proven, and (2) similarly follows from Theorem 157 (d).
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6.2 THE (C·) PROPERTIES FOR (NEIGHBORHOOD) FILTERS

Fix a pre-filter F on a set X. We say a family D of subsets of X is a (pre-filter) network for

F if each member of F contains some member of D, and if
⋂
D =

⋂
F . Below, we define

a family of properties (c·) that a countable network D for F may satisfy. We will also say

that F itself satisfies (c·) if there is a countable network D satisfying (c·) for F . These (c·)

properties are naturally dual to the (c·)′ properties for pre-ideals described in the previous

section, as we will see in Lemma 159 below.

(cpω) If F is in F , and if A is a countable subset of X \
⋂
F intersecting each member of

F , then there is a D ∈ D contained in F such that A ∩D is infinite.

(cp) If F is in F , and if A is a subset of X \
⋂
F intersecting each member of F , then there

is a D ∈ D contained in F such that A ∩D is infinite.

(cs) If F is in F , and if A is a countably infinite subset of X such that A \ G is finite for

each G ∈ F , then there is a D ∈ D contained in F such that A \D is finite.

(cs∗) If F is in F , and if A is a countably infinite subset of X such that A \ G is finite for

each G ∈ F , then there is a D ∈ D contained in F such that A ∩D is infinite.

(cn) For any F ∈ F , there is a G ∈ F such that G ⊆
⋃
{D ∈ D : D ⊆ F} ⊆ F .

(cn∗) If F is in F , and if A is a subset of X \
⋂
F intersecting each member of F , then

there is a D ∈ D contained in F such that A ∩D is nonempty.

If X is a topological space, then we define the following additional properties (c·) which

a countable pre-filter network D may satisfy for a pre-filter F on X. Once again, we say F

itself has the property (c·) if there is a countable network D satisfying (c·) for F .

(cck) For any F ∈ F , there is a G ∈ F contained in F such that for any closed, countably

compact C ⊆ G, there is a D ∈ D such that C ⊆ D ⊆ F .

(ck) For any F ∈ F , there is a G ∈ G contained in F such that for any compact K ⊆ G,

there is a D ∈ D such that K ⊆ D ⊆ F .

(ck+) For any F ∈ F , there is a G ∈ G contained in F such that for any compact K ⊆ G,

there is a D ∈ D such that K ⊆ D ⊆ G.

(cc) For any F ∈ F , there is a G ∈ F contained in F such that for any closed C ⊆ G, there
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is a D ∈ D such that C ⊆ D ⊆ F .

(cc+) For any F ∈ F , there is a G ∈ F contained in F such that for any closed C ⊆ G,

there is a D ∈ D such that C ⊆ D ⊆ G.

Recall that cX denotes the complementation map on a set X, and for any family A of

subsets of X, cX(A) denotes the family {cX(A) : A ∈ A} of subsets of X.

Lemma 159. Let F be a pre-filter on a set (or space) X, let D be a family of subsets of X,

let (c·) be any of the pre-filter network properties above, and let (c·)′ be the corresponding

pre-ideal network property from Section 6.1. Then D is a countable pre-filter network for

F satisfying (c·) if and only if N = cX(D) is a countable pre-ideal network for S = cX(F)

satisfying (c·)′.

Proof. First, note that S is a pre-ideal by Lemma 6. Now observe that each member of F

contains a member of D if and only if each member of S is contained in a member of N ,

while
⋂
D =

⋂
F if and only if

⋃
N =

⋃
S. Thus, D is a countable pre-filter network for F

if and only if N is a countable pre-ideal network for S.

For most of the network properties, the statement for (c·) is obtained directly from the

corresponding (c·)’ statement by replacing S with X \F , N with X \D, and T with X \G.

We have also used DeMorgan’s Laws and the fact that E ⊆ H if and only if cX(H) ⊆ cX(E)

for any subsets E and H of X. In this way, the duality between (cn), (cck), (ck), (ck+), (cc),

(cc+), and their (c·)′ analogs is clear.

In the case of (cpω), (cp), (cs), (cs∗), and (cn∗), we have also replaced part of the

corresponding (c·)′ statement with its contrapositive. For example, if (cp)′ is dualized in the

obvious way, we obtain the statement: ‘If F is in F , and if A is a subset of X \
⋂
F such that

A ∩D is finite for each D ∈ D contained in F , then there is a G ∈ F such that A ∩G = ∅.’

Now, replacing ‘if . . . A ∩D is finite for each D ∈ D contained in F , then there is a G ∈ F

such that A ∩G = ∅’ with its contrapositive gives precisely the statement of (cp).

Note that (cp) is equivalent to the strong Pytkeev property when F is the neighbor-

hood filter of a point. For neighborhood filters of points, the (cn) and (ck) properties were

introduced in [20] while studying the (cp) property, and the (cs) and (cs∗) properties were

introduced in [30] and [23], respectively.
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The dual versions of Lemmas 152 and 153 follow automatically: a pre-filter network D

for a pre-filter F on X satisfies (cn) if and only if D is (cn∗) for F ; and if D is closed under

finite unions, then it is (cs) for F if and only if it is (cs∗) for F . Hence F itself is (cn) if and

only if it is (cn∗), and F is (cs) if and only if it is (cs∗).

We also have an obvious dual version of Theorem 154 for pre-filters. Here we replace

every occurrence of S with F , N with D, (c·)′ with (c·), and ‘contains every singleton of⋃
S’ with ‘contains the complement of every singleton in X \

⋂
F ’. For statement (11),

we need to additionally replace ‘closed under finite intersections’ with ‘closed under finite

unions’ and replace ‘every member of S is contained in a closed member of S’ with ‘every

member of F contains an open member of F ’

The next two results are dual to Theorem 157 and Corollary 158, respectively. They

follow automatically from duality and the definitions.

Theorem 160. Let F be a pre-filter of subsets of a set Y , and suppose F =
⋃
{Fq : q ∈ Q}

witnesses that the directed set (F ,⊇) is of type 〈Q, countably directed〉, where Q is second

countable and CSB. Let B be a countable base for Q, and for each B in B, define FB =⋃
{Fq : q ∈ B} and DB =

⋂
FB.

Fix a q in Q, and select a decreasing local base (Bn)n ⊆ B for q. Define Wq =
⋃
{DB :

q ∈ B ∈ B}, and note that Wq =
⋃
{DBn : n < ω}. Then the following statements hold.

(a) If An is a finite subset of Y disjoint from DBn for each n, then there is an F in F which

is disjoint from
⋃
nAn.

(b) If An is a finite subset of Y disjoint from DBn for each n, and if B witnesses that Q is

ECSB, then for every m, there is an Fm in FBm which is disjoint from
⋃
n≥mAn.

(c) If A is a countable subset of Y \ (
⋂
P) such that A ∩DBn is finite for all n, then there

is a member of F that is disjoint from A.

(d) If (F ,⊇) contains every complement of points in Y \
⋂
F and is countably determined,

then statement (c) holds even when A is uncountable.

(e) If (F ,⊇) contains the complement of every point in X \
⋂
F and is countably determined,

then Wq is in F .

(f) Wq ⊆
⋂
Fq.
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Corollary 161. Let F be a pre-filter of subsets of a set Y such that (F ,⊇) is in the class

〈Q, countably directed〉, where Q is second countable and CSB. Let B be a countable base for

Q, and for each B in B, define FB =
⋃
{Fq : q ∈ B} and DB =

⋂
FB. Let D = {DB : LB ∈

B}. Then:

(1) D is a countable pre-filter network for F satisfying (cpω), and

(2) if F contains the complement of each singleton in Y \
⋂
F and is countably determined,

then D is (cp) for F .

For variety we prove the next result for pre-filters and leave it to the reader to derive the

dual pre-ideal version.

Lemma 162. Let F be a pre-filter of subsets of a space Y such that the interior F ◦ of F

is in F whenever F is in F . Suppose F =
⋃
{Fq : q ∈ Q} witnesses that (F ,⊇) is of type

〈Q, countably directed〉 for some directed set Q.

(1) We can ensure that F ◦ is in Fq whenever F is in Fq.

Suppose B is a countable base for Q witnessing that Q is ECSB. Fix q in Q and let DB,

(Bn)n, and Wq be as in Theorem 160. Then:

(2) Every compact subset of Wq is contained in some DBn.

(3) If F is countably determined, then the family D = {DB : B ∈ B} is a (countable)

pre-filter network satisfying (ck+) for F .

Proof. If we replace each Fq with Fq ∪ {F ◦ : F ∈ Fq}, then (1) holds and the Fq’s still

witness that F is of type 〈Q, countably directed〉.

We prove (2) next. Let K be a compact subset of Wq, and suppose, for a contradiction,

that there is a point an in K \DBn for each n. Then pick qn ∈ Bn and Fn ∈ Fqn such that

an /∈ Fn. Set Ak = {an : n ≥ k}. Note that K ⊇ A1 ⊇ A2 ⊇ · · · , so by compactness,
⋂
k Ak

is a non-empty subset of K and, hence, of Wq.

For each k, we have (qn)n≥k → q, so by ECSB, this sequence has an upper bound q̂k

in Bk. Thus, {Fn : n ≥ k} is contained in Fq̂k , which is countably directed, so there is an

F̂k in Fq̂k such that F̂k ⊆ Fn for all n ≥ k. By (1), we may assume F̂k is open. Note that

F̂k∩Ak = ∅, so DBk ∩Ak ⊆ F̂k∩Ak = ∅. Hence, Wq =
⋃
nDBn is disjoint from

⋂
k Ak, which

is a contradiction.
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Finally, we prove (3). Note that for any F in F , there are q ∈ Q and B ∈ B such that

q ∈ B and F ∈ Fq ⊆ FB, so that DB ⊆ F , which means each member of F contains a

member of D. It is also clear that
⋂
D =

⋂
F , so we see that D is a countable pre-filter

network for F . To complete the proof of (3), it therefore suffices to check that for any F

in Fq ⊆ F , the set G = Wq is as required for (ck+). Indeed, Wq is in F and Wq ⊆ F by

parts (e) and (f) of Theorem 160, and then statement (2) and the definition of Wq give the

conclusion of (ck+).

The (pre-) filters of interest here have the following form. Let A be a subset of a space

X, and let NA denote the family of all neighborhoods of A – in other words, the subsets of

X containing A in their interior. Then NA is a filter on X called the neighborhood filter of A.

Like any filter, NA is directed by reverse set inclusion ⊇. When A = {x} is a singleton, we

denote the neighborhood filter by Nx. We extend some standard concepts for neighborhood

filters of points to neighborhood filters of sets, as follows. We say A is first countable in X

if ω ≥T NA (i.e. NA has a countable base), while a subset S of X converges to A if each

neighborhood of A contains all but finitely many elements of S. We also say that A has

countable tightness in X if for any subset S of X that meets every neighborhood of A, there

is a countable subset of S which also meets every neighborhood of A.

For any of the pre-filter properties (c·) introduced above, we say a space X has the

property (c·)A for some subset A of X if the filter NA has the property (c·). We abbreviate

(c·){x} to (c·)x and say simply that the space X has the property (c·) if it has (c·)x at each

point x in X.

Now we see that a space is (cp) if and only if it is strongly Pytkeev, and the dual version

of Theorem 154 shows that (cn) is a natural weakening of the strong Pytkeev property.

Observe also that X is (cs)A if and only if there is a countable local network D at A such

that for any sequence S converging to A and any neighborhood U of A, there is a D in D

such that D is contained in U and contains all but finitely many elements of S.

Recall that a space X is called homogeneous if for for any two points x and y in X, there

is a self-homeomorphism of X taking x to y. Thus, the neighborhood structure at each point

in a homogeneous space is identical. The next lemma is then clear, and in particular, observe
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that to verify a topological group has a local network property, it suffices to establish it at

the identity.

Lemma 163. A homogeneous space X is (c·) if and only if it is (c·)x at some point x in X.

Lemma 38 applied to F = NA tells us when NA is countably determined.

Lemma 164. Let A be a subset of a space X. Then NA is countably determined if and only

if A has countable tightness in X.

The dual version of Theorem 154 immediately gives the following basic relations.

Theorem 165. Let A be a subset of a space X. Then:

(1) (cp)A =⇒ (cck)A,

(2) (cck)A =⇒ (ck)A,

(3) (ck+)A =⇒ (ck)A,

(4) (ck)A =⇒ (cn)A,

(5) (cn)A =⇒ NA is countably determined,

(6) (cp)A ⇐⇒ (cpω)A and NA is countably determined, and

(7) (cpω)A =⇒ (cs)A.

However, the next set of relationships depend on properties characteristic of neighbor-

hood filters. Note that the neighborhood filter of a subset A of a space X has a base of

closed sets if A is compact, or if A is closed and X is normal. Also observe that for a point

x in a space X, properties (1)–(7) above, and (1) and (2) below all hold for Nx.

Theorem 166. Let A be a subset of a space X. Then:

(1) if A is closed and countably compact, then (cck)A =⇒ (cs)A,

(2) if NA has a base of closed sets, then (cc)A if and only if (cc+)A if and only if A is first

countable in X, and

(3) if A has a closed and countably compact neighborhood and NA has a base of closed sets,

then A is first countable in X if and only if (cck)A.

Proof. For (1), assume D is a local network at A witnessing (cck)A. Let S be a countable

subset of X such that each neighborhood of A contains all but finitely many points of S, and
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let U be an arbitrary neighborhood of A. Let V be the open neighborhood of A contained

in U given by (cck).

Note that C = A∪ (S ∩V ) is a closed, countably compact subset of V , so by (cck) there

is a D in D with S ∩ V ⊆ C ⊆ D ⊆ U . Thus, S \ D ⊆ S \ V is finite and D ⊆ U , so D

witnesses (cs)A.

By Lemma 156 and Theorem 154 (and duality), for (2) it suffices to show that if A is

compact, or A is closed and X normal, and (cc)A holds then A is first countable in X. So fix

countable D which is (cc) for NA. Let B = {D ∈ D : A ⊆ D◦}. Then B is a countable family

of neighborhoods of A. We verify it is a base for NA. To see this take any open U ⊇ A. Let

V be neighborhood of A contained in U given by (cc) for D. Using the hypothesis on A,

find an open T such that A ⊆ T ⊆ T ⊆ V . Set C = T , and apply (cc) to get D in D such

that A ⊆ T ⊆ C ⊆ D ⊆ U . Then D is in B and contained in U , and we are done.

For (3) observe that the hypotheses imply A has a neighborhood base of closed countably

compact sets. So (cck)A easily gives (cc)A, and we can apply part (2).

From our general results, we can deduce local network properties of neighborhood filters

from their order structure.

Theorem 167. Let X be a space and A a subset of X.

(1) If NA is in the class 〈2o+CSB, countably directed〉, then (cpω)A holds.

Suppose, additionally, that A is countably tight in X. Then:

(1′) if NA is in 〈2o+CSB, countably directed〉, then (cp)A holds; and

(2′) if NA is in 〈2o+ECSB, countably directed〉, then (ck+)A holds.

In particular, for any point x of countable tightness in X, we have:

(1′′) if Nx is in 〈2o+CSB, countably directed〉, then (cp)x holds; and

(2′′) if Nx is in 〈2o+ECSB, countably directed〉, then (ck+)x holds.

Proof. For statements (1), (1′), and (2′), first recall that NA is countably determined if and

only if A is countably tight in X (Lemma 164). Now (1) and (1′) follow from Corollary 161,

while statement (2′) follows from Lemma 162. Statements (1′′) and (2′′) are just the special

case where A = {x}.
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6.3 K(X) AND LINDELÖF COFINALLY Σ-SPACES

Recall that if N and A are families of subsets of a space X, then N is called a network for

X modulo A if whenever U is an open subset of X containing some member A of A, there is

an N in N such that A ⊆ N ⊆ U . Then X is called Lindelöf Σ if it has a countable network

modulo some compact cover of X. Similarly, we say X is Lindelöf cofinally Σ if X has a

countable network modulo some cofinal (with respect to ⊆) subset of K(X).

More generally, if S is a pre-ideal of compact subsets of a space X and if S ′ is a subset of

S, then we say X is Lindelöf (S ′,S)-cofinally Σ if X has a countable network modulo a cofinal

family for the directed set pair (S ′,S) (see Section 2.2). We will primarily focus on when

S ′ = S, in which case we just say X is Lindelöf S-cofinally Σ. Thus, X is Lindelöf cofinally

Σ if and only if it is Lindelöf K(X)-cofinally Σ, and since a cofinal family for (X,K(X)) is

precisely a compact cover of X, then X is Lindelöf Σ if and only if it is Lindelöf (X,K(X))-

cofinally Σ.

Lemma 168. Let S be a pre-ideal of compact subsets of X such that S contains the closed

subsets of each of its members. Let S ′ be a subset of S. Then the following are equivalent:

(i) X is Lindelöf (S ′,S)-cofinally Σ, and

(ii) there is a countable family N of subsets of X, and for each K in S ′, there is a LK in

S containing K such that for every open set U containing LK, there is an N in N with

K ⊆ N ⊆ U .

Proof. Assume (i), so X has a countable network N modulo a family L of subsets of X

which is cofinal for (S ′,S). Thus, L is a subset of S, and for each K in S ′, there is an LK in

L such that K ⊆ LK . If U is any open set containing LK , then as N is a network modulo

L, there is an N in N such that LK ⊆ N ⊆ U . But since K is contained in LK , then we

have shown that (i) implies (ii).

Now let N and the LK ’s be as in (ii). We may assume each member of N is closed.

Indeed, if K is in S ′ and U is an open set containing LK , then by regularity, we can find an

open set V such that LK ⊆ V ⊆ V ⊆ U . Then there is an N in N such that K ⊆ N ⊆ V ,

and so K ⊆ N ⊆ U . Thus, we can replace N with {N : N ∈ N}. We may further assume

121



N is closed under finite intersections.

For each K in S, let AK =
⋂
{N ∈ N : K ⊆ N}. Then we claim that AK ⊆ LK . Indeed,

if x /∈ LK , then there is an N ∈ N such that K ⊆ N ⊆ X \ {x}, so x /∈ AK also. Now,

since each N in N is closed, then AK is a closed subset of LK and hence AK is in S. Since

K ⊆ AK for each K in S ′, then the family A = {AK : K ∈ S ′} is cofinal for (S ′,S), so to

establish (i), it suffices to show that N is a network modulo A.

Fix a K in S ′. Since N is countable and closed under finite intersections, then we can

find a decreasing nested sequence (Ni)i<ω of sets in N such that for any N ∈ N containing

K, there is an i < ω with K ⊆ Ni ⊆ N . Fix an open set U containing AK and assume,

to get a contradiction, that Ni 6⊆ U for each i < ω. Then we may find xi ∈ Ni \ U . Since

any open V containing LK must contain some Ni, and since (Ni)i is decreasing, then (xi)i

converges to LK , so Q = LK ∪ {xi : i < ω} is compact.

Hence, there must be an x∞ in Q such that for every neighborhood T of x∞, the set

{i < ω : xi ∈ T} is infinite. Note that since each xi is not in U , then neither is x∞. So

x∞ is not in AK , which means there must then be a j < ω such that x∞ 6∈ Nj. However,

T = X \Nj is now an open neighborhood of x∞ such that {i < ω : xi ∈ T} ⊆ {0, . . . , j − 1}

is finite. This contradiction shows that there must be an Ni in N such that K ⊆ Ni ⊆ U ,

and so AK ⊆ Ni ⊆ U , which completes the proof.

Theorem 169. Let S be a pre-ideal of compact subsets covering a space X. Then the

following are equivalent:

(i) X is Lindelöf S-cofinally Σ;

(ii) S is (cc+)′; and

(iii) S is (cc)′.

Suppose S satisfies the additional property: whenever L is in S and S is a sequence on X

converging to L, S ∪ L is in S. Then statements (i)-(iii) are also equivalent to:

(iv) S is (cp)′.

Moreover, (iv) implies (i)-(iii) even if S does not satisfy the additional property.

Proof. Applying Lemma 151, we can assume S is closed under taking closed subsets. Suppose

(i) holds and N is a countable network for X modulo a cofinal subset A of (S,⊆). Note
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that N is also a pre-ideal network for S. We verify N satisfies (cc+)′ for S, and so (ii) holds.

Take any K in S. As A is cofinal in S there is an L in A such that K ⊆ L. Take any closed

set C. Let U = X \ C. Since (i) holds, there is an N in N such that L ⊆ N ⊆ U = X \ C,

as required for N to be (cc+)′.

Evidently (ii) implies (iii), so for the equivalence of (i)–(iii), it remains to prove that

(iii) implies (i). But this follows from Lemma 168 since for S ′ = S, statement (iii) here is

equivalent to statement (ii) there. Thus the equivalence of (i)–(iii) is proven.

Now we show that (iv) implies (iii). Suppose N satisfies (cp)′ for S and is closed un-

der finite intersections. By Theorem 154, N also satisfies (ck)′, and we verify this can be

improved to (cc)′. Take any S in S. Fix a decreasing sequence (Ni)i from N with each

Ni containing S and such that for every N from N if N ⊇ S then for some i we have

S ⊆ Ni ⊆ N . Let T be given by (ck)′, so T ⊇ S and for every X \K containing T , where

K is compact, there is an N in N such that S ⊆ N ⊆ X \K. Take any X \ C containing

T , where C is closed. We are done if some Ni is contained in X \ C. If not then pick ai in

Ni \ U . Set A = {ai : i < ω}. Then A satisfies the condition to apply (cp)′, and we see that

A is contained in some member of S. In particular, K = A is compact, and disjoint from T .

Then by (ck)′, and definition of the Ni’s there is an Ni such that Ni ⊆ X \K ⊆ X \ {ai} –

contradicting ai ∈ Ni.

Finally, we suppose S satisfies (ii) and the additional property given before statement

(iv). Let N be a countable family of closed sets satisfying (cc+)′ for S. We verify N also

satisfies (cp)′, which gives (iv). Take any K in S. Fix the L in S given by (cc+)′, so L ⊇ K

and for every open U containing L there is an N in N such that L ⊆ N ⊆ U . Take any

subset A of X such that A \N is finite for each N in N containing K. Set A0 = A ∩ L and

A1 = A \ A0. We need to show A is contained in some member of S. This is achieved if we

show A1 ∪ L is in S. But the assumption on A and the (cc+)′ property implies that A1 is a

sequence converging to L. So the proof is completed by applying the additional hypothesis

on S.

Example 17 below shows that we cannot weaken (cc)′ to (ck+)′ in the previous theorem.

For general pre-ideals S of compact sets, we also cannot remove the additional hypothesis
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for (cp)′ to be added to the list of equivalences (see Example 18). Note that for S = K(X)

the additional hypothesis is satisfied.

Evidently, if X is Lindelöf cofinally Σ, then it is Lindelöf Σ and, in particular, Lindelöf.

We can strengthen this to k-Lindelöf. A collection U of subsets of a space X is called a

k-cover if every compact subset of X is contained in some member of U . A space X is

k-Lindelöf if every open k-cover contains a countable subcollection which is also a k-cover.

Lemma 170. If X is Lindelöf cofinally Σ, then X is k-Lindelöf.

Proof. Since X is Lindelöf cofinally Σ, there is a countable family N which is a network for

X modulo some cofinal subset A of K(X). Let U be an open k-cover. For each K in A,

pick UK ∈ U and then NK ∈ N such that K ⊆ NK ⊆ UK . Since N is countable, we can

enumerate {NK : K ∈ A} = {Ni : i < ω} and then pick Ui in U such that Ni ⊆ Ui. By

the cofinality of A in K(X), every compact subset of X is contained in some Ui. Thus, the

countable subcollection {Ui : i < ω} of U is a k-cover.

Theorem 171. The following are equivalent for any space X:

(i) K(X) is in the class 〈2o+CSB, countably directed〉 and is countably determined;

(ii) K(M) ≥T K(X) for some separable metrizable M , and K(X) is countably determined;

(iii) K(X) is (cp)′;

(iv) X is Lindelöf cofinally Σ (in other words, K(X) is (cc+)′); and

(v) X is the compact-covering image of a perfect preimage of a separable metrizable space.

Proof. By Lemma 27 and Lemma 9, we know (ii) implies (i), and applying Corollary 158 to

S = K(X) shows that (i) implies (iii). From Theorem 169, we also know (iii) is equivalent

to (iv). We now show (iv) and (v) are equivalent and (iii) implies (ii).

Suppose there are a space Z, a separable metrizable space M , a perfect map f : Z →

M , and compact-covering map g : Z → X. Suppose B is a countable base of M that

is closed under finite unions and intersections. Let C = {g(f−1(K)) : K ∈ K(M)} and

N = {g(f−1(B)) : B ∈ B}. Then C is cofinal in K(X) and N is a network modulo C. Thus,

(v) implies (iv).
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Now suppose X is Lindelöf cofinally Σ, so there is a countable network N modulo some

cofinal subset C of K(X). Let D(N ) be N with the discrete topology. For any m ∈ D(N )ω

define Cm =
⋂
{m(n) : n < ω}. Define M = {m ∈ D(N )ω : Cm ∈ C}. Then M is separable

and metrizable. Consider the closed subspace Z =
⋃
m∈M{m} × Cm of M × βX. Since βX

is compact, the projection map πM of M × βX into M is a closed map, and so f = πM |Z

is a perfect map. Furthermore, g = πβX |Z maps into X and is compact-covering since

g({m} × Cm) = Cm and the Cm’s are cofinal in K(X). Thus, (iv) implies (v).

From Lemma 154, we know (iii) implies that K(X) is countably determined. Since we

already showed (iii) is equivalent to (v), then there are a space Z, a separable metrizable

space M , a perfect map f : Z → M , and a compact-covering map g : Z → X. Hence, the

map K 7→ g(f−1(K)) witnesses K(M) ≥T K(X), so (iii) implies (ii).

Once again, we identify a space X with the subset [X]1 of K(X). Recall that a space is

called ω-bounded if every countable subset is relatively compact (has compact closure).

Lemma 172. For any space X, the following are equivalent:

(i) K(X) is countably determined,

(ii) (X,K(X)) is countably determined, and

(iii) every ω-bounded subset of X is relatively compact.

Proof. The equivalence of (ii) and (iii) is immediate from the definitions since for any subset

Y of X, the corresponding subset [Y ]1 of K(X) is bounded if and only if Y is relatively

compact. The equivalence of (i) and (ii) is a special case of Lemma 37.

Every ω-bounded space is countably compact, so a sufficient condition on a space X to

have (X,K(X)) countably determined is that every countably compact subset is compact,

which occurs, for example, if X is Lindelöf.

The next fact generalizes Proposition 78 by Cascales, Orihuela, and Tkachuk.

Proposition 173. If (X,K(X)) is in the class 〈2o+ECSB, countably directed〉, then X has

a countable network N modulo a cover C consisting of ω-bounded subsets.

Proof. Let (X,K(X)) be of type 〈Q, countably directed〉, where Q is a directed set with a

countable base B witnessing ECSB. Then there is a family {Sq : q ∈ Q} of countably directed
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subsets of K(X) covering {{x} : x ∈ X} such that Sq ⊆ Sq′ whenever q ≤ q′ in Q. Since the

down set of a countably directed set is still countably directed, we may suppose each Sq is

downwards closed. Since Q is directed, it follows that every finite subset of X is in some Sq.

Let SB, NB, and Cq be as in Theorem 157. We will show that N = {NB : B ∈ B} is a

network modulo the cover C = {Cq : q ∈ Q} of X and that each Cq is ω-bounded. We fix q

in Q and let {Bn : n < ω} ⊆ B be a decreasing neighborhood base at q.

Let A = {an : n < ω} be any countable subset of Cq. Applying Theorem 157 to the

sets An = {an} ⊆ Cq ⊆ NBn shows that for each m < ω, there is an Sm in SBm such that

{an : n ≥ m} ⊆ Sm. Since each Sm is compact, then the closure A of A in X is compact, and

A \A is contained in
⋂
m Sm ⊆

⋂
mNBm = Cq. Since A is also contained in Cq, we conclude

that Cq is ω-bounded.

Now, suppose U is an open set containing Cq. Of course NBn contains Cq for each

n, so to get a contradiction, assume NBn 6⊆ U for each n and pick xn ∈ NBn \ U . Note

that A = {xn : n < ω} is infinite because otherwise, there would be an x ∈ A such that

x ∈ NBn \ U for infinitely many n < ω, but since (NBn)n is decreasing, then x would be

in
⋂
nNBn = Cq ⊆ U , which is a contradiction. Repeating the argument from the previous

paragraph shows that A has compact closure A in X and that A \ A ⊆ Cq ⊆ U . Since A

is infinite, then A \ A is nonempty, which is a contradiction since A is disjoint from U and

A \ A is contained in U . Thus, N is a network for X modulo C.

Theorem 174. Let X be a space. The following are equivalent:

(i) (X,K(X)) has type 〈2o+CSB, countably directed〉 and is countably determined;

(ii) K(M) ≥T (X,K(X)) for some separable metrizable space M , and K(X) is countably

determined;

(iii) X is Lindelöf Σ;

(iv) X is the continuous image of a perfect pre-image of a separable metrizable space; and

(v) there is a countable family N of subsets of X and, for each point x of X, there is a

compact set Lx containing x such that, for any open U containing Lx, there is an N in

N with x ∈ N ⊆ U .

Proof. Assume X is a Lindelöf Σ-space. It is shown in [7] that X has a K(M)-ordered
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compact cover for some separable metrizable M . Also, since Lindelöf Σ-spaces are Lindelöf,

then Lemma 172 and the comment following it show that K(X) is countably determined.

Hence, (iii) implies (ii). Next, Lemma 172 and Lemma 55 show that (ii) implies (i). Now

assume (i). Then Proposition 173 says that X has a countable network N modulo a cover

C consisting of ω-bounded sets, and since (X,K(X)) is also countably determined, then

Lemma 172 shows that each member of C has compact closure. As X is T3, the family

{N : N ∈ N} is a countable network for X modulo the compact cover {C : C ∈ C}, so (i)

implies (iii), and the equivalence of (i)–(iii) is established.

The equivalence of (iii) and (iv) is well-known, and in fact, a slight variation of the

proof of the equivalence of (iv) and (v) in Theorem 171 works here. Also, (iii) immediately

implies (v) because (iii) is just the strengthening of (v) obtained by changing ‘x ∈ N ⊆ U ’

to ‘Lx ⊆ N ⊆ U ’. We finish by showing that (v) implies (iii), so assume (v), and let S

be the set of all closed subsets of all finite unions of Lx’s. Then S is a pre-ideal on X

that contains every closed subset of each of its members, and S contains the family [X]1 of

singleton subsets of X, which we identify with X, as usual. Then Theorem 168 shows that

(v) implies X is Lindelöf (X,S)-cofinally Σ. In particular, X is Lindelöf Σ since a cofinal

family for (X,S) is a compact cover of X.

6.4 THE STRONG PYTKEEV PROPERTY IN FUNCTION SPACES

Recall from Section 2.9 that for any pre-ideal S of compact sets covering a space X, CS(X)

denotes the space of all continuous real-valued functions on X with the topology of uniform

convergence on members of S. We wish to determine when CS(X) has various (c·) prop-

erties in terms of properties of S and X. Since CS(X) is a topological group, and hence

homogeneous, then it has one of the properties (c·) if and only if it satisfies (c·)0, where 0 is

the zero function on X.

Lemma 175. Let X be a space, and let S be a pre-ideal of compact subsets covering X. If

CS(X) is (cn), then S is (cc)′.
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Proof. Let D be a countable local network at 0 witnessing that CS(X) satisfies (cn)0. For

each D ∈ D, define ND =
⋂
{g−1(R \ {1}) : g ∈ D} and N = {ND : D ∈ D}. We show N is

(cc)′ for S.

Fix a (nonempty) K in S, and let W = B(0, K, 1/2). By (cn)0, the set T =
⋃
{D ∈ D :

D ⊆ W} is a neighborhood of 0, so there is a member LK of S containing K and ε > 0 such

that B(0, LK , ε) ⊆ T .

Now suppose U ⊆ X is any open set containing LK . Pick fU ∈ CS(X) such that

fU(LK) = {0} and fU(X \ U) ⊆ {1}. Then fU is in T , so we can find a D ∈ D such that

fU ∈ D ⊆ W . Since fU ∈ D, then ND ⊆ f−1
U (R \ {1}) ⊆ U , and since D ⊆ B(0, K, 1/2),

then K ⊆ ND – as required for N to be (cc)′ for S.

The next lemma says, in particular, that the converse of the previous lemma is true if

we strengthen (cc)′ to (cc+)′.

Lemma 176. Let X be a space. Let S be a pre-ideal of compact subsets covering X.

(1) If S is (cc+)′, then CS(X) is (cn).

(2) If S is (cp)′, then CS(X) is (cp).

Proof. We first prove (1), so assume S is (cc+)′. We show that CS(X) has the property

(cn)0, which implies, by homogeneity, that CS(X) is (cn). Let N be (cc+)′ for S. For each

K in S, fix the LK in S given by property (cc+)′. Define DN,n = B(0, N, 1/n) for each N in

N and 0 < n < ω. We show D = {DN,n : N ∈ N , 0 < n < ω} is (cn) for NCS(X)
0 .

Fix a neighborhood U of 0, and choose a K in S and an 0 < n < ω such that

B(0, K, 1/n) ⊆ U . Then V = B(0, LK , 1/n) is also contained in U . Consider an ar-

bitrary f in V . Since LK ⊆ f−1(−1/n, 1/n), then by (cc+)′, we can find an N in N

such that LK ⊆ N ⊆ f−1(−1/n, 1/n). It follows that, for the set DN,n from D, we have

f ∈ DN,n ⊆ V ⊆ U .

Now we prove (2), so we assume S is (cp)′ and show that CS(X) has the property (cp)0.

Theorem 169 shows that S is (cc+)′, so there is a family N , closed under finite unions and

intersections, witnessing both (cp)′ and (cc+)′ for S. Let LK and DN,n be as in part (1).

Then we already know D is (cn) for NCS(X)
0 , and now we verify that, in fact, D is (cp) for

NCS(X)
0 .
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Fix a neighborhood U of 0, and take any subset A of CS(X) such that 0 is in A \ A.

We need to show that some member of D is contained in U and meets A in an infinite

set. Choose K in S and 0 < n < ω such that B(0, K, 1/n) is contained in U , and then let

V = B(0, LK , 1/n), which is also contained in U . Select a decreasing sequence (Ni)i from N

such that if N is in N and LK ⊆ N , then for some i we have LK ⊆ Ni ⊆ N . From part (1)

and the choice of the (Ni)i, we have that V is the increasing union of {DNi,n : i < ω}.

Thus, it suffices to show that DNi,n ∩A is infinite for some i. If this is not the case, then

A0 = DN1,n ∩A and Ai = (DNi,n \DNi−1,n)∩A for i > 0 are all finite. For any i > 0, we can

therefore find a finite subset Bi of Ni−1 \Ni such each f in Ai satisfies |f(x)| ≥ 1/n for some

x in Bi. Let B =
⋃
iBi. Then for any N in N containing Lk, we can find an i such that

LK ⊆ Ni ⊆ N , so that B \N ⊆ B \Ni ⊆ B1∪· · ·∪Bi and B \N is finite. Hence, by the (cp)′

property of N , there is an element L′ of S containing B. But now B(0, LK ∪ L′, 1/n) \ A0,

which is contained in V , is an open neighborhood of 0 in CS(X) that is disjoint from A since

A ∩ V =
⋃
iAi. This contradicts that 0 is in A.

The next theorem is immediate from Lemmas 175 and 176, and Theorem 169.

Theorem 177. Let S be pre-ideal of compact sets covering a space X. Then the following

are equivalent:

(i) CS(X) is (cn),

(ii) S is (cc)′,

(iii) S is (cc+)′, and

(iv) X is Lindelöf S-cofinally Σ.

Suppose S additionally satisfies: S ∪K is in S whenever K is in S and S is a sequence in

X converging to K. Then the following are also equivalent to statements (i)–(iv) above:

(v) CS(X) is strongly Pytkeev (i.e. is (cp))

(vi) S is (cp)′.

Now we look closer at the case were S = K(X). Recall that, in this situation, CS(X)

is written as Ck(X) and denotes the topological vector space of all continuous real-valued

functions on X, endowed with the compact-open topology. From Lemma 62, we have the

following description of the neighborhood filter of 0 in Ck(X).
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Lemma 178. For any space X, we have K(X)× ω =T NCk(X)
0 .

By Theorem 166, we know that Ck(X) is (cc+) if and only if it is (cc), if and only if it

is first countable, which occurs if and only if X is hemicompact (i.e. K(X) has countable

cofinality). The next theorem deals with all the other (c·) properties of Ck(X), except

(cs), for which see Example 21. It also firmly connects them to order properties of the

neighborhood filter of 0 in Ck(X) and also to K(X).

Theorem 179. The following are equivalent for any space X:

(i) NCk(X)
0 is countably determined and of type 〈2o+CSB, countably directed〉,

(ii) Ck(X) is countably tight and K(M) ≥T NCk(X)
0 for some separable metrizable M ,

(iii) Ck(X) is strongly Pytkeev (in other words, (cp)),

(iv) Ck(X) is (ck+),

(v) Ck(X) is (cn),

(vi) K(X) is (cc)′,

(vii) X is Lindelöf cofinally Σ (in other words, K(X) is (cc+)′),

(viii) X is k-Lindelöf and K(M ′) ≥T K(X) for some separable metrizable space M ′, and

(ix) K(X) is countably determined and of type 〈2o+CSB, countably directed〉.

Proof. Lemma 164 and Lemma 55 show that (ii) implies (i). Then Lemma 164 and Theo-

rem 167 show that (i) implies (iii). By Theorem 177, we already know (iii), (v), (vi), and (vii)

are equivalent, and Theorem 171 shows that (vii) is also equivalent to (ix). Next, Lemma 170

and Theorem 171 show that (vii) implies (viii). If we assume (viii), then by Lemma 178,

setting M = M ′× ω, we see that K(M) = K(M ′× ω) ≥T K(X × ω) ≥T NCk(X)
0 . Also, since

X is k-Lindelöf, then Ck(X) is countably tight (see [36]), so (ii) holds.

So far we have shown that (i)–(iii) and (v)–(ix) are all equivalent, so it remains to show

(iv) is equivalent to the rest. By Lemma 55 and part (2′) of Theorem 167, we see that (ii)

implies (iv), and of course (iv) implies (v) by Lemma 165.

Finally, we look at the case where S = [X]<ω is the ideal of all finite subsets of a space

X. In this case, CS(X) is denoted as Cp(X), which is the space of all continuous real-valued

functions on X with the topology of pointwise convergence. Regarding local networks for

Cp(X), Sakai proved the following result in [42].
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Theorem 180 (Sakai). If Cp(X) is (cs), then X is countable (and Cp(X) is separable

metrizable).

Since (cpω) and (ck) both imply (cs), all our local network conditions on Cp(X) – except

for (cn) – therefore imply that X is countable. We will see shortly that for Ck(X) the

condition (cn) implies (cp) and (ck+). However, Cp(X) is different; indeed, every cosmic

space is (cn), and Cp(X) is cosmic if and only if X is cosmic. But more is true, and Cp(X)

can be (cn) for non-trivial reasons. We now characterize exactly when Cp(X) is (cn). This

result parallels Theorem 179.

Theorem 181. For any space X, the following are equivalent:

(i) Cp(X) is (cn),

(ii) [X]<ω is (cc)′,

(iii) [X]<ω is (cc+)′ (in other words, X is Lindelöf [X]<ω-cofinally Σ), and

(iv) X has a countable network modulo a cover consisting of finite sets.

Proof. The equivalence of (i) and (ii) follows from Lemmas 175 and 176. The equivalence of

(ii) and (iii) follows from Theorem 169. Of course (iii) implies (iv) since any cofinal subset of

[X]<ω covers X, so it remains to show that (iv) implies (iii). Let N be a countable network

for X modulo a cover A consisting of finite subsets of X. Let A′ and N ′ denote the sets of

all finite unions of elements of A and N , respectively. Then A′ is cofinal in [X]<ω, and N ′

is a countable network for X modulo A′.

In the terminology of [34], the spaces satisfying (iv) in the previous theorem are precisely

those in the class LΣ(<ω). Proposition 2.2 of [34] gives the following alternate characteri-

zations of these spaces.

Proposition 182 (Kubís, Okunev, Szeptycki, [34]). The following are equivalent for any

space X:

(i) X is LΣ(<ω),

(ii) there is a second countable space M and an upper semi-continuous map f : M → [X]<ω

whose image covers X,
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(iii) X is a continuous image of a space L such that there are a second countable space M

and a perfect map g : L→M whose fibres are finite, and

(iv) X is a continuous image of a closed subspace F of M × K for some second countable

space M and compact space K such that F ∩ π−1
M (m) is finite for each m in M .

6.5 CONNECTING NETWORKS TO OTHER PROPERTIES

A space X is (α4) at a point x if: whenever {(xm,n)n<ω : m < ω} is a family of sequences in

X that all converge to x, then there are strictly increasing sequences (mk)k and (nk)k in ω

such that limi xmi,ni = x.

Lemma 183. Suppose A is a countably compact subset of a Fréchet-Urysohn space X. If

X satisfies (cs)A, and if X is (α4) at each point in A, then A has a countable neighborhood

base in X.

Proof. Let D be a countable local network for A witnessing (cs)A. Without loss of generality,

D is closed under finite unions. We will show that for every neighborhood U of A, there is

a D from D such that A ⊆ Do ⊆ U .

Fix a neighborhood U of A. By (cs)A, there is a neighborhood V of A contained in U

such that every convergent sequence on V is contained in some member of DU = {D ∈ D :

D ⊆ U}. Since D is countable and closed under finite unions, we can find an increasing

sequence (Dn)n in DU such that every compact subset of V is contained in some Dn.

Suppose, for a contradiction, that Dn is not a neighborhood of A for each n < ω. Then

A meets the closure of V \ Dn for each n. Since (A ∩ V \Dn)n is a decreasing sequence

of nonempty closed subsets of the countably compact space A, then the intersection of this

sequence is nonempty, so there is an x in A which is in the closure of each V \ Dn. Since

X is Fréchet-Urysohn, we can find a sequence (xn,m)m in V \ Dn converging to x for each

n < ω. Applying (α4), there are strictly increasing sequences (ni)i and (mi)i in ω such that

(xni,mi)i converges to x.

Then K = {xni,mi : i < ω} ∪ {x} is a convergent sequence on V , and so there must be a
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k < ω such that K ⊆ Dk. On the other hand, xnk,mk is not in Dnk by definition, and since

nk ≥ k, then Dnk ⊇ Dk. Hence, xnk,mk is in K but not in Dk, which is a contradiction.

Corollary 184. If X is Fréchet-Urysohn, (α4) and (cs)x at a some x in X, then x is a

point of first countability.

Theorem 63 shows that if X is countably compact and if the neighborhood filter N∆

of the diagonal ∆ in X2 has calibre (ω1, ω), then X must be metrizable. We can now give

another metrization result for countably compact spaces.

Proposition 185. If X is countably compact, Fréchet-Urysohn, and (α4), and if X2 satisfies

(cs)∆, then X is metrizable

Proof. Corollary 184 showsX is first countable, and soX2 is also first countable, which means

X2 is both Fréchet-Urysohn and (α4). Also, ∆ is a countably compact subset of X2 since

it is closed. Thus, we can apply Lemma 183 to see that ∆ has a countable neighborhood

base. Finally, Chaber [8] showed that a countably compact space with a Gδ-diagonal is

metrizable.

For topological groups, the (α4) assumption in Corollary 184 is redundant. Indeed,

Nyikos proved:

Lemma 186 (Nyikos [40]). If G is a topological group that is Fréchet-Urysohn, then it is

(α4) at every point.

Thus, we obtain:

Corollary 187. Let G be a Fréchet-Urysohn group.

(1) If G is (cs) (or, a fortiori, (ck) or strongly Pytkeev), then it is metrizable.

(2) If there is a directed set P in the class 〈2o+CSB, countably directed〉 such that P ≥T Ne,

then G is metrizable.

Proof. For part (1), Corollary 184 and Lemma 186 show that G is first countable, but every

first countable topological group is metrizable. For part (2), recall that Fréchet-Urysohn

implies countably tight, so G is strongly Pytkeev by Theorem 167 and Lemma 34, and thus

we may apply (1).
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In Example 20, we will show that (cs) cannot be replaced with (cn) in the previous result.

However, we still can relate (cn) to other properties, as the next few results show.

A point-network (respectively, strong point-network) for a space X is a collection W =

{W(x) : x ∈ X} where each W(x) is a collection of subsets of X containing x such that for

any point x in an open set U , there is an open set V with x ∈ V ⊆ U satisfying: for each y

in V , there is a W in W(y) such that x ∈ W ⊆ U (respectively, x ∈ W ⊆ V ). We note that

we can take U and V to be basic open sets. Point-networks are also known as ‘condition

(F)’, and as the ‘Collins-Roscoe structuring mechanism’ after the authors who introduced

them [10]. The term ‘point network’ was suggested by Gruenhage. A point-network is called

countable if each collection W(x) is countable. Spaces with a countable point-network are

sometimes called ‘Collins-Roscoe’ spaces.

Lemma 188. If a topological group G is (cn), then G has a countable point-network.

Hence, G, and each of its finite powers, is hereditarily metaLindelöf and (monotonically)

monolithic.

Proof. Fix a countable family D satisfying (cn)e, where e is the identity in G. We may

suppose if D is in D then so is D−1. DefineW = {W(g) : g ∈ G} byW(g) = {gD : D ∈ D}.

Note that eachW(g) is countable, and now we show this is a point-network. Fix an arbitrary

g in G and a basic open neighborhood U of g, so U = gUe for some open neighborhood Ue of

e. Pick a neighborhood T of e such that TT−1 ⊆ Ue. Since D satisfies (cn)e, then we know

Ve =
⋃
{D ∈ D : D ⊆ T} is a neighborhood of e, and so V = gVe is a neighborhood of g.

Also, note that Ve ⊆ T ⊆ Ue, so V is contained in U .

Now consider any h in V . For some D in D such that D ⊆ T , we have h ∈ gD, and so

h = gd for some d in D. Note that g = hd−1 and D−1 is in D, so W = hD−1 is in W(y). It

remains to note that g = hd−1 ∈ hD−1 = W = gdD−1 ⊆ gDD−1 ⊆ gTT−1 ⊆ U .

Recall that a space is called Baire if any countable union of closed nowhere dense subsets

has empty interior. A space if locally Baire if each point has a neighborhood base whose

members are Baire.

Lemma 189. Let A be a nonempty subset of a locally Baire space X such that (cn)A holds

and A has neighborhood base of closed sets. Then A has countable π-character in X.
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Proof. Let D be a local network at A witnessing (cn)A. Since A has a neighborhood base of

closed sets, we may assume each member of D is closed. Consider any open U containing A.

Then T =
⋃
{D ∈ D : D ⊆ U} is a neighborhood of A by (cn)A. Fix an x in A. Then there

is an open, Baire neighborhood V of x contained in T . Since {D ∩ V : D ∈ D, D ⊆ U} is a

countable closed cover of the Baire space V , then some member of this cover has nonempty

interior in V , and hence also in X. Thus, {D◦ : D ∈ D} is a countable π-base at A.

Since any point in a (regular) space has a neighborhood base of closed sets, then we

obtain:

Corollary 190. If x is a point in a locally Baire space X such that (cn)x holds, then x has

countable π-character

Sakai gives the following definition in [42]. A space X has the property (#) at a point

x in X if for each sequence (Un)n<ω of open subsets of X such that x is in
⋂
n Un, there is a

sequence (Fn)n<ω of finite sets with Fn ⊆ Un such that x is in
⋃
n Fn.

In [42], it is shown that (#) combined with the strong Pytkeev property at x (that is,

(cp)x) guarantees first countability at x. We generalize Sakai’s result as follows. Say X has

the property (#)′ at a subset A if for each decreasing sequence (Un)n<ω of open subsets of

X with A ∩ Un 6= ∅ for each n, there is a sequence (Fn)n<ω of finite sets with Fn ⊆ Un such

that A ∩
⋃
n Fn 6= ∅. If A = {x} is a singleton, then we just say X has the property (#)′ at

x. If X satisfies (#) at x, then it clearly satisfies (#)′ at x.

Lemma 191. If A is a countably compact subset of X and X has the property (#)′ at each

point in A, then X has the property (#)′ at A.

Proof. Suppose (Un)n is a decreasing family of open subsets of X such that A meets Un for

each n. Then (A∩Un)n is a decreasing sequence of nonempty closed subsets of the countably

compact space A, so the intersection of this sequence is nonempty. Thus, there is an x in

A ∩
⋂
n Un. The property (#)′ at x then provides a sequence (Fn)n of finite sets Fn ⊆ Un

such that x is in
⋃
n Fn. Hence, A meets

⋃
n Fn.

Lemma 192. Suppose X satisfies (cpω)A and (#)′ for a subset A of X which has a neigh-

borhood base of closed sets. Then A has a countable neighborhood base in X.
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Proof. Let D be a countable local network at A witnessing (cpω)A. Since A has a neighbor-

hood base of closed sets, then we may assume each member of D is closed. We will show

that {
⋃
D′ : D′ ⊆ D finite} ∩ NA is a (clearly countable) neighborhood base at A. Fix an

open neighborhood U of A and enumerate {D ∈ D : D ⊆ U} = {Dn : n < ω}. It suffices to

find an n such that Bn = D0 ∪ · · · ∪Dn is a neighborhood of A.

Suppose no such n exists. Then A meets the closure of the open set Un = U \Bn for each

n < ω. Since (Un)n is a decreasing sequence, then property (#)′ provides finite sets Fn ⊆ Un

such that A meets the closure of the countable set C =
⋃
n Fn. Note also that C is disjoint

from A since each Dn contains A. Hence, (cpω)A provides a D in D such that D ⊆ U and

D ∩ C is infinite. But then D = Dn for some n < ω, and since Dn ∩ Fm is empty for each

m ≥ n, we see that D ∩ C ⊆ F0 ∪ · · · ∪ Fn−1 is actually finite, a contradiction.

Since every point in a (regular) space has a neighborhood base of closed sets, then we

recover Sakai’s result from [42] mentioned above (with slightly weakened hypotheses).

Corollary 193. If X satisfies (#)′ and (cpω)x at a point x in X, then x is a point of first

countability.

We cannot weaken the hypothesis (cpω)x to (cn)x in the previous result. Indeed, if Y = R

with the discrete topology, then the one-point compactification X = αY = Y ∪ {∞} (that

is, the supersequence of size c) has both properties (#) and (cn)∞ at ∞, but X is clearly

not first countable at ∞.

6.6 MORE ABOUT NEIGHBORHOOD FILTERS

6.6.1 IN METRIZABLE SPACES

Lemma 194. Let A be a nowhere dense subset of a first countable space X. Let U be a family

of open subsets of X, which is discrete for A (every point in A has an open neighborhood in X

meeting at most one member of U), and each member of which meets A. Then NX
A ≥T ωU .

Proof. For each U in U , pick xU ∈ U ∩ A. For each x in A, fix an open neighborhood Tx
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of x such that Tx meets exactly one element of U , say Ux. Since X is first countable (and

Tychonoff), then for each U in U , we can fix a decreasing local base (BU
n )n<ω at xU such

that BU
0 = TxU ∩ U and BU

n ⊇ BU
n+1. As A is nowhere dense in X, we can pick zUn in

(BU
n \BU

n+1) \ A.

Define φ : NX
A → ωU by φ(V ) = (nU)U , where nU is the minimal n < ω such that

BU
n ⊆ V . Then φ is order-preserving, and we now show it is a surjection. Take any (nU)U in

ωU . Let V = V0∪V1 where V0 =
⋃
{BU

nU
: U ∈ U} and V1 = X \{zUnU−1 : U ∈ U and nU > 0}.

If x is in A\V0, then either Tx or Tx \{zUxnUx−1} is a neighborhood of x contained in V1. Thus,

V is a neighborhood of A. Moreover, since zUnU−1 is not in V for each U such that nU > 0,

then for every U in U , the smallest n such that BU
n is contained in V is n = nU . In other

words, φ(V )U = nU , so φ is surjective, as claimed.

Corollary 195. Let A be a closed nowhere dense subset of metrizable X. If NX
A has calibre

(ω1, ω), then A is separable.

Proof. Let B =
⋃
n Bn be a base for X, where each Bn is discrete. Set BAn = {B ∈ Bn :

A∩B 6= ∅}, and BA =
⋃
n BAn . Then BA is a base for A in X. So A is second countable (and

so separable) if we can show each BAn is countable. By Theorem 135, we know the directed

set ωκ is not calibre (ω1, ω) when κ is uncountable since ω is not countably directed. It

follows from Lemma 194 that every discrete family U of open sets in X each member of

which meets A must be countable. In particular, each BAn is countable, as desired.

Lemma 196. If X is a metrizable space and A is a separable subset of X, then X can

be embedded in a metrizable space X̃ such that the closure K of A in X̃ is compact and

X̃ \X = K \ A.

Proof. Let D be a countable dense subset of A. Recall that X embeds in H(κ)ω, where

κ is the weight of X and H(κ) is the metric hedgehog with κ many spines (see 4.4.9 in

[13]). Viewing D as a subset of H(κ)ω, we see that for each n < ω, the projection πn(D)

is a countable subset of H(κ), and so πn(D) is contained in countably many spines of the

hedgehog. By rearranging the spines in each factor, we may assume there is one subspace Y
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of H(κ) consisting of countably many spines (so Y ∼= H(ω)) that contains every projection

πn(D). Thus, D ⊆ Y ω ⊆ H(κ)ω.

Let I be the closed unit interval [0, 1] and consider the subspace H = {(x, x
n
) : x ∈ I, n ∈

N} of R2. Then H is homeomorphic to H(ω) and so also to Y . Now let F = H ∪ (I × {0}),

which is the closure of H in R2 and is compact. So F is H with one additional ‘limit spine’.

By gluing the origin in F to the center of the hedgehog H(κ), we obtain a metrizable space

H̃(κ) which has a total of κ + ω = κ many spines, one of which is the limit of a countable

sequence of spines. We can identify H(κ) with the subspace of non-limit spines in H̃(κ) in

such a way that Y is identified with the countable sequence of spines which converge to the

limit spine.

We now have D ⊆ Y ω ⊆ H(κ)ω ⊆ H̃(κ)ω, and the closure Ỹ of Y in H̃(κ) is compact

(being homeomorphic to F ). Let K be the closure of D in H̃(κ)ω. Since D is dense in A,

we see that K is also the closure of A in H̃(κ)ω. Moreover, K is contained in Ỹ ω and so is

compact. Finally, X̃ = X ∪K ⊆ H̃(κ)ω is the desired metrizable space.

In particular, Lemma 196 shows that every separable metrizable space M has a metriz-

able compactification γM . Let M̌ = γM \M , which is called the remainder of M in the

compactification γM . Then M̌ is also separable metrizable. Although different choices of

the compactification γM will yield different remainders M̌ , Lemma 197 below says that the

Tukey class of K(M̌) is independent of the choice of (metrizable) compactification.

Lemma 197. If γX and δX are compactifications of a space X, then K(γX \ X) =T

K(δX \X).

Proof. It clearly suffices to prove this when δX = βX, the Stone-Cech compactification of X.

By maximality of βX, there is a continuous F : βX → γX which is the identity on X and

carries βX \X onto γX \X. Then φ1 : K(βX \X)→ K(γX \X) defined by φ1(K) = F (K)

is easily checked to be a Tukey quotient. As is φ2 : K(γX \ X) → K(βX \ X) defined by

φ2(L) = F−1L

Theorem 198. Let X be a metrizable space, let A be a separable subset of X, and let Ǎ be

the remainder of A in any (separable) metrizable compactification of A.
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(1) If A is compact, then ω ≥T NX
A .

(2) If A is non-compact, then K(Ǎ× ωω) ≥T NX
A .

(3) If A is nowhere dense in X and non-compact, then NX
A =T K(Ǎ× ωω).

Proof. If A is compact, then certainly it has a countable neighborhood base in X, which

gives (1). So assume A is not compact. By Lemma 196, X embeds in a metrizable space

X̃ = X ∪ K, where K is the closure of A in X̃ and K is compact. Let M = K \ A,

which is non-empty since A is not compact. Then K(M) =T K(Ǎ) by Lemma 197, and so

K(Ǎ× ωω) =T K(Ǎ)×K(ωω) =T K(M)× ωω.

Since N X̃
A ≥T NX

A (by tracing neighborhoods in X̃ down onto X), then to prove (2),

it suffices to show K(M) × ωω ≥T N X̃
A . Fix a compatible metric for X̃. For any compact

subset L of X̃ and any n < ω, let Bn(L) be the open ball of radius 1
n+1

around L and

let Bn(L) be the corresponding closed ball. We may assume the metric is bounded by 3/4

so that B0(L) = X̃ for any L. For each σ in ωω and each compact subset L of M , let

Lσ = L ∪
⋃
n[Bn(L) \ Bσ(n)(K)]. Note that each Lσ is a closed subset of X̃ such that

Lσ ∩K = L, and in particular, Lσ is disjoint from A. Now define φ1 : K(M)×ωω → N X̃
A by

φ1(L, σ) = X̃ \ Lσ.

Since φ1 is clearly order-preserving, it remains to show that the image of φ1 is cofinal in

N X̃
A . Let U be any open subset of X̃ containing A, and let L = K \ U , which is a compact

subset of M . We wish to find a σ such that φ1(L, σ) is contained in U , or in other words,

such that X̃ \ U is contained in Lσ. Let Cn be the closed set Bn(L) \ Bn+1(L) for each n,

and note that these sets, together with L, form a cover of X̃. Thus, we have

X̃ \ U = (X̃ \ U) ∩

(
L ∪

⋃
n

Cn

)
= L ∪

⋃
n

(Cn \ U) = L ∪
⋃
n

[Bn(L) \ Vn],

where Vn = U ∪ Bn+1(L) for each n. Note that each Vn is a neighborhood of K in X̃, so

we can find σ such that Bσ(n)(K) is contained in Vn for each n. It follows that X̃ \ U is

contained in Lσ, as desired to complete the proof of (2).

Now we assume further that A is nowhere dense in X and show that NX
A ≥T K(M)×ωω.

Since A is not compact, there is a sequence (an)n on A which does not converge to any

element of A. As X is metrizable, we can find an open set Un around each an so that
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U = {Un : n < ω} is discrete on A. Since A is nowhere dense, we can apply Lemma 194 to

see that NX
A ≥T ωU =T ω

ω. Thus it remains to show NX
A ≥T K(M).

Define φ2 : NX
A → K(M) by φ2(U) = (X \ U)

X̃
∩K. First note that as U is a neighbor-

hood of A in X, its complement in X has closure in X̃ disjoint from A. Hence, φ2(U) really

is a compact subset of M = K \ A. Clearly φ2 also preserves the relevant orders (reverse

inclusion on NX
A , inclusion on K(M)), so it suffices to show the image of φ2 is cofinal. In

fact, we will show φ2 is a surjection.

Fix any compact subset L of M and choose a countable dense subset D of L. Enumerate

D = {xn : n < ω} such that each element is listed infinitely many times. For each n, let

Bn denote the open ball of radius 1
n+1

around xn in X̃. Since A is dense in K, then Bn

meets A, and since A is nowhere dense in X, then Bn also meets X \ A, say at yn. Let

C = {yn : n < ω}. Then by construction, the closure of C in X̃ is C ∪ L, which is disjoint

from A. So if we let U = X \ C, then U is in NX
A , and φ2(U) = (C ∪ L) ∩K = L, which

completes the proof of (3).

In the remainder of this section, we investigate the neighborhood filter of the diagonal

∆ of a metrizable space X. Recall the Cantor-Bendixson process described in Section 3.3,

wherein I(X) denotes the set of isolated points in X, and X ′ = X \ I(X) is the derived set

of X. For any subset S of X, let ∆(S) = {(x, x) : x ∈ S} be the diagonal of S in X2. Write

∆ for ∆(X).

Lemma 199. Fix a space X. Then ∆(X ′) is a closed nowhere dense subset of X2, and

NX2

∆ =T NX2

∆(X′).

Proof. Since X ′ is closed in X, then ∆(X ′) is closed in ∆ and so also in X2. Also, for any

point x in X ′, we know x is not isolated in X, so every basic neighborhood of (x, x) in X2

must intersect X2 \∆. Thus, ∆(X ′) is also nowhere dense in X2.

Now for any neighborhood U of ∆(X ′) in X2, let φ1(U) = ∆(I(X)) ∪ U , which is a

neighborhood of ∆ = ∆(X) in X2 since each point of I(X) is isolated in X. Moreover, every

member of NX2

∆ contains such a neighborhood, so the order-preserving map φ1 : NX2

∆(X′) →

NX2

∆ witnesses NX2

∆(X′) ≥T NX2

∆ .
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For each x in X, let Px = (X × {x}) ∪ ({x} × X), and for any neighborhood V of

∆(X) in X2, define φ2(V ) = V \ {(x, x) : Px ∩ V = {(x, x)}}. Note that φ2(V ) is a

neighborhood of ∆(X ′) in X2 since each x in X ′ has a neighborhood W such that W 2 is

contained in V , and since W is not a singleton, then W 2 is also contained in φ2(V ). Evidently

φ2 : NX2

∆ → NX2

∆(X′) is order-preserving, and if U is in NX2

∆(X′), then φ2(φ1(U)) = U . Hence,

φ2 shows NX2

∆ ≥T NX2

∆(X′).

A point x in a space X is called a P -point if every countable intersection of neighborhoods

of x is a neighborhood of x. In other words, x is a P -point when Nx is countably directed.

Lemma 200. Let X be a space, and let E be a closed discrete subspace of X. Then NX2

∆ ≥T∏
{NX

x : x ∈ E}.

Hence, if NX2

∆ has calibre (ω1, ω), and if A is a closed subset of X such that at most

countably many points of A are P -points in X, then A has countable extent.

Proof. Define φ : NX2

∆ →
∏
{NX

x : x ∈ E} by φ(W ) = (π2[W ∩ ({x} × X)])x∈E, which is

clearly order-preserving. To see that the image of φ is cofinal, fix any (Ux)x in
∏
{NX

x :

x ∈ E}, and for each x in E, fix a neighborhood Vx of x such that Vx ∩ E = {x}. Then

W = (X \ E)2 ∪
⋃
{(Ux ∩ Vx)2 : x ∈ E} is a neighborhood of ∆, and φ(W ) = (Ux ∩ Vx)x,

which is ‘above’ (Ux)x in
∏
{NX

x : x ∈ E}.

Now suppose NX2

∆ has calibre (ω1, ω), and assume A is a closed subset of X that does

not have countable extent, so there is an uncountable closed discrete subset E of A. Since E

is also closed in X, then from the first part, we know
∏
{NX

x : x ∈ E} must also have calibre

(ω1, ω). Then Theorem 135 shows that NX
x is countably directed for all but countably many

points x in E. It follows that uncountably many of the points in E are P -points in X.

Theorem 201. Let X be metrizable. Then the following are equivalent:

(i) X ′ is separable,

(ii) NX2

∆ =T K(X̌ ′ × ωω),

(iii) K(M) ≥T NX2

∆ , for some separable metrizable M ,

(iv) P ≥T NX2

∆ , for some second countable P with CSB, and

(v) NX2

∆ is calibre (ω1, ω).
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In particular, ωω ≥T NX2

∆ if and only if X ′ is σ-compact.

Proof. If X ′ is separable, then ∆′ = ∆(X ′) is a separable, closed and nowhere dense subset of

X2. By Theorem 198, NX2

∆′ =T K(∆̌′×ωω). Since X ′ and ∆′ are homeomorphic, combining

this with Lemma 199, we see NX2

∆ =T K(X̌ ′ × ωω), so (i) implies (ii).

Taking M = X̌ ′×ωω shows that (ii) implies (iii), while Lemma 55 shows that (iii) implies

(iv), and Lemma 40 shows that (iv) implies (v). Now assume (v). Since X is first countable,

then none of the points in X ′ are P -points in X, so Lemma 200 shows that X ′ has countable

extent and is therefore separable. Thus, the equivalence of (i)-(v) is established.

Finally, if X ′ is σ-compact, then X ′ is separable since it is metrizable, and likewise if

ωω ≥T NX2

∆ , then from the equivalence of (i)-(v), we know X ′ is separable. So in either

case, the equivalence of (i)-(v) shows that NX2

∆ =T K(X̌ ′ × ωω) =T K(X̌ ′) × ωω. Hence

ωω ≥T NX2

∆ if and only if ωω ≥T K(X̌ ′), and by Christensen’s Theorem 83, this occurs if

and only if X̌ ′ = γ(X ′) \ X ′ is Polish (i.e. absolutely Gδ) or equivalently X ′ is σ-compact

(i.e. absolutely Fσ).

If X itself is separable, rather than just X ′, then the next result says we can replace

K(X̌ ′ × ωω) with K(X̌ × ωω) in the implication ‘(i) =⇒ (ii)’ of the previous theorem.

Lemma 202. Let X be separable metrizable but not compact. Then K(X̌ ′)×ωω ≥T K(X̌) ≥T
K(X̌ ′). Hence, NX2

∆ =T K(X̌ × ωω).

Proof. Let γX be a separable metrizable compactification of X, so we can take X̌ = γX \X

and X̌ ′ = X ′
γX \ X ′. Note that X̌ ′ = X̌ ∩ X ′γX , so X̌ ′ is a closed subset of X̌, and we

immediately get that K(X̌) ≥T K(X̌ ′).

Next we show K(X̌ ′)× ωω ≥T K(X̌). We know from Lemma 52 and Theorem 198 that

K(X̌ ′)× ωω =T K(X̌ ′ × ωω) ≥T N γX\I(X)
X′ , and by Corollary 13, we see that K(X̌) =T N γX

X ,

so it suffices to show N γX
X =T N γX\I(X)

X′ . Define φ : N γX\I(X)
X′ → N γX

X by φ(U) = U ∪ I(X)

which is well-defined since I(X) is open in γX. Then φ is an order-isomorphism with inverse

φ−1 : N γX
X → N γX\I(X)

X′ defined by φ−1(U) = U \ I(X). Thus, the first claim is proven.

Finally, note that ωω = ωω×ωω, so the first claim givesK(X̌ ′)×ωω =T K(X̌ ′)×ωω×ωω ≥T
K(X̌) × ωω ≥T K(X̌ ′) × ωω, so that K(X̌) × ωω =T K(X̌ ′) × ωω. Thus, the second claim
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follows from Lemma 52 and Theorem 201.

6.6.2 IN TOPOLOGICAL VECTOR SPACES

In [6], Cascales and Orihuela introduced the class G of all locally convex topological vector

spaces E such that the dual E∗ has an ωω-ordered cover {Aα : α ∈ ωω} (that is, Aα ⊆ Aβ

whenever α ≤ β in ωω) such that the countable subsets of each Aα are equicontinuous. Since

the equicontinuous families in E∗ are related via polars to the neighborhoods of 0 in E, which

are, in turn, related to the neighborhoods of the diagonal in E2, then Cascales and Orihuela

were able to use their Theorem 3 to prove two key results about the class G in [6]: if E

is in G, then (i) every compact subspace of E is metrizable and (ii) every weakly compact

subspace of E is Talagrand compact. Here, a compact space X is called Talagrand compact

if it is compact and Cp(X) is K-analytic, and a space Y is called K-analytic if there is a

space Z with compact subspaces Kn,m for each n,m < ω such that Y is a continuous image

of
⋂
n

⋃
mKn,m.

We show that both of these results hold more generally for any locally convex space (lcs)

satisfying the conclusion of Theorem 203 below. In fact (i) holds for a much wider class of

lcs, and every weakly compact subspace of a lcs satisfying the conclusion of Theorem 203 is

Gul’ko compact. Here, a compact space X is called Gul’ko compact if Cp(X) is Lindelöf Σ.

Let us say that a locally convex space E has (neighborhood) type 〈Q,R〉 if there is a directed

set P of type 〈Q,R〉 such that P ≥T NE
0 .

If E = (E, τ) is a topological vector space, and if F is a subset of E∗, the set of all

continuous linear functionals on (E, τ), then σ(E,F ) denotes the coarsest topology on E

with respect to which the members of F remain continuous. Thus, σ(E,E∗) is the weak

topology on E, and σ(E∗, E) is the weak-∗ topology on the dual E∗. Note that these

topologies depend on the original choice of topology τ for E.

Theorem 203. Let E = (E, τ) be a lcs in the class G. Then E has a lcs topology τ s such

that σ(E,E∗) ⊆ τ s ⊆ τ and (E, τ s) is a lcs with neighborhood type 〈ωω, countably directed〉.

Proof. Let {Aα : α ∈ ωω} be an ωω-ordered cover of E∗ witnessing that E = (E, τ) is in

the class G. Let τ s be the topology induced by convergence on countable subsets of the
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Aα’s. Then (E, τ s) is also a Hausdorff lcs, τ s contains the weak topology σ(E,E∗), and since

countable subsets of each Aα are equicontinuous, we have τ s ⊆ τ . Clearly P =
⋃
{[Aα]≤ω :

α ∈ ωω} is of type 〈ωω, countably directed〉 and P ≥T N (E,τs)
0 .

Since every directed set in the class 〈2o+CSB, countably directed〉 has calibre (ω1, ω) (see

Lemma 33 and Lemma 43), we can deduce the following from Theorem 64.

Proposition 204. If a lcs E has neighborhood type 〈2o+CSB, countably directed〉, then every

compact subset of E is metrizable.

Now we give our extension of Cascales and Orihuela’s result that every weakly compact

subset of a class G space is Talagrand compact.

Proposition 205. If a lcs E has a weaker topology τ s containing σ(E,E∗) such that (E, τ s)

has neighborhood type 〈2o+CSB, countably directed〉 (respectively, 〈ωω, countably directed〉),

then every weakly compact subset of E is Gul’ko (respectively, Talagrand) compact.

Proof. Suppose there is a type 〈2o+CSB, countably directed〉 directed set P and a weaker

locally convex topology τ s containing σ(E,E∗) such that P ≥T N (E,τs)
0 . Since each member

of E∗ is continuous on (E,weak), and since the weak-∗ topology is equivalent to the pointwise

convergence topology, then F = (E∗,weak-∗) is a subspace of Cp(E,weak). Let K be a

weakly compact subset of E, and let π : Cp(E,weak)→ Cp(K) be the restriction map. Then

S = π(F ) separates points in K.

For each τ s-neighborhood V of 0 in E (which is also a neighborhood of 0 in the original

topology on E), let φ(V ) be the polar {l ∈ E∗ : |l(x)| ≤ 1 ∀x ∈ V } of V , which is compact

in F by the Banach-Alaoglu-Bourbaki theorem. Then φ is an order-preserving map from

N (E,τs)
0 to K(F ) whose image covers F , so φ witnesses that N (E,τs)

0 ≥T (F,K(F )). The map

π above also witnesses that (F,K(F )) ≥T (S,K(S)), so by transitivity, we therefore have

P ≥T (S,K(S)).

Baturov’s theorem (see III.6.1 in [1]) shows that for any subspace Y of Cp(K), Y is

Lindelöf if and only if Y has countable extent. In particular, the countably compact subsets

of Cp(K) are Lindelöf and therefore compact. Hence, (S,K(S)) is countably determined (see

Lemma 172 and the comment that follows it) and has type 〈2o+CSB, countably directed〉,

144



so we can apply Theorem 174 to see that S is Lindelöf Σ. Thus K is Gul’ko compact since

it is compact and S is a Lindelöf Σ subset of Cp(K) separating the points in K (see IV.2.10

in [1]).

Now suppose there is a directed set P with type 〈ωω, countably directed〉 and a weaker

locally convex topology τ s containing σ(E,E∗) such that P ≥T N (E,τs)
0 . Let K be a weakly

compact subset of E. Repeating the argument for the 〈2o+CSB, countably directed〉 case, we

find a Lindelöf Σ subset S of Cp(K) which separates the points of K and has P ≥T (S,K(S)).

Since (S,K(S)) has type 〈ωω, countably directed〉 (by Lemma 34) and K(S) is countably

determined (see Lemma 172 and the comment after it), then ωω ≥T (S,K(S)) by Lemma 36.

It is well-known (see [44], for example) that a Lindelöf space Y is K-analytic if and only

if it has an ωω-ordered compact cover, i.e. ωω ≥T (Y,K(Y )). Thus, S is K-analytic, so

Cp(K) is K-analytic by IV.2.14 in [1], which means K is Talagrand compact.

Recall Cp(X) is the topological vector space of all continuous real-valued functions on

a space X, endowed with the topology of pointwise convergence. According to Lemma 62,

NCp(X)
0 =T [X]<ω×ω. In particular, up to Tukey equivalence, NCp(X)

0 is determined entirely

by the cardinality of the space X, and is not at all dependent on the topology. In fact we

can prove a much broader result.

Let (L, τ) be a topological vector space. Then τ is said to be a weak topology for L if it is

the weakest topology induced by L∗, the set of all continuous linear functionals on (L, τ). In

other words, τ is a weak topology if it coincides with the weak topology σ(L,L∗) generated

by τ . It is known, see [26] for example, that (i) τ is a weak topology if and only if (ii) (L, τ)

embeds as a dense linear subspace of RH , where H is a Hamel basis for L∗, and if and only

if (iii) (L, τ) embeds as a linear subspace of some power of R.

Of course, the weak topology on a Banach space is a weak topology. Also, if τ = σ(E∗, E)

is the weak-∗ topology on the dual E∗ of a Banach space E, then (E∗, τ) is a linear subspace

of RE, so the weak-∗ topology is a weak topology by (iii). In both cases, if the weak topology

is metrizable, then the Banach space (and its dual) is finite dimensional.

Similarly, note by (iii) that the topology τp of pointwise convergence on C(X) is weak,

and any Hamel basis H for C(X)∗ has cardinality |X|. Observe also that Lp(X), the weak
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dual of Cp(X) (in other words, Cp(X)∗ with the weak topology induced by all continuous

linear functionals on Cp(X)) has a weak topology, and its dual is C(X). If C(X) has a

countable Hamel basis H = {fn : n ∈ N}, then Cp(X) =
⋃
n{
∑n

i=1 λifi : λi ∈ [−n, n]} is

σ-compact, and so by Velichko’s theorem (see I.2.1 in [1]), X is finite.

Lemma 206. Let A be a subset of a space X such that A has a neighborhood base of closed

sets. Let D be a dense subset of X containing A. Then NX
A =T ND

A .

Proof. Clearly the map U 7→ U ∩D shows NX
A ≥T ND

A . For the converse, consider the map

ND
A → NX

A given by U 7→ (U)◦ (where the interior and closure are taken in X). This map

is well-defined, order-preserving, and has cofinal image because D is dense and A has a base

of closed neighborhoods in X.

Theorem 207. Let (L, τ) be a topological vector space, and suppose τ is a weak topology.

Then N (L,τ)
0 =T [κ]<ω, where κ = |H| · ℵ0 and H is a Hamel basis for L∗.

Proof. Fix H a Hamel basis for L∗. Then (L, τ) embeds densely in RH . By Lemma 206,

N L
0 =T N RH

0 . By Lemma 62, we see that N RH
0 =T [H]<ω × ω =T [κ]<ω (give H the discrete

topology and use S = K(H) = [H]<ω so that CS(H) = RH).

Theorem 208. Let (L, τ) be a topological vector space, and suppose τ is a weak topology.

Then the following are equivalent:

(i) ωω ≥T N L
0 ,

(ii) K(M) ≥T N L
0 for some separable metric space M ,

(iii) N L
0 has calibre (ω1, ω),

(iv) L∗ has countable algebraic dimension, and

(v) L is separable metrizable.

Proof. Certainly (i) implies (ii) since ωω =T K(ωω). Also, since K(M) has calibre (ω1, ω) for

any separable metric space M , then (ii) implies (iii). If (iv) holds, then as τ is weak, (L, τ)

embeds in a countable power of R, so it is separable metrizable, which is (v). And if (v)

holds, then L is first countable, and ωω ≥T ω ≥T N L
0 , so (v) implies (i).

It remains to show (iii) implies (iv). Let H be a Hamel basis for L∗. Then N L
0 =T

[H × ω]<ω, and [H × ω]<ω has calibre (ω1, ω) if and only if H is countable.
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Corollary 209. For any space X, the neighborhood filter of 0 in Cp(X) has calibre (ω1, ω)

if and only if X is countable, while the neighborhood filter of 0 in Lp(X) has calibre (ω1, ω)

if and only if X is finite.

Corollary 210. Let B be a Banach space. Then 0 in B with the weak topology has neigh-

borhood filter with calibre (ω1, ω) if and only if B is finite dimensional. And the 0 in B∗ with

the weak-∗ topology has neighborhood filter with calibre (ω1, ω) if and only if B∗ (equivalently,

B) is finite dimensional.

6.7 EXAMPLES

Example 17. Let τ be any topology on R refining the usual topology. Then the pre-ideal

K(R, τ) of all τ -compact subsets of R is (ck+)′. However, for many choices of τ , such

as the discrete topology and the Michael-line topology, (R, τ) is not Lindelöf cofinally Σ

(equivalently, K(R, τ) is not (cc)′).

Proof. Let N be any countable network for the reals with the usual topology, which is closed

under finite unions. Since any τ -compact subset K of R is also compact in the usual topology,

then K is the intersection of all elements of N containing it. Hence if we let LK = K, then

it is clear N satisfies (ck+)′ for K(R, τ). Now note that the Michael line and the discrete

topology on R are not even Lindelöf.

Example 18. Let X = R be the reals with the usual topology. Let S = [X]<ω, the ideal of

all finite subsets of X. Then S is (cc+)′ but not (cp)′.

Proof. Setting A = S and N to be a countable base for R closed under finite unions and

intersections. Then N is a countable network for S modulo the cofinal family A. So (cc+)′

holds by Theorem 169.

Now suppose N is a countable family of subsets of X, which, without loss of generality,

we assume is closed under finite unions and intersections. We show N is not (cp)′ for S.

And so S is not (cp)′.

147



Take any S in S and from NS = {N ∈ N : S ⊆ N} select a decreasing sequence (NS
n )n

such that every member of NS is contained in some NS
n . Since N is countable while S has

no countable cofinal family, there must be some S in S such that (NS
n )n does not stabilize

(no m such that for all n ≥ m we have NS
n = NS

m). Then passing to a subsequence we can

suppose there is an an in NS
n but not NS

n+1. Let A = {an : n < ω}. By construction, we

know that for every N in N containing S, all but finitely many points of A are contained in

N . But A is infinite, and so not contained in any element of S = [X]<ω.

Example 19. Cp(X) is (cn) but not (cs) for each of the following spaces X: the closed unit

interval I, the Double arrow space, and the Alexandrov duplicate of I.

Proof. In each case X is uncountable, so Cp(X) is not (cs) by Theorem 180. But Cp(X) can

be checked to be (cn) by applying Theorem 181 assisted by Theorem 182.

The following example shows that (ck) cannot be weakened to (cn) in Corollary 187.

Here A(κ) denotes the one-point compactification of the discrete space of size κ.

Example 20. For every uncountable κ ≤ c, the locally convex space Cp(A(κ)) is Fréchet-

Urysohn and (cn), but not metrizable.

Proof. Certainly Cp(A(κ)) is not metrizable when κ is uncountable, but it is Fréchet-Urysohn

since A(κ) is a compact scattered space. Since κ ≤ c, then A(κ) is a continuous image of the

Alexandrov duplicate of the unit interval, which in turn is the pre-image of I = [0, 1] under

a perfect map with finite fibres. So Theorem 182 shows that A(κ) is in LΣ(< ω), and thus

Theorem 181 shows that Cp(A(κ)) is (cn).

Example 21. For any cardinal κ with uncountable cofinality, Ck(κ) is (cpω) and so (cs),

but not (cn).

Proof. By Theorem 179, we know Ck(κ) is not (cn) since κ is not Lindelöf when it has un-

countable cofinality. But K(κ) =T cof(κ), which is countably directed since κ has uncount-

able cofinality, and hence K(κ) is of type 〈2o+CSB, countably directed〉, as is K(κ× ω) =T

K(κ) × ω. Hence NCk(κ)
0 is 〈2o+CSB, countably directed〉 (Lemma 178). So Ck(κ) is (cpω)

(Theorem 167 (1)).
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[35] A. Louveau and B. Velickovic, Analytic Ideals and Cofinal Types, Ann. Pure Appl. Logic
99 (1999), 171–195.

[36] R.A. McCoy, Function Spaces which are k-spaces, Topol. Proc. 5 (1980) 139-146.

[37] A. Miscenko, Spaces with a pointwise denumerable basis, Dokl. Akad. Nauk SSSR 144
(1962), 985-988.

[38] K. Nagami, Paracompactness and strong screenability, Nagoya Math. J. 8 (1955), 83-88.

[39] P. Nickolas, M. Tkachenko, The character of free topological groups I, Applied General
Topology, vol. 6, no. 1 (2005), 15–41

[40] P. Nyikos, Metrizability and the Frchet-Urysohn Property in Topological Groups, Proc.
Amer. Math. Soc. 83 (1981), no. 4, 793801.

[41] M.E. Rudin, A normal screenable nonparacompact space, Topology Appl. 15 (1983), no.
3, 313-322.

[42] M. Sakai, Function Spaces with a Countable cs∗-Network at a Point, Topology Appl.
156 (2008), no. 1, 117-123.

[43] D.B. Shakmatov, On pseudocompact spaces with a point-countable base, Soviet Math.
Dokl. 30 (1984), 747-751.

[44] V.V. Tkachuk, A space Cp(X) is dominated by irrationals if and only if it is K-ananlytic,
Acta Math Hungar. 107 (2005), no. 4, 253–265.
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[46] S. Todorčević, Partition problems in topology, Contemp. Math., vol. 84, Amer. Math.
Soc., Providence, RI, 1989.

[47] B. Tsaban, L. Zdomskyy, On the Pytkeev Property in Spaces of Continuous Functions
(II), Houston J. Math. 35 (2009), 563–571.

[48] J. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no.
2. Princeton University Press, Princeton, N. J., 1940.

151



[49] V.V. Uspenskii, Pseudocompact spaces with a σ-point-finite base are metrizable, Com-
ment. Math. Univ. Carolin. 25 (1984), 261-264.

[50] S. Willard, General Topology, 2004.

152



INDEX

2o, see second countable
[S]≤ω, 10
[S]<ω, 10
[S]1, 12
↓p , see down set
(#), 135
=T , see Tukey equivalence
≥T , see Tukey quotient

AD(τ), see Alexandrov duplicate
A(κ), see supersequence
ℵ0-space, 47
Alexandrov duplicate, 41
(α4), 132
analytic space, 50

b, 18
Baire space, 134
Bernstein set, 31
big set, 43
bounded above, 8

c, 8
(c·)′ properties, 107
(c·) properties, 114, 118
(c·)x properties, 118
calibre, 15
Cantor-Bendixson process, 52
ccc, see countable chain condition
class 〈Q,R〉, 19
CL(Y ), 73
cof(P ), see cofinality
cofinal, 10
cofinal for a pair, 11
cofinality, 10
Collins-Roscoe space, 134
compact-open topology, 34
complementation map, 9
cosmic, 92

cosmic space, 47
co-stationary, 90
countable chain condition, 47, 72
countable tightness, 118
countably determined, 23
countably directed, 21
countably paracompact, 70
CSB, 24
CSBS, 24
CS(X), 34
cX , see complementation map

Dedekind complete, 8
∆-set, 72
∆-space, 72, 82
derived set, 52
development, 58
diagonal, 2
directed set, 8
directed set pair, 11
DK, 25
down set, 8
D(Y ;A1, A2), 81

ECSB, 25

filter, 1, 9
first countable, 118
Fréchet-Urysohn space, 25

G, 143
Gul’ko compact, 143

hemicompact, 11
hereditarily calibre, 49
hereditarily relative calibre, 48
hereditary property, 20
homogeneous space, 118

ideal, 1, 9
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I(X), see Cantor-Bendixson process

K-analytic, 143
k-cover, 124
k-Lindelöf space, 124
κ-P, 57
κ-paracompact, 58
κ-relatively paracompact, 59
KSB, 24
K(X), 9, 28

LF (C), 57
Lindelöf cofinally Σ-space, 121
Lindelöf S-cofinally Σ-space, 121
Lindelöf Σ-space, 47
Lindelöf Σ-space, 121
Lindelöf (S ′,S)-cofinally Σ-space, 121
locally Baire space, 134

M̌ , see remainder
metaLindelöf, 61
Michael line, 73
Moore space, 58
M(Y,A), 73

neighborhood filter, 9, 118
neighborhood type, 143
network for a pre-filter, 114
network for a pre-ideal, 106
network modulo, 47, 121
Nx, see neighborhood filter

ω, 8
ω-bounded, 47, 125
ω1, 8
(ω1, ω)-locally finite, 59
(ω1, ω)-metacompact, 60
(ω1, ω)-metrizable, 60
(ω1, ω)-paracompact, 60
(ω1, ω)-point finite, 59
order-isomorphism, 8
order-preserving, 8

P(X), see power set
P -locally finite, 56
P -metacompact, 56
P-metacompact, 58
P -metrizable, 56
P -ordered, 12

P -paracompact, 56

P-paracompact, 58

P -point, 141

P -point finite, 56

pair, see directed set pair

partially ordered set, 8

perfect kernel, 52

perfect set, 52

perfectly normal space, 84

point-network, 134

pointwise convergence topology, 34

Polish space, 48

power set, 9

powerfully calibre (ω1, ω), 94

pre-filter, 1, 9

pre-ideal, 1, 9

product order, 26

productively calibre (ω1, ω), 94

proper filter, 9

Q-set, 72, 84

Q-space, 72

RCCC, 76

regular cardinal, 15

relative calibre, 15

relative calibres of a space, 29

relative Tukey equivalence, 11

relative Tukey quotient, 11

relatively countably compact, 76

relatively countably determined, 23

relatively countably directed, 21

relatively locally finite, 59

remainder, 138

R(P ), 20

scattered height, 52

scattered space, 48, 52

screenable space, 59

second countable, 27

sequential space, 25

shrinkable, 70

Σ-product, 27, 92

σ(E,F ), 143

small diagonal, 40

small set, 43

stationary set, 90

strong point-network, 134
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strong Pytkeev property, 105
supersequence, 62
support, 27
S(Y ), 79

Talagrand compact, 143
topological directed set, 24
totally imperfect, 31
Tukey equivalence, 11
Tukey quotient, 11
type, 19

upper bound, 8

Vietoris topology, 28

weak topology, 145
weakly σ-locally finite, 66
weakly σ-paracompact, 66
weight, 8
w(X), see weight

X(Y ), 75

155


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. A pre-ideal vs. a pre-filter
	2. The diagonal of a compact space
	3. A basic neighborhood in CS(X)
	4. P-metrizability and related properties
	5. P-paracompactness and related properties
	6. The X-space produced from a space Y
	7. The strong Pytkeev property

	1.0 INTRODUCTION
	2.0 PRELIMINARIES
	2.1 DIRECTED SETS, IDEALS, AND FILTERS
	2.2 TUKEY QUOTIENTS AND DIRECTED SET PAIRS
	2.3 CALIBRES
	2.4 TYPES OF DIRECTED SETS
	2.5 COUNTABLE DIRECTEDNESS AND DETERMINEDNESS
	2.6 TOPOLOGICAL DIRECTED SETS AND Sigma-PRODUCTS
	2.7 K(X) AND (X,K(X))
	2.8 K(M) FOR SEPARABLE METRIZABLE M
	2.9 FUNCTION SPACES

	3.0 P-ORDERED COMPACT COVERS
	3.1 A GENERALIZATION OF SCHNEIDER'S THEOREM
	3.2 RELATIVE CALIBRES OF X2\D
	3.2.1 SMALL DIAGONALS
	3.2.2 A COUNTEREXAMPLE
	3.2.3 A TOPOLOGY ON THE CLOSED UNIT INTERVAL

	3.3 HEREDITARY COMPACT COVER PROPERTIES

	4.0 P-PARACOMPACTNESS AND P-METRIZABILITY
	4.1 BASIC RESULTS AND RELATED PROPERTIES
	4.2 ANOTHER GENERALIZATION OF SCHNEIDER'S THEOREM
	4.3 K(M)-PARACOMPACTNESS AND K(M)-METRIZABILITY
	4.3.1 CHARACTERIZATIONS
	4.3.2 WITH NORMAL, COUNTABLY PARACOMPACT, AND CCC
	4.3.3 DIVERSITY OF K(M)-METRIZABLE SPACES

	4.4 USEFUL CONSTRUCTIONS
	4.4.1 THE X-MACHINE
	4.4.2 THE SPLIT X-MACHINE
	4.4.3 THE DISJOINT SETS SPLIT X-MACHINE

	4.5 COUNTEREXAMPLES

	5.0 PRODUCTIVITY OF CALIBRE (OMEGA1,OMEGA)
	5.1 UNCOUNTABLE PRODUCTS AND SIGMA-PRODUCTS
	5.2 FINITE AND COUNTABLE PRODUCTS
	5.2.1 DEFINITIONS AND QUESTIONS
	5.2.2 POSITIVE RESULTS

	5.3 EXAMPLES
	5.3.1 PRODUCTIVE AND POWERFUL
	5.3.2 NOT PRODUCTIVE AND NOT POWERFUL
	5.3.3 POWERFUL BUT NOT PRODUCTIVE AND SIGMA-PRODUCTS


	6.0 NETWORK PROPERTIES AND NEIGHBORHOOD FILTERS
	6.1 THE (c-)' PROPERTIES FOR PRE-IDEALS
	6.2 THE (c-) PROPERTIES FOR (NEIGHBORHOOD) FILTERS
	6.3 K(X) AND LINDELÖF COFINALLY SIGMA-SPACES
	6.4 THE STRONG PYTKEEV PROPERTY IN FUNCTION SPACES
	6.5 CONNECTING NETWORKS TO OTHER PROPERTIES
	6.6 MORE ABOUT NEIGHBORHOOD FILTERS
	6.6.1 IN METRIZABLE SPACES
	6.6.2 IN TOPOLOGICAL VECTOR SPACES

	6.7 EXAMPLES

	BIBLIOGRAPHY
	INDEX

