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NMDA receptors (NMDARs), a subfamily of ionotropic glutamate receptors, have unique 

biophysical properties including high permeability to Ca2+. Activation of NMDARs increases the 

concentration of intracellular Ca2+ that can activate a vast array of signaling pathways. NMDARs 

are necessary for many processes including synaptic plasticity, dendritic integration, and cell 

survival. Aberrant NMDAR activation is implicated in many central nervous system disorders 

including neurodegenerative disorders, neuronal loss following ischemia, and neuropsychiatric 

disorders. Hope that NMDARs may serve as useful therapeutic targets is bolstered by the clinical 

success of two NMDAR antagonists, memantine and ketamine. Memantine and ketamine act as 

open channel blockers of the NMDAR-associated ion channel, and exhibit similar IC50 values 

and kinetics. Memantine is approved for treatment of Alzheimer's disease and shows promise in 

treatments of Huntington's disease, and ischemia. Ketamine was initially approved for use as a 

general anesthetic, but has recently shown efficacy in treatment of depression and of pain. 

Notably, memantine is not effective in treatment of depression or pain. In addition, memantine is 

well tolerated, whereas ketamine induces psychotomimetic side effects. The basis for the 

divergent clinical profiles of memantine and ketamine is not clear. One recently-proposed 

hypothesis is that memantine and ketamine inhibit overlapping but distinct subpopulations of 

NMDARs. However, mechanisms underlying inhibition of distinct NMDAR subpopulations by 

memantine or by ketamine are not fully understood. We therefore examined and compared 
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mechanisms of inhibition by memantine and by ketamine. We also describe a novel fast 

perfusion system optimized for brief synaptic-like glutamate applications to lifted cells. We 

found that: (1) inhibition by memantine and ketamine exhibit differential dependence on duration 

of receptor activation and on NMDAR subtype; (2) the dependence of memantine inhibition on 

duration of NMDAR activation results from stabilization of a Ca2+-dependent desensitized state; 

(3) the endogenous NMDAR open channel blocker Mg2+ slows the binding kinetics of both 

memantine and ketamine, and, unexpectedly, speeds recovery from memantine inhibition; (4) 

although inhibition by memantine was thought to be mediated by only the charged form of 

memantine, the uncharged form of memantine also binds to and inhibits NMDARs, and exhibits 

surprisingly slow unbinding kinetics. 
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1.0  GENERAL INTRODUCTION 

The collection of neurons and glia within our nervous system is responsible for every thought, 

memory, perception, and emotion we experience. Chemical neurotransmission, the 

communication between neurons at chemical synapses, is essential for nervous system function. 

Chemical neurotransmission involves release of a neurotransmitter from a presynaptic neuron 

and the reception of the neurotransmitter via neurotransmitter receptors present in the membrane 

of a postsynaptic neuron. Many types of neurotransmitter receptors have associated ion channels, 

which belong to a larger family of ion channels known as ligand-gated ion channels. Ligand-

gated ion channels activate in response to agonist binding and allow the flux of ions across 

cellular membranes, thereby changing membrane voltage and/or changing the concentrations of 

ions in the intracellular or extracellular compartments. Changes membrane potential and in ion 

concentrations within a particular cellular compartment can have profound effects on cellular 

physiology and result in short or long lasting changes. In relation to the nervous system, ligand-

gated ion channels are responsible for exciting or inhibiting postsynaptic neurons, strengthening 

or weakening synaptic contacts, and inducing or prohibiting gene transcription. The wide 

functional range of ligand-gated ion channel in the nervous system makes their involvement in 

central nervous system disorders virtually guaranteed. Therefore, ligand-gated ion channels are 

excellent targets of pharmacological modulation as potential treatments for central nervous 

system disorders. The work described in this dissertation focuses on understanding mechanisms 
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of inhibition of one type of neurotransmitter receptor, the N-methyl-D-aspartate (NMDA) 

receptor (NMDAR), by two clinically useful drugs, memantine and ketamine. The remainder of 

the introduction covers the background relevant understanding the role of NMDARs in nervous 

system function and in disorders, and how memantine and ketamine might act therapeutically. 

1.1 BASIC PROPERTIES OF NMDA RECEPTOR FUNCTION 

(Taken from Appendix A (Glasgow et al., 2015) with minor revisions) 

Glutamate mediates the majority of fast excitatory synaptic transmission in the central 

nervous system. Glutamate binds to and activates ionotropic glutamate receptors (iGluRs), which 

open to allow cation flux across the cell membrane. iGluRs are ligand-gated ion channels 

composed of four subunits organized around a central ion channel. The tertiary structure of all 

iGluR subunits can be described as several functionally distinct domains: an extracellular N-

terminal domain (NTD; or amino-terminal domain, ATD), an extracellular agonist binding 

domain (ABD; or ligand binding domain, LBD), a transmembrane domain (TMD) made up of 3 

transmembrane regions (TMRs; M1, M3, and M4) and a reentrant loop (M2) that forms the 

selectivity filter, and an intracellular C-terminal domain (CTD) (Figure 1) (Traynelis et al., 

2010).  

There are four classes of iGluRs: AMPA receptors (AMPARs), kainate receptors, NMDA 

receptors (NMDARs), and δ receptors. Receptors of each class are formed by co-assembly of 

homologous subunits. Subunit composition defines receptor subtypes within each class of iGluR. 

Physiological properties, such as agonist potency, maximal channel open probability (Popen), and 

deactivation kinetics, can differ greatly between subtypes of each iGluR class except δ receptors, 
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which do not form functional receptors (Traynelis et al., 2010). Thus, control of the expression 

of specific iGluR subtypes can have enormous impact on synaptic function, membrane 

excitability, and activation of intracellular signaling cascades, each of which more broadly 

affects the physiology of neuronal circuits and systems. The tight developmental, regional, and 

subcellular regulation of iGluR subunit expression indicates that iGluR subtypes play distinct 

physiological roles (Cull-Candy and Leszkiewicz 2004). 

NMDARs exhibit several properties that are unique among iGluRs, including: the 

requirement that both glutamate and a co-agonist, either glycine or D-serine, bind to activate the 

receptor (Johnson and Ascher 1987; Kleckner and Dingledine 1988; Lerma et al., 1990; Schell et 

al., 1995); very slow deactivation (Forsythe and Westbrook 1988; Lester et al., 1990; Partin et 

al., 1996; Swanson and Heinemann 1998; Vicini et al., 1998); high permeability to Ca2+ 

(MacDermott et al., 1986; Burnashev et al., 1992; Burnashev et al., 1995; Schneggenburger 

1996); strongly voltage-dependent channel block by physiological concentrations of external 

Mg2+ (Mayer et al., 1984; Nowak et al., 1984; Ascher and Nowak 1988). Flux of Ca2+ through 

NMDARs is essential for many types of synaptic plasticity, learning and memory, and cell 

survival (Malenka and Bear 2004; Hardingham and Bading 2010). Conversely, aberrant 

NMDAR activation is implicated in neurodegenerative diseases, schizophrenia, depression, 

chronic and neuropathic pain, as well as neuronal loss following ischemia or stroke (Lau and 

Tymianski 2010; Zhou and Sheng 2013). 
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Figure 1. NMDAR structure and assembly. 

A, Image of an NMDAR crystal structure of a GluN1/2B receptor (Protein Data Bank (PDB) code 4TLM 

(Lee et al., 2014)) is shown with GluN1 subunits in green and GluN2B subunits in blue. Dotted lines 

separate the functional domains of the receptor as denoted by abbreviations to the right, defined in text. B, 

Schematic diagram of an assembled receptor (upper) with an enlarged schematic diagram of a single 

NMDAR subunit depicting the distinct functional domains (lower). Figure was adapted from Glasgow et al. 

(2015) (Appendix A) and Johnson et al. (2015) (Appendix B).  
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1.1.1 Diversity of NMDAR subtypes 

(Taken from Appendix A (Glasgow et al., 2015) with minor revisions) 

NMDAR subunits are encoded by seven genes. One gene encodes eight GluN1 subunit 

splice variants, four genes encode the GluN2 subunits (GluN2A, GluN2B, GluN2C, and 

GluN2D), and two genes encode the GluN3 subunits (GluN3A and GluN3B). Functional 

NMDARs are obligate heterotetramers thought to be assembled as a combination of two GluN1 

subunits and two GluN2 and/or GluN3 subunits. Most diheteromeric NMDARs contain two 

GluN1 subunits and two GluN2 subunits of the same type. Triheteromeric NMDARs contain two 

GluN1 subunits and two GluN2 or GluN3 subunits of different identities. 

The NMDAR subtype is defined by the subunits present in the receptor, which impart 

unique properties to each receptor subtype. Most basic studies have focused on diversity of the 

four diheteromeric NMDAR subtypes defined by the identity of the GluN2 subunits (GluN1/2A, 

GluN1/2B, GluN1/2C, and GluN1/2D receptors). Many, and possibly most, native NMDARs are 

triheteromeric NMDAR subtypes (Luo et al., 1997; Al-Hallaq et al., 2007; Rauner and Kohr 

2010; Gray et al., 2011; Tovar et al., 2013). However, until recently, few studies have addressed 

triheteromeric NMDAR properties (Hatton and Paoletti 2005; Rauner and Kohr 2010; Tovar et 

al., 2013) due to the difficulty of studying them in isolation from other NMDAR subtypes. 

Recently, exciting new approaches have been developed to study isolated triheteromeric 

NMDARs (Hansen et al., 2014; Yuan et al., 2014). 

Heterologous expression systems, where a single NMDAR subtype can be 

unambiguously studied by expression of GluN1 and a single type of GluN2 subunits, have 

allowed extensive characterization of diheteromeric NMDAR subtype-dependent properties 

(Cull-Candy and Leszkiewicz 2004; Traynelis et al., 2010; Paoletti et al., 2013). Studies in 
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heterologous systems have revealed great diversity of diheteromeric NMDAR subtype-

dependent properties including: deactivation kinetics (Monyer et al., 1992; Monyer et al., 1994; 

Vicini et al., 1998), agonist potency (Kutsuwada et al., 1992; Priestley et al., 1995; Varney et al., 

1996; Erreger et al., 2007; Traynelis et al., 2010), Ca2+ permeability (Burnashev et al., 1995; 

Schneggenburger 1996), voltage dependence of channel gating (Clarke 2006; Clarke and 

Johnson 2008; Clarke et al., 2013), sensitivity to block by external Mg2+ (Monyer et al., 1994; 

Kuner and Schoepfer 1996), and sensitivity to endogenous inhibitors (Traynelis et al., 1995; 

Williams 1996; Chen et al., 1997; Paoletti et al., 1997; Traynelis et al., 1998; Paoletti et al., 

2013). Expression and subcellular localization of NMDAR subunits varies by developmental 

stage, brain region, and cell type (Akazawa et al., 1994; Monyer et al., 1994; Sheng et al., 1994). 

Thus, the expression of specific NMDAR subtypes can be used to tune synapses, neurons, 

circuits, and systems through the great diversity of NMDAR subtype-dependent properties. 

1.1.2 NMDAR desensitization and inactivation 

All iGluRs exhibit receptor desensitization or inactivation, which is the reduction in current 

amplitude until a steady-state is reached in the continuous presence of agonist. Desensitization in 

NMDARs is much slower and less complete than in AMPARs and kainate receptors (Traynelis 

et al., 2010). Although some structural correlates of fast AMPAR and kainate receptor 

desensitization have been identified (Traynelis et al., 2010; Dawe et al., 2013; Meyerson et al., 

2014), less is known about the structural determinants of desensitization in NMDARs. 

Nevertheless, there are several distinct processes that result in NMDAR desensitization have 

been described, including glycine-dependent desensitization, Ca2+-dependent desensitization 

(also commonly referred to as Ca2+-dependent inactivation), and glycine- and Ca2+-independent 
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desensitization. Glycine-dependent desensitization results from lowered glycine affinity induced 

by glutamate binding, and can be avoided by raising the extracellular glycine to saturating 

concentrations (Mayer et al., 1989; Benveniste et al., 1990; Lerma et al., 1990; Lester et al., 

1993). Ca2+-dependent desensitization requires an increase in the intracellular Ca2+ concentration 

near the mouth of the NMDAR channel and results from a complex series of molecular 

interactions that are not fully understood (Legendre et al., 1993; Rosenmund and Westbrook 

1993; Krupp et al., 1996; Medina et al., 1996; Dingledine et al., 1999). It is clear that Ca2+-

dependent desensitization is mediated in part through calmodulin binding to the GluN1 CTD 

(Ehlers et al., 1996; Ehlers et al., 1998; Zhang et al., 1998; Krupp et al., 1999). Calcineurin also 

plays a role in Ca2+-dependent desensitization and has been shown to bind to the GluN2A CTD 

(Tong and Jahr 1994; Tong et al., 1995; Raman et al., 1996; Krupp et al., 2002) and may interact 

with calmodulin binding (Rycroft and Gibb 2004). The actin binding protein α-actinin also 

competes for binding with calmodulin (Wyszynski et al., 1997; Zhang et al., 1998; Krupp et al., 

1999; Rycroft and Gibb 2004). Additionally, Ca2+-dependent desensitization is subtype-

dependent; GluN1/2A and GluN1/2D receptors exhibit Ca2+-dependent desensitization, whereas 

GluN1/2B and GluN1/2C receptors do not (Medina et al., 1995; Krupp et al., 1996). Glycine- 

and Ca2+-independent desensitization is mediated largely through extracellular regions in a 

subtype-dependent manner, especially through the NTD (Krupp et al., 1998; Villarroel et al., 

1998). 

1.1.3 Kinetic models of NMDAR activity 

Electrophysiological recordings of ion channel activity can only capture a small fraction of the 

conformational states available to the channel, generally when current is flowing, or not. The 
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advent and perfection of single-channel recording has made it possible to analyze the stochastic 

behavior of individual receptors in response to agonists and modulators (Neher and Steinbach 

1978; Sigworth and Neher 1980; Hamill et al., 1981). To aid interpretation of the extremely 

complex nature of single-channel recording data, kinetic schemes were adapted from enzyme 

kinetic schemes to describe transitions between discrete channel states (Del Castillo and Katz 

1957).  

The simplest ion channel model is a two-state model with one closed (C) and one open 

(O) state (Figure 2A). According to the law of mass action, the rate of any chemical reaction is 

proportional to the product of the concentrations of the reactants, thus yielding rate constants (k+, 

k-; Figure 2A) generally with units of s-1. The equilibrium constant (K) is determined as the ratio 

of reverse (k-) to forward (k+) rate constants by the equation, K = k-/k+. For Model A, K is 

unitless and simply indicates the ratio of closed to open channels at equilibrium. Because 

NMDARs are ligand-gated ion channels, the simplest model to describe their activity requires a 

state to describe the agonist binding step that precedes channel opening (Figure 2B). The 

forward rate of agonist-dependent transitions depends on the concentration of agonist and time 

(M-1 s-1). The agonist equilibrium dissociation constant (KD), the agonist concentration when 

agonist molecules (A) are in equilibrium with receptors bound to agonist (RA), is determined by 

the equation KD = ka-/ka+ with units of M (Figure 2B). Although agonist binding and channel 

opening is all that is necessary to describe the simplest form of ligand-gated ion channel activity, 

Model B is not sufficient to recreate the full complexity of NMDAR activity. The inclusion of 

multiple agonist binding steps and of one desensitized state are necessary to predict prominent 

features of NMDAR single-channel and macroscopic recordings (Clements and Westbrook 1991; 

Clements et al., 1992; Edmonds and Colquhoun 1992; Lester and Jahr 1992; Lester et al., 1993) 
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(Figure 2C). Model C still is a vast oversimplification of the available NMDAR conformational 

states, and more detailed models are needed to relate structural and functional NMDAR states.  

Banke et al. (2003) were the first to link multiple pre-open states with specific structural 

transitions, with GluN1 subunits mediating a fast (RA2f) and GluN2B subunits mediating a slow 

(RA2s) conformational change that preceded channel opening (Figure 2D). Cyclic models with 

structural correlates of NMDAR closed states as presented by Banke et al. (2003) (Figure 2D) 

were reproduced for GluN1/2A receptors sometimes including an additional closed and open 

state (Auerbach and Zhou 2005; Erreger et al., 2005; Erreger et al., 2005; Schorge et al., 2005). 

Models with a linear design (Figure 2E) without structural correlates of NMDAR closed states 

were shown to be equally effective in describing single-channel and macroscopic currents of 

GluN1/2A and GluN1/2B receptors (Popescu et al., 2004; Auerbach and Zhou 2005; Kussius and 

Popescu 2009; Amico-Ruvio and Popescu 2010). Multiple pre-open states have also been 

determined for models of GluN1/2C and GluN1/2D receptors (Dravid et al., 2008; Vance et al., 

2012; Vance et al., 2013). Furthermore, cyclic and linear models have been used to provide 

insight into NMDAR modulation by a wide array of molecules including modulation by protons, 

Zn2+, Ca2+, and inhibition by ifenprodil and other allosteric modulators (Banke et al., 2005; 

Erreger and Traynelis 2008; Dravid et al., 2010; Amico-Ruvio et al., 2011; Amico-Ruvio et al., 

2012; Bhatt et al., 2013; Maki and Popescu 2014). 
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Figure 2. Kinetic models of NMDAR activation. 

A, Simplest kinetic model of an ion channel transition from closed (C) to open (O*), with forward rates (k+) 

depicted above the arrow and reverse rates (k-) below the arrow. B, Simplest kinetic model of a ligand-

gated receptor (R) that exhibits separate agonist (A) binding and opening transitions. * indicates open 

states. C-E, Kinetic models of NMDAR activation referenced in text. RA2D, RA2D1, and RA2D2 represent 

desensitized states. RA2f, RA2s, and RA2N (N = 1-3) represent pre-open closed states.   
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1.2 ROLE OF NMDA RECEPTORS IN THE CENTRAL NERVOUS SYSTEM 

NMDARs are widely expressed in the central nervous system and are critical to many processes 

including normal development of synapses, many forms of long-term potentiation (LTP) and 

long-term depression (LTD) thought to be the structural basis of memory, activation of various 

signaling cascades, and dendritic integration (Traynelis et al., 2010; Paoletti et al., 2013). The 

role of NMDARs in these myriad processes will be discussed below.   

1.2.1 NMDAR expression and localization 

Expression of NMDAR subunits varies by age, brain region, and cell type. Obligate GluN1 

subunits are expressed ubiquitously throughout life (Monyer et al., 1992; Watanabe et al., 1992; 

Akazawa et al., 1994; Monyer et al., 1994); however, different GluN1 isoforms have specific 

developmental and regional expression patterns (Laurie and Seeburg 1994; Paupard et al., 1997). 

GluN2 subunits follow divergent developmental expression profiles as well; GluN2B and 

GluN2D subunits are highly expressed embryonically and in early postnatal stages, whereas 

GluN2A and GluN2C subunit expression increases from birth and peaks about 2 to 3 weeks 

postnatally (Watanabe et al., 1992; Akazawa et al., 1994; Monyer et al., 1994). Expression of 

GluN3 subunits also varies regionally and developmentally (Paoletti et al., 2013). The GluN2 

subunits also exhibit diverse expression patterns (Paoletti et al., 2013). In the adult cortex and 

hippocampus, GluN2A and GluN2B subunits are broadly expressed, whereas GluN2C and 

GluN2D subunit expression is thought to be restricted to interneurons (Monyer et al., 1992; 

Watanabe et al., 1992; Akazawa et al., 1994; Monyer et al., 1994). GluN2C and GluN2D 
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subunits are highly expressed in other brain regions, including the cerebellum, thalamus, and 

olfactory bulb (Akazawa et al., 1994; Monyer et al., 1994).  

In addition to regional, developmental, and cell type-specific expression patterns, GluN2 

subunits are organized by their subcellular localization. Generally, subcellular localization of 

NMDARs is divided on the basis of NMDARs being located within synapses (synaptic 

NMDARs), or outside synapses (extrasynaptic NMDARs) (Hardingham and Bading 2010; 

Gladding and Raymond 2011; Parsons and Raymond 2014). Some studies have shown in 

hippocampal and cortical pyramidal cells that GluN2A-containing receptors are predominantly 

expressed synaptically, whereas GluN2B-containing receptors are predominantly expressed 

extrasynaptically (Tovar and Westbrook 1999; Groc et al., 2006; Hardingham and Bading 2010; 

Papouin et al., 2012). However, other reports suggest that the division in GluN2 subunit 

localization is not as distinct (Thomas et al., 2006; Harris and Pettit 2007; Petralia et al., 2010). 

Regardless of the localization of specific NMDAR subtypes, differential localization of 

NMDARs synaptically and extrasynaptically has important implications in downstream signaling 

(Hardingham and Bading 2010; Gladding and Raymond 2011; Parsons and Raymond 2014). 

1.2.2 Role of NMDARs in plasticity and neuronal signaling 

NMDARs are critically involved in synaptic plasticity (Collingridge et al., 2004; Malenka and 

Bear 2004; Shepherd and Huganir 2007). NMDAR-dependent LTP requires the coincident 

activation of a pre- and postsynaptic neuron. The highly voltage-dependent block by Mg2+ of 

NMDARs allows them to act as coincident detectors: postsynaptic depolarization causes Mg2+ to 

unblock NMDARs. NMDARs are also highly permeable to Ca2+, which is a powerful second 

messenger that signals through a vast array of signaling cascades. Therefore, unblocked 
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NMDARs lead to strong Ca2+ influx that provides a trigger to activate downstream signaling 

pathways. The precise amount of Ca2+ that enters a cell has a powerful effect on the direction of 

plasticity: in general, a large influx of Ca2+ over a short time mediates synaptic potentiation, 

whereas a small influx of Ca2+ over a long period of time mediates synaptic depression. Thus, 

precise control over the amount of Ca2+ influx in response to a stimulus is determines the 

direction of plastic change.  

Much research over the last two decades has focused on differentiating the function of 

NMDARs based on their subtype, on their subcellular localization, or both (Hardingham and 

Bading 2010; Traynelis et al., 2010; Paoletti et al., 2013; Parsons and Raymond 2014). The 

NMDAR subtype can have a substantial impact on the Ca2+ influx during a single synaptic 

stimulus and during a train of stimuli. Due to subtype-dependent differences in maximal Popen, 

deactivation time course, rate and extent of desensitization, and rate of recovery from 

desensitization, the charge transfer, and thus the Ca2+ influx, differs between GluN1/2A and 

GluN1/2B receptors depending on the stimulus frequency, glutamate concentration, and duration 

of glutamate application (Erreger et al., 2005). The location of an NMDAR can also impact the 

Ca2+ influx, as synaptic NMDARs tend to be exposed to glutamate for short durations (1-2 ms) 

whereas extrasynaptic NMDAR tend to be exposed to glutamate for longer durations (seconds to 

tonically). Furthermore, the signaling cascades activated by synaptic NMDARs may differ 

substantially from cascades activated by extrasynaptic NMDARs (Hardingham and Bading 2010; 

Parsons and Raymond 2014).  

Many studies have found that genetic deletion of GluN2A subunits or pharmacological 

inhibition of GluN2A-containing receptors blocks LTP (Sakimura et al., 1995; Sprengel et al., 

1998; Zhao and Constantine-Paton 2007; Papouin et al., 2012). In contrast, deletion of GluN2B 
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subunits or pharmacological inhibition of GluN2B receptors blocks LTD (Liu et al., 2004; 

Massey et al., 2004; Brigman et al., 2010). This apparent dichotomy between GluN2A subunits 

mediating LTP and GluN2B subunits mediating LTD is similar to their proposed dichotomy in 

subunit localization between the synaptic (GluN2A) and extrasynaptic (GluN2B) compartments 

(Tovar and Westbrook, 1999; Papouin et al., 2012; see above). In agreement, some studies 

suggest that synaptic NMDARs are involved in LTP, whereas extrasynaptic NMDARs are 

involved in LTD induction (Katagiri et al., 2001; Massey et al., 2004; Izumi et al., 2008; Li et al., 

2011; Papouin et al., 2012; Liu et al., 2013). However, the subtype and location dependence of 

LTP and LTD is controversial. Several studies have clearly demonstrated GluN2B subunit 

involvement in LTP (Barria and Malinow 2005; Berberich et al., 2005; Gardoni et al., 2009; 

Muller et al., 2009). The inconsistency in the GluN2 subunit dependence of LTP suggests 

involvement of synaptic triheteromeric GluN1/2A/2B receptors in LTP (Foster et al., 2010; Gray 

et al., 2011; Delaney et al., 2013; Tovar et al., 2013). Triheteromeric receptors exhibit 

pharmacology distinct from either GluN1/2A or GluN1/2B diheteromeric receptors (Hatton and 

Paoletti 2005; Hansen et al., 2014; Stroebel et al., 2014). Altered pharmacology of triheteromeric 

receptors could reduce subtype-selectivity of diheteromeric subtype-selective inhibitors, whereas 

genetic manipulations would likely still disrupt subunit-specific CTD interactions necessary for 

LTP or LTD. These studies suggest that the NMDAR subtype combined with the subcellular 

location of receptors may determine whether activated NMDARs will induce LTP or LTD. 

Consistent with hypotheses of different NMDAR subtypes or differentially localized 

NMDARs mediating different forms of plasticity, a large literature suggests a dichotomy 

between signaling mediated by activation of synaptic receptors or GluN2A-containing receptors 

and signaling mediated by activation extrasynaptic receptors or GluN2B-containing receptors in 
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the context of cell survival and cell death (Hardingham and Bading 2010; Parsons and Raymond 

2014). The idea that Ca2+ influx through specific subpopulations of NMDARs, defined by the 

NMDAR subtype or subcellular localization, elicits differential downstream signaling cascades 

and cellular responses is intriguing. It suggests the possibility of targeting NMDAR 

subpopulations in treatment of nervous system disorders, a topic that will be considered in 

greater detail below. 

1.3 ROLE OF NMDA RECEPTORS IN CENTRAL NERVOUS SYSTEM 

DISORDERS 

Given the critical role of NMDARs in neurotransmission, development, synaptic plasticity, and 

cellular signaling, it is not surprising that NMDARs are implicated in many disorders of the 

central nervous system (Traynelis et al., 2010; Paoletti et al., 2013; Zhou and Sheng 2013). Of 

particular interest to this dissertation is the involvement of NMDARs in neurodegenerative 

disorders, such as Alzheimer's disease and Huntington's disease, in neuronal loss following 

ischemic stroke, and in neuropsychiatric disorders, such as depression. The pathophysiology of 

each disorder is an area of active research and intense debate, and the precise role that NMDARs 

play in each disorder is not clearly understood. 

1.3.1 NMDAR-mediated excitotoxicity 

Excessive NMDAR activation, and thus excessive Ca2+ influx, leads to activation of cell death 

signaling pathways and ultimately to neuronal cell death (Lau and Tymianski 2010). This 
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process, known as excitotoxicity, also involves other receptors and is thought to be a common 

feature of neuronal loss following ischemia and in neurodegenerative diseases (Lau and 

Tymianski 2010; Zhou and Sheng 2013). Cognitive deficits in neurodegenerative diseases are 

also thought to arise from changes in protein expression, in synaptic contacts, and in the balance 

of excitatory and inhibitory drive (Zhou and Sheng 2013; Parsons and Raymond 2014). Further 

work is needed to determine the role of NMDARs in neurodegenerative disorders.  

There is a large literature pertaining to the differential influence of synaptic and 

extrasynaptic NMDARs on excitotoxicity (Hardingham et al., 2002; Leveille et al., 2008; 

Papadia et al., 2008; Okamoto et al., 2009; Bordji et al., 2010; Leveille et al., 2010; Kaufman et 

al., 2012; Milnerwood et al., 2012; Papouin et al., 2012; Wroge et al., 2012; Zhou et al., 2013; 

Zhou et al., 2013). Many studies have relied on pharmacological means to specifically activate 

synaptic or extrasynaptic NMDARs (Hardingham et al., 2002; Leveille et al., 2008; Papadia et 

al., 2008; Okamoto et al., 2009; Leveille et al., 2010; Kaufman et al., 2012; Milnerwood et al., 

2012; Wroge et al., 2012). Specific activation of synaptic NMDARs in neuronal cultures is 

achieved through application of 4-aminopyridine (4-AP), a K+ channel antagonist that increases 

release of neurotransmitter and frequency of action potentials, and/or bicuculline (bic), a GABAA 

receptor antagonist that also increases action potential frequency (Hardingham et al., 2002). 

Preferential activation of extrasynaptic NMDARs involves initial blockade of synaptic NMDARs 

during 4-AP and/or bic applications with MK-801, an NMDAR open channel blocker with 

especially slow unblocking kinetics such that it is unlikely to unblock during the course of the 

experiments (Huettner and Bean, 1988; but see McKay et al., 2013). After 4-AP and/or bic and 

MK-801 washout from the bath, NMDA is then bath applied to activate the remaining presumed 

extrasynaptic NMDARs that were spared from inhibition by MK-801 (Hardingham et al., 2002). 
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Using these and similar methods, many studies have demonstrated that activation of synaptic 

NMDARs in neuronal cultures resulted in increased signaling to cell survival pathways and 

neuroprotection from excitotoxic insults (Hardingham et al., 2002; Leveille et al., 2008; Papadia 

et al., 2008; Bordji et al., 2010; Leveille et al., 2010). In contrast, activation of extrasynaptic 

NMDARs in neuronal cultures resulted in decreased cell survival signaling, increased signaling 

to cell death pathways, and cell death in response to an excitotoxic insult. Notably however, 

several studies have shown in neuronal cultures or acute slices that synaptic NMDARs are 

necessary (Zhou et al., 2013; Zhou et al., 2013) and in some studies sufficient (Papouin et al., 

2012; Wroge et al., 2012) for excitotoxicity. Additionally, the NMDAR subtype may play a role 

in excitotoxicity, with GluN2A-containing receptors signaling for cell survival, and GluN2B-

containing receptors signaling for cell death (Liu et al., 2007; Martel et al., 2009; Martel et al., 

2012; but see von Engelhardt et al., 2007; Papouin et al., 2012; Zhou et al., 2013a). Many studies 

suggest differential and complicated signaling depending on NMDAR subtype and subcellular 

localization. In addition, many studies have shown differential signaling of synaptic and 

extrasynaptic NMDARs in animal models of Alzheimer's disease and Huntington's disease 

(Okamoto et al., 2009; Bordji et al., 2010; Milnerwood et al., 2010; Kaufman et al., 2012; 

Milnerwood et al., 2012; Talantova et al., 2013; Dau et al., 2014; Tu et al., 2014). Therefore, 

targeting subpopulations of NMDARs may be especially effective in the treatment of central 

nervous system disorders.  

1.3.2 NMDARs as targets for drug therapy 

The involvement of NMDARs in the pathophysiology of many central nervous system disorders 

has driven hope that NMDARs would serve as useful targets for pharmacotherapy (Strong et al., 
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2014; Johnson et al., 2015; Zhu and Paoletti 2015). Despite much effort, thus far only a few 

NMDAR antagonists display clinical efficacy, including memantine and ketamine (Lipton 2006; 

Parsons et al., 2007; Krystal et al., 2013; Johnson et al., 2015; Kavalali and Monteggia 2015). 

Memantine and ketamine act as NMDAR open channel blockers, which are thought to bind and 

unbind only when the channel is open, with similar IC50 values and kinetics at NMDARs. 

Mechanisms of NMDAR open channel block by memantine and ketamine are discussed below. 

This section is focused on the effectiveness of memantine and ketamine on central nervous 

system disorders and on evidence that memantine and ketamine act primarily on NMDARs.  

Memantine is approved for the treatment of Alzheimer's disease, and shows promise in 

the treatment of other disorders including Huntington's disease, dementia, and ischemia (Witt et 

al., 2004; Emre et al., 2010; Dau et al., 2014; Kafi et al., 2014). Memantine acts to slow the 

progression of Alzheimer’s disease by about 6 months (Reisberg et al., 2003; Doody et al., 2004; 

Winblad et al., 2007). How memantine acts to slow the progression of Alzheimer's disease, and 

how it acts in other disorders, are areas of active research and hotly debated.  

Ketamine was initially approved for clinical use as a dissociative anesthetic, and has 

recently shown efficacy in the treatment of depression and pain (Prommer 2012; Persson 2013; 

Abdallah et al., 2015; Kavalali and Monteggia 2015). There is great interest in understanding 

how ketamine elicits rapid relief of the symptoms of major depression, relief that can last up to 

two weeks from a single sub-anesthetic dose (Abdallah et al., 2015; Kavalali and Monteggia 

2015). The rapid antidepressant effects of ketamine are in contrast to traditional antidepressant 

pharmacotherapy that takes weeks to show an effect on symptoms of depression (Kupfer et al., 

2012). A significant drawback to ketamine use is the development of psychotomimetic side 

effects even at doses similar to those used for antidepressant effects (Krystal et al., 1994; Krystal 
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et al., 2003). Memantine, although relatively free from side effects, is not effective in treating 

depression or pain (Alviar et al., 2011; Pringle et al., 2012; Sani et al., 2012). How can two drugs 

that seem to act similarly at the same receptor have such divergent clinical effects?  

There are several hypotheses for why memantine and ketamine are able to act similarly at 

NMDARs while having divergent clinical effects and behavioral effects. These explanations 

include: (1) differences in pharmacokinetics, since ketamine has much faster pharmacokinetics 

than memantine; (2) differential action at non-NMDAR targets of memantine and ketamine; (3) 

differential action of active drug metabolites as a result of degradation; and (4) subtle differences 

between memantine and ketamine mechanisms of inhibition at NMDARs that result in 

differential inhibition of subpopulations of NMDARs. The true explanation is likely to be a 

result of multiple factors, which have been discussed in Johnson et al. (2015) (Appendix B). 

There we argue that differential clinical and behavioral effects of memantine and ketamine arise 

largely from inhibition of distinct subpopulations of NMDARs. The work of this dissertation 

investigates whether, and if so how, memantine and ketamine inhibit distinct subpopulations of 

NMDARs and how inhibition of NMDARs differs between memantine and ketamine. Thus, the 

remainder of the introduction focuses on mechanisms of NMDAR inhibition by memantine and 

ketamine. 
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1.4 BASIC MECHANISMS OF ACTION OF MEMANTINE AND KETAMINE 

1.4.1 Properties of open channel blockers 

There is a long history of studying mechanisms of open channel block of ion channels as a 

means of understanding channel behavior (Hille 2001). In the last few decades interest in open 

channel blockers has shifted towards use in treatment of central nervous system disorders. Open 

channel blockers bind within the ion channel and prevent, or block, the flow of ions through the 

channel. Open channel blockers typically exhibit voltage dependence, a characteristic that is 

related to the depth of their binding site within the membrane voltage field. Another prominent 

feature of open channel blockers is their use dependence. In particular, open channel blockers 

require channel opening in order to bind and unbind. Open channel blockers can generally be 

categorized as sequential or "foot in the door" blockers (Figure 3A), and trapping blockers 

(Figure 3B). When bound, sequential blockers prevent channel closure, and thus upon removal 

of agonist, the channel must first return to an open unblocked state before drug can unbind, 

allowing receptor deactivation (Figure 3A). In contrast, after trapping blockers bind, the channel 

is able to close, trapping the blocker inside the channel until the blocked channel opens again and 

the blocker unbinds (Figure 3B). 
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Figure 3. Kinetic models of open channel block of ligand-gated receptors. 

A, Kinetic model of a sequential blocker (B), which can bind and unbind only from the channel open state 

and prevents channel closure while bound. B, Kinetic model of a trapping blocker, which can bind and 

unbind only from the channel open state, but which can be trapped upon channel closing allowing the 

channel to enter all the closed states available to the receptor. Rates in the presence of blocker are denoted 

as k’.  

 

 

The nature of inhibition modeled by simple sequential channel block models predicts 

features that are experimentally verifiable. First, if agonist is removed when the blocker is bound 

to the receptor, the blocker must unbind before the channel can deactivate and unbind agonist. 

Therefore, the receptor must pass through an open state before deactivating, which typically 

presents as a measurable tail-current. Second, related to the idea that sequential blockers must 

unbind before agonist can unbind, if agonist was reapplied after a sufficient time for complete 

unbinding, there should be no evidence of inhibition with a sequential blocker. Third, the IC50 of 

sequential blockers, necessarily depends on Popen, with the IC50 inversely proportional to Popen. 

Johnson and Qian (2002) derived equations to develop this idea and to develop other quantitative 

tools to probe the nature of blocker inhibition. Briefly, they derive the equation, IC50 = 
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Kd(PO+B/PO-B), where Kd is the equilibrium dissociation constant of a channel blocker, PO+B is the 

probability of a channel being open with blocker bound, and PO-B is the probability of a channel 

being open without blocker bound, or Popen. With a sequential blocker, the PO+B is 1, since any 

blocked channels are necessarily open. Therefore, the IC50 must change linearly as a function of 

the PO-B. For trapping channel blockers the situation is more complicated. A model where the 

rates in the presence of blocker are identical to the rates in the in absence of blocker are known 

as symmetrical models. Symmetrical models predict that blockers inhibit current through the 

channel only by blocking the pore. For symmetrical models, where the presence of blocker has 

no effect on the rates of channel transitions, PO+B is always equal to PO-B. Therefore, in 

symmetrical models of trapping block, IC50 = Kd regardless of Popen. However, if the trapping 

blocker does alter rates of channel transitions, then PO+B is typically not equal to PO-B, and IC50 ≠ 

Kd. The direction of change in IC50 in relation to Kd depends on whether the presence of blocker 

increases or decreases PO+B relative to PO-B.  

Every NMDAR open channel blocker that has been examined, with the exception of 

Mg2+, has been shown to alter rates of channel transitions while the blocker was bound (Johnson 

and Qian 2002; Sobolevskii and Khodorov 2002; Blanpied et al., 2005; Barygin et al., 2009). 

Therefore, the models are asymmetrical and the mechanism of inhibition of open channel 

blockers arises in part from changing PO+B, in addition to blocking ion permeation through the 

pore. The impact a blocker has on stabilizing or destabilizing open states, closed states, or 

desensitized states is of critical importance to the general mechanism of inhibition by the drug. 

Uncovering the structural determinants underlying receptor states stabilized or destabilized by 

the presence of blocker could have broad impact on our understanding of channel gating, the 

architecture of open, closed, and desensitized states, and on drug design. 



 23 

1.4.2 Inhibition of NMDARs by memantine and ketamine 

Memantine and ketamine are trapping NMDAR open channel blockers. Memantine is classified 

as a partial trapping blocker, because a fraction of the memantine inhibition recovers in the 

absence of agonist, whereas ketamine is a nearly full trapping blocker (Blanpied et al., 1997; 

Sobolevsky et al., 1998; Mealing et al., 1999; Kotermanski et al., 2009). The IC50 values of 

memantine and ketamine are similar and moderate, in the range of 0.5 to 2 µM for memantine 

and ketamine, with ketamine typically having ~2-fold lower IC50 value (Parsons et al., 1995; 

Kotermanski and Johnson 2009; Kotermanski et al., 2009; Emnett et al., 2013). Binding and 

unbinding kinetics of memantine and ketamine are also intermediate and similar, with ketamine 

having slightly slower kinetics (but see Chapter 4). The majority of memantine and ketamine 

molecules carry a +1 charge at physiological pH (Dravid et al., 2007). Memantine and ketamine 

are thought to bind to a site overlapping with the Mg2+ binding site, referred to here as the deep 

site (Figure 4). Asparagine residues at the tips of the M2 reentrant loop of each subunit that 

coordinate Mg2+ binding, known as the N-site asparagines, are critical for memantine and 

ketamine binding (Yamakura et al., 1993; Kashiwagi et al., 2002; Chen and Lipton 2005). There 

is also evidence that memantine binds to a second site on NMDARs (Blanpied et al., 1997; 

Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen and Lipton 2005; Kotermanski et 

al., 2009), and that ketamine can affect channel function without entering the channel from the 

external side of the membrane (Orser et al., 1997). Nevertheless, due to their positive charge and 

binding deep within the membrane voltage field, inhibition by memantine and ketamine is highly 

voltage-dependent (Parsons et al., 2007; Johnson et al., 2015); however, inhibition by memantine 

and ketamine is less voltage-dependent than inhibition by Mg2+ due to its +2 charge 
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(Kotermanski and Johnson 2009; Otton et al., 2011; Nikolaev et al., 2012). Overall, inhibition by 

memantine and ketamine exhibit properties expected of trapping blockers. 
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Figure 4. Memantine and ketamine binding at the deep site. 

A, NMDAR crystal structure (PDB code 4TLM) is shown with a gray dot at the approximate location of 

Mg2+, memantine, and ketamine binding sites. GluN1 subunits are in green and GluN2 subunits are in blue. 

The black box indicates the area of the receptor expanded in B. B, Top, the structure of memantine (left) 

and ketamine (right) depicted with charged nitrogen atoms. *, ketamine, which has two enantiomers ((+) 

and (-)ketamine), is depicted without chirality in this planar representation. Bottom, a view of the channel 

region of an NMDAR composed of GluN1 and GluN2A subunits with memantine (left) and (-)ketamine 

(right) blocking the channel. The structure of the NMDAR channel region is based on the homology model 

from Siegler Retchless et al., (2012); the memantine structure is from www.edinformatics.com; the            

(-)ketamine structure is from PDB code 4F8H (Pan et al., 2012). Although, the orientation of memantine 

and ketamine relative to the channel during block is not known, we oriented the drugs with their charged 

nitrogen atoms (blue) close to the N-site asparagines. Figure adapted from Johnson et al., (2015) (Appendix 

B). 

http://www.edinformatics.com/
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Many in vitro studies of memantine and ketamine have been performed in the absence of 

Mg2+. However, Mg2+ reduces the potency of memantine and ketamine in an NMDAR subtype-

dependent manner (Kotermanski and Johnson 2009; Otton et al., 2011; Nikolaev et al., 2012). In 

0 Mg2+, memantine and ketamine display only weak NMDAR subtype-selectivity (Dravid et al., 

2007; Kotermanski and Johnson 2009). The Mg2+ binding site overlaps with the memantine and 

ketamine binding sites. Thus, 1 mM Mg2+ increases the memantine and ketamine IC50 values 

through competition for the same binding site. NMDAR subtype dependence of inhibition arises 

because GluN1/2A and GluN1/2B receptors are more sensitive to block by Mg2+ than GluN1/2C 

and GluN1/2D receptors (Monyer et al., 1994; Kuner and Schoepfer 1996). Therefore, the 

memantine and ketamine IC50 values increase more with GluN1/2A and GluN1/2B receptors 

than with GluN1/2C and GluN1/2D receptors (Kotermanski and Johnson 2009). Importantly, the 

Mg2+-induced NMDAR subtype dependence of memantine occurs over the range of memantine 

concentrations in the serum and cerebrospinal fluid from Alzheimer’s disease patients (Parsons 

et al., 2007). To the best of our knowledge, the ketamine concentration in serum required to 

achieve rapid antidepressant effects is not known. The finding that Mg2+ induces NMDAR 

subtype-selectivity of memantine and ketamine inhibition suggests that the drugs' beneficial 

actions in treatment of disease could arise in part through inhibition of GluN2C- and GluN2D-

containing receptors.  

One clear distinction between memantine and ketamine inhibition of NMDARs is the 

ability of memantine, but not ketamine, to bind to a second site on NMDARs (Blanpied et al., 

1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen and Lipton 2005; 

Kotermanski et al., 2009). No NMDAR structures are resolved with an open channel blocker 

(Karakas and Furukawa 2014; Lee et al., 2014). Mutational studies have identified residues near 
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the channel gate and the extracellular portion of the M3 TMR that influence inhibition by 

memantine (Kashiwagi et al., 2002; Chen and Lipton 2005; Limapichat et al., 2013). It is not 

clear whether these residues interact directly with memantine, since modifications near the 

channel gate can affect inhibition by other open channel blockers thought only to bind at the 

deep site (Yuan et al., 2005). Evidence of memantine binding to the second site is not direct, and 

the consequences of memantine binding at the second site are not well understood.  

Multiple lines of evidence support the existence of the second memantine binding site. 

First, the time course of recovery from inhibition by memantine is slows with increasing 

concentrations of memantine (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky 

et al., 1998; Parsons et al., 2007). Specifically, the weight of the slow exponential component of 

recovery from inhibition increases with increasing memantine concentration (Sobolevsky and 

Koshelev 1998; Sobolevsky et al., 1998). This suggests that memantine binds to a lower affinity 

site than the deep site and that binding to the second site is responsible for slow recovery from 

inhibition. At low memantine concentrations, inhibition is primarily from the deep site that 

exhibits a low IC50 value, and recovery from inhibition is relatively fast. Memantine exhibits 

slow recovery from inhibition at high concentrations, where significant binding to the second 

high IC50 site occurs. A site with low affinity and slow unbinding kinetics is paradoxical: as Kd 

increases, so too should the unbinding rate. Of course, the binding rate could also decrease, but 

generally binding rates are relatively constant. There is no evidence that the time course of 

recovery from inhibition by ketamine changes with ketamine concentration. Second, previous 

reports demonstrate that memantine can bind and unbind in the absence of agonist (Blanpied et 

al., 1997; Sobolevsky et al., 1998; Kotermanski et al., 2009). This observation led to the 

hypothesis that the second site is superficial to the channel gate, as opposed to the deep site, 
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which is internal to the channel gate. Memantine inhibition at this superficial site has a high IC50 

(IC50 ~80 - 180 µM) when measured in the absence of agonist and has relatively slow unbinding 

kinetics (>2 s or minutes), which is consistent with the effect on unbinding kinetics (Blanpied et 

al., 1997; Sobolevsky et al., 1998; Kotermanski et al., 2009). Ketamine does not inhibit without 

NMDAR activation, suggesting that it inhibits NMDARs only at the deep site does not bind to 

any superficial site (Kotermanski et al., 2009). Third, memantine binding in the absence of 

agonist at the second site exhibits weaker voltage dependence than binding at the deep site 

(Blanpied et al., 1997; Kotermanski et al., 2009). However, other studies have concluded that 

memantine binding at the second site depended strongly on voltage (Sobolevsky and Koshelev 

1998; Sobolevsky et al., 1998). The experimental design between studies was quite different, and 

in principle, strong and weak voltage dependence could be consistent with memantine binding to 

the same second site. Therefore, through multiple indirect lines of evidence, it is likely that 

memantine binds to the deep site and a second site on NMDARs, whereas ketamine binds to only 

the deep site.  

Many open questions remain about memantine inhibition, including where the second site 

is located, how memantine inhibits at the second site, whether memantine inhibition at the 

second site is NMDAR subtype-dependent, and whether Mg2+ affects inhibition at the second 

site. Answering these questions is essential to understanding the therapeutic role, if any, of 

memantine binding to the second site. The existence of a second site for memantine, but not for 

ketamine, remains one of the clearest distinctions between memantine and ketamine inhibition of 

NMDARs. It is unclear whether this distinction plays a role in the differential clinical and 

behavioral effects of memantine and ketamine. 
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1.4.3 Memantine and ketamine inhibit distinct subpopulations of NMDARs 

Another distinction between memantine and ketamine may be in their ability to inhibit distinct 

subpopulations of NMDARs. There has been much interest in the hypothesis that memantine 

inhibits extrasynaptic NMDARs more potently than synaptic NMDARs (Leveille et al., 2008; 

Papadia et al., 2008; Okamoto et al., 2009; Milnerwood et al., 2010; Xia et al., 2010; Kaufman et 

al., 2012; Wild et al., 2013; Dau et al., 2014; Wu and Johnson 2015). Many studies have shown 

that memantine inhibits synaptic NMDARs less than extrasynaptic NMDARs, leading to the 

hypothesis that memantine provides therapeutic benefit through differential inhibition of 

NMDAR subpopulations (Leveille et al., 2008; Papadia et al., 2008; Okamoto et al., 2009; 

Milnerwood et al., 2010; Xia et al., 2010; Kaufman et al., 2012; Wild et al., 2013; Dau et al., 

2014; Wu and Johnson, 2015; but see Wroge et al., 2012; Emnett et al., 2013; Zhou et al., 

2013b). This hypothesis in part explains how memantine can provide neuroprotection while 

producing relatively few side effects. As described above, there is a proposed dichotomy 

between the consequences of synaptic and extrasynaptic NMDAR activity, with synaptic 

NMDAR activity promoting cell survival and extrasynaptic NMDAR activity leading to cell 

death. Accordingly, memantine is hypothesized to inhibit cell-death signaling mediated by 

extrasynaptic NMDAR activation, while maintaining much of synaptic NMDAR activity for 

normal neurotransmission and cell survival signaling. In contrast, ketamine is hypothesized to 

mediate its rapid anti-depressant effects through inhibition of synaptic NMDARs (Autry et al., 

2011; Nosyreva et al., 2013; Gideons et al., 2014). It is not clear whether memantine and 

ketamine inhibit synaptic and extrasynaptic NMDARs differently (Emnett et al., 2013; Gideons 

et al., 2014). A recent study suggests that in 1 mM Mg2+, but not in 0 Mg2+, a difference between 

memantine and ketamine inhibition of synaptic NMDARs was revealed (Gideons et al., 2014). In 
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partial agreement, a study comparing inhibition by memantine and ketamine in 0 Mg2+ 

demonstrated no difference between memantine and ketamine inhibition of synaptic or 

extrasynaptic NMDARs (Emnett et al., 2013). Therefore, it is unclear whether memantine and 

ketamine exhibit differential inhibition of NMDAR subpopulations. Furthermore, it is unclear by 

which mechanism memantine or ketamine may differentially inhibit synaptic and extrasynaptic 

NMDARs. 

 Of the many potential differences between synaptic and extrasynaptic NMDARs, there 

are only a few that might serve as a basis for differential inhibition by an open channel blocker. 

First, as discussed above, the NMDAR subtypes expressed synaptically and extrasynaptically are 

very likely to differ. Notably, the studies where memantine or ketamine exhibited differential 

inhibition of synaptic and extrasynaptic NMDARs were conducted in cells that likely only 

expressed GluN2A and GluN2B subunits (Leveille et al., 2008; Milnerwood et al., 2010; Xia et 

al., 2010; Kaufman et al., 2012; Dau et al., 2014; Gideons et al., 2014). Since memantine and 

ketamine NMDAR subtype-selectivity between GluN1/2A and GluN1/2B receptors is weak even 

in 1 mM Mg2+, NMDAR subtype is not an obvious candidate in differential inhibition. Second, 

the concentration of glutamate (~1 mM) that activates synaptic NMDARs is likely to differ 

substantially from the concentration of glutamate (sub-µM to µM) that activates extrasynaptic 

NMDARs. There are conflicting data about whether inhibition by memantine depends on the 

concentration of glutamate (Chen et al., 1992; Chen et al., 1997; Gilling et al., 2007; Gilling et 

al., 2009). To our knowledge, no studies have investigated the impact of glutamate concentration 

on inhibition by ketamine. Third, the duration of synaptic NMDAR exposure to glutamate is 

likely to be very brief (~1-2 ms), whereas the duration of extrasynaptic NMDAR exposure to 

glutamate is likely to be much longer (seconds or tonically). Although no studies have directly 
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investigated whether the duration of glutamate exposure affects inhibition by NMDAR open 

channel blockers, a recent report suggests that memantine inhibition increases with increasing 

intensity of synaptic stimulation (Wild et al., 2013). Whether inhibition by memantine and 

ketamine depend on these mechanisms is of great importance in understanding how each drug 

acts. 
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2.0  WHOLE-CELL PATCH-CLAMP ANALYSIS OF RECOMBINANT NMDA 

RECEPTOR PHARMACOLOGY USING BRIEF GLUTAMATE APPLICATIONS 

Glasgow N. G. and Johnson J. W. (2014). "Whole-cell patch-clamp analysis of recombinant 

NMDA receptor pharmacology using brief glutamate applications." Methods Mol Biol 1183: 23-

41.(in email attachment) 

2.1 OVERVIEW 

NMDA receptors (NMDARs) are ionotropic glutamate receptors that are essential for synaptic 

plasticity, learning and memory. Dysfunction of NMDARs has been implicated in many nervous 

system disorders; therefore, pharmacological modulation of NMDAR activity has great 

therapeutic potential. However, given the broad physiological importance of NMDARs, 

modulating their activity often has detrimental side effects precluding pharmaceutical use of 

many NMDAR modulators. One approach to possibly improve the therapeutic potential of 

NMDAR modulators is to identify compounds that modulate subsets of NMDARs. An obvious 

target for modulating NMDAR subsets are the many NMDAR subtypes produced through 

different combinations of NMDAR subunits. With seven identified genes that encode NMDAR 

subunits, there are many neuronal NMDAR subtypes with distinct properties and potentially 

differential pharmacological sensitivities. Study of NMDAR subtype-specific pharmacology is 
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complicated in neurons, however, because most neurons express at least three NMDAR 

subtypes. Thus, use of an approach that permits study in isolation of a single receptor subtype is 

preferred. Additionally, the effects of drugs on agonist-activated responses typically depend on 

duration of agonist exposure. To evaluate drug effects on synaptic transmission, an approach 

should be used that allows activation of receptor responses as brief as those observed during 

synaptic transmission, both in the absence and presence of drug. To address these issues, we 

designed a fast perfusion system capable of (1) delivering brief (~5 ms) and consistent 

applications of glutamate to recombinant NMDARs of known subunit composition, and (2) 

easily and quickly (~5 seconds) changing between glutamate applications in the absence and 

presence of drug. 

2.2 INTRODUCTION 

There is great interest in pharmacologically modulating ligand-gated ion channels to augment 

nervous system function or alleviate aberrant activity potentially underlying nervous system 

disorders. The whole-cell patch-clamp technique is essential in understanding how drugs affect 

ligand-gated ion channel function, cell physiology, and the nervous system under normal and 

pathological conditions. Due to the great diversity of subtypes within each ligand-gated ion 

channel family, pharmacological analysis of a particular ligand-gated ion channel using native 

cells is complicated. Furthermore, the mechanisms underlying drug actions on ligand-gated ion 

channels may depend upon the concentration and duration of agonist exposure to receptors. 

Therefore, expression of recombinant ligand-gated ion channels in mammalian cell lines in 

conjunction with a fast perfusion system designed to deliver brief agonist applications is very 
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useful in understanding how drugs affect ligand-gated ion channel function. Here we describe a 

method for whole-cell patch-clamp analysis of ligand-gated ion channel pharmacology that 

allows precise control of (1) the receptor subunit composition, (2) the agonist concentration, and 

(3) the duration of agonist exposure to receptors. Our method also allows brief application of 

agonist in the absence and presence of drug to the same cell. Here, we demonstrate use of the 

system to investigate inhibition of recombinant NMDARs during brief glutamate applications. 

NMDARs are ionotropic glutamate receptors that exhibit voltage-dependent Mg2+ block, 

are highly Ca2+ permeable, and deactivate slowly. These properties contribute to the importance 

of NMDARs to cell survival, synaptic plasticity, and many forms of learning and memory 

(Traynelis et al., 2010). Aberrant activation of NMDARs is implicated in neurodegenerative 

diseases, ischemia, depression, and neuropathic pain (Barnham et al., 2004; Pittenger et al., 

2007; Collins et al., 2010; Lau and Tymianski 2010; Autry et al., 2011; Duman and Aghajanian 

2012). Pharmacological inhibition of NMDARs is considered to have great therapeutic potential 

in treating these disorders (Traynelis et al., 2010), although broad inhibition of NMDARs often 

results in undesirable side effects (Palmer 2001; Lipton 2004). Thus, identification of NMDAR 

antagonists selective for NMDARs that may be involved in a pathological state while preserving 

the function of NMDARs underlying normal function may be vital for successful 

pharmacological therapy (Lipton 2004; Lipton 2006; Paoletti et al., 2013).  

NMDARs are heterotetramers composed of two GluN1 subunits either with two GluN2 

subunits or with one GluN2 and one GluN3 subunit (Traynelis et al., 2010). There is a single 

gene that encodes eight splice variants of the GluN1 subunit, four genes that encode four GluN2 

subunits (GluN2A, GluN2B, GluN2C and GluN2D), and two genes that encode two GluN3 

subunits (GluN3a and GluN3B). Different combinations of GluN1, GluN2, and GluN3 subunits 
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give rise to NMDAR subtypes with distinct properties. Combinations that include two identical 

GluN2 subunits form diheteromeric NMDARs (e.g. GluN1/2A) and combinations that include 

either two different GluN2 subunits, or mixtures of GluN2 and GluN3 subunits, form 

triheteromeric NMDARs (e.g. GluN1/2A/2B) (Traynelis et al., 2010; Paoletti et al., 2013). In 

principal cells in the cortex, at least 3 NMDAR subtypes, including GluN1/2A, GluN1/2B, and 

GluN1/2A/2B, are expressed and can be found postsynaptically (Gladding and Raymond 2011; 

Paoletti et al., 2013). Consequently, it is difficult to study synaptic NMDAR subtype-specific 

pharmacology in neurons. Given this difficulty, we emulate synaptic release of glutamate using 

brief glutamate applications to tsA201 cells expressing recombinant GluN1/2A or GluN1/2B 

receptors. This approach allows pharmacological assessment of NMDARs with known, uniform 

subunit compositions. The methods described in this chapter provide a powerful approach to 

studying ligand-gated ion channel currents in response to brief agonist applications in the 

absence and presence of many types of drugs.  

2.3 MATERIALS 

2.3.1 Cell Culture and Transfection 

1. tsA201 cell culture medium: DMEM (Life Technologies) supplemented with 10% fetal 

bovine serum (FBS; Atlanta Biologics) and 1% Glutamax (Life Technologies). 

2. Serum-free tsA201 cell culture medium: DMEM supplemented with 1% Glutamax. 

3. tsA201 cells (The European Coalition of Cell Cultures, ECACC) are plated on 15 mm 

glass coverslips (Carolina Biological) in 35 mm petri dishes (BD Falcon). 
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4. cDNAs encoding the rat GluN1-1a (GenBank X63255 in pCDM8 vector), GluN2A 

(GenBank M91561 in PCDM8 vector), and GluN2B (GenBank M91562 in pCDNA1 

vector) subunits are cotransfected with cDNA for enhanced green fluorescent protein 

(eGFP) to identify successfully transfected cells.  

5. FuGene 6 Transfection Reagent (Promega). 

6. D,L-2-amino-5-phosphonopentanoate (AP5) and 7-chlorokynurenic acid (7-CKA), 

competitive NMDAR antagonists (Tocris). 

2.3.2 Fast Perfusion System 

1. Solution reservoirs are 30 ml syringes (BD Biosciences) attached to an in-house 

fabricated height adjustable bracket. 

2. Solution flow from reservoirs is controlled by clamping silicone tubing (A-M Systems, 

Inc.) in solenoid pinch valves (NResearch Inc.).  

3. Polyethylene tubing (PE 160, Becton Dickinson) is used to connect silicone pinch valve 

tubing to 2 to 1 Y connectors (Value Plastics, Inc., Y210-6) (see Note 1). 

4. Polyethylene tubing (PE 50) connects Y connectors (see Note 1) to silicone tubing 

(outside diameter 1.2 mm and inside diameter 0.64 mm) that is attached to the back ends 

of individual square capillary glass (barrels) (Warner Instruments, SG800-5) with outside 

diameter 0.84 mm and inside diameter 0.6 mm. 

5. Four barrels are aligned and glued (Krazy Glue) into an in-house fabricated barrel holder 

made from a single piece of aluminum, precisely shaped to cup four barrels (see Note 2).  

6. The barrel holder is attached through an in-house fabricated barrel holder arm to the shaft 

of a stepper motor (Pacific Scientific, Powermax II SIGMAX M21). The barrel holder 
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arm should give the barrels a ~1” radius from the center of the stepper motor shaft so that 

stepper motor rotation translates to a nearly linear barrel movement. 

7. Stepper motor rotation is controlled by a microstepping power supply (Precision Motor 

Control, LNII Series) set to 50,000 microsteps/revolution (see Note 3). Barrel movements 

are accomplished by smoothly accelerating and decelerating the frequency of brief 

voltage pulses sent out from a computer parallel port using software (barrel movement 

software) written in Basic and running in FreeDOS (www.freedos.org) (see Note 4).  

8. Although the fast perfusion system is depicted and described with only two separate 

solutions flowing through barrel 1, 2, and 3, it is possible to have as many solutions as is 

experimentally necessary by using an appropriate manifold. 

2.3.3 Whole-Cell Recordings 

1. The external, control solution contains: 140 mM NaCl, 2.8 mM KCl, 1 mM CaCl2, 10 

mM HEPES, 10 µM EDTA, and 100 µM glycine (see Note 5). Adjust pH to 7.2 ± .05 

with NaOH, and adjust osmolality to 290 ± 10 mOsmol/kg with sucrose. 

2. The pipette solution contains: 130 mM CsCl, 10 mM BAPTA, 10 mM HEPES. Adjust 

pH to 7.2 ± 0.05 with CsOH. Osmolality should be 275 ± 10 mOsmol/kg.  

3. Recording pipettes are fabricated using borosilicate glass (with filament) with an outer 

diameter of 1.5 mm and an inner diameter of 0.86 mm (Sutter Instrument Company) 

pulled on a P-97 Flaming/Brown micropipette puller (Sutter Instrument Company) and 

lightly fire-polished. 
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4. Cells are imaged with an inverted fluorescence microscope with an eGFP filter set 

(Zeiss). Patch-clamp recordings are made while imaging cells and the recording pipette 

using a Retiga EXi Fast 1394 digital camera (QImaging).  

5. Voltage-clamp current recordings are made with an Axopatch 200B amplifier (Molecular 

Devices) with a CV 203BU headstage (Molecular Devices) attached to a PatchStar 

micromanipulator (Scientifica) and digitized with a Digidata 1440A A/D converter 

(Molecular Devices). 

2.4 METHODS 

Brief synaptic-like agonist applications to recombinant ligand-gated ion channels expressed in 

tsA201 cells during whole-cell recording can be achieved using the fast perfusion system 

described in Section 2.3.2 (see Figure 5). To emulate synaptic neurotransmitter release, the fast 

perfusion system must achieve brief agonist applications. Brief agonist applications to the entire 

cell under study are facilitated by “lifting” cells from the coverslip on which they are cultured. 

The fast perfusion system must also allow easy changes of the solutions flowing through barrels 

to allow responses to brief agonist applications in the absence and presence of drug. As an 

example of fast perfusion system operation we focus on how NMDAR open channel blockers 

inhibit recombinant NMDAR responses to brief synaptic-like glutamate applications.  

NMDAR open channel blockers are a class of use-dependent NMDAR antagonists. One 

NMDAR open channel blocker, memantine, is currently being used to treat Alzheimer’s disease 

(Witt et al., 2004). Memantine along with another NMDAR open channel blocker, ketamine, 

have shown promise in the treatment of several other debilitating nervous system disorders 
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(Pittenger et al., 2007; Collins et al., 2010; Anitha et al., 2011; Autry et al., 2011; Duman and 

Aghajanian 2012; Prommer 2012). Memantine and ketamine share the same basic mechanism of 

action and have similar IC50 values and kinetics of inhibition at NMDARs (Kotermanski and 

Johnson 2009; Kotermanski et al., 2009). However, there are subtle kinetic differences in 

inhibition of NMDARs by memantine and ketamine. These differences demonstrate important 

considerations when designing experiments to evaluate how drugs affect ligand-gated ion 

channel currents in response to brief agonist applications. The methods described below explain 

the steps used to record recombinant NMDAR currents in response to brief glutamate 

applications in the absence and presence of open channel blockers. 

2.4.1 Fast Perfusion System Design 

 

Figure 5. Schematic of fast perfusion system. 

Fast perfusion system designed to allow brief applications of 1 mM glutamate (Glu) in control solution 

(Ctrl) in the absence and presence of a single drug concentration (Drug).  
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2.4.1.1 Brief Application Strategy 

1. Rapid and continuous barrel movement from barrel 1 to barrel 3 (see Figure 6A), 

sweeping quickly by barrel 2, delivers brief synaptic-like glutamate applications (~5 

ms) to lifted transfected cells. 

2. Similar barrel movement from barrel 3 to barrel 1 (see Figure 6A) delivers another 

brief synaptic-like glutamate application to lifted transfected cells. 

3. With careful calibration, the fast perfusion system can consistently deliver brief, 

repeated synaptic-like agonist applications to lifted transfected cells. 

4. Lifting cells is crucial to ensure complete and rapid exchange of solution during brief 

agonist applications. Although the duration of agonist application is identical for 

recordings from attached cells and from lifted cells, the diffusionally-restricted space 

between the bottom of an attached cell and the coverslip slows solution exchange. 

2.4.1.2 Changing Solutions Flowing Through Barrels 

1 The Y-connectors described in Section 2.3 (see Figure 5) allow one of two solutions 

to flow through barrels 1, 2, and 3. Importantly, pinch valves 1a, 2a, or 3a are never 

open concurrently with pinch vales 1b, 2b, or 3b, respectively. 

2 Change the solutions flowing through each barrel by closing pinch valves 1a, 2a, and 

3a and immediately opening pinch valves 1b, 2b, and 3b. 

3 During changes of solution flowing through barrels 1, 2, and 3, it is advisable to move 

to barrel position 4 to perfuse the cell with control solution (make sure pinch valve 4 

is always open). Perfusing the cell with control solution during changes of solutions 

flowing through barrels helps to avoid (1) releasing gas bubbles onto the cell as a 

result of opening and closing pinch valves, and (2) contact of the cell with glutamate 
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+ drug-containing solution due to temporary disruptions in solution flow during pinch 

valve opening and closing. 

4 One benefit of this method is that the number of solutions that can be applied to the 

same cell is limited only by the number of inlets on a manifold that can replace the Y 

connector.  

2.4.2 Transient Transfection of tsA201 Cells 

1. tsA201 cells are maintained in culture and plated prior to transfection using standard cell 

culture procedures (Phelan 2006). 

2. 12--24 hours before transfection, 1 x 105 tsA201 cells are plated in 1.5 ml of tsA201 cell 

culture medium on uncoated 15 mm glass coverslips in 35 mm petri dishes (3 

coverslips/dish). 

3. Warm serum-free tsA201 cell culture medium and FuGene 6 Transfection Reagent to 

room temperature. 

4. The following steps refer to transfection of a single dish of plated cells. If transfecting 

multiple dishes of plated cells, increase the volume of solutions accordingly. 

5. Transfer 95 µl of serum-free tsA201 cell culture medium into a sterilized microcentrifuge 

tube. 

6. Add 3 µl of FuGene 6 Transfection Reagent to the tube, avoiding contact with the tube 

wall.  

7. Vortex the tube for 1 second and incubate at room temperature for 5 minutes. 

8. Add 1 µg of cDNA total (2 µl of cDNA at a density of 0.5 µg/µl) to the tube in a ratio of 

1:1:2 (eGFP:GluN1:GluN2x) (see Note 6).  
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9. Vortex the tube for 1 second and incubate at room temperature for 15 minutes.  

10. Transfer 100 µl of medium/FuGene 6 Transfection Reagent/cDNA mixture from the 

microcentrifuge tube to a petri dish of plated cells (see Note 7). 

11. Add D,L-AP5 (GluN2A or GluN2B, 200 µM; GluN2C or GluN2D, 400 µM) and 7-CKA 

(200 µM) to the petri dish (see Note 8). 

12. Wait at least 18 hours before recording from transfected cells (see Note 9) 

2.4.3 Performing Brief Glutamate Applications in Control Solution 

2.4.3.1 Estimating Duration of Brief Applications 

1. Fill solution reservoirs 1a, 1b, 3a, and 3b with control solution and fill solution 

reservoirs 2a, and 2b with control solution diluted by 10% with deionized H2O 

(diluted control solution). 

2. Fill a recording pipette with pipette solution, attach to the pipette holder and then 

apply a small amount of positive pressure (~0.5 PSI) to the side port of the pipette 

holder (see Note 10). Lower the pipette into the recording chamber filled with control 

solution.  

3. Position the barrels vertically so they do not touch the bottom of the dish during 

movement (see Note 11). Move the pipette into the optimal vertical position for 

solution application (see Note 12). Position the pipette in the horizontal plane so that 

the tip of the pipette is about 50 µm in front of the front edge of the barrels and the tip 

of the pipette is aligned with the center of barrel 1. Use the barrel movement software 

to define that location as barrel position 1.  
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4. Sequentially for each of the remaining three barrels, use the barrel movement 

software to align the barrel with the tip of the open pipette. Use the barrel movement 

software to define barrel positions 2, 3, and 4.  

5. Make brief solution applications to the open pipette by rapid continuous movements 

from barrel position 1 to 3 or barrel position 3 to 1, sweeping by the solution in barrel 

2 (see Section 2.4.1.1). With pinch valves 1a, 2a, and 3a open, perform movements 

from barrel position 1 to 3 and back from barrel position 3 to 1. Measure the duration 

of solution application with the open pipette by measuring the current in response to 

the diluted control solution in barrel 2 (see Figure 6B). Current changes reflect the 

differing solution osmolality flowing onto the open pipette tip and are used to 

measure the duration of barrel 2 solution application. We measured the half-width 

duration of solution application as 4.5 ± 0.6 ms and the solution exchange 10--90% 

current rise time as < 0.5 ms (see Figure 6B). 

6. Change the solutions flowing through the barrels by closing pinch valves 1a, 2a, 3a 

and opening pinch valves 1b, 2b, and 3b (see Section 2.4.1.2). Repeat and evaluate 

current measurements described in the previous point with pinch valves 1b, 2b, and 

3b open. 
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Figure 6. Measuring the duration of glutamate application. 

(A) Schematic of barrel movement in relation to an open recording pipette. Barrel movements are from barrel 

position 1 to 3 (and from barrel position 3 to 1), briefly sweeping by barrel 2. (B) Example of a current 

recording from an open recording pipette in response to moving from barrel position 1 to 3, sweeping by barrel 

2, which has solution of different osmolality than barrels 1 or 3 (application half-width, 3.7 ms; solution 

exchange 10--90% current rise times, 1 to 2: 0.26 ms; 2 to 3: 0.22 ms). (C, D) Examples of whole-cell voltage-

clamp recordings of lifted tsA201 cells expressing GluN1/2A receptors (C; 10--90% rise time, 4.0 ms; τw, 29.6 

ms) or GluN1/2B receptors (D; 10--90% rise time, 9.0 ms; τw, 421 ms) in response to brief applications of 1 

mM glutamate (Glu, black bar). Cells were held at – 65 mV. 

 



 45 

2.4.3.2 Whole-Cell Recording from Lifted Cells 

Patch-clamp recording from lifted cells is similar to patch-clamp recording from 

attached cells. For more detailed information on standard application of the patch-clamp 

technique see Hamill et al., 1981 (Hamill et al., 1981). 

1. Transfer a coverslip with transfected tsA201 cells to the recording chamber 

containing room temperature bath solution. Place the recording chamber onto the 

microscope stage, and then place an efflux tube and reference electrode into the 

chamber (see Note 13). 

2. Using the fluorescence microscope, identify an isolated eGFP-positive cell (see Note 

14). 

3. Position the barrels vertically to ensure that they do not make contact with the 

coverslip through the full range of barrel movement (see Note 11). Position the 

barrels in the horizontal plane so that the front edge of barrel 1 is near the cell, and 

the center of barrel 1 is aligned with the cell (see Figure 6A). Then move the barrels 

axially away from the cell, without changing the alignment of barrel 1 with the cell, 

to avoid crashing the recording pipette into the barrels (see Note 15).  

4. Position the recording pipette just above the cell. Before forming a gigaohm seal, 

move the barrels axially towards the cell until about 50 µm from the cell. 

5. Lower the recording pipette and form a gigaohm seal. Adjust electrode capacitance, 

and then achieve a whole-cell configuration.  

6. Set whole-cell parameters (cell capacitance and series resistance) and adjust series 

resistance compensation to ~80%. 
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7. To lift the cell, apply a constant negative pressure of 1--1.5 PSI to the side port of the 

pipette holder. Slowly begin to move the pipette straight up from the coverslip. You 

should see the cell lift from the coverslip. Continue lifting the cell slowly until it is 

completely free from the coverslip. Move the pipette with the lifted cell into the 

optimal position for solution application (see Note 12). 

8. Once the lifted cell is positioned, reduce the constant negative pressure to the side 

port of the pipette holder to 0.3--0.6 PSI. Readjust the whole-cell parameters, as 

capacitance should have decreased from lifting the cell. Also, the membrane 

capacitance of lifted cells often decreases throughout experiments, which may require 

further adjustments to whole-cell parameters. 

9. Making an initial glutamate application of about 30 s is recommended to reduce 

response variability during the rest of the experiment. 
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Figure 7. Brief applications of glutamate to lifted cells expressing two different NMDAR subtypes. 

(A, B) Example whole-cell voltage-clamp recordings of lifted tsA201 cells expressing GluN1/2A receptors 

(A) or GluN1/2B receptors (B) in response to 5 brief applications of 1 mM glutamate (Glu, black bars) at a 

frequency of 0.2 Hz. Cells were held at -65 mV. 

 

2.4.3.3 Quantification of Receptor Response Time Course 

1. Fill solution reservoirs 1a, 1b, 3a, and 3b with control solution, and fill solution 

reservoirs 2a and 2b with control solution containing 1 mM glutamate.  

2. Make brief glutamate applications to the lifted cell by rapid continuous movements 

from barrel position 1 to 3 or barrel position 3 to 1, sweeping by the solution in barrel 

2 (see Section 2.4.1.1).  
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3. Gauge the similarity to NMDAR-EPSCs of recombinant NMDAR responses by 

measuring the kinetics of recombinant receptor currents in response to brief glutamate 

applications.  

4. Quantify the activation time course of recombinant NMDAR currents as the 10--90% 

rise time. We measured a mean 10--90% current rise time in response to brief 

glutamate applications to GluN1/2A receptors of 4.8 ± 0.6 ms (see Figure 6C) and in 

response to brief glutamate applications to GluN1/2B receptors of 12.7 ± 5.6 ms (see 

Figure 6D). 

5. Quantify the decay time course of recombinant NMDAR currents by fitting the 

current decay with a double exponential function and determining the weighted time 

constant of decay (τw = (τfast)(fractionfast) + (τslow)(fractionslow)). We measured a mean 

τw in response to brief glutamate applications to GluN1/2A receptors of 27.5 ± 4.1 ms 

(see Figure 6C) and in response to brief glutamate applications to GluN1/2B 

receptors of 420 ± 34 ms (see Figure 6D). 

6. Compare results to expected EPSC kinetics. The recombinant NMDAR response 

kinetics we measured are similar to previous measurements of NMDAR-EPSC 

kinetics and also to results of previous studies using brief glutamate applications to 

recombinant NMDARs in transfected cells (Vicini et al., 1998; Cull-Candy and 

Leszkiewicz 2004; Erreger et al., 2005; Tovar et al., 2013). 

7. Change the solutions flowing through the barrels by closing pinch valves 1a, 2a, 3a 

and opening pinch valves 1b, 2b, and 3b (see Section 2.4.1.2). Repeat and evaluate 

the kinetic measurements of recombinant NMDAR currents in response to brief 

glutamate applications (see Note 16). 
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8. After finishing an experiment, measure the duration of glutamate application to that 

specific cell to control for variations in solution flow rate and other potential sources 

of error, which may lead to exclusion of that experiment from analysis. Turn off 

series resistance compensation and whole-cell parameters. Return holding potential to 

0 mV. Deliver > 2 PSI of positive pressure to the side port of the pipette holder to 

remove the cell and membrane debris from the tip of the pipette. Dilute the 

glutamate-containing solutions in reservoirs 2a and 2b (see Figure 5) with deionized 

H2O by at least 10%. Measure changes in pipette current in response to barrel 

movements with the open pipette (see Section 2.4.3.1). Make sure to measure 

solution applications with pinch valves 1a, 2a, and 3a open and also with pinch valves 

1b, 2b, and 3b open.  

2.4.3.4 Fast Perfusion System Optimization 

1. Stepper motor controller power output. Depending on the stepper motor controller, 

the output power may be adjustable. If so, modifying the output power can change 

stepper motor operation, either introducing or eliminating oscillations that may result 

from rapid acceleration and deceleration of the stepper motor. With some power 

settings, we observed oscillations when monitoring system performance using an 

open pipette that could have an undesirable impact on brief agonist applications to 

transfected cells.  

2. Weight of barrel holder arm and barrel holder. Due to rapid acceleration and 

deceleration of the stepper motor, the stepper motor can overshoot desired positions 

or oscillate. The rotational inertia imposed by the weight of the barrel holder arm and 

barrel holder can strongly impact stepper motor overshoot and oscillations. The 
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weight of the barrel holder arm and barrel holder should be minimized to reduce 

overshoot and oscillations if present. 

3. Acceleration of stepper motor. The acceleration and deceleration of the stepper motor 

should be optimized for system stability and to minimize the duration of agonist 

application. At more rapid accelerations and decelerations, the stepper motor may 

overshoot desired positions or oscillate. At slower accelerations and decelerations, the 

duration of agonist application may be too long. 

4. Rate of solution flow. Careful adjustment of the solution flow rate is essential to 

achieving consistent and brief agonist applications. It is important to maintain similar 

solution flow rates so that inconsistencies in application duration do not arise (see 

Note 17). Also, lifted cells are attached only to the tip of the recording pipette, 

making them vulnerable to being blown away if the solution flow rate is too fast. 

5. Degassing solutions prior to use. Removing gas from solutions prior to starting 

experiments can help to (1) keep bubbles from destroying cells and (2) keep bubbles 

from blocking barrels, slowing or stopping solution flow. Gas bubbles can form 

unpredictably in tubing during experiments, and it can be difficult to determine if 

solution has stopped flowing from a particular barrel during an experiment. To degas 

solutions, pour solutions into a vacuum flask and apply negative pressure. Stop 

negative pressure when few gas bubbles form in solution. 

6. Mixing of barrel solutions. It is important to ensure that a cell is exposed almost 

exclusively to the desired solution at each barrel position. Solution mixing could 

occur, for example, within the Y connectors, or after solutions leave the barrels if the 

cell is not properly positioned relative to the barrels. One way to test for mixing is to 
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fill solution reservoirs 1a, 2a, 3a, and 4 with control solution and solution reservoirs 

1b, 2b, and 3b with control solution containing agonist at a concentration orders of 

magnitude above its EC50 for the receptors under study; we use 10 mM glutamate. 

While whole-cell recording from a lifted cell expressing recombinant receptors, start 

recording at barrel position 4 with all other pinch valves closed and determine control 

(in the absence of agonist) holding current. Open pinch valves 1b, 2b, and 3b and be 

sure that holding current does not change while the cell is in front of barrel 4. Move 

to barrel position 3 to observe the response to glutamate, and after current has reached 

steady-state, be sure that there is no further change in current when moving to barrel 

positions 2 and 1. Move to barrel position 3, close pinch valve 3b, and open pinch 

valve 3a, and ensure that control holding current is observed. Repeat this procedure 

for the other barrels, and also change the solution flowing through adjacent barrels to 

be sure that the cell is exposed only to the solution flowing from the appropriate 

barrel. If evidence of mixing is observed, identify and correct the source of the 

problem (e.g., malfunctioning pinch valves or incorrect positioning of the cell relative 

to the barrels). 

2.4.4 Performing Brief Glutamate Applications in Presence of Channel Blockers 

1. Use whole-cell patch-clamp recordings from lifted cells expressing GluN1/2A or 

GluN1/2B receptors to record responses to brief glutamate applications as described in 

Section 2.4.3, with modifications described below.  

2. Fill solution reservoirs 1a, 3a, and 4 with control solution and reservoir 2a with control 

solution containing 1 mM glutamate. Fill solution reservoirs 1b and 3b with control 
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solution + drug and reservoir 2b with control solution containing 1 mM glutamate + drug 

(see Figure 5). 

3. Choose an appropriate frequency of brief glutamate applications to lifted cells expressing 

a particular NMDAR subtype. The frequency must be low enough to ensure complete 

current decay following glutamate application and allow recovery from desensitization 

before the subsequent glutamate application, yet fast enough to allow for experiments 

that may require many brief glutamate applications (potentially > 100 applications). We 

used a glutamate application frequency of 0.2 Hz for both GluN1/2A (see Figure 7A) 

and GluN1/2B (see Figure 7B) receptors. 

4. Measure the baseline peak current value in response to brief glutamate applications in the 

absence of drug (baseline current). We required 10 consecutive, steady glutamate 

responses to establish that a stable baseline current had been reached, which were then 

averaged to give the baseline current mean value (see Figure 7A, B).  

5. Add drug to the solutions flowing through the barrels by closing pinch valves 1a, 2a, and 

3a and opening pinch valves 1b, 2b, and 3b (see Section 2.4.1.2). Make sure to allow 

enough time for complete changes of solutions flowing through the barrels (see Note 18) 

6. Open channel blockers require that the channel be activated to bind and inhibit the 

channel. The number of brief glutamate applications in the presence of drug needed to 

reach a steady level of NMDAR inhibition depends on the drug’s kinetics and must be 

determined for each drug and NMDAR subtype. For each successive application of 

glutamate in the presence of drug, the peak current should be smaller than the previous 

peak current until reaching a steady level (inhibited current). We required 5 consecutive, 

steady glutamate responses to establish that a stable inhibited current had been reached, 
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which were then averaged to give the inhibited current mean value (see Figure 8A, B). 

We used memantine and ketamine, two NMDAR open channel blockers with slightly 

different kinetics, to illustrate differences in the number of glutamate applications in the 

presence of drug needed to reach steady NMDAR inhibition. We used 20 applications of 

glutamate in the presence of memantine and 40 applications of glutamate in the presence 

of ketamine to reach steady levels of NMDAR inhibition with GluN1/2A (data not 

shown) and GluN1/2B receptors (see Figure 8A, B).  

7. Remove drug from the solutions flowing through the barrels by closing pinch valves 1b, 

2b, and 3b, and opening pinch valves 1a, 2a, and 3a (see Section 2.4.1.2). Make sure to 

allow enough time for complete changes of solutions flowing through the barrels (see 

Note 18).  

8. Open channel blockers like memantine and ketamine require channel activation to unbind 

and allow recovery from inhibition (see Note 19). The number of brief glutamate 

applications in the absence of drug following NMDAR inhibition must be determined for 

each drug and NMDAR subtype. For each successive application of glutamate in the 

absence of drug following NMDAR inhibition, the peak current should be larger than the 

previous peak current until reaching a steady level after recovery from inhibition is 

complete (current after recovery). We required 10 consecutive, steady glutamate 

responses to establish that a stable current after recovery had been reached, which were 

then averaged to give the current after recovery mean value (see Figure 8A, B).We used 

20 applications of glutamate in the absence of memantine and 40 applications of 

glutamate in the absence of ketamine following NMDAR inhibition to reach steady levels 
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of current after recovery with GluN1/2A (data not shown) and GluN1/2B receptors (see 

Figure 8A, B).  

9. Measure peak currents in response to brief glutamate applications in the absence and 

presence of drug as the mean current over a 3 ms window centered at the time of peak 

current.  

10. Calculate the percent inhibition by open channel blockers using the equation: % 

inhibition = 100 * (1 – (inhibited current)/(0.5 * (baseline current + current after 

recovery))). We averaged the values for baseline current and current after recovery to 

account for changes in cell properties during experiments. For Figure 8, we used 

concentrations of memantine and ketamine near their IC50 values at NMDARs. We 

measured percent inhibition of responses to brief glutamate applications to GluN1/2B 

receptors in the presence of 1 µM memantine as 49% (see Figure 8A), and in the 

presence of 0.5 µM ketamine as 56% (see Figure 8B). 
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Figure 8. Antagonist kinetics affect the number of brief glutamate applications needed to reach a 

steady level of current inhibition and a steady level of currents after recovery from inhibition. 

(A, B) Examples of whole-cell voltage-clamp recordings from lifted tsA201 cells expressing GluN1/2B 

receptors in response to brief applications of 1 mM glutamate (Glu, short black bars) at 0.2 Hz in control 

solution or in the presence of 1 µM memantine (A) or 0.5 µM ketamine (B) (long black bars). The average 

of peak currents from the first 10 glutamate responses shown gives the baseline current mean value, the 

average the peak currents from the last 5 glutamate responses in the presence of memantine or ketamine 

gives the inhibited current mean value, and the average of the peak currents from the last 10 glutamate 

responses gives the current after recovery mean value. Cells were held at -65 mV. 
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2.5 NOTES 

1. Silicone tubing of appropriate size is used to connect PE tubing to Y connectors.  

2. Barrels were first cut to length (5 mm) by scoring with a diamond tipped scribe and then 

both ends were lightly fire-polished. To allow silicone tubing connections to go over the 

back ends of adjacent barrels, carefully heat individual barrels over a Bunsen burner and 

bend to a 30 - 60° angle. Only bend two barrels and align them in an alternating pattern 

of bent then straight barrels to ensure that silicone tubing will attach to the back ends of 

all the barrels. Glass should be cleaned in 95% ethanol and dried before gluing to the 

barrel holder. Make sure to align the open edge of the barrels with each other, and ensure 

that there is no space between barrels.  

3. With barrels at a ~1” (~25 mm) radius from the center of the stepper motor shaft, each 

microstep of stepper motor rotation is translated to ~3 µm of barrel movement. Because 

the total range of barrel movement is about 2500 µm, less than 1000 microsteps (less than 

1/50th revolution) are needed for total barrel movement. This translates to nearly linear 

barrel movement.  

4. A compiled version of the stepper motor program is available from the authors by email 

request. 

5. 10 µM EDTA is used to chelate contaminating free Zn2+, which inhibits GluN1/2A 

receptors in the nM range. The NMDAR coagonist glycine is present in all solutions to 

saturate the glycine coagonist-sites on NMDARs. 
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6. The cDNA transfection ratio of 1:1:2 for eGFP:GluN1:GluN2x may vary depending on 

transfection efficiency with given vectors and subunits. 

7. The volume of serum-free tsA201 medium used for transfections depends upon the 

cDNA solution density. The medium/FuGene 6 Transfection Reagent/cDNA mixture 

should be at a final volume of 100 µl for transfection of a single dish of plated cells. If 

the cDNA solution density differs from 0.5 µg/µl, a different volume of cDNA solution 

should be added to the mixture to reach 1 µg of cDNA; the amount of medium added 

should be adjusted to reflect this change. 

8. NMDARs tonically activated by ambient glutamate present in the culture medium are 

excitotoxic. Therefore, we add competitive antagonists to the culture medium after 

transfection of tsA201 cells. Other antagonists, including elevation of the Mg2+ 

concentration of the tsA201 cell culture medium to > 10 mM also may be used. 

9. We find that 24--48 hours after transfection offers optimal current amplitudes, cell health, 

and cell confluency. Depending on current amplitudes, successful recordings from 

transfected cells can be made up to at least 72 hours after transfection. Vary the time 

between transfection and recording to optimize protein expression and cell health.  

10. We use a 1 ml syringe connected with PE tubing to the side port of the pipette holder and 

connected in parallel to a pressure gauge. Pressure and suction can be applied by using 

the plunger of the syringe or by mouth. A stopcock on the end of the syringe can be 

closed to hold positive and negative pressure in the pipette.  

11. The distance between the upper surface of the coverslip and the lowest point on any of 

the barrels changes slightly when the stepper motor rotates to cause barrel movement (see 

Note 3). After positioning the barrels axially so they are near the cell, position the barrels 
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vertically so they are close to the coverslip, but do not touch the coverslip during 

movements to each barrel position. The barrels could break if they contact the coverslip 

during fast movements. 

12. Choose the vertical position of the pipette relative to the barrel openings to optimize 

speed of solution changes. It is best to position the pipette so that it is near the vertical 

center of the barrel openings. However, note that the barrels should be angled so that they 

point ~30o below the horizontal plane. The pipette should be positioned vertically so that 

it sits near the middle of the solution streams flowing from the barrels. 

13. To maintain fluid levels in the recording chamber, we siphon solution through a glass 

efflux tube. The height of solution in the recording chamber is determined by the height 

of the waste end of the efflux tube.  

14. It is important to record only from isolated eGFP-positive tsA201 cells. When recording 

from lifted cells, it is often difficult to tell if there are thin attachments to other cells, 

which could drastically alter the recordings. 

15. When using lifted cells, it is possible to move the lifted cell to the barrels, even if they are 

placed relatively far from the starting location of the cell, to simplify barrel positioning. 

However, aligning the barrels as described minimizes the need to move the cell after 

lifting, increasing success rate.  

16. Make sure that peak current amplitudes and response kinetics in response to brief 

glutamate applications are similar when pinch valves 1a, 2a, and 3a are open and when 

pinch valves 1b, 2b, and 3b are open. If significant differences are observed, further 

optimize the system as described in Section 2.4.3.4.  
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17. Differences in the rate of solution flow from barrel 1 and 3 can increase the agonist 

application duration while moving from barrel position 1 to 3 relative to the agonist 

application duration while moving from barrel position 3 to 1. Also, differences in 

solution flow rate from reservoirs 1a and 1b, etc. can have a significant impact on the 

duration of agonist application in the presence or absence of drug. Such differences could 

lead to complications in interpreting the effect of a drug. 

18. The time required for complete changes of solutions flowing through barrels can be 

estimated with the following experiment. Fill solution reservoirs 1a, 2a, and 3a with 

control solution and fill solution reservoirs 1b, 2b, and 3b with diluted control solution. 

With an open pipette positioned at barrel position 1, measure the time course of current 

change in response to closing pinch valve 1a and opening pinch valve 1b. The current 

should change approximately exponentially until reaching a steady level in the presence 

of the diluted control solution in reservoir 1b. Measure the 10-90% current rise time to 

estimate the time required for changing the solution flowing through barrel 1. We waited 

for 5x the 10-90% current rise time after closing pinch valve 1a and opening pinch valve 

1b to consider the change of solution flowing through barrel 1 complete. Repeat 

measurements of current change in response to closing pinch valve a and opening pinch 

valve b for barrels 2 and 3. 

19. Measure recovery in all experiments to ensure that decreases in peak currents in response 

to brief glutamate applications in the presence of drug are due to the drug itself and not 

due to other changes in the cell that may decrease peak currents.  
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3.0  MEMANTINE AND KETAMINE DIFFERENTIALLY ALTER NMDA 

RECEPTOR DESENSITIZATION KINETICS 

3.1 OVERVIEW 

Memantine and ketamine are two clinically useful NMDA receptor (NMDAR) open channel 

blockers. Although memantine and ketamine act at NMDARs with similar IC50 values and 

kinetics, they display vastly different clinical profiles. This discrepancy has been hypothesized to 

result from inhibition by memantine and ketamine of overlapping but distinct subpopulations of 

NMDARs. For example, memantine, but not ketamine, may inhibit extrasynaptic more 

effectively than synaptic NMDARs. However, a mechanistic basis for drugs preferentially 

inhibiting NMDARs depending on their subcellular location has not been systematically 

investigated. We integrated whole-cell recordings from transfected cells expressing a single 

NMDAR subtype with kinetic modeling to demonstrate that memantine and ketamine 

differentially alter NMDAR desensitization, and that memantine stabilizes a Ca2+-dependent 

desensitized state. Thus, inhibition by memantine and ketamine depends in part on the intensity 

and duration of NMDAR activation, as opposed to strictly the location of receptors. Modulation 

of receptor desensitization is an unexplored mechanism of inhibitory action with the potential to 

endow drugs with NMDAR selectivity that leads to superior clinical profiles. 
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3.2 INTRODUCTION 

NMDA receptors (NMDARs), a subfamily of ionotropic glutamate receptors, exhibit unique 

biophysical properties such as high permeability to Ca2+ and highly voltage-dependent block by 

Mg2+ at resting membrane potentials (Traynelis et al., 2010; Paoletti et al., 2013; Glasgow et al., 

2015). These biophysical features make NMDAR activation particularly relevant to cellular 

signaling with physiological activation leading to processes such as synaptic plasticity, and 

pathological activation leading to processes such as excitotoxic cell death (Paoletti et al., 2013; 

Parsons and Raymond 2014). An emerging literature suggests a dichotomy in cellular signaling 

arising from the specific subcellular localization of NMDARs: synaptic NMDAR activation 

leads to processes involved in cell survival, whereas extrasynaptic NMDAR activation leads to 

processes involved in excitotoxic cell death (Hardingham and Bading 2010; Bading 2013; 

Parsons and Raymond 2014). However, some studies have demonstrated a clear role of synaptic 

NMDAR activation in excitotoxic cell death (Papouin et al., 2012; Wroge et al., 2012; Zhou et 

al., 2013; Zhou et al., 2013). Furthermore, many studies support a role of extrasynaptic 

NMDARs in normal neuronal physiology (Fellin et al., 2004; Herman and Jahr 2007; Le Meur et 

al., 2007; Harris and Pettit 2008; Povysheva and Johnson 2012; Riebe et al., 2016). Nevertheless, 

aberrant activation of extrasynaptic NMDARs is implicated in models of excitotoxicity, 

Alzheimer’s disease, and Huntington’s disease particularly relating to the extent of cell death and 

activation of cell death-related signaling pathways (Hardingham et al., 2002; Leveille et al., 

2008; Papadia et al., 2008; Okamoto et al., 2009; Bordji et al., 2010; Leveille et al., 2010; 

Milnerwood et al., 2010; Kaufman et al., 2012; Talantova et al., 2013; Dau et al., 2014). 

The idea that different subpopulations of NMDARs are involved in distinct processes 

underlies a hypothesis of differential activity by two clinically relevant NMDAR open channel 
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blockers, memantine and ketamine (Johnson et al., 2015; Kavalali and Monteggia 2015). 

Memantine is approved for the treatment of moderate to severe Alzheimer’s disease and shows 

promise in the treatment of Huntington’s disease, dementia, and ischemia (Witt et al., 2004; 

Okamoto et al., 2009; Emre et al., 2010; Dau et al., 2014; Kafi et al., 2014). In contrast, ketamine 

was initially approved for use as an anesthetic, but has recently shown efficacy for rapid and 

sustained relief of depression symptoms and in treatment of pain (Prommer 2012; Krystal et al., 

2013; Persson 2013; Kavalali and Monteggia 2015). Despite their non-overlapping clinical 

profiles, memantine and ketamine are thought to act primarily as open channel blockers of 

NMDARs with similar IC50 values and kinetics (Lipton 2006; Parsons et al., 2007; Abdallah et 

al., 2015; Johnson et al., 2015; Kavalali and Monteggia 2015). One hypothesis to explain the 

divergent clinical profiles of memantine and ketamine is that each drug inhibits overlapping but 

distinct subpopulations of NMDARs. Memantine is hypothesized to provide neuroprotection 

through more potent inhibition of extrasynaptic than synaptic NMDARs (Zhao et al., 2006; 

Leveille et al., 2008; Papadia et al., 2008; Okamoto et al., 2009; Milnerwood et al., 2010; Xia et 

al., 2010; Kaufman et al., 2012; Dau et al., 2014), but see (Wroge et al., 2012; Emnett et al., 

2013; Zhou et al., 2013). In contrast, ketamine is hypothesized to provide rapid anti-depressant 

effects through inhibition of synaptic NMDARs (Autry et al., 2011; Nosyreva et al., 2013; 

Gideons et al., 2014; Kavalali and Monteggia 2015), but see (Miller et al., 2014). 

It is plausible that the divergent clinical profiles of memantine and ketamine arise from 

inhibition of overlapping but distinct NMDAR subpopulations. However, there is no clear 

mechanism by which memantine and ketamine may act to selectively inhibit subpopulations of 

NMDARs discussed above (Xia et al., 2010; Emnett et al., 2013; Gideons et al., 2014). Thus, we 

investigated whether inhibition by memantine and ketamine differed depending on three 
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potential properties or features that are likely to vary between synaptic and extrasynaptic 

NMDARs. 

First, we investigated whether inhibition by memantine and ketamine depended on the 

NMDAR subtype. NMDARs are four subunit complexes necessarily containing GluN1 and 

GluN2 subunits. There are four GluN2 subunits, GluN2A – GluN2D, that vary in expression 

based on the brain region, cell type, and developmental stage (Traynelis et al., 2010; Paoletti et 

al., 2013; Glasgow et al., 2015). The NMDAR subtype is defined by the specific combination of 

subunits that a receptor contains. For example, a GluN1/2A contains 2 GluN1 subunits and 2 

GluN2A subunits. Memantine and ketamine exhibit subtype-selectivity for GluN1/2C and 

GluN1/2D receptors over GluN1/2A and GluN1/2B receptors in the presence of 1 mM Mg2+, but 

not in its absence (Dravid et al., 2007; Kotermanski and Johnson 2009). However, GluN2C and 

GluN2D subunits are likely not expressed in cell-types (Monyer et al., 1994; Landwehrmeyer et 

al., 1995) that are particularly relevant for memantine acting as a neuroprotectant in ischemia 

(Freund et al., 1990; Lipton 1999; Papp et al., 2008) and Huntington’s disease (Okamoto et al., 

2009; Milnerwood et al., 2010; Kaufman et al., 2012; Dau et al., 2014), or in the context of 

ketamine as rapid anti-depressant (Autry et al., 2011; Nosyreva et al., 2013; Gideons et al., 2014; 

Miller et al., 2014; Kavalali and Monteggia 2015). Therefore, we focused on memantine and 

ketamine inhibition of GluN1/2A and GluN1/2B receptors. Notably, many studies have shown 

that GluN2A-containing receptors are localized synaptically, whereas GluN2B-containing 

receptors are localized extrasynaptically (Tovar and Westbrook 1999; Groc et al., 2006; Martel 

et al., 2009; Papouin et al., 2012), but see (Thomas et al., 2006; Harris and Pettit 2007; Petralia et 

al., 2010). Second, we investigated whether inhibition by memantine and ketamine depended on 

the concentration of glutamate to which synaptic and extrasynaptic NMDARs are typically 



 64 

exposed. Third, we investigated whether inhibition by memantine and ketamine depended on the 

duration of glutamate to which NMDARs are typically exposed. We found that inhibition by 

memantine and ketamine depends most strongly upon the NMDAR subtype and the duration of 

glutamate exposure. Upon further investigation, we discovered that memantine and ketamine 

differentially alter NMDAR desensitization kinetics and that memantine stabilizes a Ca2+-

dependent desensitized state of GluN1/2A receptors. 

3.3 MATERIALS AND METHODS 

3.3.1 Cell culture and transfection 

Experiments were performed on the tsA201 cell line (The European Collection of Authenticated 

Cell Cultures). tsA201 cells were maintained as previously described (Glasgow and Johnson 

2014), in DMEM supplemented with 10% fetal bovine serum and 1% GlutaMAX (Thermo 

Fisher Scientific). Cells at 1 x 105 cells/dish were plated on 15 mm untreated glass coverslips for 

experiments using lifted cells and plated on 15 mm glass coverslips treated with poly D-lysine 

(0.1 mg/ml) and rat-tail collagen (0.1 mg/ml, BD Biosciences) in 35 mm petri dishes for 

experiments using unlifted cells. 12 to 24 hours after plating, the cells were transiently 

cotransfected with cDNAs encoding enhanced green fluorescent protein (EGFP) for 

identification of transfected cells, the rat GluN1-1a subunit (hereafter GluN1; GenBank X63255 

in pcDNA3.1), and either the rat GluN2A subunit (GenBank M91561 in pcDNA1) or rat 

GluN2B subunit (GenBank M91562 in pcDNA1), using FuGENE 6 Transfection Reagent 

(Promega). Some experiments used cells transfected with GluN1 and a EGFP:pIRES:GluN2A 
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construct, which was a kind gift from Dr. Kasper Hansen (Hansen, unpublished). Briefly, EGFP 

was inserted in pIRES (Clontech) under transcriptional control of the CMV promoter, and the 

open reading frame of rat GluN2A (GenBank D13211) was inserted after the IRES sequence. 

cDNA ratios of 1 EGFP: 1 GluN1: 1 GluN2A or 1 EGFP: 1 GluN1: 3 GluN2B were used. 

Immediately proceeding transfection, the culture media was supplemented with the competitive 

NMDAR antagonists D,L-2-amino-5-phosphonopentanoate (200 µM) and 7-chlorokynurenic acid 

(200 µM) to prevent NMDAR-mediated cell death. 

3.3.2 Electrophysiology 

Whole-cell voltage-clamp recordings were performed on transfected tsA201 cells 12 – 48 hours 

after transfection. Pipettes were pulled from borosilicate capillary tubing (Sutter Instruments) to 

a resistance of 2 – 5 MΩ on a Sutter Instruments-Flaming Brown P-97 electrode puller and fire 

polished. Unless otherwise indicated, the extracellular solution contained (in mM): 140 NaCl, 2.8 

KCl, 1 CaCl2, 10 HEPES, 0.01 EDTA, and 0.1 glycine, balanced to pH 7.2 ± 0.05 with NaOH 

and osmolality balanced to 290 ± 10 mOsm with sucrose. Unless other indicated, the intracellular 

pipette solution contained (in mM): 130 CsCl, 10 HEPES, 10 BAPTA, and 4 MgATP balanced 

to pH 7.2 ± 0.05 with CsOH and osmolality of 280 ± 10 mOsm. MgATP was added to the 

intracellular pipette solution to reduce NMDAR current rundown, although some experiments 

measuring inhibition by memantine and ketamine were performed without addition of MgATP. 

There was no distinguishable difference in measures of inhibition and therefore data were 

pooled. Solutions were delivered with an in-house fabricated fast perfusion system described 

below. 
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Whole-cell currents were amplified using an Axopatch 200B patch-clamp amplifier 

(Molecular Devices), low-pas filtered at 5 kHz and sampled at 20 kHz in pClamp10 (Molecular 

Devices). Series resistance was compensated 85 – 90% with the prediction and correction 

circuitry in all experiments. An empirically determined liquid junction potential of -6 mV 

between the pipette solution and extracellular solution was corrected in all experiments post hoc. 

3.3.3 Fast perfusion system 

Solutions were delivered through ten round plastic barrels (recordings from unlifted cells) or 

through 3 square glass barrels (recordings from lifted cells) with an in-house fabricated fast 

perfusion system similar to a system described previously(Glasgow and Johnson 2014). Solution 

changes were achieved by changing the barrel position with a voice-coil linear stage (Equipment 

Solutions, Inc.) controlled by a custom program described previously(Blanpied et al., 1997). 

Solution flow rate was controlled by adjusting the height of the solution reservoirs and was 

typically ~2 ml/min for recordings from unlifted cells and ~1 ml/min for recordings from lifted 

cells. 

Synaptic-like glutamate applications were achieved by quickly changing barrel position 

from Barrel 1 to Barrel 3 and Barrel 3 to Barrel 1, briefly sweeping by the glutamate-containing 

Barrel 2 as depicted in Figure 10A. Solution exchange across an open pipette during a 

movement from Barrel 1 to Barrel 3, and a movement from Barrel 3 to Barrel 1, had a 10-90% 

rise time of < 0.2 ms as measured by the current relaxation of the junction current in response to 

a solution of different osmolality in Barrel 2 (Figure 10A, B; Table 1). Solution exchange 

around a lifted whole cell had a 10-90% rise time of ~3 ms and was well fit by a single 

exponential with a time constant of ~2 ms (Table 1). We determined solution exchange around a 
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whole cell by measuring the time-course of current relaxation following a movement from Barrel 

1 containing normal extracellular solution and 1 mM glutamate to Barrel 2 containing 

extracellular solution with 50% NaCl and 1 mM glutamate. The duration of synaptic-like 

glutamate applications was determined after each experiment by applying pressure to clear the 

cell from the tip of the pipette and measuring the duration of junction current change across an 

open pipette as described above. Synaptic-like glutamate applications were typically ~2-5 ms. 

Experiments where applications were < 1.5 ms or > 6 ms, or where open pipette tip junction 

currents displayed multiple peaks were excluded from analysis. Solution exchange around 

unlifted whole cells measured as described above (Table 1). 

3.3.4 Kinetic modeling 

All model current simulations and model fitting to data were performed in SCoP 3.52 

(Simulation Resources), which numerically solves kinetic schemes to determine the probability 

of entering defined states after a defined stimulus, such as agonist or drug application. Currents 

were simulated by solving the equation, INMDA = NPopenγ(Vm – Vrev), where N is the number of 

channels, Popen is the probability of being in state RA2*, γ is the single-channel conductance of 50 

pS, Vm is the membrane voltage of -65 mV, and Vrev is the reversal potential of 0 mV. γ and Vrev 

were fixed from previously determined values(Siegler Retchless et al., 2012), whereas N was 

determined by fitting to data. Models of GluN1/2A receptor function were adapted from 

previously published models (Model A, Chen et al., (2001), Figure 12A; Model B, Erreger et al., 

(2005), Figure 13A). Although we took care to choose models developed under similar 

experimental conditions (NMDAR subtype, cell type, solution pH, and the extracellular Ca2+ 

concentration), our conditions were not identical, which lead to differences between our data and 
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current simulations from unmodified models. Therefore, all unblocked arm rates of Model A and 

Model B, excluding agonist binding and unbinding, were optimized using a PRAXIS algorithm 

to minimize a least-squares error function with a final tolerance of 2%. To account for 

differences between cells in desensitization kinetics and other factors that may contribute to 

channel Popen, we averaged current traces from three cells normalized to the peak current during a 

prolonged application of 1 mM glutamate. Optimization of Model B blocked arm rates were fit 

to averaged data from the same three averaged cells, although in the presence of memantine.  

Model A unblocked arm rates are as follows: ka+, 5 µM-1 s-1; ka-, 25 s-1; k1+, 71 s-1; k1-, 305 

s-1; kd1+, 6.9 s-1; kd1-, 0.43 s-1. For Model A and Model B we fixed memantine kon at 30 µM-1 s-1 

based on single-channel recordings from our lab (Blanpied, unpublished), and mathematically 

determined initial memantine koff as 30 s-1 so that Kd = 1 µM. To mitigate potential confounds 

from some individual rate changes in Model A causing shifts in memantine IC50 (data not 

shown), we adjusted memantine koff so that the IC50 during long glutamate applications was ~1 

µM (Table 2). Memantine koff was allowed to vary during fits of Model B blocked arm 

parameters to data. 

3.3.5 Analysis 

All data were analyzed with Clampfit 10.3 (Molecular Devices) or Origin 7.0 (OriginLab). 

Concentration-response relationships for memantine and ketamine (drug) when NMDARs were 

activated by 1 mM or 0.3 µM glutamate were determined by the following protocol. Glutamate 

was applied for 10 – 20 s until current reached a steady-state, then glutamate with 0.1, 1, 10, or 

100 µM of drug was applied for 10 – 40 s until a steady level of inhibition was reached. 
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Glutamate in the absence of drug was then reapplied for 20 – 60 s to allow recovery from 

inhibition. The time needed to reach a steady level of inhibition and to allow recovery from 

inhibition depended strongly on the glutamate concentration, as expected of open-channel 

blockers. Cells where recovery from inhibition did not reach 90% of steady-state current 

preceding drug application were excluded from analysis. Concentration-response data in the 

presence of drug were log-transformed to determine the IC50 value through fits of the following 

equation, Idrug/Icontrol = 1/(1 + 10^(log[drug] – logIC50)*nH), where Idrug is the mean current during 

3 s of steady drug inhibition, Icontrol is the mean current during 3 s of steady-state current 

preceding drug application and 3 s of steady-state current following recovery from drug 

inhibition, and nH is the Hill coefficient. IC50 values were statistically compared on the log-scale 

and transformed for presentation. For graphical representation, concentration-response data were 

averaged and overlaid with a fit to the mean data.  

Fits using single and double exponential functions were made to data to measure 

NMDAR deactivation time-course (Table 1) and the time course of recovery from 

desensitization (Figures 14 and 15). NMDAR deactivation time-course was always best fit by a 

double exponential function, whereas recovery from desensitization was sometimes better fit by 

a single exponential function. For comparison with single exponential time constants (τ), double 

exponential time constants (τfast and τslow) were converted to a single weighted time constant (τw) 

by the equation, τw = (τfast*Ifast + τslow*Islow)/(Afast + Aslow), where Afast and Aslow are the 

amplitudes of τfast and τslow. 

Peak currents (Ipeak) following synaptic-like glutamate applications were determined by 

measuring the mean current during a 3 ms window centered on the peak. For comparison across 

cells, Ipeak was normalized to the mean Ipeak in response to the first 10 control synaptic-like 
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glutamate applications. Steady inhibition (Idrug/Icontrol) during synaptic-like glutamate applications 

was measured as the mean Ipeak in response to the last five synaptic-like glutamate applications in 

the presence of drug (Idrug), divided by the mean Ipeak in response to the first 10 control synaptic-

like glutamate applications and in response to the last 10 synaptic-like glutamate applications 

following recovery from inhibition (Icontrol). Idrug/Icontrol during long glutamate applications was 

measured identically to concentration-response data. Cells where peak or steady-state currents 

did not display recovery from inhibition of at least 90% of the current preceding drug application 

were excluded from analysis.  

For experiments to determine the time course of recovery from desensitization, Ipeak in 

response to long glutamate applications was measured as the mean current during a 30 ms 

window set 5 ms preceding the time of peak current (Figures 14 and 15). A larger window was 

required to account for current variation not present with Ipeak in response to synaptic-like 

glutamate applications. Ipeaks were normalized to the Ipeak in response to glutamate after a 200 s 

Interapplication Interval in order to mitigate effects of current rundown and to empirically 

determine the maximal current amplitude in the presence of drug. Cells where any normalized 

Ipeak value > 1.2 were excluded from analysis, as these cells likely experienced unacceptable 

NMDAR current rundown or changes to cell properties. 

We compared group data with one-way ANOVAs with Tukey's post hoc analysis with 

significance levels as indicated. All error is displayed as ± SEM unless otherwise indicated. 

Current traces for presentation were refiltered at 1 kHz. 
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3.4 RESULTS 

3.4.1 Glutamate concentration does not strongly affect inhibition by memantine or 

ketamine 

The glutamate concentration is likely to differ considerably between the synaptic and 

extrasynaptic compartments. Synaptic NMDARs briefly are exposed to ~1 mM glutamate 

following a presynaptic action potential(Clements et al., 1992), whereas extrasynaptic NMDARs 

experience sub- to low micromolar glutamate(Herman and Jahr 2007; Le Meur et al., 2007) from 

synaptically released glutamate spillover or from astrocytic glutamate release(Arnth-Jensen et 

al., 2002; Fellin et al., 2004; Lozovaya 2004; Talantova et al., 2013). It is unclear if NMDAR 

inhibition by memantine or ketamine depends on the glutamate concentration. Memantine 

potency has been shown to increase with increasing NMDA concentration(Chen et al., 1992), 

which may suggest greater inhibition of synaptic NMDARs, but other reports have shown 

memantine potency to have no dependence on agonist concentration(Gilling et al., 2007; Gilling 

et al., 2009). Importantly, the NMDAR subtype dependence has not been investigated, as these 

studies were conducted in cultured neurons(Chen et al., 1992; Gilling et al., 2007) or with only 

GluN1/2A receptors expressed in HEK293T cells(Gilling et al., 2009). To our knowledge, no 

studies have investigated whether ketamine potency depends on glutamate concentration. 

Therefore, we investigated whether a dependence of memantine or ketamine inhibition on the 

glutamate concentration could underlie preferential inhibition of synaptic or extrasynaptic 

NMDARs. 

To explore the NMDAR subtype dependence and whether memantine or ketamine 

potency depends on glutamate concentration, we expressed GluN1/2A or GluN1/2B receptors in 
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tsA201 cells and measured the IC50 of memantine or ketamine when NMDARs are activated by 

either 1 mM or 0.3 µM glutamate. We chose a saturating concentration of 1 mM glutamate to 

mimic the glutamate concentration at synaptic NMDARs during synaptic transmission and 0.3 

µM glutamate, ~10% glutamate EC50 for GluN1/2A and GluN1/2B receptors, to represent a 

lower bounds of detectable NMDAR activation. It is important to compare glutamate 

concentrations well above and well below the EC50: for channel blockers that exhibit agonist 

concentration dependence of IC50, blocker IC50 should depend on the channel open probability 

(not on absolute agonist concentration)(Johnson and Qian 2002; Blanpied et al., 2005). 

Therefore, our experiments are well-suited to detect whether memantine and ketamine potency 

depends on the concentration of glutamate. 

We found that inhibition of GluN1/2A and GluN1/2B receptors by memantine depended 

slightly, but significantly on glutamate concentration (Figure 9A-D). The memantine IC50 for 

GluN1/2A receptors when activated by 1 mM glutamate was 1.82 ± 0.07 µM and when activated 

by 0.3 µM glutamate was 1.33 ± 0.06 µM (p < 0.05, one-way ANOVA with Tukey’s post hoc 

analysis). The memantine IC50 for GluN1/2B receptors when activated by 1 mM glutamate was 

0.68 ± 0.04 µM and when activated by 0.3 µM glutamate was 0.99 ± 0.05 µM (p < 0.05, one-

way ANOVA with Tukey’s post hoc analysis). In contrast, we found that inhibition of GluN1/2A 

and GluN1/2B receptors by ketamine did not depend on glutamate concentration (Figure 9E-H). 

The ketamine IC50 for GluN1/2A receptors when activated by 1 mM glutamate was 0.87 ± 0.05 

µM and when activated by 0.3 µM glutamate was 1.03 ± 0.05 µM (p > 0.05, one-way ANOVA 

with Tukey’s post hoc analysis). The ketamine IC50 for GluN1/2B receptors when activated by 1 

mM glutamate was 0.42 ± 0.02 µM and when activated by 0.3 µM glutamate was 0.58 ± 0.03 

µM (p > 0.05, one-way ANOVA with Tukey’s post hoc analysis). Although memantine 
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inhibition does depend on glutamate concentration, vastly different glutamate concentrations 

cause only a small change in memantine inhibition, which is much weaker than the agonist 

concentration dependence of memantine potency observed previously(Chen et al., 1992). 

Further, the direction of concentration dependence was opposite for GluN1/2A and GluN1/2B 

receptors.  

Interestingly, we found that inhibition by memantine or ketamine did depend weakly 

upon the NMDAR subtype with GluN1/2A displaying higher IC50 values than previously 

determined from our lab(Kotermanski and Johnson 2009; Kotermanski et al., 2009) (p < 0.05, 

one-way ANOVA with Tukey's post hoc analysis). A potentially important difference in 

recording conditions is the addition here of 10 µM EDTA to the extracellular solutions to chelate 

contaminating Zn2+ that inhibits GluN1/2A receptors with high nanomolar affinity. Because Zn2+ 

increases NMDAR sensitivity to inhibition by protons, and memantine and ketamine IC50 values 

decrease at lower pH(Dravid et al., 2007), our use of EDTA could have led to the higher 

memantine and ketamine IC50 measurements here. 
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Figure 9. [Glutamate] does not strongly affect inhibition by memantine and ketamine. 

A,C,E,G, Representative whole-cell recordings from cells transfected with the indicated NMDAR subtype 

activated by 1 mM glutamate (Glu, black bar, top) or 0.3 µM glutamate (gray bar, bottom), with application 

of one concentration (1 µM, black bars) of a four concentration-response curve of memantine (Mem) or 

ketamine (Ket). B,D,F,H, Mean concentration-response curves for Mem and Ket inhibition of GluN1/2A 

and GluN1/2B receptors, n = 4 – 7 cells.  
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3.4.2 Inhibition depends on duration of glutamate exposure and on NMDAR subtype 

Synaptic NMDARs are transiently exposed to ~1 mM glutamate for ~1-2 ms with very rapid 

onset and offset kinetics(Clements et al., 1992). In contrast, extrasynaptic NMDARs are likely to 

be exposed to glutamate for much longer periods or tonically(Fellin et al., 2004; Herman and 

Jahr 2007; Le Meur et al., 2007; Harris and Pettit 2008; Povysheva and Johnson 2012; Riebe et 

al., 2016), which allows extrasynaptic NMDARs to reach steady-state activation. Whether 

inhibition of NMDARs by memantine or ketamine depends on the duration of glutamate 

exposure is not known, although memantine inhibition of synaptic NMDARs depends on the 

stimulation frequency, with higher frequency stimulation showing greater inhibition(Wild et al., 

2013). To our knowledge, no previous studies have directly examined how the duration of 

glutamate exposure affects inhibition by any NMDAR open-channel blockers. Therefore, we 

investigated whether inhibition by memantine or ketamine depends on NMDAR subtype and on 

the duration of glutamate exposure. 

We performed whole-cell recordings from lifted tsA201 cells expressing GluN1/2A or 

GluN1/2B receptors held at -65 mV. Open channel blockers like memantine and ketamine 

require channel opening in order to bind to the receptor. Therefore, steady levels of inhibition are 

reached through coapplication of agonist in the presence of drug for a sufficiently long time to 

reach equilibrium at a particular drug concentration. We measured steady levels of inhibition by 

memantine and ketamine during long glutamate applications (>45 s) by standard protocols 

(Figure 11A-D). 
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We achieved brief, synaptic-like glutamate applications (~2-5 ms, Table 1, Methods) 

through the following means. We performed recordings from lifted transfected cells to ensure 

rapid and complete solution exchange for synaptic-like glutamate applications (Figure 10; Table 

1). The time course of currents activated by synaptic-like glutamate applications to cells 

expressing GluN1/2A or GluN1/2B receptors (Figure 10C-D) were consistent with outside-out 

patch currents recorded from HEK293 cells expressing the same NMDAR subtype activated by 

brief glutamate applications(Erreger et al., 2005). The time course of responses to synaptic-like 

glutamate applications (Figure 10C-D) were also consistent with EPSCs recorded from cultured 

neurons expressing predominantly the same NMDAR subtype(Gray et al., 2011; Tovar et al., 

2013). Synaptic-like glutamate applications were delivered at 0.2 Hz to allow receptor 

deactivation between applications and to prevent apparent receptor desensitization (Figure 10C-

D).  

To measure inhibition of peak NMDAR currents in response to synaptic-like glutamate 

applications, we developed the following protocol (Figure 11A-D). We delivered 10 synaptic-

like glutamate applications in the absence of drug to determine the control peak current 

amplitude (control), followed by synaptic-like glutamate applications in the continuous presence 

of memantine or ketamine until reaching a steady level of inhibition (drug; 20 applications for 

memantine and 40 applications for ketamine), then we delivered synaptic-like glutamate 

applications in the absence of memantine or ketamine to allow for recovery from inhibition 

(recovery; 20 applications for memantine and 40 applications for ketamine). The number of 

applications required to reach a steady level of inhibition and to allow for recovery from 

inhibition were empirically determined. We compared inhibition during synaptic-like and long 

glutamate applications at a single drug concentration (1 µM memantine and 0.5 µM ketamine) 
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near the IC50 values for GluN1/2A and GluN1/2B receptors. Because the drug concentration near 

the IC50 value is on the linear part of the sigmoidal curve, any change in potency should be 

reflected by a difference in fractional current. Only cells where paired measurements of 

inhibition during synaptic-like glutamate applications and during long glutamate applications 

were included.  
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Figure 10. Synaptic-like glutamate applications to lifted transfected cells.  

A, Schematic of fast perfusion system depicting three fused square glass barrels, containing normal 

extracellular solution (Control) or with 1 mM glutamate (Glu) added. Arrows indicate movement of barrels, 

which are attached to a linear motor, from barrel position 1 to barrel position 3 (or barrel position 3 to 

barrel position 1) in relation to a fixed recording pipette. B, Open pipette recordings of junction current 

relaxation during movement of barrels as in a, where barrel 2 contains a solution of ~50% osmolarity. C,D, 

Representative whole-cell recordings from lifted cells expressing GluN1/2A (C) or GluN1/2B receptors 

(D) when activated by synaptic-like applications of 1 mM glutamate (black bars) by moving as depicted in 

a. Traces on left are the first synaptic-like application shown on the right with repeated synaptic-like 

glutamate applications at 0.2 Hz. 
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Table 1. Kinetics of solution exchange and NMDAR activation and deactivation. 

Solution exchange was measured as described in Methods. SD is standard deviation. No significant 

differences between the absence and presence of memantine or ketamine were observed for NMDAR 

activation or deactivation kinetics as determined by comparison with one-way ANOVA with Tukey's post 

hoc analysis, p > 0.05. n = 6 for all groups.  
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We found that memantine and ketamine inhibition during synaptic-like glutamate 

applications can differ significantly from inhibition during long glutamate applications, but this 

difference depends on the NMDAR subtype (Figure 11E). 1 µM memantine inhibited GluN1/2A 

receptors significantly less during synaptic-like glutamate applications than during long 

glutamate applications, whereas 1 µM memantine inhibited GluN1/2B receptors similarly during 

synaptic-like and long glutamate applications (Figure 11A, B, E). 0.5 µM ketamine inhibited 

GluN1/2A receptors significantly less during synaptic-like glutamate applications than during 

long glutamate applications, whereas 0.5 µM ketamine inhibited GluN1/2B receptors 

significantly more during synaptic-like glutamate applications than during long glutamate 

applications (Figure 11C-E). Therefore, inhibition by both memantine and ketamine depends on 

the duration of glutamate exposure and on the NMDAR subtype.  

We also examined whether memantine or ketamine affected the time course of responses 

to synaptic-like glutamate applications. We found that neither memantine nor ketamine 

significantly alters activation or deactivation kinetics of GluN1/2A or GluN1/2B receptors 

(Table 1). Our findings are in contrast to a study that investigated differences between inhibition 

of memantine and ketamine in cultured hippocampal neurons(Emnett et al., 2013), which contain 

a mixed population of GluN2A- and GluN2B-containing receptors(Tovar and Westbrook 1999; 

Groc et al., 2006; Thomas et al., 2006; Harris and Pettit 2007; Martel et al., 2009; Petralia et al., 

2010). The authors found that NMDAR EPSC deactivation kinetics were significantly more 

rapid in the presence of memantine or ketamine(Emnett et al., 2013). Since GluN2A-containing 

receptors display deactivation kinetics 5 – 10 fold faster than GluN2B-containing 

receptors(Vicini et al., 1998), the ability of memantine and ketamine to quicken NMDAR EPSC 

deactivation kinetics could reflect preferential inhibition of GluN2B-containing receptors. This is 
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consistent with our finding that both memantine and ketamine inhibit GluN1/2B receptors 

significantly more than GluN1/2A receptors during synaptic-like glutamate applications (Figure 

11E). 
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Figure 11. Inhibition by memantine and ketamine depends on duration of glutamate exposure in an 

NMDAR subtype-dependent manner.  
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A, Representative whole-cell recording of a lifted cell expressing GluN1/2A receptors in response to 

synaptic-like (left) or long (center) glutamate applications (black bars) in the absence or presence of 

memantine (red bars). Right, plot of mean Ipeak (black symbols) during synaptic-like glutamate applications 

normalized to the average of the Ipeak in response to the first 10 synaptic-like glutamate applications. Red 

dashed line indicates mean memantine inhibition during long glutamate applications. B-D, Same as a, 

except for cells expressing the indicated NMDAR subtype and for ketamine (blue bars, blue dashed lines, 

C-D). Inhibition during synaptic-like and long glutamate applications are paired, n = 6 cells for each group. 

e, Mean Idrug/Icontrol for memantine and ketamine inhibition of GluN1/2A and GluN1/2B receptors during 

synaptic-like or long glutamate applications. Groups were compared by one-way ANOVA with Tukey's 

post hoc analysis; *, p < 0.05 and ns, p > 0.05. 

 

3.4.3 Memantine enhances desensitization of GluN1/2A receptors 

We next focused on the drug-receptor subtype combination with the largest discrepancy between 

inhibition of responses to synaptic-like and to long glutamate applications, inhibition by 

memantine of GluN1/2A receptors. We used kinetic models to investigate mechanisms by which 

inhibition by a channel blocker could depend on the duration of glutamate exposure. Due to 

memantine's relatively slow kinetics and because memantine inhibits current flow, it is not 

practical to determine blocked arm rates of kinetic models from single-channel recordings in the 

presence of memantine. Since complex open channel blocker models have a large number of 

states and adjustable parameters, we first used a simple kinetic model(Clements and Westbrook 

1991) with the fewest closed and open states while still being able to account for agonist binding, 

channel opening, and receptor desensitization (Model A; Figure 12A). In our model, only 

glutamate (agonist, A) binding is depicted, as all of our experiments were conducted in the 

continuous presence of a saturating concentration of glycine. Memantine and ketamine are at 



 84 

least partially trapping open-channel blockers(Blanpied et al., 1997; Chen and Lipton 1997; 

Sobolevsky et al., 1998; Mealing et al., 1999; Kotermanski et al., 2009). Like "foot-in-the-door" 

open-channel blockers, trapping open-channel blockers can only bind and unbind from the 

receptor when the channel is open. Unlike "foot-in-the-door" blockers, the channel is able to 

close with a trapping blocker bound, thereby trapping the blocker in the channel(Johnson and 

Kotermanski 2006). Presumably, closed receptors blocked by drug can access all the states 

available to unblocked receptors. The inhibitory properties of many open channel blockers 

depend not only on block of current flow, but also on alteration of transition rates between states 

while the blocker is bound in the channel (Johnson and Qian 2002; Johnson et al., 2015). 

Therefore, we examined the hypothesis that memantine acts in part by altering transitions 

between receptor states thereby causing the observed dependence of memantine inhibition on the 

duration of glutamate exposure. 

We used optimized rates of Model A (Figure 12B, Section 3.3.4) to simulate our 

experiment where we measured inhibition during synaptic-like and long glutamate applications 

(Table 2). When Model A is symmetrical, where all rates in the blocked arm are equal to the 

rates in the unblocked arm, current simulations predicted that inhibition during synaptic-like 

glutamate applications should be identical to inhibition during long glutamate applications 

(Table 2). The prediction of the symmetrical model does not match our experimental results. 

This suggests that memantine is altering the transition between receptor states. Therefore, we 

simulated inhibition during synaptic-like and long glutamate applications when each blocked 

arm rate was increased or decreased by 5-fold (Table 2). For ease of comparison, we calculated 

the ratio of inhibition during synaptic-like glutamate applications to inhibition during long 

applications (Synaptic-like/Long Ratio; Table 2). Changes to three rate constants caused the 
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Synaptic-like/Long Ratio to change in a similar direction and magnitude to our data (Table 2). 

Therefore, our modeling suggests that the dependence of memantine inhibition on duration of 

glutamate application is due to memantine altering one or more of the rates of receptor state 

transitions identified in Table 2. 
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Figure 12. Model A. 

A, GluN1/2A receptor trapping block model (Model A) used to describe inhibition by memantine (blocker, 

B). The unblocked arm describes receptor function in the absence of memantine, whereas the blocked arm 

allows memantine binding and trapping and describes any changes memantine imparts on channel function. 

B, Current traces (black lines) of GluN1/2A receptors activated by synaptic-like (left) or long (right) 

applications of 1 mM glutamate (black bars) in the absence of memantine, with simulations (gray lines) of 

Model A overlaid. 
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Table 2. Model A blocked arm rates affect memantine inhibition. 

Model A blocked arm rates were individually increased (up arrow) or decreased (down arrow) 5-fold (5x) 

from the unblocked arm rates (Methods). Idrug/Icontrol of Model A simulations (not shown) are measured as 

described in Methods. Model A blocked arm rates that produced a Synaptic-like/Long ratio qualitatively 

similar to experimental results are in bold text. 
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Model A is unable to capture more complex aspects of NMDAR activation, including 

multiple desensitized states. Because Model A identified rates of desensitization to be potentially 

involved in memantine inhibition, we used a more sophisticated kinetic model (Banke and 

Traynelis 2003; Erreger et al., 2005) that contains multiple desensitized and pre-open states 

(Model B, Figure 13A). Model B contains an additional desensitized state (RA2D2) as well as 2 

additional pre-open states (RA21 and RA22) between the fully liganded closed state, RA2, and the 

open state, RA2*. Model B has the disadvantage of an increased number of adjustable rates in the 

blocked arm. As the number of adjustable rates increases, the accuracy and validity of the model 

decreases. Model A was therefore used to constrain the number of adjustable parameters in 

Model B, thereby improving the accuracy and validity of its prediction. Model A rates that did 

not predict dependence on duration of glutamate application were fixed in the blocked arm of 

Model B. The additional pre-open states in Model B were equated to the single opening rates in 

Model A. Based on results from Model A (Table 2), we let either the agonist unbinding rate (k’a-

), the desensitization rates (k’d1+/- and k’d2+/-), or k’a-, k’d1+/-, and k’d2+/- to vary and performed fits 

to our experimental data (Table 3). The memantine unbinding rate, koff, was varied in each fit 

because the value of koff is not known and is estimated to approximate the apparent affinity (IC50; 

Section 3.3.5). When Model B is symmetrical (Model B1), it predicts poor agreement with our 

experimental data (Figure 13B-D; Table 3). Fits where only ka- and koff varied never converged 

by our criteria (Methods). Models where kd1+/-, kd2+/-, and koff varied (Model B2), or where ka-, 

kd1+/-, kd2+/-, and koff varied (Model B3) both fit our experimental data better than symmetrical 

Model B1 (Figure 13B-D; Table 3). Model B2 and Model B3 are similar in how well they fit 

experimental data, however, Model B2 contains one fewer free parameter, suggesting that 

allowing ka- to vary does not greatly benefit the goodness of fit. Our kinetic modeling suggests 
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that memantine preferentially inhibits NMDAR responses activated by long glutamate 

applications primarily by increasing occupancy of desensitized states. 
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Figure 13. Model B predicts that memantine increases occupancy of desensitized states of GluN1/2A 

receptors. 

A, GluN1/2A receptor trapping block model (Model B) used for fitting to current traces in the presence of 

memantine (red bars). B-D, Current traces (black lines) of GluN1/2A receptors activated by synaptic-like 

(B, C) or long (D) applications of 1 mM glutamate (black bars) in the absence or presence of memantine 

(red lines) overlaid with simulations of Model B1 (purple lines) or Model B2 (orange lines). Current traces 

and simulations in C show individual responses to synaptic-like applications of glutamate indicated in B 

with a shorter time-base. 
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Table 3. Model B predicts that memantine affects desensitization rates of GluN1/2A receptors. 

Model B blocked arm rates allowed to vary during fits to data are indicated by f for Model B2 and Model B3. All 

other rates were fixed during fits to data. Red text indicates rates that decreased more than 1.5-fold and blue text 

indicates rates that increased more than 1.5-fold. Final sums of squared error (SSE) for the least squares fits are 

shown. Model B1 allowed no blocked arm rates to vary to establish the baseline SSE predicted.  
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3.4.4 Memantine stabilizes a Ca2+-dependent desensitized state of GluN1/2A receptors 

Next, we experimentally tested the validity of our kinetic modeling results. Our modeling 

suggests that memantine inhibits in part through increasing occupancy of desensitized states. We 

used Model B2 to predict the time course of recovery from desensitization in the absence and 

presence of memantine. Model B2 predicts that in the presence of 3 µM memantine (a 

concentration at which memantine is bound to ~70% of receptors) the time course of recovery 

from desensitization, as measured by a fitting with a double exponential function, should be ~4-

fold slower than in the absence of memantine (compare Control and Mem in Figure 14C). We 

tested the Model B2 prediction in cells expressing GluN1/2A receptors by measuring the time 

course of recovery from desensitization in the absence and presence of 3 µM memantine.  

To determine the time course of recovery from desensitization we used the following 

protocol. We applied 1 mM glutamate to GluN1/2A-expressing tsA201 cells held at -65 mV for 

30 s to allow receptors to reach steady-state level of activation, then reapplied 1 mM glutamate 

for 30 s after an increasing interval from 0.2 – 200 s (Interapplication Interval) (Figure 14A-B). 

We measured the peak current (Ipeak) following reapplication of glutamate and normalized it to 

the Ipeak following the longest Interapplication Interval of 200 s. Measurement of the time course 

of recovery from desensitization was performed in the absence and the presence of 3 µM 

memantine. We found that 3 µM memantine significantly slows the time course of recovery from 

desensitization (Control, τw = 5.46 ± 1.71 s; Mem, τw = 47.2 ± 8.50 s, p < 0.05, one-way 

ANOVA; Figure 14C and Figure 15E). Our experimental results display greater slowing of 
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recovery from desensitization than predicted by Model B2 (Control Simulation, τw = 2.48 s; 

Mem Simulation, τw = 9.78 s; Figure 14C). This discrepancy reflects a limitation of our 

modeling. Nevertheless, our results qualitatively support the conclusions of our kinetic 

modeling: memantine stabilizes and slows the rate of exit from one or more desensitized states of 

NMDARs. 

Next, we investigated whether memantine affects a particular type of NMDAR 

desensitization. GluN1/2A receptor-mediated currents typically decay slowly during prolonged 

exposure to a constant concentration of agonists via multiple pathways that have been referred to 

as desensitization or inactivation (Traynelis et al., 2010). There are at least three separable types 

of NMDAR desensitization or inactivation (Dingledine et al., 1999): (1) glycine-dependent 

desensitization, which involves a glutamate-induced decrease of glycine affinity that due to our 

use of a saturating glycine concentration, we do not observe; (2) Ca2+-dependent inactivation, 

which is thought to be controlled by Ca2+ influx-dependent activation of intracellular signaling 

pathways that act on the C-terminal domains of NMDAR subunits; and (3) glycine- and Ca2+-

independent desensitization. Unless otherwise specified, we will use desensitization to refer 

generally to decreases in current in the continuous presence of agonist. To determine whether 

memantine stabilizes a Ca2+-dependent desensitized state, we measured the time course of 

recovery from desensitization in the absence and presence of 3 µM memantine in 0.1 mM 

external Ca2+ ([Ca2+]o), a [Ca2+]o that does not display Ca2+-dependent desensitization (Legendre 

et al., 1993). We found that in 0.1 mM [Ca2+]o, the time course of recovery from desensitization 

was slightly, but not significantly faster in the absence of memantine and was no different in the 

presence of memantine (Control, τw = 1.93 ± 0.25 s; Mem, τw = 1.28 ± 0.35 s, p > 0.05; Figure 



 94 

14D). Our results suggest that memantine specifically stabilizes a Ca2+-dependent desensitized 

state. 

If memantine inhibits GluN1/2A receptors in part through stabilization of a Ca2+-

dependent desensitized state, then the memantine IC50 should depend on the [Ca2+]o. Therefore, 

we compared memantine IC50 in 0.1 mM [Ca2+]o to the IC50 in 1 mM [Ca2+]o with reduced 

intracellular Ca2+ buffering capacity using 1 mM EGTA instead of 10 mM BAPTA in the 

intracellular pipette solution. Consistent with our finding that memantine stabilizes a Ca2+-

dependent desensitized state, we found that memantine IC50 was significantly higher with 0.1 

mM [Ca2+]o (2.41 ± 0.12 µM) than with 1 mM [Ca2+]o and 1 mM intracellular EGTA (1.22 ± 

0.06 µM; p < 0.0001, Student's t-test). Interestingly, the memantine IC50 in 1 mM [Ca2+]o and 10 

mM intracellular BAPTA is intermediate to these two conditions (1.82 µM; Figure 9). The 

memantine IC50 in 0.1 mM [Ca2+]o is similar to the Kd (Kd = koff/kon)predicted by Model B2 and 

B3 (Table 3). Because Kd = IC50 in a symmetrical model, a similar Kd to IC50 in 0.1 mM [Ca2+]o 

suggests that the presence of memantine in the GluN1/2A receptor channel only alters receptor 

state transitions in the presence of Ca2+. The observed Ca2+ dependence is likely due to action of 

Ca2+ on intracellular signaling molecules, however we cannot rule out an effect of Ca2+ on the 

channel itself (Ascher and Nowak 1988; Maki and Popescu 2014). 
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Figure 14. Memantine slows recovery from desensitization of GluN1/2A receptors in a Ca2+-

dependent manner. 

A,B, Representative current traces of GluN1/2A receptors activated by 1 mM glutamate (black bars) during 

the recovery from desensitization protocol in the absence (A) or presence of 3 µM memantine (B, red bars). 

Insets at right show Ipeak responses at two Interapplication Intervals indicated at left, with shortened time-

base, in the absence (black and gray lines) and presence of memantine (red and pink lines). C-D, Closed 

squares display mean Ipeak normalized to Ipeak at 200 s of GluN1/2A receptors in 1 mM [Ca2+]o (C) or in 0.1 

mM [Ca2+]o (D) in the absence (Control) or presence of memantine (Mem). Open squares display the 

normalized Ipeak simulated by Model B2 in the absence and presence of memantine. Solid and dashed lines 

show single or double exponential fits to the mean time course of recovery from desensitization. n = 5 cells 

for each group. 
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3.4.5 Memantine and ketamine differentially alter desensitization kinetics of NMDARs 

Next we compared the effects of memantine and ketamine on recovery from desensitization of 

GluN1/2A and GluN1/2B receptors. As described above, we measured the time course of 

recovery from desensitization in the absence and presence of 3 µM memantine or an 

approximately equipotent concentration of ketamine, 1.5 µM. To increase the success rate of our 

experiments we removed two Interapplication Intervals, 0.2 and 0.5 s, as these intervals provided 

little additional information. We found that unlike memantine, ketamine had no significant effect 

on the time course of recovery from desensitization of GluN1/2A receptors (Figure 15A, C, E). 

The normalized Ipeak for memantine was significantly less than for ketamine and control at each 

Interapplication Interval (except at 200 s), whereas normalized Ipeak for ketamine and control 

were not significantly different at any Interapplication Interval (Figure 15C). Additionally, 

recovery from desensitization of GluN1/2A receptors in the presence of ketamine was well fit by 

a single exponential function, instead of a double exponential function for memantine. This 

suggests that ketamine and memantine have distinct effects on GluN1/2A receptor state 

transitions (Figure 15E). For GluN1/2B receptors we found that the presence of memantine had 

no significant effect on recovery from desensitization. In contrast, ketamine recovery from 

desensitization was ~3.5-fold faster than control and was well fit by a single exponential (Figure 

15B, D, E). The normalized Ipeak for memantine was not significantly different from control at 

any Interapplication Interval, but the normalized Ipeak was significantly less than ketamine at 10 

s, whereas the normalized Ipeak for ketamine was significantly greater than control at several 
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Interapplication Intervals (Figure 15D). Our findings suggest that memantine and ketamine 

differentially alter rates of transitions from desensitized states in a subtype-dependent manner. 
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Figure 15. Memantine and ketamine differentially alter NMDAR desensitization kinetics. 

A,B, Representative current traces of GluN1/2A (A) or GluN1/2B (B) receptors activated by 1 mM 

glutamate (black bars) during the recovery from desensitization protocol in the presence of 1.5 µM 

ketamine (A, B, bottom; Ket, blue bars), absence of drug (B, top) or presence of 3 µM memantine (B, 

middle; Mem, red bars). Insets at right show Ipeak responses at two Interapplication Intervals indicated at 

left, with shortened time-base, in the absence of drug (B, top; black and gray lines) presence of memantine 

(b, middle; red and pink lines) or presence of ketamine (A, B, bottom; blue and light blue lines). C,D, 

Closed symbols display the mean normalized Ipeak of GluN1/2A (C) and GluN1/2B (D) receptors in the 

absence (Control) or presence of memantine or ketamine. Lines show single or double exponential fits to 

the mean time course of recovery from desensitization. Control data for GluN1/2A receptors from Figure 

14 was combined with Controls for ketamine in C, and data of GluN1/2A Mem from Figure 14 is 

replotted. Mean Ipeak at each Interapplication Interval was compared by one-way ANOVA with Tukey's 

post hoc analysis. # indicates p < 0.05 between Control and Mem, + indicates p < 0.05 between Control and 

Ket, and & indicates p < 0.05 between Mem and Ket. n = 5 – 6 cells in each group. e, mean τ or τw from 



 99 

fits of the time course of recovery from desensitization (RfD). * indicates p < 0.05 by one-way ANOVA 

with Tukey's post hoc analysis. 

3.5 DISCUSSION 

Recent work suggests that memantine and ketamine inhibit overlapping but distinct 

subpopulations of NMDARs, and that this feature may be related to their divergent clinical 

profiles. Here we have uncovered subtle mechanistic differences in NMDAR inhibition by 

memantine and ketamine that likely underlie their ability to inhibit distinct subpopulations of 

NMDARs. In a reduced system, we investigated whether inhibition by memantine and ketamine 

depended on three properties or features that are likely to vary between synaptic and 

extrasynaptic compartments: the NMDAR subtype, the concentration of glutamate activating 

receptors, and the duration of glutamate receptors are exposed to. We found that inhibition by 

both memantine and ketamine depended on the duration of glutamate exposure in an NMDAR 

subtype-dependent manner. Using kinetic modeling, we further investigated the basis of 

memantine inhibition dependence on the duration of glutamate application and found that 

memantine increases occupancy of a Ca2+-dependent desensitized state of NMDARs. These 

findings have broad implications for the action of memantine as a neuroprotectant. Specifically, 

our results suggest that memantine is neuroprotective in part through increased inhibition of 

highly activated NMDARs (e.g. receptors where the intracellular concentration of Ca2+ is 

elevated), as opposed to inhibition of specifically synaptic or extrasynaptic NMDARs. This 

difference could underlie discrepancies in the literature highlighting the involvement of synaptic 

NMDARs (Papouin et al., 2012; Wroge et al., 2012; Zhou et al., 2013) or extrasynaptic 
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NMDARs (Hardingham et al., 2002; Leveille et al., 2008; Papadia et al., 2008; Okamoto et al., 

2009; Bordji et al., 2010; Milnerwood et al., 2010; Kaufman et al., 2012; Dau et al., 2014) in cell 

death. Furthermore, we found that memantine and ketamine differentially alter desensitization 

kinetics of NMDARs. Our study highlights the modulation of desensitization as an unexplored 

mechanism of inhibition for activation-selective NMDAR blockers.  

The hypothesis that memantine inhibits extrasynaptic NMDARs more potently than 

synaptic NMDARs was supported directly and indirectly by several different groups and in 

several different preparations (Zhao et al., 2006; Leveille et al., 2008; Papadia et al., 2008; 

Okamoto et al., 2009; Milnerwood et al., 2010; Xia et al., 2010; Wild et al., 2013; Wu and 

Johnson 2015; Vyklicky et al., 2016). Despite memantine's modest selectivity for extrasynaptic 

NMDARs (2- to 5-fold over synaptic NMDARs), it is increasingly being used as a tool to 

selectively inhibit extrasynaptic NMDAR activity (Wills et al., 2012; Ferrario et al., 2013; Joe et 

al., 2014; Garcia-Munoz et al., 2015; Iizuka et al., 2015; Lo et al., 2015; Riebe et al., 2016). Our 

data argue that memantine is not truly selective for synaptic or extrasynaptic NMDARs. Instead 

memantine inhibition depends upon the intensity of NMDAR activation (both duration and 

glutamate concentration) and on the NMDAR subtypes present. In addition, our results suggest 

that it is not necessarily the subcellular location that determines the degree of inhibition, but 

rather the duration of glutamate exposure that determines whether the NMDAR will likely reach 

Ca2+-dependent desensitized states.  

Notably, Ca2+-dependent desensitization of NMDARs is subtype-dependent. GluN1/2A 

and GluN1/2D receptors do display Ca2+-dependent desensitization, whereas GluN1/2B and 

GluN1/2C receptors do not (Medina et al., 1995; Krupp et al., 1996). Memantine shows a similar 

pattern of NMDAR subtype dependence, where GluN1/2A receptors display an effect and 
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GluN1/2B receptors do not, in two of our experiments: (1) whether inhibition depends on the 

duration of glutamate exposure, and (2) whether the time course of recovery from desensitization 

is affected by the presence of memantine. Our data suggest a causal link between these two 

phenomena; memantine stabilizes a Ca2+-dependent desensitized state of GluN1/2A receptors, 

which causes memantine to slow recovery from desensitization and thus inhibition increases with 

long durations of glutamate exposure. In contrast, since GluN1/2B receptors do not enter a Ca2+-

dependent desensitized state, memantine cannot stabilize this state, memantine does not slow the 

recovery from desensitization, and inhibition does not depend on the duration of glutamate 

exposure. Inhibition by ketamine follows a similar, but more complicated pattern of NMDAR 

subtype dependence. Ketamine does not significantly affect the time course of recovery from 

desensitization of GluN1/2A receptors, but inhibition does depend on the duration of glutamate 

exposure. In contrast, and similar to the pattern with memantine, ketamine speeds recovery of 

desensitization of GluN1/2B receptors and inhibition decreases with long durations of glutamate 

exposure. It is possible that ketamine did not reach a steady level of inhibition during synaptic-

like glutamate applications to GluN1/2A receptors. It is also likely that ketamine affects another 

unidentified aspect of channel function that we did not consider here. For instance, our data 

suggest that in the presence of ketamine, the time course of recovery from desensitization 

follows a single exponential time course. This could mean that receptors cannot access all the 

closed states while bound to ketamine, which we did not consider in our modeling. Also, 

ketamine has been reported to have a second site of action accessible from the membrane or 

intracellular space (Orser et al., 1997). Overall, a drug's effect on desensitization kinetics seems 

to predict whether inhibition will depend on the duration of glutamate exposure.  
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Memantine stabilizing a Ca2+-dependent desensitized state of GluN1/2A receptors 

presents a novel, rational mechanism of neuroprotection: increased inhibition of highly activated 

receptors with increased Ca2+-influx, while leaving receptors not experiencing as intense 

activation relatively spared from inhibition. To evaluate the plausibility of this mechanism, we 

must consider several physiological factors we have not investigated. First, triheteromeric 

NMDARs may make up a majority of synaptic and extrasynaptic receptors (Paoletti et al., 2013), 

yet we do not know how memantine and ketamine affect desensitization kinetics of 

triheteromeric GluN1/2A/2B receptors. Methods have only recently been developed to study 

triheteromeric NMDARs in isolation and the role of Ca2+-dependent desensitization on these 

subtypes is not known (Hansen et al., 2014; Stroebel et al., 2014). Second, we do not know how 

the presence of physiological concentrations of extracellular Mg2+ may affect our findings. Mg2+ 

competes with memantine and ketamine for binding, thus lowering each drug's potency 

(Kotermanski and Johnson 2009), but how Mg2+ interacts with their effects on desensitization 

kinetics is not known. A recent study has shown that presence of Mg2+ reveals differential 

inhibition of synaptic NMDARs activated by spontaneous EPSCs by memantine and ketamine 

(Gideons et al., 2014), which supports the need to further investigate mechanisms of action in the 

presence of Mg2+. Also, specific GluN2B subunit deletion in cortical pyramidal neurons 

mimicked and occluded the antidepressant effects of ketamine in a rodent model of depression 

(Miller et al., 2014), suggesting that ketamine's NMDAR subtype dependence can be maintained 

in the presence of Mg2+ and native triheteromeric NMDARs. Lastly, whether memantine and 

ketamine alter desensitization kinetics of NMDARs in neurons has not been investigated. 

Despite these open questions, our study serves as an important first step in identifying key 
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differences in the action of memantine and ketamine that underlie their preferential inhibition of 

distinct subpopulations of NMDARs. 
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4.0  EFFECTS OF EXTERNAL MG2+ ON NMDA RECEPTOR INHIBITION BY 

MEMANTINE AND BY KETAMINE 

4.1 OVERVIEW 

Physiological concentrations of external Mg2+ decrease the potency of NMDAR open channel 

blockers. Mg2+ is thought to lower the potency of NMDAR open channel blockers through 

competition for overlapping binding sites deep within the NMDAR channel. Studies must 

therefore be conducted in the presence of a physiological concentration of Mg2+ for complete 

understanding of the mechanisms of NMDAR inhibition in vivo. Here we characterized the effect 

of external Mg2+ on NMDAR inhibition by two open channel blockers, memantine and 

ketamine, by investigating their macroscopic kinetics in 0 and 1 mM Mg2+. Our results 

demonstrate that Mg2+ slows drug binding kinetics, as expected if bound Mg2+ prevents drug 

from accessing its binding site. Also, Mg2+ does not speed unbinding of ketamine, as expected if 

only drug or Mg2+ can bind, but surprisingly, Mg2+ speeds unbinding of memantine. The 

mechanistic basis of Mg2+-induced speeding of memantine unbinding is not clear and requires 

further investigation 
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4.2 INTRODUCTION 

In Chapter 3, we demonstrated that memantine can inhibit in part by increasing occupancy of 

desensitized states of NMDARs, whereas ketamine can decrease occupancy of desensitized 

states.  We linked the effects of memantine on desensitization to the observation that inhibition 

depends on the duration of glutamate exposure. These findings have broad implications for how 

memantine and ketamine may be acting in vivo, in particular how channel blockers may act 

differentially at synaptic and extrasynaptic NMDARs (Parsons and Raymond 2014; Johnson et 

al., 2015; Kavalali and Monteggia 2015). A limitation of our findings is that our experiments 

were conducted in the absence of Mg2+. Thus, the inhibition in vivo may be complicated due to 

strong voltage-dependent inhibition of NMDARs by physiological concentrations of Mg2+ (~1 

mM Mg2+) (Mayer et al., 1984; Nowak et al., 1984). Interestingly, a recent study showed that 

spontaneous NMDAR excitatory postsynaptic currents exhibited differential inhibition by 

memantine and ketamine only in 1 mM Mg2+ (Gideons et al., 2014). This study highlights how 

Mg2+ can impart differences in the mechanisms of inhibition by open channel blockers.  

Most basic investigations of NMDAR open channel blockers have been conducted in the 

absence of external Mg2+. Inhibition by Mg2+ is thought to occur when Mg2+ binds to a site 

within the channel pore. Asparagine residues at the tip the M2 re-entrant loop, known as the N-

site, of each NMDAR subunit are critical for Mg2+ block (Burnashev et al., 1992; Kuner and 

Schoepfer 1996; Kashiwagi et al., 2002; Glasgow et al., 2015). Many NMDAR open channel 

blockers are also thought to bind at or near the N-site within the channel pore (Yamakura et al., 

1993; Kashiwagi et al., 2002; Johnson et al., 2015). It is therefore not surprising that several 

recent studies have shown that 1 mM Mg2+ reduces the potency of NMDAR open channel 

blockers, including memantine and ketamine (Kotermanski and Johnson 2009; Otton et al., 2011; 
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Nikolaev et al., 2012). These studies suggest that the Mg2+-induced reduction in memantine and 

ketamine potency likely arises from a simple competition model. Interestingly, a simple 

competition model of inhibition does not apply to all NMDAR open channel blockers (Nikolaev 

et al., 2012). A recent study also showed that 1 mM Mg2+ was able to speed the recovery from 

inhibition by another open channel blocker, MK-801, which typically exhibits extremely slow 

unbinding kinetics (Huettner and Bean 1988; McKay et al., 2013). This study suggests a 

complex interaction between open channel blockers and Mg2+ that is not well understood. 

Furthermore, whether Mg2+ affects the unbinding kinetics of open channel blockers other than 

MK-801 has not been explored. 

 Whether Mg2+ alters the mechanisms of NMDAR inhibition by memantine and ketamine 

is essential to understanding the differential effects of each drug works in vivo. Studies have well 

characterized how the presence of Mg2+ alters steady-state memantine and ketamine potency. 

However, it is unclear whether Mg2+ alters the kinetics of memantine and ketamine inhibition. 

Therefore, we have investigated the macroscopic binding and unbinding kinetics of memantine 

and ketamine in the absence and presence of 1 mM Mg2+. 

4.3 MATERIALS AND METHODS 

4.3.1 Cell culture and transfection 

Experiments were performed on the tsA201 cell line (The European Collection of Authenticated 

Cell Cultures). tsA201 cells were maintained as previously described (Glasgow and Johnson 

2014), in DMEM supplemented with 10% fetal bovine serum and 1% GlutaMAX (Thermo 
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Fisher Scientific). Cells at 1 x 105 cells/dish were plated on 15 mm untreated glass coverslips for 

experiments using lifted cells and plated on 15 mm glass coverslips treated with poly D-lysine 

(0.1 mg/ml) and rat-tail collagen (0.1 mg/ml, BD Biosciences) in 35 mm petri dishes for 

experiments using unlifted cells. 12 to 24 hours after plating, the cells were transiently 

cotransfected with cDNAs encoding enhanced green fluorescent protein (EGFP) for 

identification of transfected cells, the rat GluN1-1a subunit (hereafter GluN1; GenBank X63255 

in pcDNA3.1), and either the rat GluN2A subunit (GenBank M91561 in pcDNA1) or rat 

GluN2B subunit (GenBank M91562 in pcDNA1), using FuGENE 6 Transfection Reagent 

(Promega). For some experiments we used cells transfected with GluN1 and an 

EGFP:pIRES:GluN2A construct, which was a kind gift from Dr. Kasper Hansen (Hansen, 

unpublished). Briefly, EGFP was inserted in pIRES (Clontech) under transcriptional control of 

the CMV promoter, and the open reading frame of rat GluN2A (GenBank D13211) was inserted 

after the IRES sequence. cDNA ratios of 1 EGFP: 1 GluN1: 1 GluN2A or 1 EGFP: 1 GluN1: 3 

GluN2B were used. Immediately after transfection, the culture medium was supplemented with 

the competitive NMDAR antagonists DL-2-amino-5-phosphonopentanoate (200 μM) and 7-

chlorokynurenic acid (200 μM) to prevent NMDAR-mediated cell death. 

4.3.2 Solutions 

The extracellular bath solution contained (in mM): 140 NaCl, 2.8 KCl, 1 CaCl2, 10 HEPES, 0.01 

EDTA, and 0.1 glycine, balanced to pH 7.2 ± 0.05 with NaOH and osmolality balanced to 290 ± 

10 mOsm with sucrose. L-glutamate, MgCl2, memantine, and (±)ketamine (hereafter, ketamine) 

were added to the extracellular solution as indicated from frozen concentrated stock solutions on 

the same day as experiments. The intracellular pipette solution contained (in mM): 130 CsCl, 10 
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HEPES, 10 BAPTA, and 4 MgATP balanced to pH 7.2 ± 0.05 with CsOH and solution 

osmolality was 280 ± 10 mOsm. Frozen aliquots of pipette solution were thawed and kept on ice 

until loaded into pipettes immediately before starting an experiment. 

4.3.3 Electrophysiology 

Experiments were performed 12 – 48 hours after tsA201 cells were transiently transfected with 

NMDAR subunits. Pipettes were pulled from borosilicate capillary tubing (Sutter Instruments) to 

a resistance of 2 – 5 ΜΩ on a Sutter Instruments-Flaming Brown P-97 microelectrode puller and 

fire polished on an in-house fabricated forge. Whole-cell recordings were made from cells 

expressing EGFP identified by epifluroescence illumination on an inverted Zeiss Axioscop 

microscope. All cells were held at a membrane potential (Vm) of -65 mV corrected for an 

empirically determined liquid junction potential between the extracellular and intracellular 

solution of -6 mV. Whole-cell currents were amplified using an Axopatch 200B patch-clamp 

amplifier (Molecular Devices), low-pass filtered at 5 kHz and sampled at 20 kHz in pClamp10 

(Molecular Devices). Series resistance was compensated with the prediction and correction 

circuitry to at least 85% in all experiments.  

Solutions were delivered through a ten barrel, voice-coil linear stage-driven fast perfusion 

system described previously (Section 3.3.3). Solution flow rate was typically ~1 ml/min for 

recordings from lifted cells and ~2 ml/min for recordings from unlifted cells. Solution exchange 

was measured previously with a 10–90% rise time of < 0.2 ms for an open pipette, ~3 ms around 

a lifted whole-cell, and ~150 ms around an unlifted whole-cell (Section 3.3.3). 
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4.3.4 Analysis 

All data were analyzed with Clampfit 10.3 (Molecular Devices) or Origin 7.0 (OriginLab). 

Macroscopic memantine or ketamine binding and unbinding kinetics were determined from drug 

concentration-response experiments. Some concentration-response data were collected for drug 

IC50 measurements presented in Chapter 3. Briefly, glutamate was applied for 10 – 20 s (until 

current reached a steady level), then glutamate with 1, 10, 100, or 1000 µM memantine or 

ketamine was applied for 10 – 40 s until a steady level of inhibition was reached. Glutamate 

without drug was then reapplied for 20 – 60 s to allow recovery from inhibition. The time 

necessary to reach a steady level of inhibition and to allow recovery from inhibition depended 

strongly on the glutamate concentration. Recordings were obtained in a constant concentration of 

0 or 1 mM Mg2+. Cells were excluded from analysis if recovery from inhibition did not reach 

90% of steady-state current preceding drug application. Cells with NMDAR currents > 2 nA 

were excluded from kinetic analysis due to atypical binding and unbinding kinetics. 

Macroscopic drug binding and unbinding kinetics were measured by performing least-

squares fits of single or double exponential functions to data using Clampfit 10.3. The number of 

components in the exponential was determined by visual examination, using the fewest 

components required to obtain a satisfactory fit. To compare single exponential time constants 

(τ) with double exponential time constants (τfast and τslow), we converted τfast and τslow to a single 

weighted time constant (τw) using the equation: τw = (τfast*Afast + τslow*Aslow)/(Afast + Aslow), 

where Afast and Aslow are the amplitudes of τfast and τslow.  

Individual pair-wise comparisons were made by two-tailed Student’s t-test with 

significance levels as indicated. Group data were compared by one-way ANOVA with Tukey's 
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post hoc analysis with significance values as indicated. All error is displayed as ± standard error 

of the mean (SEM). Current traces for presentation were refiltered offline in Clampfit 10.3 at 200 

Hz. 

4.4 RESULTS 

To determine whether 1 mM external Mg2+ affects the time course of inhibition (macroscopic 

binding kinetics) or recovery from inhibition (macroscopic unbinding kinetics) of memantine 

and ketamine, we first measured memantine and ketamine kinetics in the absence of Mg2+. We 

used three memantine and ketamine concentrations, 1, 10 and 100 µM, in 0 Mg2+ to assess the 

macroscopic binding and unbinding kinetics for each drug for GluN1/2A or GluN1/2B receptors. 

Drug concentrations below 1 µM were not used, as the amount of inhibition did not produce 

reliable kinetic measurements. We initially measured kinetics in the presence of saturating 

glutamate (1 mM glutamate). All experiments were conducted in saturating glycine (100 µM). 

For experiments in 1 mM Mg2+ we used three memantine and ketamine concentrations, 10, 100, 

and 1000 µM, to measure macroscopic binding and unbinding kinetics for each drug. 1 mM 

Mg2+ causes ~10-fold increases in the IC50 values of memantine and ketamine with GluN1/2A 

and GluN1/2B receptors (Kotermanski and Johnson 2009). Therefore, the fractional current at 

each drug concentration in 1 mM Mg2+ is similar to the fractional current at the 10-fold lower 

concentration in 0 Mg2+. Macroscopic kinetics were assessed by comparing time constants of 

single (τ) or double exponential (τw) fits to the time course of macroscopic binding and 

unbinding kinetics of memantine and ketamine (Section 4.3.4). 
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4.4.1 Memantine unbinding kinetics exhibit strong concentration dependence 

We found in 0 Mg2+ that memantine exhibited strongly concentration-dependent unbinding 

kinetics (Figure 16A, C; Table 4). The unbinding τw with 100 µM memantine was 13.9-fold 

slower than with 1 µM memantine for GluN1/2A receptors and 4.9-fold slower for GluN1/2B 

receptors (Figure 16A, C, E; Table 4). A memantine concentration-dependent slowing of 

unbinding τw may be consistent with previous reports of memantine binding to two sites on 

NMDARs (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen 

and Lipton 2005; Kotermanski et al., 2009). These studies suggest a model in which memantine 

binds to two sites: the deep site, which is near N-site asparagine residues, that exhibits a lower 

IC50 (~1 µM) and faster kinetics; and the second site, which may or may not be within the 

channel pore, that exhibits a higher IC50 (~100 µM) and slower kinetics. As memantine 

concentration increases, occupation of the second site increases, thereby increasing the fraction 

of the slow component of unbinding (Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998). 

In our hands, the fraction and the duration of the slow component of unbinding increase with 

increasing memantine concentrations, but in complicated ways (Table 4; see Unbinding 

Kinetics: Fracslow, τslow). This is likely due to macroscopic exponential components describing 

the average of multiple kinetically similar microscopic components. To avoid these 

complications, we focus primarily on the τw, which captures changes in both Fracslow and τslow.  

There is a significant increase in memantine unbinding τw for GluN1/2A and GluN1/2B 

receptors between 10 and 100 µM memantine, but not between 1 and 10 µM memantine, which 

suggests the second site has an IC50 closer to 100 than to 10 µM (Figure 16E). This observation 

is consistent with previous estimates of the memantine IC50 at the second binding site (80 – 180 
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µM) (Blanpied et al., 1997; Kotermanski et al., 2009). Also consistent with previous 

investigations of the second site, our results display paradoxical apparent low affinity binding 

with relatively slow unbinding kinetics (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; 

Sobolevsky et al., 1998; Kotermanski et al., 2009). This observation is paradoxical because the 

speed of unbinding generally increases as affinity decreases. It is not clear how memantine 

unbinds more slowly from the second site than from the deep site. Nevertheless, our findings 

provide further evidence of memantine binding to the second site. 

We also determined whether unbinding τw depends on the NMDAR subtype. Unbinding 

τw was significantly faster from GluN1/2A than from GluN1/2B receptors at each concentration 

(e.g. 1 µM for GluN1/2A vs. 1 µM for GluN1/2B) in 0 and 1 mM Mg2+ (Figure 16E; Table 4). 

This is not surprising, as both the binding and unbinding kinetics of open channel blockers 

depend on the probability of a channel being open (Popen), and GluN1/2A receptors exhibit higher 

Popen than GluN1/2B receptors (Glasgow et al., 2015). 

Next, we investigated memantine kinetics in the presence of 1 mM Mg2+. We found that 

1 mM Mg2+ significantly speeds memantine unbinding τw with 100 µM memantine in GluN1/2A 

and GluN1/2B receptors (Figure 16B, D, E; Table 4). Memantine exhibited concentration-

dependence of unbinding in 1 mM Mg2+. The unbinding τw with 1000 µM memantine was 6.5-

fold slower than with 10 µM memantine for GluN1/2A receptors and 4.5-fold slower for 

GluN1/2B receptors (Figure16B, C, E; Table 4). These data suggest that Mg2+ shifts the 

concentration-dependence of memantine unbinding, potentially by competing with memantine 

binding to the second site, as well as to the deep site. However, it is not clear whether Mg2+ 

affects memantine binding at the second site through direct competition or through a complex 

interaction involving memantine binding at the deep site as well.  
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We also analyzed memantine binding kinetics in 0 and 1 mM Mg2+. As expected, because 

binding rates depend on the concentration of blocker, memantine binding τw increased in a 

concentration-dependent manner in 0 and 1 mM Mg2+ (Table 4). Mg2+ is thought to compete for 

binding with memantine, resulting in decreased speed with which memantine binds. Indeed, 1 

mM Mg2+ slowed the binding τw with 10 and 100 µM memantine compared to 0 Mg2+ (Table 4; 

Student’s t-test, p < 0.01). 
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Figure 16. Mg2+ shifts the concentration dependence of memantine unbinding kinetics. 

A-D, Representative current traces used for measuring memantine binding and unbinding kinetics of 

GluN1/2A (A, B) and GluN1/2B receptors (C, D) in the absence (A, C) and presence of 1 mM Mg2+ (B, 
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D), when activated by 1 mM glutamate (Glu, black bars). Memantine (Mem, red bars) was applied at the 

indicated concentrations. Traces within each column are from the same cell. The bottom row of traces in A-

D illustrate memantine concentration dependence of unbinding kinetics. The memantine unbinding traces 

are taken from above at the memantine concentrations indicated, aligned at the time of memantine removal, 

and scaled to the change in current amplitude during recovery from inhibition. Dark red traces were 

recorded in 0 Mg2+; light red traces were recorded in 1 mM Mg2+. E, Mean unbinding τw values compared 

across groups. * indicates p < 0.05 by one-way ANOVA with Tukey's post hoc analysis, n = 4 – 6 cells for 

each group.  
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Table 4. Memantine binding and unbinding kinetics with unlifted cells. 

Values represent means ± SEM, n = 4 – 6 cells per group.  
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4.4.2 Ketamine unbinding kinetics are independent of concentration 

Next we examined the kinetics of inhibition by ketamine in the absence and presence of 1 mM 

Mg2+. We found that unlike memantine, ketamine unbinding kinetics were not concentration-

dependent, in 0 or 1 mM Mg2+ (Figure 17; Table 5). This is consistent with ketamine binding 

only to a single site on NMDARs (Johnson et al., 2015). At several ketamine concentrations in 0 

Mg2+, unbinding kinetics were well fit by a single exponential function, whereas in 1 mM Mg2+, 

ketamine unbinding kinetics were always best fit by a double exponential (Table 5). This 

suggests that Mg2+ may be interacting in with ketamine. Although 1 mM Mg2+ did not cause any 

significant speeding of ketamine unbinding kinetics, there was a trend towards faster unbinding 

(Figure 17E; Table 5). Therefore, it is possible that Mg2+ has a small impact on ketamine 

unbinding kinetics, which is not consistent with our current understanding of Mg2+ interactions 

with open channel blockers.  

We also measured ketamine binding kinetics in 0 and 1 mM Mg2+. As with memantine, 

ketamine binding was concentration-dependent in 0 and 1 mM Mg2+ (Table 5). As expected, 1 

mM Mg2+ significantly slowed the binding τw with 10 and 100 mM ketamine compared to 0 

Mg2+ (Table 5; Student’s t-test, p < 0.05). 
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Figure 17. Ketamine unbinding kinetics are independent of concentration. 

A-D, Representative current traces used for measuring ketamine binding and unbinding kinetics of GluN1/2A (A, B) 

and GluN1/2B receptors (C, D) in the absence (A, C) and presence of 1 mM Mg2+ (B, D), when activated by 1 mM 
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glutamate (black bars). Ketamine (Ket, blue bars) was applied at the indicated concentrations. Traces within each 

column are from the same cell. The bottom row of traces in A-D illustrate ketamine concentration independence of 

unbinding kinetics. The ketamine unbinding traces are taken from above at the ketamine concentrations indicated, 

aligned at the time of ketamine removal, and scaled to the change in current amplitude during recovery from 

inhibition. Dark blue traces were recorded in 0 Mg2+; light blue traces were recorded in 1 mM Mg2+. E, Mean 

unbinding τw values compared across groups. ns indicates p > 0.05 by one-way ANOVA with Tukey's post hoc 

analysis , n = 4 – 6 cells for each group.  
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Table 5. Ketamine binding and unbinding kinetics with unlifted cells.  

Values represent means ± SEM, n = 4 – 6 cells per group.  
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4.4.3 Memantine and ketamine kinetics with a low concentration of glutamate 

Thus far, we have presented memantine and ketamine kinetic measurements determined in 

saturating concentrations of glutamate and glycine. We wondered whether at a low concentration 

of glutamate relative to EC50 (0.3 µM, ~0.1 glutamate EC50), and thus at a much lower NMDAR 

Popen, the memantine concentration dependence of memantine unbinding kinetics would be 

diminished. Therefore, we measured binding and unbinding kinetics of memantine and ketamine 

in the absence of Mg2+, when GluN1/2A or GluN1/2B receptors are activated by 0.3 µM 

glutamate.  

We found that GluN1/2A, but not GluN1/2B receptors, activated by 0.3 µM glutamate 

maintain significant memantine concentration dependence of memantine unbinding τw (Figure 

18A-B, E; Table 4). The unbinding τw with 100 µM memantine was 3.9-fold slower than with 1 

µM memantine for GluN1/2A receptors, whereas there was a non-significant change for 

GluN1/2B receptors (Figure 18E; Table 4). Therefore, at a low glutamate concentration, the 

memantine concentration dependence of unbinding is occluded for GluN1/2B, but not for 

GluN1/2A, receptors.  

We found that ketamine unbinding kinetics were not concentration dependent for 

GluN1/2A and GluN1/2B receptors activated by 0.3 µM glutamate (Figure 18C-D, F; Table 5). 

Ketamine unbinding kinetics were significantly slower at each ketamine concentration when 

activated by 0.3 µM glutamate than by 1 mM glutamate, except for 10 µM ketamine with 

GluN1/2B receptors.  

Memantine and ketamine binding τw were significantly slowed at 1 and 10 µM when 

activated by 0.3 µM glutamate compared to activation by 1 mM glutamate (Tables 4 and 5; 
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Student's t-test, p < 0.01). Surprisingly, except with ketamine for GluN1/2B receptors, 100 µM 

memantine or ketamine binding τw was not significantly different when activated by 0.3 µM or 1 

mM glutamate (Tables 4 and 5; Student's t-test, p > 0.05). One possible explanation for this 

observation is that our measurements of the fastest kinetic components may be limited by our 

fast perfusion system and recording configuration. It is possible that by recording from unlifted 

cells, which have a 10 – 90% solution exchange time of ~150 ms (Table 1; Section 3.3.3) we 

underestimated the fastest kinetic components. Therefore, we explored memantine and ketamine 

kinetics using lifted cells, which have a 10 – 90% solution exchange time of ~3 ms (Table 1; 

Section 3.3.3).  
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Figure 18. Memantine and ketamine unbinding kinetics when activated by 0.3 µM glutamate. 

A-D, Representative current traces used for measuring memantine (A, B) and ketamine (C, D) binding and 

unbinding kinetics of GluN1/2A (A, C) and GluN1/2B receptors (B, D) in the absence of Mg2+, when activated by 
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0.3 µM glutamate (black bars). Memantine (red bars) or ketamine (blue bars) were applied at the indicated 

concentrations. Traces within each column are from the same cell. The bottom row of traces in A-D illustrate the 

extent of memantine or ketamine concentration dependence of unbinding kinetics. The drug unbinding traces are 

taken from above at the concentrations indicated, aligned at the time of drug removal, and scaled to the change in 

current amplitude during recovery from inhibition. E, F, Mean unbinding τw values compared across groups for 

memantine (E) and ketamine (F). * indicates p < 0.05 and ns indicates p > 0.05 by one-way ANOVA with Tukey's 

post hoc analysis, n = 4 – 6 cells for each group. 

 

4.4.4 Recordings from lifted cells reveal significantly faster memantine kinetics 

Next, we wanted to test whether solution exchange time is a limiting factor in determining 

memantine and ketamine binding and unbinding kinetics. We used lifted cells to achieve rapid 

and complete solution exchange not possible when recording from unlifted cells. As a strict test, 

we measured memantine and ketamine kinetics in the same cell before and after lifting. We 

found that the unbinding τw following inhibition with 100 µM memantine quickened after lifting 

by ~4-fold, whereas the unbinding τ following inhibition with 100 µM ketamine quickened by 

~1.5-fold (Figure 4A). Due to the greater lifting-induced kinetic changes, we focus on 

memantine kinetics here. The extent to which memantine unbinding kinetics quickened due to 

lifting was surprising. We wanted to ensure that memantine concentration dependence of 

unbinding was not the result of inaccuracies from the relatively slow solution exchange around 

unlifted cells. Therefore, we repeated measurements of memantine kinetics using lifted cells 

expressing GluN1/2A receptors.  

We found that even from lifted cells, memantine unbinding τw was concentration 

dependent, both in 0 and 1 mM Mg2+ (Figure 19B-D; Table 6). In 0 Mg2+, the unbinding τw with 
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100 µM memantine was 7.3-fold slower than with 1 µM memantine (Figure 19B, D; Table 6). 

In 1 mM Mg2+, the unbinding τw with 1000 µM memantine was 3.9-fold slower than with 10 µM 

memantine and increased 3.9-fold in 1 mM Mg2+ from 10 to 1000 µM memantine (Figure 19C, 

D; Table 6). Importantly, 1 mM Mg2+ significantly quickened memantine unbinding τw at 100 

µM memantine, consistent with our results with unlifted cells (Figure 16E and 19D). As 

expected, unbinding τfast from lifted cells quickened ~2- to 3-fold at each memantine 

concentration compared to unlifted cells (Table 6). Surprisingly, unbinding τslow with 100 µM 

from lifted cells also quickend by 2.8-fold compared to unlifted cells (Tables 4 and 6). It is not 

clear how the unbinding τslow, which is ~20-fold slower than the time course of solution 

exchange of unlifted cells, could be affected by quicker solution exchange.  

Binding τw in 0 Mg2+, but not in 1 mM Mg2+, was significantly quickened with 10 µM 

and 100 µM memantine from lifted cells compared to unlifted cells (Table 6). Therefore, the 

effect of Mg2+ on slowing memantine binding kinetics is greater than we previously measured 

(Table 4). It will be important to determine in lifted cells whether the effects of Mg2+ on 

ketamine binding differs greatly from the effects of Mg2+ on memantine binding. 
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Figure 19. Lifted cells reveal faster unbinding kinetics. 

A, Representative current traces of memantine (top, red bar) and ketamine (bottom, blue bar) unbinding kinetics of 

GluN1/2A receptors activated by 1 mM glutamate (black bars). All traces in A are from the same cell before lifting 

(Unlifted, black traces) and after lifting (Lifted, gray traces) in 0 Mg2+. Current traces were aligned at the time of 

drug removal and scaled to the change in current amplitude during recovery from inhibition. B, C, Representative 

traces used for measuring memantine binding and unbinding kinetics of GluN1/2A receptors in 0 (B) and 1 mM 

Mg2+ (C), when activated by 1 mM glutamate (black bars). Memantine (red bars) was applied at the indicated 
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concentrations. Traces within each column are from the same cell. The bottom traces illustrate metamine 

concentration dependence of unbinding kinetics. The memantine unbinding traces are taken from above at the 

memantine concentrations indicated, aligned at the time of memantine removal, and scaled to the change in current 

amplitude during recovery from inhibition. Dark red traces were recorded in 0 Mg2+; light red traces were recorded 

in 1 mM Mg2+. D, Mean unbinding τw values compared across groups. * indicates p < 0.05 by one-way ANOVA 

with Tukey's post hoc analysis, n = 3 cells for each group.  

 

 

Table 6. Memantine binding and unbinding kinetics from lifted cells. 

Values represent means ± SEM, n = 3 cells per group.  

 

 

4.5 DISCUSSION 

In this study we investigated whether the presence of 1 mM Mg2+ affects the kinetics of 

inhibition or recovery from inhibition by memantine and ketamine in tsA201 cells expressing 

GluN1/2A or GluN1/2B receptors. Our data show that memantine, but not ketamine, unbinding 
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kinetics slow with increasing concentration of drug. These data are consistent with hypotheses 

that memantine binds to multiple sites on the NMDAR receptor, and ketamine binds to a single 

site (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen and 

Lipton 2005; Parsons et al., 2007; Kotermanski et al., 2009; Johnson et al., 2015). Importantly, 

we show that the presence of Mg2+ does not alter the memantine concentration dependence of 

unbinding, or the ketamine concentration independence of unbinding. Importantly, Mg2+ 

significantly quickens unbinding kinetics of 100 µM memantine, which suggests that Mg2+ 

affects memantine binding at the second site, as well as at the deep site. Further work is needed 

to understand the mechanistic basis of the memantine binding at two sites, in addition to how 

Mg2+ interacts with binding at both sites. 

Several previous studies have proposed that there are two binding sites for memantine on 

NMDARs (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen 

and Lipton 2005; Kotermanski et al., 2009). Our data support this hypothesis, but differ from 

previous studies in several key ways. First, our experiments were conducted in a heterologous 

expression system as opposed to neurons (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; 

Sobolevsky et al., 1998), which contain a heterogeneous population of NMDAR subtypes 

(Glasgow et al., 2015). Our data support the notion that the presence of multiple NMDAR 

subtypes with differential kinetic components could obfuscate interpretation of experiments in 

the context of two memantine binding sites. Second, our experiments with unlifted cells yielded 

unbinding kinetic components that were ~2- to 10-fold faster than previous measurements. Faster 

components could have arisen from the use of a saturating concentration of the full agonist 

glutamate, rather than a low or intermediate concentrations of the partial agonist NMDA used in 

some other studies (Blanpied et al., 1997; Kotermanski et al., 2009). In addition, to prevent 
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NMDAR current rundown, we included ATP in the intracellular solution, which has generally 

not been present in the intracellular solutions used in other studies. Besides maintaining a higher 

NMDAR Popen (Tong and Jahr 1994), ATP may have yet unknown effects on memantine or 

ketamine inhibition. Our findings from Chapter 3 suggest that Ca2+-mediated effects are involved 

in the mechanism of action of memantine, and it is conceivable that ATP is also indirectly or 

directly involved in the Ca2+-mediated process. Third, we examined whether Mg2+ interferes 

with binding at one or both memantine binding sites, which has not been explored previously. It 

is not clear from our data or earlier studies how memantine interacts with the two memantine 

binding sites in the absence of Mg2+. Therefore, how Mg2+ interacts with memantine binding at 

one or both sites is in need of further investigation.  

Our experiments from lifted cells revealed that memantine unbinding kinetics are much 

faster than previously appreciated, and highly dependent on the rate of solution exchange. Most 

kinetic studies of memantine and ketamine have been performed on unlifted cells, which yield 

fast components that are limited by the rate of solution exchange. One study investigated kinetics 

of memantine inhibition and recovery from inhibition from outside-out patches of oocytes, which 

yielded kinetic measurements that were still ~3- to 8-fold slower than our data from lifted cells 

(Parsons et al., 2008). Interestingly, we found that even the slow component of memantine 

unbinding depends on whether a cell is lifted or not. This finding suggests that either memantine 

is particularly difficult to wash out from diffusionally restricted spaces (between the cell and the 

coverslip), or that lifting cells causes structural changes to NMDARs that somehow result in 

significantly faster memantine unbinding. It will be important for future studies to determine 

why lifting cells speeds the slow component of memantine unbinding, and whether lifting cells 

changes NMDAR properties. Overall, our results suggest caution in extrapolating from 
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macroscopic kinetic data alone, as the data are highly dependent on the experimental conditions 

(e.g. ion concentrations, presence of metabolic components, rate of solution exchange).  

 Our data further support a model of memantine inhibition in which memantine binds with 

higher affinity to the deep site and binds with lower affinity to a second site, which may or may 

not be within the channel pore (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; 

Sobolevsky et al., 1998; Chen and Lipton 2005; Kotermanski et al., 2009). The second, lower 

affinity site exhibits paradoxically slow memantine unbinding, as observed previously (Blanpied 

et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Kotermanski et al., 2009). 

However, our data in 1 mM Mg2+ suggest that in addition to competing with memantine 

inhibition at the deep site, Mg2+ also may affect inhibition at the second memantine binding site. 

To understand the mechanism of action of memantine, further work is needed to investigate 

memantine's interaction with the second site in the absence and presence of Mg2+. 
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5.0  EFFECTS OF UNCHARGED MEMANTINE ON NMDA RECEPTORS 

5.1 OVERVIEW 

Over the last two decades, several studies have demonstrated that memantine can inhibit 

NMDARs through binding at two sites, the deep site and the second site. Based on mutations that 

affect memantine binding, the deep site overlaps the Mg2+ binding site near the middle of the 

membrane voltage field. In contrast, the location of the second site is likely somewhere in the 

external portion of the M3 TMR. Thus far, evidence of memantine binding to the second site is 

through indirect measures. Mutations to occlude memantine binding to the second site have been 

difficult to assess. Therefore, the physiological role of memantine binding at the second site is 

not clear. A deeper understanding of memantine inhibition at the second site is thus warranted. 

To address memantine binding to the second site, we develop and test the hypothesis that 

uncharged memantine binds to the second site. At physiological pH, > 99% of memantine carries 

a positive charge. Changing the solution pH from 7.2 to 9 with a constant concentration of 

memantine increases the concentration of uncharged memantine ~60-fold. Comparing the same 

concentrations of memantine at pH 7.2 and 9, we find that established properties of inhibition at 

the second site are enhanced. Identification of uncharged memantine as the molecular species 

that binds to the second site improves our understanding of several unique features of memantine 

inhibition. Furthermore, use of pH manipulation as a tool to test memantine inhibition at the 
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second site will be useful in driving further investigation into the mechanisms of NMDAR 

inhibition by memantine. 

5.2 INTRODUCTION 

In Chapter 4 we showed that the time course of recovery from inhibition by memantine, but not 

by ketamine, depended strongly on the drug concentration. Our data are consistent with the 

hypotheses that memantine binds to at least two sites on NMDARs (Blanpied et al., 1997; 

Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen and Lipton 2005; Kotermanski et 

al., 2009), whereas ketamine binds to only one site (Parsons et al., 2007; Kotermanski et al., 

2009; Johnson et al., 2015; but see Orser et al., 1997). The approximate location of the deep site 

for memantine binding is thought to overlap with the Mg2+ binding site. Memantine is 

coordinated by asparagine residues at the tips of the M2 reentrant loops of each NMDAR subunit 

(Kashiwagi et al., 2002; Chen and Lipton 2005). Indeed, 1 mM Mg2+ slows the macroscopic 

memantine binding rate, and decreases memantine potency 10- to 20-fold (Chapter 4; 

Kotermanksi and Johnson, 2009). Mutational studies have identified regions in the extracellular 

portion of the M3 TMR that may correspond to approximate location of the memantine binding 

at the second site (Chen and Lipton 2005). 

Interestingly, our data in Chapter 4 suggest that in addition to competing with memantine 

binding at the deep site, Mg2+ may compete for binding at the second site. The ability of Mg2+ to 

interfere with binding at the second site suggests that the second site is somewhere in the 

proximity of the deep site, or of memantine bound at the deep site. However, previous studies 

suggest that memantine binds to a shallow or superficial second site that was both accessible 
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when NMDARs are closed and exhibited weak apparent Vm dependence (Blanpied et al., 1997; 

Chen and Lipton 2005; Kotermanski et al., 2009). However, one study suggests that memantine 

can bind to a second site deep in the voltage field, presumably within the channel pore 

(Sobolevsky et al., 1998). Therefore, it is unclear where the second memantine binding site is 

located, and how Mg2+ can compete for binding at this site.  

 Irrespective of precisely where memantine binds to the second site, previous work has 

identified several unusual properties associated with memantine inhibition at the second site, 

including the ability of memantine to bind and unbind without NMDAR activation and 

paradoxical high IC50 with relatively slow unbinding kinetics. These properties are not consistent 

with our current understanding of inhibition by open channel blockers. Therefore, a deeper 

understanding of memantine binding to the second site and of how Mg2+ affects binding at this 

site is necessary. 

5.3 MATERIALS AND METHODS 

5.3.1 Cell culture and transfection 

Experiments were performed on the tsA201 cell line (The European Collection of Authenticated 

Cell Cultures). tsA201 cells were maintained as previously described (Glasgow and Johnson 

2014), in DMEM supplemented with 10% fetal bovine serum and 1% GlutaMAX (Thermo 

Fisher Scientific). Cells at 1 x 105 cells/dish were plated on 15 mm glass coverslips treated with 

poly D-lysine (0.1 mg/ml) and rat-tail collagen (0.1 mg/ml, BD Biosciences) in 35 mm petri 

dishes. 12 to 24 hours after plating, the cells were transiently cotransfected using FuGENE 6 
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Transfection Reagent (Promega) with cDNAs encoding enhanced green fluorescent protein 

(EGFP) for identification of transfected cells, either the rat GluN1-1a subunit (hereafter GluN1; 

GenBank X63255 in pcDNA3.1) or GluN1(N616R) subunit, and the rat GluN2A subunit 

(GenBank M91561 in pcDNA1). The GluN1(N616R) mutant (residue numbering starting from 

initiating methionine) cDNA was a kind gift from Dr. Pierre Paoletti. Cells transfected with 

GluN1 and a EGFP:pIRES:GluN2A construct, which was a kind gift from Dr. Kasper Hansen 

(Hansen, unpublished), were used in some experiments. Briefly, EGFP was inserted in pIRES 

(Clontech) under transcriptional control of the CMV promoter, and the open reading frame of rat 

GluN2A (GenBank D13211) was inserted after the IRES sequence. cDNA ratios of 1 EGFP: 1 

GluN1: 1 GluN2A. Immediately after transfection, the culture media was supplemented with the 

competitive NMDAR antagonists DL-2-amino-5-phosphonopentanoate (200 μM) and 7-

chlorokynurenic acid (200 μM) to prevent NMDAR-mediated cell death. 

5.3.2 Solutions  

The extracellular bath solution contained (in mM): 140 NaCl, 2.8 KCl, 1 CaCl2, 10 HEPES, 0.01 

EDTA, and 0.1 glycine, balanced to pH 7.2 ± 0.05 with NaOH and osmolality balanced to 290 ± 

10 mOsm with sucrose. For experiments performed at pH 9, NaOH was added to bring the pH to 

9 ± 0.05. L-glutamate, MgCl2, memantine, and (±)ketamine were added to the extracellular 

solution as indicated from frozen concentrated stock solutions on the same day as experiments. 

The intracellular pipette solution contained (in mM): 130 CsCl, 10 HEPES, 10 BAPTA, and 4 

MgATP balanced to pH 7.2 ± 0.05 with CsOH and solution osmolality was 280 ± 10 mOsm. 

Frozen aliquots of pipette solution were thawed and kept on ice until loaded into pipettes 

immediately before starting an experiment. 
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5.3.3 Electrophysiology 

Experiments were performed 12 – 48 hours after tsa201 cells were transiently transfected with 

NMDAR subunits. Pipettes were pulled from borosilicate capillary tubing (Sutter Instruments) to 

a resistance of 2 – 5 ΜΩ on a Sutter Instruments-Flaming Brown P-97 microelectrode puller and 

fire polished. Whole-cell recordings were made from cells expressing EGFP identified by 

epifluroescence illumination on an inverted Zeiss Axioscop microscope. Unless otherwise 

indicated, all recordings were made from unlifted cells held at a membrane potential (Vm) of -65 

mV corrected for an empirically determined liquid junction potential between the extracellular 

and intracellular solution of -6 mV. Whole-cell currents were amplified using an Axopatch 200B 

patch-clamp amplifier (Molecular Devices), filtered at 5 kHz and samples at 20 kHz in 

pClamp10 (Molecular Devices). Series resistance was compensated with the prediction and 

correction circuitry to at least 85% in all experiments.  

 Solutions were delivered through a ten barrel, voice-coil linear stage-driven fast perfusion 

system described previously (Section 3.3.3). Solution flow rate was typically ~2 ml/min for 

recordings from unlifted cells. Solution exchange was measured previously with a 10–90% rise 

time of < 0.2 ms for an open pipette and ~150 ms around an unlifted whole-cell. 

5.3.4 Analysis 

All data were analyzed with Clampfit 10.3 (Molecular Devices) or Origin 7.0 (OriginLab). To 

measure macroscopic drug unbinding kinetics during NMDAR activation after drug trapping, we 

developed the following protocol (Figures 20 and 23). We applied glutamate for 20 s (Icont1), 

then applied 100 µM of drug with glutamate for 10 s, then washed off glutamate in the 
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continuous presence of 100 µM drug for 5 s to maintain inhibition during NMDAR deactivation, 

before returning to normal extracellular solution for 25 s. Glutamate was then reapplied for 20 s 

to measure macroscopic drug unbinding kinetics after trapping (Itrap). This glutamate 

reapplication was followed by a 40 s wash with normal extracellular solution, and then another 

20-s glutamate application (Icont2), which was used to ensure there was not significant current 

rundown. To take into account current rundown, we aligned peak currents at the times of 

glutamate application and determined the ratio of current after trapping to control current at 

every time point by the equation, trapped unbinding = Itrap/Icont, where Icont = ((Icont1 + Icont2)/2). 

Trapped unbinding is a ratio value as a function of time for a 20 s duration of glutamate 

application. To determine the time course of unbinding following the trapping protocol (trapped 

unbinding kinetics) by fitting trapped unbidning with a single or double exponential function in 

Clampfit 10.3. The number of components in the exponential was determined by visual 

examination, using the fewest components necessary for a satisfactory fit. For simple comparison 

of double exponential time constants (τfast and τslow) with single exponential time constants (τ), 

we converted τfast and τslow to a single weighted time constant (τw) by the equation: τw = 

(τfast*Afast + τslow*Aslow)/(Afast + Aslow), where Afast and Aslow are the amplitudes of τfast and τslow. 

We measured fractional recovery after trapping as the mean trapped unbinding over a 5 ms 

window at the start of the exponential fit. Trapped drug unbinding was then compared to 

unbinding from steady drug inhibition in the continuous presence of glutamate (steady-state 

unbinding) in the same cells. Some drug trapping experiments were conducted in the continuous 

presence of 1 mM Mg2+ with a memantine or ketamine concentration of 1000 µM.  

Concentration-response relations for memantine inhibition of GluN1(N616R)/2A 

receptors were measured using the following protocol. 1 mM glutamate was applied for 20 s 
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until current reached a steady-state amplitude, then 1 mM glutamate plus the lowest 

concentration of memantine (50, 200, 1000, and 2000 µM memantine) was applied for 20 s 

before applying the next highest concentration of memantine with glutamate. After 20 s of 2000 

µM memantine with glutamate, glutamate in the absence of memantine was reapplied for 30 s to 

allow recovery from inhibition. Cells where recovery from inhibition did not reach 80% of 

steady-state current preceding memantine application were excluded from analysis. 

Concentration-response data for individual cells were then log-transformed to determine the IC50 

value through fits of the following equation, Imemantine/Icontrol = 1/(1 + 10^(log[memantine] – 

log(IC50))*nH), where Imemantine is the mean current during 3 s of steady memantine inhibition at 

each memantine concentration, Icontrol is the mean current during 3 s of steady-state current 

preceding drug application and 3 s of steady-state current following recovery from drug 

inhibition, and nH is the Hill coefficient. Log(IC50) and nH were the free parameters in the fits. 

The logIC50 value for each cell was transformed to IC50 and values averaged across cells for 

presentation. For graphical representation, Imemantine/Icontrol were averaged at each memantine 

concentration, plotted, and overlaid with the fit determined as described above. 

We determined the voltage dependence of memantine inhibition of GluN1(N616R)/2A 

receptors by fitting IC50 values at -105, -65 and -25 mV to the following equation, IC50(Vm) = 

IC50(0 mV)*e^(Vm/Vo), where IC50(Vm) is the IC50 value at membrane voltage Vm, IC50(0 mV) is 

the IC50 value at 0 mV, and Vo is the number of mV for an e-fold change in IC50, which 

quantifies voltage dependence.  

The extent of closed channel inhibition (CCI) was measured using the following protocol 

(Figures 21 and 23). 1 mM glutamate was applied for 20 s (Icont1), followed by normal 

extracellular solution for at least 9 s to allow for full deactivation of receptors, then 100 µM 
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memantine in the absence of glutamate was applied for 30 s. Memantine was washed away 

briefly by a 1 s application of normal extracellular solution before glutamate was reapplied for 

20 s (ICCI). We chose a 1 s wash to allow for full solution exchange while still maintaining 

substantial CCI (CCI washout τ > ~2 s (Kotermanski et al., 2009)). The 20 s reapplication of 1 

mM glutamate (ICCI) was followed by a wash in normal extracellular solution for at least 40 s, 

and then glutamate was reapplied for 20 s (Icont2) to compare to Icont1 to ensure there was not 

significant current rundown. Fractional inhibition after CCI was measured by comparing Icont and 

Icont2 to ICCI by the following equation; fractional response after CCI = ICCI/Icont, where Icont = 

((ICont1 + ICont2)/2) (see Figures 21 and 23). Peak currents were measured as the mean current 

over a 30 ms window centered on the mean time to peak for Icont1 and Icont2 in each cell to 

account for the possibility that NMDAR activation kinetics may be altered after CCI, which 

could affect accurate measurement of ICCI. 

Macroscopic memantine binding and unbinding kinetics were analyzed from drug 

concentration-response experiments, as described in Chapters 3 and 4. Briefly, 1 mM glutamate 

was applied for 10 – 20 s until current reached steady-state amplitude, then glutamate with 1, 10, 

100, or 1000 µM memantine was applied for 10 – 40 s until a steady level of inhibition was 

reached. Glutamate without drug was then reapplied for 20 – 60 s to allow recovery from 

inhibition. Recordings were performed in 0 or 1 mM Mg2+ for the duration of the experiment. 

Cells were excluded from analysis if recovery from inhibition did not reach 80% of steady-state 

current preceding drug application. 

 Individual pair-wise comparisons were made by two-tailed Student’s t-test with a level of 

significance as indicated. Group data were compared by one-way ANOVA with Tukey's post 
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hoc analysis with a significance level as indicated. All error is displayed as ± SEM. Current 

traces for presentation were refiltered offline in Clampfit 10.3 at 200 Hz. 

5.4 RESULTS 

5.4.1 Memantine unbinds from the second site without NMDAR activation 

In Chapter 4, we showed that the unbinding τw of memantine, but not ketamine, was 

concentration-dependent. The memantine concentration dependence of unbinding τw resulted 

from increases in the duration and fraction of the slow component of unbinding. Presumably, 

memantine binding at the second site, which exhibits a high IC50 site and slow unbinding 

kinetics, is responsible for the increase in the duration and fraction of the slow component of 

unbinding. Results of previous studies support the hypothesis that memantine is able to bind and 

unbind from the second site without NMDAR activation (Blanpied et al., 1997; Sobolevsky et 

al., 1998; Kotermanski et al., 2009). If memantine bound to the second site is responsible for 

slow unbinding, and if memantine is able to unbind from the second site without NMDAR 

activation, then slow unbinding should be absent after a protocol that allows memantine 

unbinding without NMDAR activation. Therefore, we measured the kinetics of memantine 

unbinding after a trapping protocol previously used to demonstrate that memantine could unbind 

without NMDAR activation.  

We used a drug trapping protocol (Figure 20A; Section 5.3.4) to inhibit GluN1/2A with 

100 µM memantine, which exhibits an unbinding τslow of ~5 s and Fracslow of ~0.6 (Figure 16; 

Table 7). If memantine is able to unbind from the second site without NMDAR activation, then 
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the duration and fraction of the slow component of unbinding should decrease significantly. The 

kinetics of open channel blockers depend strongly on Popen, and due to desensitization, peak Popen 

is much higher than Popen during steady-state activation. Comparisons of memantine unbinding 

kinetics measured at peak Popen to kinetics measured at steady-state Popen require a conversion to 

account for the difference in Popen between the two conditions. Therefore, we determined the 

ratio of current during glutamate applications following memantine trapping (Itrap) to the current 

during control glutamate applications (Icont, Icont1, and Icont2; Section 5.3.4). We then determined 

the trapped unbinding kinetics (Section 5.3.4) by fitting the trapped ratio with exponential 

functions (Figure 20B, C). We also measured ketamine unbinding kinetics after trapping. 

Ketamine serves as a control for our method of comparing unbinding kinetics during peak and 

steady-state activation and as a control for how an open channel blocker without two binding 

sites might unbind after trapping. We also examined whether 1 mM Mg2+ affected unbinding 

kinetics after drug trapping.  

We found that the trapped memantine unbinding τw was ~40-fold faster than the steady-

state unbinding τw in both 0 and 1 mM Mg2+ (Figure 20B, D; Table 7). In contrast, the trapped 

ketamine unbinding τw was ~4-fold faster than the steady-state ketamine unbinding τw in both 0 

and 1 mM Mg2+ (Figure 20C, D; Table 7). Faster ketamine unbinding after trapping is likely a 

result of higher Popen at peak than at steady-state activation. In contrast, faster memantine 

unbinding after trapping is likely a result of higher Popen at peak than at steady-state activation 

and a result of memantine unbinding from the second site. Further analysis of unbinding kinetics 

demonstrate that the fraction of the slow component of memantine unbinding decreases to < 0.1 

in trapped unbinding from ~0.6 in steady-state unbinding in both 0 and 1 mM Mg2+ (Table 7). 
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These results suggest that faster memantine unbinding τw after trapping is due to memantine 

unbinding from the second site without NMDAR activation.  

Consistent with memantine either escaping from a closed channel or inhibiting at a site 

outside the channel gate, we found that the fractional recovery, also referred to as partial trapping 

(the fraction of receptors not bound by drug immediately following glutamate application) of 

memantine was significantly greater than the fractional recovery of ketamine, consistent with 

previous results (Kotermanski et al., 2009) (Figure 20E). Interestingly, our data exhibit more 

fractional recovery for memantine and ketamine than previous reports (Mealing et al., 1999; 

Kotermanski et al., 2009). This could result from higher agonist concentration, higher Popen (due 

to various sources), or differences in the drug concentrations used in the trapping protocol. 

Importantly, these data do not reveal whether the second site is internal or external to the channel 

gate. However, if the second site is more intracellular than the channel gate, then memantine 

must be able to unbind from the second site by passing through or around the closed channel 

gate. 
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Figure 20 Memantine unbinds from the second site without NMDAR activation 

A, Representative current trace of the trapping protocol (see Materials and Methods) with 100 µM memantine. 

Applications of 1 mM glutamate (Glu, black bars) and applications of memantine or ketamine (Drug, gray bars). B, 

Left, representative current traces of peak current alignments of control (Icont, black traces) and after memantine 

trapping (Itrap, red traces) in 0 (left, top, dark red traces) and 1 mM Mg2+ (left, bottom, light red traces). Right, double 

exponential fit (red line) of trapped unbinding to determine unbinding kinetics after trapping with 100 µM 

memantine in 0 Mg2+. C, same as B, except with ketamine (blue traces, and blue fit line). D, Mean trapped and 

steady-state unbinding τw across groups. E, Mean fractional recovery after trapping across groups. * indicates p < 

0.05 by one-way ANOVA with Tukey's post hoc analysis within drug groups, n = 3 cells per group. 
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Table 7 Kinetics of recovery from trapped and steady-state inhibition of GluN1/2A receptors. 

Values represent means ± SEM, n = 3 cells per group. 

 

 

5.4.2 Memantine deep site mutation effects inhibition at the second site 

Next, we attempted to isolate memantine binding at the second site by mutating one of the N-site 

asparagines, amino acid residues at the outer tip of the M2 reentrant loop that are critical for 

memantine binding at the deep site. We mutated the GluN1 N-site to an arginine 

(GluN1(N616R)), which has previously been shown to severely decrease memantine potency 

(Kashiwagi et al., 2002; Chen and Lipton 2005; Limapichat et al., 2013). Consistent with these 

previous studies, we found that the memantine IC50 of GluN1(N616R)/2A receptors at -65 mV 

was 459 ± 24.3 µM (Figure 21A, B). We also determined that GluN1(N616R)/2A receptors 

exhibit relatively voltage-independent inhibition with a Vo of 118 mV, compared to Vo of 30 – 

35 mV in wild-type receptors (Blanpied et al., 1997; Parsons et al., 2007; Kotermanski and 

Johnson 2009) (Figure 21A, B). Therefore, memantine inhibition is ~5-fold less potent at mutant 
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receptors than at the memantine superficial site (IC50 ~80 – 180 µM) (Blanpied et al., 1997; 

Kotermanski et al., 2009) and is 2- to 3-fold less voltage-dependent than wild-type GluN1/2A 

receptors (Vo ~30-35 mV for deep site inhibition, Parsons et al. (2007); and Vo = 67.2 mV for 

superficial site inhibition, Blanpied et al. (1997)). These data suggest that mutation of the deep 

site may disrupt memantine inhibition at the second site.  

To more directly assess memantine inhibition at the second site in GluN1(N616R)/2A 

receptors, we measured second site inhibition in the absence of agonist, which is a prominent 

property of memantine inhibition at the second site (Blanpied et al., 1997; Sobolevsky et al., 

1998; Kotermanski et al., 2009). From here on, we will refer to second site inhibition in the 

absence of agonist as closed channel inhibition (CCI). We measured CCI of wild-type and 

mutant receptors with a CCI protocol (Figure 21C, D; Section 5.3.4) using 500 µM memantine, 

which is near the fully effective concentration of CCI in wild-type receptors (Blanpied et al., 

1997; Kotermanski et al., 2009). As expected, we found that 500 µM memantine exhibited 

robust CCI in wild-type receptors (Fractional response after CCI = 0.43 ± 0.05; Figure 21C). 

Surprisingly, 500 µM memantine exhibited only marginal CCI in GluN1(N616R)/2A receptors 

(Fractional response after CCI = 0.91 ± 0.02; Figure 21D). These findings suggest that CCI, and 

thus memantine binding at the second site, requires memantine binding at the deep site. 

However, it is possible that the positive charge of the arginine at the deep site interferes with 

memantine binding at the second site. Nevertheless, GluN1(N616R)/2A receptors exhibit lower 

memantine potency and lower voltage dependency than expected. Furthermore, 

GluN1(N616R)/2A receptors exhibit lower CCI, which is a characteristic of memantine binding 

at the second site. Therefore, the mutant seems ill-suited for investigation of memantine binding 

at the second site. 
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Figure 21. Memantine deep site mutation effects inhibition at the second site. 

A, Memantine concentration-response curves for GluN1(N616R)/2A receptors at -105 mV (open triangles), -65 mV 

(open circles), and -25 mV (open squares). B, Memantine IC50 values (filled squares) fit by the voltage dependence 

equation (red line; Section 5.3.4). C, D, Representative current traces of CCI protocol (Section 5.3.4) with 

GluN1/2A receptors (C) and GluN1(N616R)/2A receptors (D). Applications of 1 mM glutamate (black bars) and 

500 µM memantine (red bars). Right, Aligned currents at time of glutamate applications of control (Icont, black 

traces) and after CCI (ICCI, red traces). n = 3 – 5 cells per group. 
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5.4.3 Uncharged memantine binds to the second site 

Inhibition by memantine of GluN1(N616R)/2A receptors at both the deep site and the second site 

was severely disrupted. However, strikingly, the weak remaining inhibition by memantine was 

nearly insensitive to voltage. This observation suggests an intriguing hypothesis: the uncharged 

species of memantine binds NMDARs at the second memantine binding site. At physiological 

pH, the amine group of memantine, which has a pKa of 10.3 (Freudenthaler et al., 1998) is 

protonated at a ratio of ~1200 charged to 1 uncharged memantine. Therefore, at 100 µM 

memantine, the concentration of uncharged memantine is close to 80 nM. Interestingly, 

consistent with previous findings, we demonstrated in Chapter 4 that memantine binding at the 

second site exhibits a high IC50 (~100 µM) with paradoxically slow unbinding kinetics (Blanpied 

et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Kotermanski et al., 2009). 

However, if the species of memantine binding at the second binding site is uncharged 

memantine, then the IC50 would be closer to the 100 nM range, and memantine would exhibit 

expectedly slow unbinding kinetics. Uncharged memantine binding at the second site also 

presents a plausible mechanism for binding and unbinding without NMDAR activation; 

uncharged memantine should be much more hydrophobic than charged memantine, and could 

potentially associate and disassociate through the membrane, between transmembrane helices, or 

through the closed gate. Therefore, we tested whether uncharged memantine is responsible for 

inhibition at the second site.  

To increase the concentration of uncharged memantine, we increased the pH of our 

extracellular solution to pH 9. We avoided raising pH higher than 9 due to the lack of receptor 

characterization at a pH much greater than 8 (Traynelis and Cull-Candy 1990; Vyklicky et al., 
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1990; Traynelis and Cull-Candy 1991; Traynelis et al., 1995; Banke et al., 2005; Schorge et al., 

2005; Erreger and Traynelis 2008; Kussius and Popescu 2009). At pH 9, the calculated ratio is 

~20 charged to 1 uncharged memantine, resulting in more than a 60-fold increase in the relative 

concentration of uncharged memantine compared to pH 7.2. We measured the memantine IC50 

and kinetics of inhibition and recovery from inhibition of GluN1/2A receptors at pH 9. 

Consistent with previous work on the proton sensitivity of NMDAR open channel blockers 

(Dravid et al., 2007), we found that in 0 Mg2+ the memantine IC50 at pH 9 (IC50 = 3.43 ± 0.61 

µM) increased ~2-fold compared to the IC50 at pH 7.2 (Figure 9; Table 7). We found that in 0 

Mg2+, memantine unbinding τw at pH 9 was 5- to 10-fold slower than at pH 7.2 at each 

memantine concentration (Table 4; Figure 22A, C, E; Table 8). Memantine unbinding kinetics 

also exhibited concentration dependence at pH 9, as the unbinding τw with 100 µM memantine 

was 8.5-fold slower than with 1 µM memantine (Figure 22E; Table 8). Further investigation of 

memantine unbinding kinetics at pH 9 demonstrated that the weight of the fast component of 

unbinding (Fracfast) decreased from 0.55 to 0.03 in a memantine concentration-dependent manner 

(Table 8), suggesting that the second site is near full occupation at 100 µM memantine. These 

data support the hypothesis that uncharged memantine binds to the second site. 

Next, we determined whether 1 mM Mg2+ affects memantine inhibition at pH 9. We 

found that 1 mM Mg2+ at pH 9 increases the memantine IC50 6.9-fold compared to 0 Mg2+, 

compared to a 16.7-fold increase from the absence to presence of 1 mM Mg2+ at pH 7.2 

(Kotermanski and Johnson 2009). Although the memantine concentration dependence of 

unbinding kinetics was maintained in 1 mM Mg2+ at pH 9, the unbinding τw was significantly 

faster than in 0 Mg2+ (Figure 22B, C, E; Table 8). Interestingly, in 1 mM Mg2+ the unbinding τw 

at pH 9 and at pH 7.2 were not significantly different at any of the memantine concentrations 
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tested (Figure 22E). These findings suggest that Mg2+ strongly interferes with uncharged 

memantine binding to the second site, as well as memantine binding to the deep site. 

We also investigated memantine binding kinetics at pH 9. Surprisingly, memantine at pH 

9 revealed a slow binding component that was much slower than at pH 7.2 (Table 4; Figure 

22A; Table 8). About 14% of the inhibition by 100 µM at pH 9 is due to the slow component of 

binding (Table 8), compared to only 2% at pH 7.2 (Table 4). Slow binding may suggest that 

uncharged memantine binding to the second site inhibits NMDARs in part through changes in 

rates of receptor state transitions. Interestingly, slow binding and unbinding kinetics are 

consistent with the kinetics predicted by Model B2, where memantine increases occupancy 

desensitized states of NMDARs (Figure 13). However, the origin of the much slower memantine 

binding component at pH 9 is not clear. 
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Figure 22. Uncharged memantine binds to the second site. 

A, B, Representative current traces used for measuring binding and unbinding kinetics of GluN1/2A receptors at pH 

9 in 0 Mg2+ (A) and 1 mM Mg2+ (B), when activated by 1 mM glutamate (black bars). Memantine was applied at the 

indicated concentrations (red bars). Traces within a column are from the same cell. The bottom traces illustrate 

memantine concentration dependence of unbinding kinetics. The memantine unbinding traces are taken from above 

at the memantine concentrations indicated, aligned at the time of memantine removal, and scaled to the change in 

current amplitude during recovery from inhibition. Dark red traces are in 0 Mg2+; light red traces are in 1 mM Mg2+. 

C, Representative current traces to show the difference in memantine unbinding at pH 9 in 0 Mg2+ (dark red trace, 

scaled and replotted from A) and 1 mM Mg2+ (light red trace, scaled and replotted from B). D, Representative 

current traces to show the difference in memantine unbinding in 0 Mg2+ at pH 9 (dark red trace, scaled and replotted 
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from A) and at pH 7.2 (gray trace, scaled and replotted from Figure 16A). E, Mean unbinding τw across groups with 

data at pH 7.2 replotted from Figure 16E. * indicates p < 0.05 by one-way ANOVA, n = 4 – 6 cells per group.  

 

 

Table 8. Memantine kinetics at pH 9 with unlifted cells.  

Values represent means ± SEM, n = 4 cells per group. 

 

 

5.4.4 Uncharged memantine can access the second site without NMDAR activation 

To further investigate the hypothesis that uncharged memantine binds to the second site, we 

determined whether uncharged memantine could bind and unbind in the absence of agonist. 

Previously, we demonstrated that memantine that had bound to the second site during agonist 

application could unbind without NMDAR activation (Figure 20). Using the trapping protocol 

illustrated in Figure 20A, we found that at pH 9, the trapped unbinding τw of 100 µM memantine 

was 50-fold faster than the steady-state unbinding τw (Figure 23A, Table 7). Importantly, the 

trapped unbinding τw at pH 7.2 and 9 are not significantly different (Table 7; Student’s t-test, p = 
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0.51), whereas steady-state unbinding at pH 7.2 and 9 are significantly different (Table 7; 

Student’s t-test, p = 0.02). This suggests that elevating pH does not severely disrupt memantine 

inhibition at the deep site and that the slowing of unbinding kinetics results primarily from an 

increased concentration of uncharged memantine binding to the second site. These results 

support our conclusion that at pH 7.2 memantine bound to the second site is able to unbind 

without NMDAR activation, and also further support the hypothesis that uncharged memantine 

binds to the second site.  

Next, we determined whether uncharged memantine could bind at the second site without 

NMDAR activation by measuring the extent of CCI at pH 7.2 and pH 9, both in 0 and in 1 mM 

Mg2+. We used a similar CCI protocol as in Figure 21C, D, except to be able to detect an 

increase or decrease in CCI, we used 100 µM memantine, which is near the CCI IC50 at pH 7.2 

(Blanpied et al., 1997; Kotermanski et al., 2009). At pH 7.2 in 0 Mg2+, the fractional response 

after CCI was 0.63 ± 0.02 (Figure 23B, F). If CCI is dependent on binding of uncharged 

memantine to the second site, then CCI should increase at pH 9, resulting in a reduced fractional 

response after CCI. Indeed, at pH 9 fractional response after CCI with 100 µM memantine 

decreased 5.6-fold to 0.11 ± 0.01 (Figure 23C, F). Our data support the hypothesis that 

uncharged memantine binds to the second site, and also supports the hypothesis that uncharged 

memantine is able to bind to the second site without NMDAR activation. These findings are 

consistent with previous data that demonstrated that at physiological pH, memantine can bind to 

and unbind from the second site without NMDAR activation (Blanpied et al., 1997; Sobolevsky 

et al., 1998; Kotermanski et al., 2009).  

We also evaluated CCI in 1 mM Mg2+. Surprisingly, at both pH 7.2 and pH 9, Mg2+ 

strongly occluded CCI (Figure 23D-F). These data suggest that Mg2+ prevents memantine 
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binding at the second site without NMDAR activation. Importantly, it is not clear from these 

experiments where the second memantine binding site is located relative to the channel gate. It is 

plausible that the second site is truly external to the channel gate and Mg2+ happens to compete 

for binding at the second site as well as the deep site. Therefore, we designed a modified CCI 

protocol to test the hypothesis that memantine and Mg2+ compete for the same external binding 

site.  

The modified CCI protocol was similar to the CCI protocol performed in 0 Mg2+, except 

that we co-applied 1 mM Mg2+ and 100 µM memantine. Thus, the modified CCI protocol 

involved application of the following sequence of solutions: 1 mM glutamate for 20 s; normal 

extracellular solution for 9 s; 1 mM Mg2+ plus 100 µM memantine in the absence of glutamate 

for 30 s; normal extracellular solution for 1 s; 1 mM glutamate for 20 s. We found that the 

fractional response after modified CCI was not significantly different than after CCI in 0 Mg2+, 

but was significantly different than the fractional response after CCI in 1 mM Mg2+ at pH 7.2 and 

at pH 9 (Figure 23F). These data suggest that memantine and Mg2+ do not compete for the same 

external binding site. Instead our results suggest that Mg2+ trapped inside the channel inhibits 

memantine binding at the second site in the absence of glutamate. Regardless the interaction of 

Mg2+, these data support the hypothesis that uncharged memantine binds at the second 

memantine binding site, and that this site is accessible without NMDAR activation. 
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Figure 23. Uncharged memantine can access the second site without NMDAR activation. 

A, Representative current traces at pH 9 of the memantine trapping protocol (left) and the aligned currents at time of 

glutamate applications (right) of the control (Icont, black trace) and Itrap (red trace). Applications of 1 mM glutamate 
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(black bars) and 100 µM memantine (red bars). B, C, Representative current traces of the CCI protocol (left) in 0 

Mg2+ at pH 7.2 (B) and pH 9 (C) and currents aligned at time of glutamate applications (right) of control and ICCI 

(red traces). D, E, left, Representative current traces of the currents aligned to the time of glutamate applications of 

control and ICCI following inhibition with 100 µM memantine in 1 mM Mg2+ in normal CCI protocol. D, E, right, 

Representative current traces of currents aligned to the time of glutamate applications of ICCI following inhibition 

with 100 µM memantine in 0 Mg2+ (dark red traces) and 1 mM Mg2+ in normal CCI protocol (light red traces) at pH 

7.2 (D) and pH 9 (E). F, Mean fractional response after CCI across groups. For the modified CCI protocol, 1 mM 

Mg2+ only was co-applied with 100 µM memantine; for the CCI protocol the [Mg2+] was constant throughout the 

experiment. * indicates p < 0.05 by one-way ANOVA with Tukey's post hoc analysis, n = 3 cells per group. 

5.5 DISCUSSION 

In the experiments described in this chapter we investigated how memantine interacts with a 

second site on GluN1/2A receptors. Our results build on work presented in Chapter 4, as well as 

on work from our lab and others that probed memantine binding at a second site (Blanpied et al., 

1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; Chen and Lipton 2005; 

Kotermanski et al., 2009). We provide multiple lines of evidence in support of the hypothesis 

that the uncharged species of memantine binds to the second site. Uncharged memantine binding 

at the second site contributes to several properties linked to memantine inhibition at the second 

site, including high IC50 with paradoxically slow unbinding kinetics, and the ability to bind and 

unbind without NMDAR activation. Further, our results suggest a complex interaction between 

Mg2+ and memantine at both binding sites. Additional experiments are necessary to understand 

the mechanistic basis of memantine binding at the second site and the interaction between Mg2+ 

and memantine. For the first time, our data demonstrate that raising the pH from physiological 
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levels is an effective method to shift memantine inhibition towards occupation of the second site. 

This method could prove useful in further investigation of the mechanisms of inhibition by 

memantine. However, significant caveats should be considered when interpreting experiments 

performed using extracellular solutions with modified pH.  

First, NMDARs exhibit proton inhibition below pH of ~9 (Tang et al., 1990; Traynelis 

and Cull-Candy 1990; Vyklicky et al., 1990; Traynelis and Cull-Candy 1991; Traynelis et al., 

1995). With decreasing pH, NMDAR Popen decreases due to changes in rates of NMDAR state 

transitions (Banke et al., 2005; Dravid et al., 2007; Erreger and Traynelis 2008). NMDAR 

properties are well characterized up to a pH of ~8, in a pH-dependent manner (Erreger et al., 

2005; Schorge et al., 2005; Erreger and Traynelis 2008; Kussius and Popescu 2009; Amico-

Ruvio and Popescu 2010). However, at pH levels > 8 NMDAR properties are relatively 

unexplored. Second, one basis of pH sensitivity of proteins, including NMDARs, is due to 

changing ionization states of the amino acid residue backbone and their side chains (Yuan et al., 

2015). Some amino acid residues lining the NMDAR channel pore and the second memantine 

binding site are likely to have pKa values between 7 and 10. Within this range of pKa values, the 

percent of protonation of some residues would change drastically between pH 7.2 and 9. Thus, in 

addition to shifting the ratio of charged to uncharged memantine, an increase in pH from 7.2 to 9 

could change residue ionization states that normally interact with memantine. Memantine 

inhibition may be altered without regard to charged or uncharged memantine binding. Indeed, 

the inhibition of many open channel blockers, including memantine, is altered by increased pH 

over a range wherein the drug ionization is relatively unchanged (Dravid et al., 2007). 

Despite concerns that elevating pH may affect memantine action via unanticipated 

mechanisms, memantine inhibition at the second site exhibited similar characteristics at pH 7.2 
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and pH 9. For instance, at pH 9 and at pH 7.2 memantine exhibited concentration dependence of 

unbinding kinetics, and unbinding kinetics were faster in 1 mM Mg2+ (Figure 23; Table 8). It is 

important to have multiple approaches for independently characterizing inhibition by memantine 

at the deep site and the second site. Presently, the only other approach to isolate memantine 

inhibition at the second site is through indirect measure, CCI, and through mutation of the deep 

site. Although we anticipated that the N to R mutation at the GluN1 N-site would selectively 

affect memantine binding at the deep site, the mutation also strongly affected memantine binding 

at the second site (Figure 21). Therefore, with the use of proper and careful controls, elevating 

pH is a plausible approach to increase memantine occupation of the second site. 

Mutation of the GluN1 N-site to R, gives a 2+ charge at the deep site, which is similar to 

Mg2+ binding at the deep site in wild-type receptors. Interestingly, mutation at the deep site alters 

memantine inhibition in two ways that are consistent with how 1 mM Mg2+ alters inhibition at 

the second site. First, the deep site mutation increases the memantine IC50 higher than 

measurements of memantine CCI IC50 in wild-type receptors (Blanpied et al., 1997; Kotermanski 

et al., 2009). Similarly, 1 mM Mg2+ shifts concentration dependence of memantine unbinding 

kinetics, which suggests that the memantine IC50 at the second site is also higher in 1 mM than 0 

Mg2+. Second, the deep site mutation unexpectedly decreases CCI to a degree similar to the 

degree that 1 mM Mg2+ unexpectedly decreases CCI. In combination with our other findings, 

these observations support two alternative models of memantine inhibition (Figure 24). Model 1 

has two binding sites, the deep site and the second site within the channel; memantine binding at 

the second site requires memantine to be bound at the deep site (Figure 24A). Model 2 instead 

has only a single binding site that can bind either of the two species of memantine: charged or 

uncharged memantine (Figure 24B). Each model supports various aspects of what is known 
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about memantine inhibition at the deep site and at the second site. It is possible that a 

combination of Models 1 and 2, or other models may more accurately and completely describe 

memantine inhibition. More experiments are needed to test the validity of each model.  

 Given the dearth of information regarding the mechanism of interaction of memantine 

and Mg2+ at the second site, the therapeutic implications of memantine binding at the second site 

are not yet clear. By manipulating memantine's charge, we now have an additional tool to 

investigate memantine interaction with the second binding site and its impact on the broader 

mechanism of action of memantine. Understanding the role of memantine binding at the second 

site in the basic and therapeutic mechanisms of NMDAR inhibition by memantine could also 

impact understanding of mechanisms of NMDAR inhibition by other open channel blockers. For 

instance, one key mechanistic difference between memantine and ketamine action is that 

memantine binds to a second site and ketamine does not (Johnson et al., 2015). The therapeutic 

impact of this difference has yet to be determined. 



 158 

 

 

 

Figure 24. Two models of charged and uncharged memantine binding to NMDARs. 

A, Model depicting memantine binding at two separate sites under a range of conditions. The M2 re-entrant loops 

are represented by curved lines in the middle of the membrane and the channel gate is represented by straight lines 

at the top of the membrane. Presence of agonist (Ago) and channel gate being open represents NMDAR activation. 

Charged memantine (gray circle with +) binds to the deep site at the tips of the M2 re-entrant loops and uncharged 

memantine (plain gray circle) binds to a second site near charged memantine. Closed channel inhibition requires 

uncharged memantine binding at the deep site. B, Model depicting charged or uncharged memantine binding at the 

deep site under a range of conditions. Only one species of memantine can bind to NMDARs at one time. The 

validity of these models assumes that uncharged memantine is able to access its binding site when the channel is 

closed, whereas charged memantine can only access its binding site when the channel is open (Figure 23). 
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6.0  GENERAL DISCUSSION 

The work presented in this dissertation focused on the basic mechanisms of NMDAR inhibition 

by the clinically useful open channel blockers memantine and ketamine. Specifically, we 

investigated whether memantine and ketamine inhibition depended on features that likely differ 

between synaptic and extrasynaptic compartments; we investigated the effects of 1 mM Mg2+ on 

the characteristics of inhibition by memantine and ketamine; we investigated possible 

mechanisms that underlie memantine inhibition at a second site on NMDARs. Our primary 

conclusions are that memantine or ketamine cause a differential effect on NMDAR 

desensitization kinetics (Chapter 3), that 1 mM Mg2+ speeds recovery from inhibition by 

memantine, but not by ketamine (Chapter 4), and that uncharged memantine binds to the second 

memantine binding site (Chapter 5). This discussion focuses on the implications of our findings 

for understanding basic features of NMDAR structure and function, and for the therapeutic 

utility of memantine or ketamine. 
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6.1 RELATION BETWEEN MEMANTINE EFFECTS ON DESENSITIZATION AND 

ABILITY TO BIND AT TWO SITES 

In Chapter 3 we found that memantine and ketamine differentially altered desensitization 

kinetics. The presence of 3 µM memantine increased the extent of desensitization and slowed the 

time course of recovery from desensitization for GluN1/2A, but not for GluN1/2B receptors. 

Furthermore, we found that the increased extent of desensitization and slowed recovery from 

desensitization for GluN1/2A receptors was Ca2+-dependent. Although we did not test the Ca2+ 

dependence of the interaction between memantine and GluN1/2B receptors, our observations 

were consistent with GluN1/2A, but not GluN1/2B receptor, sensitivity to Ca2+-dependent 

desensitization (Medina et al., 1995; Krupp et al., 1996). Our kinetic model (Model B2), which 

exhibited increased occupation of desensitized states, predicted that recovery from 

desensitization for GluN1/2A receptors would slow in 3 µM memantine compared to control. 

We found that recovery from desensitization for GluN1/2A receptors slowed in 3 µM memantine 

substantially more than Model B2 predicted. Therefore, Model B2 likely underestimated the 

extent of a memantine-induced increase in the occupancy of desensitized states. However, Model 

B2 also predicted that the time course of recovery from inhibition in the continuous presence of 1 

mM glutamate should exhibit a relatively slow component of unbinding (Model B2, τslow = 9.1 

s). This predicted slow component was either not present or not fully resolved in our recordings 

from GluN1/2A receptors. Interestingly, the predicted slow component is kinetically similar to 

the time course of memantine unbinding from the second site. Is memantine binding to the 

second site related to increased occupancy of desensitized states? 
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We presume that with 3 µM memantine at pH 7.2, the occupancy of the second site is 

very low. However, we do not fully understand the interaction between the deep site and the 

second site. For instance, mutation of the GluN1 N-site asparagine would be expected to affect 

only inhibition at the deep site, but inhibition at the second site was also affected (Figure 21). 

Mutational studies have identified residues in the external portion of the M3 TMR that increase 

memantine IC50 values ~5 -fold (Kashiwagi et al., 2002; Limapichat et al., 2013). Interestingly, a 

study investigating the location of the second memantine site identified a region in the external 

portion of the M3 TMR to be important for memantine binding to the second site (Chen and 

Lipton 2005). It is not clear whether mutations in the external portion of the M3 TMR affect 

memantine inhibition a the deep site, memantine inhibition at the second site, or both. However, 

these studies and our data (Figure 21 and 23) may suggest that memantine binding to the second 

site requires binding at the deep site, and that binding at the deep site may be affected by binding 

at the second site. An alternative explanation is that only memantine binding to the second site 

requires binding at the deep site, whereas inhibition at the deep site may be affected by 

conformational changes in the external portion of the M3 TMR, irrespective of binding at the 

second site. 

Ketamine is able to alter desensitization kinetics presumably by binding to only the deep 

site. Many trapping blockers are thought to bind to only one site yet still affect rates of receptor 

state transitions thereby stabilizing closed, open, or desensitized states (Dilmore and Johnson 

1998; Johnson and Qian 2002; Sobolevskii and Khodorov 2002). Therefore, in principle 

memantine binding only at the deep site is capable of increasing the occupancy of desensitized 

states.  
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If memantine binding to the second site is not involved in memantine-induced increases 

in the occupancy of desensitized states, what other factors can account for the discrepancy 

between our observed binding kinetics and the prediction of Model B2? NMDAR desensitization 

is a complex process involving several separable components (Dingledine, et al., 1999; Traynelis 

et al., 2010; Section 1.1.2). Ca2+-dependent desensitization itself likely involves components 

sensitive to calmodulin, calcineurin, and α-actinin (Section 1.1.2) The conformational changes 

underlying any form of Ca2+-dependent desensitization, or any other form of NMDAR 

desensitization, are not well understood. Nevertheless, it seems unlikely that calmodulin and 

calcineurin induce similar conformational changes to result in desensitized states, as calmodulin 

and calcineurin alter desensitization in qualitatively distinct ways (Tong and Jahr 1994; Krupp et 

al., 1996; Krupp et al., 2002). Furthermore, it seems unlikely that memantine increases 

occupancy of all Ca2+-dependent states equally. Therefore, in the presence of memantine, Ca2+-

dependent desensitized states that are not affected by memantine are likely to recover due to 

memantine limiting Ca2+ influx. If there is substantial overlap of the time courses of memantine 

increasing occupancy of desensitized states, and of unaffected desensitized states recovering 

from desensitization, a kinetic component related to increased occupancy of desensitized states 

would not be resolved. This could explain why we did not observe slow components of recovery 

from memantine inhibition in our data that are similar to Model B2 predictions. This could also 

explain why recovery from desensitization was much slower in our data than predicted by Model 

B2. Nevertheless, the mechanisms responsible for memantine increasing occupancy of 

desensitized states will need to be investigated further.  
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6.2 EFFECTS OF OPEN CHANNEL BLOCKERS ON NMDAR STRUCTURE 

The effects of memantine and ketamine described in this dissertation (altering desensitization 

and uncharged memantine binding to the second site) have the potential to deepen our 

understanding of conformational changes during receptor state transitions and of the structure of 

the channel itself. It is not surprising that the presence of memantine or ketamine in the channel 

can influence the stability of desensitized states (Johnson and Qian 2002; Sobolevskii and 

Khodorov 2002). However, it is interesting that memantine specifically increases the occupancy 

of a Ca2+-dependent desensitized state, as opposed to other closed or desensitized states. This 

suggests that the conformations of regions that interact with memantine in a Ca2+-dependent 

desensitized state do not closely resemble their conformations in other closed states. 

Furthermore, it is surprising that the same conformational state is absent in GluN1/2B receptors 

as GluN2A and GluN2B subunits vary by only four residues within the TMR α-helices (Siegler 

Retchless et al., 2012). 

Not much is known about conformational changes at the level of the TMD during 

desensitization in NMDARs or other iGluRs. Although several structures of AMPARs and 

kainate receptors have been solved in various closed states and desensitized states, those studies 

have focused mainly on changes in the better resolved NTD and ABD regions (Sobolevsky et al., 

2009; Chen et al., 2014; Durr et al., 2014; Meyerson et al., 2014; Yelshanskaya et al., 2014). 

Two NMDAR structures have also recently been solved (Karakas and Furukawa 2014; Lee et al., 

2014), and hopefully soon more structures will follow that will allow comparison of various 

receptor states. Lee et al. (2014) utilized the NMDAR open channel blocker, MK-801 to help 

stabilize the crystal structure, but unfortunately MK-801 was not fully resolved inside the 

channel pore. Memantine might be useful to stabilize the desensitized state and aid in 
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crystallizing the receptors to solve structures of Ca2+-dependent desensitized states. In contrast, 

ketamine might be useful to solve structures of non-desensitized states. However, Ca2+-

dependent desensitized states of NMDARs functionally require the CTD (Krupp et al., 1996; 

Krupp et al., 2002), which no iGluR structures have included thus far. Memantine binding to the 

second site may also complicate interpretation of structures solved in the presence of memantine. 

Nevertheless, open channel blockers with well characterized functional effects could serve as 

tools to aid interpretation of NMDAR structures. 

It is unclear how uncharged memantine is able to bind and unbind without NMDAR 

activation. Previous studies identified a second shallow binding site on NMDARs that 

corresponded with sequential block by open channel blockers (Antonov and Johnson 1996; 

Bolshakov et al., 2003). However, uncharged memantine seems able to bind without the need for 

open channels, which is inconsistent with sequential block. Furthermore, unlike a sequential 

blocker, memantine IC50 depends only slightly on the agonist concentration, and in the opposite 

direction expected for a sequential blocker (Johnson and Qian 2002), although we did not 

measure the agonist concentration dependence of memantine IC50 at pH 9. Still, it is unlikely that 

uncharged memantine inhibits as a sequential blocker at the second site. Since only Mg2+ trapped 

in the channel was able to occlude closed channel inhibition by uncharged memantine, the 

second site is likely internal to the channel gate. How is uncharged memantine able to enter and 

exit a closed channel? Previous studies have reported that the lipophilicity of a blocker is 

unrelated to the extent of drug trapping in the channel, suggesting that the molecules tested do 

not exit the channel through a hydrophobic pathway (Mealing et al., 2001; Bolshakov et al., 

2005). However, these studies and others (Mealing et al., 1999; Bolshakov et al., 2003) measured 

the degree of blocker trapping as the amount of unblock following a long period in the absence 
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of agonist, as in (Figure 20). The difference between fast unblocking and partial trapping is 

particularly hard to estimate with this method (Sobolevsky and Yelshansky, 2000; Figure 20). 

Furthermore, the ability of drugs to enter closed channels depending on lipophilicity was not 

assessed (Mealing et al., 2001; Bolshakov et al., 2005). Structural understanding of how 

uncharged memantine is able to enter and exit closed channels could be useful in identifying a 

functional hydrophobic pathway between the lipid membrane and the channel pore (also known 

as fenestrations) as found in Na+ channels and possibly in K+ channels (Payandeh et al., 2011; 

Lenaeus et al., 2014). 

It is also surprising that 1 mM Mg2+ is able to occlude closed channel inhibition, 

irrespective of which species of memantine binds or how it binds to closed channels. Because the 

microscopic rates of Mg2+ binding to and unbinding from open NMDAR channels are very fast, 

it is difficult to determine the use dependence of Mg2+ (Ascher and Nowak 1988; Antonov and 

Johnson 1999; Sobolevsky and Yelshansky 2000; Johnson and Qian 2002; Qian et al., 2002). 

Most evidence suggests that NMDARs can access all states in Mg2+ and that gating rates are not 

affected in Mg2+ (Nowak et al., 1984; Ascher and Nowak, 1988; Jahr and Stevens, 1990; 

Benveniste and Mayer, 1995; Sobolevsky and Yelshansky, 2000; Qian and Johnson, 2002; but 

see Kampa et al., 2004; Vargas-Caballero and Robinson, 2004). However, trapping block by 

Mg2+ likely cannot be explicitly demonstrated because the rate of Mg2+ unblock from open 

channels is much faster than the rate of NMDAR channel opening (Mayer and Westbrook 1987; 

Stout et al., 1996; Antonov and Johnson 1999; Qian et al., 2002). If Mg2+ does not trap, it may be 

due to unblock to the intracellular side of the membrane. Estimates of Mg2+ unbinding rates from 

open channels to the intracellular side of the membrane in neurons near resting potential suggest 

that Mg2+ should unblock to the inside in an average of 4 ms (Antonov and Johnson 1999; Qian 
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et al., 2002). Even if estimates of unbinding were 1000-fold slower, Mg2+ should unbind to the 

intracellular side within 20 s of channel closure. It is unclear if conformational changes at the 

level of the Mg2+ binding site, which could alter unbinding rates to the inside, occur when the 

channel closes. The ability of Mg2+ to occlude closed channel inhibition suggests that Mg2+ 

remains trapped in the channel and that the conformation of the pore constricts with channel 

closure. 

6.3 LIMITATIONS OF KINETIC MODELING 

Careful determination of kinetic model rates can substantially improve the interpretation of 

complicated electrophysiological data and can aid development and testing of novel hypotheses. 

The utility of kinetic models is limited by the number of adjustable parameters that are not 

constrained by data. When considering models of trapping open channel blockers, and with 

Mg2+, the number of adjustable rates increases dramatically. For instance, when starting from a 

model of a trapping blocker, addition of another model arm to describe trapping block by Mg2+ 

increases the number of adjustable rates and channel states by 50%. Instead, if memantine 

binding at the second site does not depend on memantine binding at the deep site, then the 

number of rates and channel states doubles, with four total arms: an unblocked arm, a deep site 

blocked arm, a deep site blocked and second site blocked arm, and second site blocked arm, all 

without Mg2+. It is unclear if kinetic models of memantine inhibition with the second site and/or 

in the presence of Mg2+ will be useful in data interpretation or hypothesis generation. 

 Simultaneous fits of our models to peak and steady-state NMDAR responses over long 

time scales present another limitation of our kinetic modeling. The modeling described in 
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Chapter 3 required fitting to data sets spanning ~335 s (~290 s for inhibition during synaptic-like 

glutamate applications and ~45 s for inhibition during long glutamate applications). In principle, 

a recording duration of 335 s should not present a limitation. However, because we were 

interested in modeling non-equilibrium peak currents that occur in ~10 ms, our data set also 

required a high sampling frequency of 1 kHz, with ~335,000 total data points. For GluN1/2A 

receptors, full activation and deactivation was complete within ~100 ms following a synaptic-

like glutamate application. For 50 responses to synaptic-like glutamate applications, we were 

only truly interested in ~5000 data points, or < 2% of data points during synaptic-like glutamate 

applications. We tried several weighting methods to improve fits to responses to synaptic-like 

glutamate applications, but remarkably none were superior to unweighted data sets. Although the 

resulting fits were satisfactory, they required enormous effort and precision to achieve reliable 

simulations that matched the data set. Larger data sets required for modeling synaptic-like vs. 

long inhibition by ketamine (> 500 s) or for modeling recovery from desensitization (> 700 s) 

were not easily amenable to fitting due again to the few salient data points spread over thousands 

of steady-state or baseline data points. Therefore, due to the nature of modeling non-equilibrium 

and steady-state responses over long time scales, our kinetic modeling was limited. 

6.4 THERAPEUTIC IMPACT OF MEMANTINE AND KETAMINE 

STABILIZATION OF DESENSITIZED STATES 

Our results support the idea that memantine and ketamine can, under certain circumstances, 

preferentially inhibit distinct subpopulations of NMDARs. However, the subpopulations of 

NMDARS are not as well defined as previously hypothesized. Subpopulations are defined either 
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by NMDAR subtype or by subcellular localization (Hardingham and Bading, 2010; Parsons and 

Raymond, 2014; Section 1.4.3). For example, it is clear that memantine inhibition of GluN1/2A 

receptors depends in part on Ca2+-dependent desensitization, which requires an increase in 

intracellular Ca2+ concentration near the NMDAR CTD. With low stimulation frequency, 

synaptic NMDARs are unlikely to accumulate in Ca2+-dependent desensitized states, whereas 

with high frequency stimulation, Ca2+-dependent desensitization can become evident (Tong et 

al., 1995; Raman et al., 1996). Consistent with these observations and with the dependence of 

memantine inhibition on Ca2+-dependent desensitization, a recent report showed that memantine 

inhibition increased with increasing stimulation intensity (frequency and number of stimulations) 

(Wild et al., 2013). It is likely that extrasynaptic NMDARs can be relatively spared from Ca2+-

dependent desensitization if the glutamate concentration activating the receptors is quite low. In 

contrast, sustained glutamate at high concentrations will likely drive Ca2+-dependent 

desensitization of NMDARs, as is seen with exogenous application of high glutamate 

concentrations (Legendre et al., 1993; Medina et al., 1996). Therefore, the precise circumstances 

by which NMDARs are activated, regardless of their location, may determine whether they are 

inhibited more or less by memantine, or by ketamine.  

Emnett et al., (2013) using hippocampal microisland cultures where recordings were 

made from single cells that form autapses, compared inhibition of neuronal NMDARs by 

memantine and ketamine. In clear disagreement with our findings, Emnett et al., (2013) found 

that inhibition did not vary under the tested conditions, including inhibition of synaptic or 

inhibition of extrasynaptic NMDARs. However, their cells likely contained GluN2A and 

GluN2B subunits comprising GluN1/2A, GluN1/2B, and GluN1/2A/2B receptors. As pointed 

out in Chapter 3, they found a quickening of NMDAR EPSC in the presence of memantine and 
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ketamine. This suggests preferential inhibition of GluN1/2B receptors, which is consistent with 

our observation that both memantine and ketamine inhibited GluN1/2B more than GluN1/2A 

receptor responses to synaptic-like glutamate applications. Although not direct evidence of 

subtype-dependent inhibition, the findings from Emnett et al. (2013) are suggestive that 

memantine and ketamine can preferentially inhibit different NMDAR subtypes during synaptic 

activation of neuronal NMDARs.  

Our findings are in general agreement with studies that support memantine preferential 

inhibition of extrasynaptic receptors (Leveille et al., 2008; Okamoto et al., 2009; Xia et al., 2010) 

and with studies that support memantine preferential inhibition synaptic NMDARs (Wroge et al., 

2012; Emnett et al., 2013) that are in clear conflict with one another. Consistent with our results, 

memantine exhibits more potent inhibition of extrasynaptic NMDARs activated by long 

applications of high agonist concentrations than of synaptic NMDARs activated by low 

frequency stimulation (Xia et al., 2010; Wild et al., 2013; Wu and Johnson 2015). Also 

consistent with our results, memantine inhibition of synaptic NMDARs is more effective when 

the synaptic stimulation intensity is high (Wild et al., 2013) and during oxygen-glucose 

deprivation, which was shown to cause strong activation of synaptic NMDARs (Wroge et al., 

2012). In acute hippocampal slices, Papouin et al., (2012) show that synaptic, but not 

extrasynaptic NMDARs, activated by a high concentration of NMDA are necessary and 

sufficient for cell death. Although the authors did not investigate the effects of memantine on cell 

death, other studies with a similar method of NMDA-induced cell death have shown memantine 

to be neuroprotective (Leveille et al., 2008; Okamoto et al., 2009; Kaufman et al., 2012; 

Milnerwood et al., 2012). These results suggest that memantine effectively inhibits strongly 

activated synaptic NMDARs. It is difficult to compare our findings to other studies where 
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synaptic NMDAR activation leads to cell survival and neuroprotection (Hardingham et al., 2002; 

Leveille et al., 2008; Papadia et al., 2008; Leveille et al., 2010; Kaufman et al., 2012; 

Milnerwood et al., 2012). These studies activated synaptic NMDARs pharmacologically by 

addition of 4-aminopyridine and/or bicuculline (4-AP and/or bic) to the extracellular solution 

(Section 1.3.1). Because addition of 4-AP and/or bic increases the overall synaptic release 

probability, it is unclear how frequently individual synapses, and thus synaptic NMDARs, are 

activated. It is therefore difficult to assess how often synaptic NMDARs activated by this method 

enter into Ca2+-dependent desensitized states, whereas extrasynaptic NMDARs activated by 

application of a high concentration of NMDA are likely to enter Ca2+-dependent desensitized 

states. Nevertheless, studies using 4-AP and/or bic posit that extrasynaptic, but not synaptic 

NMDARs, are necessary and sufficient for cell death and that memantine inhibits extrasynaptic 

more potently than synaptic NMDARs and is neuroprotective (Leveille et al., 2008; Okamoto et 

al., 2009; Kaufman et al., 2012; Milnerwood et al., 2012). In contrast, studies using other means 

of inducing cell death come to the opposite conclusions: that synaptic, but not extrasynaptic, 

NMDAR activation is necessary and sufficient for cell death (Papouin et al., 2012; Wroge et al., 

2012), and that memantine is neuroprotective (Wroge et al., 2012). Our results suggest that the 

conflicting results of these studies are due to differences in the intensity of NMDAR activation, 

and thus differences in accumulation of NMDARs in Ca2+-dependent desensitized states. 

Therefore, our results support a unifying hypothesis: memantine inhibition increases with 

increasing strength of NMDAR activation, irrespective of the subcellular localization. These 

studies suggest that NMDAR-mediated cell death requires the accumulation of intracellular Ca2+ 

irrespective of the subcellular localization (Zhou et al., 2013). 
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Our findings highlight the possibility that new drugs designed to modulate NMDAR 

desensitization may exhibit improved neuroprotective properties. Every NMDAR open channel 

blocker adequately characterized, with the exception of Mg2+, alters rates of receptor state 

transitions (Johnson and Qian 2002). Other drugs have also been shown to modulate 

desensitization, including the endogenous NMDAR modulator pregnanolone sulfate, which 

increases occupancy of desensitized states (Kussius et al., 2009). The membrane cholesterol also 

strongly modulates NMDAR desensitization (Korinek et al., 2015). Therefore, modulation of 

desensitization is likely possible through several distinct routes. The comparison of inhibition in 

high vs. low concentrations of Ca2+ should serve as an effective means to screen new compounds 

in their ability to increase occupancy of Ca2+-dependent desensitized states of NMDARs. It will 

be important to determine how the extent of modulating NMDAR desensitization correlates with 

neuroprotection offered by new compounds. 

6.5 FUTURE DIRECTIONS 

The research described in this dissertation has increased our understanding of mechanisms of 

NMDAR inhibition by memantine and ketamine. There are still many basic questions about 

NMDAR inhibition by memantine and ketamine that have not been explored. The sections above 

alluded to some important gaps in knowledge that are addressed specifically here.  

It will be important to determine whether memantine binds to two sites of NMDARs and 

of memantine and ketamine effects on desensitization are subtype dependent. Two memantine 

binding sites have been studied in neurons or with GluN1/2A and GluN1/2B receptors in 

transfected cells (Blanpied et al., 1997; Sobolevsky and Koshelev 1998; Sobolevsky et al., 1998; 
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Chen and Lipton 2005; Kotermanski et al., 2009). Therefore, there is a need to explore whether 

memantine binds to two sites on GluN1/2C and GluN1/2D receptors. Effects on these subtypes 

could have important structural and therapeutic implications for memantine inhibition. Further, 

whether 1 mM Mg2+ speeds memantine unbinding kinetics in GluN1/2C and GluN1/2D 

receptors, which are less sensitive to Mg2+ block, could have important implications for the 

interaction of Mg2+ with memantine in the pore. Investigating effects of memantine and ketamine 

on desensitization of GluN1/2C and GluN1/2D receptors is also necessary. Results of these 

experiments could impact our understanding of how memantine and ketamine act in brain 

regions and cell-types with high expression of GluN2C and GluN2D. Since memantine and 

ketamine are selective for GluN1/2C and GluN1/2D receptors in 1 mM Mg2+, these findings 

could have important therapeutic implications. This leaves the problem of triheteromeric 

NMDARs. New methods allow investigation of triheteromeric GluN1/2A/2B receptors in 

transfected cells (Hansen et al., 2014; Stroebel et al., 2014). However, these methods rely on 

modifications to the GluN2 subunit CTDs. The Ca2+-dependent effects of memantine may 

require specific interactions between the GluN2A CTD and other intracellular proteins, which 

could be disrupted in CTD-modified GluN2A subunits needed for isolation of triheteromeric 

receptors. Indeed, it is not known whether GluN1/2A/2B receptors exhibit Ca2+-dependent 

desensitization. The effects of memantine and ketamine on desensitization of GluN1/2A/2B 

receptors are still worth investigating, albeit with proper controls.  

 Further investigations of memantine increasing occupancy of Ca2+-dependent 

desensitized states of NMDARs could help identify structural determinants of NMDAR 

desensitization. As described in Chapter 1, Ca2+-dependent desensitization involves a complex 

process of several CTD protein-protein interactions (Section 1.1.2). How memantine is involved 
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with effects of these CTD elements, individually or in concert, could have significant impact on 

our understanding of the structural determinants underlying Ca2+-dependent desensitized states 

of NMDARs. These insights could also impact drug design, by identifying specific intracellular 

targets through which memantine binding might partially depend. Further investigation of the 

NMDAR subtype dependence of memantine's effects on desensitization could also deepen our 

understanding of structural-functional differences between GluN1/2A, GluN1/2B, GluN1/2C, 

and GluN1/2D receptors. Overall, investigating the mechanisms by which memantine increases 

occupancy of Ca2+-dependent desensitized states of NMDARs could deepen our understanding 

of open channel block and of NMDAR structure in general. 
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APPENDIX A 

MOLECULAR BASES OF NMDA RECEPTOR SUBTYPE-DEPENDENT PROPERTIES 

Glasgow NG, Siegler Retchless B, and Johnson JW (2015) Molecular bases of NMDA receptor 

subtype-dependent properties. J Physiol 593: 83-95. 
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Molecular bases of NMDA receptor subtype-dependent
properties
Nathan G. Glasgow, Beth Siegler Retchless and Jon W. Johnson

Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract NMDA receptors (NMDARs) are a class of ionotropic glutamate receptors (iGluRs)
that are essential for neuronal development, synaptic plasticity, learning and cell survival. Several
features distinguish NMDARs from other iGluRs and underlie the crucial roles NMDARs play
in nervous system physiology. NMDARs display slow deactivation kinetics, are highly Ca2+

permeable, and require depolarization to relieve channel block by external Mg2+ ions, thereby
making them effective coincidence detectors. These properties and others differ among NMDAR
subtypes, which are defined by the subunits that compose the receptor. NMDARs, which are
heterotetrameric, commonly are composed of two GluN1 subunits and two GluN2 subunits,
of which there are four types, GluN2A–D. ‘Diheteromeric’ NMDARs contain two identical
GluN2 subunits. Gating and ligand-binding properties (e.g. deactivation kinetics) and channel
properties (e.g. channel block by Mg2+) depend strongly on the GluN2 subunit contained
in diheteromeric NMDARs. Recent work shows that two distinct regions of GluN2 subunits
control most diheteromeric NMDAR subtype-dependent properties: the N-terminal domain is
responsible for most subtype dependence of gating and ligand-binding properties; a single residue
difference between GluN2 subunits at a site termed the GluN2 S/L site is responsible for most sub-
type dependence of channel properties. Thus, two structurally and functionally distinct regions
underlie the majority of subtype dependence of NMDAR properties. This topical review highlights
recent studies of recombinant diheteromeric NMDARs that uncovered the involvement of the
N-terminal domain and of the GluN2 S/L site in the subtype dependence of NMDAR properties.

(Received 28 February 2014; accepted after revision 21 July 2014; first published online 8 August 2014)
Corresponding author J. W. Johnson: Department of Neuroscience, A210 Langley Hall, University of Pittsburgh,
Pittsburgh, PA 15260, USA. Email: jjohnson@pitt.edu

Abbreviations ABD, agonist-binding domain; AMPAR, AMPA receptor; CTD, C-terminal domain; iGluR, ionotropic
glutamate receptor; MTS, methanethiosulfonate; NMDAR, NMDA receptor; NTD, N-terminal domain; NTD+L, NTD
and NTD-ABD linker; PDB, Protein Data Bank; Popen, open probability; TMD, transmembrane domain; TMR, trans-
membrane region.

Introduction

Glutamate mediates the majority of fast excitatory
synaptic transmission in the central nervous system.
Glutamate binds to and activates ionotropic glutamate
receptors (iGluRs), which open to allow cation flux
across the cell membrane. iGluRs are ligand-gated

Nathan Glasgow is a PhD candidate in the Center for Neuroscience at the University of Pittsburgh. He
received a BS in Biology from the University of Toledo in 2010. He is currently a graduate student working
in Jon Johnson’s lab studying the structure and pharmacology of NMDARs. Jon Johnson is a Professor
of Neuroscience at the University of Pittsburgh. He was an undergraduate at MIT, graduate student at
Stanford, and postdoc with Philippe Ascher at the Ecole Normale Supérieure. He and his colleagues
employ electrophysiological, molecular, optical, pharmacological and computational approaches to study
the physiology, structure and regulation of glutamate receptors.

ion channels composed of four subunits organized
around a central ion channel. The tertiary structure
of all iGluR subunits can be described as several
functionally distinct domains: an extracellular N-terminal
domain (NTD; or amino-terminal domain, ATD),
an extracellular agonist-binding domain (ABD; or
ligand-binding domain, LBD), a transmembrane domain
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(TMD) made up of three transmembrane regions (TMRs;
M1, M3 and M4) and a re-entrant pore-lining loop termed
the p-loop (or M2 region) that forms the selectivity filter,
and an intracellular C-terminal domain (CTD) (Fig. 1A)
(Traynelis et al. 2010).

There are four classes of iGluRs: AMPA receptors
(AMPARs), kainate receptors, NMDA receptors
(NMDARs) and δ receptors. Receptors of each class
are formed by co-assembly of homologous subunits.
Subunit composition defines receptor subtypes within

Figure 1. NMDAR schematic diagram, crystal structures and subtype-dependent properties
A, schematic diagram of an assembled diheteromeric NMDAR (upper) with an enlarged schematic diagram of
a single NMDAR subunit depicting the distinct functional domains (lower). The location of the GluN2 S/L site
is indicated with a red filled circle in the M3 TMR. B and C, crystal structures of GluN1/2B NMDARs. Images in
B (Protein Data Bank (PDB) ID: 4PE5 (Karakas & Furukawa 2014)) and in C (PDB ID: 4TLL (Lee et al. 2014)) were
created using the molecular visualization program VMD (Humphrey et al. 1996). GluN1 subunits are shown in
green and GluN2B subunits are shown in magenta. D, comparison of relative values of NMDAR subtype-dependent
properties.
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each class of iGluR. Physiological properties, such as
agonist potency, maximal channel open probability
(Popen), and deactivation kinetics, can differ greatly
between subtypes of each iGluR class except δ receptors,
which seem not form functional receptors (Traynelis et al.
2010). Thus, control of the expression of specific iGluR
subtypes can have enormous impact on synaptic function,
membrane excitability, and activation of intracellular
signalling cascades, each of which more broadly affects
the physiology of neuronal circuits and systems. The
tight developmental, regional and subcellular regulation
of iGluR subunit expression indicates that iGluR sub-
types play distinct physiological roles (Cull-Candy &
Leszkiewicz, 2004).

NMDARs exhibit several properties that are unique
among iGluRs, including: the requirement that both
glutamate and a co-agonist, either glycine or D-serine,
bind to activate the receptor (Johnson & Ascher, 1987;
Kleckner & Dingledine, 1988; Lerma et al. 1990; Schell
et al. 1995); very slow deactivation (Forsythe & Westbrook,
1988; Lester et al. 1990; Partin et al. 1996; Swanson &
Heinemann, 1998; Vicini et al. 1998); high permeability to
Ca2+ (MacDermott et al. 1986; Burnashev et al. 1992, 1995;
Schneggenburger, 1996); and strongly voltage-dependent
channel block by physiological concentrations of external
Mg2+ (Mayer et al. 1984; Nowak et al. 1984; Ascher &
Nowak, 1988). Flux of Ca2+ through NMDARs is essential
for many types of synaptic plasticity, learning and memory,
and cell survival (Malenka & Bear, 2004; Hardingham &
Bading, 2010). Conversely, aberrant NMDAR activation is
implicated in neurodegenerative diseases, schizophrenia,
depression, chronic and neuropathic pain, as well as
neuronal loss following ischaemia or stroke (Lau &
Tymianski, 2010; Zhou & Sheng, 2013).

Diversity of NMDAR subtypes

NMDAR subunits are encoded by seven genes. One
gene encodes eight GluN1 subunit splice variants, four
genes encode GluN2 subunits (GluN2A, GluN2B, GluN2C
and GluN2D), and two genes encode GluN3 subunits
(GluN3A and GluN3B). Functional NMDARs are obligate
heterotetramers thought to be assembled as a combination
of two GluN1 subunits and two GluN2 and/or GluN3 sub-
units. Most diheteromeric NMDARs contain two GluN1
subunits and two GluN2 subunits of the same type.
Triheteromeric NMDARs contain two GluN1 subunits
and two GluN2 or GluN3 subunits of different identities.

The NMDAR subtype is defined by the subunits pre-
sent in the receptor, which impart unique properties
to each receptor subtype. This review focuses on the
well-characterized diversity of the four diheteromeric
NMDAR subtypes defined by the identity of the
GluN2 subunits (GluN1/2A, GluN1/2B, GluN1/2C and

GluN1/2D receptors; Fig. 1D). Many, and possibly most,
native NMDARs are triheteromeric NMDAR subtypes
(Luo et al. 1997; Al-Hallaq et al. 2007; Rauner & Kohr,
2010; Gray et al. 2011; Tovar et al. 2013). However,
until recently, few studies have addressed triheteromeric
NMDAR properties (Hatton & Paoletti, 2005; Rauner
& Kohr, 2010; Tovar et al. 2013) due to the difficulty
of studying them in isolation from other NMDAR sub-
types. Very recently, exciting new approaches have been
developed to study isolated triheteromeric NMDARs
(Hansen et al. 2014; Yuan et al. 2014), a topic outside
the scope of this review.

Heterologous expression systems, where a single
NMDAR subtype can be unambiguously studied by
expression of GluN1 and a single type of GluN2 subunits,
have allowed extensive characterization of diheteromeric
NMDAR subtype-dependent properties (Cull-Candy &
Leszkiewicz, 2004; Traynelis et al. 2010; Paoletti et al.
2013). Studies in heterologous systems have revealed great
diversity of diheteromeric NMDAR subtype-dependent
properties including: deactivation kinetics (Monyer et al.
1992, 1994; Vicini et al. 1998), agonist potency (Kutsuwada
et al. 1992; Priestley et al. 1995; Varney et al. 1996; Erreger
et al. 2007; Traynelis et al. 2010), Ca2+ permeability
(Burnashev et al. 1995; Schneggenburger, 1996), voltage
dependence of channel gating (Clarke, 2006; Clarke &
Johnson, 2008; Clarke et al. 2013), sensitivity to block by
external Mg2+ (Monyer et al. 1994; Kuner & Schoepfer,
1996), and sensitivity to endogenous inhibitors (Traynelis
et al. 1995; Williams, 1996; Chen et al. 1997; Paoletti
et al. 1997, 2013; Traynelis et al. 1998). Expression and
subcellular localization of NMDAR subunits varies by
developmental stage, brain region and cell type (Akazawa
et al. 1994; Monyer et al. 1994; Sheng et al. 1994). Thus,
the expression of specific NMDAR subtypes can be used to
tune synapses, neurons, circuits and systems through the
great diversity of NMDAR subtype-dependent properties.

Despite in-depth characterization of NMDAR
subtype-dependent properties (for comprehensive
reviews see Cull-Candy & Leszkiewicz, 2004; Traynelis
et al. 2010; Paoletti et al. 2013), for many of these
properties little was known about the mechanisms that
underlie their subtype dependence until recently. Here
we highlight recent major advances in our understanding
of the molecular bases of functional diversity among
NMDAR subtype-dependent properties.

Two categories of NMDAR subtype-dependent
properties

Prior to the work described in this review, there was no
clear justification for dividing the long list of NMDAR
properties that depend on receptor subtype into two
categories. However, recent work provides strong evidence
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that nearly all diheteromeric NMDAR subtype-dependent
properties can be structurally and functionally divided
into two categories: (1) gating and ligand-binding
properties and (2) channel properties (Fig. 1D).

Two congruent studies in 2009 revealed that the
GluN2 NTD controls the NMDAR subtype dependence
of gating and ligand-binding properties (Gielen et al.
2009; Yuan et al. 2009). These two studies identified
the following NTD-dependent properties: maximal Popen,
agonist potency, deactivation kinetics, and sensitivity
to the endogenous inhibitors Zn2+ and protons. Other
studies identified inhibition by ifenprodil (Fig. 1D)
(Perin-Dureau et al. 2002; Malherbe et al. 2003;
Ng et al. 2008; Karakas et al. 2009) and voltage-
and glycine-independent potentiation by polyamines
(Gallagher et al. 1997; Masuko et al. 1999; Han et al.
2008; Mony et al. 2011) as additional NTD-dependent
ligand-binding properties that differ among NMDAR sub-
types. In contrast, the residue at a single site near the
intracellular end of the M3 region of GluN2 subunits,
a serine (S) in GluN2A (S632; residue numbering used
here begins at the start methionine) or GluN2B (S633)
and a leucine (L) in GluN2C (L643) or GluN2D (L657)
(the GluN2 S/L site; Fig. 1A), controls diheteromeric
NMDAR subtype-dependent channel properties (Siegler
Retchless et al. 2012; Clarke et al. 2013). The GluN2
S/L site was shown to control the subtype dependence
of the following properties: Mg2+ sensitivity, Ca2+
permeability, single-channel conductance, and inherent
voltage dependence of channel gating (Fig. 1D). Unlike
gating and ligand-binding properties, channel properties
of GluN1/2A and GluN1/2B receptors are very similar,
channel properties of GluN1/2C and GluN1/2D receptors
are very similar, but channel properties of GluN1/2A
and GluN1/2B receptors differ strongly from those
of GluN1/2C and GluN1/2D receptors (Fig. 1D). The
residue at the GluN2 S/L site determines whether the
channel properties of an NMDAR resemble properties of
GluN1/2A and GluN1/2B receptors (GluN1/2A-like) or
resemble properties of GluN1/2C and GluN1/2D receptors
(GluN1/2D-like) (Siegler Retchless et al. 2012; Clarke et al.
2013).

The GluN2 NTD controls gating and ligand-binding
properties

Diheteromeric NMDARs display wide functional
variation in gating and ligand-binding properties. For
instance, GluN1/2A receptors have a maximal Popen of
�0.5, GluN1/2B receptors have a maximal Popen of �0.1,
and GluN1/2C and GluN1/2D receptors have a maximal
Popen of �0.01 (Wyllie et al. 1998; Chen et al. 1999; Erreger
et al. 2005; Dravid et al. 2008). Gielen et al. (2009) and
Yuan et al. (2009) demonstrated that the NMDAR sub-
type dependence of maximal Popen and other gating and

ligand-binding properties is largely due to variation at the
GluN2 NTD and the linker region that connects the GluN2
NTD to the ABD (NTD-ABD linker). Both studies took
advantage of mutant receptors containing GluN2 subunits
with either the NTD deleted (�NTD) or the NTD and
NTD-ABD linker deleted (�NTD+L), as well as chimeric
receptors containing GluN2 subunits in which the GluN2
NTD, or the NTD and NTD-ABD linker (NTD+L), was
replaced with the NTD or NTD+L of another GluN2 sub-
unit (Fig. 2A).

Gielen et al. (2009) showed that the dependence
of maximal Popen on NMDAR subtype was
abolished in GluN2(�NTD) subunit-containing
receptors. Examination of GluN1/2B(2A-NTD) and
GluN1/2A(2B-NTD) receptors revealed that exchanging
NTDs does not result in an exchange of maximal
Popen (Gielen et al. 2009). However, examination of
GluN1/2B(2A-NTD+L) and GluN1/2A(2B-NTD+L)
receptors revealed that exchanging the NTD+L does
result in an exchange of maximal Popen (Fig. 2B).

Yuan et al. (2009) examined the influence of the
GluN2 NTD+L on steady-state Popen in saturating
agonist concentrations using mutant GluN2 subunits
in which the NTD+L were removed, as opposed to
just the NTD. A distinction of this study from Gielen
et al. (2009) is the investigation of differences between
GluN1/2A and GluN1/2D receptors, which exhibit
much greater differences in gating and ligand-binding
properties than GluN1/2A and GluN1/2B receptors.
GluN1/2A(2D-NTD+L) receptors displayed Popen values
in saturating agonist concentrations far lower than
wild-type GluN1/2A receptors and similar to wild-type
GluN1/2D receptors, whereas GluN1/2D(2A-NTD+L)
receptors displayed Popen values nearly 5-fold greater
than wild-type GluN1/2D receptors, although still far
below wild-type GluN1/2A receptor values (Yuan et al.
2009). Interestingly, there were intermediate effects on
Popen when only the NTD-ABD linker was interchanged
between GluN2A and GluN2D subunits. These studies
argue strongly for a fundamental role of the NTD and
the NTD-ABD linker in determining maximal Popen.
Importantly, Yuan et al. (2009) demonstrated that the
presence or identity of the NTD+L did not affect
single-channel conductance.

The identity of the GluN2 NTD+L also affects agonist
potency and deactivation kinetics (Yuan et al. 2009).
The glutamate potency of all receptors that contained
a GluN2(�NTD+L) subunit were indistinguishable
from wild-type receptors (Fig. 2C). The glycine
potency of GluN1/2A and GluN1/2A(�NTD+L)
did not differ, whereas the glycine potency of
GluN1/2B(�NTD+L), GluN1/2C(�NTD+L), and
GluN1/2D(�NTD+L) receptors was lower than for
corresponding wild-type receptors. The time constant of
deactivation following rapid removal of glutamate (τ)
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also differed between wild-type receptors and receptors
containing GluN2(�NTD+L) subunits. Importantly,
for glutamate EC50, glycine EC50 and τ values, chimeric
GluN1/2A(2D-NTD+L) receptors resembled GluN1/2D
more closely than GluN1/2A receptors, and chimeric
GluN1/2D(2A-NTD+L) receptors resembled GluN1/2A
more closely than GluN1/2D receptors (Fig. 2C and D)
(Yuan et al. 2009).

Gielen et al. (2009) also investigated NMDAR subtype
dependence of sensitivity to the endogenous allosteric
inhibitors Zn2+ and protons. Zn2+ inhibits GluN1/2A
receptors with high affinity (in the nanomolar range)
and inhibits GluN1/2B receptors in the micromolar range
(Fig. 1D) (Williams, 1996; Chen et al. 1997; Paoletti

et al. 1997; Traynelis et al. 1998; Rachline et al. 2005).
A Zn2+ binding site is in the bilobed cleft of both the
GluN2A and GluN2B NTDs, where binding of Zn2+
stabilizes a closed cleft conformation of the NTD (Choi
& Lipton, 1999; Fayyazuddin et al. 2000; Low et al. 2000;
Paoletti et al. 2000; Choi et al. 2001; Rachline et al. 2005;
Karakas et al. 2009; Stroebel et al. 2011). Crystallography
of Zn2+ bound to the GluN2B NTD showed that Zn2+
directly contacts a histidine and a glutamate residue in
the GluN2B NTD (Karakas et al. 2009). The two homo-
logous residues in the GluN2A NTD (a histidine and
an asparagine residue) are thought to coordinate Zn2+,
along with at least one additional histidine residue, and
possibly a lysine and a glutamate residue (Choi & Lipton,

Figure 2. The GluN2 NTD and adjacent linker region control gating and ligand-binding properties
A, schematic diagrams of wild-type GluN2 subunits (upper), examples of GluN2 subunits with deletions
(middle), and examples of chimeric GluN2 subunits with domains interchanged between GluN2 subunits
(lower). Colours of domains correspond to the GluN2 subunits (upper). B, single-channel records of wild-type
or chimeric GluN2 subunit-containing receptors (left) and the Popen during bursts of channel openings, which
was used as an estimate of maximal Popen (right). Panel was modified from Gielen et al. (2009). C, glutamate
concentration–response relations of wild-type, GluN2(�NTD+L), and chimeric GluN2(NTD+L) subunit-containing
receptors. Panel was modified from Yuan et al. (2009), with permission. D, whole-cell recording of wild-type and
chimeric GluN1/2D(2A-NTD+L) receptors showing the time course of deactivation following 1 s applications of
1 mM glutamate (black bars). Panel was modified from Yuan et al. (2009), with permission.
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1999; Fayyazuddin et al. 2000; Low et al. 2000). The
additional GluN2A NTD residues interacting with Zn2+
are thought to be responsible for the higher affinity of
GluN1/2A receptors for Zn2+. In contrast to the Zn2+
binding site, the location of the proton sensor is not
known. Several mutations in the NTD, ABD and pore
regions have been shown to affect proton sensitivity (Low
et al. 2003; Gielen et al. 2008); however, interpretation
of mutant studies is complicated because high affinity
Zn2+ inhibition enhances proton sensitivity (Low et al.
2000; Erreger & Traynelis, 2008). Nevertheless, protons
are thought to mediate their inhibitory effect through
associations with regions near the channel gate (Low et al.
2003; Traynelis et al. 2010).

Chimeric GluN1/2D(2A-NTD+L) and GluN1/
2B(2A-NTD+L) receptors exhibited Zn2+ sensitivity
nearly identical to wild-type GluN1/2A receptors (Gielen
et al. 2009). Surprisingly, GluN1/2B(2A-NTD) receptors
were significantly more sensitive to Zn2+ than GluN1/2A
receptors, suggesting that the GluN2B NTD-ABD linker
facilitates NTD cleft closure. Sensitivity to protons was
unexpectedly affected by the identity of the GluN2 NTD.
GluN1/2A(�NTD) and GluN1/2B(�NTD) receptors
did not display NMDAR subtype dependence of proton
sensitivity as displayed in wild-type GluN1/2A and
GluN1/2B receptors. Furthermore, examination of
GluN1/2A(2B-NTD+L) and GluN1/2B(2A-NTD+L)
receptors revealed that exchanging the NTD+L results in
exchanged proton sensitivity. These data support the role
of the GluN2 NTD and NTD-ABD linker in mediating
the effect of Zn2+ on channel gating (Erreger & Traynelis,
2008) and the accessibility of protons to the proton sensor
(Gielen et al. 2009).

The GluN2 NTD also confers sensitivity to the synthetic
allosteric modulator ifenprodil and its derivatives, such
as Ro 25-6981, which display >100-fold selectivity for
GluN1/2B receptors over other diheteromeric NMDAR
subtypes (Williams, 1993; Traynelis et al. 2010). Like
high affinity Zn2+ binding to the GluN2A NTD,
ifenprodil sensitivity is conferred by the GluN2B NTD
(Perin-Dureau et al. 2002; Malherbe et al. 2003; Ng et al.
2008; Karakas et al. 2011). However, unlike Zn2+, which
binds in the cleft of the NTD (Karakas et al. 2009),
a recent crystal structure showed that ifenprodil binds
to the interface between the GluN1 and GluN2B NTDs
(Karakas et al. 2011). Interestingly, only a single residue
(an isoleucine (I) in GluN2B and a methionine (M)
in GluN2A) differs between the GluN2B NTD (I111)
and the GluN2A NTD (M112) in the ifenprodil binding
pocket. Receptors containing mutated GluN2B(I111M)
or GluN2A(M112I) subunits do not exhibit abolished or
augmented ifenprodil sensitivity compared to the mutant
receptors, respectively (Karakas et al. 2011). Therefore, the
mechanism of ifenprodil selectivity of GluN1/2B receptors
over GluN1/2A receptors is still not fully understood.

To investigate the mechanism by which ligands
that bind to the NTD influence NMDAR gating and
ligand-binding properties, Gielen et al. (2009) introduced
cysteine residues deep into the NTD cleft, creating
GluN2A(Y281C) and GluN2B(Y282C) subunits. Cysteine
modification by methanethiosulfonate (MTS) reagents
of varying size was then used to lock open the NTD
cleft. Potentiation of GluN1/2B(Y282C) receptor currents
by MTS reagent modification increased with increasing
MTS reagent size. A similar, but lesser increase in
potentiation of GluN1/2A(Y281C) receptor currents by
MTS reagent modification was seen with increasing MTS
reagent size. Based on these data, Gielen et al. (2009)
proposed a model in which oscillation of GluN2 NTDs
between open and closed conformations in the absence
of NTD ligands determines the maximal Popen of a
receptor. GluN1/2A receptors were hypothesized to exhibit
a higher maximal Popen than GluN1/2B receptors because
of higher occupancy by the GluN2A NTD of the open
cleft conformation. An alternative possibility is that the
GluN2A NTD might adopt a more open conformation
than the GluN2B NTD when no ligand is bound, and
MTS reagent modification may lead to greater than normal
NTD opening. In contrast to the NTD, when the bilobed
ABD cleft of GluN2A subunits (Furukawa et al. 2005) is
locked closed using disulfide bridges, maximal Popen of
GluN1/2A receptors increases (Kussius & Popescu, 2010).

The gating and ligand-binding properties of receptors
containing chimeric GluN2(NTD+L) subunits created
by Gielen et al. (2009) and Yuan et al. (2009) were
not fully converted to the properties of subtypes
containing the GluN2 subunits that contributed the
NTD+L. In addition, results with truncated receptors
were unpredictable; truncation had no significant effect on
some receptor properties, while strongly modifying other
receptor properties. These and other data indicate that
regions other than the NTD+L contribute significantly
to the NMDAR subtype dependence of gating and
ligand-binding properties. Another NMDAR domain that
appears likely to contribute is the ABD (Erreger et al. 2007;
Chen et al. 2008), whereas the CTD appears unlikely to
contribute (Maki et al. 2012; Martel et al. 2012; Punnakkal
et al. 2012; Ryan et al. 2013). Nevertheless, Gielen et al.
(2009) and Yuan et al. (2009) demonstrate the critical
importance of the GluN2 NTD and NTD-ABD linker in
controlling diheteromeric NMDAR subtype dependence
of gating and ligand-binding properties.

During final revisions of this review, two separate crystal
structures of intact diheteromeric GluN1/2B receptors
were published within weeks of one another (Fig. 1B and
C) (Karakas & Furukawa, 2014; Lee et al. 2014). Both
structures revealed NMDAR subunit arrangement and
organization similar to the homomeric GluA2 AMPAR
crystal structure (Sobolevsky et al. 2009). However, the
shape of the GluN1/2B NMDAR crystal structures differed

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society

ngg1
Typewritten Text
180



J Physiol 593.1 Molecular bases of NMDA receptor subtype-dependent properties 89

from the GluA2 AMPAR crystal structure, with, for
example, the NTD and ABD much more closely associated
in the GluN1/2B NMDAR crystal structures (Sobolevsky
et al. 2009; Karakas & Furukawa, 2014; Lee et al. 2014). The
close association of the NTD and ABD in the GluN1/2B
NMDAR crystal structures suggests that ligand binding to
the NTD may affect the ABD through multiple contacts in
addition to the NTD-ABD linker (Karakas & Furukawa,
2014; Lee et al. 2014). Assessment of NTD-ABD inter-
actions in the GluN1/2B NMDAR crystal structures may
be complicated by modifications designed to increase
NMDAR stability. Of note, deletions were made within
the GluN2B NTD-ABD linker, and cysteine residues
introduced in GluN2B NTDs formed intersubunit cross-
links that nearly eliminated receptor activity (Karakas &
Furukawa, 2014; Lee et al. 2014). However, the GluN1/2B
NMDAR crystal structures represent a fundamental
advance that will be invaluable in determining how
the NTD influences NMDAR gating and ligand-binding
properties.

The GluN2 S/L site controls channel properties

The identity of the GluN2 NTD+L does not affect
single-channel conductance (Yuan et al. 2009), and
whether the identity of the GluN2 NTD or NTD+L affects
other channel properties was not investigated. Therefore,

NMDAR subtype dependence of channel properties may
be controlled by other regions of the receptor.

Previous studies that mostly utilized chimeric sub-
units implicated the TMD and the ABD in controlling
the NMDAR subtype dependence of channel properties
(Kuner & Schoepfer, 1996; Wrighton et al. 2008; O’Leary
& Wyllie, 2009). Kuner & Schoepfer (1996) investigated
the role of the entire TMD, subregions of the TMD, and
part of the ABD in the NMDAR subtype dependence of
Mg2+ sensitivity. They found that parts of the M1, M2, M3
and M4 regions in GluN2 subunits all contribute to the
subtype dependence of Mg2+ sensitivity. Wrighton et al.
(2008) found that the M1–M3 regions, and to a lesser
extent the ABD, were responsible for determining sub-
type dependence of Mg2+ sensitivity. O’Leary & Wyllie
(2009) showed that the M1–M3 regions determine subtype
dependence of single-channel conductance in addition to
Mg2+ sensitivity. Therefore, multiple structural elements
were found to contribute to NMDAR subtype dependence
of channel properties.

Siegler Retchless et al. (2012) investigated the structural
determinants of GluN1/2A-like and GluN1/2D-like
channel properties by mutating single residues. Mutations
were introduced at sites within the TMD where GluN2A
and GluN2B subunits express the same residue, GluN2C
and GluN2D subunits express the same residue, but the
GluN2A and GluN2B subunit residue differs from the
GluN2C and GluN2D subunit residue.

Figure 3. The GluN2 S/L site controls channel properties
A, voltage dependence of Mg2+ IC50 values of wild-type receptors and receptors with a mutation at the GluN2
S/L site (see Fig. 1A). Mg2+ IC50 values of GluN1/2A(S632L) receptors resembled those of GluN1/2D receptors,
whereas Mg2+ IC50 values of GluN1/2D(L657S) receptors resembled those of GluN1/2A receptors. B, single-channel
records (a), current amplitude histograms (b), and current–voltage relations (c) of wild-type receptors and receptors
with a mutation at the GluN2 S/L site. Slopes of single-channel current–voltage relations were used to determine
single-channel conductance (γ ) in c. Single-channel current amplitude histograms and γ values of GluN1/2A(S632L)
receptors resembled those of GluN1/2D receptors, whereas single-channel current amplitude histograms and γ

values of GluN1/2D(L657S) receptors resembled those of GluN1/2A receptors. Panels were taken from Siegler
Retchless et al. (2012).
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Mutations of residues at a single site, the GluN2 S/L
site, were found to control NMDAR subtype dependence
of channel properties. GluN1/2A(S632L) receptors, in
which the residue at the GluN2 S/L site is changed
from the GluN2A S to the GluN2D L, exhibit NMDAR
channel properties that are GluN1/2D-like (Fig. 3A and
B). Conversely, GluN1/2D(L657S) receptors, in which
the GluN2D L at the GluN2 S/L site is changed to
the GluN2A S, exhibit NMDAR channel properties that
are GluN1/2A-like (Fig. 3A and B) (Siegler Retchless
et al. 2012; Clarke et al. 2013). The single residue at
the GluN2 S/L site was found to control NMDAR sub-
type dependence of: Mg2+ sensitivity (Fig. 3A); Ca2+
permeability; single-channel conductance, including the
conductance of subconductance states (Fig. 3B); and
inherent voltage-dependent gating of NMDARs (Siegler
Retchless et al. 2012; Clarke et al. 2013). Kinetic analysis
of single-channel recordings from GluN1/2A(S632L)
receptors did not reveal significant differences from
GluN1/2A receptors, consistent with the conclusion that
the GluN2 NTD controls NMDAR subtype dependence of
gating kinetics.

Although the GluN2 S/L site powerfully affects
NMDAR subtype-dependent channel properties, inter-
conversion of channel properties between GluN1/2D-like
and GluN1/2A-like by GluN2 S/L site substitutions was
incomplete. Thus, regions in addition to the GluN2 S/L
site influence NMDAR subtype dependence of channel
properties. As noted above, other parts of the TMD and
the ABD were found to contribute to NMDAR subtype
dependence of Mg2+ sensitivity (Kuner & Schoepfer, 1996;
Wrighton et al. 2008; O’Leary & Wyllie, 2009). Taken
together, studies that examined the NMDAR subtype
dependence of channel properties suggest that the GluN2
S/L site is the major determinant of subtype dependence,
with other parts of the TMD, and the ABD, playing smaller
roles.

Because the GluN2 S/L site is located at the base of the
M3 TMR, it is unlikely to interact directly with ions in
the pore. Therefore, the GluN2 S/L site probably affects
NMDAR subtype-dependent channel properties through
interactions with residues that are closer to the pore.

The GluN2 S/L site controls channel properties
through subunit–subunit interactions

Until recently, neither an intact NMDAR crystal structure
nor a crystal structure of the NMDAR TMD had
been published. Therefore, to aid in understanding the
mechanism by which the GluN2 S/L site controls NMDAR
subtype-dependent channel properties, Siegler Retchless
et al. (2012) created homology models of the GluN1/2A
M2 p-loop and M3 TMR (GluN1/2A M2–M3; Fig. 4).
Homology models take advantage of structural homology
of previously crystallized proteins with a protein of inter-

est that has not yet been crystallized. Homology models
allow prediction of the structure of the protein of interest
based on sequence alignment and hypothesized structural
homologies.

In 2009, the first nearly complete iGluR crystal structure
was published (Sobolevsky et al. 2009). The GluA2
AMPAR crystal structure led to many breakthroughs
concerning the function and structural organization of
iGluRs, including NMDARs (e.g. Traynelis et al. 2010;
Salussolia et al. 2011; Riou et al. 2012). However,
despite the utility of the GluA2 AMPAR crystal structure
for answering structural and functional questions, the
extended region of the M2 p-loop was not resolved
(Sobolevsky et al. 2009). Siegler Retchless et al. (2012)
therefore utilized crystal structures of more distantly
related ion channels as a basis for a GluN1/2A M2–M3
homology model. Several earlier studies had based
NMDAR channel homology models on the crystal
structure of the bacterial potassium channel KcsA (Doyle
et al. 1998), and predictions of the homology models had
been validated with physiological experiments (Wood et al.
1995; Panchenko et al. 2001; Tikhonov, 2007). Another
crystallized channel, the cyclic nucleotide-gated channel
NaK, shares great sequence homology and structural
similarity with potassium channels (Shi et al. 2006), but,
like NMDARs, is permeable to Na+, K+ and Ca2+ (Shi
et al. 2006; Alam et al. 2007). Siegler Retchless et al. (2012)
chose to base their GluN1/2A M2–M3 homology model
on the NaK channel structure. Karakas & Furukawa (2014)
and Lee et al. (2014) found that homologous portions of
the TMDs of their GluN1/2B NMDAR crystal structures
displayed high structural similarity to corresponding
regions of the KcsA channel, further supporting the use
of potassium and related channel structures for NMDAR
homology modelling.

Figure 4. NaK channel-based GluN1/2A M2–M3 homology
model
A, schematic diagram of an assembled NMDAR. B, all four subunits
of the NaK-based GluN1/2A M2–M3 homology model (Siegler
Retchless et al., 2012) magnified from the NMDAR schematic
diagram in A. Regions of GluN1 are shown in green, and regions of
GluN2A are shown in blue. One of the two GluN1(W608) residues is
shown as space-filling model in yellow, and the adjacent
GluN2A(S632) residue is shown as space-filling model in red. C,
enlarged view of GluN2 S/L site interaction with W608 in the GluN1
M2 region.
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The NaK channel-based GluN1/2A M2–M3 homology
model was developed with a GluN1-GluN2A-GluN1-
GluN2A arrangement around the pore based on
Sobolevsky et al. (2009), an arrangement that subsequently
has been further supported (Rambhadran et al. 2010;
Salussolia et al. 2011; Riou et al. 2012; Karakas & Furukawa,
2014; Lee et al. 2014). The NaK channel-based GluN1/2A
M2–M3 model predicted that GluN2A(S632) is very close
to two tryptophan residues in the adjacent GluN1 sub-
unit: GluN1(W608) and GluN1(W611), which are in
the α-helical portion of the GluN1 M2 p-loop (Fig. 4B
and C) (Siegler Retchless et al. 2012). Using mutant
cycle analyses (Hidalgo & MacKinnon, 1995; Schreiber &
Fersht, 1995), Siegler Retchless et al. (2012) demonstrated
coupling between GluN2A(S632) and GluN1(W608),
but not between GluN2A(S632) and GluN1(W611).
Thus, the authors concluded that the identity of the
residue at the GluN2 S/L site is likely to control
NMDAR subtype-dependent channel properties through
a subunit–subunit interaction between the GluN2 M3 and
GluN1 M2 α-helices (Fig. 4C) (Siegler Retchless et al.
2012).

Siegler Retchless et al. (2012) also developed a
GluN1/2A M2–M3 homology model based on the GluA2
AMPAR crystal structure. Importantly, the AMPAR-based
GluN1/2A M2–M3 homology model did not predict
close proximity of the GluN2 S/L site to GluN1(W608)
(Siegler Retchless et al. 2012). In the NaK channel-based
GluN1/2A M2–M3 homology model, the side chains
of GluN1(W608) and GluN2A(S632) have a minimum
separation of 3.5 Å (Fig. 4C). In the AMPAR-based
GluN1/2A M2–M3 homology model, the side chains
of GluN1(W608) and GluN2A(S632) have a minimum
separation of 12.2 Å. Although mutant cycle analysis
provides only an indirect gauge of proximity of residues,
coupling is likely to occur only for residues with side chains
separated by less than 7 Å (Schreiber & Fersht, 1995). Thus,
the mutant cycle data are more consistent with the NaK
channel-based than the AMPAR-based model. Possible
explanations for why the distantly related NaK channel
may better model the GluN1/2A M2–M3 regions than the
more closely related AMPAR include: (1) the structure of
the M2–M3 regions of NMDARs simply may resemble
more closely membrane regions of potassium channels
and closely-related channels than AMPARs; (2) the limited
resolution of the M2 region of homomeric GluA2 AMPAR
crystal structure may have led to inaccurate placement of
the M2 α-helix.

The pore-lining regions in the recently published
GluN1/2B NMDAR crystal structures, like the GluA2
AMPAR crystal structure, were not well resolved. However,
Lee et al. (2014) were able to position residues in
the majority of the TMD, including the M2 p-loops,
in their structure 2 (PDB ID: 4TLM). We measured
the minimum separation between GluN1(W608) and

the GluN2B residue homologous to GluN2A(S632) in
structure 2. The result, 7.5 Å, is between the minimum
separation in the NaK channel-based (3.5 Å) and the
AMPAR-based (12.2 Å) GluN1/2A M2–M3 homology
models. As Lee et al. (2014) were careful to point out,
atom positioning in the pore region was not precise;
measurements of distances between residues near the
pore therefore are subject to substantial uncertainty. The
limited resolution of the pore regions of currently available
iGluR crystal structures suggest that high-resolution NaK
and related channel crystal structures remain valuable
resources for modelling the TMD of iGluRs.

Conclusion

The functional properties of diheteromeric NMDAR sub-
types depend on the identity of the GluN2 subunits pre-
sent in the receptor. Recent studies provide strong evidence
for grouping diheteromeric NMDAR subtype-dependent
properties into two categories based on distinct structural
determinants and functional characteristics. Gating and
ligand-binding properties are primarily controlled by
the identity of the GluN2 NTD and NTD-ABD linker
(Gallagher et al. 1997; Perin-Dureau et al. 2002; Gielen
et al. 2009; Yuan et al. 2009; Mony et al. 2011), whereas
channel properties are primarily controlled by the identity
of the residue at the GluN2 S/L site (Siegler Retchless et al.
2012; Clarke et al. 2013). Previous work has suggested
that subunit–subunit interactions have profound effects
on gating and ligand-binding properties (Monyer et al.
1994; Vicini et al. 1998; Regalado et al. 2001; Schorge
et al. 2005; Vance et al. 2012). Similarly, the influence
of the GluN2 S/L site on channel properties depends
on a subunit–subunit interaction between the GluN2
M3 TMR and the GluN1 M2 p-loop. Thus, NMDAR
subunit–subunit interactions are critically important in
determining diheteromeric NMDAR subtype-dependent
properties. Use of receptor crystal structures (e.g. Karakas
& Furukawa, 2014; Lee et al. 2014) and structural models
will be essential to our understanding of the interdomain
and intersubunit interactions that play fundamental roles
in NMDAR subtype-dependent properties, and most
other aspects of iGluR function.
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Abstract

The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped 

sustain optimism that glutamate receptors represent viable targets for development of therapeutic 

drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a 

glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of 

the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their 

effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research 

suggests that preferential inhibition by memantine and ketamine of distinct NMDAR 

subpopulations may contribute to the drugs' differential clinical effects. Here we review studies 

that shed light on possible explanations for differences between the effects of memantine and 

ketamine.

Introduction

The strikingly broad involvement of N-methyl-D-aspartate receptors (NMDARs) in nervous 

system disorders has led to persistent hope that pharmacological NMDAR modulators will 

provide a rich source of pharmaceuticals. However, many NMDAR-focused drug 

development efforts have ended with failed clinical trials. Although the failures resulted in 

part from weaknesses in trial design [1-3], an important implication is that nonspecific 

NMDAR inhibition is unlikely to yield successful treatments, probably because NMDARs 

play many fundamental physiological roles. Optimism endures that NMDARs may be a 

fruitful pharmaceutical target using drugs that select for receptor subpopulations based on 

NMDAR subtype, location, and/or mechanism of activation. The encouraging but divergent 

clinical effects of the NMDAR antagonists memantine and ketamine have helped motivate 

continuing efforts to develop new drugs based on NMDAR modulation. Understanding the 

mechanistic bases of the beneficial effects of these drugs may help guide development of 
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more effective therapies based on NMDAR modulation. Here we review research that sheds 

light on the similarities and differences in memantine and ketamine actions, focusing where 

possible on research that compares memantine and ketamine directly.

NMDARs and their inhibition by memantine and ketamine

NMDARs are tetrameric ionotropic glutamate receptors found at nearly all vertebrate 

excitatory synapses. NMDARs are centrally involved in fundamental nervous system 

functions including learning and memory [3,4]. NMDAR dysfunction has been implicated in 

nervous system disorders including Alzheimer's disease, Huntington's disease, depression, 

schizophrenia, chronic and neuropathic pain, epilepsy, and neuron death following stroke 

[5-7]. NMDARs are obligate heterotetramers composed of GluN1 subunits in combination 

with GluN2 and/or GluN3 subunits [3,4,8]. The GluN1 subunit is encoded by a single gene; 

four genes encode the GluN2 subunits (GluN2A, GluN2B, GluN2C, and GluN2D); two 

genes encode the GluN3 subunits (GluN3A and GluN3B). Most NMDARs are composed of 

two GluN1 subunits and two GluN2 subunits, and their activation requires binding of 

agonists to all four subunits. The principal endogenous agonists that bind to the GluN1 

subunit are glycine and D-serine, whereas the principal endogenous agonist that binds to 

GluN2 subunits is glutamate. The open channel of NMDARs mediates permeation 

predominantly of Na+, K+, and Ca2+; the influx of Ca2+ ions through NMDAR channels is 

critical to both the physiological and the pathological effects of receptor activation. Many 

endogenous substances modulate NMDAR activity, including Mg2+, Zn2+, H+, polyamines, 

neurosteroids, and fatty acids [3]. Mg2+ is a physiologically crucial modulator that blocks 

the channel of NMDARs, conferring strong voltage dependence to NMDAR-mediated 

conductance.

Both memantine and ketamine inhibit NMDARs by occupying the NMDAR's ion channel 

and occluding current flow. Both drugs are open channel blockers: when the channel is 

closed, the drugs have little or no ability to enter an unblocked channel or to unbind after 

blocking the channel. Both drugs exhibit voltage dependence, entering the channel more 

quickly, leaving the channel more slowly, and inhibiting more effectively as a cell's 

membrane potential is hyperpolarized. The basic characteristics of NMDAR inhibition by 

memantine and ketamine, including IC50, kinetics, and voltage dependence, do not differ 

strongly [9-12]. Many studies report that ketamine inhibits NMDAR channels with slightly 

lower IC50 and slower kinetics than memantine; however, the differences are small 

(generally less than a factor of 2). However, ketamine is used in most experiments as a 

racemic mixture of two enantiomers, S- and R-ketamine; each enantiomer has somewhat 

different pharmacological properties [13,14]. Voltage dependence of memantine and 

ketamine are similar, although memantine's has been reported to be slightly greater [15]. 

Because both memantine's and ketamine's binding site in the NMDAR channel (Figure 1) 

overlaps with the Mg2+ binding site, Mg2+ competes with both drugs for binding to 

NMDAR channels. As a result, physiological concentrations of Mg2+ (∼1 mM) 

substantially increase the IC50, modify the voltage dependence, and alter the NMDAR 

subtype-selectivity of both memantine and ketamine [16-18].
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Despite their many similarities, the clinical effects of memantine and ketamine, and to a 

lesser extent the behavioral effects in rodents, are surprisingly distinct.

Clinical, behavioral, and circuit effects of memantine and ketamine

Human studies

There are clear differences between the clinical effects of memantine and ketamine. 

Memantine is the only glutamate receptor ligand that is approved for treatment of 

Alzheimer's disease (AD). The clinical benefits of memantine in AD patients are modest but 

broad, and include positive effects on communication, comprehension, memory, and 

activities of daily living. Memantine is very well tolerated and appears to have no abuse 

potential [19-21]. Ketamine, in contrast, is a drug of abuse that produces schizophrenia-like 

symptoms in healthy adults and exacerbates symptoms in schizophrenics [11,22,23].

Ketamine also has demonstrated impressive beneficial effects in clinical studies. Along with 

its well-established utility as a general anesthetic, ketamine has been found useful in the 

treatment of several disorders, including depression and pain. A single ketamine infusion 

has been found to alleviate rapidly and for an extended period the symptoms of major 

depressive disorder [6,24]. Ketamine also is effective in pain management [25,26]. 

Memantine, however, does not appear to be effective in treating either depression [27,28] or 

pain [29]. Thus, the differences between the effects of memantine and ketamine in humans 

appear robust and consistent.

Rodent studies

Based in part on the ability of ketamine to produce schizophrenia-like symptoms in humans, 

ketamine administration has been widely used to produce rodent models of schizophrenia 

[30,31]. Although memantine generally is not used to model schizophrenia, comparisons of 

the behavioral effects of memantine and ketamine in rodents reveal similarities as well as 

differences, with differences weaker than in human studies. Especially at lower doses (very 

approximately, and depending on route of administration, below 20 mg/kg), memantine and 

ketamine have broadly similar effects on locomotor and exploratory activity, stereotypic 

behavior, impulsive choice, and attention [32-37]. Several of those studies also found similar 

tendencies for memantine and ketamine to impair memory function, although low doses of 

memantine can improve memory [38-40], an observation not reported for ketamine. Both 

memantine and ketamine decrease ethanol ingestion by alcohol-preferring rats, but only the 

effect of ketamine is blocked by mTOR (mammalian target of rapamycin) inhibition [41]. 

Differences at low doses between the effects of memantine and ketamine were reported for 

aggressive behavior when combined with alcohol ingestion [42], and striking differences in 

antidepressant-like effects were observed [43]. At higher doses, a wide variety of differences 

between the locomotor and cognitive effects of memantine and ketamine emerged [33,36]. 

When memantine and ketamine were compared in drug discrimination studies, ketamine 

displayed complete substitution for PCP or MK-801, and memantine displayed complete 

[44] or partial [11,45] substitution.

Many NMDAR channel blockers have been found to exhibit properties thought to be 

associated with activation of brain circuits. Ketamine powerfully increases gamma (∼30 – 
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90 Hz) oscillations in cortex (for review, see [46]) and delta (∼0.5 – 4 Hz) oscillations in 

multiple brain regions [47]. Although the effects of memantine on oscillations have been 

less extensively studied, a recent article showed that memantine as well as ketamine 

increased gamma oscillations in rat cortex, whereas ketamine but not memantine increased 

delta oscillations [48]. Both memantine and ketamine increased 2-deoxyglucose (2-DG) 

uptake, a marker of neuronal activation [49]. Ketamine has been hypothesized to disinhibit 

cortical circuits [12,50,51], a process that may underlie increases in gamma oscillations and 

2-DG uptake. Similarly, memantine inhibition of NMDARs was proposed to produce 

cognitive improvements in AD patients through disinhibition [52], although memantine's 

ability to mediate disinhibition has not been directly assessed. Ketamine reduces expression 

of the important GABAergic interneuron markers parvalbumin (a Ca2+ binding protein) and 

GAD67 (a GABA synthetic enzyme) in rodents, thereby compromising inhibitory neuron 

function [53-55]. The relation of decreased interneuron function to increased oscillations, 

however, has been questioned [56,57]. Memantine and ketamine also have been proposed to 

inhibit a subpopulation of interneurons (but see [58]) as a result of the drugs' selectivity in 

physiological Mg2+ for GluN2C and GluN2D subunit-containing NMDARs [16]. Because 

GluN2D subunits are expressed predominantly by inhibitory neurons in mature cortex and 

hippocampus [59,60], preferential inhibition of GluN2D-containing receptors could mediate 

disinhibition.

Both memantine and ketamine have been shown to be neuroprotective using many in vivo 

and in vitro paradigms, and their neuroprotective actions are thought to contribute to their 

clinical benefits (for reviews, see [10,61,62]). There has been very limited comparison of the 

neuroprotective properties of memantine and ketamine. In one direct comparison of their 

ability to reduce the effects of oxygen-glucose deprivation in cultured hippocampal slices at 

equal concentrations, ketamine was found to be slightly more effective than memantine [63].

Thus, the effects of memantine and ketamine in rodent studies demonstrate both strong 

similarities and clear differences; in human studies, the drugs' effects differ conspicuously.

Mechanistic bases for differential effects of memantine and ketamine

Pharmacological differences between memantine and ketamine

We will consider several possible explanations for the differential effects of memantine and 

ketamine noted above.

Drugs with the same site of action can differ in their clinical and behavioral effects because 

of pharmacokinetic differences. The increase in serum and brain concentration, and 

subsequent elimination, is much faster for ketamine than memantine in both humans and 

rodents, a difference that could be responsible for the drugs' differential effects (see 

[9,10,36,64,65]). Several lines of evidence argue against the hypothesis that 

pharmacokinetic differences between memantine and ketamine are the principal explanation 

for their differential clinical and behavioral effects. First, numerous studies of ketamine 

action in humans have involved drug infusion protocols (e.g., [66,67]), some of which have 

been demonstrated to maintain a steady serum concentration [68]. Nevertheless, the effects 

of infused ketamine differed strongly from the effects of memantine, which is maintained at 
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stable levels in patients treated by oral administration due to its slow pharmacokinetics [10]. 

Second, phencyclidine, an analog of ketamine, has much slower pharmacokinetics than 

ketamine [69], but greater psychotomimetic effects [70]. Third, a recent study compared in 

rats the behavioral effects of memantine and ketamine at two time points: 15 min after i.p. 

injection, when ketamine concentration should be near peak but memantine concentration 

rising, and 45 min after i.p. injection, when ketamine but not memantine concentration 

should have substantially decreased. The behavioral effects of memantine and ketamine at 

low doses were similar at both time points, and differences in the drugs' effects at higher 

doses were similar at both time points [36]. The results suggested that the pharmacokinetic 

differences between the drugs do not make a major contribution to their differential 

behavioral effects in rodents. It appears likely that some of the observed differences between 

the effects of memantine and ketamine, for example sensitivity to transient inhibition of 

downstream effectors [41], could result from pharmacokinetic differences. However, it 

appears unlikely that the clinical and behavioral effects of memantine and ketamine differ 

predominantly because of the faster pharmacokinetics of ketamine.

A second possibility is that the differential clinical and behavioral effects of memantine and 

ketamine result from differences in their action at sites other than NMDARs. Multiple other 

sites of action have been reported for each drug (e.g., [26,71,72]). For example, memantine 

inhibits multiple acetylcholine receptors subtypes [73-76] and 5-HT3 serotonin receptors 

[10,77], whereas ketamine binds to dopamine D2 and 5-HT2 serotonin receptors [12,78] and 

to HCN1 channels [79]. Although multiple lines of evidence support the hypothesis that the 

actions of memantine and ketamine depend predominantly on NMDAR binding 

[10,70,80,81], there also is strong evidence supporting the importance of other sites of action 

[79]. It seems likely that some of the differences in the drugs' effects, especially at higher 

doses, depend on action at targets other than NMDARs.

A third possibility is that the effects of drug metabolites contribute to the differential 

pharmacological effects of memantine and ketamine. The (S)- and (R)-enantiomers of 

norketamine are major metabolites of ketamine, and inhibit NMDARs, although with lower 

potency than (S)- and (R)-ketamine [14,82,83]. Similar to ketamine, (R,S)-norketamine and 

(2S,6S)-hydroxynorketamine, another ketamine metabolite [83], can increase mTOR 

function [84]. Several ketamine metabolites potently inhibit α7-nicotinic acetylcholine 

receptor-mediated currents [85]. Although, to our knowledge, no active memantine 

metabolites have been reported, differences in the activity of metabolites of ketamine and 

potentially memantine at NMDARs or at non-NMDAR sites could underlie some of their 

differential clinical and behavioral effects.

A fourth possibility is that memantine and ketamine block overlapping but distinct 

populations of NMDARs. NMDARs play diverse roles in nervous system function, and 

differential inhibition of receptors involved in distinct functions could lead to divergent 

clinical and behavioral effects. Although memantine and ketamine bind to overlapping sites 

on NMDARs, there are multiple mechanisms by which they might inhibit distinct receptor 

subpopulations. In the next section we will focus on studies that address the hypothesis that 

memantine and ketamine inhibit distinct subpopulations of NMDARs.
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Differential inhibition of NMDAR subpopulations by memantine and ketamine

Current understanding of the mechanisms of action of memantine and ketamine do not 

permit a confident determination of whether, and if so how, they inhibit distinct 

subpopulations of NMDARs. However, data pointing to an important dichotomy in the 

NMDAR subpopulations inhibited by memantine and ketamine have emerged.

Many recent studies suggest that the important NMDARs inhibited by memantine are 

predominantly extrasynaptic, whereas the important NMDARs inhibited by ketamine are 

synaptic. The significance of differential relative inhibition of synaptic and extrasynaptic 

NMDARs derives from a hypothesis particularly relevant to neurodegenerative diseases: 

that synaptic NMDAR stimulation activates cell survival pathways, whereas extrasynaptic 

NMDAR stimulation activates cell death pathways [86-88]. Activation of extrasynaptic 

NMDARs by ambient glutamate mediates tonic NMDAR current [89-91], and augmented 

extrasynaptic receptor activation has been hypothesized to compromise neuron health in 

nervous system disorders [86-88]. However, it is important to note that there is no consensus 

on the differential implications of synaptic and extrasynaptic NMDAR activation 

[6,24,92-95].

Memantine has been found to inhibit extrasynaptic NMDARs more potently than synaptic 

NMDARs ([96-102]; but see [63,93,94]). However, memantine inhibition of synaptic 

NMDARs can increase with increasing intensity of synaptic stimulation [93,103]. 

Memantine can restore long term potentiation impaired by tonic NMDAR activation 

following reduction of Mg2+ in hippocampal slices [104]; since tonic NMDAR current 

depends mainly on extrasynaptic NMDARs [89], these data are generally consistent with the 

idea that memantine preferentially inhibits extrasynaptic NMDARs. In Huntington's disease 

model mice, memantine reduced functional extrasynaptic NMDAR expression, reversed 

aberrant activation of cell death pathways by suppressing p38 MAPK activation and 

increasing nuclear CREB signaling, and reversed disease-associated deficits [98,100,102].

In contrast, the NMDAR subpopulation of central importance to the rapid anti-depressant 

effects of ketamine was proposed to be synaptic, and possibly a subgroup of NMDARs 

predominantly activated by spontaneous synaptic vesicle release [6,43,105,106]. Acute 

inhibition of synaptic NMDARs by ketamine at doses sufficient to produce antidepressant 

behavioral effects in rodents deactivated eukaryotic elongation factor 2 (eEF2) kinase, 

reducing eEF2 phosphorylation, relieved block of BDNF translation, and increased surface 

expression of AMPARs [105,106]. A recent study found that in the presence of 

physiological Mg2+, ketamine inhibited synaptic NMDARs in hippocampal pyramidal 

neurons much more effectively than memantine [43]. The same study showed that in the 

absence of Mg2+, inhibition of synaptic NMDARs by memantine and ketamine was 

indistinguishable, consistent with previous findings [63]. These results suggest that Mg2+, 

which has been excluded in many basic studies of memantine and ketamine action on 

NMDARs, could play a key role by influencing relative inhibition of NMDAR 

subpopulations by memantine and ketamine.
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Potential mechanisms of differential inhibition

We next will consider mechanisms by which a channel blocker could differentiate NMDAR 

subpopulations. There are at least three ways inhibitors could distinguish synaptic from 

extrasynaptic NMDARs: (1) by differential inhibition of NMDAR subtypes expressed 

synaptically versus extrasynaptically; (2) by differential inhibition based on the 

concentration of glutamate that activates receptors; (3) by differential inhibition based on the 

time course of receptor activation.

There is evidence for differential expression of NMDAR subunits by subcellular location. 

GluN2B-containing NMDARs have been reported to be preferentially localized 

extrasynaptically, and GluN2A-containing NMDARs to be preferentially localized 

synaptically in cortical and hippocampal neurons ([107-109]; but see [110,111]). However, 

neither memantine nor ketamine distinguish strongly between GluN2A- and GluN2B-

containing NMDARs [14,16]. A caveat is that memantine and ketamine inhibition of 

triheteromeric receptors, which are highly expressed in the brain (see [4]), has not been 

characterized. Newly developed approaches for study of isolated triheteromeric receptors 

will facilitate determination of possible differential drug selectivity [112]. There also is 

evidence for preferential extrasynaptic expression of GluN2D-containing NMDARs in 

multiple brain regions [113,114], including hippocampus [115,116]. Because memantine 

and ketamine preferentially inhibit GluN2C- and GluN2D-containing NMDARs in 

physiological Mg2+ [16], extrasynaptic localization of GluN2D-containing NMDARs could 

underlie the drugs' enhanced inhibition of extrasynaptic receptors.

There also is evidence that memantine inhibits NMDARs more effectively at higher agonist 

concentrations ([117], but see [15,118]). However, this observation would not explain 

preferential inhibition of extrasynaptic receptors, since extrasynaptic NMDARs are activated 

by much lower glutamate concentrations than synaptic receptors.

Whether NMDAR inhibition by memantine and/or ketamine depends on the duration of 

agonist exposure has not been directly investigated. If memantine but not ketamine were to 

preferentially inhibit NMDARs tonically activated by the extracellular glutamate to which 

extrasynaptic receptors are exposed, then only memantine would preferentially inhibit 

extrasynaptic NMDARs. As described above, there are conflicting data on whether 

memantine distinguishes synaptic and extrasynaptic receptors in 0 Mg2+, but evidence that 

differential actions of memantine and ketamine appear in the presence of physiological 

Mg2+ [43]. Although initially the powerful effect of Mg2+ on inhibition by channel blockers 

was suggested to affect memantine and ketamine similarly [16], subsequent data suggest that 

the effect of Mg2+ may differ among channel blockers [18]. Further characterization of 

memantine and ketamine inhibition of NMDAR responses in the presence of physiological 

Mg2+ is warranted.

If memantine and ketamine do inhibit distinct populations of NMDARs, then there must be 

an underlying difference in the drugs' mechanism of interaction with NMDARs. One 

difference that has been described is memantine's ability to bind to a superficial site on 

NMDARs to which ketamine does not bind. Memantine binding to the superficial site 

contributes to partial trapping of memantine, a phenomenon that has been proposed to 
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reduce inhibition of synaptic receptors [15,119-122]. The impact of the superficial 

memantine binding site on inhibition in the presence of Mg2+ is unexplored. Another 

possibility is that occupation of the channel by memantine or ketamine may differentially 

affect transition rates between NMDAR states (e.g., between open and closed, agonist-

bound and agonist-unbound, and/or desensitized and undesensitized states) of blocked 

receptors [123-126]. The presence of a blocker in a channel can powerfully influence gating 

transitions, as suggested by Figure 1(b); the M3 α-helices, which surround the blockers, are 

centrally involved in channel gating [3]. “Foot-in-the-door” blockers, which do not permit 

channel closure when bound [127], provide an extreme example of how channel blockers 

can affect channel gating. Some NMDAR channel blockers act as foot-in-the-door blockers 

[124,128], but others accelerate channel closure [125] and agonist unbinding [126]. The 

effect of a channel blocker on transitions between blocked states influences many 

characteristics of inhibition, including dependence of inhibition on agonist concentration 

[129] and on duration of agonist presentation (NG Glasgow and JW Johnson, abstract in Soc 

Neurosci Abstr 2014, 501.08). Thus, there are biophysically plausible explanations for why, 

despite their similarities, memantine and ketamine could inhibit distinct populations of 

NMDARs.

Conclusions

The divergent clinical and behavioral effects of memantine and ketamine could be a 

consequence of multiple differences between the drugs. Their very different 

pharmacokinetics along with differences in their actions at binding sites other than 

NMDARs are likely to make some contribution to differences in the drugs' clinical and 

behavioral effects. There is considerable evidence, however, that the important NMDAR 

subpopulations inhibited by memantine and ketamine differ: many recent studies have 

attributed the beneficial effects of memantine to preferential inhibition of extrasynaptic 

NMDARs, whereas the rapid antidepressant effects of ketamine have been attributed to 

inhibition of synaptic NMDARs. Although the validity of this dichotomy has been 

questioned and a mechanistic basis for differential NMDAR inhibition by memantine and 

ketamine is not established, there are plausible biophysical explanations that remain to be 

tested. More extensive direct comparison of the effects of memantine and ketamine at 

multiple experimental levels will provide critical insight into the important mechanisms 

responsible for the clinical benefits of these NMDAR antagonists.
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Highlights

• Memantine and ketamine block open NMDAR channels via apparently similar 

Mechanisms

• Memantine is a very well-tolerated drug approved for treatment of Alzheimer's 

disease

• Ketamine has rapid antidepressant effects, but replicates symptoms of 

schizophrenia

• The drugs' differential effects may require inhibition of distinct NMDAR 

populations
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Figure 1. 
Images of NMDAR channel blocked by memantine and ketamine. (a) Two nearly complete 

X-ray crystal structures of NMDARs composed of GluN1 and GluN2B subunits recently 

were published [130,131]. Here, one of the structures (Protein Data Bank (PDB) code 4TLM 

[131]) is shown with a red dot at the likely approximate location of memantine and ketamine 

binding sites. The black box indicates the area of the receptor blown up in (b). (b) Top, the 

structure of memantine (left) and ketamine (right). *, ketamine, which has two enantiomers 

((S)- and (R)-ketamine), is depicted without chirality in this planar representation. Bottom, a 

view of the channel region of an NMDAR composed of GluN1 and GluN2A subunits with 

memantine (left) and with (R)-ketamine (right) blocking the channel. The structure of the 

NMDAR channel region is based on the homology model of [132]; the memantine structure 

is from www.edinformatics.com; the (R)-ketamine structure is from PDB code 4F8H [133]. 

There are no structures of NMDARs with a resolved channel blocker; memantine and 

ketamine are placed with the charged nitrogen close to the critical NMDAR channel 

asparagines [121,134,135]. GluN1 subunits are shown in green and GluN2 subunits in blue. 

Structural images were prepared using the molecular visualization program VMD [136].
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