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MOLECULAR STRUCTURAL INSIGHTS OF POLYGLUTAMINE-RICH

AMYLOID-LIKE FIBRILS USING UV RESONANCE RAMAN

SPECTROSCOPY

David Punihaole, PhD

University of Pittsburgh, 2016

There is currently little that is known about the structure of polyglutamine (polyQ)

fibrils, which are involved in at least ten neurodegenerative diseases, including Huntington’s.

Given the difficulty of studying these aggregates, new and incisive biophysical methods need

to be developed in order to obtain high-resolution structural information of polyQ and other

amyloid-like fibrils. Here, we present our recent advances in UV resonance Raman (UVRR)

spectroscopy that enable the elucidation of molecular-level structural information of amyloid-

like fibrils. We show, for example, how the primary amide UVRR bands report on the local

hydrogen bonding and dielectric environment of glutamine side chains. We also discuss a

newly discovered spectroscopic marker, the Amide IIIP vibration, which sensitively reports

on the OCCC dihedral angle of glutamine (Gln) and asparagine (Asn) side chains. These and

other spectroscopic markers are used to gain insights into the peptide backbone and side chain

conformations of polyQ peptides in solution-state and in fibrils. Finally, we demonstrate how

the structural information obtained from UVRR can be utilized to guide Molecular Dynamics

simulations in order to obtain experimentally validated structural models of polyQ fibrils.
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1.0 POLYGLUTAMINE-RICH PROTEINS AND AGGREGATION

1.1 CLINICOPATHOLOGY OF CAG REPEAT DISEASES

The abnormal expansion of DNA trinucleotide repeats that encode homopolymeric tracts

of amino acids in proteins has been implicated in at least 16 diseases [1]. One of the most

prevalent and devastating classes of trinucleotide diseases involve genomic expansions of CAG

repeats that encode for polyQ tracts in proteins. At present, expansions in CAG repeats

have been linked to at least 10 diseases [1–4] (Table 1.1), including several sinocerebellar

ataxis and spinobulbar muscular atrophy. However, the most notable and prevalent CAG

repeat disorder is Huntington’s disease.

The predominant clinical symptoms of CAG repeat diseases are neurodegenerative in

nature (Table 1.1). The characteristic symptoms of Huntington’s disease, for example, are

involuntary, jerky movements (chorea), cognitive impairments, mood swings, and behavioral

changes that progressively worsen over time. In the case of spinobulbar muscular atrophy,

additional non-neurological symptoms also manifest, including gynecomastia and sterility.

A common feature of these diseases is that the severity of the clinicopathological symp-

toms correlates with the length of the polyQ repeat expansion. Generally speaking, the

larger the repeat length, the greater the disease morbidity and mortality rate. There is

strong epidemiological evidence that indicates successive generations of families afflicted by

CAG repeat diseases experience an earlier age of onset of disease symptoms [1, 5]. In all of

these diseases, symptoms manifest when affected proteins possess polyQ tracts that exceed a

threshold repeat length. For example, in Huntington’s disease [4, 6], repeats between 17–30

Gln residues in the huntingtin are generally considered benign, whereas repeat lengths that

exceed 36 Gln residues typically result in disease symptoms.
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Table 1.1: Summary of Trinucleotide CAG Repeat Diseasesa

Diseaseb Gene Product Normal Repeat
Length

Pathological Re-
peat Length

Clinical Features

HD Huntingtin 6–34 36–121 Chorea, dystonia, cognitive impairment, depression, psychiatric
problems

SCA1 Ataxin1 6–44 39–82 Ataxia, cognitive impairments, slurred speech

SCA2 Ataxin2 15–24 32–200 Ataxia, decreased reflexes, infant variant with retinopathy

SCA3 Ataxin3 13–36 61–84 Ataxia, parkinsonism

SCA6 CACNA1A 10–33 36–121 Ataxia, dysarthria, tremors

SCA7 Ataxin7 4–35 37–306 Ataxia, blindness, infant variant with cardiac failure

SCA17 TBP 25–42 47–63 Ataxia, cognitive decline, seizures, psychiatric problems

SBMA Androgen receptor 38–62 36–121 Gynecomastia, decreased fertility, motor weakness

DRPLA Atrophin 7–34 49–88 Ataxia, seizures, dementia, choreoathetosis
aTable adapted from references [1, 3]. bHD: Huntington’s disease; SCA: Spinocerebellar ataxia; SBMA: Spinobulbar muscular atrophy
(Kennedy disease); DRPLA: Dentatorubral-pallidoluysian atrophy.
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1.2 THE ROLE OF POLYQ-RICH AGGREGATES IN PATHOLOGY

The pathological hallmarks of all CAG repeat diseases is the accumulation of insoluble

polyQ-rich protein aggregates in cells [7]. An important aspect in the pathophysiology of

CAG repeat diseases is understanding the role that polyQ-rich aggregates play in neurotox-

icity. Although these aggregates are pathological hallmarks, the question remains: Are they

the toxic agents or merely by-products of the diseases? Numerous studies have addressed this

question in recent years; however, there is little consensus, and the emerging picture is com-

plex. Some studies link polyQ-rich aggregates with cellular toxicity and neurodegeneration,

while others suggest that they potentially play a neuroprotective role.

1.2.1 Evidence Supporting the Toxic Role of Aggregates

Evidence that supports the toxic aggregate hypothesis stems from several observations.

Studies on Huntington’s disease, for example, show that transcription factors [8–12], molec-

ular chaperones [13], and proteasomal proteins [14] colocalize with nuclear and cytoplasmic

inclusions. These results suggest that polyQ aggregates may disrupt normal homeostasis by

sequestering transcription factors and other proteins, thereby depleting their cellular con-

centrations and disrupting their normal functions [15, 16].

More direct evidence supporting aggregate toxicity derives from cell-based assays. Exoge-

nously introduced polyQ aggregates are highly cytotoxic when localized to the nucleus [17].

In addition, expression of atrophin-1 with long tracts of polyQ repeats (129 Gln residues)

in mice results in significantly more neuronal inclusions and greater brain atrophy than

protein constructs with smaller repeat lengths [18]. These results mirror some postmortem

studies [19, 20] of presymptomatic Huntington’s patients, where the formation of polyQ-rich

aggregates correlate to morphological changes in brain tissue.

The cytotoxic effects of nuclear inclusions can be mitigated by rescuing cells with in-

hibitors and molecular chaperones that can prevent aggregation. For example, Cummings

et al. [21] showed that the overexpression of molecular chaperone proteins significantly de-

creases the accumulation of ataxin-1 aggregates. The most compelling evidence, however,
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stems from Thakur et al. [22], who showed that treating cells with small proline-containing

peptides that inhibit aggregation results in significantly reduced cell death.

1.2.2 Evidence Supporting the Non-Toxic Role of Aggregates

Despite mounting evidence, there are several studies that have strongly questioned

whether polyQ-rich aggregates are the toxic agents. An early study that questioned the

toxic aggregate hypothesis was published by Greenberg and coworkers [23]. Although their

results showed that preventing huntingtin aggregation in the nucleus stopped apoptosis, they

did not find a strong correlation between the formation of nuclear inclusions and cell death.

Greenberg and coworkers noted, for example, that the formation of huntingtin aggregates

accompanied neuronal cell death in the striatum, but not the hippocampus. Their findings

have been corroborated by more recent studies [24, 25] that also fail to find a robust link

between polyQ aggregates and cell death or neurodegenerative disease symptoms.

Other studies suggest that polyQ-rich aggregates may actually serve a neuroprotective

role! Evidence supporting this hypothesis derives primarily from mice studies. For example,

Cummings et al. [26] showed that reducing ataxin-1 aggregation acutally correlated to an

increase in the disease pathology spinocerebellar ataxia-1. Their findings are supported

by several more recent studies [27–29], which show that the most apoptotically vulnerable

neuronal cells do not show the formation of aggregate inclusions until the most advanced

stages of disease. In light of these studies, it has been proposed [1] that monomeric (and not

aggregated) polyQ-rich proteins are the cytotoxic agents (vide infra).

1.2.3 Reconciling Contradictory Results on Aggregate Toxicity

It is difficult to reconcile the seemingly contradictory observations regarding the cellular

toxicity of polyQ aggregates. There are many potential reasons for the conflicting reports,

including significant differences in experimental designs and controls. It is conceivable, for

instance, that the different cell lines and animal models used by various research groups

exhibit differential susceptibilities to polyQ aggregate toxicity. In addition, the structural

nature and location of polyQ aggregates may also be important. For example, aggregates
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located in the nucleus are significantly more cytotoxic than those located in the cytoplasm

[17]. Similarly, some studies even suggest that various aggregate polymorphs exhibit different

cytotoxic effects on cells [30]. Finally, it may also be the case that the pathophysiologies of

different CAG repeat diseases vary so that in some disorders aggregates play a more cytotoxic

role. However, it is difficult to imagine that the formation of large neuronal polyQ-rich

aggregates do not at least play some significant role in neuronal cell death.

1.3 UNDERSTANDING THE AGGREGATION OF POLYQ-RICH

PEPTIDES AND PROTEINS

Understanding the underlying aggregation mechanisms of polyQ peptides and proteins

is important in developing fundamental insights into the etiologies of CAG repeat diseases,

as well as formulating potential therapies. To this end, biophysical studies have focused

largely on understanding the structures of polyQ-rich peptides in both solution-state and

in aggregates. Given the only apparent commonality of CAG repeat diseases are the polyQ

repeats, most studies have focused on investigating synthetic homopolymeric model peptide

systems, with sequences such as D2QnK2 or K2QnK2 (where n is the number of Gln repeats).

1.3.1 PolyQ Peptides are Disordered in Solution-state

Most biophysical studies indicate that polyQ peptides are structurally disordered in

solution-state [31–35]. One of the most surprising findings is that there is no obvious differ-

ence in the solution-state secondary structures between “pathologic” and “non-pathologic”

polyQ repeat lengths [34]. These findings are also supported by computational studies [36–

39], which show that polyQ peptides, regardless of repeat length, are largely disordered,

with only transient elements of regular secondary structures such as α-helices, β-sheets, and

turns.

Although polyQ peptides are structurally disordered, they do not behave as true random

coil polymers [4]. Several experimental and computational studies [36, 37, 40–44] indicate
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that the end-to-end distances of polyQ peptides deviate significantly from random coils,

since they adopt relatively collapsed, globule-like structures. In addition, a detailed analysis

of circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra [33] shows that

that polyQ peptides show a high propensity towards adopting residual polyproline II-like

(PPII-like) secondary structures, although not necessarily in long, continuous tracts.

These studies indicate that water is a poor solvent for polyQ peptides that contain long

repeat lengths [43], despite the apparent hydrophilic nature of the Gln side chains. The

collapsed, globule-like structures adopted by polyQ peptides are the result of the extensive

hydrogen bonding interactions that can occur between the secondary amides of the peptide

backbone and the primary amides of the Gln side chains. These inter-amide interactions are

presumably stronger than amide-water hydrogen bonding interactions.

1.3.2 The Toxic Monomer Hypothesis

Although polyQ monomers are predominately disordered in solution-state, there are some

studies that suggest these peptides adopt low concentrations of non-disordered conforma-

tions. These non-disordered structures are believed to be the putative cytotoxic agents that

contribute to neurodegeneration [35]. According to this hypothesis, these non-disordered

states increase significantly in concentration for pathological polyQ repeat lengths (i.e. 35–

45 Gln residues in the case of Huntington’s disease). The appeal of this so-called “toxic

monomer hypothesis” is that it provides an explanation for the pathological gain-of-function

that arises in mutated proteins with expanded polyQ repeat domains, while also accounting

for observations that polyQ aggregates do not robustly correlate with neuronal cell death.

The supporting data for this hypothesis derives primarily from antibody binding studies.

Trottier et al. [45], for example, observed with Western blot analysis that monoclonal anti-

polyQ antibodies have a higher binding affinity for proteins with longer polyQ repeat domains

than shorter, non-pathologically relevant repeat lengths. These data led to the speculation

that the antibodies preferentially recognize stretches of polyQ repeats that adopt specific

secondary structures. Similar results have been observed more recently with a different

monoclonal antibody, called 3B5H10 [46]. X-ray crystallographic and small-angle X-ray
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scattering data [47] suggests that 3B5H10 antibodies recognize β-hairpins that are formed

in polyQ peptides with pathologically long repeat lengths.

Although it is difficult to unequivocally rule out the existence of low concentrations of

polyQ monomers that adopt stable, ordered structures, there are alternative explanations

that account for the results of these antibody binding studies. One explanation, for example,

is that antibodies can trap kinetically accessible polyQ conformations that are not normally

populated. Another explanation is the so-called “linear lattice” effect [48, 49], where the

preferential binding is due to there being a significant increase in the number of epitopes in

polyQ peptides of pathological repeat lengths compared to non-pathological repeat lengths.

1.3.3 Proposed Aggregate Structures

PolyQ aggregates prepared from synthetic peptides in vitro bear many of the hallmark

features of amyloid-like fibrils, including displaying filamentous morphologies, exhibiting β-

sheet-rich structures, and binding Thioflavin-T [32, 35]. Despite this, polyQ aggregates do

not exhibit all the characteristics of amyloids as exemplified, for example, by Aβ fibrils.

Some amyloid features that polyQ aggregates do not display include exhibiting birefringence

upon Congo Red binding and a classical cross-β X-ray fiber diffraction pattern [4, 32, 35, 50].

There are currently no atomic-resolution structures of polyQ aymloid-like fibril aggregates.

However, numerous structures (Figure 1.1) have been proposed for polyQ fibrils on the basis

of a variety of classical biophysical methods.

The first detailed structural model of polyQ fibrils was proposed by Perutz and coworkers

[52], who utilized X-ray fiber diffraction. Their results showed that D2Q15K2 aggregates

produce diffraction patterns with prominent reflections located at 4.2�A, 4.8�A, and 8.4�A.

They attributed the diffraction pattern to a cross-β structure and assigned the 4.8�A reflection

to the inter-strand distance of the fibril β-sheets. However, the origin of the 8.4�A reflection

was mysterious since typical amyloids show inter-β-sheet distances between 10–12�A. As a

result, Perutz et al. proposed that polyQ fibril aggregates were composed of “polar-zipper”

structures (Figure 1.1a), where the neighboring β-sheets are stacked ∼17�A apart and are

hydrogen bonded to each other via side chain amides.
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(a) (b) (c) (d)

Figure 1.1: Proposed structures for polyQ fibrils: (a) polar zipper structure; (b) β-helix; (c)

β-arc; and (d) canonical β-sheet. Adapted with permission from [51]. Copyright © (2012),

American Chemical Society.

The lack of the characteristic 10–12�A reflection in polyQ fibril diffraction patterns com-

pelled Perutz and coworkers to reanalyze their data in a subsequent study [53]. In their

revised model, they proposed that polyQ fibrils consist of water-filled nanotubes that are

formed by cylindrical β-helices (Figure 1.1b). However, other studies provide alternative

interpretations of the polyQ diffraction data collected by Perutz et al. [52, 53]. For example,

Sikorski and Atkins [54] analyzed the original X-ray data of Perutz [52] and argued that the

β-helical model was incorrect. Instead, they proposed that polyQ fibrils are composed of a

cross-β structure, but, because of extensive side chain inter-amide hydrogen bonding inter-

actions, the β-sheets are stacked closer together (∼8–9�A) than typical amyloids (∼10–12�A).

The Sikorski and Atkins interpretation of the Perutz data have been further substantiated

by Sharma et al.’s [55] work, who also propose that polyQ fibrils are composed of cross-β

structures. The Sharma et al. model posits that polyQ fibril aggregates are composed

of antiparallel β-sheets that contain reverse hairpin turns. Their model, however, differs

significantly from the Sikorski and Atkins [55] structure. For example, despite obtaining

similar diffraction patterns as those analyzed by Sikorski and Atkins, Sharma et al. assign

different unit cells and thus their proposed fibril structure contains significant structural

differences.

More recent studies have investigated polyQ fibril structure using solid state NMR.

Schneider et al. [56] studied a series of peptides with polyQ repeats ranging from 15–54
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residues. They proposed that the basic structural motif of D2Q15K2 fibrils is an extended

β-strand structure, which assembles to form antiparallel β-sheets. Based on their interpre-

tation of solid state NMR spectra of GK2Q38K2 and GK2Q54K2 aggregates, Schneider et al.

propose that fibrils prepared from larger polyQ peptides adopt β-arc structures (Figure 1.1c),

similar to those observed in Aβ [57].

The β-arc model has been challenged by other solid state NMR studies. Van der Wel and

coworkers have measured solid state NMR spectra of polyQ fibrils prepared from both model

and more complex peptides that contain flanking sequences found in the huntingtin protein

[58–61]. Their fibril spectra are very similar to those reported by Schneider et al. [56];

however, van der Wel and coworkers believe the data are inconsistent with a β-arc structure.

Instead, they hypothesize that polyQ fibrils are composed of canonical antiparallel β-sheet

structures that contain reverse-hairpin turns [61] (Figure 1.1d).

There have been a number of computational studies that have examined the structure

of polyQ fibrils. Early simulation studies suggested that β-helical nanotubes are potentially

stable fibril structures [62–65]. However, these studies did not rigorously validate their

simulation results against experiments. More recent and rigorous computational studies

[51, 66] that employ multiple force fields clearly show that β-nanotubes are highly unstable.

Instead, these studies indicate that the most stable fibril architectures are β-arc and β-sheet

structures.

1.3.4 Proposed Aggregation Mechanisms

Mechanistic studies on polyQ fibril aggregation have been pioneered by Wetzel and

coworkers [59, 67–71]. Using sedimentation assays [72], the Wetzel group [35] proposes

that simple polyQ peptide fibril aggregation proceeds via a classical nucleated growth-

polymerization model. Interestingly, their systematic studies examining the aggregation

concentration dependence of K2QnK2 peptides indicate that polyQ fibrils are homogeneously

nucleated and that the critical nucleus size is a monomer for peptides containing repeats of

more than 25 Gln residues [32, 59].

Traditionally, a monomeric nucleus is considered unusual in polymer theory [32]. To
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Figure 1.2: Proposed aggregation mechanisms for polyQ fibril formation. The region shaded

in gray represents the aggregation pathway proposed by Wetzel and coworkers. In this

pathway, nucleation occurs through the energetically unfavorable structural conversion of

a structurally disordered monomeric polyQ peptide to a β-sheet-rich structure that can

initiate fibril formation. The alternative pathway is proposed by Pappu and coworkers. In

this mechanism, polyQ peptides oligomerize into globule-like aggregates. These aggregates

contain interfaces that promote the formation of β-sheet structures that eventually lead to

fibrils. This figure was reprinted and adapted from [38], copyright © (2009), with permission

from Elsevier.

rationalize their observations, Wetzel and coworkers [32] proposed that fibril nucleation is

initiated by the energetically unfavorable conversion of a structurally disordered polyQ pep-

tide into a β-sheet-rich peptide through the formation of a hairpin turn (Figure 1.2). Wetzel

and coworkers have published a number of elegant mutagenesis studies [59, 69] that provide

evidence supporting this model. Their studies show, for example, that polyQ peptides con-

taining β-hairpin enhancing motifs (e.g. tryptophan zippers, Pro-Gly insertions, Cysteine

disulfide bonds, salt bridge forming residues) result in significantly increased aggregation

kinetics compared to unmutated peptide sequences.

The classical nucleated growth-polymerization model has been challenged in recent years

10



by a series of computational studies conducted primarily by Pappu and coworkers [36–

38, 41, 44, 62]. Their simulations corroborate [36, 41] experimental evidence that monomeric

polyQ peptides are structurally disordered in solution-state. However, in contrast to the Wet-

zel model [73], Pappu and coworkers predict that β-sheet formation of monomeric polyQ

peptides becomes more energetically unfavorable with increasing Gln repeat lengths. Their

computational data [37, 38] indicates that the spontaneous formation of dimers and higher

order oligomers increases dramatically as a function of polyQ repeat length due to the for-

mation of non-specific hydrogen bonding interactions between main chain and side chain

amides.

In light of their results, Pappu and coworkers argue that polyQ fibrils are not nucle-

ated via a coil to β-sheet structural transition. Instead, they hypothesize that monomeric

polyQ peptides adopt disordered “globule” structures that non-specifically aggregate into

high molecular weight oligomers [38, 44] (Figure 1.2). According to this model, these ag-

gregates contain interfaces that promote the formation of β-sheet-rich structures that then

structurally convert into amyloid-like fibrils [38]. The Pappu model has prompted several

researchers to re-evaluate the interpretation of experimental aggregation kinetics data. For

example, both the Pappu [44] and Murphy groups [74] argue that the Wetzel et al. sedimen-

tation assay data are insufficient to differentiate between a nucleated growth-polmerization

and more complex aggregation models.

Reliable experimental data supporting the Pappu model remains scarce. Currently, only

one study, by Lee et al. [75], claims to observe the soluble oligomeric aggregates predicted

by the Pappu model. However, the presence of these oligomer aggregates may be due to an

artifact that occured during sample preparation [35]. It is well known that many synthetic

preparations of amyloidogenic peptides contain micro-aggregates that can heterogeneously

seed fibrils [76]. To guard against this, “disaggregation” protocols [72, 76, 77] have been

developed to remove these aggregates.

These protocols typically treat synthetic peptides with volatile, fluorinated solvents such

as trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP) that disrupt hydrogen bond-

ing interactions and dissolve aggregates. As shown by Kar et al. [70], rigorous disaggregation

of polyQ peptides do not result in the formation of high molecular weight amorphous aggre-
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gates during fibril formation. Furthermore, studies [78, 79] show that HFIP can drive pep-

tides towards oligomeric aggregate formation. Thus, the experimental evidence of oligomeric

aggregates observed by Lee et al. [75] may be due to the failure to completely remove HFIP

during disaggregation.

1.4 THE NEED FOR NEW BIOPHYSICAL TOOLS TO STUDY

AMYLOID-LIKE FIBRILS

The lack of consensus regarding the structure and aggregation mechanism(s) of polyQ

fibrils motivates the need to develop incisive biophysical tools that can quantitatively dis-

criminate between different proposed models. The fact, for example, that three independent

groups [52–55] analyzed similar X-ray fiber diffraction data and proposed four distinctly

different structures highlights the difficulties associated with using conventional biophysical

techniques to study polyQ amyloid-like fibrils.

Traditional methods such as X-ray diffraction and solution-state NMR typically cannot

be utilized to study amyloid-like fibrils due to their insoluble and non-crytalline nature.

Currently, the gold standard biophysical method to study amyloid-like fibrils is solid state

NMR. Solid state NMR has been used with great success to solve several fibril structures

[80–83]. An impressive array of sophisticated pulse sequences and methodologies have been

developed to measure dihedral angles and distance constraints in fibrils [84–87]. In recent

years, for example, the development of high-field dynamic nuclear polarization experiments

have enabled the measurement of very high signal-to-noise fibril spectra [87, 88].

These sophisticated measurements, however, remain highly challenging and expensive. In

order to obtain high signal-to-noise spectra, typical solid state NMR studies require extensive

and costly isotopic 13C and 15N labeling, which can be very challenging to incorporate into

proteins. Furthermore, spectral data collection typically requires long acquisition times that

can take days and consume large quantities of precious samples. Finally, since spectral

dispersion is often poor, many solid state NMR studies provide only qualitative information

on the secondary structure of amyloid fibrils.
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Ultraviolet resonance Raman (UVRR) spectroscopy is a powerful biophysical tool that

can provide detailed molecular-level insights into polyQ solution-state and fibril structure.

An advantage of UVRR is that, compared to NMR methods, structural information can be

obtained quickly and under dilute concentrations [89]. Lednev and coworkers [90–95] have

shown that UVRR is an excellent tool for probing the cross-β structure of fibrils, as well as

monitoring the conformational changes that occur in amyloidgenic peptides during aggre-

gation. In recent years, Asher and coworkers have identified several UVRR spectroscopic

markers that are highly sensitive to the structure and hydrogen bonding environment of the

peptide backbone [96–98], as well as amino acid side chains [99–103]. This has enabled new

and deep insights into protein folding [104–107]. The primary goal of this dissertation work

is to discover new spectroscopic markers that can be utilized to quantitatively investigate

the structure of polyQ-rich peptides in solution-state and fibril aggregates.
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2.0 UV RESONANCE RAMAN SPECTROSCOPY

2.1 CLASSICAL ELECTRODYNAMICS THEORY OF RAYLEIGH AND

RAMAN SCATTERING

Figure 2.1 illustrates Rayleigh and Raman scattering from a classical electrodyanamics

perspective. When electromagnetic radiation excites a molecule, its electron cloud oscillates

at the frequency of the incident light, and results in a displacement of charge that induces

a change in the dipole moment. Because electrons are being accelerated, energy is radiated

in the form of light [108]. Most of the radiating light occurs at the same frequency (ωI) as

the incident electromagnetic radiation and is said to be elastically scattered. Assuming the

wavelength of the exciting electromagnetic radiation is much larger than the dimensions of

the molecule, this phenomenon is called Rayleigh scattering.

As shown in Figure 2.1, not all the light is elastically scattered. The motions of the

oscillating electrons can couple to slower moving nuclear vibrational motions in the molecule.

This coupling results in Raman (inelastic) scattering, where the electrons oscillate at a beat

frequency. The Raman scattered light can be shifted to higher (ωI + ωS) or lower (ωI − ωS)

frequencies with respect to the incident electromagnetic radiation. Scattered light that

occurs at lower frequencies than the exciting incident radiation is said to be Stokes-shifted.

In contrast, scattered light that occurs at higher frequencies than the incident light is anti-

Stokes shifted.

Resonance Raman scattering occurs when the exciting radiation falls within the “natural”

frequencies of the electron oscillators. These natural frequencies correspond to electronic

transitions that, in biological molecules, typically lie in the deep ultraviolet (UV). Resonance

Raman results in a tremendous enhancement in the scattering signal because the exciting
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Figure 2.1: Classical physics picture of Rayleigh and Raman scattering. A molecule ex-

cited by electromagnetic radiation with a frequency of ωI can scatter light elastically and

inelastically. The elastically scattered light is known as Rayleigh scattering. The inelasti-

cally scattered light is known as Raman scattering. Adapted with permission from [109].

Copyright © (1993), American Chemical Society.

radiation is tuned into the natural frequencies of the electron oscillators. Another advantage

is that only those vibrations that couple most efficiently to the electronic transition being

excited are observed in resonance Raman spectra.

This second advantage confers the unique selectivity of resonance Raman spectroscopy.

The vibrations of different chromophores can be selectively excited by judiciously tuning

the wavelength of the excitation light so that it lies within a specific absorption band [89].

This dramatically simplifies resonance Raman spectra (Figure 2.2) and consequently relieves

spectral congestion that plagues non-resonance Raman and FTIR spectra of complex biolog-

ical macromolecules such as proteins. For example, in the case of myoglobin, vibrations of

the heme group can be excited by tuning into the Soret band at ∼400 nm. Excitation in the

UV, at the ∼220 nm, tunes into the π → π∗ transition of aromatic amino acids, which en-

ables side chain vibrations of tryptophan, tyrosine, and phenylalanine to be studied. Deeper

excitation in the UV at ∼180 nm–210 nm occurs within the π → π∗ transitions of amides,

which enables investigations of the peptide backbone and the amino acid side chains of Gln.
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Figure 2.2: Selectivity advantage of resonance Raman spectroscopy. Excitation within dif-

ferent electronic absorption bands of myoglobin enable the selective enhancement of Raman

bands that derive from vibrations of different chromophores. Adapted with permission from

[89]. Copyright © (2012), American Chemical Society.

2.2 QUANTUM MECHANICAL THEORY OF RAYLEIGH AND RAMAN

SCATTERING

The classical theory correctly predicts the existence of Rayleigh and Raman light scatter-

ing. However, it fails to provide accurate insights into the physical origins of these phenom-

ena, as well as predict scattering intensities. The accurate theoretical treatment of Rayleigh

and Raman scattering requires quantum mechanics. The traditional theoretical treatment

of Rayleigh and Raman scattering begins with the dispersion equation originally derived by

Kramers and Heisenberg [110]. The first quantum-mechanical derivation of the dispersion

equation was given by Born, Heisenberg, and Jordan [111] using second order perturbation

theory. Dirac [112] later expanded on this derivation by also quantizing the radiation field.

A key result of applying second order perturbation theory is that Rayleigh and Raman

scattering belong to two photon processes, as shown in Figure 2.3. For these phenom-
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Figure 2.3: Energy diagrams showing various two photon optical processes. (a) Rayleigh

scattering: a molecule absorbs a photon of frequency ωI , which excites it into a virtual

state. A photon of frequency ωS = ωI is emitted, destroying the virtual state, so that the

molecule’s final state is the same as its initial state. (b) Non-resonance Raman scattering: a

molecule absorbs a photon of frequency ωI , which excites it into a virtual state. The virtual

state is destroyed following the emission of a scattered photon of frequency ωS 6= ωI . (c)

Resonance Raman scattering: the frequency, ωI , of an incident photon corresponds to an

electronic transition from S0 →S1. A scattered photon of frequency ωS is emitted so that

the molecule’s final state is different from the initial state. (d) Two photon absorption: a

molecule absorbs two photons of frequency ωI and ω′I . (e) Two photon emission: a molecule

emits two photons of frequency ωS and ω′S

ena, scattering proceeds via a one photon absorption and a one photon emission event.

These events are coupled (Figure 2.3a–c) so that they occur nearly simultaneously [113]: the

molecule in an initial state |i〉 is perturb by an incident electromagnetic field, whereupon

it absorbs a photon of frequency ωI and is excited into an intermediate, so-called “virtual”

state. The molecule then emits a “scattered” photon of frequency ωS, which destroys this

virtual state, and brings it to a final state |f〉.

2.2.1 The Kramers-Heisenberg Dispersion relation

The central equation to understand Rayleigh and Raman scattering is the Kramers-

Heisenberg dispersion relation, which we will derive here. To derive the dispersion relation,
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we begin with the transition rate (see APPENDIX A, Derivation of the Transition Scattering

Rate for a detailed derivation and discussion) associated with two photon scattering [114,

115]:

Wfi =
πE2

IE
2
S

8h̄3

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2ρf (2.1)

where E, ε, ω are the amplitudes, polarization directions, and frequencies, respectively, of

the incident (denoted by the subscript I) and scattered (denoted by the subscript S) elec-

tromagnetic fields. The term, ωri, is equal to the frequency difference between an arbitrary

eigenstate, |r〉, and the initial state of the system, |i〉 (i.e. ωr − ωi). The transition dipole

operators, µ̂, couple the molecule to the incident electromagnetic field perturbing the system,

and the subscripts, σ and ρ, denote the directions of the transition moments. The density

of |f〉 states is denoted by ρf .

The differential scattering cross section, dσ/dΩf , can be derived from the scattering rate

by dividing eq. 2.1 by the incident photon flux, Φ (eq. 2.2), and substituting ES and ρf with

eqs. 2.3 and 2.4 [115] (see eq. A.15):

Φ =
E2
I c

8πh̄ωI
(2.2)

ES =
8πh̄ωS
V

(2.3)

ρf =
ω2
SV

(2πc)3h̄
dΩf (2.4)

dσ

dΩf

=
ωIω

3
S

c4

1

h̄2

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2 (2.5)

where c is the speed of light and dΩf is the scattering solid angle.

Eq. 2.5 is the famous Kramers-Heisenberg dispersion relation. The scattering cross sec-

tion, which is proportional to the scattering intensity, can be derived from this equation
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by averaging over all molecular orientations, integrating over the full 4π solid angle, and

summing over all incident and scattered light polarizations [115]:

σ =
8πe4ωIω

3
S

9c4

1

h̄2

∑
ρ,σ

∑
r

∣∣∣∣〈f |r̂ρ|r〉 〈r|r̂σ|i〉ωri − ωI
+
〈f |r̂σ|r〉 〈r|r̂ρ|i〉

ωri + ωS

∣∣∣∣2 (2.6)

where we utilize the fact that µ̂ = er̂ (r̂ is the position operator and e is the charge of an

electron). The cross section equation can be further simplified by introducing the second

rank tensor, (αρσ)fi, which is known as the molecular polarizability:

(αρσ)fi =
1

h̄

∑
r

[
〈f |r̂ρ|r〉 〈r|r̂σ|i〉

ωri − ωI
+
〈f |r̂σ|r〉 〈r|r̂ρ|i〉

ωri + ωS

]
(2.7)

so that eq. 2.6 now becomes:

σ =
8πe4ωIω

3
S

9c4

∑
ρ,σ

∣∣(αρσ)fi
∣∣2 (2.8)

The quantum mechanical origins of Rayleigh and Raman scattering, as discussed earlier in

regards to Figure 2.3, is revealed in eq. 2.7 and 2.8. These expressions indicate that the

virtual state is actually a linear combination of all the eigenstates in the system. Since

the molecule does not possess an eigenstate that is resonant with this virtual state, energy

conservation appears to be violated. However, this is not the case since the absorption and

emission events occur nearly simultaneously. Given the short lifetime of the intermediate

state, Heisenberg’s uncertainty principle (∆E∆t ≥ h̄) states that the energy uncertainty

(∆E) of the system is very large over the short time interval (∆t) during which the virtual

state exists. Thus, any |r〉 eigenstate of the system can be momentarily produced, thereby

maintaining energy conservation [113, 114].

For Rayleigh scattering, there is no frequency shift in the scattered light relative to the

incident light (ωI = ωS), so that the initial and final states of the excited molecule are the

same. From eq. 2.8, it can be seen that, under this condition, the cross section scales as ω4
I ,

in accordance Rayleigh’s famous scattering law. This ω4
I frequency dependence explains, for

example, the color of the sky. Molecules in the atmosphere scatter shorter (blue) wavelength

light more efficiently than longer (red) wavelength light. This is why the color of the sky is

blue during the day.
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In Raman scattering, there is an exchange of a quantum of energy so that the initial and

final states of the molecule are different. As shown in Figure 2.3b, the frequency difference

between the ωI and ωS corresponds to a vibrational transition from state |i〉 to |f〉. In

this sense, Raman spectroscopy is complementary to infrared (IR) spectroscopy. However,

because Raman is a two photon scattering process and IR is a one photon absorption process,

the selection rules between these two spectroscopies are different.

2.3 NON-RESONANCE VS. RESONANCE SCATTERING

The traditional approach to understand resonance Raman scattering (Figure 2.3c) is

to utilize the vibronic theory championed primarily by Albrecht and coworkers [115–118].

This theory treats Rayleigh and Raman scattering in the framework of vibronic spectro-

scopies, where, the resonance scattering intensities of the electronic ground state vibrations

are intimately tied to transitions of excited vibronic states. In this section, we examine the

vibronic theory by Albrecht in order to elucidate important physical aspects of resonance

and non-resonance Raman scattering.

2.3.1 General Vibronic Theory

The wave functions in eq. 2.7 depend on both the electronic and vibrational states.

Albrecht [117] first assumed that the electronic and vibrational state wavefunctions are

separable by invoking the Born-Oppenheimer approximation:

|Ψm〉 = |φe(q,Q)χem(Q)〉 = |φe(q,Q)〉 |χem(Q)〉 = |φe〉 |χem〉 (2.9)

where |φe〉 is the wave function for an electronic state, e, which depends on the complete set

of internal coordinates of both the nuclei (Q) and the electrons (q). The state |χem〉 is the

vibrational wave function associated with the resonant electronic excited state, e, and the

vibrational state, m. Inserting eq. 2.9 into eq. 2.7 gives the following equation:
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(αρσ)gf ′,gi′ =
1

h̄

∑
e

∑
r′

[
〈χgf ′ | 〈φg|r̂ρ|φe〉 |χer′〉 〈χer′| 〈φe|r̂σ|φg〉 |χgi′〉

ωer′ − ωgi′ − ωI

+
〈χgf ′ | 〈φg|r̂σ|φe〉 |χer′〉 〈χer′| 〈φe|r̂ρ|φg〉 |χgi′〉

ωer′ − ωgi′ + ωS

]
(2.10)

where ωri = ωer′ − ωgi′ . The electronic wave functions can be expanded using a Taylor’s

series about the nuclear coordinates around the equilibrium ground state structure. To first

order theory, the result of this Herzberg-Teller expansion [117] is:

|φg〉 = |φ(0)
g 〉+

1

h̄

∑
a

∑
t6=g

(h
(0)
a )es · Q̂a

ω
(0)
g − ω(0)

t

|φ(0)
t 〉 (2.11)

|φe〉 = |φ(0)
e 〉+

1

h̄

∑
a

∑
s 6=e

(h
(0)
a )gt · Q̂a

ω
(0)
g − ω(0)

s

|φ(0)
s 〉 (2.12)

where |φ(0)
g 〉, |φ(0)

e 〉, |φ(0)
s 〉, and |φ(0)

t 〉 are the unperturbed electronic wave functions for states

g, e, s, and t, respectively. State g is the electronic ground state, while s and t are non-

resonant electronic excited states. The operator, Q̂a, is the displacement operator for the ath

normal mode. The Herzberg-Teller coupling integrals, (h
(0)
a )gt and (h

(0)
a )es, are defined as:

(h(0)
a )gt = 〈φ(0)

g |(∂Ĥ/∂Qa)0|φ(0)
t 〉 (2.13)

(h(0)
a )es = 〈φ(0)

s |(∂Ĥ/∂Qa)0|φ(0)
s 〉 (2.14)

Substituting eqs. 2.11 and 2.12 into eq. 2.10 gives the following equation [115] (see AP-

PENDIX A, Derivation of the Albrecht A, B, and C Terms for details):

(αρσ)gf ′,gi′ ≈ A+B + C (2.15)

where,

A =
1

h̄

∑
e 6=g

∑
r′

[
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉
ωer′ − ωgi′ − ωI

+
〈φg|r̂σ|φe〉 〈φe|r̂ρ|φg〉
ωer′ − ωgi′ + ωS

]
〈χgf ′|χer′〉 〈χer′|χgi′〉 (2.16)
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B =
1

h̄2

∑
e 6=g

∑
r′

∑
a

∑
s 6=e

{[
〈φ(0)

g |r̂ρ|φ(0)
e 〉 〈φ(0)

e |(∂Ĥ/∂Qa)0|φ(0)
s 〉 〈φ(0)

s |r̂σ|φ(0)
g 〉

ωer′ − ωgi′ − ωI

+
〈φ(0)

g |r̂σ|φ(0)
e 〉 〈φ(0)

e |(∂Ĥ/∂Qa)0|φ(0)
s 〉 〈φ(0)

s |r̂ρ|φ(0)
g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |χer′〉 〈χer′ |Q̂a|χgi′〉

ω
(0)
e − ω(0)

s

]
+

[
〈φ(0)

g |r̂ρ|φ(0)
s 〉 〈φ(0)

s |(∂Ĥ/∂Qa)0|φ(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
g 〉

ωer′ − ωgi′ − ωI

+
〈φ(0)

g |r̂σ|φ(0)
s 〉 〈φ(0)

s |(∂Ĥ/∂Qa)0|φ(0)
e 〉 〈φ(0)

e |r̂ρ|φ(0)
g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |Q̂a|χer′〉 〈χer′ |χgi′〉

ω
(0)
e − ω(0)

s

]}
(2.17)

C =
1

h̄2

∑
e 6=g

∑
r′

∑
a

∑
t6=e

{[
〈φ(0)

g |r̂ρ|φ(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
t 〉 〈φ

(0)
t |(∂Ĥ/∂Qa)0|φ(0)

g 〉
ωer′ − ωgi′ − ωI

+
〈φ(0)

g |r̂ρ|φ(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
t 〉 〈φ

(0)
t |(∂Ĥ/∂Qa)0|φ(0)

g 〉
ωer′ − ωgi′ + ωS

][
〈χgf ′ |χer′〉 〈χer′|Q̂a|χgi′〉

ω
(0)
e − ω(0)

s

]
+

[
〈φ(0)

g |(∂Ĥ/∂Qa)0|φ(0)
t 〉 〈φ

(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
g 〉

ωer′ − ωgi′ − ωI

+ [
〈φ(0)

g |(∂Ĥ/∂Qa)0|φ(0)
t 〉 〈φ

(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′|Q̂a|χer′〉 〈χer′|χgi′〉

ω
(0)
g − ω(0)

t

]}
(2.18)

For a particular vibration, a, the scattering intensities that derive from the B and C

terms due to Herzberg-Teller coupling are proportional to the displacement, Qa, and in-

versely proportional to the frequency differences, ω
(0)
g − ω(0)

t and ω
(0)
e − ω(0)

s . The frequency

dependence of the B and C terms means that significant coupling will occur only when the

|s〉 and |t〉 electronic states are close in energy to the electronic ground state, |g〉, and the

resonant electronic excited state, |e〉. Typically, the energy difference between |g〉 and |t〉 is

much larger than that between |e〉 and |s〉 (i.e., ω
(0)
g − ω(0)

t � ω
(0)
e − ω(0)

s ). This means that,

in typical cases, the C term can be neglected, so that eq. 2.15 becomes [115]:

(αρσ)gf ′,gi′ ≈ A+B (2.19)
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2.3.2 Non-Resonance Rayleigh and Raman Scattering

Eq. 2.19 can used to understand non-resonance and resonance scattering. We will first

briefly consider the non-resonance case, wherein the frequency of the exciting electric field is

far away from an electronic absorption band such that |ωer′−ωgi′−ωI | � 0. In this situation,

ωer′ − ωgi′ − ωI ≈ ωer′ − ωgi′ + ωS and ωer′ − ωgi′ ≈ ω
(0)
e − ω(0)

g . Using these approximations,

eq. 2.19 can be written as:

A =
1

h̄

∑
e 6=g

[
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉
ω

(0)
e − ω(0)

g − ωI
+
〈φg|r̂σ|φe〉 〈φe|r̂ρ|φg〉
ω

(0)
e − ω(0)

g + ωI

]
〈χgf ′ |χgi′〉 (2.20)

B =
1

h̄2

∑
e 6=g

∑
a

∑
s6=e

{
[
〈φ(0)g |r̂ρ|φ(0)e 〉 〈φ(0)e |(∂Ĥ/∂Qa)0|φ(0)s 〉 〈φ(0)s |r̂σ|φ(0)g 〉+ 〈φ(0)g |r̂ρ|φ(0)s 〉 〈φ(0)s |(∂Ĥ/∂Qa)0|φ(0)e 〉 〈φ(0)e |r̂σ|φ(0)g 〉

ω
(0)
e − ω(0)

g − ωI

+
〈φ(0)g |r̂σ|φ(0)e 〉 〈φ(0)e |(∂Ĥ/∂Qa)0|φ(0)s 〉 〈φ(0)s |r̂ρ|φ(0)g 〉+ 〈φ(0)g |r̂σ|φ(0)s 〉 〈φ(0)s |(∂Ĥ/∂Qa)0|φ(0)e 〉 〈φ(0)e |r̂ρ|φ(0)g 〉

ω
(0)
e − ω(0)

g + ωI

]
×
[
〈χgf ′ |Q̂a|χgi′〉
ω
(0)
e − ω(0)

s

]}
(2.21)

To derive these equations, all r′ vibrational states were summed over using the identity shown

in A.9. Eqs. 2.20 and 2.21 can be further simplified by assuming that the wavefunctions are

all real, so that the numerators belonging to the ω
(0)
e − ω(0)

g − ωI and ω
(0)
e − ω(0)

g + ωI terms

are equal. Thus, using the following algebraic identity,

1

a− b
+

1

a+ b
=

2a

a2 − b2
(2.22)

eqs. 2.20 and 2.21 can be simplified to:

A =
1

h̄

∑
e6=g

[
2(ω

(0)
e − ω(0)

g )

(ω
(0)
e − ω(0)

g )2 − ω2
I

]
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉 〈χgf ′|χgi′〉 (2.23)

B =
1

h̄2

∑
e6=g

∑
a

∑
s 6=e

{[
2(ω

(0)
e − ω(0)

g )

(ω
(0)
e − ω(0)

g )2 − ω2
I

][
〈χgf ′|Q̂a|χgi′〉
ω

(0)
e − ω(0)

s

]
× 〈φ(0)

g |r̂ρ|φ(0)
e 〉 〈φ(0)

e |(∂Ĥ/∂Qa)0|φ(0)
s 〉 〈φ(0)

s |r̂σ|φ(0)
g 〉

+ 〈φ(0)
g |r̂ρ|φ(0)

s 〉 〈φ(0)
s |(∂Ĥ/∂Qa)0|φ(0)

e 〉 〈φ(0)
e |r̂σ|φ(0)

g 〉
}

(2.24)
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It can be seen that the A term is non-zero only when |χgi′〉 = |χgf ′〉. Therefore, the A term

is solely responsible for Rayleigh scattering in non-resonance cases. In contrast, B term is

non-zero on three conditions: |χgf ′〉 = |χgi′ ± 1〉; the Herzberg-Teller coupling integrals are

non-zero; and there are no interference effects that occur when summing over the electronic

states. Thus, according to Albrecht’s vibronic theory, the B term is solely responsible for

non-resonance Raman scattering intensities of fundamentals.

2.3.3 Resonance Rayleigh and Raman Scattering

We now consider the case of resonance, where the excitation frequency lies within a

molecule’s electronic absorption band. As ωI approaches ωer′ − ωgi′ , eq. 2.10 is no longer

valid because the scattering amplitude that derives from the term containing ωer′ − ωgi′ −

ωI becomes infinite. In reality, radiation dampening occurs due to the finite lifetime of

populating the eigenstates. To account for this, we introduce a phenomenological damping

coefficient, Γ, so that eq. 2.10 can be re-written as:

(αρσ)gf ′,gi′ =
1

h̄

∑
e

∑
r′

[
〈χgf ′ | 〈φg|r̂ρ|φe〉 |χer′〉 〈χer′| 〈φe|r̂σ|φg〉 |χgi′〉

ωer′ − ωgi′ − ωI + iΓ

+
〈χgf ′ | 〈φg|r̂σ|φe〉 |χer′〉 〈χer′| 〈φe|r̂ρ|φg〉 |χgi′〉

ωer′ − ωgi′ + ωS + iΓ

]
(2.25)

Using this expression, eq. 2.19 can be modified in two different ways. First, the summation

over e disappears, since the molecule is being excited into a specific electronic excited state.

Second, the “non-resonant” ωer′ − ωgi′ + ωS term in eq. 2.25 can be neglected because it is

significantly smaller than the ωer′−ωgi′−ωI term. Thus, eqs. 2.16 and 2.17 can be re-written

as:

A =
1

h̄
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉

∑
r′

[
〈χgf ′|χer′〉 〈χer′|χgi′〉
ωer′ − ωgi′ − ωI + iΓ

]
(2.26)
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B =
1

h̄2

∑
r′

∑
a

∑
s 6=e

{[
〈φ(0)g |r̂ρ|φ(0)e 〉 〈φ(0)e |(∂Ĥ/∂Qa)0|φ(0)s 〉 〈φ(0)s |r̂σ|φ(0)g 〉

ωer′ − ωgi′ − ωI + iΓ

][
〈χgf ′ |χer′〉 〈χer′ |Q̂a|χgi′〉

ω
(0)
e − ω(0)

s

]

+

[
〈φ(0)g |r̂ρ|φ(0)s 〉 〈φ(0)s |(∂Ĥ/∂Qa)0|φ(0)e 〉 〈φ(0)e |r̂σ|φ(0)g 〉

ωer′ − ωgi′ − ωI + iΓ

][
〈χgf ′ |Q̂a|χer′〉 〈χer′ |χgi′〉

ω
(0)
e − ω(0)

s

]}
(2.27)

It is impossible to sum over all |r′〉 vibrational states, as was done in deriving eqs. 2.23

and 2.24. This is because in resonance, the frequency terms in the denominators of the

summations are now sensitive to only a subset of |r′〉 states.

A comparison of these equations with 2.23 and 2.24 reveals interesting differences in

the mechanism of Rayleigh and Raman scattering between the resonance and non-resonance

cases. Unlike the non-resonance situation, the resonance A and B terms are both responsible

for Rayleigh and Raman scattering processes. In the case of the A term, Albrecht [117] notes

that this is because the vibrational wavefunctions of the electronic ground and resonant

excited states are generally not solutions to the same Schrödinger equation. Therefore, the

Franck-Condon factors (〈χgf ′|χer′〉 〈χer′ |χgi′〉) in the A term need not be zero.

It is also interesting to note that the contribution of the A term to the Raman scattering

intensity of a vibrational mode does not depend on vibronic mixing between the resonant

excited state, e, with other electronic states. In contrast, B term scattering depends on

vibronic mixing of the resonant state, e, with other electronic states. The 1/(ω
(0)
e − ω

(0)
s )

dependence of the terms containing the Herzberg-Teller integrals in eq. 2.27 means that the

lowest lying e to s state electronic transitions will be responsible for most of the B term

scattering intensity.

2.3.4 Resonance Raman and the Electronic Excited State Geometry

Eqs. 2.26 and 2.27 indicate that the resonance Raman intensities are inherently sensitive

to details of the electronic excited state potential energy surface. This can be most easily

seen in the Albrecht A term, where only one electronic transition contributes to the resonance

Raman scattering intensity. In the A term, information about the excited state geometry is

encoded in the Franck-Condon factors that are in the summation of eq. 2.26. The electronic
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excited state must be displaced along a particular coordinate for at least one of the Franck-

Condon factors to be non-zero.

The simplest approach to determine the Franck-Condon integrals is to assume that the

electronic ground and excited states are both harmonic and differ only in their equilibrium

positions [119]. In this limit, no Duschinsky rotation occurs [119], and the vibrational fre-

quencies of the normal modes do not change between the ground and excited states. Each

vibrational jth mode can be treated as a pair of ground and excited state harmonic oscil-

lators that are separated in energy by some frequency, ωj, and displaced relative to each

other along a particular coordinate by an origin shift, ∆. As a result, the multidimensional

Franck-Condon factors can be written as the products of one dimensional overlap integrals

[119]. i.e.,

〈χgf ′ |χer′〉 =
N∏
j=1

〈χgf ′j |χer′j〉 (2.28)

Using eq. 2.28, the resonance Raman polarizability corresponding to the transition from
|χgf ′ = 01〉 to |χgf ′ = 11〉 for the j = 1 Raman mode (denoted by the subscript 1) is [119]:

α0→1 =
1

h̄
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉

×
∑
m1

∑
m2

· · ·
∑

m3N−6

[〈11|m1〉 〈m1|01〉
∏3N−6
j=2 〈0j |mj〉 〈mj |0j〉

ω0
e − ω0

g +
∑3N−6

j=1 (mj)ωj − ωI + iΓ

]
(2.29)

where |χer′j〉 = |mj〉.

The one dimensional Franck-Condon factors can be re-written using a set of recursion

equations derived by Manneback [120]. Using these recursion relations, the Frank-Condon

factors can be re-written as [119]:

〈0j|mj〉 〈mj|0j〉 =
∆2m
j

2mm!
e−∆2

j/2 (2.30)

〈1j|mj〉 〈mj|01〉 =
∆j√

2
[〈01|m1〉 〈m1|01〉 − 〈01|m1 − 1〉 〈m1 − 1|01〉] (2.31)

in the limit that the vibrational frequencies for the electronic ground and the excited state

normal modes do not change. Using these equations, 2.29 can be written as [119]:
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α0→1 =

(
1

h̄

)(
∆1√

2

)
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉

×
∑
m1

∑
m2

· · ·
∑

m3N−6

[
(〈01|m1〉 〈m1|01〉 − 〈01|m1 − 1〉 〈m1 − 1|01〉)

∏3N−6
j=2 〈0j |mj〉 〈mj |0j〉

ω0
e − ω0

g +
∑3N−6

j=1 (mj)ωj − ωI + iΓ

]
(2.32)

Eq. 2.32 shows that the resonance Raman cross sections for fundamentals are proportional

to ∆2, the square of the displacement between the electronic ground and excited states along

a particular normal coordinate. Thus, eq. 2.32 shows that resonance Raman band intensities

are sensitive to the geometry changes that occur between the electronic ground and excited

states of molecules.
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3.0 UV RESONANCE RAMAN INVESTIGATION OF THE AQUEOUS

SOLVATION DEPENDENCE OF PRIMARY AMIDE VIBRATIONS

Adapted with permission from: David Punihaole, Ryan S. Jakubek, Elizabeth M.

Dahlburg, Zhenmin Hong, Nataliya S. Myshakina, Steven Geib, Sanford A. Asher. UV

Resonance Raman Investigation of the Aqueous Solvation Dependence of Primary Amide

Vibrations. The Journal of Physical Chemistry B, 2015, 119, 3931–3939. Copyright ©

(2015), American Chemical Society.

Author Contributions: D.P. acquired and analyzed the UVRR data with the assistance

of R.S.J. and E.M.D. D.P. and S.G. acquired and analyzed X-ray diffraction data. Z.H.

performed DFT calculations and normal mode analysis. D.P. and N.S. assisted in analyzing

the results from the DFT calculations. The manuscript was prepared by D.P. and S.A.A.

with the assistance of R.S.J. and E.M.D.

We investigated the normal mode composition and the aqueous solvation dependence

of the primary amide vibrations of propanamide. Infrared, normal Raman, and UVRR

spectroscopy were applied in conjunction with density functional theory (DFT) to assign the

vibrations of crystalline propanamide. We examined the aqueous solvation dependence of the

primary amide UVRR bands by measuring spectra in different acetonitrile/water mixtures.

As previously observed in the UVRR spectra of N-methylacetamide, all of the resonance

enhanced primary amide bands, except for the Amide I (Am I), show increased UVRR

cross sections as the solvent becomes water-rich. These spectral trends are rationalized by a
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model wherein the hydrogen bonding and the high dielectric constant of water stabilizes the

ground state dipolar -O−C−−NH+
2 resonance structure over the neutral O−−C−NH2 resonance

structure. Thus, vibrations with large C−N stretching show increased UVRR cross sections

because the C−N displacement between the electronic ground and excited state increases

along the C−N bond. In contrast, vibrations dominated by C−−O stretching, such as the Am

I, show a decreased displacement between the electronic ground and excited state, which

result in a decreased UVRR cross section upon aqueous solvation. The UVRR primary

amide vibrations can be used as sensitive spectroscopic markers to study the local dielectric

constant and hydrogen bonding environments of the primary amide side chains of Gln and

Asn.

3.1 INTRODUCTION

The primary amide functional group is of significant biological interest since it is found

in the side chains of Gln and Asn. These side chains may be of structural and functional

significance to peptides and proteins since they can participate in both intra- and inter-

molecular hydrogen bonding, which may be important to the formation and stabilization of

prion and amyloid-like fibril aggregates that are involved in a number of protein diseases

[53, 54, 56, 121, 122]. Given the importance of these primary amide groups, it is of great

value to find spectroscopic markers that can be used to monitor the Asn and Gln hydrogen

bonding and dielectric environments.

UVRR spectroscopy is a powerful tool for studying the conformations of proteins [89], as

well as for determining hydrogen bonding, protonation states, and local dielectric environ-

ments of aromatic amino acids [101], arginine [103], and histidine [123, 124] side chains. Deep

UV excitation (∼200 nm) selectively enhances the peptide bond secondary amide vibrations

of the protein backbone [89] and the primary amide vibrations of the Asn and Gln side chains

[125]. Investigations of the secondary amide vibrations [96, 97, 105, 106, 126–128] have de-

veloped a deep understanding of the spectral dependence of the peptide bond secondary

structure and its hydrogen bonding. This understanding has enabled incisive investigations
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of protein and peptide structure. The work presented here is developing a similar deep un-

derstanding of the structural, hydrogen bonding, and dielectric environmental dependence

of primary amide vibrations.

We investigated propanamide, one of the simplest primary amide compounds with a

structure similar to that of the Asn and Gln side chains. We assigned the vibrations observed

in the infrared, non-resonance Raman, and UVRR spectra of crystalline propanamide with

the aid of DFT. We then examined the solution behavior of the primary amide UVRR bands

in mixtures of acetonitrile and water. The primary amide bands are very sensitive to their

hydrogen bonding and dielectric environments. These bands will be useful as spectroscopic

probes to monitor the side chain environment and structure of Gln and Asn.

3.2 EXPERIMENTAL SECTION

3.2.1 Materials

Propanamide (CH3CH2CONH2, 97% purity) and acetonitrile (HPLC, far-UV grade) were

purchased from Acros Organics. N-methylacetamide (CH3CH2CONHCH3, NMA, ≥99%

purity) and sodium perchlorate (NaClO4, ≥98% purity) were purchased from Sigma-Aldrich.

D2O (99.9% atom D purity) was purchased from Cambridge Isotope Laboratories, Inc.

3.2.2 Sample Preparation

The propanamide solid samples consisted of a crystalline powder, which was used without

further purification or re-crystallization. N-deuterated propanamide crystals were prepared

by multiple re-crystallizations in D2O. Propanamide solutions were prepared in H2O at

10 mm concentration. Samples prepared in mixtures of acetonitrile and water were prepared

at 30 mm concentrations. For these experiments, NaClO4 (200 mm) was used as an internal

standard. The N-deuterated propanamide solution was prepared at 30 mm concentration in

pure D2O.
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3.2.3 Infrared and Non-Resonance Raman Spectroscopy

The mid-infrared spectrum of propanamide crystals was measured in the 600–4000 cm−1

region at 1 cm−1 resolution. The data were collected using a Perkin-Elmer model Spectrum

100 series FTIR equipped with a Universal diamond ATR. The propanamide crystals were

lightly ground for ∼30 s using a mortar and pestle in order to ensure good optical contact

between the sample and the diamond crystal. The sample was placed on the diamond crystal

and a force of ∼145 N was applied using a pressure arm.

The visible excitation Raman spectra of propanamide crystals were measured using a

Renishaw inVia Raman spectrometer equipped with a research-grade Leica microscope.

Spectra were collected using a 5× objective lens with a ∼2 cm−1 resolution spectrometer.

The 633 nm exciting line was generated by a HeNe laser. The 380 cm−1, 918 cm−1, 1376 cm−1,

2249 cm−1, and 2942 cm−1 bands of acetonitrile [129] were used for calibration.

3.2.4 UVRR Spectroscopy

The UVRR spectra of crystalline propanamide were measured using cw 229 nm light

generated by an Innova 300 FreD frequency doubled Ar+ laser [130]. Solid samples were spun

by using a cylindrical brass rotation cell to prevent thermal degradation or photodegradation.

A SPEX Triplemate spectrograph, modified for use in the UV, was utilized to disperse the

Raman scattered light. A Spec-10 system charge-coupled device (CCD) camera (Princeton

Instruments, Model 735-0001) was employed to detect the scattered light.

UVRR solution-state measurements were made using ∼204 nm excitation. The UV light

was generated by Raman shifting the third harmonic of an Nd:YAG Infinity laser (Coherent,

Inc.) in H2 gas (∼30 psi) and selecting the fifth anti-Stokes line. Solutions were circulated

using a thermostatted (20 ◦C) flow cell [104] to prevent accumulation of photodegradation

products. The scattered light was dispersed and imaged using a double monochromator,

modified for use in the UV in a subtractive configuration, [131] and detected with a Spec-10

CCD camera.
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3.2.5 UV Absorption Measurements

Absorption spectra were taken of 30 mm propanamide and 10 mm N-methylacetamide

solutions dissolved in acetonitrile and water. A Varian Cary 5000 spectrophotometer with a

0.2 mm path length quartz cuvette was used for all measurements.

3.2.6 Raman Cross Section Calculations

The UVRR scattering cross sections of the spectrally deconvoluted propanamide Raman

bands (see APPENDIX B for details) were calculated using the following equation [125]:

σi =
IikrCrσr
IrkiCi

(
εi + εex
εr + εex

)
(3.1)

where σi is the cross section of the ith propanamide Raman band, and σr is the cross section of

the 932 cm−1 ClO–
4 stretching band from our internal standard. Cr and Ci are the concentra-

tions of NaClO4 and propanamide, respectively. The factors kr and ki are the spectrometer

efficiencies at the 932 cm−1 and ith propanamide Raman bands. Assuming only the analyte

absorbs, the factors εi, εr, and εex are the molar absorptivities at the ith propanamide Raman

band, the 932 cm−1 band, and the excitation wavelength, respectively. The expression in the

parenthesis corrects the cross section measurement for self-absorption [132, 133]. The Raman

cross section of the 932 cm−1 reference band, σr, at 204 nm excitation, was estimated to be

∼1.18×10−27 cm2·molecule−1·sr−1 by extrapolating the Raman cross section measurements

of Dudik et al. [134]

3.3 COMPUTATIONAL SECTION

The DFT calculations [135] were performed using the GAUSSIAN 09 package [136] with

the M06-2X functional [137] and the 6-311++g∗∗ basis set. The calculated frequencies of

the propanamide vibrations were calculated using a harmonic approximation and scaled

linearly to the average band frequencies observed experimentally. The calculations simulated

solvation implicitly by placing the propanamide molecule in an ellipsoidal cavity surrounded
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by a polarizable continuum dielectric modeled to simulate water. The potential energy

distribution (PED) of each vibration was obtained from the GAUSSIAN output files by

employing the GAR2PED program [138].

3.4 RESULTS AND DISCUSSION

3.4.1 Normal Mode Analysis

The infrared and Raman spectra of propanamide were reported previously [139–144].

The most detailed normal mode analysis and assignments were carried out by Kuroda et

al. [143] and Nandini and Sathyanarayana [144]. Kuroda et al. [143] utilized semi-empirical

calculations that employed modified Urey-Bradley and valence force fields, while Nandini and

Sathyanarayana [144] employed ab initio Hartree-Fock calculations. The band assignments

significantly differ between these studies, particularly in regard to the amide vibrations.

In the work here, we performed a new normal mode analysis for propanmide using more

accurate DFT calculations, and use these results to assign our infrared, normal Raman, and

UVRR spectral bands.

3.4.1.1 Propanamide Molecular Structure We determined the crystal structure of

our propanamide crystals (see APPENDIX B for details), and found it to be close to the

structure reported previously [145]. The crystal unit cell is monoclinic (P21/c space group),

with four molecules per unit cell (Figure B1). The measured crystallographic axes and angles

are a = 8.851(4), b = 5.750(2), c = 9.766(3), and β = 114.780(15)°.

We optimized the propanamide geometry (Figure 3.1) for the DFT calculations by taking

the crystal structure as an initial starting point and determining the minimum energy ge-

ometry. As in the crystal, the calculated ground state equilibrium geometry of propanamide

shows C1 symmetry since the NCCC dihedral angle deviates from 180°. Our results agree

with the calculated structure of Nandini and Sathyanarayana [144]. However, our calcu-

lated structure differs from that of Kuroda et al. [143], who assumed a Cs symmetry for
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Figure 3.1: DFT-optimized structure of propanamide showing atomic numbering scheme

used for normal mode analysis. Adapted with permission from [146]. Copyright © (2015),

American Chemical Society.

propanamide, since its crystal structure had not been determined at that time. Propanamide

has 30 fundamental vibrations, which, for a C1 point group are all both infrared and Raman

active, and unlike in the Cs point group, there is no differentiation between in-plane (a') and

out-of-plane (a'') modes.

Table B4–Table B6 enable comparisons between the structural parameters of the energy

minimized structure used in our calculations, and our measured crystal structure. The

geometry and heavy atom bond lengths and angles of the minimized structure are close to

the crystal structure, but not identical. This is most likely because the polarizable continuum

model (PCM) employed in our calculations does not take into account crystal packing forces

and hydrogen bonding.

Vibrational Band Assignments

Figure 3.2 shows the infrared, visible Raman, and UVRR spectra of CH3CH2CONH2

and CH3CH2COND2. Table 3.1 compares the frequencies and relative intensities of the

infrared and non-resonance Raman spectra. We utilized UVRR to help identify the primary

amide Raman bands. The primary amide NV1 electronic transition absorption band at

∼180 nm resonance enhances the 204 nm excited UVRR spectra and preresonance enhances

the 229 nm excited UVRR spectra. We expect the most resonance enhanced bands will

consist of vibrations with large contributions of C−N stretching, since the excited state

34



Table 3.1: Frequencies (cm−1) of Crystalline CH3CH2CONH2 and CH3CH2COND2. Adapted

with permission from [146]. Copyright © (2015), American Chemical Society.

CH3CH2CONH2
a CH3CH2COND2

a,b

Infrared Raman Infrared Raman
3356 vs, br 3356 s, br
3309 sh

3265 sh
3177 vs, br 3171 s, br
2979 s 2975 s 2981 m 2977 s
2943 m 2940 vs 2943 w 2941 vs
2922 w 2909 s 2923 sh 2912 s
2882 w 2882 sh 2884 vw 2886 sh
2811 m 2827 vw 2833 sh
2737 sh 2734 m 2734 w

2527 s 2523 s
2407 s, br 2393 s, br

1643 sh, vs 1676 vw 1623 vs 1610 s
1628 vs 1588 m
1464 m 1464 s 1466 m 1464 m

1450 s 1450 sh
1434 s

1418 vs 1420 s 1425 s 1422 sh
1379 w 1381 w 1379 w 1378 sh
1294 s 1302 w 1318 w 1317 vw

1260 s 1261 m
1168 vw 1176 w

1141 s 1148 s
1068 m 1070 m 1079 m 1079 s
1007 w 1009 m 1007 w 1006 sh

989 sh 992 m
940 m 942 s

822 m 822 s 819 sh
811 sh 812 sh 807 m 806 m

770 s
731 sh

648 s,br 632 sh, br
563 w, br 549 w, br
471 s 441 m
287 vw 274 w, br
210 vw

avs: very strong; s: strong; m: medium; w: weak; vw: very weak; br: broad;
sh: shoulder. bBands that derive from the mono-deuterated amide group are not
reported.
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Table 3.2: Frequencies (cm−1) and Assignments of Infrared and Raman Bands for Crystalline

CH3CH2CONH2. Adapted with permission from [146]. Copyright © (2015), American

Chemical Society.

Infrared Raman Calc. δa (%) PEDb (≥5% contribution)
ν1 3356 3356 3434 2.3 νNH (57), −νNH (43)
ν2 3177 3171 3319 4.6 νNH (57), νNH (43)
ν3 2979 2975 2906 2.4 νC1H (69), −νC1H (22)
ν4 2979 2975 2894 2.8 νC1H (49), −νC1H (45)

2ν10 2943 2940 – –
ν5 2922 2909 2866 1.7 νC2H (75), −νC2H (19)
ν6 2882 2882 2830 1.8 νC1H (42), νC1H (32), νC2H (23)
ν7 2811 2827 2825 0.2 νC2H (76), νC2H (20)

2ν14 2737 2734 – –
ν8 1643 1676 1667 0.5 νC=O (75), −νCN (7), δsNC(O)C (7)
ν9 1628 1588 1562 2.9 σNH2 (86), νCN (10)
ν10 1464 1464 1453 0.7 δ′asCH3 (43), −δasCH3 (38), ρ′CH3 (8)
ν11 – 1450 1443 0.5 δasCH3 (51), δas’CH3 (39), −ρ′CH3 (8)
ν12 – 1430c 1393 2.6 ωCH2 (30), νC2C6 (20), −νCN (19), −βC=O (10),

−νC1C2 (7), δ′asCH3 (6)
ν13 1418 1420 1422 0.2 σCH2 (89)
ν14 1379 1381 1374 0.4 δsCH3 (89), νC1C2 (6)
ν15 1294 1302 1278 1.6 ωCH2 (31), νCN (28), −τCH2 (12), βC=O (8), ρNH2 (5)
ν16 – 1260 1271 0.9 τCH2 (61), ωCH2 (13), −ρ′CH3 (7), −ρCH2 (6)
ν17 1141 1148 1130 1.3 ρNH2 (30), −νC1C2 (19), ρ′CH3 (11), −ρCH3 (10),

−νC=O (8), δsNC(O)C (7), δCCC (7)
ν18 1068 1070 1108 3.6 ρCH2 (27), −ρCH3 (21), −τCH2 (17), −ρ′CH3 (16),

−ΠC=O (11)
ν19 1068 1070 1090 1.9 νC1C2 (38), ρNH2 (26), −νCN (16), ρCH3 (6)
ν20 1007 1009 1028 2.0 ρ′CH3 (28), ωCH2 (19), νC1C2 (18), −ρCH3 (11),

−νC2C6 (9), −ρCH2 (8)
ν21 822 822 853 3.8 ρCH2 (23), ρ′CH3 (18), −ΠC=O (18), ρCH3 (15),

τCH2 (10), νC2C6 (8)
ν22 811 812 850 4.7 νC2C6 (43), −ρCH3 (14), ρNH2 (11), −ρCH2 (7),

νC1C2 (6)
aδ = |νobs − νcalc|/νobs × 100%. bν: stretch; δs: sym deformation; σ: scissoring; δas: asym deformation;
ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting; Π: out-of-plane bending. cFrequency obtained
from 229 nm excitation UVRR data.
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Table 3.3: Frequencies (cm−1) and Assignments of Infrared and Raman Bands for Crystalline

CH3CH2COND2. Adapted with permission from [146]. Copyright © (2015), American

Chemical Society.

Infrared Raman Calc. δa (%) PEDb (≥5% contribution)
ν1 2981 2977 2941 1.3 νC1H (69), −νC1H (22)
ν2 2981 2977 2929 1.7 νC1H (49), −νC1H (45)

2ν10 2943 2941 – – –
ν3 2923 2912 2900 0.6 νC2H (75), −νC2H (19)
ν4 2884 2886 2863 0.8 νC1H (42), νC1H (32), νC1H (23)
ν5 – 2833 2858 0.9 νC2H (76), νC2H (20)

2ν13 – 2734 – – –
ν6 2527 2523 2607 3.3 νND (54), −νND (45)
ν7 2407 2393 2458 2.4 νND (54), νND (45)
ν8 1623 1610 1662 2.8 νC=O (78), δsNC(O)C (7), −νCN (7)
ν9 1466 1464 1447 1.2 δ′asCH3 (42), −δasCH3 (37), ρ′CH3 (8)
ν10 – 1450 1437 0.9 δasCH3 (52), δ′asCH3 (38), -ρCH3 (8)
ν11 – 1434c 1401 2.3 νCN (33), −ωCH2 (19), −νC2C6 (19), βC=O (10),

−δ′asCH3 (6), δsND2 (5)
ν12 1425 1422 1415 0.6 σCH2 (89)
ν13 1379 1378 1367 0.8 δsCH3 (89), νC1C2 (8)
ν14 1318 1317 1295 1.7 ωCH2 (45), νCN (23), δsND2 (15),
ν15 – 1261 1261 0.0 τCH2 (75), -ρCH3 (9), -ρ′CH3 (5)
ν16 1168 1176 1134 3.2 δsND2 (60), βC=O (12), νC2C6 (8), −ωCH2 (5)
ν17 1079 1079 1093 1.3 νC1C2 (35), ρCH3 (19), −ρ′CH3 (11), −δCCC (7),

−δsNC(O)C (5)
ν18 1079 1079 1091 1.1 ρCH2 (25), −ρ′CH3 (19), ρCH3 (17), −τCH2 (16),

−ΠC=O (11), νC1C2 (7)
ν19 1007 1006 1019 1.2 νC1C2 (33), ρ′CH3 (20), ωCH2 (14), −νC2C6 str (9),

−ρCH3 (6), δsND2 (5)
– 989 992 – –
ν20 940 942 936 0.5 ρND2 (34), −νCN (15), −ρ′CH3 (11), δsNC(O)C (9),

δsND2 (8) ρCH3 (6)
– – 819 – – –
ν21 807 806 828 2.7 ρCH2 (29), ρCH3 (24), −ΠC=O (19), ρ′CH3 (13),

τCH2 (12)
ν22 – 770 776 0.7 νC2C6 (51), ρND2 (25), −δCCC (7)
aδ = |νobs − νcalc|/νobs × 100%. bν: stretch; δs: sym deformation; σ: scissoring; δas: asym deformation;
ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting; Π: out-of-plane bending. c Frequency obtained
from 229 nm excitation UVRR data.
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Figure 3.2: (a, b) Infrared, (c, d) non-resonance Raman, and (e, f) UVRR spectra of crys-

talline CH3CH2CONH2 and CH3CH2COND2. Adapted with permission from [146]. Copy-

right © (2015), American Chemical Society.

is expected to be expanded along this coordinate [147]. Table 3.2 and Table 3.3 list the

vibrational assignments, calculated, scaled frequencies, and PEDs for CH3CH2CONH2 and

CH3CH2COND2, respectively.

3.4.1.2 2000-3500 cm−1 Region The high frequency region is dominated by N−H and

C−H stretching bands. The N−H stretches show broad, strong peaks in both the infrared

and Raman spectra that substantially downshift in frequency upon N-deuteration. The

NH2 asymmetric stretching band is located at ∼3355 cm−1, but downshifts to ∼2525 cm−1

upon N-deuteration. The NH2 symmetric stretching band appears at ∼3175 cm−1, while

its ND2 counterpart appears at ∼2400 cm−1. The ∼3320 cm−1 feature observed in the

CH3CH2COND2 spectra derives from an N−H stretching vibration for mono-N-deuterated

propanamide.

The bands located between 2700–3100 cm−1 are insensitive to N-deuteration, which in-

dicates that they are primarily C−H stretching modes. The ∼2975 cm−1 and ∼2880 cm−1
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bands derive from CH3 asymmetric and symmetric stretching modes, respectively. The CH2

asymmetric stretching mode appears at ∼2910 cm−1 in the Raman, and at ∼2920 cm−1 in

the infrared spectra. In contrast, the CH2 symmetric stretching band appears at ∼2830 cm−1

and ∼2810 cm−1 in the Raman and infrared spectra, respectively.

The bands at ∼2735 cm−1 and ∼2940 cm−1 cannot be assigned to fundamentals. Neither

band shifts upon N-deuteration, and according to Kuroda et al.’s [143] data, these bands

also do not shift upon deuteration of the methlyene group. This indicates that they do not

derive from overtone or combination of amide or methlyene bands. Therefore, we assign the

∼2735 cm−1 band to the first overtone of the the ∼1380 cm−1 CH3 symmetric deformation

vibration. The ∼2940 cm−1 band is strong in both the non-resonance Raman and UVRR

spectra, but is of only moderate intensity in the infrared. We assign this band to a Fermi

resonance between the first overtone of the ∼1460 cm−1 CH3 asymmetric deformation and

the CH3 symmetric stretching fundamental based on the suggestions of Kuroda et al. [143]

and Nolin and Jones [148]. This assignment disagrees with Nandini and Sathyanarayana

[144], who attribute this band to a CH2 asymmetric stretching mode. We disagree with the

Nandini and Sathyanarayana [144] assignment since this band is upshifted beyond the typical

frequency range (∼2910–2930 cm−1) observed for CH2 asymmetric stretching vibrations [149,

150].

3.4.1.3 1500-1800 cm−1 Region In this region there are two vibrations that involve

the primary amide group, the Amide I (Am I) and Amide II (Am II) vibrations. The Am I at

∼1640 cm−1 and the Am II at ∼1620 cm−1 are strong and overlap in the infrared spectrum.

In contrast, in the non-resonance Raman spectrum they are well-resolved, and show up as a

moderately weak band located at ∼1675 cm−1 (Am I), and a stronger band at ∼1590 cm−1

(Am II). In the UVRR spectrum, the Am I band shows a ∼1675 cm−1 peak followed by an

overlapping ∼1640 cm−1 feature. The Am II band is strong and occurs at ∼1590 cm−1.

The large frequency differences between the infrared and Raman bands for the Am I

and Am II vibrations presumably derive from the coupling of molecular vibrations within

the crystal lattice into phonons. The spectral frequency differences for the infrared, normal

Raman, and resonance Raman spectra derive from their differing selection rules for the
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different phonon modes with different phasings of relative molecular motion.

Kuroda et al. [143] indicated that C−−O stretching and NH2 scissoring motions are

both important to the PEDs of the Am I and Am II vibrations. In contrast, Nandini and

Sathyanarayana’s [144] normal mode analysis, as well as other studies on acetamide [151–

153], indicate that the Am I vibration is mainly C−−O stretching and the Am II is mainly

NH2 bending. Our analysis concludes that the Am I mode consists mostly of C−−O stretching

(∼75%), with minor C−N stretching and NC(O)C in-plane bending (∼7% each) components,

while the Am II mode is essentially pure NH2 scissoring (∼86%) with a small C−N stretching

component (∼10%).

The spectral changes that are observed upon N-deuteration are consistent with our nor-

mal mode analysis of the Am I and Am II bands. The Am II band completely disappears,

and a new band, which derives from ND2 scissoring, appears at ∼1170 cm−1, supporting the

notion that this mode is essentially pure NH2 scissoring. In contrast, N-deuteration results

in the Am I mode downshifting to ∼1610 cm−1 in the non-resonance Raman and UVRR

spectra, and to ∼1620 cm−1 in the infrared spectrum. This behavior is similar to the Am I

band in secondary amides, and strongly supports the idea that this mode is predominately

C−−O stretching.

3.4.1.4 1200-1500 cm−1 Region Most bands in this region are easily assigned to CH3

or CH2 deformations and bending vibrations. The bands at ∼1464 cm−1 and ∼1450 cm−1

derive from CH3 asymmetric deformations, while the ∼1380 cm−1 band is assigned to the

CH3 symmetric deformation. In the non-resonance Raman and UVRR spectra, there is a

weak band at ∼1260 cm−1 that is assigned to a CH2 twisting mode.

3.4.1.5 C–N Stretching Modes Our assignments of the remaining bands observed in

the 1200–1500 cm−1 region differ from Kuroda et al. [143] and Nandini and Sathyanarayana

[144]. Kuroda et al. [143] previously assigned the ∼1420 cm−1 band to two fundamentals, a

CH2 scissoring mode and a C−N stretching mode. Nandini and Sathyanarayana [144] also

assigned this band to two fundamentals, viz., a CH2 bending mode and a CH3 symmetric

bending vibration. Nandini and Sathyanarayana [144] assigned a ∼1300 cm−1 band to a
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vibration that consists of ∼30% C−N stretching and CH2 wagging. They conflate this

vibration with the C−N stretching mode that Kuroda et al. [143] assigned to the ∼1420 cm−1

band. In contrast, Kuroda et al. [143] assigns the ∼1300 cm−1 band to an almost pure CH2

wagging vibration.

Our normal mode analysis and UVRR data lead to very different assignments of these

two vibrations. In the UVRR spectrum of CH3CH2CONH2, there is a very intense band at

∼1430 cm−1, which we assign to the ν12 fundamental (Table 3.2) since it contains significant

C−N stretching character. This band is not apparent in Kuroda et al.’s [143] or our non-

resonance Raman spectra of CH3CH2CONH2. The assignment of this resonance enhanced

∼1430 cm−1 mode allows us to unambiguously assign the ∼1420 cm−1 band to a CH2 scissor-

ing vibration. The ∼1300 cm−1 band, which appears weak in both the non-resonance Raman

and UVRR spectra, is assigned to the ν15 vibration, which appears to be related to the ν12

mode.

Our normal mode analysis shows that the ν12 and ν15 amide vibrations contain signifi-

cant C−N stretching. The largest ν12 PED components are CH2 wagging (∼30%), C−CH2

stretching (∼20%), C−N stretching (∼19%), and C−−O in-plane bending (∼10%). For ν15,

the major PED components are CH2 wagging and C−N stretching (∼30% each), followed

by CH2 twisting (∼12%) and C−−O in-plane bending (∼8%).

3.4.1.6 1000-1200 cm−1 Region In this spectral region, we expect NH2 rocking, CH2

rocking, CH3 rocking, and C−CH3 stretching vibrations. The ∼1141 cm−1 infrared and

∼1148 cm−1 Raman bands are easily assigned to the NH2 rocking vibration, since they

downshift to ∼940 cm−1 upon N-deuteration. The C−CH3 (ν19) stretching vibration was

previously assigned [143], but our normal mode calculation suggests that this mode is more

complicated and contains significant contributions of NH2 rocking (∼26%) and C−N stretch-

ing (∼16%). The infrared and Raman spectra show only two bands located at ∼1070 cm−1

and ∼1010 cm−1. We assign the ∼1070 cm−1 band to both the CH2 rocking (ν18) and C−CH3

stretching (ν19) modes. In contrast, the ∼1010 cm−1 band shows a negligible change in fre-

quency upon N-deuteration, and is thus assigned to the CH3 rocking mode.
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3.4.1.7 <1000 cm−1 Region The region below 1000 cm−1 is dominated mainly by tor-

sional motions, as well as extensively coupled skeletal stretching and deformation modes.

This region is difficult to unambiguously assign, especially below 700 cm−1. We assign the

two bands at ∼820 cm−1 and 810 cm−1 to CH2 rocking and C−CH3 stretching fundamentals,

respectively. The C−CH3 stretching mode shows a modest contribution of NH2 rocking,

which likely accounts for its ∼42 cm−1 downshift to ∼770 cm−1 upon N-deuteration.

3.4.2 Solvation Dependence of UVRR Bands

Figure 3.3: UVRR (204 nm excitation) spectra of propanamide (a) in H2O and (b) in D2O.

The contribution of solvent was subtracted from both spectra. For (a) 200 mM NaClO−4

was used as an internal standard. The contribution of the ClO−4 stretching band was also

subtracted. Adapted with permission from [146]. Copyright © (2015), American Chemical

Society.

3.4.2.1 UVRR of Propanamide in Aqueous Solutions We measured the ∼204 nm

excited UVRR spectra of propanamide in mixtures of acetonitrile and water in order to de-

termine the effects of solvation on the primary amide vibrations. The spectra of propanamide

in aqueous solutions (Figure 3.3) differ from that of crystalline propanamide. Compared to
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Table 3.4: Measured Frequencies (cm−1) and Cross Sections (σ, mbarns·molec.−1·sr−1) of

UVRR bands in CH3CH2CONH2. Adapted with permission from [146]. Copyright ©

(2015), American Chemical Society.

crystala waterb acetonitrilec

vibration Freq. Freq. σ Freq. σ
ν8 (Am I) 1676 1669±1 3.5±0.70 1692 9.8

ν9 (Am II) 1588 1610±1 18±1.1 1619 4.9

ν12 1430 1428±1 30±0.90 1403 9.1

ν17 1148 1132±1 8.8±0.24 1121 3.0

ν19 1070 1069±1 6.0±0.14 1051 2.3
a UVRR cross sections were not calculated due to the lack of an internal standard. bValues
measured from n = 4 sample size. cValues measured from n = 1 sample size.

crystalline spectra, propanamide in H2O (Table 3.4) shows an Am I (ν8) band that down-

shifts ∼7 cm−1 and appears as a shoulder, while the Am II (ν9) band upshifts ∼22 cm−1.

The ν12 and C−CH3 stretching (ν19) bands do not change frequency, while the NH2 rocking

(ν17) mode downshifts ∼16 cm−1.

The bands of propanamide in D2O (Figure 3.3b) also show significant changes com-

pared to their N-deuterated crystal spectra. The Am I'(ν8) band is broad and is located

at ∼1633 cm−1. The Am II band disappears, and the ND2 (ν16) scissoring band occurs at

∼1168 cm−1, while the ν11 band is at ∼1443 cm−1.

3.4.2.2 Effect of Solvation on UVRR Spectra Figure 3.4 shows the dramatic effect

of solvation on the UVRR bands of primary amides. The spectra show that all bands, except

for the Am I, increase their Raman cross sections as the mole fraction of H2O increases

(Table 3.4). The Am II and ν12 bands show the largest cross section increases (∼3–4-fold),

while the NH2 rocking (ν17) and the C−CH3 stretching (ν19) bands increase ∼2–3-fold. The

Am I band is the only band whose Raman cross section decreases as the mole fraction of

H2O increases.

Figure 3.5 shows that there is a roughly linear cross section and frequency increase for

most bands. The ν12 band shows a ∼29 cm−1 per mole fraction H2O frequency increase, the

NH2 rocking (ν17) band shows a ∼14 cm−1 per mole fraction H2O frequency increase, while
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the C−CH3 stretching (ν19) vibration shows a ∼19 cm−1 per mole fraction H2O frequency

increase. In contrast, the Am I band shows a ∼22 cm−1 per mole fraction H2O frequency

decrease. The Am II band shows only a modest frequency decrease with increasing water

mole fractions.

The dependence of the UVRR spectra of propanamide on the mole fraction of water

shown in Figure 3.4 is very similar to that observed in valeramide [125] and NMA [98, 154–

157]. To understand this behavior, we compared the UV absorption spectra of propanamide

and NMA in acetonitrile and in H2O (Figure 3.6). The molar absorptivities of the ∼200 nm

NV1 transitions increase for both propanamide and NMA as the solvent transfers from

acetonitrile to H2O. For NMA, the absorption peak maximum of the NV1 transition redshifts

going from acetonitrile to water. This is less clearly evident in the case of propanamide where

the NV1 absorption maximum lies deeper in the UV at ∼180 nm. This trend is expected

from Nielsen and Schellman’s [158] results. They observe redshifts in the absorption maxima

of several primary and secondary amides going from cyclohexane to water. This increase in

molar absorptivity of the NV1 transition, upon aqueous solvation, is in part responsible for

increasing the UVRR cross sections due to the fact that the Raman scattering cross section

is proportional to the square of the molar absorptivity.

However, most of the cross section increase results from changes in the ground state

structure. The effect of aqueous solvation on the UVRR secondary amide band intensities

and frequencies has been traditionally rationalized by considering the effects of the solvent

dielectric and direct hydrogen bonding on the amide group resonance structures [98, 154–

157]. We can invoke a similar argument for primary amides.

In low dielectric constant and hydrogen bonding environments, the O−−C−NH2 resonance

form is typically dominant over the -O−C−−NH+
2 structure in the propanamide electronic

ground state (Scheme 3.1). The dipolar resonance structure becomes more favorable in water

due to the high dielectric constant and the stabilizing hydrogen bonding to propanamide’s

C−−O and NH2 groups. These two effects increase the C−N bond order and decrease the

C−O bond order of the primary amide group in the electronic ground state.

It is also important to note that the electronic excited state can also be impacted by

solvation effects. For example, in NMA, Hudson and Markham [156] argued that their

44



Figure 3.4: UVRR (204 nm excitation) spectra of propanamide (30 mM) in different ace-

tonitrile and water mixtures. Arrows show frequency and intensity trends of UVRR bands

as the fraction of H2O increases. NaClO−4 (0.2 M) was used as an internal intensity and

calibration standard in the solutions. Spectra were normalized to the integrated area of the

932 cm−1 ClO−4 stretching band. The spectral contributions of acetonitrile, ClO−4 , and water

were subtracted. The asterisk indicates a spectral feature that is an artifact of subtracting

out the ∼1376 cm−1 acetonitrile band. Adapted with permission from [146]. Copyright ©

(2015), American Chemical Society.

ab initio post-Hartree Fock calculations indicate that the effects of hydrogen bonding due

to solvation are greater in magnitude on the π → π∗ electronic excited state equilibrium

geometry than for the ground state geometry. They argue that the changes in the C−−O and

C−N bond lengths in the excited state due to solvation were also in the opposite direction

of the excited state bond length changes of unsolvated NMA; i.e., the C−N bond length is

larger and the C−−O bond length is smaller in the excited state for a NMA(H2O)3 cluster

compared to an isolated NMA molecule.

The changes in C−O and C−N bond orders (and bond lengths) of the amide group
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Figure 3.5: Dependence of UVRR propanamide band cross sections and frequencies on the

mole fraction of water. Adapted with permission from [146]. Copyright © (2015), American

Chemical Society.

going from acetonitrile to water profoundly effects the resonance Raman cross sections and

the band frequencies. This is because resonance Raman cross sections scale with the square of

the displacement along the enhanced vibrational normal coordinate between the equilibrium

geometries of the electronic ground and excited states [159]. For example, the most resonance

enhanced UVRR bands of NMA in water involve C−N stretching [98, 154, 155, 160, 161]

because of the large expansion of the electronic excited state along the C−N bond [156, 157,

161]. In contrast, there is a relatively small enhancement of the Am I band for NMA in

water because the excited state expansion along the C−−O bond is much less.

In the case of propanamide, the dramatic spectral changes observed in Figure 3.4 can

likewise be explained by changes in C−−O and C−N bond lengths upon solvation. The

elongation of the C−−O bond results in a decrease of the C−−O stretching force constant.

This results in a downshift in the Am I band frequency. The Am I band UVRR cross section
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Figure 3.6: UV absorption spectra of (a) NMA and (b) propanamide in acetonitrile and

water. Arrows show trend of molar absorptivity as the fraction of water increases. Adapted

with permission from [146]. Copyright © (2015), American Chemical Society.

Scheme 3.1: Resonance Structures of Propanamide. Adapted with permission from [146].

Copyright © (2015), American Chemical Society.
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also decreases because the magnitude of the displacement between the electronic ground and

excited states along the C−O coordinate must decrease in water since the ground state C−−O

bond length elongates.

In contrast, for vibrations with significant C−N stretching, the contraction of the C−N

bond length results in a vibrational frequency upshift due to the increase in the stretching

force constant. This bond contraction also increases the magnitude of the displacement

between the electronic ground and excited states along the C−N coordinate, which results

in an increase in the Raman cross sections. It will be more difficult to explain the origin of the

UVRR cross section increases for heavily coupled modes, such as the ∼1430 cm−1 ν12 and the

∼1300 cm−1 ν15 modes, which contain displacements of multiple atoms. The displacements

of all of the primary amide atoms contribute to resonance enhancement. Phasing of this

motion can be very important [161]. However, we conclude that the C−N stretching motion

in these vibrations is predominantly responsible for their UVRR intensity enhancements.

3.5 CONCLUSION

We utilized DFT calculations, infrared, non-resonance Raman, and UVRR spectra to

assign the vibrational bands of crystalline propanamide. Our study resolves previous incon-

sistencies in the vibrational assignments and normal mode compositions of primary amide

bands. We also studied the effect of aqueous solvation on the primary amide UVRR bands

by examining the ∼204 nm UVRR dependence as the solvent transfers from acetonitrile to

water. The aqueous solvation dependence of primary amide UVRR bands can be rational-

ized by the stabilization between dipolar resonance structures of the ground electronic state

of the amide group. Both hydrogen bonding interactions and the increased dielectric con-

stant as the solvent transfers from acetonitrile to water contribute to the stabilization of the

dipolar resonance structure in the ground state, which effectively increases the C−N bond

order while decreasing the C−O bond order.

The resulting increased displacement between electronic ground and excited state geome-

tries along the C−N coordinate increases the UVRR cross sections of vibrations that contain
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significant C−N stretching. In contrast, the decreased displacement between the electronic

ground and excited state geometries along the C−O coordinate results in a dramatic decrease

in the Am I band UVRR cross section. These results indicate that the Am I, Am II, and

ν12 band UVRR cross sections and their frequencies can be used as sensitive spectroscopic

markers for hydrogen bonding and local dielectric environment of the side chains of Gln and

Asn.
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4.0 GLUTAMINE AND ASPARAGINE SIDE CHAIN

HYPERCONJUGATION INDUCED STRUCTURALLY SENSITIVE

VIBRATIONS

Adapted with permission from: David Punihaole, Zhenmin Hong, Ryan S. Jakubek,

Elizabeth M. Dahlburg, Steven Geib, Sanford A. Asher. Glutamine and Asparagine Side

Chain Hyperconjugation Induced Structurally Sensitive Vibrations. The Journal of Physical

Chemistry B, 2015, 119, 13039–13051. Copyright © (2015), American Chemical Society.
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We identified vibrational spectral marker bands that sensitively report on the side chain

structures of Gln and Asn. DFT calculations indicate that the Amide IIIP (Am IIIP) vi-

brations of Gln and Asn depend cosinusoidally on their side chain OCCC dihedral angles

(the χ3 and χ2 angles of Gln and Asn, respectively). We use UVRR and visible Raman

spectroscopy to experimentally correlate the Am IIIP Raman band frequency to the pri-

mary amide OCCC dihedral angle. The Am IIIP structural sensitivity derives from the Gln

(Asn) Cβ–Cγ (Cα–Cβ) stretching component of the vibration. The Cβ–Cγ (Cα–Cβ) bond

length inversely correlates with the Am IIIP band frequency. As the Cβ–Cγ (Cα–Cβ) bond

length decreases, its stretching force constant increases, which results in an upshift in the
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Am IIIP frequency. The Cβ–Cγ (Cα–Cβ) bond length dependence on the χ3 (χ2) dihedral

angle results from hyperconjugation between the Cδ=Oε (Cγ=Oδ) π
∗ and Cβ–Cγ (Cα–Cβ) σ

orbitals. Using a protein data bank library, we show that the χ3 and χ2 dihedral angles of

Gln and Asn depend on the peptide backbone Ramachandran angles. We demonstrate that

the inhomogeneously broadened Am IIIP band line shapes can be used to calculate the χ3

and χ2 angle distributions of peptides. The spectral correlations determined in this study

enable important new insights into protein structure in solution, and in Gln- and Asn-rich

amyloid-like fibrils and prions.

4.1 INTRODUCTION

Amyloid-like fibril protein aggregates and prion proteins often contain stretches of Gln

and Asn residues. For example, polyQ-rich fibrils are the pathological hallmarks of several

“CAG” codon repeat diseases [1, 3, 4, 35, 45, 162–165]. Similarly, Sup35p and Ure2p prions

contain Gln- and Asn-rich regions that drive their aggregation and cause loss-of-function of

these normally soluble proteins [166].

Because Gln and Asn side chains can hydrogen bond to water, the peptide backbone, or

other side chains, they serve unique roles in protein structure and conformational transitions.

Unfortunately, there is relatively little known about the mechanisms by which the primary

amide groups of Gln and Asn interact with other protein constituents, or what role they play

in the aggregation of prions and fibrils. Consequently, it is important to find spectroscopic

markers that can be used to monitor the conformations and hydrogen bonding environments

of Asn and Gln side chains in order to develop a deeper understanding of the roles that these

residues play in protein aggregation.

There are few methods to quantitatively examine the conformations of Gln and Asn side

chains in prion and fibril aggregates. Recent solid-state NMR studies [56, 58, 59] suggest

that there are at least two different populations of Gln side chain conformers in polyQ fibrils.

Sharma et al. [55] claim on the basis of low-resolution X-ray fiber and powder diffraction

data that the side chains in polyQ fibrils adopt an unusual bent conformation; however,
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these highly uncommon side chain structures have not been substantiated by other studies.

High resolution X-ray diffraction studies [167, 168] on small peptide microcrystals that

contain amyloidogenic sequences have revealed important, atomic-resolution details regard-

ing the steric zipper interactions that could occur in Gln- and Asn-rich prions and fibrils.

These studies indicate, for example, that differences in the structures and hydrogen bonding

interactions of amino acid side chains give rise to different fibril polymorphs. However, the

conformations observed in the small peptide crystals may not reflect the side chain structures

and hydrogen bonding interactions that occur in bona fide prion and fibril aggregates.

UVRR is a powerful, emerging tool for studying the conformations of proteins, as well as

the structure, local hydrogen bonding, and dielectric environments of amino acid side chains

[89, 101–103, 123, 124, 146, 169–173]. Deep UV excitation (∼200 nm) selectively resonance

enhances secondary and primary amide vibrations [125, 134]. Previous investigations of

secondary amide vibrations have developed a detailed understanding of the UVRR spectral

dependence on the peptide bond structure and its hydrogen bonding [98, 155, 156, 174]. For

example, Asher and coworkers [96, 97, 105] quantitatively correlated the Amide III3 (Am

III3) frequency to the peptide bond Ramachandran Ψ dihedral angle. They determined that

the structural sensitivity of the Am III3 vibration derives from coupling between the peptide

backbone amide N–H and Cα–H bending motions [96]. This fundamental insight enabled

incisive investigations that elucidated, in detail, the mechanism of α-helix (un)folding in a

wide range of solution environments [106, 107, 175–178].

We seek to develop a similar deep understanding of the UVRR spectral dependence of

primary amide vibrations on the structure of Gln and Asn side chains. In this work, we

discover the structural sensitivity of the Amide IIIP (Am IIIP) vibration on the primary

amide OCCC dihedral angle (the χ3 and χ2 angles of the side chains Gln and Asn, respec-

tively). The potential energy distribution (PED) of this vibration in Gln (Asn) contains

significant contributions of Cβ–Cγ (Cα–Cβ) stretching, NεH2 (NδH2) rocking, and Cδ–Nε

(Cγ–Nδ) stretching motions. We find that the structural sensitivity of the Am IIIP mode

originates mainly from the Cβ–Cγ (Cα–Cβ) bond length dependence on the χ3 (χ2) dihedral

angle. We demonstrate that the Cβ–Cγ (Cα–Cβ) bond length correlation on the χ3 (χ2)

dihedral angle derives from hyperconjugation between the Cβ–Cγ (Cα–Cβ) σ orbital and the
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Cδ=Oε (Cγ=Oδ) π
∗ orbital.

We compare our results with the Gln and Asn entries of the Shapovalov and Dunbrack

side chain rotamer library [179] and examine the dependence of Gln (Asn) χ3 (χ2) dihedral

angles on the peptide backbone Ramachandran (Φ, Ψ) angles. We observe distinct χ3 and

χ2 dihedral angle preferences for Gln and Asn residues that adopt PPII, β-sheet, and α-helix

Ramachandran angles. Applying this new insight, and the dependence of the χ3 dihedral

angle on the Am IIIP vibrational frequency, we determine the χ3 angle distribution of Q3

and D2Q10K2 peptides in aqueous solution. We find that Q3 and D2Q10K2 favor χ3 dihedral

angles similar to those of Gln in solution. This result is consistent with Q3 and D2Q10K2

containing side chains that are completely solvated.

Our work here develops a novel spectral marker for experimentally probing the structures

of Asn and Gln side chains in fibrils and prion aggregates. Our methodology does not require

extensive isotopic labeling or crystallization and allows us to monitor the side chain structural

changes that occur during protein aggregation. This enables crucial, molecular-level insights

into the role that Gln and Asn side chains play in stabilizing fibril and prion aggregates. We

are developing new insights into why Gln- and Asn-rich sequences have strong propensities

to aggregate into amyloid-like fibrils and prions.

4.2 EXPERIMENTAL DETAILS

4.2.1 Materials

L-glutamine (L-Gln, ≥99% purity), L-glutamine t-butyl ester hydrochloride (GlnTBE,

≥98% purity), and glycyl-L-glutamine (Gly-Gln, ≥97% purity) were purchased from Sigma-

Aldrich. D-glutamine (D-Gln, 98% purity) was purchased from Acros Organics, and N-

acetyl-L-glutamine (NAcGln, 97% purity) was purchased from Spectrum Chemical Mfg.

Corp. L-seryl-L-asparagine (Ser-Asn, ≥99% purity) was purchased from Bachem. Optima-

grade H2O was purchased from Fisher Scientific, and D2O (99.9% atom D purity) was pur-

chased from Cambridge Isotope Laboratories, Inc. Gln3 was purchased from Pierce Biotech-
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nology at 95% purity.

4.2.2 Sample Preparation

Gly-Gln and Ser-Asn were obtained as crystalline powders and used without further

purification or re-crystallization. D-Gln, NAcGln, L-Asn, and GlnTBE crystals were pre-

pared by drying saturated solutions in water. L-Gln crystals were obtained by drying a

saturated solution in the presence of 0.1m NaCl. N-deuterated crystals were prepared via

multiple rounds of re-crystallization in D2O. Samples of Gln3 were prepared at 0.5 mg mL−1

in HPLC-grade water containing 0.05 mm sodium perchlorate (Sigma Aldrich, ≥98% purity).

The sodium perchlorate was used as an internal intensity standard to allow us to subtract

the contribution of water.

4.2.3 X-ray Diffraction

X-ray diffraction of crystals was performed using a Bruker X8 Prospector Ultra equipped

with a copper micro-focus tube (λ = 1.541 78�A). The crystals were mounted and placed in

a cold stream of N2 gas (230 K) for data collection. The frames collected on each crystal

specimen were integrated with the Bruker SAINT software package using the narrow-frame

algorithm. APPENDIX C discusses, in detail, the methods used to determine the unit cells

and crystal structures of the compounds examined.

4.2.4 Visible Raman Spectroscopy

Visible excitation Raman spectra of crystals were collected using a Renishaw inVia spec-

trometer equipped with a research-grade Leica microscope. Spectra were collected using

the 633 nm excitation line from a HeNe laser and a 5× objective lens. The spectrometer

resolution was ∼2 cm−1. The 918 cm−1 and 1376 cm−1 bands of acetonitrile [129] were used

to calibrate the spectral frequencies.
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4.2.5 UVRR Spectroscopy

UVRR spectra of crystals were collected using CW 229 nm light generated by an Innova

300C FreD frequency doubled Ar+ laser [130]. The crystalline specimens were spun in a

cylindrical brass cell to prevent the accumulation of thermal or photodegradation products.

A SPEX triplemate spectrograph, modified for use in the deep UV, was utilized to disperse

the Raman scattered light. A Spec-10 CCD camera (Princeton Instruments, Model 735-

0001) with a Lumagen-E coating was used to detect the Raman light. The power of UV

light illuminating the sample ranged from ∼1.5–2 mW. The 801 cm−1, 1028 cm−1, 2852 cm−1,

and the 2938 cm−1 bands of cyclohexane were used to calibrate the 229 nm excitation UVRR

spectral frequencies.

UVRR solution-state measurements were made using ∼204 nm nm excitation. The UV

light was generated by Raman shifting the third harmonic of a Nd:YAG laser (Coherent, Inc.)

with H2 gas (∼30 psi) and selecting the fifth anti-Stokes line. A thermostatted (20 ◦C) flow

cell was employed to circulate solutions in order to prevent the contribution of photodegrada-

tion products. The scattered light was dispersed and imaged using a double monochromator,

modified for use in the UV in a subtractive configuration [131], and detected with a Spec-10

CCD camera.

4.3 COMPUTATIONAL DETAILS

4.3.1 Density Functional Theory (DFT) Calculations

The DFT calculations [135] were carried out using the GAUSSIAN 09 package [136].

The geometry optimizations and frequency calculations were performed using the M06-2X

functional [137] and the 6-311++g** basis set. The presence of water was simulated implic-

itly by employing a polarizable continuum dielectric model (PCM). Vibrational frequencies

were calculated using the harmonic approximation. The calculated frequencies were not

scaled. The potential energy distribution (PED) of each vibration was obtained from the

GAUSSIAN output files by employing a MATLAB program that we wrote. Figure 4.1 shows
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the DFT calculated minimum energy structure of L-Gln and the atomic labeling scheme. In

order to study the conformational dependence of the Raman bands, we fixed the χ3 dihedral

angle of L-Gln, re-optimized the geometry, and calculated the harmonic vibrational frequen-

cies for a series of conformers with χ3 angles of −16°, 0°, 4°, ±30°, ±60°, ±90°, ±120°, ±150°,

and ±180°.

Figure 4.1: Geometry of optimized structure and atomic labeling scheme of L-Gln used in

DFT calculations and band assignments. Adapted with permission from [180]. Copyright

© (2015), American Chemical Society.

4.4 RESULTS AND DISCUSSION

4.4.1 Assignment of L-Gln UVRR Bands in H2O and D2O

Figure 4.2 shows the band-resolved ∼204 nm excitation UVRR spectra of L-Gln in H2O

and D2O. Visible Raman and infrared spectra band assignments of L-Gln were reported

previously by Ramirez and coworkers for both solid-state crystalline samples [181] and in

the solution-state [182]. Ramirez and coworkers made assignments without performing nor-

mal mode calculations in their study of crystalline L-Gln. In their solution-state study,

they employed DFT calculations to aid in band assignments. We found that their reported

frequencies did not match those in our solution-state UVRR spectra, and that their band

assignments were inconsistent with our intensity expectations of the resonance enhanced
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bands.

In the work here, we perform a new normal mode analysis of L-Gln in order to assign

our UVRR spectra. We employ DFT calculations that use a more modern functional (M06-

2X) than that of Ramirez and coworkers. These assignments build off of our previous,

detailed assignment of propanamide [146], a model for the side chains of Gln and Asn. Our

assignments of L-Gln in H2O and D2O are shown in Table 4.1 and Table 4.2, respectively.

The UVRR spectra are dominated by bands that derive from vibrations of the primary

amide group. This is because these resonance enhanced vibrations couple to the strong

∼180 nm NV1 electronic transition. These resonance enhanced amide bands contain signifi-

cant contributions of Cδ−Nε stretching, since the electronic excited state is expanded along

this coordinate [147].

The spectral region between 1600 cm−1 and 1700 cm−1 is dominated by two primary

amide vibrations, the Amide IP (Am IP) and Amide IIP (Am IIP) bands. The superscript P

denotes the primary amide to distinguish these vibrations from the widely known vibrations

of secondary amides found in proteins. The Am IP band is located at ∼1680 cm−1 and derives

mainly from Cδ=Oε stretching. In D2O, the Am IP band (called the AmI'P) downshifts to

∼1650 cm−1. The Am IIP band at ∼1620 cm−1 derives from a vibration whose PED contains

mostly NεH2 scissoring (∼86%) and Cδ–Nε stretching (∼10%). Upon N-deuteration, the

Cδ–Nε stretching and ND2 scissoring motions decouple. This causes the Am IIP band to

disappear, and a new band, which derives from NεD2 scissoring, appears at ∼1160 cm−1.

The most intense features of the Gln spectra in Figure 4.2 occur in the region between

1400 cm−1 to 1500 cm−1. Most of the bands found in this region derive from CH2 scissoring

or wagging modes. However, we assign the most intense band, located at ∼1430 cm−1, to

a vibration that contains significant contributions of CH2 wagging, Cγ–Cδ stretching, CH2

scissoring, and Cδ–Nε stretching in its PED. This assignment is based on our previous work

with propanamide [146], which shows a similar intense band at ∼1430 cm−1.

The region between 1200 cm−1 to 1400 cm−1 contains bands that derive mostly from CαH

rocking, CH2 wagging, and CH2 twisting modes. We assign the ∼1365 cm−1 and ∼1350 cm−1

bands in the Figure 4.2a spectrum to CαH rocking modes. We assign the strong bands

located at ∼1330 cm−1, ∼1290 cm−1, and the very weak ∼1205 cm−1 bands to CH2 twisting
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Figure 4.2: UVRR spectra excited at∼204 nm of L-Gln in (a) H2O and (b) D2O. The spectral

contributions of the solvents have been subtracted. The reduced χ2 (χ2
red) statistics for the

spectral fits shown in (a) and (b) are 0.55 and 1.8, respectively. Adapted with permission

from [180]. Copyright © (2015), American Chemical Society.

modes. The ∼1265 cm−1 feature is assigned to a CH2 wagging vibration. Only two bands,

at ∼1370 cm−1 and ∼1345 cm−1, appear in D2O. We assign the ∼1370 cm−1 band to a

CH2 wagging mode and the ∼1345 cm−1 band to a CαH rocking mode. We conclude that

these vibrations appear strongly in the UVRR spectrum in Figure 4.2b because they contain

significant Cδ–Nε stretching.

The region between 1000 cm−1 and 1200 cm−1 contains bands that derive from vibra-

tions with large C–C stretching, NεH2 rocking, or NH3 rocking contributions. Most of the

vibrations in this region are complex. We assign the ∼1160 cm−1 band to a coupled CαH
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Table 4.1: UVRR Frequencies (cm−1) and Assignments of L-Gln in H2O. Adapted with

permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. Potential Energy Distributiona (≥5% contribution)
1679 1745 νCδOε (75), –νCδNε (8), βNεCδCγ (7)
1652 1666 δas'NH3 (48), –δasNH3 (44), –ρNH3 (5)
1620 1623 –σNεH2 (86), –νCδNε (10)

1621 δasNH3 (40), δas'NH3 (48), δsNH3 (10)
1585 1715 –νCO (53), νCO ( 33), ρCαC (7)
1464 1494 σCβH2 (88)

1466 –δsNH3 (33), σCγH2 (30), ωCγH2 (7), –ωCβH2 (5), νCβCγ (5)
1447 1460 –σCγH2 (44), –δsNH3 (36)
1427 1445 –ωCγH2 (17), νCγCδ (13), σCγH2 (13), ωCβH2 (13), –νCδNε (9), –νCβCγ (5),

–δsNH3 (5), ρCδO (5)
1411 1419 –νCO (26), ρCαH (12), νCαC(11), ωCγH2 (8), βCOO (7), νCδNε (7), –

νCO (7), –νCγCδ (6)
1365 1388 ρCαH (25), ωCβH2 (13), νCO (10), –ρ'CαH (9), νCαCβ (8), –τCβH2 (6), –

νCαC(5)
1351 1358 –ρCαH (30), ωCβH2 (16), –τCβH2 (15), τCγH2 (9), νCδNε (6)
1328 1348 –τCβH2 (26), –ωCβH2 (18), –ρ'CαH (13), –νCδNε (11)
1293 1309 –τCγH2 (35), –ρ'CαH (26), ρCβH2 (8), –ρCαH (6)
1264 1272 –ωCγH2 (43), –ωCβH2 (20), νCδNε (13)
1206 1215 –τCβH2 (21), –νCαCβ (18), –τCγH2 (16), –ρ'NH3 (13), δNCαC(OO) (5)
1158 1153 –ρ'CαH (20), τCγH2 (17), –ρ'NH3 (13), τCβH2 (12), –νCαCβ (8), ρCγH2 (6)
1130 1122 νCβCγ (34), ρNεH2 (17), –νCαCβ (7), νCαN (6), –βNεCδCγ (5)

1109 ρNH3 (27), –ρ'CαH (10), –ρNεH2 (10), –δ'NCC(OO) (9), –ρCαH (7), νCαN (7)
1110 1097 νCβCγ (26), –ρNεH2 (26), –νCδNε (13), –ρNH3 (8)

1038 νCαN (36), –νCβCγ (9), ρCβH2 (8), ρ'NH3 (6), ρCγH2 (5), ρ'CαH (5)
1078 1003 ρNH3 (25), –νCαN (19), ρCγH2 (14), ρCβH2 (14), νCαCβ (7), –τCβH2 (5)
1006 974 –ρ'NH3 (38), νCαCβ (25), –νCαC (8), –σCCαCβ (7), νCαN (6)
aν: stretch; δas: asymmetric deformation; δs: symmetric deformation; δ: deformation; σ:
scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.
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Table 4.2: UVRR Frequencies (cm−1) and Assignments of L-Gln in D2O. Adapted with

permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. Potential Energy Distributiona (≥5% contribution)
1650 1739 νCδOε (78), –νCδNε (7), βNεCδCγ (7)
1637 1708 νCO (55), –νCO (34), –ρCαC (7)
1465 1494 σCβH2 (88)
1453 1465 –σCγH2 (48), –ωCγH2 (15), –νCβCγ (8), –νCδNε (7), ωCβH2 (6)
1440 1454 –σCγH2 (35), νCδNε (19), –νCγCδ (14), ωCγH2 (9), –ρCδOε (5)
1412 1424 –νCO (29), νCαC (12), –νCO (10), ωCβH2 (10), βCOO (9), νCδNε (9),

ρCαH (8)
1368 1393 ωCβH2 (21), ρCαH (15), νCO (11), νCαCβ(8), –ρ'CαH (6), νCO (6), –

νCαC (5), νCδNε (5)
1344 1362 –ρCαH (37), –ωCγH2 (13), νCδNε (12), ωCβH2 (11), ρ'CαH (7), σNεD2 (5)

1349 –τCβH2 (44), τCγH2 (20), –ρCαH (15), –ρ'CαH (6)
1304 –ρ'CαH (32), –τCγH2 (29), ρCβH2 (8), –ρCαH (7)
1282 –ωCγH2 (37), –ωCβH2 (33), σNεD2 (8), ρCαH (7), νCδNε (6)
1202 –δasND3 (23), δas'ND3 (20), τCβH2 (17), τCγH2 (12), νCαCβ(8)
1198 δasND3 (27), τCβH2 (12), τCγH2 (11), –ρ'CαH (9), νCαCβ(8), δsND3 (7),

–δas'ND3 (7)
1186 –δas'ND3 (52), –δsND3 (27), –νCαN (8), –δasND3 (6)

1161 1150 σNεD2 (56), ρ'CδOε (11), νCγCδ (9), ωCγH2 (8)
1131 νCαCβ(21), –δsND3 (16), –νCαN (14), δasND3 (13), –τCγH2 (5)
1119 –νCβCγ (17), δasND3 (10), δNCαC(OO) (9), –νCαCβ(8), –δsND3 (8),

σCγCβCα (7), –νCαN (6), δas'ND3 (5)
1105 νCβCγ (44), –δsND3 (15), δasND3 (8), δas'ND3 (6), –νCαCβ(5)
1058 ρCβH2 (21), ρ'CαH (16), ρCγH2 (12), δ'NCαC(OO) (9), –νCαC (6),

δC'CαCβ (6), νCαCβ(5), –ρND3 (5)
992 998 νCαN (29), δsND3 (15), –δ'NCαC(OO) (10), –ρCαC (7), –νCβCγ (5), –

σCCαCβ (5)
960 959 ρNεD2 (22), νCδNε (14), νCγCδ (10), –σNεD2 (9), –νCαN (9), –βNεCδCγ (8),

νCαC (6), νCδOε (6)
929 920 νCαC (17), ρCγH2 (16), ρND3 (16), –τCβH2 (8), βCOO (8), –

δ'NCαC(OO) (7), ΠNεCδCγ (6)
aν: stretch; δas: asymmetric deformation; δs: symmetric deformation; δ: deformation; σ: scis-
soring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting; Π: out-of-plane deformation.
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rocking/CH2 twisting mode. The PED of this vibration contains a significant contribution of

NH3 rocking, which likely accounts for the disappearance of this band upon N-deuteration.

We assign the ∼1080 cm−1 and ∼1005 cm−1 bands to NH3 rocking vibrations.

The remaining two bands in the 1000 cm−1 to 1200 cm−1 region are located at∼1130 cm−1

and ∼1110 cm−1. The observed frequency difference between these two vibrations is ∼20

cm−1, which is close to the calculated ∼25 cm−1 difference of our DFT calculations. We

assign the 1130 cm−1 band to a vibration that is mainly an in-phase combination of Cβ–Cγ

stretching and NεH2 rocking. The ∼1110 cm−1 band is assigned to a vibration that consists

of an out-of-phase combination of Cβ–Cγ stretching and NεH2 rocking. This vibration also

contains a significant Cδ–Nε stretching component (∼13%), which is in-phase with NεH2

rocking.

The in-phase combination of NεH2 rocking and Cδ–Nε stretching of the ∼1110 cm−1

vibration is reminiscent of the AmIII mode of secondary amides. While complex, the AmIII

vibration contains significant contributions of in-phase C–N stretching and N–H in-plane

bending motions of the secondary amide group. We propose to call the ∼1110 cm−1 mode

the Amide IIIP (Am IIIP) since the eigenvector composition of this vibration is analogous to

that of the canonical AmIII of secondary amides. As discussed in detail below, the Am IIIP

vibration is sensitive to the χ3 and χ2 dihedral angles of Gln and Asn.

4.4.2 Conformational Dependence of the Am IIIP Band

We performed DFT calculations on L-Gln molecules with χ3 dihedral angles fixed at

different values (see Computational Section for details) in order to identify spectroscopic

markers that are diagnostic of the side chain χ3 and χ2 dihedral angles of Gln and Asn,

respectively. We examined the frequency dependence of different primary amide vibrations

and found that the Am IIIP vibrational frequency and normal mode depends strongly on

the OCCC dihedral angle.

Figure 4.3a shows the calculated cosinusoidal dependence of the Am IIIP vibrational

frequency on the χ3 dihedral angle. The maximum frequency of the vibration occurs at

χ3 ∼0°, while minima occur near χ3 ±90°. The Gln Am IIIP band frequency dependence on
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Figure 4.3: Calculated Am IIIP frequency and bond length dependence on the χ3 dihedral

angle of the Gln side chain. (a) Am IIIP frequency dependence; (b) Cβ–Cγ bond length; (c)

Cδ–Nε bond length; (d) Cα–Cβ bond length; and (e) shows the dependence of the Am IIIP

frequency on the Cβ–Cγ bond length. Adapted with permission from [180]. Copyright ©

(2015), American Chemical Society.
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the χ3 angle follows a cosinusoidal relationship:

ν(χ3) = ν0 + A cos(2χ3) +B cos(χ3 − C) (4.1)

where ν0 = 1084 cm−1, A = 10 cm−1, B = 3 cm−1, and C = −31°. These parameters were

calculated from a least-squares fit of eq. 4.1 to the frequency dependence on the χ3 angle in

Figure 4.3a.

Figure 4.3a shows that the Am IIIP frequency dependence on the χ3 dihedral angle is

asymmetric about χ3 ∼0°. This asymmetry is due to the chirality of L-Gln and L-Asn

and leads to the requirement of two cosine terms to express the χ3 frequency dependence of

eq. 4.1. This is evident when we compare the L-Gln χ3 dependence on the Am IIIP frequency

with that of butyramide (shown in Figure C1). In the case of butyramide, which is achiral,

there is no asymmetry about 0°. As a result, the Am IIIP frequency dependence on the

OCCC dihedral angle of butyramide can be satisfactorily modeled with just one cosine term

(eq. C.1).

4.4.3 Origin of the OCCC Dihedral Angle Dependence of the Am IIIP Vibration

Understanding the conformational dependence of the Am IIIP frequency on the primary

amide OCCC dihedral angle requires a detailed knowledge of the atomic motions that give

rise to the vibration. On the basis of our normal mode calculations of Gln, butyramide

(Table C14), and propanamide [146], we conclude that NεH2 rocking, Cδ–Nε stretching, and

Cβ–Cγ stretching define the Am IIIP vibration. However, depending on the OCCC dihedral

angle, other motions such as CβH2 twisting and Cα–Cβ stretching can contribute to this

vibration.

Therefore, we examined how the Gln Cδ–Nε, Cβ–Cγ, and Cα–Cβ bond lengths change as

a function of the χ3 dihedral angle in order to understand the origin of the conformational

sensitivity of the Am IIIP vibration. Changes in these bond lengths impact the Am IIIP

frequency by affecting the vibrational mode bond force constants. As seen in Figure 4.3b-

d, all the bond lengths show a dependence on the χ3 dihedral angle. However, as seen in

Figure 4.3b, the Cβ–Cγ bond length shows the largest dependence on the χ3 dihedral angle.
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The Am IIIP vibrational frequency has a strong correlation with the Cβ–Cγ bond length,

as shown in Figure 4.3e. The Am IIIP vibrational frequency increases as the Cβ–Cγ bond

length decreases and vice versa.

The Cβ–Cγ bond length dependence on the χ3 dihedral angle appears to be due to

hyperconjugation between the Cβ–Cγ σ and the Cδ=Oε π
∗ orbitals (Figure 4.4). This in-

teraction is strongest when these orbitals maximally overlap, in the absence of significant

phase cancellation due to the π∗ orbital antisymmetry. When hyperconjugation occurs, the

σ orbital donates electron density to the π∗ orbital, which decreases the Cβ–Cγ bond order

and increases its bond length. This decreases the Cβ–Cγ stretching force constant, which

downshifts the Am IIIP frequency.

Figure 4.4: Hyperconjugation results in the Cβ–Cγ bond length sensitivity to the χ3 dihedral

angle. Overlap of Cβ–Cγ σ and Cδ=Oε π
∗ NBO molecular orbitals when the χ3 dihedral

angle is: (a) 0◦; (b) +90◦; and (c) ±180◦. Adapted with permission from [180]. Copyright

© (2015), American Chemical Society.

We tested this hypothesis with natural bond orbital (NBO) analysis, which allows the

DFT calculated electron densities to be displayed in terms of approximate σ and π∗ molec-

ular orbitals. According to our hypothesis, the Cβ–Cγ bond length should be largest when
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Figure 4.5: NBO charge of Cβ in L-Gln as a function of the χ3 dihedral angle. Adapted with

permission from [180]. Copyright © (2015), American Chemical Society.

hyperconjugation is maximized and smallest when there is no hyperconjugation. Indeed, as

seen in Figure 4.4b, there is significant overlap of the Cβ–Cγ σ and Cδ=Oε π
∗ NBO molecular

orbitals at ±90°, where the Cβ–Cγ bond length is largest. In contrast, at χ3 ∼0°, where the

Cβ–Cγ bond length is shortest, the orbital overlap cancels due to the antisymmetry of the

π∗ orbital. Figure 4.5 shows the NBO charge on the Cβ atom. As expected from our hyper-

conjugation hypothesis, the NBO Cβ atom charge is less negative at χ3 ∼ ±90° compared

to χ3 ∼ 0°. The NBO Cβ atom charge becomes even more negative at χ3 ∼ ±150° and χ3

∼ ±180°, even without additional hyperconjugation of the Cβ–Cγ σ and Cδ=Oε π
∗ orbitals.

This result is likely an artifact because these extreme χ3 dihedral angles are associated with

physically impossible high energy structures that will be subject to other electron density

alterations.

Our model accounts for the Am IIIP frequency downshift as the dihedral angles ap-

proach χ3 ∼ ±90°, where hyperconjugation is strongest. This behavior is the reverse of the

Bohlmann effect [183–186], where a “negative” hyperconjugation transfers electron density

from a lone pair orbital to an optimally positioned C–H σ* orbital. This decreases the C–H

bond order and substantially downshifts the C–H stretching frequencies.
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4.4.4 Experimental Dependence of Am IIIP Band Frequency on OCCC Dihe-

dral Angle

We experimentally examined the dependence of the Am IIIP band frequency on the

primary amide OCCC dihedral angle by measuring the UVRR and visible Raman spectra

of different Gln and Asn derivatives in the solid-state. We determined the structures of each

of the different Gln and Asn derivative crystals with X-ray diffraction, and assigned the Am

IIIP band by performing DFT calculations and examining band shifts upon N-deuteration.

Our X-ray diffraction methods and the band assignments of the crystals are discussed, in

detail, in APPENDIX C.
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Figure 4.6: Experimental correlation of the Am IIIP frequency to the χ3 dihedral angle. The

average frequency (from the 633 nm and 229 nm Raman spectra) of the Am IIIP band was

plotted as a function of the OCCC dihedral angle. 1 = L-Gln; 2 = Gly-Gln; 3 = D-Gln; 4

= GlnTBE; 5 = NAcGln; and 6 = Ser-Asn. The data were fit with eq. 4.2 (black line, r2
adj=

0.83). The blue curve corresponds to eq. 4.3. The red curve corresponds to eq. 4.4. The

yellow curve corresponds to eq. 4.5 and is an average of the red and blue curves. Adapted

with permission from [180]. Copyright © (2015), American Chemical Society.

4.4.4.1 Dependence of Am IIIP Band Frequency in Crystals Figure 4.6 shows

the Am IIIP frequency dependence on the experimentally determined primary amide OCCC

dihedral angles. We fit the experimental data to a function of the same form as eq. 4.1,
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obtaining the following relationship:

ν(χ3) = 1066 (cm−1) + 29 (cm−1) cos(2χ3) + 9 (cm−1) cos(χ3 + 99°) (4.2)

which is shown in the Figure 4.6 black curve. To obtain the eq. 4.2 parameters, we fixed

the A/B ratio to ∼3 as found in eq. 4.1, and performed a least squares minimization of the

experimental data. Eq. 4.2 provides an excellent fit of the experimental data and captures

the chiral asymmetry that occurs near χ3 ∼ ±90°.

4.4.4.2 Dependence of Am IIIP Band Frequency for Fully Hydrated Primary

Amides The Am IIIP band frequency also depends on the local hydrogen bonding and

dielectric environment of the primary amide group [146]. In water, the Am IIIP band of

L-Gln is located at ∼1110 cm−1, as compared with ∼1097 cm−1 in the solid-state. Based

on Rhys et al.’s neutron diffraction study [187], the solution-state equilibrium structure of

L-Gln in water does not appear to differ significantly from the single known L-Gln crystal

structure [188]. From their solution-state structure, we determine that the equilibrium χ3

dihedral angle of L-Gln in water is ∼−12.8°. This differs by less than a degree (−13.54°)

from the L-Gln crystal examined in this study. Thus, by setting the Am IIIP frequency to

1110 cm−1, χ3 to −13.54°, and solving for ν0, we obtain eq. 4.3

ν(χ3) = 1083 (cm−1) + 29 (cm−1) cos(2χ3) + 9 (cm−1) cos(χ3 + 99°) (4.3)

which is shown by the Figure 4.6 blue curve. This equation correlates the Am IIIP band

frequency to OCCC dihedral angles for situations in which the primary amide group is fully

exposed to water, such as in PPII-like structures, 2.51-helices [189], and extended β-strand-

like peptide conformations dissolved in water.

4.4.4.3 Dependence of Am IIIP Band Frequency for Low Dielectric Constant

and Weak Hydrogen Bonding Environments The Am IIIP frequency downshifts

∼15 cm−1 in the low dielectric and hydrogen bonding environment of acetonitrile compared

to that in water (see APPENDIX C and Figure C6). This downshift derives from the differ-

ent water versus acetonitrile stabilizations of the ground state Oε−−CδNεH2 and -OεCδ−−NεH
+
2
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resonance structures of the primary amide group [146]. In both solvents, the Oε−−CδNεH2

resonance structure dominates; however, in acetonitrile the -OεCδ−−NεH
+
2 resonance struc-

ture contributes less than in water. Thus, the Cδ–Nε bond length is larger in acetonitrile

compared to water due to the lesser favorability of the -OεCδ−−NεH
+
2 resonance structure.

Consequently, there is a smaller Cδ–Nε stretching force constant in acetonitrile compared to

water, which results in a downshift of the Am IIIP frequency.

Eq. 4.3 can be modified in order to account for situations where the primary amide group

is not engaged in significant hydrogen bonding interactions or when located in a low dielectric

environment. We apply a 15 cm−1 downshift in ν0 from eq. 4.3 to determine eq. 4.4:

ν(χ3) = 1068 (cm−1) + 29 (cm−1) cos(2χ3) + 9 (cm−1) cos(χ3 + 99°) (4.4)

which is shown in red in Figure 4.6.

4.4.4.4 Dependence of Am IIIP Band Frequency for Unknown Dielectric and

Hydrogen Bonding Environments We suggest the use of eq. 4.5, which is the average

of eqs. 4.3 and 4.4, for cases where the hydrogen bonding and dielectric environment of the

primary amide group is unknown:

ν(χ3) = 1076 (cm−1) + 29 (cm−1) cos(2χ3) + 9 (cm−1) cos(χ3 + 99°) (4.5)

It can be applied, for example, to determine the side chain χ3 and χ2 dihedral angles of Gln

and Asn residues located in turn structures of proteins. For these residues, it may not be

clear if the side chains are hydrogen bonded to water, to other side chains, or the peptide

backbone. Eq. 4.5 is shown by the yellow curve in Figure 4.6.

4.4.5 Predicting Side Chain χ3 and χ2 Dihedral Angles in Gln and Asn as a

Function of Ramachandran (Φ, Ψ) Angles

Shapovalov and Dunbrack [179] recently developed a new peptide backbone dependent

rotamer library, which includes the non-rotameric Gln and Asn side chain χ3 and χ2 dihedral

angles. Their database was compiled by analyzing high resolution crystal structures from
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Figure 4.7: Gln and Asn side chain χ3 and χ2 dihedral angle dependence on secondary

structure. Plots showing Ramachandran angles for PDB entries from the Shapovalov and

Dunbrack database of (a) Gln and (b) Asn. The colored boxes correspond to canonical PPII

(Φ= -65◦, Ψ = 145◦) angles (red), β-sheet (Φ = -115◦, Ψ = 130◦) angles (blue), and α-helix

(Φ = -63◦, Ψ = -43◦) angles (cyan). Distributions of χ3 and χ2 dihedral angles for Gln and

Asn residues that have (Φ, Ψ) angles close to canonical: (c, d) PPII-like, (e, f) β-sheet,

and (g, h) α-helical structures. Adapted with permission from [180]. Copyright © (2015),

American Chemical Society.

the protein data bank (PDB), and consists of ∼30,000 entries for Asn and ∼20,000 entries

for Gln. Figure 4.7a and Figure 4.7b show Ramachandran plots of all of the Gln and Asn

entries in the Shapovalov and Dunbrack database. The Gln and Asn side chains populate

similar regions of the Ramachandran plot, and both show a preference for α-helical region

(Φ, Ψ) angles. Asn populates a much broader range of (Φ, Ψ) angles, especially in the nearly

forbidden “bridge” region between β-sheet and α-helical regions of the Ramachandran plot.
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We used the Shapovalov and Dunbrack database to examine the side chain χ3 and χ2

dihedral angle preferences of Gln and Asn residues that possess canonical PPII, β-sheet, or

α-helix Ramachandran angle values. Based on work by Richardson [190] and Karplus [191],

we assume (Φ, Ψ) angles centered around (−65°, 145°) for canonical PPII structures, (−115°,

130°) for canonical β-sheets, and (−63°, −43°) for canonical α-helices. Figure 4.7c-h depict

histograms of the χ3 and χ2 dihedral angles observed for the population of Gln and Asn

residues with canonical PPII, β-sheet, or α-helical Ramachandran angles.

The Gln and Asn side chain χ3 and χ2 dihedral angles clearly depend upon the peptide

bond Φ and Ψ angles. This correlation could result from a preference for particular χ3 or

χ2 dihedral angles for stretches of consecutive peptide bonds with (Φ, Ψ) angles that result

in PPII, β-sheet, or α-helical secondary structures. Alternatively, it could result from a

preference for χ3 or χ2 dihedral angles for the (Φ, Ψ) angle values of their individual peptide

bonds.

The χ3 and χ2 dihedral angle histograms of Gln and Asn residues that populate the

canonical PPII region of the Ramachandran plot are shown in Figure 4.7c and Figure 4.7d.

The distribution of χ3 angles adopted by Gln is broader than that of the χ2 angles of Asn.

Both histograms are centered about negative dihedral angles, with Gln showing a peak at

around χ3 ∼−8° and Asn showing a peak near χ2 ∼−36°. It should be noted that the bias

due to the L- amino acid chirality gives rise to a clear preference for negative χ2 dihedral

angles for the shorter side chain Asn residues.

The χ3 and χ2 dihedral angle histograms of Gln and Asn with β-sheet (Φ, Ψ) angles in

Figure 4.7e and Figure 4.7f differ dramatically from one another. The population of Gln χ3

dihedral angles (Figure 4.7e) is nearly symmetric about χ3 ∼0°. The histogram is bimodal,

with two peaks located near χ3 angles of ∼−44° and ∼41°. In contrast, the population of Asn

residues (Figure 4.7f) predominately adopts negative dihedral angles and is peaked around

χ2 ∼−61°. A minor peak also occurs around χ2 ∼56°.

Figure 4.7g and Figure 4.7h show histograms of the χ3 and χ2 dihedral angles of Gln

and Asn residues that adopt canonical α-helical Ramachandran angles. As in Figure 4.7e,

the Figure 4.7g Gln χ3 dihedral angle population is roughly bimodal and nearly symmetric

about χ3 ∼0°. It is peaked at χ3 angles of ∼−34° and ∼45°. In contrast, in Figure 4.7h the
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population of Asn χ2 dihedral angles is narrow and sharply peaked at χ2 ∼−19° with two

minor peaks at χ2 ∼−49° and ∼62°.

The χ3 and χ2 dihedral angle dependencies on the peptide bond Ramachandran angles,

shown by the Shapovalov and Dunbrack database, enable us to predict the most probable

Am IIIP frequencies of Gln and Asn residues that adopt canonical PPII, β-sheet, and α-helix

(Φ, Ψ) angles (shown in Table 4.3). For example, using eq. 4.3, we calculate that Gln and

Asn side chains with PPII (Φ, Ψ) angles will have a maximum probability of showing Am

IIIP bands centered at ∼1111 cm−1 and ∼1096 cm−1, respectively. Similarly, we calculate

that the Am IIIP bands of Gln residues with β-sheet Ramachandran angles will have the

greatest probability of being located at ∼1080 cm−1 and/or ∼1089 cm−1. In contrast, the

Am IIIP bands for Asn residues with β-sheet (Φ, Ψ) angles will have the largest probability

of being located at ∼1064 cm−1 and/or ∼1075 cm−1. For α-helical Ramachandran angles,

we calculate that the probability maxima for Am IIIP bands will be at ∼1076 cm−1 and/or

∼1098 cm−1 for Gln and ∼1058 cm−1, ∼1085 cm−1, and/or ∼1107 cm−1 for Asn residues.

Table 4.3: Predicted Am IIIP Frequencies and OCCC Dihedral Angles for Gln and Asn

Residues with Different Ramachandran Angles. Adapted with permission from [180]. Copy-

right © (2015), American Chemical Society.

Gln Asn

Φ (◦) Ψ (◦) χ3 (◦) Am IIIP Freq. (cm−1) χ2 (◦) Am IIIP Freq. (cm−1)
PPII -65 145 -8 (-22, -32)a 1111 (1106, 1099)a -36 1096
β-sheet 115 130 -44, 41 1089, 1080 -6, 56 1075, 1064
α-helix -63 -43 -34, 45 1098, 1076 -49, -19, 62 1085, 1107, 1058
aValues in parentheses were measured experimentally for Q3 and D2Q10K2.

We can calculate the expected Raman spectral Am IIIP band shapes from the Gln χ3 and

Asn χ2 dihedral angle histograms in Figure 4.7 using the Am IIIP Raman band frequency

dependencies of eqs. 4.2–4.5. These calculated band shapes (not shown) are unphysically

broad (>100 cm−1). This clearly indicates that these histograms derive from the inhomoge-

neous distribution of χ3 and χ2 angles of individual Gln and Asn residues within the proteins

found in the Shapovalov and Dunbrack database. This distribution of Raman frequencies

from the calculated Am IIIP band is much broader than the homogeneous linewidth of an

Am IIIP band expected for a single Gln and Asn residue in a typical PPII, β-sheet, or α-
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helix conformation in proteins. The large widths of the Gln χ3 and Asn χ2 dihedral angle

histograms result because the residues in the Shapovalov and Dunbrack database exist in a

larger distribution of conformations, hydrogen bonding states, and chemical environments

than we have so far encountered in our UVRR investigations.

4.4.6 Experimentally Determined Gln PPII-like Structure Peptide χ3 Dihedral

Angles

4.4.6.1 UVRR Spectra of Gln Peptides in PPII-like Structures We examined

the UVRR spectra of two peptides, Q3 and D2Q10K2, in order to determine their solution-

state χ3 angles. Xiong et al. [125] previously showed that D2Q10K2 exists in predominately

PPII-like and 2.51-helix-like conformations when prepared using a “disaggregation” protocol

developed by Wetzel and coworkers [77]. In this protocol, the D2Q10K2 peptide is initially

dissolved in a mixture of trifluoroacetic acid and hexafluoroisopropanol. These solvents are

subsequently evaporated under dry N2 gas, and the peptide is redissolved in pure water.

The UVRR spectra indicate that Q3 has predominately PPII-like peptide bond confor-

mations. Figure 4.8a shows the peak fitted ∼204 nm excitation UVRR spectrum of Q3 in

the region between 1050 cm−1 to 1500 cm−1. The AmIII3 region, between ∼1200 cm−1 to

1280 cm−1, is most sensitive to the secondary structure of the peptide since its frequency de-

pends on the Ramachandran Ψ angle [96, 97]. This region is well fit by two Gaussian bands

located at ∼1210 cm−1 and ∼1260 cm−1. Using the methodology of Mikhonin et al. [97],

we correlated the band peak positions to their Ψ angles. We used their eq. 6A to correlate

the 1210 cm−1 frequency of the AmIII3 band to a Ψ angle of 103°±3° and the 1260 cm−1 fre-

quency to a Ψ angle of 157°±2°. The Ψ angle of ∼157° derives from peptide bonds situated

in PPII-like conformations, while the Ψ angle of ∼103° derives from peptide bond situated in

β-strand-like conformations. Assuming identical Raman cross sections for these two differ-

ent species, we find that the peptide bonds are dominated by PPII-like Ψ angles (∼87±2%),

while a small fraction adopt β-strand-like Ψ angles (∼13±2%). This is supported by the

circular dichroism spectra of Q3 shown in Figure C7, which show a predominantly PPII

spectral signature.

72



1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

R
am

an
 In

te
ns

ity

1050 1100 1150 1200

R
am

an
 In

te
ns

ity

νC-C/ρNH2
ρCH/τCH2AmIIIP

AmIII3
β

AmIII3

ωCH2/νC−NH2

ωCH2/νC−CPPII

AmIIIP

νC-C/ρNH2

ρCH/τCH2

ωCH2/νC−C

(a) Gln3

(b) Asp2Gln10Lys2 

Wavenumbers / cm -1

Wavenumbers / cm -1

(198 nm − 204 nm difference spectrum)

1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Figure 4.8: Deconvolution of the UVRR spectra of Q3 and D2Q10K2. (a) Fitting the 204

nm excitation UVRR spectrum of Q3. (b) 198-204 nm difference spectrum of D2Q10K2

taken from Xiong et al. [125] The inset shows the Am IIIP region of D2Q10K2. The χ2
red

statistics for the spectral fits shown in (a) and (b) are 1.1 and 0.74, respectively. Adapted

with permission from [180]. Copyright © (2015), American Chemical Society.
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4.4.6.2 χ3 Dihedral Angle Determination of Side Chains in Gln Peptides The

Am IIIP bands of Q3 and D2Q10K2 are found in the region between ∼1050 cm−1 and

1150 cm−1. Based on our normal mode analysis of Gln, we fit this region with four bands that

derive from CαH rocking/CγH2 twisting, Cβ–Cγ stretching/NεH2 rocking, NH3 rocking/Cα–

N stretching, and the Am IIIP vibrations. For Q3, these bands are located within a broad

asymmetric spectral feature at ∼1080 cm−1, ∼1106 cm−1, ∼1130 cm−1, and ∼1160 cm−1.

We assigned these bands based on our analysis of Gln. We assign the ∼1160 cm−1 band

to a CαH rocking/CγH2 twisting mode, the ∼1130 cm−1 band to a Cβ–Cγ stretching/NεH2

rocking vibration, and the ∼1080 cm−1 band to a NH3 rocking/Cα–N stretching mode. The

∼1106 cm−1 band appears as a low-frequency shoulder feature and is assigned to the Am

IIIP vibration. This is very close to the predicted Am IIIP vibrational frequency band center

from the Gaussian fit of PPII-like structures in Figure 4.7c, as listed in Table 4.3. In fact, the

Am IIIP frequency band center of Q3 differs by only ∼5 cm−1 from the predicted frequency

band center (∼1111 cm−1) for PPII Ramachandran angles.

Figure 4.8b shows the 198 nm – 204 nm difference spectrum of disaggregated D2Q10K2

published by Xiong et al. [125] Xiong et al. showed that excitation at 198 nm enhances the

primary amide UVRR bands more than does excitation at 204 nm. Thus, the Figure 4.8b

D2Q10K2 difference spectrum is dominated by the primary amide Gln side chain bands with

little interference from the secondary amide peptide bond UVRR bands.

The inset in Figure 4.8b shows the region where the Am IIIP band of D2Q10K2 is located.

We parsimoniously peak fit this region to three Gaussian bands located at ∼1099 cm−1,

∼1118 cm−1, and ∼1140 cm−1. Using prior knowledge from our analysis of Gln, we assign

the bands at ∼1118 cm−1 and ∼1140 cm−1 to the the Cβ–Cγ stretching/NεH2 rocking and

CαH rocking/CγH2 twisting vibrations, respectively. The ∼1099 cm−1 band is assigned to

the Am IIIP band.

The Am IIIP bandwidths of Q3 and D2Q10K2 are ∼30 cm−1, which is similar to that of

Gln in H2O (Figure 4.2a). These bandwidths are roughly twice as large as those found in

the Raman spectra of the different Gln and Asn derivative crystals, which we measure to

be on average ∼13.3(50) cm−1. This bandwidth is significantly larger than our spectrometer

resolution of ∼4.5 cm−1. Thus, if we assume a Lorentzian band shape, we estimate that the
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Am IIIP band homogeneous linewidth for a Gln compound with a well-defined χ3 angle is

∼6.6 cm−1. The fact that the Am IIIP bandwidths of solution-state Gln, Q3, and D2Q10K2

are much broader than those measured in our crystals suggests that there is a distribution

of hydrogen bonding states and χ3 angles in these compounds.

Given the estimated homogeneous linewidth, we can roughly calculate the distribution of

χ3 angles of Gln, Q3, and D2Q10K2 by using a methodology that is similar to that of Asher et

al. [105] To do this, we assume that the inhomogeneously broadened Am IIIP bands derive

from a distribution of different χ3 dihedral angles, which can be represented as the sum of

M Lorentzian bands:

A(ν) =
1

π

M∑
i=1

Ii
Γ2

Γ2 + (ν − νi)2
(4.6)

where Ii is the intensity of a Lorentzian band that occurs at a given center frequency, νi,

and Γ is the homogeneous linewidth.

We can apply eq. 4.3 to correlate the νi Am IIIP frequencies of the M Lorentzian bands to

their corresponding χ3 dihedral angles. As shown in Figure 4.6, a single Am IIIP frequency

can correspond to as many as four possible χ3 dihedral angles. However, the Shapovalov and

Dunbrack database show that χ3 dihedral angles that are greater than +90° and less than

-90° are nearly forbidden (Figure 4.7). Thus, we consider only the two χ3 dihedral angle

solutions that are found in the region between -90° and +90°, as shown in Figure 4.9.

To determine which of the two remaining χ3 dihedral angle solutions is occurring in our

peptides, we first fit the histograms to the sum of two Gaussians with identical amplitudes,

A, and widths, w, but different center χ3 angles, χ̄3,1 and χ̄3,2:

I(χ3) = Ae−(
χ3−χ̄3,1

w
)2

+ Ae−(
χ3−χ̄3,2

w
)2

(4.7)

The Gln, Q3, and D2Q10K2 results all show one Gaussian centered at negative χ3 angles

and another Gaussian centered at positive χ3 angles (Figure 4.9). For Gln, we assume that

the Gaussian centered at χ3 ∼−13° is the physically relevant solution based on the neutron

diffraction study of Rhys et al. [187]. For Q3 and D2Q10K2, we conclude that the Gaussians

centered at negative χ3 angles correspond to the physically relevant solutions to eq. 4.3
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Figure 4.9: χ3 dihedral angle historgrams calculated by decomposing Am IIIP bands into

a sum of Lorentzians for (a) Gln, (b) Q3, and (c) D2Q10K2 in water. Because the solution

to eq. 4.3 is double valued between ±90◦, the histograms show two peaks. The histograms

were fit to two identical Gaussians that differed only in center χ3 dihedral angles (shown

in dashed lines). The sum of the Gaussians is shown in the solid red lines. Adapted with

permission from [180]. Copyright © (2015), American Chemical Society.
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because they fall within the range of χ3 dihedral angles most commonly adopted by Gln

residues that populate PPII (Φ, Ψ) angles (Figure 4.7c).

Figure 4.10 shows the resulting χ3 dihedral angle distributions for Gln, Q3, and D2Q10K2

by assuming the physically relevant solutions to eq. 4.3. The distributions of Q3 and D2Q10K2

populate χ3 angles similar to that of Gln. This suggests that primary amides of Q3 and

D2Q10K2 are fully solvated like that of monomeric Gln in water. Thus, the Gln side chains

are not engaged in side chain-backbone peptide bond hydrogen bonding as previously hy-

pothesized [33].

4.4.6.3 Determination of the Gibbs Free Energy Landscape for Gln and Gln

peptides Along the χ3 Dihedral Angle Reaction Coordinate The structure sensi-

tivity of the Am IIIP band enables us to determine the Gibbs free energy landscape of the

Gln side chains along the χ3 dihedral angle structure coordinate. To do this, we assume

that the probability of each χ3,i angle in the χ3 dihedral angle distributions of Gln, Q3, and

D2Q10K2 shown in Figure 4.10a-c is given by a Boltzmann distribution:

p(χ3,i)

p(χ3,0)
= e−(∆G(χ3,i)/RT ) (4.8)

where p(χ3,i)/p(χ3,0) is the ratio of populations with χ3 angles χ3,i and χ3,0. The angle,

χ3,0, is the minimum energy χ3 angle, R is the molar gas constant, T is the experimental

temperature (293 K), and ∆G(χ3,i) = G(χ3,i)−G(χ3,0). We assume in eq. 4.8 that each χ3,i

dihedral angle state has a degeneracy of one.

To calculate the free energy difference, ∆G(χ3,i), between a particular χ3,i angle and the

equilibrium χ3,0 angle, we rearrange eq. 4.8:

∆G(χ3,i) = −RT ln

[
p(χ3,i)

p(χ3,0)

]
(4.9)

Figure 4.11 shows the calculated Gibbs free energy landscapes of Gln, Q3, and D2Q10K2

along the χ3 dihedral angle structure coordinate. We model the side chain free energies
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2
(χ3,i − χ3,0)2, where τ is the torsional spring force constant and (χ3,i − χ3,0)

is the displacement from the equilibrium position. Adapted with permission from [180].

Copyright © (2015), American Chemical Society.

about the equilibrium χ3,0 angles in terms of a simple Hooke’s Law torsional model:

∆G(χ3,i) =
τ

2
(χ3,i − χ3,0)2 (4.10)

where τ is the torsional force constant. We can fit the free energy landscapes in Figure 4.11

to eq. 4.10 to determine the torsional force constants along the χ3 dihedral angle coordinate

of Gln, Q3, and D2Q10K2. We find that τ ∼12 J·mol−1·deg−2 for Gln, ∼16 J·mol−1·deg−2 for

Q3, and ∼13 J·mol−1·deg−2 for D2Q10K2. The similarity of the Q3 and D2Q10K2 χ3 angle

torsional force constants of Gln most likely results from the similar side chain constraints

and solvation states of these compounds.
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4.5 CONCLUSIONS

We determined the dependence of the Am IIIP band frequency on the χ3 and χ2 dihedral

angles of Gln and Asn side chains. The Am IIIP vibration is complex and consists of Cδ–

Nε (Cγ–Nδ) stretching and NεH2 (NδH2) rocking motions that are out-of-phase with Cβ–

Cγ (Cα–Cβ) stretching in Gln (Asn). The frequency of the Am IIIP vibration shows a

cosinusoidal dependence on the χ3 and χ2 dihedral angles of the Gln and Asn side chains.

The structural sensitivity of the Am IIIP vibration derives from hyperconjugation between

the Cβ–Cγ (Cα–Cβ) σ and the Cδ=Oε (Cγ=Oδ) π
∗ orbitals. Hyperconjugation between

these two orbitals increases the Cβ–Cγ (Cα–Cβ) bond length, which decreases the Cβ–Cγ

(Cα–Cβ) stretching force constant and causes a downshift in the Am IIIP frequency. In

this case, hyperconjugation gives rise to spectroscopic markers diagnostic of local dihedral

angles. This suggests that future studies of conformationally dependent hyperconjugation

interactions will enable the discovery of new, structurally sensitive spectroscopic makers.

The correlations between the Am IIIP frequency and the χ3 and χ2 dihedral angles of Gln

and Asn side chains will be useful for protein conformational investigations, particularly for

amyloid-like fibril and prion aggregates. In general, fibril and prion aggregates are insoluble

and cannot be crystallized. Therefore, there are few approaches to obtain molecular-level

structural information. As a result, little is known about the structure of Gln and Asn side

chains in fibrils. The Am IIIP spectroscopic marker band enables us to experimentally probe

conformations of the Gln side chains of polyQ fibrils in order to obtain new, molecular-level

insights into fibril structures.
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Understanding the structure of polyQ amyloid-like fibril aggregates is crucial to gaining

insights into the etiology of at least ten neurodegenerative disorders, including Huntington’s

disease. Here, we determine the structure of D2Q10K2 (Q10) fibrils using UVRR spectroscopy

and Molecular Dynamics (MD). Using UVRR, we determine the fibril peptide backbone Ψ

and Gln side chain χ3 dihedral angles. We find that most of the fibril peptide bonds adopt

antiparallel β-sheet conformations; however, a small population of peptide bonds exist in

parallel β-sheet structures. Using MD, we simulate three different potential fibril structural

models that consist of either β-strands or β-hairpins. Comparing the experimentally mea-

sured Ψ and χ3 angle distributions to those obtained from the MD simulated models, we

conclude that the basic structural motif of Q10 fibrils is an extended β-strand structure.
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Importantly, we determine from our MD simulations that Q10 fibril antiparallel β-sheets

are thermodynamically more stable than parallel β-sheets. This accounts for why polyQ

fibrils preferentially adopt antiparallel β-sheet conformations, instead of in-register paral-

lel β-sheets like most amyloidogenic peptides. In addition, we directly determine, for the

first time, the structures of Gln side chains. Our structural data give new insights into the

role that the Gln side chains play in the stabilization of polyQ fibrils. Finally, our work

demonstrates the synergistic power and utility of combining UVRR measurements and MD

modeling in order to determine the structure of amyloid-like fibrils.

5.1 INTRODUCTION

There are at least ten neurodegenerative disorders, including Huntington’s disease, that

are associated with mutational expansions in genomic CAG codon repeats [1]. These expan-

sions increase the length of polyQ repeats in proteins. The increase in the repeat length of

polyQ segments greatly enhances protein misfolding and aggregation. Although the exact

mechanism of neurotoxicity is still heavily debated, the pathological hallmark of all CAG

repeat diseases is the formation of large neuronal inclusions composed of polyQ-rich aggre-

gates [67, 192, 193]. Given their potential role in neurotoxicity, it is therefore crucial to

understand the structure of polyQ-rich aggregates.

Numerous structures have been proposed for polyQ fibrils based on the results of many

different biophysical methods. For example, X-ray diffraction studies indicate that polyQ

fibrils of various Gln repeat lengths all show similar X-ray diffraction patterns. Despite this,

these studies assign very different structures from surprisingly similar X-ray data, including

“polar-zippers” [52], β-helices [53], and canonical β-sheet structures [54, 55]. More recent

structural studies of polyQ fibril aggregates use solid state NMR. One of these studies [56],

concludes that the basic structural motif of polyQ fibrils prepared from pathologically rel-

evant peptides is a “β-arc,” similar to that of Aβ [57, 194]. The β-arc model has been

challenged by other solid state NMR and biochemical studies [58, 59], which alternatively

suggest that polyQ fibrils are composed of extended β-strands that contain reverse hairpin
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turns.

In recent years, several Molecular Dynamics (MD) approaches have also been used to

investigate the structural properties of polyQ-rich fibrils. The bulk of these computational

studies focus mainly on the kinetic or thermodynamic stability of different fibril structures

[51, 63, 66, 195]. However, these MD studies are conducted independently of experimental

studies. Thus, there is little direct validation of the computational results against experi-

mental data.

The lack of consensus regarding the structure of polyQ fibrils underscores the need for

new and incisive biophysical methods that can quantitatively discriminate between the many

proposed models. A fundamental factor in understanding polyQ fibrils is determining the

structures and hydrogen bonding environments of the Gln side chains, which are thought to

play an important role in stabilizing the aggregates. Another important structural property

to understand is the propensity of polyQ fibrils to adopt antiparallel β-sheets instead of

in-register parallel β-sheets, like most amyloidogenic peptides and prions.

UVRR spectroscopy is a powerful biophysical tool for studying the conformational ensem-

bles and aggregation dynamics of amyloidogenic peptides [90–95]. An advantage of UVRR is

that quantitative information can be obtained quickly, under dilute conditions, and without

the need for extensive or complex isotopic labeling of peptides and proteins [89]. In recent

years, numerous UVRR spectroscopic markers have been discovered. Some of these markers

are sensitive to the Ramachandran Ψ angles of the peptide bonds [96, 97], while others are

sensitive to the dihedral angles of amino acid side chains [169, 171, 173], including Asn and

Gln [180]. Other marker bands are sensitive to the hydrogen bonding and the dielectric

environments of peptide bonds and side chains [101, 103, 123, 124, 146, 171].

We can combine structural information obtained from interpreting these spectral markers

with results from MD simulations to determine the structure of polyQ and other amyloid-

like fibrils. An elegant example of this approach was recently published by Buchanan et al.

[197], who combined 2D IR spectroscopy with MD simulations to determine the structure

of K2Q24K2W fibrils. They concluded that K2Q24K2W fibrils adopt an antiparallel β-sheet

structure that contains β-turns, but not β-arc structures, after comparing their experimental

Amide I spectra with those calculated from simulated models.
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Figure 5.1: MD simulated structures of model Q10 fibril systems in (a) a β-strand configu-

ration with an antiparallel β-sheet architecture, (b) a β-strand configuration with a parallel

β-sheet architecture, and (c) a Type I β-hairpin configuration with an antiparallel β-sheet

architecture. The a,b, and c axes refer to the inter-sheet, inter-strand, and intra-chain di-

mensions, respectively, of the fibril models. Adapted with permission from [196]. Copyright

© (2016), American Chemical Society.

In this work, we synergistically couple UVRR and MD in order to determine the struc-

tures of polyQ amyloid-like fibrils prepared from the model peptide D2Q10K2 (Q10). Xiong

et al. [125] previously showed that this peptide can exist in two distinct solution-state con-

formations, a putative β-hairpin-like structure (called NDQ10) and a PPII-like structure

(called DQ10). We show that both NDQ10 and DQ10 peptide solutions can aggregate into

amyloid-like fibrils. We use UVRR to measure the Ramachandran Ψ angle distributions of

the NDQ10 and DQ10 fibril peptide bonds, as well as their Gln χ3 (Oε1–Cδ–Cγ–Cβ) side

chain dihedral angles.
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To determine the structure of NDQ10 and DQ10 fibrils, we compare our experimentally

determined Ψ and χ3 angle distributions to those obtained from three MD simulated fibril

models (Figure 5.1). On the basis of these comparisons, we find that Q10 fibrils consist of

extended β-strands that predominately assemble into antiparallel β-sheets; however, small

populations of Q10 peptide bonds are in parallel β-sheet structures. From our MD sim-

ulations, we determine that polyQ fibrils in antiparallel β-sheets are lower in free energy

compared to parallel β-sheets. This energetic preference appears unique for polyQ fibrils

compared to typical amyloid-like fibrils, where in-register parallel β-sheets are thought to be

at lower energy [198]. Finally, our χ3 dihedral angle measurements and MD simulations of

Q10 fibrils leads us to propose a new model for the structure of Gln side chains in polyQ

fibrils.

5.2 EXPERIMENTAL SECTION

5.2.1 Materials

The 14 residue peptide, D2Q10K2 (Q10), was purchased from AnaSpec Inc. at ≥95% pu-

rity. Trifluoroacetic acid (TFA) was purchased from Acros at 99.5% purity, and 1,1,1,3,3,3-

Hexafluoro-2-propanol (HFIP) was obtained from Fluka at ≥99% purity. HPLC-grade H2O

was purchased from Fisher Scientific, and D2O (99.9 atom % D) was purchased from Cam-

bridge Isotope Laboratories, Inc. NaOD (40 wt % solution in D2O, 99+ atom % D) and

L-glutamine (99% purity) was purchased from Sigma Aldrich.

5.2.2 Sample Preparation

NDQ10 peptide solutions were prepared by dissolving Q10 directly in H2O or D2O. DQ10

solutions were prepared using a standard protocol based on a method developed by Wetzel

and coworkers [77]. Briefly, DQ10 samples were prepared by suspending the lyophilized Q10

peptide powder received from Anaspec Inc. in a 1:1 (v/v) mixture of TFA and HFIP. The

samples were sonicated for 20 min and incubated at room temperature for 2 h. The solvents
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were evaporated under a gentle stream of dry N2 gas for 1 h. The peptide film was dissolved

in H2O or D2O and ultracentrifuged at 627,000 × g for 30 min. at 4 ◦C. The top 2/3 of the

solution was decanted and used for the aggregation reaction.

Fibril aggregates were prepared by initially dissolving NDQ10 and DQ10 prepared pep-

tides in H2O or D2O at 5 mg mL−1 concentrations and incubating the samples at 60 ◦C in

vials sealed with Teflon tape. Solutions were titrated to pH 7 (pD 8) using NaOH (NaOD)

solutions. After incubation for 6 days, aggregates were harvested via centrifugation, and

the pellets resuspended in 120 µL of H2O or D2O. For the hydrogen-deuterium exchange

(HX) experiments, harvested aggregates prepared in H2O (D2O) were washed in 500 µL D2O

(H2O), centrifuged, and the supernatant removed. The pellets were resuspended in 120 µL

of D2O (H2O) and incubated for 3 h at room temperature in sealed vials.

5.2.3 Transmission Electron Microscopy (TEM)

A 10µL aliquot of aggregate solution was placed onto a freshly glow discharged carbon-

coated grid for 2 min before blotting dry with filter paper. Samples were stained with 10 µL

of 1% (w/v) uranyl acetate for 2 min, and the excess stain removed by blotting the grid.

Grids were imaged using a Tenai F20 electron microscope (FEI Co.) operating at 200 kV

and equipped with a 4k × 4k CCD camera (Gatan).

5.2.4 X-ray Diffraction of Fibril Films

Aggregates prepared from the NDQ10 peptide solutions were placed into the wide end

of a 0.7 mm diameter quartz X-ray capillary tube (Charles Supper Company). The wide

end of the tube was sealed with melted beeswax and the thin end of the tube left open for

drying. DQ10 aggregates were mounted on the broken end of a quartz capillary tube and

dried. Aggregate samples were placed on the end of a goniometer head, and centered in the

X-ray beam path. X-ray diffraction patterns were collected using a Bruker X8 Prospector

Ultra with a Copper micro-focus tube (λ = 1.541 78�A) and equipped with an Apex II CCD

detector. All data were collected at room temperature with exposure times of 60 min.
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5.2.5 UVRR spectroscopy

The UVRR instrumentation used is described in detail by Bykov et al. [131] Briefly,

∼204 nm light was obtained by mixing the third harmonic with the 816 nm fundamental

generated by a tunable Ti:sapphire system (Photonics Industries) operating at 1 kHz. An

Indigo S tunable Ti:sapphire system (Positive Light), operating at 5 kHz, generated ∼197 nm

light by mixing the third harmonic with the ∼788 nm fundamental. For fibrils measured in

solution, the laser light was focused onto a spinning Suprasil quartz NMR tube containing

the sample. The average laser power at the sample ranged from ∼0.4 - 0.5 mW. A ∼165°

backscattering geometry was used. The total acquisition time to collect spectra was only

∼10 min. The scattered light was imaged into a home-built subtractive double monochroma-

tor and detected with a liquid N2 cooled, back-thinned Spec-10:400B CCD camera (Princeton

Instruments) with a Lumogen E coating. The spectrometer resolution was ∼5 cm−1 at the

excitation wavelengths used. A description of how the spectra were processed is in AP-

PENDIX D.

5.3 COMPUTATIONAL SECTION

We considered three model fibril systems, as shown in Figure 5.1. These systems are

composed of eight Q10 peptides that are assembled into parallel and antiparallel β-sheets.

The two β-sheets were oriented parallel to each other, but rotated by 180°, in order to max-

imize attractive electrostatic interactions between terminal Asp and Lys residues. Models

a and b were constructed using canonical β-sheet Ramachandran dihedral angles [199]. In

the case of model a, we used canonical antiparallel β-sheet (Φ, Ψ) angles of (−140°, 135°).

For model b, we used canonical parallel β-sheet (Φ, Ψ) angles of (−120°, 113°). Model c

was constructed using β-hairpin geometries observed in metadynamics simulations (data not

shown). These model fibrils were constructed using the Molecular Operating Environment

(MOE 2013.10) software suite [199] and were solvated in a water box. Files containing the

initial structure coordinates used in the MD simulations, as well as the NAMD configuration

88



templates, are available for download.

After constructing the models, the solvated fibril systems were energy minimized for

10,000 steps using the conjugate gradient method and then equilibrated for 50 ps. During

equilibration, the fibril atoms were initially restrained by harmonic potentials. After relaxing

the water around the restrained fibrils, the water molecules and peptide side chains were then

energy-minimized for 10,000 steps. This was followed by 100 ps of equilibration, in which the

peptide backbone atoms were restrained. The model fibril systems were then equilibrated

for an additional 50 ns without restraints. All fibril models retained structural integrity

throughout the energy minimization and equilibration. The fibril models were simulated

using classical MD for 200 ns.

MD simulations were performed with the NAMD software package (version 2.10) [200].

The potential energies were calculated with the CHARMM22/CMAP force field [201]. This

force field was chosen for its torsional energy corrections intended to decrease α-helix bias

and stabilize β-strand secondary structures. Other force fields, such as Amber99ffsb [202],

also implement these corrections; however, CHARMM22/CMAP [201] was selected due to its

reported accuracy in describing α-helix, β-sheet, and disordered structures [203]. The fibril

models were solvated using the solvate module of VMD 1.9.1 [204], resulting in a periodic

box of 5,000 water molecules with dimensions of 70 × 50 × 50�A3 for a total system size of

17,189 atoms. The TIP3P water model [205] was employed in all simulations, and the particle

mesh Ewald algorithm [206] was used with a grid spacing of 1.0�A to calculate full system

electrostatics. An integration time step of 2 fs was employed. Simulations were performed

under the NPT ensemble, with a Langevin thermostat and piston utilized to regulate the

temperature of 300 K and pressure of 1.013 25 bar, respectively. The pair interaction cutoff

was 12.0�A, and the switch distance was 10.0�A.

Simulation analysis was performed using VMD 1.9.1 and Tcl scripting. The Ψ and χ3

dihedral angles were obtained for all Gln residues with a Tcl script in VMD. The χ3 dihedral

angles were obtained from Gln side chains that were not significantly solvent exposed, so

as to best simulate the interior of a fibril environment. The extent of β-sheet dissociation

was determined qualitatively, by viewing the trajectories and monitoring the dissociation of

peptides. This qualitative analysis was also paired with a quantitative root mean square
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deviation (RMSD) metric (see APPENDIX D for details).

The Gibbs free energy difference between the Figure 5.1 model a antiparallel and model

b parallel β-strand fibril structures was calculated using a Python implementation of the

Bennett acceptance ratio method, called Pymbar [207]. Potential energies were obtained

from the NAMD log output files and used as inputs for Pymbar via a Python script that

can be found in APPENDIX D.

Hydrogen bonding analysis on models a and b (from Figure 5.1) was also done by using

VMD 1.9.1. Hydrogen bond contacts were defined by a heavy atom (N - - - O) distance

of <3.0�A and a N–H O angle between −30° and 30°. The number of peptide backbone-

backbone, backbone-side chain, side chain-side chain, and peptide-water hydrogen bonds

were calculated for models a and b over the course of the entire trajectory. The data for

each hydrogen bond category was binned for each model and plotted with the statistical

computing package R (see APPENDIX D).

5.4 RESULTS AND DISCUSSION

5.4.1 Q10 Forms Amyloid-like Fibril Aggregates

Figure 5.2a,b show the TEM images of NDQ10 and DQ10 aggregates. The TEM images

of both NDQ10 and DQ10 aggregates resemble those of amyloid-like fibrils and exhibit

morphologies similar to those of polyQ peptides with larger, more pathologically relevant

Gln repeat lengths [32]. NDQ10 aggregates (Figure 5.2a) cluster into dense meshworks

composed of small, thin fibrils, while DQ10 (Figure 5.2b) forms long, ribbon-like fibrils.

We used X-ray diffraction to further characterize the fibril-like nature of NDQ10 and

DQ10 aggregates. Oriented amyloid fibril films exhibit a characteristic diffraction pattern

with a “meridional reflection” at ∼4.8�A and an “equatorial reflection” at ∼10�A to 12�A.

This diffraction pattern is the hallmark of cross-β structures, wherein constituent β-strands

orient perpendicular to the long axis of the fibril. The meridional reflection is indicative

of the spacing between β-strands, and the equatorial reflection is indicative of the spacing
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Figure 5.2: Transmission electron micrographs (TEM) and X-ray diffraction patterns of

NDQ10 and DQ10 fibril aggregates. TEM of (a) NDQ10 and (b) DQ10 fibrils. The scale

bars represent 200 nm. X-ray diffraction pattern of (c,d) NDQ10 fibril films, (e) DQ10 fibril

films, and (f) the quartz capillary tube. The patterns shown in (c) and (d) are the same

except for the contrast settings, which have been set in (d) to highlight the weak reflection

at ∼8.2 Å. Adapted with permission from [196]. Copyright © (2016), American Chemical

Society.

between β-sheets in the fibrils.

Figure 5.2c-e show the “powder-like” diffraction patterns of unoriented NDQ10 and DQ10

aggregate films. There are reflections at ∼4.1�A, ∼4.8�A, and ∼8.2�A observed in the diffrac-

tion patterns of NDQ10 and DQ10. Similar reflections have been observed in larger sequences

of polyQ fibrils in previous studies [54, 55]. Based on these previous studies, we assign the

prominent ∼4.8�A reflection to the repeat distance between neighboring β-strands within the

fibril β-sheets. The weaker ∼8.2�A reflection is assigned to the inter-β-sheet stacking repeat

distance.

The equatorial reflections of most amyloid-like fibrils are very diffuse, which indicates
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limited ordering and disordered growth in the inter-β-sheet dimension [208]. In contrast,

polyQ fibrils usually show very sharp reflections between ∼8�A to 9�A. We observe reflec-

tions at ∼8.15�A and ∼8.23�A in NDQ10 and DQ10, respectively. A higher order reflection

occurs at ∼4.1�A for both NDQ10 and DQ10. The presence of these higher orders and the

narrowness of the ∼8.2�A reflections suggests that there is long range ordering in the inter-

β-sheet dimension of polyQ fibrils [54, 55]. As noted by Atkins and Sikorski [54], this long

range ordering presumably arises from the tight interdigitation of the Gln side chains from

neighboring sheets. In addition, there is strong inter-amide hydrogen bonding interactions

between neighboring side chains of the same β-sheet.

5.4.2 UVRR of Polyglutamine Fibrils in H2O

We utilized UVRR to investigate the molecular structure of NDQ10 and DQ10 fibrils

in solution. The ∼197 nm and ∼204 nm excited UVRR spectra of NDQ10 and DQ10 fibrils

are shown in Figure 5.3. Raman excitation at ∼200 nm occurs within the NV1 electronic

transitions of secondary amide peptide bonds and to the long wavelength side on the NV1

transitions of Gln side chain primary amide groups [125, 134]. Thus, the ∼200 nm excita-

tion UVRR spectra of polyQ peptides are dominated mainly by resonance enhanced bands

that derive from primary and secondary amide (Am) vibrations, which we label with the

superscripts P and S, respectively.

5.4.2.1 Assignment of Gln Side Chain Bands The main difference between the

∼197 nm and ∼204 nm excited UVRR spectra are the relative intensities of the primary (side

chain) and secondary (peptide bond) amide bands. We previously showed that excitation at

∼197 nm enhances primary amide UVRR bands significantly more than ∼204 nm excitation

[125]. As a result, primary amide vibrations can be highlighted by calculating the difference

spectrum between the ∼197 nm and ∼204 nm UVRR spectra.

Figure 5.3 shows that the 197 nm – 204 nm difference spectra highlights the primary

amide vibrations of the Gln side chains in NDQ10 and DQ10 fibrils. The AmIP (predomi-

nately a Cδ=Oε1 stretching vibration) and the AmIIP (mainly Nε2H2 scissoring) bands are
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Figure 5.3: UVRR spectra (197 nm and 204 nm excitation) of (a) NDQ10 and (b) DQ10

fibrils prepared in H2O. The spectra were measured on precipitates that were resuspended in

H2O. Adapted with permission from [196]. Copyright © (2016), American Chemical Society.

located at ∼1660 cm−1 and ∼1615 cm−1, respectively, for both NDQ10 and DQ10 fibrils. In

addition, both NDQ10 and DQ10 show a band at ∼1100 cm−1 that derives from an in-phase

combination of Cδ–Nε2 stretching and Nε2H2 rocking motions. As discussed in detail below,

this vibration, which we call the AmIIIP, is sensitive to the structure of the Gln side chains.

The primary amide band frequencies and Raman cross sections are very sensitive to
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the hydrogen bonding and the local dielectric environment of Gln side chains [146]. For

example, the AmIP band frequency is diagnostic of Cδ=Oε1 hydrogen bonding. The AmIIP

band frequency reports on hydrogen bonding of the Nε2H2 group. Compared to monomeric

Gln in water [180], the NDQ10 and DQ10 fibril AmIP bands are downshifted by ∼20 cm−1,

while the AmIIP bands are downshifted by ∼7 cm−1. These frequency downshifts indicate

that the inter-amide hydrogen bonding within the fibrils is much stronger than the amide-

H2O hydrogen bonding that occurs for monomeric Gln. In addition, the NDQ10 and DQ10

fibril AmIP and AmIIP bands show very narrow linewidths, similar to those seen in UVRR

spectra of Gln crystals [180], which indicates that the primary amide groups are in very

well-defined hydrogen bonding states.

The most noticeable difference between the NDQ10 and DQ10 fibril 197 nm - 204 nm

difference spectra occur for strong bands located between ∼1400 cm−1 to 1500 cm−1. A band

located at ∼1415 cm−1 in NDQ10 fibrils upshifts ∼15 cm−1 in DQ10 fibrils. This band derives

from a complex vibration that contains CH2 wagging, C–C stretching, CH2 scissoring, and

Cδ–Nε2 stretching motions. Based on our previous work [146], an upshifted CH2 wagging

band signals that the Gln side chains are in an environment of higher dielectric constant.

Thus, we conclude that the DQ10 Gln side chain methylene groups are in a higher dielectric

constant environment than are those of NDQ10. This presumably correlates with the ∼0.8�A

larger inter-β-sheet spacing for DQ10 fibrils compared to NDQ10 fibrils (Figure 5.2c-e).

The larger inter-sheet spacing allows solvating water molecules to penetrate deeper into

DQ10 fibrils, increasing the local dielectric constant. This hypothesis is supported by the

results shown in Figure D3, wherein the CH2 wagging band downshifts to ∼1415 cm−1 and

∼1407 cm−1 in dried DQ10 and NDQ10 fibril films, respectively.

5.4.2.2 Assignment of Peptide Backbone Bands We subtracted the 197 nm - 204 nm

difference spectra from the 204 nm excited UVRR spectra in order to reveal the peptide bond

secondary amide bands. The AmIS (mainly peptide backbone C=O stretching) appears as

two bands (labelled as AmIS
A and AmIS

B2) in the spectra of both NDQ10 and DQ10 fibrils.

This “excitonic splitting” is diagnostic of β-sheet structures and derives from through-space

transition dipole coupling between the AmIS oscillators. The Raman spectral AmIS splitting
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patterns of antiparallel and parallel β-sheets are similar. Thus, it is usually difficult to

discriminate between these two structures using this band alone [209, 210].

The intense, high frequency AmIS band (labelled as the AmIS
A) appears at ∼1665 cm−1

and ∼1660 cm−1 in NDQ10 and DQ10 fibrils, respectively. The less intense, low frequency

AmIS band (AmIS
B2) appears at ∼1620 cm−1 in NDQ10 and at ∼1615 cm−1 in DQ10. These

∼5 cm−1 decreases in the AmIS mode frequencies suggest slightly stronger peptide backbone

C−−O hydrogen bonding between β-strands in DQ10 fibrils than in NDQ10 fibrils [98]. We

are, however, aware that the Raman and IR AmIS bands can also be impacted by β-sheet

twisting and stacking, as well as the registry of the β-strands, as described in detail by

Keiderling and coworkers [209]. Thus, these AmIS frequency differences between NDQ10

and DQ10 could also signal subtle differences in the twisting and stacking of the fibril β-

sheets. We are continuing to examine these issues.

The extended AmIIIS UVRR spectral region between 1200 cm−1 to 1350 cm−1 is generally

considered to be the most structurally informative [89]. This region in polyQ peptides is

complicated due to the overlap of bands from Gln side chain CH2 twisting and wagging modes

that occur between ∼1280 cm−1 to 1350 cm−1. In addition, the AmIIIS region consists of

three sub-bands (called the AmIIIS
1, AmIIIS

2, and AmIIIS
3), which derive from vibrations that

are composed of in-phase combinations of peptide bond N–H in-plane bending and C–N

stretching motions.

Mikhonin et al. [127] previously assigned the AmIIIS
1, AmIIIS

2, and AmIIIS
3 bands in

detail. In NDQ10 and DQ10 fibrils, the AmIIIS
1 occurs at ∼1315 cm−1, while the AmIIIS

2

occurs at ∼1290 cm−1, and the AmIIIS
3 occurs between ∼1200 cm−1 to 1280 cm−1. Both

NDQ10 and DQ10 show peaks at ∼1230 cm−1 and low-frequency shoulders at ∼1210 cm−1.

As discussed in detail below, the AmIIIS
3 band frequency is sensitive to the Ramachandran

Ψ dihedral angle, and thus can be used to obtain quantitative information on the secondary

structure of polyQ fibrils.
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Figure 5.4: UVRR spectra (204 nm excitation) of (a) NDQ10 and (b) DQ10 fibrils prepared

in D2O. The spectra were measured on precipitates that were resuspended in D2O. Adapted

with permission from [196]. Copyright © (2016), American Chemical Society.

5.4.3 UVRR of Polyglutamine Fibrils in D2O

Figure 5.4 shows the UVRR spectra of NDQ10 and DQ10 fibrils prepared and measured in

D2O. Deuteration of the polyQ peptide backbone N–H and primary amide side chain Nε2H2

groups leads to significant spectral changes. Upon N-deuteration, the AmIS downshifts to

∼1640 cm−1 (AmI'S) and overlaps the AmI'P. In the case of the AmIIIS mode, deuteration

decouples N–H in-plane bending from C–N stretching [127]. This leaves a weak AmIII'S band

(mainly N–D in-plane bending) in the ∼950 cm−1 to 1050 cm−1 region. The AmIII'S region

also contains bands that derive from side chain Nε2D2 rocking modes [127]. The loss of the

AmIIIS band reveals the presence of several weak bands between ∼1300 cm−1 to 1400 cm−1,

which derive mainly from side chain CH2 and peptide backbone C–H deformation modes.
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5.4.4 Hydrogen-Deuterium (HX) Exchange of Polyglutamine Fibrils

A comparison of Figure 5.3 and Figure 5.4 show that UVRR can be employed to dif-

ferentiate between N–H and N–D peptide bonds. Hydrogen-deuterium exchange (HX) can

selectively probe solvent exposed versus solvent shielded peptide bonds in fibrils since the

AmIIIS completely disappears upon N-deuteration [91]. For example, fibrils prepared in

H2O and subjected to HX in D2O will show AmIIIS
3 bands that derive mainly from pep-

tide bonds shielded from solvent, such as those that are buried within the cross-β core. In

contrast, fibrils prepared in D2O that are subjected to HX in H2O will show AmIIIS
3 bands

that derive mainly from peptide bonds that are solvent accessible, generally because they

are located on the aggregate surface or because they exist in exchangeable conformations

such as “disordered” regions, turns, or loops.

Figure 5.5: UVRR spectrum (204 nm excitation) of Gln measured in a 50%H2O/50%D2O

mixture. The spectral contributions of solvent, as well as fully protonated and fully deuter-

ated Gln have been subtracted. Adapted with permission from [196]. Copyright © (2016),

American Chemical Society.

5.4.4.1 UVRR Bands of Partially Deuterated Primary Amides Extensive HX of

polyQ fibrils may not completely deuterate the primary amide Nε2H2 groups since the Gln

side chains may be involved in extensive hydrogen bonding interactions. Based on Saito and

coworkers’ normal mode analyses of acetamide [211, 212], the partial deuteration of primary

amides results in decoupling of N–H and N–D motions. As shown below, mono-deuteration
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of primary amides can give rise to secondary amide-like vibrational modes! Thus, it is

conceivable that mono-deuterated Gln side chains can result in AmIIIS-like vibrations.

To investigate the potential presence of AmIIIS-like vibrations in mono-deuterated pri-

mary amides, we measured the UVRR spectrum of Gln in a 50%/50% mixture of H2O and

D2O. The spectrum, shown in Figure 5.5, was assigned with the aid of DFT calculations

(see APPENDIX D for details). We considered two geometrical isomers in calculating the

vibrational normal modes of partially deuterated Gln, as shown in Scheme 5.1. The “trans-

NHD” Gln species resembles the trans-isomer configuration of the peptide bond, and thus,

is expected to give rise to vibrations that resemble the canonical AmIS, AmIIS, and AmIIIS

vibrations of secondary amides.

Scheme 5.1: Geometric isomers of the mono-deuterated primary amide group of Gln side

chains. Adapted with permission from [196]. Copyright © (2016), American Chemical

Society.

We present a detailed assignment of the Figure 5.5 spectrum in APPENDIX D, as shown

in Tables S1 - S3. According to our normal mode analysis, we assign an AmIS-like vibration

to an ∼1660 cm−1 band, and two AmIIS-like vibrations to bands located at ∼1550 cm−1 and

∼1475 cm−1. The DFT calculations also indicate that the ∼1250 cm−1 to 1400 cm−1 region

contains four vibrations with significant Cδ–Nε2 stretching character. Two of these vibrations

derive from the cis-NHD species of Gln and are assigned to the ∼1335 cm−1 and ∼1280 cm−1

bands. The other two vibrations at ∼1310 cm−1 and ∼1250 cm−1 derive from the trans-NHD

species of Gln. These modes resemble AmIIIS-like vibrations since they contain a significant

combination of NHD scissoring and Cδ–Nε2 stretching motions.

5.4.4.2 HX of NDQ10 and DQ10 fibrils Our normal mode analysis and band assign-

ments of the Figure 5.5 Gln spectrum indicate that HX of polyQ fibrils can result in partially

deuterated Gln side chains that give rise to AmIIIS-like vibrations. These AmIIIS-like bands
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Figure 5.6: HX-UVRR spectra (204 nm excitation) of (a, b) NDQ10 and (c,d) DQ10 fibrils.

For (a, c), fibrils were prepared in H2O and exchanged in D2O. For (b, d), fibrils were

prepared in D2O and exchanged in H2O. The spectra were measured on precipitates that

were resuspended in either H2O or D2O. Adapted with permission from [196]. Copyright ©

(2016), American Chemical Society.

appear in the high frequency side of the AmIIIS
3 region; however, they do not significantly

overlap with that of the AmIIIS
3 region of β-sheets, which occurs between ∼1200 cm−1 to

1240 cm−1. Thus, we can straightforwardly assign the β-sheet AmIIIS
3 bands of NDQ10 and

DQ10 fibrils in the HX-UVRR spectra.

Figure 5.6 shows the curve-resolved AmIIIS region of the UVRR spectra of NDQ10 and

DQ10 fibrils following HX. The spectra labeled as H→D (D→H) were measured from fibrils

prepared in H2O (D2O) and subjected to HX in D2O (H2O). The bands shown in blue are
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assigned to true AmIIIS
3 vibrations, while those shown in green are assigned to the AmIIIS-

like vibrations that derive from partially deuterated primary amides. The H→D spectra

of NDQ10 and DQ10 fibrils show AmIIIS
3 bands at ∼1210 cm−1 and ∼1230 cm−1. These

bands upshift ∼10 cm−1 in the D→H spectra. As discussed in detail by Mikhonin et al.

[97], this peptide bond frequency upshift can result from an increased hydrogen bonding to

water which does not involve any structural changes. Thus, we conclude that the Q10 fibril

exterior peptide bonds are more extensively hydrogen bonded to water than those in the

fibril interior.

5.4.5 Ramachandran Ψ Angle Distributions

The AmIIIS
3 band is the most conformationally sensitive secondary amide band because

its frequency depends sinusoidally on the Ramachandran Ψ dihedral angle (see Scheme 5.2)

of the peptide backbone [96, 97]. This sinusoidal dependence derives from the coupling of

the Cα–H bending vibration with the N–H bending component of the AmIIIS
3 vibration. For

example, this coupling is strong for β-strand and PPII-like peptide bond Ψ angles, when

the Cα–H and N–H groups are in an approximately cis-configuration. The strong coupling

between N–H and Cα–H bending motions downshifts the AmIIIS
3 frequency. In contrast, for

α-helical-like Ψ angles, the Cα–H and N–H groups are in a trans-configuration to each other,

which results in the Cα–H and N–H bending motions decoupling. This decoupling results in

the AmIIIS
3 band upshifting.

We utilized the structural sensitivity of the AmIIIS
3 band to determine Ramachandran Ψ

dihedral angle distributions for the NDQ10 and DQ10 fibril peptide bonds (Figure 5.7). To

do this, we employed the methodology of Asher and coworkers [97, 105] (see APPENDIX D

for details), which correlates the different frequencies of the AmIIIS
3 band envelope to different

peptide bond Ψ angles. This enables us to determine a probability distribution of peptide

bond Ψ angles from the inhomogeneously broadened AmIIIS
3 bandshapes shown in Figure 5.6.

The Ψ distributions shown in black derive from the H→D HX-UVRR (Figure 5.6a,c) AmIIIS
3

band profiles, while those shown in blue are from the D→H HX-UVRR (Figure 5.6b, d)

AmIIIS
3 band profiles.
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Scheme 5.2: Depiction of Ramachandran Ψ and Φ dihedral angles in polyQ peptides.

Adapted with permission from [196]. Copyright © (2016), American Chemical Society.

As shown in Figure 5.7, the Ψ angle distributions of NDQ10 and DQ10 are similar,

which indicates that the fibril secondary structures are essentially the same. All the distri-

butions are bimodal, showing peaks near ∼145° and ∼125°. According to Hovmöller et al.’s

analysis [213] of protein data bank crystal structures, Gln residues in antiparallel β-sheet

conformations show an average Ψ angle of ∼137(15)°, while those in parallel β-sheet struc-

tures show an average Ψ angle of ∼129(15)°. Given these values, we attribute the NDQ10

and DQ10 peaks centered at ∼145° to fibril peptide bonds that are in antiparallel β-sheet

conformations, and the peaks at ∼125° to peptide bonds in parallel β-sheet conformations.

A comparison of the black and blue Ψ angle distributions indicates that there are struc-

tural differences between solvent accessible and inaccessible peptide bonds in both NDQ10

and DQ10 fibrils. The blue distributions are much broader than the black distributions,

which indicates that the solvent accessible peptide bonds exhibit greater conformational

heterogeneity than the solvent inaccessible peptide bonds. Most of this increased struc-

tural heterogeneity stems from the peptide bonds in parallel β-sheet conformations. Indeed,

the standard deviations (σ) of the antiparallel β-sheet distributions corresponding to sol-

vent accessible and inaccessible peptide bonds are not significantly different. However, the

standard deviations of the parallel β-sheet distributions are ∼12°-13° for solvent accessible

peptide bonds, but collapse to a narrower range of Ψ angles for solvent inaccessible peptide

bonds.
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Figure 5.7: UVRR determined Ψ angle distributions for NDQ10 and DQ10 fibrils. (a) Dis-

tribution corresponding to the NDQ10 fibril Figure 5.6a HX spectrum. (b) Distribution

corresponding to NDQ10 fibril Figure 5.6b HX spectrum. (c) Distribution corresponding to

DQ10 fibril Figure 5.6c HX spectrum. (d) Distribution corresponding to DQ10 fibril Fig-

ure 5.6d HX spectrum. The distributions were least-squares fit to one or two Gaussians. The

peak Ψ angles and distribution standard deviations (σ) are reported, along with their stan-

dard errors from the fits (in parentheses). Adapted with permission from [196]. Copyright

© (2016), American Chemical Society.

The Ψ angle distributions shown in Figure 5.7 indicate that the solvent inaccessible

peptide bonds in NDQ10 and DQ10 fibrils preferentially adopt antiparallel over parallel

102



β-sheet conformations. The solvent inaccessible peptide bonds derive primarily from the

fibril interiors, where primary fibril nucleation occurs. This suggests that nascent polyQ

(proto)fibrils form around antiparallel β-sheet nuclei. In contrast, peptide bonds that are

solvent accessible are located predominately on the surface of polyQ aggregates, which is

more disordered since peptides can aggregate onto the fibril by forming parallel β-sheet

structures, in addition to adding as antiparallel β-sheets.

5.4.6 Developing a Molecular-level Structural Model

Figure 5.8: Time evolution of (a) antiparallel β-sheet, (b) parallel β-sheet, and (c) β-hairpin

fibril models in MD simulations. Adapted with permission from [196]. Copyright © (2016),

American Chemical Society.

The Figure 5.7 distributions show that no peptide bonds populate β-turn Ψ angles. Thus,

we conclude that the basic structural motifs of NDQ10 and DQ10 fibrils are extended β-

strands. To investigate this hypothesis, we utilized atomistic MD to examine Q10 peptides

arranged in three different fibril architectures. As shown in Figure 5.1, these models are

composed of eight Q10 peptides arranged into two β-sheet layers. Models a and b consist

of extended β-strands that are arranged into antiparallel and parallel β-sheet architectures,
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respectively. Model c consists of β-hairpins with Type I turn structures that are arranged

into an antiparallel β-sheet configuration. Further details regarding the construction of the

fibril models for the MD simulations can be found in APPENDIX D.

The Figure 5.1 simulated fibril models retained structural integrity throughout the energy

minimization and equilibration processes of the computations. We utilized an RMSD metric

(Figure D2) to monitor the extent of dissociation of the fibril models during the simulation

production runs. The RMSD of peptide backbone atoms relative to that of the respective

initial, energy-minimized structure was used. An RMSD of 3�A was used as a dissociation

threshold. Based on this criterion, the Figure 5.1c β-hairpin model dissociates at ∼60 ns into

the production simulation, while models a and b remain intact throughout the full 200 ns

simulation (Figure 5.8).

As shown in Figure 5.9, we compared the Ramachandran Ψ angle distributions obtained

from the production runs of the simulated fibril models to those measured experimentally.

The distributions corresponding to models a and b show large peaks at ∼141° and ∼127°,

respectively, which are very close to the experimentally observed Ψ angle peaks for the

antiparallel and parallel β-sheets. In contrast, the model c distribution shows very poor

agreement with the experimentally determined distributions since the calculated peak Ψ

angle distribution is downshifted ∼12° from the experimentally observed antiparallel β-sheet

peak distribution. In addition, the model c Ψ angle distribution shows a doublet located at

∼−19° and ∼−43° that is not experimentally observed. This doublet corresponds to Ψ angles

that derive from the i+1 and i+2 Type I β-turn residues. The strong agreement between

the model a and b Ψ angle distributions with those measured experimentally supports our

conclusion that the basic structural motif of NDQ10 and DQ10 fibrils are stacked β-strands

organized into β-sheets.

Our β-strand models for NDQ10 and DQ10 fibrils are consistent with other studies.

For example, Schneider et al. [56] suggest, on the basis of EM and solid-state NMR, that

D2Q15K2 peptides adopt extended β-strands in fibrils. In another study, Thakur and Wetzel

[69] probed polyQ fibril structure by replacing Gln-Gln residue pairs with Pro-Gly pairs to

increase the formation of β-turn structures. They found that peptides, which had continuous

stretches of ∼9 to 10 Gln residues, mimicked the aggregation behavior and morphologies of
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Figure 5.9: Comparison of Ψ angle distributions from simulations and experiments. The dis-

tributions correspond to: (a, b) solvent accessible peptide bonds from NDQ10 (Figure 5.7b)

and DQ10 fibrils (Figure 5.7d), respectively; (c) model a in Figure 5.1; (d) model b in Fig-

ure 5.1; (e) model c in Figure 5.1. Adapted with permission from [196]. Copyright © (2016),

American Chemical Society.

unmutated fibrils. They interpret these results to mean that simple polyQ peptides form

β-strands that are optimally ∼9 to 10 Gln residues in length.
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5.4.7 Antiparallel β-sheets are more Favorable than Parallel β-sheets in polyQ

fibrils

Numerous studies have shown that the most common structural motif of typical prions

and amyloid fibrils is the in-register parallel cross-β structure [81, 82, 167, 168, 214]. For

these fibrils, in-register parallel β-sheets appear to maximize hydrophobic and steric zipper

interactions [198]. Reports of antiparallel β-sheets structures are far less common, although

they have been reported for some amyloidogenic peptide microcrystals [215] and fibrils [83].

PolyQ fibrils are unique in that most studies [55, 56, 58, 69] suggest that they predominately

form antiparallel β-sheets.

This preference indicates that antiparallel β-sheet structures is be more energetically fa-

vorable than parallel β-sheets in polyQ fibrils. To examine this possibility, we used the Ben-

nett acceptance ratio method (see APPENDIX D, Figure D4) to calculate the free energy dif-

ference between our simulated parallel and antiparallel β-sheet fibrils. The free energy of our

simulated antiparallel β-sheet model system (model a) was found to be 160.5(20) kJ mol−1

(per fibril system) lower than the parallel β-sheet model system (model b). Since the sim-

ulated fibril systems were composed of eight Q10 peptides, this means that the free energy

is ∼1.5 kJ mol−1 per peptide bond (there are 104 total peptide bonds in each simulated fibril

system) lower for the antiparallel β-sheet structure than the parallel β-sheet structure.

The MD simulation results suggest that antiparallel β-sheet formation is favored in polyQ

fibrils. This accounts for the greater fraction of antiparallel β-sheets over parallel β-sheets

experimentally observed in NDQ10 and DQ10 fibrils. Using the integrated areas of the

AmIIIS3 bands in the Figure 5.6 spectra, we calculate the apparent Gibbs free energy differ-

ence between parallel and antiparallel β-sheets to be ∼6-7 kJ mol−1 per solvent inaccessible

peptide bond and ∼1 kJ mol−1 per solvent accessible peptide bond. We note that the exper-

imentally measured free energy difference of 1 kJ mol−1 per solvent accessible peptide bond

is very close to the value of ∼1.5 kJ mol−1 per peptide bond calculated from the simulated,

well-hydrated fibril models.

We examined electrostatic and hydrogen bonding interactions of models a and b in order

to understand the origins of the energetic favorability of antiparallel β-sheets over parallel
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β-sheets. In the case of electrostatics, we find that models a and b are both stabilized

by favorable electrostatic interactions between N-terminal Asp residues and C-terminal Lys

residues from opposing β-sheets. However, within a β-sheet, the antiparallel β-sheet model

a is stabilized by favorable inter-strand electrostatic interactions between oppositely charged

terminal residues. In contrast, the parallel β-sheet model b is slightly destabilized due to

inter-strand electrostatic repulsions of similarly charged terminal residues. The inter-strand

repulsion between like-charged terminal residues in model b may disrupt nearby peptide

backbone hydrogen bonding interactions.

Most of the energetic favorability of the antiparallel β-sheet derives from hydrogen bond-

ing interactions. In our analysis, we considered three different types of peptide-peptide hy-

drogen bonding: peptide backbone-backbone, side chain-backbone, or side chain-side chain

(see Figure D5 and Table D4 in APPENDIX D). Our analysis indicates that, on average,

model a forms more peptide-peptide hydrogen bonds than does model b. Specifically, model

a forms significantly more hydrogen bonds between peptide backbone amides than does

model b (Figure D5d). In contrast, model b forms more side chain-backbone and peptide-

water hydrogen bonds than does model a, as shown in Figure D5b,c. Thus, it appears that

model a is stabilized by more peptide-peptide hydrogen bonds, and less destabilized due

to fewer peptide-water hydrogen bonds. In contrast, model b is less energetically favorable

due to fewer stabilizing peptide-peptide hydrogen bonds and more destabilizing peptide-

water hydrogen bonds. We also note that it is well-known that antiparallel β-sheets are

enthalpically more favorable than are parallel β-sheets structures [216] due to their optimal

hydrogen bonding geometries. Our MD results support the hypothesis that thermodynamics,

not kinetics, drive polyQ aggregation into antiparallel β-sheet architectures.

5.4.8 Structure of NDQ10 and DQ10 Gln side chains

5.4.8.1 Determination of Gln Side Chain χ3 Angle Distributions We recently

discovered [180] a vibrational spectral marker band that we call the AmIIIP band, which

shows a cosinusoidal frequency dependence on the O–C–C–C dihedral angles of Gln and

Asn side chains (the χ3 and χ2 angles, respectively). The AmIIIP vibration is somewhat
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Figure 5.10: Peak fitting of the 197 nm – 204 nm UVRR difference spectra of (a) NDQ10

and (b) DQ10 fibrils. Also shown are the residuals between the fitted and measured spectra.

The bands shown in blue are assigned to the AmIIIP of the Gln side chains. Adapted with

permission from [196]. Copyright © (2016), American Chemical Society.

reminiscent of the AmIIIS
3 vibration since it derives from an in-phase combination of Cδ–Nε2

stretching and Nε2H2 rocking motions (replacing N–H bending in the AmIIIS
3). However,

Cβ–Cγ stretching also contributes significantly to the AmIIIP vibrational potential energy

distribution.
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The structural sensitivity of the AmIIIP band derives mainly from the hyperconjugation

of the Cδ=Oε1 π* and Cβ–Cγ σ orbitals [180]. When hyperconjugation is strong (e.g. at

χ3 ∼ ±90°) electron density is transferred from the Cβ–Cγ to the Cδ=Oε1 bond. This

elongates the Cβ–Cγ bond and reduces the Cβ–Cγ stretching force constant. As a result,

the AmIIIP frequency downshifts. In contrast, in the absence of hyperconjugation (e.g. at

χ3 ∼0°), the Cβ–Cγ bond length shortens and the AmIIIP frequency upshifts.

To locate the AmIIIP bands of NDQ10 and DQ10 fibrils, we curve-resolved the 197 nm

- 204 nm difference spectra. As shown in Figure 5.10, the AmIIIP band is located be-

tween ∼1050 cm−1 and 1150 cm−1. Curve-resolving this spectral region for both NDQ10

and DQ10 reveals four underlying bands located at ∼1060 cm−1, ∼1100 cm−1, ∼1120 cm−1,

and ∼1140 cm−1. Based on our previous work [180], we assign the 1060 cm−1, 1120 cm−1,

and 1140 cm−1 bands to C–N stretching, Cβ–Cγ stretching/Nε2H2 rocking, and CH2 twisting

vibrations, respectively. The AmIIIP band is assigned to the ∼1100 cm−1 shoulder feature

[180].

We utilized the structural sensitivity of the AmIIIP vibration to determine the distribu-

tions of χ3 dihedral angles for the NDQ10 and DQ10 fibrils. The methodology employed to

calculate the χ3 angle distributions is similar to that used to determine the peptide bond

Ramachandran Ψ angle distributions (see APPENDIX D on for details). As shown in Fig-

ure 5.11a and b, the χ3 distributions are doubly peaked since the AmIIIP band frequencies

gives rise to two physically possible χ3 angle solutions (see the discussion of eq. D.8 in AP-

PENDIX D). The AmIIIP band of NDQ10 gives rise to distributions of χ3 angles centered

at χ3 ∼−14° or 5°. The AmIIIP band of DQ10 gives rise to similar χ3 angle distributions

that are centered at χ3 ∼−12° or ∼3°. The Gaussian-like distributions of both NDQ10 and

DQ10 show standard deviations of ∼15°.

We compared the Figure 5.11a,b distributions to those calculated from the MD simulated

fibril models. The χ3 dihedral angle distributions corresponding to the simulated fibril models

are shown in Figure 5.11c-e. The antiparallel β-sheet model a shows a dominating peak at

∼4°, whereas the parallel β-sheet model b shows its largest peak centered at ∼−10°. These

dihedral angle maxima of models a and b are very close to the experimentally measured for

NDQ10 and DQ10.
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Our combined UVRR and validated MD results provide new detailed insights into the

structure of the Gln side chains in polyQ fibrils. The experimentally measured χ3 dihedral

angles for both NDQ10 and DQ10 are distributed around ∼0°. As shown by the structures

in Figure 5.12a,b, the model a and b Gln side chains are approximately planar. This allows

Gln side chains from opposing β-sheets to form tightly interdigitated steric zippers, as well

as to enable the primary amide groups to both accept and donate hydrogen bonds between

neighboring β-strands.

5.4.8.2 Comparisons of Side Chain Structures with Other Models To our knowl-

edge, the structure of Gln side chains in polyQ fibrils have only been investigated previously

by the Sikorski [54] and Kirschner [55] groups. Both of these studies examined polyQ fibril

structure with X-ray diffraction. However, despite obtaining similar diffraction patterns,

the Sikorski [54] and Kirschner [55] groups proposed different fibril structures based upon

modeling the data. For example, the Sikorski [54] group proposes that Gln side chains show

alternating χ1 (N–Cα–Cβ–Cγ) torsion angles along each β-strand of ∼69° and ∼−113°. The

Sikorski group’s model [54] is similar to our structure since the Gln side chains are approx-

imately planar; however, their final model indicates that the χ3 angle is ∼180°, which is

energetically unfavorable and sterically nearly forbidden [180].

The Kirschner [55] group proposed a different structure for Gln side chains in polyQ

fibrils. In their study, an electron density maps were calculated from their low-resolution

powder-like X-ray diffraction patterns by combining the structure factors determined from

the experimental reflection intensities, and the phase angles from a model that satisfactorily

accounted for the observed d-spacings. They then modeled the electron densities to generate

atomic models for Ac−Q8−NH2 and D2Q45K2 fibrils. Their modeling of the electron density

maps suggests that polyQ fibril Gln side chains adopt unusual bent conformations, as shown

in Figure 5.12c,d. It should be noted that the fibril models reported by the Kirschner [55]

group result in very high R-factors (24% for Ac−Q8−NH2 and 35% for D2Q45K2).

The Kirschner [55] group’s side chain structures are inconsistent with our model. The

Kirschner [55] group structure shows side chain χ3 angles that approach values of ∼ ±90°,

which differs significantly from our experimentally determined values that are close to ∼0°.
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The fact that we measure χ3 angles near ∼0° is important because it means that the Gln

side chains are roughly planar, which allows the steric zipper interactions that are believed

to stabilize amyloid-like fibrils. It is difficult to envision Gln primary amide stabilizing

steric zipper interactions in the Kirschner [55] group model, since their Gln side chains

conformations are bent, and should not enable tight interdigitation of neighboring β-sheets.

5.4.9 Dependence of Fibril Structure on Deposition of Different NDQ10 and

DQ10 Solution Conformations

The NDQ10 and DQ10 peptides have significantly different solution conformations. The

NDQ10 and DQ10 peptide solutions are composed of putative β-hairpin-like and PPII-like

conformations, respectively [125]. These two solution conformations aggregate into fibrils

that are composed of similar, but not identical, β-sheet structures, which have similar planar

Gln side chain conformations. The similarity between these fibril structures probably signals

that the extended β-strand structure is the most energetically favorable Q10 fibril structure.

However, the subtle differences observed between the NDQ10 and DQ10 fibril structures

must result from the variation in the growth mechanisms due to different Q10 solution

conformations. A speculative hypothesis is that the increased water content and spacing of

the DQ10 fibrils results from the preferential addition of the well hydrated PPII-like DQ10

peptides that lead to incorporation of water into the hydrophobic interdigitating side chain

domains. This gives rise to the longer DQ10 fibril inter-β-sheet spacing compared to NDQ10,

as observed in Figure 5.2. We are presently investigating this possibility.

5.5 CONCLUSION

We performed a detailed structural analysis of NDQ10 and DQ10 fibrils using UVRR and

MD simulations. On the basis of comparing our UVRR and MD simulation results, we de-

termine that the basic structural element of Q10 fibrils is an extended β-strand. The solvent

inaccessible interiors of NDQ10 and DQ10 fibrils are a predominately antiparallel β-sheet
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structures that are highly ordered and composed of these extended β-strands. However, the

water accessible peptide bonds, which are located predominately on the fibril surfaces, show

greater conformational heterogeneity and contain significant subpopulations of β-strands

that adopt parallel β-sheet architectures.

Our MD simulation results indicate that Q10 antiparallel β-sheets are energetically more

favorable than parallel β-sheets. This is an important insight because it may explain why

polyQ fibrils, in contrast to most amyloid-like aggregates, preferentially adopt antiparallel

β-sheets instead of in-register parallel β-sheets. Our results indicate that the origin of the

energetic favorability of Q10 fibril antiparallel β-sheets is mainly due to hydrogen bonding.

Antiparallel β-sheets form, on average, more hydrogen bonds between peptide backbone

amides than do parallel β-sheets.

This study also provides important new insights into the structure and chemical envi-

ronment of Gln side chains in polyQ fibrils. In contrast to previous, low-resolution X-ray

studies, we show that that the Gln side chains in polyQ fibrils adopt conformations that are

roughly planar, where the χ3 dihedral angles are narrowly distributed around 0°. This en-

ables the formation of steric zippers, wherein the side chains of neighboring β-sheets tightly

interdigitate.

The UVRR spectra are also highly sensitive to the local hydrogen bonding and dielectric

environments of the Gln side chains. For example, a major difference observed between

NDQ10 and DQ10 fibrils is a different local dielectric environment of the Gln side chains. The

primary amides of both NDQ10 and DQ10 fibrils are strongly hydrogen bonded; however, in

DQ10, the side chain methylene groups experience a higher dielectric constant environment.

This is likely correlated with the larger DQ10 fibril inter-sheet spacing compared to NDQ10.

The larger inter-sheet spacing of DQ10 fibrils presumably results from an increased content of

water between β-sheets. The NDQ10 and DQ10 fibrils experience different growth processes

due to their different Q10 solution conformations. Deposition of the well-hydrated PPII-like

DQ10 peptides results in fibrils with higher water content, with a β-sheet structure showing

larger inter-sheet spacings than occurs for growth with β-hairpin NDQ10 solution peptides.

Finally, our study demonstrates the utility of synergistically coupling UVRR with MD

simulations. Understanding the structure of polyQ and other amyloid-like fibrils remains
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of great importance because these aggregates are implicated in numerous neurodegenerative

diseases. Knowing the fibril structures will provide important insights into the aggrega-

tion mechanism(s) of polyQ peptide sequences. However, determining the molecular-level

structure of fibrils is challenging because of the insoluble and non-crystalline nature of fibril

aggregates. A key advantage of our approach is that UVRR can be utilized to measure the

peptide backbone Ψ and the side chain χ3 dihedral angle distributions. This information

can be used to generate hypotheses on the structure of fibrils, which can then be tested in

silico with MD simulations. Our work combines UVRR and MD into a novel approach for

investigating fibrils. Our approach complements existing methods such as solid-state NMR.

However, the short experimental UVRR acquisition time frames of our measurements enable

the examination of peptide structural changes during fibril aggregation on timescales that

are inaccessible to conventional biophysical methods.

5.6 NOTE ADDED IN REVISION

While this paper was in review, Hoop et al. [61] published a study that examined

fibrils prepared from the huntingtin exon 1 domain (htt exon 1). Overall, their solid-state

NMR (ssNMR) measurements on the polyQ fibril core of htt exon 1 are in remarkable

agreement with our UVRR-based measurements on Q10. Their findings suggest that the

polyQ fibril core in htt exon 1 is arranged in β-hairpins that form antiparallel β-sheets. Using

sophisticated magic angle spinning ssNMR techniques, Hoop et al. measure Ramachandran

Ψ angles that are very close to our values for antiparallel β-sheets. This is particularly true

for their observed “b-type” conformer, where they measure Ψ angles of ∼150°.

Hoop et al. also measured the Gln side chain χ2 dihedral angles (Cα–Cβ–Cγ–Cδ) to

be ∼180° in htt exon1 fibrils. Their results lead them to also conclude that the Gln side

chains in polyQ fibrils are extended in structure. Although they did not directly measure

Gln side chain χ3 angles, Hoop et al. suggest values of ±150°, which differ significantly

from our experimentally determined values reported here. It is interesting to note that our

experimentally validated MD-simulated β-sheet fibril structure (model a) shows a mean χ2
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value of ∼180°, which is exactly the angle that Hoop et al. measure. Combining these

ssNMR results with our UVRR and MD data, leads us to propose that the most likely fibril

structures of the Gln side chains will have χ2 and χ3 angles of ∼180° and ∼0°, respectively.

We are examining this issue in greater detail.
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Figure 5.11: χ3 dihedral angle distributions of Gln side chains. Distributions obtained

experimentally are shown for (a) NDQ10 fibrils and (b) DQ10 fibrils. Distributions obtained

from MD simulated structures correspond to (c) model a in Figure 5.1; (d) model b in

Figure 5.1; and (e) model c in Figure 5.1. The missing χ3 angles in (a,b) around the region

of ∼0◦ is due to the fact that those corresponding AmIIIP frequencies are outside the domain

of the semi-empirically derived equation [180] used to correlate the frequencies of the AmIIIP

band envelope to their respective χ3 angles (see eq. D.8 in APPENDIX D). Adapted with

permission from [196]. Copyright © (2016), American Chemical Society.
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Figure 5.12: Comparison of side chain geometries from (a,b) our MD simulations and (c,d)

Sharma et al. [55] The (c,d) figure panels were adapted from reference [55]. Adapted with

permission from [196]. Copyright © (2016), American Chemical Society.
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APPENDIX A

DERIVATIONS

A.1 DERIVATION OF THE TRANSITION SCATTERING RATE

A.1.1 Second Order Perturbation Theory

In this section, the transition scattering rate for Rayleigh and Raman (eq. 2.1) is derived

using second order perturbation theory in the interaction picture of quantum mechanics. We

begin by expanding the Dyson series to its second order term [113]:

ÛI(t, 0) = 1 +
( 1

ih̄

)∫ t

0

dt1ĤI(t1) +
( 1

ih̄

)2
∫ t

0

dt1

∫ t1

0

dt2ĤI(t1)ĤI(t2)

= Û
(0)
I (t, 0) + Û

(1)
I (t, 0) + Û

(2)
I (t, 0) (A.1)

where ÛI(t, 0) is the time evolution operator. The operator, ĤI(t), is the interaction picture

Hamiltonian [113], which is defined as:

ĤI(t) = eiĤ0t/h̄Ĥ ′(t)e−iĤ0t/h̄ (A.2)

Ĥ0 is the time-independent Hamiltonian of the system. Ĥ ′(t) is the time-dependent Hamilto-

nian due to the interaction between the molecule being excited and the perturbing radiation

field. The perturbation is small and acts over the time interval from t = 0 to t. For simplic-

ity, this perturbation is treated classically. We assume that the perturbation is a linearly
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polarized, continuous light wave oscillating at a frequency, ω, that is given by the following

equation:

~E = Eε̂ cos(k̂ · r̂ − ωt)

=
Eε̂

2

[
ei(k̂·r̂−ωt) + e−i(k̂·r̂−ωt)

]
(A.3)

where E is the amplitude of the electric field, ε̂ is a unit vector specifying the direction of

the electric field polarization, k̂ is the propagation vector, and r̂ is the position vector.

Eq. A.3 is further simplified by invoking the electric dipole approximation. This approx-

imation assumes that the wavelength of the perturbing electromagnetic field is much larger

than the dimensions of the molecules being excited. This means that the molecules being

excited experience an electric field that is spatially constant, so that:

e±i(k̂·r̂) = 1± ik̂ · r̂ ± ... ≈ 1 (A.4)

~E ≈ Eε̂

2

[
e−iωt + eiωt

]
(A.5)

Given eq. A.5, Ĥ ′(t) can be be written as the following:

Ĥ ′(t) = −EI
2
ε̂I · µ̂e−iωI t −

ES
2
ε̂S · µ̂eiωSt

= V e−iωI t + V †eiωSt (A.6)

where the subscripts I and S denote the incident and scattered photons. The operator, µ̂,

is the transition dipole moment that couples the molecule to the perturbing radiation field.

We assume that the molecule starts in an initial state |i〉 and, following the perturbation,

ends in state |f〉. The probability amplitude associated with this transition is:
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〈f |ÛI(t, 0)|i〉 = 〈f |Û (0)
I (t, 0)|i〉+ 〈f |Û (1)

I (t, 0)|i〉+ 〈f |Û (2)
I (t, 0)|i〉

= δfi +
( 1

ih̄

)
〈f |
∫ t

0

dt1ĤI(t1) |i〉+
( 1

ih̄

)2

〈f |
∫ t

0

dt1

∫ t1

0

dt2ĤI(t1)ĤI(t2) |i〉

(A.7)

The Kronecker delta, δfi, indicates that the 〈f |Û (0)
I (t, 0)|i〉 term is non-zero only if no transi-

tion occurs, (i.e., i = f). In contrast, the 〈f |Û (1)
I (t, 0)|i〉 term represents one-photon absorp-

tion and emission processes. Thus, only the 〈f |Û (2)
I (t, 0)|i〉 term of eq. A.7 contributes to

the probability amplitude associated with two photon scattering processes such as Rayleigh

and Raman:

〈f |Û (2)
I (t, 0)|i〉 =

( 1

ih̄

)2

〈f |
∫ t

0

dt1

∫ t1

0

dt2ĤI(t1)ĤI(t2) |i〉 (A.8)

To evaulate eq. A.8, we use the following identity:

∑
r

|r〉 〈r| = 1 (A.9)

Substituting eqs. A.6 and A.9 into A.8, gives the following equation:

〈f |Û (2)
I (t, 0)|i〉 =

( 1

ih̄

)2∑
r

∫ t

0

dt1 〈f | ĤI(t1) |r〉
∫ t1

0

dt2 〈r| ĤI(t2) |i〉

=
( 1

ih̄

)2∑
r

∫ t

0

dt1 〈f | eiĤ0t1/h̄[V e−iωI t1 + V †eiωSt1 ]e−iĤ0t1/h̄ |r〉

×
∫ t1

0

dt2 〈r| eiĤ0t2/h̄[V e−iωI t2 + V †eiωSt2 ]e−iĤ0t2/h̄ |i〉

=
( 1

ih̄

)2∑
r

∫ t

0

dt1

[
〈f |V |r〉 ei(ωfr−ωI)t1 + 〈f |V †|r〉 ei(ωfr+ωS)t1

]
×
∫ t1

0

dt2

[
〈r|V |i〉 ei(ωri−ωI)t2 + 〈r|V †|i〉 ei(ωri+ωS)t2

]
(A.10)

where ωfr = ωf − ωr and ωfr = ωf − ωr. Integrating eq. A.10 with respect to t2 gives:
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( 1

ih̄

)2∑
r

∫ t

0

dt1

[
〈f |V |r〉 〈r|V |i〉 ei(ωfi−2ωI)t1 − 〈f |V |r〉 〈r|V |i〉 ei(ωfr−ωI)t1

i(ωri − ωI)

+
〈f |V |r〉 〈r|V †|i〉 ei(ωfi−ωI+ωS)t1 − 〈f |V |r〉 〈r|V †|i〉 ei(ωfr−ωI)t1

i(ωri + ωS)

+
〈f |V †|r〉 〈r|V |i〉 ei(ωfi−ωI+ωS)t1 − 〈f |V †|r〉 〈r|V |i〉 ei(ωfr+ωS)t1

i(ωri − ωI)

+
〈f |V †|r〉 〈r|V †|i〉 ei(ωfi+2ωS)t1 − 〈f |V †|r〉 〈r|V †|i〉 ei(ωfr+ωS)t1

i(ωri + ωS)

]
(A.11)

where we have utilized the fact that ωfi = ωfr + ωri.

Expression A.11 is modulated in five frequencies: ωfi − ωI + ωS, ωfi − 2ωI , ωfi + 2ωS,

ωfr − ωI , and ωfr + ωS. The terms containing ωfr − ωI and ωfr + ωS represent transitions

that are non-resonant with the initial or final states. Integrating these terms with respect

to t1 averages to zero over short timescales. Thus, the contributions of these terms in A.11

can be neglected.

The term containing ωfi−2ωI corresponds to two-photon absorption (Figure 2.3d) since

the frequency of the incident photon is half the frequency associated with the transition from

the initial to the final state. Similarly, the term containing ωfi + 2ωS corresponds to a two-

photon emission (Figure 2.3e). The only relevant terms for Rayleigh and Raman scattering

contain ωfi − ωI + ωS. Integrating the terms that contain ωfi − ωI + ωS with respect to t1

gives the following probability amplitude:

〈f |Û (2)
I (t, 0)|i〉 =

( 1

ih̄

)2∑
r

∫ t

0

dt1

[
〈f |V |r〉 〈r|V †|i〉 ei(ωfi−ωI+ωS)t1

i(ωri + ωS)

+
〈f |V †|r〉 〈r|V |i〉 ei(ωfi−ωI+ωS)t1

i(ωri − ωI)

]
=

1

h̄2

∑
r

[
〈f |V †|r〉 〈r|V |i〉

ωri − ωI
+
〈f |V |r〉 〈r|V †|i〉

ωri + ωS

][
ei(ωfi−ωI+ωS)t − 1

ωfi − ωI + ωS

]
=
ELES

4h̄2

∑
r

[
〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉

ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

]
×
[
ei(ωfi−ωI+ωS)t − 1

ωfi − ωI + ωS

]
(A.12)

where the subscripts ρ and σ represent the directions of the transition moments.
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A.1.2 Fermi’s Golden Rule and the Transition Scattering Rate

The transition probability, Pfi(t), of finding the system in state |f〉 at time t is the square

of eq. A.12:

Pi→f (t) = | 〈f |U (2)
I (t, 0)|i〉 |2

=
E2
IE

2
S

16h̄4

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
∣∣∣∣ei(ωfi−ωI+ωS)t − 1

ωfi − ωI + ωS

∣∣∣∣2
=
E2
IE

2
S

16h̄4

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
[

4 sin2[(ωfi − ωI + ωS)t/2]

(ωfi − ωI + ωS)2

]
(A.13)

Eq. A.13 is the probability of a transition to occur between two discrete states, |i〉 and |f〉.

However, we assume a central tenant of Fermi’s Golden Rule, viz. that the molecule is

being excited into a continuum of |f〉 states that span a range of frequencies. If we assume

that, in this continuum, each |f〉 state is independent of the others, then the total transition

probability is simply the sum of the individual transition probabilities:

P (t) =
∑
f

Pi→f (t)

=
∑
f

E2
IE

2
S

16h̄4

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
[

4 sin2[(ωfi − ωI + ωS)t/2]

(ωfi − ωI + ωS)2

]
(A.14)

The index, f , is continuous. To convert the summation to an integral, we introduce ρf , the

density of states, which is defined as the number of levels per unit energy:

ρf =
dnf
dEf

=
1

h̄

dnf
dωf

(A.15)
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where ρf is assumed to be a continuous function over h̄ωf . Substituting eq. A.15 into A.14

gives the following:

P (t) =
E2
IE

2
S

16h̄3

∫ ωi+∆ω/2

ωi−∆ω/2

dωfρf
∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
[

4 sin2[(ωfi − ωI + ωS)t/2]

(ωfi − ωI + ωS)2

]
(A.16)

Further simplifying assumptions are necessary in order to integrate eq. A.16. Although ρf

and the transition moment integrals are functions of ωf , we assume that they vary slowly,

and thus are approximately constant over the range of frequencies being considered. This

means that eq. A.16 can be written as:

P (t) =
E2
IE

2
S

16h̄3 ρf
∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
∫ ωi+∆ω/2

ωi−∆ω/2

dωf

[
4 sin2[(ωfi − ωI + ωS)t/2]

(ωfi − ωI + ωS)2

]
(A.17)

To integrate eq. A.17, the following substitution is made:

u = (ωfi − ωI + ωS)t/2 (A.18)

P (t) =
E2
IE

2
S

8h̄3 ρf t
∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
∫ ∆ωt/4

−∆ωt/4

du

[
sin2(u)

u2

]
(A.19)

The limits of integration in eq. A.19 can be extended to ±∞ without serious error so that:

P (t) =
E2
IE

2
S

8h̄3 ρf t
∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2
×
∫ +∞

−∞
du

[
sin2(u)

u2

]
=
πE2

IE
2
S

8h̄3

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2ρf t (A.20)
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Eq. A.20 indicates that the total transition probability is linearly proportional to time, so

that the scattering rate, Wfi, can be defined as follows:

Wfi =
dP (t)

dt

=
πE2

IE
2
S

8h̄3

∑
r

∣∣∣∣〈f |ε̂S · µ̂ρ|r〉 〈r|ε̂I · µ̂σ|i〉ωri − ωI
+
〈f |ε̂I · µ̂σ|r〉 〈r|ε̂S · µ̂ρ|i〉

ωri + ωS

∣∣∣∣2ρf (A.21)

A.2 DERIVATION OF THE ALBRECHT A, B, AND C TERMS

In this section, the Albrecht A, B, and C terms (eqs. 2.16–2.18) are derived. We begin

by using eqs. 2.11 and 2.12 to write the relevant electronic transition moment integrals of

eq. 2.10 as:

〈φg|r̂ρ|φe〉 ≈ 〈φ(0)
g |r̂ρ|φ(0)

e 〉+
1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

Qa 〈φ(0)
g |r̂ρ|φ(0)

s 〉

+
1

h̄

∑
a,t6=g

(h
(0)
a )gt
ω0
gt

Qa 〈φ(0)
t |r̂ρ|φ(0)

e 〉 (A.22)

〈φe|r̂σ|φg〉 ≈ 〈φ(0)
e |r̂σ|φ(0)

g 〉+
1

h̄

∑
a,t6=g

(h
(0)
a )gt
ω0
gt

Qa 〈φ(0)
e |r̂σ|φ

(0)
t 〉

+
1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

Qa 〈φ(0)
s |r̂σ|φ(0)

g 〉 (A.23)

〈φg|r̂σ|φe〉 ≈ 〈φ(0)
g |r̂σ|φ(0)

e 〉+
1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

Qa 〈φ(0)
g |r̂σ|φ(0)

s 〉

+
1

h̄

∑
a,t 6=g

(h
(0)
a )gt
ω0
gt

Qa 〈φ(0)
t |r̂σ|φ(0)

e 〉 (A.24)
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〈φe|r̂ρ|φg〉 ≈ 〈φ(0)
e |r̂ρ|φ(0)

g 〉+
1

h̄

∑
a,t 6=g

(h
(0)
a )gt
ω0
gt

Qa 〈φ(0)
e |r̂ρ|φ

(0)
t 〉

+
1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

Qa 〈φ(0)
s |r̂ρ|φ(0)

g 〉 (A.25)

These expressions can be utilized to write the products of the vibronic transition moment

integrals in eq. 2.10 as:

〈χgf ′ | 〈φg|r̂ρ|φe〉 |χer′〉 〈χer′| 〈φe|r̂σ|φg〉 |χgi′〉 =[
〈φ(0)

g |r̂ρ|φ(0)
e 〉 〈χgf ′ |χer′〉+

1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

〈φ(0)
g |r̂ρ|φ(0)

s 〉 〈χgf ′ |Qa|χer′〉

1

h̄

∑
a,t6=g

(h
(0)
a )gt
ω0
gt

〈φ(0)
t |r̂ρ|φ(0)

e 〉 〈χgf ′ |Qa|χer′〉
][
〈φ(0)

e |r̂σ|φ(0)
g 〉 〈χer′|χgi′〉

+
1

h̄

∑
a,t6=g

(h
(0)
a )gt
ω0
gt

〈φ(0)
e |r̂σ|φ

(0)
t 〉 〈χer′|Qa|χgi′〉+

1

h̄

∑
a,s6=e

(h
(0)
a )es
ω0
es

〈φ(0)
s |r̂σ|φ(0)

g 〉 〈χer′|Qa|χgi′〉
]

≈ 〈φg|r̂ρ|φe〉 〈φ(0)
e |r̂σ|φ(0)

g 〉 〈χgf ′ |χer′〉 〈χer′ |χgi′〉+

+
1

h̄

∑
a,t6=g

〈φ(0)
g |r̂ρ|φ(0)

e 〉 〈φ(0)
e |r̂σ|φ(0)

t 〉 〈φ
(0)
t |(∂Ĥ/∂Qa)0|φ(0)

g 〉
ω0
g − ω0

t

〈χgf ′ |χer′〉 〈χer′ |Qa|χgi′〉

+
1

h̄

∑
a,s6=e

〈φ(0)
g |r̂ρ|φ(0)

e 〉 〈φ(0)
e |(∂Ĥ/∂Qa)0|φ(0)

s 〉 〈φ(0)
s |r̂σ|φ(0)

g 〉
ω0
e − ω0

s

〈χgf ′|χer′〉 〈χer′|Qa|χgi′〉

+
1

h̄

∑
a,s6=e

〈φ(0)
g |r̂ρ|φ(0)

s 〉 〈φ(0)
s |(∂Ĥ/∂Qa)0|φ(0)

e 〉 〈φ(0)
e |r̂σ|φ(0)

g 〉
ω0
e − ω0

s

〈χgf ′|Qa|χer′〉 〈χer′ |χgi′〉

+
1

h̄

∑
a,t6=g

〈φ(0)
g |(∂Ĥ/∂Qa)0|φ(0)

t 〉 〈φ
(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
g 〉

ω0
e − ω0

s

〈χgf ′ |Qa|χer′〉 〈χer′|χgi′〉 (A.26)
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〈χgf ′ | 〈φg|r̂σ|φe〉 |χer′〉 〈χer′| 〈φe|r̂σ|φg〉 |χgi′〉 = · · · ≈

〈φg|r̂ρ|φe〉 〈φ(0)
e |r̂σ|φ(0)

g 〉 〈χgf ′ |χer′〉 〈χer′ |χgi′〉+

+
1

h̄

∑
a,t6=g

〈φ(0)
g |r̂ρ|φ(0)

e 〉 〈φ(0)
e |r̂σ|φ(0)

t 〉 〈φ
(0)
t |(∂Ĥ/∂Qa)0|φ(0)

g 〉
ω0
g − ω0

t

〈χgf ′|χer′〉 〈χer′|Qa|χgi′〉

+
1

h̄

∑
a,s6=e

〈φ(0)
g |r̂ρ|φ(0)

e 〉 〈φ(0)
e |(∂Ĥ/∂Qa)0|φ(0)

s 〉 〈φ(0)
s |r̂σ|φ(0)

g 〉
ω0
e − ω0

s

〈χgf ′ |χer′〉 〈χer′ |Qa|χgi′〉

+
1

h̄

∑
a,s6=e

〈φ(0)
g |r̂ρ|φ(0)

s 〉 〈φ(0)
s |(∂Ĥ/∂Qa)0|φ(0)

e 〉 〈φ(0)
e |r̂σ|φ(0)

g 〉
ω0
e − ω0

s

〈χgf ′ |Qa|χer′〉 〈χer′|χgi′〉

+
1

h̄

∑
a,t6=g

〈φ(0)
g |(∂Ĥ/∂Qa)0|φ(0)

t 〉 〈φ
(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)

e |r̂σ|φ(0)
g 〉

ω0
e − ω0

s

〈χgf ′|Qa|χer′〉 〈χer′ |χgi′〉 (A.27)

Eqs. A.26 and A.27 can be substituted into eq. 2.10 to derive eq. 2.15:

(αρσ)gf ′,gi′ =
1

h̄

∑
e 6=g

∑
r′

[
〈φg|r̂ρ|φe〉 〈φe|r̂σ|φg〉
ωer′ − ωgi′ − ωI

+
〈φg|r̂σ|φe〉 〈φe|r̂ρ|φg〉
ωer′ − ωgi′ + ωS

]
〈χgf ′ |χer′〉 〈χer′ |χgi′〉

+
1

h̄2

∑
e 6=g

∑
r′

∑
a

∑
s6=e

{[
〈φ(0)g |r̂ρ|φ(0)e 〉 〈φ(0)e |(∂Ĥ/∂Qa)0|φ(0)s 〉 〈φ(0)s |r̂σ|φ(0)g 〉

ωer′ − ωgi′ − ωI

+
〈φ(0)g |r̂σ|φ(0)e 〉 〈φ(0)e |(∂Ĥ/∂Qa)0|φ(0)s 〉 〈φ(0)s |r̂ρ|φ(0)g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |χer′〉 〈χer′ |Q̂a|χgi′〉

ω
(0)
e − ω(0)

s

]
+

[
〈φ(0)g |r̂ρ|φ(0)s 〉 〈φ(0)s |(∂Ĥ/∂Qa)0|φ(0)e 〉 〈φ(0)e |r̂σ|φ(0)g 〉

ωer′ − ωgi′ − ωI

+
〈φ(0)g |r̂σ|φ(0)s 〉 〈φ(0)s |(∂Ĥ/∂Qa)0|φ(0)e 〉 〈φ(0)e |r̂ρ|φ(0)g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |Q̂a|χer′〉 〈χer′ |χgi′〉

ω
(0)
e − ω(0)

s

]}
+

1

h̄2

∑
e 6=g

∑
r′

∑
a

∑
t6=e

{[
〈φ(0)g |r̂ρ|φ(0)e 〉 〈φ(0)e |r̂σ|φ(0)t 〉 〈φ

(0)
t |(∂Ĥ/∂Qa)0|φ(0)g 〉

ωer′ − ωgi′ − ωI

+
〈φ(0)g |r̂ρ|φ(0)e 〉 〈φ(0)e |r̂σ|φ(0)t 〉 〈φ

(0)
t |(∂Ĥ/∂Qa)0|φ(0)g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |χer′〉 〈χer′ |Q̂a|χgi′〉

ω
(0)
e − ω(0)

s

]
+

[
〈φ(0)g |(∂Ĥ/∂Qa)0|φ(0)t 〉 〈φ

(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)e |r̂σ|φ(0)g 〉

ωer′ − ωgi′ − ωI

+ [
〈φ(0)g |(∂Ĥ/∂Qa)0|φ(0)t 〉 〈φ

(0)
t |r̂ρ|φ

(0)
e 〉 〈φ(0)e |r̂σ|φ(0)g 〉

ωer′ − ωgi′ + ωS

][
〈χgf ′ |Q̂a|χer′〉 〈χer′ |χgi′〉

ω
(0)
g − ω(0)

t

]}
= A+B + C (A.28)

where the A, B, and C terms are defined by eqs. 2.16–2.18.
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APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 3.0

B.1 X-RAY CRYSTAL STRUCTURE OF PROPANAMIDE

X-ray crystal diffraction was performed using a Bruker X8 Prospector Ultra equipped

with a copper micro-focus tube (λ = 1.541 78�A). A propanamide crystal specimen with

approximate dimensions of 0.020 mm × 0.090 mm × 0.110 mm was used for structure de-

termination. The crystal was mounted and placed in a cold N2 stream (∼230 K) for data

collection. Crystals were not well-formed, showing diffuse diffraction spots; however, we were

able to determine a unit cell and solve a crystal structure.

The frames were integrated with the Bruker SAINT software package. The integration

of the data using a monoclinic unit cell yielded a total of 2212 reflections to a maximum

θ angle of 68.09° (0.83�A resolution), of which 689 were independent (average redundancy

3.210, completeness = 83.5%, Rint = 8.52%, Rsig = 7.03%) and 364 (52.83%) were greater

than 2σ(F2).

The final cell constants (Table B1) of a = 8.851(4)�A, b = 5.750(2)�A, c = 9.766(3)�A, β =

114.780(15)°, volume = 451.3(3)�A3, are based upon the refinement of the XYZ-centroids of

reflections above 20 σ(I). Unit-cell parameters and analysis of systematic absences indicated

propanamide crystallized in a P21/c space group.

The structure (Figure B1) was solved via direct methods, which located all of the non-

hydrogen atoms. Idealized atom positions were calculated for all hydrogen atoms, except for

NH2 hydrogen atoms (see Table B2–Table B6). The final anisotropic least-squares refinement
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on F2 converged at R1 = 9.53%, for the observed data and wR2 = 24.72% for all data, and the

goodness-of-fit was 1.304. The final Fourier map contained no significant residual electron

density.

B.2 DECONVOLUTION OF UVRR SPECTRA

UVRR spectra of propanamide in different acetonitrile and water mixtures were decon-

voluted into a sum of a minumum number of Gaussian or Lorentzian bands on a linear

background using the GRAMS/AI 8.0 software suite (Thermo Fisher). Figure B2 and Fig-

ure B3 show the deconvolution of the 204 nm excitation UVRR spectra of propanamide in

pure acetonitrile and pure water.

Table B1: Summary of Crystallographic Data for CH3CH2CONH2. Adapted with permission

from [146]. Copyright © (2015), American Chemical Society.

Molecular formula C3H7NO
Temperature (K) 230(2)

Wavelength (�A) 1.54178
Theta range (°) 9.18-68.09
Cell setting monoclinic
Space group P21/c

a (�A) 8.851(4)

b (�A) 5.750(2)

c (�A) 9.766(3)
α (°) 90
β (°) 114.780(15)
γ (°) 90

V (�A3) 451.259
Z 4
Calc. density (g·cm−1) 1.076
R1 0.0953
wR2 0.2472
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Table B2: Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å).

Adapted with permission from [146]. Copyright © (2015), American Chemical Society.

x/a y/b z/c U(eq)
O9 0.6355(5) 0.7687(5) 0.6186(3) 0.1029(15)
N10 0.6057(7) 0.8705(7) 0.3890(4) 0.0958(16)
C1 0.8330(8) 0.3790(10) 0.6341(7) 0.120(2)
C2 0.7834(9) 0.5471(11) 0.5093(6) 0.121(2)
C6 0.6678(7) 0.7373(7) 0.5094(5) 0.0867(16)

Table B3: Anisotropic Atomic Displacement Parameters (Å
2
). Adapted with permission

from [146]. Copyright © (2015), American Chemical Society.

U11 U22 U33 U23 U13 U12

O9 0.166(3) 0.095(2) 0.0723(19) 0.0141(14) 0.075(2) 0.0239(18)
N10 0.159(4) 0.084(3) 0.067(2) 0.004(2) 0.069(3) 0.014(3)
C1 0.152(6) 0.092(3) 0.116(4) 0.007(3) 0.055(4) 0.018(3)
C2 0.169(6) 0.121(4) 0.098(4) 0.022(3) 0.080(4) 0.047(4)
C6 0.135(4) 0.072(3) 0.070(2) 0.002(2) 0.060(3) 0.004(2)

Table B4: Comparison of Bond Lengths (Å) Between the DFT-optimized and X-ray Crystal

Structure. Adapted with permission from [146]. Copyright © (2015), American Chemical

Society.

Crys. Struc. DFT Calc.
r(C6=O9) 1.228(6) 1.223
r(C6-N10) 1.315(5) 1.353
r(C6-C2) 1.498(8) 1.519
r(C2-C1) 1.470(8) 1.521
r(C1-H3) 0.97 1.090
r(C1-H4) 0.97 1.091
r(C1-H5) 0.97 1.091
r(C2-H7) 0.98 1.095
r(C2-H8) 0.98 1.093
r(N10-H11) 0.83(5) 1.007
r(N10-H12) 0.97(6) 1.008
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Table B5: Comparison of Torsion Angles (◦) Between the DFT-optimized and X-ray Crystal

Structure. Adapted with permission from [146]. Copyright © (2015), American Chemical

Society.

Crys. Struc. DFT Calc.
τ(N10C6C2C1) -171.5(5) 169.60
τ(O9C6C2C1) 9.8(7) -10.89
τ(H12N10C6O9) -16(4) -2.69
τ(H12N10C6C2) 166(4) 176.83
τ(H11N10C6O9) -176(3) -178.79
τ(H11N10C6C2) 5(3) 0.72
τ(H5C1C2H8) -56.4 -58.32
τ(H5C1C2H7) 59.5 59.54
τ(H5C1C2C6) -178.4 179.58
τ(H3C1C2H8) -176.4 -178.37
τ(H3C1C2H7) -60.4 -60.51
τ(H3C1C2C6) 61.6 59.54
τ(H4C1C2H8) 63.6 61.64
τ(H4C1C2H7) 179.6 179.50
τ(H4C1C2C6) -58.4 -60.46
τ(H8C2C6O9) -112.2 -134.50
τ(H8C2C6N10) 66.5 -45.99

Table B6: Comparison of Bond Angles (◦) Between the DFT-optimized and X-ray Crystal

Structure. Adapted with permission from [146]. Copyright © (2015), American Chemical

Society.

Crys. Struc. DFT Calc.
θ(H12N10H11) 121(4) 118.56
θ(H12N10C6) 118(3) 119.60
θ(H11N10C6) 118(3) 121.73
θ(H5C1H3) 109.4 108.43
θ(H5C1H4) 109.5 108.32
θ(H5C1C2) 109.5 110.17
θ(H3C1H4) 109.5 107.97
θ(H3C1C2) 109.5 110.90
θ(H4C1C2) 109.5 110.17
θ(C1C2H8) 108.2 111.15
θ(C1C2H7) 108.2 110.72
θ(C1C2C6) 116.5(5) 112.88
θ(H8C2H7) 107.3 106.26
θ(H8C2C6) 108.2 108.44
θ(H7C2C6) 108.2 107.09
θ(O9C6N10) 121.9(4) 122.07
θ(O9C6C2) 121.1(4) 122.91
θ(N10C6C2) 117.0(4) 115.02
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Figure B1: Crystal structure of propanamide. Adapted with permission from [146]. Copy-

right © (2015), American Chemical Society.

130



Figure B2: Spectral deconvolution of the 204 nm UVRR spectrum of propanamide in (a)

water and (b) acetonitrile in the region from 1200–1800 cm−1. Adapted with permission

from [146]. Copyright © (2015), American Chemical Society.
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Figure B3: Spectral deconvolution of the 204 nm UVRR spectrum of propanamide in (a)

water and (b) acetonitrile in the region from 800–1200 cm−1. Adapted with permission from

[146]. Copyright © (2015), American Chemical Society.
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APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 4.0

C.1 DEPENDENCE OF THE AMIIIP BAND FREQUENCY ON THE

OCCC DIHEDRAL ANGLE OF BUTYRAMIDE

In order to understand the asymmetry of the AmIIIP frequency dependence on the χ3

dihedral angle of L-Gln, we investigated the achiral molecule butyramide, which is a model

of the L-Gln side chain. DFT calculations were performed on butyramide using the same

methods as described in the Computational Details section for L-Gln. Figure C1 shows

the cosinuisoidal dependence of the AmIIIP band frequency on the OCCC dihedral angle of

butyramide. Unlike L-Gln, there is no asymmetry in the points about 0°, and the data can

be satisfactorily fit to the following equation:

ν(χ3) = 1081 cm−1 + (16 cm−1) cos(2χ3) (C.1)

C.2 X-RAY DIFFRACTION OF GLUTAMINE AND DERIVATIVES

We determined the unit cells and lattice constants of the following molecules: L-Gln,

D-Gln, NAcGln, Gly-Gln, and Ser-Asn. We solved for the unit cells of each specimen by

refining the XYZ-centroids of the reflections above 20σ(I). Information on the unit cells of

each molecule are found in Table C1. All of these compounds show crystal lattice constants
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that were essentially the same as those found in the Cambridge Crystallographic database

[188, 217–219].

Also, we determined the crystal structures of all specimens examined, except for NAcGln.

The crystal structures and atomic labeling schemes used in Tables S8-S13 are shown in

Figure C2. All structures were solved and refined using the Bruker SHELXTL software

package [220]. With the exception of GlnTBE, all the crystal structures that we determined

match the Cambridge Crystallographic database entries.

The crystal structure of GlnTBE does not exist in the Cambridge Crystallographic

database. The details regarding the data collection and structure refinement for GlnTBE

are listed in Table C2 and Table C3. The integration of the data using a monoclinic unit cell

yielded a total of 12444 reflections, of which 2246 were independent (average redundancy

5.541, completeness = 99.8%, Rint = 5.32%, Rsig = 5.00%), to a maximum θ angle of 68.25°

(0.83 �A). There were 2181 independent reflections (∼97%) that were greater than 2σ(F2).

The intensities were corrected for absorption effects using the multi-scan method, SADABS.

The calculated minimum and maximum transmission coefficients (based on the crystal size)

for GlnTBE were 0.7800 and 0.8800, respectively. The structure of GlnTBE was solved

using the P 1 21 1 space group with Z = 2 for the formula unit C9H18N2O3 HCl. The final

anisotropic full-matrix least-squares refinement on F2 with 161 variables converged at R1 =

6.09% for the observed data and wR2 = 15.75% for all data. The goodness-of-fit was 1.812.

The largest peak in the final difference electron density synthesis was 1.207 e·�A−3 and the

largest hole was -0.585 e·�A−3. The calculated density, on the basis of the final model, was

1.239 g·cm−3 and F(000) was 256 e−. Table C2 to Table C7 list the atomic coordinates,

equivalent isotropic displacement parameters, anisotropic displacement parameters, bond

lengths, and bond angles for the atoms in GlnTBE. The atomic labeling scheme of GlnTBE

used for Table C2 to Table C7 is shown in Figure C3.
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C.3 RAMAN BAND ASSIGNMENTS OF CRYSTALLINE GLUTAMINE

AND DERIVATIVES

C.3.1 Spectral Deconvolution

Figure C4 and Figure C5 show the 633 nm excitation Raman and the 229 nm UVRR

spectra, respectively, for each of the crystals examined. We used the GRAMS software suite

(Version 8.0, Thermo Fisher Scientific, Inc.) to peak fit the spectra in order to locate bands

in the region from ∼950 cm−1 to 1200 cm−1. We modeled the visible Raman spectra shown

in Figure C4 as a minimum sum of Lorentzian bands.

We modeled the UVRR spectra, shown in Figure C5, as a minimum sum of Voigt bands

in order to account for the spectrometer transfer function. We determined the transfer

function by illuminating the CCD camera with the 229 nm line from our frequency doubled

Ar+ laser. For the slit widths used in our measurements (∼50 µm), the spectrometer transfer

function was well modeled by a Gaussian with a full-width-half-height (FWHH) of∼2.3 cm−1.

We fixed the FWHH of the Gaussian component of the Voigt function to ∼2.3 cm−1 and

allowed the Lorenztian width to vary. We found the average half-width-half height of the

AmIIIP vibration to be ∼6.6±2.4 cm−1. Thus, we assume that this value is the homogeneous

linewidth, Γ, of the AmIIIP vibration.

C.3.2 Band Assignments

Table C8–Table C13 show our band assignments of the crystals examined. We used DFT

calculations to aid in our band assignments. We also measured the spectra of N-deuterated

crystals (data not shown) to verify the band assignments of any vibrations that contain NH3

or NH2 rocking components. The AmIIIP band shifts upon N-deuteration since the vibration

contains significant NH2 rocking.

C.3.2.1 L-glutamine and D-glutamine L-Gln and D-Gln have essentially identical

Raman spectra. The experimentally observed and calculated Raman frequencies are shown in

Table C8 and Table C9 for L-Gln and D-Gln, respectively. We assign the∼1205 cm−1 band to
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the CβH2 twisting/Cα–Cβ stretching vibration, and the∼1166 cm−1 band is assigned to a Cα–

H rocking/CγH2 twisting vibration. The ∼1135 cm−1 and ∼1105 cm−1 bands exhibit large

shifts in their N-deuterated spectra and are therefore assigned to Cβ–Cγ stretching/NεH2

rocking and NH3 rocking vibrations, respectively. The AmIIIP vibration is assigned to the

∼1097 cm−1 band since this band shows a large shift upon N-deuteration. The remaining

peaks are assigned to a Cα–N stretching mode (∼1086 cm−1), NH3 rocking/Cα–N stretching

mode (∼1052 cm−1), and a NH3 rocking/Cα–Cβ stretching mode (∼1000 cm−1).

C.3.2.2 N-Acetyl-L-glutamine The band frequencies and assignments for NAcGln

are found in Table C10. The ∼1180 cm−1 Raman band is assigned to the Cα–N stretching

mode, which agrees with that of Kausar et al.’s assignment for a similar band observed in N-

Acetyl-L-glutamic acid [221]. The ∼1138 cm−1 band is assigned to Cα–Cβ stretching/Cα–N

stretching mode, while the ∼1111 cm−1 band is assigned to a NεH2 rocking vibration. The

assignment of the 1111 cm−1 band to a primary amide NεH2 rocking mode is consistent with

the absence of a peak in this region in N-Acetyl-L-glutamic acid [221]. The ∼1071 cm−1

band, which appears as a shoulder feature, is assigned to the AmIIIP vibration. The bands

at ∼1061 cm−1 and ∼1022 cm−1 are assigned to CH3 and CβH2 rocking modes, respectively.

The ∼997 cm−1 band is assigned to a C–C stretching vibration of the acetyl group.

C.3.2.3 L-glutamine t-butyl ester HCl Table C11 displays the frequencies and as-

signments of crystalline GlnTBE. The∼1195 cm−1 band is assigned to a C–O stretching/CH3

rocking mode of the butyl ester group. Most of the remaining bands in the spectra con-

tain significant NεH2 or NH3 character since they shift upon N-deuteration. However, the

∼1043 cm−1 and ∼1030 cm−1 bands do not shift appreciably upon N-deuteration and are

therefore assigned to Cα–N stretching, and CH3 rocking vibrations, respectively. The bands

located at ∼1117 cm−1 and ∼1105 cm−1 are assigned to the NH3 rocking/Cβ–Cγ stretching

and NH3 rocking/NεH2 rocking vibrations, respectively. We assign the ∼1151 cm−1 band

to a Cα–H rocking/NH3 rocking mode. The band located at ∼1082 cm−1 is assigned to the

AmIIIP vibration due to its sensitivity to N-deuteration. The ∼998 cm−1 band is assigned

to a NH3 rocking vibration.
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C.3.2.4 Glycl-L-glutamine Band assignments of crystalline Gly-Gln are shown in

Table C12. The band observed at ∼1124 cm−1 is assigned to NH3 rocking mode, while the

∼1093 cm−1 band is assigned to the AmIIIP vibration. We do not see the NH3 rocking mode

calculated to be at ∼1105 cm−1. The remaining band assignments are shown in Table C12.

C.3.2.5 L-seryl-L-asparagine Table C13 shows the band assignments of crystalline

Ser-Asn. The ∼1188 cm−1 band is assigned to a Cβ '
H2 rocking/NH3 rocking vibration due

to its shift upon N-deuteration. The ∼1159 cm−1 band is assigned to a Cα–N stretching

vibration, while the bands at ∼1121 cm−1 and ∼1108 cm−1 are both assigned to Cβ'
–

Oγ'
H stretching modes of the serine side chain. We assign the AmIIIP vibration to the

∼1051 cm−1 band. The remaining bands located at ∼1083 cm−1, ∼1065 cm−1, ∼1019 cm−1,

and ∼1004 cm−1 are assigned to NδH2 rocking, NH3 rocking, CβH2 rocking, and Cβ '
H2

rocking/NH3 rocking modes, respectively.

C.4 DEPENDENCE OF THE AMIIIP FREQUENCY ON HYDROGEN

BONDING AND DIELECTRIC ENVIRONMENT

Figure C6 shows the ∼204 nm excitation UVRR spectra of butyramide (Sigma Aldrich,

≥98% purity) in water and acetonitrile (Acros Organics, HPLC, far-UV grade) in the region

of 950 cm−1 to 1250 cm−1. In the water spectrum (Figure C6a), there are prominent bands

at ∼1132 cm−1 and ∼1076 cm−1, as well as a shoulder feature at ∼1050 cm−1. Based on

our DFT calculations (see Figure C6), we assign the band at 1132 cm−1 to a C–C stretching

mode that contains significant CH3 and NH2 rocking character. The ∼1076 cm−1 band is

assigned to the AmIIIP vibration. The shoulder feature at ∼1050 cm−1 is assigned to a

C–CH3 stretching vibration.

As shown in Figure C6b, all the bands in the 950 cm−1 to 1250 cm−1 region downshift in

acetonitrile. The AmIIIP band downshifts 12 cm−1 to ∼1064 cm−1. This is similar to that in

propanamide [146], where the AmIIIP band downshifts ∼18 cm−1 in acetonitrile compared

to water. Therefore we conclude that on average the AmIIIP band is downshifted ∼15 cm−1
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in acetonitrile compared to water.

C.5 CIRCULAR DICHROISM (CD) OF THE GLN3 PEPTIDE

The temperature dependent CD spectra of Gln3 are shown in Figure C7. The spectra

were measured at a concentration of 0.5 mg·mL−1 using a Jasco-715 spectropolarimeter with

a 0.1 cm pathlength cuvette. We averaged six individual CD spectra for each temperature.
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Table C1: Summary of Crystallographic Data of Gln and Derivatives. Adapted with per-

mission from [180]. Copyright © (2015), American Chemical Society.

L-glutamine D-glutamine
Chemical Formula C5H10N2O3 C5H10N2O3

Temperature 230(2) K 230(2) K

Crystal System orthorhombic orthorhombic

Space Group P 21 21 21 P 21 21 21

Unit Cell Dimensions a = 5.1054(4) �A, α = 90° a = 5.1030(4) �A, α = 90°

b = 7.7641(5) �A, β = 90° b = 7.7634(7) �A, β = 90°

c = 15.9993(11) �A, γ = 90° c = 16.0056(13) �A, γ = 90°

Volume 634.19(8) �A3 634.09(9) �A3

Z 4 4

N-Acetyl-L-glutamine L-glycyl-L-glutamine
Chemical Formula C7H13N2O4 C7H15N3O5

Temperature 230(2) K 230(2) K

Crystal System orthorhombic orthorhombic

Space Group P 21 21 21 P 21 21 21

Unit Cell Dimensions a = 5.0732(47) �A, α = 90° a = 5.4025(2) �A, α = 90°

b = 12.9033(95) �A, β = 90° b = 11.5771(4) �A, β = 90°

c = 13.7830(104) �A, γ = 90° c = 15.4651(5) �A, γ = 90°

Volume 902.274(2) 967.27(6) �A3

Z 4 4

L-seryl-L-asparagine
Chemical Formula C7H15N3O6

Temperature 230(2) K

Crystal System triclinic

Space Group P 1

Unit Cell Dimensions a = 4.7643(8) �A, α = 63.988(5)°

b = 7.5452(12) �A, β = 76.646(5)°

c = 8.5942(14) �A, γ = 75.190(7)°

Volume 265.90(8) �A3

Z 1

139



Table C2: Summary of Crystallographic Data for L-glutamine t-butyl ester HCl. Adapted

with permission from [180]. Copyright © (2015), American Chemical Society.

Chemical Formula C9H18N2O3·HCl

Temperature 230(2) K

Wavelength 1.54178 �A

Crystal Size 0.04 mm × 0.140 mm × 0.160 mm

Crystal Habit clear, colorless rectangular prism

Crystal System monoclinic

Space Group P 1 21 1

Unit Cell Dimensions a = 10.4579(4) �A, α = 90°

b = 5.2517(2) �A, β = 90.1490(10)°

c = 11.6493(4) �A, γ = 90°

Volume 639.80(4) �A3

Z 2

Density (calc.) 1.239 g·cm3

Absorption Coefficient 2.601 mm−1

F(000) 256
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Table C3: Data Collection and Structure Refinement for L-glutamine t-butyl ester HCl.

Adapted with permission from [180]. Copyright © (2015), American Chemical Society.

Theta range (°) 3.79°-68.25°

Index ranges -12≤h≤12, -6≤k≤6, -14≤l≤14

Reflections collected 12444

Independent reflections 2246 [Rint = 0.0532]

Refinement method Full-matrix least-squares on F2

Refinement program SHELXL-2014/7 [220]

Function minimized
∑
w(F 2

o − F 2
c )2

Data / restraints / parameters 2246 / 1 / 161

Goodness-of-fit on F2 1.812

∆/σmax 0.001

Final R indices 2181 data; I>2σ(I), R1 = 0.0609, wR2 = 0.1566

all data, R1 = 0.0618, wR2 = 0.1575

Weighting scheme w = 1/[σ2(F 2
o ) + (0.0680P )2]

where, P = (F 2
o + 2F 2

c )/3

Absolute structure parameter 0.2(0)

Extinction coefficient 0.0310(50)

Largest diff. peak and hole 1.207 and -0.585 e·�A−3

R.M.S. deviation from mean 0.127 e·�A−3
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Table C4: Atomic Coordinates and Equivalent Isotropic Atomic Displacement Parameters

(Å
2
) for L-glutamine t-butyl ester HCl. Adapted with permission from [180]. Copyright ©

(2015), American Chemical Society.

x/a y/b z/c U(eq)a

Cl1 0.92521(7) 0.46852(17) 0.35473(6) 0.0280(3)

O1 0.8535(4) 0.1912(7) 0.0330(3) 0.0450(10)

N1 0.8493(4) 0.6054(10) 0.0824(3) 0.0373(9)

C1 0.8498(4) 0.4164(10) 0.0059(3) 0.0299(10)

O2 0.7073(3) 0.7877(7) 0.6433(3) 0.0400(8)

N2 0.9045(3) 0.4597(9) 0.6235(2) 0.0241(7)

C2 0.8456(4) 0.4992(10) 0.8807(3) 0.0311(9)

O3 0.5703(3) 0.4777(7) 0.6963(3) 0.0343(7)

C3 0.8066(4) 0.2834(8) 0.8016(3) 0.0239(8)

C4 0.7839(4) 0.3639(8) 0.6766(3) 0.0215(8)

C5 0.6835(4) 0.5721(8) 0.6684(3) 0.0227(8)

C6 0.4556(4) 0.6448(10) 0.7142(5) 0.0379(10)

C7 0.4806(6) 0.8073(17) 0.8189(6) 0.0632(18)

C8 0.3495(6) 0.4559(16) 0.7351(12) 0.107(4)

C9 0.4293(7) 0.8023(19) 0.6099(6) 0.067(2)
aU(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
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Table C5: Anisotropic Atomic Displacement Parametersa (Å
2
) for L-glutamine t-butyl ester

HCl. Adapted with permission from [180]. Copyright © (2015), American Chemical Society.

U11 U22 U33 U23 U13 U12

Cl1 0.0312(5) 0.0323(5) 0.0204(5) 0.0026(4) -0.0058(3) -0.0052(4)

O1 0.070(3) 0.038(2) 0.0274(15) 0.0104(15) -0.0012(15) 0.0098(17)

N1 0.051(2) 0.041(3) 0.0205(18) -0.0004(18) -0.0050(15) -0.001(2)

C1 0.0295(18) 0.041(3) 0.0196(18) 0.0031(16) -0.0031(14) 0.0021(17)

O2 0.0344(16) 0.0229(15) 0.063(2) 0.0082(15) 0.0047(15) 0.0011(14)

N2 0.0280(15) 0.0262(16) 0.0181(14) 0.0022(15) -0.0003(11) 0.0010(16)

C2 0.044(2) 0.031(2) 0.0182(16) 0.0027(17) -0.0071(15) -0.003(2)

O3 0.0249(13) 0.0205(12) 0.0576(18) 0.0017(17) 0.0039(11) 0.0021(14)

C3 0.0297(18) 0.0231(17) 0.0189(16) 0.0056(15) -0.0012(14) 0.0006(15)

C4 0.0239(19) 0.0230(18) 0.0175(16) -0.0002(14) -0.0045(14) -0.0017(14)

C5 0.0264(18) 0.0189(17) 0.0227(16) -0.0006(14) -0.0051(14) -0.0013(14)

C6 0.0252(19) 0.027(2) 0.062(3) 0.002(2) 0.0069(18) 0.0020(18)

C7 0.059(3) 0.072(4) 0.059(3) -0.015(3) 0.007(3) 0.022(3)

C8 0.036(3) 0.035(3) 0.251(13) 0.010(6) 0.048(5) 0.000(3)

C9 0.050(3) 0.090(5) 0.060(4) 0.004(4) -0.009(3) 0.039(4)
aThe anisotropic atomic displacement factor exponent takes the form:
−2π2[h2 · a2 · U11 + · · ·+ 2h · k · a · b · U12]
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Table C6: Hydrogen Atomic Coordinates and Isotropic Atomic Displacement Parameters

(Å
2
) for L-glutamine t-butyl ester HCl. Adapted with permission from [180]. Copyright ©

(2015), American Chemical Society.

x/a y/b z/c U(eq)
H1NB 0.858(5) 0.744(15) 1.062(5) 0.029(16)

H1NA 0.870(7) 0.582(15) 1.156(7) 0.053(18)

H2NC 0.889(4) 0.477(13) 0.546(4) 0.024(10)

H2NB 0.926(6) 0.597(14) 0.656(5) 0.032(14)

H2NA 0.980(6) 0.355(12) 0.645(5) 0.027(13)

H2A 0.7846 0.6398 0.8723 0.037

H2B 0.9301 0.5618 0.8581 0.037

H3A 0.7281 0.2061 0.8312 0.029

H3B 0.8736 0.1529 0.8033 0.029

H7A 0.4972 0.6984 0.8845 0.095

H7B 0.5542 0.9153 0.8053 0.095

H7C 0.4063 0.9126 0.8342 0.095

H8A 0.369 0.3564 0.8031 0.161

H8B 0.2696 0.5463 0.7463 0.161

H8C 0.3418 0.3434 0.6694 0.161

H9A 0.355 0.9086 0.6234 0.1

H9B 0.5027 0.9092 0.5938 0.1

H9C 0.4131 0.6913 0.545 0.1

H4 0.749(5) 0.212(10) 0.627(4) 0.020(12)
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Table C7: Bond Lengths (Å) and Bond Angles (◦) for L-glutamine t-butyl ester HCl. Adapted with permis-
sion from [180]. Copyright © (2015), American Chemical Society.

Bond Lengths
O1-C1 1.225(6) N1-C1 1.334(7)

N1-H1NB 0.77(8) N1-H1NA 0.89(8)

C1-C2 1.522(5) O2-C5 1.195(6)

N2-C4 1.494(5) N2-H2NC 0.93(5)

N2-H2NB 0.85(7) N2-H2NA 1.00(6)

C2-C3 1.515(6) C2-H2A 0.98

C2-H2B 0.98 O3-C5 1.325(5)

O3-C6 1.501(5) C3-C4 1.534(5)

C3-H3A 0.98 C3-H3B 0.98

C4-C5 1.519(5) C4-H4 1.05(5)

C6-C9 1.494(9) C6-C8 1.509(8)

C6-C7 1.511(9) C7-H7A 0.97

C7-H7B 0.97 C7-H7C 0.97

C8-H8A 0.97 C8-H8B 0.97

C8-H8C 0.97 C9-H9A 0.97

C9-H9B 0.97 C9-H9C 0.97

Bond Angles
C1-N1-H1NB 119.(5) C1-N1-H1NA 123.(5)

H1NB-N1-H1NA 114.(7) O1-C1-N1 123.1(4)

O1-C1-C2 121.6(4) N1-C1-C2 115.3(4)

C4-N2-H2NC 107.(3) C4-N2-H2NB 109.(4)

H2NC-N2-H2NB 114.(6) C4-N2-H2NA 113.(3)

H2NC-N2-H2NA 115.(5) H2NB-N2-H2NA 98.(5)

C3-C2-C1 112.1(4) C3-C2-H2A 109.2

C1-C2-H2A 109.2 C3-C2-H2B 109.2

C1-C2-H2B 109.2 H2A-C2-H2B 107.9

C5-O3-C6 122.0(4) C2-C3-C4 114.3(3)

C2-C3-H3A 108.7 C4-C3-H3A 108.7

C2-C3-H3B 108.7 C4-C3-H3B 108.7

H3A-C3-H3B 107.6 N2-C4-C5 108.4(3)

N2-C4-C3 110.9(3) C5-C4-C3 111.3(3)

N2-C4-H4 109.(3) C5-C4-H4 106.(3)

C3-C4-H4 111.(3) O2-C5-O3 126.9(4)

O2-C5-C4 123.6(4) O3-C5-C4 109.4(3)

C9-C6-O3 110.8(4) C9-C6-C8 111.2(7)

O3-C6-C8 103.1(4) C9-C6-C7 112.0(6)

O3-C6-C7 107.8(4) C8-C6-C7 111.5(7)

C6-C7-H7A 109.5 C6-C7-H7B 109.5

H7A-C7-H7B 109.5 C6-C7-H7C 109.5

H7A-C7-H7C 109.5 H7B-C7-H7C 109.5

C6-C8-H8A 109.5 C6-C8-H8B 109.5

H8A-C8-H8B 109.5 C6-C8-H8C 109.5

H8A-C8-H8C 109.5 H8B-C8-H8C 109.5

C6-C9-H9A 109.5 C6-C9-H9B 109.5

H9A-C9-H9B 109.5 C6-C9-H9C 109.5

H9A-C9-H9C 109.5 H9B-C9-H9C 109.5
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Table C8: Raman Frequencies (cm−1) and Assignments of Crystalline L-glutaminea. Adapted with permis-
sion from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1205 1215 –τCβH2 (21), –νCαCβ (18), –τCγH2 (16), –ρ'NH3 (13), δNCαC(OO) (5) τCH2/νC–C

1166 1153 –ρ'CαH (20), τCγH2 (17), –ρ'NH3 (13), τCβH2 (12), –νCαCβ (8), ρCγH2 (6) ρCH/τCH2

1135 1122 νCβCγ (34), ρNεH2 (17), –νCαCβ (7), νCαN (6), –βNεCδCγ (5) νC–C/ρNH2

1105 1109 ρNH3 (27), –ρ'CαH (10), –ρNεH2 (10), –δ'NCαC(OO) (9), –ρCαH (7), νCαN (7) ρNH3

1097 1097 νCβCγ (26), –ρNεH2 (26), –νCδNε (13), –ρNH3 (8) AmIIIP

1086 1038 νCαN (36), –νCβCγ (9), ρCβH2 (8), ρ'NH3 (6), ρCγH2 (5), ρ'CαH (5) νC–N

1052 1003 ρNH3 (25), –νCαN (19), ρCγH2 (14), ρCβH2 (14), νCαCβ (7), –τCβH2 (5) ρNH3/νC–N

1000 974 –ρ'NH3 (38), νCαCβ (25), –νCαC (8), –σCCαCβ (7), νCαN (6) ρNH3/νC–C

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.

Table C9: Raman Frequencies (cm−1) and Assignments of Crystalline D-glutaminea. Adapted with permis-
sion from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1204 1215 –τCβH2 (21), –νCαCβ (18), –τCγH2 (16), –ρ'NH3 (13), δNCαC(OO) (5) τCH2/νC–C

1165 1153 –ρ'CαH (20), τCγH2 (17), –ρ'NH3 (13), τCβH2 (12), –νCαCβ (8), ρCγH2 (6) ρCH/τCH2

1134 1122 νCβCγ (34), ρNεH2 (17), –νCαCβ (7), νCαN (6), –βNεCδCγ (5) νC–C/ρNH2

1105 1109 ρNH3 (27), –ρ'CαH (10), –ρNεH2 (10), –δ'NCαC(OO) (9), –ρCαH (7), νCαN (7) ρNH3

1096 1097 νCβCγ (26), –ρNεH2 (26), –νCδNε (13), –ρNH3 (8) AmIIIP

1086 1038 νCαN (36), –νCβCγ (9), ρCβH2 (8), ρ'NH3 (6), ρCγH2 (5), ρ'CαH (5) νC–N

1051 1003 ρNH3 (25), –νCαN (19), ρCγH2 (14), ρCβH2 (14), νCαCβ (7), –τCβH2 (5) ρNH3/νC–N

999 974 –ρ'NH3 (38), νCαCβ (25), –νCαC (8), –σCCαCβ (7), νCαN (6) ρNH3/νC–C

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.

Table C10: Raman Frequencies (cm−1) and Assignments of Crystalline N-Acetyl-L-glutaminea. Adapted
with permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1192 –τCβH2 (32), –τCγH2 (24), –νCαCβ (12), ρ'CαH (11) τCH2

1180 1166 νCαN ( 46), –δNCαCβCOO (8), ωCβH2 ( 7), –σCαCβCγ (6), νCβCγ (5) νC–N

1138 1119 νCαCβ (22), –νCαN (12), νCβCγ (10), ρNεH2 (8), –τCγH2 (5) νC–C/νC–N

1111 1110 ρNεH2 (20), –νCαCβ (15), νCβCγ (14), ρCβH2 (7), ρCγH2 (6), νCδNε (5), ρNH2/νC–C

–ωCγH2 (5)

1071 1093 –νCβCγ (42), ρNεH2 (24), νCδNε (13) AmIIIP

1061 1058 ρCH3 (63), –δsNC'O'CH3 (19), –δasCH3 (9), –ρ'CH3 (7) ρCH3

1022 1043 ρCβH2 (25), ρ'CαH (15), ρCγH2 (14), –νCαC (8), νCαCβ (8), δCCαCβ (5) ρCH2/ρCH

1013 ρ'CH3 (58), –νC'CH3 (12), ρCH3 (5), –δas'CH3 (5) ρCH3

997 971 νC'CH3 (28), νC'N (16), ρC'O (11), –νCαCβ (10), –βCαNC' (8) νC–CH3/νC–N

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δas: asymmetric deformation; δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.
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Table C11: Raman Frequencies (cm−1) and Assignments of Crystalline L-glutamine t-butyl ester HCla.
Adapted with permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1195 1195 νCO (17), ρCH3 (10), –ρCH3 (10), –ρCH3 (9), –νCO (6), –δC'O'CCC (6), νCO/ρCH3

δ''C'O'CCC (6), –δ'C'O'CCC (6), ρCH3 (5), ρCH3 (5)

1151 1161 ρCαH (23), ρNH3 (19), τCγH2 (11), –νCαCβ (10), τCβH2 (8) ρCH/ρNH3

1117 1126 –ρNH3 (19), –νCβCγ (16), –νCαN (14), δNCαCβC (9), –ρNεH2 (5) ρNH3/νC–C

1105 1119 –ρNH3 (15), ρNεH2 (14), ρCβH2 (10), νCβCγ (9), ρCγH2 (7), ρCαH (6), ρNH3/ρNH2

δNCαCβC (6)

1082 1100 ρNεH2 (34), –νCβCγ (24), νCδNε (14), νCδOε (5) AmIIIP

1043 1068 –νCαN (17), ρCH3 (13), –ρCH3 (11), –ρCH3 (11), νCβCγ (10), ρCH3 (5), νCαC (5) νC–N/ρCH3

1030 1058 ρCH3 (27), –ρCH3 (26), –ρCH3 (10), ρCH3 (10), –νCCH3 (6) ρCH3

1057 –νCαN (24), νCβCγ (11), ρCH3 (9), ρCH3 (8), –ρCH3 (7), –ρ'CH3 (5) νC–N/νC–C

1014 –ρNH3 (24), –ρCβH2 (18), –ρCγH2 (16), νCαN (14), –νCαCβ (5), τCβH2 (5), ρNH3/ρCH2

–δsNεCδ(Oε)Cγ (5)

998 989 ρNH3 (35), νCαCβ (25), –νCαC (11) ρNH3/νC–C

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.

Table C12: Raman Frequencies (cm−1) and Assignments of Crystalline L-glycyl-L-glutaminea. Adapted
with permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1201 τ 'CβH2 (33), –ρ'CαH (24), τ 'CγH2 (15), τCγH2 (6), νCαCβ (5) τCH2/ρCH

1171 1147 –νCαN (37), δNCαC (7), –ρN′H3 (7), –νCα'
N' (7) νC–N

1139 1138 νCαCβ (26), –νCβCγ (19), –ρCβH2 (8), –ρNεH2 (6), –δCαCβC (6), –νCαN (6), νC–C

–ωCβH2 (5)

1124 1128 ρ'N'H3 (47), τ 'Cα'
H2 (18), –ρCα'

H2 (13), –δsC'NCαC(OO) (5) ρNH3

1105 ρN'H3 (29), ρNεH2 (12), –τCα'
H2 (7), –τ 'Cα'

H2 (6), νCα'
N' (6), –σN'Cα'

C' (5), ρNH3

–νCαN (5)

1093 1100 ρNεH2 (33), νCδNε (13), –ρN'H3 (12), –νCβCγ (6), νCδOε (5) AmIIIP

1082 1081 –νCα'
N' (14), νCβCγ (13), νC'Cα'

(8), ρCγH2 (7), νCαCβ (7), ρ'CαH (6), νC–N/νC–C

–νCαN (5)

1048 1045 –νCα'
N' (56), νCαN (9), –νCαCβ (7), –νCβCγ (5) νC–N

1027 1013 ρCβH2 (28), δCαCβC (9), τCγH2 (8), –νCβCγ (7), ρCγH2 (5), δNCαC' (5) ρCH2

997 946 νC'Cα'
(19), –ρCγH2 (10), ρC'O' (9), –βNC'Cα (6), –βC'Cα'

N (6), –ρN'H3 (5) νC–C/ρCH2

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.
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Table C13: Raman Frequencies (cm−1) and Assignments of Crystalline L-seryl-L-asparaginea. Adapted with
permission from [180]. Copyright © (2015), American Chemical Society.

Expt. Calc. PEDb (≥5% contribution) Assignment
1188 1184 –ρCβ'

H2 (26), ρ'N'H3 (14), –δNCα'
C' (9), –τCβ'

H2 (8), βCβ'
Oγ'

H (7), ρ'Cα'
H (6), ρCH2/ρNH3

νCα'
N' (5), ρN'H3 (5)

1159 1164 –νCαN (37), ρ'N'H3 (7), νCαCβ (7), δCCαN (5), ρ'CαH (5) νC–N

1121 1119 –νCβ'
Oγ'

H (17), ρNδH2 (13), νCαCβ (13), νCα'
N' (8), –ρ'Cα'

H (6), ρN'H3 (5), νC–OH/ρNH2

–ρ'N'H3 (5)

1108 1116 νCβ'
Oγ'

H (66), ρNδH2 (9) νC–OH

1083 1107 –ρNδH2 (16), νCα'
N' (10), –ρ'Cα'

H (10), νCβ'
Oγ'

H (8), ρN'H3 (8), –νCαN (6), ρNH2/νC–N

–νCδNδ (5)

1065 1083 –ρN'H3 (20), νCα'
N' (10), –νC'Cα'

(9), νCαCβ (8), ρCα'
H (7), –νCβOγ'

H (5), ρNH3/νC–N

ρ'Cα'
H (5)

1051 1069 νCαCβ (23), –νCα'
N' (11), νCαN (9), –δCCαN (7), –σCαCβCγ (5), –ρNδH2 (5) AmIIIP

1019 1023 –ρCβH2 (23), δCβCαC (12), δC'CαN (8), –νCαC (7), δsCαCOO (6), βCαNC' (6), ρCH2/δCCC

ρ'CαH (5)

1004 981 ρCβ'
H2 (28), ρ'N'H3 (25), –νCα'

Cβ'
(14), ρN'H3 (10) ρCH2/ρNH3

aFrequencies correspond to visible Raman (633 nm excitation) spectrum. bν: stretch; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.
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Table C14: UVRR Frequencies (cm−1) and Assignments of Butyramide in Acetonitrile and Water. Adapted with permission from [180]. Copyright
© (2015), American Chemical Society.

H2O CH3CN Calc. PEDb (≥5% contribution) Assignment
1132 1125 1143 νCβCγ (27), ρ'CαH3 (19), ρNεH2 (14), –σCαCβCγ (8), –σCβCγCδ (6), ωCβH2 (6) νC–C/ρCH3

–βCγCδNε (5)

1126 –ρCαH3 (17), ρCβH2 (17), ρCγH2 (17), τCγH2 (16), –δsNεCδCγ (7), τCβH2 (7) ρCH3/ρCH2

–νCβCγ (6)

1076 1064 1092 ρNεH2 (37), νCδNε (17), –νCβCγ (14), –τCγH2 (6) AmIIIP

1050 1040 1067 νCαCβ (59), –νCβCγ (10), ρ'CαH3 (9), –ρNεH2 (6), ωCγH2 (6) νC–CH3

aFrequencies correspond to UVRR (204 nm excitation) spectra. bν: stretch; δs: symmetric deformation; δ: deformation;
σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending; τ : twisting.
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Figure C1: AmIIIP frequency dependence on the OCCC dihedral angle of butyramide from

DFT calculations. Adapted with permission from [180]. Copyright © (2015), American

Chemical Society.
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Figure C2: Crystal structures of Gln and Gln derivatives examined in this study. The atomic

labeling schemes shown are used for Table C8–Table C13. Adapted with permission from

[180]. Copyright © (2015), American Chemical Society.
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Figure C3: OTREP diagram of GlnTBE with atomic labeling scheme used in Table C4–

Table C7. Adapted with permission from [180]. Copyright © (2015), American Chemical

Society.
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Figure C4: Visible Raman (633 nm excitation) spectra of compounds examined in this study.

(a) L-Gln; (b) D-Gln; (c) NAcGln; (d) GlnTBE; (e) Gly-Gln; and (f) Ser-Asn. Adapted

with permission from [180]. Copyright © (2015), American Chemical Society.
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from [180]. Copyright © (2015), American Chemical Society.
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permission from [180]. Copyright © (2015), American Chemical Society.
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APPENDIX D

SUPPORTING INFORMATION FOR CHAPTER 5.0

D.1 EXPERIMENTAL SECTION

D.1.1 UVRR spectroscopy of fibril films

Solutions of NDQ10 and DQ10 fibril aggregates were aliquoted onto the grooves of brass

cylindrical cells. The solutions were dried for ∼5 h, after which a film could be observed. The

UVRR instrumentation used to collect spectra of NDQ10 and DQ10 fibril films was the same

as described in the main text. The laser light was focused onto the grooves of the brass cells,

which were spun in order to prevent accumulation of photochemical or thermal degradation

products. UVRR spectra were collected using both ∼197 nm and ∼204 nm excitation.

D.1.2 UVRR Spectral Processing

All UVRR spectra were processed using home-written MATLAB scripts in order to

remove cosmic rays, average and calibrate spectra, as well as subtract the spectral contri-

butions of water (e.g. H2O, D2O, and HDO) and Suprasil quartz from NMR tubes. The

spectra were calibrated using the 801.3 cm−1, 1028.3 cm−1, 1157.6 cm−1, 1266.4 cm−1, and

1444.4 cm−1 bands of cyclohexane. The spectral contributions of water and quartz were

removed using a method similar to that described by Banerjee and coworkers [222, 223].

To subtract the contributions of water and quartz, we first calculated the first-derivatives

of the spectra. The relative contributions of water and quartz in the raw spectra were found
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via a classical multiple linear least-squares regression such that:

S′ = KS′P (D.1)

where S′ is the (n × 1) row vector that represents the first-derivative (denoted by ′) of the

experimentally measured raw spectrum, and S′P is the (n×m) matrix composed of row vector

elements that contain the first-derivative spectra of the pure water and quartz spectra. The

(m× 1) row vector, K, contains the least-squares scaling coefficients for each of the different

background spectral components. The least-squares solution of K for eq. D.1 is [224]:

K = (S′P
T
S′P)−1S′P

T
S′ (D.2)

where (S′P
TS′P)−1S′P

T is the pseudo-inverse matrix of S′P. Banerjee and coworkers [222, 223]

discuss the advantages of using the first-derivative spectra to determine relative contributions

of different spectral components. Using the first-derivative spectra is most advantageous for

spectra that contain multiple, overlapping spectral components.

After determining K, eq. D.3 was utilized to subtract the contributions of water and

quartz to obtain the spectrum of the analyte of interest:

Sanalyte = S−KSP (D.3)

where Sanalyte, S, and SP are the zeroth-derivative analyte, raw, and water/quartz UVRR

spectra, respectively.

D.1.3 UVRR Spectral Peak Fitting

The GRAMS AI software suite (ver. 8.0, Thermo Fisher Scientific) was used to peak fit

the UVRR spectra. The spectra, S(ν), were parsimoniously fit as the sum of pure Gaussian

and Lorentzian bands. i.e.

S(ν) =
∑
i

[
fiHie

−
(
ν−νi
wi

)2

(4ln(2))
+ (1− fi)

Hi

4(ν−νi
wi

)2 + 1

]
(D.4)

where fi = 1 if the ith band is a Gaussian, or 0 if the ith band is a Lorentzian. The parameters

Hi, νi, and wi are the heights, center frequencies, and widths, respectively, of the ith band.
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D.1.4 Calculation of the Ψ and χ3 Angle Distributions

The distributions of Ψ and χ3 dihedral angles, shown in Figure 5.7 and Figure 5.11 in

the main text, were calculated using methodologies previously described in detail [96, 97,

105, 180]. Briefly, we assume that the inhomogeneously broadened, experimentally measured

AmIIIS3 and AmIIIP band profiles, B(ν), can be modeled as the sum of M Lorentzian bands:

B(ν) =
1

π

M∑
i

piΓ
2

Γ2 + (ν − νi)2
(D.5)

where pi is the probability for the ith band to occur at center frequency νi. The band

width parameter, Γ, is the homogeneous linewidth of the AmIIIS3 or AmIIIP vibrations. We

previously [105, 180] estimated from peptide crystals that Γ is ∼7.5 cm−1 for the AmIIIS
3 and

∼6.6 cm−1 AmIIIP. After decomposing the band profiles into Lorentzians, we then correlate

the different ith frequencies of the AmIIIS
3 and AmIIIP band envelopes to their respective Ψ

or χ3 dihedral angles.

D.1.4.1 Correlating the AmIIIS3 Frequencies to Ψ Angles We used the following

equation to correlate the AmIIIS
3 band frequencies to Ψ angles for the Figure 5.7 black

distributions shown in the main text:

νi(Ψ) = 1239 (cm−1)− 54 (cm−1) sin(Ψ + 26°) (D.6)

Eq. D.6 was derived by Mikhonin et al. [97] for situations when there is strong peptide-

peptide hydrogen bonding, such as in the case for fibril peptide bonds.

The Ψ angles for the Figure 5.7 distributions shown in blue were obtained by using:

νi(Ψ, T ) = 1250 (cm−1)− 54 (cm−1) sin(Ψ + 26°) + 0.06 (cm−1/◦C)(T − T0) (D.7)

where T = 22 ◦C is the experimental temperature and T0 = 0 ◦C. Eq. D.7 was derived by

Mikhonin et al. [97] for situations when the hydrogen bonding state of the peptide bond

N–H groups is unknown. This situation occurs, for example, in the case of solvent accessible

fibril peptide bonds. It is unknown if these peptide bonds are exhangeable in solvent because
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they are located on the surface of fibrils, or whether they are more in more disordered regions

of the aggregates.

D.1.4.2 Correlating the AmIIIP Frequencies to χ3 Angles In the case of the

AmIIIP, we used the following equation to correlate the band frequencies to χ3 angles for

the distributions shown in Figure 5.11

νi(χ3) = 1076 (cm−1) + 29 (cm−1) cos(2χ3) + 9 (cm−1) cos(χ3 + 99°) (D.8)

where νi is the ith AmIIIP frequency. Eq. D.8 was derived by Punihaole et al. [180] as

an “average” expression to be used in situations when the hydrogen bonding and dielectric

environments of Gln side chains are unknown. We previously showed [146] that stronger

(weaker) hydrogen bonding and higher (lower) dielectric environments upshift (downshift)

the AmIIIP frequency. In the case of Q10 fibrils, the inter-amide hydrogen bonding of the

Gln side chains is strong, but the dielectric constant of the environment is also low. Thus, we

utilized eq. D.8 since it averages these two competing effects. We are presently investigating

which of these effects dominates the AmIIIP frequency in polyQ fibrils.

It should be noted that in using eq. D.8, each AmIIIP frequency can be correlated to as

many as four possible χ3 dihedral angles. However, as discussed in detail by Punihaole et al.

[180], χ3 dihedral angles that are greater than +90° and less than -90° are nearly forbidden

for Gln and Asn. Thus, in using eq. D.8, we only considered the physically relevant χ3 angles

that occur between -90° and +90°.

D.2 COMPUTATIONAL SECTION

D.2.1 Density Functional Theory (DFT) Calculations

DFT calculations [135] were performed on the zwitterion form of the Gln amino acid

(Figure D1) using the GAUSSIAN 09 program [136]. The M06-2X density functional was

employed using the 6-311++g** basis set [137]. Water was modeled implicitly by placing the
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Gln molecule in an ellipsoidal cavity surrounded by a polarizable continuum dielectric model.

The calculated frequencies were not scaled. The potential energy distribution (PED) of each

vibration was obtained from the GAUSSIAN 09 output files by employing a MATLAB script

that has been previously published [180].

D.2.2 RMSD Metric

The extent of model fibril dissociation was quantified with a root mean square deviation

(RMSD) metric. The equation for RMSD is shown and this metric corresponds to the spatial

deviation of atoms.

RMSD =
1

N

√√√√ N∑
i=1

[(xi − xref )2 + (yi − yref )2 + (zi − zref )2] (D.9)

where N is the number of atoms used in the RMSD calculation, xi, yi, zi are the current

coordinate positions of atom i, and xref , yref , zref are the coordinate positions of atom i in

the reference structure. Backbone atoms used were Cα, the carbonyl carbon, the carbonyl

oxygen, and the peptide backbone nitrogen. For our peptide system, there are 320 atoms:

four backbone atoms per residue, ten Gln residues per peptide, and eight peptides per fibril

model.

Before the RMSD measurement was taken for each step, the model fibril was superim-

posed on the initial reference structure to eliminate the effect of fibril translation and rotation

on the RMSD value. The interpretation of this metric was that a rising RMSD indicates

fibril dissociation and lack of stability, whereas a constant RMSD signifies a stable fibril

structure. We assigned a RMSD ceiling of 3�A, and when a fibril model’s RMSD increased

above this value it was judged to be dissociated. Figure D2 shows that the antiparallel and

parallel β-sheet structures stayed well below the RMSD limit, while the β-hairpin model

dissociated at ∼58 ns.
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D.3 RESULTS AND DISCUSSION

D.3.1 UVRR of NDQ10 and DQ10 Fibril Films

Figure D3 shows the 197 nm – 204 nm UVRR difference spectra of dried NDQ10 and

DQ10 fibril films. The AmIP and AmIIP bands are located at ∼1660 cm−1 and ∼1612 cm−1,

respectively, for both NDQ10 and DQ10. These bands negligibly shift compared to the AmIP

and AmIIP bands of fibrils in solution, as shown in the Figure 5.3 197 nm – 204 nm UVRR

difference spectra in the main text. This indicates that the hydrogen bonding environments

of the Gln side chain primary amides are not significantly perturbed upon dehydrating the

fibrils. This occurs because there is strong side chain inter-amide hydrogen bonding in

NDQ10 and DQ10 fibrils.

The CH2 wagging band is located at ∼1413 cm−1 for DQ10 fibril films and at ∼1410 cm−1

for NDQ10 fibril films. Compared to the Figure 5.3 197 nm – 204 nm UVRR difference spec-

tra in the main text, the CH2 wagging band downshifts ∼5 cm−1 for NDQ10 and ∼17 cm−1

for DQ10 fibrils upon dehydration. We attribute this ∼17 cm−1 downshift of the CH2 wag-

ging band in DQ10 fibrils upon dehdyration to a local dielectric environment change of the

methylene groups around of the Gln side chains.

D.3.2 Band Assignments of Mono-deuterated Primary Amides

We employed DFT calculations to aid in our band assignments of the Gln UVRR spec-

trum in 50%/50% H2O/D2O (Figure 5.5 in the main text). In assigning the Figure 5.5

spectrum, we assume that vibrations containing significant contributions of Cδ−Nε2 stretch-

ing show resonance enhancement in the the UVRR spectrum because the electronic excited

state is expected to be expanded along this coordinate [147]. Table D1 and Table D2 show

the potential energy distributions (PEDs) obtained from the DFT calculations for the “cis-

Nε2HD” and “trans-Nε2HD” species of the mono-deuterated primary amide side chains of

Gln. Our band assignments of the Figure 5.5 spectrum from the main text are shown in

Table D3.
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D.3.2.1 Assignment of Amide Vibrations The DFT calculations show that partial

deuteration of the Gln side chains results in a reorganization of the eigenvector composition

of the primary amide vibrations compared to fully protonated side chains. This results in

the decoupling of N–H and N–D motions and the appearance of vibrations that resemble

canonical secondary amide modes. Our findings agree with Saito and coworkers’ normal

mode analyses [211, 212] of partially deuterated acetamide.

We assign the AmI vibration to a band located at∼1660 cm−1. Our normal mode analysis

indicates that the PED of this vibration consists mostly of Cδ=Oε1 stretching (∼77%), but

also contains significant contributions of Cδ–Nε2 stretching and Nε1CδCγ bending. The PED

of this vibration is essentially the same as that of the AmIS and AmIP vibrations [146, 180].

The DFT calculations also predict the appearance of AmIIS- and AmIIIS-like vibrations.

Both peptide backbone C–N stretching and N–H in-plane bending motions are important

in defining the PEDs of the canonical AmIIS and AmIIIS vibrations. Therefore, in the

case of the mono-deuterated primary amides, we searched for vibrations that contain signif-

icant contributions of Cδ–Nε2 stretching and Nε2HD deformations. As shown in Table D1

and Table D2, there are several vibrations that contain significant contributions of Cδ–Nε2

stretching, Nε2HD scissoring, and Nε2HD rocking. We assign these vibrations to AmIIS-like,

AmIIIS-like, or AmIII'S-like vibrations.

There are two AmIIS-like vibrations predicted by the DFT calculations to be at 1524 cm−1

for the trans-Nε2HD species and ∼1479 cm−1 for the cis-Nε2HD species. Both of these vibra-

tions contain significant Cδ–Nε2 stretching and Nε2HD scissoring, although the 1524 cm−1

mode also contains Nε2HD rocking. The predicted ∼1524 cm−1 mode is experimentally ob-

served at ∼1547 cm−1, while the predicted ∼1479 cm−1 vibration is observed at ∼1476 cm−1.

The DFT calculations indicate that two AmIIIS-like vibrations for the trans-Nε2HD

species are predicted to occur at ∼1247 cm−1 and ∼1329 cm−1. Both vibrations contain

significant contributions of Cδ–Nε2 stretching and Nε2HD scissoring. However, as with the

canonical AmIIIS modes observed in peptides, these vibrations are significantly coupled since

they contain significant contributions of CH2 wagging and twisting, as well as Cα–H rock-

ing [225]. We assign these AmIIIS-like vibrations to bands observed at ∼1247 cm−1 and

∼1308 cm−1.
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There are also two AmIII'S-like vibrations predicted to be at ∼1055 cm−1 for the trans-

Nε2HD species and∼953 cm−1 for the cis-Nε2HD species. These vibrations resemble AmIII'S-

like modes since they both contain large contributions of Nε2HD rocking. This is analogous

to the canonical AmIII'S, which is mostly N-D in-plane bending.

D.3.3 Bennett Acceptance Ratio Method

The Bennett acceptance ratio (BAR) is used here to estimate the free energy difference

between two states. The full equation for the BAR is

ni∑
i=1

1

1 + exp(ln(ni/nj) + β∆Uij − β∆G)
−

nj∑
i=1

1

1 + exp(ln(nj/ni) + β∆Uji − β∆G)
= 0

(D.10)

where ∆G is the Gibbs free energy difference between states i and j (here antiparallel and

parallel β-sheet fibrils), ni, nj are the number of samples used for states i and j, β = kBT

(where kB is the Boltzmann constant and T is the simulation temperature), and ∆Ui,j, Uj,i are

the potential energy differences between states i and j. This equation is solved numerically

using an iterative method.

Bennett clearly states that the best estimates of the free energy differences between states

occurs when the extent of the energy overlap is greatest and when the density-of-states as a

function of the energy difference is smoothest [226]. Here, we employ pymbar, which utilizes

a multistate Bennett acceptance ratio method that can handle two or more states. Since

we are working with two states, fibril models a and b, the multistate method is identical

to the traditional BAR method derived for two states [207]. Figure D4 demonstrates the

overlapping potential energy distributions necessary for a converged BAR calculation. To

ensure comparable energetics, identical atom counts as well as system dimensions were used

for all fibril simulations (see main text and NAMD configuration files for details).

D.3.4 Hydrogen Bonding Analysis

Figure D5 show the number of hydrogen bonds of fibril models a and b (from Figure 1.1

in the main text), which were obtained from the MD trajectories. Table D4 lists the average
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number of the different categories of hydrogen bonds formed during the MD simulations for

fibril models a and b. As disucussed in the main text, antiparallel β-sheet model a forms, on

average, more peptide bond-peptide bond hydrogen bonds than the parallel β-sheet model

b. In particular, the antiparallel β-sheet forms significantly more peptide bond-peptide

bond hydrogen bonds than the parallel β-sheet. It is interesting to note that, if we assume

a peptide bond-peptide bond hydrogen bond energy of 5 kJ mol−1, this hydrogen bonding

difference would account for the majority of the 160.5 kJ mol−1 free energy difference between

the antiparallel and parallel β-sheet fibril models.
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Table D1: DFT Calculated Frequencies (cm−1) and Assignments of cis-Glutamine-Nε2HD. Adapted with permission from [196].

Copyright © (2016), American Chemical Society.

Assign. Calc. PEDa,b (≥5% contribution)
νasCOO 1715 –νC'O (53), νC'O (33), ρCαC' (7)
δasNH3 1666 –δas'NH3 (48), δasNH3 (44), ρNH3 (5)
δasNH3 1621 –δasNH3 (40), –δas'NH3 (40), –δsNH3 (10)
σCH2 1494 σCβH2 (87)
AmII-like 1479 –σNε2HD (37), –νCδNε2 (28), νCγCδ (10), –ωCγH2 (9), ρCδOε1 (6)
δsNH3 1464 δsNH3 (50), –σCγH2 (20)
σCH2 1460 σCγH2 (61), δsNH3 (21)
ωCH2 1437 ωCβH2 (19), σNε2HD (14), –ωCγH2 (11), –νC'O (10), ρCαH (8), –νCβCγ (5), –δsNH3 (5), σCγH2 (5)
νsCOO 1414 νC'O (22), –ωCγH2 (13), σNε2HD (11), –νCαC' (9), –ρCαH (7), νCγCδ (7), –βC'O–

2 (6), νC'O (6)
ρCH 1387 ρCαH (28), ωCβH2 (11), –ρ'CαH (9), νC'O (8), νCαCβ (7), –τCβH2 (6)
ρCH 1357 ρCαH (27), τCβH2 (19), –ωCβH2 (13), –τCγH2 (11)
ωCH2+τCH2 1347 ωCβH2 (21), τCβH2 (21), ρ'CαH (11), νCδNε2 (11), –ρCδOε1 (5)
τCH2 1309 τCγH2 (35), ρ'CαH (26), –ρCβH2 (8), ρCαH (6)
ωCH2 1272 ωCγH2 (43), ωCβH2 (20), –νCδNε2 (13)
τCH2+νCC 1214 τCβH2 (21), νCαCβ (18), τCγH2 (16), ρ'NH3 (13), –δNCαC'O–

2 (5)
ρCH+τCH2 1153 –ρ'CαH (20), τCγH2 (16), –ρ'NH3 (14), τCβH2 (12), –νCαCβ (8), ρCγH2 (6)
νCC 1117 νCβCγ (42), νCαN (10), ρNH3 (8), –νCαCβ (7), –δ'NCαC'O–

2 (5), –σCαCβCγ (5)
ρNH3 1105 ρNH3 (28), –νCβCγ (12), –ρ'CαH (9), –δ'NCαC'O–

2 (8), –ρCαH (8), –ρCβH2 (7)
νCN 1040 νCαN (35), –νCβCγ (11), ρCβH2 (9), ρCγH2 (6), ρ'CαH (5)
ρNH3+νCN 1005 ρNH3 (22), –νCαN (20), ρCγH2 (12), ρCβH2 (12), νCαCβ (10)
ρNH3 983 –ρ'NH3 (29), νCαCβ (13), –σCαCβCγ (6), ρNε2HD (6), –σCβCγCδ (5), νCγCδ (5)
AmIII'S-like 953 ρNε2HD (15), νCδNε2 (14), –νCαCβ (13), ρ'NH3 (11), νCγCδ (9), νCαC' (8), –σNε2HD (7)
aCδ–Nε2 stretching and Nε2HD scissoring components in PED are in bold.
bν: stretch; δas: asymmetric deformation; δs: symmetric deformation; δ: deformation; σ: scissoring; ρ: rocking; ω: wagging;
β: in-plane bending; τ : twisting.
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Table D2: DFT Calculated Frequencies (cm−1) and Assignments of trans-Glutamine-Nε2HD. Adapted with permission from

[196]. Copyright © (2016), American Chemical Society.

Assign. Calc. PEDa,b (≥5% contribution)
AmI-like 1742 –νCδOε1 (77), –βNCδCγ (7), νCδNε2 (7)
νasCOO 1715 –νC'O (53), νC'O (33), ρCαC' (7)
δasNH3 1666 δas'NH3 (48), –δasNH3 (44), –ρNH3 (5)
δasNH3 1621 –δasNH3 (40), –δas'NH3 (40), –δsNH3 (10)
AmII-like 1524 σNε2HD (49), νCδNε2 (30), –νCγCδ (6), –ρNε2HD (6), –ρCδOε1 (5)
σCH2 1494 σCβH2 (88)
δsNH3+σCH2 1465 –δsNH3 (36), σCγH2 (33), ωCγH2 (5)
σCH2 1460 –σCγH2 (47), –δsNH3 (34), νC'O (3)
ωCH2 1435 –ωCβH2 (21), νC'O (13), –ρCαH (11), ωCγH2 (10), –σCγH2 (7), –νCαC' (6), νCβCγ (5), δsNH3 (5)
νsCOO 1407 νC'O (22), –ωCγH2 (20), –νCαC' (9), νCγCδ (7), –βC'O–

2 (6), νC'O (6), σNε2HD (5)
ρCH 1384 ρCαH (40), –ρ'CαH (11), –τCβH2 (6), νCαCβ (6), νC'O (5)
τCH2 1356 τCβH2 (35), ρCαH (16), –τCγH2 (15), ρ'CαH (6)
AmIIIS-like 1329 ωCβH2 (39), ρ'CαH (9), –σNε2HD (9), νCδNε2 (8), –νCγCδ (5)
τCH2 1307 –τCγH2 (34), –ρ'CαH (22), ρCβH2 (8), –ρCαH (8)
AmIIIS-like 1247 –ωCγH2 (25), νCδNε2 (20), –σNε2HD (9), ρ'NH3 (7), –ρCδOε1 (6), νCαCβ (6), –ωCβH2 (5), τCβH2 (5)
τCH2 1207 –τCβH2 (18), –τCγH2 (15), –νCαCβ (13), –ωCγH2 (11), –ρ'NH3 (10), νCδNε2 (7)
ρCH+τCH2 1153 ρ'CαH (19), –τCγH2 (16), ρ'NH3 (14), –τCβH2 (11), νCαCβ (9), –ρCγH2 (6)
νCN 1116 –νCβCγ (39), –νCαN (10), –ρNH3 (10), νCαCβ (6), δ'NCαC'O–

2 (6), ρ'CαH (5), σCαCβCγ (5)
ρNH3 1104 –ρNH3 (27), νCβCγ (15), ρ'CαH (8), ρCαH (7), ρCβH2 (7), δ'NCαC'O–

2 (7)
AmIII'S-like 1055 –ρNε2HD (27), –νCγCδ (14), –νCδNε2 (9), –νCαN (9), –νCδOε1 (8), νCβCγ (5), –ρCδOε1 (5)
νCN 1032 νCαN (31), –ρNε2HD (10), ρ'NH3 (7), –νCβCγ (7), ρCβH2 (6)
ρNH3 1003 ρNH3 (25), –νCαN (19), ρCγH2 (14), ρCβH2 (14), νCαCβ (7), –τCβH2 (5)
ρNH3 973 –ρ'NH3 (37), νCαCβ (25), –νCαC' (9), –σCαCβCγ (7), νCαN (6)
aCδ–Nε2 stretching and Nε2HD scissoring components in PED are in bold.
bν: stretch; δas: asymmetric deformation; δs: symmetric deformation; δ: deformation; σ: scissoring; ρ: rocking; ω: wagging;
β: in-plane bending; τ : twisting.
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Table D3: UVRR Band Frequencies (cm−1) and Assignments of trans- and cis-Glutamine-

Nε2HD. Adapted with permission from [196]. Copyright © (2016), American Chemical

Society.

cis-Nε2HD trans-Nε2HD

Expt. Calc. Assign.a Expt. Calc. Assign.a

1658 1742 AmI-like
1628 1715 νasCOO 1628 1715 νasCOO

1666 δasNH3 1666 δasNH3

1621 δasNH3 1621 δasNH3

1547 1524 AmII-like
1494 σCH2 1494 σCH2

1476 1479 AmII-like
1464 δsNH3 1465 δsNH3+σCH2

1449 1460 σCH2 1449 1460 σCH2

1420 1437 ωCH2 1420 1435 ωCH2

1420 1414 νsCOO 1420 1407 νasCOO
1398 1387 ρCH 1398 1384 ρCH
1360 1357 ρCH

1360 1356 τCH2

1335 1347 ωCH2+τCH2

1308 1329 AmIIIS-like
1309 τCH2 1307 τCH2

1278 1272 ωCH2

1247 1247 AmIIIS-like
1214 τCH2+νCC 1207 τCH2

1153 ρCH+τCH2 1153 1153 ρCH+τCH2

1117 νCC 1116 νCC
1105 ρNH3 1104 ρNH3

1040 1055 AmIII'S-like
1040 νCN

1032 νCN
1005 ρNH3+νCN 1003 ρNH3

983 ρNH3

973 ρNH3

964 953 AmIII'S-like
aν: stretch; δas: asymmetric deformation; δs: symmetric deformation;
δ: deformation; σ: scissoring; ρ: rocking; ω: wagging; β: in-plane bending;
τ : twisting.
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Table D4: Average Number of Hydrogen Bonds for Antiparallel and Parallel β-sheet Fibril

Models. Adapted with permission from [196]. Copyright © (2016), American Chemical

Society.

H-bonding type Parallel β-strand fibril Antiparallel β-strand fibril
Peptide-peptide 106.7 118.9
Peptide-solvent 281.2 256.5

Peptide backbone-side chain 36.0 16.8
Peptide backbone-peptide backbone 39.2 66.8

Side chain-side chain 31.4 35.3

Cα

Cβ

Cγ

Cδ
Oε1

Nε2

Figure D1: Atomic labeling scheme for glutamine used in DFT calculations. Adapted with

permission from [196]. Copyright © (2016), American Chemical Society.

169



500 100 150 200

5
4

3
2

1
0

R
M

SD
 / 

Å

Time / ns

β-hairpin fibril
Antiparallel β-strand fibril
Parallel β-strand fibril
Dissociation cutoff

Figure D2: Plot of the evolution of backbone RMSD metric for three fibril models with

respect to their initial structure. Adapted with permission from [196]. Copyright © (2016),
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(a) NDQ10
ωCH2

ωCH2
(b) DQ10

PAmII

PAmII AmIP

AmIP

Wavenumber / cm-1

Figure D3: UVRR 197 nm – 204 nm difference spectra of fibril films prepared from (a)

NDQ10 and (b) DQ10. The asterisk indicates an artifact of subtracting the intense O2

stretching band in the difference spectrum. Adapted with permission from [196]. Copyright

© (2016), American Chemical Society.
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Figure D4: Potential energy distributions for the Figure 5.1 simulated model a antiparallel

and model b parallel β-sheet fibril systems shown as red and blue histograms, respectively.

These distributions represent the probability that a particular potential energy was sampled

during the simulation for the antiparallel β-sheet fibril system (red) and the parallel β-sheet

fibril system (blue). The significant overlap indicates that potential energies are sufficiently

converged for use of the BAR method. Adapted with permission from [196]. Copyright ©

(2016), American Chemical Society.
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Figure D5: Histograms of the number of hydrogen bonds for models a and b in Figure 1.1. (a)

peptide-peptide hydrogen bonds, (b) peptide-solvent hydrogen bonds, (c) peptide backbone-

side chain hydrogen bonds, (d) peptide backbone-peptide backbone, and (e) side chain-side

chain hydrogen bonds. Data was taken throughout the 200 ns trajectory for model a (blue)

and model b (red). The overlap of the two distributions is shown in purple. Hydrogen

bonds were defined as having a distance between heavy atoms of less than 3.0 Å and an

angle cutoff of 30◦. Adapted with permission from [196]. Copyright © (2016), American

Chemical Society.

173



REFERENCES

[1] Harry T. Orr and Huda Y. Zoghbi. Trinucleotide Repeat Disorders. Annual Review of
Neuroscience, 30(1):575–621, 2007.

[2] Russell L. Margolis, Dobrila D. Rudnicki, and Susan E. Holmesi. Huntington’s Disease
Like-2: Review and Update. Acta Neurologica Taiwanica, 14(1):1–8, 2005.

[3] Jennifer R. Gatchel and Huda Y. Zoghbi. Diseases of Unstable Repeat Expansion:
Mechanisms and Common Principles. Nature Reviews Genetics, 6(10):743–755, 2007.

[4] Regina M. Murphy, Robert H. Walters, Matthew D. Tobelmann, and Joseph P.
Bernacki. Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Un-
derlying Degenerative Diseases, chapter When More Is Not Better: Expanded Polyglu-
tamine Domains in Neurodegenerative Disease, pages 337–375. Springer Netherlands,
Dordrecht, 2012.

[5] James F. Gusella and Marcy E. MacDonald. Molecular Genetics: Unmasking Polyglu-
tamine Triggers in Neurodegenerative Disease. Nature Reviews Neuroscience, 1(2):109–
115, 2000.

[6] Richard H. Myers. Huntington’s Disease Genetics. NeuroRX, 1(2):255–262, 2004.

[7] Marian DiFiglia, Ellen Sapp, Kathryn O. Chase, Stephen W. Davies, Gillian P. Bates,
J. P. Vonsattel, and Neil Aronin. Aggregation of Huntingtin in Neuronal Intranuclear
Inclusions and Dystrophic Neurites in Brain. Science, 277(5334):1990–1993, 1997.

[8] A. Kazantsev, E. Preisinger, A. Dranovsky, D. Goldgaber, and D. Housman. Insol-
uble Detergent-Resistant Aggregates form Between Pathological and Nonpathological
Lengths of Polyglutamine in Mammalian Cells. Proceedings of the National Academy
of Sciences, 96(20):11404–11409, 1999.

[9] Joan S. Steffan, Aleksey Kazantsev, Olivera Spasic-Boskovic, Marilee Greenwald, Ya-
Zhen Zhu, Heike Gohler, Erich E. Wanker, Gillian P. Bates, David E. Housman, and
Leslie M. Thompson. The Huntington’s Disease Protein Interacts with P53 and CREB-
Binding Protein and Represses Transcription. Proceedings of the National Academy of
Sciences, 97(12):6763–6768, 2000.

174



[10] Joan S. Steffan, Laszlo Bodai, Judit Pallos, Marnix Poelman, Alexander McCamp-
bell, Barbara L. Apostol, Alexsey Kazantsev, Emily Schmidt, Ya-Zhen Zhu, Marilee
Greenwald, et al. Histone Deacetylase Inhibitors Arrest Polyglutamine-Dependent
Neurodegeneration in Drosophila. Nature, 413(6857):739–743, 2001.

[11] Sebastien Holbert, Isabelle Denghien, Tamara Kiechle, Adam Rosenblatt, Cheryll
Wellington, Michael R. Hayden, Russell L. Margolis, Christopher A. Ross, Jean Daus-
set, Robert J. Ferrante, et al. The Gln-Ala Repeat Transcriptional Activator CA150
Interacts with Huntingtin: Neuropathologic and Genetic Evidence for a Role in Hunt-
ington’s Disease Pathogenesis. Proceedings of the National Academy of Sciences,
98(4):1811–1816, 2001.

[12] Frederick C. Nucifora, Masayuki Sasaki, Matthew F. Peters, Hui Huang, Jillian K.
Cooper, Mitsunori Yamada, Hitoshi Takahashi, Shoji Tsuji, Juan Troncoso, Valina L.
Dawson, et al. Interference by Huntingtin and Atrophin-1 with CBP-Mediated Tran-
scription Leading to Cellular Toxicity. Science, 291(5512):2423–2428, 2001.

[13] Nihar Ranjan Jana, Motomasa Tanaka, Guang-hui Wang, and Nobuyuki Nukina.
Polyglutamine Length-Dependent Interaction of Hsp40 and Hsp70 Family Chaperones
with Truncated N-terminal Huntingtin: their Role in Suppression of Aggregation and
Cellular Toxicity. Human Molecular Genetics, 9(13):2009–2018, 2000.

[14] Yaohui Chai, Stacia L. Koppenhafer, Sarah J. Shoesmith, Matthew K. Perez, and
Henry L. Paulson. Evidence for Proteasome Involvement in Polyglutamine Disease:
Localization to Nuclear Inclusions in SCA3/MJD and Suppression of Polyglutamine
Aggregation In Vitro. Human Molecular Genetics, 8(4):673–682, 1999.

[15] Andrej Michalik and Christine Van Broeckhoven. Pathogenesis of Polyglutamine Dis-
orders: Aggregation Revisited. Human Molecular Genetics, 12(suppl 2):R173–R186,
2003.

[16] H. Diana Rosas, David H. Salat, Stephanie Y. Lee, Alexandra K. Zaleta, Nathanael
Hevelone, and Steven M. Hersch. Complexity and Heterogeneity: What Drives the
Ever-changing Brain in Huntington’s disease? Annals of the New York Academy of
Sciences, 1147(1):196–205, 2008.

[17] Wen Yang, John R. Dunlap, Richard B. Andrews, and Ronald Wetzel. Aggregated
Polyglutamine Peptides Delivered to Nuclei are Toxic to Mammalian Cells. Human
Molecular Genetics, 11(23):2905–2917, 2002.

[18] Toshiya Sato, Masami Miura, Mitsunori Yamada, Takayuki Yoshida, Jonathan D.
Wood, Ikuru Yazawa, Masao Masuda, Takeo Suzuki, Ryong-Moon Shin, Hau-Jie Yau,
et al. Severe Neurological Phenotypes of Q129 DRPLA Transgenic Mice Serendipi-
tously Created by En Masse Expansion of CAG Repeats in Q76 DRPLA Mice. Human
Molecular Genetics, 18(4):723–736, 2009.

175



[19] Claire-Anne Gutekunst, Shi-Hua Li, Hong Yi, James S. Mulroy, Stefan Kuemmerle,
Randi Jones, David Rye, Robert J. Ferrante, Steven M. Hersch, and Xiao-Jiang Li. Nu-
clear and Neuropil Aggregates in Huntingtons Disease: Relationship to Neuropathol-
ogy. The Journal of Neuroscience, 19(7):2522–2534, 1999.

[20] Estrella Gomez-Tortosa, Marcy E. MacDonald, Julia C. Friend, Taylor Sherryl A.M.,
Larry J. Weiler, L. Adrienne Cupples, Jayalakshmi Srinidhi, James F. Gusella, Ed-
ward D. Bird, Jean-Paul Vonsattel, et al. Quantitative Neuropathological Changes in
Presymptomatic Huntington’s Disease. Annals of Neurology, 49(1):29–34, 2001.

[21] Christopher J. Cummings, Michael A. Mancini, Barbara Antalffy, Donald B. DeFranco,
Harry T. Orr, and Huda Y. Zoghbi. Chaperone Suppression of Aggregation and Al-
tered Subcellular Proteasome Localization Imply Protein Misfolding in SCA1. Nature
Genetics, 19(2):148–154, 1998.

[22] Ashwani K. Thakur, Wen Yang, and Ronald Wetzel. Inhibition of Polyglutamine Ag-
gregate Cytotoxicity by a Structure-Based Elongation Inhibitor. The FASEB Journal,
18(7):923–925, 2004.

[23] Frdric Saudou, Steven Finkbeiner, Didier Devys, and Michael E. Greenberg. Huntingtin
Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the
Formation of Intranuclear Inclusions. Cell, 95(1):55 – 66, 1998.

[24] Pratibha Siwach, Sonali Sengupta, Rashmi Parihar, and Subramaniam Ganesh. Spa-
tial Positions of Homopolymeric Repeats in the Human Proteome and their Effect on
Cellular Toxicity. Biochemical and Biophysical Research Communications, 380(2):382
– 386, 2009.

[25] Elizabeth J. Slow, Rona K. Graham, Alexander P. Osmand, Rebecca S. Devon, Ge Lu,
Yu Deng, Jacqui Pearson, Kuljeet Vaid, Nagat Bissada, Ronald Wetzel, Blair R. Leav-
itt, et al. Absence of Behavioral Abnormalities and Neurodegeneration In Vivo Despite
Widespread Neuronal Huntingtin Inclusions. 102(32):11402–11407, 2005.

[26] Christopher J. Cummings, Eyal Reinstein, Yaling Sun, Barbara Antalffy, Yong-hui
Jiang, Aaron Ciechanover, Harry T. Orr, Arthur L. Beaudet, and Huda Y. Zoghbi.
Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency while
Accelerating Polyglutamine-Induced Pathology in SCA1 Mice. Neuron, 24(4):879–892,
1999.

[27] Seung-Yun Yoo, Mark E. Pennesi, Edwin J. Weeber, Bisong Xu, Richard Atkinson,
Shiming Chen, Dawna L. Armstrong, Samuel M. Wu, J. David Sweatt, and Huda Y.
Zoghbi. SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation
of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity. Neuron,
37(3):383 – 401, 2003.

[28] Kei Watase, Edwin J. Weeber, Bisong Xu, Barbara Antalffy, Lisa Yuva-Paylor, Kouichi
Hashimoto, Masanobu Kano, Richard Atkinson, Yaling Sun, Dawna L. Armstrong,

176



et al. A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and
Reveals the Impact of Protein Solubility on Selective Neurodegeneration. Neuron,
34(6):905 – 919, 2002.

[29] Montserrat Arrasate, Siddhartha Mitra, Erik S. Schweitzer, Mark R. Segal, and Steven
Finkbeiner. Inclusion Body Formation Reduces Levels of Mutant Huntingtin and the
Risk of Neuronal Death. Nature, 431(7010):805–810, 2004.

[30] Yoko Nekooki-Machida, Masaru Kurosawa, Nobuyuki Nukina, Kazuki Ito, Toshiro
Oda, and Motomasa Tanaka. Distinct conformations of in vitro and in vivo amyloids
of huntingtin-exon1 show different cytotoxicity. Proceedings of the National Academy
of Sciences, 106(24):9679–9684, 2009.

[31] E.L. Altschuler, N.V. Hud, J.A. Mazrimas, and B. Rupp. Random Coil Conforma-
tion for Extended Polyglutamine Stretches in Aqueous Soluble Monomeric Peptides.
Journal of Peptide Research, 50(1):73–75, 1997.

[32] Songming Chen, Valerie Berthelier, J. Bradley Hamilton, Brian O’Nuallain, and Ronald
Wetzel. Amyloid-like Features of Polyglutamine Aggregates and Their Assembly Ki-
netics. Biochemistry, 41(23):7391–7399, 2002.

[33] Brian W. Chellgren, Anne-Frances Miller, and Trevor P. Creamer. Evidence for
Polyproline II Helical Structure in Short Polyglutamine Tracts. Journal of Molecu-
lar Biology, 361(2):362 – 371, 2006.

[34] Fabrice A.C. Klein, Annalisa Pastore, Laura Masino, Gabrielle Zeder-Lutz, Helene
Nierengarten, Mustapha Oulad-Abdelghani, Danile Altschuh, Jean-Louis Mandel, and
Yvon Trottier. Pathogenic and Non-pathogenic Polyglutamine Tracts Have Similar
Structural Properties: Towards a Length-dependent Toxicity Gradient. Journal of
Molecular Biology, 371(1):235 – 244, 2007.

[35] Ronald Wetzel. Physical Chemistry of Polyglutamine: Intriguing Tales of a
Monotonous Sequence. Journal of Molecular Biology, 421(4-5):466–90, 2012.

[36] Xiaoling Wang, Andreas Vitalis, Matthew A. Wyczalkowski, and Rohit V. Pappu.
Characterizing the Conformational Ensemble of Monomeric Polyglutamine. Proteins,
63(2):297–311, 2006.

[37] Andreas Vitalis, Xiaoling Wang, and Rohit V. Pappu. Atomistic Simulations of the
Effects of Polyglutamine Chain Length and Solvent Quality on Conformational Equi-
libria and Spontaneous Homodimerization. Journal of Molecular Biology, 384(1):279 –
297, 2008.

[38] Andreas Vitalis, Nicholas Lyle, and Rohit V. Pappu. Thermodynamics of β-Sheet
Formation in Polyglutamine. Biophysical Journal, 97(1):303 – 311, 2009.

177



[39] Miki Nakano, Hirofumi Watanabe, Stuart M. Rothstein, and Shigenori Tanaka. Com-
parative Characterization of Short Monomeric Polyglutamine Peptides by Replica
Exchange Molecular Dynamics Simulation. The Journal of Physical Chemistry B,
114(20):7056–7061, 2010.

[40] Scott L. Crick, Murali Jayaraman, Carl Frieden, Ronald Wetzel, and Rohit V.
Pappu. Fluorescence Correlation Spectroscopy Shows that Monomeric Polyglutamine
Molecules form Collapsed Structures in Aqueous Solutions. Proceedings of the National
Academy of Sciences, 103(45):16764–16769, 2006.

[41] Andreas Vitalis, Xiaoling Wang, and Rohit V. Pappu. Quantitative Characteriza-
tion of Intrinsic Disorder in Polyglutamine: Insights from Analysis Based on Polymer
Theories. Biophysical Journal, 93(6):1923 – 1937, 2007.

[42] Vijay R. Singh and Lisa J. Lapidus. The Intrinsic Stiffness of Polyglutamine Peptides.
The Journal of Physical Chemistry B, 112(42):13172–13176, 2008.

[43] Robert H. Walters and Regina M. Murphy. Examining Polyglutamine Peptide Length:
A Connection between Collapsed Conformations and Increased Aggregation. Journal
of Molecular Biology, 393(4):978 – 992, 2009.

[44] Andreas Vitalis and Rohit V. Pappu. Assessing the Contribution of Heterogeneous Dis-
tributions of Oligomers to Aggregation Mechanisms of Polyglutamine Peptides. Bio-
phys. Chem., 159(1):14 – 23, 2011.

[45] Yvon Trottier, Yves Lutz, Giovann Stevanin, Georges Imbert, Didier Devys, Geraldine
Cancel, Frederic Saudou, Chantal Weber, Gilles David, Laszlo Tora, Yves Agid, Alexis
Brice, and Jean-Louis Mandel. Polyglutamine Expansion as a Pathological Epitope in
Huntington’s disease and Four Dominant Cerebellar Ataxias. Nature, 378(6555):403–
406, 1995.

[46] Jason Miller, Montserrat Arrasate, Elizabeth Brooks, Clare Peters Libeu, Justin
Legleiter, Danny Hatters, Jessica Curtis, Kenneth Cheung, Preethi Krishnan, Sid-
dhartha Mitra, et al. Identifying Polyglutamine Protein Species In Situ that Best
Predict Neurodegeneration. Nat. Chem. Bio., 7(12):925–934, 2011.

[47] Clare Peters-Libeu, Jason Miller, Earl Rutenber, Yvonne Newhouse, Preethi Krish-
nan, Kenneth Cheung, Danny Hatters, Elizabeth Brooks, Kartika Widjaja, Tina Tran,
et al. Disease-Associated Polyglutamine Stretches in Monomeric Huntingtin Adopt a
Compact Structure. Journal of Molecular Biology, 421(45):587 – 600, 2012. Amyloid
Structure, Function, and Molecular Mechanisms (Part II).

[48] Melanie J. Bennett, Kathryn E. Huey-Tubman, Andrew B. Herr, Anthony P. West,
Scott A. Ross, and Pamela J. Bjorkman. A Linear Lattice Model for Polyglu-
tamine in CAG-Expansion Diseases. Proceedings of the National Academy of Sciences,
99(18):11634–11639, 2002.

178



[49] Pingwei Li, Kathryn E. Huey-Tubman, Tiyu Gao, Xiaojun Li, Anthony P. West,
Melanie J. Bennett, and Pamela J. Bjorkman. The Structure of a PolyQ–Anti-PolyQ
Complex RevealsBbinding According to a Linear Lattice Model. Nature Structural and
Molecular Biology, 14(5):381–387, 2007.

[50] Louise C. Serpell. Alzheimer’s Amyloid Fibrils: Structure and Assembly. Biochimica
et Biophysica Acta–Molecular Basis of Disease, 1502(1):16 – 30, 2000.

[51] Markus S. Miettinen, Volker Knecht, Luca Monticelli, and Zoya Ignatova. Assessing
Polyglutamine Conformation in the Nucleating Event by Molecular Dynamics Simula-
tions. The Journal of Physical Chemistry B, 116(34):10259–10265, 2012.

[52] M F Perutz, T Johnson, M Suzuk, and J T Finch. Glutamine Repeats as Polar
Zippers: Their Possible Role in Inherited Neurodegenerative Diseases. Proceedings of
the National Academy of Sciences, 91(12):5355–5358, 1994.

[53] M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk. Amyloid Fibers are Water-Filled
Nanotubes. Proceedings of the National Academy of Sciences, 99(8):5591–5595, 2002.

[54] Pawel Sikorski and Edward Atkins. New Model for Crystalline Polyglutamine Assem-
blies and their Connection with Amyloid Fibrils. Biomacromolecules, 6(1):425–432,
2005.

[55] Deepak Sharma, Leonid M. Shinchuk, Hideyo Inouye, Ronald Wetzel, and Daniel A.
Kirschner. Polyglutamine Homopolymers Having 8–45 Residues Form Slablike β-
crystallite Assemblies. Proteins, 61(2):398–411, 2005.

[56] Robert Schneider, Miria C. Schumacher, Henrik Mueller, Deepak Nand, Volker
Klaukien, Henrike Heise, Dietmar Riedel, Gerhard Wolf, Elmar Behrmann, Stefan
Raunser, and et al. Structural Characterization of Polyglutamine Fibrils by Solid-
State NMR Spectroscopy. Journal of Molecular Biology, 412(1):121–136, 2011.

[57] Aneta T. Petkova, Yoshitaka Ishii, John J. Balbach, Oleg N. Antzutkin, Richard D.
Leapman, Frank Delaglio, and Robert Tycko. A Structural Model for Alzheimer’s β-
amyloid Fibrils Based on Experimental Constraints from Solid State NMR. Proceedings
of the National Academy of Sciences, 99(26):16742–16747, 2002.

[58] V. N. Sivanandam, Murali Jayaraman, Cody L. Hoop, Ravindra Kodali, Ronald Wet-
zel, and Patrick C. A. van der Wel. The Aggregation-Enhancing Huntingtin N-
Terminus Is Helical in Amyloid Fibrils. Journal of the American Chemical Society,
133(12):4558–4566, 2011.

[59] Karunakar Kar, Cody L. Hoop, Kenneth W. Drombosky, Matthew A. Baker, Ravindra
Kodali, Irene Arduini, Patrick C.A. van der Wel, W. Seth Horne, and Ronald Wet-
zel. β-Hairpin-Mediated Nucleation of Polyglutamine Amyloid Formation. Journal of
Molecular Biology, 425(7):1183 – 1197, 2013.

179



[60] Cody L. Hoop, Hsiang-Kai Lin, Karunakar Kar, Zhipeng Hou, Michelle A. Poirier,
Ronald Wetzel, and Patrick C. A. van der Wel. Polyglutamine Amyloid Core Bound-
aries and Flanking Domain Dynamics in Huntingtin Fragment Fibrils Determined by
Solid-State Nuclear Magnetic Resonance. Biochemistry, 53(42):6653–6666, 2014.

[61] C. L. Hoop, H-K. Lin, K. Kar, G. Magyarfalvi, J.M. Lamley, J.C. Boatz, A. Mandal,
Wetzel R. Lewandowski, J.R., and P.C.A. van der Wel. Huntingtin Exon 1 Fibrils Fea-
ture an Interdigitated β-hairpin-based Polyglutamine Core. Proceedings of the National
Academy of Sciences, 113(6):1546–1551, 2016.

[62] Alexander J. Marchut and Carol K. Hall. Effects of Chain Length on the Aggregation of
Model Polyglutamine Peptides: Molecular Dynamics Simulations. Proteins, 66(1):96–
109, 2007.

[63] Luciana Esposito, Antonella Paladino, Carlo Pedone, and Luigi Vitagliano. Insights
into Structure, Stability, and Toxicity of Monomeric and Aggregated Polyglutamine
Models from Molecular Dynamics Simulations. Biophysical Journal, 94(10):4031 –
4040, 2008.

[64] Giulia Rossetti, Alessandra Magistrato, Annalisa Pastore, Francesca Persichetti,
and Paolo Carloni. Structural Properties of Polyglutamine Aggregates Investi-
gated via Molecular Dynamics Simulations. The Journal of Physical Chemistry B,
112(51):16843–16850, 2008.

[65] Rozita Laghaei and Normand Mousseau. Spontaneous Formation of Polyglutamine
Nanotubes with Molecular Dynamics Simulations. The Journal of Chemical Physics,
132(16), 2010.

[66] Markus S. Miettinen, Luca Monticelli, Praveen Nedumpully-Govindan, Volker Knecht,
and Zoya Ignatova. Stable Polyglutamine Dimers Can Contain β-Hairpins with In-
terdigitated Side Chains–But Not α-Helices, β-Nanotubes, β-Pseudohelices, or Steric
Zippers. Biophysical Journal, 106(8):1721 – 1728, 2014.

[67] Songming Chen, Valerie Berthelier, Wen Yang, and Ronald Wetzel. Polyglutamine
Aggregation Behavior In Vitro Supports a Recruitment Mechanism of Cytotoxicity.
Journal of Molecular Biology, 311(1):173 – 182, 2001.

[68] Songming Chen, Frank A. Ferrone, and Ronald Wetzel. Huntington’s disease age-
of-onset linked to polyglutamine aggregation nucleation. Proceedings of the National
Academy of Sciences, 99(18):11884–11889, 2002.

[69] Ashwani K. Thakur and Ronald Wetzel. Mutational Analysis of the Structural Organi-
zation of Polyglutamine Aggregates. Proceedings of the National Academy of Sciences,
99(26):17014–17019, 2002.

180



[70] Karunakar Kar, Murali Jayaraman, Bankanidhi Sahoo, Ravindra Kodali, and Ronald
Wetzel. Critical Nucleus Size for Disease-Related Polyglutamine Aggregation is Repeat-
Length Dependent. Nature Structural and Molecular Biology, 18(3):328–336, 2011.

[71] Elizabeth Landrum and Ronald Wetzel. Biophysical Underpinnings of the Repeat
Length Dependence of Polyglutamine Amyloid Formation. The Journal of Biological
Chemistry, 289(15):10254–10260, 2014.

[72] Brian O’Nuallain, Ashwani K. Thakur, Angela D. Williams, Anusri M. Bhattacharyya,
Songming Chen, Geetha Thiagarajan, and Ronald Wetzel. Kinetics and Thermody-
namics of Amyloid Assembly Using a High Performance Liquid ChromatographyBased
Sedimentation Assay. In Amyloid, Prions, and Other Protein Aggregates, Part C,
volume 413 of Methods in Enzymology, pages 34 – 74. Academic Press, 2006.

[73] Anusri M. Bhattacharyya, Ashwani K. Thakur, and Ronald Wetzel. Polyglutamine
aggregation nucleation: Thermodynamics of a highly unfavorable protein folding reac-
tion. Proceedings of the National Academy of Sciences, 102(43):15400–15405, 2005.

[74] Joseph P. Bernacki and Regina M. Murphy. Model Discrimination and Mechanistic
Interpretation of Kinetic Data in Protein Aggregation Studies. Biophysical Journal,
96(7):2871 – 2887, 2009.

[75] Christine C. Lee, Robert H. Walters, and Regina M. Murphy. Reconsidering the Mech-
anism of Polyglutamine Peptide Aggregation. Biochemistry, 46(44):12810–12820, 2007.

[76] Michael G. Zagorski, Jing Yang, Haiyan Shao, Kan Ma, Hong Zeng, and Anita Hong.
Methodological and Chemical Factors Affecting Amyloid β Peptide Amyloidogenicity.
In Amyloid, Prions, and Other Protein Aggregates, volume 309 of Methods in Enzy-
mology, pages 189 – 204. Academic Press, 1999.

[77] Songming Chen and Ronald Wetzel. Solubilization and Disaggregation of Polyglu-
tamine Peptides. Protein Science, 10(4):887–891, 2001.

[78] Shae B. Padrick, , and Andrew D. Miranker. Islet Amyloid: Phase Partitioning and
Secondary Nucleation Are Central to the Mechanism of Fibrillogenesis. Biochemistry,
41(14):4694–4703, 2002.

[79] Michael R. Nichols, Melissa A. Moss, Dana Kim Reed, Stephanie Cratic-McDaniel,
Jan H. Hoh, and Terrone L. Rosenberry. Amyloid-β Protofibrils Differ from Amyloid-
β Aggregates Induced in Dilute Hexafluoroisopropanol in Stability and Morphology.
Journal of Biological Chemistry, 280(4):2471–2480, 2005.

[80] Christopher P. Jaroniec, Cait E. MacPhee, Vikram S. Bajaj, Michael T. McMahon,
Christopher M. Dobson, and Robert G. Griffin. High-resolution molecular structure of
a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy.
Proceedings of the National Academy of Sciences, 101(3):711–716, 2004.

181



[81] Anant K. Paravastu, Richard D. Leapman, Wai-Ming Yau, and Robert Tycko. Molec-
ular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. Proceedings
of the National Academy of Sciences, 105(47):18349–18354, 2008.

[82] Christian Wasmer, Adam Lange, Hélène Van Melckebeke, Ansgar B Siemer, Roland
Riek, and Beat H Meier. Amyloid Fibrils of the HET-s (218-289) Prion Form a β
Solenoid with a Triangular Hydrophobic Core. Science, 319(5869):1523–1526, 2008.

[83] Robert Tycko, Kimberly L. Sciarretta, Joseph P.R.O. Orgel, and Stephen C. Meredith.
Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils. Biochem-
istry, 48(26):6072–6084, 2009.

[84] Robert Tycko. BIOMOLECULAR SOLID STATE NMR: Advances in Structural
Methodology and Applications to Peptide and Protein Fibrils. Annual Review of Phys-
ical Chemistry, 52(1):575–606, 2001.

[85] Robert Tycko. Progress Towards a Molecular-Level Structural Understanding of Amy-
loid Fibrils. Current Opinion in Structural Biology, 14(1):96 – 103, 2004.

[86] Robert Tycko. Molecular Structure of Amyloid Fibrils: Insights from Solid-State NMR.
Quarterly Reviews of Biophysics, 39:1–55, 2 2006.

[87] Robert Tycko. Solid-State NMR Studies of Amyloid Fibril Structure. Annual Review
of Physical Chemistry, 62(1):279–299, 2011.

[88] Galia T. Debelouchina, Marvin J. Bayro, Patrick C. A. van der Wel, Marc A. Caporini,
Alexander B. Barnes, Melanie Rosay, Werner E. Maas, and Robert G. Griffin. Dy-
namic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy of GNNQQNY
Nanocrystals and Amyloid Fibrils. Physical Chemistry Chemical Physics, 12:5911–
5919, 2010.

[89] Sulayman A. Oladepo, Kan Xiong, Zhenmin Hong, Sanford A. Asher, Joseph Handen,
and Igor K. Lednev. UV Resonance Raman Investigations of Peptide and Protein
Structure and Dynamics. Chemical Reviews, 112(5):2604–2628, 2012.

[90] Ming Xu, Victor A. Shashilov, Vladimir V. Ermolenkov, Laura Fredriksen, Dmitri
Zagorevski, and Igor K. Lednev. The First step of Hen Egg White Lysozyme Fib-
rillation, Irreversible Partial Unfolding, is a Two-State Transition. Protein Science,
16(5):815–832, 2007.

[91] Ming Xu, Victor Shashilov, and Igor K. Lednev. Probing the Cross-β Core Structure of
Amyloid Fibrils by Hydrogen-Deuterium Exchange Deep Ultraviolet Resonance Raman
Spectroscopy. Journal of the American Chemical Society, 129(36):11002–11003, 2007.

[92] Victor Shashilov, Ming Xu, Vladimir V. Ermolenkov, Laura Fredriksen, , and Igor K.
Lednev. Probing a Fibrillation Nucleus Directly by Deep Ultraviolet Raman Spec-
troscopy. Journal of the American Chemical Society, 129(22):6972–6973, 2007.

182



[93] Victor A. Shashilov andIgor K. Lednev. 2D Correlation Deep UV Resonance Raman
Spectroscopy of Early Events of Lysozyme Fibrillation: Kinetic Mechanism and Poten-
tial Interpretation Pitfalls. Journal of the American Chemical Society, 130(1):309–317,
2008.

[94] Ludmila A. Popova, Ravindra Kodali, Ronald Wetzel, and Igor K. Lednev. Structural
Variations in the Cross-β Core of Amyloid β Fibrils Revealed by Deep UV Resonance
Raman Spectroscopy. Journal of the American Chemical Society, 132(18):6324–6328,
2010.

[95] Dmitry Kurouski, William Lauro, and Igor K. Lednev. Amyloid Fibrils are “Alive”:
Spontaneous Refolding from One Polymorph to Another. Chemical Communications,
46:4249–4251, 2010.

[96] Sandorf A. Asher, Anatoli Ianoul, Guido Mix, Mary N. Boyden, Anton Karnoup, Max
Diem, and Reinhard Schweitzer-Stenner. Dihedral ψ Angle Dependence of the Amide
III Vibration: a Uniquely Sensitive UV Resonance Raman Secondary Structural Probe.
Journal of the American Chemical Society, 123(47):11775–11781, 2001.

[97] Aleksandr V. Mikhonin, Sergei V. Bykov, Nataliya S. Myshakina, and Sanford A.
Asher. Peptide Secondary Structure Folding Reaction Coordinate: Correlation Be-
tween UV Raman Amide III Frequency, ψ Ramachandran Angle, and Hydrogen Bond-
ing. The Journal of Physical Chemistry B, 110(4):1928–1943, 2006.

[98] Nataliya S. Myshakina, Zeeshan Ahmed, and Sanford A. Asher. Dependence of
Amide Vibrations on Hydrogen Bonding. The Journal of Physical Chemistry B,
112(38):11873–11877, 2008.

[99] Sanford A. Asher, Peter J. Larkin, and Junji Teraoka. Ultraviolet Resonance Raman
and Absorption difference Spectroscopy of Myoglobins: Titration Behavior of Individ-
ual Tyrosine Residues. Biochemistry, 30(24):5944–5954, 1991.

[100] Peter J. Larkin, William G. Gustafson, and Sanford A. Asher. A New Raman Cross
Section Measurement Technique Monitors the Tyrosine Environmental Dependence of
the Electromagnetic Field Strength. The Journal of Physical Chemistry, 94(8):5324–
5330, 1991.

[101] Zhenhuan Chi and Sanford A. Asher. UV Raman Determination of the Environment
and Solvent Exposure of Tyr and Trp Residues. The Journal of Physical Chemistry B,
102(47):9595–9602, 1998.

[102] Zeeshan Ahmed, Nataliya S. Myshakina, and Sanford A. Asher. Dependence of the
AmII’p Proline Raman Band on Peptide Conformation. The Journal of Physical Chem-
istry B, 113(32):11252–11259, 2009.

183



[103] Zhenmin Hong, Jonathan Wert, and Sanford A. Asher. UV Resonance Raman and
DFT Studies of Arginine Side Chains in Peptides: Insights into Arginine Hydration.
The Journal of Physical Chemistry B, 117(24):7145–7156, 2013.

[104] Igor K. Lednev, Anton S. Karnoup, Mark C. Sparrow, and Sanford A. Asher. α-Helix
Peptide Folding and Unfolding Activation Barriers: A Nanosecond UV Resonance
Raman Study. Journal of the American Chemical Society, 121(35):8074–8086, 1999.

[105] Sanford A. Asher, Alexander V. Mikhonin, and Sergei Bykov. UV Raman Demon-
strates that α-Helical Polyalanine Peptides Melt to Polyproline II Conformations. Jour-
nal of the American Chemical Society, 126(27):8433–8440, 2004.

[106] Aleksandr V. Mikhonin and Sanford A. Asher. Direct UV Raman Monitoring of 310-
Helix and π-Bulge Premelting During α-Helix Unfolding. Journal of the American
Chemical Society, 128(42):13789–13795, 2006.

[107] Lu Ma, Zhenmin Hong, Bhavya Sharma, and Sanford A Asher. UV Resonance Ra-
man Studies of the NaClO4 Dependence of Poly-l-lysine Conformation and Hydrogen
Exchange Kinetics. The Journal of Physical Chemistry B, 116(3):1134–1142, 2012.

[108] Sanford A Asher. Ultraviolet Raman Spectrometry. Handbook of Vibrational Spec-
troscopy, 2002.

[109] Sanford A. Asher. UV Resonance Raman Spectroscopy for Analytical, Physical, and
Biophysical Chemistry. Part 1. Analytical Chemistry, 65(2):59A–66A, 1993.
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