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TIME FILTERS FOR NUMERICAL WEATHER PREDICTION

Yong Li, PhD

University of Pittsburgh, 2016

The Robert–Asselin (RA) time filter combined with leapfrog scheme is widely used in nu-

merical models of weather and climate. The RA filter suppresses the spurious computational

mode associated with the leapfrog method, and successfully stabilizes the numerical solution.

However, it also weakly dampens the physical mode and degrades the formal second-order

accuracy of the leapfrog scheme to first order. There is a natural intention to reduce the

time-stepping error as it has proven to be a substantial part of the total forecast error. Yet

a new scheme must be non-intrusive, i.e., easily implementable in legacy codes in order to

avoid significant programming undertaking.

The object of this work is the development, analysis and validation of novel Robert–

Asselin type time filters, addressing both of the above problems. Specifically, we first propose

and analyze a higher-order Robert–Asselin (hoRA) type time filter. The analysis reveals

that the filtered leapfrog scheme exhibits second- or third-order accuracy depending on

the filter parameter. We then investigate its behavior when used in conjunction with the

implicit-explicit integration, which is commonly used in weather and climate models to

relieve the severe time step restriction induced by unimportant high-frequency waves. Next,

we build a framework of constructing a family of hoRA filters with any pre-determined

order of accuracy. In particular, we focus on the fourth-order time filter. Finally, we present

supplemental analysis for several filters developed byWilliams. For each direction, we present

comprehensive error and stability analysis, and perform numerical tests to verify theoretical

results.
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1.0 INTRODUCTION

The possibility of deterministic weather prediction was suggested by Vilhelm Bjerknes as

early as 1904. Later, Lewis Richardson attempted to produce such a forecast by manually

integrating a finite-di↵erence approximation to the equations governing atmospheric motion.

However, his calculations did not yield a reasonable forecast, and moreover, the human la-

bor required to obtain this disappointing result was so great that subsequent attempts at

deterministic weather prediction had to await the advent of the computer and computer

simulations that the computation’s time was reduced to less than the forecast period itself.

The ENIAC was used to create the first weather forecasts via computer in 1950, based on

a highly simplified approximation to the atmospheric governing equations. Its success led

to the rapid growth of a new meteorological subdiscipline, “numerical weather prediction”.

These early e↵orts in numerical weather prediction began a long collaboration between nu-

merical analysts and atmospheric scientists. The use of numerical models in atmospheric

and oceanic science has subsequently expanded into almost all areas of active research.

From a functional perspective, the task of predicting future weather and climate may be

reduced to the following iterative procedure. First, given the state of the atmosphere, ocean,

and other earth-system components at any time (the input), use the governing equations

to compute the state at a slightly later time (the output). Then, repeat the loop as many

times as required, always using the previous output as the next input. This prediction

framework presents some form of error compared to what the atmosphere will actually do.

Typically, the forecast errors come from uncertainty in the initial states, boundary conditions,

forcing, and the numerical model (model errors and numerical errors). The latter contains

physical and dynamical assumptions, parameterizations of subgrid processes, spatial emsh

approximations, and the discrete time-stepping error. The impact of time-stepping schemes
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on the climate modes has been studied in the literature, (e.g., [36, 45, 55]). Teixeira et al.

[45] mentioned that “In the weather and climate prediction community, when thinking in

terms of model predictability, there is a tendency to associate model error with the physical

parameterizations. In this paper, it is shown that time truncation error... can be a substantial

part of the total forecast error”. Therefore, selecting a proper time-stepping method becomes

significantly important. In this thesis, we dedicate ourselves to the development and analysis

of non-intrusive higher-order time-stepping schemes.

Among many di↵erent time-stepping methods, the leapfrog scheme emerged, from the

early years of numerical weather prediction, as the method of choice and is still popular for

a number of reasons. Perhaps the most important attribute of the leapfrog scheme is that it

preserves exactly the amplitude of a pure oscillation. The dissipative characteristics of other

time integration schemes are generally too strong, while the absence of computational damp-

ing of leapfrog scheme is especially desirable for long-time integrations. Another feature of

the leapfrog method is e�ciency, namely, it evaluates the right-hand side of the meteorolog-

ical tendency equations only once per time step, in contrast with most other schemes. The

leapfrog scheme applied to a generic di↵erential equation

du

dt
= F (u)

is given by

un+1 = un�1 + 24tF (un),

where 4t is the time step and un is the approximated solution at time tn := n4t.

The leapfrog method is a three-time-level scheme, and when applied to a simple set of

linear di↵erential equations, it generates two modes of motion. One is the physical mode,

which contributes to the true solution, while the other one is the computational mode, which

is merely artificial and has no relation to the di↵erential equations that are being integrated.

The computational mode of the leapfrog scheme is undamped in linear problems, meaning

that it preserves the amplitude in each time step. In nonlinear problems, however, the

nonlinear terms introduce couplings between the physical and computational modes which

may amplify the computational mode. In short-time simulations of weather and climate,

2



the growth of the computational mode is generally hard to detect, but when long-time

integrations are considered, the computational mode dominates the solution.

One possible approach to control the leapfrog scheme’s computational mode is to pe-

riodically use a two-time-level scheme, e.g., a Matsuno step after every 11 leapfrog steps

[36]. The idea is to reset the amplitude to zero periodically, so it never becomes large

enough/problematic. Another technique is to use di↵erent explicit time-stepping schemes,

e.g., the second-order Adams-Bashforth method [32], the third-order Adam-Bashforth [10],

the leapfrog-trapezoidal method [23, 54] or the Magazenkov method [34].

The ubiquitous strategy in atmospheric models, for controlling the leapfrog scheme’s

computational mode, is the non-intrusive implementation of a time filter after each leapfrog

time step. Robert [40] designed such a filter, which Asselin [4] analyzed and proved to

e↵ectively damp the computational mode of the leapfrog scheme. This time filter is referred

to as the Robert–Asselin (RA) filter. The RA-filtered leapfrog scheme is

vn+1 = un�1 + 24tF (vn), (1.1)

un = vn +
⌫

2

�
vn+1 � 2vn + un�1

�
, (1.2)

where v and u denote the unfiltered (provisional) and filtered (definitive) variables, respec-

tively. The dimensionless parameter ⌫ 2 [0, 1] determines the strength of the filter, i.e., ⌫

controls the computational mode of the leapfrog scheme.1

The accuracy and stability properties of the RA filter were investigated in [5, 6, 8, 9, 13,

16, 20, 39, 43, 48]. Currently, the RA filter is used in operational numerical weather predic-

tion models, atmospheric general circulation models for climate simulation, ocean general

circulation models, and models of fluids in rotating annulus laboratory experiments, etc. A

comprehensive list of atmospheric models with RA filter can be found in [48]. The RA filter,

however, also damps the physical mode. As a result, the formal second-order accuracy of

the leapfrog scheme is reduced to first order, and can degrade the accuracy of model simu-

lations. Therefore, physical quantities (e.g., energy, mass) conserved by the time-continuous

equations are not necessarily conserved by time-discretized equations when the filter is used.

1
A value of ⌫ = 0.12 is typically used in the NCAR community climate model [51]; ⌫ = 0.4 is common

in mesoscale convective models; Schlesinger et al. [43] recommend a value of ⌫ in the range of 0.5� 0.6 for

general advection-di↵usion modeling.
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In this thesis, we propose and analyze hoRA type time filters: hoRA2 (Chapter 2),

hoRA3(Chapter 2), and hoRA4 (Chapter 4). The hoRA2(3) filter combined with the leapfrog

scheme exhibits second- or third-order accuracy depending on the value of the filter parame-

ter. We present several numerical tests, including simple pendulum [50], Lorenz system [10],

and the Ozone photochemistry [11], to confirm its outperformance compared with existing

time filters, RA and RAW filters. We then investigate the accuracy and stability properties

of the hoRA2(3) filter when used in conjunction with the implicit-explicit integration, which

is commonly used in weather and climate models to relieve the severe time step restriction

induced by unimportant high frequency waves (e.g., sound or gravity waves). The method

is implemented in the elastic pendulum [33, 49] and the acoustic advection problem [42]

to verify the theoretical results. Next, we build a framework of constructing the family of

hoRA filter with any pre-determined order of overall accuracy. Following this framework,

we recover the RA and hoRA2(3) filters, and in particular, we develop a fourth-order filter,

hoRA4. We perform the error and stability analysis of the hoRA4-filtered leapfrog scheme,

and present several numerical experiments (pure oscillation [48] and Lorenz system [10]) to

verify the convergence. The family of hoRA type filters are non-intrusive linear post-process

to the leapfrog step, and thus they are easy implementable in any legacy codes. Finally, we

present supplemental analysis for schemes proposed by Williams in [48, 50].

The work of this thesis is based on [20, 25, 27, 28, 29, 30, 31].
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2.0 A HIGHER-ORDER ROBERT–ASSELIN TYPE TIME FILTER

In this chapter, we propose and analyze a higher-order Robert-Asselin (hoRA) type time

filter, a non-intrusive linear post process to the leapfrog scheme:

vn+1 = un�1 + 24tF (vn), (2.1)

un = vn +
�

2
(vn+1 � 2vn + un�1)� �

2
(vn � 2un�1 + un�2), (2.2)

where the dimensionless parameter � is in the interval [0, 1). Here v and u denote the

unfiltered and once-filtered values, respectively.

We show that the proposed scheme improves the first-order truncation error of RA filter

to at least second order. Moreover, the truncation error becomes third order for a particular

value of the filter parameter �, yielding third-order accuracy for the amplitude and fourth-

order accuracy for the phase speed of the physical mode (we denote this filter as hoRA2(3)

to distinguish from the fourth-order hoRA filter, hoRA4, that will be discussed in Chapter

4). We present several numerical tests, including simple pendulum [50], Lorenz system [10],

and the Ozone photochemistry [11], to confirm its outperformance compared with existing

time filters, RA and RAW filters. The work of this chapter is based on [27]

2.1 NOTATION AND PRELIMINARIES

The stability condition, amplitude, phase-speed, and the consistency errors are illustrated

by analyzing solutions to the pure oscillation equation (see e.g., [10, 11])

du

dt
= i! u, (2.3)

5



where i is the imaginary unit, and ! a real constant. Define the amplification factor A as the

ratio of the approximate solution at two adjacent time steps, i.e., A = un+1/un. Throughout

the text, we will denote the time step as 4t, the exact solution u at time tn = n4t as

u(tn), and the numerical solution approximating u(tn) as un. The amplification factor yields

information on two quantities of interest: the amplitude and the relative phase change (phase

speed) per time step. Specifically, A can be expressed in modulus-argument form A = |A|ei✓,
where

|A| =
p

Re(A)2 + Im(A)2, ✓ = tan�1(Im(A)/Re(A)).

For the true solution to the oscillation equation (2.3), the exact amplification factor A
e

=

ei!4t has unity magnitude and phase change !4t over a time interval 4t. The amplitude

errors are defined as the di↵erence between the magnitude of the approximated amplification

factor |A| and the correct value of unity. When |A| = 1, the scheme is neutral, if |A| < 1, the

scheme is damping (stable), and if |A| > 1, it is amplifying (unstable). The relative phase

change or the phase speed, on the other hand, is measured by the ratio of the phase change

of the numerical scheme per time step divided by the phase change of the true solution over

the same time interval, and is denoted by R = ✓/!4t. The phase-speed errors are defined

as the di↵erence between the phase speed R and the unity over a time interval 4t. When

R > 1, the method is accelerating, and if R < 1, it is decelerating. Unlike the amplitude, the

phase change does not influence the stability of the numerical solution. Yet the phase errors

accumulate and result in large simulation errors over a long time period of integration.

It is helpful to describe the relationship between the overall truncation error of an or-

dinary di↵erential equation solver and the amplitude and phase-speed errors introduced by

that solver when it is used to model non-dissipative oscillatory phenomena, as stated in the

following result [10].

Proposition 2.1.1. If the oscillation equation (2.3) is integrated using a linear finite-

di↵erence scheme and if the truncation error of the resulting finite-di↵erence approximation

to the oscillation equation is order p, then as !4t ! 0 the amplitude in the numerical

6



solution is

1 +O[(!4t)n], where

8
><

>:

n = p+ 1, if p is odd;

n � p+ 2, if p is even;

and the phase speed is

1 +O[(!4t)m], where

8
><

>:

m � p+ 1, if p is odd;

m = p, if p is even.

2.2 PREVIOUS WORK: RA AND RAW TIME FILTERS

In 2009, Williams [48] proposed a modification to the Robert–Asselin (RA) filter, which

combined with the leapfrog (LF) scheme is

wn+1 = un�1 + 24tF (vn), (2.4)

un = vn +
⌫↵

2
(wn+1 � 2vn + un�1), (2.5)

vn+1 =wn+1 � ⌫(1� ↵)

2
(wn+1 � 2vn + un�1), (2.6)

where w, v, and u denote the unfiltered, once filtered, and twice filtered variables, re-

spectively. The parameter ⌫ is as in the RA filter, and the new dimensionless parameter

↵ 2 [0.5, 1]. The filter is now referred to as the Robert–Asselin–Williams (RAW) filter.

When ↵ = 1 the RAW filter recovers to RA filter (1.2). Compared with RA, RAW provides

higher accuracy for the amplitude of the physical mode (see Table 2.2). More precisely, the

amplitude of the physical mode of LF-RAW is first-order accurate for ↵ 2 (0.5, 1], and of

particular interest, it is third order when ↵ = 0.5 in which case the three-time-level mean

is conserved. However, LF-RAW is unstable in this case. Thus, Williams suggests taking

↵ ' 0.5, e.g., ↵ = 0.53 to obtain almost third-order accuracy for the amplitude of the phys-

ical mode [48]. The filter has been implemented and studied in [1, 20, 35, 38, 46, 52, 53, 49]

with excellent results.

7



2.3 THE HIGHER-ORDER ROBERT-ASSELIN TYPE TIME FILTER

The LF scheme with hoRA2(3) time filter (2.1)-(2.2) applied to the oscillation equation (2.3)

is

vn+1 = un�1 + 2i!4t vn, (2.7)

un = vn +
�

2
(vn+1 � 2vn + un�1)� �

2
(vn � 2un�1 + un�2), (2.8)

where the dimensionless parameter � is in the interval (0, 1). In the limit of good time

resolution, i.e., !4t ⌧ 1, LF-hoRA2(3) provides higher-order accuracy for the amplitude

and phase speed of the physical mode (see (2.13) and (2.14)).

Eliminating vn+1 in (2.7) and (2.8) gives

vn =
un � 2�un�1 + �

2

un�2

1� 3

2

� + i�!4t
,

and hence

vn+1 =
un+1 � 2�un + �

2

un�1

1� 3

2

� + i�!4t
.

Substituting vn and vn+1 in (2.8) gives the equivalent formula of LF-hoRA2(3)

un+1 � 2�un � (1� 2�)un�1 = i!4t(2un � 3�un�1 + �un�2). (2.9)

Thus, the amplification factor, A = un+1/un, satisfies the following cubic equation.

A3 � 2(� + i!4t)A2 + (3�i!4t� 1 + 2�)A� �i!4t = 0. (2.10)

Equation (2.10) has three roots with one physical mode, denoted by A
+

, and two computa-

tional modes. The exact solution to (2.3) is u(t) = u(0) exp(i!t) and the exact amplification

factor is A
exact

= exp(i!4t).

The exact and the numerical amplification factors for LF-hoRA2(3) in the complex plane

are plotted in Figure 2.1. The exact amplification factor lies on the unit circle as !4t

increases from 0 to 1. Like the third-order Adams-Bashforth (AB3) method [10], the physical

8



Figure 2.1: Amplification factors plotted in the complex plane. From left to right: exact

amplification factor, amplification factors for LF-hoRA2(3) with � = 0.1, 0.2, 0.3 and 0.4,

respectively. Solid line is the physical mode and two dashed curves represent computational

modes.

mode of LF-hoRA2(3) stays inside the unit circle, while one computational mode becomes

amplified when !4t exceeds
q

3

4

+ � � �2/(1 + 3

2

� � �2) (see (2.12) in Section 2.5).

Magnitudes of amplification factors for LF-hoRA2(3) are shown in Figure 2.2. Both

computational modes are e↵ectively controlled by the hoRA2(3) filter, especially when � =

0.4.

0 0.5 1
0

0.5

1

ω∆ t

|A|

0 0.5 1
ω∆ t

0 0.5 1
ω∆ t

0 0.5 1
ω∆ t

Figure 2.2: Magnitudes of amplification factors for LF-hoRA2(3), plotted as functions of

!4t. From left to right: � = 0.1, 0.2, 0.3 and 0.4, respectively. Solid line is the physical

mode and two dashed curves represent computational modes.
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2.4 CONSISTENCY ERROR

Applying the Taylor expansion to (2.9) gives the truncation error

⌧n(4t) =
2� 5�

6
(i!4t)2u0(tn) +

11�

12
(i!4t)3u0(tn) +O[(i!4t)4]. (2.11)

This indicates that the scheme is second order in general, and achieves third-order overall

accuracy when � = 0.4.

2.5 STABILITY

To determine the maximum !4t for which all numerical amplification factors are non-

amplified, we follow the root locus curve method (see e.g., [15]). The characteristic equation

of (2.9) is

⇣3 � 2�⇣2 � (1� 2�)⇣ � z(2⇣2 � 3�⇣ + �) = 0,

where ⇣ denotes the points on the unit circle, i.e., ⇣ = ei✓ for ✓ 2 [0, 2⇡], and z 2 C. The

curve formed by z is called the root locus curve. In our case z = i!4t lies on the imaginary

axis, and consequently, we shall seek ✓ satisfying <(z) = 0. We find that

cos ✓ = 1 or cos ✓ = � � 1

2
,

which determines the following values of z:

z = 0 or z = ±i

q
3

4

+ � � �2

1 + 3

2

� � �2

.

The above values are the intersection of the root locus curve with imaginary axis in the

complex z-plane. Thus, the stability of the LF-hoRA2(3) scheme is provided by

!4t 
q

3

4

+ � � �2

1 + 3

2

� � �2

, 0 < � < 1. (2.12)

Several root locus curves for various values of � are plotted in Figure 2.3.

10



−0.5 0 0.5
−1

−0.5

0

0.5

1

ℜ(z)

ℑ(z)

−0.5 0 0.5
ℜ(z)

−0.5 0 0.5
ℜ(z) e

−0.5 0 0.5
ℜ(z)

Figure 2.3: Root locus curves of LF-hoRA2(3). From left to right: � = 0.1, 0.2, 0.3 and

0.4, respectively. The stability of LF-hoRA2(3) is given by the intersection of the root locus

curve with the imaginary axis.

2.6 ERROR ANALYSIS FOR AMPLITUDE AND PHASE SPEED

The first few terms in the Taylor expansion for the physical mode A
+

=
1P
n=0

an(�)(i!4t)n

are1

a
0

= 1, a
1

= 1, a
2

=
1

2
, a

3

=
�

4(1� �)
, and a

4

= �1

8
� �

8(1� �)2
.

The amplitude for the physical mode is fourth-order accurate in a single time step and hence

is third-order accurate in a unit time:

|A
+

|� |A
exact

| = |A
+

|� 1 =
�(2� � 3)

8(1� �)2
(!4t)4 +O[(!4t)6], � 2 (0, 1). (2.13)

Figure 2.4 compares magnitudes of the physical mode for various values of �. Note that the

amplitude error grows as � increases.

The phase-speed error of the physical mode is

R
+

� 1 =
arg(A

+

)

arg(A
exact

)
� 1 =

2� 5�

12(1� �)
(!4t)2 +O[(!4t)4], � 2 (0, 1), (2.14)

where R
+

= arg(A
+

)/ arg(A
exact

) denotes the relative phase change in the physical mode.

The phase speed of the physical mode is fourth-order accurate when � = 0.4 and second-

order accurate otherwise. Figure 2.5 shows relative phase changes in the physical mode.
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Figure 2.4: Magnitudes of the physical mode for LF-hoRA2(3) scheme, plotted as functions

of !4t.
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Figure 2.5: Relative phase changes in the physical mode for LF-hoRA2(3), plotted as func-

tions of !4t.

The phase-speed error decays as � increases from 0 to 0.4, and then grows as � increases

afterwards.

1
The coe�cients of the Taylor expansion are obtained using symbolic manipulation of Mathematica.
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Table 2.1 summarizes several properties of the amplitude and phase-speed errors for the

physical mode of LF-hoRA2(3). Since both amplitude and phase-speed errors increase when

� > 0.4, we narrow down the choice of � within the interval (0, 0.4].

� 2 (0, 0.4] � 2 (0.4, 1) Order of accuracy

Amplitude error % % 3rd

Phase-speed error & % 4th at � = 0.4, 2nd otherwise

Table 2.1: Changes in amplitude and phase-speed errors for the physical mode of LF-

hoRA2(3) as � varies. The notation % and & indicate the increase and decrease in the

errors as � grows, respectively.

2.7 COMPARISON OF RA, RAW AND HORA FILTERS

In Figure 2.6, we compare magnitudes of the physical modes for LF-RA, LF-RAW and LF-

hoRA3. In order to have the same damping rate of the most unstable computational mode

of each scheme, we choose the RA-parameter ⌫ = 0.8, RAW-parameters ↵ = 0.53, ⌫ = 0.8

and the hoRA3-parameter � = 0.4.2 The amplitudes of the physical modes for LF-RA

and LF-RAW become amplified when !4t exceeds 0.66 and 0.35, respectively. While the

amplitude of the physical mode for LF-hoRA3 stays below unity, one of the computational

modes becomes amplified when !4t > 0.69, as seen in Figure 2.2. The amplitude of LF-

hoRA3 is third order, while the amplitudes of both LF-RA and LF-RAW are only first order

(see Table 2.2).

Figure 2.7 compares the relative phase changes in the physical modes. The phase-speed

error of the LF-hoRA3 is significantly smaller than the phase-speed errors of both LF-RA

and LF-RAW within the stability region.

2
In the limit of good time resolution (!4t ⌧ 1), the damping rates of the computational mode in LF-RA

and LF-RAW are 1� ⌫, while the damping rate of the most unstable computational mode in LF-hoRA2(3)

is 1� 2�.
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Figure 2.6: Magnitudes of the physical modes, plotted as functions of !4t.
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Figure 2.7: Relative phase changes in the physical modes, plotted as functions of !4t.

2.8 COMPARISON OF LF-HORA3 AND AB3 SCHEMES

The third-order LF-hoRA3 has the following properties:
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(i) it follows from (2.11) that the truncation error is

⌧n(4t) =
11

30
(i!4t)3u0(tn) +O[(i!4t)4],

(ii) by (2.12), it is stable for !4t  0.69,

(iii) it requires one new function evaluation per time step.

Recall that the e�ciency factor is defined as the maximum stable time step with which the

oscillation equation can be integrated, divided by the number of function evaluations per

time step [10]. It follows from (ii) and (iii) that the e�ciency factor of LF-hoRA3 is 0.69.

On the other hand, the AB3 method reads

un+1 = un +
4t

12

�
23F (un)� 16F (un�1) + 5F (un�2)

�
,

has the following properties [10]:

(i) the truncation error is

⌧n(4t) =
3

8
(i!4t)3u0(tn) +O[(i!4t)4],

(ii) the method is stable for !4t  0.72,

(iii) it also requires one new function evaluation in each time step.

The e�ciency factor of AB3 method is 0.72. Thus, the LF-hoRA3 is almost as accurate,

stable and e�cient as the intrusive AB3 method.

As in [10], Table 2.2 summarizes several properties of the aforementioned time-stepping

methods.

2.9 NUMERICAL TESTS

In this section we perform several numerical tests on the leapfrog scheme combined with

RA, RAW and hoRA3, and on the AB3 method. As in Section 2.7, we choose the filter

parameters such that the damping rate of the most unstable computational mode of each

scheme is the same. Section 2.9.1 and Section 2.9.2 show that the hoRA filter preserves both

amplitude and phase with high accuracy. Section 2.9.3 shows that the LF-hoRA3 scheme

captures the physics of a model with reasonable fidelity.
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Method Order Strg. factor Amplitude Phase speed Max.!4t

Leapfrog 2 2 1 1 + (!4t)2

6

1

LF-RA 1 3 1� ⌫
2(2�⌫)

(!4t)2 1 + 1+⌫
3(2�⌫)

(!4t)2
q

2�⌫
2+⌫

LF-RAW 1 4 1+ ⌫(1�2↵)
2(2�⌫)

(!4t)2 1+
⇣

(1�⌫(1�↵))(2�↵⌫)
(2�⌫)2

� 1

3

⌘
(!4t)2 µ(↵, ⌫)

LF-hoRA2 2 4 1 + �(2��3)

8(1��)2
(!4t)4 1 + 2�5�

12(1��)
(!4t)2

p
3
4+���2

1+

3
2���2

LF-hoRA3 3 4 1� 0.306(!4t)4 1 + 0.024(!4t)4 0.69

AB3 3 4 1� 0.375(!4t)4 1 + 0.401(!4t)4 0.72

Table 2.2: Comparison of time-stepping schemes. The explicit form of µ(↵, ⌫) is given by

µ(↵, ⌫) =
q

(2↵�1)(2�⌫)
↵2

(2+⌫(2↵�1))

[20].

2.9.1 Simple pendulum

Consider a simple pendulum problem, which is given by two coupled nonlinear equations

(also see [50]):

d✓

dt
= v/L,

dv

dt
= �g sin ✓,

where ✓, v, L and g denote, respectively, angular displacement, velocity along the arc, length

of the pendulum, and the acceleration due to gravity. Set g = 9.8 and L = 49 to easily

observe the long time behavior of the numerical solutions. We choose the initial condition

(✓
0

, v
0

) = (0.9⇡, 0) at t = 0 and the time step 4t = 0.1, and then numerically integrate

the system using LF-RA (⌫ = 0.8), LF-RAW (↵ = 0.53, ⌫ = 0.8) and LF-hoRA3 over the

time interval [0, 200]. The Runge-Kutta (RK) 4 method is used to initialize the second step

of each scheme and also for the third step of LF-hoRA3. Then compare the corresponding

results with the reference solution, which is computed using the adaptive RK4(5) method

with relative error tolerance 10�10 and absolute error tolerance 10�15.

The comparison is shown in Figure 2.8. The RA filter damps the amplitude quickly while

the RAW filter damps the amplitude slowly. The phase errors of both LF-RA and LF-RAW
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solutions are relatively large. The hoRA3 filter preserves the amplitude and phase with high

accuracy even after a long time period.

−3

−1.5

0

1.5

3

θ

 

 

 RK4(5)
RA

RAW

hoRA

0 200 400
−60

−30

0

30

60

t

v

Figure 2.8: Numerical solutions to the simple pendulum, computed by LF-RA (⌫ = 0.8),

LF-RAW (↵ = 0.53, ⌫ = 0.8) and LF-hoRA3 (� = 0.4), are compared with the reference

solutions obtained from adaptive RK4(5) method with relative error tolerance 10�10 and

absolute error tolerance 10�15. The initial condition is (✓
0

, v
0

) = (0.9⇡, 0) at t = 0 and the

time step is 4t = 0.1.

2.9.2 Lorenz system

Consider the Lorenz system

dX

dt
= �(Y �X),

dY

dt
= �XZ + rX � Y,

dZ

dt
= XY � bZ.

As in [10], we choose � = 12, r = 12, b = 6, and the initial condition (X
0

, Y
0

, Z
0

) =

(�10,�10, 25) at t = 0. The system is numerically integrated over the time interval [0, 2.5]

using LF-RA, LF-RAW, LF-hoRA3 and AB3 methods, with time step 4t = 0.025 and all

17



other filter-parameters exactly the same as in the previous test. Again, the reference solution

is computed using the adaptive RK4(5) method with the same error tolerances as before.

The numerical solutions for X are plotted in Figure 2.9 (the reference solution is almost

overlapped by LF-hoRA3 solution). As predicted by the linear analysis, the LF-hoRA3 is

almost as accurate as the AB3 method.

0 0.5 1 1.5 2 2.5
−12

−8

−4

0

t

X(t)

 

 

RK4(5)
RA
RAW
hoRA
AB3

Figure 2.9: Numerical solutions to Lorenz system for variable X, computed by LF-RA

(⌫ = 0.8), LF-RAW (↵ = 0.53, ⌫ = 0.8), LF-hoRA3 (� = 0.4) and AB3, are compared

with the reference solution obtained from the adaptive RK4(5) method with relative error

tolerance 10�10 and absolute error tolerance 10�15. The initial condition is (X
0

, Y
0

, Z
0

) =

(�10,�10, 25) at t = 0 and the time step is 4t = 0.025.

2.9.3 Ozone photochemistry

Consider an example of reactions between atomic oxygen (O), nitrogen oxides (NO and

NO
2

), and ozone (O
3

) (see [11] for more details):

NO
2

+ h⌫
k1�! NO+O,

O+O
2

k2�! O
3

,

NO+O
3

k3�! O
2

+NO
2

,
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where h⌫ denotes a photon of solar radiation. Let c = (c
1

, c
2

, c
3

, c
4

) represent the concentra-

tion in molecules per cubic centimeter of O, NO, NO
2

and O
3

, respectively. Assuming that

the background concentration of O
2

is constant, the reactions are governed by the following

system:

dc
1

dt
= k

1

c
3

� k
2

c
1

,

dc
2

dt
= k

1

c
3

� k
3

c
2

c
4

,

dc
3

dt
= k

3

c
2

c
4

� k
1

c
3

,

dc
4

dt
= k

2

c
1

� k
3

c
2

c
4

.

Here

k
1

= 10�2 max{0, sin(2⇡t/td)}s�1,

k
2

= 10�2s�1, 3 k
3

= 10�16cm3molecule�1s�1,

where td is the length of 1 day in seconds. With initial condition c
0

= (0, 0, 5⇥1011, 8⇥1011)

molecules cm�3 at t = 0, the reference solution is computed using the adaptive RK4(5)

method with same error tolerances as before, and the numerical solution is computed using

LF-hoRA3 and time step 4t = 40 s. The chemical concentrations over the next 2 days

are shown in Figure 2.10. With the fixed time step, the LF-hoRA3 is able to capture the

behavior of the concentrations with reasonable accuracy.

2.10 CONCLUSIONS

In this chapter we proposed and analyzed a higher-order Robert-Asselin type time filter,

hoRA2(3). It is an e�cient and non-intrusive post process to the LF scheme and easily

implementable in existing legacy codes. Moreover, with the same computational e↵ort and

storage requirement as RAW filter, the proposed filter increases the numerical accuracy to

third order. Thus, the LF-hoRA2(3) is suitable to simulate the long-time behavior of weather

and climate models.
3
We choose k2 = 10

�2
instead of 10

5
as in [11], to make the reaction equations non-sti↵.
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Figure 2.10: Numerical solutions for chemical concentrations, computed using LF-hoRA3,

are compared with the reference solutions obtained from adaptive RK4(5) method with

relative error tolerance 10�10 and absolute error tolerance 10�15. The initial condition is

c
0

= (0, 0, 5⇥ 1011, 8⇥ 1011) molecules cm�3 at t = 0, and the time step is 4t = 40 s.
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3.0 THE BEHAVIOR OF HIGHER-ORDER ROBERT–ASSELIN TIME

FILTER IN THE IMPLICIT-EXPLICIT SCHEME

3.1 INTRODUCTION

The atmosphere and ocean support several types of waves that propagate at very di↵er-

ent speeds. If an explicit time di↵erencing is used to approximate the time derivative in

the equations governing a system, the maximum stable time step will be limited by the

speed of the most rapidly propagating waves (e.g., sound waves and gravity-inertia waves).

Early numerical weather prediction models used the explicit LF scheme, and the maximum

permissible time step has to be small enough for the integration to be stable.

In order to relieve the severe time step restriction, it is common to treat the high-

frequency waves implicitly and the remaining terms explicitly (e.g., [12, 22, 47, 49]). This

implicit-explicit (IMEX) numerical technique was pioneered by Robert in 1969 [41]. In

contrast to a fully explicit scheme, the IMEX scheme eliminates the time step restriction

imposed by the high-frequency modes. In atmospheric sciences, the Crank-Nicolson-Leapfrog

(CNLF) method is widely used (e.g., [24]), which treats the rapidly-moving waves implicitly

using the Crank-Nicolson scheme to stabilize the fast-moving waves, while the remaining

slower-moving waves are treated by the explicit leapfrog scheme.

Similar to the previous chapter, we consider the hoRA2(3)-filtered CNLF scheme (here-

after, CNLF-hoRA for notational simplicity). For a generic tendency equation

@u

@t
= L(u) + F (u), (3.1)

the CNLF-hoRA reads

un+1 � un�1

24t
=

✓
1

2
L
�
un+1

�
+

1

2
L
⇣
un�1

⌘◆
+ F (un),
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un = un +
�

2

⇣
un+1 � 2un + un�1

⌘
� �

2

⇣
un � 2un�1 + un�2

⌘
.

Here L is a linear operator that includes the high-frequency wave propagation, and F is a

nonlinear operator that includes low-frequency wave propagation representing advection and

other processes.1 In this chapter, we give a complete stability and error analysis of CNLF-

hoRA. The method is then implemented in the elastic pendulum [33, 49] and the acoustic

advection problem [42] to verify the theoretical results. The work of this chapter is based

on [29].

3.2 THE CNLF-HORA SCHEME

Analogous to the previous chapter, an IMEX method for non-dissipative dynamical systems

may be examined by analyzing solutions to the oscillation equation

du

dt
= i!Hu+ i!Lu, (3.2)

where !H and !L are frequencies of fast and slow waves, corresponding to L(u) and F (u) in

(3.1), respectively.

The CNLF-hoRA discretizes, respectively, the !H term using CN and the !L term with

the LF, and the filter follows to update the provisional variables:

vn+1 � un�1

24t
= i!H

✓
vn+1 + un�1

2

◆
+ i!Lv

n, (3.3)

un = vn +
�

2
(vn+1 � 2vn + un�1)� �

2
(vn � 2un�1 + un�2), (3.4)

where the dimensionless parameter � 2 (0, 0.4]. Eliminating vn+1 in (3.3) and (3.4) gives

vn =
(1� i!H4t)un � �(2� i!H4t)un�1 + �

2

(1� i!H4t)un�2

�
1� 3

2

�
�
(1� i!H4t) + i�!L4t

,

1
If the terms representing high-frequency waves are nonlinear, they may be linearized to form L, and the

remaining nonlinear contributions may be incorporated in F .
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and therefore

vn+1 =
(1� i!H4t)un+1 � �(2� i!H4t)un + �

2

(1� i!H4t)un�1

�
1� 3

2

�
�
(1� i!H4t) + i�!L4t

.

Substituting vn and vn+1 into (3.4) gives the equivalent multistep method of CNLF-hoRA

un+1 � 2�un � (1� 2�)un�1 = i!H4t(un+1 � �un + (1� �)un�1)

+ i!L4t(2un � 3�un�1 + �un�2). (3.5)

It is easy to check that the CNLF-hoRA recovers the explicit LF-hoRA2(3) (2.7)-(2.8)

when !H = 0, i.e., when the waves are not split.

3.3 ERROR ANALYSIS FOR AMPLITUDE AND PHASE SPEED

The amplification factor, A = un+1/un, of (3.5) satisfies the following cubic equation.

aA3 + bA2 + cA+ d = 0, (3.6)

where

a = 1� i!H4t, b = �2� � 2i!L4t+ �i!H4t,

c = �1 + 2� � (1� �)i!H4t+ 3�i!L4t, d = ��i!L4t.

Equation (3.6) has three roots with one physical mode, denoted by A
+

, and two computa-

tional modes. Let r = !H/!L, then the exact solution to (3.2) is

u(t) = u(0) exp(i!Ht+ i!Lt) = u(0) exp(i(1 + r)!Lt),

and the exact amplification factor is

A
exact

= exp(i(1 + r)!L4t).
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The Taylor expansion of the physical mode is A
+

=
1P
n=0

an(i!L4t)n, where the first few are

given by2

a
0

= 1, a
1

= 1 + r, a
2

= (1 + r)2/2, a
3

= (1 + r)2
✓
� + (2� �)r

4(1� �)

◆
,

a
4

= (1 + r)3
✓
(2� 4�)r � (1� r)(� + (1� �)2)

8(1� �)2

◆
.

The amplitude of the physical mode is fourth-order accurate per time step, and thus is

third-order accurate per unit time:

|A
+

| = 1 + (1 + r)3
�(2� � 3� r)

8(1� �)2
(!L4t)4 +O((!L4t)6).

The phase speed of the physical mode is

R
+

=
arg(A

+

)

arg(A
exact

)
= 1 +

(1 + r)

12(1� �)
(2� 5� � (4� �)r) (!L4t)2 +O((!L4t)4).

Notice that because of the presence of CN discretization, the phase speed is only second-order

accurate. Indeed, the overall accuracy of CNLF-hoRA is second order for every � 2 (0, 0.4].

3.4 STABILITY

The magnitudes of the amplification factor |A| for CNLF-hoRA are contoured as a function

of !L4t and !H4t in Figure 3.1. Since |A| in the lower-half plane is antisymmetric about

the origin, only the upper-half plane is plotted. In the absence of !H , the time step condition

is given by (2.12)

µ
hoRA

=

p
4� (2� � 1)2

(2� �)(2� + 1)
.

In the presence of !H , the stability (|!L4t| < µ
hoRA

) possesses a weak instability when

!L and !H are of opposite sign (light gray region). Thus, CNLF-hoRA is stable when

|!L4t| < µ
hoRA

, as well as the ratio r = !H/!L is bigger than a threshold, r
0

(�), which

depends on the filter parameter �. We found empirically that the threshold is bounded above
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Figure 3.1: Magnitudes of the amplification factor of CNLF-hoRA for � = 0.1 (left-top),

� = 0.2 (right-top), � = 0.3 (left-bottom) and � = 0.4 (right-bottom). Regions with

1 < |A| < 1.01 are shaded with light gray and regions in which |A| > 1.01 are shaded

with dark gray. Only the upper-half plane is plotted since |A| in the lower-half plane is

antisymmetric about the origin.

by 2.25, and is decreasing as � grows. For �=0.1, 0.2, 0.3 and 0.4, the values of r
0

(�) are

2.13, 2.08,1.89 and 1.78, respectively.

As in [12], we use two parameters, µ and r
0

, to describe the stability region of a general

IMEX scheme, where µ is the maximum !4t of the corresponding fully explicit scheme, and

r
0

is the smallest value for which the numerical solution is stable regardless of the value 4t,

provided !H > r
0

!L. The CNLF scheme with the Robert–Asselin–Williams filter (CNLF-

RAW) [49] is unconditionally stable when r � r
0

⇡ 1, thus the wedge-shaped stability

region is wider than the region of CNLF-hoRA. However, there is a reduction in stability

when !H4t is small. For example, µ = 0.44 for filter parameters ⌫ = 0.2,↵ = 0.53,

and µ = 0 for ⌫ = 0.2,↵ = 0.5. Durran and Blossey [12] proposed several IMEX schemes:

2
The coe�cients of the Taylor expansion are obtained using symbolic manipulation of Mathematica 9.0.0.
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AM2*AX2*, AI2*AB3, BI2*BX3* and BDF2BX2*. The explicit stability µ for these schemes

in the absence of !H4t are µ = 0.76, 0.72, 0.67 and 0.72, which are comparable with value

of CNLF-hoRA µ = 0.69. In the presence of !H4t, the wedge-shaped stability region of

AI2*AB3 (r
0

= 1.23) is wider than the region of CNLF-hoRA, while the regions of the other

three schemes are narrower (r
0

= 3, 2.43 and 5 for AM2*AX2*, BI2*BX3* and BDF2BX2*,

respectively). The values of µ and r
0

for these methods are listed in Table 3.1.

Implicit Explicit µ r
0

AM2* AX2* 0.76 3

AI2* AB3 0.72 1.23

BDF2 BX2* 0.67 5

BI2* BX3* 0.72 2.43

CN LF-RAW (⌫ = 0.2,↵ = 0.53) 0.44 1

CN LF-RAW (⌫ = 0.2,↵ = 0.5) 0 1

CN LF-hoRA2(3) µ
hoRA

< 2.25

Table 3.1: Parameters µ and r
0

which characterize the stability regions for various IMEX

schemes.

3.5 STABILITY TEST FOR LINEARIZED SHALLOW-WATER

EQUATIONS

The shallow-water equations are often used in numerical weather prediction to test new

numerical methods. The linearized equations possess two kinds of associated motion, high-

frequency gravitational oscillations and low-frequency Rossby modes. The speed of gravity

mode is six times faster than that associated with the Rossby modes that govern the weather

[44], and this leads to time steps that are six times shorter than those associated with an

explicit treatment of advection (Rossby modes).
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Denote ~' =
�
u, v, �

c

�T
, where u and v are the velocity components in the x- and y-

directions respectively, � is the perturbation geopotential, c =
p
gH and H is the reference

depth. The shallow-water equations, linearized in one dimension about a constant zonal flow

on the f -plane, are given by (see e.g., [22])

@~'

@t
=

0

BBB@

�u @
@x

f �c @
@x

�f �u @
@x

0

�c @
@x

0 �u @
@x

1

CCCA
~'.

Assuming that the solution ' is in the form '(x, t) =  (t)eikx, the above equation can be

written as follows:

d 

dt
= L + F , (3.7)

where

L =

0

BBB@

0 0 �ikc

0 0 0

�ikc 0 0

1

CCCA
and F =

0

BBB@

�iku f 0

�f �iku 0

0 0 �iku

1

CCCA
.

The terms kc and ku are identified as the high and low frequencies, respectively. Thus, we

will treat L implicitly, and F explicitly. Integrating (3.7) using CNLF-hoRA, the discretized

system becomes

P
3

 n+1 + P
2

 n + P
1

 n�1 + P
0

 n�2 = 0, (3.8)

where each Pn is a 4⇥ 4 matrix, with

P
3

= I �4tL, P
2

= �2�I +4t�L� 24tF,

P
1

= (�1 + 2�)I �4t(1� �)L+ 34t�F, P
0

= �4t�F.

The associated eigenvalue problem of (3.8) is

�
�3P

3

+ �2P
2

+ �P
1

+ P
0

�
 n�2 = 0.
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For f = 0, the maximum modulus of the eigenvalue for various values of � are plotted as

a function of !L4t and !H4t, in Figure 3.2. As analyzed in Section 3.4, the CNLF-hoRA

scheme is stable when !L4t < µ
hoRA

and !H > r
0

!L, and also for !H < !L. The CNLF-

RAW (↵ = 0.5, ⌫ = 0.2) is unstable (not shown). This is due to the instability in the explicit

integration. The situation is improved when ↵ = 0.53 (not shown), in which case the scheme

is stable under the conditions !H > !L and !L4t < 0.44. If we take f = 10�3, the stability

regions are almost unchanged (not shown).
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Figure 3.2: Magnitudes of the amplification factor (defined as the modulus of the largest

eigenvalue of the propagator matrix) of CNLF-hoRA applied to linearized shallow-water

equations (3.7) for � = 0.1 (left-top), � = 0.2 (right-top), � = 0.3 (left-bottom) and � = 0.4

(right-bottom). Regions with 1 < |A| < 1.01 are shaded with light gray and regions in which

|A| > 1.01 are shaded with dark gray. Only the upper-right quadrant is plotted as the value

of |A| is symmetric about the origin.
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3.6 NUMERICAL TESTS

3.6.1 Elastic pendulum

In this section, we test several IMEX schemes on an elastic pendulum problem [33]. The

elastic pendulum is governed by four coupled nonlinear ordinary di↵erential equations in

polar coordinates:

r0 = pr/m,

p0r = p2✓/mr3 � k(r � `
0

) +mg cos ✓,

✓0 = p✓/mr2,

p0✓ = �mgr sin ✓,

where g is the gravitational acceleration, `
0

is the unstretched length of the spring, k is

its sti↵ness, m is the mass of the bob, r is the length of the spring, ✓ is the angular dis-

placement, pr and p✓ are the radial and angular momenta, respectively. The mechanical

system has two motions, namely the rotational oscillations and the elastic oscillations. The

rotational oscillations are similar to the simple (anelastic) pendulum, and the corresponding

frequency is !L =
p

g/`, where ` is the length of the loaded spring at equilibrium state. The

elastic oscillations, on the other hand, are due to the elastic spring that the bob oscillates

back and forth, and the corresponding frequency is !H =
p
k/m. The rotational motions

are considered to correspond to the rotational or Rossby-Haurwitz waves, while the elastic

motions are analogues of the high frequency gravity waves in the atmosphere.

By letting r = `(1+⌘), the above governing equations can be written in terms of !L and

!H , which are given as follows (see [49]).

⌘0 = ⌫⌘, (3.9)

⌫ 0
⌘ = �!2

L(1� cos ✓)� !2

H⌘ + (1 + ⌘)⌫2

✓ , (3.10)

✓0 = ⌫✓, (3.11)

⌫ 0
✓ =

��!2

L sin ✓ � 2⌫⌘⌫✓
�
/(1 + ⌘). (3.12)
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The underlined terms in (3.9) and (3.10) are related to the high frequency elastic oscilla-

tions, and thus they impose restrictive time step condition if they are integrated explicitly.

Therefore, we will treat the underlined terms implicitly and all the other terms explicitly.

We take !L = 3 and !H = 30, and numerically integrate (3.9)–(3.12) for the time

interval [0, 50] with several IMEX schemes. These numerical solutions are compared with the

reference solution, which is computed using the explicit fourth-order Runge-Kutta method

(RK4) with time step 4t = 10�6. In general, the permissible time step is smaller than that

provided in the linear analysis because of the nonlinearity, (see e.g., [32]). We found that

in the present test, the maximum stable time step of each IMEX scheme is 5-6 times larger

than that of the corresponding fully explicit scheme.

The accuracy of these IMEX methods is compared in Figure 3.3, which shows the relative

error in ✓ plotted on a log-log scale as a function of !L4t. The relative error is evaluated

as the normalized di↵erence between the numerical and reference solutions of ✓ at T =

50. Except CNLF-RAW (↵ = 0.53, ⌫ = 0.2), all other schemes converge quadratically, as

expected. All second-order schemes behave similarly for small time steps, but CNLF-hoRA

with � = 0.1 is slightly more accurate for larger step sizes.

3.6.2 Acoustic advection

In this section, we consider a one-dimensional acoustic advection problem on a periodic

domain [0, 1] (see [42])

ut + Uux + cspx = 0, (3.13)

pt + Upx + csux = 0, (3.14)

with a sound velocity cs that is significantly faster than the advection velocity U . We split

the equations so that the advection is treated explicitly while acoustic waves are integrated

implicitly. The initial data is set u(x, 0) = 0 and p(x, 0) = p
0

(x) = sin(2⇡x) + sin(5⇡x), and

the analytical solutions are

u(x, t) = 0.5p
0

(x� (U + cs)t)� 0.5p
0

(x� (U � cs)t) ,

p(x, t) = 0.5p
0

(x� (U + cs)t) + 0.5p
0

(x� (U � cs)t) .
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Figure 3.3: Log-log plot of the relative error in the angular displacement (✓) for !L = 3

and !H = 30, as a function of !L4t for several IMEX schemes. The filter parameters of

CNLF-RAW are ↵ = 0.53 and ⌫ = 0.2. The right-hand side figure is for CNLF-hoRA with

various values of the filter parameter.

We set T = 1.5, U = 0.1 and cs = 1.0. The relative error of the advection velocity in the

k ·kL2 norm is evaluated at the final time. All runs use 500 nodes in the space domain. Table

3.2-3.3 summarize the relative errors for several IMEX methods. As expected, CNLF-RAW

is first-order convergent and all other methods exhibit second-order convergence. As in the

previous test, CNLF-hoRA with smaller value of � is more accurate than that with larger

value of �.

3.7 CONCLUSIONS

In this chapter we performed error and stability analysis for the CNLF-hoRA method. Unlike

LF-hoRA2(3), the IMEX scheme is second-order accurate for all filter parameter values
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# of time steps AI2*AB3 AM2*AX2* BDF2BX2* BI2*BX3* CNLF-RAW

320 2.163e-2 6.560e-3 6.872e-3 1.784e-2 9.178e-3

640 5.168e-3 1.602e-3 1.619e-3 4.170e-3 3.201e-3

1280 1.293e-4 4.013e-4 4.020e-4 1.034e-3 1.382e-3

2560 3.238e-4 1.022e-4 1.023e-4 2.595e-4 6.240e-4

Rate of convergence 1.994 1.972 1.975 2.012 1.147

Table 3.2: Relative errors of AI2*AB3, AM2*AX2*, BDF2BX2*, BI2*BX3* and CNLF-

RAW (↵ = 0.53, ⌫ = 0.2).

due to the CN discretization, yielding third order amplitude and second order phase speed

for the physical mode. Linear analysis shows that CNLF-hoRA is unconditionally stable

provided that !H > r
0

(�)!L, for some r
0

(�) > 0 that depends on the filter parameter �.

We empirically found that r
0

(�) is uniformly bounded by 2.25. Finally, we presented several

numerical tests to verify the convergence of the scheme.
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# of time steps � = 0.1 � = 0.2 � = 0.3 � = 0.4

320 7.388e-3 8.657e-3 1.031e-2 1.255e-2

640 1.843e-3 2.154e-3 2.555e-3 3.092e-3

1280 4.630e-3 5.403e-4 6.401e-4 7.735e-4

2560 1.218e-4 1.411e-4 1.659e-4 1.992e-4

Rate of convergence 1.926 1.937 1.948 1.957

Table 3.3: Relative errors of CNLF-hoRA with several values of �.
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4.0 GENERAL HIGHER-ORDER ROBERT–ASSELIN TYPE TIME

FILTERS

In this chapter we introduce the construction of the family of hoRA type time filters that

achieve pre-determined order of overall accuracy. Although they may require more memory

usages, the in-core memory in many computer systems has significantly increased over the

last several years. Therefore, most modest-sized atmospheric models are not limited by lack

of memory, and they can easily accommodate the storage needs of the higher-order methods.

We will particularly focus on the fourth-order hoRA filter and investigate its stability

and accuracy properties. We then present several numerical experiments (pure oscillation

[48] and Lorenz system [10]) to verify the convergence. The work of this chapter is based on

[30].

4.1 CONSTRUCTION OF GENERAL HIGHER-ORDER

ROBERT–ASSELIN TYPE TIME FILER

To extend the hoRA2(3) filter to more general order of accuracy, we consider the following

scheme:

vn+1 = un�1 + 2i!4tvn, (4.1)

un = vn +
�
an+1

vn+1 + anv
n + an�1

un�1 + an�2

un�2 + · · ·+ an�ku
n�k
�
, k � 1. (4.2)

Again, v and u are unfiltered and filtered variables, respectively, and aj, j = n+1, . . . , n�k

are to be determined. Notice that there are k + 2 degrees of freedom. The analysis below
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will show that the scheme could achieve at most (k+1)-th order of accuracy. We recall that

by the Lax–Richtmyer equivalence theorem, the scheme has to also satisfy the root condition

in order to be convergent (see, e.g., [37]).

By a simple calculation, scheme (4.1)-(4.2) is equivalent to the following multistep

method:

un+1 � (an+1

+ an�1

)un � (1 + an + an�2

)un�1 � an�3

un�2 � · · ·� an�ku
n�k+1

= 2i!4t
�
un � an�1

un�1 � an�2

un�2 � · · ·� an�ku
n�k
�
. (4.3)

We may verify the consistency by checking that the coe�cients satisfy certain algebraic

equations, as stated in the following theorem.

Theorem 4.1.1. The multistep method (4.3) is consistent if and only if the following alge-

braic relations among the coe�cients are satisfied

kX

j=�1

an�j = 0,
kX

j=0

jan�j = 0. (4.4)

Moreover, if the true solution u is smooth, then the scheme is of order q  k+1 if and only

if (4.4) holds and the following additional conditions are satisfied

an +
kX

j=1

�
(j � 1)p + 2p · jp�1

�
an�j = (�1)p � 1, p = 1, . . . , q. (4.5)

(Note that if q = 1 this reduces to the second condition of (4.4).)

Proof. For notational simplicity, we denote ui := u(i4t), where u(i4t) is the true solution

at time i4t. Fix a number p, 1  p  q, then expanding the true solution un�j in a Taylor

series yields

un�j = un +
k+2X

`=1

(j4t)`

`!
u(`)
n .

Plugging these values back into (4.3) gives the following coe�cient for (!4t)p�1 in the

truncation error:

1

p!

 
1� (1 + an + an�2

)(�1)p �
kX

j=3

an�j(�(j � 1))p
!

+
2

(p� 1)!

kX

j=1

an�j(�j)p�1.

Equating the above quantity with zero for p = 1, . . . , q gives conditions (4.5). The condition

(4.4) is also easy to check by the definition of consistency.
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Corollary 4.1.2. The n-th order hoRA filter combined with the LF scheme satisfies

1 +O[(!4t)m], where

8
><

>:

m = n+ 1, if n is odd;

m � n+ 2, if n is even;

and the phase speed is

1 +O[(!4t)`], where

8
><

>:

` � n+ 1, if n is odd;

` = n, if n is even.

We now show that the RA and hoRA2(3) filters are members of the family (4.2). To see

this, let k = 1 in (4.2). Then from Theorem 4.1.1, coe�cients an+1

, an, an�1

should satisfy

0

BBB@

1 1 1

0 1 2

0 1 4

1

CCCA

0

BBB@

an+1

an

an�1

1

CCCA
=

0

BBB@

0

0

0

1

CCCA
.

The first two rows, i.e.,

an+1

+ an + an�1

= 0

an + 2an�1

= 0

provide first-order accuracy. Solving the above two equations gives

(an+1

, an, an�1

)T = (�,�2�, �)T ,

where � 2 R. This yields the traditional RA-filtered LF scheme:

vn+1 = un�1 + 2i!4tvn,

un = vn + �
�
vn+1 � 2vn + un�1

�
.

If further the third row of the matrix is being considered, the scheme becomes second-order

accurate. However, the coe�cients are all found to be zeros and thus the filter is degenerated,

i.e., the scheme recovers to LF method.
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The hoRA2(3) filter introduced in Chapter 2 corresponds to the case k = 2 in (4.2). The

algebraic conditions (4.4) and (4.5) yield
0

BBBBBB@

1 1 1 1

0 1 2 3

0 1 4 9

0 1 6 25

1

CCCCCCA

0

BBBBBB@

an+1

an

an�1

an�2

1

CCCCCCA
=

0

BBBBBB@

0

0

0

�2

1

CCCCCCA
.

The first three rows of the matrix guarantee the second-order accuracy, and solving this gives

(an+1

, an, an�1

, an�2

)T = �(1,�3, 3,�1)T ,

hence (4.1)-(4.2) become

vn+1 = un�1 + 2i!4tvn,

un = vn + �
�
vn+1 � 3vn + 3un�1 � un�2

�
.

The third-order accuracy is achieved if in addition the fourth row is included, and one can

check that this corresponds to hoRA3 (� = 0.4).

We may achieve a scheme of order 4 if k = 3 in (4.2). Theorem 4.1.1 provides us the

following equations for the coe�cients:
0

BBBBBBBBB@

1 1 1 1 1

0 1 2 3 4

0 1 4 9 16

0 1 6 25 62

0 1 8 65 232

1

CCCCCCCCCA

0

BBBBBBBBB@

an+1

an

an�1

an�2

an�3

1

CCCCCCCCCA

=

0

BBBBBBBBB@

0

0

0

�2

0

1

CCCCCCCCCA

.

This yields

an+1

= 15/53, an = �56/53, an�1

= 78/53, an�2

= �48/53, an�3

= 11/53,

and (4.1)-(4.2) become

vn+1 = un�1 + 2i!4tvn,

un = vn +

✓
15

53
vn+1 � 56

53
vn +

78

53
un�1 � 48

53
un�2 +

11

53
un�3

◆
.
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Plugging the above parameters in (4.3), the equivalent multistep method writes

un+1 � 93

53
un +

51

53
un�1 � 11

53
un�2 = 2i!4t

✓
un � 78

53
un�1 +

48

53
un�2 � 11

53
un�3

◆
.

The corresponding first characteristic polynomial is

⇢(r) = rn+1 � 93

53
rn +

51

53
rn�1 � 11

53
rn�2,

and one can check that the norms of non-zero roots are

|r
1

| = 1, |r
2

| = |r
3

| = 0.46,

hence the root condition is satisfied. Therefore the above scheme is indeed convergent with

fourth-order accuracy. In the Section 4.2, we will investigate the scheme’s stability, amplitude

and phase-speed errors, and present several numerical tests.

We conclude this section with the following algorithm which states the procedure of

constructing a hoRA type filter with a pre-determined order of accuracy with minimum

degree of freedom.

Algorithm:

Step 1. Set a desired order of accuracy, say k + 1.

Step 2. Determine the coe�cients aj, j = n+ 1, · · · , n� k, by solving equations given

in (4.4) and (4.5) with q = k + 1.

Step 3. Check if the root condition is satisfied.

Step 4. If satisfied, plug the coe�cients back into (4.1)-(4.2).

4.2 FOURTH ORDER ROBERT–ASSELIN TYPE TIME FILTER

In this section, we perform error and stability analysis of the LF scheme combined with the

fourth order hoRA (hoRA4) type time filter that is introduced in the previous section

vn+1 = un�1 + 2i!4tvn, (4.6)

un = vn +

✓
15

53
vn+1 � 56

53
vn +

78

53
un�1 � 48

53
un�2 +

11

53
un�3

◆
. (4.7)
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4.2.1 Error analysis for amplitude and phase speed

As stated in Section 4.1, scheme (4.6)-(4.7) is equivalent to the following multistep method

un+1 � 93

53
un +

51

53
un�1 � 11

53
un�2 = 2i!4t

✓
un � 78

53
un�1 +

48

53
un�2 � 11

53
un�3

◆
. (4.8)

This yields a quartic equation for the amplification factor of LF-hoRA4:

A4 + aA3 + bA2 + cA+ d = 0, (4.9)

where

a = �93

53
� 2i!4t, b =

51

53
+

156

53
i!4t, c = �11

53
� 96

53
i!4t, d =

22

53
i!4t.

Equation (4.9) generates one physical mode and three computational modes. Figure 4.1

shows the magnitudes of the amplifications factors, where the solid line is the physical mode

and dashed lines are computational modes. In the limit of good time resolution, all com-

putational modes are e↵ectively controlled. Like hoRA2(3) filter, the time step restriction

for LF-hoRA4 may be induced from the computational mode as one of the computational

modes in hoRA4 is amplified when !4t exceeds a number close to 0.6 (see (4.11) in Section

4.2.2).

Turning to the amplitude and phase-speed errors of the physical mode, we find that the

amplitude is sixth-order accurate per time step (equivalently, fifth order per unit time)

|A
+

|� 1 = �1.90(!4t)6 +O ⇥(!4t)8
⇤
,

and the phase speed is fourth-order accurate

|R
+

|� 1 = �0.82(!4t)4 +O ⇥(!4t)6
⇤
.

These amplitude and phase-speed errors coincide with the Durran’s result [10] given in

Proposition 2.1.1, which states that for a method with fourth-order overall accuracy, the

numerical solution has at least O [(!4t)6] error in amplitude and exactly O [(!4t)4] error

in phase speed.

39



0 0.2 0.4 0.6 0.8 1
ω∆ t

0

0.2

0.4

0.6

0.8

1

|A|

Figure 4.1: Magnitudes of the amplification factors for LF-hoRA4. The solid line represents

the physical mode, and dashed lines are computational modes.

4.2.2 Stability

It follows from (4.8) that the characteristic equation for LF-hoRA4 is

⇣4 � 93

53
⇣3 +

51

53
⇣2 � 11

53
⇣ � 2z

✓
⇣3 � 78

53
⇣2 +

48

53
⇣ � 11

53

◆
= 0, (4.10)

where ⇣ denotes the points on the unit circle, and z = i!4t. Plugging ⇣ = ei✓ in (4.10),

solving for z and letting <(z) = 0 yields

cos ✓ = 1 or cos ✓ = 69/1166.

Consequently, we find

z = 0 or z = ±0.6186i,

which indicates that the root locus curve intersects the imaginary axis of the complex z-plane

at (0, 0), (0, 0.6186i) and (0,�0.6186i), as shown in Figure 4.2.

Thus, the stability of LF-hoRA4 is given by

!4t  0.6186. (4.11)
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Figure 4.2: Root locus curve of LF-hoRA4. The stability is given by the intersection of the

root locus curve with the imaginary axis.

4.2.3 Numerical tests

4.2.3.1 Pure oscillation For a simple linear test problem, we consider the pure oscilla-

tion equation

F 0(t) = i!F (t),

where F (t) = cos!t + i sin!t. We take ! = 5 and numerically integrate the oscillation

equation using LF-hoRA3 and LF-hoRA4 over the time interval 0  t  50. The relative

errors are evaluated at the final time, and they are listed in the Table 4.1. As expected,

these methods exhibit third-order and fourth-order convergence rates, respectively.

4.2.3.2 Lorenz system As in Section 2.9.2, we consider the Lorenz system

dX

dt
= �(Y �X),

dY

dt
= �XZ + rX � Y,

dZ

dt
= XY � bZ,
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# of time steps Relative error (hoRA3) Relative error (hoRA4)

800 9.1615e-1 9.9547e-1

1600 2.5296e-1 1.1809-1

3200 3.5750e-2 7.5946e-3

6400 4.5413e-3 4.7477e-4

Rate of convergence 2.9768 3.9997

Table 4.1: Convergence rate of LF-hoRA3 and LF-hoRA4 when applied to the pure oscilla-

tion equation.

with the same parameter values and the initial conditions. The system is numerically inte-

grated over the time interval [0, 5] using LF-hoRA3 and LF-hoRA4. The reference solution

is obtained from the explicit RK4 method with step size 0.00005 s. The relative error is

evaluated at the final time. Table 4.2 shows the errors with di↵erent number of time steps,

and it confirms the convergence rates.

# of time steps Relative error (hoRA3) Relative error (hoRA4)

300 5.7079e-5 2.8402e-5

400 2.4257e-5 9.7288e-6

500 1.2408e-5 4.0953e-6

600 7.1631e-6 1.9759e-6

Rate of convergence 3.0141 3.9974

Table 4.2: Convergence rate of LF-hoRA3 and LF-hoRA4 when applied to the lorenz system.
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4.3 CONCLUSIONS

In this chapter we built a framework for constructing the hoRA type time filter with any

pre-determined order of overall accuracy. Although higher-order methods may require more

memory usages, yet it is feasible to adopt them in most modest-sized atmospheric modes

since the memory in many computer system has been increased significantly during the last

several years. Theorem 4.1.1 may be used to determine the coe�cients in the filter step (4.2).

Following this framework, we have recovered the RA and hoRA2(3) filters, and in particular,

we developed a fourth-order filter, hoRA4. We have analyzed the LF-hoRA4 scheme and

found that it exhibits fifth-order accuracy in amplitude, and fourth-order accuracy in phase

speed. The stability is analyzed using the root locus curve method, and the maximum !4t

is found to be 0.6186, for which all amplification factors are non-amplified. Finally, two

numerical experiments are presents to confirm the rate of convergence.
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5.0 SUPPLEMENTAL ANALYSIS FOR EXISTING TIME FILTERS

Paul D. Williams [48] made in 2009 a remarkable improvement to the RA filter, the RAW

filter. It is a “simple” modification based on RA (as it only changes one line of code in the

legacy codes) with tremendous gain: the RAW filter significantly increases the amplitude

and overall accuracy by at least one significant digit. In recognition, RAW has been adopted

as the default scheme in several weather and climate models, see [46, 53]. Later, Williams

[50] developed two more schemes to further reduce the amplitude error, which is of great

interest for the conservation of physical quantities such as energy and mass. In this chapter

we present the linear analysis (stability and consistency error) for the schemes proposed by

Paul D. Williams, and summarize the properties in Table 5.1. The work of this chapter is

based on [25, 28, 31].

5.1 THE RAW-FILTERED LEAPFROG SCHEME

We recall the LF-RAW scheme, introduced in Chapter 2:

wn+1 = un�1 + 24tF (vn),

un = vn +
⌫↵

2
(wn+1 � 2vn + un�1),

vn+1 =wn+1 � ⌫(1� ↵)

2
(wn+1 � 2vn + un�1).

The LF-RAW scheme has been implemented and studied in [46, 1, 38, 53, 35, 52, 20], and

its behavior in implicit-explicit (IMEX) integrations was analyzed in [49].
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To perform the linear analysis, we write LF-RAW equivalently as a linear multistep

method

un � ⌫un�1 � (1� ⌫)un�2 = i!4t
��
2 + ⌫(↵� 1)

�
un�1 � ⌫↵un�2

�
,

which allows us to derive the method’s truncation error

⌧n(4t) =

✓
1

2
� ↵

◆
⌫(i!4t)u0n) +O[(i!4t)2].

The amplitude error for the physical mode is

|A
+

|� 1 =
⌫(1� 2↵)

2(2� ⌫)
(!4t)2 +O[(!4t)4],

and the phase-speed error is

R
+

� 1 =
1 + ⌫

3(2� ⌫)
(!4t)2 +O[(!4t)4].

The parameter ↵ restores the accuracy that is lost by the RA filter. For example, LF-RAW

with ↵ = 0.53 gives one more digit of accuracy than LF-RA. In the extreme case when

↵ = 0.5, the amplitude is of order (!4t)4 per time step, and the overall accuracy becomes

second order.

On the other hand, the root locus curve method gives us the stability condition

!4t  1

↵

r
(2� ⌫)(2↵� 1)

2� ⌫ + 2↵⌫
. (5.1)

The right-hand side of (5.1) is a decreasing function of ↵ for every fixed ⌫. In particular,

LF-RAW becomes unstable when ↵ = 0.5. Therefore, although it is tempting to use the

value of ↵ = 0.5 for the best numerical accuracy, we may not be able to use this value

because of the instability. Indeed, Williams [48] suggests taking values of ↵ in the range of

0.51� 0.53 to obtain almost second-order overall accuracy.
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5.2 THE RAW-FILTERED COMPOSITE-TENDENCY LEAPFROG

SCHEME

Williams proposed a RAW-filtered composite-tendency leapfrog (CTLF-RAW) scheme in

[50], which applied to the oscillation equation (2.3) reads

wn+1 = un�1 + 2i!4t(�vn + (1� �)wn),

un = vn +
⌫↵

2
(wn+1 � 2vn + un�1),

vn+1 =wn+1 � ⌫(1� ↵)

2
(wn+1 � 2vn + un�1).

The new parameter � specifies the weighting coe�cients for the composite tendency. In

particular, the CTLF-RAW scheme recovers to LF-RAW when � = 1. Although previous

work assumed 0  �  1, here we allow � to vary outside this range. Note that this scheme is

intrusive as it changes the code of LF step. The behavior of the method in IMEX integrations

is studied in [2].

The equivalent multistep method of the above system of equations is

un+1 � ⌫un � (1� ⌫)un�1

= i!4t
⇣
(2� ⌫�(1� ↵))un + ⌫(2� + ↵� 2� 2↵�)un�1 + ⌫(1� ↵)(1� �)un�2

⌘
. (5.2)

It follows from (5.2) that the truncation error is

⌧n(4t) =

✓
1

2
� ↵

◆
⌫(i!4t)u0(tn) +

1

6
(2� ⌫(7� 9↵) + 6⌫�(1� ↵)) (i!4t)2u0(tn)

+
⌫

24
(25� 28↵� 24� + 24↵�)(i!4t)3u0(tn) +O(4t4).

The scheme is generally first-order accurate if ⌫ 6= 0, and second order if ↵ = 0.5, as noted

by Williams [50]. Further, the method becomes third order if ↵ = 0.5 and � = (5⌫�4)/(6⌫).

This third-order scheme would require � < 0 if ⌫ < 4/5. Finally, the scheme exhibits fourth-

order accuracy if ↵ = 0.5, ⌫ = �8, and � = 11/12. This case is of no practical interest

because the negative value of ⌫ forces the computational mode to be amplified.
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Formula (5.2) yields the following equation for the amplification factor:

A3 � (⌫ + (2� ⌫�(1� ↵)) i!4t)A2

� (1� ⌫ + ⌫(2� + ↵� 2� 2↵�)i!4t)A� ⌫(1� ↵)(1� �)i!4t = 0. (5.3)

The amplitude error for the physical mode is found to be

|A
+

|� 1 =
⌫(1� 2↵)

2(2� ⌫)
(!4t)2 +O ⇥(!4t)4

⇤
,

yielding first-order amplitude accuracy, independent of �. When ↵ = 0.5, the quadratic term

vanishes and the amplitude error becomes

|A
+

|� 1 =
⌫(4� � 3 + ⌫ � ⌫�)

4(2� ⌫)2
(!4t)4 +O ⇥(!4t)6

⇤
,

which implies the third-order amplitude accuracy. The fourth-order term now depends on

�. Specifically, CTLF-RAW is amplifying when � > (3 � ⌫)/(4 � ⌫), and is damping if

� < (3� ⌫)/(4� ⌫). When � = (3� ⌫)/(4� ⌫), the amplitude error is fifth-order accurate:

|A
+

|� 1 =
⌫

4(4� ⌫)(2� ⌫)2
(!4t)6 +O ⇥(!4t)8

⇤
.

However, the coe�cient of the sixth-order term is always positive, implying a slight instability

of the scheme.

The phase-speed error, when ↵ = 1/2, is

R
+

� 1 =
6⌫� + 4� 5⌫

12(2� ⌫)
(!4t)2 +O[(!4t)4],

and it is fourth-order accurate if further � = (5⌫ � 4)/(6⌫).

As for the stability, we focus on the ↵ = 1/2 case.1 Using the root locus curve method,

we find that the stability condition is:

!4t  2

(1� �)(4� ⌫)

s
(3� ⌫)� (4� ⌫)�

1 + ⌫(1� �)
, �  (3� ⌫)/(4� ⌫).

As a result, the scheme becomes unstable when � = (3 � ⌫)/(4 � ⌫), which coincides with

instability from the amplitude analysis. We note that the third-order scheme (� = (5⌫ �
4)/(6⌫)) has a stable range for the small, positive values of ⌫ that are used in practical

applications.

1
For the CTLF-RAW method, it is of more interest when ↵ = 1/2 since the scheme is at least second-order

accurate.
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5.3 THE COMPOSITE-TENDENCY LEAPFROG SCHEME WITH A

MORE DISCRIMINATING FILTER

In [50], Williams developed a composite-tendency leapfrog scheme with a more discriminating

filter (CTLF-D)

wn+1 = un�1 + 2i!4t(�vn + (1� �)wn),

un = vn + ⌫↵(wn+1 � 4vn + 6un�1 � 4un�2 + un�3),

vn+1 =wn+1 � ⌫(1� ↵)(wn+1 � 4vn + 6un�1 � 4un�2 + un�3).

In addition to composite tendency in the LF step, this scheme adopts a filter of the form

(1,�4, 6,�4, 1).

The system is equivalent to the following multistep method:

un+1 � ⌫(4 + 3↵)un � (1� 7⌫ � ⌫↵)un�1 � ⌫(4� 3↵)un�2 + ⌫(1� ↵)un�3 (5.4)

= 2 (1� ⌫(1� ↵)�) un � ⌫ (8(1� ↵)(1� �) + 12↵) un�1

+ ⌫ (12(1� ↵)(1� �) + 8↵) un�2 � ⌫ (8(1� ↵)(1� �) + 2↵) un�3 + 2⌫(1� ↵)(1� �)un�4,

from which one can derive the truncation error:

⌧n(4t) =
1� ⌫(1 + 2↵)

3
(i!4t)2u0(tn) +

⌫(3� 5↵)

3
(i!4t)3u0(tn)

+
181⌫ � 308↵⌫ � 120⌫� + 120↵⌫� � 1

60
(i!4t)4u0(tn) +O[(i!4t)5].

Thus, CTLF-D is second order in general. Further, it could theoretically be third-order

accurate if ↵ = (1� ⌫)/(2⌫), and even higher order for appropriate values of the parameters

which set zero the coe�cients of the higher-order terms. However, the root condition is not

satisfied in this case. To see this, set ! = 0 and write (5.4) in terms of the amplification

factor A:

A4 � ⌫(4 + 3↵)A3 � (1� 7⌫ � ⌫↵)A2 � ⌫(4� 3↵)A+ ⌫(1� ↵) = 0. (5.5)

It turns out that when ↵ = (1� ⌫)/(2⌫), equation (5.5) has the root A = 1 with multiplicity

two, violating the root condition (see e.g., [37]). Indeed, the numerical solution grows linearly
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in time, while is supposed to be constant. Thus, the scheme is second-order accurate at all

time.

The amplitude error is found to be

|A
+

|� 1 = � ⌫(1� 2↵)

2(1� ⌫ � 2↵⌫)
(!4t)4 +O[(!4t)6],

which, by setting ↵ = 1/2, becomes

|A
+

|� 1 =
⌫(5� 8� � 9⌫ + 14⌫�)

8(1� 2⌫)2
(!4t)6 +O[(!4t)8].

Further, the sixth-order term vanishes when � = (5� 9⌫)/(2(4� 7⌫)) and gives the seventh-

order amplitude error:

|A
+

|� 1 = � 5⌫(4� 13⌫ + 11⌫2)

32(1� 2⌫)2(4� 7⌫)
(!4t)8 +O[(!4t)10].

The phase-speed error, in this case, is second order:

R
+

� 1 =
1

6
(!4t)2 +O[(!4t)4].

As shown in the truncation error analysis, CTLF-D is second-order accurate regardless

of the parameters. Nevertheless, the amplitude exhibits the highest-order of accuracy when

↵ = 1/2 and � = (5 � 9⌫)/(2(4 � 7⌫)). For this reason, we only consider the stability for

these particular values of parameters. The root locus curve method yields that

!4t 
s

1�
✓
8� 45⌫ + 55⌫2

12� 20⌫

◆
2 8(4� 7⌫)(2� 5⌫ + 5⌫2)

(4 + 25⌫ � 55⌫2)(16� 68⌫ + 105⌫2 � 55⌫3)
. (5.6)

5.4 SUMMARY

We summarize several properties of Williams’ schemes in Table 5.1.
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Method Order Amplitude Phase speed Maximum !4t

LF-RAW 1 or 2 1� ⌫(2↵�1)

2(2�⌫)
p2 +O(p4) 1 +

⇣
(1�⌫(1�↵))(2�↵⌫)

(2�⌫)2
� 1

3

⌘
p2 1

↵

q
(2�⌫)(2↵�1)

2�⌫+2↵⌫

CTLF-RAW 2 or 3 1 + ⌫(4��3+⌫�⌫�)
4(2�⌫)2

p4 +O(p6) 1 + 6⌫�+4�5⌫
12(2�⌫)

p2 +O(p4)
q

4((3�⌫)�(4�⌫)�)
(1+⌫(1��))[(1��)(4�⌫)]2

CTLF-D 2 1� 5⌫(4�13⌫+11⌫2)
32(1�2⌫)2(4�7⌫)

p8 1 + 1

6

p2 Formula (5.6)

Table 5.1: Several properties of Williams’ schemes. We denote p = !4t, and amplitude or

phase speed that is with O(pk) indicates that it is able to be of order up to pk.
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6.0 STABILITY ANALYSIS OF THE CRANK-NICOLSON-LEAPFROG

METHOD WITH THE ROBERT–ASSELIN–WILLIAMS TIME FILTER

6.1 INTRODUCTION

The advection-di↵usion problems in geophysical fluid dynamics can be written in the follow-

ing system of di↵erential equations:

du

dt
+ Au = ⇤u, (6.1)

where u : [0,1) ! RN , A and ⇤ are N ⇥N matrices such that A+ AT � 0 and ⇤ = �⇤T .

When A+AT = 0 the system is exactly conservative for the euclidean norm: |u(t)| = |u(0)|.
When A+ AT > 0 it is dissipative, |u(t)| ! 0 as t ! 1.

The CNLF is a commonly used IMEX method for advection-di↵usion problems. Stability

was proven by Fourier methods in 1963 [21] in 2012 by energy methods for systems, [26].

It was also proven that the unstable or computational mode is stable in [19]. In practical

computations with unfiltered CNLF method, however, non-physical growth in the unstable

mode is often reported (e.g., [18] and [14, page 242]).

In this chapter we consider the CNLF method with the RAW time filter

wn+1 � un�1

24t
=� A

wn+1 + un�1

2
+ ⇤vn, (6.2)

un = vn +
⌫↵

2
(wn+1 � 2vn + un�1), (6.3)

vn+1 = wn+1 +
⌫(↵� 1)

2
(wn+1 � 2vn + un�1). (6.4)

We will perform the stability analysis for the above method. Unlike the scalar case, however,

the stability conditions derived from the root locus curve method provide necessary but not
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su�cient conditions. This is mainly due to the fact that matrices A and ⇤ do not commute

in general. For example, Asher, Ruuth and Wetton [3] page 811 note “these results provide

necessary but not su�cient conditions for stability...” and Hundsdorfer and Ruuth [17] page

2019 note “Theoretical results are di�cult to obtain if these linearizations do not commute...”.

Therefore, we adopt the energy methods through G-stability theory [7, 15] to derive the

su�cient stability condition. The work of this chapter is based on [20].

6.2 G-STABILITY ANALYSIS

The identification of the equivalent multistep method is the first step in the stability analysis.

Theorem 6.2.1. The approximation un of the CNLF method with the RAW filter satisfies

un � ⌫un�1 � (1� ⌫)un�2 =�4tA(un + ⌫(↵� 1)un�1 + (1� ⌫↵)un�2)

+4t⇤
⇣�

2 + ⌫(↵� 1)
�
un�1 � ⌫↵un�2

⌘
. (6.5)

Proof. This equivalence is proven by algebraic elimination of intermediate variables. Indeed,

the first two steps, (6.2) and (6.3), can be rewritten as a block 2x2 system

2

4 (I +�tA) �2�t⇤

⌫↵
2

I (1� ⌫↵)I

3

5

2

4 wn+1

vn

3

5 =

2

4 (I ��tA) un�1

un � ⌫↵
2

un�1

3

5 .

We solve this system expressing wn+1, vn in terms of un, un�1. Next these are inserted into

(6.4), which completes the proof.

For vectors of the same length, denote the usual euclidean inner product and norm

by hu, vi := uTv, |u|2 := hu, ui, the weighted norm by kuk2A := uTAu (well-defined since

A + AT > 0), and by k⇤k the matrix norm of ⇤. For notational simplicity, denote �, p, q, r

by

� = ⌫
p

(1� ↵)2 + ↵24t2k⇤k2, p = 1� �

2
, (6.6)
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q = 1� �

2
� ⌫

⇣
1� ⌫

2

⌘
, r =

q
(� � ⌫)2 + ((2� ⌫)4tk⇤k)2.

There holds p > r2/(4q) for ↵ 2 [0.5, 1] and ⌫ 2 (0, 1]. Our main result is as follows.

Theorem 6.2.2. Consider CNLF-RAW (6.2)-(6.4) with ↵ 2 [0.5, 1] and ⌫ 2 (0, 1]. Suppose

that the time step condition holds

4tk⇤k 
s

(2� ⌫)(2↵� 1)

↵2(2 + ⌫ � 2↵⌫)
(1� ⌫ (↵� 0.5)) , (6.7)

then the method (6.2)-(6.4) is stable. More precisely, for each N � 2 we have

⇣
p� r2

4q

⌘
|un|2 +

⇣ r

2
p
q
|un|�p

q|un�1|
⌘
2

(6.8)

+
�

2

NX

n=2

�|un�un�1|� |un�1�un�2|�2 +
⇣⌫
2
(2↵�⌫(2↵�1))��

⌘N�1X

n=2

|un � un�1|2

+4t
NX

n=2

kun + ⌫(↵� 1)un�1 + (1� ⌫↵)un�2k2A

 |u1|2 + |u0|2 � (2� ⌫)4th⇤u0, u1i+ �

2
|u1 � u0|2.

Proof. First, we introduce some notation to simplify the proof.

⌘n = un � un�1,

x =
1

2

r
⌫

2
(2 + ⌫ � 2↵⌫), y =

1

2

r
⌫

2
(2� ⌫)(2↵� 1),

� =
p

4(x2 � y2)2 + (↵⌫4tk⇤k)2, p = 1� �

2
,

q = 1� �

2
� 4x2 � ⌫2(↵�1), r =

q
(⌫(↵� 2) + 2(x2 � y2) + �)2 + ((2� ⌫)�tk⇤k)2,

and G =

0

B@
1� (x+ y)2, ⌫

2

(↵� 2) + 2x(x+ y)

⌫
2

(↵� 2) + 2x(x+ y), 1� (x+ y)2 � 4x2 � ⌫2(↵� 1)

1

CA .

The variables �, p, q, r are exactly those defined in (6.6). For ↵ 2 [0.5, 1] and ⌫ 2 (0, 1], all

the variables (except ⌘n) are non-negative, x � y � 0, and the matrix G is positive definite.
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Taking the inner product of (6.5) with (un + ⌫(↵� 1)un�1 + (1� ⌫↵)un�2), we have the

following identity.

0 =

0

@

������

un

un�1

������

2

G

� (2� ⌫)4th⇤un�1, uni
1

A�
0

@

������

un�1

un�2

������

2

G

� (2� ⌫)4th⇤un�2, un�1i
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It is easy to check that the last two terms in (6.9) are bounded below by
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Inserting this inequality into (6.9), we have
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Summing (6.10) for n = 2 to N and simplifying it gives
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The first term on the left-hand side of (6.11) is bounded below by
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where 4pq > r2 for ↵ 2 [0.5, 1] and ⌫ 2 (0, 1]. Therefore (6.11) becomes
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Under the time step condition (6.7), all terms on the left-hand side of (6.12) are positive.

Finally, we write (6.12) in terms of ↵, ⌫ and un to obtain the energy bound (6.8). This

concludes the proof.

Corollary 6.2.3. When ↵ = 1 the resulting CNLF method with the RA filter with ⌫ 2 (0, 1]

is stable if

4tk⇤k  1� ⌫/2.

Theorem 6.2.2 implies the control of the unstable mode when A+ AT > 0.

Corollary 6.2.4. Assume A + AT > 0 and the time step condition (6.7) holds. Then the

approximations generated by CNLF-RAW satisfy un ! 0 as n ! 1.
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Proof. The right-hand side of (6.8) is independent of N. Thus, letting N ! 1, the infinite

series on the left-hand side of (6.8) converge. Hence, the n-th terms of all three series must

approach zero as n ! 1. Since A+ AT > 0, as n ! 1 this implies

an := un � un�1 ! 0,

bn := un + ⌫(↵� 1)un�1 + (1� ⌫↵)un�2 ! 0.

As a result, we have

un�1 = (bn � ⌫↵an�1

� (an � an�1

))/(2� ⌫) ! 0 as n ! 1,

which completes the proof.

Remark 4.1 In the case when ⇤ = 0 and A is symmetric positive definite, there holds
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where 0 < R(4tA) < 1 for any 4t > 0.

Proof. If ⇤ = 0, without loss of generality, let A be a diagonal matrix, i.e.,

A = diag(�
1

, · · · ,�N), �k > 0, k = 1, 2, · · · , N.

Then we can analyze the system in terms of components. One can derive that the k-th

component of the numerical solution satisfies un
(k) = R(4t�k)u
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(k) , where
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It is easy to check that |R(4t�k)| < 1 for k = 1, · · · , N . By letting

R(4tA) = max
1kN

|R(4t�k)|,

we conclude the proof.
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6.3 CONCLUSIONS

In this chapter, we focused on the CNLF-RAW method for system of advection-di↵usion

equations. The matrices A and ⇤ do not commute in general, and therefore, we derived the

stability using the G-stability theory. In addition, we showed that the RAW filter stabilizes

the unstable mode of the CNLF method.
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7.0 CONCLUSIONS AND FUTURE WORK

The major contribution of this work is the development and analysis of the family of hoRA

time filters for weather and climate models. Their behavior has been investigated in fully

explicit and/or implicit-explicit integrations. Compared with the traditional RA filter, hoRA

type filters significantly reduce the time-stepping errors and increase the accuracy of the

numerical simulation. In addition, our filters have substantial algorithmic advantages. On

one hand, they are non-intrusive linear post processes and thus easily implementable in

legacy codes. On the other hand, the leapfrog scheme combined with these filters require

only one evaluation of the tendency equations. In this way our filters reduce the technical

costs and programming e↵ort, compared with other higher-order methods which are either

intrusive or require more than one function evaluations.

The main disadvantage of hoRA filters is the memory usages. It has been shown from

their construction that more historical variables are required in order to obtain higher-

order accuracy. This is troublesome if storage is the main concern. Also, although it has

not proven in a rigorous manner, the stability region of the imaginary axis decreases as the

filter’s accuracy increases, based on the analysis of the second-, third- and fourth-order hoRA

filters. Schemes with strong stability properties are still in need in many cases. Thirdly,

when splitting waves is being considered, the filtered CNLF method remains second order

theoretically, regardless of the filter’s own accuracy. This is due to the fact that the Crank-

Nicolson discretization is only second order. Therefore, it is an open problem whether or

not to adopt a more than second order hoRA filter in the implicit-explicit integrations, at

the price of increased memory usages.

The following future projects would provide a deeper understanding about the hoRA

filters:
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1. Implementing LF-hoRA2(3) in practical operational and/or research climate models. We

want to verify if the output is consistent with the theoretical results when used in highly

complex models.

2. Implementing CNLF-hoRA in the practical climate models. In particular, we are inter-

ested in the performance of the hoRA3 (or hoRA4) filter(s) versus that of hoRA2. This

would possibly explain whether there is a need to use more than second-order hoRA

filters with the CNLF method.

3. Analyzing the fourth-order hoRA filter that is constructed with one degree of freedom,

i.e., k = 4 in (4.2). By tweaking the free coe�cient, we want to see if we could achieve

O [(!4t)8] amplitude error.
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