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Abstract
A new topology optimization method called the Proportional Topology Optimization (PTO)

is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement,

and is also efficient and accurate at the same time. It is implemented into two MATLAB pro-

grams to solve the stress constrained and minimum compliance problems. Descriptions of

the algorithm and computer programs are provided in detail. The method is applied to solve

three numerical examples for both types of problems. The method shows comparable effi-

ciency and accuracy with an existing optimality criteria method which computes sensitivi-

ties. Also, the PTO stress constrained algorithm and minimum compliance algorithm are

compared by feeding output from one algorithm to the other in an alternative manner, where

the former yields lower maximum stress and volume fraction but higher compliance com-

pared to the latter. Advantages and disadvantages of the proposed method and future

works are discussed. The computer programs are self-contained and publicly shared in the

website www.ptomethod.org.

Introduction
Topology optimization can be regarded as the systematic removal of redundant material from
the design domain in order to attain design with higher strength-to-weight ratios. It is getting
an increasing amount of attention since its introduction to truss structures by Michell [1] and
continuum structures by Bendsoe and Kikuchi [2]. Even further, recently popular additive
manufacturing techniques appreciate the importance of topology optimization since it facili-
tates the manufacture of porous structural designs with much complicated geometries.

Topology optimization methods are required to provide designers with black-and-white (or
1/0) designs to easily identify structural members as black regions and voided regions as white
regions. On the contrary, it was noticed that topology optimization methods with continuous
design variables are more successful for minimization of the objective function [3]. For this
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reason, continuum design variables with penalization methods are highly favored, such as the
Solid Isotropic Material with Penalization (SIMP) introduced by Bendsoe [4]. It is very impor-
tant to realize that, discrete or continuous, topology optimization is only a conceptual tool and
requires post-processing of the optimized geometry. Two popular design problems are the
stress constrained problem, which aims at minimizing volume fraction while satisfying stress
constraints and the minimum compliance problem, which aims at minimizing compliance for
a given volume fraction. In short, these problems will be referred to as stress problem and com-
pliance problem hereafter. Also, the word “element” always refers to the finite element (FE) of
an FE mesh in this work. In this context, the design variable can be imagined as thickness of a
plate [5] or scaling factor of a unit cell in a cellular structure [6].

The compliance problem has been widely investigated by Bendsoe and Sigmund [5], Sig-
mund [7], and Stolpe and Svanberg [8], to name a few. Open source computer programs to
solve this type of problem are distributed [7, 9–13]. On the other hand, it is a well-known fact
that stress analysis is a more significant concern for designers. Compared to compliance prob-
lems, however, stress problems bear more challenging difficulties such as high non-linearity
[14]. The stress problem and related issues has been studied by Lee [15], Duysinx and Bendsoe
[16], and Paris et al. [17] to name a few. Nevertheless, probably due to its added commercial
value and complexity, there is no open source distribution of such a computer program for
continua.

Numerous topology optimization techniques have been developed to solve both types of
problems. Among these are mathematical methods such as optimality criteria method, convex
linearization method, method of moving asymptotes, successive linear programming, and evo-
lutionary structural optimization method; and stochastic methods such as simulated annealing,
harmony search algorithm, immune algorithm, differential evolution, and genetic algorithm.
For a broader list of methods, see Sigmund [18] and Rozvany [19].

The Optimality Criteria (OC) method is the most fundamental as compared to the other
listed mathematical methods [20] and was first introduced in structural design by Prager [21].
The method assigns design variables to elements proportionally to the values of the objective
function [22]. In this respect, it is an efficient and simple method. Sigmund et al. [7] employs
the OC method in the TOP99 computer program, which is a 99-line MATLAB code that solves
the compliance problem for the Messerschmitt-Bölkow-Blohm (MBB) beam.

The Successive Linear Programming (SLP) method linearizes the originally nonlinear prob-
lem at a design point and then locally optimizes the linear problem within a region bounded by
some move limits. The local optimization problem can be solved by, for instance, the simplex
algorithm [23]. The SQP method is only different from the SLP method in converting the origi-
nally nonlinear problem into a quadratic problem. As opposed to SLP, the Convex Lineariza-
tion (CONLIN) method performs linearization with different variables with respect to the
characteristics of the optimization problem [24]. In this respect, the Method of Moving
Asymptotes (MMA) is a specific version of CONLIN in that the search behavior is more
aggressively controlled by moving limits [25]. The reader is referred to the book by Christensen
[26] for further details on these methods.

The Evolutionary Structural Optimization (ESO) method starts with a full design domain
and then iteratively removes elements from the domain with respect to the values of the objec-
tive function [27, 28]. If the method also includes addition of elements, it is then called Bidirec-
tional ESO (BESO). Addition/removal of elements render a discreteness that is earlier noted as
a bad attribute in terms of minimization performance. Also, it is argued that the ESO solutions
are highly mesh dependent [29] and not guaranteed to reach the optimal design [30]. Indeed,
ESO resembles the Fully Stressed Design (FSD) method, which dictates removal of material

Proportional Topology Optimization (PTO)

PLOS ONE | DOI:10.1371/journal.pone.0145041 December 17, 2015 2 / 23



from an element until the element is fully stressed [31]. FSD may also be considered a simple
OC method. Its performance to yield an optimal solution is questioned by Rozvany [19].

Stochastic methods utilize randomness in order to imitate rules of the nature. Although
continuous versions are viable [32], stochastic methods are usually discrete thus they are also
referred to as combinatorial optimization methods or population based methods. Simulated
annealing is the process of searching for the best configuration by a statistical analysis of the
cost distribution. In each iteration, the method draws a random configuration that is uncondi-
tionally accepted if it has a lower cost or conditionally accepted depending on an acceptance
rate otherwise. The acceptance rate is gradually driven to zero during progress of the simula-
tion. The method is favored to be easily controlled due to only one control parameter [33].
Evolutionary algorithms represent a general framework for many other specialized methods
[34]. The method retains a set of solutions and produces a new one in every iteration by the fol-
lowing three operators: reproduction, crossover, and mutation. Reproduction promotes the
most favorable solutions to imitate the survival of the fittest; crossover crosses two solutions in
order to create a new solution imitating the crossbreeding; and, mutation introduces new ran-
dom elements into solutions to increase the diversity of the set. Harmony search algorithm is
inspired from the musical process of naturally searching for a perfect state of harmony. In each
iteration, the method creates a new solution by randomly blending elements from solutions of
the set or from the allowed range in order to replace the worst solution of the set. Harmony
search algorithm is favored for bringing together unique features of other stochastic methods
such as history dependence of tabu search, varying adaptation rate of simulated annealing, and
combination of a set of solutions of genetic algorithms [35]. Immune algorithms imitate con-
cepts and use terminology of the natural biological immune systems such as antigen (objec-
tive), antibody (chromosome/solution), and affinity (fitness). In their method, called the
Multi-Modal Immune Algorithm (MMIA), Luh et al restore the imbalance of evolutionary
algorithms between exploitation (reproduction) and exploration (crossover and mutation)
mechanisms in order to eliminate local search inability and premature convergence of evolu-
tionary algorithms [29]. Different from common evolutionary algorithms, Differential Evolu-
tion (DE) method utilizes a weighted difference of two or more solutions in order to get a
mutated solution. Wu et al. emphasizes the binary representation in DE methods by developing
the Modified Binary Differential Evolution (MBDE) method [30] where they introduce a novel
binary mutation operator that is particularly ensured to produce equal amounts of 0 and 1.
Finally, there are more stochastic methods in the literature: rule-based optimization by Russel
and Manoochehri [36], ant algorithm [37], and tabu search [38].

Advantages and disadvantages of the stochastic methods are discussed in many ways. One
of the most pronounced advantages is that they perform a global search whereas mathematical
methods are stuck to a local minimum [35]. For this reason, they do not require a good starting
point, are independent of the starting point, and are better at exploring the design landscape
[30]. In this regard, they do not have difficulties with multiple or sharp peaks of the objective
function and constraints [35]. They need fewer mathematical requirements such as calculation
of gradients. Also, they directly solve 0/1 problems without a need for penalization, post-pro-
cessing, or filtering. On the contrary, the most pronounced disadvantage of stochastic methods
is the large number of design combinations, which hinders the effectiveness of the search pro-
cess. Also, the cost of function evaluations and checking for connectivity in every iteration may
become highly costly due to convergence in large number of iterations [33].

Among the introduced methods, OC, SLP, SQP, CONLIN, and MMA require calculation of
the sensitivities of objective function and constraints. In the TOP99 MATLAB code, the sensi-
tivity of compliance is calculated by taking derivative of the SIMP expression with respect to
density [7]. On the contrary, more rigorous sensitivity calculations are usually employed in
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stress problems [39, 40]. These sensitivities, especially for stress, are analytically complicated to
derive and their computation brings an additional computational burden. For instance, it is dif-
ficult to obtain sensitivities without simplification of the derivation for more complex topology
optimization problems such as compliant mechanism synthesis using nonlinear analysis and
crashworthiness design using dynamic analysis [41]. It is also reported that sensitivity analysis
is complicated due to change of the interface between structure and acoustic medium in an
exterior acoustic problem [42]. Besides, computation of sensitivities may introduce some
implementation concerns. For example, computation of the sensitivity analysis may become
infeasible in practical applications because of large number of stress constraints imposed [40].
In another example, it is argued that sensitivity analyses are computationally intensive in
acoustic problems since both structural and acoustic analyses are carried out in every iteration
[43]. Despite its additional computational load and implementation complexity, sensitivity
information is useful in optimization. For a similar discussion on gradient versus non-gradient
methods, the reader is referred to the forum article by Sigmund (2011). As a conclusion, there
is a trade-off between sensitivity and non-sensitivity methods in terms of computational/
implementation complexity and efficiency.

In this paper, a simple and efficient non-sensitivity method, called the Proportional Topol-
ogy Optimization (PTO), is presented to perform topology optimization for stress (PTOs) and
compliance (PTOc) problems. The PTO algorithm assigns the design variables to elements
proportionally to the value of stress in the stress problem and compliance in the compliance
problem. In particular, it imposes constraints only globally on the entire system. Accordingly,
it globally manages the proportional distribution of design variables to the elements. This
global approach substantially differentiates PTO from FSD since the latter employs an ele-
ment-wise approach. It is admitted that PTO method is highly heuristic and searches for the
optimized solutions. Nevertheless, it is this heuristic that makes the method simple to under-
stand and implement. Also, the method does not incorporate sensitivities; therefore, it avoids
the complications associated with sensitivities. Employment of continuous density variables
improves the search performance of the method and preserves the flexibility to design for inter-
mediate densities. Results indicate that the method produces efficient and accurate solutions in
consideration of its simplicity. It is important to note that although PTO is highly heuristic, its
performance is much better than stochastic methods as will be shown by its comparison of its
efficiency to mathematical methods later.

Inspired by the TOP99 computer program, the method is implemented into two MATLAB
programs individually for the stress and compliance problems that solve the MBB beam exam-
ple. The computer programs are implemented as self-contained MATLAB functions such that
they do not even depend on optional MATLAB toolboxes. The authors are distributing the
source of computer programs freely for educational and research purposes in the website www.
ptomethod.org. To the best of the authors’ knowledge, PTOs is the first publicly shared and
self-contained computer program that solves the stress constrained problem for continua.

The paper presents, in order, stress and compliance problems, the PTO algorithms, numeri-
cal examples, and conclusions. Computer programs are in S1 and S2 Appendices.

Stress and compliance problems
Two types of problems, i.e., stress constrained problem and minimum compliance problem,
are issued in the following sections.
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2.1. Stress constrained problem
The stress problem is the minimization of volume fraction while satisfying the stress con-
straints. The optimization problem reads

min
XN

i

rivi

such that

Ku ¼ f

si � sl if r > 0

0 � rmin � ri � rmax � 1

ð1Þ

8>>>><
>>>>:

8>>>>>>>>>><
>>>>>>>>>>:

where N is the number of elements, ρ is the density (and also the design variable), ρi is the ele-
mental density, vi is the elemental area/volume, K is the stiffness matrix, u is the displacement
vector, f is the external force vector, σi is the elemental stress measure (e.g., von Mises), σl is the
stress limit, ρmin is the lower bound on elemental density, and ρmax is the upper bound on ele-
mental density. Typically, ρ is limited to [ρmin, 1] where ρmin is 0.001 [17] to preclude stiffness
singularities [44]. Although the problem is posed as minimization of the total mass, it is usually
referred to as minimization of the volume fraction for practical reasons. Minimization of these
terms is equivalent from the optimization point of view. A volume fraction 0 means void while
1 means solid element. The stress problem is noted to be non-convex and highly non-linear
[17].

2.2. Minimum compliance problem
The compliance problem is minimization of the compliance while satisfying the volume frac-
tion constraint. The optimization problem reads

min C ¼ uTKu

such that

Ku ¼ f

XN
i

rivi ¼ M

0 � rmin � ri � rmax � 1

ð2Þ

8>>>>>><
>>>>>>:

8>>>>>>>>><
>>>>>>>>>:

where, in addition to the nomenclature given for the stress problem, C is the compliance and
M is the total mass.

The PTO Algorithms
Algorithms of the PTO method to solve the stress (PTOs) and compliance (PTOc) problems
are described in the following.

Table 1 presents the PTOs algorithm. The algorithm starts with setup of vectors and matri-
ces for FE and stress analyses and filtering. Then, the algorithm goes into the main loop. Every
iteration of the main loop starts with FE and stress analyses. Following, the termination criteria
is checked. That is, whether the maximum elemental stress in the system is close to the allow-
able stress limit within a prescribed tolerance, which is set equal to 0.001 in this work. If the cri-
terion returns true, the simulation terminates. Otherwise, the algorithm continues to optimize
the topology. The first step of optimization part is to determine the target material amount,
which is going to be the new material amount in the system. In other words, the current
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material amount will be updated to the target material amount. If the maximum elemental
stress in the system is bigger than the allowable stress limit, then the current material amount
is increased by a material move amount. Otherwise, the current material amount is decreased
by the same material move amount. The material move amount scales with the number of ele-
ments (0.001 x number of elements) and is kept constant during the course of the simulation.
In the next step, the algorithm distributes the target material amount to the elements. The tar-
get material amount can only be distributed iteratively for the reasons that will be explained in
the following. Because of this iterative procedure, the material amount to be distributed is
called the remaining material amount, and the iterative procedure initiates with a remaining
material amount that is equal to the target material amount.

In order to perform the iterative distribution of the target material amount, the algorithm
goes into an inner loop. The distribution is conducted proportionally to the elemental stress
values. The degree of proportion is extended to the power of q such that

ropt
i ¼ RMPN

j s
q
j vj

sq
i ð3Þ

where RM is the remaining material amount, N is the number of elements, ρi
opt is the opti-

mized elemental density, σi is the elemental stress measure, vj is the elemental volume, and q is
the proportion exponent (will be detailed in section 3.7). Apparently, the above relation distrib-
utes the remaining material amount regardless of density limits. The enforcement of density
limits on the elements trims the distributed material amount to the lower and upper bounds if
the bounds are exceeded. As a result, the actual material amount is different than the target
material amount. This difference is the reason for distributing the remaining material amount
iteratively in an inner loop until the target material amount is reached. Every iteration of the

Table 1. PTOs algorithm to solve the stress problem.

Algorithm

Setup FE and stress analyses and filtering

Until convergence

Perform FE and stress analyses

Check stop criteria, break if satisfied

Run optimization algorithm

Determine TM

Distribute RM

If stress limit is exceeded, TM = CM + MM

Else, TM = CM—MM

Set RM = TM

Until RM is small enough

Distribute RM to elements proportionally to their stress
values

Apply filter

Apply density limits

Calculate AM

Update RM = TM–AM

Update density

where TM is the target material amount, CM is the current material amount, MM is the material move

amount, RM is the remaining material amount, and AM is the actual material amount.

doi:10.1371/journal.pone.0145041.t001
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inner loop starts with distributing the remaining material amount. It is followed by application
of filtering and density limits. In this work, a volume preserving density filtering is used, which
will be explained in detail later. At the end of the inner loop, the actual material amount, which
is left after enforcing limits and filtering, is calculated. The remaining material amount is then
the actual material amount subtracted from the target material amount. In the next iteration of
inner loop, this remaining material amount is redistributed following the same routine. The
inner loop runs until the remaining material amount is small enough.

The final step of main loop updates the elemental densities by linearly blending elemental
densities from the previous iteration and optimized elemental densities in the current iteration.
The update scheme reads

rnew
i ¼ arprev

i þ ð1� aÞropt
i ð4Þ

where ρi is the elemental density, ρnew is the new elemental density to be passed to the next iter-
ation, ρprev is the elemental density from the previous iteration, ρopt is the optimized elemental
density in the current iteration, and α is the history coefficient (will be detailed in section 3.7).
The history coefficient decides the ratios of elemental densities from both sides, and it is unit-
less. For instance, a value of 0 eliminates elemental density from the previous iteration and
indicates no dependence on the history.

PTOc algorithm (Table 2) is slightly different from the PTOs algorithm. The most promi-
nent difference is the determination of the target material amount. PTOc algorithm does not
need to modify the target material amount since it is constrained to a fixed amount by the defi-
nition of the problem. For this reason, PTOc algorithm calculates the target material amount
once at the beginning of the simulation and uses it thereafter. Another difference is the distri-
bution of the target material amount. PTOc distributes the target material amount proportion-
ally to the elemental compliance values instead of the elemental stress values. The distribution

Table 2. PTOc algorithm to solve the compliance problem.

Algorithm

Setup FE and compliance analyses and filtering

Determine TM

Until convergence

Perform FE and compliance analyses

Check stop criteria, break if satisfied

Run optimization algorithm

Set RM = TM

Until RM is small enough

Distribute RM to elements proportionally to their compliance values

Apply filter

Apply density limits

Calculate AM

Update RM = TM–AM

Update density

where TM is the target material amount, CM is the current material amount, MM is the material move

amount, RM is the remaining material amount, and AM is the actual material amount.

doi:10.1371/journal.pone.0145041.t002
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equation then reads

ropt
i ¼ RMPN

j C
q
j vj

Cq
i ð5Þ

where RM is the remaining material amount, N is the number of elements, ρi
opt is the opti-

mized elemental density, Ci is the elemental compliance value, vj is the elemental volume, and
q is the proportion exponent. The elemental compliance values are recalculated in every itera-
tion at the beginning of the main loop. The last difference is the termination criterion of the
main loop. The main loop stops if the maximum change in elemental densities between two
successive iterations is smaller than a prescribed tolerance, which is equal to 0.01 in this work.
The rest of the steps are identical to the PTOs algorithm.

3.1. Material model
PTO method adopts the modified SIMP approach [9], which is a density approach, for better
search performance while maintaining near 0/1 solutions. The modified SIMP approach reads

EðrÞ ¼ Emin þ rpE0 ð6Þ

where E is the density dependent Young’s modulus, Emin is a small Young’s modulus (typically
10−9) assigned to void elements in order to avoid obtaining a singular stiffness matrix, E0 is the
Young’s modulus of the solid material, and p is the penalty coefficient (typically 3) [9]. The modi-
fied SIMP approach makes it redundant to have a lower bound for density ρmin to avoid the stiff-
ness singularities since Emin already serves the said purpose. The modified SIMP approach drives
densities towards 0 and 1 since volume varies linearly as stiffness varies in the order of p.

3.2. Stress constraint
PTO method employs the following maximum function as a stress constraint

maxfsig � selastic limit ð7Þ
where σi is the stress at element i and it is taken to be the von Mises stress at the geometric cen-
ter of the element. The details of stress calculation are presented in the following. The stress
constraint entails that the stress does not exceed the elastic limit at any element in the system.
Therefore, the constraint provides a tight control on the stress levels owing to the maximum
function. It should be noted that the maximum function is not differentiable, and thus cannot
be used with sensitivity methods. Instead, sensitivity methods usually employ a p-norm of
stress [14]. The p-norm stress measure is not as tight as the maximum stress measure unless
the value of p is very big. As such, for p =1, the p-norm stress measure is equivalent to the
maximum stress measure. In addition, the p-norm stress measure does not have a physical
meaning as the maximum stress measure does [14]. Finally, implementation of the maximum
stress measure is the simplest compared to the other stress measures.

3.3. Density filtering
The PTOmethod incorporates a density filtering. In the work of Bruns [45], a simple cone den-
sity filtering is introduced as the following

ri ¼
P

wijdjP
wij

where wij ¼
r0 � rij
r0

for rij < r0

0 for rij � r0

ð8Þ
8<
:
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ρi is the filtered density of element i, wij is the filtering weight of elements i and j, dj is the non-
filtered density of element j, rij is the distance between elements i and j, and r0 is the filter
radius. The weight is inversely proportional to the distance between the element and its neigh-
bors. In this sense, the cone density filtering is actually nothing but local averaging. Besides, it
preserves the volume. It should be noted that it is always filtered densities that are presented in
the results section. Filtering is endorsed to have the following advantages:

(i) Small scale features such as jagged edges, narrow members, and sharp interfaces are pre-
vented [14].

(ii) As a result of smoothing, a blurred region around the structural members is obtained
[14].

(ii) The algorithm is saved from getting stuck in local minima [14].

(iv) Checkerboard phenomenon is prevented [46].

(v) Ensures existence of solution, although this is not proven yet [7].

(vi) Imposes a constraint on minimum length scale of the design [46].

As a separate note, even if the method had sensitivity, it is argued that sensitivity filtering is
not suitable for the stress problem [14]. A number of filtering methods are presented by Sig-
mund [46]. In addition, two alternative filtering schemes for the Top88 code are introduced by
Andreassen [9].

3.4. Boundary conditions
Finite element (FE) problem definitions are required to be accompanied with some essential
and natural boundary conditions. These prescribed boundary conditions are usually concen-
trated and their correct imposition to the problem domain is crucial for the FE solution. In a
similar manner, it is vital to correctly handle the boundary conditions for the topology optimi-
zation solution. We experienced that exclusion of the elements near the boundary conditions
from the topology optimization problem actually results with different solutions from those
obtained when these elements are included. Moreover, the exclusion of elements near the
boundary conditions yields better optimization results, which may be misleading. On the other
hand, imposing boundary conditions to only a few elements leads to poor topology optimiza-
tion behavior due to compliance/stress concentration [14, 16, 47]. Consequently, the best prac-
tice is to distribute the boundary conditions to a sufficient number of elements in order to
provide the topology optimization algorithm to work properly, as followed by many research-
ers [14, 16, 48]. If the resulting structure is suspected to be fragile for loading conditions as
pointed out by Holmberg [39], more material can be added near the loading regions at the
post-processing phase.

3.5. Stress measure
As stated earlier, von Mises stress is measured at the geometric center of the elements. In the
following, only two-dimensional (2-D) examples with plane stress and bilinear square elements
of length L are considered. The von Mises stress in 2-D is given by

svM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x þ s2

y � sxsy þ 3s2
xy

q
ð9Þ
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The stress tensor in 2-D is expressed as

σ ¼ f sx

sy

sxy

g ð10Þ

And obtained by

σ ¼ DBu ð11Þ
where D is the constitutive matrix, B is the shape function derivative matrix, and u is the dis-
placement vector. The constitutive matrix for plane stress in 2-D is as the following

D ¼ E
1� v2

1 v 0

v 1 0

0 0 ð1� vÞ=2

2
64

3
75 ð12Þ

where E is the Young’s modulus and ν is the Poisson’s ratio. For linear shape functions for a
bilinear square element in 2-D, B is given by

B ¼ 1

2L

�1 0 1

0 �1 0

�1 �1 �1

0 1 0

�1 0 1

1 1 1

�1 0

0 1

1 �1

2
6664

3
7775 ð13Þ

Lastly, u is the element displacement vector represented as

u ¼

u1x

u1y

u2x

u2y

u3x

u3y

u4x

u4y

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð14Þ

The term “stress” in the results section always refers to the von Mises stress at the geometric
center of the square elements.

3.6. MATLAB programs
Two separate MATLAB programs that solve the stress and compliance problems for the MBB
beam in bending (Fig 1A) are presented. In short, the MBB beam in bending is referred to as
MBB beam hereafter. It is important to acknowledge that the computer programs substantially
inherit from the 88-line MATLAB code by Andreassen et al. (Top88 hereafter), such as setup
and solution of FE system. In particular, the only major modification is undertaken in optimi-
zation algorithm and some other minor modifications elsewhere. Minor modifications include
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addition of stress analysis and removal of sensitivity analysis. Furthermore, a few extra input
parameters are introduced to control: the element edge length, number of elements the load is
distributed on, and lower and upper bounds on density. The latter is introduced for different
design needs as it may be asked to have a lower bound on density for a cellular structure. This

Fig 1. Numerical examples: (a) MBB beam–only right half (a2) of the full design domain (a1) is
considered due to symmetry, (b) Cantilever beam, and (c) L bracket.

doi:10.1371/journal.pone.0145041.g001
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intervention should not conflict with the SIMP approach as long as the penalization factor
penal is accordingly justified.

The computer programs are cast as MATLAB functions that can be called from the
MATLAB command window or other MATLAB programs. The first computer program is for
the MBB beam example solved for the stress problem (S1 Appendix). In this case, the function
is called as the following

x ¼ PTOs mbb ðE0; Emin; L; lv; ld; nelx; nely; nu;

penal; q; rmin; vmslim; xlimÞ

where x is the elemental densities, E0 is the Young’s modulus, Emin is the Young’s modulus
assigned to void elements, L is the element edge length, lv is the load value, ld is the number of
elements displacement and force loads are distributed on, nelx is the number of elements in x
dimension, nely is the number of elements in y dimension, nu is the Poisson’s ratio, penal is the
penalization factor in the modified SIMP formula, q is the proportion exponent, rmin is the fil-
ter radius, vmslim is the stress constraint limit, and xlim is a 1x2 vector consisting of lower and
upper bounds on density, respectively.

Lines 5–9 prepare the element stiffness matrix KE that is to be multiplied by the Young’s
modulus E to get to its final form. Lines 10–12 prepare the edofMatmatrix that is in size of
(element number) x (8) and consists of degrees of freedoms (DOF) of each element in a row.
Numbering of DOF, nodes, and elements in the system starts from top-left and proceeds in col-
umn-wise order (Fig 2).

Lines 13–14 prepare iK and jK vectors that represent the indices of nodes in the global stiff-
ness matrix. Lines 16–19 form the force sparse vector F with respect to input load value lv and
distribution parameter ld. Line 21 initializes the displacement vector U to zero. Line 22 com-
poses the set of fixed DOFs with respect to the input load distribution parameter ld. Lines 23
and 24 composes the sets of all DOFs and free DOFs, respectively. The set of free DOFs freedofs
is later employed when solving the FE system. Lines 26–27 prepare the element shape function
derivative matrix B and constitutive matrix DE for stress analysis. The latter is to be multiplied
by the Young’s modulus E to get to its final form.

Lines 29–48 build the density filter sparse matrix. In specific, lines 33 and 34 loop for every
element position, and lines 36 and 37 loop for neighbor element positions. Lines 40–41 save
the indices for pair of neighbors. Line 42 computes and saves the weight of density filtering for
the pair of neighbors from the distance between them if the distance is smaller than the input
filter radius. After exiting the loop, lines 47 and 48 create the density filter sparse matrix and
normalize it, in order.

Fig 2. Numbering of DOF, nodes, and elements in right half of the MBB beam: starting from top-left
and proceeding in column-wise order.

doi:10.1371/journal.pone.0145041.g002
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The main loop takes place between lines 53 and 90. It first carries out the FE analysis in
lines 56–59, and finds the displacements U. More specifically, the main loop conducts FE anal-
ysis by populating the global stiffness sparse matrix K in lines 57–58 with the updated Young’s
modulus values E from line 56, and then solving the FE system KU = f in line 59. The main
loop follows by the stress and compliance analyses. Stress analysis computes the elemental
stress tensors in line 61 and the elemental equivalent von Mises stresses in line 62. Compliance
analysis computes the elemental compliances into a vector in line 64 and reshapes this vector
into a matrix by the corresponding number of elements in each dimension in line 65. The main
loop prints out the results to the command window in lines 67–68; and, plots the elemental
densities and stresses normalized by the maximum value of corresponding matrices in lines
70–72.

In line 74, the main loop checks for the termination criteria, that is whether the maximum
elemental stress in the system is close to the stress constraint limit within a tolerance (i.e.,
0.001) and number of iterations is more than 50. The latter is introduced to inhibit immature
terminations, which occurred only one time in authors’ experience. If the termination criterion
returns true, the main loop exits, and simulation ends.

Lines 76–89 consist of the core PTOs algorithm. Initially, lines 76–80 determine the target
material amount with respect to the maximum elemental stress in the system. In that, if the
maximum elemental stress exceeds the stress constraint, more material is added, or removed
otherwise. The added/removed material amount is equal to the multiplication of the total num-
ber of elements by 0.001. Following, lines 84–89 represents the inner loop that iteratively dis-
tributes the target material amount proportionally to the elemental stress values. This
proportion is computed out of the loop in line 83 for efficiency. The proportion is extended by
the proportion exponent q. The inner loop starts with distribution of the remaining material in
line 85. Then, lines 86 and 87 filter the distributed material and enforce density limits on the
elemental densities, respectively. The inner loop ends with computation of remaining material
amount in line 88. The inner loop terminates when the remaining material amount is less than
or equal to 0.001, as checked in line 84.

The second computer program is for the MBB beam example solved for the compliance
problem (S2 Appendix). In this case, the function is called as the following

x ¼ PTOc mbb ðalpha; E0; Emin; L; lv; ld; nelx; nely;

nu; penal; rmin; vmslim; xlimÞ

where alpha (i.e., α) is the history coefficient and other arguments are identical to PTOs, except
that the proportion exponent q is omitted (the reason will be detailed in section 3.7). Although
the lines of PTOs and PTOc do not match at the same line number all the time, the flow and
steps of the programs are largely the same. The differences are detailed in the following.

PTOc has a new variable that first appears in line 51, named xNew, and stores the optimized
elemental densities in the current iteration of the loop. Later, line 88 updates elemental densi-
ties x with respect to the history coefficient alpha as a linear combination of elemental densities
from the previous (i.e., x) and current (i.e., xNew) iterations. Line 76 checks whether the termi-
nation criteria is satisfied. That is, if the change in the maximum elemental densities between
two successive iterations (this change is computed in line 89) is smaller than 0.01 and the num-
ber of iterations is more than 50. The former criterion is different than that of PTOs since
PTOc satisfies the volume constraint a priori in line 78 as will be explained later. In contrast,
PTOs searches for a distribution until the stress constraint is satisfied, hence a posteriori.

Line 78 computes the target material amount as dictated by the input constraint on total
volume fraction vlim. This value is constant during the course of the simulation. As can be
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followed from lines 81 and 83, PTOc distributes the material amount in proportion to the ele-
mental compliance values. The proportion is more direct (and linear) compared to PTOs since
there is no use of proportion exponent.

In case the above descriptions of computer programs are not clear enough, the reader is
referred to two other MATLAB codes and corresponding papers, namely 99-line code [7] and
88-line code [9], for alternative descriptions due to the fact that current codes mainly inherit
from the two referred codes.

The computer programs are highly flexible and extensible. For instance, the programs can
easily be modified to insert a prescribed void or solid region in the design by constraining the
corresponding elemental densities to 0 or 1 in the inner loop right after updating x in line 87 in
PTOs and 85 in PTOc. For another instance, PTOs can be extended to minimize volume frac-
tion under both stress and compliance constraints. Then, in addition to the check for elemental
stresses, the same practices should be implemented for elemental compliances. This way, mate-
rial should be added to the system when either of the constraints is not satisfied, and material
should be removed from the system when both constraints are satisfied. In like manner, the
simulation should terminate when both constraints are satisfied at the same time.

The computer programs are unitless. However, a set of units can be attached to attain a
physical relevance. A set of consistent units are kg for mass, meter for length, and second for
time. Then, force units are Newton, stress units are Pa, and compliance units are Nm. An alter-
native set of consistent units are ton for mass, mm for length, and second for time. Then, force
units are Newton, stress units are MPa, and compliance units are Nmm. It should be carefully
noted that ld, nelx, nely, and rmin are in units of element, regardless of the element edge length
L. That is, an ld value of 3 means that load is distributed on 3 elements. Also, the element edge
length L and thickness of the elements are considered to be unity. As a result, the volume of the
elements is unity; therefore, it is eliminated from the computer programs. Additionally, xlim
and vlim have normalized values between 0 and 1. That is, a vlim value of 0.5 means that 50%
of the material amount of a full solid design (number of elements in x) x (number of elements in
y) is to be filled in.

The computer programs are verified against the ANSYS commercial FE software by means
of comparing displacement, compliance, and stress values. It is noteworthy that the stress val-
ues presented in this work and by the computer programs are actual stress values meaning that
they are not normalized, multiplied by density, or norms of actual stresses values.

3.7. Control parameters
Two control parameters are defined to fine tune the behavior of the PTO algorithm: proportion
exponent (q) and history coefficient (α). The proportion exponent controls the degree of pro-
portion between the elemental density value and elemental stress or compliance values for the
stress and compliance problems, respectively. For instance, a quadratic proportion for the
stress problem means that the total material amount is distributed to elements in proportion to
the square of the elemental stress values. The other control parameter is the history coefficient.
It controls the ratio of dependence of elemental density to its older value from the previous iter-
ation. For instance, a value of 0.5 means that the elemental densities are blended such that half
of their new values come from the previous iteration and the other half come from the opti-
mized values in the current iteration.

In order to increase the accuracy and efficiency of the algorithms, a parametric study of the
proportion exponent and history coefficient for PTOc and PTOs are carried out using the
MBB beam example. PTOc and PTOs are called with the following arguments: 1 for Young’s
modulus E0, 0.3 for Poisson’s ratio ν, 10

−9 for Young’s modulus assigned to void regions Emin, 3
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for penalty value for modified SIMP approach penal, 1 for load value lv, 3 for number of load
imposed elements ld, 120 for number of elements in x-direction nelx, 40 for number of ele-
ments in y-direction nely, 0 and 1 for lower and upper elemental density bounds xlim, 0.35 for
volume constraint vlim in PTOc, 1.08 for stress constraint vmslim in PTOs, 1 for element edge
length L, and 1.5 for filter radius rmin. Both algorithms are tested for history coefficients from
0.0 to 0.9 in increments of 0.1 and for proportion exponents from 0.25 to 3.0 in increments of
0.25. The results for PTOc are listed in Table 3 where non-bold font results are eliminated due
to high compliance and/or iteration number. Among the bold font results, values of 0.5 for the
history coefficient and 1 for the proportion exponent are reasonable settings for having low
compliance and iteration number and being away from unstable values. Although the results
obtained by a value of 0.9 for the history coefficient are also good, they are discarded because of
their strong dependency on the history as this relation may be troublesome for the untested
cases. As a result, the proportion exponent has no effect in the PTOc algorithm and thus omit-
ted from the implementation. The results for PTOs are listed in Table 4 where non-bold font
results are eliminated due to high volume and/or iteration number. Among the bold font
results, values of 0 for the history coefficient and 2 for the proportion exponent is the best set-
ting for having the lowest volume. As a result, the history coefficient has no effect in the PTOs
algorithm and thus omitted from the implementation. In spite of the suggested settings, it is

Table 3. Parametric results for the PTOc: Compliances (iteration number) are given for α from 0 to 0.9 and q from 0.25 to 3.

q\α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.25 6.4x109 1248.48 1248.48 1248.48 1248.48 1248.49 1248.53 1248.88 1251.6 1277.09

(1000) (51) (51) (51) (51) (51) (51) (51) (51) (51)

0.5 6.4x109 2165.83 303.52 299.97 300.44 300.99 301.87 341.87 623.59 703.63

(1000) (1000) (132) (145) (165) (195) (240) (214) (55) (51)

0.75 331.72 267.29 268.33 268.55 268.9 274.05 273.89 278.52

(1000) (1000) (165) (193) (201) (151) (213) (185)

1 2594.4 265.87 265.12 266.61 266.25 266.36 266.56 272.1

(1000) (1000) (164) (170) (181) (200) (221) (134)

1.25 264.89 264.11 264.23 264.84 265.35 266.36

(188) (223) (265) (250) (231) (206)

1.5 319.41 263.88 264.47 264.41 264.48 265.62

(1000) (196) (286) (279) (244) (191)

1.75 325.07 263.71 263.58 264.27 264.64 265.12

(1000) (583) (378) (233) (213) (203)

2 262.11 262.39 263.87 264.25 265.15

(1000) (304) (245) (212) (150)

2.25 348.2 262.69 263.66 264.47 265.05

(1000) (489) (254) (163) (156)

2.5 267.57 263.55 264.1 264.95

(1000) (303) (195) (159)

2.75 271.25 263.27 263.93 264.9

(1000) (338) (276) (169)

3 262.08 263.57 264.87

(575) (288) (188)

Non-bold results have 10% more compliance and/or iteration than the result in the box. Non-convergent simulations are terminated at the 1000th iteration.

The dashed cases are assumed to be non-convergent as is the case for similar settings.

doi:10.1371/journal.pone.0145041.t003
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encouraged to experiment with the parameters to better utilize the method in other specific
cases.

Numerical Examples
Results section consists of three parts. The first part shows that PTOs and PTOc work well for
topology optimization. The second part compares PTOc to Top88, and the third compares
PTOs to PTOc. In all parts, three numerical examples that are defined in Fig 1 are considered.

In all three examples, material properties are input as 1 for Young’s modulus E0, 0.3 for
Poisson’s ratio ν, and 10−9 for Young’s modulus assigned to void regions Emin. Penalty value
for modified SIMP approach penal is set to 3. A load value of 1 (lv) is imposed over 3 elements
(ld). Lower and upper bounds xlim on elemental density are limited to 0 and 1. Element edge
length L and filter radius rmin are set to 1 and 1.5, respectively. Thickness of the domain is
assumed to be equal to 1. As stated earlier, q is tuned to 2 for PTOs and α is tuned to 0.5 for
PTOc.

In the first example, right half of the MBB beam is discretized by 120x40 (nelx x nely) ele-
ments. The beam is fixed in x-dimension on the left edge due to symmetry and fixed in y-
dimension on the lower-right corner. A normal force is applied on the upper-left corner. In the
second example, the cantilever beam is discretized by 120x60 (nelx x nely) elements. The beam
is fixed in both x and y-dimensions on the left edge and a shear force is applied at the middle of

Table 4. Parametric results for the PTOs: Volume (iteration number) are given for α from 0 to 0.9 and q from 0.25 to 3.

q\α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.25 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.59

(111) (121) (137) (155) (182) (218) (271) (362) (542) (1000)

0.50 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.51 0.51

(135) (149) (168) (192) (224) (268) (334) (443) (67) (133)

0.75 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.41

(121) (135) (152) (172) (203) (243) (303) (404) (601) (1000)

1.00 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.41

(125) (133) (159) (183) (212) (242) (300) (397) (594) (1000)

1.25 0.36 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40

(164) (128) (143) (172) (206) (241) (297) (405) (590) (1000)

1.50 0.38 0.39 0.37 0.38 0.35 0.39 0.39 0.39 0.39 0.40

(138) (140) (208) (184) (253) (254) (314) (395) (586) (1000)

1.75 0.32 0.36 0.36 0.36 0.38 0.38 0.36 0.39 0.39 0.40

(197) (179) (209) (216) (209) (252) (365) (399) (584) (1000)

2.00 0.31 0.30 0.36 0.39 0.36 0.39 0.34 0.39 0.38 0.50

(206) (248) (200) (180) (251) (246) (415) (416) (619) (81)

2.25 0.35 0.34 0.36 0.36 0.37 0.38 0.39 0.36 0.40 0.49

(170) (205) (209) (224) (246) (255) (306) (487) (584) (95)

2.50 0.28 0.25 0.34 0.37 0.39 0.38 0.49 0.49 0.39 0.50

(243) (325) (237) (211) (228) (261) (56) (63) (638) (87)

2.75 0.32 0.31 0.32 0.35 0.37 0.36 0.39 0.35 0.34 0.50

(200) (240) (255) (245) (254) (307) (324) (546) (889) (83)

3.00 0.32 0.31 0.33 0.33 0.37 0.34 0.37 0.36 0.45 0.50

(202) (341) (237) (262) (256) (348) (352) (506) (334) (58)

Non-bold results have 10% more compliance and/or iteration than the result in the box. Non-convergent simulations are terminated at the 1000th iteration.

doi:10.1371/journal.pone.0145041.t004
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the right edge. In the third example, the L bracket is discretized by 100x40 (nell x nels) elements
in long (l) and short (s) edges. The bracket is fixed in both x and y-dimensions on the upper
edge and a normal force is applied on the top of the most right edge.

4.1. Validation of PTOc and PTOs
The first part of the results section runs PTOc and PTOs for the three examples. Initially,
PTOc is run for a volume fraction 0.35 and then the output stress value is input to the PTOs as
a constraint. For instance, PTOc is called to solve the MBB example by the following command

PTOc mbbð0:5; 1; 1e� 9; 1; 1; 3; 120; 40; 0:3; 3; 1:5; 0:35; ½0; 1�Þ

The simulation ends with a stress 1.08. Then, PTOs is called with this stress value by the fol-
lowing command

PTOs mbbð1; 1e� 9; 1; 1; 3; 120; 40; 0:3; 3; 2; 1:5; 1:08; ½0; 1�Þ

This routine is repeated for the cantilever beam and L bracket examples. The simulations
converge with the results tabulated in Table 5 to the topologies shown in Fig 3. Some remarks
are in order.

All six cases show that for the same stress level, PTOs results with higher compliance but
lower volume fraction. On average, PTOc solutions have 6.3% less compliance; and, PTOs
solutions have 7.3% less volume. The topologies are almost identical for the cantilever beam
example, but they are considerably different for the MBB beam and L bracket examples. PTOc
tends to have thicker structural members while PTOs inclines towards more number of struc-
tural members. The contrasts of topologies are investigated by an index defined as

Contrast index ¼ NoE with ri < 0:01 or ri > 0:99

Total NoE
ð15Þ

where NoE is the number of elements and ρi is the elemental density. The results are given in
Table 5. On average, PTOc and PTOs topologies result with 0.83 and 0.85 contrast indices,
respectively. The contrast indices indicate that both PTOs and PTOc provide with near black-
and-white solutions.

The user has a few options to get completely black-and-white solutions at the end of the
simulation. Among these are continuation methods that suggests progressive decrease of the
filter radius [19] or increase of the SIMP penalization factor [18] during the course of the simu-
lation. Another option is to use post-processing tools, such as projection schemes, to drive the
simulation result to a black-and-white final result [18]. These methods are considered to be
efficient and effective, but partially heuristic.

Table 5. Number of iterations, volume fraction, compliance, maximum stress, and contrast index obtained fromMBB beam, cantilever beam, and
L bracket solved by PTOc and PTOs.

Number of iterations Volume fraction Compliance Max stress Contrast index

MBB beam PTOc 170 0.35 266.61 1.08 0.80

MBB beam PTOs 206 0.31 294.92 1.08 0.83

Cantilever beam PTOc 106 0.35 88.54 0.57 0.85

Cantilever beam PTOs 164 0.34 90.62 0.57 0.88

L bracket PTOc 78 0.35 235.25 1.05 0.83

L bracket PTOs 187 0.33 248.97 1.05 0.85

doi:10.1371/journal.pone.0145041.t005
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4.2. Comparison of PTOc to Top88
The second part of results section compares PTOc to Top88 for the three examples. It should
be clarified that the original Top88 code is only for the MBB beam example; but, it has been
extended to solve the cantilever beam and L bracket examples. In this connection, Top88 repre-
sents an OC method with sensitivities. For each example, both programs are called by a set of

Fig 3. Topologies and compliance (PTOc) or stress (PTOs) distributions obtained from the MBB beam, cantilever beam, and L bracket examples.

doi:10.1371/journal.pone.0145041.g003
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identical inputs. For instance, material properties and penalization factor, density filter and its
radius, and loading value and distribution are set the same. As a result, simulations for each
method are identical except the optimization algorithms. PTOc and Top88 are run for a num-
ber of volume fractions vlim from 0.25 to 0.50 in increments of 0.05. Fig 4 shows comparison
of compliances for the three examples. The figures demonstrate that the compliance versus vol-
ume fraction curves of PTOc and Top88 are indistinguishable for all three examples. Also,
average number of iterations and simulation times are compared in Table 6. As can be seen,
Top88 performs much better for the MBB beam example and slightly better for the cantilever
beam example. On the other hand, PTOc performs much better for the L bracket example. On
average, Top88 algorithm performs slightly better by 4.0% in iteration numbers and 6.3% in
simulation times. The conclusion is that none of the methods is superior to the other in terms
of efficiency in general but they have varying performances depending on the example.

Fig 5 compares topologies obtained by running PTOc and Top88 for a volume fraction 0.35
for three examples. Topologies are similar for the cantilever beam example and remarkably dif-
ferent for the MBB beam and L bracket examples. The most prominent difference is the tiny
feature near the loading in the L bracket topology solved by PTOc. Such a tiny feature is not a
good design practice since it is fragile against loadings in traverse directions. Thus, these kinds
of considerations should be made by the designer in the post-processing phase. The topologies
are also compared by their contrast indices. Contrast indices for Top88 topologies are 0.81,
0.86, and 0.83 for the examples in the presented order. Compared to contrast indices of PTOc
in Table 5, contrast indices between the two methods are not different more than 0.01.

Fig 4. Comparison of compliance versus volume fraction curves of PTOc and Top88 for the MBB beam (left), cantilever beam (center), and L
bracket (right) examples.

doi:10.1371/journal.pone.0145041.g004

Table 6. Comparison of iteration numbers and simulation times of Top88 and PTOc.

Top88 PTOc Relative comparison100x(1-PTOc/Top88)

MBB Beam Iteration number 233.0 308.5 -32.4

MBB Beam Time (s) 36.19 50.34 -39.1

Cantilever Beam Iteration number 150.0 153.2 -2.1

Cantilever Beam Time (s) 35.46 36.89 -4.0

L Bracket Iteration number 201.0 155.5 22.6

L Bracket Time (s) 42.93 32.50 24.3

Average Iteration number 194.7 205.7 -4.0

Average Time (s) 38.19 39.91 -6.3

doi:10.1371/journal.pone.0145041.t006
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4.3. Comparison of PTOs to PTOc
The third part of results section compares PTOs to PTOc. The comparison is conducted itera-
tively starting from PTOc at 0.5 volume fraction. The output stress of PTOc is then input to
the PTOs. Following, the output volume fraction of PTOs is input back to the PTOc, and so
on. Fig 6 shows the results for MBB beam, cantilever beam, and L bracket examples. The figures
show that PTOs performs better than PTOc by means of providing less volume fraction for the
same level of stress and less stress for the same level of volume fraction for all three examples.
This improvement is more pronounced in the MBB beam example compared to other two
examples. The results are also quantified by taking the average improvements for each exam-
ple, see Table 7. The results prove that the extent of improvements depend on the example. On
average, though, PTOs provides 8.4% less stress for the same level of volume fraction and 5.9%
less volume fraction for the same level of stress.

Conclusions
A new topology optimization method, named PTO, is introduced. It is a non-sensitivity
method, and thus eliminates difficulties emerged from analytical derivations and computa-
tional implementation of sensitivities. The achieved balance comes with a price of weaker
mathematical rigor but worthy simplicity at the same time. The method possesses considerable
efficiency and accuracy considering its simplicity. Even more, various comparisons to results
generated by the Top88 code show that PTOc attains very similar results without use of sensi-
tivities while maintaining same level of efficiency. On the other hand, although it is not pre-
sented here, PTOs has always been thought to be not as efficient and accurate as the state of the

Fig 5. Comparison of topologies of PTOc and Top88 for the MBB beam, cantilever beam, and L bracket examples.

doi:10.1371/journal.pone.0145041.g005
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art methods of topology optimization field that solves stress problems for continua, especially
the ones utilizing sensitivities. A comparison is left for future work.

PTO can be useful especially in educational and industrial purposes owing to its simplicity.
As pointed out by Rozvany [19], industrial practitioners tend to work with methods that are
easier to understand and manipulate. Naturally, students and newcomers to the topology opti-
mization field share alike manners [7]. The method can also be useful in research due to its
flexibility and extensibility. For the above purposes, two computer programs that solve the
MBB beam example for stress and compliance problems are presented. The programs are indi-
vidually coded in MATLAB as standalone functions and they are publicly shared in the website
www.ptomethod.org. The website will be maintained with new versions, publications, exten-
sions, and other up-to-date information.

There is more room to investigate and enhance the method, but they are left for future
work. First of all, a more comprehensive parametric work is required to utilize the method at
its best. Second, mesh dependency of the method is to be investigated more carefully. It is
argued that filtering leads to mesh independent solutions, but this point of view is only sup-
ported by comparison of topologies [9]. The authors believe that quantitative comparisons
should be carried out alongside. Third, it should be investigated whether the method would
benefit from clustering of elements so that the constraints could be imposed on these clusters.
It was shown that clustering of elements yield more efficient results [14]. In the current work,
the method considers only one cluster that includes the whole domain. The listed future works
are subject to ongoing research and will be presented in an upcoming paper.

Fig 6. Comparison of stress versus volume fraction curves of PTOs and PTOc for the MBB beam (left), cantilever beam (center), and L bracket
(right) examples. Dashed lines indicate the links between PTOs and PTOc. A horizontal dashed line means stress output of PTOc is input to the PTOs and a
vertical dashed line means volume fraction output of PTOs is input to PTOc.

doi:10.1371/journal.pone.0145041.g006

Table 7. Quantitative comparison of stress and compliance for PTOs and PTOc.

PTOs improvement of stress (%) PTOs improvement of volume fraction (%)

MBB beam 12.8 9.5

Cantilever beam 5.5 4.1

L bracket 7.0 4.0

Average 8.4 5.9

doi:10.1371/journal.pone.0145041.t007
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