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Abstract - Geo-social networks or Location-based Social Networks (LBSNs for short) provide an abundant 
source of information for human behavior in real-space.  The digital trails that LBSN users leave on these 
systems, mainly through the action of check-in (i.e., voluntary sharing of their whereabouts), span multiple 
dimensions such as, social (who is friend with whom?), geographical (where do people go?), temporal (when 
do people transit in the city), as well as contextual (what do people do in the city?) forming a composite 
network.  It thus becomes crucial to be able to analyze the above information in a holistic way, that is, 
without focusing on a specific dimension only.  For that, we develop GeoTense, which models a geo-social 
composite network as a tensor. The latter enables us to utilize an arsenal of linear algebra tools for analyzing 
the underlying information and identifying existing patterns.  More specifically, in this work we propose the 
use of tensor decomposition for spotting general patterns and anomalies in the check-in behavior of users, by 
jointly analyzing and breaking down the behavior of all users of the LBSN into simple, interpretable latent 
patterns.  Our evaluations showcase the potentials of GeoTense in spotting interesting patterns in geo-social 
networks.        

I.   INTRODUCTION 

During the last years a new class of digital social networks centered around spatial information has 
emerged.  Such Location-based Social Networks (LBSN for short) tie the virtual and physical space 
through location information.  Navigation in the urban space involves now a new dimension, the social.  
People can instantly get information about their environment and make decisions based on what exists 
nearby and what their friends or other users of the system believe.  Some systems can also offer Groupon-
like deals, providing monetary incentives for users and corporations to adopt their usage.   Gaming 
aspects of the LBSNs can also provide a sense of competition between socially connected people, which 
increases engagement as existing research has shown [1]. 

The digital trails that people leave in such systems capture in detail the human urban mobility around a 
city.  Check-ins, the action of voluntarily declaring your location in LBSNs, further provide the context in 
which this mobility emerges (e.g., why do people exhibit this mobility pattern).  This context is largely 
absent from existing literature in human urban mobility.  While daily navigation through the urban space 
has been repeatedly shown to be highly regular (e.g., [2,3]) it is interesting to understand under what 
social and urban context people deviate from the expected patterns. This becomes even more crucial since 
deviation from the periodic patterns observed in LBSNs might not always be due to special 
events/conditions. In particular, given that humans respond to incentives and that the motives for adopting 
LBSN usage are now extended to the real-world [4], people can be tempted to game the underlying 
system and generate fake information. 

However, the objective of our work is not focused on fake information but is more generic.  More 
specifically, the goal of this study is to develop a data-driven system, GeoTense, that will be able to 
automatically identify irregular behavioral patterns, that is, anomalies1, as we call them in the rest of 
the paper.  GeoTense is based on tensor decomposition, for spotting (interesting and irregular) patterns in 
geo-social networks.  In brief, the main features that form the contributions of our work as compared with 
existing literature in LBSN analysis and modeling can be summarized in the following: 

• GeoTense considers multiple dimensions (social, spatial and temporal) of the modeled network 
simultaneously in order to identify latent patterns. 

                                                             
1 While anomalies has a negative connotation, we would like to emphasize here that the patterns identified are not necessarily “bad”.  They can represent for example 
an irregular pattern observed during a special event.  However, this is still an anomaly, since it is out of the ordinary behavior. 



• GeoTense is not tied to a specific application (e.g., fake 
check-in detection, neighborhood clustering etc.) but 
it is generic. 

In the rest of the paper we will briefly review related 
literature (Section II) and we will present our approach (Section 
III).  Finally, we will discuss our evaluation plan and results 
(Section IV) followed by a brief discussion on the scope of our 
work (Section V).   

 

II.   RELATED STUDIES 

The availability of rich datasets from location-based social networks has lead to a surge in related research.  A 
large volume of the latter focuses on the identification of spatio-temporal patterns crucial for a target application.  
For example, neighborhood detection and/or characterization is one of the most prevalent applications  studied in the 
area [5-7] (with the list being non-exhaustive).  Other studies have focused on the applicability of LBSN data on 
identifying urban mobility and/or user activity patterns  (e.g., [8-10]).  Another line of research focuses on the 
detection of anomalous patterns such as planned and unplanned events (e.g., festivals, traffic accidents etc.).  The 
main high level idea behind the majority of these systems is to detect significant deviations at the volume of the 
content generated in specific locations [11,12]. 

Despite the contributions and/or methodological advancements that each one of the above studies 
exhibit, they are also very focused on a specific, possibly narrow, problem.  For example, urban mobility 
studies are mainly focused on the regular statistical properties of the displacement (i.e., spatial 
information) of people. The semantics of the locations and/or deviations from these statistics are not 
considered, while the temporal dimension is many times absent.  As another example, event detection 
schemes are focused on specific type of anomalous patterns.   On the contrary, we develop GeoTense 
without any specific application in mind and hence, it is a generally applicable system.  To reiterate, it can 
be used to identify and further study both regular and anomalous patterns by considering simultaneously 
the social (users), spatial (locations and their semantics) and temporal (time of check-ins) dimensions. 

 

III.   GEOTENSE IN A NUTHSHELL 

We propose to cast the problem of spotting patterns in LBSNs as an instance of composite network analysis using 
tensors.  An n-mode tensor, is a generalization of a matrix (2-mode tensor) in n dimensions, and therefore it forms a 
natural approach to analyze heterogeneous/composite netwroks. In our case we propose to initially model the spatio-
temporal information as a 3-mode (user, venue, time) tensor T. Hence, T(i,j,k)=1, iff user i was at venue j at time-
slot k.  Otherwise, T(i,j,k)=0. 

A typical technique for identifying latent patterns in data represented as a matrix is the Singular Value 
Decomposition (SVD).  A generalization of SVD in n-mode tensors is the Canonical Polyadic (CP) or 
PARAFAC decomposition.  In particular, CP/PARAFAC decomposes T to a sum of F components, such 
that: 

T ≈ af !bf !cf
f =1

F

∑ (1)  

where af !bf !cf (i, j,k) = af (i)bb( j)cf (k) . In other words, each component (or triplet of vectors) of the 
decomposition is a rank one tensor. Each vector in the triplet corresponds to one of the three modes of the 
tensor: a  corresponds to the users, b corresponds to the venues, and c corresponds to the days.  Figure 1 
provides an illustrative example of the tensor decomposition in GeoTense.   

 
Figure 1. Tensor decomposition in GeoTense. 



One of the issues that we need to consider is how many components we should keep in the sum of 
Equation (1).  Ideally, we would like F <<rank(T) for two reasons: 1) we need to project the data to a 
very low rank subspace, such that similarities across the redundant dimensions will manifest and be 
expressed in this embedding, 2) identifying the rank of a tensor, unlike the matrix case, is NP-hard.  
Selecting the appropriate number of components is still an active research topic.  For our purposes, we 
will consider heuristics such as setting a threshold on the number of components, when a certain 
percentage of the data has been modeled.   

Intuition behind the use of tensors: An explanation as to why we expect this proposed approach to 
offer insightful results is worthwhile. In essence, tensor decompositions attempt to summarize the given 
(network) data tensor into a reduced rank representation. On the way of accomplishing that, PARAFAC 
tends to favor dense groups that associate all three entities involved in our data (users, check-ins, and 
time). These groups need not be immediately visible via inspection of the three mode tensor, since 
PARAFAC is not affected by permutations of the mode indices. As an immediate outcome of this 
process, we expect near-bipartite cores (in three modes) of people who check-in at certain places for a 
certain period of time, to appear as a result of the decomposition, starting from the most dense of them, all 
the way to the sparsest (if we assume that the rank-one components of the decomposition are sorted by 
some indicator of density, such as the norm of the three vectors).  

 

IV.   EVALUATIONS 

Using a large corpus of check-in data from Foursquare [13] we opt to delve into the details of GeoTense’s 
performance.  In particular, we first examine the appropriateness of PARAFAC for analyzing the dataset at hand.  
Not all datasets are amenable to PARAFAC analysis.  Hence, we utilize a very elegant diagnostic tool, namely, 
CORCONDIA [14], that serves as an indicator that the PARAFAC model describes the data well, or whether there 
is some problem with the model. The diagnostic provides a number between 0 and 100; the closer to 100 the 
number is, the better the modeling. If the diagnostic gives a low score, this could be caused either because the 
chosen rank F is not appropriate, or because the data can not be modelled correctly using PARAFAC, regardless of 
the rank. In order to better understand whether a variation in the CORCONDIA score is due to bad rank choice or 
due to data structure, in our experiments we gently increase the rank and observe the behavior.  Computing 
CORCONDIA however, is very challenging.  For the purposes of  evaluating the behavior of our dataset under 
PARAFAC model, we carefully implemented CORCONDIA using strict sparse storage and tensor operations from 



MATLAB’s tensor toolbox.  By doing so we were able to run the diagnostic in portions of our dataset.  In particular, 
we chose random samples of 100 users and using their set of check-ins and timestamps we formed tensor Ts.  
Subsequently we took a range of low rank PARAFAC decompositions of Ts and computed the CONCORDIA 
diagnostic.  According to the diagnostic, it appears that until F=5, the data admit a good PARAFAC model, whereas 
increasing the rank leads to over-factoring.  Albeit our analysis is based on a small portion of the users, it shows that 
if the number of extracted components (i.e., F) is a small percentage of users, the obtained model seems to be of 
good quality.   

We further propose and evaluate a heuristic, unsupervised, algorithm for classifying the tensor components as 
normal or irregular/anomalous.  To reiterate, the latter can refer either to components that are generated from 
malicious users (e.g., bots) or components that capture irregular, planned events (e.g., organized “flashmobs”).  Our 
heuristic is based on realistic assumptions for the underlying data distribution and in particular on the fact that the 
distribution of users over the venues is expected to be power law [15,16].  Our algorithm – outlined in Algorithm 1 - 
examines the improvement of the goodness of fit of a power law to the data once the component under examination 
is removed.  If there is an improvement the component is labeled as anomalous.  Our experimental results further 
showcase the applicability of the proposed algorithm.  In particular, by analyzing T we were able to observe a set of 
distinct patterns, each one belonging to a specific type of anomalous or normal behavior.  We chose to extract 1000 
components.  Among them, only 14 were labeled as anomalous.  This fact is encouranging, since intuitively, the 
anomalies should span only a small portion of the variation in the data.  In Figure 2, we demonstrate the progressive 
improvement of the power-law fit, as we gradually remove each one of the 14 anomalies from the data, while 
Figures 3 and 4 present exemplar normal and anomalous components respectively.   

 

 
  

Figure 2. Improvement of the 
goodness of fit as we gradually 
remove anomalies. 

Figure 3. A component labeled as 
normal from GeoSpot, representing 
a single user visiting a few venues. 

Figure 4. A component labeled as 
irregular from GeoSpot, resembling 
the behavior of a bot. 

 

IV.   DISCUSSIONS &  CONCLUSIONS 

One of the things that our evaluations have revealed is the sensitivity of our unsupervised classification algorithm 
with respect to numerical erorrs at the estimation of the goodness of fit.  In particular, there are similar components 
that barely improve or deteriorate the goodness of the power law fit but due to numerical errors in the estimation 
they are labeled differently.  A tolerance factor ε in the comparison for the goodness of fit could be added to tackle 
this problem.  As another solution, we will also consider other realistic assumptions for the data distribution.  
Consequently, we will utilize a majority-vote scheme for classifying the components as normal or anomalous. 

In summary, in this work we have developed GeoTense, a tensor-based system for spotting patterns in 
geo-social networks. While our system is generic it can form the basis for more specialized systems (e.g., 
systems that detect specific attacks possible in LBSNs). However, the most important aspect of GeoTense 
is that it can lays a framework for analyzing composite networks.  Such a framework is largely missing 
today [17] and we believe that GeoTense can be generalized to multi-dimensional, heterogenous 
networks.   
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