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STUDYING THE MILKY WAY THROUGH ITS EXTRAGALACTIC

ANALOGS

Timothy C. Licquia, PhD

University of Pittsburgh, 2016

The Universe is teeming with galaxies, which are complex structures with a broad range of

colors, shapes, and sizes. We reside within the Milky Way (MW), just one example of this

population, allowing us to study its stars and gas, and hence the physical mechanisms that

shape galactic properties, in intimate detail. Unfortunately, our inside-out view prohibits

us from measuring the MW’s light as an integrated source, and perhaps more problematic

is that dust in the interstellar medium shrouds most its light from view. Consequently,

our knowledge of the global characteristics of the MW, and hence how it fits among the

galaxy population, has remained very limited. This thesis is focused on employing modern

statistical techniques as well as preexisting Galactic and extragalactic data to overcome

these challenges. A key aspect of this work is the development of a hierarchical Bayesian

meta-analysis technique for better constraining properties of our Galaxy that have been

studied by many authors and for which there exist extensive observational data, but may be

prone to large systematic uncertainties. Applying this machinery yields new estimates of the

MW’s mass properties, including its star formation rate and total stellar mass, as well as its

exponential disk scale length measured from both visible and infrared starlight. Additionally,

this thesis presents a new method for identifying a sample of MW analog galaxies from

extragalactic data in order to determine properties of our Galaxy that are all but impossible

to observe directly. Herein, this technique yields new estimates of the MW’s photometric

properties — i.e., its global color and luminosity at visible wavelengths, as measured from

across cosmic distances. This work culminates with new, accurate investigations of how the
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MW fits into a variety of extragalactic contexts, which quantitatively demonstrates that in

several ways the MW is not the prototypical spiral galaxy it was recently thought to be.

Notably, the MW most likely lies in the sparsely populated “green-valley” region of the

galaxy color-magnitude diagram. Furthermore, comparing the MW to spiral galaxy scaling

relations reveals that it is extraordinarily compact versus its peers.
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3.7 The distribution of M? and Ṁ? values for our Milky Way analog sample at

different stages of our analysis overlaid upon the Galactic posterior PDFs used

for selecting them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 The position of the Milky Way in SDSS 0(g − r) vs. 0Mr color-magnitude space.104

3.9 The position of the Milky Way in SDSS 0(u− r) vs. M? space. . . . . . . . . 105

xi



4.1 The evolution of Milky Way’s Ld estimates. . . . . . . . . . . . . . . . . . . . 116

4.2 The joint posterior PDF, P (fgood, n | D,Mfree-n), for different subsets of the Ld

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3 The marginal posterior PDF, P (fgood | D,Mk), for different subsets of the Ld

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4 The marginal posterior PDF, P (Ld | D), for different subsets of the Ld data. . 146

5.1 The Milky Way compared to Tully-Fisher relations. . . . . . . . . . . . . . . 171

5.2 The Milky Way compared to LV R relations. . . . . . . . . . . . . . . . . . . 179

xii



1.0 INTRODUCTION

This dissertation provides a detailed investigation into the global characteristics of our home

Galaxy1, the Milky Way, with the overarching goal of better understanding how it fits

in amongst the other galaxies in the Universe. Its chapters are designed as a series of

steps toward this goal, and are relatively self-contained. This allows readers with various

backgrounds to focus in on certain chapters or sections according to their level of interest or

expertise. For instance, the remainder of Chapter 1 is geared toward those with a limited

background in galactic astronomy, and provides a relatively non-technical introduction to the

topics that follow. This sets the scene for Chapters 2–5, where I detail at a higher scientific

level the methods and machinery that I use to derive my main results. Lastly, Chapter 6 is

useful for readers who are looking for a short summary of this work, as well as their broader

impact on Galactic and extragalactic astronomy.

1.1 THE UNIVERSE: A GALAXY ZOO

Over the past century, astronomy has delivered remarkable progress toward understanding

the Universe that we live in. Only in this relatively short and recent period of time have

we grasped the true immensity of the cosmos and our unexceptional place within it. We

have surpassed the notion that the collection stars and gas surrounding Sun encompasses

all celestial bodies — i.e., that our home Galaxy, the Milky Way, defines the totality of the

Universe. Instead, with the aid of continual advancements in instrumentation, we have firmly

established that the Milky Way is but one amongst hundreds of billions of other galaxies

1I will use capitalization when distinctly referring to the Milky Way.
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glowing ubiquitously amidst the otherwise dark and infinite expanse that is cosmic space2.

The Hubble Ultra-Deep Field image now represents an iconic visualization of this, included

below as Figure 1.1, which also reveals the wide assortment of colors, shapes, and sizes that

galaxies display. Today we understand that, invariably, these are aggregates of luminous

stars, gas, and dust that are gravitationally bound together with reinforcement from a much

more massive and spatially extended component of invisible stuff, which we have dubbed

“dark matter” (Zwicky, 1933; Ostriker et al., 1974; Rubin et al., 1978, 1980).

If we are to disperse the light that we receive from any one of these objects (barring

those nearest to us) in order to measure its spectrum, we find that the distinct atomic

signatures that it contains are displaced to some degree toward longer wavelengths (i.e.,

redshifted) compared to rest-frame positions. Evidently, galaxies in general are traveling

away from us. Furthermore, for those that we can independently measure a distance to, we

find that the magnitude of this redshift (z) is on average proportional to distance of the

object from us — this is known as Hubble’s Law (Hubble, 1929). From this basic result, we

have since developed a remarkably successful model of cosmology3 (Weinberg, 1972; Peebles,

1993), where the Universe has a finite age and space itself is expanding over time, but

comes with no discernible edge or center. Thanks to the fixed, cosmically-universal speed

of light, the distance to (and hence z of) a particular galaxy maps directly to a distinct age

of the Universe, and hence observing progressively more distant galaxies allows us to peer

progressively further back in time. In this way, cosmology is inevitably linked to the study

of galaxies and their evolution through cosmic history.

Progress in the field of extragalactic astronomy was relatively slow through the mid-

twentieth century due to limited technology, as studies of galaxies were restricted to small

sample sizes stemming from targeted observations. The situation has improved drastically

over the past few decades, however, as a variety of large-scale galaxy surveys have been

carried out at wavelengths from the ultraviolet (UV) to the radio. Most notably, this includes

the Sloan Digital Sky Survey (SDSS; York et al., 2000), conducted at visible wavelengths to

2With this imagery in mind, it’s interesting to note that galaxies were, in fact, dubbed “island universes”
when astronomers initially pondered the idea that they existed outside of the Milky Way system.

3Cosmology is the study of the structure and evolution of the Universe as whole and the physical laws
the govern it.
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produce both deep, multi-band CCD imaging and high-quality spectroscopic measurements

for ∼106 galaxies. The combination of these two techniques provides a wealth of information

for each object, characterizing both its light and mass properties. In addition, a dataset of

this scale is sufficient for studying the full dynamic range of properties that galaxies display,

as well as their true underlying distributions (see, e.g., Blanton et al., 2003a).

A particularly important example is illustrated by the color-magnitude diagram (CMD),

where one plots integrated color as a function of absolute magnitude. In this parameter space,

the SDSS sample reveals that the vast majority of galaxies fall into two primary groups: a

red population and a blue population, which are typically labeled the “red sequence” and

“blue cloud”, respectively. Furthermore, it is found that this pattern closely parallels the

two primary modes of morphological type: spirals and ellipticals, respectively. While hints of

this trend were found from smaller galaxy samples previously, the SDSS dataset established

the bimodality of galaxies to a high level of significance (Strateva et al., 2001; Buta, 2011).

Myriad investigations into the SDSS data have since further characterized this dichotomy

(e.g., Blanton et al., 2005; Schawinski et al., 2014). The blue cloud predominantly consists

of spiral galaxies that are still actively forming stars today. They contain hot (but short-

lived) O- and B-stars that emit copious amounts of blue light, dominating the galaxy’s

overall spectral energy distribution (SED), and hence leading to a bluer integrated color.

Studies of both the light and velocity profiles for spiral galaxies indicate that their stars

and gas are organized into a rotationally supported disk-like structure. Generically, they

display a surface brightness profile that, to first order, dims exponentially with radius, but

often display secondary or substructure features, e.g., rings, gaps, or breaks (van der Kruit

& Freeman, 2011). As the moniker suggests, vivid spiral arms often appear superimposed

upon the smoother underlying disk structure; these mark the sites of active star formation.

Correspondingly, spiral arms become more prominent in observations made using bluer filter

passbands. Secondary stellar components are often found at their central regions, such as a

bar or bulge; these appear redder in color as they are composed of older stellar populations.

The red sequence is representative of elliptical galaxies, which display far less morpho-

logical features (Graham, 2013). They are spheroidal or ellipsoidal in shape and produce

smooth, featureless surface brightness profiles that dim much more slowly at large radii than
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those of spirals. They appear relatively devoid of gas and dust, and correspondingly show

marginal, if any, star formation activity. Thus, elliptical galaxies are composed of ancient

stellar populations; blue O- and B-stars have faded away long ago with the lack of stellar

nurseries to replenish them. In turn, this renders ellipticals redder in color than their spiral

counterparts, yet they can reach luminosities that are orders of magnitude brighter than the

brightest spirals.

1.2 GALAXY FORMATION AND EVOLUTION

A major outstanding question in extragalactic astronomy is: what caused the bimodality of

the galaxy population? This is puzzling especially since we expect that all galaxies formed

under nearly identical initial conditions in the homogenous early Universe. More explicitly,

our standard “Big Bang” model of cosmology postulates that tiny fluctuations were present

in the distribution of cosmic matter density when the Universe sufficiently cooled to the

point where neutral atoms initially formed (z ∼ 1, 300). Subsequently, these perturbations

increasingly grew under gravitational instability, eventually producing clouds of gas that

cooled, fragmented, and further collapsed into the first stars (z ∼ 10–100), leading to the

first galaxies (z ∼ 10) that eventually built up to be the present-day (z ∼ 0) colossal systems

that we see. Given their uniform beginnings, it is unclear what has driven galaxies into two

distinct classes of objects.

Another broad, yet fundamental question related to this is: how did galaxies form and

evolve into the structures we observe today? These are systems that can change visibly only

on timescales of hundreds of millions of years or more, and hence the answer cannot come

from observing any one galaxy progress through time. Instead, we must take advantage of

the constant speed of light, which renders measurements of progressively farther away objects

into observations of the Universe at progressively early times. Hubble’s Law establishes that

there is a tight relationship between a galaxy’s redshift (z)— i.e., the displacement of its

spectral lines toward longer wavelengths compared to their rest-frame positions — and its

distance, and hence implicitly the age of the Universe. Therefore, investigations into galactic
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properties as a function of z constitute one of the primary ways to study galaxy evolution.

Another major approach is to study galaxy scaling relations. These were discovered

empirically in the late 1970s through the combination of photometry and spectroscopy for

small samples of galaxies, first revealing that a galaxy’s luminosity is tightly correlated

with its internal kinematic properties. Spirals and ellipticals each obey their own version of

this relationship since they are kinematically different systems. For example, ellipticals are

supported by the random, unorganized or “thermal” motions of its stars, giving rise to an

isotropic dispersion in their velocities. This velocity dispersion can be measured from the

broadening of distinct stellar absorptions lines found in the integrated spectrum of the galaxy.

The Faber-Jackson relation (Faber & Jackson, 1976) links an elliptical’s velocity dispersion

to its luminosity, both technically measured within its effective radius, which contains half

the surface brightness of the galaxy. Spiral galaxies, on the other hand, are supported by

the ordered rotational motions of their stars and gas into roughly circular orbits about their

centers. They rotate differentially, such that at large radii from their centers they typically

approach a constant tangential velocity — i.e., their rotation curves (circular velocity vs.

radius) become flat (Sofue & Rubin, 2001). Traditionally, this maximum circular velocity

is measured from the Doppler width of a galaxy’s 21-cm spectral emission line, associated

with the spin-flip transition of neutral hydrogen (HI) atoms, in the radio where interference

due to dust is minimal. It can also be measured from HI and Hα rotation curves developed

from long-slit spectroscopy (Springob et al., 2007). One limitation here is that this signal is

maximized for edge-on spirals, where one side of the disk is moving away from us and tho

other side toward us, whereas it cannot be measured for face-on systems. The Tully-Fisher

relation (Tully & Fisher, 1977) links a spiral’s maximum rotational velocity to its luminosity.

Note that these internal velocity measurements provide distance-independent quantities, and

hence their intrinsic relationship to galaxy luminosities is important for studying not only

galaxy formation, but also the Universe itself. The Tully-Fisher and Faber-Jackson relations

are important tools for extending Hubble’s Law beyond the local Universe.

It is now well understood that galaxies obey scaling relations based not only on their lu-

minosities and internal velocity measures, but also their sizes. Elliptical galaxies in particular

appear to cluster most tightly (i.e., with minimal scatter) along a plane, commonly known
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as the fundamental plane (FP), in the 3-dimensional space defined by luminosity, velocity

dispersion, and radius (Dressler et al., 1987; Djorgovski & Davis, 1987). The Faber-Jackson

relation represents just one projection of the FP, which can be theoretically accounted for

almost entirely as a consequence of the virial theorem. The small observed deviation from

the exact virial theorem prediction is referred to as the tilt in the FP; a major focus of

research is to understand the variations in stellar populations amongst elliptical galaxies

that can account for this tilt (e.g., Cappellari et al., 2013). Spiral galaxies appear to be

more complicated. They too form a sequence or plane in the 3-dimensional space defined

by luminosity, maximum rotational velocity, and radius, but with several surprising features

(Courteau & Rix, 1999; Courteau et al., 2007). For instance, the inclusion of radius in any

way is always seen to increase the dispersion, such that the Tully-Fisher relation appears to

be the edge-on view of the analogous fundamental plane for spirals (Hall et al., 2012, and

references therein). Studies of the Tully-Fisher relation using larger datasets over the past

few decades have found it challenging to explain the observed scatter about the relation. For

example, it is found that the scatter about the Tully-Fisher relation is uncorrelated with disk

surface brightness, which supports that dark matter halos play an important part in this

relation. However, studies have shown it to be extremely challenging to construct models

that simultaneously reproduce all empirical disk galaxy scaling relations while also matching

other statistical properties of the spiral galaxy population (Dutton et al., 2007, 2011). This

has led to the question: is our standard model of cosmology consistent with our standard

picture of galaxy formation?

1.3 THE MILKY WAY: A UNIQUE LABORATORY FOR GALACTIC

SCIENCE

A major advantage we have in answering many of these questions is that we reside in the

middle of our own massive and star-forming galaxy. More specifically, the Sun is located

nearly at the mid-plane of the Milky Way’s disk, roughly two-thirds of the way out from

its center (Jurić et al., 2008). This in fact places us within our Galaxy’s zone of vitality,
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where new stars are being forged from the coalescence of gas and dust that permeates the

disk (i.e., the interstellar medium, or ISM). Our internal vantage point therefore provides us

with intimate views of stellar nurseries, such as the Orion nebula, and enables us to make

detailed observations of the star formation process (Chomiuk & Povich, 2011).

Furthermore, the Milky Way is the only galaxy where we can measure the properties of

large samples of individual stars. The SDSS again has served as a vital tool in this endeavor,

as it has provided both photometric and spectroscopic measurements for ∼300,000 stars

in our Galaxy (Allende Prieto et al., 2008; Yanny et al., 2009). While it’s not feasible to

map the entirety of our Galaxy in this way, for those stars that are near enough, we can

determine 3-dimensional position and velocity information, elemental abundances, as well as

among many other properties to a high degree of accuracy. In turn, this has enabled us to

study the structural and kinematic properties of stars as a function of their age (e.g., Bovy

et al., 2012a; Bovy & Rix, 2013; Anders et al., 2014), which should directly point to how our

Galaxy has built up its stellar mass over cosmic time.

The advent of this rich stellar dataset has also sparked a multitude of Milky Way-like

galaxy simulations being developed in recent years. In short, these are computer programs

designed to track the dynamical interaction and evolution of a mock galaxy’s stars, gas,

and dark matter starting from a set of initial conditions, governed by physical laws that are

encoded. These are generally limited by their mass resolution — i.e., the number particles

per unit volume, which in turn dictates the amount of stars or gas that is represented

by a single particle — and hence their inability to account for small-scale (or sub-grid)

physics. Nevertheless, simulations are an invaluable tool for interpreting the observational

data in hand, allowing us to extrapolate our relatively local measurements of the Galaxy

to its properties at earlier times or on more global scales (e.g., Loebman, 2013). Varying

the model ingredients allows one to explore the evolutionary histories that can lead to a

configuration that matches the true geometrical, dynamical, and chemical structure of stars

from direct observations, while also exploring the roles that particular physical mechanisms

play in shaping galactic properties (e.g., Martig et al., 2014; Taylor et al., 2015a).
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1.4 THE GALACTIC-EXTRAGALACTIC DICHOTOMY

To be able to fairly extend what we have learned from studies of the Milky Way to extra-

galactic objects, we must first understand how our Galaxy fits in amongst the population

of external galaxies. This has been a challenging task historically, and ironically this is fun-

damentally due, again, to our inside-out view of the Milky Way, which prohibits us from

measuring it using the same methodologies as those that are viable for extragalactic objects.

First, from our internal vantage point, starlight from the Milky Way is spread over the full

4π steradians of the night sky, making it practically impossible to measure as one integrated

source. Second, and perhaps more troublesome, dust is ubiquitous in the Galactic disk

(Cardelli et al., 1989; Schlegel et al., 1998), which is increasingly efficient at both absorbing

and scattering light as a decreasing function of wavelength. As a result, the vast majority of

the Milky Way’s stars are either obscured from our view or appear dimmer and redder than

they would otherwise. This makes it all but impossible to determine many of our Galaxy’s

basic global properties from direct measurement, such as its integrated luminosity and color.

These, on the other hand, are some of the easiest measurements we can make for any other

galaxy of known z, and hence play a fundamental role in their classification. As a result

the Milky Way has remained poorly constrained in many of the standard diagrams that are

used for studying galaxy evolution.

One important example, which will be the focus of Chapter 3, is that the present uncer-

tainties in the global color of our Galaxy make it practically impossible to determine whether

the Milky Way lies amongst the blue cloud, the red sequence, or anywhere between in the

CMD; such a determination is critical for understanding how typical the star formation his-

tory of the Milky Way is compared to those of other spiral galaxies. The major challenge

here is that we are inevitably constrained to measuring starlight in the local disk, nearby to

the Sun, characterizing just a tiny fraction of the Milky Way’s overall stellar population. To

extrapolate such measurements to an estimate of the global color of the Galaxy, one must

construct a model of its stellar structure and populations, requiring a long list of assump-

tions that each introduce compounding sources of uncertainty. On the other hand, with

current instruments and our external vantage point, it is rather straightforward to measure
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integrated colors for extragalactic objects to high accuracy. The same contrasts apply for

measuring the integrated luminosity, particularly using optical filter passbands, of the Milky

Way versus external galaxies.

Another important example, which will be the focus of Chapter 5, is that systematic

differences in Galactic versus extragalactic measurements make it difficult to assess how the

Milky Way compares to the Tully-Fisher relation and other scaling relations which include

galaxy size. Our inside-out perspective of the Milky Way forces us to measure its global

properties, such as its integrated luminosity, maximum rotation speed, and physical size,

using methodologies that are infeasible for studying any other galaxy. Generically, determi-

nations of such Galactic properties come from observing samples of resolved stars or gas in

the local disk — a tiny fraction of its overall stellar or gaseous content — and extrapolating

their properties to an estimate for the entire disk using Milky Way models (de Vaucouleurs

& Pence, 1978; Bahcall & Soneira, 1980, 1984; Bahcall, 1986); this sometimes relies on ob-

taining 3-dimensional position and velocity information for each star in the sample (e.g.,

McMillan, 2011). Resolved stellar or gas measurements are unobtainable for essentially all

other galaxies; instead, we must measure their integrated light either photometrically or

spectroscopically to determine their properties. Hence, measurements of Galactic and extra-

galactic property each come with their own sets of model choices and assumptions that can

lead to calibration issues.

Bridging the gap between Galactic and extragalactic science is paramount to under-

standing how galaxies form and evolve over cosmic time. Our ability to study the Milky

Way in high resolution and interpret our observations through detailed modeling is a major

advantage in decoding the distinct physical processes that govern galactic properties, and

hence the origin of scaling relations. This is especially true with large-scale Galactic surveys

that have recently or will soon see first light at both optical and infrared wavelengths, and

will lead to drastically improved studies of our Galaxy. However, to broaden these results

into statements about galaxies in general we must determine how representative our Galaxy

is of extragalactic objects; this can be achieved by sharpening our picture of how the Milky

Way fits amongst the galaxy population in key diagrams, such as the CMD or Tully-Fisher

relation. Simultaneously, this additionally will provide us a better understanding of what
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formation histories could give rise to the Milky Way we observe today.

1.5 DISSERTATION OVERVIEW

This dissertation is focused on employing advanced statistical techniques to overcome many

of the challenges and systematic uncertainties that limit our understanding of Milky Way

properties as well as our ability to relate our Galaxy to extragalactic contexts. A short

synopsis of each chapter is as follows.

In Chapter 2 I present a novel method for determining improved constraints on Milky

Way properties. This relies on the power of a hierarchical Bayesian (HB) statistical method

which allows me to perform a meta-analysis of previous measurements in the literature, and

hence combine the observational data that they individually contain, but also account for

the possibility that any value may be incorrect or have underestimated errors. I apply this

machinery to produce new estimates for several mass properties of the Milky Way, including

the current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar

components, as well as its total stellar mass. I show that this method is robust to a wide

variety of assumptions about the nature of problems in individual measurements or error

estimates. I also demonstrate how Monte Carlo techniques can be applied to produce model-

consistent realizations of the bulge and disk components of the Galaxy, as well as to force

these estimates to reflect our current knowledge (most importantly, the uncertainties) in the

parameters describing the structure of the disk.

In Chapter 3 I demonstrate a new statistical method of determining the global photo-

metric properties of the Milky Way to an unprecedented degree of accuracy, allowing our

Galaxy to be compared directly to objects measured in extragalactic surveys. Capitalizing

on the high-quality imaging and spectroscopy dataset from the Sloan Digital Sky Survey

(SDSS), I exploit the inherent dependence of galaxies’ luminosities and colors on their total

stellar mass, M?, and star formation rate, Ṁ?, by selecting a sample of Milky Way analog

galaxies designed to reproduce the best Galactic M? and Ṁ? measurements, including all

measurement uncertainties. Making the Copernican assumption that the Milky Way is not
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extraordinary amongst galaxies of similar stellar mass and star formation rate, I then ana-

lyze the photometric properties of this matched sample, constraining the characteristics of

our Galaxy without suffering interference from interstellar dust. I explore a variety of po-

tential systematic errors that could affect this method, and find that they are subdominant

to random uncertainties. In this chapter I present absolute magnitudes, color indexes, and

mass-to-light ratios for the Milky Way in both SDSS ugriz and Johnson-Cousins UBV RI

passbands and in both z=0 and z=0.1 rest frames; these are in agreement with previous

estimates but can have up to ∼3× lower errors. This demonstrates that our Galaxy may be-

long to the green-valley region in color-magnitude space and ranks it amongst the brightest

and reddest of spiral galaxies.

In Chapter 4 I focus on the exponential scale length (Ld) of the Milky Way’s (MW’s) disk.

This is a critical parameter for describing the global physical size of our Galaxy, important

both for interpreting other Galactic measurements and helping us to understand how our

Galaxy fits into extragalactic contexts, as we will see in Chapter 5. Dozens of attempts have

been made to determine Ld over the past few decades, making it one of the most studied

characteristics of our Galaxy. Discouragingly, current estimates span a wide range of values

(∼1–6 kpc) and often are statistically incompatible with one another — a strong indication

that some must be contaminated by systematic or underestimated errors. Here, I set out

to determine an improved, consensus estimate for Ld by again utilizing the hierarchical

Bayesian (HB) meta-analysis technique that is laid out in Chapter 2. Within this machinery

I explore a variety of ways of modeling the nature of problematic measurements, and then

use a Bayesian model averaging technique to derive net posterior distributions that account

for the probability of each model being correct. This meta-analysis combines 29 different (15

visible and 14 infrared) photometric measurements of Ld available in the literature; these

correspond to a vast assortment of observational datasets, MW models and assumptions,

and methodologies, all of which are tabulated herein. I analyze various subsets of this

data in order to determine a photometric estimate using either visible or IR starlight, or

combining both. I show that these results are highly consistent with the available dynamical

estimates, and that the ratio between the visible and infrared scale lengths determined here

is very similar to that measured in external spiral galaxies. Finally, within this chapter I

11



develop an updated model of the Galactic disk using the photometric scale length determined

here in order to update the mass property estimates from Chapter 2 and subsequently the

photometric properties from Chapter 3.

In Chapter 5, with all of the Milky Way properties determined in the previous chapters

finally in hand, I investigate how the Milky Way compares to a variety of scaling relations

for other spiral galaxies. To generalize what has been learned about galaxy formation and

evolution from studies of the Milky Way (MW), we must understand how it compares to

other galaxies. A key example is the Tully-Fisher relation (TFR), the tight relationship

observed between a spiral galaxy’s luminosity (L) and its rotational velocity (Vrot), which

links the properties of dark matter halos to those of the luminous matter that they host.

Using our new estimates of MW properties, which are robust to many of the systematic

uncertainties that have been a problem in the past, we find that our Galaxy’s properties

are in excellent agreement with the TFR, in contrast to previous studies that found 1–1.5σ

tension. I provide an in-depth look at how previous comparisons of the Milky Way with the

TFR were impacted by systematic errors. I next extend this investigation to 3-dimensional

scaling relations that include galaxy size in the form of the disk scale length. I conclude

that the MW must be extraordinarily compact compared to other spiral galaxies of similar

L and Vrot. I elaborate on this with an extensive discussion on the fidelity of this result,

and discuss how similar peculiarities have been found by comparing the Milky Way satellite

properties to predictions from ΛCDM cosmological simulations.

Lastly, in Chapter 6, I summarize the many insights that this dissertation has yielded

about our home Galaxy. I describe for the reader the more comprehensive picture of the

Milky Way that has been developed — one that is not simply the prototypical blue, star-

forming spiral system that people believed just a decade or two ago. This is illuminated by

examining the various ways that the Milky Way falls into the galaxy population in varying

contexts. I conclude be discussing ways that this work can be expanded upon in the future,

especially through the further study of Milky Way analog galaxies.
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Figure 1.1: The Hubble Ultra-Deep Field image. (Credit: NASA; ESA; G. Illingworth, D. Magee, and P.
Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team.)
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2.0 IMPROVED ESTIMATES OF THE MILKY WAY’S STELLAR MASS

AND STAR FORMATION RATE FROM HIERARCHICAL BAYESIAN

META-ANALYSIS

2.1 INTRODUCTION

Determining the global properties of the Milky Way inherently poses unique challenges.

Unlike any other galaxy in the universe, we lack the ability to study the Milky Way from an

outside perspective. This disadvantage is greatly amplified by our location within the disk,

forcing us to peer through the dusty interstellar medium (ISM) when looking toward other

stars. The Galactic ISM inhibits our view of more distant regions of the disk, particularly

in the optical and near-UV wavelengths (cf. Herschel, 1785; Schlegel et al., 1998). For these

reasons, there are a limited number of studies in the literature that aim to produce a global

picture of our Galaxy.

Here, we aim to improve our understanding both of the total star formation rate (SFR)

and the total stellar mass of the Milky Way. We do this, not by analyzing any new obser-

vational data, but by statistically combining the prior measurements of these properties in

the literature using the power of a hierarchical Bayesian (HB) method (Press, 1997). Such

methods are not new to astronomy, though still rare in the literature; they can be a robust

and versatile tool for both data and model analysis, and subsequently their prevalence in the

literature has grown greatly in the past few decades (Loredo, 2012a). For instance, Newman

et al. (1999) applied this technique (in a maximum likelihood framework) to combine the

observed properties of 43 ± 7 real and similar number of imposter Cepheid variables found

in the Centaurus cluster, handling the possibility of false positive detections, in order to

determine a period-luminosity-relation based distance modulus to NGC 4603. Lang & Hogg
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(2012) were able to produce tight constraints on the orbit of Comet 17P/Holmes by applying

this method to the diverse set of image query results for “Comet Holmes” obtained from

the Yahoo! internet search engine. March et al. (2014) present an HB model to improve

constraints on cosmological parameters by combining information from supernovae (SN) Ia

lightcurves. Shetty et al. (2013, 2014) use the HB method to reveal the Kennicutt-Schmidt

relation, i.e., the relationship between star formation rate, Ṁ?, and molecular gas surface

density, Σmol, to be non-universal and in many cases sub-linear, indicating that Σmol alone

is insufficient to predict a galaxy’s SFR. Most recently, Mandel et al. (2014) applied this

method in order to disentangle the effect of systematic reddening due to host galaxy dust

from the expansion-velocity-dependent variation in intrinsic SN Ia colors.

Adopting a Bayesian perspective, our major goal in this chapter is to answer the question:

Given the previous measurements of a given parameter of the Milky Way, what conclusions

can we draw about its true value? We first apply this analysis method to estimate the

Milky Way’s SFR. We next consider the bulge and overall mass of the Milky Way. This

introduces additional complications due to variations in the Galactocentric radius of the

Sun, R0, assumed in different measurements. To deal with this, we combine our HB analysis

with Monte Carlo (MC) simulations which incorporate the current uncertainties in R0. The

MC method allows us to simultaneously produce new estimates for the stellar mass contained

in the bulge+bar, MB
? , the stellar disk mass, MD

? , and the total stellar mass, M?, of the Milky

Way, assuming the single-exponential disk model from Bovy & Rix (2013) and incorporating

uncertainties in R0, the exponential scale length of the disk, Ld, and the local surface density

of stellar material, Σ?(R0).

We structure this chapter as follows. In §2.2 we describe the hierarchical Bayesian

formalism we use in order to construct aggregate results incorporating the information from a

variety of independent measurements. In §2.3 we apply this technique to the prior estimates

of the Milky Way’s star formation rate. The results of the SFR analysis are discussed in

§2.3.3. Next, we take on a more complex example, ultimately constraining the total stellar

mass in the Milky Way. §2.4.1 details the stellar disk model we assume for this study. In

§2.4.2, we explain how we use Monte Carlo simulations to produce a new estimate of the

disk mass, to supplement the HB analysis used to determine the bulge+bar mass, and we
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combine these two results to yield the total stellar mass in the Galaxy. The results for these

three measurements are discussed in §2.4.5. We summarize and discuss the main results of

this study in §2.5. Lastly, in Appendix A we explore how plausible it is that Galactic disk

deviates from a pure exponential profile, and investigate how this would affect our results.

2.2 HIERARCHICAL BAYESIAN ANALYSIS

In this section, we describe the analysis methods we use to combine a set of measurements

for some observable (e.g., Ṁ? or MB
? ), along with their attendant uncertainties, into one

aggregate result using a hierarchical Bayesian (HB) formalism. Ultimately, this process

provides a new probability distribution function (PDF), referred to in Bayesian terms as

the posterior, for the observable of interest by combining the PDFs yielded from multiple

individual estimates, enabling us to incorporate the information gained from a variety of

independent observations and analyses. This method allows us to account for the possibility

that any of the measurements may be incorrect, or affected by systematic errors that have

been overlooked. This is a key advantage over calculating simpler statistics, such as the

standard inverse-variance weighted mean, which are more easily skewed by outliers and are

also contingent on the assumptions that the individual PDFs are Gaussian in form and

statistically compatible.

2.2.1 Defining the Problem

We begin by collecting a set of N independent measurements of observable O from the

literature, and denote this dataset as D. In a Bayesian framework, each study can be

considered to provide a PDF for the true value of O, µ0, given the data obtained; if the

probability distribution is Gaussian in form, it can be described by its mean value µi and

standard deviation σi. Under the assumption of normality, we know there should be a ∼68%

chance of µ0 being in the range µi±σi and ∼95% chance of it being within µi±2σi, assuming

all errors (statistical and systematic) are accounted for in σi. Of course, this is not always a
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safe assumption; often we may find that two separate measurements of O are in tension with

each other, producing results with 1σ or even 2σ confidence regions that do not overlap. If

this tension is sufficiently great, we can conclude that at least one of the estimates of µ0

must be affected by a bias or systematic error that has not been incorporated in σi; this is

not sufficient to determine which of the two estimates is problematic.

2.2.2 Relieving the Tension

Practically speaking, the measurements included in our dataset, given their nominal errors,

must always be in tension with each other at some level of significance. In order to resolve

this tension we can hypothesize that some of these studies have overestimated their ability

to measure O. Suppose that fgood denotes the fraction of “good” measurements; i.e., the

probability that any single measurement within D is accurately described by µi and σi. Thus,

1− fgood is the global fraction of measurements that are “bad” – i.e., inaccurate – generally

due to underestimated error bars (e.g., ones that omit the possibility of significant systematic

errors). With no a priori knowledge of which estimates are not “good”, we must find a way

to remedy their effect when obtaining combined constraints on µ0. In this study we explore

a number of ways to do this. For instance, perhaps the “bad” estimates simply require their

error bars to be scaled by a constant factor; we will denote the resulting degraded uncertainty

estimate by σn,i = nσi. We refer to this as the “free-n” model below.

More likely, problematic measurements may have overlooked systematic uncertainties in

their methods which should be added in quadrature to the nominal error estimates. Let

µMED
i denote the median of all the µi values. We investigate what happens when adding a

fractional amount Q of µMED
i in quadrature to the nominal error bars, such that the error

for a “bad” estimate is given by σ2
Q,i = σ2

i + (QµMED
i )2. We use QµMED

i here, instead of Qµi,

to avoid a slight bias toward assigning lower errors to lower valued estimates of µ0. We refer

to this as the “free-Q” model below. Instead, we could consider a case where there is a floor

value of fractional error which the the nominal error bars should not dip below. In such a

case we would use σF,i = FµMED
i if σi < FµMED

i , or otherwise σF,i = σi. We refer to this as

the “free-F” model below.
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Furthermore, it is possible that some of the included estimates are entirely wrong, and

thus should effectively be excluded from D. In this scenario we would handle this by replacing

the nominal Gaussian PDF with µi and σi by a uniform probability distribution over the full

potential parameter range. We label this as the “Pbad-flat” model below. We also examine

the results of assuming we have included no “bad” measurements in our analysis by forcing

fgood = 1 instead of allowing it as a free parameter (i.e., to assume that all of the µi and σi

are correct). All of these ways of dealing with the inclusion of “bad” measurements in our

dataset have different advantages and address the problem from a slightly different approach.

A hierarchical model allows us to quantify the affect of the “bad” measurements on the

combined results by simultaneously fitting parameters that describe the data (e.g., fgood, n,

Q, F ), while also fitting for those that describe the physical model (e.g., µ0). It is important

to note that, in all cases, the constraints on the physical parameter of interest yielded by this

technique will only be improved if the systematics affecting the individual measurements are

different, as systematic errors that are common across a set of measurements do not improve

by adding more data. In the following section, we describe the HB formalism we use to

analyze each scenario and the criteria we use to distinguish which of these models best fits

the data.

We note that while we have labeled our technique as “hierarchical,” this should not be

confused with methods that recently have been labeled as “Bayesian hierarchical modeling”

or “Hierarchical Bayes” (e.g., Loredo, 2012b; Gelman et al., 2013; Martinez, 2015), which are

defined by having several layers of parameters, typically such that priors on model parameters

are themselves dependent on additional free parameters (i.e., hyperparameters), and hence

require their own priors (i.e., hyperpriors). Here, we use the terminology “hierarchical” in

the sense that our method relies on fitting for free parameters that characterize only a subset

of the data that we analyze simultaneous to the physical parameter of interest (e.g., Ld).

One could alternatively refer to our method as a “Bayesian mixture model” approach to

meta-analysis (Hogg et al., 2010).
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2.2.3 The Formalism

We closely follow the prescription laid forth by Press (1997) and refer the reader to this

work for a more in-depth derivation. Bayes’ theorem provides the framework in which we

can calculate the probability of a particular model given data D:

P (Θ | D) =
P (D | Θ)P (Θ)

P (D)
, (2.1)

where Θ is a vector containing the free parameters of the model. Here, the posterior prob-

ability P (Θ | D) is equal to the product of the likelihood P (D | Θ) and the prior P (Θ),

divided by the evidence P (D). The likelihood is the probability of obtaining the actual

measurements D, given that the parameters Θ specify the correct model of the data. The

prior reflects our previous knowledge of what the parameters of the true model are, before

the data D are considered. In general, this must be subjectively chosen. The evidence rep-

resents the overall probability of finding the data in hand, and when considered on its own it

provides a useful means of comparing different models, as we will discuss in §2.2.3.4. This is

obtained by integrating the likelihood weighted by the prior (i.e., the numerator of Equation

(2.1)) over all possible values of Θ; hence it is also sometimes called the marginal likelihood.

As written here, the posterior yields a properly normalized PDF representing the degree of

belief of the model parameters Θ being in a given range.

2.2.3.1 The Likelihood We begin with the assumption that all measurements may

be represented by the combination of two probability distributions, representing the possi-

bility that it is “good” or “bad”. The PDF for µ0 given a measurement will be P (µ0) =

P (µ0 | “good”)P (“good”)+P (µ0 | “bad”)(1−P (“good”)); the probability that a given mea-

surement is “good” is simply fgood. We assume that each measurement in D is statistically

independent from all the others; in that case we may write the overall likelihood for D as

the product of the likelihoods for each measurement we include. For each of the scenarios

described above in §2.2.2, the appropriate likelihood is given by:
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For the free-n model (i.e., where “bad” measurements are assumed to be underestimating

errors by a constant factor), the likelihood is

P (D | µ0, fgood, n) =

N∏

i=1

(
fgood√
2πσ2

i

exp

[−(µi − µ0)2

2σ2
i

]
+

1− fgood√
2π(nσi)2

exp

[−(µi − µ0)2

2(nσi)2

])
. (2.2)

For the free-Q model (i.e., where “bad”-measurement errors are assumed to require extra

uncertainty added in quadrature), the likelihood is

P (D | µ0, fgood, Q) =

N∏

i=1

(
fgood√
2πσ2

i

exp

[−(µi − µ0)2

2σ2
i

]
+

1− fgood√
2π
(

(σi)2 + (QµMED
i )2

) exp

[ −(µi − µ0)2

2
(
(σi)2 + (QµMED

i )2
)
])

.

(2.3)

For the free-F model (i.e., where “bad” measurements are assumed to be underestimating

errors only if they are below a minimum threshold), the likelihood is

P (D | µ0, fgood, F ) =

N∏

i=1





fgood√
2πσ2

i

exp
[
−(µi−µ0)2

2σ2
i

]
+

1−fgood√
2π(FµMED

i )2
exp

[
−(µi−µ0)2

2(FµMED
i )2

]
, if σi < FµMED

i

1√
2πσ2

i

exp
[
−(µi−µ0)2

2σ2
i

]
, otherwise.

(2.4)

In this model, fgood is the fraction of “good” measurements assuming the given value of F ;

i.e., it is the fraction of accurate measurements amongst those with σi < FµMED
i . This is

subtly different from the former two models, where fgood characterizes the entire dataset at

any given value of n or Q.

For each of the above 3 models, we also explore the results of assuming that all mea-

surements included in D have misestimated errors to some extent by not treating fgood as a

free parameter, but rather setting it to zero.

For the Pbad-flat model (i.e., where “bad” measurements are assumed to be entirely wrong

and discardable, and so we replace their PDFs with a flat distribution), the likelihood is

P (D | µ0, fgood) =
N∏

i=1

(
fgood√
2πσ2

i

exp

[−(µi − µ0)2

2σ2
i

]
+ (1− fgood)× const.

)
. (2.5)
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The constant here is chosen such that the integral of P (µ0 | “bad”) is equal to 1.

Lastly, there is the possibility that all of the measurements included in our analysis are

“good” and have accounted for all uncertainties in their analyses. We can determine µ0 for

this scenario by setting fgood to unity; in this case, the results of the HB analysis method

become equivalent to the inverse-variance weighted mean of the individual measurements.

Effectively, this model serves as the null hypothesis of our study, and we denote this as the

all-“good” model when comparing our results.

In total, this yields 8 different ways of modeling “bad” measurements that could influence

our aggregate estimate of µ0. In §2.2.3.4 we will describe which of these options is best to

follow.

2.2.3.2 The Prior If we assume that our prior knowledge of the parameters of our

model are unrelated to each other, the overall prior for Θ is separable into the product

of the priors for each parameter. For example, in the context of this study, we would

not expect that the probability of an astronomer quoting accurate error bars on his/her

result should be different if the Milky Way is truly producing 3 solar masses worth of new

stars each year as opposed to 2. This means we can write the joint prior P (µ0, fgood) as

P (µ0)P (fgood | µ0) = P (µ0)P (fgood). Likewise, in the absence of data, we would not expect

a parameter that describes how inaccurate a study’s error bars are to be dependent on the

probability of any one measurement being “bad” or the mass of new stars being formed in

the Galaxy per year.

For all 4 free parameters we use to characterize “good” and “bad” estimates we choose

flat priors, meaning that we believe there is a 100% chance of the true value being within

a given range, and any single value within that range has equal probability to any other.

We note that these assumptions are somewhat arbitrary; for instance, a flat prior in a given

quantity corresponds to a non-flat prior for the log of that quantity. Flat priors in log space

are generally preferred for quantities with no relevant scales/order of magnitude; however,

that does not apply here. Effectively, our choice causes all posterior distributions we calculate

to be determined only by the likelihood of the observed data. For the free-n model we assume

100% probability that n is in the range [1,4]; i.e., that the errors for “bad” measurements
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will be underestimated by a factor no less than 1 and no greater than 4. In turn, for the

free-Q model we assume 100% probability that Q is in the range [0,1]; i.e., the extra error

needed to be added in quadrature to correct the nominal error bars of a “bad” measurement

is no less than 0 and no more than 100% of µMED
i . Lastly, for the free-F model we assume

100% probability that F is in the range [σMIN
i /µMED

i ,1], where σMIN
i is the minimum error

estimate of all measurements included in D; i.e., the minimum error estimate for any “bad”

measurement should be no less than σMIN
i and no larger than µMED

i . The priors can then be

expressed as piece-wise functions,

P (fgood) =





1, if 0 ≤ fgood ≤ 1

0, otherwise;

(2.6)

P (n) =





1
3
, if 1 ≤ n ≤ 4

0, otherwise;

(2.7)

P (Q) =





1, if 0 ≤ Q ≤ 1

0, otherwise;

(2.8)

P (F ) =





1
1−σMIN

i /µMED
i

, if σMIN
i /µMED

i ≤ F ≤ 1

0, otherwise.

(2.9)

2.2.3.3 The Marginalized Posterior In this subsection, we detail how the posterior

PDF for a single parameter of our model is produced from the joint posterior from the HB

analysis, using the free-n model as an example. Returning to Equation (2.1), the posterior

PDF for the parameters of our model will be

P (µ0, fgood, n | D) ∝

P (µ0)P (fgood)P (n)
N∏

i=1

(
fgood√
2πσ2

i

exp

[−(µi − µ0)2

2σ2
i

]
+

1− fgood√
2π(nσi)2

exp

[−(µi − µ0)2

2(nσi)2

])
.

(2.10)
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It is often more informative to consider the posterior for an individual parameter; we can

simply obtain this by marginalizing : i.e., integrating the PDF over all other parameters of

the model. For instance, in our example, if we are interested in the marginalized posterior

for µ0, then we calculate

P (µ0 | D) =

∫ ∫
P (µ0, fgood, n | D) dfgood dn. (2.11)

Note that this result averages over all possible values of fgood and n. Lastly, we normalize

the posterior to be a true PDF by dividing by the evidence, which is obtained by integrating

Equation (2.11) over all µ0.

2.2.3.4 Choosing Amongst Models In this study, we consider a variety of ways to

model the inclusion of “bad” measurements in our dataset. Generally speaking, a model

with more free parameters will be able to produce a better fit to the data; however, the

constraints on the model will be weaker, as there are more degeneracies introduced between

parameters. In order to compare the utility of the models to each other, we calculate the

evidence for each model. If Mk labels a particular model which is specified by parameters

Θ, then the evidence for model Mk is

P (D |Mk) =

∫
P (D,Θ |Mk) dΘ =

∫
P (D | Θ)P (Θ |Mk) dΘ; (2.12)

this is simply the likelihood integrated over all possible parameter values of the model,

weighted by their priors. This provides a natural, Bayesian method of incorporating the

principle of Ockham’s razor into our model comparison. Essentially, the evidence will be

maximized by a model’s ability to better fit the data; however, this will be compromised if

excessive parameter space is required to achieve such a fit. As the all-“good” model represents

the null hypothesis for our HB analysis, for each model we report the Bayes Factor defined

as

Bk =
P (D |Mk)

P (D |Mall-“good”)
. (2.13)

Effectively, Bk represents the ratio of the posterior odds to the prior odds of Mk the being

the correct model over Mall-“good” (Kass & Raftery, 1995, and references therein). As defined

this way, we choose the best model of the data to be the one with largest Bk. In our tables
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we list for each model the difference in log10 Bk compared to our fiducial model; a difference

of 2 is commonly used to indicate statistically significant differences in model utility.

As alternatives to the Bayes Factor, we also report the Akaike information criterion

(Akaike, 1974, hereafter AIC), defined as

AIC = −2 ln L + 2k, (2.14)

and the Bayesian information criterion (Schwarz, 1978, hereafter BIC), defined as

BIC = −2 ln L + k lnN, (2.15)

where N is the number independent measurements included in our analysis, k is the number

of free parameters of the model, and L is the maximum likelihood value. These provide a

secondary and less sophisticated way of weighing the goodness of fit against the number of

free parameters included in each model, and whose comparison can serve as a rough (and

less computationally intensive) approximation to comparing log10 Bk values. However, in

contrast to the Bk values, the best model of the data would be the one that minimizes the

information criteria. Thus, for each model we report ∆AIC (or ∆BIC) measured from the

lowest AIC (or BIC) value amongst all models; similar to the ∆ log10 Bk values, a change of

∼2 is indicative of statistically significant differences in model utility (Burnham & Anderson,

2002). Note that, as AIC and BIC values are calculated on a natural logarithm scale, this

constraint is a bit less conservative than the one used for ∆ log10 Bk values (i.e., bigger

differences in ∆ lnBk are required to indicate a significant difference).

The remainder of this chapter focuses on two application of the HB method. First, we

use this technique to constrain the star formation rate of the Milky Way. In our second and

more complex example, we produce an hierarchical estimate of the stellar mass contained in

the combined bulge & bar components of the Milky Way, where we must incorporate Monte

Carlo simulations into our technique to reflect uncertainties in the Sun’s Galactocentric

radius. Simultaneously, we produce PDFs for the stellar mass of the disk component of the

Galaxy, as well as its total stellar mass. As mentioned earlier, we are effectively assuming

that if there are systematic errors in measurements of the Milky Way properties, they will

generally not be in common amongst all the techniques, but rather, given the multitude of
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methods applied, many methods should have different systematics (of differing signs). If

that is not the case, errors will not be reduced when combining information from multiple

results.

2.3 THE MILKY WAY’S STAR FORMATION RATE

2.3.1 The SFR Data

Recent work by Chomiuk & Povich (2011) provides a thorough review and renormalization of

Galactic star formation rate (SFR), Ṁ?, estimates made in the last three decades. Examining

these original works reveals a discouraging scatter in the derived results, spanning the range

of 1 to 10 M� yr−1. This proves to be predominantly due to a heterogeneous mixture

of initial mass functions (IMFs) and stellar population synthesis (SPS) models used. The

authors translate these results all to a uniform choice of the Kroupa broken-power-law IMF

(Kroupa & Weidner, 2003) as well as the Starburst99 v5.1 SPS model (Vázquez & Leitherer,

2005). As a result, these studies, which encompass many different methods and observational

surveys, all collectively are in general agreement with each other after being placed on an

equal footing, converging to a SFR of Ṁ? = 1.9±0.4 M� yr−1. We refer the reader to Table 1

of Chomiuk & Povich (2011) for the data we use to estimate the Milky Way SFR, as well as to

their §3 for a detailed discussion of the measurements. We do not utilize the first two entries

in that table, the measurements from Smith et al. (1978) and Güsten & Mezger (1982), as

these were both updated by the Mezger (1987) radio free-free result. Additionally, the error

estimate on the Misiriotis et al. (2006) dust-heating measurement has been increased to 0.95

M�; i.e., due to the lack of error estimates we assign 50% uncertainty to it. This particular

dataset is denoted DSFR hereafter.

2.3.2 Setting a Prior on Ṁ?

To place a prior on its SFR, we utilize the fact that the Milky Way is confidently known to

be a spiral galaxy. In addition, it appears that the Galaxy has experienced a relatively quiet
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merger history, undergoing predominantly secular evolution with no significant interactions

to spark a large burst of new stars (e.g., Unavane et al., 1996; Mutch et al., 2011). Therefore,

we agnostically assume that the Galactic SFR could be anywhere from 0 to 6 solar masses per

year (before considering the data in §2.3.1). This is represented using a uniform probability

distribution, such that

P (Ṁ?) =





1
6
, if 0 ≤ Ṁ? ≤ 6 M�yr−1

0, otherwise.

(2.16)

2.3.3 SFR Results

Table 2.1 shows the hierarchical Bayesian constraints on Ṁ? from each model that we con-

sider. The overwhelming similarity between the posterior results from these different models

to a simple weighted average (corresponding to the last line in the table) suggests that

nominal errors on each measurement in the SFR dataset are likely very accurate, if not

overestimated. In Figure 2.1, we show the joint posterior PDF for fgood and n (normalized

to a peak value of 1); the posterior obtained by marginalizing over Ṁ? is maximized where

fgood and n each approach unity. Figure 2.2 shows the marginalized posterior probability for

fgood for each model which allows it to be a free parameter. It is clear from the plot that

modifying the error bars of ”bad” measurements in any way yields little preference for a

particular value of fgood, whereas throwing out “bad” estimates favors values near one. This

occurs because for values of n near 1 (or Q or F near 0), fgood has very little effect, so a

broad range of fgood values yield similar results.

Similar analyses to that in Fig. 2.1 for each of the models of “bad” measurements yields

the same overall message: the measurements are sufficiently consistent with each other that

little, if any, adjustment of the nominal errors is demanded. In fact, we find that for any

model for how to remedy “bad” estimates within the HB formalism, the data always drives

towards a point in k-dimensional parameter space with few points treated as discrepant; i.e.,

fgood ≈ 1, and Ṁ? ≈ 1.66 M� yr−1; or, alternatively, fgood < 1 but n = 1 or Q or F = 0,

which has equivalent effect. The best model of the data (i.e., the one with largest Bayes

Factor, Bk) turns out to be where we set fgood = 1, uniformly treating every estimate as
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“good” and hence requiring the fewest free parameters in the fit (only Ṁ? itself). This yields

an aggregate SFR for the Milky Way of Ṁ? = 1.65± 0.19 M� yr−1, which we choose as our

fiducial result. For comparison, we overlay the individual measurements in the SFR dataset

on our fiducial hierarchical result in Figure 2.3. We note that, as we are using flat priors, this

scenario gives the same result as the inverse-variance weighted mean (IVWM). The finding

that the data are sufficiently compatible that a simple model is sufficient matches well with

what we would conclude using the chi-squared statistic to judge goodness-of-fit. Specifically,

the IVWM for our sample of SFR measurements yields χ2 = 3.83, and we would expect a

95% chance of this statistic falling in the range [2.18, 17.53].

Chomiuk & Povich present arguments suggesting that the Robitaille & Whitney (2010)

measurement may more accurately be treated as a lower limit rather than a best-fit value

for the SFR. Given that uncertainty, we investigate the effect of doubling the nominal errors

in that measurement within our calculation. Making this change yields a < 1σ shift in

the mean of the posterior distribution. With this deweighting, the inclusion or exclusion

of this measurement has little impact on our results (changing the consensus Milky Way

SFR by no more than 0.17 M� yr−1). A second concern arises from that fact that equations

(2.2)-(2.5) are contingent on the individual measurements being independent of one another.

We note that, even though Bennett et al. (1994) and McKee & Williams (1997) utilize

the same COBE data, the errors in their SFR estimates appear to be dominated by the

differences between the assumptions made by the authors, and so we expect that we can

treat them as independent measurements. We show how our aggregate SFR estimate varies

under these different treatments of the Robitaille & Whitney (2010) measurement, as well

as when excluding the Bennett et al. (1994) measurement, in Table 2.2.

If all of the star formation rate estimates employed suffer from a common systematic

error, this would not be reflected in the hierarchical Bayesian result. For instance, if the

Kroupa IMF is unlike the actual initial mass function in the Milky Way, our SFR estimates

could all be systematically off from the true value in a similar way. However, this error would

cancel out when the Galaxy is compared to extragalactic objects, for which SFRs and stellar

masses are generally calculated assuming Kroupa-like IMFs. Similarly, Chomiuk & Povich

have recalibrated each of the Milky Way Ṁ? estimates to the Kennicutt (1998a) assumption
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that a SFR of 1 M� yr−1 produces a Lyman continuum photon rate of 9.26 × 1052 photon

s−1 for a Salpeter IMF (this relationship is then reduced by a factor of 1.44 to convert it to

the Kroupa IMF). If this assumption is in error, then all the SFRs in our dataset would be

affected. However, once more, extragalactic SFRs would be off by the same factor, so that

this systematic will drop out when comparing the Milky Way to other galaxies.

Apart from the IMF and the Lyman continuum rate to SFR relationship, common-mode

systematics amongst all the SFR measurements appear to be unlikely. This is due to both the

diversity of techniques used to estimate the Galactic star formation rate and the wide range

of assumptions made by the different studies that utilize the same basic techniques. However,

one might still worry that there are common underlying assumptions that may systematically

offset SFR results from one method in comparison to all the others. For instance, two of the

nine studies we use estimate the Galactic SFR by modeling the population of young stellar

objects (YSOs) found from infrared (IR) surveys of the Galaxy. While these studies employ

entirely different IR data, they are both contingent on assumptions about the properties

of YSOs, which do not affect the other measurements, and in turn can systematically shift

these results in unison with respect to the measurements utilizing different methods. Our

HB analysis assumes that the errors from each study are random compared to each other

and hence does not address this type of common-mode effect (much as the inverse-variance

weighted mean would not).

To test whether method-to-method variations are significant, we have performed boot-

strap resampling of the SFR data by randomly drawing only one measurement out of those

utilizing each measurement technique (e.g., all those based on the measured ionization rate

or YSO counts). Hence, each resampled dataset comprises four SFR estimates, each obtained

from a unique measurement method, which we then use to calculate the HB posterior using

the all-“good” model (allowing no extra compensation for systematic errors). We repeat

this process 1,000 times, each time measuring the mean from the posterior distribution. We

then do a similar analysis, but where we instead draw four measurements at random from

the entire dataset each time. We find the standard deviation of the mean to be 0.22 if

we use four measurements from different methods and 0.25 if we select four measurements

completely at random. This indicates that inter-method variations are negligible compared
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to intra-method random variations – if anything, SFR measurements from different methods

are more similar to each other than those which utilize the same technique. We therefore

can safely conclude that common-mode systematics do not have a large impact.

2.4 THE MASS OF THE MILKY WAY’S STELLAR COMPONENTS

In this section we describe the methods we use to produce improved estimates of the total

stellar mass, M?, in the Milky Way and its components. To do so, we first make independent

estimates of the stellar mass contained in the disk and bulge+bar components, MD
? and MB

?

respectively. For MD
? , we assume the single-exponential model of the Galactic disk from Bovy

& Rix (2013), and use Monte Carlo (MC) simulations to incorporate updated estimates of

the Sun’s Galactocentric radius, R0. We constrain MB
? using our HB formalism, similar to the

analysis done in §2.3 for Ṁ?, but now using the MC simulations to propagate uncertainties in

the value of R0 into the bulge mass posterior. Lastly, we combine self-consistent realizations

of MB
? and MD

? to yield a probability distribution describing the total stellar mass.

2.4.1 The Stellar Disk Model

To model the structure of the Milky Way, we assume the stellar material of the disk is

distributed in a single-exponential surface density profile. Integrating this profile over all

radii yields the total stellar mass,

MD
? = 2πΣ?(R0)L2

d exp(R0/Ld), (2.17)

where Σ?(R0) is the surface density of stellar mass in the local neighborhood and Ld is

the exponential scale length of the disk. Specifically, we constrain these parameters to

be consistent with the measurements made by Bovy & Rix (2013, see Appendix A for a

discussion of alternative disk models).

Using SDSS/SEGUE spectroscopic measurements, these authors have segregated a uni-

form sample of ∼16,000 G-type dwarf stars into 43 mono-abundance populations (MAPs)

29



based on their position in [α/Fe]-[Fe/H] space. G-type dwarfs were considered to be the opti-

mal tracers of the structure of the disk as they are most luminous stars whose main-sequence

lifetimes are larger than the age of the disk at practically all metallicities. Separated in this

way, the spatial distribution of each MAP is well fit by a single-exponential profile both

radially from the Galactic center and perpendicularly from the plane of the disk, indicating

that the disk is likely composed of a more continuous distribution of populations rather than

just the classical separation into thin and thick disk components (see also Bovy et al., 2012a;

Rix & Bovy, 2013).

By independently fitting an action-based distribution function and Galactic potential

to each MAP in position-velocity phase-space, the authors are able to measure the vertical

force at |Z| ≈ 1 kpc as a function of Galactocentric radius in the region 4 . R . 9 kpc;

this quantity is directly proportional to the surface density of stellar mass, Σ?. Including the

contribution from all MAPs, the authors are able to make the first dynamical determination

of the total stellar surface-mass density at the Galactocentric radius of the Sun, Σ?(R0) =

38 ± 4 M� pc−2; this is measured directly from the mass distribution of substellar objects,

main-sequence stars, and stellar remnants, as opposed to inferring it from their luminosity

(cf. Jurić et al., 2008). Similarly, the mass-weighted scale length determined from all MAPs

is Ld = 2.15± 0.14 kpc.

Assuming R0 = 8 kpc and accounting for the uncertainty and covariance in Ld and

Σ?(R0), Bovy & Rix (2013) find MD
? = 4.6± 0.3× 1010 M�. They also find that increasing

R0 to 8.5 kpc in their model produces a 1.5×1010 M� increase in M?; this effect approximately

scales linearly for intermediate radii. The scale length and local surface density of the disk

are independent of R0. For our purposes, it is important to include the current uncertainties

in R0 into our model of the Milky Way, and so we employ the following process for this

study:

I) We model the covariance between the local surface density and scale length in this model

by calculating Σ?(R0) as a function of Ld. To do so, we first fit for a linear mapping

between these two parameters based on the 2D joint-posterior PDF that describes them

(provided by Bovy, 2013, priv. comm.). This relation gives the appropriate value of

Σ?(R0) for a given value of Ld. We then determine what uncertainty in Σ?(R0) would
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yield the Bovy & Rix (2013) error of 0.3 × 1010 M� in MD
? using Equation (2.17) after

this covariance and the errors in Ld are accounted for.

II) We assume R0 = 8.33±0.35 kpc from Gillessen et al. (2009), which is estimated by fitting

the orbital parameters of 28 stars in near-orbit of the Galaxy’s central massive black

hole, building upon 16 years of observations, and taking into account both random and

systematic errors. This result is in excellent agreement with other recent measurements

of R0 (e.g., Ghez et al., 2008; Vanhollebeke et al., 2009; Sato et al., 2010; Chatzopoulos

et al., 2015), with a large enough error to encompass the variation in results amongst

different methods.

III) Given dMD
? /dR0 from Bovy & Rix, we can then predict both the mass that would have

been measured by Bovy & Rix for different R0 and the uncertainty in that estimate due

to measurement errors in Ld and Σ?(R0) alone.

The overall goal of this study is to produce updated and accurate estimates of the total

stellar mass and star formation rate of the Milky Way that may be directly compared with

those properties measured for any external galaxy. In particular, we aim to be consistent

with the definition of M? and Ṁ? as measured for external galaxies in the MPA-JHU cat-

alogs (Brinchmann et al., 2004), which assume the Kroupa IMF and that M? includes the

contribution from both main-sequence stars and remnants, but not brown dwarfs (BDs), in

accordance with the assumptions made for the stellar spectral evolution models of Bruzual

& Charlot (2003). The dynamical estimate of Σ?(R0) from Bovy & Rix (2013) effectively

includes BDs, so one way to get the density we want is to subtract them off.

The BD mass function (i.e., ξ(M) ∝M−α where 0.005 < M/M� < 0.1) appears to have

power-law index in the range −0.5 . α . 0.5 (Cruz et al., 2007; Kirkpatrick et al., 2012;

Day-Jones et al., 2013; Burningham et al., 2013). We normalize the mass function so that the

portion corresponding to L0–L3 BDs, i.e., objects with masses in the range 0.03 < M/M� <

0.05 (following the models of D’Antona & Mazzitelli, 1997, updated 1998), integrates to a

total number density of 1.7 × 10−3 pc−3 (matching Cruz et al., 2007). Accounting for the

range of possible α values, we then integrate ξ(M) ×M over the entire BD mass range to

find a mass density of ∼2.5–3 × 10−4 M� pc−3. Lastly, as required for a single-exponential

disk profile, we multiply this by 2 times a scale height of the disk of hz = 400 pc (Bovy &
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Rix, 2013), yielding predicted BD surface densities of ∼5–6 M� pc−2. Earlier measurements,

however, have yielded lower surface densities at ∼0.5–2 M� pc−2 (Fuchs et al., 1998; Flynn

et al., 2006, and references therein). Based on these analyses, we conservatively assume that

the local surface density of BDs is in the range 0.5 . ΣBD(R0) . 6 M� pc−2; assuming a

uniform distribution over this range, we find ΣBD(R0) = 3.25± 1.59 M� pc−2. Subtracting

this from Bovy & Rix’s dynamical estimate, we find Σ?(R0) = 34.75± 4.30 M� pc−2.

Alternatively, we could compare to the stellar surface density estimate from Bovy et al.

(2012a), which omits BDs but also white dwarfs (WDs) that we want to include. To remedy

this, we collect a number of literature estimates of the spatial density of local white dwarfs:

Oswalt et al. (1996) find 0.0076 pc−3; Leggett et al. (1998) find 0.0034 pc−3; Jahreiß & Wielen

(1997) find 0.005 pc−3; Knox et al. (1999) find 0.00416 pc−3; Holberg et al. (2008) find 0.0048

pc−3; and Sion et al. (2009) find 0.0049 pc−3. Using the mean and standard deviation of this

sample, we assume the local volume density of WDs is ρWD = 5.0±1.4×10−3 pc−3. Following

our disk model, we multiply this by 2 times a scale height of hz = 400 pc (Bovy & Rix, 2013,

and ascribing 10% error) and an average WD mass of 〈M〉WD = 0.65±0.01 M� (Falcon et al.,

2010) to find the local surface density of white dwarfs ΣWD(R0) = ρWD × 2hz × 〈M〉WD =

2.6±0.8 M� pc−2. As a consistency check, we add this to the Bovy et al. (2012a) photometric

estimate of 32.0±3.2 M� pc−2 (due to main-sequence stars, assuming the Kroupa (2003) IMF

and 10% uncertainty), yielding Σ?(R0) = 34.6± 3.3 M� pc−2; this is in excellent agreement

with the corrected dynamical estimate, which we adopt for the remainder of this study, given

its more conservative error estimate. For convenience, we tabulate all parameters of our disk

model, and their interdependencies, in Table 2.3. Plugging these expressions into Equation

(2.17), any realization of the total stellar disk mass from our Monte Carlo simulations is a

function of the Galactocentric radius of the Sun and the scale length (independently drawn

from their attendant probability distributions):

MD
? (R0, Ld) = 2π(31.75Ld/kpc− 33.5125± 2.89)(Ld/kpc)2 exp(8 kpc/Ld)

+3(R0/kpc− 8)× 1010 M�. (2.18)
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2.4.2 Monte Carlo Techniques

As we shall see in §2.4.3, many estimates included in our Galactic bulge+bar mass dataset

are dependent on assumptions made about the values of R0 and/or MD
? , and hence depend

upon all of our disk model parameters. However, as denoted in Table 2.3, the true value of

these parameters are not perfectly known; we can describe our prior knowledge of each one by

a probability density function. In order to propagate the uncertainties in these parameters’

values into the resulting posteriors describing the stellar mass of the disk and bulge, as well

as their combination for the total stellar mass of the Galaxy, we perform a series of Monte

Carlo (MC) simulations.

Unlike the parameters describing our “bad”-measurement models (Θ), we are uninter-

ested in producing new results for our disk model parameters. We have much greater confi-

dence in the priors we have chosen for R0, Ld, and Σ?(R0) based on the more direct observa-

tions described in the previous section than anything we would infer about those quantities

from the set of bulge mass measurements. Therefore, in this application we want to ensure

that the results of our HB formalism will reflect the information contained in the priors in

Table 2.3. We will collectively denote the set of disk parameters as N, as we are uninterested

in allowing the MB
? data to modify any conclusions about what the values of those “nuisance”

parameters may be. Formally, we are making the assumption that P (N | D) = P (N) – i.e.,

that our state of knowledge of the nuisance parameters is not affected by the bulge dataset

– and we refer to this as the “strict-prior” method below. In this framework, our procedure

is as follows:

I) We independently and randomly generate a sample of 103 values of R0 and Ld, which

collectively reproduce the respective mean and standard deviation given in Table 2.3.

Then for each realization of the scale length of the disk, Ld,i, we randomly draw a

corresponding value of Σ?(R0)i based on the relationship listed in Table 2.3.

II) For each of the 103 sets of randomly drawn parameters, Ni = {R0, Ld,Σ?(R0)}i, we

calculate the corresponding disk mass, MD
?,i, using Equation (2.18). The result is a

distribution of possible Galactic disk masses, which we normalize to produce P (MD
? | D).

Note that this is consistent with our strict-prior assumption that P (N | D) = P (N), and
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so the fraction of times that MD
?,i calculated from the Ni occurs in the Monte Carlo will

be proportional to P (N).

III) We determine the value of each literature MB
? measurement (listed in Table 2.4) that

would have been obtained assuming these parameters are correct. This ensures that all

measurements make consistent assumptions about the structure of the Galaxy, allowing

them to be combined fairly. We refer the reader to the following section for these details.

IV) For each iteration of III, along with the prior chosen for MB
? , which we will detail in

§2.4.4, we calculate the joint k-dimensional posterior P (Θ | D,Ni) via an HB analysis,

as described in §2.2. After marginalizing out the other parameters in Θ, each realization

of the bulge mass posterior can be written

P (MB
? | D,Ni) =

P (D | MB
? ,Ni)P (MB

? )

P (D | Ni)
, (2.19)

applying Bayes theorem as usual. By the definition of marginalization, P (MB
? | D) =

∫
P (MB

? ,N | D) dN; and applying the definition of joint probability and our strict-prior

assumption, this is equal to
∫
P (MB

? | D,N)P (N) dN. If we draw values Ni from our

prior distribution P (N), this integral will be equal to

lim
n→∞

1

n

n∑

i=1

P (MB
? | D,Ni), (2.20)

since the fraction of times that Ni occurs in the Monte Carlo will be proportional to P (N).

Note also that Bayes’ theorem allows us to rewrite the denominator in Equation (2.19)

as P (D | Ni) = P (Ni | D)P (D)/P (Ni), and by applying our strict-prior assumption this

reduces to simply P (D). Thus, in order to construct the combined MB
? result for a given

model of “bad” measurements, we are able to simply average the individual posteriors

from the Monte Carlo realizations:

P (MB
? | D) =

1

1000

1000∑

i=1

P (D | MB
? ,Ni)P (MB

? )

P (D)
. (2.21)

The posterior PDF for each of the other parameters of the “bad”-measurement model

are calculated in the same way. In addition, we record the AIC, BIC, and Bk for each

iteration, yielding a distribution of values. In practice, we find that 103 realizations

produces a standard error in the median ∆ log10 Bk/AIC/BIC values much smaller than
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0.5, which is sufficient to assess differences in the utility of different models securely

(compared to our ∆ = 2 criterion for significance).

V) We also produce a posterior for the total stellar mass from each iteration, P (M? | D,Ni),

in a model-consistent manner by simply defining M?,i = MB
? +MD

?,i. Again, we can average

the individual posteriors, P (M? | D,Ni), to obtain P (M? | D), similar to Equation (2.21).

Lastly, we also calculate the model-consistent posterior describing the bulge-to-total mass

ratio by normalizing the distribution of values (B/T )i = 〈P (MB
? | D,Ni)〉/〈P (M? | D,Ni)〉

to integrate to unity, where angled brackets denote the mean of the enclosed posterior

distribution.

One way of thinking about the strict-prior method is in terms of the Bayesian definition

of probability as a degree of belief: P (MB
? | D,Ni) represents what we would conclude about

MB
? based on living in a Galaxy with parameters Ni. The prior P (N) represents our belief

of how likely the parameter values Ni are to be correct compared to other possible values,

and hence is the correct weighting to determine what we would believe about P (MB
? | D),

taking into account all possible values of N and how probable we believe each of those values

are. This assumption is appropriate here, given that the bulge mass determinations depend

only very indirectly on disk parameters, so we would place little faith in constraints on

disk properties that came from the bulge mass dataset as opposed to the much more direct

methods now available.

An alternative method would be to sum the likelihoods, P (D | MB
? ,Ni), and normalize

that result to unity (which we will refer to as the “weak-prior” method). This is equivalent

to calculating the evidence-weighted average of the posteriors calculated in the course of the

strict-prior method. In this case, the posterior we calculate incorporates the assumption

that P (N | D) 6= P (N): i.e., that our state of knowledge of the nuisance (disk) parameters

should be influenced by the set of bulge mass measurements. Hence, all the parameters in

Table 2.3 would be treated in the same way as those contained in Θ, differing only in the

informativeness and nature of the priors applied. Effectively, the weak-prior method assumes

that values of the parameters N under which the data were most likely to have been observed

should be given greatest weight, even if they are disfavored by our priors.

We have much greater confidence, however, in the priors we have chosen for R0, Ld,
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and Σ?(R0) based on more direct observations than anything we would infer from the set of

bulge mass measurements, and so the weak-prior method appears to be inappropriate here.

In practice, the posteriors for the disk mass, P (MD
? | D), and hence also for the total mass,

P (M? | D), differ significantly (with a mean differing by ∼1σ) between the two methods;

however, the bulge mass estimate differs little between the strict- and weak-prior methods

(with a mean differing by ∼0.1σ).

2.4.3 A Uniform Sample of Bulge+Bar Mass Measurements

In this study, we define MB
? as the excess mass over a single-exponential disk in the total

stellar mass budget for the Galaxy. We begin by searching the literature for measurements

of the combined stellar mass of the bulge, pseudo-bulge, and/or bar components of the

Milky Way, which collectively fall into the category of MB
? . A diverse set of methods, mod-

els, and observations have been used to make these estimates. For instance, Dwek et al.

(1995) photometrically determined the Galactic bulge morphology, luminosity, and mass

using triaxial bar-like models constrained by the COBE/DIRBE observations, measuring

MB
? = 1.3 ± 0.5 × 1010 M�. In contrast, Klypin et al. (2002) consider ΛCDM-based mod-

els for the Milky Way, accounting for the mass and angular momentum of the DM halo,

constrained by a variety of kinematic measurements, to estimate that MB
? ≈ 1 × 1010 M�.

Alternatively, Picaud & Robin (2004) use Monte Carlo techniques to fit the Besançon model

of stellar population synthesis to the observed near-IR luminosity of the bulge using obser-

vations from the DENIS survey, finding MB
? = 2.4 ± 0.6 × 1010 M�. These are only a few

of the alternatives; we provide the entire list of studies included in our Galactic bulge+bar

mass dataset, hereafter denoted as DM, in Table 2.4 for reference.

The incorporated studies use a heterogeneous mixture of assumptions and models for the

Galaxy; we follow the basic model of Chomiuk & Povich (2011) and attempt to place them

on a uniform basis here. One of the most common sources of variation is the adopted value

of the Galactocentric radius of the Sun’s orbit, R0. For instance, using the virial theorem one

can demonstrate that kinematic estimates of the Galactic bulge+bar mass will be directly

proportional to R0. On the other hand, photometric estimates of the luminosity of the bulge,
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based on the flux measured from our location, should scale as R2
0.

A bulge mass inferred from the microlensing event rate observed toward the Galactic

center, however, has a more complex dependence on R0. The measured rate of microlensing

events can be directly converted into an optical depth, τ = τbulge + τdisk, which is the sum of

the contribution from the stars in the bulge and the intervening part of the disk. Hamadache

et al. (2006) show that MB
? ∝ τbulge × Rbulge, where Rbulge is the radius of the bulge, which

itself should be proportional to R0 based on geometric arguments (i.e., Rbulge = R0 tan θ/2,

where θ is the angular diameter of the bulge). Unfortunately, the typical contribution from

disk stars, which we would need to subtract in order to obtain τbulge, is ∼ τ/3 (Sumi et al.,

2003; Hamadache et al., 2006, and references therein) and turns out to be highly sensitive

to the chosen value of R0. As an example, if we are to assume that τdisk is proportional to

the mass of disk stars between us and the bulge, which in turn depends on the total mass

of the disk, the disk model described above yields d ln MB
? /d lnR0 ≈ 5.7; i.e. τdisk should

scale roughly as R6
0. Based on this complexity, we assume for the purposes of this study that

estimates of MB
? based on measurements of τ do not scale will with R0.

In order to combine the MB
? estimates in our dataset into one aggregate result, after

choosing a value of R0 from our Gillessen et al. (2009) prior, we renormalize each result to

that R0 value using the appropriate scaling relation. Unless otherwise noted, the central

value and error bar are scaled by the same factor in order to ensure the fractional error

remains unchanged (this is equivalent to holding the error bars constant in log space), as

essentially none of the literature estimates include the uncertainty in R0 in their error esti-

mates (a problem that our Monte Carlo technique will fix). For reference, we list the type

of observational constraint and appropriate R0 power-law index used to scale to each MB
?

estimate in Table 2.4. We note that if we assume that microlensing-rate based measurements

of MB
? scale as R1

0 (as bulge stars are the dominant contribution to τ), rather than treating

them as independent of R0, the change in our results proves to be negligible.

As discussed in §2.4.1, our definition of stellar mass includes the contribution from rem-

nants, but not that from substellar objects. Kinematically derived measurements of the

bulge mass in our dataset will not reflect this distinction. Therefore, we multiply the results

from dynamical measurements by a normalization factor of 0.94±0.02 to exclude the contri-
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bution from brown dwarfs. We derive this scale factor by varying the power-law index of the

IMF in the brown dwarf mass range (0.005 < M/M� < 0.01) from -0.5 to 0.5 (Cruz et al.,

2007; Kirkpatrick et al., 2012; Day-Jones et al., 2013; Burningham et al., 2013) and including

their contribution within the Bruzual & Charlot (2003) model using solar metallicity and

the Kroupa (2003) IMF over the main-sequence mass range.

Unlike dynamically constrained models of the Milky Way, which are indifferent to the

mass distribution of the stellar populations, those which rely on photometric constraints (and

thus mass-to-light ratios) to estimate MB
? will depend strongly on the IMF of choice. It is

important then to set all measurements of this type on the same footing before applying the

HB analysis by converting them to the same IMF. As previously discussed, we choose that to

be the Kroupa IMF in accordance with the MPA-JHU spectrum measurements (Brinchmann

et al., 2004).

The HB analysis we apply to estimate MB
? requires an error estimate for each independent

measurement. Many of the studies in the literature, however, do not provide error estimates.

We therefore must estimate the uncertainty in each measurement lacking an error bar in a

uniform and unbiased manner; we do this in either one of two ways. First, for any study that

lists a single MB
? result sans an error bar, we conservatively choose the error to be 50% of

the value. However, if the authors instead provide a list of results corresponding to a variety

of models or parameters explored, we then find the standard deviation of these listed values

and add this in quadrature to 25% of their favored value to produce an error estimate.

Lastly, as we will detail below, the central value of many of the MB
? estimates in our

dataset will vary with the disk parameters that we draw for each MC simulation. In such

a case, it becomes problematic to use the median estimated value (which will vary) as a

reference value that multiplies Q or F in those models of unreliable data. Consequentially,

for the stellar mass portion of this study we always multiply Q and F by 1010 M� when

augmenting the errors estimates of “bad” measurements. For example, this means that

Q = 0.5 corresponds to adding 0.5× 1010 M� in quadrature to the nominal error bars when

accounting for the possibility that a measurement is inaccurate (compare to Equation (2.3)).

In the following list, we detail any studies included in our analysis of MB
? that require

further special treatment to be comparable to the others in Table 2.4:
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Picaud & Robin (2004): This work uses the Besançon model of stellar population syn-

thesis (see also Robin et al., 2003) to simultaneously constrain the mass of the bulge and

thin disk through direct comparison with near-infrared star counts in ∼100 windows of

low extinction in the Galaxy. The thin disk is divided into 7 distinct age components

with a two-slope IMF, while the bulge is modeled as a single older population with a

Salpeter IMF; all of these populations are converted to follow the Kroupa (2003) IMF as

the first step in our renormalization process. Additionally, the Besançon model features

a double-exponential profile for the thin disk. This disk model has a hole at the center,

so the same amount of mass at the center of the Galaxy would correspond to a greater

bulge mass than in a non-holed model. For consistency, we integrate the holed density

profile to determine the mass of the Besançon thin disk within the bulge radius of 3.71

kpc, and subtract this value from the single-exponential disk mass within the same ra-

dius for each realization of our disk model. The difference we calculate corresponds to

the portion of the Picaud & Robin bulge mass estimate (2.4 ± 0.6 × 1010 M�) that has

already been included in the Bovy disk, so we subtract it off. Given that this correction

is uncertain, we also add in quadrature to the nominal errors an amount equal to 50%

of the holed-disk correction when assuming R0 = 8.33 kpc; i.e., 50% of 1.86× 1010 M�.

Picaud & Robin find that changes in the model mass when R0 is changed are comparable

in impact to the other variations amongst the models studied, and so we do not apply

any R0 scaling beyond this correction. Changes in R0 affect their models in multiple

ways, rendering any simple scaling of their MB
? value unsuitable. In the end, the results

of Picaud & Robin (2004) are included in our dataset as a value of MB
? = 0.54±1.11×1010

M� for R0 = 8.33 kpc and best-fit Bovy disk parameters; for simplicity of analysis, this

error estimate is used regardless of disk parameters.

Zhao (1996): This work models the disk with the Miyamoto & Nagai (1975, hereafter NM)

potential, whose profile roughly resembles that of the double-exponential disk. Ideally,

we would make the same correction using our disk model as we have done with Picaud &

Robin (2004). However, the authors have normalized the NM profile to produce a total

disk mass MD
? = 8MB

? , chosen so as to incorporate the dynamical effects of the dark halo
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and produce a flat rotation curve at 1 < R < 3 kpc from the Galactic center. We find,

however, that this produces an extremely high surface density at nearly all radii within

the disk, and indeed the authors note that this model does not fit the COBE map data

except near the center. Since we cannot disentangle the dark mass from the stellar mass

in this model, we do not attempt to do a correction as for Picaud & Robin (2004), since

we would not have confidence in its accuracy. To account for that inability to correct, we

increase the errors on this estimate to 50% of the derived bar mass. Lastly, as this is a

dynamical measurement, we remove the contribution of brown dwarfs to the bulge mass

budget by multiplying by a factor of 0.94± 0.02. It is therefore included in our dataset

as a value of MB
? = 2.07 ± 1.03 × 1010 M�. We note that changes in the treatment of

this measurement yield a much smaller difference in our combined results than our final

estimated errors.

Dwek et al. (1995): As mentioned above, this work constrains the mass of the Galac-

tic bulge using photometry taken from the COBE/DIRBE observations, measuring

MB
? = 1.3 ± 0.5 × 1010 M�, where a Salpeter IMF has been assumed. We convert this

measurement to the Kroupa IMF by multiplying it by 1.62, derived using our definition of

stellar mass and the assumptions made for the stellar models of Bruzual & Charlot (2003).

Hence, we include this measurement in our dataset as a value of MB
? = 2.11± 0.81× 1010

M�.

Freudenreich (1998): This work favors a bar-to-disk (B/D) luminosity ratio of 0.33 based

upon matching their Galactic model to infrared observations of the Milky Way from

COBE. This model again includes a holed stellar disk. We integrate this profile both

with and without the hole implemented, under the assumption that the mass gained by

the disk when excluding the hole was previously incorporated into the bar, in order to

calculate a hole-less B/D value. We note that the results of this study are published as

a function of R0 in their Table 4, allowing us to interpolate from this table to obtain

B/D at a given R0, instead of assuming a scaling relation. Thus, for each MC simulation

we include within our dataset a value of MB
? = MD

?,i × (B/D), where (B/D) represents
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the hole-less model bar-to-disk ratio corresponding to R0,i. We ascribe a 50% error bar

to this value, accounting for uncertainty in the mass-to-light ratios of the bar and disk.

Similarly to the Picaud & Robin (2004) estimate, we conservatively add in quadrature

to this error estimate a value of 50% of the holed-disk correction at R0 = 8.33 kpc. As a

nominal value, we list MB
? = 0.47±0.65×1010 M� in Table 2.4, the result from assuming

our standard disk model values. This overall error estimate is held constant for other

values for the disk parameters.

Dehnen & Binney (1998): This study provides a parameterized model of the mass dis-

tribution in the Galaxy fitted to several observational constraints. They assume a single-

exponential profile for the stellar disk, much like Bovy & Rix (2013). Tables 3 & 4 of their

paper list the resulting bulge mass when varying a large number of parameters in the

model. Comparing models 2, 2a, and 2b we find that MB
? in their model approximately

scales as ∼(R0/8kpc)1/2. To provide the central value of this estimate we interpolate

amongst MB
? results from their models 1–4 using the value Ld/R0 = 0.26 from our stan-

dard disk model detailed in §2.4.1. We estimate the random uncertainty in this value via

propagation of errors: σ(MB
? )2 ' 1

4

[
MB
? (Ld + σ(Ld))−MB

? (Ld − σ(Ld))
]2

. In addition,

we estimate the systematic error to be the standard deviation of the results from Dehnen

& Binney’s models 2c–i, which we add in quadrature to the random error. Lastly, as this

is a dynamical measurement, we remove the contribution of brown dwarfs to the bulge

mass budget by multiplying by a factor of 0.94 ± 0.02. Overall, this is included in our

dataset a value of MB
? = 0.65± 0.38× 1010 M�.

2.4.4 Setting a Prior on MB
?

To place a prior on the mass of the Galactic bulge, we again consider the properties of spiral

galaxies previously observed in the local universe. Some spirals appear to have no bulge

component, whereas in extreme cases the bulge-to-total ratio can be as large as B/T ∼ 0.8

(e.g., Simien & de Vaucouleurs, 1986; Gadotti, 2009). Given our prior understanding of the
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total mass of the Milky Way to be of order ∼5×1010 M� (e.g. McMillan, 2011, and references

therein) we assume the mass of the Galactic bulge can be anywhere in the range 0−4× 1010

M� with equal weighting. This is represented by a flat distribution, such that

P (MB
? ) =





1
4
× 10−10, if 0 ≤ MB

? ≤ 4× 1010 M�

0, otherwise.

(2.22)

2.4.5 Stellar Mass Results

Table 2.5 shows the results for each model of “bad” measurements from our HB analysis.

We list the optimal value of n, Q, or F , as appropriate for each model, which we take to be

the value corresponding to the peak of the marginalized posterior PDF for these parameters.

In Figure 2.4, we marginalize out MB
? and show the resulting joint posterior for fgood and F

normalized to a peak value of 1. We can see in this case that the likelihood is maximized

near fgood ≈ 1 and F ≈ 0, in similarity to the SFR results in §2.3.3 which favored fgood ≈ 1

and minimally adjusted error bars. If we are to then marginalize out fgood from the joint

posterior, this yields the result P (F | D) shown in Figure 2.5 as a solid green curve. Assuming

that fgood = 0 (i.e., that all included measurements are inaccurate to some extent) produces

the the dashed green curve in Fig. 2.5; this is equivalent to the curve produced by cutting

through the fgood = 0 plane in Fig. 2.4.

All model-comparison criteria listed in Table 2.5 result from comparing values with the

all-“good” model for each realization. For example, ∆ log10 Bk for the free-n model reflects

the mean and standard error of the set {log10(Bfree-n/Ball-“good”)i}, and similarly for ∆AIC

& ∆BIC. In accordance with the likelihood peaking on the fgood ≈ 1 plane, as seen in Fig.

2.4 and 2.6, all criteria values indicate that the best fit of the data results when the fewest

free parameters are employed in the HB analysis. That said, several of the other models

listed in Table 2.5 have criteria values that do not differ enough to be statistically significant

(i.e., their differences in ∆ log10 Bk, ∆AIC, or ∆BIC are less than 2). Again, similar to the

SFR results, the model with highest Bk is the one where all measurements are treated as

accurate, indicating that once differences in the assumed Galactic model, IMF, and definition

of M? are accounted for, no correction for systematic effects is needed in order to relieve any

42



tension in these measurements. This is supported by the AIC & BIC values as well. Taking

the all-“good” model as our fiducial measurement, we therefore find the stellar mass of the

Galactic bulge+bar to be MB
? = 0.91±0.07×1010 M�; a comparison with the other values in

Table 2.5 shows that this estimate is quite robust to any way we account for “bad” estimates

in the HB analysis. We have also tested the impact that the Bissantz & Gerhard (2002) and

Widrow et al. (2008) MB
? estimates make on our final results, as these two measurements

are more strongly peaked than the other estimates and are centered at similar bulge mass

values (see Figure 2.7). We find that doubling the nominal errors on both of these estimates

produces only a 25% increase in the error of our aggregate result and a negligible change to

the mean value, indicating that these two estimates are not dominating our final estimate.

Lastly, we show in Table 2.5 the inverse-variance weighted mean (IVWM) of the nominal

values from our MB
? dataset (Table 2.4) with no corrections to uniform R0 and MD

? . We can

see that the IVWM is more strongly pulled by lower-valued outliers in comparison to the HB

results. This is likely in large part the result of the heterogeneous mixture of R0 values in

the sample, as the all-“good” model is equivalent to 103 MC simulations of the IVWM, but

rescaling all measurements to reflect R0 = 8.33±0.35 kpc (Gillessen et al., 2009); in this case,

the all-“good” model corresponds to the average of the IVWM from our 103 MC simulations,

rather than the IVWM of the set of original measurements. With 18 MB
? estimates in our

dataset, and thus 17 degrees of freedom, we expect 68% chance of finding χ2 in the range

[11.31, 22.68] and a 95% chance of it being in the range [7.56, 30.19]. Hence, the observed

χ2 = 14.03 indicates only modest tension amongst the measurements; ∼2/3 of the time one

would observe a χ2 this large or larger.

Similarly to our SFR analysis, we have tested whether common-mode systematics have

a large impact on our bulge mass estimate, an effect our HB method is unable to account for

as we assume that errors from each study are random compared to each other. As initially

discussed in §2.3.3, this involves applying the HB method using the all-“good” model to a

bootstrap resampling of the MB
? dataset in two different ways. In the first case, we draw

only one measurement at random from all those which use a common measurement technique

(i.e., one of the four categorizations listed in Table 2.4 under the column labeled “Constraint

type”), yielding four estimates from a unique measurement method. In the second case,
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we draw four measurements at random from the entire list of estimates in Table 2.4. For

each case, we perform this process 1,000 times and measure the mean from the posterior

distribution P (MB
? | D) for each set of measurements. We find the standard deviation of

the mean to be 0.19 when resampling with only one measurement of each type from the MB
?

dataset and 0.23 when resampling at random from the entire dataset. Again, there is greater

scatter between measurements of the same type than between random measurements in the

dataset. Hence, similarly to our SFR results, we can safely conclude that common-mode

systematics make a negligible impact on our bulge mass results.

The results from our HB analysis and MC simulations for P (MD
? | D) and P (M? | D)

are well-described by Gaussian distributions. These correspond to MD
? = 5.17± 1.11× 1010

M� and M? = 6.08± 1.14× 1010 M�. We note that the mass of the stellar halo component

of the Galaxy (∼109 M�) is negligible compared to the uncertainties in our estimate (Bell

et al., 2008a; Bullock & Johnston, 2005), and thus we can disregard its contribution. The

uncertainty in M? is dominated by that in MD
? , making our M? result highly insensitive to

the choice of model used in the HB analysis of the Galactic bulge+bar mass estimates. The

largest sources of uncertainty in MD
? and M? thus come from the values of R0 and Ld that we

adopt (Table 2.3). The constraints on these parameters are likely to improve with upcoming

Galactic surveys, such as Gaia, and so we also calculate derivatives of our mass estimates with

respect to each so that they may be easily adjusted to reflect any improved information. To

do so, we simply redo our analysis after independently offsetting either parameter by one-half

of its error estimate above and below the central value. The derivative is calculated from the

curve yielded from Lagrangian interpolation of the resulting 3 data points. For convenience,

we tabulate our stellar mass results for each component and their derivatives in Table 2.6.

Lastly, we display the PDF for the bulge-to-total mass ratio of our model in Figure 2.8

as a solid black curve, which indicates a median with 1σ error estimate of B/T = 0.150+0.028
−0.019.

This is obtained from the distribution of values, (B/T )i = MB
?,i/(M

B
?,i + MD

?,i), resulting from

each self-consistent realization of the Galaxy. Calculating P (B/T ) in a model-consistent

way (i.e. accounting for covariances within our model) yields measurably tighter constraints

than when doing so by combining independent estimates of MB
? and M?. For example, the

blue dashed curve in Figure 2.8 is the result of combining randomly drawn pairs of MB
?
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and MD
? values drawn from the PDFs for each mass component in this study and assuming

M? = MB
? + MD

? . The red dash-dotted curve in Figure 2.8 shows the distribution of bulge-to-

total luminosity ratios for a sample of 212 Sbc-Sc galaxies measured from SDSS by Oohama

et al. (2009). The mass-to-light ratio of the older stellar population in the bulge is higher than

that of the younger stellar disk and so converting this to a bulge-to-total mass ratio would

shift the distribution toward slightly higher values; however, we can safely assess that Milky

Way lies well within the range of B/T values. Graham & Worley (2008) find the average

bulge-to-disk K-band flux ratio for a sample of 79 Sbc galaxies to be log(B/D) = −0.82,

which converts to an average B/T of 0.13; this compares well with our Milky Way value.

2.5 SUMMARY & DISCUSSION

In this chapter we have developed improved constraints on several of the Milky Way’s global

properties. We build upon the prior measurements found in the literature, joining them into

consensus results using the power of the hierarchical Bayesian (HB) method. This method

(Press, 1997; Lang & Hogg, 2012) takes into account the possibility of inaccurate measure-

ments being included in our datasets, and has proven to be quite robust when varying how

we dealing with such “bad” measurements. By incorporating all the information contained

in the individual measurements, we have obtained significantly improved constraints on the

Milky Way properties we investigate. At the same time, given the expectation that there

could be systematics affecting the Milky Way data, the HB method has given us confidence

in the robustness of our results, even though Occam’s razor favored the simplest model (i.e.,

the inverse-variance weighted mean) in the end. For convenience, we tabulate the main

results from this study in Table 2.6, as well as their derivatives with respect to the Galacto-

centric radius of the Sun, R0, and the exponential scale length of the disk, Ld, allowing for

our results to be updated if constraints on these parameters improve.

In our first application, we capitalize on the work of Chomiuk & Povich (2011), who

provide a tabulation of the star formation rate (SFR) estimates in the literature over the

last several decades. The authors make huge strides in placing each measurement on equal
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footing by renormalizing them all to the same choice of initial mass function and stellar

population synthesis model. Using these updated estimates as our dataset, we find the

SFR of the Milky Way to be Ṁ? = 1.65 ± 0.19 M� yr−1 (assuming a Kroupa IMF and

Kroupa-normalized Kennicutt ionizing photon rate).

Next we investigate the stellar mass contained in each of the major components of the

Milky Way. In Table 2.4, we have compiled an extensive list of Galactic bulge, pseudo-bulge,

and/or bar mass estimates from the literature. We assume the single-exponential density

profile for the disk laid forth by Bovy & Rix (2013); we tabulate the adopted probability

distributions for all relevant parameters in Table 2.3. We then combine our HB analysis

with Monte Carlo (MC) simulations that uniformly scale each estimate to the same value of

R0, ensuring propagation of R0 errors into the hierarchical MB
? result. The MC calculations

also yield estimates of the stellar mass of the bulge+bar, the stellar mass of the disk, and

the total stellar mass in the Milky Way.

Our combined estimate of the bulge+bar mass is MB
? = 0.91 ± 0.07 × 1010 M�. This

estimate has substantially smaller errors than the individual estimates used to derive it. We

note that the error given not only reflects the random and systematic uncertainties in each

individual estimate, but also current uncertainties in R0. Our results show that once we have

renormalized each estimate to reflect the same choice of IMF, stellar distribution profile for

the disk, and definition of stellar mass that likely there are minimal systematics to further

correct for. We adopt the Kroupa (2003) IMF in this study and include the contributions

of main-sequence stars and remnants, but not substellar material, in our definition of stellar

mass in accord with the MPA-JHU measurements of SFR and M? for external galaxies found

in SDSS.

Under consistent assumptions, we find the disk mass of the Milky Way is MD
? = 5.17 ±

1.11 × 1010 M�. Our model of the Galactic stellar disk is based on that of Bovy & Rix

(2013), but we directly incorporate current uncertainties in the Galactocentric radius of

the Sun. Our disk mass estimate is in broad agreement with other measurements found in

the literature. One of the earliest models of the Milky Way by Bahcall & Soneira (1980),

primarily constrained by star counts from photometric observations of the Galaxy, yields a

stellar disk mass of 5.6 × 1010 M�. The ΛCDM-based Milky Way models by Klypin et al.
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(2002) favor a range of 4−5×1010 M�. Similarly, the kinematically constrained models from

Dehnen & Binney (1998) find the mass of the disk to lie in the range of 4.2−5.1× 1010 M�.

We find that total stellar mass in the Milky Way is M? = 6.08± 1.14× 1010 M� by sta-

tistically combining the stellar disk and bulge+bar mass estimates through model-consistent

MC simulations (the mass of the stellar halo component (∼109 M�) is negligible compared

to our uncertainty). The overall error in our M? estimate is dominated by that contributed

from the disk component, rendering our final result highly insensitive to any assumptions

involved with combining bulge mass estimates to determine P (MB
? | D). In comparison,

McMillan (2011) find a total baryonic mass of 6.43 ± 0.63 × 1010 M�, from which we can

subtract the atomic and molecular phase gas mass of 9.5 ± 3.0 × 109 M� (Dame (1993a),

corrected for helium contributions by Flynn et al. (2006)), giving M? = 5.48 ± 0.70 × 1010

M�. In addition, Flynn et al. (2006) give a back-of-the-envelope calculation for M?, finding

it to be in the range 4.85−5.5× 1010 M�. Our estimate for the total stellar mass compares

well with the results of these two recent studies, but takes advantage of a large sample of

bulge mass measurements found in the literature and is founded on improved knowledge of

several of the properties of the Galactic disk from SDSS. Again, we stress that all of our mass

results assume a Kroupa IMF and an exponential profile for the Galactic disk, to match the

assumptions used in studies of extragalactic objects.

Ultimately, the constraints we are able to place on the stellar mass of the disk component

as well as the total stellar mass of the Galaxy depend strongly on the value we assume for R0.

For our main results, we have chosen the Gillessen et al. (2009) estimate of 8.33±0.35 kpc for

its direct determination of the distance to Sgr A* (i.e., the center of the Milky Way) based on

the orbits of nearby stars, its thorough treatment of systematic errors, and (thanks in part

to the breadth of its errors) its consistency with a large variety of other R0 measurements

(both direct and indirect) in the literature, which range as low as .8 kpc or as high as

&8.5 kpc. It is likely, however, that constraints on R0 will tighten as geometric methods are

continually improving, while indirect methods that are plagued by systematic errors become

obsolete (Genzel et al., 2010). For instance, the most recent measurement by Chatzopoulos

et al. (2015) finds R0 = 8.30± 0.09|stat ± 0.10|syst kpc by dynamically modeling the nuclear

star cluster dynamics. The constraints from that analysis in the distance vs. mass of the
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black hole plane are in modest tension with those from monitoring stellar orbits by Gillessen

et al. (2009); a joint analysis of the two ignoring this tension yields R0 = 8.36± 0.11 kpc. If

we are to use this result for our study, the uncertainty in both the disk mass and the total

mass are reduced to 0.5× 1010 M�, and our bulge mass error is reduced to 0.06× 1010 M�,

while the central values are changed only slightly.

From the distribution of model-consistent realizations of MB
? and MD

? , accounting for

covariance between the two, we find that the Milky Way has a bulge-to-total mass ratio

of B/T = 0.150+0.028
−0.019. As seen in Fig. 2.8, this result makes our Galaxy typical amongst

galaxies of similar morphological type in the local universe. Finally, combining our results

for Ṁ? and M?, we find that the specific star formation rate of the Milky Way is Ṁ?/M? =

2.71± 0.59× 10−11 yr−1.

In the following chapter, we will continue towards our goal of producing a better global

picture of the Milky Way. With the improved constraints placed on M? and Ṁ? in this

work, we will next show that we can convert this information into accurate predictions for

the integrated photometric properties of the Milky Way; i.e., the brightness and color of our

Galaxy as they would be observed by alien astronomers from across cosmological distances.

All of this work will culminate in a newfound ability to accurately place the Milky Way

in context — i.e., we now have tight constraints on where our Galaxy falls compared to

observational trends we find for other galaxies.

48



0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fgood

n
P (fgood, n | DSFR)

Figure 2.1: The joint posterior probability distribution function (PDF), P (fgood, n | DSFR), describing the
probability of each possible value of the fraction of “good” estimates, fgood, (i.e., ones with accurate error
bars) included in our Milky Way star formation rate (SFR) dataset, DSFR, and the scale factor n needed to
expand the error bars for any measurement treated as not “good”. This 2-dimensional probability distribu-
tion is produced from a hierarchical Bayesian (HB) analysis, where we have marginalized over all possible
true values for the Milky Way’s SFR. For ease of reading, we have normalized the peak value to 1. This
plot clearly shows how strongly the HB analysis favors a model with minimally adjusted error bars on the
individual estimates included in our analysis: the probability given the observed dataset is maximized if
either n is ∼1, and/or fgood is ∼1.
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Figure 2.2: The marginal posterior PDF, P (fgood | DSFR), for the fraction of “good” estimates (i.e., ones
with accurate error bars), fgood, included in our Milky Way star formation rate (SFR) dataset, DSFR,
for each model of “bad” measurements we consider. Each curve is produced from a hierarchical Bayesian
analysis, where we have marginalized over all other free parameters in the model. Each corresponds to a
different model of how to remedy the inclusion of “bad” measurements included in DSFR: the solid red curve
corresponds to a case where we must multiply the error bars for “bad” measurements by a free parameter
n; the dashed blue curve is produced by adding a fractional amount (given by the free parameter Q) of the
median value of all estimates included in DSFR in quadrature to their nominal error bars; the green dash-
dotted curve results from imposing a floor on “bad” measurements’ nominal error bars equal to a fraction
amount (given by the free parameter F ) of the median estimated SFR; and the purple triple-dot-dashed
curve corresponds to a case where we model “bad” measurements as entirely wrong, and replace them with
uniform probability distributions over the entire parameter space. We see that all models peak at fgood = 1,
indicating that there is minimal tension between the measurements included in DSFR. Smaller values of
fgood can be consistent with the data for most models, but only if Q or F is ∼0 or n ∼ 1, corresponding to
no difference between “good” and “bad” measurements.
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Figure 2.3: The marginal posterior PDF, P (Ṁ? | DSFR), for the Milky Way’s star formation rate (SFR) is
shown as a solid black line. This result is produced from the hierarchical Bayesian (HB) analysis where we
assume all measurements have accurately estimated error bars; since we have assume flat priors over the
entire parameter space, this is equivalent to the inverse-variance weighted mean. This model is the simplest
one which provides a good fit to the data, and hence is favored by both the Bayesian evidence and information
criteria. For comparison, we overlay the individual estimates from our SFR dataset as dashed/dotted colored
lines. We see that our methods yield a more tightly constrained estimate of the SFR of the Milky Way, while
also being consistent with each individual estimate incorporated into the combined result.
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Table 2.1. Combined SFR Results For Various Model Assumptions

Model
Optimal Combined Ṁ?±1σ

kb ∆AIC ∆BIC ∆ log10 BkValuea (M� yr−1)

fgood free – Some of the measurements have inaccurate error bars.

free-n 1.00 1.65± 0.20 3 4.0 4.4 −0.73
free-Q 0.00 1.66± 0.21 3 4.0 4.4 −0.31
free-F 0.26 1.67± 0.22 3 4.0 4.4 −0.25
Pbad-flat N/A 1.65± 0.20 2 2.0 2.2 −0.73

fgood = 0 – All of the measurements have inaccurate error bars.

free-n 1.00 1.65± 0.22 2 2.0 2.2 −1.59
free-Q 0.00 1.67± 0.23 2 2.0 2.2 −0.58
free-F 0.16c 1.69± 0.26 2 2.0 2.2 −0.49

fgood = 1 – None of the measurements have inaccurate error bars.

all-“good”d N/A 1.65± 0.19 1 — — —

aThe value of n, Q, or F marking the peak of marginalize posterior PDF for
these quantities in each model.

bThe number of free parameters in the model. See §2.2.3.4.

cThis corresponds to the lowest allowed value of F in the model, FMIN, where
the smallest allowed error on any estimate in DSFR is just the minimum error
estimate; that is, σF,i = FMINµMED

i = σMIN
i . Since FMIN affects no estimates in

DSFR, this is equivalent to setting fgood to unity (see Equation 2.4). In fact, the
HB analysis most strongly supports making no adjustment to the nominal error
bars (i.e., the all-“good” model where we always set fgood = 1).

dSince we use flat priors that are much broader the the likelihood PDF, this
is equivalent to the inverse-variance weighted mean.

Table 2.2. Combined SFR Results For Various Data Assumptions

Model Treatment of Data
Combined Ṁ?±1σ

(M� yr−1)

all-“good” Including RW10a with nominal errors (Fiducial) 1.65± 0.19
all-“good” Including RW10 with errors doubled 1.77± 0.21
all-“good” Excluding RW10 from the calculation 1.82± 0.21
all-“good” Excluding B94b from the calculation 1.63± 0.19

aRobitaille & Whitney (2010).

bBennett et al. (1994).

52



Table 2.3. Disk Model Parameters

Parameter Value Units Description Reference

R0 8.33± 0.35 kpc Galactocentric radius of the Sun Gillessen et al. (2009)
Ld 2.15± 0.14 kpc Scale length of exponential disk Bovy & Rix (2013)

Σ?(R0)
31.75Ld/kpc−

M� pc−2 Local surface mass density of MS
Bovy (2013, priv. comm.)

33.5125± 2.89 stars and remnants for a given Ld
a

MD
? See Equation (2.18) M�

The total stellar disk mass
Bovy & Rix (2013)

from Equation (2.17), given R0 and Ld

aSee §2.4.1. This relationship accounts for the covariance between the dynamical estimates of Ld and Σ?(R0) from
Bovy & Rix (2013), while also subtracting the contribution from brown dwarfs, ΣBD(R0).

Table 2.4. The Galactic Bulge+Bar Mass Dataset

Reference
MB
? ± 1σ R0 assumed

Constraint type βa MB
? ± 1σ(R0 = 8.33kpc)

(1010 M�) (kpc) (1010 M�)

Kent (1992) 1.69± 0.85 8.0 Dynamical 1 1.76± 0.88
Dwek et al. (1995) 2.11± 0.81 8.5 Photometric 2 2.02± 0.78
Han & Gould (1995) 1.69± 0.85 8.0 Dynamical 1 1.76± 0.88
Blum (1995) 2.63± 1.32 8.0 Dynamical 1 2.74± 1.37
Zhao (1996) 2.07± 1.03 8.0 Dynamical 1 2.15± 1.08
Bissantz et al. (1997) 0.81± 0.22 8.0 Microlensing 0 0.81± 0.22
Freudenreich (1998)b 0.48± 0.65 . . . Photometric . . . 0.48± 0.65
Dehnen & Binney (1998) 0.61± 0.38 8.0 Dynamical 1/2 0.62± 0.38
Sevenster et al. (1999) 1.60± 0.80 8.0 Dynamical 1 1.66± 0.83
Klypin et al. (2002) 0.94± 0.29 8.0 Dynamical 1 0.98± 0.31
Bissantz & Gerhard (2002)c 0.84± 0.09 8.0 Dynamical 1 0.87± 0.09
Han & Gould (2003) 1.20± 0.60 8.0 Microlensing 0 1.20± 0.60
Picaud & Robin (2004) 0.54± 1.11 8.5 Photometric 0 0.54± 1.11
Hamadache et al. (2006) 0.62± 0.31 None Microlensing 0 0.62± 0.31
Wyse (2006) 1.00± 0.50 None Historical review 0 1.00± 0.50
López-Corredoira et al. (2007) 0.60± 0.30 8.0 Photometric 2 0.65± 0.33
Calchi Novati et al. (2008) 1.50± 0.38 8.0 Microlensing 0 1.50± 0.38
Widrow et al. (2008) 0.90± 0.11 7.94 Dynamical 1 0.95± 0.12

Note. — Bulge mass estimates, MB
? , listed in this table have been converted to the Kroupa IMF. See §2.4.3 for

further notes on individual estimates.

aβ denotes the assumed relationship between each MB
? estimate, based on the constraint type, and the R0 assumed;

i.e. MB
? ∝ R

β
0 .

bValue (in both cases) calculated assuming MD
? = 5.17× 1010 M� and R0 = 8.33 kpc. B/D results are published

as a function of R0, so no scaling relation needs to be assumed.

cValues provided by McMillan (2011).
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Figure 2.4: The joint posterior PDF, P (fgood, F | DM), for the free parameters describing the Milky Way
bulge+bar mass dataset, DM, when applying a hierarchical Bayesian analysis. The parameter fgood quantifies
the probability that any one measurement included in DM is “good” (i.e., has accurately estimated error
bars), and F denotes the fraction of 1010 M� used as a floor on each individual error estimate when treated
as not “good” in the model. For ease of comparison, we have normalized the peak of this distribution to 1.
We see, similar to the results for the Milky Way SFR, that the likelihood, and thus the posterior, peaks near
fgood ≈ 1 and F ≈ 0, indicating little tension amongst the Milky Way bulge+bar mass estimates.
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Figure 2.5: The marginal posterior PDF, P (F | DM), for the floor value, F , defined as a fraction of 1010 M�
imposed as a minimum error estimate for “bad” measurements in our Milky Way bulge+bar mass dataset,
DM. These results are obtained by marginalizing over all possible values of fgood (solid curve) or else by
setting fgood = 0 (dashed curve). Here we see the competition between multiple possible solutions within the
HB analysis. We note that both curves are marginalized over all possible values of the stellar mass contained
in the bulge+bar component of the Galaxy, MB

? .
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Figure 2.6: The marginal posterior PDF, P (fgood | DM), for the fraction of “good” MB
? measurements,

fgood, (i.e., ones having accurately estimated errors) in our bulge+bar mass dataset, DM. Each model shown
accounts for the inclusion of “bad” measurements in a different way: the free-n model (solid red) remedies
underestimated errors by multiplying them by a scaling factor of n; the free-Q model (dashed blue) adds extra
error in quadrature to the errors on a measurement when treated as “bad”; the free-F model (dash-dotted
green) places a floor on the errors of “bad” measurements; while the Pbad-flat model (triple-dot-dashed
purple) works to completely disregard a measurement from DM when considering it “bad”. Similar to the
SFR results, the PDF for all “bad”-measurement models are peaked around fgood = 1, more strongly so for
the free-n and Pbad-flat scenarios than the free-Q and free-F scenarios. Regardless, it turns out that the
best model of DM, i.e., the one favored by the Bayesian evidence and information criteria, is one where fgood
is assumed to be 1, instead of allowing it as a free parameter – i.e. an all-“good” model.
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Figure 2.7: The marginal posterior PDF, P (MB
? | DM). The solid black curve shows the aggregate MB

?

result as determined from our HB analysis when using an all-“good” model and Monte Carlo simulations
to incorporate up-to-date information for the Galactocentric radius of the Sun, R0, the scale length of the
single-exponential disk, Ld. Here, we have assumed R0 = 8.33 ± 0.35 kpc from the work of Gillessen et al.
(2009) and Ld = 2.15 ± 0.14 kpc based on the measurements by Bovy & Rix (2013). For comparison, we
overlay the individual estimates from our Galactic bulge+bar mass dataset as dashed/dotted colored lines.
Some of these measurements are in tension with others; the HB methods allows us to account for that tension
in obtaining consensus results. Doubling the error bars on the Bissantz & Gerhard (2002) and Widrow et al.
(2008) MB

? estimates (the relatively strongly-peaked dashed red and blue curves) yields only a 25% increase
in the error in our aggregate result, indicating that these estimates are not dominating in our final estimate.
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Table 2.5. Combined MB
? Results For Various Model Assumptions

Model
Optimal MB

?±1σ
kb ∆AICc ∆BIC ∆ log10 BkValuea (1010 M�)

fgood free – Some of the measurements have inaccurate error bars.

free-n 1.00 0.91± 0.07 3 4.00± 0.00 5.78± 0.00 −0.66± 0.00
free-Q 0.00 0.91± 0.08 3 4.00± 0.00 5.78± 0.00 −0.45± 0.00
free-F 0.08 0.92± 0.08 3 4.00± 0.00 5.78± 0.00 −0.42± 0.00
Pbad flat N/A 0.91± 0.07 2 2.00± 0.00 2.89± 0.00 −0.86± 0.00

fgood=0 – All of the measurements have inaccurate error bars.

free-n 1.00 0.91± 0.08 2 2.00± 0.00 2.89± 0.00 −1.20± 0.00
free-Q 0.00 0.93± 0.09 2 2.00± 0.00 2.89± 0.00 −0.83± 0.00
free-F 0.08 0.94± 0.10 2 2.00± 0.00 2.89± 0.00 −0.85± 0.00

fgood=1 – None of the measurements have inaccurate error bars.

all-“good”d N/A 0.91± 0.07 1 — — —

Non-hierarchical combinations of the data.
IVWMe 0.88± 0.06 χ2 = 14.03
IVWM(R0 = 8.33kpc) 0.91± 0.06 χ2 = 13.69

Note. — The MB
? results are well described by Gaussian distributions, and the values listed in

this column represent the mean and 1σ parameter of fits to these distributions. The distributions
we find for ∆AIC, ∆BIC, and ∆ log10 Bk from the MC simulations are strongly peaked but also
highly asymmetric, and so in these columns we quote the median and standard deviation of the
median obtained by bootstrapping these sets of values. Errors of 0.00 indicate that the standard
deviation of the median is �0.01.

aThe value of n, Q, or F corresponding to the peak of marginalize posterior PDF for these
quantities in each model.

bThe number of free parameters in the model. See §2.2.3.4.

cFor each iteration of the HB analysis, we record the AIC and BIC. We then calculate the mean
and standard error from the distribution of AIC and BIC values produced from all 103 iterations
for each model. ∆AIC and ∆BIC reflects the difference in the mean AIC and BIC value measured
from the model which has the lowest AIC/BIC (here, this is the all-“good” model). We see 103

iterations yields sufficiently small standard errors (i.e., less than 0.5) in order to securely assess
differences of 2, which would indicate a statistically significant difference between models.

dEquivalent to the combined inverse-variance weighted mean (IVWM) from 103 MC simula-
tions, uniformly scaling each estimate to the same R0 value from our Galactic model (see Table
2.3).

eThe IVWM obtained from the nominal estimate values listed in Column 2 of Table 2.4. Es-
sentially, since we have used flat priors, these are the same values we would find in the all-“good”
scenario if we did not use MC simulations to renormalize each estimate to the same choice of R0.
IVWM(R0 = 8.33kpc) shows the results from the same calculation for the MB

? estimates after
scaling each to R0 = 8.33 kpc, as in the last column of Table 2.4.
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Table 2.6. Milky Way Properties and Derivatives

Property Fiducial Result ∂/∂R0 ∂/∂Ld

MB
? 0.91± 0.07× 1010 M� 0.093× 1010 M� kpc−1 0.004× 1010 M� kpc−1

MD
? 5.17± 1.11× 1010 M� 3.000× 1010 M� kpc−1 0.469× 1010 M� kpc−1

M? 6.08± 1.14× 1010 M� 3.093× 1010 M� kpc−1 0.473× 1010 M� kpc−1

B/T 0.150+0.028
−0.019 −0.061 kpc−1 −0.011 kpc−1

SFR 1.65± 0.19 M� yr−1 0 M� yr−1 kpc−1 0 M� yr−1 kpc−1

sSFR 2.71± 0.59× 10−11 yr−1 −1.381× 10−11 yr−1 kpc−1 −2.111× 10−12 yr−1 kpc−1

Note. — Derivatives of M? are not simply the sum of the derivatives for MB
? and MD

? due to
covariances between the parameters in our model. Derivatives of B/T represent the change in the
median bulge-to-total mass ratio with respect to the appropriate parameter, measured independently
from any other quantity in this table. The sSFR and its derivatives, however, are calculated directly
from the Ṁ? and M? results; e.g., here ∂(Ṁ?/M?)/∂R0 = −Ṁ? M−2? ×∂M?/∂R0 since ∂Ṁ?/∂R0 = 0.
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Figure 2.8: The bulge-to-total mass ratio, B/T , of the Milky Way as determined by our HB analysis (solid
black curve). This is produced through Monte Carlo simulations where each realization of the bulge+bar
mass (MB

?,i) and disk mass (MD
?,i) are determined using the same values for structural parameters for the disk,

{R0, Ld,Σ?(R0)}i, randomly drawn from their respective distributions listed in Table 2.3. The histogram
of values (B/T )i = MB

?,i/(M
B
?,i + MD

?,i) is then normalized to integrate to unity. The dashed blue curve

shows the result of simply drawing from the fiducial estimates of P (MB
? | D) and P (MD

? | D) from our
model independently. Calculating B/T in a model-consistent manner yields a noticeably tighter constraint
than when not accounting for covariances between MB

? and MD
? . Lastly, we overlay the distribution of B/T

luminosity ratios for a sample of 212 Sbc-Sc galaxies measured from SDSS by Oohama et al. (2009). Although
converting to B/T mass ratios would produce a slight shift toward higher values, we see the B/T ratio for
the Milky Way is not unusual for galaxies of its Hubble type.
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3.0 UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR

DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF THE

GALAXY

3.1 INTRODUCTION

Galaxy evolution studies primarily rely on observational comparisons between objects in the

local universe (e.g., the Milky Way) and those at higher redshift, z (e.g., Faber et al., 2007;

Ilbert et al., 2010; Leauthaud et al., 2012). For most galaxies of known z, rest-frame colors

and absolute magnitudes are some of the easiest global properties to measure, regardless

of their distance from us. Consequentially, color-magnitude diagrams (CMDs) provide a

fundamental tool for interpreting galaxy evolution, especially at large z where morphological

information is difficult to obtain. Yet to this day, the Milky Way’s position on such a diagram

has remained poorly determined, despite being the galaxy we can study in the most detail.

Due to our location embedded within the disk of the Galaxy, interstellar dust obscures stars

and hides most of the Milky Way from our view (cf. Herschel, 1785). Furthermore, because

bluer light is absorbed and scattered more efficiently by the dust, the optical colors of distant

stars are altered (e.g., Cardelli et al., 1989; Schlegel et al., 1998). Thus, determining the

global optical properties of the Milky Way from direct photometric observations has proven

extremely difficult, requiring uncertain corrections and assumptions that are vulnerable to

error.

For this reason, the history of measurements of the Galaxy’s global photometric proper-

ties is sparse. P.C. van der Kruit (1986, hereafter vdK86) made the most recent significant

measurement, utilizing a novel technique. The Zodiacal cloud, a thick disk-shaped concen-

tration of dust lying in the ecliptic plane (or zodiac), produces a glow of diffuse optical light
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throughout the night sky via the reflection of sunlight (Reach et al., 1996). This diffuse

glow, known as the Zodiacal light, introduces a significant amount of contamination to at-

tempts to estimate the amount of starlight from the Galaxy. The Pioneer 10 spacecraft,

launched in 1972 on a mission to Jupiter, became the first space probe to travel beyond the

asteroid belt, to distances where the effect of the Zodiacal light becomes negligible. Van

der Kruit used photometric measurements of the Galactic background light in broad optical

blue (3950-4850Å) and red (5900-6900Å) bands taken by Pioneer 10, corrected for diffuse

Galactic light and extinction, and compared to stellar distribution models in order to find

MB = −20.3± 0.2 and B − V = 0.83± 0.15 in the Johnson magnitude system.

Two earlier studies used a model of the Galaxy that consisted of a disk and spheroid

component, but utilizing different data and assumptions, in order to infer the luminosity and

color of the Galaxy; both of these yielded significantly bluer color estimates for the Milky

Way. First, de Vaucouleurs & Pence (1978, hereafter dV&P) had used a two-component

model constrained to match the observed distribution of globular clusters in the Galactic

bulge and the star counts near the Galactic poles of the disk in the solar neighborhood in

order to infer B − V = 0.53 ± 0.05. This work also yielded MB = −20.08 (varying the

shape of the bulge within this model yielded values ranging from -20.04 to -20.12); however,

this estimate was updated to MB = −20.2± 0.15 in de Vaucouleurs (1983, hereafter dV83)

assuming the Galactocentric radius of the Sun to be R0 = 8.5± 0.5 kpc. Second, Bahcall &

Soneira (1980, herafter B&S) constructed a similar model that combined a disk and spheroid

component in order to match observed star counts as a function of magnitude, latitude, and

longitude (rather than only the distribution of light across the sky). This work yielded

global values of MB = −20.1, MV = −20.5 and B − V = 0.45 (assuming no reddening due

to dust obscuration; no error estimates were provided). dV&P also summarized a series of

earlier determinations of the Galaxy’s total absolute magnitude made before its morphology

and gross stellar structure were well understood. These yielded estimates in the range of

MB ' −19.5 to −19.9, or MV ' −20.2 to −20.5 (Kreiken, 1950; de Vaucouleurs, 1970;

Schmidt-Kaler & Schlosser, 1973), corresponding to an integrated B − V color somewhere

between 0.3 and 1.0 mag. Additionally, dV83 averaged the colors from a set of galaxies

believed to have nearly the same morphological type as the Milky Way (assumed to be
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Sb/c) in order to infer B − V = 0.53± 0.04.

In the last decade, there has been a growing movement to quantify how typical the Milky

Way is amongst galaxies of its type (e.g., Flynn et al., 2006; Hammer et al., 2007; Yin et al.,

2009); most of this work has used the measurements of vdK86. We focus specifically on

the recent work done by Mutch et al. (2011, hereafter M11) which investigates whether the

Milky Way is located in the so-called “green valley” (cf. Mendez et al., 2011; Jin et al., 2014,

and references therein); i.e., the sparsely populated region between the bimodal distribution

of red and blue galaxies in the color-magnitude diagram (Strateva et al., 2001; Blanton et al.,

2003a). After converting van der Kruit’s measurement of Johnson B−V to SDSS AB model

u− r and placing the Milky Way on a color-stellar mass diagram, M11 found that no secure

conclusions as to the Galaxy’s color could be drawn.

To help resolve this question, we present in this chapter a new method of determining our

Galaxy’s global photometric properties with dramatically smaller uncertainties. Our tech-

nique resembles the “sosies” method utilized by Bottinelli et al. (1985) and de Vaucouleurs

& Corwin (1986). The underlying idea behind that technique was that if two galaxies match

well in several calibrated properties, it can be assumed that they share the same luminosity,

and hence differences in their apparent brightness can be used to determine their relative

distances. Here, we also look for sosies (i.e., analogs) of the Milky Way; however, our goal is

different, and we take advantage of larger datasets and more sophisticated statistical treat-

ments in order to take into account uncertainties properly. We derive our results using a

method similar to that producing the dV83 value; i.e., we average the observed properties of

galaxies selected as Milky Way analogs, though here we carefully account for the systematic

biases that can affect such an approach.

Essentially, we make the Copernican assumption that the Milky Way should not be

extraordinary for a galaxy of its stellar mass, M?, and star formation rate, Ṁ?. As these two

properties are very strongly correlated with galaxies’ global photometric properties, we first

obtain a sample of Milky Way analog objects which collectively match the stellar mass and

star formation rate of our own Galaxy (taking into account the relevant uncertainties). The

range of observed photometric properties of galaxies in this sample provides tight constraints

on our Galaxy’s color and absolute magnitude. With these values determined we are then
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able to accurately determine the Milky Way’s position in color-magnitude space.

Throughout this chapter, all SDSS ugriz magnitudes are reported on the AB system,

whereas all Johnson-Cousins UBV RI magnitudes are reported on the Vega system. We use

a standard ΛCDM cosmology with ΩM = 0.3 and ΩΛ = 0.7. All absolute magnitudes are

derived using a Hubble constant of H0 = 100h km s−1 Mpc−1, therefore making them mea-

surements of M − 5 log h. However, in order to compare measurements of the Galactic SFR

and stellar mass, which are measured on an absolute distance scale, to those for extragalactic

objects measured on the cosmic distance scale directly, we assume a Hubble parameter of

h = 0.7, following Brinchmann et al. (2004). Consequentially, the log M? and log Ṁ? val-

ues we use for external galaxies can be adjusted to different choices of H0 by subtracting

2 log(h/0.7). For clarity, in what follows we will explicitly display the h-dependence of all

quantities we use, as well as explain how our results for Milky Way properties change with

respect to h.

We structure this chapter as follows. In §3.2 we describe our observational data; this

includes discussion of our total stellar mass and star formation rate estimates for the Milky

Way in §3.2.1, as well as discussion of the sample of externally measured galaxies we employ

in §3.2.2. In §3.3, we describe the criteria used in order to select the subsamples of SDSS

galaxies used in this study. In particular, we describe the selection of a sample of Milky

Way analog galaxies in §3.3.2, which we use to produce tight constraints on the integrated

optical-wavelength properties of the Galaxy in §3.5. In §3.4 we investigate the principle

sources of systematic error which may arise from our analog-sample selection methods. We

present our final results in §3.5, including tables of useful photometric properties for the

Milky Way. Lastly, we summarize this work and discuss its implications in §3.6.

3.2 OBSERVATIONAL DATA

In this section, we present a summary of the observational data we use for this study. We

begin by focusing on the total stellar mass, M?, and star formation rate (SFR), Ṁ?, of the

Milky Way. With these parameters in hand, we then describe the uniform parent sample
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of galaxies used, including the methods used to measure their stellar masses, SFRs, and

rest-frame magnitudes. The overarching goal of this study is to use this uniformly measured

set of galaxies to convert our knowledge of the stellar mass and star formation rate of the

Milky Way into constraints on its global photometric properties. The following section will

detail how we construct a set of Milky Way analog galaxies for that purpose.

3.2.1 The Milky Way

In Chapter 2, we present updated constraints on the total stellar mass and SFR of the

Milky Way, incorporating the wide variety of measurements in the literature. For many of

the same reasons that measuring the photometric properties of the Milky Way is difficult

(cf. §3.1), there are a limited number of estimates of both Galactic parameters in the

literature. In order to extract as much information as we can from these measurements,

which encompass a variety of different observational data and methods, we employed a

hierarchical Bayesian (HB) analysis method to combine all the measurements of a quantity

into one aggregate result. The HB method allows us to account for the possibility that

any one of the included Milky Way measurements is incorrect or has inaccurately estimated

errors (e.g., due to neglected systematics). The probability of erroneous measurements being

incorporated into our meta-analysis is quantified by the inclusion of hyper-parameters in the

Bayesian likelihood that characterize the data itself, and which we can simultaneously fit for

along with the physical parameters of interest (e.g., M? or Ṁ?). The results of this study

show that the conclusions from an HB analysis are robust to many different ways of modeling

erroneous measurements.

With the present work in mind, the final results from Chapter 2 are normalized so that

they can be directly compared to the stellar masses and star formation rates of external

galaxies in the MPA-JHU catalog. For the SFR of the Milky Way, we capitalize on the

work of Chomiuk & Povich (2011), which tabulated Ṁ? measurements made in the last

three decades, renormalizing each to a uniform choice of the Kroupa (2003) initial mass

function (IMF) as well as stellar population synthesis code. Applying the HB analysis

method to these updated measurements yields a global star formation rate for the Milky
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Way of Ṁ? = 1.65± 0.19 M� yr−1.

For the total stellar mass of the Milky Way, in Chapter 2 we apply the HB analysis

method to nearly 20 independent measurements of the stellar mass of the bulge component

(including the contribution from the bar) from the literature, including results from photo-

metric, kinematic, and microlensing techniques. For the disk component of the Galaxy, we

assume the single-exponential model from Bovy & Rix (2013); this is developed from the

dynamical analysis of ∼16,000 G-type dwarf stars segregated into 43 mono-abundance pop-

ulations based on their position in [α/Fe]-[Fe/H] space, as measured by the SDSS/SEGUE

spectroscopic survey. Through Monte Carlo techniques we are able to simultaneously produce

model-consistent realizations of the bulge and disk masses; we sum these two components to

yield the total stellar mass of the Galaxy, M? (the contribution of the stellar halo is negli-

gible). The Monte Carlo techniques allow us to both ensure that each bulge mass estimate

is placed on equal footing and to incorporate the current uncertainties in the Galactocentric

radius of the Sun, R0. In particular, we assume the constraints of R0 = 8.33 ± 0.35 from

Gillessen et al. (2009). We show that once the bulge mass estimates are renormalized to the

same definition of stellar mass (including main-sequence stars and compact remnants, but

not brown dwarfs), scaled to the same R0 appropriate to the measurement technique, and

normalized to reflect consistent assumptions about the structure and demographics of the

stellar populations (Kroupa IMF and single-exponential profile disk) that the results from

our HB analysis are insensitive to models of potential systematics affecting the data. All of

this work culminates in a total stellar mass for the Milky Way of M? = 6.08 ± 1.14 × 1010

M�.

3.2.2 SDSS Galaxies

3.2.2.1 Photometry To select a comparison sample of externally measured galaxies, we

make use of data from the Eighth Data Release (DR8; Aihara et al., 2011) of the Sloan Digital

Sky Survey III (SDSS-III; York et al., 2000). DR8 provides both imaging and spectroscopic

data for almost 106 galaxies in the local universe, spanning over a third of the night sky.

Its five broad optical passbands, labeled u, g, r, i, and z in order of increasing effective
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wavelength, fully encompass of the CCD-wavelength window. We make use of DR8, made

available in early 2011, due to its best-to-date calibration and reduction of the imaging

data. All subsequent data releases from SDSS-III have provided no further refinements for

low-z galaxies as studied here. The Photo pipeline processing yields a variety of magnitude

measurements based on fitting both a pure de Vaucouleurs and a pure exponential profile

to the surface brightness distribution of each object. Those quantities labeled model reflect

the magnitude derived from the better of the two model profile fits in the best-measured

band (generally r), which is then convolved with the object’s point spread function (PSF) in

each passband to obtain a template for measuring its flux. DR8 also provides the magnitude

derived from the optimal linear combination of the two model profiles that best fit the 2D

image of any object in each passband, again convolved with the object’s PSF; these are

labeled “composite model magnitudes” or cmodel1. The model magnitudes are designed to

produce the best, unbiased estimate of galaxy colors and so we use these to evaluate any color

properties we discuss below. However, while the cmodel magnitudes are not recommended

for producing galaxy colors, they do reflect the best estimate of the “total” flux of a galaxy

in each passband. Therefore, all absolute magnitudes described below are derived from the

cmodel measurements.

We have obtained K-corrections on all magnitudes in the DR8 catalog to rest-frame z=0

and z=0.1 SDSS passbands using the kcorrect v4 2 software package (Blanton & Roweis,

2007). This entails fitting spectral energy distribution (SED) models to the observed ugriz

extinction- and AB-corrected magnitudes, given the observed redshift, and then using this

fit to determine offsets between observed quantities and magnitudes measured in rest-frame

bands (e.g., Hogg et al., 2002). The observed z also provides a luminosity distance (given

the cosmology we assume) and hence the distance modulus, m −M ; we use the kcorrect

v4 2 software to obtain rest-frame absolute magnitudes that are derived by subtracting

this distance modulus along with the K-correction from the extinction- and AB-corrected

apparent cmodel magnitude in each band. We obtain galaxy colors by taking the difference

of two rest-frame absolute magnitudes, but using model magnitudes in place of cmodel as

1See http://www.sdss3.org/dr8/algorithms/magnitudes.php for further detail, as well as discussions
in Dawson et al. (2013).
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described above. We choose to adopt the notation from Blanton & Roweis (2007) when

presenting our results: we denote an absolute magnitude for passband x as observed at

redshift z by zMx.

At this point, we also use the kcorrect package to convert each galaxy’s set of SDSS

ugriz (AB) magnitudes to an equivalent set of Johnson-Cousins UBV RI (Vega) magnitudes,

as well as their respective K-corrections. This allows us to calculate UBV RI extinction-

and K-corrected (cmodel-based) absolute magnitudes and (model-based) colors, which we

can then analyze in parallel to ugriz measurements in order to yield our results transformed

to the Johnson-Cousin system. As we will see in §3.6, this will be useful for comparing our

results to the literature, and should be more robust than using any transformation equations

available that are averaged over all galaxy types.

3.2.2.2 MPA-JHU Stellar Masses and SFRs For a large sample (∼106) of galax-

ies with spectroscopic redshifts from SDSS below 0.7, the MPA-JHU galaxy property cat-

alog provides estimates of total stellar masses and star formation rates. These are cur-

rently publicly-available at http://www.mpa-garching.mpg.de/SDSS/DR7/, and are based

on SDSS Data Release 7 photometry. However, to ensure the greatest possible accuracy in

our results, for this study we have produced an upgraded version of this catalog by recalcu-

lating each galaxy’s M? and Ṁ? using the same algorithms, but applied to the photometric

measurements released in DR8. Hence, our initial dataset consists of the subset of galaxies

in the MPA-JHU catalog that also have photometric measurements reduced through the

DR8 pipeline. All results presented herein are based on our DR8-based M? and Ṁ? measure-

ments, which assume a Kroupa IMF. In the following, we briefly summarize the Bayesian

methodology used to produce them.

Total stellar masses are determined following the same philosophy as Kauffmann et al.

(2003) and Gallazzi et al. (2005), but by fitting models of stellar population synthesis (SPS)

to each galaxy’s photometry instead of using any spectral features. Here, we first construct

a large grid of galaxy models from Bruzual & Charlot (2003, BC03), encompassing a wide

range of possible star formation histories. Each model produces a synthetic spectrum which

we convolve with ugriz passbands to produce model photometry. For each galaxy, we then
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determine the likelihood for each model by calculating the χ2 from differences between fluxes

corresponding to the model photometry and the observed model magnitudes. Adopting flat

priors on all model parameters, we then calculate the posterior probability for each model

given the observations. This is most similar to the methods of Salim et al. (2007), differing

in that the latter generated sets of input parameters by randomly drawing them from their

priors instead of employing a grid. Lastly, we integrate our grid of posteriors along all but

the stellar mass axis in order to produce the marginalize posterior PDF for M?.

Star formation rates are determined from the technique described in Brinchmann et al.

(2004), but with several improvements. For star-forming galaxies this entails fitting the

emission line models from Charlot & Longhetti (2001, CL01) to their Hα, O II, Hβ, O III,

N II, and S II emission fluxes measured from their SDSS spectra, after subtracting the

continuum and absorption features using the SPS spectra from the latest updates to the

BC03 libraries. In this case, a grid of ∼ 2× 105 CL01 models are investigated, which make

up a 4-dimensional grid of metallicities, ionization parameters, total dust attenuations, and

dust-to-metal ratios. Similarly as described above, the resulting grid of posteriors for all

models can then be integrated over the other three axes to produce the marginalized posterior

PDF for dust attenuation. This is then used to estimate an unattenuated Hα-luminosity,

which is then converted to a SFR using the Kennicutt (1998b) conversion factor.

This yields a measurement of the SFR of each galaxy inside the SDSS 3′′ fiber. To

overcome aperture bias, and hence produce an estimate of Ṁ? for the entire galaxy, we now

follow in the footsteps of Salim et al. (2007). This requires calculating photometry for the

light that falls outside of the fiber and fitting stochastic SPS models to it; for each galaxy

we combine the SFR measured from inside and outside of the fiber to determine its total

Ṁ?. As a result, the SFRs employed herein should match well with the “UV” estimates by

Salim et al. (2007) for all classes of galaxies over the entire dynamic range of Ṁ? values. For

a more in-depth discussion, the reader should see B04 and the MPA-JHU catalog website

(listed above).

Ultimately, our methods produce DR8-based posterior PDFs for the log stellar mass and

log star formation rate of each galaxy in our SDSS sample. In our discussions to follow, when

referring to a galaxy’s log M? or log Ṁ? we are truly referring to the mean value measured
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from the posterior. We could equally have used median values for this study, as using them

instead yields no differences in our results. We also calculate the cumulative distribution

functions (CDFs) measured from each galaxy’s posteriors, and we use Px to denote the value

corresponding to the x-th percentile in the CDF. We then calculate an effective standard

deviation for both quantities as (P84−P16)/2. We label these as σlog M? and σlog Ṁ?
hereafter.

We note that these effective error estimates are used only to screen galaxies with highly

uncertain measurements in §3.2.2.3 and for investigating the impact of Eddington bias on

our results in §3.4.1, and hence are sufficient for our purposes.

3.2.2.3 Initial Cuts From the sample of galaxies we have described so far, we next re-

strict to a subset of those that make up the SDSS main galaxy spectroscopic sample (whose

overall selection is described in Strauss et al., 2002), which includes only objects with good-

quality, clean measurements. To do so, we take advantage of the Photo pipeline processing

flags and image bitmasks to eliminate problematic objects from the full DR8 sample. We

first restrict to objects that were targeted as main sample galaxies by enforcing that the

primTarget flag is set to “galaxy.” We then reduce to galaxies with good-quality observations

taken from the Legacy target plates by requiring the SDSS plate information tags survey,

programName, and plateQuality are set to “sdss,” “legacy,” and “good,” respectively. We

ensure a good-quality detection by requiring that the BINNED1, BINNED2, or BINNED4 flag is

set for the r-band image. We exclude objects with any of the following r-band image flags2

set: SATUR, BRIGHT, BLENDED, NODEBLEND, DEBLEND NOPEAK, DEBLENDED TOO MANY PEAKS,

PEAKCENTER, NOTCHECKED, CR, NOPROFILE, MANYPETRO, NOPETRO, PSF FLUX INTERP, BAD_

COUNTS_ERROR, INTERP CENTER, BAD MOVING FIT, or DEBLENDED AT EDGE. At this point, we

also exclude any galaxy whose inverse variance (= 1/σ2) in absolute g- or r-band magni-

tude is calculated to be 4 mag or smaller after K-corrections, or that has σlog Ṁ?
> 1 or

σlog M? > 0.5, in order to exclude any object with highly uncertain luminosity, color, SFR,

or stellar mass (these restrictions on property errors exclude only the most extreme outliers

in the data, comprising � 1% of the sample). As a result of these cuts, the DR8 sample is

2See http://www.sdss3.org/dr8/algorithms/photo_flags.php and sources therein for explanations
of these flags.
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reduced to 337,331 galaxies from ∼106 with no restrictions applied.

3.3 CONSTRUCTING USEFUL SDSS GALAXY SAMPLES

We next trim our set of cleanly measured galaxies from the main galaxy sample to produce a

uniform subset suitable for statistical analyses. In this section we discuss the cuts employed

to produce two important subsamples used in deriving our final results. First, we describe the

selection of a volume-limited sample, which consists of all galaxies lying in a redshift range

such that any object with both SFR and total stellar mass values similar to those of the Milky

Way will be included in the SDSS sample. Next, we discuss our method of identifying a set

of Milky Way analog galaxies from this volume-limited sample. These galaxies, chosen based

upon their M? and Ṁ? values, can then be used to estimate the global photometric properties

of the Milky Way, while the volume-limited sample provides the context for discussing the

Milky Way’s location in color-magnitude space.

3.3.1 Selection of a Volume-Limited Sample

The SDSS main galaxy sample (Strauss et al., 2002) is bounded by a limiting Petrosian

magnitude of r ≤ 17.77 after correction for Galactic extinction. Of course, this introduces

a radial selection effect, known as Malmquist bias (Teerikorpi, 1997), whereby only the

intrinsically-brightest galaxies are present in the data at large z, whereas less luminous

galaxies at the same redshift will not be targeted for spectroscopy. We therefore restrict

ourselves to a volume-limited sample, ensuring that all galaxies in the Milky Way SFR and

M? ranges are detected and available for selection, regardless of their luminosities.

To do this, we first select a sample of Milky Way analog galaxies via the process described

in the following section from the clean main galaxy sample (i.e., ones with good-quality

measurements, as described in §3.2.2), but with no restriction in redshift. Next, we overlay

this sample of analogs upon the clean main galaxy sample with z > zmin in 0(g − r) vs. 0Mr

color-magnitude space; we then increase zmin until, by eye, the included objects fall as faint
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as the faintest Milky Way analogs, but no more so. The corresponding value of zmin will then

serve as the maximum redshift for our volume-limited sample. This is true since we expect

that the least-luminous galaxies in a sample must be at the smallest available redshift to be

seen at all; or, we can conclude that at any redshift below zmin such faint galaxies would be

included in a sample, but at any greater redshift they would not. Therefore, zmin corresponds

to the upper bound on the range of redshifts allowed for a volume-limited sample of Milky

Way analogs.

We note that this method is an extension of the standard procedure generally used to

identify volume-limited samples of objects (see, e.g., Tago et al., 2010; Tempel et al., 2014).

Whereas one typically investigates the luminosity completeness level as a function of redshift,

we have extended this analysis to the CMD. In this way, we have ensured that all the results

we present below (i.e., the luminosities and colors we infer for the Milky Way) are guarded

against Malmquist bias. We also note that this process of choosing a zmin contributes a

negligible amount of uncertainty to our final results presented below. For example, changing

zmin by ±0.005 yields a shift in all of our results by < 0.05σ.

Based on investigation of Milky Way analog color-magnitude diagrams for different lim-

iting redshifts, we find that a cut of 0.03 < z < 0.09 ensures that all analogs have r < 17.77,

so that the SDSS magnitude limit has no effect on our results. The lower bound on z is used

to limit the impact of aperture effects on the properties measured for these galaxies; again,

a ±0.005 shift in this value yields a < 0.05σ change in our results. In addition to applying

this redshift cut, we simultaneously enforce that all galaxy redshifts are measured at high

confidence by ensuring that no redshift warning flags are set within the SDSS catalog (i.e.,

each has a value z warning = 0). The resulting volume-limited sample includes 124,232

galaxies from the clean main galaxy sample.

In Figure 3.1, we the show position of the Milky Way with 1σ constraints as determined

in Chapter 2 in Ṁ?–M? space, overlaid upon log-spaced contours depicting the density of

the volume-limited sample. We have highlighted the approximate locations of the “main-

sequence” of star-forming SDSS galaxies in blue and the region of quiescent galaxies in

red. We also do this in our color-magnitude plots below; note that the relative positions

of the regions corresponding to these two populations are flipped in magnitude space. In
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the following section, we explain how we apply the Galactic constraints discussed in §3.2.1

to the volume-limited sample in order to construct a sample of Milky Way analogs, which

in total should exhibit the same properties as the Milky Way. We can then examine where

these analogs lie in color-magnitude space, ultimately converting our knowledge of where the

Milky Way lies in the Ṁ?–M? plane into similar constraints on its photometric properties.

3.3.2 Identifying Milky Way Analogs

We now collect a set of galaxies that, as an ensemble, can be used to constrain the overall

photometric properties of our Galaxy; i.e., a sample of Milky Way analog galaxies. By our

definition, these analogs are selected in such a way that the distributions of their measured

M? and Ṁ? values match the posterior probability distributions describing the Galactic M?

and Ṁ? found in Chapter 2 using a hierarchical Bayesian (HB) analysis (these results are

detailed in §3.2.1). To do so, we apply a randomized selection procedure to the galaxies in

the volume-limited sample, as follows.

We begin by randomly drawing a single value from each of the adopted PDFs describing

the Milky Way’s M? and Ṁ?, independently of each other. Ideally, we would like to then

select a single galaxy from the volume-limited sample whose measured properties match these

values exactly; we could then trivially build a sample of Milky Way analogs by repeating

this process a large number of times. However, in general there will be no galaxies with

properties that match these values perfectly. Therefore, we use our pair of values drawn

from the Galactic distributions as a point of reference in the Ṁ?–M? plane and identify all

galaxies from the volume-limited sample that lie within a small tolerance window centered on

this point. We choose this window to be the rectangular box that encompasses all values to

within x% of the M? & Ṁ? values drawn. To ensure that the distributions of analog properties

will still match the fiducial Galactic posteriors, we require that x% is much smaller than the

error in either of the Milky Way M? and Ṁ? results presented in Chapter 2. Finally, from

the galaxies that lie within our tolerance window we randomly select one as a Milky Way

analog. We repeat this process 5,000 times as the first step in building our sample, providing

us with a set of 5,000 Milky Way analog galaxies.
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We have employed a tolerance window in our method, as opposed to simply selecting

the object in the volume-limited sample nearest each (M?, Ṁ?) pair drawn, to maximize the

number of unique Milky Way analogs that make up our sample. In practice, we find that

when using a 1% tolerance our window encompasses at least one galaxy from the volume-

limited sample ∼75% of the time, and typically contains up to 8 candidate objects. The

remaining ∼25% of the time we can expand our window to a 3% tolerance from the drawn

M? and Ṁ? values in order to encompass a set of at least one galaxy, from which we randomly

draw one analog. Given that the fractional error in the adopted M? and Ṁ? for the Milky

Way is ∼19% and ∼12%, respectively, we find that the exact size of the 1%/3% acceptance

window is inconsequential to this study. We have tested for the impact of using broader

parameter space window sizes, though still small compared to the Milky Way measurement

errors, and always recover the same results (to well within the quoted errors). We have

also tested for any changes in our results when selecting analogs by their total specific star

formation rate (SSFR) and M? in place of SFR and M?; again, the differences are well within

the uncertainties. In light of this, we have chosen to present the results of using the SFR

measurements only, as using SSFR introduces substantial covariance (i.e., SSFR correlates

strongly with M?), whereas the SFR and total stellar mass of the Milky Way are determined

independently in Chapter 2.

Just as it is a problem for observing the Milky Way, dust alters the observed colors

and magnitudes of star-forming galaxies observed with high inclination angles. We therefore

exclude objects likely to be edge-on spiral galaxies from our Milky Way analog sample.

Accordingly, from the 5,000 galaxies selected initially, we exclude all those which have both

a best-fit axis ratio b/a < 0.6 measured from a purely exponential profile fit to the surface

brightness density in the r-band, as well as a value fdeV < 0.5, where fdeV effectively denotes

the fraction of light in the galaxy’s image that is contributed from a bulge-like component

vs. a disk-like component, again generally measured from the 2D r-band image. In effect,

we are excluding all galaxies we have selected that are both edge-on and disk-dominated. It

is important to note that, because we have applied no morphological constraints on Milky

Way analogs, excluding disks in this way will introduce a morphological bias into our sample

to some extent (i.e., the ratio of bulge-dominated and elliptical galaxies to disk-dominated
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galaxies will increase), an effect we will need to correct for. Therefore, it is important to apply

this cut only later in our Milky Way analog selection process so that we are able to track the

fraction of disk galaxies that make it into the sample before and after its implementation;

knowing these numbers will allow us to make the proper correction. Is §3.4.2 we will provide

a more in-depth discussion of this, including how this inclination cut was chosen and its

impact on our results. Ultimately, after removing edge-on disks we are typically left with a

clean sample of ∼3,500 galaxies.

For the particular realization we use in this study, our process more precisely yields 3,402

galaxies that we will use to derive our results below, and which we henceforth call the Milky

Way analog sample (MWAS). We note that, of the analog galaxies selected, only 935 (or

∼27%) are unique objects. It is important to keep duplicate objects so that the distribution

of property values for the MWAS accurately matches the posterior distributions for the Milky

Way properties we have found in Chapter 2 (see §3.2.1). In practice, we find that if we only

keep the set of unique objects, the mean M? of our sample has a significant bias (∼2× the

standard error) compared to when we eliminate duplicates. The SFR distribution is affected

less. These biases are avoided altogether by allowing objects to be selected multiple times

as a Milky Way analog.

For convenience, we show a flowchart in Fig. 3.2 that summarizes sections 3.2.2–3.3.2

into a step-by-step procedure that yields all of the different samples of galaxies that we

employ in this study. Figure 3.3 shows the positions of the MWAS in Ṁ?–M? space as red

dots, overlaid upon the same contours for the volume-limited sample as Figure 3.1. The

spread of these dots appears broader than the Galactic constraints in Fig. 3.1 due to both

the saturation of color where there are many objects and the substantial number of >3σ

events to be expected in any sample of 3,500 numbers; as mentioned above, the size of the

search box is small in comparison to the spread in Milky Way values.

Figure 3.4 shows our sample of Milky Way analogs (red dots) overlaid on the volume-

limited sample (greyscale contours), similar to Fig. 3.3, but now plotted in the 0(g − r)

vs. 0Mr color-magnitude diagram. Mapping these galaxies from one parameter space to the

other noticeably increases their scatter compared to the underlying population from which

they were drawn. However, their tight correlation in Ṁ?–M? space, as expected, produces
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significant constraints in the color-magnitude diagram, providing us with information on

what locations could feasibly be occupied by the Milky Way. We display a division line

between the red sequence and blue cloud regions obtained by taking a line parallel to the

slope of the red sequence, but offset to the point where contributions from red sequence and

blue cloud galaxies are equal, determined based upon the assumption that the spread in red

sequence colors about the center line is Gaussian (Graves, priv. comm.; cf. Taylor et al.,

2015b). The peak density of the Milky Way analogs lies near the division line, though many

lie far above or below it.

With the MWAS in hand, we are now ready to calculate new constraints on the photo-

metric properties of the Milky Way. For instance, simply calculating the mean and standard

deviation of the 0(g − r) colors of our sample yields ∼ 0.72 ± 0.07, and similarly we find

∼ −20.75 ± 0.37 for 0Mr. However, as mentioned above, before presenting our final results

we must first account for any major potential sources of systematic error in our method (e.g.,

the morphological bias introduced from removing any edge-on disks from the MWAS), and

make the proper corrections. We will next discuss these systematics and the corrections that

they require in the following section.

We note that for any mean quantity described hereafter, including those provided in

our tables of results, we are actually using the Hodges-Lehmann (H-L) estimator (Hodges &

Lehmann, 1963). The H-L estimator is a robust measure of the median of the data, which is

calculated by determining the median value of the set {(xi + xj)/2} for all pairs i, j. For N

Gaussian-distributed data points with a standard deviation σ, the mean has standard error

σ/
√
N , while the median has uncertainty ∼σ/

√
0.64N . The H-L estimator has an error of

∼σ/
√

0.955N , comparable to the mean, but shares the robustness to outliers of the median,

making it a superior choice in most cases. Hence, using the H-L estimator should reduce the

impact of significant outliers in our sample, in contrast to the ordinary mean, but will have

smaller errors than the median.

Instead of calculating for all possible pairs, which requires excessive computation time,

we bootstrap this estimate by choosing a set of random i, j pairs equal to ten times our

effective sample size (reducing from ∼ 6× 106 total pairs down to a much more manageable

34,020 for our typical calculations). This introduces a small amount of extra uncertainty (=
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σ/
√

2/
√

0.64× 34, 020 = 0.27σ) which must be added in quadrature to the nominal standard

error in the H-L estimator. The net result is that our estimator yields uncertainties 3% larger

than the true H-L mean would. This additional uncertainty is negligible compared to our

overall errors; hence this technique does not introduce any measurable amount of potential

bias, and the bootstrapped H-L estimator in our application will still have significantly

smaller uncertainty than the median value.

3.4 SYSTEMATICS

In this section we discuss the principle systematic errors and biases that could affect the

methods applied in this study, other than systematic errors in either of Milky Way or extra-

galactic M? & Ṁ? measurements, which we defer discussion of to §3.5. First, we investigate

the impact of Eddington bias, i.e., the bias resulting from selecting objects using quantities

that are affected by measurement errors. We provide details on how we can estimate its

overall effect, which we then subtract from our final results. In addition, we analyze the

impact of reddening associated with observing disk galaxies at an inclination on the optical

properties of our Milky Way analog sample. We discuss how we identify inclined objects

in the SDSS measurements, as well as our methodology for mitigating reddening or extinc-

tion effects that otherwise, when neglected amongst the Milky Way analog sample, could

distort the inferred photometric properties of our Galaxy. We will demonstrate that, after

corrections for these effects, the remaining systematic uncertainties from these effects are

well below statistical uncertainties.

3.4.1 Eddington Bias

It is important to address how the uncertainties in our stellar mass and SFR estimates affect

our results. Specifically, we are drawing each Milky Way analog from a small bin in SFR–M?

space. For any parameter whose intrinsic probability distribution function has significant

higher derivatives (second or beyond), scatter due to errors will move more objects from bins
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with more objects to those with fewer as opposed to the converse. This causes the observed

distribution of values with errors to be biased compared to the true, underlying distribution.

This phenomenon is known as Eddington bias and is very common in astronomy; it is the

generalized form of the Malmquist bias which affects luminosity distributions. For instance,

since massive galaxies are rare, a galaxy with a large M? estimate is more likely to have

an actual stellar mass below that value than above, since there are many more objects that

could up-scatter than down-scatter. As a result, in aggregate the M? values of our Milky

Way analogs should be biased high. Similar effects could affect SFR, luminosity, or color

estimates.

To quantify this bias, we consider a statistical exercise of perturbing each galaxy’s M?

and Ṁ? value by Gaussian noise sampled from their estimated errors, and then reselecting a

set of Milky Way analog galaxies utilizing the perturbed measurements. To be specific, we

offset the mean log M? and log Ṁ? values individually for each galaxy by a value randomly

drawn from a Gaussian distribution centered at zero with a standard deviation of that

object’s σlog M? or σlog Ṁ?
value. We perform N = 100 realizations of this perturbation

process, each time selecting a new set of Milky Way analog galaxies in the same manner

described in §3.3.2. Calculating the H-L mean for each ugriz property for each realization

yields a distribution characterizing our nominal results with the effects of Eddington bias

applied two times, instead of the single impact that should affect our standard sample. We

bootstrap this distribution of doubly-biased values to measure the mean H-L mean and its

standard error (Efron, 1979). We then repeat this exercise but applying the noise 2, 3,

or 4 times consecutively before selecting a sample. This yields distributions of the mean

property of interest after repeatedly applying the bias in our method n times; the mean

of this distribution we denote µn. For clarity, note that we consider the actual Eddington

bias in our standard MWAS as the first (n = 1) application, and thus distributions of ugriz

properties yielded from p successive perturbations of the M? and Ṁ? values by their errors

are labeled n = p + 1 in our plots and discussion below. Fig. 3.5 displays examples of this

analysis for 0Mr.

To estimate the Eddington bias in each property we then plot the difference between the

means of the n and n−1 values of a given parameter as a function of n; i.e., µn−µn−1 versus
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n. We then perform a least-squares quadratic fit to these four data points, incorporating the

error estimates from our bootstrap analysis. We use the resulting curve to extrapolate to

n = 1, whose ordinate corresponds to the offset in the “mean” of a given property between

when Eddington bias affects our sample of Milky Way analog galaxies and when it does not.

This value is then subtracted from the observed mean for that property of the MWAS. In

Fig. 3.5 we show what the results of this exercise typically look like, again adopting 0Mr as

an example.

In order to calculate the uncertainty in our estimate of the Eddington bias, we construct

the covariance matrix for the coefficients of a least-squares quadratic fit, A + Bn + Cn2.

We are interested in the σ of the point at n = 1; this simply reduces to the square root of

the sum of all elements of the covariance matrix. We note that if the uncertainties in our

stellar mass estimates were primarily due to photometric errors, this treatment would be

incorrect, as if an object had (say) a higher-than-actual estimated M? value, it would also

have a too-bright Mr. However, this does not appear to be the case; we find that stellar

mass errors are > 5× larger than would be expected from SDSS photometric errors, so other

sources of uncertainty clearly dominate, and we can safely treat absolute magnitudes and

stellar masses as statistically independent.

3.4.2 Inclination Reddening

As mentioned in §3.3.2, we have removed any edge-on disk galaxies that originally were

included in the MWAS. This is because, just as reddening and extinction affect observations

though the disk of the Milky Way, they also alter measurements of external spiral galaxies

with their disks aligned along our line of sight. The spectral energy distribution (SED)

measured for such an edge-on disk galaxy will be significantly distorted; we will receive a

much smaller fraction of blue light than when observing face-on, while the flux of redder

optical light detected will be much less affected. This means that the more edge-on a disk

galaxy in the SDSS sample is, the less representative our observations will be of its intrinsic

photometric properties (see, e.g., Unterborn & Ryden, 2008; Maller et al., 2009; Salim et al.,

2009). It is important, therefore, to ensure the properties of the MWAS are not skewed by
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this effect. In this section we discuss quantitatively our method of choosing the appropriate

inclination threshold for the MWAS, as well as the unwanted side effect that it creates,

namely morphological bias, which we will also need to correct for.

DR8 provides measurements of each galaxy’s semi-minor-to-semi-major-axis ratio, b/a,

as determined from the exponential profile best fit to its 2D image (labeled abExp in the DR8

catalog). Low values of b/a indicate that the galaxy’s image has high eccentricity. Addi-

tionally, when calculating cmodel magnitudes (see §3.2.2), the weight of the de Vaucouleurs

profile in the best-fit linear combination with the exponential profile matched to the object’s

image is recorded as fdeV (or alternatively fracDeV). Essentially, this quantifies the fraction

of the total light in the 2D image of the galaxy that is well fit by a Sérsic index of 4 as

opposed to 1. For our purposes, we classify any object with fdeV > 0.5 as a bulge-dominated

or elliptical galaxy, and any with fdeV < 0.5 as a disk-dominated galaxy. Our objective is

then to use these two parameters to effectively eliminate edge-on disk-dominated objects

(i.e., ones well fit by an exponential profile and that appear to have a high inclination angle)

from being selected as part of the MWAS to prevent any systematic offsets in our results

due to reddening. We are not concerned about including early-type galaxies with low b/a in

the sample, as they contain little cold gas and dust, so extinction effects are comparatively

minor for them.

We have tested the impact of this cut by varying the minimum-allowed axis ratio for disk-

dominated galaxies in our sample and measuring how the mean 0(g − r) color is affected.

To do so, we again employ a process of selecting a set of 5,000 Milky Way analog galaxies

identical to that explained in §3.3.2, but unlike before, we do not yet apply any constraints

on the b/a or fdeV values in the sample. In Figure 3.6, we display how the integrated color

of this set changes as we impose constraints on b/a and fdeV in three different ways.

First, the upper (red dashed) curve shows the effect of removing only disk galaxies (i.e.,

ones having fdeV < 0.5) as we systematically increase the minimum allowed axis ratio.

Initially, as we increasingly remove the lowest b/a (most-inclined) disks we see the mean

0(g − r) color shifts blue-ward, as expected. However, once we increase our threshold to

remove disks with b/a . 0.35, we find an unwanted side effect: increasingly removing the disk

population gives increasing weight to bulge-dominated and elliptical populations, yielding a
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trend toward net redder color.

Second, we investigate a scenario that attempts to avoid this problem. The lower (dash-

dotted blue) curve shows the effect of removing any object regardless of its type (i.e., its

fdeV value) as we systematically increase the minimum allowed axis ratio. We note that at

b/a & 0.35 bulge-dominated and elliptical galaxies outnumber disk-dominated galaxies at a

ratio of ∼3:2; this is the case for the entire volume-limited sample, as well as Milky Way

analogs. Hence, we find that in this case the mean color of the sample becomes increasingly

bluer as we increase our minimum allowed b/a threshold above 0.35. However, since this

trend does not stabilize as we push our threshold higher, it is likely that we are increasingly

oversampling disk-dominated objects due to preferentially discarding the more prevalent

elliptical and bulge-dominated galaxies in this regime.

Lastly, we present an alternative treatment shown by the middle (solid black) curve.

Here, we remove the same disk galaxies that we do in the first scenario, leaving all bulge-

dominated and elliptical types initially selected in the sample. However, we now calculate a

weighted mean quantity, where we ensure that the contribution of disk galaxies remaining,

after applying any minimum threshold on b/a, is equal to that from the disks present in the

sample before any cut. In other words, we calculate the mean property of our filtered sample

of galaxies by multiplying the contribution from the remaining disk types after selection by

a weighting factor W = Nbefore
disks /N

after
disks, where Nbefore

disks and Nafter
disks represent the number disk

galaxies in the sample before and after applying this cut, respectively. For instance, for

0(g − r) color our estimator reduces to

〈0(g − r)〉 =
Nbefore

disks 〈0(g − r)after
disks〉H-L +Nellipticals 〈0(g − r)ellipticals〉H-L

Nbefore
disks +Nellipticals

, (3.1)

where Nellipticals is the number of ellipticals in the MWAS, 〈0(g−r)after
disks〉H-L is the mean 0(g−r)

color of disk galaxies after the b/a and fdeV cuts are applied, and 〈0(g − r)ellipticals〉H-L is the

mean 0(g− r) color of ellipticals in the MWAS. The H-L subscript here denotes that we are

truly using the Hodges-Lehmann estimator of the mean.

By comparing the different curves in Figure 3.6, it is clear that the weighted mean is

favorable over the other scenarios for two reasons. First, the slope of the weighted-mean

curve is shallow enough that moving from a cut of b/a > 0.4 to b/a > 0.8 makes a . 0.01
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magnitude difference in integrated 0(g − r) color. Hence, compared to the other scenarios,

this prescription results in more stable values of mean 0(g − r) over basically all reasonable

threshold values of b/a. Second, the position of this curve is between the other two, indicating

that we are avoiding giving too much weight to either of the red or blue populations, and

hence limiting the impact of any morphological bias. We note that simply cutting out

whole classes of galaxies based on their axis ratios, as in the first two scenarios, provides a

more extreme way of dealing with inclination reddening. The difference measured, however,

between the curve for our weighted-mean scenario and either of the other two scenarios is

. 0.02 mag; all of these differences are significantly less than the statistical errors in 0(g− r)
color of the sample (∼0.06 mag). Based on the results of this exercise, we eliminate any of

the original 5,000 galaxies selected for the Milky Way analog sample having both b/a < 0.6

and fdeV < 0.5, and we report the reweighted mean property to minimize the impact of any

reddening of the sample due to inclination. As noted above, this cut typically removes ∼30%

of a MWAS realization.

We note that if we were to avoid edge-on disks entirely during our selection of Milky Way

analogs (they have been selected based only on their M? and Ṁ? values), then our results

would suffer from the same morphological bias that is evident from the red dashed curve in

Fig. 3.6, but with no way of knowing to what quantitative extent. Therefore it is important

to make a correction only at this stage in the analysis – i.e., calculating our results via a

weighted mean after removing edge-on disks – so that we may correct for both systematic

effects, namely inclination reddening and morphological bias. Fortunately, we have found

that the variations due to such effects are far below the random uncertainties.

One other option would be to correct for inclination-related reddening on an object-

by-object basis, rather than trimming and reweighting the sample as was done here. For

instance, Maller et al. (2009) provide formulae for converting inclination-dependent observed

quantities into intrinsic ones. When applied to the color-magnitude relationship their meth-

ods transform the SDSS blue-to-red galaxy ratio from 1:1 to 2:1 in the absolute magnitude

range of −22.75 ≤ MK ≤ −17.75. Converting to intrinsic properties could eliminate the

need for inclination cuts altogether and allow us to utilize a larger subset of the SDSS main

galaxy sample, though at the cost of adopting a particular model for extinction corrections.
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In any case, we point out that the difference between our choice of correction and the ex-

treme limits displayed in Fig. 3.6 is a ∼0.02 mag shift, which turns out to be a factor of

3 times smaller than the uncertainties in our final results. In addition, the slope of this

curve becomes very shallow beyond a minimum axis ratio of 0.4, so any reasonably chosen

cut would yield negligible change to our results. Similar analyses have demonstrated that

this same method works well for all colors considered as well as for correcting extinction

in absolute magnitudes. Overall, we expect that any alternative prescription for inclination

would have inconsequential impact on the results of this study.

Lastly, in Figure 3.7 we show the distribution of M? and Ṁ? values for Milky Way analogs

compared to the posterior distributions used for selecting them. This includes distributions

for the original sample of 5,000 before any cuts, the 3,402 galaxies remaining after removing

those with b/a < 0.6 and fdeV < 0.5, and the reweighted distribution of those 3,402 objects

in congruence with Equation (3.1). Where necessary, we have renormalized each distribution

to reflect a total sample size of 5,000 objects. In all cases, we find the mean and standard de-

viation of our sample match those of the posterior distribution and have confirmed that they

are Gaussian distributed via a Q-Q plot analysis (Wilk & Gnanadesikan, 1968). Hence, we

find that our treatment of inclination reddening and morphological bias does not compromise

the fundamental design of our Milky Way analog sample in M?–Ṁ? space.

3.5 RESULTS

With the Milky Way analog sample (MWAS) assembled and major systematic errors ac-

counted for, we are now able to produce a comprehensive outside-in portrait of our Galaxy.

Table 3.1 presents the inferred photometric properties we determine for the Milky Way in

rest-frame z=0 SDSS passbands, and likewise Table 3.2 presents rest-frame z=0.1 SDSS pass-

band results. The values shown are calculated as the weighted (Hodges-Lehmann estimator

of the) mean as described in §3.4.2 and have been corrected for Eddington bias as detailed

in §3.4.1. Each row is calculated independently of any other table entry; for instance, we

utilize the full distribution of 0(g− r) amongst the Milky Way analogs, rather than deriving
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this value by subtracting 0Mr from 0Mg (this is also due to our colors being derived from

model magnitudes, whereas absolute magnitudes are based upon cmodel). For reference we

list the inherent Eddington bias that has been subtracted in juxtaposition to each corrected

value.

In addition, we tabulate the derivative of each property with respect to total stellar mass

and star formation rate. This is accomplished by offsetting the distributions we assume for

the Galactic M? and Ṁ? by ±0.1 times their respective errors and redoing our analyses.

Along with our fiducial results, this provides 3 data points to which we fit a quadratic

Lagrangian-interpolation polynomial, and then calculate its derivative at the central data

point. We choose an offset of ±0.1σ so that the resulting Galactic range in Ṁ?–M? space

does not require selecting a new volume-limited sample of objects.

As discussed in §3.1, all extragalactic measurements of log M? and log Ṁ?, measured on

the cosmic distance scale, can be converted to reflect different values of the Hubble constant

by subtracting from them 2 log(h/0.7), effectively shifting them relative to the Milky Way’s

position in this parameter space. If we were to instead add this quantity to the Galactic

log M? and log Ṁ? values, the change in our results would be identical; this allows one to

calculate how the absolute magnitudes and colors we calculate for the Milky Way change for

different h using quantities given in Tables 3.1 & 3.2. For example,

d(0Mr − 5 log h)

dh
=
∂(0Mr − 5 log h)

∂M?

dM?

dh
+
∂(0Mr − 5 log h)

∂Ṁ?

dṀ?

dh
. (3.2)

To be explicit, this means that calculating absolute magnitudes using a different value of

h (where h = H0/(100km s−1Mpc−1) has been used) would shift both the positions of the

Milky Way and the volume-limited sample together in unison along the absolute-magnitude

axis of any color-magnitude diagram (CMD) we show. However, calculating M? and Ṁ?

values using a different value of h (where h = 0.7 has been used) would shift the position of

the volume-limited sample relative to the Milky Way’s position in the CMD; the size of this

effect can be estimated using Equation (3.2). For instance, for the Milky Way M? and Ṁ?

values we have used along with the values in Table 3.1, we find a ±0.05 shift in h corresponds

to a ∼ ±0.05 magnitude shift in 0Mr − 5 log h and no shift in 0(g − r). Therefore, we would

expect any reasonable difference between the true value of h and 0.7 will yield negligible
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changes in our results (well below the measurement uncertainties) and the conclusions we

draw from them.

Similarly, the results for the total stellar mass of the Milky Way found in Chapter 2

would be changed if any adjustments are made to the absolute distance scale (see Table

2.6). Predominantly this manifests in changes to the Galactocentric radius of the Sun, R0;

in Chapter 2 we conservatively used 8.33 ± 0.35 kpc based on the work of Gillessen et al.

(2009). Firstly, since we found ∂M?/∂R0 = 3.09 × 1010 M� kpc−1 for the Milky Way, the

impact of a change in R0 can be obtained by replacing h with R0 in Equation (3.2) (note

∂Ṁ?/∂R0 = 0).

Uncertainties in R0 dominate the error budget in our M? model. We find that if we

were to instead adopt R0 = 8.36 ± 0.11 kpc based on Chatzopoulos et al. (2015), yielding

a ∼69% decrease in uncertainty in R0, then the total stellar mass from Chapter 2 becomes

M? = 6.18± 0.50× 1010 M�, corresponding to a net ∼57% decrease in M? uncertainty. This

ultimately yields a ∼20% decrease in Mr uncertainty, while also causing the Milky Way

analogs to lie along a tighter trend in color-magnitude space. Ultimately, as our knowledge

of the structure of our Galaxy improves (e.g., by measurements from Gaia), our methods

should be able to more strongly constrain the Milky Way’s location in CMDs. In contrast,

the current uncertainties in the Galactic SFR have a negligible effect on the constraints

on the photometric properties derived in this chapter. This is because the uncertainty in

the Milky Way stellar mass is a significant fraction of the range of stellar masses amongst

galaxies of comparable SFR, while the SFR uncertainty is a ∼7× smaller fraction of the

range of SFRs at fixed mass. We note also that the evolution of galaxies since z ∼ 0.1

appears to have negligible effect on our results; e.g., limiting our analysis instead to objects

at 0.045 < z < 0.075 yields differences in our results that are much smaller than the errors.

Fig. 3.8 now shows the position of the Milky Way corrected for Eddington & inclination

bias, as listed in Table 3.1, as a red dot in rest-frame SDSS 0(g − r) vs. 0Mr space; it is

overlaid upon log-spaced density contours for the volume-limited sample. The purple ellipse

displays our 1σ confidence region, accounting for the covariance between color and absolute

magnitude; this yields a vast improvement in constraining how our Galaxy fits amongst

the extragalactic population compared to the previously best 1σ constraints from van der
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Kruit (1986, grey dash-dotted lines). For convenience, we have highlighted the red-sequence

and blue-cloud regions of this diagram (flipped in position compared to Ṁ?–M? space, since

higher-SFR galaxies are bluer). We see that Milky Way’s position straddles the boundary

between these two populations, with a chance that it lies in the core of the red sequence or

redder. In addition, given that the blue cloud includes the vast majority of the spiral galaxy

population (S14; Wong et al., 2012; Strateva et al., 2001; Blanton et al., 2003a), we see that

our value of 0Mr − 5 log h = −21.00+0.38
−0.37 establishes the Milky Way amongst the brightest

spiral galaxies in the local universe, while its integrated color of 0(g− r) = 0.682+0.066
−0.056 ranks

it amongst the reddest as well.

Lastly, we produce an updated plot equivalent to Figure 1 of Mutch et al. (2011, M11)

by showing our constraints on the Milky Way’s position in 0(u − r) vs. M? space, where

the green valley becomes stretched out and more distinguishable. Here, we have highlighted

the green-valley region based on two different definitions. First, the dark green region shows

the division line empirically derived for SDSS galaxies by Baldry et al. (2006) with an

offset of ±0.1 mag in the vertical direction (the definition of the green valley employed by

M11), which matches well with the density contours for our volume-limited sample. Second,

the light green region shows a definition based upon correcting all SDSS galaxies for dust

effects, as defined by Schawinski et al. (2014, hereafter S14). In the second case, many of

the intermediate-color objects are blue galaxies that are both dusty and viewed edge-on,

and so switching to intrinsic (face-on) properties moves this population blue-ward in the

plot, effectively thinning out and expanding the green-valley region more. Given that our

measurement of the Milky Way’s position in this space is effectively face-on, the green-valley

definition from S14 provides a suitable comparison.

Compared to the prior constraints (grey dash-dotted lines), we are in a much better

position to now identify where the Milky Way lies relative to other galaxies. In particular,

our Galaxy appears to be entering, if not already a part of, the green-valley region where

objects are expected to be in a transitional phase; here star formation is quenching by some

mechanism(s); consequentially, green-valley galaxies are moving on a trajectory towards the

red sequence (for more detail see, e.g., Gonçalves et al. 2012; Fang et al. 2012; and S14).

In Tables 3.3 & 3.4 we present our results for Milky Way properties transformed to the
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Johnson-Cousins passband system. As a reminder, these values have been calculated in an

identical fashion to those listed in Tables 3.1 & 3.2, but after transforming each Milky Way

analog’s set of SDSS ugriz magnitudes to an equivalent set of Johnson-Cousins UBV RI

measurements using the kcorrect software package (Blanton & Roweis, 2007). This entails

calculating magnitudes in UBV RI passbands from the linear combination of template galaxy

SEDs from BC03 that best fits the observed SDSS ugriz photometry on an object-by-object

basis, and hence should provide the most accurate transformations. A viable alternative

would be to apply the empirical color transformations provided by Cook et al. (2014) directly

to our results in Tables 3.1 & 3.2, though these equations represent the mean transformations

between the two passband systems averaged over galaxies with a range of morphologies, star

formation rates, etc. Nevertheless, we find that applying the Cook et al. 2014 transformation

equations to our SDSS results produces estimates on the Johnson-Cousins system that are

quite similar to our nominal values determined using kcorrect. The differences are almost

always at the 0.1–0.3σ level (including for mass-to-light ratios, which we discuss next), the

one exception being 0(U − B), where the two methods agree at the 0.75σ level. Note that

we have used the Cook et al. equations to transform the van der Kruit (1986) result in Fig.

3.8.

In addition to the photometric properties presented in Tables 3.1–3.4, we also provide

in Table 3.5 new estimates of global stellar mass-to-light ratios, Υ?, for the Milky Way for

all SDSS and Johnson-Cousins passbands in the z=0 and z=0.1 rest-frames. These are

calculated from the full distribution of Υ? values for the MWAS, in the same manner as we

calculate photometric properties. To do so, we first calculate the stellar mass-to-light ratio

for each Milky Way analog in passband x in the rest-frame of redshift z as

zΥ?
x = M? × 100.4((zMx+5 log(0.7/h)−zM�,x) L−1

� , (3.3)

where zM�,x and L� represent the absolute magnitude and luminosity, respectively, of the

Sun, which we calculate using the k solar magnitudes routine from the kcorrect package.

We note that Equation (3.3) is written to make it clear that we have converted absolute

magnitudes to reflect h = 0.7 and hence be on the same scale as our M? values; however, it

should be noted that Υ? is intrinsically a cosmology-independent quantity. For instance, if
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we now chose to rescale quantities from h = 0.7 to 0.8, the right-hand side of Equation (3.3)

would gain a factor of (0.7/0.8)2 for the change in stellar mass and a factor of 100.4(5 log(0.8/0.7))

for the change in luminosity, which cancel. Next, we use Equation (3.1), replacing 0(g − r)
with zΥ?

x, in order to produce our weighted-mean estimate. Lastly, we multiply this by a

factor of 10−0.4B, where B is the Eddington bias correction, which is listed in Tables 3.1–3.4.

In this way, our results are corrected for Eddington bias, inclination effects and morphological

bias (all subdominant to the random errors), consistent with all other properties presented

here.

3.6 SUMMARY & DISCUSSION

This chapter has focused on determining the global photometric properties of the Milky

Way (MW) to facilitate comparisons to observations of other galaxies. In Chapter 2 we

have derived a new, highly constrained stellar mass and SFR for the MW using a multitude

of independent results from the literature, which encompass many different methods and

datasets. We then identified a set of SDSS galaxies analogous to the MW, whose distribution

of SFR and total stellar mass values match the probability distributions for these quantities

(given uncertainties) of the Milky Way. These two quantities are strongly correlated with a

galaxy’s luminosity and color (see, e.g., Bell & de Jong, 2001), so a galaxy which matches

our Galaxy in stellar mass and star formation rate would also be expected to have a similar

overall spectral energy distribution. We then determine the range of photometric properties

of these galaxies, allowing us to constrain MW properties in a manner that is largely robust

to the effects of Galactic extinction (unless the Milky Way is so unusual that it has no

true analogs amongst the set of galaxies matching its M? and Ṁ?). We have accounted for

the Eddington bias involved with selecting galaxies based on their SFR and stellar mass,

and tested the impact of reddening effects on this sample. In §3.5 we have provided a full

tabulation of useful Milky Way photometric properties.
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3.6.1 Comparisons to Earlier Color Measurements

Overall, the results from our Milky Way analog-based analysis method compare well with

literature estimates of the properties of the MW. Since many of those estimates are made

using the Johnson-Cousins passband system, we will often rely on our results transformed to

this system in order to make direct comparisons; these are available in Tables 3.3–3.5. First

and foremost, our transformed estimate of 0(B − V ) = 0.744+0.068
−0.054 is in excellent agreement

with the widely used van der Kruit (1986, vdK86) measurement of 0.83± 0.15, consistent at

the ∼0.5σ level. Our result indicates a slightly bluer color for the Milky Way with a smaller

uncertainty by a factor of ∼3.

As mentioned in §3.1, earlier measurements yielded much bluer color estimates for the

MW than vdK86, and hence also much bluer than the estimate we have presented here. The

de Vaucouleurs & Pence (1978, dV&P) two-component model produced a color estimate of

B − V = 0.53 ± 0.05, which is inconsistent at nearly the 3σ level with our estimate. The

Bahcall & Soneira (1980, B&S) two-component model yields B−V = 0.45; given the lack of

any error estimates, this is difficult to compare to our value, though again significantly bluer.

Bahcall (1986) advised using a ±0.2 magnitude margin of error when comparing colors to the

model, given the wide variety of systematic uncertainties existing in the data at that time.

If we use this as the error estimate for the B&S model value, we find that our result is redder

by 0.29 ± 0.21 magnitudes, making these estimates inconsistent at the ∼1.4σ significance

level. It is possible that the tension between the dV&P and B&S color estimates and the

one presented here would be reduced if the two-component models employed were updated

to more current constraints on the Galaxy’s stellar populations.

In de Vaucouleurs (1983, dV83), an estimated color of B−V = 0.53± 0.04 is quoted for

the Milky Way, obtained by averaging the observed colors of nearby Sb/c types. This value

appears to originate from data Table 4 of de Vaucouleurs (1977, hereafter dV77), which

indicates that the distribution of corrected colors for a sample of 70 Sbc galaxies is described

by B − V = 0.564 ± 0.066. The measurements for each object are tabulated in the Second

Reference Catalogue of Bright Galaxies (RC2; de Vaucouleurs et al., 1976), which collected

extragalactic data published since the 1930s. Each B − V color measurement in RC2 is
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corrected to the asymptotical total light from each galaxy using a Laplace-Gauss integral

technique, as a function of its morphological type (T ) and the effective aperture diameter

(Ae) containing 50% of its total light (in some cases, the B − V color is transformed from

measurements in different passbands). Each “total” B − V color is then corrected to zero

Galactic extinction via a model of the Galactic dust as a function of coordinates (l, b), to

zero internal extinction based on a model of inclination reddening as a function of T and

isophotal axis ratio, and to the z = 0 rest-frame via a K-correction modeled as a function

of T and z.

Given the difficulties of these corrections, as well as the challenges of properly intercal-

ibrating photographic and photoelectric measurements from a wide variety of sources, it is

likely that there could be significant systematic errors in this mean B − V estimate. Fur-

thermore, dV83 assumes T = 4 for the Milky Way (no less than 2.5 and no more than 5.5)

and quotes the rate of change of the mean corrected color along the T sequence near T = 4

to be -0.10. While T = 4 (or equivalently Sb/c) fits well with the Galactic bulge-to-total

ratio of 0.15 we have found in Chapter 2, the uncertainty in the Milky Way’s morphologi-

cal type will still represent an additional source of uncertainty which appears not to have

been included in the error estimate from dV83. We can therefore only treat the uncertain-

ties quoted in the dV83 measurement as a lower limit. If we instead consider the value of

B − V = 0.564 ± 0.066 from dV77, this is bluer than our nominal result by 0.18 mag and

inconsistent at the ∼2σ significance level. We believe the tension between our color mea-

surement (or that of vdK86) and the estimates from dV77 and dV83 would be relieved if

the sources of uncertainty described above were included in this estimate.

For comparison, Fukugita et al. (1995) performed a similar analysis for galaxy types

across the Hubble sequence by comparing synthetic colors measured from galaxy SEDs to

broadband photometry taken from the Third Reference Catalogue of Bright Galaxies (de

Vaucouleurs et al., 1991). Listed in their Table 2, the authors found the average B − V

color for 676 Sb/c types (using only objects with |b| > 30 ◦, but applying no reddening

correction) is 0.68±0.14, which is in excellent agreement with our MW result. More recently,

Fernández Lorenzo et al. (2012) investigated the colors of isolated galaxies in the AMIGA

sample that are also found in SDSS-DR8. This sample included 466 galaxies, two-thirds
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of which were classified as Sb/c. Similarly to the methods we employ, the authors used

model magnitudes that were corrected for Galactic dust extinction and K-corrected to z=0

rest-frame passbands. Listed in their Table 3, they found the median 0(g− r) color for Sb/c

types is 0.65±0.09, which compares well with our MW 0(g−r) estimate of 0.682+0.066
−0.056. That

table also provides colors for a variety of Sb/c galaxy samples; these subsets vary in local

environment and redshift range, but all yield color estimates that agree with our Milky Way

value at or below the ∼1σ significance threshold.

3.6.2 Comparisons to Earlier Absolute Magnitude Measurements

Comparisons of absolute magnitudes require more care, as they require additional assump-

tions that are prone to systematic error, particularly the value of h = H0/(100km s−1Mpc−1)

used to bring extragalactic distance estimates (determined from z) and measurements based

on absolute distances (in parsecs) onto a common scale. For the following discussion we adopt

h = 0.7. The vdK86 study yielded estimates of MB = −20.3±0.2 and (when combined with

his B − V estimate) MV = −21.1 ± 0.3; these compare well with our slightly brighter esti-

mates of 0MB = −20.84+0.40
−0.44 and 0MV = −21.51+0.37

−0.39, which are consistent at the ∼1σ level.

The B&S two-component model yields MB = −20.1 and MV = −20.5, measurably dimmer

than the results we have found, though again hard to compare to with no error estimates

given. The dV&P two-component model, on the other hand, produced MB = −20.2± 0.15

(dV83) and B−V = 0.53±0.05, leading to MV = −20.7±0.16; these values are inconsistent

with our 0MB and 0MV results at the ∼1.5σ and ∼2σ level, respectively.

More recently, Flynn et al. (2006) analyzed Hipparcos and Tycho data for the local

disk and extrapolated using an exponential disk model (in combination with earlier bulge

luminosity estimates) to determine MI = −22.3±0.17. This compares well with our brighter

value of −22.61+0.36
−0.39, and is consistent with it at the ∼0.8σ level. Also, Liu et al. (2011)

converted the best-to-date Vega-calibrated MV measurement for the Milky Way (van den

Bergh, 2000) into an AB-calibrated absolute 0.1r-band magnitude of -21.97 (with no error

estimate given); this is within ∼1σ our estimate of 0.1Mr = −21.55+0.37
−0.39, but brighter, rather

than fainter.
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3.6.3 Comparisons to Luminosity Function Measurements

Blanton et al. (2003b) determined luminosity functions for galaxies in all SDSS passbands

using the SDSS Early Data Release. These were determined as the Schechter function that

fits best to the distribution of Petrosian absolute magnitudes of galaxies, converted to the

AB system, K-corrected to z = 0.1 rest-frame ugriz passbands, and corrected for galaxy

luminosity evolution; this should compare well with the cmodel absolute magnitudes used

in this work after correcting them for the luminosity evolution since z = 0.1. The Schechter

function is parametrized by the characteristic absolute magnitude, M∗ (not to be confused

with the total stellar mass which we have denoted as M?), which provides a measure of where

the luminosity function transitions from being well-fit by a power law into an exponential

drop-off. Thus, galaxies with increasing absolute magnitude beyond M∗ rapidly become

more rare. To compare our results, we add 0.1Q to the results listed in Table 3.2 of this

chapter, where Q is the appropriate correction in units of magnitude per unit redshift for

each band as listed in Table 3 of Blanton et al. (2003b), and then subtract from this quantity

the appropriate M∗ value for each band as listed in their Table 2. Based on this work, we find

the the Milky Way is brighter than their M∗ by 0.50±0.64, 0.48±0.48, 0.18±0.37, 0.18±0.38,

and 0.15± 0.39 magnitudes in the 0.1ugriz bands, respectively, essentially showing the MW

to be consistent with M∗ in all bands at the .1σ significance level. Similarly, Montero-Dorta

& Prada (2009) reproduced the analysis of Blanton et al. (2003b) using SDSS Data Release

6, which provides larger redshift-complete samples of galaxies and incorporates improved

reductions of SDSS imaging data. However, the luminosity functions that result from this

work neglect any correction for the evolution of galaxies, as its impact is estimated to be

very small for the redshift ranges used (i.e., z . 0.2). To compare our results with this

work, we subtract M∗ listed for the appropriate band in their Table 2 from our values in

Table 3.2 of this chapter. Based on this work, we find the Milky Way is brighter than M∗ by

1.13± 0.63, 0.54± 0.48, 0.07± 0.37, 0.23± 0.38, and 0.01± 0.39 magnitudes in the 0.1ugriz

bands, respectively. Again, we find the MW to be consistent with their M∗ in nearly all

bands at the ∼1σ confidence level, and hence is comparable in luminosity to L∗ galaxies in

the nearby universe.
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3.6.4 Comparisons to Green-Valley Definitions

In Figure 3.8, we have presented the Milky Way’s location in the 0(g − r) vs. 0M r plane,

demonstrating that it falls in the intermediate region between the blue cloud and red sequence

populations. Our results are consistent with the hypothesis posed by Mutch et al. (2011,

M11) that the Milky Way could be a member of the “green-valley” population. In Figure

3.9, we have produced an updated 0(u− r) vs. log M? diagram modeled on of Fig. 1 of M11,

showing the vast improvement in our constraints compared to those from prior measurements.

Here, the Milky Way lies bluer than their definition of the green valley, i.e., the region within

0.1 mag of the SDSS color-division line determined by Baldry et al. (2006).

However, more recent work by S14, using K-corrected and dust-corrected DR7 magni-

tudes for galaxies at 0.02 < z < 0.05 (comparable to our sample at 0.03 < z < 0.09), defines

the green valley to be −0.75 < 0(u− r) − 0.25 log(M?/M�) < −0.24; this definition would

indicate that the Milky Way is in fact a green-valley galaxy in this diagram. Jin et al. (2014)

present a definition of the green valley that avoids dust-reddening effects by using face-on

nearby galaxies with DR7 magnitudes K-corrected to z = 0.1. They define the center of

the valley to be 0.1(u − r) = −0.121(0.1Mr − 5 log h) − 0.061 (with no range given). Given

the uncertainties in our measurements, we find the Milky Way is bluer than this line by

0.25± 0.21 mag, consistent with it at the ∼1.2σ confidence level.

Mendez et al. (2011) define the green-valley region of the 0(U − B) vs. 0MB plane for

AEGIS galaxies to be within a ±0.1 mag vertical offset of the line 0(U−B) = −0.0189(0MB−
5 log h) − 0.32 (where we have converted from AB to Vega magnitudes). We find that our

results place the MW redder than this line by 0.089 ± 0.070 mag; hence the MW might be

considered a green-valley galaxy by this definition. Willmer et al. (2006) present a similar

CMD division line for red and blue galaxies measured in the DEEP2 Redshift Survey. They

define this line as 0(U − B) = −0.032(0MB − 5 log(h/0.7))− 0.585, where we have included

small corrections to reflect the AB-to-Vega magnitude conversions from kcorrect that have

been employed in this study. We find that our results place the MW redder than this line

by 0.067± 0.071 mag.

It is interesting to note that in the color-magnitude plane shown in Figure 3.4, none of
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the Milky Way analogs appear in the peak of the blue-cloud region where prototypical blue,

star-forming spirals reside, which would hint that our Galaxy, too, very likely does not fit

that mold. This is contrary, however, to what one finds in the SFR–M? plane shown in

Figure 3.3; the vast majority of the MWAS lie in the blue cloud or just below. Based on

its color, if seen from outside, the MW would likely be defined as a member of the green

valley. In 0(g−r), in fact, it is likely very close to the minimum-density region of color space.

However, based on its M? & Ṁ?, it appears to fall just off the blue cloud, if it is not actually

a member of it. It thus provides a cautionary example: objects may fall in the green-valley

region of parameter space for a variety of reasons, especially when only optical (and not UV)

color is considered.

3.6.5 Comparisons to Earlier Mass-to-Light Ratio Measurements

In Table 3.5 we have presented new estimates of the global stellar mass-to-light ratio, Υ?,

of the Milky Way in SDSS ugriz passbands in the z=0 and 0.1 rest-frames, as well as these

results transformed to Johnson-Cousins UBV RI passbands. The most relevant study we

can compare these to is Flynn et al. (2006), which presented direct estimates of Υ? for the

local Galactic disk by accounting for the mass and luminosity budget in the “Solar cylinder”

(i.e., the column of stellar material at R0). This work primarily relied on fitting their Tuorla

Galactic model to data taken in the Hipparcos and Tycho surveys (reaching out to ∼200 pc),

which was shown to match well with the Heidelberg model-independent analysis of the much

more shallow (<25–50 pc) Catalogue of Nearby Stars. They found Υ?
V = 1.5± 0.2 M�/L�,

and then used color conversion derived from Hipparcos/Tycho data to obtain Υ?
B = 1.4±0.2

M�/L� and Υ?
I = 1.2 ± 0.2 M�/L�. We note that if we were to update these to reflect

the Solar absolute magnitudes and colors we have employed herein (∼0.03 mag differences),

they would increase by ∼3%, well below the 1σ uncertainties. Regardless, we find that

these values compare well with our global Milky Way results of Υ?
B = 1.89+0.78

−0.65 M�/L�,

Υ?
V = 1.86+0.69

−0.58 M�/L�, and Υ?
I = 1.29+0.43

−0.37 M�/L�, which are larger than but consistent

with the corresponding Flynn et al. estimates at the∼ 0.7σ, 0.6σ, and 0.2σ level, respectively.

One should keep in mind that, whereas the Flynn et al. estimates describe the disk
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itself, our results represent the global (disk+bulge) values and hence are expected to be

larger to some extent, especially in the B- and V-band, as they include the contribution

from older stars in the Galactic nucleus. We can illustrate this further, and hence make a

more apples-to-apples comparison, by making the following back-of-the-envelope calculation.

First, for the subset of our volume-limited sample that has fdeV > 0.95, which constitutes

∼33,000 highly bulge-dominated or elliptical galaxies, we find a distribution of Υ?
B values

that is well-approximated as a Gaussian described by 4.1±0.9 M�/L� (after multiplying by

a factor of 1.5 to convert from Kroupa to Salpeter IMF; cf. Fukugita et al., 1998). Second,

in Chapter 2 we have determined the bulge-to-total ratio of stellar mass in the Milky Way

to be B/T = 0.15 ± 0.02. By combining our Υ?
B estimate for spheroidal components with

the Flynn et al. Υ?
B estimate for the Galactic disk, using the estimate of B/T to calculate a

mass-weighted average for both components from Chapter 2, we find a global mass-to-light

ratio of Υ?
V = 1.81 ± 0.19 M�/L�. This is in excellent agreement with our result and is

consistent with it at the ∼0.1σ level. Doing the analogous calculations in the V - and I-

band, the remaining Flynn et al. disk values correspond to global values of Υ?
V = 1.80±0.20

M�/L� and Υ?
I = 1.39 ± 0.18 M�/L�, which are again in excellent agreement with our

results, consistent with them at the 0.1σ and 0.2σ levels, respectively.

3.6.6 Conclusions and Future Studies

Overall, since the vast majority of spiral galaxies populate the blue cloud (S14; Strateva

et al., 2001; Blanton et al., 2003a), our results imply that the Milky Way ranks amongst the

most luminous, yet reddest of spirals in the local universe. Based on a variety of empirical

definitions in the literature, our results show that it is likely that the Milky Way would be

classified as a green-valley galaxy if viewed from the outside, generally taken to indicate that

it would be in a transitional evolutionary stage. Again, this is contrary to what we find

in the SFR–M? plane shown in Figure 3.3, where we find the Milky Way lies very near, if

not on, the main sequence of star-forming galaxies. Apparently, even when the impact of

dust effect are accounted for, the green valley can be misleading when using it to generally

characterize the galaxies it contains (cf. S14). It is safe to say that our Galaxy’s SFR is in a
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state of decline; the Milky Way produces only ∼1.65 solar masses of new stars per year, even

though it is amongst the brightest and most massive of late-types. Our findings support

the emerging consensus view of the Milky Way; one in which it is not the prototypical, blue

spiral it was commonly thought to be just a decade ago; but is instead similar to the passive,

red spiral population investigated in Cortese (2012). In fact, based on the demographics of

late-types presented by S14, if our Galaxy truly lies in the green valley then its photometric

properties would be representative of only ∼19% of the spiral galaxies in the nearby universe.

It is beyond the scope of this study to discuss what evolutionary histories may produce an

optically-red, yet still star-forming Milky Way (or equivalently late-types that appear in

the green valley), but we refer the reader to Hammer et al. (2007), Yin et al. (2009), M11,

Mendez et al. (2011), Jin et al. (2014), and S14 for insightful discussions.
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Figure 3.1: Position of the Milky Way in star formation rate (Ṁ?) vs. total stellar mass (M?) space. Log-
spaced contours depict the density of a volume-limited sample of SDSS galaxies in the range 0.03 < z < 0.09.
The most-likely position (red dot) and 1σ constraints (purple) for the Milky Way shown here are determined
from a hierarchical Bayesian meta-analysis of the literature estimates in Chapter 2. The properties for both
the Milky Way and the extragalactic sample displayed here reflect consistent assumptions about their stellar
populations, including a Kroupa IMF, and hence should be well guarded from any substantial systematics
relative to one another. We can see the Galaxy is offset from the main sequence of star-forming galaxies,
hinting that it may be in a transitional evolutionary phase.
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each pair, randomly select one object from the 
volume-limited sample with properties within 
1% of these values.  If no objects available, then 
retry using a 3% tolerance.	


Discard all objects that do have all of the 
following properties measured from their 2D    
r-band image:   fdeV < 0.5  and  (b/a)exp < 0.6	


Milky Way Analog Sample 	

(3,402 objects)!.	


.	


Figure 3.2: A flowchart outlining the steps and criteria we use to select different samples of SDSS galaxies
that we employ in this study. This chart summarizes the processes described in sections 3.2.2–3.3.2, where
more details may be found, including where we obtain or how we produce different property measurements
for each object. Note that here we denote the error in galaxies’ stellar mass and SFR as σ(log M?/M�) and
σ(log Ṁ?/M�yr−1), respectively. As mentioned in §3.3.2, (b/a)exp is the minor-to-major axis ratio obtained
from the pure-exponential profile best fit to an object’s 2D image.
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Figure 3.3: Sample of ∼3,500 Milky Way analog galaxies (red dots), chosen through a random selection
process such that they collectively match the same distribution in SFR–M? space as the Milky Way (compare
to Figure 3.1 and 3.7). The greyscale, log-spaced contour lines depict the density of a volume-limited sample
of SDSS galaxies (0.03 < z < 0.09) that encompasses the Milky Way SFR and M? ranges throughout this
redshift range, but are not affected by any limiting magnitude. This is the same sample from which the Milky
Way analogs are drawn (see §3.2.2 for the details). Fundamentally, we make the Copernican assumption
that the Milky Way should not be extraordinary amongst the set of galaxies of similar stellar mass and
star formation rate, and hence some galaxy in that set must have closely matching photometric properties;
in this study we focus on integrated optical-wavelength properties which are all but impossible to directly
measure.
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Figure 3.4: Sample of ∼3,500 Milky Way analog galaxies (red dots) plotted in SDSS 0(g− r) vs. 0Mr space.
These are the same sample of objects shown in Figure 3.3; i.e., they are selected to produce a distribution
of star formation rate and total stellar mass values matching the probability distribution describing those
properties for our Galaxy. Again, the greyscale, log-spaced contours depict the density of a volume-limited
sample of SDSS galaxies in the range 0.03 < z < 0.09 (see §3.3.1). For reference, the dashed green line shows
a simple SDSS color cut dividing the red sequence and blue cloud regions (Graves, priv. comm.; see §3.3.2
for more details).
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Figure 3.5: Modeling the Eddington bias in the Milky Way analog selection method. Left Panel: Histograms
of the mean absolute 0r-band magnitudes produced from Monte Carlo (MC) simulations of selecting a new
sample of Milky Way analog galaxies as increasing amounts of noise are added to galaxies’ total stellar mass
(M?) and star formation rate (Ṁ?) values. This noise is drawn from a normal distribution, with mean of
zero and standard deviation determined by the errors in a galaxy’s estimated M? and Ṁ?, and is applied
p times successively before analogs are selected. Since nominal values are all affected by noise, we denote
them as the n = 1 case, and so any further degradation is marked n = p+ 1. Right Panel: A least-squares
quadratic fit to the 4 points yielded from subtracting the mean of

{
0Mr

}
n−1 from that of

{
0Mr

}
n
, using the

distributions from the left panel, as a function of n. 〈0Mr〉1 is measured from the mean 0Mr of our MWAS to
produce the point at n = 2. We then use this fit to extrapolate the blue datapoint at n = 1, the ordinate of
which should reflect the difference between the actual measurements, which are affected by Eddington bias,
and what would be measured with zero errors, i.e., the quantity we desire; this value is subtracted from the
observed absolute r-band magnitude of the sample. This same process is applied to each absolute magnitude
or color considered in this study, and the bias subtracted is listed in Tables 3.1 & 3.2. Almost always this
offset is completely subdominant to the statistical errors of our method; the exception is u-band based color
measurements, for which the bias is of the same order as, but still smaller than, statistical uncertainties.
Even then, the uncertainty in the bias correction is much smaller than other sources of error.
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Figure 3.6: The mean 0(g − r) color of our Milky Way analog sample as a function of the minimum allowed
axis ratio of the objects included in 3 different scenarios. The red dashed curve is the result of removing
only disk galaxies (i.e., objects having fdeV < 0.5) based on the axis ratio cut given on the x-axis. The
blue dash-dotted curve is the result of removing any galaxy, regardless of type, based on the minimum ratio
cut. The solid black line reflects the result of removing only disk galaxies again, but in this scenario we
add extra weight to the contribution from disk galaxies remaining after the cut to the overall mean 0(g− r)
color to correct for the objects removed. Excluding only disk galaxies initially causes a trend toward net
bluer color as edge-on systems are removed, but eventually this trend reverses toward redder average color
due to increasingly oversampling the elliptical population. However, in the second case, since spheroids
outnumber disks at b/a & 0.35, throwing away any galaxy above this minimum-allowed threshold means
discarding more spheroids than disks, giving extra weight to the blue population. Therefore, we chose the
last scenario (a weighted mean) as our fiducial method, as it provides a stable behavior over a large range of
reasonable choice of cutoff for b/a, and hence appears robust to such morphological bias. That is, the slope
of the black curve is shallow enough that moving from a minimum allowed b/a of 0.4 to 0.8 would cause
a . 0.01 magnitude change; b/a > 0.6 is our fiducial cut. The other scenarios provide a much more crude
and extreme way of removing inclination reddening from our sample; we note the offset of the other curves
from the black curve at x = 0.6 is still . 0.02 mag, which is subdominant to the statistical error (∼0.06
mag). The analogous plot for 0r-band absolute magnitude yields a similar conclusion, and so we adopt the
weighted-mean scenario as standard for all quantities.
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Figure 3.7: The distribution of stellar masses, M?, (left panel) and star formation rates (SFRs), Ṁ?, (right
panel) for our Milky Way analog sample at different stages of our analysis procedure overlaid upon the
Galactic posterior probability distribution functions (blue solids curves) used for selecting them. The red
dashed line shows the original sample of 5,000 analogs drawn before any cuts are applied. The black dash-
dotted curve shows the remainder of the original sample after removing those that appear to be edge-on
disk-dominated systems, whose inclusion would otherwise systematically redden our results for photometric
properties, and then renormalized to reflect the original sample size of 5,000. The green dash-triple-dotted
curve shows those objects that make up the black dash-dotted curve, but reweighted to correct for any
morphological bias (i.e., the oversampling of bulge-dominated vs. disk-dominated objects; see Fig. 3.6) that
our cuts introduce; see Equation (3.1).
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Figure 3.8: The Eddington-bias-corrected position of the Milky Way in SDSS 0(g − r) vs. 0Mr color-
magnitude space (red point and purple 1σ ellipse). For comparison, we show in grey dash-dotted lines the
previously-best 1σ constraint directly measured by van der Kruit (1986, vdK86), converted to the SDSS AB
magnitude system via transformation equations from Cook et al. (2014). In order to place this measurement
in this plot we subtract 5 log(h/0.7), allowing it to be directly compared to the SDSS sample. Log-spaced
contours show the density of galaxies in our volume-limited sample; we shade the core of the red sequence
and blue cloud regions in red and blue, respectively, and show the same green dashed color-division line as
in Fig. 3.4. Until now, the Milky Way’s position has remained highly uncertain in this parameter space.
Our new measurement dramatically improves our knowledge of how the Galaxy compares to others in the
local Universe; we likely straddle the division between the blue-cloud and red-sequence populations, or the
so-called “green-valley” region of this diagram. This ranks the Milky Way amongst the brightest and reddest
spiral galaxies still producing new stars today. It may well be in a transitional evolutionary phase where
star formation is dying out.
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Figure 3.9: An updated version of Figure 1 from Mutch et al. (2011, M11) showing the Milky Way’s corrected
position (red point and purple 1σ ellipse) in 0(u − r) vs. M? space, where again our new constraints are a
dramatic improvement upon and consistent with the prior measurements (dash-dotted grey lines) utilized by
M11 (updated here to the color transformations for galaxies from Cook et al. 2014). Comparing with Fig.
3.8, the green valley becomes much stretched out in 0(u−r) color space. The dark shaded green region follows
the same prescription as M11, using the empirically-derived Baldry et al. (2006) color division line with a
±0.1 0(u− r) offset. Second, the light shaded green region is the green valley as defined by Schawinski et al.
(2014, S14) for SDSS galaxies after the effects of dust are removed; this provides a suitable comparison for
our dust-corrected Milky Way results, whereas the greyscale contours do not reflect this correction. A similar
story emerges as from Figure 3.8: our Galaxy likely resides in the saddle of the bimodal color distribution of
galaxies in the local universe. Measured externally, it would appears redder than majority of spiral galaxies,
yet bluer than most ellipticals. This makes the Milky Way one of most massive, brightest, and reddest of
spiral galaxies with appreciable star formation today.
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Table 3.1.

Photometric Properties for the Milky Way:

Rest-frame z=0 SDSS Passbands

Property Corrected Value Bias Removed ∂/∂M? ∂/∂Ṁ?

(mag) (mag) (10−10 mag M−1
� ) (mag M−1

� yr)

0Mu − 5 log h −19.16+0.57
−0.47 0.240± 0.014 −0.05 −0.32

0Mg − 5 log h −20.36+0.47
−0.41 0.142± 0.011 −0.11 −0.40

0Mr − 5 log h −21.00+0.38
−0.37 0.134± 0.009 −0.11 −0.48

0Mi − 5 log h −21.27+0.38
−0.36 0.120± 0.009 −0.14 −0.49

0Mz − 5 log h −21.56+0.36
−0.37 0.126± 0.009 −0.15 −0.39

0(u− r) 2.043+0.166
−0.157 0.090± 0.0060 0.07 −0.02

0(u− g) 1.358+0.105
−0.093 0.077± 0.0047 0.06 0.02

0(g − r) 0.682+0.066
−0.056 0.015± 0.0017 0.03 0.00

0(r − i) 0.296+0.051
−0.046 0.012± 0.0012 0.01 0.00

0(i− z) 0.291+0.043
−0.041 −0.001± 0.0009 0.01 −0.04

Note. — The Eddington bias estimated for each band, as described in §3.4.1, is listed

in Column 3. This is subtracted from the mean property measured from the MWAS, as

discussed in §3.4.2 (see Equation 3.1), in order to produce the corrected value listed in

Column 2.
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Table 3.2.

Photometric Properties for the Milky Way:

Rest-frame z=0.1 SDSS Passbands

Property Corrected Value Bias Removed ∂/∂M? ∂/∂Ṁ?

(mag) (mag) (10−10 mag M−1
� ) (mag M−1

� yr)

0.1Mu − 5 log h −18.85+0.63
−0.51 0.271± 0.012 0.02 −0.38

0.1Mg − 5 log h −20.07+0.48
−0.44 0.168± 0.011 −0.10 −0.45

0.1Mr − 5 log h −20.78+0.37
−0.39 0.130± 0.009 −0.10 −0.42

0.1Mi − 5 log h −21.16+0.38
−0.37 0.134± 0.009 −0.13 −0.59

0.1Mz − 5 log h −21.41+0.39
−0.38 0.124± 0.009 −0.14 −0.35

0.1(u− r) 2.201+0.201
−0.172 0.105± 0.0072 0.10 0.08

0.1(u− g) 1.419+0.124
−0.112 0.074± 0.0052 0.07 0.04

0.1(g − r) 0.782+0.081
−0.063 0.031± 0.0027 0.02 −0.03

0.1(r − i) 0.390+0.046
−0.042 0.001± 0.0010 0.01 −0.01

0.1(i− z) 0.275+0.047
−0.046 0.010± 0.0011 0.01 −0.05

Note. — The Eddington bias estimated for each band, as described in §3.4.1, is listed

in Column 3. This is subtracted from the mean property measured from the MWAS, as

discussed in §3.4.2 (see Equation 3.1), in order to produce the corrected value listed in

Column 2.
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Table 3.3.

Photometric Properties for the Milky Way:

Rest-frame z=0 Johnson-Cousins Passbands

Property Corrected Value Bias Removed ∂/∂M? ∂/∂Ṁ?

(mag) (mag) (10−10 mag M−1
� ) (mag M−1

� yr)

0MU − 5 log h −20.02+0.50
−0.47 0.232± 0.011 −0.10 −0.61

0MB − 5 log h −20.07+0.40
−0.44 0.173± 0.009 −0.12 −0.49

0MV − 5 log h −20.74+0.37
−0.39 0.132± 0.008 −0.12 −0.37

0MR − 5 log h −21.26+0.40
−0.36 0.131± 0.007 −0.11 −0.16

0MI − 5 log h −21.84+0.36
−0.39 0.125± 0.008 −0.12 −0.34

0(U − V ) 0.890+0.148
−0.123 0.094± 0.0055 0.02 −0.14

0(U −B) 0.149+0.078
−0.070 0.063± 0.0038 0.01 −0.04

0(B − V ) 0.744+0.068
−0.054 0.028± 0.0022 0.01 −0.05

0(V −R) 0.541+0.046
−0.042 0.005± 0.0008 0.00 −0.02

0(R− I) 0.598+0.047
−0.049 0.007± 0.0009 0.01 0.01

Note. — Values in this table are determined from analyzing the distributions of

properties for Milky Way analogs, but after transforming SDSS ugriz measurements

to Johnson-Cousins UBV RI-equivalent values on an object-by-object basis using the

kcorrect software. As a reminder, UBV RI magnitudes are on the Vega system,

whereas ugriz magnitudes are on the AB system.
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Table 3.4.

Photometric Properties for the Milky Way:

Rest-frame z=0.1 Johnson-Cousins Passbands

Property Corrected Value Bias Removed ∂/∂M? ∂/∂Ṁ?

(mag) (mag) (10−10 mag M−1
� ) (mag M−1

� yr)

0.1MU − 5 log h −20.10+0.60
−0.51 0.252± 0.011 −0.11 −0.64

0.1MB − 5 log h −19.96+0.49
−0.45 0.196± 0.010 −0.12 −0.56

0.1MV − 5 log h −20.47+0.41
−0.40 0.136± 0.009 −0.12 −0.33

0.1MR − 5 log h −20.98+0.46
−0.35 0.143± 0.008 −0.12 −0.25

0.1MI − 5 log h −21.60+0.41
−0.37 0.139± 0.008 −0.13 −0.36

0.1(U − V ) 0.604+0.159
−0.135 0.099± 0.0059 0.02 −0.10

0.1(U −B) −0.014+0.096
−0.090 0.055± 0.0034 0.01 −0.01

0.1(B − V ) 0.626+0.073
−0.062 0.037± 0.0031 0.01 −0.09

0.1(V −R) 0.518+0.049
−0.043 0.010± 0.0010 0.00 −0.04

0.1(R− I) 0.637+0.048
−0.047 0.006± 0.0009 0.01 0.01

Note. — Values in this table are determined from analyzing the distributions of

properties for Milky Way analogs, but after transforming SDSS ugriz measurements

to UBV RI-equivalent values on an object-by-object basis using the kcorrect software.

As a reminder, UBV RI magnitudes are on the Vega system, whereas ugriz magnitudes

are on the AB system.
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Table 3.5.

Photometric Properties for the Milky Way:

Global Stellar Mass-to-Light Ratios

Rest-frame Υ?
u Υ?

g Υ?
r Υ?

i Υ?
z

z=0 1.90+1.18
−0.80 1.96+0.69

−0.64 1.66+0.63
−0.49 1.43+0.48

−0.41 1.11+0.32
−0.32

z=0.1 1.77+1.61
−0.83 1.93+0.81

−0.68 1.84+0.64
−0.57 1.54+0.61

−0.44 1.26+0.38
−0.37

Rest-frame Υ?
U Υ?

B Υ?
V Υ?

R Υ?
I

z=0 1.86+1.05
−0.80 1.89+0.78

−0.65 1.86+0.69
−0.58 1.61+0.59

−0.48 1.29+0.43
−0.37

z=0.1 1.81+1.39
−0.84 1.85+0.97

−0.68 1.94+0.82
−0.62 1.74+0.59

−0.53 1.43+0.47
−0.42

Note. — See the end of §3.5 for details on the calculation of these values.
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4.0 SIZING UP THE MILKY WAY: A HIERARCHICAL BAYESIAN

META-ANALYSIS OF PHOTOMETRIC SCALE LENGTH

MEASUREMENTS

4.1 INTRODUCTION

Since the invention of the first telescopes, astronomers have been trying to explain the

distribution of stars that make up the Milky Way (MW). The earliest maps of our Galaxy

were developed by keeping a simple tally of the number of stars one could see as a function

of their apparent brightness and position on the sky and then interpreting these star counts

with a few basic assumptions (Herschel, 1785; Kapteyn & van Rhijn, 1920; Kapteyn, 1922;

Seares et al., 1925; Bok, 1937; Oort, 1938). Remarkably, while the accessibility and quality of

data has been drastically transformed by advancing technology, this same basic methodology

has underlain most present-day photometric models of the MW (Bahcall, 1986), with only a

small subset of recent studies that utilized more sophisticated techniques. Today, a wealth

of high-quality, well-calibrated observational data for stars has been accumulated from a

wide array of multi-band photometric surveys that have been carried out over the past three

decades, using both visible and infrared (IR) light. As a result, the literature is rich with

studies on the geometrical structure of the Galaxy.

The current picture of the MW has been radically transformed since the first pioneering

papers, which followed the advent of detailed studies of extragalactic spiral galaxies (de

Vaucouleurs, 1959; Freeman, 1970; Kormendy, 1977). Today, it is well understood that the

major stellar components of the MW include a bar with a bulge or pseudobulge at its center

and a flattened disk that is much more visibly extended (see, e.g., Chapter 2 and references

therein). Generally, current models assume that the distribution of stars comprising the disk
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to first order is axisymmetric and follows an exponentially declining density profile, both

radially and vertically, such that the volume density may be written as

ρ?(R, φ, Z) =
Σ?(0)

2Hd

exp(− R
Ld
− Z

Hd

), (4.1)

where R, φ, and Z are the Galactocentric cylindrical coordinates, Σ?(0) is the central stellar

surface density, Hd is the (vertical) disk scale height, and Ld is the (radial) disk scale length.

In some cases, authors alternatively employ an isothermal-sheet model for the vertical struc-

ture that replaces the exp(Z) dependence with a sech2(Z) dependence in Equation (4.1)

with the appropriate renomalization factors (cf. Spitzer, 1942; van der Kruit & Searle, 1981;

Freeman, 1978); however, the details of this are not of interest here. More importantly, Ld

represents the radius containing the first e-folding of starlight within the disk in projection,

or in other words where the surface density declines to ∼37% of Σ?(0), and hence provides

a standard measure of the absolute physical size of the Galactic disk.

Dozens of attempts have been made to determine Ld over the past few decades, making

it one of the most investigated characteristics of our Galaxy. Here, we focus exclusively on

those estimates from photometric models of the MW in order to enable direct comparisons

to measurements of extragalactic objects. We have collected a total of 29 different mea-

surements from the literature since 1990, 15 of them are based on optical data and 14 on

IR data. Altogether, these values lie in the range of ∼2–6 kpc, and upon close inspection

reveal little consensus on the true size of the Galactic disk. At least some of this disparity

is likely due to variations in the assumptions that go into each MW model, which typically

include between one and five stellar components that are fit by up to a dozen free parame-

ters. Other possible issues are that unidentified substructures present in the data are biasing

models fit to particular lines of sight, or that there are a multitude of very different models

that are roughly equally successful in fitting the data (Jurić et al., 2008). To account for

these complications many authors have incorporated substructure features into their models

(e.g., spiral arms and rings), while others test a variety of functional forms for the assumed

density law.

In this chapter, we address the question: given the measurements available in the liter-

ature, what is the best photometric estimate of the MW’s disk scale length? In Chapter 5,
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we have found that scale lengths measured from optical photometry of other massive spiral

galaxies (Hall et al., 2012), which employed the same exponential density model as Equation

(4.1), span a range of ∼1–10 kpc. This is rather comparable to the range of values for the

MW described above. To determine more precisely where the MW falls within this range,

we can perform a hierarchical Bayesian (HB) meta-analysis (Chapter 2) of Galactic disk

scale length estimates. This method will enable us to investigate and remedy any sources

of tension amongst disk scale length measurements. Simultaneously, it will provide a single

aggregate result that is built upon the rich assortment of photometric survey data that is

available, but that also accounts for the possibility that any of the included estimates are

offset due to systematics or bear an underestimated error bar, and then incorporate that

information into the overall uncertainties in the combined result. An HB analysis will yield

improved constraints on the Galactic Ld, which in turn will help us to better understand

how our Galaxy measures up to its extragalactic peers.

The structure of this chapter is as follows. In §4.2, we begin by describing the sample

of Galactic Ld estimates we have obtained, emphasizing the variety of observational data,

MW models, and analysis techniques that they involve. In §4.3, we explain the first-order

corrections we make in order to place these estimates on an equal footing, and the HB analysis

we subsequently perform on the resulting dataset. Here, we also introduce a Bayesian model

averaging technique that we use to produce our final posterior distributions and explain why

it is appropriate to use in this work. In §4.4 we present the aggregate results for Ld, including

those from both segregating and combining the IR and visible data. Here, we also present

the results for the hierarchical parameters, which characterize the overall consistency of the

estimates in our dataset, as well as the different ways we have tested for robustness. In

§4.5, we provide comparisons to Ld estimates that have been determined from dynamical

modeling, as well as to visible-to-IR scale length ratios measured for external galaxies. In

this section we also construct an updated model of the stellar disk using the results found

here in order to revise our previous estimate of the total stellar mass from Chapter 2. Lastly,

in §4.6 we summarize this study and highlight our conclusions.

113



4.2 THE MILKY WAY SCALE LENGTH DATASET

We have collected 29 different measurements of the exponential scale length, Ld, of the MW’s

disk published since 1990. Generally speaking, each Ld estimate is produced by fitting a

model of the stellar components comprising the MW to observations of either resolved stars or

unresolved starlight; 15 of these measurements were made in the visible and 14 in the infrared

(IR). We have restricted this study to include only measurements made based on visible and

IR starlight to match as closely as possible what is done for external galaxies. Hence, we

have excluded dynamical estimates of the Galactic Ld that are constrained by fitting MW

mass models to stellar kinematic data, as well those that critically rely on segregating stars

into subpopulations based upon their spectroscopically-determined elemental abundances,

as such measurements are infeasible for other galaxies.

In Figure 4.1 we display the values and time evolution of the Ld estimates that we have

collected, illustrating that as an ensemble they span ∼2–6 kpc, though many cluster in the

2–3 kpc range. Taking these estimates at face value, we find that they display an interquartile

range of 1.2 kpc and that their simple median value is 2.5 ± 0.2 kpc, which at first glance

indicates fairly good overall agreement amongst them. However, such metrics neglect the

estimated errors in these measurements, not to mention the fact that several lack any error

estimate at all (these are marked by dashed error bars in Figure 4.1, which depict 25% of

the central value); hence, such a summary discards considerable amounts of information.

Furthermore, Figure 4.1 illustrates that many of the individual estimates are incompatible

with one another at the ≥1σ level, which indicates the possibility of systematic errors.

The presence of systematics would not be surprising; models of the MW are complex and

require many assumptions about its various components. Variations in these model choices

amongst authors represents a major potential source of systematic uncertainty in the Ld

estimates we have collected. As we will discuss in §4.3, utilizing a hierarchical Bayesian

meta-analysis technique, as opposed to more simple methods, to combine these estimates

into a single aggregate result is useful on several fronts. Most importantly, it allows us to

produce posterior results that incorporate the possibility that any one measurement may be

faulty, such as being systematically offset or having an overly-optimistic error estimate, due
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to not exploring the effects of varying model assumptions. It also provides more flexibility,

e.g., in dealing with those measurements with no formal error estimates, which likely deserve

less credence, but still may contain valuable information about the true Ld and hence should

not be discarded entirely. In cases where there are disagreements between measurements,

the hierarchical Bayesian analysis technique used here will also degrade the uncertainties in

derived parameters appropriately.

The studies that we have collected employ a rich assortment of MW structural models,

observational datasets, and analysis techniques. In the following subsections, we detail the

diversity in each of these three ingredients that go into producing each Ld estimate that

we have included in our analyses. We have also summarized these details in Table 4.1 for

ease of comparison. As noted in the Table 4.1 footnote, hereafter in this chapter we will use

the following reference abbreviations. BSD78: Bohlin et al. (1978); H81: Hayakawa et al.

(1981); B&H82: Burstein & Heiles (1982); R&K85: Rieke & Lebofsky (1985); K91: Kent

et al. (1991); RM91: Ruelas-Mayorga (1991); Y&Y92: Yamagata & Yoshii (1992); R92:

Robin et al. (1992); O&L93: Ortiz & Lépine (1993); N95: Ng et al. (1995); O96: Ojha

et al. (1996); P98: Porcel et al. (1998); F98: Freudenreich (1998); B98: Buser et al. (1998);

M&vA98: Mendez & van Altena (1998); SFD98: Schlegel et al. (1998); C99: Chen et al.

(1999); S99: Schultheis et al. (1999); L&L00: Lépine & Leroy (2000); D&S01: Drimmel

& Spergel (2001); O01: Ojha (2001); S02: Siegel et al. (2002); LC02: López-Corredoira

et al. (2002); L&H03: Larsen & Humphreys (2003); P&R04: Picaud & Robin (2004); G05:

Girardi et al. (2005); A&L05: Amôres & Lépine (2005); B05: Benjamin et al. (2005); I05:

Indebetouw et al. (2005); B06: Bilir et al. (2006); M06: Marshall et al. (2006); K07: Karaali

et al. (2007); J08: Jurić et al. (2008); C11: Chang et al. (2011); R12: Robin et al. (2012);

P13: Polido et al. (2013); LC&M14: López-Corredoira & Molgó (2014); M15: Mao et al.

(2015).
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Figure 4.1: The evolution of Milky Way’s Ld estimates in the literature since 1990, which span ∼2–6 kpc.
There are 29 measurements in total; 15 are determined from visible starlight (shown in blue) and 14 from
infrared starlight (shown in red). For those measurements that lack any error estimate, we display dashed
error bars that correspond to 25% of the central value, which will be the standard treatment for our analyses
(see §4.3.1.3). A detailed list of the studies that produced these estimates is provided in Table 4.1.
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ç
o
n
)

S
0
2

2
.2

5
S
w

o
p

e
T

e
le

sc
o
p

e
B
V
R
I
,

7
fi

e
ld

s
a
t
−

9
0
◦
<
l
<

1
2
0
◦
,

7
0
,0

0
0

S
F

D
9
8

B
(fi

x
e
d
)+

D
1
+

D
2
+

H
p
h
o
to

m
e
tr

ic

L
a
s

C
a
m

p
a
n
a
s

O
b
s.

B
<

2
1
.1

,
3
0
◦
<
|b
|
<

8
6
◦
,

7
fr

e
e

p
a
ra

m
e
te

rs
p
a
ra

ll
a
x

V
<

2
1
.4

Ω
=

1
4
.9

d
e
g
2

L
C

0
2

3
.3

0
±

0
.5

0
2
M

A
S
S
-D

R
2

J
K

,
1
2

fi
e
ld

s
o
v
e
r

5
3
,0

0
0

R
&

L
8
5
-b

a
se

d
D

1
(fl

a
re

,w
a
rp

)
st

a
r

8
.5
<
K
<

1
4

4
5
◦
<
l
<

3
1
5
◦
,
|b
|
<

1
2
◦
,

C
M

D
c
a
li
b
ra

ti
o
n

3
fr

e
e

p
a
ra

m
e
te

rs
c
o
u
n
ts

Ω
∼

5
2

d
e
g
2

L
&

H
0
3

3
.5

0
±

0
.3

0
A

P
S

P
O

S
S

I
O
E

,
8
8

fi
e
ld

s
u
n
if

o
rm

o
v
e
r

2
.5
×

1
0
6

B
&

H
8
2

D
1
+

D
2
+

H
st

a
r

O
<

2
0

|b
|
>

2
0
◦
,

Ω
=

1
,
4
0
8

d
e
g
2

7
fr

e
e

p
a
ra

m
e
te

rs
c
o
u
n
ts

P
&

R
0
4

2
.3

5
±

0
.6

7
D

E
N

IS
J
K

s
,

9
4

w
in

d
o
w

s
o
f

lo
w
A

V
o
v
e
r

N
o
t

S
9
9

B
+

D
1
(h

o
le

)
st

a
r

J
<

1
5

−
8
◦
<
l
<

1
2
◦
,
|b
|
<

4
◦
,

sp
e
c
ifi

e
d

1
1

fr
e
e

p
a
ra

m
e
te

rs
c
o
u
n
ts

Ω
∼

6
d
e
g
2

G
0
5

2
.8

0
±

0
.2

5
D

M
S

U
B
V
R

,
6

fi
e
ld

s
a
t

h
ig

h
b
,

1
9
,5

0
0

S
F

D
9
8

D
1
+

H
st

a
r

B
<

2
3
.8

Ω
=

0
.8

3
d
e
g
2

4
fr

e
e

p
a
ra

m
e
te

rs
c
o
u
n
ts

B
0
5

3
.9

0
±

0
.6

0
G

L
IM

P
S
E

/
S
p
it

z
e
r

[3
.6
µ

m
]<

1
4
.2

,
1
0
◦
<
|l
|
<

6
5
◦
,

3
×

1
0
7

I0
5

D
1

st
a
r

[4
.5
µ

m
]<

1
4
.1

,
|b
|
<

1
◦
,

2
fr

e
e

p
a
ra

m
e
te

rs
c
o
u
n
ts

[5
.8
µ

m
]<

1
1
.9

,
Ω
∼

2
2
0

d
e
g
2

[8
.0
µ

m
]<

9
.5

B
0
6

1
.9

0
S
D

S
S
-D

R
3

u
g
r
iz

,
6

fi
e
ld

s
o
v
e
r

1
4
,9

4
0

S
F

D
9
8

D
1

p
h
o
to

m
e
tr

ic

1
6
<
g
<

2
1

4
◦
<
l
<

8
4
◦
,

4
1
◦
<
b
<

5
2
◦
,

3
fr

e
e

p
a
ra

m
e
te

rs
p
a
ra

ll
a
x

Ω
=

7
0

d
e
g
2

K
0
7

2
.2

5
S
D

S
S
-D

R
5

u
g
r
iz

,
(l
,
b
)

=
(9

0
◦
,
5
0
◦
),

1
8
7
,0

0
0

S
F

D
9
8

D
1
+

D
2
+

H
p
h
o
to

m
e
tr

ic

g
<

2
2
.5

(1
8
0
◦
,
5
0
◦
),

(6
0
◦
,
4
5
◦
);

7
fr

e
e

p
a
ra

m
e
te

rs
p
a
ra

ll
a
x

Ω
=

6
0

d
e
g
2

J
0
8

2
.6

0
±

0
.5

2
S
D

S
S
-D

R
5

u
g
r
iz

,
fu

ll
S
D

S
S

fo
o
tp

ri
n
t,

4
.8
×

1
0
7

S
F

D
9
8

D
1
+

D
2
+

H
p
h
o
to

m
e
tr

ic

r
<

2
2

m
o
st

ly
|b
|
>

2
5
◦
,

9
fr

e
e

p
a
ra

m
e
te

rs
p
a
ra

ll
a
x

Ω
=

6
,
5
0
0

d
e
g
2

118



Table 4.1 – Continued

Reference Ld±1σ Survey/ Passbands/ Field(s) of View/ Approximate Dust Model Stellar Modelb Analysis

(kpc) Telescopea Sample Description Sky Area # of Stars Technique

C11 3.70± 1.00 2MASS 5 < Ks < 14.3 8,192 lines of sight Not SFD98 D1+D2+H star

all-sky except |b| < 30◦ specified 10 free parameters counts

R12 2.20 2MASS JKs, 200 windows over Not M06 B1(bar)+B2+D1(hole)+D2 star

depth field dependent |l| < 20◦, |b| < 10◦ specified 10 free parameters counts

(Besançon)

P13 2.12± 0.20 2MASS JHKs, 3,072 lines of sight over Not A&L05 B+Bar+D1(hole)+D2(hole)+SA star

90% brightest objects all-sky, Ω ∼ 3, 702 deg2 specified 11 free parameters counts

LC14 2.00± 0.40 SDSS/SEGUE ugriz, |l| > 50◦, |b| < 23◦, Not SFD98 D1(hole,flare)+D2+H(fixed) star

F/G-dwarfs g < 21.5 Ω = 1, 400 deg2 specified 9 free parameters counts

M15 2.34± 0.48 SDSS/SEGUE ugriz, 152 pencil beams uniform 18,067 SFD98 D1+D2 3D spatial 2pt

G-dwarfs 15 . g . 17.5 over SDSS footprint 5 free parameters correlation

Ω ∼ 1, 000 deg2 function

Note. — References are abbreviated as follows. BSD78: Bohlin et al. (1978); H81: Hayakawa et al. (1981); B&H82: Burstein & Heiles (1982); R&K85: Rieke & Lebofsky (1985); K91: Kent et al. (1991);

RM91: Ruelas-Mayorga (1991); Y&Y92: Yamagata & Yoshii (1992); R92: Robin et al. (1992); O&L93: Ortiz & Lépine (1993); N95: Ng et al. (1995); O96: Ojha et al. (1996); P98: Porcel et al. (1998);

F98: Freudenreich (1998); B98: Buser et al. (1998); M&vA98: Mendez & van Altena (1998); SFD98: Schlegel et al. (1998); C99: Chen et al. (1999); S99: Schultheis et al. (1999); L&L00: Lépine & Leroy

(2000); D&S01: Drimmel & Spergel (2001); O01: Ojha (2001); S02: Siegel et al. (2002); LC02: López-Corredoira et al. (2002); L&H03: Larsen & Humphreys (2003); P&R04: Picaud & Robin (2004);

G05: Girardi et al. (2005); B05: A&L05: Amôres & Lépine (2005); Benjamin et al. (2005); I05: Indebetouw et al. (2005); B06: Bilir et al. (2006); M06: Marshall et al. (2006); K07: Karaali et al. (2007);

J08: Jurić et al. (2008); C11: Chang et al. (2011); R12: Robin et al. (2012); P13: Polido et al. (2013); LC14: López-Corredoira & Molgó (2014); M15: Mao et al. (2015).
a Items marked with (pp) indicate that photographic plate data is included.
b For brevity we abbreviate component types as follows: B: Bulge; D: Disk; H: Halo; R: Ring; SA: Spiral Arms. When multiple versions of the same type of component are included, each is further

distinguished by a numerical value (e.g., when a model includes both a thin and thick disk component these will be marked as D1+D2). If any added substructure is included within a component or

if any component is fixed (has no free parameters in the fit) this is marked in parenthesis. In cases where multiple disks are fit to the data, we include the Ld estimate corresponding to the dominant

component (i.e, the one with largest mass), regardless of whether the author labels it “thin”, “thick”, “old”, “young”, etc. (see, e.g., O&L93 and L&L00).
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4.2.1 Observational Data

In this study we are interested only in photometric measurements of the MW’s scale length,

which we wish to match as closely as possible the methods used in measurements for other

disk galaxies. Therefore, the observational data employed by our set of studies is strictly

limited to measurements of starlight at either visible or IR wavelengths. Despite this limi-

tation, there are many Galactic surveys that fit this requirement; notable examples are the

Two Micron All-Sky Survey (2MASS) in the IR and the Sloan Digital Sky Survey (SDSS) in

the visible. While these large-scale surveys covered a large fraction of the night sky, many

more smaller-scale projects were carried out to yield pencil-beam surveys of stars in the

Galaxy, encompassing many different fields of view with varying sizes.

Earlier studies using measurements made in the visible were generally limited to high

Galactic latitude, b, in order to minimize reddening and extinction due to dust (e.g., Yam-

agata & Yoshii, 1992; Ojha et al., 1996; Buser et al., 1998), or to narrow windows of low

absorption (e.g., Robin et al., 1992). This limitation was mitigated, however, by the all-

sky map of Galactic dust provided by Schlegel et al. (1998, hereafter SFD98), allowing for

measurements based on optical data to push toward lower b (e.g., Chen et al., 1999; Siegel

et al., 2002; Jurić et al., 2008). In some cases, authors use the full extinction correction

out to infinity as a boundary condition for their dust model (see, e.g., Girardi et al., 2005,

which employs an exponential dust distribution). We note here that many of the more recent

studies that utilize the SFD98 dust maps, particularly those based on SDSS data, gener-

ally apply the full extinction correction out to infinity for each star in their sample. This

clearly is an overcorrection and will bias distance or magnitude estimates; however, Jurić

et al. (2008) explore the effects of this and find that it is only worrisome for stars within

100 pc of the Galactic plane when fitting structure models. For their case, this corresponds

to only 0.05% of their stellar sample (which they exclude) given the magnitude limits of the

SDSS instrument, concluding that overestimated interstellar extinction corrections will have

negligible impact on results. IR measurements, on the other hand, are far more immune to

the effects of interstellar dust, allowing studies to probe the Galactic structure over a wide

range in b (e.g., Kent et al., 1991; Drimmel & Spergel, 2001; Benjamin et al., 2005).
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The pertinent details of each observational dataset are listed in Table 4.1. There one

can see that fields of view can range from ∼1 deg2 to covering the full sky, corresponding to

stellar sample sizes that vary from ∼103 to ∼107. We note that the cutoff date of 1990 is used

to limit ourselves primarily to observational data yielded from CCD technology, though a

few of our Ld estimates are derived from observations using photographic plates (as is noted

in Table 4.1), as well as to ensure the use of modern Galactic assumptions. We note that in

some cases the IR data employed did not contain a sample of photometrically resolved stars,

but instead provided a map of integrated flux from Galactic light.

4.2.2 Models of the Milky Way

Almost all of the studies we have collected model the radial structure of the Galactic disk

according to Equation (4.1). The exceptions to this are Robin et al. (1992) and Ojha (2001)

who use an Einasto (1965) law, which yields a radial density distribution that is equivalent

to an exponential profile and hence yields comparable estimates of Ld.

Depending on the field of view and depth of the survey, other components of the Galaxy

may be included as well. For example, a particular model may include a bulge, a second

disk, or a halo, each with their own density profile. However, with this added level of model

complexity comes additional free parameters that need to be fitted for simultaneously. As a

result, strong inter-parameter degeneracies can often hamper the ability to isolate a single

“correct” description of the data, which is likely the main culprit for the disparate values of

Ld that can be found in Table 4.1.

Lastly, there are various added features and/or substructure that are often included in

the disk models employed. Jurić et al. (2008) pointed out that the presence of unidentified

substructures in the true distribution of stars can bias the results from models attempting

to fit the smooth, underlying profile. To handle this, many studies include substructure

components in their Galactic model, such as rings and/or spiral arms (e.g., Ortiz & Lépine,

1993; Ng et al., 1995; Drimmel & Spergel, 2001; Polido et al., 2013). Others also allow for

the possibility of an asymmetry or “warp” in the shape of the disk (e.g., López-Corredoira

& Molgó, 2014). Alternatively, some of the included studies may allow or even force their
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model to deviate from a pure exponential profile. This can take the form of truncations or

holes at the center of the Galactic disk, which systematically ascribe more stellar material to

the bulge component in this region (e.g., Freudenreich, 1998; Picaud & Robin, 2004; López-

Corredoira & Molgó, 2014). Others include a cutoff radius beyond which they assume stars

cease to exist, instead of extrapolating to R = ∞ (e.g., Freudenreich, 1998). All of these

assumptions are plausible; other spiral galaxies are observed both with and without central

holes and rings, their profiles can appear either flocculent or smooth, as well as warped or

flat (Buta, 2014; Buta et al., 2015).

4.2.3 Analysis Techniques Used for Scale Length Measurements

As seen in Table 4.1, even when similar sorts of observational data are used, a wide variety

of analysis techniques have been employed to measure scale lengths. We provide a summary

of these methods here.

4.2.3.1 Integrated Light The first case to consider is where the observational data take

the form of a smooth map of the integrated flux from Galactic light, typically produced by IR

instruments with lower angular resolution. This provides the intensity of emission at some

effective frequency ν, Iν , as a function of Galactic longitude and latitude, (l, b). To model

Iν , one first needs to adopt a model for the distribution of stars in the MW, ρ?(R, φ, Z),

where the disk component typically follows the form of Equation (4.1). By assuming values

for the Galactocentric radius and planar offset of the Sun, R0 and Z0, respectively, one can

then recast ρ? into heliocentric spherical coordinates (r, l, b) by

R = (R2
0 + r2 cos2 b− 2R0r cos b cos l)1/2,

Z = r sin b+ Z0, (4.2)

where r is the line-of-sight distance toward (l, b). Next, one assumes a characteristic specific

emissivity, εν , for the stellar population (equivalent to assuming a luminosity function), which

is multiplied by ρ? to obtain the stellar flux density. The observed integrated flux will be
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modulated by dust absorption, however, and so one must adopt a model for the distribution

of dust in order to obtain the optical depth along the line of sight, τν(r). Finally, all of these

ingredients are combined into a model of the light intensity across the sky by

Iν(l, b) =
∑

c

εν,c

∫ ∞

0

ρ?,c(r, l, b)e
−τν(r) dr, (4.3)

where the summation over c signifies the different stellar components and populations that

need to be included (see §3 of Drimmel & Spergel, 2001 for more details). One then optimizes

the free parameters included in the model to best fit the observational data, which yields an

estimate of Ld.

4.2.3.2 Star Counts While star count analyses using photometric data began nearly a

century ago (as described in Bahcall, 1986; Binney & Merrifield, 1998), the practicality and

hence the popularity of this technique for studying the geometric structure and size of the

MW has exploded over the past few decades (see the final column of Table 4.1). This is

not only due to the accuracy and depth of photometric surveys improving with technology,

but also because imaging of extragalactic objects has resulted in better-informed models of

stellar structure (e.g., de Vaucouleurs & Pence, 1978; Bahcall & Soneira, 1980, 1984). Star

count analyses have been the most prevalent method for constraining photometric models

of the MW.

Here, one attempts to reproduce the observed number of stars in a field of view subtending

solid angle Ω toward the direction (l, b) whose apparent magnitudes are between some lower

and upper limit, denoted by m1 and m2, respectively. In order to do so, one must integrate

the assumed stellar density law, ρ?(R, φ, Z), weighted by an assumed luminosity function,

Φ(M), over the volume of the survey and the range of magnitudes. After converting ρ? to

heliocentric spherical coordinates via Equation (4.2), one obtains the “fundamental equation

of stellar statistics” (Bahcall, 1986):

N(m1,m2, l, b,Ω) =
∑

c

Ω

∫ m2

m1

∫ ∞

0

ρ?,c(r, l, b)Φc(M)r2 dr dm, (4.4)

where again the summation over c implies that the individual stellar components are com-

bined to yield the total. Here, one also substitutes the absolute magnitude as M = m −
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5 log r −A(r) + 5, where A(r) is the total extinction out to distance r in the passband that

the magnitudes are measured using, making the above integrand a function purely of r and

m. Therefore, one must also include a model of Galactic dust and its attenuation to inform

the choice of A(r). Using Equation (4.4), authors optimize the free parameters included in

ρ? to achieve the best fit to the observed star counts, yielding an estimate of Ld.

The star counts method is often considered superior for making determinations of the 3D

structural parameters of our Galaxy compared to the integrated-light technique described

above. As Picaud & Robin (2004) pointed out, integrated flux profiles are dominated by the

brightest and closest stars, whereas star count studies incorporate a wider range of intrinsic

luminosities and distances. Furthermore, a common simplification strategy is to restrict to a

narrow bin in color, allowing one to assume that all stars in the sample have approximately

the same color and hence absolute magnitude via a Hertzsprung-Russell-diagram (HRD)

relation, and essentially rendering Φ into a Dirac delta function (see, e.g., López-Corredoira

& Molgó, 2014). As Polido et al. (2013) pointed out, studies using the star counts method

can also be separated into two classes: those that adopt an empirical luminosity function

(e.g., Ortiz & Lépine, 1993; Buser et al., 1998) and those that adopt a theoretical luminosity

function based on models of stellar evolution (e.g., Picaud & Robin, 2004; Girardi et al.,

2005).

4.2.3.3 Photometric Parallax Taking the star counts method one step further, authors

have been able to make explicit distance measurements for each star in their dataset using a

so-called “photometric parallax” relation (see, e.g., Gilmore & Reid, 1983; Ojha et al., 1996;

Jurić et al., 2008). Here, one uses an appropriately-calibrated HRD to map each star’s color

to its intrinsic luminosity and combine that with its apparent magnitude in order to infer

its distance, r. Such a technique yields the full 3D position information (r, l, b) for each star

in a sample. Authors then simply need to optimize the free parameters in their Galactic

model ρ? to best reproduce to volume density structure displayed by the sample, yielding an

estimate for Ld.
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4.2.3.4 Two-Point Correlation Function Recently, Mao et al. (2015) have pioneered

the application of the two-point correlation function, ξ(r), in fitting the stellar density distri-

bution. Traditionally, this technique has been used to study the large-scale structure of the

Universe, where ξ(r) quantifies the strength of galaxy clustering as a function of separation

(Peebles, 1980). This is calculated as

ξ(r) =
DD(r)

RR(r)
− 1, (4.5)

where DD(r) is the observed number of pairs of galaxies at separations between r and

r + dr, and RR(r) is the number of pairs measured in a mock catalog of galaxies randomly

distributed over the same volume. In order to constrain Galactic structure, Mao et al.

(2015) have replaced the idea of a random catalog with a model catalog, where the positions

of stars are generated from their Galactic stellar density model, which will have counts of

pairs MM(r) as a function of separation. Here, DD(r) becomes the number of pairs of

stars as a function of separation, and MM(r) replaces RR(r) in Equation (4.5). The free

parameters of the model are then optimized to yield ξ(r) ∼ 0, producing an estimate of Ld.

We point the reader to Table 4.1, where we have provided a detailed synopsis for each

of the published works that produced an Ld estimate that we utilize in this study. Here one

can find a breakdown of the observational data and methodologies that go into each. Where

provided, this includes: the reference, the scale length estimate value, the survey/telescope

utilized, the passbands that measurements were made using and any associated sample-

defining criteria, the field(s) of view and/or sky area covered, the approximate number of

stars in the sample, details of the authors’ choice of dust and stellar models for the Galaxy,

including both the major and substructure components incorporated and the corresponding

number of free parameters, and lastly the analysis technique. The footnote of Table 4.1

explains the reference abbreviations that are used throughout this chapter, including other

tables and figures.
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4.3 METHODS

4.3.1 Hierarchical Bayesian Technique

Our goal is to perform a meta-analysis of the Ld estimates we have collected in order to

determine a single aggregate result, encapsulating our overall knowledge from the various

observational data and MW models available. As discussed above, these estimates often are

in tension with each other; this is likely due at least in part to differences in assumptions

and methodologies amongst them. We therefore rely on the power of a hierarchical Bayesian

(HB) statistical technique (Press, 1997; Hogg et al., 2010; Dahlen et al., 2013; Chapter 2) to

perform a meta-analysis of the set of literature results. This is the appropriate tool to use

for a variety of reasons. Most importantly, it has been vetted as a powerful technique for

extracting the consistent underlying signal from a sample of potentially flawed measurements

(see, e.g., Lang & Hogg, 2012). It also yields error estimates that expand appropriately

when the individual estimates are statistically inconsistent. This is a distinct advantage

over the inverse variance-weighted mean (IVWM), which has more limitations than the HB

framework; e.g., calculating the IVWM requires that the individual measurements are well-

described by Gaussian probability distributions and that they are statistically compatible

with one another. However, one helpful feature of the HB technique is that it becomes

equivalent to calculating the IVWM in the limit that the data that are all found to be highly

consistent with one another.

In this study, we will produce our results using the same formalism and by employing the

same problematic-measurement models that are laid out in Chapter 2, though with an added

level of analysis that will be introduced in §4.3.1.1; we refer the reader to this work for the full

details, where one can also find a pedagogical introduction. We note, again, that while we

have labeled this a “hierarchical Bayesian technique,” this is not to be confused with methods

that recently have been labeled as “Bayesian hierarchical modeling” or “Hierarchical Bayes”

(e.g., Loredo, 2012b; Gelman et al., 2013; Martinez, 2015), which are defined by having

several layers of parameters, typically such that priors on model parameters are themselves

dependent on additional free parameters (i.e., hyperparameters), and hence require their
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own priors (i.e., hyperpriors). Here, we use the terminology “hierarchical” in the sense that

our method relies on fitting for free parameters that characterize only a subset of the data

that we analyze simultaneous to the physical parameter of interest (e.g., Ld). One could

alternatively refer to our method as a “Bayesian mixture model” approach to meta-analysis

(Hogg et al., 2010). We will now briefly summarize the details of this method, which will be

important for interpreting our tables and figures below.

In short, we take a mixture-model approach by assuming that our Ld dataset can be

divided into two subgroups: one where measurements are constraining the same parameter

of interest with properly-estimated uncertainties (“good”), and one where measurements are

inaccurate in some way, e.g., suffering from unrealistic error estimates or neglecting a poten-

tially significant source of bias (“bad”). The probability distribution for the true value of Ld

given any single measurement then looks like P (Ld) = fgoodP (Ld | measurement is “good”)+

(1−fgood)P (Ld | measurement is “bad”), where P (A | B) generically indicates the probabil-

ity distribution function (PDF) for A conditional upon B being true and fgood denotes the

probability that the measurement is “good”. This provides a template for the likelihood

function within our HB analysis. If the measurement is represented by a Gaussian distri-

bution with mean µ and standard deviation σ, then we can straightforwardly write that

P (Ld | measurement is “good”) =
1√

2πσ2
exp

(−(Ld − µ)2

2σ2

)
. (4.6)

As mentioned above, there are a variety of ways that measurements can be problematic.

We have developed a number of bad-measurement models to account for this; specifically,

these are:

free-n: we assume that bad measurements have overly-optimistic error bars by a factor of

n. Here P (Ld | measurement is “bad”) would be constructed by replacing σ with nσ in

Equation (4.6);

free-Q: we assume that bad measurements have neglected a significant source of uncertainty,

whose overall magnitude should be added in quadrature to the nominal error bars. We

quantify this as some fraction Q of the median estimate from the set of measurements,

which we will denote as µMED, and construct P (Ld | measurement is “bad”) by replacing
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σ2 with σ2 + (QµMED)2 in Equation (4.6);

free-F : we assume that all measurements are truly capable of reaching only a certain level

of accuracy, and bad measurements are those that fall below this level. We quantify

this by setting a floor value on error bars for all measurements uniformly equal to some

fraction F of µMED, and hence we construct P (Ld | measurement is “bad”) by replacing

σ with FµMED in Equation (4.6) in all cases where σ is below that limit;

Pbad-flat: we assume that bad measurements are critically flawed and should contribute

zero weight to our study. We achieve this by modeling P (Ld | measurement is “bad”) as

a flat PDF over all parameter space.

Equations (2.2)–(2.5) in Chapter 2 show the full form of the likelihood function for each case.

We note here that making first-order corrections to our dataset, which will be discussed in

following subsections, can cause µMED to shift in value. To circumvent any difficulties in

interpreting our results due to this, throughout this work we invariably set µMED = 2.5 kpc,

as this very nearly if not equal to the median estimate value among the cases of considering

the visible or IR measurements separately and when combining them.

Hereafter, we generically denote each model by Mk and its set of free parameters (separate

from Ld) by Θk; in most cases, those free parameters are fgood and one of n, Q, or F . Amongst

all of these scenarios, Θk represents free parameters that characterize the data itself, which

are fit for simultaneously with the true value of Ld — the existence of these extra parameters

beyond the quantity of interest is what makes our analysis hierarchical. We also explore the

effect of setting fgood = 0 within each of the models described above (except for the Pbad-flat

model, as that would mean nullifying all of our data), which corresponds to assuming that

not just some, but all Ld measurements are flawed to some extent; these cases are denoted

by appending “all-bad” to the model name. Lastly, we explore the possibility that all Ld

estimates are accurate by setting fgood = 1 within any model that we have described above,

which we denote as the “all-good” model. As mentioned above, this reduces our formalism

to calculating the (non-hierarchical) IVWM, and serves as our null hypothesis. Overall, this

constitutes eight different ways of modeling the Ld dataset; we will refer to this dataset as

an ensemble with the label D.

Assuming that all of the data are statistically independent, one can write the overall
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likelihood function as the product of the likelihood functions for each measurement,

P (D | Ld,Θk,Mk) =
∏

i

P (µi, σi | Ld,Θk,Mk), (4.7)

where µi and σi are the mean and error estimate for the ith estimate. At this point, fgood

(which is buried in Θk) may be interpreted as the fraction (or frequency) of accurate estimates

in D. Finally, the joint posterior for the parameters of the hierarchical model given the set

of measurements used can be calculated by

P (Ld,Θk | D,Mk) =
P (D | Ld,Θk,Mk)P (Ld)P (Θk |Mk)

P (D |Mk)
. (4.8)

4.3.1.1 Posterior Results From Bayesian Model Averaging In Chapter 2, we com-

pared the Bayesian evidence for each model to select the one that best fits the data. For

model Mk with free parameters contained in the vector Θk, the evidence represents the

probability of measuring the data D given that Mk is the correct model and is calculated by

P (D |Mk) =

∫ ∫
P (D | Ld,Θk,Mk)P (Ld)P (Θk |Mk) dLd dΘk. (4.9)

This is the integral of the likelihood weighted by the priors over all parameter space. Such

a metric provides a natural, Bayesian method of applying the principles of Occam’s Razor

to model selection by weighing the goodness-of-fit against the size of the parameter space

required to achieve it. In that study, we found that the all-good model came out well ahead

in this comparison, such that the other models were not comparable to it.

Unlike the results in Chapter 2, we find here that in some cases more than one bad-

measurement model can be competitive in maximizing the Bayesian evidence while also

yielding measurably different P (Ld | D,Mk). While these differences are well below the ∼1σ

threshold, there still remains the question of how to select the correct model. In cases where

the evidence strongly favors a particular model compared to the others, or where each model

yields very similar posterior results, the choice is less difficult or of little consequence.

To handle this issue, we employ a Bayesian model averaging (BMA; Hoeting et al., 1999)

technique to obtain P (Ld | D), effectively marginalizing over all models that we consider. To

calculate this, we must first assume that one of the models considered is correct (but that
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we do not know which one is), and then choose a prior probability P (Mk) for each being the

true model. If there are K models to consider, then the marginalized posterior is given by

P (Ld | D) =
K∑

k=1

P (Ld,Mk | D), (4.10)

where P (Ld,Mk | D) is the joint posterior distribution describing the true value of Ld and

whether Mk is the correct model. By the definition of joint probability we can rewrite this

as

P (Ld | D) =
K∑

k=1

P (Ld | D,Mk)P (Mk | D), (4.11)

where P (Mk | D) is the marginalized posterior probability for Mk being the true model,

which is given by

P (Mk | D) =
P (D |Mk)P (Mk)∑K
j=1 P (D |Mj)P (Mj)

. (4.12)

Here, P (D |Mk) is the Bayesian evidence for model Mk given by Equation (4.9).

To apply BMA, we assume that all eight of our bad-measurement models have equal

prior probability of being the correct one and hence choose P (Mk) = 1/K = 1/8. This

assumption causes a number of cancellations in Equation (4.12), and hence by plugging

this into Equation (4.11) the marginalized posterior for Ld effectively becomes the evidence-

weighted model average:

P (Ld | D) =

∑8
k=1 P (Ld | D,Mk)P (D |Mk)∑8

j=1 P (D |Mj)
. (4.13)

Consequently, models with low Bayesian evidence for them will have little impact on our

net posterior results, while models with comparable Bayesian evidence with each other will

provide similar contributions to our net posterior results.

4.3.1.2 Choosing Priors for Ld and Θk The Bayesian priors for the parameters in-

cluded in our bad-measurement models (i.e., those contained in Θk) are the same flat PDFs

chosen in §2.2.3.2 of Chapter 2. As mentioned above, the dynamical range of scale lengths

measured for massive spiral galaxies falls in the range of 1 . Ld . 10 kpc. Therefore, we

have chosen a flat Bayesian prior where P (Ld) = 1/9 where 1 ≤ Ld ≤ 10 kpc, and zero

otherwise. This effectively allows our posterior results to be determined purely from the

data. For convenience, we tabulate the range that these flat priors span below in Table 2.
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Table 2. Ranges for Flat Priors

Ld (kpc) fgood n Q F

[0, 9] [0, 1] [1, 4] [0, 1] [σMIN
i /µMED, 1]

Note. — The prior on F is designed so that

the free-F model explores enforcing a floor value

on error estimates (= F × µMED) ranging from

the smallest value in the dataset (σMIN
i ) up to the

median central value (µMED). As reminder, we use

a value of 2.5 kpc for µMED throughout this study;

this is relevant for the free-Q model as well, which

explores adding extra uncertainty in quadrature

to the nominal error estimates (= Q× µMED).
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4.3.1.3 Corrections Toward a Uniform Dataset As described in §4.2.2, the details

and assumptions that go into models of the MW can vary considerably from study to study,

which could be to blame for any inconsistencies amongst the Ld estimates that we have

collected. While it is not possible to correct for all differences, it is important to attempt to

place each of these estimates on equal footings, as much as possible, by normalizing them

to a common set of assumptions. This should optimize our meta-analysis by placing each

measurement on a level playing field, and hence our posterior results should best reflect our

true knowledge of Ld given all of the observational data that measurements have utilized.

Unfortunately, the complexity of MW models and the correspondingly large number of

free parameters that they generally include make this a difficult job. For example, disk mod-

els that include a central truncation or “hole”, which itself is parameterized by a scale radius,

Lhole, tend to produce a strong anti-correlation between Ld and Lhole, which can bias results

(Picaud & Robin, 2004). Similarly, including a cutoff radius, as opposed to extrapolating to

R =∞, may systematically reduce Ld. Another dichotomy in Galactic models is that some

incorporate substructure components (e.g., spiral arms and rings) and some do not. These

types of variations are practically impossible to correct for without redoing each analysis.

We note that the HB meta-analysis should yield robust results so long as the plurality of

measurements are constraining the same fundamental parameter. If other models are suffi-

ciently different in nature that they yield Ld values that are systematically offset from the

consensus, they will neither cause significant offsets in the posterior probability distribution

nor decrease the breadth of that distribution in an unwarranted way (in contrast to the

IVWM).

One assumption that can be corrected for is the authors’ choice of R0. While variations

in the adopted value of R0 appear to have negligible impact on the Ld results from star count

studies (see, e.g., Ng et al., 1995; Mendez & van Altena, 1998), and hence the majority of our

dataset, it does have a measurable effect on measurements based on integrated flux profiles.

For example, Kent et al. (1991) explicitly state that their distance measurements will scale

proportionately to R0, while Freudenreich (1998) published his results as a function of R0

showing Ld variations to be consistent with a linear scaling law, and Drimmel & Spergel

(2001) quote their Ld estimate in units of R0. Therefore, we assume that integrated flux
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measurements scale linearly when changing the choice of R0 (cf. Sackett, 1997 and Hammer

et al., 2007, who assume Ld estimates from all measurement techniques scale proportionately

with R0).

Consistent with the previous chapters, we have adopted R0 = 8.33 ± 0.35 kpc from the

work of Gillessen et al. (2009), both because it is based upon a geometric technique robust

to the systematic uncertainties in the distance ladder, and because it provides a thorough

analysis of both statistical and systematic uncertainties. This is a conservative choice as

the error estimate is broad enough to be consistent with estimates from a variety of other

measurement techniques, and hence describes well the current knowledge of this parameter.

We renormalize each Ld estimate from integrated light measurements to reflect this choice of

prior. We do this using the “strict-prior” approach described in Chapter 2, where we force

our posterior results to reflect our choice of prior by assuming that P (R0 | D) = P (R0).

Hence, we assume that the observed variations amongst Ld measurements contain no use-

ful information about the true value of R0. This can be achieved through Monte Carlo

simulations, which we describe in §4.3.1.4 below.

Other assumptions that we make or alterations to particular estimates in Table 4.1 are

as follows:

• In cases where an Ld result is presented without a formal error estimate, we ascribe a

25% error bar.

• In almost all cases the scale length estimate describes the thin disk of the MW. However, a

few cases exist where a thick disk is also included and appears as the dominant component

of the Galaxy. Therefore, avoiding confusion due to nomenclature (e.g. “thin”, “thick”,

“old”, “young”, etc.), we include the Ld estimate associated with the most massive disk

component included in the model. This pertains primarily to the Galactic models in Ortiz

& Lépine (1993) and Lépine & Leroy (2000). However, any studies that solely measure

the scale length of stars which unambiguously belong to the thick disk are excluded (e.g.

Robin et al., 1996; Zheng et al., 2001)

• The estimate made by Porcel et al. (1998) relies on assuming that all stars observed to

fall into the apparent magnitude bin of 9 < K < 10 are of type K2–K5 III. To account for

the possibility that this assumption may be in error (especially given the minimal detail
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presented in this study and the lack of systematics checks) we conservatively augment

the error estimate to 25% of the central value.

• The estimate made by Mendez & van Altena (1998) relies on applying a rather outdated

model of extinction to photographic plate data taken from the mid-plane of the Galaxy.

Given this combination we conservatively augment the error estimate to 25% of the

central value.

• The estimate made by Chen et al. (1999) appears to correspond to the mean and approx-

imate standard error of the Ld values produced by fitting their model to four different

fields of view. Given that this neglects the contribution of uncertainties in their model

assumptions as well as in the formal fitting of the data, we augment the error estimate

to 25% of the central value.

• The estimate from Drimmel & Spergel (2001) comes from the mean and standard de-

viation of values presented in their Table 4 to incorporate uncertainties in the fixed

parameters of the model. We have calculated the standard deviation in the Ld values

from Table 5 and 6 in this paper to account for the uncertainty due to alternative stellar

and spiral models, respectively. Each of these values have been added in quadrature to

the nominal error estimate to produce the error bar that we use in our analysis.

We note here that there are several estimates in the literature that we have assumed are

superseded by an estimate we have included in our set, due to strong overlap in observational

data, Galactic models employed, contributing authors (and hence assumptions), etc., and

therefore have been excluded from this study. These include Ruphy et al. (1996) superseded

by Picaud & Robin (2004, P&R04), Spergel et al. (1996) superseded by Drimmel & Spergel

(2001, D&S01), Larsen (1996) superseded by Larsen & Humphreys (2003, L&H03), and

Robin et al. (2003) superseded by P&R04. We also exclude the estimates from Bovy et al.

(2012b) and Cheng et al. (2012) from our analyses as these rely critically on segregating

stars into subpopulations based on their α-element abundance ratios, a technique that is not

viable for measuring extragalactic scale lengths, which we ultimately want to compare our

results to.

With all of these assumptions in place, we present our renormalized dataset in Table

4.2. Here we have identified them as either visible or IR measurements, and show the error
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estimates updated to the assumptions listed above. We also list the value of R0 assumed

by the author, and indicate the appropriate scaling relation by α, where Ld ∝ Rα
0 . Error

bars are scaled similarly to central values with R0, such that logarithmic error bars remain

constant.
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Table 4.2: Milky Way Radial Scale Length Measurements Renormalized For HB Analysis

Reference Ld±1σ R0 α Spectral

(kpc) (kpc) Regime

K91 3.00± 0.54 8.00 1 Infrared

RM91 2.50± 0.63 8.75 1 Infrared

Y&Y92 3.80± 0.27 8.00 0 Visible

R92 2.50± 0.30 8.50 0 Visible

O&L93 2.60± 0.50 7.90 0 Infrared

N95 4.50± 1.13 8.06 0 Visible

O96 2.30± 0.60 8.09 0 Visible

P98 2.10± 0.53 8.50 0 Infrared

F98 2.60± 0.65 8.50 1 Infrared

B98 4.01± 1.00 8.60 0 Visible

M&vA98 6.00± 1.50 8.50 0 Visible

C99 2.25± 0.56 8.50 0 Visible

L&L00 2.30± 0.58 8.50 1 Infrared

D&S01 2.26± 0.22 8.00 1 Infrared

O01 2.80± 0.30 8.00 0 Infrared

S02 2.25± 0.56 8.00 0 Visible

LC02 3.30± 0.50 7.90 0 Infrared

L&H03 3.50± 0.30 8.00 0 Visible

P&R04 2.35± 0.67 8.50 0 Infrared

G05 2.80± 0.25 8.50 0 Visible

B05 3.90± 0.60 8.50 0 Infrared

B06 1.90± 0.48 8.60 0 Visible

K07 2.25± 0.56 8.00 0 Visible

J08 2.60± 0.52 8.00 0 Visible

C11 3.70± 1.00 8.00 0 Infrared

R12 2.20± 0.55 8.00 0 Infrared
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Table 4.2 – Continued

Reference Ld±1σ R0 α Spectral

(kpc) (kpc) Regime

P13 2.12± 0.20 8.00 0 Infrared

LC14 2.00± 0.40 8.00 0 Visible

M15 2.34± 0.48 8.00 0 Visible

Note. — See the Table 4.1 footnotes for reference abbreviations. In cases where the authors do not specify
the R0 assumed, we assume they have used the IAU standard value of 8.5 kpc (Kerr & Lynden-Bell, 1986).
In column 4, α reflects the assumed scaling law, Ld ∝ Rα0 , based on the measurement technique.

4.3.1.4 Monte Carlo Techniques Combining all of the assumptions and techniques

described above requires us to perform a set of Monte Carlo simulations. For convenience, we

now summarize the full process of obtaining our results. We begin by drawing 103 realizations

of R0,i from P (R0) = 8.33±0.35 kpc, which is the result from Gillessen et al. (2009) discussed

in the previous section. For each R0,i we first renormalize each independent estimate of Ld

in Table 4.2 from the R0 assumed by the author to R0,i according to the appropriate scaling

law, yielding D. Next, for each bad-measurement model Mk, we calculate the likelihood,

P (D | Ld,Θk,Mk, R0,i), from Equations (2.2)–(2.5) in Chapter 2 and determine the Bayesian

evidence using Equation (4.9) above.

Following the strict-prior methodology from Chapter 2 (i.e., assuming P (R0 | D) =

P (R0)), we next calculate the marginalized posterior for the MW’s disk scale length by

P (Ld | D,Mk) =
1

1000

1000∑

i=1

∫
P (D | Ld,Θk,Mk, R0,i)P (Ld)P (Θk)

P (D |Mk, R0,i)
dΘk. (4.14)

Lastly, we implement Bayesian model averaging (BMA) by calculating the average poste-

rior of the models weighted by the mean evidence by averaging the results from the 103

realizations of R0,i:

P (Ld | D) =

∑8
k=1 P (Ld | D,Mk)

∑1000
i=1 P (D |Mk, R0,i)∑8

j=1

∑1000
i=1 P (D |Mj, R0,i)

. (4.15)
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We find that all of our results are entirely unchanged if we use the median evidence values

instead of the mean.

For ease of comparison amongst our models, we will recast our presentation of the

Bayesian evidence in terms of the Bayes Factor, which in our framework is calculated by

Bk =
P (D |Mk)

P (D |Mall-good)
=

∑1000
i=1 P (D |Mk, R0,i)∑1000

j=1 P (D |Mall-good, R0,j)
. (4.16)

This represents the ratio of the posterior odds to the prior odds in favor of model Mk

over the all-good model, our null hypothesis model. The standard rule-of-thumb (Kass &

Raftery, 1995, and references therein) applied in the context of this study means that finding

logBk >∼ 2 indicates a statistically significant favorability for model Mk over the all-good

model. Values of logBk in the range of ∼0.5–1 and ∼1–2 are considered as “substantial” and

“strong” favorability, respectively, but are not necessarily large enough to decisively deem

Mk as the superior model, and negative values of course favor the all-good model over Mk

on the same scale. One can also conveniently reframe this type of comparison between any

two models Mk and Mj by simply calculating logBk − logBj.

We note here that we have also tested for the effect of treating R0 as a free parameter

in our modeling of the data and adopting the same prior P (R0). This breaks our assump-

tion that Ld estimates contain no useful information about R0, and eliminates the need

for marginalization through the Monte Carlo framework laid out above. We find that the

marginal posterior results for Ld are nearly identical to those of our standard treatment,

which is likely due to only a small subset of the Ld dataset being dependent on R0. Nev-

ertheless, we believe that implementing the strict-prior methodology is well motivated and

worth the added complexity for our purposes.

4.4 RESULTS

In Table 4.3 we present the results for each of the eight bad-measurement models. This

includes the number of free parameters, Nfree, the median and 68% credible interval measured

from the marginalized posterior P (Ld | D,Mk), and the corresponding logBk value. We
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have broken our results down into three scenarios: analyzing the entire dataset provided in

Table 4.2, analyzing only those measurements made in the visible, and analyzing only those

measurements made in the IR. Lastly, for each of these three scenarios we list the median and

68% credible interval measured from the posterior marginalized over all models, P (Ld | D),

calculated via BMA (see §4.3.1.1), which serve as our nominal results. To easily compare

our results with a standard non-hierarchical combination of the data, we include in Table 4.3

the inverse variance-weighted mean (IVWM) of the Ld estimates. We note that the result

from the all-good model is equivalent to the IVWM of the estimates after scaling them to

reflect assuming R0 = 8.33 kpc according to the appropriate relation indicated in Table 4.2.
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Table 4.3: HB Results for the Milky Way Radial Scale Length

Model (Mk) Nfree Ld±1σ log10 Bk

(kpc)

IR estimates only

free-n 3 2.48+0.14
−0.13 −0.28

free-Q 3 2.51+0.16
−0.14 −0.27

free-F 3 2.53+0.17
−0.15 −0.24

all-bad free-n 2 2.48± 0.14 −0.66

all-bad free-Q 2 2.56+0.17
−0.15 −0.47

all-bad free-F 2 2.62+0.16
−0.15 −0.37

Pbad-flat 2 2.47± 0.12 −0.93

all-good 1 2.48± 0.11 —–

BMA result 2.51+0.15
−0.13

IVWM 2.46± 0.11

Visible estimates only

free-n 3 2.68+0.21
−0.19 1.94

free-Q 3 2.64± 0.19 1.97

free-F 3 2.64+0.18
−0.17 1.94

all-bad free-n 2 2.85± 0.20 1.97

all-bad free-Q 2 2.77± 0.21 1.95

all-bad free-F 2 2.70+0.21
−0.18 1.97

Pbad-flat 2 2.52+0.17
−0.16 1.03

all-good 1 2.85± 0.11 —–

BMA result 2.71+0.22
−0.20

IVWM 2.85± 0.11
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Table 4.3 – Continued

Model (Mk) Nfree Ld±1σ log10 Bk±1σ

(kpc)

Visible and IR estimates combined

free-n 3 2.57± 0.12 2.39

free-Q 3 2.60+0.14
−0.13 2.69

free-F 3 2.62± 0.12 2.85

all-bad free-n 2 2.66± 0.12 1.88

all-bad free-Q 2 2.69+0.13
−0.12 2.64

all-bad free-F 2 2.66± 0.12 3.00

Pbad-flat 2 2.50± 0.10 1.26

all-good 1 2.66± 0.08 —–

BMA result 2.64± 0.13

IVWM 2.65± 0.08

Note. — For each dataset, D, the first eight rows shows the results from each of our bad-measurement
models detailed in Chapter 2. Nfree denotes the number of free parameters that each model contains. Below
this point, we show the result of applying Bayesian model averaging (BMA) to all eight models, which in
this study reflects the median and 68% credible interval measured from the Bayesian evidence-weighted
average of all P (Ld | D,Mk), since we assume as a prior that each model is equally probable (see §4.3.1.1).
Finally, for comparison, we also list the (non-hierarchical) inverse variance-weighted mean (IVWM) from
using the nominal central values and error estimates in Table 4.2. Note that the result from the all-good
model is equivalent to calculating the IVWM after scaling individual estimates to reflect our prior on R0

where applicable.

4.4.1 Parameters Describing the Consistency of the Data

As indicated by the Bayes factors listed in Table 4.3, the IR data are all consistent enough

that the all-good model yields a satisfactory fit with no free hierarchical parameters, causing

it to be favored by the evidence calculations. This corresponds to assuming high fidelity for all

estimates. However, when the visible measurements are included in the dataset, either by an-
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alyzing them alone or in combination with the IR measurements, there appears to be enough

tension amongst them that the all-good model becomes strongly disfavored. To illustrate

this further, we show in Figure 4.2 the results for parameters describing the consistency of

the data from the free-n model. Each panel shows the joint posterior, P (fgood, n | D,Mfree-n),

for the fraction of “good” (i.e., accurate) estimates in the set, fgood, and the correction factor

needed for error estimates from bad measurements, n. The white star marks the peak of the

distribution.
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Figure 4.2: Quantifying the overall fidelity of Milky Way disk scale length measurements, D, in terms of both
the frequency of accurate estimates, fgood, and the error bar correction factor for inaccurate measurements,
n. Each panel shows the joint posterior distribution, P (fgood, n | D,Mfree-n), yielded from the free-n model,
Mfree-n, when analyzing Ld estimates measured in the infrared (IR; left panel) or the visible (middle panel),
and when analyzing both the visible and IR data together (right panel). We have marked the peak probability
location in each panel by a white star. The set of IR estimates alone are in good overall consistency with one
another, as the posterior peaks at n ∼ 1, the limit where the correction for bad estimates goes away (note
that values of n = 1 or fgood = 1 reduce to the all-good model). In contrast, the visible estimates alone, due
to the strong tension amongst them, appear to contain a significant number that are biased or erroneous.
Here, the posterior peaks at fgood = 0 and n = 1.75, corresponding to the case where all measurements
are treated as having error estimates that are 75% too small. The right panel indicates that there is good
consistency amongst some of the visible and IR data together, as it yields an intermediate result between
analyzing the visible and IR data separately.

The left panel shows the result from analyzing the IR estimates alone. Here, we find

a relatively broad posterior that peaks at n = 1.15 and fgood = 0.03. That is to say, the

likelihood function for the free-n model is maximized under the assumption that nearly all

measurements of Ld in the IR have underestimated errors by 15%. Note, however, that this
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is also to say that the posterior peaks nearly along the n = 1 slice through this plane, where

the free-n model (with 3 free parameters) becomes equivalent to the all-good model (with

1 free parameter). This explains why the latter is favored by the Bayesian evidence — it

provides a similar description of the data without requiring superfluous parameter space.

The middle panel shows the result from analyzing only the visible Ld estimates, which

appear to be in significant tension with one another. In this case, the posterior is more

strongly peaked and is maximized at n = 1.75 and fgood = 0, where error estimates on

all measurements are increased by 75%. Note that this is where the free-n model becomes

equivalent to the all-bad free-n model, though each yields very similar logBk values. This

represents an example where the added parameter space yields a large enough improvement

in likelihood values that they roughly balance.

Finally, the right panel shows the joint posterior from analyzing all (visible+IR) mea-

surements in Table 4.2, which appears to be an intermediate result compared to those from

treating the visible and IR data separately. The posterior is maximized when assuming that

∼35% of the set have overly-optimistic error estimates by a factor of ∼2.2. This indicates

that there is a good level of consistency between many of the 14 IR and 15 visible mea-

surements, but that there are some estimates that are in strong tension with the rest. Note

the covariance between fgood and n in the model, which shows that there are multiple ways

to account for this tension. For example, upon further inspection of Table 4.2, it seems

there are a few strongly-peaked (i.e., with small estimated errors), similarly valued estimates

(Y&Y92 and L&H03) that are in modest tension with a number of lower-valued, broader

estimates (O96, S02, B06, K07, J08, LC14, M15); treating the former as problematic would

result in larger values for both fgood and n, whereas considering the latter set as problem-

atic would correspond to lower values of fgood and n (see Fig. 4.4 for a visual comparison,

which we discuss below). Likely there are several other ways to reduce the tension amongst

these measurements; each would lead to a broader posterior distribution than the IVWM

by incorporating this extra uncertainty. This would typically be unaccounted for by other

meta-analysis techniques. We note that despite the wide varieties of models considered, our

final BMA results are consistent with all of them at <1σ; it therefore appears unlikely that

entertaining more models of bad measurements would significantly change our final results.
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To provide a picture of how different models compare in identifying bad measurements,

Figure 4.3 displays the marginal posterior for fgood for all four of those that allow for the

possibility that some of the measurements are problematic (in all others fgood has been either

set to zero — the entries labeled as “all-bad” in Table 4.3 — or set to unity in the case of the

“all-good” entries). Consistent with the story from Figure 4.2, we find that P (fgood | D,Mk)

peaks at fgood = 1 for all models when analyzing the IR estimates alone, but peaks well

below fgood = 1 when analyzing the visible estimates alone. Interestingly, these curves show

more diversity when analyzing the visible and IR estimates in combination and peak at a

range of values of fgood.
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Figure 4.3: Quantifying the frequency of accurate estimates, fgood, amongst our Ld dataset, D, using a variety
of bad-measurement models, Mk. Each panel shows the marginal posterior for fgood, P (fgood | D,Mk), from
the four models listed in the left panel (see §4.3.1 for a short description of these) after integrating over
all other free parameters. This is divided into cases of analyzing the IR estimates alone (left panel), the
visible estimates alone (middle panel), and the visible and IR estimates together (right panel). As similarly
described in Fig. 4.2, the IR data alone is in good overall consistency, leading to optimal values of fgood = 1.
The visible data alone, however, appear to be contaminated by erroneous measurements as the posteriors
from all models peak at values of fgood well below unity. The results from analyzing the visible and IR data
together are more divergent, with different models favoring differing values of fgood; i.e., some models are able
to ease inter-measurement tension by altering only a few Ld estimates, whereas others require expanding
error estimates on a larger number of measurements. In all scenarios, the Pbad-flat model favors higher
values of fgood than the other models; this is because it effectively discards a measurement when assuming
it’s inaccurate, which is a much more expeditious route to easing inter-measurement tension. As is evident in
Table 4.3, the associated loss of information from this approach is more detrimental to the Bayesian evidence
though, preventing the Pbad-flat model from being the most favorable (see the discussion of Bayes Factors in
§4.3.1.4). Our final results for Ld are produced by averaging over the possibility of each model being correct
(see §4.3.1.1).

In all cases, the Pbad-flat model produces a tighter posterior distribution that supports
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larger values of fgood, as it is effectively able to discard measurements entirely when treating

them as bad. However, the corresponding loss of information weakens the overall likelihood

function and hence yields a smaller Bk, preventing this from being the prevailing model. In

contrast, the three other models, each uniquely remedying the effect of bad measurements

instead of discarding them, give much more probability to lower values of fgood, while also

yielding larger Bk. In other words, the Bayesian evidence in this application more strongly

supports models that attempt to correct inaccurate error estimates for measurements of the

Galactic scale length, rather than assuming that outlying measurements are too problematic

to contain any useful information. This is the same message in the panel corresponding to

the IR data alone, except that for all models the marginalized posterior peaks at fgood = 1.

As a result, each model looks quite similar to the all-good model (where fgood has been set to

unity); it is reasonable then that the Bayesian evidence deems the all-good model superior,

as it does not contain unneeded free parameters.

4.4.2 Marginalized Posterior Results for Ld

From the values in Table 4.3, one can find several instances where two models are supported

by similar values of Bk, but have non-negligible differences in their P (Ld | D,Mk). This is

especially common amongst our results from analyzing the visible estimates alone; here, a

variety of bad-measurement models yield logBk values of ∼2 (indicating strong favorability

over the all-good model), yet central values for Ld that span from 2.64–2.85 kpc, a range

that is comparable in size to the 1σ error estimate from any single model. This provides

a cautionary tale: two models may be quite comparable in how well they can describe the

data, but still lead to somewhat differing results (in this case, all models are consistent with

each other at the ∼0.8σ level or better).

If we did not employ BMA, we would be left in the position of having to choose a winning

model for more arbitrary reasons. In our example, one could choose the free-Q model as it

maximizes the evidence (though not uniquely), or one could choose the all-bad free-Q model

(where fgood has been set to zero, instead of treated as a free parameter) in an effort to be

conservative as it yields the largest error estimate and a central value towards the center of
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the pack. This illustrates a new source of uncertainty – i.e., model selection uncertainty –

that needs to be accounted for. Hence, we have implemented the Bayesian model averaging

(BMA) technique, detailed in §4.3.1.1, to produce the final posterior distribution for Ld;

the method effectively marginalizes over the possibility of all the models we have considered

being the correct model.

In Figure 4.4 we show the finalized posterior results for the Galactic scale length from

BMA for the IR, visible, and visible+IR datasets, which correspond to 2.51+0.15
−0.13 kpc, 2.71+0.22

−0.20

kpc, and 2.64 ± 0.13 kpc, respectively. So that one may visually compare the individual

estimates to the aggregate result that they have been incorporated into (the thick black

curves), we have overlaid the probability distribution corresponding to each estimate in

colored, dashed/dotted curves. In total, each result represents our best estimate of the

Galactic scale length in the IR, visible, and visible+IR regimes given the array of values

available in the literature.
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Figure 4.4: Marginal posterior results, P (Ld | D), for the exponential scale length, Ld, of the Milky Way’s disk
yielded from HB meta-analysis of IR measurements (left panel), visible measurements (middle panel), and
visible and IR measurements combined (right panel), shown by a thick black curve. Each is produced via a
Bayesian model averaging (BMA) technique described in §4.3.1.1, where we have effectively marginalized over
the probability of each bad-measurement model we have considered as being correct, and hence incorporates
all model selection uncertainties. To provide a visual comparison, we have overlaid the individual estimates
of Ld that have gone into our meta-analysis as colored textured curves. The abbreviations for each study
can be found in the notes for Table 4.1.
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4.4.3 Impact of R0 Prior

As discussed above, a small subset of the Ld estimates we have collected, particularly those

measured from maps of integrated IR starlight, scale proportionately with the choice of R0

(see Table 4.2). As a reminder, we have adopted a prior of R0 = 8.33 ± 0.35 kpc and have

utilized Monte Carlo techniques (see §4.3.1.4) to propagate this into our posterior results for

Ld. Hence, our IR and visible+IR results, too, should be dependent on the choice of R0 to

some degree. We will now discuss how our prior for R0 affects the results we have found for

Ld, which will allow one to update them as our knowledge of R0 becomes more accurate.

We have first tested to see how much the adopted uncertainties in R0 contribute to the

overall uncertainties in Ld. To do so, in place of sampling from our R0 prior 103 times,

we have repeated our analysis using only a single iteration of scaling all measurements to

R0 = 8.33 kpc, thereby assuming 100% accuracy in our knowledge of this parameter. We

find that this yields identical posterior results, indicating that R0 uncertainties are negligible

in the overall error budget for Ld.

Next, we have investigated how our results change if we adopt R0 values anywhere in

the range of 7.5–9 kpc, which is closely equal to the 2σ range from by our nominal prior. In

line with our error analysis, this reveals only weak correlations between R0 and Ld: the IR

estimate is well described by Ld = 0.12(R0−8.33 kpc)+2.51+0.15
−0.13 kpc, whereas the visible+IR

estimate is well described by Ld = 0.06(R0 − 8.33 kpc) + 2.64 ± 0.13 kpc. As a reminder,

none of the visible Ld estimates we have collected vary with the choice of R0, and hence

neither does the visible Ld result found here.

4.4.4 Tests of Alternative Assumptions and Robustness

As indicated in Table 4.1, many of the visible Ld estimates we have included in our analyses

pre-date the dust maps produced by Schlegel et al. (1998, SFD98), which provided a largely

improved tool for modeling Galactic reddening and extinction. We have tested for the effect

of deweighting visible Ld estimates that do not utilize the SFD98 dust maps by adding an

extra 10% error in quadrature to their nominal error bars and repeating our entire analysis.

Interestingly, in this scenario we find that when analyzing either the entire visible+IR dataset
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or just the visible estimates alone, all bad-measurement models yield logBk values of ∼0 or

below; i.e., the data become much more consistent overall, and the all-good model is now

the most favored. After applying BMA, we find that our aggregate visible+IR scale length

estimate becomes 2.58+0.11
−0.10 kpc and the aggregate scale length from visible estimates becomes

2.65 ± 0.16 kpc. These values are 0.06 kpc lower than our nominal results (see Table 4.3),

but consistent with them at the 0.35σ and 0.23σ levels, respectively.

Presumably IR measurements are less impacted by dust effects so we have not performed

a similar deweighting test for them. However, a few of the IR estimates in Table 4.2 have rel-

atively small error estimates (∼0.2 kpc). To test whether our posterior results are dominated

by estimates with the smallest errors, we have reanalyzed the IR data alone after replacing

the P13 error estimate of 0.20 kpc with the median error estimate of 0.55 kpc. This serves

to systematically decrease the overall tension among the estimates in our dataset, and, as

expected, the favorability of the all-good model increases; i.e., logBk values for all other

models become more negative. On the other hand, the posterior result from each model,

P (Ld | D,Mk), shifts toward higher values of Ld, and after applying BMA the posterior be-

comes P (Ld | D) = 2.60 ± 0.14 kpc. This is consistent with our nominal result at the 0.4σ

level, and provides a good indication that our analysis method is robust.

Lastly, as noted above, other studies that have reviewed or analyzed Galactic Ld esti-

mates in the literature (e.g., Sackett, 1997; Hammer et al., 2007) have assumed that each

is directly proportional to the value of R0 adopted by each author. This assumption does

not appear to be clearly correct for star count analyses, which constitute the majority of

our dataset. In fact, several of these studies indicated that their results for Ld are highly

insensitive to the choice of R0, whereas studies modeling the integrated light profile of the

Galaxy almost unanimously noted a linear dependence on R0. This is likely because star

count measurements are so local that geometrical effects that depend on R0 prove negligible.

However, in case this is an error on our part, we have investigated how our results change

if we assume that Ld ∝ R0 for all estimates uniformly. The effects on values listed in Table

4.3 are as follows.

When analyzing the visible and IR estimates together, the logBk values for each model

increased by ∼1, indicating a substantial increase in tension amongst the data, and hence
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increased favorability for bad-measurement mixture models. The 68% credible intervals

measured from P (Ld | D,Mk) increased by ∼30–60%, whereas the median values shifted

by < 2%. The net result from performing BMA becomes P (Ld | D) = 2.63+0.18
−0.17 kpc (as

compared to 2.64± 0.13 kpc for our preferred analysis).

When analyzing the visible estimates alone, the logBk values similarly increase by ∼1.

Changes in P (Ld | D,Mk) were very similar to those described above for the visible+IR

dataset. The net result from performing BMA becomes P (Ld | D) = 2.70+0.27
−0.23 kpc (as

compared to 2.71+0.22
−0.20 kpc for our preferred analysis).

When analyzing the IR estimates only, logBk values decreased (became more negative)

by < 0.2 adding slightly more favorability to the all-good (non-mixture) model. Median

values and 68% credible intervals measured from P (Ld | D,Mk) increased by∼1% and∼10%,

respectively, except for that the 1σ ranges for the Pbad-flat and all-good models expanded by

25% and 35%, respectively. The result from performing BMA becomes P (Ld | D) = 2.53+0.17
−0.16

kpc (as compared to 2.51+0.15
−0.13 kpc for our preferred analysis).

By comparing to the values in Table 4.3, the overall impact on our nominal results is

minimal, with shifts in the central value far below the 1σ level and error estimates increasing

by <∼30%. This may stem from the fact that the R0 values assumed by these studies have

a mean and standard deviation of 8.22 kpc and 0.27 kpc, comparable to the R0 prior we

have chosen. Regardless, our results appear robust to varying assumptions about how star

count-based estimates of Ld scale with R0.

4.5 DISCUSSION

4.5.1 Comparisons to Dynamical Estimates

In this study we have exclusively analyzed estimates of Ld that have been produced from

photometric models of the MW. We therefore have excluded many estimates that have been

produced from dynamical mass models of the MW that are predominantly constrained by

kinematic data. We now provide a quantitative comparison of our results to these dynamical
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estimates.

We first emphasize that, just like photometric estimates, dynamical estimates of Ld too

rest upon many modeling assumptions, and hence are prone to systematic errors. These

predominantly rely on fitting models of both the stellar and dark matter components of

the MW to measurements of stellar or gaseous kinematics. Schönrich et al. (2010) points

out that those studies utilizing the asymmetric drift (AD) relation (e.g., Dehnen & Binney,

1998 and subsequent studies) are particularly vulnerable to systematics stemming from the

metallicity gradient of the Galactic disk, and can violate the assumptions that underpin the

AD technique when binning stars by color. Studies that aim to model the Galactic rotation

curve also generally suffer from a strong disk-halo degeneracy, and hence the Ld estimates

that they yield can be sensitive to choices regarding the disk mass-to-light ratio and dark

matter halo parameters. Furthermore, one should keep in mind that the degree to which

dynamical mass traces the distribution of starlight is not well understood, and hence to some

extent these comparisons may not be apples-to-apples.

It appears that in many (but not all) cases, dynamical estimates of Ld are proportional

to the adopted value of R0. In the following, if a particular estimate is clearly stated by the

authors to depend linearly on R0 then we have scaled this estimate to reflect the prior on

R0 chosen in this study (8.33± 0.35 kpc) to make a better comparison, and we have marked

these values with a dagger. However, in all other cases the authors have made no indication

as to the dependence of their Ld result on the choice of R0, have fit for both quantities

simultaneously, or have stated that these quantities are independent, and so for them we

compare to the nominal values they have quoted.

There are numerous dynamical estimates for Ld in the literature that compare well

with our results, either being consistent at or below the ∼1σ level or falling into the 1σ

ranges presented herein if lacking an error estimate. Such studies include Fux & Martinet

(1994), who combined literature estimates of several properties of the Galactic disk with an

approximated AD Jeans equation to find Ld = 2.45± 0.50† kpc; Durand et al. (1996), who

modeled the Galactic potential using the radial velocities of 673 planetary nebulae (PNe),

†Denotes where the authors have stated that their Ld result scales linearly with the choice of R0, and so
we have renormalized it to reflect our prior of R0 = 8.33± 0.35 kpc.
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which was then used to deproject the COBE 2.2 µm map in order to find Ld = 2.6 kpc;

Dehnen & Binney (1998), who optimized dynamical mass models of the MW to a variety

of observational constraints available in order to find Ld/R0 = 0.3, and hence Ld = 2.5†

kpc; and Widrow et al. (2008), who used both Bayesian and Markov chain Monte Carlo

techniques to match an axisymmetric, equilibrium model of the MW to nine different sets

of observational constraints, finding Ld = 2.80+0.23
−0.22 kpc. More recently, Reid et al. (2014)

used Bayesian methods to fit a universal rotation curve to trigonometric parallax and proper

motion data for ∼100 high-mass star forming regions, finding Ld = 2.34 ± 0.18† kpc. This

compares well with our IR estimate, but is inconsistent with our visible and visible+IR

estimates at the ∼1.4σ significance level.

There are a few studies, however, supporting a shorter radial scale length for the Galactic

disk. For instance, Bienaymé (1999) studied AD by analyzing velocity dispersions measured

for ∼14,000 stars from the Hipparcos data after segregating them into 20 bins of B−V color,

finding Ld = 1.8 ± 0.2† kpc. This estimate is incompatible with the results presented here

at the 3–3.5σ level. More recently, Bovy & Rix (2013) performed a sophisticated dynamical

analysis of ∼16,000 G-dwarfs segregated into 43 mono-abundance populations that yielded

a mass-weighted average value of Ld = 2.15± 0.14 kpc. This estimate is in tension with our

results at the 1.9–2.6σ level if one were to assume that stars trace mass in the disk with a

uniform mass-to-light ratio. However, we note that Hessmann 2016 (submitted) finds that

in the DiskMass sample (Bershady et al., 2010), mass-to-light ratio varies with radius in disk

galaxies, such that the mass scale length is typically 80% of the disk scale length. Testing

this using our result in combination with the Bovy & Rix (2013) mass scale length estimate

corresponds to 2.15± 0.14/2.64± 0.13 = 0.81± 0.07, in excellent agreement with that ratio.

On the other hand, there are also studies that found larger values for the Galactic disk

scale length. For instance, Feast (2000) applied the AD relation to radial velocity data for

semi-regular variables, Mira variables and PNe, yielding a weighted average for the radial

density gradient of R0/Ld = 2.55± 0.43, which corresponds to Ld = 3.27± 0.58† kpc. While

this compares fairly well with our visible and visible+IR result, it is inconsistent with our IR

result at the 1.3σ level. McMillan (2011) took a Bayesian approach to fitting dynamical MW

mass models (with 8 free parameters) to a variety of kinematic observational data available,
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finding Ld = 3.00 ± 0.22 kpc. This compares well with our visible result, but is in tension

with our IR and visible+IR results at the 1.8σ and 1.4σ levels, respectively.

4.5.2 Comparisons to Multi-band Photometry for Extragalactic Disks

Due primarily to variations in their star formation histories as a function of radius (de Jong,

1996, hereafter dJ96), spiral galaxies typically become bluer with increasing radius — the

exception being those of bluest integrated color, which are also bluest at their centers (cf.

Verheijen, 1997, hereafter V97). For galaxies like the MW, which ranks among the reddest

spirals (Chapter 3), a higher central concentration of older stars causes them to appear more

compact when imaged in the IR, whereas younger stars and new star formation extending

into the outskirts of the disk causes them to have a broader profile when imaged in the visible.

Hence, scale lengths measured from visible light are usually larger than those measured from

IR light, matching the MW results that we find here.

A number of studies have investigated the wavelength dependence of extragalactic scale

lengths measured from both optical and IR photometry. For instance, Peletier et al. (1994)

performed such an analysis for 37 Sb/c galaxies (closely matching the MW’s morphological

type; de Vaucouleurs, 1983; Chapter 3), though with a range of inclinations, and found that

extragalactic scale lengths are generally ∼1–2× larger when measured in the visible (B-

band) compared to the near-IR (K-band; see their Figure 4). Verheijen (1997) investigated

the correlation of optical-to-IR scale length ratios with disk central surface brightness colors

for the disk components of galaxies in the Ursa Major cluster and found similar results (see

their Figure 9), with the exception of the bluest galaxies as mentioned above. While these

ratios can reach to much larger values than what we find for the MW here, one must keep

in mind that they stem from galaxies with a range of morphological types and, unlike our

value, are not corrected for dust attenuation/reddening, which is expected to alter galaxy

properties in the optical (Corradi et al., 1996; Xilouris et al., 1999; MacArthur et al., 2004;

De Geyter et al., 2014).

de Jong (1996) performed multi-band photometry for 86 face-on disk-dominated galaxies,

providing extragalactic data that we may straightforwardly compare to our results. We have
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transcribed the data from Table 4 of that paper, which provides scale length measurements

in the B, R, I, and K bands, as well as numerical morphological classifications (T ; de

Vaucouleurs et al. 1991). Restricting to objects that fall into the range 2 ≤ T ≤ 6, which

should be similar in morphology to the MW (T ≈ 4), yields a sample of 30 galaxies from

which we have measured scale length ratios of LBd /L
K
d = 1.17± 0.34, LRd /L

K
d = 1.14± 0.26,

and LId/L
K
d = 1.10± 0.25 (mean and standard deviation), with median values of 1.05, 1.07,

and 1.06, respectively. Very similar results are found when analyzing the entire sample of

galaxies that have K-band scale lengths available. Using our HB estimates of Ld presented

here, we find an optical-to-IR scale length ratio of 2.71/2.51 = 1.08 for the MW, making it

appear quite typical in this respect compared to other spiral galaxies.

4.5.3 A Revised Estimate of the Milky Way’s Total Stellar Mass

In Chapter 2 we determined updated constraints on the MW’s total stellar mass by com-

bining a HB estimate for the stellar mass in the Galactic bulge+bar with the dynamically-

constrained model of the Galactic disk from Bovy & Rix (2013). As mentioned in the previous

section, the scale length estimate yielded from that study is lower than values that we have

found here, and is inconsistent with them at the ∼2σ significance level. It is likely that

systematic differences in what quantity has been measured largely contribute to this tension

as the methodology and assumptions used by Bovy & Rix (2013) are substantially different

from those of the star count-based measurements utilized here. Furthermore, the Bovy &

Rix (2013) methodology is not viable for studying external galaxies, whose scale lengths are

measured from photometry. Since a key goal of our work has been comparing the properties

of the MW to those of extragalactic objects, it is beneficial to produce a revised estimate of

the stellar mass of the Galaxy by developing a model of the disk that utilizes the light-based

scale length estimates determined in this study.

4.5.3.1 Updating the Disk Model Assumptions We begin by making several ad-

justments to the assumptions that went into the the original disk model described in §2.4.1.

From Equation (2.17), the stellar mass of the MW’s exponential disk, given its radial scale
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length, Ld, the radius of the Sun from the Galactic center, R0, and the mean surface density

of stellar material at R0, Σ̄?(R0), is determined by

MD
? = 2πΣ̄?(R0)L2

d exp(R0/Ld). (4.17)

Note that here we have made a slight notation change by using Σ̄?(R0) in place of Σ?(R0);

this is to remind the reader that Equation (4.17) assumes the stellar disk to be axisymmetric

about the Galactic center. In our past work, just as the vast majority of previous studies

have done, we assumed that the locally measured surface density — i.e., the column density

at the location of the Sun — is representative of the mean value. However, the MW’s spiral

structure certainly produces variations in the observed Σ?(R0, φ) as one varies φ. For reasons

that will be explained in the following section, we no longer make this assumption and hence

Σ̄?(R0) represents the stellar surface density at R = R0 averaged over all φ. For further

clarity, hereafter we denote the locally measured surface density — i.e., the observed value

for the Solar neighborhood — as Σ?(R0, φ0).

Next, since near-IR light is expected to most closely trace the distribution of stellar mass,

we now adopt the HB result from analyzing IR estimates only in this chapter for the disk

scale length, which corresponds to Ld = 0.12(R0 − 8.33 kpc) + 2.51+0.15
−0.13 kpc when including

the covariance with R0 that we have found in §4.4.3. Since this is entirely independent of the

surface mass density, this nullifies the covariance between Ld and Σ?(R0, φ0) that we needed

to handle in the Bovy & Rix (2013) model (see Table 2.3 in Chapter 2). Consequentially,

we adopt the dynamically-derived estimate of Σ?(R0, φ0) = 34.8 ± 4.3 M� pc−2, which we

arrived at before accounting for any covariance with Ld in that paper. As discussed therein,

this value matches very well with estimates from photometric techniques (cf. Flynn et al.,

2006; Hessman, 2015; McKee et al., 2015).

Furthermore, we no longer enforce a linear scaling relationship between MD
? and values

of R0 differing from 8 kpc, as reported by Bovy & Rix (2013); instead, we simply allow for

the exponential dependency that comes naturally with Equation (4.17). We continue to use

our original prior on R0, corresponding to 8.33±0.35 kpc, as it consistent with essentially all

recent measurements in the literature, and hence reasonably describes our current knowledge

of this parameter.
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4.5.3.2 Correcting for Local Density Variations As mentioned above, it is impor-

tant to note that Equation (4.17) is obtained by integrating the surface density profile for

an exponential disk under the assumption that it is axisymmetric and smooth. Most prior

studies of the Galactic disk mass, including our own past work, simply took Σ?(R0, φ0)

to be representative of the mean value and plugged this in for Σ̄?(R0) in Equation (4.17).

Given that the MW is known to be a spiral galaxy, a more realistic justification of this is

to assume that density perturbations due to spiral structure are negligible compared to the

smooth, underlying exponential distribution of stars, or that Σ?(R0, φ0) is unperturbed from

Σ̄?(R0). There is substantial evidence, however, suggesting that both of these assumptions

are inaccurate.

Broadly speaking, the Sun is believed to lie in a region of rarefaction within the MW’s

spiral structure, roughly midway between the Sagittarius and Perseus arms (see, e.g., Drim-

mel & Spergel, 2001; Quillen, 2002; Xu et al., 2013). Assuming that this is true in detail

would indicate that the local surface density of stellar material must be rescaled to use it

in a smooth model for the disk. However, it is also worth noting that the Sun lies nearby

to or within a branch of star-forming regions collectively called the “Orion Spur” or “Local

Arm” (Vallee, 1995; Xu et al., 2013, and references therein), a secondary feature in the spiral

structure that is less prominent than the main arms, but also resides within a ∼100–200 pc

wide cavity of relatively sparse cold and neutral interstellar gas known as the “Local Bubble”

(Cox & Reynolds, 1987; Lallement et al., 2014). This makes it murky at best as to what the

true correction factor should be, and this is likely why previous MW models have typically

neglected this effect altogether (Flynn et al. 2006 is one example where the authors do ac-

count for this effect by incorporating a 10% correction for spiral enhancement). Therefore,

we next explore both the Galactic and extragalactic data available in order to get a handle

on the size of this correction.

The effect of density perturbations is generally parameterized by the spiral arm ampli-

tude, A, which denotes the fractional increase in the surface density (or brightness) compared

to the mean. In many cases, authors report the arm-to-interarm ratio, which is related to the

spiral amplitude by Σarm/Σinterarm = (1+A)/(1−A). For instance, Drimmel & Spergel (2001)

produced a model of the dust, stars, and spiral arms in the MW’s disk from COBE/DIRBE
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data, which required placing the Sun within a gap in the spiral features, consistent with

the picture described above. They found arm-to-interarm ratios of 1.2 and 1.32 in the J-

and K-band, respectively, corresponding to values of A = 0.09 and 0.14. Liu et al. (2012)

investigated the extinction and radial velocity dispersion and distribution of red clump stars

in the Perseus arm, finding Σarm/Σinterarm = 1.3–1.5, corresponding to A = 0.13–0.20. Most

recently, Polido et al. (2013, P13) fit the Ortiz & Lépine (1993, OL93) star count model

of the Galaxy, which accounts for spiral structure (see Table 4.1), to all-sky 2MASS data,

yielding an estimate of Σarm/Σinterarm = 2.0+0.6
−0.8, corresponding to A = 0.33+0.11

−0.24.

Grosbøl et al. (2004) obtained deep K-band surface photometry for 54 normal spiral

galaxies and analyzed their spiral structure using Fourier techniques. This resulted in a

skewed distribution of spiral amplitudes ranging from ∼0–0.5 with a median value of ∼0.2,

which we have measured from data in their Table 2. Elmegreen et al. (2011) investigated

the spiral arm properties of 46 Sa–Sm galaxies with varying characteristics from their 3.6

µm images taken in the Spitzer Survey of Stellar Structure in Galaxies (S4G). The authors

measured arm and interarm surface brightnesses and tabulated their ratios converted to a

magnitude in their Table 2. We have converted these values back to arm-to-interarm ratios

based on Equation 3 of that study and find that they span the range of 1.3–4.0 (with one

large outlier at 8.3 that we disregard), correspond to A = 0.13–0.6. Lastly, Kendall et al.

(2015) analyzed the spiral structure of 13 galaxies from the Spitzer Infrared Nearby Galaxies

Survey (SINGS). Column 3 of their Table 2 provides spiral amplitudes measured at 3.6 µm,

which span the range of ∼0.1–0.4.

In order to derive an estimate for the spiral amplitude in the MW we statistically combine

these Galactic and extragalactic measurements, treating each as a Gaussian distribution with

its ±1σ region matching the range of values detailed above. Calculating the unweighted

mean yields A = 0.225 ± 0.095, whereas the inverse variance-weighted mean yields A =

0.158 ± 0.024, and the median value is 0.193. Considering these metrics, we conservatively

adopt A = 0.2 ± 0.1 as the spiral amplitude of the Galaxy. Assuming that the Sun lies

in a density trough, the appropriate correction factor to include in our axisymmetric disk

model is Σmean/Σinterarm = (1 − A)−1 = 1.25+0.18
−0.14 (median and 1σ range). However, as we

mentioned above, there is considerable uncertainty about the net local density perturbation,
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and it is certainly possible that the local surface density is representative of the Solar circle.

We therefore adopt a correction factor, C ≡ Σ̄?(R0)/Σ?(R0, φ0), for the density variation

at the Sun’s location with an additional amount of uncertainty, such that a non-correction

is included well within the 2σ significance level, corresponding to C = 1.25+0.29
−0.20 (this is

equivalent to (1 − A)−1 after augmenting the errors on A by 50% compared to the value

derived above.) We then multiply C by Σ?(R0, φ0) to obtain Σ̄?(R0) = 43.4+11.5
−8.4 M� pc−2.

4.5.3.3 Revised Stellar Mass Results To summarize the above, we have developed a

new model of the Galactic disk where the stellar density follows a smooth, axisymmetric expo-

nential profile with an underlying spiral arm structure characterized by a density amplitude

of A = 0.2± 0.1. We assume that the Sun lies at a Galactocentric radius of R0 = 8.33± 0.35

kpc, but also in a rarefaction region of the spiral structure, roughly midway between the

Sagittarius and Perseus arms, and so local measures of the stellar surface density are not

representative of the mean stellar surface density along the annulus at R = R0 (i.e., averaged

over all φ). The appropriate correction factor is Σmean/Σinterarm = (1 − A)−1 = 1.25+0.18
−0.14;

however, given the uncertainties about the net local density perturbation described above,

we conservatively adopt a correction factor for the Sun’s position with an augmented er-

ror bar given by C ≡ Σ̄?(R0)/Σ?(R0, φ0) = 1.25+0.29
−0.20. From our previous work we adopt a

dynamically-derived estimate of the local stellar surface density of Σ?(R0, φ0) = 34.8 ± 4.3

M� pc−2, and by multiplying this with C we obtain an estimate for the mean value at

R0 given by Σ̄?(R0) = 43.4+11.5
−8.4 M� pc−2. Given that the exponential distribution of stars

should be well traced by near-IR light, we adopt the IR photometric scale length estimate

derived here of Ld = 0.12(R0− 8.33 kpc) + 2.51+0.15
−0.13 kpc, which includes the covariance with

R0. Lastly, the stellar mass of the Galactic disk corrected for spiral arm density variations

is calculated by plugging these values into Equation (4.17).

Using this model, we have next repeated the analysis from Chapter 2 in order to produce

a revised estimate of the total stellar mass, M?. As described in §4.2 of that paper, this entails

using Monte Carlo techniques to produce model-consistent realizations of the disk mass and

the HB estimate of the bulge+bar mass (the stellar halo contribution is assumed smaller than

the uncertainties in MD
? and hence negligible; e.g., Bell et al., 2008b), the results of which

157



are summed to obtain the posterior probability distribution for M?. We find that while the

bulge+bar mass estimate remains 0.91±0.07×1010 M�, the posteriors for the disk and total

stellar mass are described by MD
? = 4.8+1.5

−1.1 × 1010 M� and M? = 5.7+1.5
−1.1 × 1010 M� (median

and 1σ range), or equivalently log(MD
? /M�) = 10.68± 0.12 and log(M?/M�) = 10.75± 0.10,

which are consistent with our previous results at the 0.2σ level. Our revised model also

corresponds to a bulge-to-total mass ratio of 0.16 ± 0.03 and a specific star formation rate

of Ṁ?/M? = 2.89+0.80
−0.67× 10−11 yr−1, or equivalently log(Ṁ?/M?/yr−1) = −10.54± 0.11, when

combined with the star formation rate estimate of Ṁ? = 1.65± 0.19 M� yr−1 from Chapter

2.

We refer the reader to Appendix B for a convenient tabulation of the properties derived

in this section. There one will also find updated estimates for the photometric properties

of the MW, which we have produced by entirely reperforming the analyses of Chapter 3

using the model of the Galactic disk and hence total stellar mass derived here. We note

that differences between these values and the original ones are marginal compared to the

uncertainties, as expected given the small change in the stellar mass estimate here compared

to our original estimate in Chapter 2. Nevertheless, the values tabulated in Appendix B are

all self-consistent and uniformly reflect our best-to-date model of the MW.

4.6 SUMMARY AND CONCLUSIONS

In this study, we have set out to determine a combined, robust estimate of the scale length of

the Galactic disk, Ld, measured at visible and IR wavelengths, given the large array of data

available in the literature. Upon thoroughly investigating the previous estimates of Ld (see

Table 4.1), we find that the set of Galactic models that are employed display as much variety

as the observational datasets they are optimized to match, typically containing around a

dozen free parameters. Aside from the wide assortment of model assumptions involved, given

that measurements of Ld are produced from fitting the smooth underlying structure of the

disk, these estimates are also susceptible to systematic error due to undetected substructures

present in the true distribution of stars along any particular line of sight through the Galaxy
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(Jurić et al., 2008). As a result of these variations in methodology and data, the estimates

we have collected fall anywhere in the range 2 . Ld . 6 kpc. This is comparable to the

dynamical range of scale lengths measured for other galaxies of similar mass to the MW in

the local Universe (1 . Ld . 10 kpc; cf. Chapter 5), and hence an improved determination

of the scale length will also improve our understanding of how the MW fits amongst the

broader population of galaxies.

Foregoing less sophisticated meta-analysis techniques (e.g., the inverse variance-weighted

mean; IVWM), we have opted for a robust analysis method that has proven powerful in many

applications inside and outside of astronomy. More specifically, we have produced our results

by statistically combining the literature estimates using a hierarchical Bayesian analysis,

which allows us to account for the possibility that one or more of these estimates have not

properly accounted for all statistical or systematic errors. Through Monte Carlo techniques

we have ensured that all the estimates used are rescaled to reflect current knowledge of

the Sun’s distance from the Galactic center, R0. Lastly, we have implemented a Bayesian

model averaging (BMA) technique to obtain the posterior for Ld marginalized over all the

bad-measurement models we have investigated, taking into account both goodness-of-fit and

model complexity. Ultimately, we find the Galactic scale length to be Ld = 2.71+0.22
−0.20 kpc

for visible starlight, Ld = 2.51+0.15
−0.13 kpc for IR starlight, and Ld = 2.64 ± 0.13 kpc when

integrating visible and IR starlight measurements (see §4.4.3 for discussion on how these

results depend on R0).

In Table 4.3 we have listed a full summary of results from our bad-measurement models,

the result from applying BMA, as well as the non-hierarchical IVWM for comparison. We

have demonstrated in §4.4.4 that our results are robust to varying many of the assumptions

we have made in our analyses, and in §4.5.2 that they are consistent with passband-to-

passband variations measured for external disks. We have also used our results to revise

the estimate of the MW’s total stellar mass from Chapter 2 in §4.5.3. Using the IR scale

length measurement found here, we find that the mass of the stellar disk is 4.8+1.5
−1.1 × 1010

M�. Combining this with the HB estimate for the bulge+bar mass in a model-consistent

manner using the framework of Chapter 2, we have determined the MW’s total stellar mass

to be 5.7+1.5
−1.1 × 1010 M�. For convenience, we have compiled in Appendix B several tables
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displaying the updated constraints we have produced for the structural and mass properties

of the MW, as well as updates to the results from Chapter 3 using the stellar mass derived

here.

The remaining estimates of Ld in the literature we have compared our results to are

generically constrained by modeling stellar kinematic observations, and hence describe the

radial distribution of total mass in the Galaxy. Nevertheless, the majority of such estimates

compare well with the values we have presented in this study based on visible/IR starlight,

though there are a few that are in significant tension, favoring instead values of Ld far be-

low or above our constraints. It is beyond the scope of this study to comment on whether

a dynamically-constrained Ld is a fair comparison with those based on starlight, but this

agreement adds some credence to our stellar scale length estimates. Interestingly, it ap-

pears that dynamical estimates are as prevalent and as disparate as photometric estimates,

and astronomers in need of adopting a value from the literature would likely benefit from

performing the type of HB analysis we have employed here to that set as well.

In totality, the results of this study, in combination with those of our previous works

which we have updated here, provide a much improved comprehensive picture of the MW.

More specifically, we have determined tight constraints on a variety of the Galaxy’s global

properties, including its total stellar mass, star formation rate, photometric disk scale length,

and optical luminosity and color index, using methods that either circumvent or correct

for many of the major systematics that have traditionally affected them. Moreover, all of

these values have been produced from a single, consistent model of the MW that reflects

our best-to-date knowledge its structural parameters, and which rests upon the same basic

assumptions that are used for studying extragalactic objects. All of this work culminates

in a newfound ability to assess accurately how the properties of our Galaxy compare to

scaling relations found for external spiral galaxies. In the following chapter, we will present

new comparisons of the MW to both the Tully-Fisher relation as well as 3-dimensional

luminosity-velocity-size relations for other massive spiral galaxies in order to assess how our

Galaxy truly fits in a variety of extragalactic contexts.
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5.0 DOES THE MILKY WAY OBEY SPIRAL GALAXY SCALING

RELATIONS?

5.1 INTRODUCTION

It is well established that spiral galaxies follow a set of power-law relationships amongst

their global properties, generally referred to as scaling relations (Courteau & Rix, 1999;

Courteau et al., 2007; Dutton et al., 2007, 2011; Hall et al., 2012, hereafter H12). The

most prominent of these, known as the Tully-Fisher relation (Tully & Fisher, 1977, TFR),

reflects the tight relationship between intrinsic brightness (or luminosity, L) and rotational

velocity (Vrot). In the standard picture, spiral galaxies generically contain a luminous disk

component comprised of rotationally supported stars and gas residing at the center of a much

larger and more massive dark matter halo component (Fall & Efstathiou, 1980; Kauffmann

et al., 1993; Cole et al., 1994; Mo et al., 1998). The TFR encodes key information about the

ratio of luminous to dark matter in these systems, making it a powerful tool for studying

galaxy formation and evolution (e.g., Dutton et al., 2007, 2011), though our theoretical

understanding of the relation within a ΛCDM universe is still progressing (Dutton et al.,

2007, 2011; H12). Correlations also are observed between disk size, or radius (R), and L or

Vrot, but display significantly larger dispersions (Courteau et al., 2007; H12).

Determining how the properties of our Galaxy, the Milky Way (MW), fit with these

scaling relations is a challenging task. A handful of studies have performed such an analysis,

indicating that the MW is a 1–1.5σ outlier from the TFR (Malhotra et al., 1996; Flynn et al.,

2006; Hammer et al., 2007). This begs the question: is our Galaxy truly atypical, or have we

failed to make an apples-to-apples comparison? The latter case is hard to rule out, as it is

impossible for astronomers to measure the MW in the same manner as extragalactic objects,
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due in large part to our uniquely inside-out perspective. Adding further complications, dust

in the interstellar medium obscures most of the MW’s stars from view, especially at optical

wavelengths (Green et al., 2015). Any attempt to infer global properties of our Galaxy

directly typically requires extrapolating from measurements of only the most nearby stars

— a tiny fraction of the total stellar population — using MW models that rest upon a

large array of assumptions (e.g., Malhotra et al., 1996; Flynn et al., 2006; van der Kruit,

1986; Siegel et al., 2002; Robin et al., 2003; Girardi et al., 2005; Jurić et al., 2008; López-

Corredoira & Molgó, 2014; Mao et al., 2015). As a result, estimates of MW properties have

remained poorly constrained and vulnerable to systematic errors, making it difficult to assess

accurately how our Galaxy fits amongst its peers.

This study aims at overcoming these challenges, which is important for a number of

reasons. For instance, if the MW is truly representative of spiral galaxies, then our high-

detail studies of it may be fairly used to understand the TFR, as well as other driving

mechanisms of galaxy evolution. On the other hand, if our Galaxy does not fit the common

mold, then identifying its unusual characteristics could offer important clues into how its

formation history may have been unusual (see, e.g., Hammer et al., 2007; Liu et al., 2011;

Busha et al., 2011a).

This chapter is structured as follows. In §5.2.1 we discuss the extragalactic dataset

that we use to measure spiral galaxy scaling relations. In §5.2.2 we next discuss the MW

measurements employed in this study and the methods used to produce them. We then

focus on comparing the MW to TFRs in §5.3, with our methodologies outlined in §5.3.1 and

our results discussed in §5.3.2. We next extend this type of comparison to 3-dimensional

luminosity-velocity-radius (LV R) relations in §5.4, where likewise our methodologies are first

outlined in §5.4.1 and our results are then discussed in §5.4.2. In §5.5 we provide broader

discussions of our results; this includes the important differences between this study and

prior ones that deemed the MW a 1–1.5σ outlier to the TFR in §5.5.1. In §5.5.2 we discuss

how our results lend circumstantial evidence towards the emergent picture of a “too-small”

MW Galaxy; this includes potential concerns about this conclusion in §5.5.2.1, but also how

it is supported by studies of the MW’s satellite galaxy population in §5.5.2.2. Lastly, we

conclude with a summary of our findings in §5.6.
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Throughout this paper, we use L when generically discussing any proxy for luminosity;

these include both absolute magnitudes, denoted by (italicized) M , and mass properties, de-

noted by (unitalicized) M. In order to compare measurements for extragalactic objects (which

rely on assumptions about cosmic distance scales) directly to those for the MW (within which

distances may be measured more directly), we adopt a standard ΛCDM cosmology parame-

terized by a mass density of dark and normal matter of ΩM = 0.3, an effective mass density

of dark energy of ΩΛ = 0.7, and a Hubble constant of H0 = 70 km s−1 Mpc−1. All absolute

magnitudes, on the other hand, are derived using a Hubble constant of H0 = 100h km s−1

Mpc−1, therefore making them truly measurements of M − 5 log h. Following convention,

all SDSS ugriz magnitudes are reported in the AB system, whereas all Johnson-Cousins

UBV RI magnitudes are reported in the Vega system. In all cases, we use “log” to denote

the base-10 logarithm. Finally, we note that in this chapter we denote disk scale length as

Rd (instead of Ld, which was used in all previous chapters) to avoid any confusion with with

luminosity.

5.2 DATA

In earlier chapters, we have developed improved estimates of MW properties that are robust

to many sources of systematic uncertainty. Most notably, this includes new determinations of

the MW’s photometric properties (i.e., its global color and luminosity at optical wavelengths),

not by extrapolating from optical measurements in the Solar neighborhood, but by analyzing

the integrated properties of Milky Way analogs — a sample of galaxies whose distributions

of total stellar masses and star formation rates match the inferred posterior distributions

for those same properties of the MW — observed by the Sloan Digital Sky Survey (SDSS;

Chapter 3). We also have utilized a hierarchical Bayesian analysis technique to improve

constraints on a variety of other Galactic properties, including the total stellar mass and

star formation rate (Chapter 2), as well as the disk scale length (Chapter 4). In this paper,

we use these results to explore how the MW fits with spiral galaxy scaling relations. In Table

5.2, we list the estimates for each of the MW properties that we employ in this study; these
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reflect the best-to-date values available in the literature and account for all major known

sources of uncertainty. All MW values in Table 5.2 have been adjusted to use the same

basic assumptions as the extragalactic scaling relation data used here. Consequentially, the

Galactic-to-extragalactic comparisons presented below should be robust to many potential

sources of systematic offsets. We discuss these data more in the following subsections.

5.2.1 SDSS Spiral Galaxies

Our sample of spiral galaxies consists of objects that have both photometric and spectroscopic

measurements from the Eighth Data Release (DR8; Aihara et al., 2011) of the SDSS (York

et al., 2000), as well as 21-cm radio spectral line measurements from the SFI++ catalog

(Springob et al., 2007). We have identified a sample of 422 spiral galaxies suitable for this

study by cross-matching objects from the data used in Chapter 3 to those found in both the

SFI++ catalog and Table 1 from H12, yielding the following measurements:

• Spectroscopic redshifts (z) with errors typically < 0.1% from SDSS-DR8;

• SDSS-DR8 ugriz absolute magnitudes that include K-corrections to reflect the z = 0

rest frame (0M −5 log h), based on extinction-corrected cmodel photometry, produced in

Chapter 3;

• Total stellar masses (M?) produced in Chapter 3 by applying MPA/JHU catalog algo-

rithms (Brinchmann et al., 2004) to DR8 photometry assuming a Kroupa initial mass

function (IMF; Kroupa & Weidner, 2003);

• Neutral hydrogen (HI) gas masses (MHI) determined from 21-cm line flux measurements

that are corrected for beam attenuation, pointing offsets, and HI self-absorption from

SFI++ (Springob et al., 2007);

• Disk rotational velocities (Vrot) determined from 21-cm line width measurements that

are corrected for instrumental effects, redshift broadening, disk inclination, and distance

from SFI++; and

• Disk inclinations corrected for projection effects and angular scale lengths (Θd) measured

in units of arcseconds by H12 from an isophotal analysis of each galaxy’s SDSS i-band

light profile.
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Table 5.1. Global Properties of the Milky Way

Property Mean±1σ Units Description

Vrot 220± 22 km s−1 Rotational velocity of the disk
Ld 2.71+0.22

−0.20 kpc Photometric disk scale length
M? 5.67+1.53

−1.11 × 1010 M� Total stellar mass
MHI 5.55± 1.74× 109 M� Neutral hydrogen gas mass
Mbar 6.45+1.54

−1.14 × 1010 M� Baryonic mass (= M? + 1.4MHI)
0Mu −19.15+0.55

−0.47 mag SDSS u-band absolute magnitude
0Mg −20.33+0.42

−0.43 mag SDSS g-band absolute magnitude
0Mr −20.97+0.37

−0.40 mag SDSS r-band absolute magnitude
0Mi −21.24+0.37

−0.38 mag SDSS i-band absolute magnitude
0Mz −21.53+0.36

−0.39 mag SDSS z-band absolute magnitude
0MU −20.00+0.59

−0.47 mag Johnson U -band absolute magnitude
0MB −20.05+0.41

−0.45 mag Johnson B-band absolute magnitude
0MV −20.71+0.39

−0.40 mag Johnson V -band absolute magnitude
0MR −21.23+0.39

−0.39 mag Cousins R-band absolute magnitude
0MI −21.81+0.38

−0.38 mag Cousins I-band absolute magnitude

Note. — See §5.2.2 for the details on the source of each estimate. All abso-
lute magnitudes are derived using a cosmic distance scale with Hubble constant
H0 = 100h km s−1 Mpc−1, and hence truly represent values of 0M − 5 log h; the
0 superscript prefix before absolute magnitudes indicates that they include K-
corrections to reflect the z = 0 rest-frame passbands. The rotational velocity is
adopted from Kerr & Lynden-Bell (1986) and we have ascribed a 10% measure-
ment error. The estimates listed for MHI and Mbar are derived in §5.2.2. The
remaining entries come from Chapter 4.
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We note that H12 performed their own reduction and photometry of galaxy images and

demonstrated that their methods yield much more reliable estimates of Θd than the SDSS

imaging pipeline. Using the measurements listed above we also calculate the baryonic mass

of each galaxy as Mbar = M? + 1.4MHI, where the factor of 1.4 accounts for the mass present

in the form of helium and metals (following H12), and its physical disk scale length as

Rd = ΘddA(z), where dA(z) is the angular diameter distance at redshift z from our adopted

cosmology.

Identified in this way, our sample of 422 objects is analogous to “Sample C” of H12,

and constitutes the subset of those objects that are found to have SDSS-DR8 imaging and

spectroscopy, allowing us to use values from Chapter 3 for properties in the first three bullet

points above. We next restrict to only those objects with inclinations measured to be in the

range of 40 to 75 degrees. This cut eliminates galaxies whose disks are too face-on to have

an accurately measured Vrot or are too edge-on to ensure an accurately determined Θd. As a

result, we are left with 258 spiral galaxies, analogous to “Sample D” of H12, that should be

best for determining scaling relations and which we discuss exclusively hereafter. In practice,

we find that this inclination restriction reduces the observed scatter in our TFRs by ∼10%;

however, the conclusions we draw are entirely insensitive to comparing the MW to scaling

relations based on the sample with or without this cut applied (see Tables 5.2 and 5.4.2).

5.2.2 The Milky Way

In this section we discuss each of the MW estimates listed in Table 5.2. We note that the

measurements from our previous work were derived specifically to enable comparative studies

such as this one. That is, our MW estimates rest upon the same basic assumptions that were

used to produce the extragalactic data. Most importantly, these include a Kroupa IMF, a

single-exponential disk model, and a consistent definition of stellar mass, which includes the

contributions from both main-sequence stars and remnants, but not substellar material, in

accordance with the stellar evolution models of Bruzual & Charlot (2003).

In Chapter 2 we have presented a hierarchical Bayesian (HB) analysis framework for

statistically combining various estimates of MW properties. In that study, we addressed
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the question: given the measurements available in the literature, what is the best aggregate

estimate for both the Galactic bulge+bar mass and star formation rate (SFR) of our Galaxy?

The HB methodology is a vetted and powerful tool for answering these questions (see, e.g.,

Press, 1997; Lang & Hogg, 2012), which enabled us to produce results that account for

the possibility that any single measurement is potentially flawed or suffers from systematic

errors, given the complexities of modeling the MW (we refer the reader to that work for more

details). The same paper describes the Monte Carlo techniques we have used for determining

the total stellar mass of the MW by incorporating a model for the stellar disk. Initially, we

utilized the parameters of the dynamical mass model from Bovy & Rix (2013), but we update

the model used here (q.v. below).

In Chapter 3 we demonstrated that identifying a sample of MW-analog galaxies from

SDSS data enabled us to convert our posterior knowledge of the Galactic M? and SFR

from Chapter 2 into tight constraints on the global photometric properties (i.e., color and

luminosity) of the MW as the SDSS instrument would measure them face-on from across

cosmic distances. In Table 5.2, we list absolute magnitudes for the MW calibrated to the

same scale as those observed for other spiral galaxies, for both ugriz and UBV RI filter

passbands.

In Chapter 4 we have applied the HB methodology from Chapter 2 to nearly 30 different

estimates of the scale length of the MW disk in the literature based on observations of either

visible or infrared starlight from the Galaxy. In Table 5.2, our estimate of Rd = 2.71+0.22
−0.20

kpc is the result from considering visible light only, which corresponds most closely with the

extragalactic scale lengths measured by H12 in the i-band. In comparison, we found the disk

scale length to be 2.51+0.15
−0.14 kpc from infrared starlight, differing by only 0.8σ.

Given that infrared light is expected to trace more closely the distribution of stellar mass,

in Chapter 4 we next used this value to produce an updated model of the stellar disk which

also accounts for local stellar density variations due to spiral structure and its associated

uncertainty — a correction that typically has been ignored in MW models (Hessman, 2015).

We then combine this with our bulge+bar mass estimate from Chapter 2 to determine a total

stellar mass for the MW of 5.67+1.53
−1.11× 1010 M�, or equivalently log(M?/M�) = 10.75± 0.10.

This represents only a slight change from our original estimate of 10.78± 0.08 from Chapter
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2 when using the dynamical model of the disk from Bovy & Rix (2013). The absolute

magnitudes listed in Table 5.2 are derived using this revised M? estimate, together with the

unchanged SFR value; these differ only slightly from the original values in Chapter 3.

We note that all estimates of Galactic properties described so far consistently utilize a

prior on the Galactocentric radius of the Sun of R0 = 8.33 ± 0.35 kpc, based on the work

of Gillessen et al. (2009). This value stems from careful consideration of both statistical

and systematic uncertainties, and represents an up-to-date, geometric estimate that is still

consistent with essentially all recent R0 measurements, which predominantly fall in the range

of ∼8–8.5 kpc (see, e.g., Schönrich, 2012, Do et al., 2013, Reid et al., 2014, and Chatzopoulos

et al., 2015 for recent estimates that closely match our prior). Most importantly, error

bars quoted for all MW quantities incorporate the uncertainties associated with our limited

knowledge of R0. We will demonstrate in §5.5.1 that prior attempts at discussing the MW

in the context of the TFR were problematic due, in large part, to their treatment of R0.

We employ the International Astronomical Union standard value of 220 km s−1 for the ro-

tation speed of the Galactic disk (Kerr & Lynden-Bell, 1986) and ascribe a conservative 10%

error estimate (in line with preceding studies). We find that this agrees well with the current

set of estimates available in the literature (note that these typically scale proportionately

with R0 due to the conversion from angular speed to tangential speed; see the description of

estimates in Majewski, 2008; Reid et al., 2014, as well as those of Bovy & Rix, 2013; Sirko

et al., 2004; Piffl et al., 2014). Several of the more recent measurements have yielded values

closer to ∼240–250 km s−1. We note here that if we were to increase our adopted value of

Vrot by 1σ (i.e., +0.04 dex in log Vrot) to better match these, tension between the MW and

the TFR increases moderately, but we still find the MW to be consistent with the relation,

given its scatter. Furthermore, tension with the LV R relation also increases, and our overall

conclusions would be unchanged.

Estimates of the neutral hydrogen gas mass (MHI) of the MW are sparse in the literature.

Following what Flynn et al. (2006) have done (but omitting molecular hydrogen to match

our extragalactic data), we can scale the HI estimates tabulated by Dame (1993b) to our

choice of R0 = 8.33 kpc in order to find estimates of MHI = 3.3 × 109 M� based on the

work of Henderson et al. (1982), or MHI = 6.7 × 109 M� by combining values for inside
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and outside the solar circle from Liszt (1992) and Wouterloot et al. (1990). More recently,

Kalberla et al. (2007) have made use of much more sensitive Galactic HI line surveys with

improved coverage, both spatially and kinematically, in order to produce a model of the

interstellar medium (ISM) that yields a total HI mass of 8 × 109 M� (Kalberla & Kerp,

2009). When scaled to our choice of R0 this becomes MHI = 7.7× 109 M�. Lastly, the Bovy

& Rix (2013) model of the Galactic disk assumes a smaller total mass for the ISM of 7× 109

M� (insensitive to the choice of R0). If we apply here the HI-to-ISM mass ratio (= 0.65)

from the Kalberla & Kerp (2009) model, this yields an estimate of MHI = 4.5 × 109 M�.

Therefore, we take the mean and standard deviation of these four values in order to produce

an aggregate estimate of MHI = 5.55±1.74×109 M�, which we adopt for this study. Finally,

we calculate the baryonic mass of the MW as Mbar = M? + 1.4MHI = 6.45+1.54
−1.14 × 1010 M�,

or equivalently log(Mbar/M�) = 10.81± 0.09.

5.3 INVESTIGATING TULLY-FISHER RELATIONS

We begin by first investigating how the MW fits with the TFR. We explore seven versions of

the TFR by examining the relationship between rotation speed and a variety of quantities

related to luminosity: rest-frame absolute magnitudes (0M) in all five SDSS ugriz passbands,

log total stellar masses (log M?), and log baryonic masses (log Mbar). As mentioned above,

we measure each relation from our sample of 258 spiral galaxies observed by the SDSS that

display moderate inclinations, allowing all quantities of interest for this study to be measured

cleanly (cf. §5.2.1).

5.3.1 Methods

In each case, we perform a least-squares optimization to fit the inverse relation, where we

treat log Vrot as the dependent variable; this is common practice to avoid any sample-selection

biases in modeling the data that would be tied to errors in measurements of L (Schechter,

1980; Tully, 1988). Generically, we fit for log Vrot = a + b logL, where a is the zero point,
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b is the slope, and logL can be any of the seven proxies listed above. We utilize the

scipy.optimize.curve fit package to perform a non-linear least-squares fit of each model

to the data, providing the a and b values of the optimal relation. We then determine the

scatter (σTF) about the relation by measuring the standard deviation of the log Vrot values

about the best-fit line (typically ∼0.08 dex in log Vrot). Lastly, we measure the offset of the

MW data point from the line along the log Vrot direction using the combination in quadrature

of both σTF and MW errors.

In Table 5.2 we tabulate values pertinent to each TFR comparison, including a, b, σTF,

and the level of consistency of the MW data point. Here, we also show analogous comparisons

to TFRs found using the spiral galaxy sample with no inclination cuts applied, as well as to

TFRs found by other authors.

We have performed several tests on the robustness of our results. For example, we have

conducted a “forward” fitting of each TFR to our extragalactic data, i.e., where we model

logL = a′ + b′ log Vrot, equivalent to assuming that Malmquist bias (Teerikorpi, 1997) is of

minimal consequence. As is typically observed, the forward TFRs are shallower than their

corresponding inverse relations, but with larger zero points (or intercepts), and have similar

scatters (cf. Pizagno et al., 2007). Nonetheless, in all cases we find that the intersection

of the forward and inverse relations occurs very near the MW’s L and Vrot; our results

would remain the same regardless of how we fit for the relation. We have also tested for

any bias in our fits due to large outliers in the extragalactic data. Here, in place of our

standard least-square optimization, we employ the Statsmodels Python module to perform

robust linear modeling using M-estimators (Maronna et al., 2006). In particular, we have

used both Huber’s and Tukey’s estimator functions (with tuning constants of 1.345σMAD

and 4.685σMAD, respectively, where σMAD is the median absolute deviation measured for

the entire sample) to deweight objects with large residuals in the forward or inverse fits

of the TFR. In all cases, this yields negligible changes in the best-fit line, and, again, our

conclusions are negligibly affected.
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5.3.2 Results

Based on our results listed in Table 5.2, we find that, in all cases, the properties of the

MW are in excellent agreement with the TFR. For those relations measured in this study,

where Galactic and extragalactic measurements are ensured to be on equal footings, when

using SDSS magnitudes, the MW is consistent with all TFRs with deviations of less than

0.20σ. When using total stellar mass or baryonic mass, we find the MW data point to be

consistent with the relation at the 0.33σ and 0.50σ levels, respectively. Figure 5.1 illustrates

the analyses for i-band absolute magnitude (0Mi), total stellar mass (M?), and baryonic mass

(Mbar). Table 5.2 illustrates that these results are robust to using our spiral galaxy sample

with or without the inclination cut applied.
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Figure 5.1: Tully-Fisher relations (TFRs) defined by rest-frame absolute i-band magnitude (0Mi; top), total
stellar mass (M?; middle), and baryonic mass (Mbar; bottom) of our sample of spiral galaxies. In each panel,
the properties are plotted as a function of the disk rotational velocity (Vrot). Black dots depict the objects
in Sample C and light gray dots depict galaxies with less securely measured distances. The blue line and
shaded blue region shows our best-fit (inverse) TFR and 1σ range, respectively, using the black dots (see
§5.3.1). Lastly, in each panel we overlay the Milky Way’s properties with error bars in red, taken from Table
5.2. In all cases, the properties of the Milky Way are in excellent agreement with the best-fit TFR (see Table
5.2).
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Table 5.2: Consistency of the Milky Way with Tully-Fisher Relations

Properties Zero Point Slope Scatter MW level of
(logL, log V ) a b σTF consistencya

This study: Spiral galaxies with inclinations between 40◦ and 75◦ — Sample size: 285

(0Mu, log Vrot) 0.635± 0.108 −0.088± 0.006 0.106 −0.16σ
(0Mg, log Vrot) 0.160± 0.100 −0.107± 0.005 0.089 −0.07σ
(0Mr, log Vrot) 0.168± 0.091 −0.103± 0.005 0.083 −0.05σ
(0Mi, log Vrot) 0.183± 0.086 −0.101± 0.004 0.081 −0.09σ
(0Mz, log Vrot) 0.366± 0.078 −0.091± 0.004 0.080 −0.12σ

(log M?, log Vrot) 0.226± 0.076 0.194± 0.007 0.075 −0.33σ
(log Mbar, log Vrot) −0.583± 0.117 0.266± 0.011 0.080 −0.50σ

This study: Spiral galaxies with no inclination cut applied — Sample size: 422

(0Mu, log Vrot) 0.752± 0.087 −0.082± 0.005 0.116 −0.14σ
(0Mg, log Vrot) 0.381± 0.083 −0.096± 0.004 0.102 −0.07σ
(0Mr, log Vrot) 0.353± 0.077 −0.095± 0.004 0.097 −0.05σ
(0Mi, log Vrot) 0.354± 0.073 −0.093± 0.004 0.094 −0.08σ
(0Mz, log Vrot) 0.449± 0.066 −0.087± 0.003 0.091 −0.10σ

(log M?, log Vrot) 0.278± 0.065 0.189± 0.006 0.085 −0.34σ
(log Mbar, log Vrot) −0.526± 0.097 0.261± 0.009 0.088 −0.52σ

Dale et al. (1999) — Sample size: 522

(MI , log Vrot) −0.524 −0.130 0.049 −0.38σ

Bell & de Jong (2001)b— Sample size: 28

(MB, Vflat) −0.191 −0.122 0.153 (−0.62σ, −0.51σ)
−0.665 −0.145 0.181 (−0.67σ, −0.54σ)

(MR, Vflat) −0.124 −0.113 0.141 (−0.56σ, −0.46σ)
−0.393 −0.126 0.157 (−0.49σ, −0.40σ)

(MI , Vflat) −0.034 −0.106 0.133 (−0.54σ, −0.44σ)
−0.233 −0.116 0.145 (−0.44σ, −0.36σ)

(log M?, Vflat) (−0.157, −0.071) (0.222, 0.230) (0.029, 0.030) (−0.57σ, −0.42σ)
(−0.132, 0.004) (0.216, 0.231) (0.028, 0.030) (−0.22σ, +0.16σ)

(log Mbar, Vflat) (−0.794, −0.713) (0.282, 0.290) (0.028, 0.029) (−0.19σ, −0.06σ)

Geha et al. (2006) — Sample size: ∼300

(MI , log Vrot) 0.339 −0.090 0.110 −0.35σ
(log Mbar, log Vrot) −0.651 0.270 0.100 −0.69σ

Pizagno et al. (2007) — Sample size: 162

(Mg, log V80) −0.488 −0.136 0.073 −0.77σ
(Mr, log V80) −0.535 −0.135 0.063 −0.61σ
(Mi, log V80) −0.460 −0.130 0.061 −0.55σ
(Mz, log V80) −0.403 −0.127 0.058 −0.16σ

172



Table 5.2 – Continued

Properties Zero Point Slope Scatter MW level of
(logL, log V ) a b σTF consistencya

Courteau et al. (2007) — Sample size: 1303

(MI , log Vrot) −0.257 −0.116 0.057 −0.85σ

Noordermeer & Verheijen (2007)c— Sample size: 48

(log Mbar, log Vrot) −1.198 0.329 0.042 +0.31σ
(log Mbar, log Vmax) −1.183 0.328 0.052 +0.31σ

(log Mbar, log Vasymp) −0.894 0.298 0.043 −0.39σ

De Rijcke et al. (2007)d— Sample size: ∼300

(MB, log Vrot) −0.298 −0.129 (0.05, 0.10)† (−0.59σ, −0.39σ)
(log M?, log Vrot) −0.942 0.306 (0.05, 0.10)† (+0.03σ, +0.05σ)

(log M?+HI, log Vrot) −1.032 0.317 0.063 +0.74σ

Kassin et al. (2007)e— Sample size: 544

(log M?, logS0.5) −1.070 0.300 0.140 −0.29σ

Avila-Reese et al. (2008)f— Sample size: 76

(MB, log Vmax) −0.143 −0.124 0.064 +0.01σ
(log Mstar, log Vmax) −0.639 0.274 0.058 −0.50σ

(log Mbar, log Vmax) −0.979 0.303 0.058 −0.21σ

Stark et al. (2009)g— Sample size: 23

(log Mbar, log Vflat) −0.552 0.265 (0.05, 0.10)† −0.25σ

Gurovich et al. (2010) — Sample size: 41

(log M?, log Vrot) −0.459 0.263 (0.05, 0.10)† (+0.25σ, +0.42σ)
(log M?, log Vrot) −1.082 0.312 (0.05, 0.10)† (−0.70σ, −0.43σ)

McGaugh (2012)h— Sample size: 47

(log Mbar, log Vflat) −0.526 0.262 0.063 −0.51σ

Hall et al. (2012) — Sample size: 668 (578 Mbar)

(Mg, log Vrot) −0.259 −0.124 0.082 −0.78σ
(Mr, log Vrot) −0.166 −0.117 0.077 −0.57σ
(Mi, log Vrot) −0.143 −0.115 0.074 −0.55σ

(log M?, log Vrot) −0.558 0.264 0.075 −0.72σ
(log Mbar, log Vrot) −0.903 0.293 0.078 −0.87σ

Cortese et al. (2014) — Sample size: 235

(log M?, logS0.5) −1.410 0.330 0.100 −0.55σ
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Table 5.2 – Continued

Properties Zero Point Slope Scatter MW level of
(logL, log V ) a b σTF consistencya

Bradford et al. (2016) — Sample size: 930

(Mi, log Vrot) −0.105 −0.118 0.095 +0.49σ
(log M?, log Vrot) −0.197 0.240 0.077 +0.55σ

(log Mbar, log Vflat) −0.991 0.309 0.077 +0.04σ

Note. — The zero point a and slope b correspond to the inverse TFR, i.e., log Vrot = a + b logL, and errors denote the
uncertainty in the formal fits for these parameters. The scatter, σTF, denotes the standard deviation of the extragalactic data
about each relation along the velocity axis in units of dex (i.e., units of log V ). The final column lists the consistency level
between the Milky Way and each TFR in units of σ = (σMW + σTF)−1/2, where σMW is the uncertainty in the Milky Way
property along the independent-variable axis (which can be found in Table 5.2). For some of the relations we have explored a
range of values for one or more parameters yielding a range of consistency levels for the MW; these are indicated by parentheses.
In cases where the authors have only provided parameters from fitting the forward relation to their data, we have listed the
MW’s consistency assessed along the luminosity/mass axis here, but have tabulated the inverse relation-equivalent values in
all other columns for ease of comparison. Where necessary, luminous TFR parameters have been adjusted to reflect using
absolute magnitudes calculated as 0M − 5 log h. Comparisons to relations defined by other authors can differ either because
they rely on quantities calculated differently from those used here or because they employ systematically different samples (see
Bradford et al., 2016 for a thorough investigation of these effects). Despite these variations, the MW is broadly consistent with
the relation, and can fall above or below it depending on the study.
† The authors did not provide a measurement of the scatter; so here we explore a range of plausible values based upon the
work of McGaugh (2012).
a A negative sign indicates that, given its rotational velocity, the Milky Way is sub-luminous/massive compared to the TFR,
whereas a plus sign indicates that it is super-luminous/massive.
b We have included a −0.15 dex correction to adjust mass-to-light ratios to the Kroupa IMF based upon Geha et al. (2006).
The authors indicate a scatter of ∼0.4–0.5 mag, 0.13 dex, and 0.1 dex for their luminous, stellar mass, and baryonic mass
relations, respectively, yielding the range of scatters shown. They also determine galaxy stellar masses using four different
passbands, yielding the range of parameters displayed for mass-based TFRs. In each row, the upper values correspond to using
mass-dependent dust corrections, whereas lower values correspond to using mass-independent corrections (see Table 2 of Bell
& de Jong, 2001).
c We have included a −0.15 dex correction to adjust mass-to-light ratios to the Kroupa IMF based upon Geha et al. (2006).
d M?+HI denotes the sum of the stellar and neutral hydrogen gas masses, and we have used values from Table 5.2 to calculate
the Milky Way value for this comparison.
e The internal velocity, S0.5, is calculated by (0.5V 2

rot + σ2
V )−1/2, and combines the contribution of both rotational velocity

and velocity dispersion, σV , to the dynamical support of a galaxy. To make this comparison, we have assumed that the Milky
Way’s σV is 24 km s−1 based on the work of Kalberla & Kerp (2009).
f Here, Mbar includes the contribution of molecular gas. To make this comparison, we have assumed a morphological type of
T = 4 for the Milky Way (cf. Chapter 2) and calculated its baryonic mass according to Equation (3) of that paper and the
subsequent discussion within it.
g Results are quoted for the “Portinari-Kroupa” subsample.
h Results are quoted for the full sample from their Table 1, which includes a strong overlap with the data from Stark et al.
(2009).

MW properties appear to be in good overall agreement with TFRs measured in other

studies as well, with consistencies that generically fall well below the 1σ threshold. It is

important to note that comparisons to relations defined by other authors are relatively less

guarded from systematic offsets, as they can differ either because they rely on quantities

calculated differently from those used here or because they employ systematically different

samples (see Bradford et al., 2016 for a thorough investigation of these effects). Despite

these variations, the MW is broadly consistent with the relation, and can fall above or below

it depending on the study (denoted by the +/− in the final column of Table 5.2).
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5.4 INVESTIGATING 3-DIMENSIONAL LV R RELATIONS

As mentioned above, measures of galaxy size, or radius (R), also obey scaling relations with

L and Vrot. The distribution of starlight from a spiral galaxy’s disk component can be fit

well to first order by an exponentially declining profile (cf. Chapter 4). We denote the radius

where light has dimmed by a factor of 1/e (or ∼37%) compared to the brightness at the

center of the disk as the radial scale length (Rd), which serves as a standardized measure of

size for spiral galaxies. We next compare the MW’s properties to scaling relations found in

3-dimensional luminosity-velocity-radius (LV R) parameter spaces.

5.4.1 Methods

To investigate scaling relations that include galaxy size, we now add a third axis, corre-

sponding to disk scale length measurements, to each of the seven TFR diagrams investi-

gated above. In each 3D parameter space, we perform principal component analysis (PCA;

Jolliffe, 2002) on the extragalactic data to determine the best-fit LV R relation using the

numpy.linalg.svd Python routine. We use this function to factor the LV R data in matrix

form via singular value decomposition in order to determine three orthonormal eigenvectors,

or principal components. The first principal component (PC1) indicates the direction in

LV R space for which the data displays maximal variance. The second principal component

(PC2) indicates the direction of next largest variance that is perpendicular to PC1, and the

third principal component (PC3) is the direction orthogonal to both the PC1 and PC2. We

define each best-fit LV R relation as the line parallel to PC1 that passes through the mean

position of the data. Next, in the PC2-PC3 plane (i.e., the plane orthogonal to the PC1), we

determine the 68% and 95% scatter about the relation by finding the most compact elliptical

contours that envelope those percentages of the data. Figure 5.2 shows this analysis for the

particular case of using 0Mi for luminosity, where we show each principal component in LV R

space and also show the data projected onto each of the coordinate planes in PCA space. We

subtract off the mean and renormalize the data into units of the standard deviation along

each of the LV R axes in order to produce the PCA-plane projections.
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To quantitatively assess the MW’s consistency with each LV R relation, we perform a

series of Monte Carlo simulations where we randomly generate MW data points by drawing

values from the probability distribution functions (PDFs) for Galactic properties listed in

Table 5.2; simultaneously we bootstrap resample from our spiral galaxy data. For each

realization, this involves the following:

1. Generate a MW data point by randomly drawing values for logL, log Vrot, and logRd

independently of each other from the PDFs described in Table 5.2;

2. Randomly draw galaxies from our extragalactic sample, each with equal probability and

with repeats allowed, until the original sample size is achieved;

3. Perform a new PCA on this bootstrapped sample;

4. Measure the distance of all data points from the PC1 by calculating their elliptical radii

from the origin in the PC2-PC3 plane by
[
(dPC2/σPC2)2 + (dPC3/σPC3)2]1/2; and,

5. Finally, calculate the fraction of objects that lie inside of the ellipse passing through the

MW data point, which we denote as f<MW.

We perform this analysis 104 times, resulting in a distribution of f<MW values that

incorporates all uncertainties in MW properties and all underlying uncertainties in fitting the

LV R relation. For each relation that we investigate, we list in Table 5.4.2 the mean location

(~µ) of the data, the standard deviation (~σ) along each LV R axis, the PC1 eigenvector, and

f<MW.

Lastly, independent of the PCA described above, we also investigate the disk scale length

that the LV R data would predict for a galaxy of the MW’s luminosity and rotational velocity.

Here, we perform multivariate linear regression on the extragalactic data, modeling logRd

as a function of the predictor variables logL and log Vrot. More explicitly, we can write

logRd = α logL+ β log Vrot + γ + ε, (5.1)

where α, β, and γ are the fitted coefficients and ε reflects the residual between a given

logRd value and the prediction from that galaxy’s logL and log Vrot. By inspecting a normal

probability plot for ε using the scipy.stats.probplot Python routine, we find that the

residual in all cases is well approximated by a Gaussian distribution. We then perform Monte
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Carlo simulations where we randomly draw values independently from the MW probability

distributions for logL and log Vrot listed in Table 5.2 and from the distribution of ε values;

each set of values (logL, log Vrot, ε) is then combined with the best-fit coefficients in Equation

(1) in order to build up a distribution of logRd values. The median value and 68% confidence

interval for Rd measured from each distribution is listed in the final column of Table 5.4.2.

These correspond to the range of disk scale lengths that one would expect to obtain from an

externally measured SDSS i-band image of a galaxy with the MW’s L and Vrot.

One might be concerned that these predictions could be affected by attenuation bias;

i.e., the reduction of the amplitude of measured regression coefficients from their underlying

values due to errors in the predictor variables. We test for this by adding random Gaussian

noise to the predictors, drawn from a normal distribution of mean 0 and standard deviation

σ∗, where σ∗ reflects the typical measurement error (see §4.1 of H12). We find that this

produces a <0.1% shift in the predicted logRd, indicating that our results are robust to

attenuation bias.

5.4.2 Results

Including all known sources of uncertainty, we find that the fraction of objects lying closer to

the LV R relation than the MW datapoint is ∼0.90 (with minor variations depending on the

proxy used for L). Hence, our Galaxy lies just inside of the 95% confidence region boundary

for the LV R relation, but well outside of the 68% confidence region. We illustrate the LV R

analysis using i-band absolute magnitude in Figure 5.2. In all cases, we find that the offset

of the MW data point is consistent with being entirely along the direction of the scale length

axis. Considering only measurement errors, this constitutes ∼9.5σ evidence that the MW is

unusually compact compared to typical spiral galaxies of its L and Vrot. However, ∼10% of

galaxies lie even further from the LV R relation; so the MW is clearly undersized, but not

extraordinarily so.

From our exercise of turning this analysis around and performing a multivariate regres-

sion on our extragalactic sample, and in particular to predict Rd values from a galaxy’s 0Mi

and Vrot, we find that the expected scale length of the MW disk, as measured externally
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from photometric techniques (such as in H12), would be 4.92+1.82
−1.53 kpc. This is nearly double

the observed value that we have adopted here of 2.71+0.22
−0.20, and these estimates are inconsis-

tent with each other at the ∼1.4σ confidence level (incorporating both MW errors and the

observed scatter about the regression relation).

5.5 DISCUSSION

5.5.1 Comparison to Prior Investigations of the Milky Way’s Consistency with

the TFR

Our finding that the MW’s properties are highly consistent with the TFR contrasts with

prior investigations that labeled our Galaxy a 1–1.5σ outlier to the relation. It is important

to note that all of these studies, including this one, adopted the same value of 220 km s−1 with

a ∼10% uncertainty for the MW’s Vrot. We conclude instead that the difference is a result of

systematic differences in Galactic luminosity estimates arising primarily, if not entirely, from

varying choices of Galactic parameters. Specifically, these prior studies adopted luminosity

estimates derived from MW models that depend strongly on the assumed values of R0 and

Rd. It is a common practice in Galactic astronomy to adopt a fixed, consensus value for R0

— typically 8 or 8.5 kpc with no uncertainties included — so that one can straightforwardly

compare results between various MW models. This becomes less sensible, however, once one

becomes interested in Galactic-to-extragalactic comparisons (as in this study), as any error

in the assumed value of R0 will become a source of systematic uncertainty.

For example, Flynn et al. (2006) analyzed data from the Hipparcos and Tycho stellar

surveys, determining the local surface luminosity in the I-band to be 29.54 L� pc−2. They

then extrapolated this to a global luminosity estimate using an exponential model of the

disk by assuming R0 = 8 kpc (with no uncertainty) and exploring values of Rd in the

range of 2.5–5.0 kpc. After including a 10% correction for spiral arms and adopting a near-

infrared bulge luminosity of ∼1010 L� (ignoring any uncertainty), they find a global value

of MI = −22.3 ± 0.2. Using the same value of Vrot for the MW that we have adopted
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Figure 5.2: The distribution of our spiral galaxies from SDSS in luminosity-velocity-size (LV R) space (top
right) and PCA space (all other panels). In the top right panel, we show the 3D distribution using rest-frame
absolute i-band magnitude, 0Mi, log of the disk rotational velocity, log Vrot, and log of the disk scale length,
logLd. The first, second, and third principal components (PC1, PC2, and PC3; see §5.4.1) describing the
(black) data are shown as blue, green, and magenta lines, respectively. We show the Milky Way datapoint
as a red dot. The other three panels show the data projected onto each of the 2D planes in PCA space.
Here, we plot the distance d measured from the mean position of the data, marked by the intersection of the
orthogonal green, blue and magenta lines. The 68% and 95% confidence regions are shaded in dark and light
gray, respectively. In red we overlay the Milky Way datapoint with error bars. The bottom right panel shows
the projection of the data onto the plane that is perpendicular to the PC1; in this space we have determined
that the Milky Way lies just inside of the 95% confidence region for our best-fit 3D scaling relation for spiral
galaxies. See §5.4.1 for a more detailed analysis. Lastly, we illustrate that this discrepancy is predominantly
due to the small size of the Galactic disk by showing the effect on the Milky Way datapoint due to a 3σ
shift in 0Mi (red arrow), Vrot (blue arrow), and Ld (green arrow). Large changes in both 0Mi and Vrot would
be required to reduce this tension, whereas increasing values of Ld would pushes it directly toward the LV R
relation, and in fact landing on it when reaching ∼5.25 kpc.
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Table 5.3. Consistency of the Milky Way with LV R Relations

logL Sample ~µ Sample σ PC1 f<MW Predicted
proxy eigenvector MW Rd

(1) (2) (3) (4) (5) (6)

Spiral galaxies with 40◦ < i < 75◦ – Sample size: 285
0Mu (−17.963, 2.219, 0.547) (1.106, 0.144, 0.205) (−0.592, 0.583, 0.556) 0.88+0.07

−0.13 4.75+1.98
−1.51

0Mg (−19.242, 2.219, 0.547) (1.064, 0.144, 0.205) (−0.610, 0.572, 0.548) 0.90+0.06
−0.13 4.97+1.92

−1.54
0Mr (−19.825, 2.219, 0.547) (1.139, 0.144, 0.205) (−0.612, 0.575, 0.543) 0.90+0.06

−0.11 4.99+1.90
−1.53

0Mi (−20.106, 2.219, 0.547) (1.179, 0.144, 0.205) (−0.613, 0.577, 0.540) 0.89+0.07
−0.12 4.92+1.82

−1.53
0Mz (−20.299, 2.219, 0.547) (1.314, 0.144, 0.205) (−0.610, 0.586, 0.533) 0.84+0.08

−0.12 4.62+1.81
−1.49

log M? (10.262, 2.219, 0.547) (0.634, 0.144, 0.205) (0.612, 0.589, 0.528) 0.82+0.07
−0.11 4.53+1.67

−1.47
log Mbar (10.520, 2.219, 0.547) (0.450, 0.144, 0.205) (0.615, 0.570, 0.545) 0.84+0.08

−0.13 4.42+1.39
−1.25

Spiral galaxies with no inclination cut – Sample size: 422
0Mu (−17.732, 2.209, 0.565) (1.154, 0.150, 0.214) (−0.583, 0.584, 0.565) 0.91+0.05

−0.10 5.09+2.50
−1.65

0Mg (−19.015, 2.209, 0.565) (1.139, 0.150, 0.214) (−0.599, 0.577, 0.555) 0.91+0.06
−0.08 5.24+2.37

−1.61
0Mr (−19.611, 2.209, 0.565) (1.210, 0.150, 0.214) (−0.603, 0.578, 0.550) 0.92+0.05

−0.09 5.27+2.43
−1.59

0Mi (−19.896, 2.209, 0.565) (1.253, 0.150, 0.214) (−0.604, 0.579, 0.547) 0.91+0.05
−0.09 5.23+2.27

−1.66
0Mz (−20.120, 2.209, 0.565) (1.357, 0.150, 0.214) (−0.604, 0.583, 0.543) 0.89+0.05

−0.09 4.92+2.11
−1.49

log M? (10.212, 2.209, 0.565) (0.654, 0.150, 0.214) (0.607, 0.585, 0.537) 0.86+0.06
−0.09 4.85+1.97

−1.53
log Mbar (10.493, 2.209, 0.565) (0.465, 0.150, 0.214) (0.611, 0.567, 0.552) 0.89+0.06

−0.09 4.68+1.61
−1.25

Note. — Column (1) shows the proxy used for logL that is combined with log Vrot and logRd to construct
each LV R relation. Values in Columns (2)(4) are measured from our nominal spiral galaxy sample. Values
in Column (5) are produced from PCA using the Monte Carlo techniques described in §5.4.1. These values
reflect the 16th, 50th, and 84th percentiles of the resulting distribution of f<MW; i.e., the fraction of the
bootstrapped sample closer to its first principal component than the current realization of the Milky Way
datapoint. Values in Column (6) represent the logRd predicted for the Milky Way in units of kpc based
on its L and Vrot, as described in §5.4.1.
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for this study, they then found that our Galaxy is under-luminous by ∼1σ with respect

to the I-band TFR defined by external spirals from Dale et al. (1999, though see Bovy &

Rix, 2013 for an update). We find that if the Flynn et al. (2006) estimates were to instead

utilize the same values of R0 and Rd as we have employed for this study, they would yield

MI = −22.73 ± 0.25, which is in excellent agreement with our slightly dimmer estimate of

0MI − 5 log(h/0.7) = −22.61+0.36
−0.39 from Chapter 3. Consequentially, the MW would appear

only∼0.05 mag dimmer than the I-band TFR from Dale et al. (1999) and would be consistent

with it at the 0.1σ level.

Similarly, Hammer et al. (2007) used a K-band absolute magnitude estimate of −22.15

(converted to the AB system) for the MW from Drimmel & Spergel (2001), based on an

exponential disk model with R0 = 8 kpc (with no uncertainty) and Rd = 2.26± 0.08 kpc, as

well as the same value of Galactic Vrot adopted here, to find that our Galaxy is again ∼1σ

under-luminous with respect to the K-band TFR defined by combining three different local

galaxy samples. Unfortunately, the MW model of Drimmel & Spergel (2001) is complex,

with 19 free parameters in total, making it difficult to straightforwardly scale to different

choices of Galactic parameters. However, if we use the standard exponential model in order

to approximate a first-order correction, we find that translating to the values of R0 and Rd

that we have adopted corresponds to an increase of approximately −0.3 mag for MK , which

would leave the MW 0.3 ± 0.5 mag dimmer than the TFR, and hence consistent with it at

the 0.6σ level.

On the other hand, Malhotra et al. (1996) adopted R0 = 8.5 kpc and the same Vrot

employed here to derive MK = −24.06 for the MW using a model similar to that of Drimmel

& Spergel (2001). This indicated our Galaxy to be ∼1σ over -luminous with respect to the

K-band TFR relation that they find for five nearby well-measured galaxies with Cepheid-

based distances. Again corrections are difficult to make and the sample size for this TFR is

small, but reducing the value of R0 to match current data and incorporating the associated

uncertainties would yield a dimmer MK value and eliminate much of this tension, just as in

the other cases.

A related analysis with broadly similar conclusions was recently published in McGaugh

(2016). These authors utilized a novel approach to determining Galactic properties: they
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iteratively adapted mass models of the MW by hand until they produce a terminal velocity

curve that by-eye matches HI and CO observations taken in the first and fourth quadrant of

the Galaxy, with a particular focus on reproducing the “bumps and wiggles” in that data.

The authors suggest that this should account for substructure (e.g., spiral arm) features in

the stellar surface density that would be unaccounted for by assuming a smooth exponential

profile (cf. Sancisi, 2004). They explore six MW models in total, corresponding to a range of

parameter values, specifically: M? = 5–6× 1010 M�, Vrot = 222–233 km s−1, and Rd = 2.0–

2.9 kpc; all of these values assume R0 = 8 kpc (with no uncertainty) and the authors claim

that varying this assumption would affect their results, particularly Vrot and M? estimates,

in a non-straightforward way. Nevertheless, these values are all in excellent agreement with

the ones we have used in this study. They also adopt a total gas mass (atomic + molecular,

corrected for He and metals) of 1.18× 1010 M� (with no uncertainty ascribed to this value)

which they add to M? to yield Mbar = 6.18–7.18×1010 M�. Finally, they compare their MW

results to extragalactic data (a subset of which is used in this study), assessing qualitatively

that the MW appears normal with respect to the baryonic TFR, but is somewhat compact for

its mass. While there are significant differences between the assumptions and methodologies

underlying the Galactic versus extragalactic data that are compared within McGaugh (2016)

— differences that we have sought to minimize in this work — the results from McGaugh

(2016) nevertheless broadly agree with the conclusions presented here.

5.5.2 The Emergent Picture of a “Too-Small” Milky Way Galaxy

As we have detailed in this paper, comparing measurements of the MW’s luminosity/mass,

rotational velocity, and disk scale length to both Tully-Fisher and LV R relations for other

spiral galaxies indicates that our Galaxy is approximately two times smaller (more compact)

than is typical for its L and Vrot. This is potentially valuable knowledge for determining what

evolutionary histories are possible for our Galaxy, especially as simulations of disk galaxies

with an assortment of merger histories are growing in both number and mass resolution

(see, e.g., Martig et al., 2014; Taylor et al., 2015a). Therefore, it is important to know what

potential concerns and additional support can be associated with our results, and we discuss
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these here.

5.5.2.1 Potential Concerns The greatest potential area of concern is that we may not

be making an apples-to-apples comparison of galaxy sizes. In general, one measures Rd for

extragalactic objects by fitting an exponential model to the disk component of projected

surface brightness profiles from imaging. A variety of ingredients may go into these mea-

surements, such as sky subtraction and inclination correction (see, e.g., H12). Given that

it is impossible to measure the integrated light profile of the MW as would be observed

externally, photometric estimates of our Galaxy’s Rd have primarily come from analyzing

star counts along various lines-of-sight through the disk (see Chapter 4 for a review of recent

measurements). This requires optimizing a model of the stellar density profile to match

observations, requiring assumptions about both stars initial mass or luminosity function and

the effects of dust extinction. While we have ensured that the same basic assumptions about

stellar disk structure have been used in both the Galactic and extragalactic estimates of Rd

utilized in this study, there remain distinct differences in both the nature of the observa-

tional data and the analysis techniques used for each. These serve as potential sources of

systematic error in our comparisons.

However, as described in Chapter 4 there are a number of reasons to have confidence in

the robustness of the Galactic Rd value used here. First and foremost, a wide array of mass

models for the MW have been developed based upon dynamical (velocity) measurements,

which yield estimates of Rd that are independent of star count data. These dynamical

estimates all fall in the range of ∼2–3 kpc, matching well with our estimates of 2.71+0.22
−0.20 kpc

and 2.51+0.15
−0.14 kpc based upon visible or IR light, respectively. Furthermore, the observed

difference between the visible and IR scale length of the MW is similar to that observed for

extragalactic objects. Based on these facts, it seems unlikely that the MW scale length is

different from that measured for typical spirals of the same L and Vrot due to a catastrophic

error in the Galactic Rd measurements.

We could instead consider the possibility that our estimate of the MW scale length is

correct and instead the value for the Galactic luminosity/mass or rotational velocity is in

error. To address this, we have investigated the magnitude of shifts in both L and Vrot that
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are required to push the MW data point on a trajectory toward the LV R relation in PCA

space. We find that a ∼6σ increase in 0Mi in combination with a ∼6σ decrease in Vrot could

achieve this for the i-band luminosity relation, whereas a ∼9σ decrease in M? in combination

with a ∼6σ decrease in Vrot accomplishes this for the stellar mass relation. Note that since

the MW falls below the LV R relation almost entirely along the Rd axis, these shifts also

correspond to moving the MW data point roughly along the TFR (and hence the MW would

remain highly consistent with that relation). Therefore, it is possible that our Galaxy is truly

typical in size for its mass, but this would imply that the current estimates of L and Vrot are

both biased extraordinarily high in a conspiring way so as to offset each other in the TFR.

Given that these estimates are made independently of each other and stem from differing

methodologies, this scenario seems highly unlikely.

5.5.2.2 External Support We have found that our Galaxy’s intrinsic brightness and

internal dynamical motions appear to be linked together just as the extragalactic TFR would

predict, suggesting that the relationship between luminous and dark matter in the MW is

similar to that in spiral galaxies in general. In contrast, the MW appears to be unusually

compact (and therefore dense) compared to its peers. This may indicate that the MW has

followed a distinct and perhaps rare evolutionary path. Interestingly, a variety of recent

studies have come to strikingly similar conclusions by studying the properties of the MW’s

coterie of satellite dwarf galaxies, which should also be strongly linked to its dark matter

halo and formation history.

The most well-known example of this has been coined “the missing satellites problem”,

which signifies the stark contrast between the number of dwarf galaxies (DGs) observationally

found in orbit about the MW and the number of dark matter subhaloes (which are expected

to host such DGs) that simulations of the Universe with a ΛCDM cosmology predict for MW-

mass galaxies. This problem has persisted since the early 1990s and has been confirmed by

many authors (see, e.g., Kauffmann et al., 1993; Klypin et al., 1999; Moore et al., 1999;

Kravtsov, 2010), and despite a recent influx of ultra-faint DGs discoveries from studying

survey data (e.g., Willman, 2010; Laevens et al., 2015; Drlica-Wagner et al., 2015), the fact

remains that DGs with L > 106 L� are ∼10 times rarer than expected (Bullock, 2010).
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It also appears that DGs are more compactly distributed around the MW than expected.

For example, Yniguez et al. (2014) compared spherically averaged radial number counts for

> 105 L� DGs within 400 kpc of the MW and its comparably massive neighbor, Andromeda

(or M31). They found that MW satellites are much more centrally concentrated than M31’s,

while also finding that the radial distribution of M31 satellites matches well with predictions

from ΛCDM cosmological simulations of Local Group-like (i.e., MW+M31) pairs.

Finally, the MW also seems to be unusual in that it has two ∼109 L� DGs located within

∼60 kpc of it, namely the Small and Large Magellanic Clouds. Liu et al. (2011) found that

only 3.5% of MW-mass galaxies in the local Universe fulfill this criterion (see also Busha

et al., 2011b). Additionally, Busha et al. (2011a) investigated the properties of both “mass

analogs” and “satellite analogs” of the MW found in the Bolshoi cosmological simulation

data. This analysis revealed that having not only a MW-like mass but also two Magellanic

Cloud-like subhalos associated with them corresponded to host halos having a ∼1σ higher

concentration parameter (i.e., the ratio of the virial radius to the scale radius) and a 60%

larger density of DM within 8 kpc (≈ R0). Unfortunately, the Bolshoi simulations do not

incorporate any luminous matter, so we cannot directly connect this to the distribution of

stars. State-of-the-art simulations are now becoming available, however, that model both

stars and gas within their parent dark matter halos, and with improving mass resolution (e.g.,

Kuhlen et al., 2009; Vogelsberger et al., 2014; Schaye et al., 2015; Wetzel et al., 2016). With

more and more realistic simulations of MW-like galaxies it should be feasible to investigate

whether the anomalies in the MW’s scale length and satellite population might be linked,

which in turn may improve our understanding of the formation history of our Galaxy.

5.6 SUMMARY AND CONCLUSIONS

Overall, our results provide a significant improvement in our understanding of how the MW

fits in extragalactic contexts. First and foremost, with consistently normalized Galactic and

extragalactic data, we find excellent agreement of MW properties with TFRs measured for

other spiral galaxies, in contrast to prior investigations, which deemed our Galaxy a 1–1.5σ
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outlier to the relation. These tensions can be almost entirely explained by systematic errors

in past work, particularly the values assumed for the distance of the Sun from the Galactic

center (R0) and for the Rd of the MW, which both affect luminosity estimates. The Galactic

luminosity estimates used here are based upon updated knowledge of these structural pa-

rameters and incorporate all associated uncertainties. This overall conclusion holds up when

comparing our MW estimates to TFRs found by other authors, where systematic differences

between Galactic and extragalactic measurements are relatively more worrisome; nonethe-

less, the MW falls sometimes above or below these relations, and is generically consistent

with them at below with 1σ threshold. We can confidently deem the MW a typical galaxy

in the context of the TFR, and hence it is a suitable laboratory for studying the driving

mechanisms of the relation.

By extending this type of comparison to 3-dimensional LV R relations, we have also

established strong evidence that our Galaxy appears overtly compact for its mass. The MW

disk would need to be nearly twice as large as the measured value to be of typical size

given our Galaxy’s L and Vrot. Furthermore, we find that ∼90% of spiral galaxies lie closer

to the LV R relation in 3D parameter space than does our Galaxy, characterizing it as a

rather significant outlier in this context, though not extraordinarily so. Many simulations

of galaxy formation have been tuned to yield MW-like scale lengths on average for galaxies

that resemble the MW in other respects (e.g., Governato et al., 2008; Bonoli et al., 2015);

however, the implicit assumption made that the MW is typical in its disk properties clearly

fails. This broadly matches suggestions that the MW may be “too small” based upon its

satellite population. As cosmological simulations and theoretical machinery continue to

improve, the results from this study may ultimately provide strong constraints on how our

Galaxy came to be.
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6.0 DISSERTATION CONCLUSION

In this dissertation I have focused on applying modern statistical tools to better understand

many global characteristics the Milky Way, and hence develop a more comprehensive picture

of the Galaxy that we live in. In turn, this enabled me to accurately examine how our Galaxy

fits in to a variety of extragalactic contexts, which until now has remained rather confused.

This is an important step not only for Galactic astronomy, but also for bridging the gap

between Galactic and extragalactic science. The Milky Way provides a unique laboratory

for studying galaxies: it is the only place where we can study gas and dust, as well as large

samples of individual stars in exquisite detail; however, the trade-off is that it is practically

impossible to make measurements of our Galaxy in the same way that we would for any

other. Overcoming this challenge is crucial for extending our knowledge of the Milky Way

to galaxies in general, which is a necessary step toward ultimately deciphering how such

systems have formed and evolved through cosmic history. Readers who are interested in

a tabulation the finalized results produced in this dissertation should refer to Appendix B

below. In the following I will give a short summary of each of the preceding chapters and

then conclude with ideas on how to further this work.

6.1 SUMMARY OF PREVIOUS CHAPTERS

In Chapter 2 I introduced a hierarchical Bayesian (HB) framework for statistical combining

a set of estimates for a given Milky Way property into one aggregate result. This is advan-

tageous because in several cases the literature is rich with such estimates, which employ a

wide variety of independent observational datasets, but, as discussed in that chapter, are
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typically prone to systematic errors. The HB framework is designed to account for this and

has, in fact, been vetted in other scientific contexts as a powerful tool for extracting the

consistent underlying signal from a sample of potentially flawed measurements. By incor-

porating parameters that characterize the consistency of the data, and then marginalizing

over these parameters, the HB analysis provides robust estimates for Milky Way quantities

with error estimates that we can have high confidence in. In this chapter, we first applied

this machinery straightforwardly to estimates of the Galactic star formation rate (SFR, Ṁ?).

Next, we took on the more complex case of performing a HB meta-analysis of bulge+bar

mass measurements while simultaneously combining this with a model of the disk in a self-

consistent manner using Monte Carlo techniques in order to constrain the total stellar mass

(M?) of the Galaxy. Ultimately, this study yielded updated and improved constraints on a

wide array of Milky Way mass properties, incorporating many key sources of uncertainty

that often have been neglected by prior studies, but also normalized to the same assump-

tions that are used for studying other galaxies to facilitate our comparisons to extragalactic

objects in later chapters.

In Chapter 3 I demonstrated a new statistical method of determining the global pho-

tometric properties of the Milky Way — i.e., its integrated absolute magnitude and color

index at visible wavelengths — to an unprecedented degree of accuracy, allowing our Galaxy

to be compared directly to objects measured in extragalactic surveys. Capitalizing on the

high-quality imaging and spectroscopy dataset from the Sloan Digital Sky Survey (SDSS),

I exploited the inherent dependence of galaxies luminosities and colors on their total stellar

mass and SFR by selecting a sample of Milky Way analog galaxies designed to reproduce

the best Galactic M? and Ṁ? measurements derived in Chapter 2. Making the Copernican

assumption that the Milky Way is not extraordinary among galaxies of similar stellar mass

and SFR, I then analyzed the photometric properties of this matched sample, constraining

the characteristics of our Galaxy without suffering interference from interstellar dust. I ex-

plored a variety of potential systematic errors that could affect this method, and showed

that they are subdominant to random uncertainties. This work yielded new determinations

of absolute magnitudes, color indexes, and stellar mass-to-light ratios in both SDSS ugriz

and Johnson-Cousins UBV RI passbands at both z=0 and z=0.1 rest frames; these are in
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agreement with previous estimates but can have up 3× lower errors. From comparison to

SDSS galaxies, I showed that the Milky Way most likely resides in the green-valley region of

the color-magnitude diagram and ranks as one of the brightest and reddest spiral galaxies

in the local Universe. In terms of the observed luminosity function, the Milky Way appears

consistent with being a L∗ in all of the ugriz passbands.

In Chapter 4 I applied the HB meta-analysis technique to nearly 30 estimates of the

exponential scale length (Ld) of the Galactic disk. This is a critical parameter for describ-

ing the global physical size of our Galaxy, important both for interpreting other Galactic

measurements and helping us to understand how our Galaxy fits into extragalactic contexts.

While Ld is among one of the most studied characteristics of our Galaxy, current estimates

span a wide range of values (∼1–6 kpc) and often are statistically incompatible with one

another — a strong indication that some must be contaminated by systematic or underesti-

mated errors. Interestingly, in this application it appeared that different ways of modeling

the inclusion of erroneous measurements in our dataset were equally favored by the Bayesian

evidence, yet yielded appreciably different marginalized posteriors for Ld. To hand this situ-

ation we introduced a Bayesian model averaging technique to determine an overall posterior

result that incorporated any model-selection uncertainty. By analyzing different subsets of

the data, I determined photometric scale lengths for visible, IR, and visible+IR starlight.

These matched well not only with dynamically-determined estimates of Ld for the Milky

Way, but also with ratios between visible and IR scale lengths measured for other spiral

galaxies. Lastly, to match as closely as possible what is done for extragalactic objects, we

used the IR photometric Ld estimate to produce an updated new model of the stellar disk,

which also newly accounts for variations in the local stellar surface density due to the Milky

Way’s spiral arm structure. We then used this model to repeat the analyses and update the

results for Milky Way mass properties in Chapter 2 and photometric properties in Chapter

3; these are the values listed in the tables provided in Appendix B.

Finally, in Chapter 5 I used several of the updated Milky Way estimates from Chapters 2–

4 to investigate how our Galaxy measures up to spiral galaxy scaling relations. A key aspect

of this comparison is that the possibility of any systematic offsets has been minimized by

ensuring that all Milky Way estimates rest upon the same basic assumptions that are used to
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determine extragalactic properties. I showed that, contrary to prior claims in the literature,

our Galaxy unequivocally follows the same Tully-Fisher relations as other spiral galaxies,

adopting any of a wide variety of proxies for luminosity. Next, I focused on comparing

the Milky Way to 3-dimensional scaling relations in luminosity-velocity-size (LV R) space

determined from principle component analysis. Here, I showed that ∼90% of other spiral

galaxies lie closer to the LV R relation that does the Milky Way, which in fact appears to

be unusually compact by a factor of ∼2 compared to other galaxies of similar luminosity

and rotational velocity. Lastly, I discussed the potential concerns about this result, but also

how it may correspond to peculiarities found when comparing Milky Way satellite galaxies

to predictions from ΛCDM cosmological simulations.

6.2 FUTURE WORK

There are a number of ways that the work described in this dissertation may be expanded

upon, particularly relating to the method of studying Milky Way analog galaxies. I have

focused on selecting such a sample of objects based on their star formation rates and total

stellar masses, given that these two properties correlate strongest with integrated optical

luminosities and colors; however, incorporating other well constrained parameters of the

Milky Way into this selection process could potentially lead to constraints tighter than those

presented herein. For example, the results from Chapter 5 indicate that the Milky Way’s

disk scale length is atypical for its mass. Therefore, an interesting follow-up to this work

would be to select Milky Way analogs based on their Ld in lieu of or in addition to their

Ṁ? in combination with their M? to match the best estimates of those properties for our

Galaxy. Another option would be to investigate the effect of incorporating bulge-to-total

ratio — a property that was tightly constrained in Chapter 2 — or morphological type into

the analog galaxy selection. By imposing these extra criteria one may be able to select

galaxies more representative of our own, but possibly at the cost of attaining a much smaller

sample. In principle, as the sample of Milky Way analogs selected becomes fine-tuned to an

increasingly number of Galactic properties one should be able to constrain other photometric
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properties that cannot be directly measured, such as central surface brightness and global

global Sérsic index, but are commonly measured for other galaxies. This would open the

doors to examining our Galaxy in variety of new extragalactic contexts.

Another important extension of this work would be to investigate the multi-wavelength

properties of our Galaxy by studying Milky Way analogs with UV-wavelength data from

GALEX — enabling one to more accurately assess whether the Milky Way belongs in the

green valley (cf. Wyder et al., 2007) — as well as utilize WISE near-IR data. In addition,

employing the analog analysis method for our nearest Milky Way-like neighbor, M31, the

Andromeda Galaxy, whose proximity and thus brightness can cause saturation effects in

survey data, would also likely lead to improved estimates of its multi-wavelength properties.

One could also study Milky Way analog galaxies to determine the “duty cycle” of our

Galaxy — i.e., the fraction of time that the Milky Way’s supermassive black hole is accreting

material and visible. Here the idea would be to make a determination of the fraction of analog

galaxies that display an active galactic nucleus (AGN) and relate this to the fraction of time

that our Galaxy displays one. This should be feasible with existing publicly-available X-

ray data or using SDSS emission line catalogs. Additionally, one could perform a similar

type of analysis to assess the typicality of the Milky Way’s satellite population. Here one

could answer the question: how often are Milky Way analogs accompanied by two or more

satellites as large as the Small and Large Magellanic Clouds? Do these galaxies show different

properties than those without large satellites? This also would be an extension of the work

by Liu et al. (2011) which identified Milky Way analogs based on their luminosities, but

other properties of those galaxies may be appreciable different from the Milky Way.

The sample of Milky Way analogs we have obtained for this work could also be used to

explore other properties with new observations. For example, performing 21-cm spectral line

follow-up measurements of the galaxies in our Milky Way analog sample would enable one to

determine their neutral hydrogen (HI) masses. This would allow for a determination of the

HI mass in the Galaxy, as it should be directly tied to measurements of M? and Ṁ?. At the

same time, this would enable one to estimate the Milky Way’s star formation efficiency (i.e.,

how efficiently Milky Way analogs are converting their neutral hydrogen into new stars).

This may already be feasible using data from the GALEX-Arecibo-SDSS-Survey (GASS).
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GASS is designed to study the evolution of galaxies through the Ṁ?/M? vs. M? plane by

measuring the neutral hydrogen content of 103 massive galaxies, which uniformly sample the

SDSS spectroscopic and GALEX imaging surveys.

Finally, an ancillary target program is now underway to provide integral-field unit obser-

vations for a subset of the Milky Way analog sample studied herein as a part of the SDSS-IV

MaNGA survey (Bundy et al., 2015). This will provide spatial-resolved spectroscopy for each

galaxy at visible wavelengths, and will ultimately yield two-dimensional maps of a myriad

of their properties. This includes stellar velocity and velocity dispersion, mean stellar age

and star formation history, stellar metallicity, element abundance ratio, stellar mass surface

density, ionized gas velocity, ionized gas metallicity, star formation rate and dust extinc-

tion. Such an extensive dataset could be used to perform a broad range of science. For

example, the metallicity, ionization state, and kinematics of ionized gas as well as the stellar

metallicity gradient in the Milky Way analogs may be studied over their full extent, whereas

in the Milky Way, such studies are generally limited by dust extinction to only the nearest

portions of the disk. Kinematics of both stars and gas may be measured and compared with-

out the distance ambiguities that affect Milky Way gas velocity measurements. Asymmetric

drift velocities for the analogs may be compared to the measurements for the Milky Way,

enabling consistency tests and checks on methodology. Spectral bulge/disk decompositions

and resolved stellar population diagnostics will, amongst other things, enable assessment

of how common pseudobulges vs. classical bulges are amongst Milky Way analogs; there

are claims that the Galaxy lacks a classical bulge (e.g., Kormendy & Kennicutt, 2004), and

we can assess how common that is in galaxies of similar star formation history using this

sample. This sample in particular will be especially important for building upon the efforts

describing in this work, and hence will provide a major advancement in understanding the

characteristics of the Milky Way, how it came to be, and how it truly fits into the world of

galaxies.
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APPENDIX A

ALTERNATIVE MODELS OF THE GALACTIC DISK

If the exponential disk model used by Bovy & Rix (2013) is far from reality, the total

mass estimates in Chapter 2 will, of course, be incorrect. The true global structure of the

Galactic disk remains an active area of research, and the direct measurements available in

the literature that probe the (luminosity and mass) distribution of its stars have generally

been limited to the range of 3 . R . 9 kpc (e.g., Jurić et al., 2008; Bovy & Rix, 2013).

Limiting the range of radii in this way mitigates the problem of needing to distinguish

bulge/bar stars from disk stars where they overlap. These components may be separated

with kinematical information, but that is available for few stars and is of course impossible

for studies based on aggregate light (e.g., Freudenreich, 1998; Drimmel & Spergel, 2001).

Similarly, studies that investigate the inner stellar mass at R . 3 kpc, such as all of those

in our Table 2.4, must account for the bulge+bar and disk components either by fitting

for them simultaneously or subtracting off the contribution from stars in the inner disk

based on the model that is assumed. We remind the reader that, as described in §2.4.3,

we have attempted to renormalize all of the bulge+bar mass measurements in Table 2.4 to

reflect uniform assumptions about the disk. Ultimately, all of this data is consistent with

an exponential mass density profile, such as the one we have used for this study; in general,

structural decompositions and model magnitude measurements for external galaxies also

assume such a profile for disks.

In order to assess the impact which a non-exponential mass profile would have on the

inferred total disk mass, we investigate the impact of allowing the mass profile to be described
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by a Sérsic model (Sérsic, 1968) in the radial direction, rather than a pure exponential, which

in the radial (but not azimuthal) direction is equivalent to a Sérsic profile with an index of

n = 1. Sérsic indices from global fits to the light from star-forming galaxies in the Sloan

Digital Sky Survey cluster around a value just above 1, with a tail to larger values whose

strength increases to redder colors (Blanton et al., 2003a). This is consistent with a picture

where disks are indeed exponential and larger Sérsic indices are obtained in earlier-type

spirals with greater bulge contributions (a de Vaucouleurs-profile bulge would have a Sersic

index of n = 4).

To investigate this further, we have employed the NYU Valued-Added Galaxy Catalog

(VAGC; Blanton et al., 2005), which includes Sérsic radial profile fits to the r-band 2D

images of a sample of galaxies from the Seventh Data Release (DR7; Abazajian et al., 2009)

from the Sloan Digital Sky Survey (York et al., 2000). These fits provide the Sérsic index

(n), scale radius (r0), and the covariance matrix between n and r0. From Data Release 8

(DR8; Aihara et al., 2011) we have also obtained the spectroscopically measured redshift (z),

the fraction of light from a de Vaucouleurs (bulge-like) profile when combined with a pure

exponential (n = 1) profile that best fits the 2D image (fracDeV), the axis ratio (b/a) from

the best-fit exponential profile to the 2D image, and the g− r color from model magnitudes

that are extinction- and K-corrected to z = 0 (which we denote 0(g− r); Blanton & Roweis,

2007). We restrict to only those galaxies found in both the NYU-VAGC and DR7/8 datasets

that are also part of the cleanly-measured volume-limited sample described in Chapter 3.

Overall, this ensures that all galaxies lie in the range 0.03 < z < 0.09 and have cleanly

measured images. From this sample we then reduce to only those that meet the following

criteria: 0(g − r) < 0.5, σ(n) < 0.25, σ(r0) < 0.25, fracDeV < 0.1, and b/a > 0.7. This

yields a set of 5,533 star-forming galaxies with minimal bulge-like components that appear

∼face-on and that have well-measured radial Sérsic profile fits. We expect that the Sérsic

indices for this sample can be used to broadly constrain the plausible values for the Galactic

disk.

We find the median of this distribution to be 1.08 and the 1σ range to be [0.9, 1.3].

Given that this sample still includes objects with a nonzero bulge mass (even a small de

Vaucouleurs bulge would increase the combined Sérsic index), values of n near but larger
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than 1 can be easily explained by bulge contributions to the light. Apparent values of n below

1 are predicted to be observed for intrinsically pure exponential disks due to projection effects

and dust absorption (see Pastrav et al., 2013a,b, and references therein). Furthermore, one

expects substantial scatter when fitting Sérsic models to objects with visible substructure

(e.g., spiral arms). As a result, the Sérsic index distributions of disk-dominated galaxies

in SDSS appear to be highly consistent with a scenario where the effective Sérsic index for

disks, if measured with no bulge contribution, would in fact be n = 1 (i.e., exponential). We

therefore do not find any compelling evidence that would cause us to discard the assumption

that the Milky Way disk is exponential so that a more complicated model is needed.

Although we have not found any compelling evidence that the exponential disk assump-

tion should be discarded, in order to assess what the impact of non-exponential profiles

could be on our results, we have explored the effect that varying the Sérsic index has on

the distribution of stellar mass in the Milky Way compared to a pure exponential (n = 1)

profile, while keeping fixed the mean values of the disk parameters listed in Table 2.3. For

fixed disk parameters, decreasing values of n increasingly add more stellar mass towards the

center of the Galaxy, while increasing values of n remove it. For instance, decreasing from

n = 1 to 0.9 effectively ∼doubles Σ? at the the Galactic center as well as the total disk mass

at R < 3 kpc (from 1.97× 1010 M� to 3.74× 1010 M�), which would imply that the disk is

the dominant component over the bulge at all radii. The possibility that the disk may be

described by a radial Sérsic index that is non-negligibly below 1 can therefore be discarded,

as such models would be in strong tension with direct measurements of the Galactic rotation

curve at these inner radii, as well as the mass measurements of the bulge we use in this

study.

In contrast, we find that the mass of the disk between R = 3 kpc (roughly where the

bulge truncates) and R = 25 kpc (well beyond the likely truncation radius of a Sérsic-model

disk) is rather stable for n ≥ 1; increasing n anywhere from 1 up to 1.5 yields changes that

are always . 5× 109 M�, which is modest compared to the overall uncertainties in the disk

mass estimate we present in §2.4.5. For changes at R < 3 kpc, disk mass and bulge/bar mass

are traded off against each other (due to our definition of the central mass), so total masses

are minimally affected. Of course, given that we have renormalized all of the bulge+bar
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mass measurements in Table 2.4 to reflect an exponential (n = 1) disk, it would not be

consistent to combine our HB bulge+bar mass result with a generalized Sérsic model of the

disk. Hence, the effects we have explored here only constitute a first-order correction; doing

better would require determining how a wide variety of historical bulge mass measurements

would change if a very different disk model were used in fitting, which goes far beyond the

scope or purpose of this study. We note that, since our definition of the bulge/bar mass is

the additional mass in excess of an extrapolated exponential disk, even if the disk equivalent

n were in fact less than 1, we would have included that mass in our bulge component, so our

total mass would be minimally affected (with only the fraction of that mass assigned to the

bulge and disk changing).

We note that the ultimate goal of this study is to produce measurements of the mass of

the Milky Way that may be directly compared to those for other galaxies, particularly the

mass determinations from the MPA-JHU SDSS catalog. The photometry in that catalog

is based on model fits to galaxies that assume de Vaucouleurs bulges and pure exponential

disks; if a very different model were used for determining the Milky Way mass, it is unlikely

the results would be directly comparable. We also note that studies of the Galactic disk

find that its vertical structure is well described by an exponential distribution with roughly

constant scale height (e.g., Jurić et al., 2008; Bovy & Rix, 2013), inconsistent with a Sérsic

model. Given all this, we consider an exponential mass profile, rather than a generalized

Sérsic profile, the best option for modeling the Galactic disk. Should this assumption prove

incorrect in the future (e.g., based on additional tests that will be provided by Gaia (Gilmore

et al., 2012) or APOGEE-2 (Sobeck et al., 2014) measurements), nonetheless we have found

that changing the disk model within reasonable bounds should have negligible impact on our

total stellar mass estimates.
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APPENDIX B

UPDATED ESTIMATES OF MILKY WAY PROPERTIES

The following tables provide a comprehensive summary of the Milky Way properties derived

in Chapter 4, as well as those derived in Chapters 2 and 3 after updating them to the model

of the stellar disk from §4.5.3, which utilizes our estimate for the IR photometric disk scale

length and accounts for local density variations due to spiral structure.
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Table B1. Updated Structural Properties of the Milky Way

Parameter Optimal Value ±1σ Units Source

A 0.20± 0.10 Chapter 4
R0 8.33± 0.35 kpc Gillessen et al. (2009)
Ld 0.12(R0 − 8.33 kpc) + 2.51+0.15

−0.13 kpc Chapter 4
Σ?(R0, φ0) 34.75± 4.30 M� pc−2 Chapter 2
C 1.25+0.29

−0.20 Chapter 4
Σ̄?(R0) 43.44+11.54

−8.43 M� pc−2 Chapter 4

Note. — A description of each parameter is as follows: A is the spiral amplitude
of the Milky Way disk, R0 is the radius of the Sun from the Galactic center, Ld is the
photometric disk scale length measured from IR starlight, Σ?(R0, φ0) is the surface
density of stellar material (main sequence stars plus stellar remnants, but not brown
dwarfs) at the Sun’s location, and C is the ratio between the mean surface density
at R = R0, denoted by Σ̄?(R0), and Σ?(R0, φ0). See §4.5.3 for discussion of these
estimates.

Table B2. Updated Mass Properties of the Milky Way

Parameter Optimal Value ±1σ Units Source

MB
? 0.91± 0.07× 1010 M� Chapter 2

MD
? 4.76+1.51

−1.09 × 1010 M� Chapter 4
M? 5.67+1.53

−1.11 × 1010 M� Chapter 4
B/T 0.16± 0.03 Chapter 4

Ṁ? 1.65± 0.19 M� yr−1 Chapter 2

Ṁ?/M? 2.89+0.80
−0.67 × 10−11 yr−1 Chapter 4

Note. — A description of each parameter is as follows:
MB
? is the stellar mass of the bulge+bar, MD

? is the stellar
mass of the disk, M? is the total stellar mass, B/T is the mass
bulge-to-total ratio, Ṁ? is the global star formation rate, and
Ṁ?/M? is the specific star formation rate. Note that the mass
of the stellar halo is assumed negligible (it is much smaller
than the uncertainties in MD

? ; e.g., Bell et al., 2008b) in this
model, such that M? ≡ MB

? + MD
? . These values are found

by reperforming the Monte Carlo HB analyses of Chapter 2
using the updated model of the Galactic disk from Chapter
4. The parameters of the updated disk model are listed in
Table B1. See §4.5.3.3 for discussion of these estimates.
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Table B3. Updated Photometric Properties for the Milky Way: Rest–frame z=0

Passbands

Absolute Optimal Value ±1σ Color Optimal Value ±1σ
Magnitude (mag) Index (mag)

0Mu − 5 log h −19.15+0.55
−0.47

0(u− r) 2.029+0.153
−0.150

0Mg − 5 log h −20.33+0.42
−0.43

0(u− g) 1.349+0.107
−0.092

0Mr − 5 log h −20.97+0.37
−0.40

0(g − r) 0.678+0.069
−0.057

0Mi − 5 log h −21.24+0.37
−0.38

0(r − i) 0.294+0.052
−0.046

0Mz − 5 log h −21.53+0.36
−0.39

0(i− z) 0.288+0.042
−0.041

0MU − 5 log h −20.00+0.59
−0.47

0(U − V ) 0.879+0.150
−0.125

0MB − 5 log h −20.05+0.41
−0.45

0(U −B) 0.143+0.082
−0.071

0MV − 5 log h −20.71+0.39
−0.40

0(B − V ) 0.740+0.065
−0.056

0MR − 5 log h −21.23+0.39
−0.39

0(V −R) 0.540+0.044
−0.041

0MI − 5 log h −21.81+0.38
−0.38

0(R− I) 0.594+0.050
−0.049

Note. — These values are found by reperforming the analysis of Chapter 3
using the updated model the Galactic disk and hence total stellar mass derived
in Chapter 4, which are tabulated in Tables B1 and B2. The changes are marginal
compared to the uncertainties.

Table B4. Updated Photometric Properties for the Milky Way: Rest–frame z=0.1

Passbands

Absolute Optimal Value ±1σ Color Optimal Value ±1σ
Magnitude (mag) Index (mag)

0.1Mu − 5 log h −18.84+0.56
−0.50

0.1(u− r) 2.187+0.193
−0.164

0.1Mg − 5 log h −20.05+0.46
−0.46

0.1(u− g) 1.411+0.121
−0.113

0.1Mr − 5 log h −20.75+0.38
−0.40

0.1(g − r) 0.777+0.078
−0.065

0.1Mi − 5 log h −21.13+0.36
−0.40

0.1(r − i) 0.389+0.047
−0.042

0.1Mz − 5 log h −21.38+0.35
−0.39

0.1(i− z) 0.272+0.047
−0.048

0.1MU − 5 log h −20.08+0.54
−0.50

0.1(U − V ) 0.592+0.161
−0.136

0.1MB − 5 log h −19.93+0.46
−0.46

0.1(U −B) −0.021+0.097
−0.092

0.1MV − 5 log h −20.44+0.42
−0.41

0.1(B − V ) 0.620+0.073
−0.063

0.1MR − 5 log h −20.95+0.38
−0.39

0.1(V −R) 0.516+0.047
−0.042

0.1MI − 5 log h −21.57+0.38
−0.38

0.1(R− I) 0.634+0.050
−0.045

Note. — These values are found by reperforming the analysis of Chapter 3 using
the updated model the Galactic disk and hence total stellar mass derived in Chapter
4. The changes are marginal compared to the uncertainties.
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Table B5. Updated Global Stellar Mass–to–light Ratios for the Milky Way

Rest–
Υ?
u Υ?

g Υ?
r Υ?

i Υ?
zframe

z=0 1.84+1.20
−0.76 1.93+0.72

−0.64 1.64+0.52
−0.51 1.41+0.41

−0.42 1.10+0.32
−0.32

z=0.1 1.71+1.29
−0.79 1.87+0.86

−0.63 1.82+0.67
−0.57 1.51+0.53

−0.44 1.26+0.38
−0.37

Rest–
Υ?
U Υ?

B Υ?
V Υ?

R Υ?
Iframe

z=0 1.81+1.12
−0.75 1.85+0.80

−0.63 1.84+0.66
−0.59 1.59+0.56

−0.47 1.28+0.44
−0.37

z=0.1 1.76+1.26
−0.81 1.81+0.84

−0.65 1.92+0.84
−0.60 1.72+0.60

−0.53 1.41+0.45
−0.41

Note. — All values are expressed in units of M�/L� and are
found by reperforming the analysis of Chapter 3 using the updated
model the Galactic disk and hence total stellar mass derived in
Chapter 4. The changes are marginal compared to the uncertainties.
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