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Abstract
Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospho-

lipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traf-

fic. Despite its clear importance for cellular function and organism physiology, mechanistic

details of its biology have so far not been fully elucidated. In part, this is due to a lack of

experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify

its dynamics and site(s) of action. In this study, we have evaluated a recently reported

PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in

live cells, the localization of this biosensor to sub-cellular compartments is largely indepen-

dent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic

interventions that block the lipid’s synthesis. We therefore conclude that it is unwise to inter-

pret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

Introduction
The phospholipid phosphatidylinositol (PtdIns) plays a unique role in membrane function,
through reversible phosphorylation at three positions on its inositol head group, creating a
family of seven unique bioactive lipids that direct protein activity [1]. The scarcest of these lip-
ids in most cells, and the last to be discovered, is PtdIns(3,5)P2 [2]. Despite being a quantita-
tively minor lipid, PtdIns(3,5)P2 is now appreciated as a functionally crucial molecule in the
endocytic pathway [3].

PtdIns(3,5)P2 is synthesized from the more abundant PtdIns3P by the 5-kinase Fab1p in
yeast [4,5] and its homologue PIKfyve in animals [6], and the reaction is reversed by the Sac-
phosphatase domain containing Fig 4/Sac3 [7]. Interestingly, in yeast and animals these
enzymes exist as a single complex with their mutual regulator Vac14/ArPIKfyve [8–12]. Degra-
dation of PtdIns(3,5)P2 by a 3-phosphatase activity of myotubularin-family phosphatases is
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also possible [13], although whether the pathway actually operates to accumulate another
scarce inositol lipid, PtdIns5P, is still hotly debated [14].

Most studies of the function of PtdIns(3,5)P2 come from either genetic inactivation of the
Fab1p/PIKfyve complex [8–12,15] or pharmacological inhibition of the enzyme [16].The
overarching conclusion from such studies is that PtdIns(3,5)P2 controls endocytic trafficking,
principally between endosomes and lysosomes (vacuoles in yeast) and the Golgi [3]. Such a
fundamental cellular role for the lipid combined with a single enzyme responsible for the ter-
minal step of its synthesis makes for profound impacts on organism function after inactivation
of the PIKfyve gene, leading to embryonic lethality in mice [17,18]. Tissue-specific mutations
in PIKfyve complex components lead to a number of pathological conditions in mice, includ-
ing neurodegeneration [19,20] and defective glucose homeostasis [21], with implications for
the lipid’s role in human disease.

Despite such clear and crucial roles for cellular and organismal physiology, mechanistic
detail as to how PtdIns(3,5)P2 executes these functions is still emerging. Several effector pro-
teins of the lipid have been identified [22], but unambiguously defining the lipid’s mechanism
of action requires tools to probe its cellular localization and function with respect to these effec-
tor proteins. This stems from the fact that whereas protein-lipid interactions may be necessary
for protein localization and function, they are often not sufficient in themselves, and additional
factors may further restrict their distribution [23].

A recently identified PtdIns(3,5)P2 effector protein is the mucolipin cation channel
TRPML1 [24,25]. The apparent specificity of the channel-lipid interaction led to the isolation
of the soluble N-terminus (ML1N) as the lipid interacting domain, and its subsequent engi-
neering into a tandem dimer (ML1Nx2) with increased avidity for the lipid for use as a specific
probe for PtdIns(3,5)P2 in living cells [26]. This represented a potential break-through for the
field, and unambiguously assigned PtdIns(3,5)P2 to endosomes and lysosomes [26].

We recently characterized a live-cell biosensor for another inositol lipid, PtdIns4P, and
localized this lipid to endosomes and lysosomes as well [27]. We were therefore interested to
study whether these two inositol lipids might have overlapping localizations and functions.
However, in the course of these studies, we discovered strong evidence that the ML1Nx2
probe’s localization to endosomes and lysosomes is largely independent of PtdIns(3,5)P2. We
describe the results of these studies herein, and sound a note of caution when interpreting the
distribution of ML1Nx2 as an indicator for the lipid’s localization or abundance. It seems that
the ultimate cellular distribution of PtdIns(3,5)P2 has yet to be directly observed.

Materials and Methods

Plasmids and Reagents
GFP-ML1Nx2 was a kind gift from Dr. Haoxing Xu (University of Michigan, Ann Arbor, MI,
USA). Fluorescent protein conjugated P4M, PH-PLCδ1-mCherry, mTurquoise-FYVE-EEA1,
iRFP-FRB-Rab5 and -Rab7, mCherry-FKBP-MTM1 were as described previously [27]. mTur-
quoise-Rab7 was modified from an mCherry-Rab7 construct [28] kindly donated by R. Lodge
(Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada) to replace mCherry
with mTurquoise2 [29]. Lamp1-mRFP [30] was a kind gift fromMarko Jovic (UDC, Washing-
ton D.C., USA).

Rapamycin was from Life Technologies, wortmannin and YM201636 were from Selleckcem.
We noted that even after storing fresh single use aliquots of YM201636 dissolved in DMSO at
–80°C, the compound lost activity over a period of three months. All data presented are from
stocks of the compound dissolved in DMSO within 2 weeks of preparation. All other reagents
were obtained from Sigma.
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Cell Culture and Transfection
COS-7 cells (ATCC CRL-1651) were grown in high-glucose Dulbecco’s minimum essential
medium supplemented with 10% fetal bovine serum and penicillin/streptomycin (Life technol-
ogies). They were passaged twice per week by enzymatic dissociation using TrypLE express
(Life Technologies) and dilution. Cells seeded in 29 mm glass bottom dishes (CellVis) were
transfected at ~50% confluency in 1 ml Opti-MEM (Life Technologies) pre-complexed for 20
min with 3 μg Lipofectamine2000 from a 1 mg/ml stock solution (Life Technologies) and 1 μg
total plasmid DNA. Ratios of different plasmids were empirically determined to reach opti-
mum transfection efficiency of all plasmids.

Live Cell Imaging
Imaging was performed on a Zeiss 780 confocal laser scanning confocal microscope using a
63x, 1.4 NA plan-apochromatic objective lens mounted on a Zeiss Axio Observer stand. Fluor-
ophores, excitation laser lines and spectral detection windows and detectors were respectively
as follows: CFP, 405 nm excitation, 450–490 nm detection, Quasar GaSP PMT array; GFP, 488
nm excitation, 508–535 nm detection, Quasar GaSP PMT array; mCherry/mRFP, 561 nm exci-
tation, 578–649 nm detection, Quasar GaSP PMT array; iRFP, 633 nm excitation, 650–748 nm
detection, PMT. CFP was acquired simultaneously with mCherry, as were GFP and iRFP;
where all four are detected, sequential imaging between the two pairs was performed to elimi-
nate cross-talk. Images from multiple positions were recorded in series using a motorised stage
at the time interval indicated in each Fig.

The cells were bathed in 800 μl of HEPES-containing high-glucose phenol red-free Dulbec-
co’s modified essential medium (Life Technologies). As indicated in Fig legends, drug additions
were made in 200 μl medium at 5x final concentration. An automated focusing system (Defi-
nite Focus, Zeiss) was used to maintain the confocal plane during time-lapse imaging.

Image Analysis
All Image analysis was performed in Fiji [31]. Co-localization analysis used calculation of
the normalized mean deviation product (nMDP), a co-localization method that allows quanti-
tative analysis of two channels with an image-based presentation [32], and was calculated
using a custom-written Fiji macro as described previously [27]. Briefly, pixel intensity for both
channels in a region of interest (ROI) encompassing the whole cell is normalized to the mean
intensity and set to a range between 1 and –1 (that is, mean = 0, brightest pixel = 1, dimmest
pixel = –1). The two normalized images are then multiplied together; pixels with correlating
intensities (both towards larger more positive or negative values) produce high, positive values
(yellow in the images), whereas regions that anti-correlate (bright in one channel verses dim in
another) tend towards smaller or even negative pixel values (green in images). For clarity in
displayed images, pixels that were dim in both channels (i.e.< 0 and therefore a positive prod-
uct) are set to 0 (black), although this is performed after calculating the image’s nMDP score.

Image intensity analysis was also performed as described in detail before [27]. Briefly, nor-
malized intensity was calculated for each cell by normalizing each pixel to the mean for a
region of interest (ROI) encompassing the whole cell. The mean pixel intensity for endosomal
or Lamp1-positive compartments was then calculated by generating an automated binary
mask of these compartments based on images of the Rab5/7 or lamp-1 markers at each time-
point. This mask is generated via an elaborate auto-thresholding technique utilizing a-trous
wavelet decomposition of these images [33].

To select example images for Figs, all the data was ranked by the appropriate metric (nMDP
score or compartment-specific normalized pixel intensity) and examples showing clear
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morphology, high signal/noise and a score close to the median were selected. In all cases, image
scores fall within the 25–75 percentile range. Graphs show the data from every cell analysed in
all experiments; they were constructed in Prism6 (Graphpad) and statistical analysis was per-
formed in the same software as indicated for each Fig.

Pikfyve-deficient ES Cells
Pikfyve-deficient murine embryonic stem (ES) cells were generated as described previously
[17]. All experimental protocols were reviewed and approved by the Akita University
Institutional Committee for Animal Studies. WT and KO ES cells were transfected with the
GFP-ML1Nx2 expression vector using Lipofectamine2000. After 24 hrs, the cells were plated
on glass-base culture dishes that had been coated with 15 μg/ml fibronectin (Sigma). Fluores-
cent images of live cells were acquired by a Leica AF6000 microscope.

Results and Discussion

Broad Endosomal Distribution of GFP-ML1Nx2
When expressed in COS-7 cells (Fig 1), GFP-ML1Nx2 displayed extensive overlap with
mTq2-FYVE-EEA1 [34], a PtdIns3Pmarker (Fig 1A), consistent with previous observations
made with ML1Nx2 [26] and as predicted from the synthesis of PtdIns(3,5)P2 from PtdIns3P
[2]. However, despite the majority of FYVE-EEA1-positive structures exhibiting GFP-ML1Nx2
labelling, there were numerous structures positive for the ML1Nx2 but apparently negative for
the PtdIns3P probe (Fig 1A and “Cell 22” and “Lipids-pooled” in S1 File).

We have previously reported a largely exclusive localization of PtdIns3P probes with a
probe that detects late endosomal/lysosomal PtdIns4P, iRFP-P4M [27]. In fact, some ML1Nx2
over-lapped with P4M-positive compartments, although many puncta were only positive for
one probe or the other (Fig 1A). Finally, the exclusively plasma membrane-labelling PtdIns
(4,5)P2-probe, PH-PLCD1-mCherry [27], showed virtually no over-lap with the GFP-ML1Nx2
probe at all (Fig 1A). Because almost all FYVE-EEA1-positive structures were positive for
ML1Nx2, but only a minority of P4M-labelled structures were positive, the highest degree of
co-localization was observed with the PtdIns3Pmarker (Fig 1A). Nonetheless, the relatively
broad distribution across PtdIns3P-positive early and PtdIns4P-positive late endosomal com-
partments largely agreed with the localization of ML1Nx2 reported previously [26].

To confirm the distribution across multiple endosomal compartments, we compared the
localization of GFP-ML1Nx2 with the early endosomal marker, Rab5 [35], the late endosomal
marker, Rab7 [35] and the lysosomal marker, Lamp1 [36,37] as shown in Fig 1B, (see also
“Cell 2” in S1 File). Indeed, ML1Nx2 exhibited extensive co-localization with all three markers
with a similar co-localization score, despite the fact that the endo/lysosomal compartment
marked by Lamp1 and Rab7 (Lamp1 vs Rab7 co-localization score
nMDP = 0.005937 ± 0.000981, mean 95% C.I.) was clearly resolved from the early, Rab5-pos-
tive compartment (Lamp1 vs Rab5 co-localization nMDP = 0.004281 ± 0.000676; Rab7 vs.
Rab5 nMDP = 0.004613 ± 0.001115; P< 0.033 compared to Rab7 vs lamp1 by one-way
ANOVA with Tukey’s multiple comparison, see “Rabs-pooled” in S1 File). Together, these
data demonstrate ML1Nx2’s wide distribution within the endosomal system.

Lack of PtdIns(3,5)P2-dependence of ML1Nx2 localization
Such a wide distribution of the ML1Nx2 reporter suggests multiple host compartments for
PtdIns(3,5)P2. However, when working with fluorescent lipid biosensors, it is important to rule
out the presence of accessory molecular interactions that can bias or even occlude the apparent
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localization of the lipid [23]. Although GFP-ML1Nx2 binding was shown to be specific for
PtdIns(3,5)P2 in vitro [26], binding of the full-length protein was less so [25]; furthermore,
in vitro specificity amongst lipids does not preclude other molecular interactions being neces-
sary for membrane binding in cells. We therefore sought to confirm the specificity of the
ML1Nx2 probe’s interaction with PtdIns(3,5)P2 in living cells.

Given the sole route of synthesis of PtdIns(3,5)P2 is via 5-phosphorylation of PtdIns3P
[5], inhibition of PtdIns3P synthesis would be expected to cause depletion of PtdIns(3,5)P2
(Fig 2). To this end, we used the broad-spectrum PI 3-kinase inhibitor wortmannin [38] at a

Fig 1. The GFP-ML1Nx2 probe labels endosomal compartments. (A) GFP-ML1Nx2 co-localizes more with PtdIns3P than other constitutive inositol lipids;
the “co-localization” images show the images of the normalized mean deviation product (nMDP) between two channels, wherein bright pixels that correlate in
each channel appear gold and pixels that anti-correlate appear green (dim pixels that correlate in each channel are shaded black for clarity). The graph at
right shows the mean nMDP score ± 95%C.I. for 30 cells, with the P values represented above (One-way ANOVA with Tukey’s multiple comparison; *** =
P < 0.0001). (B) GFP-ML1Nx2 co-localizes to a similar extent with early (Rab5), and late endo/lysosomal (Rab7 and LAMP1) markers. “Co-localization”
images as in A; graph at right shows the mean nMDP score ± 95%C.I. for 30 cells, with the P values represented above (One-way ANOVA, no significant
variance between groups). Scale bar = 15 μm and applies to A and B.

doi:10.1371/journal.pone.0139957.g001
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concentration of 100 nM, which is known to effectively inhibit the PI 3-kinase Vps34 responsi-
ble for most PtdIns3P synthesis [39]. Time-lapse imaging revealed effective depletion of PtdIns3P
within 10 minutes of wortmannin addition, using the FYVE-EEA1 probe, and a concomitant
swelling of the Rab5-positive compartment, which stems from the stalling of PI 3-kinase-depen-
dent trafficking at the early endosome [40,41]. Yet, no depletion of GFP-ML1Nx2 was apparent
over a whole hour (Fig 2; see also “Wm” and “Wm-pooled” in S2 File). In fact, quantification of
the fluorescence associated with the Rab5-positive membranes revealed a slight increase in fluo-
rescence over 60 min, despite robust depletion of FYVE-EEA1 (Fig 2).

Whereas manoeuvres that inhibit PtdIns3P synthesis have been demonstrated to inhibit
PtdIns(3,5)P2 accumulation in cells, depletion is not complete [42], potentially explaining the
unyielding localization of ML1Nx2 after wortmannin addition. Indeed, given the role of
PtdIns3P in localizing PIKfyve [42] and the fact that the PtdIns(3,5)P2-hydrolyzing Sac3 phos-
phatase is in complex with this kinase [12], it is easy to envision a scenario where PtdIns3P
depletion could actually inhibit PtdIns(3,5)P2 hydrolysis. We therefore sought a more direct
method to deplete this lipid in cells.

The myotubularin phosphatase MTM1 is known to hydrolyze the 3-phosphate from both
PtdIns3P and PtdIns(3,5)P2 [13]. The enzyme was previously used in conjunction with rapa-
mycin-induced chemical dimerization of FKBP and FRB-fused proteins to acutely recruit it to
Rab5-positive membranes and acutely deplete the lipids [43]. We utilized this strategy to test

Fig 2. The GFP-ML1Nx2 probe does not dissociate from the Rab5-positive membranes in response to blockade of PtdIns3P synthesis. Images
show a representative cell expressing the three indicated constructs before and 1 h after treatment with 100 nM wortmannin, which inhibits the PI 3-kinase
that synthesizes PtdIns3P, the substrate for PtdIns(3,5)P2 synthesis. The graph at right shows mean fluorescence intensity at Rab5-positive membranes
normalized to the whole cell for the indicated construct (data are means ± s.e.m. of 12 cells from three independent experiments). No dissociation of the
GFP-ML1Nx2 is observed despite robust depletion of FYVE-EEA1 within 15 min of wortmannin application. Scale bar = 15 μm.

doi:10.1371/journal.pone.0139957.g002
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the specificity of ML1Nx2 (Fig 3). Rapamycin induced robust recruitment of an FKBP-conju-
gated MTM1 enzyme to Rab5-positive membranes, and rapid and complete elimination of
FYVE-EEA1 labelling in this compartment–with no decrease in GFP-ML1Nx2 labelling (Fig 3;
see also “MTM” and “BMTM-pooled” in S3 File). In fact, as with wortmannin treatment, a
slight increase in labelling was observed. These observations are inconsistent with
GFP-ML1Nx2 localizing to Rab5-positive membranes in a PtdIns(3,5)P2-dependent and spe-
cific manner.

Previous experiments with GFP-ML1Nx2 demonstrated cellular specificity of the probe
through pharmacological inhibition of PIKfyve [26] with YM201636, a compound known to
produce rapid depletion of the lipid [16,44]. We sought to repeat these experiments via time-
lapse imaging, to follow the effect of the compound on living cells (Fig 4 and accompanying
raw tiff files in S4 File). The compound was effective, producing the characteristic swollen

Fig 3. The GFP-ML1Nx2 probe does not dissociate from the Rab5-positive membranes in response to depletion of PtdIns3P and PdIns(3,5)P2.
Images show a representative cell expressing the three indicated constructs before and 40 min after treatment with 1 μM rapamycin, which induces
recruitment of FKBP-MTM1 to the FRB-Rab5-decorated membranes, thereby depleting PtdIns3P and PtdIns(3,5)P2. The graph at right shows mean
fluorescence intensity at Rab5-positive membranes normalized to the whole cell for the indicated construct (data are means ± s.e.m. of 15 cells from four
independent experiments). No dissociation of the GFP-ML1Nx2 is observed despite robust depletion of FYVE-EEA1 within 2 min of rapamycin application.
Scale bar = 15 μm.

doi:10.1371/journal.pone.0139957.g003
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vacuole phenotype that results from PtdIns(3,5)P2 inhibition [16]–yet we observed no global
decreases in GFP-ML1Nx2 labelling. Quantitative analysis of fluorescence intensity with a
Lamp1-mRFP marker again revealed only a slight increase in overall binding at this

Fig 4. The GFP-ML1Nx2 probe does not dissociate from the LAMP1-positive membranes in response to blockade of PtdIns(3,5)P2 synthesis.
Images show a representative cell expressing the indicated constructs before and 3 h after treatment with 1 μMYM201636, which inhibits PIKfyve that
synthesizes PtdIns(3,5)P2. The montage images at the bottom are from the boxed region above, and are separated by 10 min intervals. The graph at right
shows mean fluorescence intensity at LAMP1-positive membranes normalized to the whole cell for the indicated construct (data are means ± s.e.m. of 29
cells from three independent experiments). No dissociation of the GFP-ML1Nx2 is observed despite extensive vacuolation of the cells in response to
YM201636 treatment. Scale bar = 15 μm.

doi:10.1371/journal.pone.0139957.g004
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compartment (Fig 4; see also “pooled” in S4 File). Because the individual vesicular structures
labelled inside cells are motile, continuously splitting, merging and moving out of the plane of
focus, it is not possible to track the association of GFP-ML1Nx2 with individual structures
with any confidence. None the less, the data clearly show no overall decrease in GFP-ML1Nx2
association with Lamp1-positive membranes after elimination of PtdIns(3,5)P2 with
YM201636.

These results are in contrast to those reported previously [26]. However, we believe our
data are a more rigorous assessment as they were achieved by time-lapse imaging, whereas the
previous study was a cohort approach, comparing separate cell populations treated with
YM201636 or vehicle. Therefore, variations between cells in terms of expression level and mor-
phology may have accounted for the differences observed, rather than as a direct result of
PtdIns(3,5)P2 elimination. Notably, a maximal effect was only achieved after 24 hours in the
previous study [26], far longer than the matter of 1–2 hours for vacuolation to develop (Fig 4)
and the few minutes necessary for PtdIns(3,5)P2-depletion [16,44]; this argues strongly for an
indirect effect as the cause of decreased GFP-ML1Nx2 localization in the previous study.

As a final test of the PtdIns(3,5)P2-dependece of GFP-ML1Nx2 localization in cells, we
turned to our extensively characterized murine embryonic fibroblasts (MEF) null for PIKfyve,
which are unable to synthesize the lipid [17]. These cells exhibit the swollen vacuoles in their
cytoplasm (Fig 5; see accompanying “jpeg” files in S5 File), yet still exhibit clear vesicular

Fig 5. The GFP-ML1Nx2 probe labels punctate structures even in the absence of PIKfyve. Images show
a representative wild-type and PIKfyve knock-out (KO) ES cells expressing the GFP-ML1Nx2 probe. Note the
fluorescent puncta in the PIKfyve KO cell which showed swollen endosomes, a hallmark of PtdIns(3,5)P2

deficiency. Data are representative of 11 cells, scale bar = 15 μm.

doi:10.1371/journal.pone.0139957.g005
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distribution of GFP-ML1Nx2. Therefore, some cellular component evidently enables
GFP-ML1Nx2 to localize to membranes in the absence of PtdIns(3,5)P2.

Conclusions
Having applied a battery of pharmacological, enzymatic and genetic approaches to deplete PtdIns
(3,5)P2 from cells, we conclude that the continued localization of the GFP-ML1Nx2 biosensor to
endosomal membranes can only be due to its interaction with some cellular component other
than PtdIns(3,5)P2. What this other component may be is not indicated by our data, and is not
strictly relevant to our study; what is clear is that PtdIns(3,5)P2 is not necessary for membrane
localization of GFP-ML1Nx2 in cells. Given the in vitro interaction of this protein with the lipid
[25,26], it is perhaps possible that PtdIns(3,5)P2 is sufficient to localize the probe to some subset of
cellular structures, and therefore these structures are truly labelled due to the presence of the lipid.
However, the alternative interaction, whatever it may be, occludes any specificity in the cellular
context; it is not possible to identify whether a GFP-ML1Nx2-labelled compartment is labelled due
to the presence of PtdIns(3,5)P2 a priori. We therefore urge caution in interpreting the localization
of GFP-ML1Nx2 as a biosensor for the localization or relative abundance of PtdIns(3,5)P2 in cells.

Supporting Information
S1 File. Raw data accompanying Fig 1. The folder labeled “Cell 2” contains raw images as well
as the nMDP images of the cell shown in Fig 1A. “Lipids-pooled” is the Graphpad Prism
spreadsheet containing nMDP data from all cells analyzed and plotted in the bar graph in Fig
1A. The folder labeled “Cell 22” contains raw images as well as the nMDP images of the cell
shown in Fig 1B. “Rabs-pooled” is the Graphpad Prism spreadsheet containing nMDP data
from all cells analyzed and plotted in the bar graph in Fig 1A.
(ZIP)

S2 File. Raw data accompanying Fig 2. The folder labeled “Wm” contains raw images of the
cell shown in Fig 2. “Wm-pooled” is the Graphpad Prism spreadsheet containing normalized
intensity data from all cells analyzed and plotted in the graph in Fig 2.
(ZIP)

S3 File. Raw data accompanying Fig 3. The folder labeled “MTM” contains raw images of the
cell shown in Fig 3. “MTM-pooled” is the Graphpad Prism spreadsheet containing normalized
intensity data from all cells analyzed and plotted in the graph in Fig 3.
(ZIP)

S4 File. Raw data accompanying Fig 4. Raw “tiff” image files of the cell shown in Fig 4.
“pooled” is the Graphpad Prism spreadsheet containing normalized intensity and nMDP data
from all cells analyzed and plotted in the graph in Fig 4.
(ZIP)

S5 File. Raw data accompanying Fig 5. Raw “jpeg” image files of the cell shown in Fig 4.
(ZIP)
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